Before you use this information and the product it supports, read the information in “Notices” on page 297.
Contents

Tables
- vii

About this publication
- ix
 - Who should read this guide
 - Publications
 - Reading syntax diagrams

Data Protection for Microsoft SQL
- xiii

Chapter 1. Getting Started
- 1
 - Environment overview
 - Failover clustering and AlwaysOn Availability
 - Availability database backup operations
 - Availability database restore operations
 - Data Protection for AlwaysOn Availability Groups
 - Automated IBM Spectrum Protect server failover
 - for data recovery
 - Data backup overview
 - VSS data backups
 - Offloaded VSS backups
 - SQL Server legacy backups
 - Database backup types
 - Policy management for backups
 - Data restore overview
 - VSS fast restore processing
 - VSS instant restore processing

Chapter 2. Installing, upgrading, and migrating
- 31
 - Prerequisites
 - Installing and configuring Data Protection for SQL Server
 - Installing Data Protection for SQL Server
 - Completing the installation configuration
 - Verifying the configuration
 - Customizing the configuration
 - Installing on a local system
 - Installing on Windows Server Core
 - Installing in a cluster environment
 - Silently installing Data Protection for SQL Server
 - Silently installing the IBM Spectrum Protect client
 - Silently installing Data Protection for SQL Server with the setup program
 - Silently installing with the Microsoft Installer program
 - Options in silent installations
 - Creating and testing a silent installation package on a DVD or a file server
 - Silent installation error messages
 - Upgrading Data Protection for SQL Server
 - Migrating Data Protection for SQL Server

Chapter 3. Configuring
- 47
 - Specifying configuration parameters for IBM Spectrum Protect
 - Specifying Data Protection for SQL Server node name parameters
 - Specifying configuration and options files in non-default locations
 - Configuring proxy relationships for VSS backups
 - Required node names for basic VSS operations
 - Required node names for basic VSS offloaded backups
 - Setting user preferences
 - Data Protection properties
 - Configuring by using the IBM Spectrum Protect Configuration Wizard
 - Configuring a remote system with an IBM Spectrum Protect configuration
 - Configuring IBM Spectrum Protect policy to set automatic expiration and version control (VSS and legacy backups)
 - Setting automatic expiration for VSS backups
 - Setting automatic expiration for legacy backups
 - Configuring in a clustered environment
 - Configuring Data Protection for SQL Server with IBM Spectrum Protect in a clustered environment
 - Configuring VSS operations in a clustered environment
 - Configuring availability replicas to run scheduled data backups
 - Manually configuring Data Protection for SQL Server
 - Configuring the computer that runs the SQL Server
 - Configuring the IBM Spectrum Protect server
 - Configuring the system that runs the offloaded backups
 - Verifying the configuration of Data Protection for SQL Server
 - Manually configuring Data Protection for SQL Server on Windows Server Core
 - Creating a node on the IBM Spectrum Protect server
 - Setting up a proxy node for offloaded VSS backups in the Windows Server Core environment
 - Configuring the client in the Windows Server Core environment
 - Configuring Data Protection for SQL Server on Windows Server Core
 - Changing Data Protection for SQL Server configuration values on Windows Server Core
 - Transitioning SQL Server backups from IBM Spectrum Protect Snapshot to IBM Spectrum Protect
 - Configuring the IBM Spectrum Protect server
 - Configuring the workstation that runs the SQL Server

© Copyright IBM Corp. 1997, 2017
Tables

1. Data Protection for SQL Server backup types 14
2. Silent installation options 41
3. Silent installation features (base client only) 43
4. Commands for creating a silent installation package 43
5. Required node names for basic VSS operations 52
6. Required node names for basic VSS offloaded backups 52
7. Diagnostics modes and their usage 57
8. Backup strategy characteristics 96
9. Overview of backup strategies 101
10. Database backup views 103
11. Database backup options 104
12. Database backup views 106
13. Database backup views 108
14. Database restore options 115
15. Database restore views 119
16. Database restore selection options 119
17. Database backup views 121
18. Database backup views 122
19. Node names used to set access 126
20. Database restore views 129
21. Database backup views 132
22. Cmdlets to protect Microsoft SQL Server data 141
23. VSSADMIN commands 150
24. Data Protection for SQL Server optional parameters 168
25. SQL Server connection protocols 183
26. SQL Server connection protocols 225
27. SQL Server connection protocols 256
About this publication

With Data Protection for Microsoft SQL Server software you can back up and restore Microsoft SQL Server databases to IBM Spectrum Protect™ storage.

Data Protection for SQL Server provides a connection between an SQL Server and a IBM Spectrum Protect server. This connection allows SQL data to be protected and managed by IBM Spectrum Protect.

IBM Spectrum Protect is a client/server licensed product that provides storage management services in a multi-platform computer environment.

This publication provides information about installing, configuring, and protecting data with Data Protection for Microsoft SQL Server.

Who should read this guide

This publication is intended for system users, IBM Spectrum Protect administrators, and system administrators.

In this book, it is assumed that you have an understanding of the following applications:

- Microsoft SQL Server
- IBM Spectrum Protect Server
- IBM Spectrum Protect Backup-Archive Client
- IBM Spectrum Protect Application Programming Interface

It is also assumed that you have an understanding of one of the following operating systems:

- Windows Server Editions
- Microsoft Windows Professional or Enterprise Editions

It is also assumed that you have an understanding of the Microsoft Windows VSS infrastructure if you are exploiting VSS snapshot backups.

Publications

The IBM Spectrum Protect product family includes IBM Spectrum Protect Snapshot, IBM Spectrum Protect for Space Management, IBM Spectrum Protect for Databases, and several other storage management products from IBM®.

To view IBM product documentation, see IBM Knowledge Center

Reading syntax diagrams

This section describes how to read the syntax diagrams used in this book. To read a syntax diagram, follow the path of the line. Read from left to right, and top to bottom.

- The►► ── symbol indicates the beginning of a syntax diagram.
- The───► symbol at the end of a line indicates the syntax diagram continues on the next line.
• The ►─── symbol at the beginning of a line indicates a syntax diagram continues from the previous line.
• The ───►◄ symbol indicates the end of a syntax diagram.

Syntax items, such as a keyword or variable, can be:
• On the line (required element)
• Above the line (default element)
• Below the line (optional element)

<table>
<thead>
<tr>
<th>Syntax Diagram Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations:</td>
<td></td>
</tr>
<tr>
<td>Uppercase letters denote the shortest acceptable truncation. If an item appears entirely in uppercase letters, it cannot be truncated. You can type the item in any combination of uppercase or lowercase letters. In this example, you can enter KEYWO, KEYWORD, or KEYWOrd.</td>
<td>►►KEYWOrd►◄</td>
</tr>
<tr>
<td>Symbols:</td>
<td>Asterisk</td>
</tr>
<tr>
<td>Enter these symbols exactly as they appear in the syntax diagram.</td>
<td>*</td>
</tr>
<tr>
<td>Variables:</td>
<td>KEYWOrd─var_name─►◄</td>
</tr>
<tr>
<td>Italicized lowercase items (var_name) denote variables. In this example, you can specify a var_name when you enter the KEYWORD command.</td>
<td>KEYWOrd─var_name─►◄</td>
</tr>
<tr>
<td>Syntax Diagram Description</td>
<td>Example</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Repetition:</td>
<td></td>
</tr>
<tr>
<td>An arrow returning to the left means you can repeat the item.</td>
<td>Repetition</td>
</tr>
<tr>
<td>A character or space within the arrow means you must separate repeated items with that character or space.</td>
<td>Repetition</td>
</tr>
<tr>
<td>A footnote by the arrow references the number of times you can repeat the item.</td>
<td>Repetition</td>
</tr>
</tbody>
</table>

Notes:
1 Specify `repeat` as many as 5 times.

<table>
<thead>
<tr>
<th>Required Choices:</th>
<th>Required choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>When two or more items are in a stack and one of them is on the line, you must specify one item.</td>
<td>Required choices</td>
</tr>
<tr>
<td>In this example, you must choose A, B, or C.</td>
<td>Required choices</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional Choice:</th>
<th>Optional choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>When an item is below the line, that item is optional. In the first example, you can choose A or nothing at all.</td>
<td>Optional choice</td>
</tr>
<tr>
<td>When two or more items are in a stack below the line, all of them are optional. In the second example, you can choose A, B, C, or nothing at all.</td>
<td>Optional choice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defaults:</th>
<th>Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defaults are above the line. The default is selected unless you override it. You can override the default by including an option from the stack below the line.</td>
<td>Defaults</td>
</tr>
<tr>
<td>In this example, A is the default. You can override A by choosing B or C. You can also specify the default explicitly.</td>
<td>Defaults</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Repeatable Choices:</th>
<th>Repeatable choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>A stack of items followed by an arrow returning to the left means you can select more than one item or, in some cases, repeat a single item.</td>
<td>Repeatable choices</td>
</tr>
<tr>
<td>In this example, you can choose any combination of A, B, or C.</td>
<td>Repeatable choices</td>
</tr>
</tbody>
</table>
Syntax Diagram Description

Syntax Fragments:

Some diagrams, because of their length, must fragment the syntax. The fragment name appears between vertical bars in the diagram. The expanded fragment appears between vertical bars in the diagram after a heading with the same fragment name.

Example

Syntax fragments

```plaintext
Syntax fragments

►► The fragment name

The fragment name:

```
```

```
```
```
Data Protection for Microsoft SQL Server updates V8.1.4

This document provides information about what's new or what has changed in Data Protection for Microsoft SQL Server version 8.1.4.

New and changed information is indicated by a vertical bar (|) to the left of the change.

What's new

Restore VSS backups to an alternate

You can now restore VSS backups to alternate instances. This feature is supported with Windows PowerShell cmdlets, Windows command prompt, and the Microsoft Management Console (MMC). The following restore options are available:

- Restore local and IBM Spectrum Protect VSS backups. You can restore either to an alternate instances on the same server where the backup is taken or to an instance on a different server. For local backups, you can restore only to alternate instances on the same server.
- Restore from VSS backups on virtual machines. You can restore to an alternate SQL server instance on the same server or to an instance on a different server.

For more information, see “Restoring an SQL Server database to an alternate instance” on page 120.

Configuration options

- Clustersharedfolder option

 When you set up a cluster environment, a password is required that is accessible to all nodes in the cluster. IBM Spectrum Protect includes a new clustersharedfolder option to specify the directory location in which to store the password file. For more information, see Clustersharedfolder.

- RemoteSQLInstancePort option

 The Data Protection for SQL Server configuration file (tdpsql.cfg) file includes a new option, RemoteSQLInstancePort. This option enables you to set AlwaysOn Preferences when using non-default SQL ports in an AlwaysOn Availability Group (AAG) environment and to connect to remote replica servers. The value is case-sensitive. Therefore, if the AAG replica name is specified in lowercase on the SQL server, then you must also specify the RemoteSQLInstancePort replica name in lowercase. For more information, see “AlwaysOn Preferences” on page 63.

Microsoft SQL Server 2017

With IBM Spectrum Protect Version 8.1.4, Microsoft SQL Server 2017 is supported.
Chapter 1. Getting Started

With IBM Spectrum Protect for Databases: Data Protection for Microsoft SQL Server software, you can back up and restore Microsoft SQL Server databases to IBM Spectrum Protect storage or local shadow volumes. A local shadow volume contains data that is stored on shadow volumes, which are local to a disk storage system.

Data Protection for SQL Server provides a connection between an SQL Server and IBM Spectrum Protect, which allows SQL Server data to be protected and managed by IBM Spectrum Protect. Data Protection for SQL Server protects SQL Server data and improves the availability of SQL Server databases and enables you to continue to run primary applications on your database servers while data is backed up and restored.

You can use a command-line interface or graphical user interface (GUI) to back up and restore SQL Server databases. For more information about backing up and restoring SQL Server databases, see your SQL Server documentation.

Microsoft supports the Microsoft Legacy application programming interface (API) for streaming backup and restore operations. Microsoft also supports the use of Volume Shadow Copy Service (VSS) technology for backup and restore operations.

Data Protection for SQL Server uses the IBM Spectrum Protect API to communicate with IBM Spectrum Protect and the SQL Server API to communicate with SQL Server.

In addition to these APIs, Data Protection for SQL Server VSS operations require the IBM Spectrum Protect backup-archive client (VSS Requestor) and Microsoft VSS to produce an online snapshot (point-in-time consistent copy) of SQL Server data.

Environment overview

You can configure Data Protection for SQL Server to work in a stand-alone environment on your local computer or you can configure it to work in an IBM Spectrum Protect server environment.

Data Protection for SQL Server environments

• Stand-alone
 In a stand-alone environment, you can configure your Data Protection for SQL Server to back up your SQL server instances locally without the need for an IBM Spectrum Protect server. You can back up your data by using VSS snapshots.

• IBM Spectrum Protect server
 In an IBM Spectrum Protect server environment, you can configure your Data Protection for SQL Server to back up your data to an instance of IBM Spectrum Protect server. With this configuration, you can create both snapshot or legacy backups.

SQL Server environments
For both Data Protection for SQL Server configurations, you can back up a stand-alone SQL server instance or SQL server instances that are configured in a failover cluster environment. Data Protection for SQL Server protects availability databases in an AlwaysOn Availability Group (AAG) or in AlwaysOn Failover cluster instances to provide high availability and disaster recovery at the SQL server database level and SQL server instance level. An AAG can contain a set of primary databases and multiple copies of the set of primary databases, called secondary databases. Databases in an availability group are called availability databases, and they fail over together as a group. For more information, see “Configuring Data Protection for SQL Server with IBM Spectrum Protect in a clustered environment” on page 70.

Failover clustering and AlwaysOn Availability

In an SQL Server cluster environment, two different kinds of clustering are supported; AlwaysOn Failover Cluster Instances (FCI) and AlwaysOn Availability Groups (AAGs). An SQL AlwaysOn failover cluster instance provides high availability and disaster recovery at the SQL Server level. AlwaysOn Availability Groups (AAG) provide high availability and disaster recovery at SQL database level. Data Protection for SQL Server protects availability databases in both AlwaysOn failover cluster instances and in an AAG.

An AlwaysOn node manages backups of availability databases. This node is a shared node that allows data backups and restores of availability databases from any database replica in the cluster. Data Protection for SQL Server treats a backup as originating on a single SQL Server regardless of which node of the cluster is backed up.

Failover cluster instances

In a Windows failover cluster instance with multiple SQL Server instances, the storage is shared and can be accessed by all systems in the cluster. However, only one server in the cluster at a time runs SQL Server services. When you run a backup, the backup runs on the same server in the cluster that is running the SQL Server service. Therefore, when you run a backup, for example by using the Windows scheduler, it must run on this same server in the cluster where the SQL Server instance is active.

AlwaysOn availability groups (AAGs)

An AAG can contain a set of primary databases and multiple copies of the set of primary databases, called secondary databases. You can have as many as nine online copies of a database (one primary and up to eight secondary replicas) in an AAG. Databases in an availability group are called availability databases, and they fail over together as a group. Unlike a failover cluster, in an AAG, storage is not shared because SQL Server uses log shipping to replicate data from the primary database to the secondary database instances.

You can use AAGs with SQL AlwaysOn failover cluster instances to complete the following tasks:

- In an AAG, you can deploy a group of single or clustered server instances, each holding a copy of all databases
- You can use synchronous and asynchronous replication
- You can use log shipping. When a transaction occurs on the primary database, it is shipped to the secondary databases.
You can use automatic and manual failover modes

Cluster setup considerations for AAGs

To set up AAGs in a Microsoft Windows failover cluster environment or in a Veritas cluster server cluster environment, follow these guidelines:

- Install Data Protection for SQL Server on each cluster node and configure each node identically. Specify identical configurations in the Data Protection for SQL Server options file.
- Ensure that each availability replica of an availability group is on a different node in the same Windows failover cluster environment.
- Use the Configuration Wizard to register an AlwaysOn node on the IBM Spectrum Protect server. To do so manually, issue the `register node` command on the IBM Spectrum Protect server.
- To access a clustered SQL Server, identify the virtual server name and specify that name in Data Protection for SQL Server.
- If you use the IBM Spectrum Protect scheduler to automate data backups, install the scheduler service on each node of the cluster to enable failover support.
- You cannot restore a VSS backup to an alternative instance. Restore VSS backups on the same SQL Server instance where the snapshot is taken.

Tip: VSS and legacy full backups of availability databases on secondary replicas are copy-only. The copy-only option is not automatically used with log backups because you can run log backups that truncate logs on secondary replicas.

Related tasks:
- “Installing in a cluster environment” on page 37
- “Configuring Data Protection for SQL Server with IBM Spectrum Protect in a clustered environment” on page 70

Availability database backup operations

Data Protection for SQL Server backs up each availability database as a single object, regardless of which availability replica is used for backup and restore operations.

An AlwaysOn Availability Group (AAG) requires SQL Server instances on Windows Failover Cluster nodes. An availability group can have a number of replicas. For example, availability group 1 might have replicas `node1`, `node2`, and `node3`.

A cluster node might be a replica for one or more availability groups. For example, `node1` might be a replica for availability group 1 and another availability group.

The AlwaysOn Node is used to manage backups of availability databases. When you work in an IBM Spectrum Protect environment, the AlwaysOn Node is to be common in a Windows Failover Cluster. This presence enables the management of backups of an availability database in a single location, regardless of the replica that is used to complete the backup.

You can run the following types of VSS backup operations:
- Full VSS backups of the primary availability replica
- VSS copy-only full backups of availability replicas

You can run the following type of legacy backup operations:
- On the primary replica, legacy full, differential, file, set, group, and log backups
- On the secondary replica, legacy full, file, set, group, and log backups
- VSS and legacy copy-only full backups, legacy copy-only file, set, or group backups, and legacy copy-only and normal log backups

Restriction: Microsoft does not support legacy full backups on secondary replicas. Data Protection for SQL Server, however, does permit you to run a full backup of a secondary replica based on IBM Spectrum Protect policy.

When you run a full legacy backup of a secondary replica, the underlying implementation of Data Protection for SQL Server is to back up the data as copyfull. However, Data Protection for SQL Server detects the intended full backup operation and applies the IBM Spectrum Protect policy that is associated with the full backup type.

Microsoft Management Console (MMC) and CLI views honor the IBM Spectrum Protect policy that applies to the backup type and in this instance, show the backup type as full. For more information, see Active Secondaries: Backup on Secondary Replicas (AlwaysOn Availability Groups) (https://msdn.microsoft.com/en-us/library/hh245191.aspx)

For all backup operations of secondary availability replicas, the secondary replicas must be in the synchronized or synchronizing state.

To assist you with scheduling and load balancing, scheduled backup preference settings of availability groups are also available.

Availability database restore operations

Depending on how you back up availability databases, legacy restore and VSS restore operations are available to restore the availability databases on primary or secondary availability replicas.

Certain restrictions apply when you restore availability databases:

Legacy restore
You can restore an availability database on either a primary or secondary replica.

During the restore process, the restored database is removed from the availability group. When a database is removed from the availability group, the database becomes a local database on that replica. The database is restored as a local database. After the database is restored, you must verify that the data on all replicas is transactionally consistent.

To verify that the data is transactionally consistent, verify that the backup copy contains data and transaction log records. Full backups and differential backups contain data and transaction log records so that the restored database is transactionally consistent.

After you verify that the data is transactionally consistent, manually add the database to the availability group.

VSS restore
You can restore SQL Server VSS backups either to the same SQL Server instance where the snapshot is taken or to an alternate SQL Server instance.

AlwaysOn availability databases
For AlwaysOn availability databases, you must set up Data Protection for SQL Server to use an AlwaysOn node name. By default, the AlwaysOn node name is set to the cluster node name for the Availability Group in SQL Server 2012, and later versions.

Data Protection for AlwaysOn Availability Groups

You can run VSS (full) and legacy (full, differential, file/set/group, and log) backup operations on a primary replica. You can run copy-only VSS and legacy backup operations, and normal log backups on a secondary replica. You cannot run a differential backup on a secondary replica.

For backups on a secondary replica, the replica must be in the synchronized or synchronizing state. You can have multiple AlwaysOn Availability Groups (AAGs) in a SQL Server cluster. You can also have a mix of standard databases and AAGs on a SQL Server cluster.

When you back up data, you can distribute the backup workload for scalability and isolate backup activity to a dedicated backup node. When you isolate backup activity, it minimizes the effect on production databases.

Given that replicas are copies of the same database, avoid redundant backups of the same databases. Apply retention policies to unique databases.

As a best practice, allow backups from any node in the availability group and enable restore operations from any node in the availability group.

Best practices for backing up data in an AAG

When you use IBM Spectrum Protect Snapshot for SQL Server to manage AAG backups, consider the following backup options:

Backup priority
Specified per database in an AAG, the backup priority option defines the order in which replicas are used to back up a database in an AAG.

Preferred replica
Specified at an AAG level, the preferred replica option defines whether primary or secondary replicas can be used for backup operations.

- Prefer secondary replica: Scheduled backups occur on a secondary replica, if available. If the secondary replica is not available, you can use the primary replica.
- Secondary only: Scheduled backups can occur only on a secondary replica.
- Primary: Scheduled backups can occur only on the primary replica.
- Any replica: Scheduled backups can occur on any replica.

/USEALWAYSONNode parameter
A parameter option on the backup command that provides a common namespace for all backups. Each node authenticates separately with IBM Spectrum Protect. Backed up data is stored in the AlwaysOnNode namespace by using the Asnode option.

/ALWAYSONPriority parameter
A parameter option on the backup command that specifies that a local
availability database is backed up only if it has the highest backup priority among the availability replicas that are working properly. This parameter applies only to scheduled backups.

Typical data protection deployments in AAG environments

You can back up data in an AAG in the following ways:
- Distribute a legacy backup across AAG replicas
- Distribute a VSS backup across AAG replicas

Scenario: Legacy backups are distributed across AAG replicas

When you configure your environment to distribute a legacy backup across AAG replicas, follow these steps:
1. Set the preferred replica to **Prefer secondary replica**.
2. Install IBM Spectrum Protect Snapshot for SQL Server on all replicas that are eligible to run a backup.
3. Create a command script to run a .CMD file with a `backup` command similar to the following example:
   ```
   tdp sqlc backup db1,db2,db3 full /alwaysonpriority
   ```
4. Associate each IBM Spectrum Protect Snapshot for SQL Server node with the defined schedule.
5. Run backups on the SQL node according to defined priorities for each database.

Scenario: VSS backups are distributed across AAG replicas

When you configure your environment to distribute a VSS backup across AAG replicas, follow these steps:
1. Set the preferred replica to **Prefer secondary replica**.
2. Install IBM Spectrum Protect Snapshot for SQL Server on all replicas that are eligible to run a backup.
3. Create a command script to run a .CMD file with a separate `backup` command per database similar to the following sample:
   ```
   tdp sqlc backup db1 full /alwaysonpriority /backupmethod=VSS
   backupdest=TSM
   tdp sqlc backup db2 full /alwaysonpriority /backupmethod=VSS
   backupdest=TSM
   tdp sqlc backup db3 full /alwaysonpriority /backupmethod=VSS
   backupdest=TSM
   ```
4. Associate each IBM Spectrum Protect Snapshot for SQL Server node with the defined schedule.
5. Run backups on the SQL node according to defined priorities for each database.

Automated IBM Spectrum Protect server failover for data recovery

If you use Data Protection for SQL Server with the IBM Spectrum Protect configuration, Data Protection for SQL Server can automatically fail over to the secondary server for data recovery when there is an outage on the IBM Spectrum Protect server.

The IBM Spectrum Protect server that Data Protection for SQL Server connects to for backup services is called the **primary server**. If the primary server is set up for node replication, the client node data on the primary server can be replicated to another IBM Spectrum Protect server, which is the **secondary server**.
Depending on your configuration, the following nodes must be set up for replication on the primary server:

- Data Protection node
- VSS requestor node (also called the DSM agent node)
- Remote DSM agent node (for offloaded backups to the primary server)
- AlwaysOn node (for backups of availability databases in an AlwaysOn Availability Group on SQL Server 2012 and later versions)

During normal operations, connection information for the secondary server is automatically sent to Data Protection for SQL Server from the primary server. The secondary server information is saved to the client options file (dsm.opt). No manual intervention is required by you to add the information for the secondary server.

Each time the backup-archive client logs on to the server for backup services, it attempts to contact the primary server. If the primary server is unavailable, the backup-archive client automatically fails over to the secondary server. In failover mode, you can restore data that is replicated to the secondary server. When the primary server is online again, the backup-archive client automatically fails back to the primary server the next time the backup-archive client connects to the server.

Requirements: To ensure that automated client failover can occur, Data Protection for SQL Server must meet the following requirements:

- Data Protection for SQL Server must be at least at V7.1 level or later.
- The primary server, secondary server, and backup-archive client must be at least at V7.1 level or later.
- The primary and secondary servers must be set up for node replication.
- The following nodes must be configured for replication with the `replstate=enabled` option in each node definition on the server:
 - Data Protection node
 - VSS requestor node
 - Remote DSM agent node for offloaded backups
 - AlwaysOn node, if applicable

Before the connection information for the secondary server can be sent to Data Protection for SQL Server, the following processes must occur:

- You must back up data at least one time to the primary server.
- The following nodes must be replicated at least one time to the secondary server:
 - Data Protection node
 - AlwaysOn node, if applicable

Restriction: The following restrictions apply to Data Protection for SQL Server during failover:

- Any operation that requires data to be stored on the IBM Spectrum Protect server, such as backup operations, are not available. You can use only data recovery functions, such as restore or query operations.
- Schedules are not replicated to the secondary server. Therefore, schedules are not run while the primary server is unavailable.
- If the primary server goes down before or during node replication, the most recent backup data is not successfully replicated to the secondary server. The replication status of the file space is not current. If you restore data in failover
mode and the replication status is not current, the recovered data might not be usable. You must wait until the primary server comes back online before you can restore the data.

Data backup overview

With Data Protection for SQL Server, you can protect Microsoft SQL Servers using the Microsoft Volume Shadow Copy Service (VSS) framework or by running legacy backups where you store the backup on the IBM Spectrum Protect server.

- Volume Shadow Copy Service (VSS)
 Using VSS, you can do full and copy-only snapshot backups of SQL Server data.

- Legacy
 You use the Microsoft legacy application programming interface (APIs) to stream backups to the IBM Spectrum Protect server. You can create a copy of all or part of an SQL Server database or logs on IBM Spectrum Protect storage media.

VSS data backups

You can store VSS backups on local VSS shadow volumes, or, when integrated with IBM Spectrum Protect, in IBM Spectrum Protect server storage.

VSS backups eliminate the need for the server or file system to be in backup mode for an extended time. The length of time to complete the snapshot is measured in seconds, not hours. In addition, a VSS backup allows a snapshot of large amounts of data at one time because the snapshot works at the volume level.

You must ensure that sufficient space is available for the snapshot at the storage destination. Both storage destinations require space to store the snapshot until the data transfer to the IBM Spectrum Protect server is complete. After the data transfer to the server is complete, VSS backups that are stored locally on VSS shadow volumes are directly accessible by the system. The snapshot volume is released and the space can be reused.

- For data that is backed up to local VSS shadow volumes, the snapshot backup is on the shadow copy volume.
- For data that is backed up only to IBM Spectrum Protect server storage, a local snapshot backup is run and the data on the local snapshot volume is sent to the IBM Spectrum Protect server.
- For data that is backed up to VSS shadow volumes and IBM Spectrum Protect server, the local snapshot volume is retained as a local backup after the transfer to the IBM Spectrum Protect server is complete.

If you store VSS backups both locally and to IBM Spectrum Protect server, and the maximum number of local backup versions to be maintained is reached, the oldest local backup version expires to create the new snapshot for the backup to IBM Spectrum Protect server storage. The maximum number of local backup versions that are maintained is set in the IBM Spectrum Protect policy.

Volume Shadow Copy Service framework

Volume Shadow Copy Service (VSS) provides a common interface model to generate and manage online snapshots of SQL Server data.

The Microsoft VSS service manages and directs three VSS software components that are used during VSS operations:
• VSS writer
 The VSS writer is the application that stores data on the source volumes.
• VSS Requestor
 The VSS Requestor is the backup software.
• VSS provider
 The VSS provider is the combined hardware and software that generates the snapshot volume.

The VSS system provider creates and maintains snapshots on local shadow volumes and refers to the default VSS provider that is available with Windows Server. If you use the Windows VSS system provider, no configuration is required. However, you can make changes by using the VSSADMIN commands.

With a VSS hardware and software copy provider, you can create shadow copies of running volumes on demand. A hardware provider uses a hardware storage adapter or controller to manage shadow copies at the hardware level. Data Protection for SQL Server software does not control the VSS hardware provider. The VSS hardware provider is controlled by the hardware vendor. Install and configure the VSS hardware and software provider as required.

Data protection in VSS environments

The characteristics of Volume Shadow Copy Service (VSS) backup and restore operations can affect management tasks, for example, the backup types that you can run, the backup granularity, and the backup storage location options.

As you decide your backup and restore strategies, be aware of VSS requirements and guidelines.

VSS backup characteristics:

Backups can be stored on local shadow volumes, an IBM Spectrum Protect server, or at both locations. You can define different policy settings for each backup location.

Databases must have unique names. If a database has the same name as another database, but the capitalization differs, the software does not differentiate between case.

VSS backup requirements:

You can plan your VSS backup strategy to optimize the performance of your backup operations and to avoid potential problems. Follow these guidelines when you plan your VSS backups:

Planning VSS backups

- When you perform VSS operations, ensure that at least 200 MB of free disk space is on your Windows System Drive. This space is used to store the metadata files for Data Protection for SQL Server.
- Schedule and run legacy backups as part of your strategy.
- Use basic disks, which are initialized for basic storage. A basic disk consists of basic volumes, such as primary partitions, extended partitions, and logical drives.
If you plan to keep VSS snapshot backups only on local shadow volumes, know how to implement the configuration options of your VSS hardware provider.

For example, if your VSS hardware provider supports a full-copy snapshot versus a copy-on-write snapshot mechanism, full-copy type implementations have greater disk storage requirements. However, full-copy type implementations do not rely on the original volume to restore the data and are less risky. Copy-on-write implementations require less disk storage but rely on the original volume to restore the data.

Do not place multiple volumes on the same LUN. Configure a single volume, single partition, and single LUN as one-to-one.

Running parallel VSS backups

If you need to run parallel VSS backups, do the following:

- Stagger the start time of the backups by at least 10 minutes. This interval ensures that the snapshot operations do not overlap.

 Attention:

 If backup operations overlap, a VSS timeout error may occur and the second backup request may fail. Therefore, it is recommended to stagger the start time of the backups.

- Configure the parallel instance backups so that snapshots of the same volumes are not created.

- Ensure that parallel backups do not create a snapshot of the same LUN.

VSS restore characteristics:

In a VSS restore operation, VSS backups (SQL database files and log files) that are on IBM Spectrum Protect server storage are restored. They can be restored to their original location on the SQL Server or to an instance of the SQL Server.

The following characteristics are true of a VSS data restore operation:

- You can restore SQL Server VSS backups either to the same SQL Server instance or to an alternate SQL Server instance.

 - You can restore to a database with the same name on either an alternate SQL Server instance on the same server or to an instance on a different server by using the `/fromsqlserver` option. For local backups, you can restore only to alternate instances on the same server.

 - You can restore to an alternate SQL Server instance on the same server or different server where the database does not exist by using the `/relocatedir` option.

- By using the `/relocatedir` option, you can restore a VSS backup directly from IBM Spectrum Protect server storage to an alternate location.

- You can restore full and copy-only full backup types. You cannot run differential, individual filegroups, individual files, and set backup operations because VSS cannot restore that data.

- Data is restored at the database level.

- You can restore one or more databases from a VSS snapshot backup on IBM Spectrum Protect server storage.

- You can run restore operations in a Microsoft Windows Failover Clustering or Veritas Cluster Server (VCS) environment.

- You cannot use parallel VSS fast restore or VSS instant restore operations with Microsoft Windows Server 2008 or later versions.
VSS restore requirements:

Unless otherwise specified, a VSS restore operation refers to all restore types that use VSS, including VSS restore, VSS fast restore, and VSS instant restore operations.

If you complete VSS snapshot backups with the backup destination parameter set to TSM, restore processing also refers to an image-level restore from the IBM Spectrum Protect server.

As you decide your restore strategies, be aware of VSS requirements.

VSS instant restore

A VSS instant restore operation overwrites the entire contents of the source volumes.

- If you do not want to overwrite the source volumes, ensure that you set the Instant Restore option to No in Microsoft Management Console (MMC).
- VSS instant restore processing requires that the local disk is not accessed by other applications, for example, Windows Explorer.
- When you run a VSS instant restore operation, verify that no other data exists on the volumes that are being restored.
- Before you start a VSS instant restore operation, ensure that any previous background copies that contain the volumes that are being restored are completed. XIV®, SAN Volume Controller, or Storwize® family with space-efficient target volumes do not need to be completed.

VSS fast restore

In a VSS fast restore operation, if you do not want to overwrite all the files on the original volume, mount the snapshot. Copy only the files that you want to restore.

When you complete a VSS restore operation from local shadow volumes, the bytes that transfer are displayed as 0 because no data (0) is restored from the IBM Spectrum Protect server.

VSS operations in IBM N-series and NetApp environments:

You must consider storage space limitations when you perform VSS operations in environments that contain IBM N-series and NetApp systems.

Snapshots that are created by using the IBM N-series and NetApp snapshot provider are stored on the same volume where the LUN are located.

Disk space that is used by a local backup consists only of the blocks that changed since the last local backup was created. You can use the following formula to determine how much space is required for each local backup:

\[
\text{Amount of data changed per hour} \times \text{number of hours before a local backup expires}
\]

In addition, Write Anywhere File Layout (WAFL) reserves space, that is, blocks equal to two times the specified size of the LUN to be used. This space reservation ensures that write operations are allowed for virtual disks. The following example shows how to calculate the size of the volumes:
Data Protection for SQL Server with IBM SAN Volume Controller and IBM Storwize V7000

The way in which you configure the VSS provider for IBM SAN Volume Controller and IBM Storwize V7000 controls the type of FlashCopy® operation that runs when you create a VSS snapshot.

The VSS provider that you use with IBM SAN Volume Controller and IBM Storwize V7000 must have the following characteristics:

- If the VSS provider is configured to use incremental FlashCopy, you can take only one backup version. Each VSS snapshot request for a source volume causes an incremental refresh of the same target volume.

 When you delete the VSS snapshot, it is removed from the VSS inventory. If you create another VSS snapshot of the same source volume, the process results in an incremental refresh of the target volume.

The following guidelines apply when you use Data Protection for SQL Server with SAN Volume Controller-based storage:

- Do not use a combination of space-efficient and fully allocated target volumes. Choose to use either space-efficient or fully allocated volumes for FlashCopy targets. Provision enough target volumes in the SAN Volume Controller VSS_FREE volume group for the backup versions you require. If you use fully allocated target volumes, the capacity size of those volumes must match the size of the source volumes.

- If space-efficient virtual disks (VDisks) are used for backup targets, set the IBM VSS provider background copy value to zero by entering the ibmvcfg set backgroundCopy 0 command. To activate the changes, restart the IBM VSS system service after you enter the command.

 You can transition your data from fully allocated targets to space-efficient targets by using fully allocated targets as if those targets are space-efficient when the background copy rate is set to 0.

- To determine how much storage space is required for each local backup, the backup LUNs require the same amount of storage space as the original LUNs. For example, if you have a 100 GB database on a 200 GB LUN, you need a 200 GB LUN for each backup version.

- Do not use a combination of persistent and nonpersistent VSS snapshots.

- Do not mix COPY and NOCOPY FlashCopy relationships from the same source volume or volumes.

- Enable the autoexpand option for the space-efficient target volumes to avoid out-of-space conditions.

- Allocate enough space for space-efficient target volumes to hold 120% of the data that is expected to change on the source volume in the time between snapshots. For example, if a database changes at a rate of 20% per day, VSS backups complete every six hours, and a steady rate of change throughout the
day is assumed. The expected change rate between snapshots is 5% of the source volume (20/4). Therefore, the allocated space for the space-efficient target volumes is to be 1.2 times 5% equal to 6% of the source volume size. If the rate of change is not consistent throughout the day, allocate enough space to the target volumes to accommodate the highest expected change rate for the period between snapshots.

- Do not delete snapshots manually. Allow Data Protection for SQL Server to delete backup versions that are based on the defined policy to ensure that deletion occurs in the correct order.

IBM System Storage requirements:

If you use IBM System Storage® DS8000® series, SAN Volume Controller, or Storwize family storage systems, be aware of database, log, file, and LUN settings.

Follow these guidelines when you plan for IBM System Storage:

- Place database files for each database or group of databases that are going to be backed up and restored together as a unit on a separate and dedicated logical volume.
- Place logs for each database or group of databases that are going to be backed up and restored together as a unit on a separate logical volume.
- Do not place non-SQL data on storage volumes that are dedicated to SQL.
- When you use hardware snapshot providers, ensure that the database LUNs are dedicated to only one database or application.
- If you delete a local snapshot that is stored on an IBM SAN Volume Controller or IBM Storwize V7000 space-efficient volume (SEV) that has multiple dependent targets, delete the snapshots in the same order in which you created the snapshots. You must delete the oldest one first, followed by the second oldest.
- In an IBM SAN Volume Controller or IBM Storwize V7000 environment, if you use multiple target FlashCopy mappings, a mapping might stay in the copying state after all the source data is copied to the target. This situation can occur if mappings that started earlier and use the same source disk are not yet fully copied. In this instance, schedule local backups for IBM SAN Volume Controller and IBM Storwize V7000 storage systems at intervals that are greater than the time required for the background copy process to complete.

Offloaded VSS backups

By running an offloaded backup, you can move the backup load from the production system to another system. You can reduce the load on network, I/O, and processor resources during backup processing.

Use the `RemotedSMAGENTNode` parameter to run an offloaded system. Ensure that you install a VSS hardware provider, which supports transportable shadow copy volumes, on the production and secondary systems.
SQL Server legacy backups

With Data Protection for SQL Server, you can run legacy backups and store the backup on IBM Spectrum Protect server.

- Legacy backups are a stream of bytes that Data Protection for SQL Server stores on the IBM Spectrum Protect server. With Data Protection for SQL Server, you cannot do legacy backups to your local system. You can only do so to IBM Spectrum Protect server.
- Unlike VSS backups, volume and file-level data are not backed up using the legacy backup method.
- With legacy backups, you can do backups of your transaction logs.

Database backup types

With Data Protection for SQL Server, you can use the common interface in the Volume Shadow Copy Service (VSS) framework to create database backups.

VSS backups are at the volume and file-level. Legacy backups are a stream of bytes that Data Protection for SQL Server stores on the IBM Spectrum Protect server.

You can back up Data Protection for SQL Server data by using the following methods:

Table 1. Data Protection for SQL Server backup types

<table>
<thead>
<tr>
<th>Data Protection for SQL Server</th>
<th>Full database backup (Legacy and VSS)</th>
<th>Copy-only full backup (Legacy and VSS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With this method, Data Protection for SQL Server backs up an SQL Server database and the portion of the transaction log that is necessary to provide a consistent database state. With this backup type, the copy includes enough information from any associated transaction log to create a backup that is consistent with itself. The portion of the log that is included contains only the transactions that occur from the beginning of the backup until its completion.</td>
<td>With this method, Data Protection for SQL Server creates data backups that do not affect existing backup and restore processes and can be retained in the longer term. For example, you can use this type to back up a log before an online file restore operation. In this example, the copy-only full backup is used once. After the backup is restored, it is deleted.</td>
</tr>
<tr>
<td>Data Protection for SQL Server</td>
<td>With this method, Data Protection for SQL Server backs up only the data pages in an SQL Server database instance that changed after the last full backup. A portion of the transaction log is also backed up. Differential backup is associated with the last full backup that was run. The last full backup might be completed by Data Protection for SQL Server or another application. For example, if you run a full SQL Server-to-disk backup, and run a differential backup, the differential backup is associated with the SQL Server disk backup. You cannot use differential backup for databases on the secondary replica in Microsoft SQL Server 2012.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Log backup (only Legacy)</td>
<td>With this method, Data Protection for SQL Server backs up only the contents of an SQL Server database transaction log since the last successful log backup. This type of backup is preceded by a full backup or an equivalent type of backup. Log backups normally follow full backups. The portion of the log that is included in full and differential backups is not equivalent to a log backup. Additionally, in full and differential backups, the log is not truncated as it is during a log backup. However, a log backup that follows a full or differential backup includes the same transactions as a full or differential backup. Log backups are not cumulative as are differential; they must be applied against a base backup and in the correct order.</td>
<td></td>
</tr>
<tr>
<td>File backup (only Legacy)</td>
<td>With this method, Data Protection for SQL Server backs up only the contents of a specified SQL Server logical file. This type of backup can ease the scheduling conflicts if you must back up large databases. You can back up different sets of files during different scheduled backups. File, group, and set backups must be followed by a log backup, but a full backup is not required.</td>
<td></td>
</tr>
<tr>
<td>Data Protection for SQL Server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Group backup (only Legacy)</td>
<td>With this method, Data Protection for SQL Server backs up only the contents of a specified SQL Server file group. You can back up the set of database tables and indexes within a specific group of files. The group is specified as part of the setup within SQL Server when you define the database files. If no group is specified and all the database files are part of the primary group, you cannot partially back up or partially restore the database by using the group.</td>
<td></td>
</tr>
<tr>
<td>Set backup (only Legacy)</td>
<td>With this method, Data Protection for SQL Server backs up the contents of specified SQL Server file groups and files as a unit.</td>
<td></td>
</tr>
</tbody>
</table>

Policy management for backups

With Data Protection for SQL Server, you can manage and configure storage management policies for backups. A backup policy determines how backups on local shadow volumes are managed and retained.

Although IBM Spectrum Protect policy determines how Data Protection for SQL Server backups are managed on IBM Spectrum Protect storage, backup retention on local shadow volumes is determined by version and time-based policies. Ensure that sufficient local storage space is available on local shadow volumes for a VSS backup. In addition, verify that enough available storage space is assigned to the volumes to accommodate your backup operations. The shadow copy volume that is the storage destination of a snapshot must have sufficient space for the snapshot.

Environment and storage resources also affect how many backup versions are maintained on local shadow volumes. The amount of space that is required depends on the VSS provider that you use.

Backup expiration based on policy

Backups expire based on Data Protection for SQL Server policy.

Expiration is the process by which SQL Server backup objects are identified for deletion when the expiration date is past or the maximum number of backup versions that must be retained is reached.

The date on which data expires depends on the business needs that are identified by the recovery point objective (RPO) and the recovery time objective (RTO) of your enterprise. For example, legal, operational, and application requirements affect how data must be protected to meet these RPO and RTO demands. With Data Protection for SQL Server, you can specify the number of snapshot backups to retain and the length of time to retain them.

Backups can expire during a query, backup, or restore operation of a Data Protection for SQL Server session.

For AlwaysOn Availability Groups on SQL Server 2012 and later versions, only the system on which the backup was created can cause a local backup to expire. As an
example, a backup is created on a different system and it exceeds the number of backups to be retained. The oldest backup expires from the IBM Spectrum Protect server and can no longer be restored. However, the physical storage for that backup version is not released until the next time the original system runs a backup, query, or delete operation.

You specify the number of backup copies that are retained. When the maximum number of backup copies is reached, the oldest backup expires and is deleted. You can specify the maximum number of backup copies in a Data Protection for SQL Server policy.

A backup copy is retained for a maximum number of days. The maximum number of days that a backup can be retained is specified in the Data Protection for SQL Server policy.

How policy affects backup management on Data Protection for SQL Server

An IBM Spectrum Protect policy determines how Data Protection for SQL Server backups are managed on IBM Spectrum Protect storage and on local shadow volumes when the environment is configured for VSS operations.

The IBM Spectrum Protect server recognizes Data Protection for SQL Server as a node.

Data that is backed up to IBM Spectrum Protect storage from the Data Protection for SQL Server node is stored and managed according to settings that you specify in the IBM Spectrum Protect server policy.

The IBM Spectrum Protect policy manages the VSS backups that are placed in IBM Spectrum Protect server storage pools. The IBM Spectrum Protect server manages VSS backups.

IBM Spectrum Protect requires that sufficient storage space is available to create shadow volumes for VSS backup processing. Even when the VSS backup destination is the IBM Spectrum Protect server, storage space to create a shadow volume is still required temporarily.

The number of local backup versions that are maintained by the IBM Spectrum Protect server is determined by the value that is specified by the IBM Spectrum Protect server `verexists` parameter, which is defined in the copy group of the management class to which the local backup belongs. It is not necessary to allocate target sets when you use the VSS system provider. When you do not use the VSS system provider, the number of target volume sets that are allocated for local backups must be equal to the value of the `verexists` parameter. Target volume sets are not applicable to IBM XIV Storage Systems.

For example, if `verexists=3`, then at least three sets of target volumes must be allocated for the backup to complete successfully. If only two sets of target volumes are allocated, the third and subsequent backup attempts fail. If more sets of target volumes exist than the number specified by the `verexists` parameter, these sets are ignored by the IBM Spectrum Protect server. A high number of local backup versions cannot be stored. If you want to have \(n \) number of local backup versions, set the `verexists` parameter to \(n + 1 \).

When you use the configuration wizard in the GUI, the `VSSPOLICY` parameter is set in the `tdpsql.cfg` file.
Depending on the policy management settings, you can reuse a logical unit number (LUN) for a new backup. When a backup is requested and the maximum number of versions is reached, the software deletes the oldest snapshot (backup) to make space for the snapshot. If the new request fails after the oldest snapshot is deleted, you have one less backup version than expected.

You must manage the policy for local backups to reconcile the local backup repository with the information that is stored on the IBM Spectrum Protect server. For example, if target volume LUNs that are used for a local backup are removed from the storage system, the information that represents the backup on the IBM Spectrum Protect server must be reconciled. Similarly, if an IBM Spectrum Protect server policy determines that a local backup copy is no longer needed, the local backup manager must free the target volume LUNs to the storage system. The local backup manager is released so that these LUNs can be used for future backup operations. IBM Spectrum Protect automatically detects when these situations occur and completes the reconciliation.

Preferred settings for IBM Spectrum Protect policies

Within an IBM Spectrum Protect storage environment, you can define policies to help ensure that the storage environment meets your organization’s requirements for data protection and retention. Before you start using Data Protection for Microsoft SQL Server, review the preferred settings for IBM Spectrum Protect policies.

Domain

A policy domain contains policy sets, management classes, and copy groups. Create a policy domain on the IBM Spectrum Protect server to be used exclusively for Data Protection for SQL Server backups.

Policy sets

Policy sets contain management classes (which contain copy groups) that determine the rules by which Data Protection for SQL Server backups are performed and managed.

Define the policy set to the policy domain to which Data Protection for SQL Server backups belong. The policy set must be activated and only one policy set can be active in the policy domain.

Management class

A management class is a policy object that users can bind to each file to specify how the file is managed.

Define a management class for backups on local shadow volumes, and a management class for backups on IBM Spectrum Protect server storage. Different management classes provide the opportunity for specialized policies for each storage destination. For example, you can maintain six versions of local VSS backups of a specific database (verexists=6) while you maintain only two versions of the same database on IBM Spectrum Protect server storage (verexists=2).

In addition, you can create a separate management class for copy backup types for use in long-term storage. Such policies can maximize storage resources and provide more control over your storage strategy.

Important: Because VSS backup processing requires sufficient storage space to create shadow volumes, ensure that you specify $verexists=N+1$ to keep n backups on local shadow volumes.

You can have multiple active backups of the same database because legacy backups on IBM Spectrum Protect server storage and VSS backups on IBM
Spectrum Protect server storage (COPY and FULL) have different IBM Spectrum Protect server naming. Therefore, each can have their own management class. Ensure that you plan your backup strategy before you define management classes.

Metadata considerations (Legacy only)

The management classes for Data Protection for SQL Server metadata are to be identical to the corresponding management classes for database data. The exception is that the metadata management classes do not allow migration to removable media. If any Data Protection for SQL Server metadata is on removable media, queries might require media mounts, and backups or restores might require more media mounts.

Data objects and their associated meta objects are to have the same version limits and retention values. However, because meta objects might be restored as a result of a Data Protection for SQL Server query, consider storing meta objects in a disk-only storage pool. In doing so, a media mount is not necessary to resolve the query. To achieve this scenario, implement these steps:

1. Define a separate management class with a Copy Destination pointing to a disk pool that does not have any removable media in its hierarchy.
2. Bind all meta objects to that management class by using an `include` statement in the Data Protection for SQL Server options file.

Alternatively, you can choose to use the same management class (and storage pools) for both meta and data objects if you rarely need the meta objects, or need them only immediately preceding a restore when a volume mount is required anyway. For more information about binding backup objects to specific management classes, see "Configuring IBM Spectrum Protect policy to set automatic expiration and version control (VSS and legacy backups)" on page 68.

Copy group

A copy group controls how backup versions are generated, located, and expired. Define the copy group as a backup copy group and not as an archive copy group. Because Data Protection for SQL Server stores all objects as backup objects on IBM Spectrum Protect in backup storage pools, an archive copy group is not required, although an archive copy group can exist. The backup copy group parameters `VERExists`, `VERDeleted`, `RETExtra`, and `RETOOnly` significantly influence your backup policy.

In the case of log and set backup types, there is never more than one version of a log or set backup object because log and set objects are always uniquely named. Therefore, they do not expire according to version limits, but expire according to the retention period that is defined through the `RETOOnly` parameter.

All other types of legacy backups, such as full, copy-full, differential, file, and so on, are consistently named so that multiple backups of that type for the same SQL Server database create multiple versions of that backup object. For these types of backups, expiration is controlled by using both version limits and retention periods.
If you use data striping, each stripe of a backup must have the same version limits and retention values to ensure that some parts of a single logical backup object do not expire before others.

To define the version limit and retention periods for SQL database backup objects, set the copy group parameters as required.

VERExists
Determines the maximum number of SQL Server database backup versions to retain for databases that exist on the Data Protection for SQL Server client system.

Tip: After a full SQL backup, all preceding copy-full, file, group, and differential backups stop adhering to the **VERExists** and **RETEExtra** settings, even if the databases still exist on the Data Protection for SQL Server client system. To maintain consistent version-expiration behavior, you can set the **VERDeleted** and **VERExists** parameters to the same value in the management class for these backup objects.

VERDeleted
Determines the maximum number of SQL Server database backup versions to retain for databases that were deleted from the Data Protection for SQL Server client system after being backed up by IBM Spectrum Protect.

Attention:
- The IBM Spectrum Protect server considers backups as corresponding to a deleted database if no active backups of this database exist.
- For log and set type backups, **VERDeleted** must be greater than 0 to allow expiration to be controlled by the **RETOOnly** parameter. If **VERDeleted** is 0, these backups will be deleted by the next expiration run on the server after they are inactivated.

RETEExtra
Determines the number of days to retain an SQL Server database backup version after that version becomes inactive.

Tip: After a full SQL backup, all preceding copy-only full, file, group, and differential backups stop adhering to the **VERExists** and **RETEExtra** settings, even if the databases still exist on the Data Protection for SQL Server client system. To maintain consistent version-expiration behavior, you can set the **RETEExtra** and **RETOOnly** parameters to the same value in the management class for these backup objects.

RETOOnly
Determines the number of days to retain the last SQL Server version of a backup of a database that was deleted from the Data Protection for SQL Server client system.

Considerations
- When you use the **RETOOnly** parameter with log or set backup types, consider the following:
 - For log and set backup types, there is never more than one version of a log or set backup object because log and set objects are always uniquely named. When a log or
set backup object is inactivated (by a full backup), the retention period that is defined through the `RETOOnly` parameter controls how long it is retained.

- When you set the value of the `RETOOnly` parameter for log backups, the value must be, at a minimum, as long as the value that is set for the full backup objects to which the log backups are associated.
- You can use the same management class for log backups and the full backup objects (that are retained the longest) to ensure that an adequate value is used. However, when a new legacy full backup of that SQL Server database is completed, all legacy backup objects for an SQL Server database are inactivated (VSS backup objects remain active).

MODE, SERialization, FREQuency

Because these parameters settings do not apply to Data Protection for SQL Server, accept the default values.

When you plan a backup strategy, as a best practice, consult with the IBM Spectrum Protect server administrator about preferred parameter settings.

Storage pool

A storage pool is a named set of storage volumes and the destination that is used by the IBM Spectrum Protect server to store data.

A single restore operation can require a full backup, a differential backup, and multiple log backups. Use collocation if backups are stored on removable media. Specify collocation by file space (`define stgpool COLlocate=FILespace`) if you plan to restore multiple databases in parallel.

Tip: Use collocation specified by file space. A single legacy backup contains at least two file spaces and if there are multiple streams or data stripes for the backup, then for each data stripe there are additional file spaces. For information about collocation in the IBM Spectrum Protect server, see the Tuning server performance chapter of the IBM Spectrum Protect Optimizing Performance guide.

Creating a local backup policy

A local backup policy determines how different backup versions are retained on local shadow volumes.

Before you begin

Backup retention on local shadow volumes is determined by your overall backup strategy, the type and number of VSS backup version on IBM Spectrum Protect and on the local shadow volumes, and time-based policies. Ensure that there is sufficient local storage space on local shadow volumes. The amount of space that is required depends on the VSS provider that you use.

Procedure

1. Start Microsoft Management Console (MMC).
2. In the navigation tree, click IBM Spectrum Protect.
3. Select an Exchange Server, SQL Server, or File System instance.
4. In the Actions pane, click Properties.
5. From the list of available property pages, select **Policy Management**.
6. Add, delete, or update local policies for data retention. When you add a policy, specify a unique policy name. Double-click the policy to edit a policy field. To retain an unlimited number of snapshots, or to retain snapshots for an unlimited number of days, specify **NL**.

7. Click **Save**.

What to do next

After you add a policy, you can bind a backup to that policy. Updates to existing, bound policies do not take effect until the next backup is run.

Specifying policy binding statements

Bind policy statements to associate Microsoft SQL Server backups to a management policy.

About this task

A default policy binds any backups that are not explicitly bound to a named policy. Policy binding is available in environments with or without an IBM Spectrum Protect server.

Procedure

Specify the policy-binding statements to use to bind snapshots to a policy. Manually add the binding statements in the respective configuration file that defines the policy statements.

The way that you set policy is different for VSS and legacy backups:

- **VSS backups:** Specify the **VSSPOLICY** statement in the Data Protection for SQL Server configuration file. By default, the configuration filename is **tdpsql.cfg**.
- **Legacy backups:** Specify the **INCLUDE** and **EXCLUDE** statements in the Data Protection for SQL Server options file. By default, the options filename is **dsm.opt**.

Policy-binding statements in the Data Protection for SQL Server configuration files might look similar to the information in the following table.

<table>
<thead>
<tr>
<th>VSSPOLICY</th>
<th><server name></th>
<th><object name></th>
<th><backup type></th>
<th><backup dest></th>
<th><mgmt class></th>
</tr>
</thead>
<tbody>
<tr>
<td>VSSPOLICY</td>
<td>*</td>
<td>acctdb1</td>
<td>FULL</td>
<td>LOCAL</td>
<td>MC_1</td>
</tr>
<tr>
<td>VSSPOLICY</td>
<td>SERVER_3</td>
<td>hrdb</td>
<td>INCR</td>
<td>LOCAL</td>
<td>MC_6</td>
</tr>
</tbody>
</table>

Binding backups to a policy

You can add, update, delete, or change the processing order of existing binding statements.

About this task

A backup policy determines how backups on local shadow volumes are managed and retained.

Procedure

1. Start Microsoft Management Console (MMC).
2. In the navigation tree, click **IBM Spectrum Protect**.
3. Select an SQL Server instance.
4. In the Actions pane, click Properties.
5. From the list of available property pages, select VSS Policy Binding.
6. Add, update, delete, or change the processing order of existing binding statements.

Tip: You can use an asterisk (*) as a wildcard character to represent all characters. For example, in the Server field, enter the asterisk to bind the policy to all SQL Servers.

7. Optional: To change the processing order, use Move Up and Move Down. Policies are processed from the bottom to the top of the file, and processing stops at the first match.

Tip: To ensure that more specific statements are processed before general statements, list the more general specification before the more specific statement.

8. Save the binding statement.
9. Optional: Verify new or updated policies and bindings.
 a. Run one or more test backup operations.
 b. On the Recover tab, verify the management classes that are bound to the test backups.

VSSPOLICY statements for backup types
For VSS backups, VSSPOLICY statements are used to associate VSS backups with management classes. When you change from legacy backups to VSS backups, consider the VSSPOLICY statements that you set for the backup.

The VSSPOLICY statements are in a configuration file, for example, tdpsq1.cfg. A configuration file can include multiple VSSPOLICY statements. The configuration file is read from the bottom to the top of the file. VSSPOLICY statements in the tdpsq1.cfg file are similar to the INCLUDE statements that are specified in the IBM Spectrum Protect backup-archive client in the dsm.opt file.

If no VSSPOLICY statements are included in the configuration file, or if the VSSPOLICY statements do not match the type of backup that is created, the default management class for the policy domain is used. Backup expiration parameters for the default management class might differ from the settings that are used for preexisting legacy backups. For example, the backup expiration period might be set to 30 days. This setting means that after 30 days, the backup is deleted. Verify that the backups expire according to the business needs of your environment.

Sample VSSPOLICY statements
The following example shows the syntax of a VSSPOLICY statement:

VSSPOLICY * * COPY TSM VSS_FULL_TSM_MC

Legacy examples
Legacy backups use INCLUDE and EXCLUDE statements in the Data Protection for SQL Server options file. The examples in the following tables group statements that are intended to be used together. For example:
Object matches for backuptype	Specification
Example for all objects | \(...\)*
Example for EXCLUDE statements with all type of backups (full, diff, log, group, file, set) | \(...\)full*
\(...\)diff*
Example for INCLUDE and EXCLUDE statements with all type of backups (full, diff, log, group, file, set) | \(...\)full*
\(...\)full**
\(...\)copyfull*
\(...\)copyfull**
\(...\)diff*
\(...\)diff**
\(...\)log*
\(...\)log**
\(...\)group*
\(...\)group**
\(...\)file*
\(...\)file**
\(...\)set*
\(...\)set**
Example for EXCLUDE statements with file (f1) and group (g1) | \(...\)g1*group*
\(...\)f1*file*
Example for INCLUDE statements with file (f1) and group (g1) | \(...\)group*g1*
\(...\)group*g1**
\(...\)g1*group*
\(...\)file*f1*
\(...\)file*f1**
\(...\)f1*file*
Example for EXCLUDE statements with group or file object names beginning with g or f | \(...\)g**group*
\(...\)f**file*
Example for INCLUDE statements with group or file object names beginning with g or f | \(...\)group*g*
\(...\)group*g**
\(...\)g**group*
\(...\)file*f*
\(...\)file*f**
\(...\)f**file*
Example for EXCLUDE statements same as \(...\)group* or \(...\)file* (there is no equivalent for INCLUDE statements) | \(...\)*group*
\(...\)*file*
<table>
<thead>
<tr>
<th>backup type</th>
<th>object with database matches</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example for all objects with database name Db1</td>
<td>...\Db1...*</td>
<td></td>
</tr>
<tr>
<td>Example for all objects with database name Db1 beginning with Db</td>
<td>...\Db...*</td>
<td></td>
</tr>
<tr>
<td>Ambiguous</td>
<td>...*...*</td>
<td></td>
</tr>
<tr>
<td>Example for EXCLUDE statements using full, copyfull objects with database name Db1</td>
<td>...\Db1\full*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1\copyfull*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1\diff*</td>
<td></td>
</tr>
<tr>
<td>Example for EXCLUDE and INCLUDE statements using full, copyfull objects with database name Db1</td>
<td>...\Db1\full*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1\full**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1\copyfull*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1\copyfull**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1\diff*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1\diff**</td>
<td></td>
</tr>
<tr>
<td>Example for EXCLUDE statements using log, group, file, set objects with database name Db1</td>
<td>...\Db1...\log*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1...\log*...*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1...\group*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1...\group*...*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1...\file*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1...\file*...*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1...\set*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1...\set*...*</td>
<td></td>
</tr>
<tr>
<td>Example for EXCLUDE statements using all group or file object names (g1, f1) with database name Db1</td>
<td>...\Db1\g1\group*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1\f1\file*</td>
<td></td>
</tr>
<tr>
<td>Example for EXCLUDE and INCLUDE statements using all group or file object names (g1, f1) with database name Db1</td>
<td>...\Db1\group\g1*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1\group\g1**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1\g1\group*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1\file\f1*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1\file\f1**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1\f1\file*</td>
<td></td>
</tr>
<tr>
<td>Example for EXCLUDE statements using all group or file object names beginning with g or f with database name Db1</td>
<td>...\Db1\g*\group*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1\f*\file*</td>
<td></td>
</tr>
<tr>
<td>Example for EXCLUDE and INCLUDE statements using all group or file object names beginning with g or f with database name Db1</td>
<td>...\Db1\group\g*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1\group\g**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1\g*\group*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1\file\f*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1\file\f**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1\f*\file*</td>
<td></td>
</tr>
<tr>
<td>Example for EXCLUDE statements using ...\Db1...** or file* (there is no equivalent for INCLUDE statements)</td>
<td>...\Db1...\group*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...\Db1...\file*</td>
<td></td>
</tr>
<tr>
<td>Example for EXCLUDE statements using ...\Db1\full*</td>
<td>...\Db1...\full*</td>
<td></td>
</tr>
</tbody>
</table>
backup type object with database matches

<table>
<thead>
<tr>
<th>Specification</th>
<th>Example for EXCLUDE and INCLUDE statements using \Db1\full*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example for EXCLUDE statements using \full*</td>
<td>*full*</td>
</tr>
<tr>
<td>Example for EXCLUDE and INCLUDE statements using \full*</td>
<td>*full*</td>
</tr>
<tr>
<td>Example for EXCLUDE statements using \group* (there is no equivalent for INCLUDE statements)</td>
<td>*\group*</td>
</tr>
<tr>
<td>Example for EXCLUDE statements using \g1\group* (there is no equivalent for INCLUDE statements)</td>
<td>\g1\group*</td>
</tr>
<tr>
<td>Ambiguous</td>
<td>*log*</td>
</tr>
<tr>
<td>Nothing (TypeInfo missing)</td>
<td>\Db1\set*</td>
</tr>
</tbody>
</table>

Examples in the following table reflect these guidelines:
- If you use only EXCLUDE statements with only \meta, all objects (including data) are excluded.
- If you use only EXCLUDE statements with only \data, errors occur.

Meta and data object matches

<table>
<thead>
<tr>
<th>Specification</th>
<th>Example for all meta or data objects</th>
</tr>
</thead>
</table>
| Example for all meta or data objects | \meta*
\data* |
| Example for all meta **full** objects | \meta\full* |
| Example for all data **full** objects | \data\full*
\data\full* |
| Example for all meta group object names (g1) | \meta\g1\group* |
| Example for all data group object names (g2) | \data\group\g2* |
| Example for all meta group object names beginning with g | \meta\g*\group* |
| Example for all data group object names beginning with g | \data\group\g* |
| Same as \meta\group* | \meta\group* |
| Nothing (qualifiers missing) | \meta\data* |

Meta and data object with database matches

<table>
<thead>
<tr>
<th>Specification</th>
<th>Example for all meta or data objects with database name Db1</th>
</tr>
</thead>
</table>
| Example for all meta or data objects with database name **Db1** | \meta\Db1*
\data\Db1* |
| Example for all meta objects with database name **Db1** | \meta\Db1\full* |
| Example for full objects matching all data objects | \data\Db1\full*
\data\Db1\full* |
<p>| Example for all meta objects with database name Db1 | \meta\Db1\log* |</p>
<table>
<thead>
<tr>
<th>Meta and data object with database matches</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example for all log objects matching all data objects</td>
<td><code>\...\data\...\Db1\...\log\...*</code></td>
</tr>
<tr>
<td>Example for all group matching all meta objects</td>
<td><code>\...\meta\...\Db1\...\group*</code></td>
</tr>
<tr>
<td>Example for group matching all data objects</td>
<td><code>\...\data\...\Db1\...\group\...*</code></td>
</tr>
<tr>
<td>Example for all meta object names (g1) with database name Db1</td>
<td><code>\...\meta\...\Db1\...\g1\...\group*</code></td>
</tr>
<tr>
<td>Example for all data group object names (g1) with database name Db1</td>
<td><code>\...\data\...\Db1\...\group\...\g1\...*</code></td>
</tr>
<tr>
<td>Example for all meta object names beginning with g with database name Db1</td>
<td><code>\...\meta\...\Db1\...\g\...\group*</code></td>
</tr>
<tr>
<td>Example for all data group object names beginning with g with database name Db1</td>
<td><code>\...\data\...\Db1\...\g\...*\group*</code> (No equivalent for data objects)</td>
</tr>
<tr>
<td>Same as <code>\...\meta\...\Db1\...\group*</code> (No equivalent for data objects)</td>
<td><code>\...\meta\...\Db1\...*\group*</code></td>
</tr>
<tr>
<td>Same as <code>\...\meta\...\Db1\...\g\...*\group*</code> (No equivalent for data objects)</td>
<td><code>\...\meta\...\Db1\...\g\...*\group*</code></td>
</tr>
<tr>
<td>Ambiguous</td>
<td><code>\...\meta\...*\...\log*</code></td>
</tr>
<tr>
<td>Nothing (qualifiers missing)</td>
<td><code>\...\meta\...*\...\data*</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Server matches</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example for all objects from all servers beginning with SQL</td>
<td><code>SQL*\...*</code></td>
</tr>
<tr>
<td>Example for all objects from all server instances with host SQL2012</td>
<td><code>SQL2012\...*</code></td>
</tr>
<tr>
<td>Example for all objects from server SQL2012\INST1</td>
<td><code>SQL2012\INST1\...*</code></td>
</tr>
<tr>
<td>Example for all objects from all servers beginning with SQL2012\INST</td>
<td><code>SQL2012\INST\...*</code></td>
</tr>
<tr>
<td>Same as <code>SQL2012\...*</code></td>
<td><code>SQL2012\...*</code></td>
</tr>
<tr>
<td>Example for all meta or data objects from server SQL2012\INST1</td>
<td><code>SQL2012\INST1\meta\...*</code></td>
</tr>
<tr>
<td>Example for all meta or data objects from all named server instances with host SQL2012</td>
<td><code>SQL2012*\meta\...*</code></td>
</tr>
<tr>
<td>Example for all meta or data objects from all server instances with host SQL2012</td>
<td><code>SQL2012\...\meta\...*</code></td>
</tr>
<tr>
<td>Example for all objects from server default instance (if no instance name matches ??(??a))</td>
<td><code>SQL2012\meta\...*</code></td>
</tr>
<tr>
<td></td>
<td><code>SQL2012\data\...*</code></td>
</tr>
</tbody>
</table>
Data restore overview

Windows

Data Protection for SQL Server can use the Microsoft Volume Shadow Copy Service (VSS) framework to complete fast and instant restores of database backups. For SQL Server, you can run legacy restore operations from the IBM Spectrum Protect server.

In a VSS restore operation, you can restore one or more databases from a VSS backup on IBM Spectrum Protect server storage to the original location on the SQL Server.

You can also restore from a VSS backup to an alternate SQL Server instance. This instance can reside either on the same server where the snapshot is taken or on a different server. For local backups, you can restore only to alternate instances on the same server.

VSS fast restore processing

A VSS fast restore operation restores data from a local snapshot. A VSS fast restore operation overwrites any files that exist at the time of the snapshot on the original source location. The file is overwritten with the version that is stored on the snapshot.

Important: Data is overwritten even if a file is marked read-only.

You can use VSS fast restore operations for the following tasks:

- Restore SQL Server full and copy-only full backup types. You cannot restore differential, individual file groups, individual files, and set backups.
- Restore data at the database level. However, for custom application and file system data, you can restore data at the file system level only. File overwriting occurs even if the file is marked read-only.
- Restore SQL Server VSS backups to the same SQL Server instance.
- Restore SQL Server VSS backups to an alternate location.
 - You can restore to a database with the same name on either an alternate SQL Server instance on the same server or to an instance on a different server by using the /fromsqlserver option. For local backups, you can restore only to alternate instances on the same server.
 - You can also restore to an alternate SQL Server instance on the same server or to an instance on a different server where the database does not exist by using the /relocateddir option.
- Restore one or more databases or file systems from a VSS snapshot backup on local shadow volumes that are managed by IBM Spectrum Protect Snapshot.
- For SQL Server, custom application, and file system data, restore the data in Microsoft Windows failover cluster environment.
VSS instant restore processing

A VSS instant restore operation restores data by using a hardware-assisted restore method. A FlashCopy operation is an example of a hardware-assisted restore method.

You can run a VSS instant restore operation only when all of the data from the database you want to restore is on storage systems that are supported by the VSS instant restore. If part of the data that is being restored, including the log files and full-text index files, is on a local disk, a VSS fast restore operation is completed.

The data that is to be restored must be on a storage system that is valid for VSS instant restore operations. If data is not on an XIV, SAN Volume Controller, or Storwize family systems with space-efficient target volumes, you must ensure that background copies that use the volumes are restored.

When you plan to perform VSS instant restore, consider the following guidelines:

- IBM System Storage DS8000 series requires IBM System Storage Support for Microsoft Volume Shadow Copy Service software.
- SAN Volume Controller requires IBM System Storage Support for Microsoft Volume Shadow Copy Service software.
- Storwize family requires IBM System Storage Support for Microsoft Volume Shadow Copy Service software.
- XIV has separate VSS Provider software.
- Backups can be restored only to the same storage system from which they are backed up.
Chapter 2. Installing, upgrading, and migrating

Before you start the installation process, review the appropriate prerequisite information, including hardware and software requirements.

Prerequisites

Before you install Data Protection for SQL Server, ensure that your system meets the minimum hardware, software, and operating system requirements.

Hardware and software requirements change over time due to maintenance updates and the addition of operating system, application, and other software currency support.

For the latest requirements, review the Hardware and Software Requirements technote that is associated with the level of your Data Protection for SQL Server program. This technote is available at this web page [All Requirements][1]. Follow the link to the requirements technote for your specific release or update level.

Minimum hardware requirements

The following hardware is required to install Data Protection for SQL Server:

Hardware for an x86 system

Compatible hardware that is supported by the Windows operating system and SQL Server in use.

Hardware for an x64 system

Compatible hardware that is supported by the Windows operating system and SQL Server in use.

Installation process might require a reboot

If you do not install all of the prerequisites before starting the installation process, the installation process might require a reboot. As part of the installation process, one or more Microsoft C++ redistributable packages are installed, if they are not already installed on the Windows workstation. These packages can also be automatically updated by the Windows Update service. If the packages are updated, the update can cause the system to reboot when you start the installation program.

Additionally, because the Microsoft Visual Studio C++ redistributable package is a shared Windows component, other applications that have dependencies on the package might be stopped or restarted by Windows as part of the installation or upgrade of the C++ redistributable package. Schedule installations and upgrades during a maintenance window when other applications are not be adversely affected if they are stopped or restarted when the C++ redistributable package is installed. Monitor other applications after the installation is complete to see whether there are any applications that were stopped and not restarted.
Virtualization environment resources

If you operate in a virtualization environment with Data Protection for SQL Server, review these resources.

For more information about virtualization environments that can be used with Data Protection for SQL Server, see this web page: [IBM Tivoli Storage Manager (TSM) and IBM Spectrum Protect™ guest support for Virtual Machines and Virtualization](...)

Installing and configuring Data Protection for SQL Server

You can quickly install and configure Data Protection for SQL Server to start protecting your SQL server data.

Before you begin

Before you install and configure Data Protection for SQL Server, verify that you satisfy the hardware and software requirements.

You can obtain the installation package from the product DVD or from an IBM download site.

- If you obtain the package from the product DVD, ensure that the installation files are visible on the DVD drive.
- If you obtain the package from an IBM download site, you must extract the installation files.

About this task

Data Protection for SQL Server is available in both licensed and maintenance packages. The installation process differs between these two package types.

Licensed package

Includes a license enablement file that is only available from your software distribution channel, such as Passport Advantage®, and includes the initial General Availability release of a product or component.

Maintenance update (fix pack or interim fix package)

Available from the maintenance delivery channel, and can sometimes be used to refresh the software distribution channel. Maintenance packages do not contain license enablement files and must be installed after a licensed package.

See the README.ftp file for information about how to install a fix pack or interim fix package. The README.ftp file is available in the same directory where the maintenance package is downloaded.
Installing Data Protection for SQL Server

Procedure

1. Log on to the system as an administrator.

2. Download the appropriate package file from one of the following websites, or you can access the files from the product DVD:
 - For a first time installation or a new release go to Passport Advantage at: IBM Passport Advantage. Passport Advantage is the only website from which you can download a licensed package file.
 - For a maintenance fix, go to this FTP site and to the directory that contains the maintenance fix version that you require: Index of Data Protection for Microsoft SQL Server patch files (ftp://public.dhe.ibm.com/storage/tivoli-storage-management/patches/tivoli-data-protection/sql/).

3. If you download the package from one of the download sites, complete the following steps:
 a. Verify that you have enough space to store the installation files when they are extracted from the product package.
 b. Change to the directory where you placed the executable file.

 Important: In the next step, the files are extracted to the current directory. The path must contain no more than 128 characters. Be sure to extract the installation files to an empty directory. Do not extract the files to a directory that contains previously extracted files, or any other files.
 c. Either double-click the executable file, or enter the following command on the command line to extract the installation files. The files are extracted to the current directory.

      ```
      package_name.exe
      ```

 where package_name is like this example:

 8.1.4.0-TIV-TSMSQL-Win.exe

4. Follow the installation instructions that are displayed on the screen.

5. Click Finish.

6. If you plan to use VSS operations, you must install the most recent version of the IBM Spectrum Protect backup-archive client. The backup-archive client is also the VSS Requestor and is available separately.

Completing the installation configuration

Procedure

1. To start Microsoft Management Console (MMC), click Start > All Programs > IBM Spectrum Protect > Data Protection for Microsoft SQL Server > DP for SQL Management Console. If you did not previously configure Data Protection for SQL Server, the IBM Spectrum Protect configuration wizard starts automatically.

2. If the IBM Spectrum Protect configuration wizard does not start automatically, click Manage > Configuration > Wizards in the navigation tree, select the wizard, and click Start in the Actions pane.

3. Complete the following pages of the wizard:

 Data Protection Selection

 Select SQL Server as the application to protect.
Requirements Check
Click any Failed or Warnings links for help on resolving potential issues.

IBM Spectrum Protect Node Names
Specify the IBM Spectrum Protect node names to use for the applications that you want to protect.

- In the VSS Requestor field, enter the node name that communicates with the VSS Service to access the SQL Server data. This node name is the IBM Spectrum Protect client node name, also known as the DSM agent node name.
- In the Data Protection for SQL field, enter the node name where the Data Protection for SQL Server application is installed. This node stores the Data Protection for SQL Server backups. Do not use double-byte characters (DBCS).
- If you are configuring Data Protection for SQL Server with SQL Server 2012 or later versions, enter a node name in the AlwaysOn Node field. This node name is used when the availability databases are backed up in an AlwaysOn Availability Group.

IBM Spectrum Protect Server Settings
Specify the IBM Spectrum Protect server address, and choose whether to have the wizard configure the IBM Spectrum Protect server. Alternatively, you can view and change the commands that the configuration wizard uses to configure the IBM Spectrum Protect server, or run manually run the commands.

Custom Configuration
Click Default in most situations, or click Custom to enter all service-related information.

IBM Spectrum Protect Configuration
Wait for all components to be provisioned and configured. Click Re-run if there are any problems. Click the Failed or Warnings link for more information if any problems remain.

Completion
The configuration status is displayed. Select the VSS Diagnostics check box to begin VSS verification.

If you do not use the wizard to configure the IBM Spectrum Protect server, the IBM Spectrum Protect administrator must configure the IBM Spectrum Protect server before verification can be completed.

If the wizard does not configure the IBM Spectrum Protect server, it provides a link to a macro that can be provided to the IBM Spectrum Protect administrator as an example of one way to configure the IBM Spectrum Protect server.

Verifying the configuration

Procedure
1. Verify that VSS is working correctly.

 If the VSS Diagnostics check box is selected at the completion of the configuration wizard, the VSS Diagnostics wizard is displayed. You can also start this wizard by clicking Manage > Diagnostics, and clicking VSS Diagnostics in the Actions pane.

 Do not run these tests if you are already using SAN Volume Controller or Storwize V7000 space-efficient snapshots on your computer. Doing so can result in the removal of previously existing snapshots.
2. Complete the following pages in the VSS Diagnostics wizard:

Snapshot Volume Selection
Select the volumes that you want to test and review the VSS provider and writer information.

VSS Snapshot Tests
Review event log entries that are logged as the persistent and non-persistent snapshots are taken, and resolve any errors.

Completion
Review the test status and click **Finish**.

3. Verify that Data Protection for SQL Server is configured properly:
 a. Click the **Automate** tab. An integrated command line is available in the task window. You can use the interface to enter PowerShell cmdlets or command-line interface commands. The output is displayed in the main window.
 b. Change **PowerShell** to **Command Line**.
 c. Click the folder icon, and select the **verify_sql.txt** file. Then, click **Open**.
 These commands are displayed in the command-line panel:
      ```
      query tdp
      query tsm
      query sql
      ```
 d. With the cursor in the command-line panel, press **Enter** to run the commands to verify your configuration. The configuration is verified when these commands run without warnings or errors.
 e. When verification is complete, you can use Data Protection for SQL Server to back up and restore SQL Server data.
 f. Back up and restore a set of test data.

Customizing the configuration

Procedure

After you successfully configure and verify Data Protection for SQL Server, customize your settings by defining your policy settings and scheduled operations to meet your business requirements.

What to do next

If you are installing Data Protection for SQL Server in a Windows Failover Cluster environment or Veritas Cluster server environment, repeat the installation procedure on the nodes of your cluster that you want to protect.

Installing on a local system

You can install Data Protection for SQL Server from a DVD. The setup wizard guides you through the process of installing Data Protection for SQL Server.

Before you begin

Before you install and configure Data Protection for SQL Server, verify that you satisfy the hardware and software requirements.

You can obtain the installation package from the product DVD or from an IBM download site.
• If you obtain the package from the product DVD, ensure that the installation files are visible on the DVD drive.
• If you obtain the package from an IBM download site, you must extract the installation files.

About this task
Data Protection for SQL Server is available in both licensed and maintenance packages. The installation process differs between these two package types.

Licensed package
Includes a license enablement file that is only available from your software distribution channel, such as Passport Advantage, and includes the initial General Availability release of a product or component.

Maintenance update (fix pack or interim fix package)
Available from the maintenance delivery channel, and can sometimes be used to refresh the software distribution channel. Maintenance packages do not contain license enablement files and must be installed after a licensed package.

See the README.ftp file for information about how to install a fix pack or interim fix package. The README.ftp file is available in the same directory where the maintenance package is downloaded.

Procedure
1. Install Data Protection for SQL Server by using the setup wizard. The wizard installs the product and any prerequisites such as the .NET Framework and Report Viewer.
 a. Log on as an administrator.
 b. Download the appropriate package file from one of the following websites, or you can access the files from the product DVD:
 • For a first time installation or a new release go to Passport Advantage at: IBM Passport Advantage Passport Advantage is the only website from which you can download a licensed package file.
 • For a maintenance fix, go to this FTP site and to the directory that contains the maintenance fix version that you require: Index of Data Protection for Microsoft SQL Server patch files (ftp://public.dhe.ibm.com/storage/tivoli-storage-management/patches/tivoli-data-protection/sql/)
 c. If you download the package from one of the download sites, complete the following steps:
 • Verify that you have enough space to store the installation files when they are extracted from the product package.
 • Change to the directory where you placed the executable file.

Important: In the next step, the files are extracted to the current directory. The path must contain no more than 128 characters. Be sure to extract the installation files to an empty directory. Do not extract the files to a directory that contains previously extracted files, or any other files.
• Either double-click the executable file, or enter the following command on the command line to extract the installation files. The files are extracted to the current directory.

package_name.exe
where package_name is like this example:
8.1.4.0-TIV-TSMSQL-Win.exe

d. Follow the installation instructions that are displayed on the screen.
e. If prompted, restart your system before the installation is completed.
f. Click Finish. Microsoft Management Console (MMC) is shared among Data Protection for SQL Server, and IBM Spectrum Protect Snapshot. If one of these products is installed in a location other than the default location, the setup wizard defaults to the existing installation directory. Use the same directory when you install any of these products on the same computer. The default base directory is c:\program files\tivoli.

2. If you are installing Data Protection for SQL Server in a Microsoft Windows Failover Clustering environment or Veritas Cluster server environment, repeat the installation procedure on all nodes of your cluster.

Installing on Windows Server Core

If you are protecting Microsoft SQL Servers in a Windows Server Core environment, you can use the setup wizard to install Data Protection for SQL Server.

Before you begin

Before you install and configure Data Protection for SQL Server, verify that you satisfy the hardware and software requirements.

Procedure

1. Log on as an administrator.
2. Install Data Protection for SQL Server by using the setup wizard.
 a. Insert the Data Protection for SQL Server product DVD into your DVD drive.
 If autorun is enabled, the installation dialog starts automatically when the DVD loads. Otherwise, select Start > Run, and at the prompt, specify: x:\spinstall.exe, where x: is your DVD drive, and click OK.
 b. Follow the installation instructions that are displayed on the screen.
 c. Click Finish. If prompted, restart your system.

What to do next

You can complete an unattended installation of Data Protection for SQL Server on Windows Server Core.

Installing in a cluster environment

You can install Data Protection for SQL Server in a Windows failover cluster environment, and protect clustered SQL Server 2008 databases and later versions.

Before you begin

Before you install and configure Data Protection for SQL Server, verify that you satisfy the hardware and software requirements.
Procedure
1. Install Data Protection for SQL Server on all nodes of your cluster where you intend to perform backups and restore operations.
2. If you use a shared disk cluster, install Data Protection for SQL Server on all nodes on a disk that is local to each node and not on a shared cluster disk.
3. Install Data Protection for SQL Server on a local system if required.

Related tasks:
"Installing on a local system" on page 35

Silently installing Data Protection for SQL Server

A silent installation runs on its own without any user interaction, and is considered unattended. Administrators can install Data Protection for SQL Server by using a silent installation.

About this task

A silent installation is useful when Data Protection for SQL Server must be installed on a number of different computers with identical hardware. For example, a company might distribute 25 SQL Server installations across 25 different sites.

To ensure a consistent configuration and to avoid having 25 different people enter Data Protection for SQL Server parameters, an administrator can choose to produce an unattended installation package and make it available to the 25 sites. The installation package can be placed on a DVD and sent to each of the remote sites, or the package can be placed in a shared directory on a file server for distribution across the different sites.

To implement a silent installation of Data Protection for SQL Server, you can use the setup program or the Microsoft Installer (MSI) program.

Silently installing the IBM Spectrum Protect client

Before you can install Data Protection for SQL Server on Windows Server Core, you must first install the IBM Spectrum Protect client on the same computer as Data Protection for SQL Server.

Before you begin

Ensure that the latest, supported version of the IBM Spectrum Protect backup-archive client is available on your computer. You must be an administrator to complete this installation.

About this task

You use the Windows Installer program (msiexec.exe) to install the IBM Spectrum Protect client.

Procedure

Run the command to silently install IBM Spectrum Protect client. For example, issue the following command on a single line from a "Run as Administrator" command prompt window:
Silently installing Data Protection for SQL Server with the setup program

You can use the setup program (spinstall.exe) to silently install Data Protection for SQL Server. If you are protecting Microsoft SQL Server 2012 and later versions, you can also use the setup program to silently install Data Protection for SQL Server on Windows Server Core.

Before you begin

- If you want to install Data Protection for SQL Server on Windows Server Core, first install the IBM Spectrum Protect client on the same computer as Data Protection for SQL Server.
- The Data Protection for SQL Server Management Console and Data Protection for SQL Server must be installed from an account that is a member of the local Administrators group for the system on which the SQL Server is running.

About this task

The Data Protection for SQL Server setup program is on the installation media (where x: is your DVD drive):

- (32-bit) x:\fcm\x86\sql\8140\enu\spinstall.exe
- (64-bit) x:\fcm\x64\sql\8140\enu\spinstall.exe

Procedure

1. Issue the following command to silently install both Data Protection for SQL Server components to the default installation directory:

   ```
   x:\fcm\aaa\sql\8140\enu\spinstall.exe /s /v/qn
   ```

 where x: is your DVD drive and aaa is either x64 or x86. The following command is an example.

   ```
   x:\fcm\x64\mmc\8140\enu\spinstall.exe /s /v/qn
   x:\fcm\x64\sql\8140\enu\spinstall.exe /s /v/qn
   ```

 where x: is your DVD drive.

2. The following examples are commands that specify the target directory, the features, start suppression, and logging. Specify each command on a single line from a Run as Administrator command prompt window.

   ```
   x:\fcm\x64\mmc\8140\enu\spinstall.exe /s /v"INSTALLDIR="\"C:\Program Files\Tivoli\" ADDLOCAL="\"Client\"" TRANSFORM=1033.mst REBOOT=ReallySuppress /qn /l*v "C:\Temp\DpSqlMmcspinstallLog.txt"
   ```

   ```
   x:\fcm\x64\sql\8140\enu\spinstall.exe /s /v"INSTALLDIR="\"C:\Program Files\Tivoli\tsm\" ADDLOCAL="\"Client\"" TRANSFORM=1033.mst REBOOT=ReallySuppress /qn /l*v "C:\Temp\DpSqlspinstallLog.txt"
   ```

3. Review these guidelines as you complete the installation process:
 - You must place a backslash (\) before each quotation mark that is within an outer set of quotation marks (").
 - For a single-line command, press Enter only when all the parameters are entered.
 - You must place quotation marks ("') around the following text:
– A directory path that contains spaces.
– An argument that specifies multiple features. Although you must use quotation marks around the complete argument, you must still place a backslash before each internal quotation mark.

• All features that are listed in a custom installation must be listed after the `addlocal` option.
• Setting the `rebootyesno` option to `No` applies only to the installation of the Data Protection for SQL Server software. The installation package includes a number of prerequisites that is installed by Data Protection for SQL Server. Ensure that all the prerequisites are installed before starting the silent installation, then set the `rebootyesno` option to `No` so that no system restart is required after the silent installation process finishes.

Batch files usage in silent installations

Windows

You can create a batch file to begin the silent installation with the parameters that you want to use.

The following script is a sample script (`c:\spinstall.bat`) of an unattended installation:

```batch
@echo off
rem ================
rem sample silent install script
rem
call x:\fcm\x64\mmc\8140\enu\spinstall.exe /s
   /v"INSTALLDIR="C:\Program Files\Tivoli"
   ADDLOCAL="Client"
   TRANSFORM=1033.mst
   REBOOT=ReallySuppress /qn /i+v "C:\Temp\DpSqlMmcspinstallLog.txt"
rem
call x:\fcm\x64\sql\8140\enu\spinstall.exe /s
   /v"INSTALLDIR="C:\Program Files\Tivoli\tsm"
   ADDLOCAL="Client"
   TRANSFORM=1033.mst
   REBOOT=ReallySuppress /qn /i+v "C:\Temp\DpSqlspinstallLog.txt"
rem ================
rem code could be added after the
rem installation completes to
rem customize the dsm.opt files
rem if desired
rem ================
```

Silently installing with the Microsoft Installer program

You can use the Microsoft Installer (MSI) program, `msiexec.exe`, to implement a silent installation of Data Protection for SQL Server. If you are protecting Microsoft SQL Server 2012 and later versions, you can also use the MSI program to silently install Data Protection for SQL Server on Windows Server Core.

Before you begin

Data Protection for SQL Server must be installed from an account that is a member of the local Administrators group for the system on which the SQL Server is running.

Important: Unlike the `spinstall.exe` and `setupfcm.exe` programs, the `msiexec.exe` program does not include a number of prerequisites that is installed by Data Protection for SQL Server. When you use `msiexec.exe`, you must install all prerequisites manually.
Before you install and configure Data Protection for SQL Server, verify that you satisfy the hardware and software requirements. For more information, see the topic that describes the minimum hardware and software requirements.

About this task

The following examples show how to use the `msiexec` command to install the Data Protection for SQL Server Management Console and Data Protection for SQL Server.

Procedure

1. To install the Data Protection for SQL Server Management Console, issue each of these `msiexec` commands on a single line:

   ```sql
   msiexec /i"x:\fcm\aaa\mmc\8140\enu\IBM Spectrum Protect for Databases - MS SQL - Management Console.msi" RebootYesNo="No" Reboot="Suppress" ALLUSERS=1 INSTALLDIR="c:\program files\tivoli" ADDLOCAL="Client" TRANSFORM=1033.mst /qn /i+v "c:\temp\DpSqlMmcLog.txt"
   
   Where `x:` is your DVD drive, and `aaa` is either x86 or x64.
   
2. To install Data Protection for SQL Server, issue each of these `msiexec` commands on a single line.

   ```sql
 msiexec /i"x:\fcm\aaa\sql\8140\enu\IBM Spectrum Protect for Databases - MS SQL.msi" RebootYesNo="No" Reboot="Suppress" ALLUSERS=1 INSTALLDIR="c:\program files\tivoli\tsm" ADDLOCAL="Client" TRANSFORM=1033.mst /qn /i+v "c:\temp\DpSqlLog.txt"

 Where `x:` is your DVD drive, and `aaa` is either x86 or x64.

What to do next

Important:

- You must place quotation marks around the following items:
 - A directory path that contains spaces.
 - An argument that specifies multiple features. Although you must use quotation marks around the complete argument, you must still place a backslash before each internal quotation mark.
- All features that are listed in a custom installation must be specified after the `addlocal` option.

Options in silent installations

The following options can be applied to both silent installation methods, the setup program and the Microsoft Installer (MSI) program.

Review the list of silent installation options in the following tables:

Table 2. Silent installation options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/i</td>
<td>Specifies the program is to install the product.</td>
</tr>
<tr>
<td>/i+v</td>
<td>Specifies verbose logging.</td>
</tr>
<tr>
<td>/qn</td>
<td>Runs the installation without running the external user interface sequence.</td>
</tr>
<tr>
<td>/s</td>
<td>Specifies silent mode.</td>
</tr>
</tbody>
</table>
Table 2. Silent installation options (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| /v | Specifies the Setup Program to pass the parameter string to the call it makes to the MSI executable program (msiexec.exe). Note the following syntax requirements when you use the /v option:
| | • A backslash (\) must be placed in front of any quotation marks (" ") that are within existing quotation marks.
| | • Do not include a space between the /v command-line option and its arguments.
| | • Multiple parameters that are entered with the /v command-line option must be separated with a space.
| | • You can create a log file by specifying the directory and file name at the end of the command. The directory must exist when you run a silent installation. |
| /x | Specifies the program to uninstall the product. |
| addlocal | Specifies features to install. |
| allusers | Specifies which users can access the installation package. |
| installdir | Specifies the directory where Data Protection for SQL Server is to be installed. |
| reboot | Specifies whether to prompt the user to restart the system after silent installation. |
| | Force Always prompts user to restart after silent installation. |
| | Suppress Suppresses prompt to restart after silent installation. |
| | ReallySuppress Suppresses all restarts and prompts to restart after silent installation. |
| rebootyesno | Specifies whether to restart the system after silent installation. Specify Yes to restart the system after silent installation. Specify No not to restart the system after silent installation. |

Setting the rebootyesno option to No applies only to the installation of the Data Protection for SQL Server software. The installation package includes a number of prerequisites for Data Protection for SQL Server to install if those prerequisite components are not already installed on the system. Ensure that all the prerequisites are installed before you start the silent installation, then set the rebootyesno option to No so that no system restart is required after the silent installation process finishes.

The following tables list the silent installation features (case-sensitive) that apply to the base client only.
Table 3. Silent installation features (base client only)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>Data Protection for SQL Server code</td>
</tr>
</tbody>
</table>

Creating and testing a silent installation package on a DVD or a file server

The administrator can choose to make an installation package available by burning a DVD or placing the package in a shared directory on a file server.

Before you begin

Before you begin, you must choose a location for the package. If you are burning a DVD, it is convenient to use a staging directory. If you are placing the package on a file server, you can use a staging directory or build the package directly on the file server.

About this task

Typically, the installation package contains the Data Protection for SQL Server code distribution files and a batch file for a silent installation.

Procedure

1. Issue the following commands to create the package:

 Table 4. Commands for creating a silent installation package

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mkdir c:\tdpdpkg</td>
<td>Create a staging directory for the silent-install package</td>
</tr>
<tr>
<td>cd /d c:\tdpdpkg</td>
<td>Go to the staging directory</td>
</tr>
<tr>
<td>xcopy g:*.* . /s</td>
<td>Copy the DVD distribution files to the staging directory</td>
</tr>
<tr>
<td>copy c:\spinstall.bat</td>
<td>Replace the existing spinstall.bat with the one created in the previous step</td>
</tr>
</tbody>
</table>

 This example uses c:\tdpdpkg as a staging directory.

2. After you create the installation package, test the silent installation.

3. After you complete the test, place the package on a DVD or make it available from a shared directory.

4. After you make the package available on a DVD or from a shared directory, complete these steps to run the silent installation package on another computer.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>From a silent installation package on DVD:</td>
<td>Enable the autostart option to cause the silent installation to begin as soon as the DVD is inserted into the drive. If you do not enable the autostart option, start the spinstall.bat file from the root of the DVD by issuing the following command: cd /d g:\spinstall.bat</td>
</tr>
</tbody>
</table>
Silent installation error messages

The `spinstall.exe` program can produce error messages if it cannot start properly.

Upgrading Data Protection for SQL Server

You can upgrade Data Protection for SQL Server from an earlier version of the software.

Procedure

1. Download the updates.
2. To install the updates, run `setupfcm.exe`.
3. To start Microsoft Management Console (MMC), click Start > All Programs > IBM Spectrum Protect > Data Protection for Microsoft SQL Server > DP for SQL Management Console. When you start MMC after you install the updates, the configuration wizard automatically starts. The configuration wizard guides you through the process of provisioning and installing the remaining files. Depending on the software licenses that are found on the system, the configuration process varies. The wizard provides instructions to guide you through the process.

 Attention: Do not run the VSS test that is available in the configuration wizard as this can delete any prior or existing backups for the selected node or server.

4. If the configuration wizard does not start automatically, click IBM Spectrum Protect in the navigation tree, and click Configuration. Then, double-click Wizards.

 Note: It is mandatory that you run the configuration wizard at least once after `setupfcm.exe` completes.

Migrating Data Protection for SQL Server

You can migrate data from earlier versions of Data Protection for SQL Server.

After you upgrade from an older version of Data Protection for SQL Server to a newer version, you can use VSS data restore operations to restore local VSS backups that were originally created with the older version of the software.

If you used a previous version of Data Protection for SQL Server in a Microsoft clustering environment and you upgrade to a newer version of Data Protection for SQL Server, any existing backups that are completed on cluster disks do not count toward the maximum number of versions. New backups for clustered disks that are completed with the newer version of Data Protection for SQL Server are
managed logically for the cluster. Except for the active backup, older backups eventually expire. When you no longer need to retain the active backup, you must delete the active backup by issuing the `delete backup` command. The existing backup copies can be restored.
Chapter 3. Configuring

You can use configuration wizards to configure Data Protection for SQL Server, or you can complete the steps manually. For best results, follow the step-by-step instructions in the configuration wizards.

Before you begin

Data Protection for SQL Server must be installed on your system. An IBM Spectrum Protect server must be available to communicate with Data Protection for SQL Server.

Specifying configuration parameters for IBM Spectrum Protect

After Data Protection for SQL Server is registered to IBM Spectrum Protect, you must configure the node name, password, the communications method, and the appropriate parameters to connect to the IBM Spectrum Protect server.

About this task

Parameter values are stored in an options file that is located by default in the Data Protection for SQL Server installation directory.

Procedure

1. Use a text editor to edit the dsms.opt options file.
 The dsms.opt options file includes the following parameters, which are necessary for initial configuration:

 COMMMethod
 Specify the communication protocol to use between the Data Protection for SQL Server node and the IBM Spectrum Protect server. Depending on the commmethod option that you choose, specify one of the following connectivity parameters for the commmethod values.

 - For all backups, specify the COMMMethod option in the Data Protection for SQL Server options file.
 - For VSS backups, specify the COMMMethod option in the backup-archive client options file that is used as the Local DSMAGENT Node. If the environment is configured for VSS offloaded backups, you must also specify the COMMMethod option in the backup-archive client options file that is used as the Remote DSMAGENT Node.

 NODename
 Specify the IBM Spectrum Protect node name that IBM Spectrum Protect uses to identify the system that runs Data Protection for SQL Server.

 PASSWORDAccess
 Specify either the default generate value to generate a password automatically, or specify the prompt password to respond to a request for a password.

2. Optional: modify the default values for the following parameters:
COMPRESSION

Specify the compression yes option if any of the following conditions exist:

- The network adapter has a data overload
- Communications between Data Protection for SQL Server and IBM Spectrum Protect server are over a low-bandwidth connection
- Heavy network traffic exists

Specify the compression no option if any of the following conditions exist:

- The computer that runs Data Protection for SQL Server has a processor overload; the added processor usage might cause issues for other applications that include the server. You can monitor processor and network resource usage with the Performance Monitor program that is included with Windows.
- You are not constrained by network bandwidth; you can achieve the best performance by leaving the compression no option unchanged and enabling hardware compaction on the tape drive, which also reduces storage requirements.
- For legacy backups, specify the **COMPRESSION** option in the Data Protection for SQL Server options file.
- For VSS backups, specify the **COMPRESSION** option in the backup-archive client options file that is used as the local DSMAGENT node. If the environment is configured for VSS offloaded backups, specify the **COMPRESSION** option in the backup-archive client options file that is used as the remote DSMAGENT node.

DEDUPLICATION

Specify whether the IBM Spectrum Protect API deduplicates data before the data is sent to the IBM Spectrum Protect server. Specify Yes or No. The value applies only if IBM Spectrum Protect allows client-side data deduplication.

When you specify both deduplication and **ENABLELANFree** options, the deduplication option is ignored.

You can enable client-side data deduplication by specifying **DEDUPLICATION YES** in the dsm.opt file.

ENABLECLIENTENCRYPTKEY

Specify this option to encrypt databases during backup and restore processing by generating one random encryption key per session.

Restriction: You can back up encrypted VSS databases only to the IBM Spectrum Protect server.

You can specify DES56 (56 bit), AES128 (128 bit), or AES256 (256 bit). The most secure data encryption method is AES256.

In the options file, you must also specify the databases that you want to encrypt by adding an include statement with the **include.encrypt** option.

For VSS backups, specify the encryption options in the backup-archive client options file that is used as the local DSMAGENT node. If the
environment is configured for VSS offloaded backups, specify the encryption options in the backup-archive client options file that is used as the remote DSMAGENT node.

If you make changes in the backup-archive client options file, ensure that you restart the IBM Spectrum Protect Client Acceptor Daemon (CAD) service for the SQL Server.

ENABLELANFree
If you run data backup and restore operations in a LAN-free environment, specify the **ENABLELANFree** option. For VSS backups, specify **ENABLELANFree yes** in the backup-archive client options file that is used as the local DSMAGENT node. If the environment is configured for VSS offloaded backups, specify **ENABLELANFree yes** in the backup-archive client options file that is used as the remote DSMAGENT node.

For legacy backups, specify **ENABLELANFree yes** in the Data Protection for SQL Server dsm.opt file.

What to do next
You can create more Data Protection for SQL Server options files to point to another IBM Spectrum Protect server. You can create more than one options file, where each file contains different parameters to use with a single IBM Spectrum Protect server.

Related tasks:
"Enabling SQL Server backup compression" on page 109

Specifying Data Protection for SQL Server node name parameters
You must register the system where Data Protection for SQL Server is installed to the IBM Spectrum Protect server with a node name.

About this task
When you configure Data Protection for SQL Server, the IBM Spectrum Protect configuration wizard manages the creation of the IBM Spectrum Protect nodes and node attributes. You can customize the configuration template script to add additional node attributes, for example, backup compression. Alternatively, to customize IBM Spectrum Protect nodes, you can use the Administrative client options with the DSMADMC command.

The node name owns and manages all Data Protection for SQL Server data that is backed up to the IBM Spectrum Protect server.

If you run Data Protection for SQL Server on a Microsoft Failover Clustering or Veritas Cluster Server, the node name cannot be the name of the local system. The node name must match the SQL virtual server name.

Procedure
1. Specify the node name with the **nodename** option in the dsm.opt options file. By default, the dsm.opt options file is in the Data Protection for SQL Server installation directory.
2. To run VSS operations, register node names for more systems if required.
3. Configure the following IBM Spectrum Protect parameters when you register your Data Protection for SQL Server node name to the IBM Spectrum Protect server:

- **BACKDELeTe** Specify that the Data Protection for SQL Server node can delete its own backup files from the IBM Spectrum Protect server. You must specify the yes value for this parameter.

- **MAXNUMMP** Specify the maximum number of mount points that a client node is allowed to use on the IBM Spectrum Protect server during a backup operation. If you use SQL data-striping with data that is sent directly to a tape pool, set this parameter to a number that is greater than the default value of 1. For example, set this value to be at least the maximum number of stripes to be used for backup or restore operations when removable media such as tapes are used, or if migration occurs during the backup or restore operation. If other backups or restores operations occur at the same time, the value of this parameter must be large enough to allow for all of the required mount points. If the storage pool for the backup operation has Active Data or Backup Stg pools that are written to simultaneously, the MAXNUMMP parameter must also include these mount points.

- **TXNGroupmax** Specify the number of files that are transferred as a group between Data Protection for SQL Server and the IBM Spectrum Protect server, between transaction commit points. This parameter must have a value of 12 or greater.

- **COMPRESSION** (Legacy only) Specify whether the Data Protection for SQL Server node compresses data before it sends the data to the IBM Spectrum Protect server during a backup operation. Specify COMPRESSION=Client in the backup-archive client options file (dsm.opt) in the Data Protection for SQL Server directory.

Specifying configuration and options files in non-default locations

The Data Protection for SQL Server software uses default configuration and options files. If you want to use non-default configuration and options files, use command-line parameters to specify alternative configuration and option files when you start Data Protection for SQL Server.

Before you begin

The information in this procedure does not apply to managing remote Data Protection for SQL Server installations.

About this task

MMC that is used for Data Protection for SQL Server software is started with the flashcopymanager.exe file.

The flashcopymanager.exe file accepts the following parameters to set the configuration files:

```
/SQLCONFigfile=filename # SQL configuration file
/SQLOPTfile=filename # SQL OPT file
/SQLINSTancenames=Instance1,Instance2,... # SQL instances to show in the MMC
```

Procedure

Start MMC with the parameters by using flashcopymanager.exe, as shown in the following example.
You can also start and run multiple instances of MMC concurrently. With the
command-line parameters, each instance operates by using a different
configuration that is based on the specified configuration and option files.

Configuring proxy relationships for VSS backups

Data Protection for SQL Server uses the IBM Spectrum Protect backup-archive
client to implement VSS backup operations. As such, you must use two node
names for VSS operations; one for the backup-archive client and the other for Data
Protection for SQL Server.

As part of the configuration procedure, a proxy relationship is defined for these
node names. By default, this proxy relationship is defined when you run the
configuration wizard. Follow the guidelines in this topic to manually complete the
configuration.

The proxy relationship allows node names to process operations on behalf of
another node name. When you register these nodes to the IBM Spectrum Protect
server for VSS operations, specify the IBM Spectrum Protect USERID=<node name>
parameter.

Two types of node names are defined in proxy node relationships:

- **Target node**: A node name that controls data backup and restore operations and
also owns the data on the IBM Spectrum Protect server. This node name is
specified in the Data Protection for SQL Server dsm.opt file.

- **Agent node**: A node name that processes operations on behalf of a target node.
This node name is specified in the backup-archive client dsm.opt file.

To establish the proxy relationship, on the IBM Spectrum Protect server, issue the
grant proxynode command. For example:

```
GRANT PROXYNODE TARGET=dpsql_node_name AGENT=dsmagent_node_name
```

If you are running backups of availability databases in an AlwaysOnAvailability
Group on SQL Server 2012 and later versions, a cluster node name is also required.

- **Cluster node**: A node name that stores data in a failover cluster or AlwaysOn
availability group configuration.

To establish the proxy relationship, on the IBM Spectrum Protect server, issue the
grant proxynode command. For example:

```
GRANT PROXYNODE TARGET=alwayson-node agent=tdpsql-node
GRANT PROXYNODE TARGET=alwayson-node agent=dsmagentnode
GRANT PROXYNODE TARGET=tdpsql-node agent=dsmagentnode
```
Required node names for basic VSS operations

VSS operations require specific node name settings.

To process basic VSS operations, you must have one target node and one agent node.

Table 5. Required node names for basic VSS operations

<table>
<thead>
<tr>
<th>Proxy node type</th>
<th>Node name</th>
<th>Where to specify</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target node</td>
<td>The Data Protection for SQL Server node name</td>
<td>Use the nodename option in the Data Protection for SQL Server options file (dsm.opt)</td>
</tr>
<tr>
<td>Agent node</td>
<td>The Local DSMAGENT Node name that must match the VSS requestor node name</td>
<td>Use the localdsmagentnode parameter in the Data Protection for SQL Server configuration file (tdspql.cfg)</td>
</tr>
</tbody>
</table>

Target node

The target node name specifies the name of the node that owns the Data Protection for SQL Server backup data on the IBM Spectrum Protect server. This node name is specified with the nodename option in the Data Protection for SQL Server dsm.opt file and is referred to as the Data Protection for SQL Server node name.

Agent node

The agent node name specifies the name of the node operating for the target node. This node is responsible for processing the VSS operations as Data Protection for SQL Server does not process any direct VSS operations. This node name is referred to as the Local DSMAGENT Node and is specified with the localdsmagentnode parameter in the Data Protection for SQL Server configuration file (tdspql.cfg by default). You can use the Properties window of Microsoft Management Console (MMC) by selecting VSS backup. From here, you can update the Local DSMAGENT Node name. Otherwise, use the tspqlc set command to specify this parameter.

Tip: The agent node and target node are in a proxy relationship, and are used for VSS operations on the SQL server that is being protected.

Required node names for basic VSS offloaded backups

VSS offloaded backups require specific node name settings.

To complete VSS offloaded backups, you must have one target node and two agent nodes:

Table 6. Required node names for basic VSS offloaded backups

<table>
<thead>
<tr>
<th>Proxy node type</th>
<th>Node name</th>
<th>Where to specify</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target node</td>
<td>Data Protection for SQL Server node name</td>
<td>Use the nodename option in the Data Protection for SQL Server options file (dsm.opt)</td>
</tr>
<tr>
<td>Agent node</td>
<td>Local DSMAGENT Node</td>
<td>Use the localdsmagentnode parameter in the Data Protection for SQL Server configuration file (tdspql.cfg)</td>
</tr>
</tbody>
</table>
Table 6. Required node names for basic VSS offloaded backups (continued)

<table>
<thead>
<tr>
<th>Proxy node type</th>
<th>Node name</th>
<th>Where to specify</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent node</td>
<td>Remote DSMAGENT Node</td>
<td>Use the <code>remotedsmagentnode</code> parameter in the Data Protection for SQL Server configuration file (tdpsql.cfg)</td>
</tr>
</tbody>
</table>

Target node
This node name is where Data Protection for SQL Server is installed. This node name (specified with the `nodename` option in the Data Protection for SQL Server `dsm.opt` file) is referred to as the Data Protection for SQL Server node name.

Agent node - Local DSMAGENT Node
This node name is where the backup-archive client and VSS provider are installed. This node is responsible for processing the VSS operations as Data Protection for SQL Server itself does not process any direct VSS operations.

This node name is referred to as the Local DSMAGENT Node and is specified with the `localdsmagentnode` parameter in the Data Protection for SQL Server configuration file (tdpsql.cfg by default). To specify this parameter with the Properties window of Microsoft Management Console (MMC), select VSS backup. From the Properties window, you can update the Local DSMAGENT Node name. Otherwise, use the `tdpsqlc set` command to specify this parameter.

Agent node - Remote DSMAGENT Node
This node name is a separate system that must also have the backup-archive client and VSS provider installed. This node is responsible for moving VSS snapshot data from local shadow volumes to the IBM Spectrum Protect server.

This node name is referred to as the Remote DSMAGENT Node and is specified with the `remotedsmagentnode` parameter in the Data Protection for SQL Server configuration file (tdpsql.cfg by default). To specify this parameter with the Properties window of MMC, VSS backup. From the Properties window, you can update the Remote DSMAGENT Node name. Otherwise, use the `tdpsqlc set` command to specify this parameter.

The choice of available systems depends on whether the systems have access to the local shadow volumes that contain the VSS snapshot backups. This node name is only valid for VSS environments that support shadow copies that can be transported. You cannot specify a node name if you are using the default VSS system provider.

If you are running offloaded backups, a dedicated (and unique) remote DSM agent node must exist for each local DSM agent node.

Ensure that all nodes within the configuration are registered to the same IBM Spectrum Protect server and defined within the same policy domain. This includes the `localdsmagentnode`, `remotedsmagentnode`, and the `nodename` specified in the Data Protection for SQL Server options file (`dsm.opt`). All of these nodes must access the same IBM Spectrum Protect server and have been granted the appropriate proxy authority.
Setting user preferences

Use the property pages in the Data Protection Properties window to customize Data Protection for SQL Server configuration preferences.

Before you begin

The property pages customize preferences such as logging of activity, how languages and information are displayed, and tune performance. The information about the General property page is required to back up data, but the properties are set when you complete the configuration wizard.

When configuring preferences, consider the backup strategy, resource needs, policy settings, and hardware environment of your system.

Procedure

To configure user preferences, complete the following steps:

1. In the navigation tree of Microsoft Management Console (MMC), select the SQL instance for which you want to edit preferences.
2. Click Properties in the Actions pane.
3. Edit the property page and click OK to save your changes and close the window.

What to do next

Tip: You can also view or edit properties for the dashboard and the Management Console. To open the properties window, click Dashboard in the navigation tree, and click Properties in the Actions pane.

Data Protection properties

Use property pages to customize your configuration preferences.

You can view or edit property pages by selecting an SQL Server instance from the Protect and Recover Data node in the navigation tree of the Management Console, and clicking Properties in the Actions pane.

Server Information

Use the Server Information property page to obtain information about the server that provides backup services.

The fields that display depends on whether the product is configured for a stand-alone snapshot environment or for an IBM Spectrum Protect environment.

Tip: References to the stand-alone snapshot environment are specific to IBM Spectrum Protect Snapshot.

Node name

Specifies the name that is used to identify the client node for stand-alone backup operations or backup operations to IBM Spectrum Protect server.

TSM API version

Specifies the version of the IBM Spectrum Protect application programming interface (API).
Server name
For backups to IBM Spectrum Protect, specifies the name of the IBM Spectrum Protect server that you are connected to.

For a stand-alone configuration, Virtual Server is displayed.

Server Network Host name
Specifies the network host name for the IBM Spectrum Protect server.

For a stand-alone configuration, FLASHCOPYMANAGER is displayed.

Server type
For backups to IBM Spectrum Protect, specifies the type of operating system of the IBM Spectrum Protect server.

For a stand-alone configuration, Virtual Platform is displayed.

Server version
Specifies the version of the IBM Spectrum Protect server.

Compression mode
Specifies whether compression is used during backup operations to the IBM Spectrum Protect server. The possible values are Yes, No, and Client Determined.

Domain name
Specifies the policy domain that the node belongs to. A policy domain contains one or more policy sets.

For SQL systems, the domain name, policy set, and management class are listed for the Data Protection or AlwaysOn node.

Active Policy Set
Specifies the policy set that is active for the policy domain. A policy set contains one or more management class definitions.

Default Management Class
The default policy or management class that contains attributes. These attributes determine how long backup versions are stored, where backup versions are stored, and how many backup versions are retained.

Server Password
Use the Server Password property page to change the password for the Data Protection node that you use to access the IBM Spectrum Protect server. This property page applies only to IBM Spectrum Protect configurations.

The following fields are displayed in the property page:

Old password
Type the IBM Spectrum Protect password that you want to change.

New password
Type a new password. Follow the IBM Spectrum Protect server password policy rules.

Confirm new password
Type the new password again. Click OK to save your changes.
Policy Management
Use the Policy Management property page to add or update a backup policy, which controls how different backup versions are retained on local shadow volumes on stand-alone snapshot configurations. The Policy Management property page is available on stand-alone snapshot configurations only.

Backup retention on local shadow volumes is determined by version and time-based policies. Ensure that sufficient local storage space is available on local shadow volumes for your VSS backup. The amount of storage space that is required depends on the VSS Provider that you use.

The following fields are displayed in the property page:

Policy Specify the unique name of a backup policy for the stand-alone configuration.

Number of Snapshots to keep Specify the number of backup versions to retain on local shadow volumes. Enter a value from 1 to 9999. Type NL to retain as many backup versions as permitted by available storage space. The default value is 2.

This parameter does not apply to log backup versions of SQL Server data. Log backups do not expire based on version limits because there is never more than one version of a log backup object. Log backups are uniquely named, therefore, there is always only one version of the log backup object.

Days to keep a Snapshot Specify the number of days to retain backup versions on local shadow volumes. Enter a value from 0 to 9999. Type NL to retain as many backup versions as permitted by available storage space. When the value is set to 0, snapshots are kept for the current day. The default value is 30.

VSS Policy Binding
Use the VSS Policy Binding property page to bind storage snapshots to back up policies or management classes. VSS policies determine how backups are managed and retained.

VSS policy statements are processed from the end to the beginning and processing stops when the first matching statement is reached. To ensure that more specific statements are processed, specify the more general specification before the more specific ones.

The policy statements do not take effect on existing or new backups until the next backup is issued.

Managed Capacity
Use the Managed Capacity property page to track the capacity of managed storage.

The information that is provided can assist you with storage capacity planning during activities such as license renewal.
Diagnostics
Use the Diagnostics property page to select the type of tracing to run on various components of Data Protection for Microsoft SQL Server.

When you encounter a problem, open the Diagnostics property page. Select the diagnostic mode that you want to use by clicking Normal, Complete, or Custom. Then, click Begin to start the trace. Close the property page. Re-create the problem, open the Diagnostics property page, and click End to stop the tracing and collect the data.

If you are using this property page from the Dashboard property sheet, you can run trace only for Microsoft Management Console (MMC).

Diagnostic modes
The following diagnostic mode is available in the Diagnostics property page from the Dashboard property sheet:

MMC - use this mode to set tracing for only MMC.

The following diagnostic modes are available in the Diagnostics property page in the workload property sheets. The type of tracing that is enabled for each mode is listed in the table. Specific trace flags, and guidance on when to use each mode is also listed.

Table 7. Diagnostics modes and their usage

<table>
<thead>
<tr>
<th>Mode</th>
<th>Components traced along with trace flags used</th>
<th>When to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>MMC, DP (service), API (service,api_detail)</td>
<td>If using legacy operations, you can use this mode as it results in small output size</td>
</tr>
<tr>
<td>Complete</td>
<td>MMC, DP (service), API (service,api_detail), Agent (service)</td>
<td>Use for VSS operations, results in large output size</td>
</tr>
<tr>
<td>Custom</td>
<td>Any combination</td>
<td>Use if specific flags are needed</td>
</tr>
</tbody>
</table>

Normal
Click Normal to collect trace and log files for legacy operations.

Complete
Click Complete to collect trace and log files for VSS operations.

Custom
Click Custom, then click the check mark icon to select the trace and log files that you want to collect. Use this mode only if specific trace flags are required.

Enable snapin tracing
Select this box to enable tracing of the Management Console. Click Review to view the trace file.

Set Default Trace Flags
Click Set Default Trace Flags to set the most commonly requested trace flags.
Enable Data Protection tracing
Select this box to enable tracing of Data Protection for Microsoft SQL Server operations. Click Review to view the trace file. Add or update trace flags in the field.

Enable DSM Agent tracing
Select this box to enable tracing for the IBM Spectrum Protect client node. You must restart the client acceptor service before you start the trace. Click Review to view the trace file. Add or update trace flags in the field.

Enable API tracing
Select this box to enable tracing for the IBM Spectrum Protect API. Click Review to view the trace file. Add or update trace flags in the field.

Event log entries
Click Event log entries to view Windows application event log for SQL Server, Exchange Server, or File System workloads. For SQL workloads, you can also click SQL Server Log file to view the SQL Server log.

Email
Select diagnostic files and click Email to send a diagnostic email to an IBM service representative with the selected files attached. You must configure your email information before you can send the data to an IBM service representative. To configure your email information, go to the Dashboard and click Properties. Then, click EMail to open the email property page.

Screenshot
This function is enabled after you click Begin. Click Screenshot to open the Diagnostic Screenshot Tool. This tool is a modeless dialog that remains open until you close it or click End or Cancel.

Click Add New Screenshot to add a screen capture to the FlashCopyManager\ProblemDetermination folder. The screen capture can be selected with other diagnostic data.

Tracing details for each component
All trace files are stored in the flashcopymanager folder, which is C:\Program Files\Tivoli\flashcopymanager by default. When you click End, these files are automatically copied, compressed, and stored in the C:\Program Files\Tivoli\flashcopymanager\problem determination folder along with other information.

MMC
Options are stored in MMC user settings file. The following files are created as a result of the diagnostic functions:

- TraceFm.trc
- TraceUx.trc

Data Protection
Tracing options are stored in MMC user settings file and passed to the Data Protection component as part of the command. The following file is generated:

- TraceFileSql.trc

Agent
Tracing options are stored in the VSS requestor dsm.opt file. The following file is generated:

- TraceFileAgent.trc
API Tracing options are stored in the respective Data Protection ds.m.opt file. The following file is generated:
 TraceFileSqlAPI.trc

SQL Login
Use this property page to set preferences for logging on to the Microsoft SQL Server.

Use Windows Authentication
Select this option to use a trusted connection and allow Microsoft Windows to authenticate the logon.

Use SQL Server Authentication
Select this option to use SQL user ID security. With this type of security, you must enter the logon ID and the password to log on to the Microsoft SQL Server.

Note: The authentication of the SQL user ID and password is based on the account you used to log in to MMC GUI. Therefore, the Microsoft Windows account that is used to configure the SQL user ID and password, must be the same one that is used to log on to the Microsoft SQL Server.

User name
Specifies the SQL Server user ID.

Password
Specifies the password to log on to the Microsoft SQL Server.

General (SQL)
Use this property page to specify general preferences for the SQL Server workload. This property page applies if the product is configured to back up data to stand-alone storage or IBM Spectrum Protect.

SQL Server
Specify the unique name that identifies the SQL Server instance.

From Server
Specify the SQL Server backups that you want to use for the restore. By default, this field displays the same name for the SQL Server.

Wait for tape mounts for backup or restore
Select this box when you want Data Protection for Microsoft SQL Server to wait for tape media to be mounted for backup and restore operations. This setting is applicable when the IBM Spectrum Protect server is configured to store the backup data on tape media. With backup data on removable media, during backup and restore operations, a wait period occurs during storage volume mounts. If a wait occurs, this setting specifies whether Data Protection for Microsoft SQL Server waits for the media mount or stop the current operation. By default, this option is not selected.

Use VSS backups as the default backup method
Select this box to set VSS backups as the default backup method. Ensure that the Local DSMAGENT Node name field is specified in the VSS Backup property page. Backups can be restored only by using VSS.

Compress backup by using SQL Server compression
Select this box to enable SQL Server compression during legacy backup operations. This check box is available only if you are running Microsoft SQL Server 2008 or later versions.
Compute SQL Server checksum for legacy backup
When selected, this option is written to the Data Protection for SQL Server preferences file (tdpsq1.cfg), and can be applied to all legacy backups. If you clear the check box, you ensure that the checksum calculation does not apply to any legacy database backup.

Estimate % change for differential backup
Specify the value for the estimated change to database pages for differential backups. This estimate is used by Data Protection for Microsoft SQL Server to determine whether enough storage space is available for the backup. The default value is 20. This value becomes the default value for all differential backups.
This field applies only to Data Protection for Microsoft SQL Server legacy backups.

Logging
Use the Logging property page to specify activity log preferences.

Log File Name
Specifies the name of the file in which activities are logged.

Enable pruning
Specifies that older entries from the log are to automatically be deleted. By default, log pruning is activated and performed daily.

Number of days to keep old entries
Specifies the number of days to keep old entries in the log before they are pruned. By default, 60 days of log entries are saved in the pruning process.

Prune now
Click this option to delete older entries from the Data Protection for SQL Server activity log when a command runs.

Regional
Use the Regional property page to set preferences that affect how languages and information are displayed and logged.

Regional and Language options
Select this option to set preferences for Microsoft Management Console (MMC). MMC uses the same regional settings as the Windows system.

Language
Select the language to use for log files and the command-line interface.

Date Format
Select a date format to use for log files and the command-line interface. The available choices represent several ways to place the month (mm), day (dd), year (yyyy), and period of day (a.m. or p.m.). The default date format is mm/dd/yyyy.

Time Format
Select a time format to use for log files and the command-line interface. The available choices represent several ways to place the hour (hh), minutes (mm), and seconds (ss). The default time format is hh:mm:ss.

Number Format
Select a number format to use for log files and the command-line interface. The available choices represent several ways to place the decimal, comma, and spaces. The default number format is xxx,xxx.dd.
Match MMC Language
Select this option to change MMC regional settings to match the system’s regional and language options. By selecting this option, the number, date, and time formats are matched to the default formats of the selected language.

VSS Options
Use the VSS Options property page to configure preferences that are used during VSS backup and restore operations.

Default Backup Destination
Select the default storage location for your backups.

Tip: You must have the IBM Spectrum Protect Snapshot license to use the IBM Spectrum Protect software. If you have only the Data Protection license, only the IBM Spectrum Protect option is enabled. You can select from the following storage locations:

IBM Spectrum Protect
The backup is only stored on IBM Spectrum Protect server storage. For SQL Server, IBM Spectrum Protect server is the default backup destination.

Local
The backup is only stored on local disk.

Both
The backup is stored on both IBM Spectrum Protect server storage and local disk.

For IBM Spectrum Protect configurations, the backups can be stored on a local disk, but managed on the IBM Spectrum Protect server. The IBM Spectrum Protect server maintains the metadata or information about where the local snapshot is stored.

Local DSMAGENT Node name
Specify the node name for the DSM Agent node of the local client system that creates the VSS backups.

Remote DSMAGENT Node name
Specify the node name of the system that moves the VSS data to IBM Spectrum Protect server storage during offloaded backups. If you do not use offloaded backups, you can leave this field blank.

If you are running offloaded backups, a dedicated (and unique) remote DSM agent node must exist for each local DSM agent node.

Import VSS snapshots only when needed
By default, local persistent VSS snapshots are automatically imported to the Windows system where the snapshots are created. If you select this option, the VSS snapshots are imported to the local host when needed to perform IBM Spectrum Protect Snapshot operations.

To automatically import local persistent snapshots to the Windows system where the snapshots are created, the check box should be cleared.

If you intend to keep many backup versions (for example, more than 100 backup versions), or, if there is a limit to the number of LUNs that your server can use (for example, in virtual machine environments), select this option.
When you select this option, if the VSS hardware provider does not support transportable snapshots, or, if no hardware provider is available, the backup is completed, but the VSS snapshot is imported and is not transportable.

If you are running in a VMware environment and want to use VMware vMotion, ensure the LUNs are properly zoned to the ESX hosts and select this option. By choosing to import VSS snapshots when the snapshots are needed, the import process maps the VSS snapshot to the ESX host where the Windows virtual machine is running.

Mount read only
Select the check box to specify that backups are to be mounted as read-only VSS snapshots by default. However, at mount time, you can override this value and do a read/write mount. If you change the default, the corresponding update is made in your configuration file automatically.

Mount read/write (modifies backup, applies to COPY backups only)
Select the check box to specify that backups are to be mounted as read/write VSS snapshots by default. You can mount only COPY backups as read/write and after mounting, the original backup is modified and can no longer be used as a restore point in future database restore operations. However, at mount time, you can override this value and do a read-only mount.

Mount read/write (without modifying backup)
Select this check box to specify that backups are to be mounted as read/write copies of the backup by default. With this option, you can mount both FULL and COPY backup types as read/write. After mounting, the original backup is not modified and you can use it again in future database restore operations. However, at mount time you can override this value and do a read-only mount.

Important:
This mount option is only available for SAN Volume Controller (SVC) devices and requires IBM System Storage Support for Microsoft Virtual Disk and Volume Shadow Copy Services version 4.12 or later. Also, you must allocate extra target volumes on your SVC storage device to accommodate the number of concurrent read/write mounts you want to do. An extra target volume that matches the size of the volume to be mounted is needed for each concurrent read/write mount of that volume.

Custom Settings
Use the Custom Settings property page to set your filtering options and control the amount of information that is returned from the server.

Select **Show Refresh Options** in the toolbar in the Recover view.

In environments where thousands or millions of backup objects are stored on the IBM Spectrum Protect server, it can be helpful to disable the automatic refresh mode. You can click **Refresh Options** and use the toolbar to switch between manual and automatic refresh mode.

Automatic and manual refresh modes differ in the following ways:
- In automatic refresh mode, a view automatically refreshes the first time that you select it. If there are thousands or millions of objects on the server, the refresh can take a long time to complete.
In manual refresh mode, the view is not automatically refreshed. A name filter is
available on the Refresh Options toolbar that you can use to narrow down the
number of objects selected. After you enter a name pattern, you can click
Refresh. By using manual refresh mode and limiting your query by using filters,
you can reduce the amount of information that is returned from the server.
Reducing the amount of information that is returned from the server can
improve query and restore performance.
You can also specify a wildcard character (*) in the name pattern to assist your
filtering effort.

AlwaysOn Node
All availability databases in an availability group are backed up under this
AlwaysOn node.

When you configure Data Protection for SQL Server with SQL Server 2012 and
later versions, the AlwaysOn node name is a required parameter. The AlwaysOn
node name can be changed at any time. To change the parameter, use the
configuration wizard. From the AlwaysOn Node property page, view the
parameter that is set.

AlwaysOn node name
The AlwaysOn node name that is used to back up availability databases is
displayed. The databases that are not in an availability group are backed
up under the standard Data Protection for SQL Server node name unless
you select the Use AlwaysOn node name for all databases check box.

You cannot change the node name from this property page. To change the
node name, use the configuration wizard.

Use AlwaysOn node name for all databases
Select this check box to specify that the AlwaysOn node is the default node
for backing up all availability and standard databases. This option can be
used to change your database backups from the standard Data Protection
for SQL Server node to an AlwaysOn node. By selecting this check box,
you can back up all standard and availability databases under a single
node to help you manage your database backups more easily.

AlwaysOn Preferences

Use this property page to configure the backup preference settings for scheduled
backups of availability groups and availability replicas in an SQL Server
environment. This includes SQL Server instances that use non-default ports in the
AlwaysOn Availability Group (AAG) environment.

Attention:

If an SQL Server instance in the AAG environment is using a non-default port,
specify the RemoteSQLInstancePort option in the Data Protection for SQL Server
configuration file (tdpsq1.cfg by default). This enables Data Protection for SQL
Server to communicate with remote replica SQL Server instances in an AAG
environment.

For example, RemoteSQLInstancePort replicaname1,port# or RemoteSQLInstancePort
 replicatedname1,port#1;replicaname2,port#2.

The replica name that you specify is case-sensitive. Therefore, if the AAG replica
name is specified in lowercase on the SQL Server, then you must also specify the
RemoteSQLInstancePort replica name in lowercase.
The settings are intended for scheduling backups of availability groups and availability replicas, and not for interactive backups with Microsoft Management Console (MMC).

The following settings are available in this property page:

Availability group
Select an AlwaysOn Availability Group for which you want to set schedule backup preferences.

Primary replica
Displays the primary replica for the selected availability group.

Preferred replica
Backup commands are scheduled on all nodes in an availability group. When the schedules run, the backup occurs only on the preferred replica. Other replicas receive, at run time, a warning message. The backup is skipped. You can make the following selections:

- Select **Prefer Secondary replica** if you want scheduled backups to occur on a secondary replica, if it is available. Otherwise, use the primary replica for the scheduled backup.
- Select **Secondary only** if you want scheduled backups to occur only on a secondary replica.
- Select **Primary** if you want scheduled backups to occur only on the primary replica.
- Select **Any replica** if you want scheduled backups to occur on any availability replica.

Availability replicas
For each availability replica in this list box, specify whether it is a candidate for running scheduled backups by specifying the backup priority for that replica. A value of 1 has the lowest priority, and a value of 100 has the highest priority. A value of 0 indicates that the replica is excluded from schedule backup operations.

Availability databases
Displays the availability databases that are in an availability replica. The synchronization state is also displayed.

Performance
Use this property page to set preferences that affect performance for legacy backups.

DP Buffers
Specifies a number in the range 2 - 8 that specifies the number of communication data buffers that Data Protection for SQL Server uses when it transfers data to the IBM Spectrum Protect server. Each buffer has the size that is specified by the **DP Buffer Size** option. This option applies only to legacy backups.

DP Buffer size
Specifies the size of the buffers that are used by Data Protection for SQL Server to transfer data to the IBM Spectrum Protect server. This option applies only to legacy backups. Specify a value in the range 64 - 8192.

SQL Buffers
Specifies the number of communication data buffers that SQL server uses when it transfers data between the SQL server and Data Protection for SQL Server.
Server. Each buffer has the size that is specified in the **SQL Buffer Size** option. This option applies to legacy backups only. Specify a value from 0 to 999. The default value is 0.

SQL Buffer size

Specifies the size of the buffers that are used by SQL server to transfer data from the SQL server to Data Protection for SQL Server. This option applies only to legacy backups. Specify a value in the range 64 - 4096.

Stripes

Specifies the number of data stripes to use in a legacy backup or legacy restore operation. Specify a value in the range 1 - 64. The default value is 1. This option applies to legacy backup and restore operations only.

When using a multiple stripes number for legacy backups, and setting the **Verify Only** parameter to **Yes** to restore the legacy backup, the number of stripes for legacy restore should be equal or greater than the number of stripes for the legacy backup.

Configuring by using the IBM Spectrum Protect Configuration Wizard

Configuration requirements for Data Protection for SQL Server, IBM Spectrum Protect, and other applications vary. The requirements depend on which Data Protection for SQL Server features you want to use. For example, if you plan to use VSS operations, the IBM Spectrum Protect backup-archive client, serving as the VSS Requestor, must also be installed and configured.

Before you begin

When you are remotely configuring Data Protection for SQL Server, you must first install IBM Spectrum Protect Snapshot for Windows on the Data Protection node server, as shown in the example that is used in the procedure. You must then run the IBM Spectrum Protect Configuration Wizard, on at least one occasion, on the Data Protection node server.

Procedure

1. Start Microsoft Management Console (MMC) by clicking **Start > All Programs > IBM Spectrum Protect > Data Protection for Microsoft SQL Server > DP for SQL Management Console**.
2. From the start page, click **Configuration**. Alternatively, from the navigation tree, navigate to the **Configuration** node. Then, double-click **Wizards**.
3. In the results pane, double-click **IBM Spectrum Protect Configuration** to open the IBM Spectrum Protect Configuration Wizard.
4. Follow the instructions on the pages of the wizard and click **Next** to move to the next page.
 a. In the Data Protection Selection page, select **SQL Server**. Click **Next**.
 b. Review the results of the requirements check and ensure that you address any errors or warnings.
 Click **Show Details** to view a list of individual requirement results. If you are configuring an application for which you do not have the necessary license, the license requirement check fails. You must either go back to the Data Protection Selection page and clear the selected application to proceed with the configuration, or obtain the necessary license.
c. In the IBM Spectrum Protect Node Names page, specify the IBM Spectrum Protect node names, which exist on the same system, to use for the applications that you want to protect.

- In the **VSS Requestor** field, enter the node name that communicates with the VSS Service to access the SQL Server data. This node name is the IBM Spectrum Protect VSS requestor node name, also known as the DSM agent node name.

- In the **Data Protection for SQL** field, enter the node name where the Data Protection application is installed. This node name is used to store the Data Protection for SQL Server backups.

- If you are configuring Data Protection for SQL Server for SQL Server 2012 and later versions, enter a node name in the **AlwaysOn Node** field. This node name is used to back up the availability databases in an AlwaysOn Availability Group. By default, the Windows Failover Cluster name is used.

- If the IBM Spectrum Protect for Virtual Environments Recovery Agent license is available, enter the data center node name. The data center node is the virtual node that maps to a data center.

Create a node name that can help you to distinguish the type of backup that runs. For example, if your host name is MALTA, you can name the VSS requestor node name MALTA, and you can create a Data Protection node name that is called MALTA_SQL. For an SQL Server configuration, the AlwaysOn node name does not have to be related to the VSS Requestor or the Data Protection for SQL Server node name. For example, you can name it TSM_ALWAYSON.

d. Enter information for the IBM Spectrum Protect server that you are connecting to and click **Next** to continue.

- In the **IBM Spectrum Protect Server Address** field, enter the TCP/IP domain name or a numeric IP address for the IBM Spectrum Protect server that contains the backups. Obtain this information from your IBM Spectrum Protect server administrator.

- In the **IBM Spectrum Protect Server Port** field, enter the port number for the IBM Spectrum Protect server that contains the backups. Obtain this information from your IBM Spectrum Protect administrator.

- Specify whether to have the wizard configure the IBM Spectrum Protect server for you by generating a configuration macro file.

 - If you click **No**, the macro file is available at the final page of the wizard and can be provided to the IBM Spectrum Protect administrator as an example of one way to configure the IBM Spectrum Protect server to support application data protection.

 - If you click **Yes**, the wizard starts the macro during the Configuration step in the wizard. Review the macro file and update it if needed.

 After you click **Yes**, enter the following information in the appropriate fields and perform the following actions:

 - The name of the IBM Spectrum Protect administrator account.
 - The password for the IBM Spectrum Protect administrator.
 - Click **Test Communications** if you want to test your connection with the IBM Spectrum Protect server. This button is not available until the VSS requestor is installed.
 - Click **Review/Edit** to review or update the IBM Spectrum Protect macro file. Alternatively, you can review the macro file and directly run the commands on the IBM Spectrum Protect server.
e. Select the Default configuration setting. When you select the Default configuration setting, the VSS Requestor is configured in addition to the applications that you selected. The client and agent services are also registered and configured, and a schedule to support historical managed capacity is defined.

f. Review the results of the configuration process. Click Show Details to view a list of individual configuration results.

5. Click Finish in the Completion page.

6. Optional: For a VSS configuration, verify that the Run VSS diagnostics when this wizard exits option is selected. When this option is selected, a diagnostic process tests the VSS snapshots on your system after you complete the wizard.

Attention: If the configuration is for space-efficient target volumes for SVC or Storwize V7000, testing VSS snapshots deletes previous backups that are created for the volumes that are selected in the test wizard.

What to do next

Verify the configuration.

Related tasks:
“Verifying the configuration of Data Protection for SQL Server” on page 77

Configuring a remote system with an IBM Spectrum Protect configuration

You can use a configuration wizard to configure a remote system to communicate with an IBM Spectrum Protect server.

Before you begin

Your system must run Microsoft Windows 2008 or later versions, PowerShell 3.0 or later, and Data Protection for SQL Server. On Windows 2012 and later versions, PowerShell version 4.0 is installed by default. For information about downloading, installing, and enabling Windows PowerShell, see this web page: Microsoft Windows Management Framework 3.0 Downloads (http://www.microsoft.com/en-us/download/details.aspx?id=34595)

Procedure

To configure a remote system with an IBM Spectrum Protect configuration, complete the following steps:

1. On the local system, from the Management Console, add the remote system by using Manage Computers.
2. In the navigation tree, verify that the remote system is displayed.
3. Click Manage > Configuration > Wizards.
4. Select IBM Spectrum Protect Configuration.
5. On the Data Protection Selection page, verify that the following information is entered correctly:
 • The remote computer name in the window title.
 • The correct system information.
6. Select the application to be configured and click Next.
7. For Exchange or SQL Server, the license check might fail. If the test fails, provide the file path and name for the location on the remote server.
8. On the IBM Spectrum Protect Node Names page, verify that the following information is entered correctly:
 • VSS Requestor
 • The Data Protection or file system name, depending on the application that is being configured

 For system with an AlwaysOn Availability Group, the corresponding AlwaysOn node must be detected.

9. On the IBM Spectrum Protect Server Settings page, type the server name and port number.

10. For the Would you like this wizard to configure your IBM Spectrum Protect server? question, select Yes.

11. Click Review / Edit. If the domain is not entered correctly, update the information. Click OK.

13. On the Configuration page, click Show Details. Verify the progress and status of the configuration.

14. Click Finish to complete the wizard.

What to do next

To verify that the configuration is set up correctly, complete the following steps:

1. In the navigation tree, for the remote system, expand Protect and Recover and click on the application that is configured.

2. Open the Properties and click Server Information. Verify that the correct information is displayed.

3. Query the components and verify that a successful backup can be completed.

Configuring IBM Spectrum Protect policy to set automatic expiration and version control (VSS and legacy backups)

With Data Protection for SQL Server, you can use IBM Spectrum Protect policy to set automatic expiration and version control.

About this task

You can set automatic policy for data backups by editing the Data Protection for SQL Server options file, or by specifying the policy statements in Microsoft Management Console (MMC). If you edit the options file, use INCLUDE and EXCLUDE statements to define the files that you want to automatically process, and to assign specific management classes to files by using object naming conventions.

Setting automatic expiration for VSS backups

Procedure

1. Complete one of the following steps:
 • Specify the VSSPOLICY statement in your Data Protection for SQL Server configuration file
 • Specify the VSSPOLICY statement in MMC (Properties > VSS Policy Binding).
You cannot specify VSSPOLICY statements by issuing the `tdpsqlc set` command.

2. Specify the following information in the VSSPOLICY statement:

 VSSPOLICY srvname dbname backuptype backupdest mgmtcls

 where:

 * **srvname**
 - Specify the name of the SQL Server or wildcard character (*)

 * **dbname**
 - Specify the name of the database or wildcard character (*)

 * **backuptype**
 - Specify the backup type as FULL or as a wildcard character (*). When you specify a wildcard character for `backuptype`, a FULL backup type is completed because you can run only full backup types.

 * **backupdest**
 - Specify the backup destination to be the IBM Spectrum Protect server, a local server, or a wildcard character (*)

 * **mgmtcls**
 - Specify the management class name for the backup type.

Setting automatic expiration for legacy backups

About this task

Metadata is stored as a data object on the IBM Spectrum Protect server. You can migrate metadata to removable media if that action complies with IBM Spectrum Protect policy. A Data Protection for SQL Server backup object name comprises a series of qualifiers separated by \\.

Procedure

1. Ensure that metadata is available to query without causing a volume mount.

2. Adhere to the INCLUDE and EXCLUDE syntax for object naming as follows:

   ```
   include "objectNameSpecification" [ManagementClassName]
   exclude "objectNameSpecification"
   ```

 where:

 * **objectNameSpecification is:**
 - `SqlServerName[\InstanceName]\dataType\...\DatabaseName [\typeInfo]\backupType*`

 * **dataType is:**
 - `meta | data`

 * **typeInfo is:**
 - `LogicalFileName` (for `file` backup type)
 - `GroupName` (for `group` backup type)
 - ... (for `log` and `set` backup types)
 - not used for `full` and `diff` backup types

 * **backupType is:**
 - `full | copyfull | diff | log | group | file | set`
The following are examples of individual objectNameSpecifications in INCLUDE and EXCLUDE statements:

SqlServerNames:
 SQL2008, SQL2012, SQL2014

InstanceNames:
 INST1, INST2

DatabaseNames:
 Db1, Db2, Db3

GroupNames:
 g1, g2, g3

LogicalFileNames:
 f1, f2, f3

Configuring in a clustered environment

You can configure Data Protection for SQL Server to protect SQL Server workloads in an SQL Server cluster environment.

About this task

When you configure AlwaysOn Availability Groups (AAGs) in a Microsoft Windows failover cluster environment or in a Veritas cluster server cluster environment, follow these guidelines.

- Configure each node in the cluster identically. Specify identical configurations in the Data Protection for SQL Server options file.
- Ensure that each availability replica of an availability group is on a different node in the same Windows failover cluster environment.
- Use the Configuration Wizard to register an AlwaysOn Node on the IBM Spectrum Protect™ server. To do so manually, issue the `register node` command on the IBM Spectrum Protect server.
- To access a clustered SQL Server, identify the virtual server name and specify that name in Data Protection for SQL Server.
- If you use the IBM Spectrum Protect scheduler to automate data backups, install the scheduler service on each node of the cluster to enable failover support.
- Use the `clustersharedfolder` option in the Data Protection for SQL Server options file (dsm.opt) to specify the directory location in which to store encrypted password files. Specify a directory location that is on a resource that is shared among all nodes in the cluster. For more information, see Clustersharedfolder.

Configuring Data Protection for SQL Server with IBM Spectrum Protect in a clustered environment

You can configure Data Protection for SQL Server to communicate with IBM Spectrum Protect, and protect SQL Server workloads in a clustered environment.

About this task

By default, the VSS Requestor dsm.opt file is in the IBM Spectrum Protect backup-archive client installation directory, `c:\Program Files\tivoli\tsm\baclient\dsm.opt`.
The location of application-specific dsm.opt files depends on the application that is being protected, for example:

Microsoft SQL Server
 c:\Program Files\tivoli\tsm\TDPSQL

Procedure
1. Start Microsoft Management Console (MMC) by clicking Start > All Programs > IBM Spectrum Protect > Data Protection for Microsoft SQL Server > DP for SQL Management Console.
2. From the start page, click Configuration. Alternatively, from the tree view, go to the Configuration node. Then, double-click Wizards.
3. In the results pane, double-click IBM Spectrum Protect Configuration to open the IBM Spectrum Protect Configuration Wizard.
4. In the configuration wizard, select the application that you want to protect, for example, the SQL Server.
5. On the Requirements Check page, locate the main panel. For the Cluster check, click Warnings.
6. In the Issue Resolution dialog, specify the path to the VSSALTSTAGINGDIR directory that all cluster nodes can access. The VSSALTSTAGINGDIR path must point to an existing directory on a shared disk, for example, X:\vss_staging.

 Restriction: Do not use a Cluster Shared Volume (CSVFS) for the VSSALTSTAGINGDIR directory path, IBM Spectrum Protect does not support CSVFS.

7. In the IBM Spectrum Protect Node Names page, specify the IBM Spectrum Protect node names, which exist on the same system, to use for the applications that you want to protect. Enter a node name in the AlwaysOn Node field. This node name is used to back up the availability databases in an AlwaysOn Availability Group. By default, the Windows Failover Cluster name is used.

8. Specify the clustersharedfolder option to specify the directory location in which to store encrypted password files. Specify a location that all nodes in the cluster nodes can access. If a failover occurs, the backup-archive client uses this option to determine where the password files are located.

 Tip:

 You can set the clustersharedfolder option value to be the same as that set for the VSSALTSTAGINGDIR directory path.

9. Click OK and complete the configuration wizard. In a clustered environment, the **Import VSS snapshots only when needed** configuration option is selected by default.

10. After you complete the configuration wizard, verify the VSSALTSTAGINGDIR path in the backup-archive client options file, baclient\dsm.opt. If the VSSALTSTAGINGDIR path is not correct, edit the file to specify the correct path. For example:

    ```
    # IBM Spectrum Protect backup-archive dsm.opt file
    NODename variable
    PASSWORDAccess generate
    TCPServeraddress variable.domain.com
    TCPPort variable
    CLUSTERnode no
    CLUSTERDISKSOnly no
    VSSALTSTAGINGDIR C:\ClusterStorage\Volume1\vss_staging
    ```
For an IBM Spectrum Protect server configuration, ensure that the VSSALTSTAGINGDIR directory path is specified only in the backup-archive client options file, baclient\dsm.opt.

For a stand-alone configuration, ensure that the VSSALTSTAGINGDIR directory path is specified in the backup-archive client options file, baclient\dsm.opt, and in the Data Protection for SQL Server options file, tdpsql\dsm.opt.

11. Repeat these steps on the other nodes in the cluster.

Configuring VSS operations in a clustered environment

You can configure Data Protection for SQL Server to protect VSS operations in a clustered SQL Server environment.

About this task

The following procedure applies if you are configuring Data Protection for SQL Server with IBM Spectrum Protect in a clustered SQL Server environment. The VSSALTSTAGINGDIR path must point to an existing directory on a shared disk that all cluster nodes can access.

Procedure

- For each node in your cluster environment, specify the VSSALTSTAGINGDIR directory path only in the VSS Requestor options file, \baclient\dsm.opt.

 # IBM Spectrum Protect backup-archive dsm.opt file
 NODename variable
 PASSWORDAccess generate
 TCPServeraddress variable.domain.com
 TCPPort variable
 HTTPport variable
 CLUSTERNode no
 CLUSTERDISKOnly no
 VSSALTSTAGINGDIR C:\ClusterStorage\Volume1\vss_staging

 Specify the VSSALTSTAGINGDIR parameter only if the following is true of your cluster environment:
 - IBM Spectrum Protect completes the VSS operations.
 - VSS backups are stored on local shadow volumes.
 - At least 200 megabytes of free disk space is available on the drive that the VSSALTSTAGINGDIR parameter specifies. This disk space contains the metadata files for Data Protection for SQL Server.

Restriction: Do not use a Cluster Shared Volume (CSVFS) for the VSSALTSTAGINGDIR directory path, IBM Spectrum Protect does not support CSVFS.

- In each of the dsm.opt files that are used for local DSMAGENT and remote DSMAGENT components, ensure that the options for the CLUSTERNode and CLUSTERDISKOnly parameters are set to no.
 CLUSTERNODE no
 CLUSTERDISKONLY no
In the Data Protection for SQL Server options file, `tdpsql\dsm.opt`, ensure that the option for the `CLUSTERNode` parameter is set to `yes`.

```
# Data Protection for SQL dsm.opt file
NODEname variable
PASSWORDAccess generate
TCPServeraddress variable.domain.com
TCPPort variable
HTTPport variable
CLUSTERnode yes
```

Configuring availability replicas to run scheduled data backups

When an availability database is replicated across multiple availability replicas in an availability group, a configuration option is available to enable you to select a single replica on which to run a backup operation instead of backing up all replicas.

About this task

Microsoft SQL Server 2012 and later versions provide a set of configuration options that you can use to specify whether scheduled backups are run on the primary or secondary availability replica. You can use the Data Protection for SQL Server GUI to set these options.

The configuration option can also be used to offload the backup from a primary replica to a secondary replica for load balancing. When databases fail over, backups must continue to run from other replicas to ensure that high availability is maintained.

Procedure

1. Start Microsoft Management Console (MMC).
2. In the Management section of the window, click Protect Data next to the SQL Server workload.
3. On the Actions pane, click Properties.
4. Click the AlwaysOn Preferences property page.
5. In the Availability group field, select the AlwaysOn Availability Group for which you want to set up backup preferences.
6. In the Preferred replica field, select your preferred replica on which to run scheduled backups.
 - Select Prefer Secondary replica if you want scheduled backups to occur on a secondary replica, if it is available. Otherwise, use the primary replica for the scheduled backup.
 - Select Secondary only if you want scheduled backups to occur only on a secondary replica.
 - Select Primary if you want scheduled backups to occur only on the primary replica.
 - Select Any replica if you want scheduled backups to occur on any availability replica.
7. For each availability replica that is listed in the Availability replicas list box, specify whether it is a candidate to run scheduled backups by specifying the backup priority for that replica. A value of 1 has the lowest priority, and a value of 100 has the highest priority. A value of 0 indicates that the replica is excluded from schedule backup operations.
8. Click **OK** to save your configuration and exit the Data Protection Properties page. The settings are saved to the tdpsql.cfg file and can be replicated to the other replicas in the availability group.

Manually configuring Data Protection for SQL Server

For best results, use the configuration wizards to configure Data Protection for SQL Server. The wizards provide you with a step-by-step guide of the configuration requirements. However, if you prefer to do these steps manually, follow these configuration instructions.

Configuring the computer that runs the SQL Server

Perform these steps on the computer where the SQL Server is installed and running.

Before you begin

Before you begin, ensure that the SQL Server is running.

If you configure the DSM Agent node (the backup-archive client node) manually, ensure that you set the **PASSWORDAccess** option to generate in the dsm.opt file for the IBM Spectrum Protect backup-archive client. Also ensure that the stored password for the DSMAGENT Node is valid.

Procedure

1. Specify your Data Protection for SQL Server node name and communication method in the dsm.opt file that is located by default in the Data Protection for SQL Server installation directory.
2. Using the **set** command, specify your Data Protection for SQL Server preferences (date format, log file) in the tdpsql.cfg file in the Data Protection for SQL Server installation directory.
3. If you are configuring Data Protection for SQL Server with SQL Server 2012 and later versions, specify the IBM Spectrum Protect node name that is used to back up the AlwaysOn availability databases. You can specify the AlwaysOn node name by using the **alwaysonnode** option in the tdpsql.cfg file. For example:

   ```
   set alwaysonnode myAlwaysOnNode
   ```

 All availability databases in an availability group are backed up under this node name. Any stand-alone databases are backed up under the standard Data Protection for SQL Server node name.
4. For SQL Server 2012 and later versions: If you want all databases to be backed up by default under the AlwaysOn node, specify the **usealwaysonnode** option in the tdpsql.cfg file. For example:

   ```
   usealwaysonnode yes
   ```

 This option is useful if you change your database backups from the standard Data Protection for SQL Server node to an AlwaysOn node.
5. **(VSS only)** Specify your **VSSPOLICY** statement in your Data Protection for SQL Server configuration file.
6. **(VSS only)** Configure the IBM Spectrum Protect backup-archive client if it is not already configured. If the backup-archive client is already configured, you can use existing client services. The backup-archive client Setup Wizard can guide you through the configuration process. In the backup-archive client GUI
menu, select **Utilities > Setup Wizard > Help me configure the IBM Spectrum Protect Backup Archive Client**. The node name for this system is referred to as the **Local DSMAGENT Node** and is specified with the `localdsmagentnode` parameter in the Data Protection for SQL Server configuration file (`tdpsql.cfg`).

For more information about installing the IBM Spectrum Protect backup-archive client for Windows, see [Install the UNIX and Linux backup-archive clients](http://www.ibm.com/support/knowledgecenter/SSSEQVQ_8.1.4/client/c_inst_baunix.html).

7. (VSS only) Install and configure the IBM Spectrum Protect Client Acceptor Service (CAD) if it is not already installed and configured. In the backup-archive client GUI menu, select **Utilities > Setup Wizard > Help me configure the IBM Spectrum Protect Web Client**. Make sure that the CAD service is running before you proceed to the next step.

8. (VSS only) Install and configure the IBM Spectrum Protect Remote Client Agent Service (DSMAGENT) if it is not already installed and configured. In the backup-archive client GUI menu, select **Utilities > Setup Wizard > Help me configure the IBM Spectrum Protect Web Client**. If a DSMAGENT is already installed and configured, you can use the existing one.

9. (VSS only) Install IBM Spectrum Protect Snapshot if you want to manage local persistent VSS snapshots, which are created for VSS backups to LOCAL, VSS Instant Restores, and you want to run offloaded backups.

10. (VSS only) Install and configure a VSS provider. Consult the VSS provider documentation for information about configuration of that software. You do not need to install and configure any components if you use the default Windows VSS System Provider.

11. (VSS only) Change the SQL Server VSS Writer from Manual to Automatic and start the service.

12. (VSS only) Define storage space to hold VSS backups that is on local shadow volumes. Define enough space to store all copies of the VSS backups as designated by your policies. Provisioning storage space to manage VSS snapshots depends on the VSS provider that you use. Consult the VSS Provider documentation for more details.

Related tasks:

“Specifying configuration parameters for IBM Spectrum Protect” on page 47

Configuring the IBM Spectrum Protect server

Perform these steps on the IBM Spectrum Protect server.

Before you begin

Ensure sure that the IBM Spectrum Protect server is available before you perform this task.

Procedure

1. Define the policy domains, policy sets, management classes, copy groups, and storage pools. Choose what is necessary to meet your Data Protection for SQL Server backup and restore requirements. For VSS operations, IBM Spectrum Protect server authentication must be on.

2. Register your Data Protection for SQL Server node name and password by issuing the IBM Spectrum Protect `register node` command. For example, for VSS operations, this node is the target node. When you register nodes to the
IBM Spectrum Protect server specifically for VSS operations, specify the IBM Spectrum Protect **Userid=<node name>** parameter.

3. (VSS only) If not already defined, register your IBM Spectrum Protect VSS requestor node name and password for the system where the SQL Server is installed. Each local DSM agent node must have a dedicated remote DSM agent node. For example, this agent node is the Local DSMAGENT Node for VSS operations.

4. If you are planning to run backups of availability databases in SQL Server AlwaysOn Availability Group (AAG) cluster environment, register your IBM Spectrum Protect cluster node, if not already defined, by issuing the **register node** command. For example, **register node alwayssonnodename userid=alwayssonnodename**

5. (VSS only) If you plan to run offloaded backups from a particular system, first register the IBM Spectrum Protect VSS requestor node name and password for the system. For example, the agent node is the Remote DSMAGENT Node. **BAOFF** is used here (and in Step 5) to differentiate between this Remote DSMAGENT Node and the Local DSMAGENT Node (Step 3). You can replace **BAOFF** with the node name of your backup-archive client, and remove the **BAOFF** from the **grant proxynode** command.

6. (VSS only) Define the proxy node relationship (for the target node and agent nodes, and, if applicable, the cluster node) by issuing the IBM Spectrum Protect **grant proxynode** command. For example:

 grant proxynode target=alwayson node name agent=BAonodename

What to do next

If any warning messages are displayed during the configuration process, resolve the issue that is noted in the warning. Some warnings include a link to a macro that you can use to configure IBM Spectrum Protect. Other warnings contain links to web sites where you can download the packages that you require to successfully complete the configuration process.

Configuring the system that runs the offloaded backups

Perform the following steps on the computer that is running the offloaded backups: This task is for VSS operations only.

Procedure

1. Configure the IBM Spectrum Protect backup-archive client if it is not already configured. If the backup-archive client is already configured, you can use existing client services. In the backup-archive client GUI menu, select **Utilities > Setup Wizard > Help me configure the IBM Spectrum Protect backup-archive client**. The node name for this system is called the Remote DSMAGENT Node and is specified with the **remotedsmagentnode** parameter in the Data Protection for SQL Server configuration file (tdpsq1.cfg) on the local, not offload, system.

2. Install and configure the IBM Spectrum Protect Client Acceptor (CAD) Service and the Remote Client Agent Service (DSMAGENT) if these services are not already installed. If a client CAD Service is already installed and configured, you can use an existing one. Use the backup-archive client Setup Wizard to guide you through the CAD installation process by selecting **Utilities > Setup Wizard > Help me configure the IBM Spectrum Protect Web Client**.

3. Install and configure a VSS provider if you do not use the default system VSS provider. Consult the VSS provider documentation for information about the configuration of that software.
Verifying the configuration of Data Protection for SQL Server

Common errors might occur when a VSS operation runs. If commands complete without errors or warnings, you have verification that the Data Protection for SQL Server server configuration is correct. You can also verify that your SQL Server is ready to run VSS operations.

Verifying the server configuration from the integrated command line

The configuration is verified as correct when these commands complete without errors or warnings.

Procedure

1. Click the Automate tab to access the integrated command-line interface.
2. On the lower half of the screen, click the Open folder icon, and select the verify_sql.txt file.
3. Click Open. These commands are displayed in the command-line panel:

 query tdp
 query tsm
 query sql

4. With the cursor in the command-line panel, press Enter to run the commands to verify your configuration.

Verifying the SQL Server is ready to start VSS operations

Complete the following tests to verify that your SQL Server is ready to perform VSS operations.

Before you begin

- For best results, complete these tests before you install IBM Spectrum Protect.
- Test the core VSS function first. VSS function can be validated with the Windows Server-embedded DISKSHADOW command. The DISKSHADOW command is available for Windows Server 2008, Windows Server 2008 R2, and later operating systems.

About this task

The following list identifies the diskshadow tests to complete before any IBM Spectrum Protect components are installed.

Procedure

1. Test non-persistent shadow copy creation and deletion. Run diskshadow in a command window and issue the following commands:

 DISKSHADOW>begin backup
 DISKSHADOW>add volume f: (Database volume)
 DISKSHADOW>add volume g: (Log volume)
 DISKSHADOW>create
 DISKSHADOW>end backup
 DISKSHADOW>list shadows all (this may take a few minutes)
 DISKSHADOW>delete shadows all

 Volumes on drive F and drive G represent the SQL Server database and log volumes. Repeat this test four times, and verify that the Windows System and Application Event Log contains no errors.

2. Test persistent shadow copy creation and deletion. Run diskshadow in a command window and issue the following commands:
DISKSHADOW>set context persistent
DISKSHADOW>begin backup
DISKSHADOW>add volume f: (Database volume)
DISKSHADOW>add volume g: (Log volume)
DISKSHADOW>create
DISKSHADOW>end backup
DISKSHADOW>list shadows all (This may take a few minutes)
DISKSHADOW>delete shadows all

Volumes on drive F and drive G represent the SQL Server database and log volumes. Repeat this test four times, verify that the Windows System and Application Event Log contains no errors.

3. Test non-persistent transportable shadow copy creation and deletion. Run `diskshadow` in a command window and issue the following commands:

DISKSHADOW>set option transportable
DISKSHADOW>begin backup
DISKSHADOW> add volume f: (Database volume)
DISKSHADOW> add volume g: (Log volume)
DISKSHADOW> set metadata c:\metadata\sqlmeta.cab (specify the path where you want the metadata stored)
DISKSHADOW> create
DISKSHADOW> end backup

Volumes f: and g: represent the SQL Server database and log volumes. Repeat this test four times, and verify that the Windows System and Application Event Log contains no errors.

What to do next

When these tests complete without errors, you can install IBM Spectrum Protect. Use the DiskShadow tool for verification. The DiskShadow tool is preinstalled on the Windows Server operating system.

On the last step of the configuration wizard, a VSS diagnostic check is run to verify the VSS setup. Any warnings must be fixed before you finish the configuration and start a Data Protection for SQL Server operation.

Common errors returned from VSS backup operations

You can diagnose the cause of common errors that might occur when a VSS operation runs.

The following two errors are commonly returned:

ANS1017E (RC-50) Session rejected: TCP/IP connection failure
This message is displayed when the IBM Spectrum Protect backup-archive client CAD is either not running or is not configured properly.

ANS1532E (RC5722) Proxy Rejected: Proxy authority is not granted to this node.
This message is displayed when the IBM Spectrum Protect server is not configured correctly for the proxy nodes.
Manually configuring Data Protection for SQL Server on Windows Server Core

You can manually configure Data Protection for SQL Server to protect your SQL Server on Windows Server Core.

Before you begin

Ensure that you install Data Protection for SQL Server and the IBM Spectrum Protect backup-archive client on the system that runs the Microsoft SQL Server.

Ensure that you install Data Protection for SQL Server and the IBM Spectrum Protect backup-archive client on the system that runs the Microsoft SQL Server.

Procedure

1. Create a node on the IBM Spectrum Protect server for the backup-archive client and Data Protection for SQL Server. If you are protecting availability databases in an AlwaysOn Availability Group, you must also create the AlwaysOn node on the IBM Spectrum Protect server.

2. If you intend to run offloaded VSS backups, set up a remote node to run the offloaded backup operation on a remote computer.

3. Configure the backup-archive client options file (dsm.opt).

5. If you use IBM Spectrum Protect policy sets, specify a management class to use for your Data Protection for SQL Server backups.

Creating a node on the IBM Spectrum Protect server

After you install the IBM Spectrum Protect client and Data Protection for SQL Server, you must set up a node name and password and register your node with the IBM Spectrum Protect server. When a new node is registered, an administrative user ID must be created for the node. The IBM Spectrum Protect server administrator must specify the userid option with the register node command.

About this task

When you register your node, you create a file space on the IBM Spectrum Protect server where the backups of your data are stored. You must set up a client node and a Data Protection for SQL Server node. If you are protecting availability databases in an AlwaysOn Availability Group, you must also register the AlwaysOn node.

Follow these procedures if you installed the IBM Spectrum Protect administrative command-line client. If you did not install the administrative client, the nodes must be registered on the IBM Spectrum Protect server.

Procedure

1. Start an administrative client session by issuing the following command in a Command Prompt window:

 C:\Program Files\Tivoli\TSM\baclient\dsmadmc

2. To register a client node, issue the following command:

 reg node client_nodename password backdel=yes userid=userid

 client_nodename

 password

 backdel=yes

 userid=userid

 client_nodename
Where client_nodename is the node name for the client and password is the password that you want to use for the client. The backdel=yes parameter indicates that you can delete backup objects in your file space on the server. The node name and administrative user ID must be the same. For example:

```bash
reg node doomvm3 doomvm3passwd backdel=yes userid=doomvm3
```

3. To register a Data Protection for SQL Server node, issue the following command:

```bash
reg node sql_nodename password backdel=yes userid=sql_nodename
```

Where sql_nodename is the node name for the Data Protection for SQL Server node and password is the password that you want to use for the SQL node. The backdel=yes parameter indicates that you can delete backup objects in your file space on the server. The node name and administrative user ID must be the same.

For example:

```bash
reg node doomvm3_sql doomvm3sqlpasswd backdel=yes userid=doomvm3_sql
```

Tip: To easily identify the node as a node for Data Protection for SQL Server, add ".sql" to the end of the node name.

4. To register the AlwaysOn node, issue the following command:

```bash
reg node alwayson_nodename password backdel=yes userid=alwayson_nodename
```

Where alwayson_nodename is the name for the AlwaysOn node and password is the password that you want to use for the AlwaysOn node. The backdel=yes parameter indicates that you can delete backup objects in your file space on the server. The node name and administrative user ID must be the same.

For example:

```bash
reg node myalwaysonnodename alwaysonpasswd backdel=yes userid=myalwaysonnodename
```

What to do next

To use IBM Spectrum Protect server policy sets, the IBM Spectrum Protect must define the policy domains, policy sets, management classes, copy groups, and storage pools.

These definitions are necessary to meet your Data Protection for SQL Server backup and restore requirements. For VSS operations, IBM Spectrum Protect server authentication must be on.

Setting up a proxy node for offloaded VSS backups in the Windows Server Core environment

If you want to offload VSS backups to the IBM Spectrum Protect Snapshot, you must define a remote node to run the offloaded backups. This step is part of the configuration tasks for operating Data Protection for SQL Server on Windows Server Core.

About this task

Data Protection for SQL Server can offload VSS backups by using a remote computer to create the backup instead of using the local computer. To run an offload backup by using a remote node, you must first set the remote node as an agent of the local Data Protection for SQL Server node.
If you are protecting availability databases in an AlwaysOn Availability Group, you must set the remote node as an agent of the AlwaysOn node.

Before you begin, ensure that the IBM Spectrum Protect client is installed and configured on the remote computer.

Procedure

To define the proxy node relationship, the IBM Spectrum Protect administrator can issue the `grant proxynode` command from the IBM Spectrum Protect server administrative console.

- For standard Data Protection for SQL Server nodes, issue the following command:
  ```bash
  grant proxynode target=local_sql_node agent=remote_node
  ```
 Where `local_sql_node` is the node name of the local Data Protection for SQL Server node, and `remote_node` is the remote IBM Spectrum Protect client node that runs the remote backups. For example:
  ```bash
  grant proxynode target=doomvm3_sql agent=babar
  ```

- For AlwaysOn nodes, issue the following command:
  ```bash
  grant proxynode target=alwayson_node agent=remote_node
  ```
 Where `alwayson_node` is the name of the AlwaysOn node, and `remote_node` is the remote IBM Spectrum Protect client node that runs the remote backups. For example:
  ```bash
  grant proxynode target=myalwaysonnode agent=babar
  ```

- To display the client nodes with authority to act as proxy to other clients, run the following command from the administrative console of the server:
  ```bash
  query proxynode
  ```

Configuring the client in the Windows Server Core environment

You must configure the IBM Spectrum Protect client node that you created. This step is part of the initial configuration tasks before you can use Data Protection for SQL Server in the Windows Server Core environment.

About this task

You must configure the client options file (`dsm.opt`), set the environment variables, and install and setup the IBM Spectrum Protect client acceptor service and remote client agent service.

Procedure

1. Configure the client options file:
 a. Change to the backup-archive client installation directory. For example, issue the following command in a Command Prompt window:
      ```bash
      cd C:\Program Files\Tivoli\TSM\baclient
      ```
 b. Open the `dsm.opt` file with a text editor and enter the following statements:
      ```
      PASSWORDACCESS GENERATE
      COMMMethod TCPip
      TCPPort 1500
      nodename client_nodename
      TCPSERVERADDRESS tsm_server
      ```
The following list contains brief explanations of the client options in the statements:

PASSWORDACCESS GENERATE
Instructs the client to save the password whenever the /tsmpassword option is used so that you do not have to enter the password with every command.

TCPPort 1500
Specifies that the client accesses the IBM Spectrum Protect server at TCP/IP port 1500. 1500 is the default port number.

nodename client_nodename
Specifies the newly created node for the backup-archive client.

TCPSERVERADDRESS tsm_server
Specifies the name of the IBM Spectrum Protect server. You can enter the server IP address or the fully qualified domain name.

For example:
```
NODename DOOMVM3
PASSWORDAccess generate
TCPServeraddress gijoe
TCPPort 1500
```

2. Install and start the IBM Spectrum Protect client acceptor service and remote client agent service.

a. Install the client acceptor service by entering the following command in a Command Prompt window:
```
C:\Program Files\Tivoli\TSM\baclient\dsmcutil install cad
/name:"servicename" /node:nodename /password:password
/autostart:yes
```
where `nodename` is the client node name, `password` is the client password, and `servicename` is the name that you want to use for the client acceptor service. The default name is "TSM Client Acceptor". For example:
```
C:\Program Files\Tivoli\TSM\baclient\dsmcutil install cad /name:"TSM CAD" /node:DOOMVM3 /password:doomvm3passwd /autostart:yes
```

b. Install the remote client agent service by entering the following command in a Command Prompt window:
```
C:\Program Files\Tivoli\TSM\baclient\dsmcutil install remoteagent
/name:"servicename" /node:nodename /password:password
/partnername:"partner service name"
```
The node name for the IBM Spectrum Protect Client Acceptor and the Remote Client Agent must be set to the VSS requestor node. The default service name is "TSM Remote Client Agent". The value for the /partnername option must match the name of the client acceptor service that you created. The default name is "TSM Client Acceptor". For example:
```
C:\Program Files\Tivoli\TSM\baclient\dsmcutil install remoteagent
/name:"TSM AGENT" /node:DOOMVM3 /password:doomvm3passwd
/partnername:"TSM CAD"
```

c. Start the client acceptor service by entering the following command:
```
net start "servicename"
```
where `servicename` is the name of the client acceptor service that you created. For example:
```
net start "TSM CAD"
```
Do not start the remote client agent service manually. The remote client agent service is automatically started by the client acceptor service when it is needed.
Configuring Data Protection for SQL Server on Windows Server Core

You must configure Data Protection for SQL Server before you can protect your Microsoft SQL Server in the Windows Server Core environment.

Before you begin

Restriction: You cannot use the following special characters in SQL Server database names on Data Protection for SQL Server:

- Question mark (?)
- Multibyte character (^)
- Asterisk (*) character
- Colon (:) character cannot be used with Data Protection for SQL Server version 7.1.0 or earlier versions
- Backslash character(\) cannot be used with Data Protection for SQL Server version 7.1.0 or earlier versions

About this task

You must configure the client options file (dsm.opt) and Data Protection for SQL Server configuration file (tdpsql.cfg).

Procedure

1. Edit the client options file (dsm.opt).
 a. In the Data Protection for SQL Server installation directory, open the client options file (dsm.opt) with a text editor.
 b. Add the following statements to the client options file:

```
NODename sql_nodeName
PASSWORDAccess Generate
COMMMethod TCPip
TCPServeraddress tsm_server
TCPPort 1500
TCPWindowSize 63
TCPBuffSize 32
```

Where nodename is the Data Protection for SQL Server node name, and TCPServeraddress is the name of the IBM Spectrum Protect server. You can enter the server IP address or the fully qualified domain name.

For example:

```
NODename DOOMVM3_SQL
PASSWORDAccess generate
TCPServeraddress gijoe
TCPPort 1500
```

2. Edit the tdpsql.cfg file.
 a. In the Data Protection for SQL Server installation directory, open the configuration file (tdpsql.cfg) with a text editor.
 b. Add the following statements in the tdpsql.cfg file:

```
SQLSERVER sql_server
FROMSQLserver sql_server
SQLAUTHentication INTEGRated
MOUNTWaitfordata Yes
BACKUPMethod LEGacy[VSS]
DIFFESTimate 20
BUFFers 3
BUFFERSize 1024
```

Chapter 3. Configuring 83
Descriptions of the key options in the tdpsql.cfg file follows:

SQLSERVER
Specifies the name of the Microsoft SQL Server that is running on the local computer.

BACKUPMethod
Determines whether to run a legacy or VSS backup.

BACKUPDestination
Determines whether to run a local backup, IBM Spectrum Protect backup, or both. For legacy backups, only IBM Spectrum Protect is used.

LOCALDSMAgentnode
Specifies the local node name of the client that is running on the local computer. This option is required for VSS offloaded backups.

REMTEDDSMAgentnode
Specifies the remote client node that runs the VSS offloaded backups on a remote computer.

ALWAYSONNode
Specifies the IBM Spectrum Protect node name that is used to back up availability databases in an AlwaysOn Availability Group.

USEALWAYSONnode
Specify Yes to set the AlwaysOn node as the default node for all backup operations of standard and availability databases. You can use this option to change database backups from a standard Data Protection for SQL Server node to an AlwaysOn node.

Specify No to back up standard databases to the Data Protection for SQL Server node. Availability databases are always backed up with the AlwaysOn node.

ENABLEREPlacementchars
Specify Yes to enable Data Protection for SQL Server to process backslash (\) or colon (:) characters in a database name, and back up the database to IBM Spectrum Protect.

Specify No to prevent database backups to IBM Spectrum Protect if a user-defined string is substituted for a backslash (\) or colon (:) character in the database name.

Restriction: The **ENABLEREPlacementchars** parameter applies only to Data Protection for SQL Server version 7.1.1 and later versions. The maximum length of the database name is 128 characters.

3. Optional: Use the **VSSPOLICY** option to specify a management class for VSS backups.
Unless specified otherwise, Data Protection for SQL Server uses the default management class of the policy domain that its node name is in. To specify that Data Protection for SQL Server uses a different management class, add the `VSSPOLICY` option to the `tdpsqlc.cfg` file. The format of the option is as follows:

```
VSSPOLICY SQL_server_name "db_name" backup_type backup_dest mgmt_class
```

For example:

```
VSSPOLICY doomvm3 * FULL LOCAL MGMT2
```

This statement specifies that Data Protection for SQL Server uses the management class MGMT2 for local backups of any database in the SQL Server named doomvm3.

Changing Data Protection for SQL Server configuration values on Windows Server Core

To configure preferences for Data Protection for SQL Server, use the `set` command at the Windows Server Core command prompt.

About this task

The values that you change are saved in the Data Protection for SQL Server configuration file. The default configuration file is `tdpsql.cfg`.

Procedure

At the command prompt, enter the following command:

```
tdpsqlc set parameter=value [/configfile=filename]
```

where `parameter` is the parameter or option for which you want to change the value, and `value` is the new value that you want to specify. `/configfile` is the optional parameter for the configuration file name. If you do not specify the `/configfile` parameter, the default configuration file (tdpsql.cfg) is used.

Examples:

Task Set the preferred SQL Server in the `tdpsql.cfg` file.

- Command: `tdpsqlc set sqlserver=your_SQL_instance /configfile=tdpsql.cfg`
- Command: `tdpsqlc set fromsqlserver=your_SQL_instance /configfile=tdpsql.cfg`

Task Change the name of the activity log file to `tdpsql.log`.

- Command: `tdpsqlc set logfile=tdpsql.log`

Transitioning SQL Server backups from IBM Spectrum Protect Snapshot to IBM Spectrum Protect

Configure IBM Spectrum Protect Snapshot so that you can access both a local and IBM Spectrum Protect at the same time. This might be useful if you decide to move to an IBM Spectrum Protect environment and want to continue to interact with the locally managed snapshots until policy marks them for expiration.

Before you begin

If you use the Standalone and IBM Spectrum Protect server configuration wizards to configure IBM Spectrum Protect Snapshot, you do not need to manually
implement the following procedures. To interact with an IBM Spectrum Protect server, run the IBM Spectrum Protect configuration wizard. To interact with an IBM Spectrum Protect Snapshot server, run the Standalone configuration wizard. You can move from one type of server to another by running the corresponding configuration wizard at any time.

About this task

If you do not use the configuration wizards to configure IBM Spectrum Protect Snapshot, coordinate efforts with your IBM Spectrum Protect server administrator to complete the following manual tasks. Some of the following command examples are formatted on multiple lines. Issue each command on a single line.

Configuring the IBM Spectrum Protect server

Procedure

1. Select or create the policy definitions that are used for each type of backup you plan to use. You can provide the administrator with the existing local-defined policy settings in your IBM Spectrum Protect Snapshot stand-alone environment. Use the GUI or the command-line interface of Data Protection for SQL Server to retrieve this information.

2. Register your Data Protection for SQL Server node name and password with the IBM Spectrum Protect register node command. The userid option must also be specified with the register node server command. For example:

 register node DPnodename DPpassword userID=DPnodename

3. If not already defined in the IBM Spectrum Protect server, register the IBM Spectrum Protect VSS requestor node name and password for the workstation where the SQL Server is installed. For example:

 register node BAnodename BApassword userID=BAnodename

4. Define the proxy node relationship for the target node and agent nodes with the IBM Spectrum Protect grant proxynode command. For example:

 grant proxynode target=DPnodename agent=BAnodename

Configuring the workstation that runs the SQL Server

Procedure

1. In the directory where the Data Protection for SQL Server is installed, make a copy of the options file named dsm.opt. After you begin using the IBM Spectrum Protect server, the copy is used for access to the IBM Spectrum Protect Snapshot stand-alone environment. One method of making the copy is to start the SQL Server command-line prompt from the IBM Spectrum Protect Snapshot Snapin: In the IBM Spectrum Protect Snapshot Snapin tree view, an SQL Server node is displayed for each SQL Server instance on the computer.

 a. Select an SQL Server instance in the tree view. The integrated command line and an Actions pane are displayed.

 b. Start the Data Protection for SQL Server command line from the Actions pane. Select:

 Launch Command Line

 c. To make a copy of the options file, enter:

 copy dsm.opt dsm_local.opt

2. In the same directory, make a copy of the Data Protection for SQL Server configuration file. For example:

 copy tdpsql.cfg tdpsql_local.cfg
Preserve the contents of the local configuration file if these conditions are true:

- You specified policy bindings during the use of IBM Spectrum Protect Snapshot.
- You are updating the policy bindings to reflect changes in your policy specifications for your IBM Spectrum Protect server usage.

3. In the IBM Spectrum Protect backup-archive client installation directory, make a copy of the VSS requestor options file named dsm.opt. Use the Windows copy command. For example:

```
c:\\Program Files\\Tivoli\\TSM\\baclient>copy dsm.opt dsm_local.opt
```

4. In all of the files named dsm.opt, modify the TCPSERVERADDRESS line. Replace FLASHCOPYMANAGER with the IP address of the IBM Spectrum Protect server. For example:

```
TCPServeraddress 9.52.170.67
```

To accomplish this task, use a text editor like Notepad or Wordpad.

5. To access the IBM Spectrum Protect Snapshot stand-alone environment during the transition period, open a Windows command prompt and change the directory to the IBM Spectrum Protect backup-archive client installation directory. This path is the default:

```
c:\\Program Files\\Tivoli\\TSM\\baclient
```

Create an alternative Windows service for the IBM Spectrum Protect Client Acceptor service by using the dsmcutil command. For example:

```
dsmcutil install cad /name:tsmcad4local
  /node:my_backup-archive_client_node
  /password:my_TSM_server_password
  /optfile:"C:\Program Files\Tivoli\TSM\baclient\dsm_local.opt"
  /httpport:1583
```

For more information about using the dsmcutil command, see the dsmcutil command (http://www.ibm.com/support/knowledgecenter/SSEQVQ_8.1.4/client/c_cfg_dsmcutil_usewin.html).

6. Create an alternate Windows service for the IBM Spectrum Protect remote agent service. For example:

```
dsmcutil install cad /name:tsmcad4remote
  /node:my_backup-archive_client_node
  /password:my_TSM_server_password
  /optfile:"C:\Program Files\Tivoli\TSM\baclient\dsm_remote.opt"
  /httpport:1583
```

7. Edit the dsm_local.opt file in the Data Protection for SQL Server installation directory. Add this line:

```
HTTPPORT 1583
```

8. Start the alternate IBM Spectrum Protect Client Acceptor service:

```
dsmcutil start /name:tsmcad4local
```

9. Stop and restart the original IBM Spectrum Protect Client Acceptor service so that the new values in the dsm.opt file are activated. You can do this action through the Windows Services GUI or by using the dsmcutil command:

```
dsmcutil stop /name:"TSM Remote Client Agent"
dsmcutil stop /name:"TSM Client Acceptor"
dsmcutil start /name:"TSM Client Acceptor"
```

10. As backups start occurring and are managed in the IBM Spectrum Protect server environment, phase out the remaining backups that are created in the IBM Spectrum Protect Snapshot stand-alone environment. You can choose between two ways of achieving the phase-out:
a. In the IBM Spectrum Protect Snapshot stand-alone environment, define a
time-based policy that automatically causes the old backups to expire and
delete. For example, if you want to expire each backup after it is 30 days
old, update the time-based policy by using the command:

```
tdpsqlc update policy mypolicy /daysretain=30
/tsmoptfile=dsm_local.opt
/configfile=tdpsql_local.cfg
```

You can also change these parameters by using the Local Policy
Management dialog that is accessed from the Utilities menu of the Data
Protection for SQL Server Backup/Restore GUI. Information about how to
start the GUI is in the section that describes how to access the IBM
Spectrum Protect Snapshot stand-alone environment.

The process of expiring backups when their age exceeds the `daysretain`
limit depends upon a basic function that is run in the stand-alone
environment. The function must include an operation that queries the
backups. If you do not regularly use the stand-alone environment client,
you can use a scheduler to periodically start a command such as:

```
tdpsqlc query tsm * /all
/tsmoptfile=dsm_local.opt
/configfile=tdpsql_local.cfg
```

For example, if your backups are created each week, then you can
schedule the `query` command to run weekly to cause the expiration of
out-of-date backups.

The last backup that is created while you run the stand-alone environment,
is not automatically deleted by the process of expiring the backups. For
that result, use the explicit delete operation, as described next.

b. Alternatively, you can explicitly delete each backup when you determine
that it is no longer needed. Use the Data Protection for SQL Server `delete
backup` command, or the `Delete Backup` (right mouse-click menu option)
in the GUI Restore tab.

11. To access the IBM Spectrum Protect Snapshot stand-alone environment:

a. Open the Automate tab to access the integrated command-line prompt.

b. Start IBM Spectrum Protect Snapshot stand-alone commands by appending
the `/tsmoptfile` option, for example:

```
tdpsqlc query tsm * /all
/tsmoptfile=dsm_local.opt
/configfile=tdpsql_local.cfg
```

c. Start the GUI (from the Command Line prompt) by issuing the GUI
invocation command, for example:

```
tdpsqlc /tsmoptfile=dsm_local.opt
/configfile=tdpsql_local.cfg
```

12. If necessary, start the IBM Spectrum Protect Snapshot stand-alone environment
to restore from a backup that was created in that environment.

13. When the transition is complete and you no longer need access to the IBM
Spectrum Protect Snapshot stand-alone environment, you can remove the
alternate services. To remove the services, use the Windows Services GUI or
the `dsmcutil` command:

```
dsmcutil remove /name:tsmagent4local
```

```
dsmcutil remove /name:tsmcad4local
```
Transitioning standard SQL Server databases to the AlwaysOn node

You can back up standard SQL Server databases to the file space for the AlwaysOn node. This transition can make it easier for you to manage all your database backups under a single node name.

About this task

The AlwaysOn node name is required when you configure Data Protection for SQL Server with SQL Server 2012 and later versions. It is not necessary to specify the AlwaysOn node name during each backup, query, or restore operation of an availability database.

The AlwaysOn node does not affect where standard databases are backed up. The standard databases continue to be backed up to the Data Protection for SQL Server node unless the /USEALWAYSONnode option is specified.

Procedure

1. To back up your standard SQL Server databases to the file space for the AlwaysOn node, specify the /USEALWAYSONnode parameter with the backup command as follows.
 For example, issue the following command
 TDPSQLC Backup *|dbname[,dbname,...] Full /USEALWAYSONnode

2. To back up all databases, specify the wildcard character (*) or specify a list of database names that are separated by commas.
 For example:
 TDPSQLC Backup standard_db01 standard_db02 Full /USEALWAYSONnode

3. To regularly back up standard SQL Server databases to the file space for the AlwaysOn node, specify the /USEALWAYSONnode parameter with the set command.

Examples of IBM SAN Volume Controller and IBM Storwize V7000 configuration scenarios

Configuration examples are scenarios that you can use to help you plan your data backup and recovery solutions.

Production application data is on standard volumes. Keep 14 snapshot backup versions. Use minimum storage space for snapshot backup versions. A full physical copy is not required. Complete two VSS backups per day.

SAN Volume Controller and Storwize V7000 settings

Create 14 space-efficient target volumes for each source volume to be protected. Enable the autoexpand option for the space-efficient target volumes. Add the space-efficient target volumes to the VSS_FREE pool.

VSS Provider settings

Set the background copy rate to 0.

Data Protection for SQL Server settings

Set the policy to retain 14 local backup versions. Schedule snapshot backups as required by setting the backup destination option to LOCAL.
After 14 VSS backups are completed, the 15th VSS backup causes the oldest backup to be deleted and reuses that target set.

Production application data is on standard volumes. Keep one snapshot backup version. Use minimum storage space for snapshot backup versions. A full physical copy is not required. Perform one VSS backup per day and send the backup to IBM Spectrum Protect.

SAN Volume Controller and Storwize V7000 settings
Create two space-efficient target volumes for each source volume to be protected. Enable the autoexpand option for the space-efficient target volumes. Add the space-efficient target volumes to the VSS_FREE pool.

VSS Provider settings
Set the background copy rate to 0.

Data Protection for SQL Server settings
Set the policy to retain two local backup versions. Schedule snapshot backups as required by setting the backup destination to BOTH.

Set the policy for local snapshot backups to retain n+1 backup versions so that n snapshot backups are available for restore. Otherwise, a local backup version might not be available if a VSS backup fails after the prior backup was deleted.

Production application data is on standard volumes. Keep one snapshot backup version. A full physical copy is required. Minimize space usage of background copies. Perform one VSS backup per day and send the backup to IBM Spectrum Protect.

SAN Volume Controller and Storwize V7000 settings
Create one standard target volume for each source volume to be protected. Add standard target volumes to the VSS_FREE pool.

VSS Provider settings
Use the default background copy rate of 50. Configure a custom value to use incremental FlashCopy.

Data Protection for SQL Server settings
Set the policy to retain one local backup version. Schedule snapshot backups as required by setting the backup destination to BOTH.

When you use incremental FlashCopy backup processing, the VSS provider does not delete the single snapshot target set even though FlashCopy Manager software deletes the prior VSS snapshot before it creates a new snapshot.

Production application data is on standard volumes. Keep two snapshot backup versions. Full physical copies are required for local backup versions. Begin VSS backups every 12 hours with one backup sent to IBM Spectrum Protect daily.

SAN Volume Controller and Storwize V7000 settings
Create three standard target volumes for each source volume to be protected. Add standard target volumes to the VSS_FREE pool.

VSS Provider settings
Use the default background copy rate of 50.
Data Protection for SQL Server settings
Set the policy to retain three local backup versions. Schedule VSS backups as follows: set the backup destination to LOCAL at 11:00, set the backup destination to BOTH at 23:00.

Set the policy for local snapshot backups to retain n+1 backup versions so that you can restore n snapshot backups.

Production application data is on standard volumes. Keep four snapshot backup versions. Use minimum storage space for snapshot backup versions. A full physical copy is not required. Perform VSS backups every six hours with one backup daily sent to IBM Spectrum Protect.

SAN Volume Controller and Storwize V7000 settings
Create five space-efficient target volumes for each source volume to be protected. Enable the autoexpand option for the space-efficient target volumes. Add space-efficient target volumes to the VSS_FREE pool.

VSS Provider settings
Use the default background copy rate of 0.

Data Protection for SQL Server settings
Set the policy for local snapshot backups to retain five local backup versions. Schedule VSS backups as follows: set the backup destination to LOCAL at 06:00, 12:00, and 18:00, set the backup destination to BOTH at 00:00.

- Set policy to retain n+1 backup versions so that n snapshot backups are available for restore

Production application data is on space-efficient volumes. Keep two snapshot backup versions. A full physical copy is required for local backup versions. Perform VSS backups every six hours with one backup daily sent to IBM Spectrum Protect.

SAN Volume Controller and Storwize V7000 settings
Create three space-efficient target volumes for each source volume to be protected. Allocate the same percentage of real storage as for source volumes. Add space-efficient target volumes to the VSS_FREE pool.

VSS Provider settings
Use the default background copy rate of 50.

Data Protection for SQL Server settings
Set the policy to retain three local backup versions. Schedule VSS backups as follows: set the backup destination to LOCAL at 06:00, 12:00, and 18:00, set the backup destination to BOTH at 00:00.

Set the policy for local snapshot backups to retain n+1 backup versions so that n snapshot backups are available for restore operations. This setting allows thin provisioning for both source and target volumes, and allows them to grow together.
Chapter 4. Protecting data

You can back up and restore your Microsoft SQL Server data by using Microsoft Management Console (MMC) or the command-line interface.

About this task

If required, you can manage your installations remotely.

Note: For information about protecting Microsoft SQL Server data in VMware environments, see chapter Protection for in-guest applications in the IBM Spectrum Protect for Virtual Environments: Data Protection for VMware User’s Guide.

Prerequisites

With Data Protection for SQL Server, you can back up and restore SQL Server data and protect your SQL Server environment.

Security requirements for backup and restore operations

Data Protection for SQL Server requires certain settings to process backup and restore operations in a secure environment.

To install Data Protection for SQL Server, you must have Windows administrator authority. You must register Data Protection for SQL Server to the IBM Spectrum Protect server and you must use the appropriate node name and password when it connects to the IBM Spectrum Protect server.

You can specify SQL Server logon information in one of the following ways:

• Accept the default sa account and system administrator password. Ensure that you secure your sa login account with a password.
• Use SQL user ID security and specify both the SQL user name and password. With SQL user ID security, the SQL Server administrator provides the logon ID and the password that provides access to the SQL Server.
• Use a trusted connection and allow Windows authenticate the logon.

You must add the SQL logon user name or Windows user name to the SQL Server SYSADMIN fixed server role before Data Protection for SQL Server can use those credentials.

Choosing your backup strategy

Depending on your SQL Server environment, you can run full backups only, copy-only full backups, full plus log backups, full plus differential backups, or file and group backups. Your backup strategy might also be to back up data to IBM Spectrum Protect or local shadow volumes.

Full backup method (Legacy and VSS)

Use the full backup method for system databases such as master, model, and msdb because of their typical small size. A full backup can take a long time to run.

However, the restore process is the most efficient because only the most recent full backup is restored.
Copy-only full backup method (Legacy and VSS)

Use the copy-only full backup method to periodically create copy-only full backups for long-term retention without affecting existing backup schedules or retention policies that you use for disaster recovery. Copy-only full backups do not affect the transaction logs or the sequence of backups, such as differential backups or full backups.

Full backup plus log backup method (Legacy and VSS)

Use the full backup plus log backup method when the normal backup schedule or network capacity cannot support a full backup.

To minimize the effect on the backup schedule and network traffic during peak times, you can run a periodic full backup, followed by a series of log backups. For example, you can schedule full backups on the weekend and log backups during the week. You can run full backups during low usage times and when increased network traffic can be tolerated.

Restriction: If you run multiple full backups, the SQL database log can become full. Subsequent backups might fail as a result. If necessary, use basic SQL Server tools to truncate the log of your SQL databases.

Full backup plus differential backup method (Legacy and VSS)

Use the full backup plus differential backup method if your backup schedule and network capacity can facilitate backing up all transaction logs that accumulate between full backup operations. This strategy requires that only one differential backup plus the last full backup be transferred to complete a restore operation. However, the same amount of data must be transferred in the differential image, as in the series of log backup operations.

Although you can run only VSS full backups, you can apply legacy differential backups to the VSS full backup.

Full backup plus differential plus log backup method (Legacy and VSS)

Use the full backup plus differential plus log backup method to reduce the number of transactions that must be restored and applied. Restore operations are faster as a result.

If, for example, you complete a full legacy or VSS backup weekly, and a differential backup nightly, and a log backup every four hours, the restore processing would include the full backup, a differential backup, and at most five log backups. However, if you only complete a full plus log backup scheme on the same cycle, the restore processing would include a full backup plus up to 41 log backups (six days multiplied by six log backups per day plus up to five backups on the day the full backup is completed).

Although you can run only VSS full backups, you can apply legacy log backups and legacy differential backups to the VSS full backup.
File or group backup method (only Legacy)

Use the file or group backup method when it is impractical to back up an entire database because of the size of the data, or associated time and performance issues.

When a group is created on the SQL Server, database files are identified with that group. The group that is used for the group backup depends on the group to which the database files are defined.

File or group options can save backup and restore processing time when certain tables or indexes have more updates than others and must be backed up more often. It is time-effective to contain such data in their own file group or files, and to back up only those items.

Except for logical log files, you can back up your transaction logs after you back up a data file or file group.

IBM Spectrum Protect backups versus local shadow volumes backups

When you create a policy for your backups, you must choose whether to back up data to IBM Spectrum Protect storage versus VSS disks. Data backups to IBM Spectrum Protect typically takes longer to process than backups to local shadow volumes.

Backing up SQL Server data to IBM Spectrum Protect is necessary when long-term storage is required. For example, saving SQL Server data on tape for archival purposes requires long-term storage. IBM Spectrum Protect backups are also necessary for disaster recovery situations when the disks that are used for local backups are unavailable.

By maintaining multiple backup copies on IBM Spectrum Protect server storage, a point-in-time copy is available if backups on the local shadow volumes become corrupted or deleted.

Restriction: If you run legacy log backups to an IBM Spectrum Protect server, the SQL database log files can be truncated.

Local shadow volumes

When you back up data to local shadow volumes, ensure that sufficient local storage space is assigned to the local shadow volumes. Create different sets of policies for backups to both local shadow volumes and to IBM Spectrum Protect server storage. If you use a VSS provider other than the Windows VSS System Provider, follow the backup recommendations of the VSS provider.

Environment and storage resources also impact how many backup versions you can maintain on local shadow volumes for VSS fast restore and VSS instant restore operations, and on IBM Spectrum Protect server for VSS restore operations.

Combined VSS and legacy backups

After you restore a full VSS backup, you can use VSS backups and legacy backups together as a highly-effective backup solution for Data Protection for SQL Server data.
Table 8. Backup strategy characteristics

<table>
<thead>
<tr>
<th>Strategy characteristics</th>
<th>Legacy backup only</th>
<th>Legacy backup plus VSS backup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available backup types</td>
<td>• FULL 1+ per week</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DIFF 1+ per day</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LOG 1+ per day</td>
<td>• Legacy FULL 1+ per week</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VSS FULL 1+ per day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Legacy DIFF 1+ per day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Legacy LOG 1+ per day</td>
</tr>
<tr>
<td>Available restore types</td>
<td>Restore to production SQL Server or alternate SQL Server</td>
<td>VSS, including VSS restore 1 and restore to alternate SQL Server</td>
</tr>
<tr>
<td>Restore attributes</td>
<td>• FULL, LOG, DIFF, GROUP, FILE</td>
<td>VSS:</td>
</tr>
<tr>
<td></td>
<td>• Server, database, filegroup, and individual file-level restore granularity</td>
<td>• FULL</td>
</tr>
<tr>
<td></td>
<td>• Point-in-time recovery</td>
<td>• Database level restore granularity</td>
</tr>
<tr>
<td></td>
<td>• Roll-forward recovery</td>
<td>• Point-in-time recovery 2</td>
</tr>
<tr>
<td></td>
<td>• Restore to alternate system</td>
<td>• Roll-forward recovery 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Legacy:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FULL, LOG, DIFF, GROUP, FILE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Server, database, filegroup, and individual file-level restore granularity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Point-in-time recovery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Roll-forward recovery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Restore to alternate system</td>
</tr>
</tbody>
</table>

Note:
1. Files are copied from the IBM Spectrum Protect server directly to the production source volumes.
2. To acquire these restore attributes, the backups that are applied to a full VSS backup must be legacy log backups or legacy differential backups.

Starting Microsoft Management Console

After you complete the configuration process, start Microsoft Management Console (MMC) to protect your SQL Server data.

Before you begin

If you try to use Data Protection for SQL Server before you complete the configuration process, the software does not function correctly.

About this task

Data Protection for SQL Server software is displayed in MMC as a plug-in. MMC uses a navigation tree to organize the computer data that is registered. Each computer icon that is followed by the word **Dashboard** represents a physical computer.

When you register a computer, information about the computer is collected and stored. Password information is encrypted and stored separately. The computers
that are registered are tracked with a globally unique identifier (GUID). The GUID is used when you back up and restore data.

You can create groups of computers. These groups consolidate information when you view the dashboard, prepare reports, and run group commands. By default, the computers in a group are selected when you complete tasks for the group, but you can select more computers in the tree to include in an operation.

Procedure

To start MMC, click **Start > All Programs > Data Protection for Microsoft SQL Server > DP for SQL Management Console.**

Starting the command-line interface

You can start the Data Protection for SQL Server command-line interface by using a Windows command prompt with administrative privileges. Alternatively, you can start the command-line interface from Microsoft Management Console (MMC).

Procedure

1. Start MMC.
2. In the navigation tree, select the computer node where you want to run the commands.
3. Expand the **Protect and Recover Data** node.
4. In the navigation tree, select an SQL Server node.
5. Click the **Automate** tab. An integrated command line is available in the task window. You can use the interface to enter PowerShell cmdlets or command-line interface commands. The output is displayed in the main window.
6. From the drop-down list, change **PowerShell** to **Command Line**.

Getting help for Data Protection for SQL Server commands

By issuing the **help** command at the command prompt, you can display a complete list of Data Protection for SQL Server commands, and associated parameters.

Procedure

At the command prompt, issue **tdpsqlc ?command_name** Where **command_name** is the name of the Data Protection for SQL Server command.

For example:

```bash
tdpsqlc ? restore full
```

Managing Data Protection for SQL Server installations remotely

From a single Data Protection for SQL Server installation you can manage all of the Data Protection for SQL Server installations in your enterprise.

Before you begin

Your system must run Microsoft Windows 2008 or later versions, PowerShell 3.0 or later, and Data Protection for SQL Server. For information about downloading, installing, and enabling Windows PowerShell, see: [Microsoft Windows Management Framework 3.0 Downloads](http://www.microsoft.com/en-us/download/details.aspx?id=34595)
Procedure

1. Enable remote management for Data Protection for SQL Server installations by issuing the following command:
 `Enable-PSRemoting -force`

2. Add the Data Protection for SQL Server servers to the trusted hosts list by issuing the following command:
 `Set-Item WSMan:localhost\Client\TrustedHosts -Value remote_server_name -Force`

3. After you make configuration changes, restart the winrm service by issuing the following command:
 `Restart-Service winrm`

Adding remote systems

You can add remote systems in MMC.

Procedure

1. From Microsoft Management Console (MMC), in the Actions pane, click Manage Computers.

2. Verify that the local system is listed in both the Tree Nodes and Computers panes.

3. From the Tree Nodes pane, click the add icon. The icon is green and resembles the symbol for addition.

4. Type the name and description for the new tree node.

5. From the Computers pane, click the add icon. The computers that you add are associated with the tree node that you are creating. If you add only one computer, the tree node type can be either Dashboard or Group. If you add more than one computer, the tree node type is Group. If you add only one computer, from the Tree Nodes pane, you can toggle between the Dashboard and Group types.

6. Type the system name and a description. For systems that are not in the domain, provide the fully qualified address. Alternatively, to select a system that is based on another system in the domain or to read a list of computers from a file, on the Computers pane, click Import. Clicking Import displays a dialog called Add Computers. From the Add Computers dialog, there are two tabs: Active Directory and Import. To complete the Add Computers dialog window entries, complete the following steps:
 a. For the Active Directory tab, complete these fields

 Domain
 The current domain is displayed. The domain cannot be changed.

 Location
 The organizational unit that is used to search for computers. The default value is displayed.

 Name
 By default, the wildcard character (*) is displayed. You can leave the default value or enter a specific name.

 Account
 The current account is displayed. If you want to use a different account, click Search to search the domain for other computers. The Search capability is enabled only when the Location and Name fields have values.

 b. For the Import tab, browse to find a comma-separated values (.CSV) file that contains computer entries. After you find a .CSV file and click Import,
the contents of the .CSV file are read as entries and are added to the list. The following .CSV file is an example of a valid .CSV file for the import activity:

```
NewNode1,Group1,CurrentUser,Test node 1
NewNode2
NewNode3,,Description of NewNode3
NewNode4,Group2,CurrentUser,Test node 4
```

The first column (the node name) is required. The other data columns are optional. The list is processed by position. For the group, if a group does not exist, the group is created.

7. From the Computers pane, click Test Connection. The test status is reported in the Message column of the Computers table.

8. Click OK to close the Manage Computers window.

9. Verify that the tree node is listed in the navigation tree. The remote node does not have all of the functionality available for local systems. For example, entries for learning, online support, and favorite links are not displayed.

 For tree node type Dashboard, the main window displays the Protect, Recover, and Automate tabs. For tree node type Group, the main window displays the Group Dashboard, Group Reports, and Group Commands tabs.

10. After you add systems, you can remove (delete) the systems. You can also select the system to edit the properties, including tree node type, that you entered when you added the system. If you want to change the order of the systems that are displayed in the navigation tree, use the GUI controls from the Manage Computers window.

Determining managed storage capacity

You can track the capacity of managed storage assets. This information can be useful when you are calculating storage requirements for license renewal.

About this task

Typically, the capacity that is used by server data differs from the capacity of the volume that contains that data. For example, a set of databases might require a capacity of 1 GB and be on a 10 GB volume. When a snapshot of the volume is created, the Data Protection for SQL Server managed capacity measurement is 10 GB.

Procedure

1. From Microsoft Management Console (MMC), select an SQL Server instance.
2. On the Protect tab, click Properties in the Action pane.
3. Select Managed Capacity from the list of available property pages. The managed capacity is calculated and displayed.
4. To view a list of the volumes that contain backups and their respective managed capacities, click Show Details.
Managing backup, restore, and automation tasks in the Task Manager

The Task Manager provides you with a centralized view of Microsoft Management Console (MMC), from which you can view, stop, remove, or manage backup, restore, and automation tasks.

Procedure

1. Start MMC.
2. On the Welcome page of MMC, click the Protect Data or Recover Data task that is appropriate for your data requirements.
3. In the Action pane, click Show Activity. The Task Manager pane opens under the results pane.
4. Choose your preferred view for the current task:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task List (default)</td>
<td>Click this view to see the following information: Name, State, Result, Progress, Start Time, Duration, Messages. Use the Task List view to complete these tasks: • Click Up and Down to modify the order in which incomplete operations are processed. Hover the cursor on the selected operation to view the command-line input. • Click Stop to end an operation that is still processing. When an operation cannot be stopped, this button is not available. • Click Remove to remove a completed or a scheduled operation. • Copy the selected operation by either clicking the copy icon or right-clicking a task and selecting Copy. You can run this command in the Automate tab or from a command prompt. • Click the calendar icon to use the scheduler wizard to set up a schedule. • Click the appropriate icon to view statistics or a performance chart for the selected operation.</td>
</tr>
<tr>
<td>Task Details</td>
<td>Click this view to see the information that is available in the Task List in detailed format. Click Mode: Navigate and use the arrows to view operation details. Summary and error information is also available when applicable.</td>
</tr>
</tbody>
</table>
Back up SQL Server data

By using Microsoft Volume Shadow Copy Service (VSS), you can back up SQL Server data and mount the backup if required. You can also create legacy backups of SQL Server databases, groups, and files.

Quick guide for backing up data

This quick reference describes the basic workflow and considerations for backing up your SQL server database or availability database. You can create a legacy backup or use Microsoft Volume Shadow Copy Service (VSS) to create a VSS backup.

Before you begin

Before you run backup and restore operations, verify that you satisfy the requirements to process backup and restore operations in a secure environment. For more information, see “Prerequisites” on page 93.

Plan your backup

1. Verify the database type for which you want to create a backup.
 • Review your SQL server environment setup and verify whether you want to back up a stand-alone SQL server instance or an availability database in a clustered environment.
 • If your SQL server instance is part of a clustered environment, verify whether it is part of a failover cluster or an AlwaysOn availability group (AAG) environment. On SQL Server 2012 and later versions, you can back up availability databases in an AlwaysOn Availability Group (AAG) regardless of which availability replica is used for the backup operation. For more information, see Environment overview.

2. Decide your backup strategy.
 • Based on the type of backup you want to do, choose your backup method. Data Protection for SQL Server supports the VSS and Legacy (API) backup methods. Depending on the method you choose, different types of backups and storage options are available to you.

<table>
<thead>
<tr>
<th>Summary</th>
<th>VSS (Snapshot backups)</th>
<th>Legacy backup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported backup types</td>
<td>Full, copy-only</td>
<td>Full, copy-only, differential, transaction log, file, group, set</td>
</tr>
<tr>
<td>Storage options available</td>
<td>On a local disk, on IBM Spectrum Protect server storage pool, or offloaded to other servers.</td>
<td>On IBM Spectrum Protect server storage pool only</td>
</tr>
</tbody>
</table>

For more information, see “Database backup types” on page 14.
 • Choose your storage requirement; locally or on IBM Spectrum Protect server.

Configure your backup

1. Configure your backup settings.
 • Configure the storage pools where you want to store your data.
• Configure your IBM Spectrum Protect nodes. Depending on your SQL Server environment and selected backup strategy, the following nodes are relevant.
 – Target node (SQL Server node) which owns the Data Protection for SQL Server backup data on the IBM Spectrum Protect server. In a stand-alone configuration, this node stores data when the data is sent to IBM Spectrum Protect.
 – VSS Requestor node (if you are creating VSS backups). This node does not store any data on the IBM Spectrum Protect server, but is required for VSS processing.
 – Cluster node (if you are storing data in a failover or AAG configuration). When you run a restore, you must be able to restore the data on any node in the cluster. Therefore, this node must be defined and used on all members of the SQL cluster from which backups and restores are run. You define the cluster node as a proxy node for all the VSS Requestor and SQL Server nodes.

Configuration requirements for Data Protection for SQL Server, IBM Spectrum Protect, and other applications vary. For more information, see Configuring.

2. Configure your storage management policy for your backup.
• Within an IBM Spectrum Protect storage environment, you can define policies to help ensure that the storage environment meets your organization’s requirements for data protection and retention. Before you start using Data Protection for SQL Server, review the preferred settings for IBM Spectrum Protect policies.

For more information, see Policy management for backups.

Choose your backup approach

You can run backups by using either of the following methods:
• MMC GUI
• Command-line interface that use Windows PowerShell cmdlets or command-line interface commands
• Scheduled backup task that uses the Windows or IBM Spectrum Protect client scheduler in MMC

For more information, see “Starting Microsoft Management Console” on page 96 and “Starting the command-line interface” on page 97.

Run your backup

Based on the type of backup you want to do, the backup method that you chose, and the backup approach you want to use, create your backup. For more information, see “Creating VSS backups of SQL Server databases” on page 107 and “Creating legacy backups of SQL Server databases” on page 103.

Verify your backup

You can view the status of the backup operation in MMC by clicking Task List in the results pane. Click Task Details to view detailed status information.

Related tasks:
“Protecting SQL Server data in a failover cluster environment” on page 129

Related reference:
“Legacy backup examples” on page 186
Creating legacy backups of SQL Server databases

You can create a legacy backup of your standard SQL Server databases by using Microsoft Management Console (MMC). You can also use the legacy method to back up availability databases with SQL Server 2012 and later versions.

Before you begin

- To run a legacy backup, ensure that the Data Protection for SQL Server license file is installed.
- On SQL Server 2012 and later versions, you can also back up availability databases in an AlwaysOn Availability Group (AAG) regardless of which availability replica is used for the backup operation. To back up availability databases, ensure that is configured to use an AlwaysOn node. Additionally, specify the AlwaysOn node in the AlwaysOn Node field in the IBM Spectrum Protect Node Names page of the IBM Spectrum Protect Configuration Wizard.

About this task

When you change log and set backups to a new management class, the new management class setting takes effect only for new backups. Existing backups are not rebound to the new management class. Therefore, schedule a new full backup after you change the management class for either log or set backups.

Procedure

1. Start MMC.
2. Select the SQL Server instance in the tree view.
3. On the Protect tab of an SQL Server instance, select an option for viewing databases.

 Table 10. Database backup views

<table>
<thead>
<tr>
<th>Task</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>View a list of SQL Server databases that are available for a backup operation</td>
<td>Click View: Databases.</td>
</tr>
<tr>
<td>View a list of SQL Server 2012 and later version availability databases that are available for a backup operation</td>
<td>Click Standard Databases. Information about the availability databases in an availability group is displayed, including the replica role, synchronization state, and space and log usage. Toggle the Standard Databases / Availability Databases button for the respective database views.</td>
</tr>
</tbody>
</table>

Refine the list of available databases in the results pane by entering a keyword in the Search field.
4. Verify the backup options. If the backup options are not displayed, click Show Backup Options.
<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Stripes</td>
<td>Use this option to specify the number of data stripes to use in a backup or restore operation. The <code>numstripes</code> variable can be in the range 1 - 64. The default value is 1. When you use a multiple stripes number for legacy backups, and set the Verify Only parameter to Yes to restore the legacy backup, the number of stripes for the legacy restore must be equal to or greater than the number of stripes for the legacy backup.</td>
</tr>
<tr>
<td>Estimated Database % Change</td>
<td>Use this option to specify the estimated percentage of the database that changed since its last full database backup. The default value is 20. This estimate is useful because SQL Server does not provide a way to determine the size of a differential backup, and because the IBM Spectrum Protect server requires an accurate size estimate to efficiently allocate space and place objects. The IBM Spectrum Protect server uses this value to determine whether there is enough space in the primary storage pool to contain the backup.</td>
</tr>
<tr>
<td>Estimated Log % Change</td>
<td>Use this option to specify the estimated percentage of an SQL Server database that changed due to non-logged operations since the last log backup. The default value is 0.</td>
</tr>
<tr>
<td>Truncate Logs</td>
<td>Use this option to specify whether to dispose of entries that you no longer need in the SQL Server database transaction log after you back up the log. The default value is Yes. In general, you do not want to truncate the log when you rebuild a corrupted database. This option enables the server to back up the transaction log but does not affect the data. All transaction log entries are written from the time of the last log backup to the point of database corruption. If you do not truncate the transaction log, you might be able to back up the transaction log of a damaged, suspect, or unrecoverable SQL Server database.</td>
</tr>
</tbody>
</table>
Table 11. Database backup options (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back Up Tail-Log</td>
<td>Use this option to store log records that are not backed up. By storing these records, also known as the tail of the log, the log chain is kept intact. Before you can recover an SQL Server database to the last point in time, you must back up the tail of the transaction log. The tail-log backup is the last backup of interest for the database recovery plan.</td>
</tr>
<tr>
<td>SQL Server Checksum</td>
<td>Use this option to verify the integrity of a legacy database backup. Integrity checking is a process that validates the values in a file or configuration for unexpected changes. Values are verified between the current state and the baseline state. In the Performance Properties window of MMC, you can enable or disable the checksum option for all your legacy databases at once. You can override the global setting, and temporarily enable or disable the checksum option for a database backup, by setting this SQL Checksum option to Yes or No.</td>
</tr>
</tbody>
</table>

5. In the Actions pane, click **Backup Method** and select **Legacy**.
6. In the Actions pane, select **TSM** for the **Backup Destination**. The only option that is available to you is **TSM** because the database backups are stored on IBM Spectrum Protect server storage.
7. Optional: Choose a mode for the current task:
 - **Run Interactively**: Click this item to run the current task interactively. This selection is the default.
 - **Run Scheduled**: Click this item to convert the current action into a scheduled task. When you select this item, the schedule wizard runs the command that is required to complete the task.
8. To start the backup operation, in the Actions pane, take one of the following actions:
 - **Full Backup**
 - **Copy-Only Full Backup**
 - **Differential Backup to TSM**
 - **Log Backup to TSM**
9. Review the status of the backup operation by clicking **Task List** in the results pane. Click **Task Details** to view detailed status information.

What to do next
- To determine which databases backups are bypassed during backup processing, review the tdpsql1.log in the directory where Data Protection for SQL Server is installed. Data Protection for SQL Server bypasses database snapshots and databases that are in offline, mirroring, and restoring states.
To determine whether the checksum option is applied to a legacy database backup, issue the `tdpsqlc query tsm *` command on the command-line interface, or the equivalent `Get-DpSqlBackup` cmdlet.

Related tasks:

“Verifying the integrity of legacy databases by using the checksum option” on page 110

Creating legacy backups of SQL Server groups or files

You can create a legacy backup of SQL Server groups or files in a normal SQL Server database by using Microsoft Management Console (MMC). You can also use the legacy method to back up groups of files in availability databases with SQL Server 2012 and later versions.

Before you begin

On SQL Server 2012 and later versions, you can back up availability databases in an AlwaysOn Availability Group regardless of which availability replica is used for the backup operation. To back up availability databases, ensure that Data Protection for SQL Server is configured to use an AlwaysOn node. Additionally, specify the AlwaysOn node in the `AlwaysOn Node` field in the IBM Spectrum Protect Node Names page of the IBM Spectrum Protect Configuration Wizard.

Procedure

1. Start MMC.
2. Select the **SQL Server** instance in the tree view.
3. On the **Protect** tab of an SQL Server instance, select an option for viewing databases.

Table 12. Database backup views

<table>
<thead>
<tr>
<th>Task</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>View a list of SQL Server databases that are available for a backup operation</td>
<td>Click View: Databases.</td>
</tr>
<tr>
<td>View a list of SQL Server 2012 and later version availability databases that are available for a backup operation</td>
<td>Click Standard Databases. Information about the availability databases in an availability group is displayed, including the replica role, synchronization state, and space and log usage. Toggle the Standard Databases / Availability Databases button for the respective database views.</td>
</tr>
</tbody>
</table>

Refine the list of available databases in the results pane by entering a keyword in the **Search** field.

4. Verify the backup options. If the backup options are not displayed, click **Show Backup Options**.

 - Use the **Stripes** option to specify the number of data stripes to use in a backup or restore operation. The `numstripes` variable can be in the range 1 - 64. The default value is 1.

 When using a multiple stripes number for legacy backups, and setting the **Verify Only** parameter to **Yes** to restore the legacy backup, the number of stripes for legacy restore should be equal or greater than the number of stripes for the legacy backup.

5. Optional: Choose a mode for the current task:
• **Run Interactively**: Click this item to run the current task interactively. This selection is the default.

• **Run Scheduled**: Click this item to convert the current action into a scheduled task. When you select this item, the schedule wizard runs the command that is required to complete the task.

6. To start the backup operation, in the Actions pane, take one of the following actions:

• **Group Backup to TSM**: This option backs up the contents of the specified file group.

• **File Backup to TSM**: This option backs up the contents of the specified logical data file.

• **Set Backup to TSM**: This option backs up the contents of the specified groups and files.

7. After you complete a Group, File, or Set backup operation, back up the transaction logs. You cannot back up a logical log file.

What to do next

You can view the status of the backup operation by clicking **Task List** in the results pane. Click **Task Details** to view detailed status information.

Creating VSS backups of SQL Server databases

You can back up standard SQL Server databases or availability databases by using Microsoft Volume Shadow Copy Service (VSS).

Before you begin

To manage local VSS backups or to run offloaded backups to IBM Spectrum Protect server storage, ensure that IBM Spectrum Protect Snapshot is configured in your environment.

If you use VSS to back up data to an IBM Spectrum Protect server, IBM Spectrum Protect Snapshot is not required.

About this task

On SQL Server 2012 and later versions, you can back up availability databases in an AlwaysOn Availability Group (AAG) regardless of which availability replica is used for the backup operation.

Restriction: When you complete a full backup of a secondary replica in an AAG, only a copyfull backup of that database is created.

To back up availability databases, ensure that is configured to use an AlwaysOn node. Additionally, specify the AlwaysOn node in the **AlwaysOn Node** field in the TSM Node Names page of the IBM Spectrum Protect Configuration Wizard. If you change the **AlwaysOn node name** field in the AlwaysOn Node properties page for your SQL Server workload, you must run the IBM Spectrum Protect Configuration Wizard to complete the reconfiguration of the name.

If you do not want to use the IBM Spectrum Protect Configuration Wizard to register the node on the IBM Spectrum Protect server, you can use the IBM Spectrum Protect **register node** command.
Procedure

1. Start Microsoft Management Console (MMC).
2. If you plan to use offloaded backups, and your environment is configured for use with an IBM Spectrum Protect server, specify a value in the Remote DSMAGENT Node name field.
 a. Select the SQL Server instance in the navigation tree, and click Properties in the Actions pane.
 b. Select the VSS Backup property page. If the Remote DSMAGENT Node name is blank, enter a node name.

An offloaded backup uses another system (specified with the Remote DSMAGENT Node name parameter) to move SQL Server data to IBM Spectrum Protect server storage. Offloaded backups can reduce the load on network, I/O, and processor resources during backup processing.

3. On the Protect tab of an SQL Server instance, select an option for viewing databases.

Table 13. Database backup views

<table>
<thead>
<tr>
<th>Task</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>View a list of SQL Server databases that are available for a backup operation</td>
<td>Click View: Databases.</td>
</tr>
<tr>
<td>View a list of SQL Server 2012 and later version availability databases that are available for a backup operation</td>
<td>Click Standard Databases. Information about the availability databases in an availability group is displayed, including the replica role, synchronization state, and space and log usage. Toggle the Standard Databases / Availability Databases button for the respective database views.</td>
</tr>
</tbody>
</table>

Refine the list of available databases in the results pane by entering a keyword in the Search field. Then, select the databases to back up.

4. Verify the backup options. If the backup options are not displayed, click Show Backup Options. If you want to use offloaded backups, select Yes in the Offload field.

5. In the Actions pane, click Backup Method and select VSS.

6. On the Actions pane, select TSM for the Backup Destination. The only option that is available to you is TSM because the database backups are stored on IBM Spectrum Protect server storage.

7. Optional: Choose a mode for the current task:
 - Run Interactively: Click this item to run the current task interactively. This selection is the default.
 - Run Scheduled: Click this item to convert the current action into a scheduled task. When you select this item, the schedule wizard runs the command that is required to complete the task.

8. To start the backup operation, in the Actions pane, take one of the following actions:
 a. Click Full Backup. Alternatively, right-click a database and select the backup action that you require from the menu.
 b. Click Copy-Only Full Backup. A copy-only full backup is independent of the sequence of SQL Server backups, and is not used as a base for a differential backup. A differential backup is not associated with the

108 IBM Spectrum Protect for Databases: Data Protection for Microsoft SQL Server Installation and User's Guide
copy-full backup, but is associated with the previous full backup that completed. You might use a copy-only full backup as a special purpose backup that does not affect backup and restore operations, and retain such a backup for longer than conventional backups.

9. Review the status of the backup operation by clicking Task List in the results pane. Click Task Details to view detailed status information.

Results

During backup processing, Data Protection for SQL Server bypasses database snapshots and databases that are in offline, mirroring, and restoring states.

What to do next

To determine which databases backups are bypassed during backup processing, review the tdpsql.log in the directory where Data Protection for SQL Server is installed.

Enabling SQL Server backup compression

With Data Protection for SQL Server, you can compress SQL Server backups. Compression reduces traffic and storage requirements. SQL Server backup compression is generally faster and more effective than using IBM Spectrum Protect compression.

About this task

- You can run SQL Server backup compression only with legacy backups on SQL Server.
- For SQL Server, you can run backup compression only on Enterprise Edition.

Procedure

Use either Microsoft Management Console (MMC) or the command line to enable SQL Server backup compression:

- From the General properties page in MMC, specify the SQL Server native backup compression option. After you have set this option, the SQL Workload column on the Recover tab shows the SQL compression status for legacy backups.
- From the command line, add this statement to the SQL configuration file (tdpsql.cfg). Edit the file and issue this command:

 SQLCOMPRESSion Yes | No

 The default value is No.
Verifying the integrity of legacy databases by using the checksum option

With Data Protection for SQL Server, you can verify the integrity of legacy database backups by setting a checksum option.

About this task

A checksum is a value that is calculated and written in the data page header of the database data file. When a data file is read again, the checksum value is recalculated. Checksum processing validates the values in a file or configuration for unexpected changes. Values are verified between the current state and the baseline state.

Restriction: Checksum integrity checking is available only with legacy backups on SQL Server.

Procedure

1. Open the General Properties window in Microsoft Management Console (MMC).
2. Select Compute SQL Server checksum for legacy backup.
 If you select this option, all legacy backups are checked by default. You can override this setting to set integrity checking for a particular backup. For example, if you bypassed integrity checking on all backups, you can set integrating checking on a particular legacy backup by selecting the SQL Checksum backup option on the Protect tab for the SQL Server instance. You can also issue the SQLCHECKSum option with the backup command on the command line to temporarily enable or disable the checksum option.

Results

When you select the Compute SQL Server checksum for legacy backup check box, the setting is written to the Data Protection for SQL Server preferences file, tdpsql.cfg, and is applied to all legacy backup operations. If you clear the check box, integrity checking does not apply to any legacy database backup.

Related tasks:
“Creating legacy backups of SQL Server databases” on page 103

Backing up SQL Server databases on Windows Server Core

To back up Microsoft SQL Server databases, use the backup command.

About this task

Use the following procedure to back up SQL Server databases to the IBM Spectrum Protect server, or to take local VSS snapshots.

Procedure

1. To back up all or part of an SQL Server database on Windows Server Core, enter the following command at the command prompt:
 tdpsqlc backup database_name backup_type [other_options]
 where database_name specifies the name of the database, and backup_type specifies the type of backup such as a full backup. You can specify other
options, such as the backup method. For example, to create a full legacy backup of SQL Server databases DB_01 and DB_02, enter the following command:

tdpsqlc backup DB_01,DB_02 full /backupmethod=legacy

For example, to create a full legacy backup of all databases on the SQL Server, enter the following command:

tdpsqlc backup * full /backupmethod=legacy

2. To back up a file group, enter the following command at the command prompt:

tdpsqlc backup database_name file_group

where database_name specifies the name of the database, and file group specifies the file group in the database. For example, to back up the filegroup DB_01_group1 that belongs to the DB_01 database, enter the following command:

tdpsqlc backup DB_01 Group=DB_01_group1

Delet ing SQL Server backups

You can remove an SQL Server backup that you created with the VSS backup method. Complete this task only if necessary.

Before you begin

Typically, backups are deleted automatically based on user-defined policy management settings. This procedure is necessary only if you need to delete backups that are outside the scope of Data Protection for SQL Server policy definitions.

If you delete a remotely-mounted backup, the snapshots and the relationship between the source and target volumes on the storage device are also deleted. However, the target volume that is imported and mounted might continue to exist. In addition, the target volume might not be available to the server where the remote mount occurred. The operations to the target volume depend on the VSS hardware provider and the storage device implementation.

After the maximum number of remotely-mounted backup versions or the maximum number of days to retain a backup is exceeded, the associated backup is expired and deleted.

Procedure

1. Start Microsoft Management Console (MMC).
2. Click Recover Data > SQL in the Management window.
3. On the Recover tab for the SQL Server instance, select View: Database Restore. In the results pane, browse to and select one or more database backups to delete. The corresponding node type, for example, DP or AlwaysOn, must also be selected.
4. In the Actions pane, click Delete backup. When a backup is deleted, two tasks display in the task window to show you that the deletion is in progress, and that the view is being refreshed.
Deactivating legacy backups of SQL Server databases

IBM Spectrum Protect deactivates an SQL Server database backup as a part of IBM Spectrum Protect policy management. Data backups are typically deactivated when an SQL Server database is deleted from the SQL Server as part of the scheduled backup processing.

Before you begin

The SQL Server database that you want to deactivate must be a legacy backup. You cannot use this procedure to deactivate VSS backups. The Delete action is available in the Actions pane when you select a VSS backup from the Recover view.

About this task

For legacy backups, you can deactivate any or all of the following backup object types: full, differential, copyfull, log, file, group, or set. You can also deactivate any object or object type that is older than a specified number of days.

When you deactivate database backups, all copy group parameters, which control how backup versions are generated, located, and expired, are inspected and any existing backups on IBM Spectrum Protect server are subject to deletion, as specified by the relevant policy settings.

Tip: After a full SQL backup, all preceding copy-only full, file, group and differential backups stop adhering to the VERExists and RETExtra settings, even if the databases still exist on the Data Protection for SQL Server client system. In the management class for these backup objects, set the VERDeleted and VERExists parameters to the same value and also set the RETExtra and RETOnly parameters to the same value to maintain consistent version-expiration behavior. For more information, see Preferred settings for IBM Spectrum Protect policies.

When automatic processing is insufficient, the inactivate function explicitly deactivates one or more active data backups on the IBM Spectrum Protect server.

Procedure

1. Under the Protect and Recover Data node in the tree view, select the SQL Server.
2. Open the Recover view to see the status of the backup. Active backups are displayed.
3. Select the database backup that you want to deactivate, and in the Actions pane, click Inactivate.
4. To view the results, take one of the following actions:
 • To display the database that you made inactive, click All Backups on the toolbar.
 • To display only active database backups, click Active Backups on the toolbar.
Mounting VSS snapshots to remote servers

You can use the command-line interface to mount VSS snapshots to remote servers that other users can access.

About this task

The following procedure is specific to IBM Spectrum Protect Snapshot and assumes that you have at least three servers in your environment: Server A, Server B, and Server C. The backup that is created on Server A is mounted remotely to Server B.

To mount a backup remotely, the hardware provider must allow transportable snapshots. In addition, you must enable the Import VSS snapshots only when needed configuration option and remote Windows PowerShell.

When a backup is mounted remotely and the backup is deleted, the state of the mount point varies. The state of the mount point depends on the VSS hardware provider and storage device that is used. When a backup is mounted remotely, the backup can be deleted. When a local persistent VSS snapshot is created, a source and target volume relationship is created. The local persistent VSS snapshot is created on your storage device. In this case, when a remote mount operation occurs, the target volume is imported and mounted to the server that sends the request for the remote operation.

Procedure

1. On Server A, use the command-line interface to complete a local backup query. The query shows that the backup is mounted on Server B.
2. On Server C, use the command-line interface to complete a remote backup query of Server A. The query shows that the backup is mounted on Server B.
3. When you enter a mount or query command with the /remotecomputer option, enable command-line interface tracing and enable tracing on the agent. Enable tracing on both the local and remote systems by appending /tracefile=filename.trc /traceflag=service to the command.

Mounting SQL Server backups

To see a copy of SQL Server data from a specific point in time, mount a snapshot backup.

About this task

A copy of data from a specific time is also known as a point-in-time consistent copy or online snapshot.

Restriction: You cannot use Microsoft Management Console (MMC) to mount a backup to a different server. To mount a VSS snapshot to a remote server, either enter the mount backup command at the command line, or use the Mount-DpSqlBackup cmdlet.

When you submit a mount request, all of the volumes that are contained in the original snapshot set are imported. If the number of volumes that are imported exceed the maximum number of allowable mapped volumes for the environment, the mount operation can fail.

You can mount VSS snapshot backups either as read-only or read/write. When a snapshot backup is mounted as read/write, you can access SQL databases on the
mounted volumes using the Attach function on SQL server. This allows you to run granular restore operations (for example, restores of individual tables or table rows) or use the accessed database as a clone of the production database.

- **Mount read/write (modifies backup, applies to COPYFULL backups only)**
 For VSS providers that support transportable shadow copies, you can mount a COPYFULL type backup as read/write. After mounting, your COPYFULL backup is marked as modified and while you can mount it again in the future, this backup can no longer be used for full database restores. However, it can be used for granular restore operations or serve as a clone of the production database. All databases on the snapshot volume that are mounted as read/write are marked as modified.

- **Mount read/write (without modifying backup)**
 This mount option is only available for SAN Volume Controller (SVC) devices and requires IBM System Storage Support for Microsoft Virtual Disk and Volume Shadow Copy Services version 4.12 or later. With this option, you can mount writable VSS snapshots of FULL or COPY backups.

Note: You can override your default mount options as specified in the configuration file by using either the `/MONTTRW` parameter on the `mount backup` command, or the `Mount-DpSqlBackup` cmdlet.

Procedure

1. Start MMC.
2. Click **Recover Data** in the welcome page of MMC.
3. In the Actions pane on the **Recover** tab, click **Mount Backup**.
4. Either type the path to the empty NTFS or ReFS folder where you want to mount the backup or browse to find the path.
5. Optional: If required, select the **Mount the snapshots in read/write mode** option.
6. Click **OK**. On the **Recover** tab, the backup that you mounted is displayed.
7. In the Actions pane, select the **Explore** and **Unmount Backup** tasks for the backup that you mounted.

Restoring SQL Server databases and files

You can restore legacy backups of SQL Server databases, file groups, and files by using Microsoft Management Console (MMC).

Setting single-user mode for restore operations

You might have to start an SQL Server instance in single-user mode during certain restore operations. For example, you might use single-user mode when you are restoring a damaged master database or a system database, or when you are changing server configuration options.

Before you begin

Restriction:

- You cannot restore SQL databases that are in use. By placing SQL databases to be restored in single-user mode, you can avoid system attempts to restore those databases.
- Microsoft Management Console (MMC) cannot connect to a SQL Server instance that is started in single-user mode. If you want to use MMC when the SQL
Server instance is in single-user mode, you must use the command-line interface, tdpsqlc.exe, to restore the master database.

Procedure

1. To determine which users are using the databases, use the SQL stored procedure, SP_WHO.

2. To force users off the SQL database and set the SQL Server to single-user mode, issue this TRANSACT-SQL command.

   ```sql
   ALTER DATABASE DBNAME SET SINGLE_USER
   WITH ROLLBACK AFTER N SECONDS
   ```

3. To start the SQL Server in single-user mode, use the -m SQL SERVER startup option.

4. To return the database to multiple-user mode, issue this TRANSACT-SQL command.

   ```sql
   ALTER DATABASE DBNAME SET MULTI_USER
   ```

Setting data restore options in Microsoft Management Console

To optimize the data restore process for your environment, modify the default options that are available in Microsoft Management Console (MMC).

Procedure

1. On the Recover tab, select Database Restore.

2. Click Show Restore Options to modify the default restore options as follows:

 You can modify the default values for the restore options as described in the following table:

 Table 14. Database restore options

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
</table>
 | Auto Select | For this option, specify a value of Yes (default) to quickly select the backup objects to restore. With automatic selection, when you select the most recent backup to restore, all associated backups are automatically selected, up to the previous full backup. This option affects backups in the following ways:
 | | • When you click a differential backup, the associated full backup is also selected.
 | | • When you click a log backup, the associated full backup and all associated earlier differential or log backups are also selected. |

<table>
<thead>
<tr>
<th>Performance</th>
<th></th>
</tr>
</thead>
</table>
Table 14. Database restore options (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stripes</td>
<td>For this option, specify the number of data stripes to use in a restore operation. A maximum of 64 data stripes is allowed. The default value is 1. The value that you enter must correspond to the value that you set for SQL Server buffers. Restriction: This restore option is available only with legacy backups. When you use a multiple stripes number for legacy backups, and set the Verify Only parameter to Yes to restore the legacy backup, the number of stripes for legacy restore must be equal to or greater than the number of stripes for the legacy backup.</td>
</tr>
<tr>
<td>Restore Behavior</td>
<td></td>
</tr>
<tr>
<td>Database Owner Only</td>
<td>To mark a database for owner use only, set this value to Yes. The default value is No, which specifies not to mark the database for owner use. Restriction: This restore option is only available with legacy backups.</td>
</tr>
<tr>
<td>Keep CDC</td>
<td>For databases enabled for change data capture (CDC), set this value to Yes to retain, during a legacy restore operation, the change data capture records that have recorded changes, such as insertions, deletions, and edits to SQL Server database tables. The default value is No. Restriction: This restore option is only available with legacy backups and applies to all legacy backup types except for log backups.</td>
</tr>
<tr>
<td>Replace</td>
<td>To replace a database during a restore operation, set this value to Yes. The default value is No, which specifies not to replace databases. Restriction: This restore option is available only with legacy backups.</td>
</tr>
</tbody>
</table>
| Recovery | Use this option to restore data to an SQL Server database that is not on a standby SQL Server. The default value is **Yes**.
 - Select **Yes** when you run a sequence of restore operations to an SQL Server database and the current restore operation is the final one in the sequence, or when it is the only restore operation.
 - Select **No** when you run a sequence of restore operations to an SQL Server database and the current restore operation is not the final one in the sequence. Select **No** for all restore operations in the sequence except for the final one. |
<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand By Undo File Name</td>
<td>For this option, specify a value of Yes to change the target SQL Server database to a standby SQL Server database. The default value is No. This option is available for full, differential, and log backup types. When you specify this option for a database, it applies to all backup objects for that database. Similarly, when you remove this option for a backup object, the option is removed for all backup objects.</td>
</tr>
<tr>
<td>Verify Only</td>
<td>Before you restore a legacy database backup, set this option to Yes to verify that the database backup is complete and can be read. The default value is No. Note: This option only verifies that the database backup volumes are complete and that all are readable. It does not save the backup to disk or overwrite the current database of that name on the SQL server. To verify a backup done with multiple stripes, set the Verify Only parameter to Yes and ensure that the number of stripes used for the restore is equal to the number of stripes used for the backup. Restriction: This restore option is available only for legacy database backups.</td>
</tr>
<tr>
<td>Source Server</td>
<td></td>
</tr>
<tr>
<td>From SQL Server</td>
<td>Use this option to specify the name of the SQL Server that the backup is created from. To specify the name of a virtual environment SQL Server, change IncludeTsmVM to Yes to view Virtual Environment backup SQL Server databases in the Databases view. The backup method is listed as TSMVM to distinguish these databases from the other databases that are listed.</td>
</tr>
<tr>
<td>Tape</td>
<td></td>
</tr>
<tr>
<td>Wait for Tape Mounts for Restore</td>
<td>Use this option to specify whether the Data Protection for SQL Server restore operation waits for the IBM Spectrum Protect server to mount removable media such as tapes or other sequential device media. The default value is Yes.</td>
</tr>
<tr>
<td>Wait for Tape Mounts for File Information</td>
<td>When you query IBM Spectrum Protect for file information, use this option to specify whether Data Protection for SQL Server waits for the IBM Spectrum Protect server to mount removable media. The default value is Yes. Restriction: This restore option is available only with legacy backups.</td>
</tr>
<tr>
<td>VSS</td>
<td></td>
</tr>
</tbody>
</table>
Restoring SQL Server data

You can restore SQL Server databases or parts of databases only from full, differential, and log backups. You can also restore availability databases with SQL Server 2012 and later versions.

About this task

Attention: When you restore a database, existing data is overwritten by the restored data and is no longer available after the restore operation is complete.

- The Regional settings, which are defined in the Regional property page, must match the date format that is defined for the Microsoft SQL Server.

- You can use VSS to run backup operations of type full. You can apply legacy differential and legacy log backups after a full VSS backup is restored.
 - When Virtual Environment restore operations are configured from the IBM Spectrum Protect server, you can restore and view these databases from the Recover tab.
 - You can also restore availability databases that you backed up with the AlwaysOn node with SQL Server 2012 and later versions. Backups of availability databases can be restored to any availability replica in an availability group.
 - You can restore a legacy database backup that is verified as valid and complete with the **Verify Only** option in Microsoft Management Console (MMC), or with the `/VERIFYOnly` option of the `restore` command on the command line.

Table 14. Database restore options (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
</table>
| **Instant Restore** | For this option, specify a value of **Yes** to use volume-level snapshot restore (instant restore) for local VSS backups if the backup exists on SAN-attached volumes. Specify a value of **No** to disable instant restore, which bypasses volume-level copy and uses file-level copy (fast restore) to restore the files from a local VSS backup. The default value is **Yes**, which uses volume-level snapshot restore if it is available.

 This option is available for VSS operations only. If you use instant restore for SAN Volume Controller earlier than version 5.1 or DS8000, ensure that any previous background copies that involve the volumes that are being restored are completed before you initiate the instant restore.

 In an instant restore operation, files on the destination file system are overwritten. Log and differential backups are automatically converted to file-level restores. An instant restore operation requires that the drive or volume where the mailbox database is located must be available. Any other process or application must not have access to the drive or volume. |

Related tasks:

“Troubleshooting VSS backup and restore operations” on page 152
Procedure

1. Start MMC.
2. Select the SQL Server instance in the tree.
3. On the Recover tab for the SQL Server instance, specify the type of SQL Server data to restore.

Table 15. Database restore views

<table>
<thead>
<tr>
<th>Task</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>View a list of SQL Server databases that are available for a restore operation</td>
<td>Click View: Databases.</td>
</tr>
<tr>
<td>View a list of SQL Server database backup files that are available for a restore operation</td>
<td>Click View: Files.</td>
</tr>
<tr>
<td>View a list of SQL Server 2012 and later version availability databases that are available for a restore operation</td>
<td>Click DP Node Backups to show AlwaysOn node backups. Toggle the DP Node Backups / AlwaysOn Node Backups button for the respective database views.</td>
</tr>
</tbody>
</table>

4. On the Recover tab of an SQL Server instance, select an option for viewing databases. In the Results pane, browse to the databases that are available to restore. The following options are available:

Table 16. Database restore selection options

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search</td>
<td>Enter a keyword in the Search field to refine and filter the list of databases.</td>
</tr>
<tr>
<td>Filter</td>
<td>Use the filter options to refine and filter the list of databases.</td>
</tr>
<tr>
<td></td>
<td>1. Click Show Filter Options and Add Row.</td>
</tr>
<tr>
<td></td>
<td>2. In the Column Name field, click the down arrow and select an item to filter.</td>
</tr>
<tr>
<td></td>
<td>3. In the Operator field, select an operator.</td>
</tr>
<tr>
<td></td>
<td>4. In the Value field, specify a filter value.</td>
</tr>
<tr>
<td></td>
<td>5. If you want to filter on more items, click Add Row.</td>
</tr>
<tr>
<td></td>
<td>6. Click Apply Filter.</td>
</tr>
<tr>
<td>Backups</td>
<td>Select the database to restore. You can click Active Backups to show only active backups, or click All Backups to show both active and inactive backups.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Click Refresh to update the view with your changes.</td>
</tr>
</tbody>
</table>

If you applied a filter, the objects on the server that match the filter or search criteria are listed on the Recover tab. The status area indicates the number of items that match the criteria n of x displayed, where n equals the number of objects that match the filter criteria, and x is the number of objects that are retrieved from the server. For example, “5 of 20 displayed.” If you specify refresh options to further narrow your results, and click Refresh again, the
objects on the server that match the filtered and refresh options are displayed. Each time that you click Refresh, another query is run against the IBM Spectrum Protect server.

5. Verify the options for the restore operation. If the restore options are not displayed, click **Show Restore Options**.

6. Optional: Choose a mode for the current task:
 - **Run Interactively**: Click this item to run the current task interactively. This selection is the default.
 - **Run Scheduled**: Click this item to convert the current action into a scheduled task. When you select this item, the schedule wizard runs the command that is required to complete the task.

7. To start the restore operation, in the Actions pane, take one of the following actions:
 - Click **Restore**.
 - Click **Restore VerifyOnly**. The **Restore VerifyOnly** task is available only if all the selected database backups are legacy backups.

 Important:

 When you select the **Restore VerifyOnly** action, the number of stripes that are used for the restore must be the same or greater than the number of stripes that are used for the backup you are verifying. If it is not, the **Restore VerifyOnly** operation terminates with an error.

8. To view the status of the restore operation, click **Task List** in the results pane. Click **Task Details** to view detailed status information.

Related tasks:

- "Troubleshooting VSS backup and restore operations” on page 152
- “Setting data restore options in Microsoft Management Console” on page 115

Restoring an SQL Server database to an alternate instance

By using Microsoft Management Console (MMC), you can restore an SQL Server database backup to an alternate SQL Server instance or database. You can also restore availability databases to an alternate location on any availability replica in an availability group. You can restore to an alternate instance by using Microsoft Management Console (MMC), Windows PowerShell cmdlets, or the command-line interface (CLI).

Before you begin

Install Data Protection for SQL Server on both systems.

About this task

You can also restore availability databases that you backed up with the AlwaysOn node. Backups of availability databases can be restored to any availability replica in an availability group.

You can select only one database at a time when you restore a database to an alternate location.
Procedure

1. Copy the Data Protection for SQL Server options file (dsm.opt) from the source system to the target system.

Source system
The system from which the original backup (to be restored) is created.

Target system
The alternate system to which the backup is to be restored.

By default, the dsm.opt file is in the C:\Program Files\Tivoli\TSM\TDPSql directory. If passwordaccess generate is specified in the dsm.opt file, you might need to reset the password for this node on the IBM Spectrum Protect server.

2. Start MMC.

3. On the Recover tab for the SQL Server instance, specify the type of SQL Server data to restore.

<table>
<thead>
<tr>
<th>Task</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>View a list of SQL Server databases that are available for a restore operation</td>
<td>Click All Backups.</td>
</tr>
<tr>
<td>View a list of SQL Server 2012 and later version availability databases that are available for a restore operation</td>
<td>Click DP Node Backups to show AlwaysOn node backups. Toggle the DP Node Backups / AlwaysOn Node Backups button for the respective database views.</td>
</tr>
</tbody>
</table>

4. Verify the options for the restore operation. If the restore options are not displayed, click Show Restore Options.
 a. Ensure that Wait for Tape Mounts for Restore is set to Yes.
 b. Ensure that Wait for Tape Mounts for File Information is set to Yes.
 c. If the database to be restored is to replace an existing database on the target system, click Replace.
 d. Use the Instant Restore option to turn Instant Restore on or off. Click Yes to use Instant Restore. Click No to disable Instant Restore if you want to use Fast Restore. For a local restore operation, the local restore automatically fails over to Fast Restore.

Attention: Instant Restore operations overwrite all files on the destination file system.

5. To start the backup operation, in the Actions pane, take one of the following actions:
 a. Click Restore to Alternate Location.
 b. Click Restore VerifyOnly to Alternate Location. The Restore VerifyOnly to Alternate Location task is available only if all the selected database backups are legacy backups.

Important:

When you select the Restore VerifyOnly to Alternate Location action, the stripes number must be the same or greater than that which is set in the backup. If it is not, the Restore VerifyOnly operation terminates with an error.
6. For a legacy backups, select the SQL Server instance which you want to restore to. In the **Restore Into** section of the Alternate Location Restore Settings window, click **Restore to new database**, and specify a target SQL Server instance name and target database name to restore a backup object to. The **Database name** can have the same name as the source database or you can specify a different unique name.

For VSS backups, the only instance available to restore to is that which you select on the **Recover** tab before starting the backup operation.

7. In the **Relocate** section of the window, filter the restore processing operations.

<table>
<thead>
<tr>
<th>Task</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify new destination locations in which to restore backed up SQL Server databases, logs, and FILESTREAM files</td>
<td>Click Restore all files into one directory.</td>
</tr>
<tr>
<td>Restore the log files into a location that is different from where the SQL Server database and other related files are restored</td>
<td>Select Relocate logs into and specify a new path in the text entry field.</td>
</tr>
<tr>
<td>Restore FILESTREAM files (SQL Server 2008 or later versions) into a location that is different from where the SQL database and logs are restored (relevant for legacy restore operations only)</td>
<td>Select Relocate other files into, and specify a new path in the text entry field.</td>
</tr>
<tr>
<td>Restore one or more individual SQL Server database, log, and FILESTREAM files (relevant for legacy restore operations only)</td>
<td>Click Relocate files individually, and click Browse to open a folder selection window. Select a folder or create a new folder, and click OK. The path of the selected files entries is set to use the folder. This option is available for legacy backups only.</td>
</tr>
</tbody>
</table>

Tip: When you restore a VSS backup to an alternate SQL Server instance, the **Restore to original location** processing option is disabled. However, it is still possible to restore to the original location by entering the same database name and database file path as in the original location.

Restriction: You cannot relocate database files and logs with a partial restore operation in MMC. You must use the command-line interface to complete a partial restore operation that requires these parameters.

8. Click **Restore** to close the Alternate Location Restore Settings window and begin the restore.

9. To view the status of the restore operation, click **Task List** in the lower half of the results pane. Click **Task Details** to view detailed status information.
Restoring the master database

A damaged master database can prevent the SQL Server from starting and cause other errors. To protect your data if the master database is damaged, you must routinely complete a full database backup of the master database (msdb).

Before you begin

- Set single-user mode for restore operations.
- Always keep an up-to-date backup of your master database because the master database contains the system catalog. The system catalog contains important information about the SQL Server configuration.
- Ensure that you back up the master database after any changes that update system tables. For example, back up the master database after you use any of these statements:
 - ALTER DATABASE
 - CREATE DATABASE
 - DISK INIT
 - DISK RESIZE
 - DISK MIRROR
 - DISK UNMIRROR
 - DISK REMIRROR
 - Various DBCC options such as SHRINKDB
 - System-stored procedure, such as sp_droprotemotelogin, sp_addumpdevice, sp_dropdevice, sp_addlogin, sp_droprotemotelogin

About this task

If the master database is damaged while a server instance is running, fix the damaged database by restoring a recent full master database backup. If a server instance cannot start because the master database is damaged, the master database must be rebuilt. When you rebuild a master database, all system databases revert to their original state.

Restriction: Microsoft Management Console (MMC) cannot connect to an SQL Server instance that is started in single-user mode. When the SQL Server instance is in single-user mode, you must use the command-line interface, tdsqsqlc.exe, to restore the master database.

Procedure

1. Click Start > All Programs > IBM Spectrum Protect> Data Protection for Microsoft SQL Server > SQL Client - Command Line.
2. Start the SQL Server in single-user mode.
3. Use Data Protection for SQL Server to restore the master database. When the master database finishes the restoration process, the SQL Server shuts down and an error message is displayed. The message indicates that the connection to the SQL Server is lost. This loss of connection is expected.
4. Restart the database engine to restore SQL Server to the typical multiuser mode.
5. Run the SQL Server setup program to rebuild the master database. When you rebuild the master database, use the same character set and sort order as the master database backup that is to be restored.
6. Manually reapply any changes to the master database that occurred after the date of the database backup that is used to complete the restore operation.

7. Restore the msdb database. During the process of rebuilding the master database, the SQL Server setup program drops, and then re-creates, the msdb database. Therefore, you must restore the msdb database with the master database.

Results

After the master database is restored, you can use MMC to back up and restore individual databases that are operating in single-user mode.

Related tasks:

- “Setting single-user mode for restore operations” on page 114
- “Troubleshooting VSS offline restore of a master database” on page 153

Restoring SQL Server databases with full-text catalogs and indexes

You can protect SQL Server 2005 and 2008 data with full-text catalog files.

About this task

When protecting SQL Server 2005 and the full-text index is part of a full-text catalog, note that the full-text catalog has a physical path. In this scenario, the full-text catalog is treated as a database file.

When you back up an SQL Server 2008 database and later data, a full-text catalog is either a logical or virtual object that contains a group of full-text indexes. This full-text catalog does not have a physical path. When you restore a database with SQL Server 2008 and later full-text catalog files, no data is explicitly stored. The file is automatically backed up and restored as part of the filegroup.

Procedure

- To restore a database with the SQL Server 2005 physical full-text catalog file from the command-line interface, use the /RELocate and /T0 parameters. For example:

  ```
  Restore DATABASE full /relocate=database,sysft_docindex,database_log
  /T0={database_dir}\database.mdf,{database_dir}\docindex,
  {database_log_dir}\database_log.ldf
  ```

- To restore a database with the SQL Server 2005 physical full-text catalog file from the GUI, use the Relocate files individually option. From the command-line interface, use /relocate and /T0 instead of /RELOCATEDir.

Restoring SQL Server databases from virtual machine snapshots

You can restore SQL Server databases from virtual machine snapshots when IBM Spectrum Protect for Virtual Environments, Version 7.1 and later is used to back up the data. Before you restore the SQL Server database, you must verify that the data is backed up correctly.

Before you begin

- Before you restore SQL Server databases from virtual machine snapshots, verify that the data is backed up according to the following procedure.
• You can restore the SQL Server data to basic disks with MBR-style partitions. Because of an SQL Server limitation, however, you cannot restore a VSS backup to an alternative SQL Server instance. VSS backups must be restored to the same SQL Server instance where the snapshot is created.

Also, when you restore an SQL Server database from a VM backup, the restore operation is not possible if the VM name is changed after the VM backup.

Verifying the SQL Server backup Procedure

1. Install the IBM Spectrum Protect for Virtual Environments Recovery Agent 7.1 package and the IBM Spectrum Protect Backup-Archive Client 7.1 from the Data Protection for VMware 7.1 package. These software packages are available for download from Passport Advantage.

Install these packages on the guest virtual machine with Data Protection for SQL Server.

2. Specify the following IBM Spectrum Protect Backup-Archive Client 7.1 option in the dsm.opt file:

 INCLUDE.VMTSMVSS vmname

 When you set this option, virtual machine applications receive a notification when a backup is scheduled to occur. This notification allows the application to truncate transaction logs and commit transactions so that the application can resume from a consistent state when the backup completes. By default, this option is not enabled. You must set this option to enable application protection for a virtual machine.

 The vmname specifies the name of the virtual machine that contains the applications to quiesce. Specify one virtual machine per INCLUDE.VMTSMVSS statement. To protect all virtual machines with this option, use an asterisk as a wildcard. For example:

 INCLUDE.VMTSMVSS *

 You can also use question marks to match any single character. For example:

 INCLUDE.VMTSMVSS vm??

 This type of option setting protects all virtual machines that have names that begin with vm and are followed by any two characters. For example, vm10 and vm15.

 If the OPTIONS KEEPSqllog parameter is specified in an INCLUDE.VMTSMVSS statement, this parameter prevents SQL Server logs from being truncated when a data mover node backs up a virtual machine that runs an SQL Server.

 Specifying this parameter allows the SQL Server administrator to manually manage the SQL Server logs. The logs can be preserved as required and be used to restore SQL Server transactions to a specific checkpoint, after the virtual machine is restored. When this option is specified, the SQL Server log is not truncated and following message is displayed and logged on the server:

 ANS4179I IBM Tivoli Storage Manager application protection did not truncate Microsoft SQL Server logs on virtual machine vmname

 IBM Spectrum Protect does not back up the SQL Server log files. The SQL Server administrator must back up the log files so that those logs can be applied after the database is restored.

3. Verify that the VSS service and SQL Server instance are online and active. SQL Server databases that do not have an active instance are backed up. However, information about these databases is not saved to IBM Spectrum Protect.
Therefore, these databases are not available for a database-level restore operations. You can restore these databases with a full VM restore operation.

4. Use the IBM Spectrum Protect for Virtual Environments software to back up the data.

5. After you back up data, verify that the virtual machine backup contains the necessary database metadata.
 a. Enter the following IBM Spectrum Protect Backup-Archive Client command on the data mover:
      ```
dsmc query vm <vmname> -detail
```
 b. In the command output, ensure that the Application(s) protected: value specifies (database-level recovery) For example:

 | # Backup Date Mgmt Class Size Type A/I Virtual Machine |
 |---|
 | 1 06/07/2012 19:25:58 STANDARD 29.29 GB FULL A wombat |
 | The size of this log backup: n/a |
 | The number of log backups since last full: n/a |
 | The amount of extra data: n/a |
 | The TSM objects fragmentation: n/a |
 | Backup is represented by: n/a |
 | Application protection type: TSM VSS |
 | Application(s) protected: MS SQL 2008 (database-level recovery) |
 | VMDK[1]Label: Hard disk 1 |
 | VMDK[1]Name: [ess800_dev1] wombat/wombat-000002.vmdk |
 | VMDK[1]Status: Protected |

Restoring the SQL Server database

Procedure

1. Log on to the system where you want to restore the SQL Server database. The Data Protection for VMware Recovery Agent license and Data Protection for SQL Server must be installed on the system where you restore the data.

2. When Data Protection for SQL Server is configured, for the Configuring Recovery Agent rule, verify that the status is Passed. If the status is not Passed, re-run the configuration wizard. On the IBM Spectrum Protect Node Names wizard page, enter the data center node name. The data center node is the virtual node that maps to a data center.

3. Set access to the virtual machine that is backed up in a data center node as shown in the following table:

 Table 19. Node names used to set access.

<table>
<thead>
<tr>
<th>Node name</th>
<th>Location</th>
<th>Description</th>
<th>Proxy type</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC_NODE</td>
<td>Data mover</td>
<td>Node for the virtual machine backup</td>
<td>Agent (data owner)</td>
</tr>
<tr>
<td>SQL_NODE</td>
<td>In guest virtual machine running Microsoft SQL Server</td>
<td>Node for Data Protection for SQL Server</td>
<td>Agent (data owner)</td>
</tr>
<tr>
<td>VSS_NODE</td>
<td>In guest virtual machine running Microsoft SQL Server</td>
<td>Node for Data Protection for SQL Server DSMAGENT</td>
<td>Agent (data worker)</td>
</tr>
</tbody>
</table>

4. Ensure that the IBM Spectrum Protect administrator provides access to the virtual machine that is backed up to the VSS_NODE. The IBM Spectrum Protect administrator can use the IBM Spectrum Protect command-line interface to enter the set access command while connected to the DC_NODE. Enabling access is required for Data Protection for SQL Server to restore the data that is owned by the DC_NODE.
Running the commands from the DC_NODE is best practice because the options file has the necessary settings to communicate with the IBM Spectrum Protect server. The IBM Spectrum Protect administrator credentials can be used if the DC_NODE administrator password is not available.

5. The set access command cannot be run if the ASNODE option is used. To issue the set access command, use an option file that does not contain ASNODE.
 a. Copy dsm.opt and dsm.setaccess.opt files.
 b. If you run the set access command from a node with ASNODE in the options file, edit the dsm.setaccess.opt file. For any line that contains ASNODE, remove the line.
 c. Edit the dsm.setaccess.opt file to set the NODENAME option to the following entry:
 DC_NODE NODENAME DC_NODE
 d. Enter the following command:

 dsmc set access backup -type=VM traveler VSS_NODE -optfile=dsm.setaccess.opt

 You might be prompted to enter the password for the DC_NODE.

 For any subsequent set access, query access, and delete access commands, repeat these steps.

6. From the Protect and Recover Data section in MMC, select an SQL Server.

7. On the Recover tab for that SQL Server, select View: Databases to see a list of SQL Server database backups that are available to restore. SQL Server databases that are backed up with IBM Spectrum Protect for Virtual Environments software are listed with the VMVSS backup method.

8. Verify the restore options. If the restore options are not displayed, click Show Restore Options.

9. Optional: Choose a mode for the current task:
 • Run Interactively: Click this item to run the current task interactively. This selection is the default.
 • Run Scheduled: Click this item to convert the current action into a scheduled task. When you select this item, the schedule wizard begins, complete with the command that is required to complete the task.

10. On the Actions pane, click Restore to begin the restore operation.

11. To view the status of the restore operation, click Task List in the lower half of the results pane. Click Task Details to view detailed status information.

Restoring SQL Server databases on Windows Server Core

To restore Microsoft SQL Server databases, use the restore command.

About this task

Use the following procedure to recover all or part of one or more SQL Server databases.

Procedure

To restore all or part of an SQL Server database on Windows Server Core, enter the following command at the command prompt:

```
tdpsqlc restore database_name backup_type [other_options]
```
where database_name specifies the name of the database, and backup_type specifies the type of backup such as a full backup. You can specify other options, such as the file group. For example, to create a full database restore of databases DB_01 and DB_02, and to replace the existing databases with the database objects that are recovered from the IBM Spectrum Protect server, enter the following command:

tdpsqlc restore DB_01 group=DB_01_group1

To restore the filegroup DB_01_group1 that belongs to the DB_01 database, enter the following command:

tdpsqlc restore DB_01 group=DB_01_group1

To restore all the logical files that are in the DB_01 database, enter the following command:

tdpsqlc R DB_01 file=*

Restoring SQL Server file groups and files from legacy backups

By using Microsoft Management Console (MMC), you can restore SQL Server file groups and files from legacy backups. You can also restore availability databases to any availability replica in an availability group.

Before you begin

- You can restore databases or parts of databases from **group**, **file**, **set**, **log**, and **full legacy** backups.
- Microsoft SQL Server requires that all files in the Primary filegroup is restored before or with a user-defined filegroup. To bring the database back to a usable state, you must perform a log restore after the user-defined filegroup is restored.

You can also restore availability databases that you backed up with the AlwaysOn node with SQL Server 2012 and later versions. Backups of availability databases can be restored to any availability replica in an availability group. For more information, consider the guidelines and restrictions in the topic that describes the restore of availability databases.

Restoring parts of a database from a full legacy backup is also known as a partial restore. If you plan to apply either a log restore with point-in-time or a differential restore to a partially restored database, then consider one of these tasks:

- Use the Files view on the Recover tab to select and restore the full backup object. Make sure that the RunRecovery option is set to No.
- If you plan to apply a log restore with point-in-time, click Restore to Point-in-Time in the Actions pane to restore the log. Make sure that the RunRecovery option is set to Yes.
- If you plan to apply a differential restore, click Restore in the Actions pane to run a differential restore. Make sure the RunRecovery option is set to Yes.

Attention: When you restore the files and file groups of a database, existing data is overwritten by the restored data and is no longer available after the restore is complete.

For AlwaysOn availability databases, ensure that Data Protection for SQL Server is set up to use an AlwaysOn node name. You can set up the AlwaysOn node name in the AlwaysOn Node field in the TSM Node Names page of the IBM Spectrum Protect for Databases: Data Protection for Microsoft SQL Server Installation and User's Guide.
Protect Configuration wizard. By default, the AlwaysOn node name is set to the cluster node name for the Availability Group in SQL Server 2012, and later versions.

Procedure

1. Start MMC.
2. Select the **SQL Server** instance in the tree view.
3. On the **Recover** tab for the SQL Server instance, specify the type of SQL Server data to restore.

 Table 20. Database restore views

<table>
<thead>
<tr>
<th>Task</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>View a list of SQL Server database backup files that are available</td>
<td>Click View: Files.</td>
</tr>
<tr>
<td>for a restore operation</td>
<td></td>
</tr>
<tr>
<td>View a list of SQL Server 2012 and later version availability</td>
<td>Click DP Node Backups to show AlwaysOn</td>
</tr>
<tr>
<td>databases that are available for a restore operation</td>
<td>node backups.</td>
</tr>
</tbody>
</table>
<pre><code> | Toggle the **DP Node Backups / AlwaysOn Node Backups** button for the respective database views.|
</code></pre>

4. Verify the restore options. If the restore options are not displayed, click **Show Restore Options**.
5. Optional: Choose a mode for the current task:
 - **Run Interactively**: Click this item to run the current task interactively. This selection is the default.
 - **Run Scheduled**: Click this item to convert the current action into a scheduled task. When you select this item, the schedule wizard begins, complete with the command that is required to complete the task.
6. On the Actions pane, click **RestoreFile** or **RestoreGroup** to begin the restore operation.
7. To view the status of the restore operation, click **Task List** in the lower half of the results pane. Click **Task Details** to view detailed status information.

Protecting SQL Server data in a failover cluster environment

In an SQL Server cluster environment, AlwaysOn Failover Cluster Instances (FCI) and AlwaysOn Availability Groups (AAGs) are supported. Data Protection for SQL Server protects availability databases in an AAG and AlwaysOn Failover cluster instance.

About this task
Data Protection for AlwaysOn Availability Groups

You can run VSS (full) and legacy (full, differential, file/set/group, and log) backup operations on a primary replica. You can run copy-only VSS and legacy backup operations, and normal log backups on a secondary replica. You cannot run a differential backup on a secondary replica.

For backups on a secondary replica, the replica must be in the synchronized or synchronizing state. You can have multiple AlwaysOn Availability Groups (AAGs) in a SQL Server cluster. You can also have a mix of standard databases and AAGs on a SQL Server cluster.

When you back up data, you can distribute the backup workload for scalability and isolate backup activity to a dedicated backup node. When you isolate backup activity, it minimizes the effect on production databases.

Given that replicas are copies of the same database, avoid redundant backups of the same databases. Apply retention policies to unique databases.

As a best practice, allow backups from any node in the availability group and enable restore operations from any node in the availability group.

Best practices for backing up data in an AAG

When you use IBM Spectrum Protect Snapshot for SQL Server to manage AAG backups, consider the following backup options:

Backup priority
Specified per database in an AAG, the backup priority option defines the order in which replicas are used to back up a database in an AAG.

Preferred replica
Specified at an AAG level, the preferred replica option defines whether primary or secondary replicas can be used for backup operations.

- Prefer secondary replica: Scheduled backups occur on a secondary replica, if available. If the secondary replica is not available, you can use the primary replica.
- Secondary only: Scheduled backups can occur only on a secondary replica.
- Primary: Scheduled backups can occur only on the primary replica.
- Any replica: Scheduled backups can occur on any replica.

/USEALWAYSONNode parameter
A parameter option on the backup command that provides a common namespace for all backups. Each node authenticates separately with IBM Spectrum Protect. Backed up data is stored in the AlwaysOnNode namespace by using the Asnode option.

/ALWAYSONPriority parameter
A parameter option on the backup command that specifies that a local availability database is backed up only if it has the highest backup priority among the availability replicas that are working properly. This parameter applies only to scheduled backups.
Typical data protection deployments in AAG environments

You can back up data in an AAG in the following ways:

- Distribute a legacy backup across AAG replicas
- Distribute a VSS backup across AAG replicas

Scenario: Legacy backups are distributed across AAG replicas

When you configure your environment to distribute a legacy backup across AAG replicas, follow these steps:

1. Set the preferred replica to **Prefer secondary replica**.
2. Install IBM Spectrum Protect Snapshot for SQL Server on all replicas that are eligible to run a backup.
3. Create a command script to run a `.CMD` file with a `backup` command similar to the following example:
   ```sh
tdpsqlc backup db1,db2,db3 full /alwaysonpriority
   
   tdpsqlc backup db1 full /alwaysonpriority /backupmethod=VSS
   tdpsqlc backup db2 full /alwaysonpriority /backupmethod=VSS
   tdpsqlc backup db3 full /alwaysonpriority /backupmethod=VSS
   ```
4. Associate each IBM Spectrum Protect Snapshot for SQL Server node with the defined schedule.
5. Run backups on the SQL node according to defined priorities for each database.

Scenario: VSS backups are distributed across AAG replicas

When you configure your environment to distribute a VSS backup across AAG replicas, follow these steps:

1. Set the preferred replica to **Prefer secondary replica**.
2. Install IBM Spectrum Protect Snapshot for SQL Server on all replicas that are eligible to run a backup.
3. Create a command script to run a `.CMD` file with a separate `backup` command per database similar to the following sample:
   ```sh
tdpsqlc backup db1 full /alwaysonpriority /backupmethod=VSS
   backupdest=TSM
   
   tdpsqlc backup db2 full /alwaysonpriority /backupmethod=VSS
   backupdest=TSM
   
   tdpsqlc backup db3 full /alwaysonpriority /backupmethod=VSS
   backupdest=TSM
   ```
4. Associate each IBM Spectrum Protect Snapshot for SQL Server node with the defined schedule.
5. Run backups on the SQL node according to defined priorities for each database.

Creating SQL Server backups in AAG environment

On SQL Server 2012 and later versions, you can back up databases in an AlwaysOn Availability Group (AAG) cluster. This procedure describes different approaches for backing up your SQL Server in an AAG cluster environment.

Before you begin

- To run a legacy backup, ensure that the Data Protection for SQL Server license file is installed.
- To back up availability databases, ensure that is configured to use an AlwaysOn node. Additionally, specify the AlwaysOn node in the **AlwaysOn Node** field in the IBM Spectrum Protect Node Names page of the IBM Spectrum Protect Configuration Wizard.
- For all backup operations of secondary availability replicas, ensure that the secondary replicas are in a synchronized or synchronizing state.
When running a scheduled backup using a script of a database in an availability group, ensure the backup preferences for the availability group are set. This is done at AAG level when the AAG is being set up. Ensure the backup priority option that defines the order in which replicas are used to back up a database in an AAG is set. Also, ensure that the preferred replica to define whether primary or secondary replicas can be used for backup operations is set. For more information, see “Data Protection for AlwaysOn Availability Groups” on page 5.

Create backup using MMC

About this task

On MMC, you can choose the replica you want to run the backup on and depending on the replica you want to back up, the following backup types are available. You can select the following types of VSS backup operations:

- Full VSS backups of the primary availability replica
- VSS copy-only full backups of availability replicas

You can run the following types of legacy backup operations:

- On the primary replica, legacy full, differential, file, set, group, and log backups
- On the secondary replica, legacy full, file, set, group, and log backups
- VSS and legacy copy-only full backups, legacy copy-only file, set, or group backups, and legacy copy-only and normal log backups

Procedure

1. Start MMC.
2. In the tree view, select the SQL Server node instance which you want to back up.
3. On the Protect tab of the selected SQL Server node instance, select an option for viewing databases and information about the included databases.

<table>
<thead>
<tr>
<th>Task</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>View a list of SQL Server databases that are available for a backup operation</td>
<td>Click View: Databases.</td>
</tr>
<tr>
<td>View a list of SQL Server 2012 and later version availability databases that are available for a backup operation</td>
<td>Click Standard Databases. Information about the availability databases in an availability group is displayed, including the replica role, synchronization state, and space and log usage. Toggle the Standard Databases / Availability Databases button for the respective database views.</td>
</tr>
</tbody>
</table>

4. Verify the backup options. If the backup options are not displayed, click Show Backup Options.
5. In the Actions pane, click Backup Method and select Legacy.
6. In the Actions pane, select TSM for the Backup Destination. The only option that is available to you is TSM because the database backups are stored on IBM Spectrum Protect server storage.
7. Optional: Choose a mode for the current task:
 - Run Interactively: Click this item to run the current task interactively. This selection is the default.
Run Scheduled: Click this item to convert the current action into a scheduled task. When you select this item, the schedule wizard runs the command that is required to complete the task.

8. To start the backup operation, in the Actions pane, take one of the following actions:

- **Full Backup**
- **Copy-Only Full Backup**
- **Differential Backup to IBM Spectrum Protect**
- **Log Backup to IBM Spectrum Protect**

9. Review the status of the backup operation by clicking Task List in the results pane. Click Task Details to view detailed status information.

Create scheduled backup

Procedure

1. Start MMC.

2. In the tree view, select the SQL Server node instance and open the Automate tab. An integrated command line is available in the task window from which you can enter PowerShell cmdlets or command-line interface commands.

3. Toggle the **PowerShell / Command Line** option to choose which you wish to use.

4. To run using the command-line interface, in the Details pane, create a command script to run a backup command and to run, click the Execute icon. For example, to create a legacy backup, execute the following command:

   ```
tdpsqlc backup db1,db2,db3 full /alwaysonpriority
   ```

 To create a VSS backup, execute the following commands. For each database, execute a separate command.

   ```
tdpsqlc backup db1 full /alwaysonpriority /backupmethod=VSS backupdest=TSM
   tdpsqlc backup db2 full /alwaysonpriority /backupmethod=VSS backupdest=TSM
   tdpsqlc backup db3 full /alwaysonpriority /backupmethod=VSS backupdest=TSM
   ```

5. To run a scheduled backup using Powershell cmdlets, you can do so on the Result pane or the Task List pane. For more information, see "Automating tasks" on page 143. The format for SQL Server cmdlets is `XXX-DpSqlXXX` and to view a full list of available cmdlets, enter `Get-Help`. For example, to run a backup, execute `Backup-DpSqlComponent`.

6. Review the status of the backup operation by clicking Task List in the results pane. Click Task Details to view detailed status information.

Related concepts:

- "Failover clustering and AlwaysOn Availability” on page 2
- “Availability database backup operations” on page 3
- “Availability database restore operations” on page 4
Example backup scenarios

The following examples describe some typical backup scenarios in a cluster environment.

Scenario: You have a cluster configuration consisting of two SQL Server nodes. The cluster is configured in an AlwaysOn Availability group, where one node is the primary replica and the other, the secondary replica. You want to do a full backup of the secondary replica and also want to back up the transaction log using MMC.

To do a full backup with transaction log, you can run a legacy backup.
1. To run a legacy backup, ensure that the Data Protection for SQL Server license file is installed.
2. Start MMC.
3. In the tree view, open the Protect and Recover view and select the SQL Server replica which you want to back up.

 Note: IBM Spectrum Protect Snapshot for SQL Server must be installed on all replicas that are eligible to run a backup.

4. On the Protect tab of the selected SQL Server node instance, select an option for viewing databases and information about the included databases.
5. Toggle the Standard Databases / Availability Databases button for the respective database views. Verify the replica role, synchronization state, and space and log usage of your selected SQL Server node.
6. In the Actions pane, click Backup Method and select Legacy.
7. Click Full Backup to perform a full database backup on the secondary node and wait for it to finish. Review the status of the backup operation by clicking Task List in the results pane.

Since running your full backup, an update has been made to your primary replica. This change is synchronized to the secondary replica using log shipping. To also back up the change, you can run a log backup. In MMC, select your SQL Server secondary replica instance. Click Backup Method and select Legacy. Select Log Backup to IBM Spectrum Protect

You have now completed a full and a log backup on a secondary node in an AAG cluster.

Scenario: Your AAG environment is configured to run VSS backups. You want to run a scheduled VSS snapshot backup of your secondary replica.
When you configure your environment to distribute a VSS backup across AAG replicas, you can run only full VSS backups on the primary availability replica. To back up other replicas using VSS, you must choose copy-only full backups.

1. In the tree, open the Protect and Recover view and select the SQL Server instance which you want to back up.
2. Verify that your preferred replica is your secondary replica. Right-click selected SQL Server instance. Select Properties and choose AlwaysOn Preferences. Select Prefer secondary replica
3. Install IBM Spectrum Protect Snapshot for SQL Server on all replicas that are eligible to run a backup.
4. Create a command script to run a .CMD file with a separate backup command per database similar to the following sample
5. Associate each IBM Spectrum Protect Snapshot for SQL Server node with the defined schedule.

6. Run backups on the SQL node according to defined priorities for each database.

Protecting SQL Server data in a Windows Server Core environment

Server Core is a minimal and low-maintenance server environment where you can run the minimum services that are necessary to maintain Windows Server 2008 and later versions. You can install and operate Data Protection for SQL Server in this minimal server environment.

About this task

You can install Data Protection for SQL Server on Windows Server 2008 R2 Server Core SP1 and later versions.

In such a minimal environment, only the command-line interface is available for Data Protection for SQL Server on Windows Server Core unless you use the Data Protection for SQL Server remote management support. Additionally, if you use Windows Installer (MSI) to install Data Protection for SQL Server, you can use only the unattended mode.

You can use the **backup** and **restore** commands to protect databases that are stored on Microsoft SQL Server 2014 or later versions.

Backing up SQL Server databases on Windows Server Core

To back up Microsoft SQL Server databases, use the **backup** command.

About this task

Use the following procedure to back up SQL Server databases to the IBM Spectrum Protect server, or to take local VSS snapshots.

Procedure

1. To back up all or part of an SQL database on Windows Server Core, enter the following command at the command prompt:

   ```
   tdpsqlc backup database_name backup_type [other_options]
   ```

 where `database_name` specifies the name of the database, and `backup_type` specifies the type of backup such as a full backup. You can specify other options, such as the back up method. For example, to create a full legacy backup of SQL databases `DB_01` and `DB_02`, enter the following command:

   ```
   tdpsqlc backup DB_01,DB_02 full /backupmethod=legacy
   ```

 For example, to create a full legacy backup of all databases on the SQL Server, enter the following command:

   ```
   tdpsqlc backup * full /backupmethod=legacy
   ```

2. To back up a file group, enter the following command at the command prompt:
tdpsqlc backup database_name file_group

where database_name specifies the name of the database, and file_group specifies the file group in the database. For example, to back up the filegroup DB_01_group1 that belongs to the DB_01 database, enter the following command:

tdpsqlc backup DB_01 Group=DB_01_group1

Restoring SQL Server databases on Windows Server Core

To restore Microsoft SQL Server databases, use the `restore` command.

About this task

Use the following procedure to recover all or part of one or more SQL databases.

Procedure

To restore all or part of an SQL database on Windows Server Core, enter the following command at the command prompt:

tdpsqlc restore database_name backup_type [other_options]

where database_name specifies the name of the database, and backup_type specifies the type of backup such as a full backup. You can specify other options, such as the file group. For example, to create a full database restore of databases DB_01 and DB_02, and to replace the existing databases with the database objects that are recovered from the IBM Spectrum Protect server, enter the following command:

tdpsqlc restore DB_01 group=DB_01_group1

To restore the filegroup DB_01_group1 that belongs to the DB_01 database, enter the following command:

tdpsqlc restore DB_01 group=DB_01_group1

To restore all the logical files that are in the DB_01 database, enter the following command:

tdpsqlc R DB_01 file=*
you do not specify the /configfile parameter, the default configuration file (tdpsql.cfg) is used.
Examples:

Task Set the preferred SQL Server in the tdpsql.cfg file.

Command: tdpsqlc set sqlserver=your_SQL_instance /configfile=tdpsql.cfg

Command: tdpsqlc set fromsqlserver=your_SQL_instance /configfile=tdpsql.cfg

Task Change the name of the Data Protection for SQL Server activity log file to tdpsql1.log.

Command: tdpsqlc set logfile=tdpsql1.log

Viewing, printing, and saving reports

You can access reports on recent activity and historical managed capacity. You can determine which licenses and software are installed.

Procedure

1. Select **Reporting** in the **Manage** section. A list of available reports is displayed. Each report provides a summary of the report contents.
2. Select a report from the list. The selected report displays.
3. To print or save the current report, click the appropriate icon at the top of the report.
Chapter 5. Automating

With Data Protection for SQL Server automation capability, you can run commands from the command line, create scripts, schedule tasks, and use Microsoft Management Console (MMC) to start tasks. The tasks that you can automate are based on the scripts and schedules that you create.

About this task

Data Protection for SQL Server supports you automating tasks from the command-line interface or Microsoft Windows PowerShell command prompt (Version 3.0 or later). You can also use the Automate tab in MMC.

Preparing to use Windows PowerShell cmdlets with Data Protection for SQL Server

Data Protection for SQL Server includes a set of Windows PowerShell cmdlets to help you manage Data Protection for SQL Server components in your environment.

About this task

You can issue cmdlets that are provided with Data Protection for SQL Server in Windows environments.

Data Protection for SQL Server cmdlets help support a seamless management environment and greatly improve remote management and automation capabilities. You can aggregate cmdlets together to form commands and use the large volume of existing cmdlets from other vendors.

Before you use the cmdlets, complete the following steps.

Procedure

1. Log on to the system as an administrator.
2. From a Windows PowerShell command prompt, issue the following command:
   ```
   set-executionpolicy remotesigned
   ```
3. During installation of Data Protection for SQL Server, the following Windows PowerShell modules are imported automatically from the FlashCopyManager folder:
 - FmModuleSQL.dll
 - FmModuleMMC.dll
 If you wish to import the Windows PowerShell modules manually, from the Windows PowerShell command prompt, import modules, with the administrator credentials, as follows:
 a. Browse to the FlashCopyManager folder.
 b. Enter the following commands:
      ```
      import-module .\FmModuleSQL.dll
      import-module .\FmModuleMMC.dll
      ```
 c. (Optional) To use the cmdlets in these modules any time that you start Windows PowerShell, add the following lines to your profile:
$path = (get-itemproperty -path "HKLM:\SOFTWARE\IBM\TDPSq1\currentversion\mmc" -ea SilentlyContinue).path
if ($null -ne $path)
{
 dir "$path\fmmodule*.dll" | select-expand fullname | import-module -force -Global
}

What to do next

For information about creating, running, monitoring, and troubleshooting scripts with cmdlets, see Windows PowerShell 3.0 or later documentation. For more information about Windows PowerShell cmdlets, consistent naming patterns, parameters, arguments, and syntax, see this web page as a starting point: [Microsoft TechNet: Getting Started with Windows PowerShell (http://technet.microsoft.com/en-us/library/hh857337.aspx)]

Cmdlets for Microsoft Management Console

The following list identifies the cmdlets that you can use when interacting with Microsoft Management Console (MMC).

- Clear-FcmMmcManagedCapacityHistory
- Clear-FcmMmcScheduledActivityHistory
- Disable-FcmMmcSchedule
- Enable-FcmMmcSchedule
- Get-FcmMmcActivity
- Get-FcmMmcComputerInformation
- Get-FcmMmcManagedCapacityHistory
- Get-FcmMmcReport
- Get-FcmMmcSchedule
- Get-FcmMmcScheduledActivity
- New-FcmMmcSchedule
- Remove-FcmMmcSchedule
- Set-FcmMmcSchedule
- Start-FcmMmcSchedule

To view the details about a specific cmdlet, run the Get-Help cmdlet with the cmdlet name. For example:
Get-Help New-FcmMmcSchedule

To continue the example, to see examples for the cmdlet, enter:
get-help New-FcmMmcSchedule -examples

For more information, enter:
get-help New-FcmMmcSchedule -detailed

For technical information, enter:
get-help New-FcmMmcSchedule -full

For online product information, enter:
get-help New-FcmMmcSchedule -online

For information about a specific parameter, enter:
To display the help in a separate window, include the \texttt{-showwindow} parameter with the \texttt{help} command.

Cmdlets for protecting Microsoft SQL Server data

The following table identifies the cmdlets that you can use to protect Microsoft SQL Server data.

\textbf{Table 22. Cmdlets to protect Microsoft SQL Server data.} The following table identifies the cmdlets that you can use to protect Microsoft SQL Server data.

<table>
<thead>
<tr>
<th>Cmdlet name</th>
<th>Related command-line interface command</th>
<th>Short description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add-DpSqlPolicy</td>
<td>\texttt{tdpsqlc create policy}</td>
<td>Create a policy for Microsoft SQL Server data.</td>
</tr>
<tr>
<td>Backup-DpSqlComponent</td>
<td>\texttt{tdpsqlc backup}</td>
<td>Backup SQL Server components.</td>
</tr>
<tr>
<td>Copy-DpSqlPolicy</td>
<td>\texttt{tdpsqlc copy policy}</td>
<td>Copy an existing policy to a new policy.</td>
</tr>
<tr>
<td>Dismount-DpSqlBackup</td>
<td>\texttt{tdpsqlc unmount backup}</td>
<td>Dismount a backup.</td>
</tr>
<tr>
<td>Dismount-DpSqlClone</td>
<td>not applicable</td>
<td>Dismounts a clone backup.</td>
</tr>
<tr>
<td>Get-DpSqlBackup</td>
<td>\texttt{tdpsqlc query tsm *}</td>
<td>Query the backups that are stored on the server.</td>
</tr>
<tr>
<td>Get-DpSqlClone</td>
<td>not applicable</td>
<td>Queries the clone backups that are stored on the SQL server.</td>
</tr>
<tr>
<td>Get-DpSqlComponent</td>
<td>\texttt{tdpsqlc query sql *}</td>
<td>Query the databases that are available on the SQL Server.</td>
</tr>
<tr>
<td>Get-DpSqlConfig</td>
<td>\texttt{tdpsqlc query tdp}</td>
<td>Display configuration information.</td>
</tr>
<tr>
<td>Get-DpSqlConnection</td>
<td>\texttt{tdpsqlc query tsm}</td>
<td>Displays the IBM Spectrum Protect API and server information.</td>
</tr>
<tr>
<td>Get-DpSqlFileGroups</td>
<td>not applicable</td>
<td>Displays all file and group information about specified SQL Server databases.</td>
</tr>
<tr>
<td>Get-DpSqlInformation</td>
<td>\texttt{tdpsqlc query sql}</td>
<td>Display specified SQL Server information.</td>
</tr>
<tr>
<td>Get-DpSqlManagedCapacity</td>
<td>\texttt{tdpsqlc query managedcapacity}</td>
<td>Assist with storage planning by determining the amount of managed capacity that is in use.</td>
</tr>
<tr>
<td>Get-DpSqlPolicy</td>
<td>\texttt{tdpsqlc query policy}</td>
<td>Query policy.</td>
</tr>
<tr>
<td>Mount-DpSqlBackup</td>
<td>\texttt{tdpsqlc mount backup}</td>
<td>Mounts a backup that provides access to the files that are contained by the backup.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You can mount a backup as read-only or read/write.</td>
</tr>
<tr>
<td>Mount-DpSqlClone</td>
<td>not applicable</td>
<td>Mounts a cloned database that provides access to the files that are contained in a clone backup.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You can mount a cloned database as read/write only.</td>
</tr>
</tbody>
</table>
Table 22: Cmdlets to protect Microsoft SQL Server data (continued).
The following table identifies the cmdlets that you can use to protect Microsoft SQL Server data.

<table>
<thead>
<tr>
<th>Cmdlet name</th>
<th>Related command-line interface command</th>
<th>Short description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New-DpSqlCloneFromComponent</td>
<td>not applicable</td>
<td>Creates a clone backup from a production database. You can select specific databases from the current SQL server for which you want to create a clone backup. This backup is then used to create a clone of the production database.</td>
</tr>
<tr>
<td>Remove-DpSqlBackup</td>
<td>tdpsqlc delete backup and tdpsqlc inactivate</td>
<td>Use to delete a VSS backup of an SQL Server database, or deactivate one or more active legacy backup objects on the IBM Spectrum Protect server.</td>
</tr>
<tr>
<td>Remove-DpSqlClone</td>
<td>not applicable</td>
<td>Deletes one or more SQL clone backups.</td>
</tr>
<tr>
<td>Remove-DpSqlPolicy</td>
<td>tdpsqlc delete policy</td>
<td>Deletes a local policy.</td>
</tr>
<tr>
<td>Reset-DpSqlTsmPassword</td>
<td>tdpsqlc changetspmssword</td>
<td>Changes the IBM Spectrum Protect password that is used by Data Protection for SQL Server.</td>
</tr>
<tr>
<td>Restore-DpSqlBackup</td>
<td>tdpsqlc restore</td>
<td>Restore backups of Microsoft SQL Server data.</td>
</tr>
<tr>
<td>Set-DpSqlConfig</td>
<td>tdpsqlc set paramname</td>
<td>Set the Data Protection for SQL Server configuration parameters in the configuration file.</td>
</tr>
<tr>
<td>Set-DpSqlPolicy</td>
<td>tdpsqlc update policy</td>
<td>Changes an existing policy.</td>
</tr>
</tbody>
</table>

To view the details about a specific cmdlet, run the `Get-Help` cmdlet with the cmdlet name. For example:

```
Get-Help Get-DpSqlBackup
```

To continue the example, to see examples for the cmdlet, enter:

```
get-help Get-DpSqlBackup -examples
```

For more information, enter:

```
get-help Get-DpSqlBackup -detailed
```

For technical information, enter:

```
get-help Get-DpSqlBackup -full
```

For online product information, enter:

```
get-help Get-DpSqlBackup -online
```

For information about a specific parameter, enter:

```
help Get-DpSqlBackup -Parameter backupdestination
```

To display the help in a separate window, include the `-showwindow` parameter with the `help` command.
Automating tasks

You can automate a workload by entering Windows PowerShell cmdlets or command-line interface commands in the integrated command line.

About this task

You use the Automate view to work with commands. You can create, save, store, and schedule commands to run at the scheduled time.

Procedure

1. To open the Automate view, select a workload that you want to work with and click Automate. An integrated command line is available in the task window from which you can enter PowerShell cmdlets or command-line interface commands.
2. Change PowerShell to Command Line.
3. To run a command, type a command in the details pane and click the Execute icon. You can issue the commands with or without specifying tdpsqlc. For example, for each selected workload instance, you can enter a single command or multiple commands, such as:
   ```
   q tsm
   q sql
   ```
 You can also run a saved task by clicking the Open icon, selecting the command file, and clicking the Execute icon. The output is displayed in the main window.
4. Click the Save icon and follow the prompts to save a command for future use.
5. To schedule a command, click the Schedule this command icon to open the scheduling wizard. Follow the prompts in the wizard to create a schedule for the command. The output of the command is displayed in the results pane.
6. (Optional) Save or send the command output to an email address.

What to do next

You can automate commands from the Protect, Recover, Schedule, and Task List views in Microsoft Management Console (MMC):
1. Start MMC and select the SQL Server instance in the navigation tree.
2. Click the tab for the task you want to do (Protect or Recover).
3. Automate the command by using one of the following methods:
 - **Result pane**
 Select the item for your task in the result pane, and select Run Scheduled in the toolbar menu. Click the appropriate task in the Action pane. When the scheduling wizard starts, enter the information for each prompt to create a scheduled task.
 You can select the type of scheduler you want to use to manage your scheduled operations. Click the relevant check box to select either the local Windows Scheduler or the IBM Spectrum Protect client scheduler. To use the IBM Spectrum Protect client scheduler, you must configure the client to use the client acceptor to manage the scheduler. For more information, see Configuring the client to use the client acceptor service to manage the scheduler[http://www.ibm.com/support/knowledgecenter/SSEQVQ_8.1.2/client/cCfgDsmCutilUseWin.html].
Task List pane
When a task is submitted, it displays in the task list pane. Select the appropriate task, then click **Schedule command script** in the task list toolbar. When the schedule wizard starts, enter the information for each prompt to create a scheduled task.

You can also right-click a task in the Task List pane and click **Copy**. Then, click the **Automate** tab and paste the command in the field.

IBM Spectrum Protect task scheduler

Review these guidelines when you define an IBM Spectrum Protect schedule.

- If you use the IBM Spectrum Protect-prompted scheduling mode, ensure that the Data Protection for SQL Server option file specifies the `tcpclientaddress` and `tcpclientport` options. If you want to run more than one scheduler service, use the same `tcpclientaddress`. However, you must use different values for `tcpclientport` in addition to the different node names. As an example, you might want to run more than one scheduler service when you schedule Data Protection for SQL Server and the regular Windows backup client.

You can use server-prompted scheduling only when TCP/IP communication is used. By default, Data Protection for SQL Server uses the client polling schedule mode.

- If you make any changes that affect the scheduler in the Data Protection for SQL Server options file, restart the scheduler to activate the changes. For example, the IBM Spectrum Protect address, the schedule mode, or the client TCP address or port can affect the scheduler. To restart the scheduler, issue the following commands:

  ```
  net stop "Data Protection for SQL Scheduler"
  net start "Data Protection for SQL Scheduler"
  ```

- The default IBM Spectrum Protect scheduler log file (`dsmsched.log`) contains status information for the IBM Spectrum Protect scheduler. In this example, the file is in this path:

  ```
  d:\Program Files\Tivoli\TSM\TDPSQL\dsmsched.log
  ```

 You can override this file name by specifying the `schedlogname` option in the Data Protection for SQL Server options file.

- Data Protection for SQL Server creates a log file with statistics about the backed up database objects when the `/logfile` parameter is specified during the `tdpsqlc` command. Outputs from the scheduled commands are sent to the scheduler log file (`dsmsched.log`). After scheduled work is completed, check the log to verify that the work is completed successfully.

When a scheduled command is processed, the scheduler log might contain the following entry:

  ```
  Scheduled event eventname completed successfully
  ```

This result indicates that IBM Spectrum Protect successfully issued the scheduled command that is associated with the `eventname`. No attempt is made to determine whether the command succeeded or failed. To assess the success or failure of the command, evaluate the return code from the scheduled command in the scheduler log. The scheduler log entry for the command return code is prefaced with the following text:

  ```
  Finished command. Return code is:
  ```

If any scheduled backups fail, the scheduler script exits with the same error code as the failed backup command. A non-zero error code means that the backup failed.
• If `passwordaccess generate` is not specified in the `dsm.opt` file, then the IBM Spectrum Protect password must be specified on the `tdpsqlc` command. To specify the password, use the `/tsmpassword` parameter in the command file that is run by the scheduler (`sqlfull.cmd`). You can also specify the password on the Data Protection for SQL Server command line. For example:

```
    tdpsqlc query tsm /tsmnode=mars1 /tsmpassword=newpassword
```
Chapter 6. Troubleshooting

Data Protection for SQL Server supports you in protecting Microsoft SQL Server databases. Data Protection for SQL Server uses the Microsoft Server Managed Objects (SMO) application programming interface (API), and the Microsoft Virtual Shadow Copy Service (VSS).

About this task

If an error condition occurs during a Data Protection for SQL Server event, you typically start with a symptom, or set of symptoms, and trace the root cause. Problem determination, however, is not the same as problem solving. During the process of problem determination, you might obtain sufficient information to enable you to solve the problem. In some cases, you cannot solve a problem even after you determine its cause. For example, a performance problem might be caused by a limitation of your hardware.

Diagnosing problems

One of the most difficult challenges of troubleshooting in a client-server environment is determining which component is the origin of the problem. VSS diagnostic wizards are available to help you test VSS snapshots on your system. You can determine whether the source of the problem is a general VSS issue, or an IBM Spectrum Protect issue, or a Data Protection for SQL client issue.

Error log files

If an error condition occurs during a Data Protection for SQL Server event, you can view several log files to help diagnose the problem.

For example, you can confirm that Data Protection for SQL Server failed over by searching entries about the secondary server in the following log files:

- `Tivoli\tsm\TDPSQL\dsierror.log`
- `Tivoli\tsm\baclient\dserror.log`
- Data Protection for SQL Server logs information about backup, restore, and delete commands to the Tivoli® Event Console.
- Data Protection for SQL Server logs information, by default, to the `tdpsql1.log` file in the directory where Data Protection for SQL Server is installed. This file indicates the date and time of a backup, the data that is backed up, and any error messages or completion codes. This file is very important and should be monitored daily.
- The IBM Spectrum Protect API logs API error information, by default, to the `dserror.log` file in the directory where Data Protection for SQL Server is installed. No backup statistics are contained in this log. The `dserror.log` file cannot be marked as read-only.
- Data Protection for SQL Server logs information to the SQL Server error log. The SQL Server error log information can be viewed using the SQL Server administration tools.
- The IBM Spectrum Protect scheduler logs information to both the `dsmsched.log` and the `dserror.log` files. By default, these files are located in the directory where the IBM Spectrum Protect backup-archive client is installed.
Tip: Output from scheduled commands are sent to the scheduler log file (dsmsched.log). After the scheduled work completes, check the log to ensure work completed successfully.

When a scheduled command is processed, the scheduler log can contain the following entry:

Scheduled event \textit{eventname} completed successfully

This entry is merely an indication that IBM Spectrum Protect successfully issued the scheduled command associated with the \textit{eventname}. No attempt is made to determine the success or failure of the command. You can assess the success or failure of the command by evaluating the return code from the scheduled command in the scheduler log. The scheduler log entry for the command’s return code is prefaced with the following text:

\textit{Finished command. Return code is: return_code_number}

- Windows System and Application Event Log.
- For VSS operations, view the \texttt{dsmerror.log} file in the backup-archive client installation directory.

Determining that the problem is a Data Protection for SQL Server issue or a general VSS issue

The Data Protection client interacts closely with the backup-archive client (DSMAGENT). The client completes all of the Virtual Shadow Copy Service (VSS) operations. You can test the connectivity between the Data Protection client and the IBM Spectrum Protect DSMAGENT. You can determine whether the source of the problem is the Microsoft VSS service or a problem within the IBM Spectrum Protect code.

About this task

- The vssadmin and diskshadow tools are applications that can run backups that use the Microsoft SQL Server VSS APIs.

\textbf{vssadmin}

A utility that is installed with your operating system, and can show current volume shadow copy backups and all installed shadow copy writers and providers in the command window.

\textbf{diskshadow}

The diskshadow tool is available with Windows Server 2008 and later versions.

With these tools, you can determine the following items:

- Verify VSS provider configurations
- Rule out any possible VSS problems before you run the IBM Spectrum Protect VSS functions
- That you might have a VSS configuration problem or a real hardware problem if an operation does not work with diskshadow or vssadmin
- That you might have an IBM Spectrum Protect problem if an operation works with diskshadow or vssadmin but not with the IBM Spectrum Protect

- For VSS operations, you can re-create the problem with the Microsoft diskshadow tool. If you are able to re-create the problem with the diskshadow tool, the source of the problem is likely to be within the VSS provider or the SQL Server.
Procedure

1. Test the connectivity between the Data Protection client and the IBM Spectrum Protect DSM Agent.

 a. Select the SQL Server workload that you want to work with and click the Automate tab to open the Automate view.

 b. To verify that your installation and configuration is correct, issue the **TDPSQLC QUERY SQL** command in the lower details pane and click **Execute** (or **Enter**). Alternatively, issue the **TDPSQLC QUERY SQL** command on the computer where the SQL Server is installed. The results are displayed in the pane.

 The **TDPSQLC QUERY SQL** command returns information about the following items:

 - SQL Server status
 - Circular logging
 - VSS components

 The following example shows a sample of the output that is generated by the **TDPSQLC QUERY SQL** command:

   ```
   C:\Program Files\Tivoli\tsm\TDPSql>tdpsqlc query sql
   IBM Tivoli Storage Manager for Databases:
   Data Protection for Microsoft SQL Server
   Version 7, Release 1, Level 1.0
   (C) Copyright IBM Corporation 1997, 2014. All rights reserved.
   Connecting to SQL Server, please wait...
   SQL Server Information
   -----------------------
   SQL Server Name ................. RHINO
   SQL Server Version ............... 12.0.2000 (SQL Server 2014)
   Volume Shadow Copy Service (VSS) Information
   -----------------------------------------------
   Writer Name : SqlServerWriter
   Local DSM Agent Node : RHINO
   Remote DSM Agent Node :
   Writer Status : Online
   Selectable Components : 6
   The operation completed successfully. (rc = 0)
   ```

 If the **TDPSQLC QUERY SQL** command does not return all of this information, you might have a proxy configuration problem. Contact the IBM Spectrum Protect server administrator to have the correct server **GRANT PROXY** commands issued to enable proxy authority for nodes. If all of the information returned to you seems correct, proceed to the next step.

2. To determine whether the problem is a Microsoft VSS service issue or a problem within the IBM Spectrum Protect code, use the vssadmin and diskshadow tools to re-create the error as follows:

 a. Issue **VSSADMIN** and **diskshadow** commands, as shown in the following table:
Table 23. VSSADMIN commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Run this command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>To list the VSS writer:</td>
<td>VSSADMIN LIST WRITERS</td>
</tr>
<tr>
<td>To list the VSS providers:</td>
<td>VSSADMIN LIST PROVIDERS</td>
</tr>
<tr>
<td>To list the shadow copies that are created by using the Microsoft</td>
<td>VSSADMIN LIST SHADOWS</td>
</tr>
<tr>
<td>Software Shadow Copy provider:</td>
<td></td>
</tr>
<tr>
<td>To list the shadow copies that are created by using a VSS hardware</td>
<td>diskshadow diskshadow > list shadows all</td>
</tr>
<tr>
<td>provider starting with Windows Server 2008:</td>
<td></td>
</tr>
</tbody>
</table>

b. Before you install IBM Spectrum Protect, test the core VSS function.
Complete the following diskshadow testing before you install any IBM
Spectrum Protect components:

- Test non-persistent shadow copy creation and deletion by issuing the
 following diskshadow commands:

 diskshadow>set verbose on
 diskshadow>begin backup
 diskshadow>add volume f: (database volume)
 diskshadow>add volume g: (log volume)
 diskshadow>create
 diskshadow>end backup
 diskshadow>list shadows all
 diskshadow>delete shadows all
 diskshadow>list shadows all

 Volumes f: and g: represent the SQL Server database and log volumes.
 Repeat issuing the diskshadow commands four times and verify that the
 Windows System and Application Event Log file contains no errors.

- Test persistent shadow copy creation and deletion by issuing the
 following diskshadow commands:

 diskshadow>set context persistent
 diskshadow>set verbose on
 diskshadow>begin backup
 diskshadow>add volume f: (database volume)
 diskshadow>add volume g: (log volume)
 diskshadow>create
 diskshadow>end backup
 diskshadow>list shadows all (this might take a few minutes)
 diskshadow>delete shadows all
 diskshadow>list shadows all

 Volumes f: and g: represent the SQL Server database and log volumes.
 Repeat issuing the diskshadow commands four times and verify that the
 Windows System and Application Event Log file contains no errors.

- Test persistent transportable shadow copy creation and deletion by
 issuing the following diskshadow commands:

 diskshadow>set context persistent
 diskshadow>set option transportable
 diskshadow>add volume f: (database volume)
 diskshadow>add volume g: (log volume)
 diskshadow>set metadata c:\metadata\SQLmeta.cab
 (the path where you want the metadata stored)
 diskshadow>create

 You must copy the sqlmeta.cab file from the source server to the offload
 server. After you copy the file, issue the following commands:
diskshadow>load metadata newpath/sqlmeta.cab
diskshadow>import
diskshadow>list shadows all (this might take a few minutes)
diskshadow>delete shadows all

Volumes f: and g: represent the SQL Server database and log volumes.
Repeat issuing the diskshadow commands four times and verify that the Windows System and Application Event Log file contains no errors.

3. Test nonpersistent shadow copy creation and deletion.
 a. Issue the following diskshadow commands. In this example, the volumes k: and l: represent the SQL Server database and log volumes.
 diskshadow=set context volatile
diskshadow=set verbose on
diskshadow=begin backup
diskshadow=add volume k: (database volume)
diskshadow=add volume l: (log volume)
diskshadow=create
diskshadow=end backup
diskshadow=list shadows all (this might take a few minutes)
diskshadow=exit
diskshadow
diskshadow=list shadows all (no shadow copies)
 b. Verify that the Windows System and Application Event Log file contains no errors.

4. (VSS Hardware Provider environments only) Test nonpersistent transportable shadow copy creation and deletion.
 a. Issue the following diskshadow commands. In this example, the volumes k: and l: represent the SQL Server database and log volumes.
 diskshadow=set context volatile
diskshadow=set option transportable
diskshadow=add volume k: (database volume)
diskshadow=add volume l: (log volume)
diskshadow=set metadata c:\metadata\SQLmeta.cab (the path where you want the metadata stored)
diskshadow=create
 b. Repeat issuing the diskshadow commands four times and verify that the Windows System and Application Event Log file contains no errors.
 c. Copy the sqlmeta.cab file from the source server to the offload server. Then, issue the following commands:
 diskshadow=load metadata newpath/sqlmeta.cab
diskshadow=import
diskshadow=list shadows all (this might take a few minutes)
diskshadow=delete shadows all

If any of these tests fail repeatedly, you have a hardware configuration problem or a VSS problem. Consult your hardware documentation for known problems or search Microsoft Knowledge Database for information.

If all tests pass, continue to Step 5.

5. Re-create your specific problem by using diskshadow. If you can re-create your problem, only through a series of steps (for example: a backup fails only when you perform two consecutive local backups), try to perform the same tests by using diskshadow:
 • Simulate SQL Server VSS backups to Local by running a diskshadow persistent snapshot.
 • Simulate SQL Server VSS backups to the IBM Spectrum Protect by running a diskshadow nonpersistent snapshot.
• Simulate SQL Server VSS backups to Local and to the IBM Spectrum Protect by running a diskshadow persistent snapshot.

• Simulate offloaded SQL Server VSS backups to the IBM Spectrum Protect by running a diskshadow nonpersistent, transportable snapshot.

See the diskshadow documentation for the specific commands that are required to complete backups. If you can re-create the problem, you are most likely experiencing a general VSS issue. See the Microsoft Knowledge Database for information. If your operation passes successfully with diskshadow, you are most likely experiencing an IBM Spectrum Protect or Data Protection for SQL client problem.

6. For legacy backup operations, try to re-create the problem by using the Backup or Restore utility in the SQL Server administrator program. If the following error message is displayed, the SQL Server encountered an unexpected situation: AC05350E An unknown SQL API error has occurred. Microsoft assistance might be needed if the problem continues.

Data Protection for SQL Server error messages occasionally contain an HRESULT code. For more information about the problem, use the HRESULT code to search Microsoft documentation and the Microsoft Knowledge Base.

Resolving reproducible problems

When a component fails to operate as designed, try to reproduce the problem and capture information about the current operating environment at the time of the error. You can troubleshoot VSS backup and restore operations, VSS and SAN Volume Controller, Storwize V7000, or DS8000 problems.

Troubleshooting VSS backup and restore operations

If you encounter a problem during VSS backup and restore processing, attempt to reproduce the problem in your environment.

Before you begin

If a VSS backup fails, verify that sufficient disk space is available to store the snapshot.

Procedure

1. Try the operation that failed again.

2. If the problem still exists, close other applications, especially those applications that interact with SQL Server, for example, antivirus applications. Try the operation that failed again.

3. If the problem persists, look for information in the event logs: tdpsql1.log and dsmerror.log. You can also review the messages in the Windows System and Application Event Log. Log entries might exist to help you identify the VSS event that triggers the issue.

4. If you do not find a resolution to the problem in the log files, complete the following steps:
 a. Shut down the SQL Server or the computer.
 b. Restart the SQL Server or the computer.
 c. Run the operation that failed.
Troubleshooting issues with tail-log backups
A database restore operation might fail if transaction log records in the tail of the log are not backed up.

About this task
During the restore operation, you might see the following error message:

```
Failed - An exception occurred while executing a Transact-SQL statement or batch.
The tail-log backup of the dbName database has not been backed up.
Use BACKUP LOG WITH NORECOVERY to backup the log if it contains work you do not want to lose.
Use the WITH REPLACE or WITH STOPAT clause of the RESTORE statement to overwrite the contents of the log.
RESTORE DATABASE is terminating abnormally.
Changed database context to 'master'. (HRESULT:0x80131501)
```

To resolve the error, complete the tail-log backup.

Procedure
1. On the Protect tab of the SQL Server instance, click Show Backup Options and set the Back Up Tail-log option to Yes.
2. On the Actions pane, select Log Backup to TSM.

Troubleshooting VSS offline restore of a master database
Microsoft SQL Server only supports offline VSS restores of the master database. Data Protection for SQL Server does not support offline restore operations. Therefore, you cannot use Data Protection for SQL Server to restore the master database.

Procedure
1. Ensure that the SQL Server is online.
2. Restore the master database to a new database in Microsoft Management Console (MMC), or at the command line. For example: Enter the tdpsqlc command with the /recovery=no option.
3. After the restore operation is complete, verify that all data files are restored successfully.
4. Stop the SQL Server instance, and rename all data files of the master database.
5. Copy all data files from the new master_restore database to the location of the master database. Verify that all data files are copied.
6. Start the SQL Server instance and verify that the master database is restored successfully.

Related tasks:
"Restoring the master database" on page 123
Troubleshooting SQL Server failover cluster limitations for VSS operations

Certain limitations apply when you complete VSS operations in an SQL Server failover cluster environment.

Procedure

- Ensure that all servers within the cluster use the same levels of IBM Spectrum Protect, Windows, and other applicable software.
- Install the IBM Spectrum Protect client acceptor daemon (CAD) on each cluster node so that it can continue operations if servers fail over. Ensure that the CAD service name is named the same on all cluster nodes so that it can be started by a generic cluster service.

Tip: The local DSMAGENT client node must be a separate node from your normal backup-archive client because the CAD service must be a non-cluster option. When you use the remote DSMAGENT client node, you do not have to register a separate node for each server within the cluster.

- Use the Microsoft `vssadmin` and `diskshadow` commands to verify the environment.
- Configure a Data Protection for SQL Server configuration file for each node in the cluster. These configuration files are almost identical, except that the `localdsmagentnode` parameter points to the corresponding local DSMAGENT on each node.
- If you run scheduled VSS operations in an SQL Server failover cluster environment, complete the following steps.
 - Install the IBM Spectrum Protect scheduler as a Windows service on all cluster nodes.
 - If the command file is on a local drive, ensure that the file remains consistent on all cluster nodes. Optionally, you can create the command file on a shared drive. Make sure that the `objects` parameter, which is specified with the `define schedule` command on the IBM Spectrum Protect server, points to this command file.

What to do next

To resolve timeout issues, schedule VSS backups so that enough time elapses between backups, or increase the copy rate of the IBM SAN Volume Controller or IBM Storwize V7000 background copy.

Troubleshooting VSS limitations with IBM SAN Volume Controller and IBM Storwize V7000

When you run a Data Protection for SQL Server VSS backup (non-offloaded) to a IBM Spectrum Protect server, the IBM SAN Volume Controller or IBM Storwize V7000 LUNs can sometimes remain mapped to the Windows host even though the backup is complete.

Procedure

Use a backup destination other than IBM Spectrum Protect server (BOTH or LOCAL).

Results

When you run two Data Protection for SQL Server VSS backups and if the volumes are large, or the background copy rate is set to a low number, or both
conditions occur, the second VSS backup might be presented to be in a hang state. Typically, the SQL Server data is on IBM SAN Volume Controller or IBM Storwize V7000 disks. However, the second backup is waiting for the IBM SAN Volume Controller or IBM Storwize V7000 background copy of the first backup to complete before proceeding. IBM SAN Volume Controller or IBM Storwize V7000 does not allow two background copies of the same volume to occur at the same time. You might not know that the second backup is waiting for the first background copy to complete.

You might also see timeout errors if the previous IBM SAN Volume Controller or IBM Storwize V7000 background copy takes too long.

What to do next

To resolve timeout issues, schedule VSS backups so that enough time elapses between backups, or increase the copy rate of the IBM SAN Volume Controller or IBM Storwize V7000 background copy.

Troubleshooting VSS limitations with IBM N-series and NetApp FAS series

If you plan to run VSS backups with backup destination set to LOCAL, understand the limitations in the VSS Provider for NetApp FAS series and IBM N-series, and in SnapDrive 4.2 and earlier versions, that affect the way in which you can run your VSS backup operations. You must configure your environment correctly to avoid snapshot deletions, backup failure, and out-of-space conditions on the production volumes.

Before you begin

- Ensure that a NAS file server LUN that is used by SQL Server databases is fully dedicated to the database. SQL Server databases cannot share LUNs.
- Ensure that a NAS filer LUN that is used by SQL Server databases is the only LUN on the filer volume. For example, if the SQL Server uses four LUNs, four corresponding filer volumes must exist, where each volume contains one LUN.
- If the NetApp volume type is Traditional, ensure that VSS backups with backup destination set to LOCAL are bound to a management class that has verExists=1. This setting is not required if flexible volumes are used.
- Ensure that VSS backups with backup destination set to LOCAL are either a full or copy backup. You cannot mix local backups of type FULL and COPY.
- Ensure that VSS backups with backup destination set to TSM are a full or copy backup. There are no restrictions on IBM Spectrum Protect backups.
- When you run VSS backups, ensure that previous backups finish completely before you start a new backup. To avoid issues on SQL Server, the VSS service, and, the NAS filer, avoid backup overlaps.

About this task

The following backup procedure is an example that shows how to optimally run VSS backups by using both IBM Spectrum Protect and local backup destinations. The following assumptions apply to this example backup procedure:

- Stated configuration requirements are in place.
- Daily VSS full backups to a local destination occurs every four hours - 12 a.m., 4 a.m., 8 a.m., 12 p.m., 4 p.m., 8 p.m.
- The VSS backup to IBM Spectrum Protect takes one hour to complete.
- The VSS backup to a local destination takes five minutes to complete.
Procedure

Set your daily VSS full back schedule to run in one of the following ways:

- Run daily VSS full backups to a local destination every four hours - 12 a.m., 4 a.m., 8 a.m., 12 p.m., 4 p.m., 8 p.m.
- Run daily VSS full backups to IBM Spectrum Protect storage by one of the following two methods:
 - Set backupdestination to BOTH to run at 12 a.m. Because this setting runs a 12 a.m. backup to a local destination, do not separately schedule a 12 a.m. backup to a local destination.
 - Set full offloaded-backup to run at 1 a.m. No VSS local backup is available to restore VSS backups between 1 a.m. and 4 a.m., when the next VSS backup to a local destination occurs.
- Set weekly VSS full backups to run to IBM Spectrum Protect, as an offloaded backup, at 5 a.m.

Troubleshooting VSS and SAN Volume Controller, Storwize V7000, or DS8000

If you experience VSS and SAN Volume Controller, Storwize V7000, or DS8000 problems, use these troubleshooting tips to help you discount some common configuration issues.

Procedure

1. Verify connectivity to the CIMOM (Common Information Model Object Manager) as follows:
 a. Refer to your SAN Volume Controller, Storwize V7000, or DS8000 documentation.
 b. Run the IBMVCFG LIST command. The default location is %Program Files%\IBM\Hardware Provider for VSS-VDS.
 c. Issue the IBMVCFG SHOWCFG command to view the provider configuration information.
 d. Check that the CIMOM is properly configured. Run verifyconfig.bat -u username -p password on the Master Console.
 e. Check the username and password. If the problem is with the truststore, follow the procedure in the documentation to generate a new truststore.

2. Verify CIMOM operational issues as follows:
 a. If your backup or restore operation fails, check the IBMVSS.log file.

If the backup or restore failure is from a CIMOM failure, the log displays output similar to the following example:

```
Wed Jan 13 17:34:34.793 - Calling AttachReplicas
Wed Jan 13 17:34:35.702 - AttachReplicas: 909ms
Wed Jan 13 17:34:35.702 - returnValue: 34561
Wed Jan 13 17:34:35.718 - AttachReplicas returned: 34561
java.util.MissingResourceException: Can't find resource for bundle java.util.PropertyResourceBundle, key 1793
    at java.util.ResourceBundle.getObject(ResourceBundle.java:329)
    at java.util.ResourceBundle.getString(ResourceBundle.java:289)
    at com.ibm.cim.CIMException.<init>(CIMException.java:472)
    at ESSService.executeFlashCopy(ESSService.java:3168)
Wed Jan 13 17:34:35.779 - IBMVSS: AbortSnapshots
```

A return value of 0 means that the backup or restore operation is successful.
b. To determine why a backup or restore operation failed, look at the log files. The files are generated by the CLI or graphical user interface (GUI), depending on how you run your operation. The log files might provide more information about the failure.

3. If the failure seems to be for a different reason than a CIMOM failure, verify your host configuration. Run the latest support levels of the software for SAN Volume Controller, Storwize V7000, or DS8000.

4. If you are unable to resolve these problems, provide the following information to IBM Support:
 - Information that is listed in the IBM Spectrum Protect diagnostic information section
 - HBA type, firmware, and driver levels
 - SDD version
 - SAN Volume Controller microcode version (if applicable)
 - DS8000 microcode version (if applicable)
 - Storwize V7000 microcode version (if applicable)
 - SAN Volume Controller or Storwize V7000 Master Console version (if applicable)
 - For DS8000, the CIM Agent version (if applicable)
 - IBMVSS.log
 - IBMVDS.log
 - Application Event Log
 - System Event Log
 - CIMOM logs if the problem seems to be related to CIMOM. Run CollectLogs.bat and send the file that is created (CollectedLogs.zip) to IBM Support.

 The default location for SAN Volume Controller or Storwize V7000 is C:\Program Files\IBM\svcconsole\support, and the default location for DS8000 is C:\Program Files\IBM\cimagent.

Resolving problems with IBM Support

Contact IBM Support for further assistance if you have a problem that you are unable to solve by applying maintenance fixes, reproducing the issue, or using the information in previous topics. IBM Support might request to see some or all of the trace and log files while investigating a problem that you report.

About this task

Also, you might be asked to set a trace the Data Protection client when using VSS technology, and then collect the log. IBM Support uses the information that is captured in the log file to trace a problem to its source or to determine why an error occurred.
Viewing trace and log files

Data Protection for SQL Server uses several components. Each component is in its own directory along with its respective troubleshooting files. By using the Trace and Log Files view, you can easily view these files in a central location.

About this task

The following files are examples of the files that you can view, including default log and trace files:

Examples of Data Protection for SQL Server default log and trace files:
- Installation directory: C:\Program Files\Tivoli\TSM\TDPSql
- dsierror.log
- tdpsql.log
- TraceFileSql.trc

If the tdpsql.log is defined in a path other than the default c:\program files\tivoli\TSM\TDPSql\tdpsql.log, the reports do not include the following information for scheduled backup and restore operations:
- Task completion
- Type of data protection activity
- Amount of data protection activity

The charts and reports display only information that is present in the default log file tdpsql.log.

Examples of VSS requestor default log and trace files:
- Installation directory: C:\Program Files\Tivoli\TSM\baclient
- dsmerror.log

Examples of IBM VSS provider for SAN Volume Controller, Storwize V7000, and DS8000 log files
- IBMVDS.log
- IBMVss.log

Procedure

1. When you encounter a problem in Microsoft Management Console (MMC), create trace files by using the Diagnostics property page.
 a. Click Properties > Diagnostics, and click Begin.
 b. Close the property page and reproduce the problem.
 c. Open the Diagnostics property page and click Stop. Clicking the Diagnostics button is the preferred method for gathering information to send to your service representative. This method gathers all the information that is needed. Even if a problem occurs only on the command-line interface, command, you can always gather information by using the Automate tab. The log files are displayed in the Trace and Log Files view.
2. Click the trace or log file that you want to view. The contents of the file are displayed in the results pane.
Gathering traces for the Data Protection client when using VSS technology

You must gather traces for Data Protection for SQL Server, the IBM Spectrum Protect application programming interface (API), and the DSMAGENT processes to ensure a good diagnosis of the Volume Shadow Copy Service (VSS) operation.

About this task

To diagnose Data Protection for SQL Server VSS operational problems, gather these traces:

• Data Protection for SQL Server trace
• IBM Spectrum Protect API trace
• DSMAGENT trace

Procedure

1. To gather the Data Protection for SQL Server trace, open Microsoft Management Console (MMC) and go to the diagnostics property page to turn tracing on. Tracing is turned off by default. Select one of the following diagnostic types:
 • For legacy operations: Normal MMC, DP (service), API (service,api_detail)
 • For VSS operations and large output size: Complete MMC, DP (service), API (service,api_detail), Agent (service)
 • For full control over all settings: Custom

2. Gather the IBM Spectrum Protect API trace as follows: Enable tracing with the DP/SQL dsm.opt file and the “TRACEFILE” and “TRACEFLAGS” keywords. The following text is an example of the entry in the DP/SQL dsm.opt file:

 TRACEFILE APITRACE.TXT
 TRACEFLAG SERVICE

3. Gather the DSMAGENT trace as follows: Enable tracing with the dsmagent (baclient) dsm.opt file and the “TRACEFILE” and “TRACEFLAGS” keywords. The following text is an example of the entry in the dsmagent (baclient) dsm.opt file:

 TRACEFILE AGTTRACE.TXT
 TRACEFLAG SERVICE PID TID ENTER ALL_VSS SBRM RESTORE

 The trace flag, in this instance, is ALL_VSS (you might need different traceflags, depending on the circumstance).

4. Enable the Volume ShadowCopy service debug trace features in Windows.

Gathering information about SQL Server with VSS before you call IBM

The Data Protection client depends on the operating system and the SQL Server application. Collecting all the necessary information about the environment can significantly assist IBM Support in determining the source of problem.

Procedure

Gather as much of the following information as possible before you contact IBM Support:

• The exact level of the Windows operating system, including all service packs and hotfixes that are applied.
• The exact level of the SQL Server, including all service packs and hotfixes that are applied.
• The exact level of Data Protection for SQL Server with Volume Shadow Copy Service (VSS) backup and restore support.
• The exact level of the IBM Spectrum Protect API.
• The exact level of the IBM Spectrum Protect server.
• The exact level of the IBM Spectrum Protect backup-archive client.
• The exact level of the IBM Spectrum Protect storage agent (if LAN-free environment).
• The IBM Spectrum Protect platform and operating system level.
• The output from the IBM Spectrum Protect server QUERY SYSTEM command.
• The output from the Data Protection for SQL Server TDPSQLC QUERY SQL command.
• The device type (and connectivity path) of the SQL Server databases and logs.
• (SAN only) The specific hardware that is being used. For example: HBA, driver levels, microcode levels, SAN Volume Controller or Storwize V7000 levels, DS8000 hardware details.
• Permissions and the name of the user ID that is used to run backup and restore operations.
• The name and version of antivirus software.
• (SAN only) The VSS hardware provider level.
• The VSS hardware provider log files. For information about how to enable tracing and collect the trace log files, see the documentation of the specific VSS hardware provider.
• (SAN only) The IBM CIM agent level for DS8000, SAN Volume Controller, or Storwize V7000.
• A list of other applications that are running on the system.
• A list of the steps that are needed to re-create the problem (if the problem can be re-created).
• If the problem cannot be re-created, list the steps that caused the problem.
• Is Data Protection for SQL Server running in a Microsoft Failover Clustering environment?
• Does the problem occur on other SQL Servers?

Gathering files from SQL Server with VSS before calling IBM

You can collect several log files and other data for Data Protection for SQL Server server diagnosis.

About this task

Microsoft Management Console (MMC) automatically collects information in a package file, which you can send to IBM Support. To collect this information manually, refer to the following file list.

Procedure

1. Gather as many of the following files as possible before you contact IBM Support.
 • The contents of the C:\adsm.sys\vss_staging directory and subdirectories. Or gather the appropriate directories if you are using the VSSALTSTAGINGDIR option.
• The Data Protection for SQL Server configuration file. The default configuration file is tdpsql.cfg.
• The Data Protection for SQL Server IBM Spectrum Protect API options file. The default options file is dsm.opt.
• The IBM Spectrum Protect registry hive export.
• The SQL Server registry hive export.
• The IBM Spectrum Protect Server activity log. The Data Protection client logs information to the server activity log. An IBM Spectrum Protect administrator can view this log for you if you do not have an IBM Spectrum Protect administrator user ID and password.
• If the Data Protection client is configured for LAN-free data movement, also collect the options file for the IBM Spectrum Protect storage agent. The default name for this file is dsmsta.opt.
• Any screen captures or command-line output of failures or problems.

2. Gather the following IBM Spectrum Protect log files, which can indicate the date and time of a backup, the data that is backed up, and any error messages or completion codes that might help to determine your problem:
• The Data Protection for SQL Server log file. The default location of this file is C:\Program Files\Tivoli\TSM\TDPSql\tdpsql.log
• The IBM Spectrum Protect API Error log file. The default location of this file is C:\Program Files\Tivoli\TSM\TDPSql\dsierror.log
• The DSMAGENT error log file. The default location of this file is C:\Program Files\Tivoli\TSM\baclient\dsmerror.log
• The dsmcrash.dmp and DSMAGENT crash log file, if requested. The default location is C:\Program Files\Tivoli\TSM\baclient\dsmcrash.log.

3. Gather the following VSS provider log files, if applicable:
• System Provider - (Windows System and Application Event Log)
• IBM System Storage SAN Volume Controller, IBM Storwize V7000, or IBM System Storage DS8000 series - %Program Files%\IBM\Hardware Provider for VSS\IBMVss.log
• NetApp - %Program Files%\SnapDrive*.log
• XIV - zip up all of the files in the C:\Windows\Temp\xProvDotNet directory

4. Use the Data Protection for SQL Server console to list the events that originate by Data Protection for SQL Server. Select Dashboard - ServerName > Diagnostics > System Information and double-click the dpevents.psl script in the PowerShell section of the System Information page.

Viewing and modifying system information

You can view and edit scripts that provide information about system components including, for example, Windows-related services for Data Protection for SQL Server, Windows System and Application Event Log entries, and Volume Shadow Copy Service (VSS) information.

About this task

The System Information view is extensible. You can take advantage of this flexibility to add and share customized scripts.

Procedure

1. Open the System Information view as follows:
 a. In the welcome page, click Diagnostics.
b. On the Results pane, double-click **System Information**. A list of scripts is displayed in the results pane of the System Information view. The types of scripts that are displayed are PowerShell scripts, Windows Management Instrumentation scripts, and scripts.

2. Add, update, or delete your scripts, as follows:

<table>
<thead>
<tr>
<th>Action</th>
<th>Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add your own scripts</td>
<td>1. Click New in the Actions pane.</td>
</tr>
<tr>
<td></td>
<td>2. If you want to copy your scripts directly to the ProgramFiles\Tivoli\FlashCopyManager\Scripts directory, make sure that your scripts follow these extension requirements:</td>
</tr>
<tr>
<td></td>
<td>• PowerShell scripts: filename.ps1</td>
</tr>
<tr>
<td></td>
<td>• Windows Management Instrumentation (WMI) scripts: filename.wmi</td>
</tr>
<tr>
<td></td>
<td>• scripts: filename.tsm</td>
</tr>
<tr>
<td></td>
<td>IBM Spectrum Protect Snapshot uses the file type extension to determine how to run the script.</td>
</tr>
<tr>
<td>View or edit an existing script</td>
<td>1. From the list of script files in the results pane, select the name of a script that you want to view or edit.</td>
</tr>
<tr>
<td></td>
<td>Tip: The name of the script is displayed in the Actions pane. Click the name of the script in the Actions pane to reveal or hide a list of actions to process.</td>
</tr>
<tr>
<td></td>
<td>2. To open the script file for viewing or editing, click Command Editor in the Actions pane.</td>
</tr>
<tr>
<td></td>
<td>3. View or edit the script.</td>
</tr>
<tr>
<td></td>
<td>4. Click OK to save your changes, or click Cancel to exit the System Information Command Editor without saving any changes.</td>
</tr>
<tr>
<td>Delete a script</td>
<td>1. From the list of script files in the results pane, select the name of a script that you want to delete.</td>
</tr>
<tr>
<td></td>
<td>Tip: The name of the script is displayed in the Actions pane. Click the name of the script in the Actions pane to reveal or hide a list of actions to process.</td>
</tr>
<tr>
<td></td>
<td>2. Click Delete in the Actions pane.</td>
</tr>
</tbody>
</table>

Emailing files to IBM Support

You can send diagnostic information to IBM Support.

Before you begin

About this task

The Email Support files feature collects all detected configuration, option, system information, trace, and log files. It also collects information about services, operating systems, and application versions. These files are compressed and then attached in an email.

Procedure

1. Start Microsoft Management Console (MMC).
2. Click **Diagnostics** in the results pane of the welcome page.
3. Click the **E-Mail Support files** icon in the Action pane.
4. Enter the required information in the various fields and click **Done**. The information is sent to the designated support personnel and the dialog closes.
Results

Files are collected, compressed, and stored in the flashcopymanager\probledetermination folder. The files are deleted and replaced each time that you email the support files. If the Email feature is not configured, or is blocked by a firewall, or if the files are large, use another method to transfer them. You can copy the files directly from the flashcopymanager\probledetermination folder and transfer the files to another site by using another method such as FTP.

Online IBM support

Multiple online support resources are available for you to use.

The following list identifies where you can find information online:

- IBM Spectrum Protect for Databases (http://www.ibm.com/software/products/en/spectrum-protect-for-databases). Enter the search term to narrow the search criteria for your support requirements. Examples of search terms that you might use include an authorized program analysis report (APAR) number, release level, or operating system.
Chapter 7. Performance tuning

Many factors can affect the backup and restore performance of Data Protection for SQL Server.

Some of these factors, such as hardware configuration, network type, and capacity, are not within the scope of Data Protection for SQL Server. Some options that are related to Data Protection for SQL Server can be tuned for optimum performance. The following issues affect performance.

For legacy and VSS backups, the RESOURCEUTILIZATION client option is important. This option increases or decreases the ability of the client to create multiple sessions. As the value increases, the client can start more sessions. The range for the option is from 1 to 10.

Legacy backups are a stream of bytes that Data Protection for SQL Server stores on the IBM Spectrum Protect server.

VSS backups differ because these backups operate at the volume and file-level. In a situation where an SQL Server database is not fully allocated, a legacy backup might transfer a smaller amount of data for an IBM Spectrum Protect backup than for a VSS backup because a VSS backup transfers the entire file, regardless of its allocation.

Buffering (Legacy only)

Data Protection for SQL Server is a multi-threaded application that uses asynchronous execution threads to transfer data between the SQL Server and IBM Spectrum Protect server.

To accomplish this, multiple data buffers are used to allow one thread to receive data from one side, while another thread sends data to the other side. For example, one thread can read data from an SQL Server while another sends data to the IBM Spectrum Protect server.

The number of buffers that Data Protection for SQL Server allocates to these threads is specified by the /buffers and /sqlbuffers parameters. The size of these buffers is specified by the /buffersize and /sqlbuffersize parameters. These parameters are set on the Properties page. When the parameters are set on the Properties page, the dsm.opt file is updated. You can also use the command-line interface to update the dsm.opt file.

Data striping (Legacy only)

In addition to multi-threading to maximize throughput on a single session, Data Protection for SQL Server uses separate threads to support SQL Server data striping, which allows use of multiple parallel sessions to backup and restore a single database. This is another method to maximize data throughput.

If a single session cannot fully exploit available bandwidth, multiple parallel sessions can yield improved data throughput, especially if the database is spread across multiple physical volumes.
If you use one data stripe per physical volume for both the SQL Server and the IBM Spectrum Protect server, the performance, which is measured as the amount of time necessary to backup or restore a particular SQL Server database, should show an improvement over the unstriped case. The improvement is approximately proportional to the number of data stripes that are used, given the constraints of the devices and the network that is used, and the striping independent overhead in SQL Server, IBM Spectrum Protect server, and Data Protection for SQL Server.

You can specify the number of stripes to use with the /STRIPes parameter on the command-line interface. You can also specify the number of stripes to use from Microsoft Management Console (MMC), by changing the number in the Stripes field in the Backup options or Restore options panel.

Note:
- Additional striping does not necessarily improve performance and may even decrease performance if system constraints involving real and paged memory, processors, network interface cards, networks, device reads and writes, and RAID become saturated or exceed capacity.
- If you use striping in conjunction with SQL Server buffers, be certain that the number of SQL Server buffers specified is equal to or greater than the number of stripes.
- The default values that Data Protection for SQL Server assigns to buffers, buffer size, and stripes can be changed in the Data Protection for SQL Server configuration file. Use the set command or the Performance property page in MMC to modify the configuration file.

LAN-free data movement (Legacy and VSS)

Running Data Protection for SQL Server in a LAN-free environment means that data can be directly sent to storage devices.

When you implement a LAN-free environment, data bypasses potential network congestion. However, you must be properly equipped to operate in a LAN-free environment. For more information about setting up a LAN-free environment, see **LAN-free client-data backup: Scenario** (http://www.ibm.com/support/knowledgecenter/SSSQZW_7.1.1/com.ibm.itsm.sta.doc/c_scenario_lanfree.html).

In addition to specific LAN-free requirements, you must specify the following options.
- Use **lanfreetcpserveraddress** to specify the TCP/IP address for the IBM Spectrum Protect storage agent.
- For legacy backups, specify **enablelanfree yes** in the Data Protection for SQL Server options file.
- For VSS backups, specify **enablelanfree yes** in the DSMAGENT (VSS Requestor) dsm.opt file only.

For more information about these options, see **Installing and configuring the client** (https://www.ibm.com/support/knowledgecenter/SSSQZW_7.1.1/com.ibm.itsm.sta.doc/t_extlib_inst_client.html).
Chapter 8. Reference

Reference topics provide information related to Data Protection for Microsoft SQL Server. Topics include information about the commands that you can issue at the command-line interface as an alternative to using Microsoft Management Console (MMC) and frequently asked questions about Data Protection for Microsoft SQL Server.

Command-line overview

The name of the Data Protection for SQL Server command-line interface is tdpsqlc.exe. This program is in the directory where Data Protection for SQL Server is installed.

Command-line parameter characteristics

The tdpsqlc executable is followed by high level operations called commands. Each command accepts various command line parameters. These parameters consist of positional parameters and optional parameters. Specify positional parameters before other options in the command line. In the following example, the backup command with its database name xyz, the object to back up, is followed by the type of backup, full, a positional parameter, and finally by an optional parameter, /sqlbuffers

tdpsqlc backup xyz full /sqlbuffers=2

Data Protection for SQL Server uses the following command line syntax:

tdpsqlc command positional parameter 0 or more optional parameters

The command-line parameters have the following characteristics:

- Positional parameters do not include a leading slash (/) or dash (-).
- Optional parameters can display in any order after the required parameters.
- Optional parameters begin with a forward slash (/) or a dash (-).
- Minimum abbreviations for keywords are indicated in uppercase text.
- All SQL Server names of databases or parts of databases are case-sensitive.
- Some keyword parameters require a value.
- For those keyword parameters that require a value, the value is separated from the keyword with an equal sign (=).
- If a parameter requires more than one value after the equal sign, the values are separated with commas.
- Each parameter is separated from the others by using spaces.
- If a parameter value includes spaces, the value must be enclosed in double quotation marks.
- A positional parameter can display only once per command invocation.
- The following exceptions allow lists of values or repetition of the parameter:
 - File=
 - Group=
 - Log=
 - Set=
- /Files=
- /Groups=
- /RELocate=
- /RELOCA TEDir=
- /TO=

For example: /files=a,b or /files=a /files=b

Multiple instances of optional parameters do not need to be contiguous. For example: /files=a /groups=y /files=b /groups=z

Where repeatable syntax exists, multiple values are separated with commas as shown in the following syntax diagram:

```
TDPSQLC—Backup
    ▼
    dbname
```

To select all instances of database names or file names on the server, follow the command with the wildcard asterisk (*).

Data Protection for SQL Server parameters by backup method

You can set different optional parameters for your VSS and legacy data backups.

The following table classifies the optional parameters that apply to VSS and legacy backups.

<table>
<thead>
<tr>
<th>Optional Parameters</th>
<th>Legacy</th>
<th>VSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/ADJUSTKBTSMESSIMATE</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/ADJUSTPERCENTTSMESIMATE</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/ALL</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/BACKUPDESTINATION</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/BACKUPMETHOD</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/BUFFERS</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/BUFFERSIZE</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/COMPATIBILITYINFO</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/CONFIGFILE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/DBOONLY</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/DIFFESTIMATE</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/EXCLUDEDB</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/FILEINFO</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/FILES</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/GROUPS</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/INSTANTRESTORE</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>/INTO</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/LOGESTIMATE</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 24. Data Protection for SQL Server optional parameters (continued)

<table>
<thead>
<tr>
<th>Optional Parameters</th>
<th>Legacy</th>
<th>VSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>/LOGFile</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/LOGPrune</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/MOUNTWait</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/OBJect</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/OFFLOAD</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>/OLDerthan</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/PARTial</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/Quiet</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/RECOVery</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/RELOCATEDir</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/RELocate /TO</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/REPlace</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/SQLAUTHentication</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/SQLBUFFers</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/SQLBUFFERSIze</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/SQLCHECKSum</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/SQLPassword</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/SQLSERVER</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/SQLUSER</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/STANDby</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/STOPAT</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/STOPATMark /AFTER</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/STOPBEFOREMark /AFTER</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/STRIPes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/TRUNCate</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/TSMNODE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/TSMOPTFile</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/TSMPassword</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

With Data Protection for SQL Server, you can back up and restore Microsoft SQL Server databases to IBM Spectrum Protect server storage by using the command-line interface or GUI.

Backup command

Use the **backup** command to back up all or part of one or more SQL Server databases from the SQL Server to IBM Spectrum Protect storage on the IBM Spectrum Protect server.

You can enter the * character to backup all databases. You can specify more than one database for multiple database and transaction log backups.

When you use the **backup** command, consider the following guidelines:
- Simple recovery model databases are automatically excluded from log backups.
- The master database is automatically excluded from log and differential backups.
- You cannot back up or restore the tempdb database because this database is created by the SQL Server each time that the server is started.
- Although full and differential backups include a part of the transaction log, that part is the only part that is required to make a restore operation consistent. The partial transaction log is not a log backup and does not truncate the log.
- The user id that is used by Data Protection for SQL Server to log on to the SQL Server must have the SQL Server SYSADMIN fixed server role.
- You can use the TRANSACT-SQL database consistency checker statement `DBCC CHECKDB ('DBNAME')` to verify the integrity of the SQL Server databases before you back up the databases.

Backup syntax

Use the `backup` command syntax diagrams as a reference to view available options and truncation requirements.

TDPSQLC backup

```
TDPSQLC—Backup dbname

FULL
COPYFull
FILE=logicalfilename
Difffull Group=groupname
Log Set

Backup optional parameters
```

(1) (2)

```
/AAGName=AlwaysOn Availability Group name
/ADJUSTKBtsmestimate=numkb
/ADJUSTPERcetntsestimate=numpercent
/ALWAYSONPriority
```
A Difffull Options:

B Log Options:

C Set Options:
Notes:

1. For the optional parameters, the /BACKUPMETHOD= is only valid when using the *full or copyfull* positional parameters. The *full* and *copyfull* backups can be performed using VSS or legacy operations. The /BACKUPMETHOD= parameter is used to choose between the options. The *log*, *diff*, *file*, and *group* backups can be performed only when using legacy operations. You cannot issue the /BACKUPMETHOD= parameter with these types of backups because only legacy backups are viable.

2. The /BACKUPDESTINATION parameter is valid only when using the *full* or *copyfull* positional parameters. The *full* and *copyfull* backups can be saved to local storage, TSM server storage, or both. The /BACKUPDESTINATION parameter is used to choose among the options.

Backup positional parameters

Positional parameters immediately follow the backup command and precede the optional parameters.

FILE=* |logicalfilename,...

A FILE backup contains only the contents of the data SQL Server logical file that you specify. You can use this option when it is not practical to back up an entire SQL Server database due to available backup time and space or due to performance requirements. The logicalfilename variable specifies the names of the SQL Server database logical data files that you want to back up or restore to.

Considerations:

- For each SQL Server database that you back up, back up the corresponding transaction logs. The Data Protection for SQL Server log file, tdpsql.1og, indicates the date and time of a database backup, the data that is backed up, and any error messages or completion codes.
- You can specify this parameter many times per command invocation.
- A new backup object deactivates any active backup object of the same name in the same SQL Server database.
- Use * as a wildcard character in logicalfilename to replace zero or more characters for each occurrence. Specifying only the wildcard character indicates all logical files in the SQL Server database. Because each logical file that is backed up creates a separate backup object on the IBM Spectrum Protect server, specifying only the wildcard character results in a separate backup object for each logical file in the SQL Server database.
- If logicalfilename includes spaces or special characters, enclose it in double quotation marks.
- The logicalfilename variable is case-sensitive.
- You cannot specify the /recovery parameter with restore file operations.
- An SQL Server Create Index operation requires that you back up all affected filegroups as a unit. You cannot back up a file in the affected filegroups until you complete the unit backup. An SQL Server error message indicates which filegroups are affected. You must complete a full database backup or a set backup of at least the affected filegroups for the file backup to succeed.

FULL

A **FULL** legacy database backup contains all of the contents of an SQL Server database and enough of the database transaction log to restore the database consistently. A **FULL** VSS database backup contains all of the contents of an SQL Server database (database files, log files, and full-text index files).

Each SQL Server database that is backed up by using the legacy backup method creates a separate backup object on the IBM Spectrum Protect server. A new full database backup object deactivates all prior legacy active backup objects for the same SQL Server database. This deactivation includes any active full backup object and any active file, group, set, differential, and log backup objects.

Tip: After a full SQL backup, all preceding copy-only full, file, group and differential backups stop adhering to the VERExists and RETExtra settings, even if the databases still exist on the Data Protection for SQL Server client system. In the management class for these backup objects, set the VERDeleted and VERExists parameters to the same value and also set the RETExtra and RETOnly parameters to the same value to maintain consistent version-expiration behavior. For more information, see [Preferred settings for IBM Spectrum Protect policies](#).

COPYFull

A copy-only full backup contains a copy-only version of a full backup. These backups are considered out of the regular sequence of conventional SQL Server backups, and do not affect the transaction logs or any sequence of backups like differential backups or full backups. Use this option to create copy-only full backups periodically for long-term retention without affecting existing backup schedules or retention policies for disaster recovery.

DiffFull

A **DiffFull** (differential) database backup contains only the parts of an SQL Server database that changed since the latest full backup and enough of the SQL Server database transaction log to make a restore consistent. As such, a differential backup usually takes up less space than a full backup. Use this option so that all individual log backups since the last full database backup does not need to be applied.

Group=*\|*groupname*\,...

A **Group** backup contains only the contents of the SQL Server filegroup you specify. A group backup is useful when selected SQL Server database table or indexes are assigned to a filegroup and only those tables or indexes need backing up. Specifically:

- You can save backup time by not backing up other tables or indexes in the SQL Server database that do not change as often.
• You can save restore time if, for example, the filegroup is on a different volume from the rest of the SQL Server database's filegroups and that volume needs to be restored. You need restore only that filegroup for that SQL Server database.

The *groupname* variable specifies the names of the SQL Server database filegroups you want to back up.

Considerations:
• You can specify this parameter many times per command invocation.
• A new group backup object deactivates any active group backup object of the same name in the same SQL Server database.
• Use * as a wildcard character in the *groupname* variable to replace zero or more characters for each occurrence.
• Specifying only the wildcard character indicates all filegroups in the SQL Server database.

Because each group backed up creates a separate backup object on the IBM Spectrum Protect server, specifying only the wildcard character results in a separate backup object for each filegroup in the SQL Server database.
• If the *groupname* variable includes spaces or special characters, enclose it in double quotation marks.
• The *groupname* variable is case-sensitive.
• You must follow group backups with transaction log backups for all SQL Server databases you back up.
• You cannot complete group backups for the following SQL Server databases:
 – Databases with the SQL Server attribute TRUNCATE LOG ON CHECKPOINT.
 – Databases that use the SIMPLE recovery model.
• You cannot specify the /recovery parameter with restore group operations.
• An SQL Server Create Index operation requires that you back up all affected filegroups as a unit. You cannot back up a single filegroup of the affected filegroups until you complete the unit backup. An SQL Server error message indicates which filegroups are affected. You must complete a full database backup or a set backup of at least the affected filegroups before the group backup succeeds.

Log or Log=*|logobjectname,...

A log backup contains the contents of the transaction log for an active SQL Server database since the latest successful log backup. This option can save backup time by requiring fewer SQL Server database backups. For backup operations, Log takes no values. Use * as a wildcard character in *logobjectname* to replace zero or more characters for each occurrence. Specifying only the wildcard character indicates all log backup objects for the SQL Server databases.

Considerations:
• You can control the size of a transaction log by allowing a log backup to truncate the inactive part of the transaction log. This option is the default.
• By using the `/truncate=no` parameter, you might be able to back up the transaction log of a damaged, suspect, or unrecovered SQL Server database.

• Each log backed up creates a separate backup object with a unique name on the IBM Spectrum Protect server. A new log backup object does not deactivate any active backup objects (unlike the other backup types except set backups). Log backup objects do not participate in IBM Spectrum Protect server automatic expiration processing except when full database backup objects deactivate all active backup objects for an SQL Server database. Therefore, you can deactivate log backup objects by using the `inactivate` command if full database backups are not completed frequently or at all.

• You cannot complete log backups for the following SQL Server databases:
 – Databases with the SQL Server attribute TRUNCATE LOG ON CHECKPOINT.
 – Databases that use the SIMPLE recovery model.

Set or Set=* | setobjectname,...

A set backup contains the contents of the SQL Server filegroups and files you specify with the `/files` and `/groups` parameters. For backup operations, set takes no values. Use `*` as a wildcard character in `setobjectname` to replace zero or more characters for each occurrence.

Specifying only the wildcard character indicates all set backup objects for the SQL Server databases.

Considerations:

• Use this option for unusual circumstances or special, one-time backups. One such case is when SQL Server requires that certain filegroups be backed up as a unit and a full database backup is not practical. See the description of the `file`, and `group` parameters, specifically regarding the Create Index operation.

• Each SQL Server database backed up creates a separate backup object on the IBM Spectrum Protect server. All of the files and filegroups that are backed up as part of a set backup for the same SQL Server database are contained in a single backup object. Goup and file backups create a separate backup object of each file and filegroup even if they are part of the same SQL Server database.

• A new set backup object does not deactivate any active backup objects (unlike the other backup types except log backups). Set backup objects do not participate in IBM Spectrum Protect server automatic expiration processing except when full database backup objects deactivate all active backup objects for an SQL Server database. Therefore, if full database backups are not performed or not performed completed, you can deactivate set backup objects by using the `inactivate` command.

• You must follow set backups with transaction log backups for all SQL Server databases you back up.

• The `file`, `group`, `log`, and `set` parameters can take a list of values (repeatable syntax) and might be specified more than one time. For example: `file=a,b` or `file=a
file=b` or `file=a
file=b
file=b` or `file=a group=y
file=b
file=b
file=b
file=b
group=z

176 IBM Spectrum Protect for Databases: Data Protection for Microsoft SQL Server Installation and User’s Guide
Backup optional parameters

Optional parameters follow the backup command and positional parameters.

/AAGName=AlwaysOn Availability Group name
When you backup a database list or all databases with the wildcard character, *, and specify the /AAGName parameter, only databases from the availability group that you specify are backed up.

/ADJUSTKBtsmestimate=numkb
The /adjustkbtsmestimate parameter specifies the number of kilobytes to add to the size of the backup estimate generated by the SQL Server. The numkb variable refers to the number of kilobytes to add. The number can range from 0 to 9999. The default is 0. Increasing the number of kilobytes may be necessary when the backup estimate (generated by the SQL Server) may be too low as the disk storage pool has cache enabled. For example, if maintenance is performed on the production server during a Data Protection for SQL Server backup, the size of transaction logs can increase beyond the original backup estimate and cause the backup to fail. Use this parameter to customize the number of kilobytes in the backup estimate and avoid possible backup failures.

/ADJUSTPERcenttsmestimate=numpercent
The /adjustpercenttsmestimate parameter specifies the percentage number to add to the size of the backup estimate. The numpercent variable refers to the percentage number to add. The number can range from 0 to 99. The default is 0. Increasing the percentage estimate may be necessary when the backup estimate (generated by the SQL Server) may be too low as the disk storage pool has cache enabled. For example, if maintenance is performed on the production server during a Data Protection for SQL Server backup, the size of transaction logs can increase beyond the original backup estimate and cause the backup to fail. Use this parameter to customize the percentage in the backup estimate and avoid possible backup failures.

/ALWAYSONPriority
Use this parameter to specify that a local availability database is backed up only if it has the highest backup priority among the availability replicas that are working properly on SQL Server 2012 and later versions. You can use this parameter at the command-line interface or as part of a scheduled backup.

/BACKUPDESTination=TSM | LOCAL | BOTH
Use the /BACKUPDESTination parameter to specify the location where the backup is stored.

You can specify:

TSM The backup is stored on IBM Spectrum Protect server storage only. This option is the default.

LOCAL The backup is stored on local shadow volumes only. This is only valid when the /BACKUPMETHOD parameter specifies VSS.

BOTH The backup is stored on IBM Spectrum Protect server storage and local shadow volumes. This is only valid when the /BACKUPMETHOD parameter specifies VSS.

The /BACKUPDESTination parameter is valid only when using the full or copyfull positional parameters. The full and copyfull backups can be saved to TSM server storage, local storage, or both. The
/BACKUPDESTination parameter is used to choose among options. The log, diff, file, and group backups can be stored only to TSM server storage. In this scenario, you cannot issue the /BACKUPDESTination parameter because TSM is the only viable option.

/BACKUPMETHOD=LEGACY|VSS
Use the /BACKUPMETHOD parameter to specify the manner in which the backup is performed.

You can specify:

LEGACY
The backup is performed with the legacy API. This backup is the SQL Server streaming backup and restore API as used in previous versions of Data Protection for SQL Server. This option is the default value.

VSS
The backup is performed with VSS.

The /BACKUPMETHOD parameter is valid only when using the full or copyfull positional parameters. The full and copyfull backups can be performed using VSS or legacy operations. The /BACKUPMETHOD parameter is used to choose between the options. The log, diff, file, and group backups can only be performed using legacy operations. In this scenario, you cannot issue the /BACKUPMETHOD parameter because legacy is the only viable option.

/BUFFERS=numbuffers
The /buffers parameter specifies the number of data buffers used for each data stripe to transfer data between Data Protection for SQL Server and the IBM Spectrum Protect API. The numbuffers variable refers to the number of data buffers to use. The number can range from 2 to 8. The default is 3.

Considerations:
• You can improve throughput by increasing the number of buffers, but you will also increase storage use. Each buffer is the size specified in the /buffersize parameter.
• The default value is the value specified by the buffers configurable option in the Data Protection for SQL Server configuration file. This is initially 3.
• If you specify /buffers, its value is used instead of the value stored in the Data Protection for SQL Server configuration file. Specifying this parameter does not change the value in the configuration file.
• If you specify /buffers but not numbuffers, the default value 3 is used.

/BUFFERSIZE=buffersizeinkb
The /buffersize parameter specifies the size of each Data Protection for SQL Server buffer specified by the /buffers parameter. The buffersizeinkb variable refers to the size of data buffers in kilobytes. The number can range from 64 to 8192. The default is 1024.

Considerations:
• Though increasing the number of buffers can improve throughput, it also increases storage use as determined by this parameter.
• The default value is the value specified by the buffers configurable option in the Data Protection for SQL Server configuration file. This is initially 1024.
• If you specify /buffersize, its value is used instead of the value stored in the Data Protection for SQL Server configuration file. Specifying this parameter does not change the value in the configuration file.

• If you specify /buffersize but not buffersizeinkb, the default value 1024 is used.

/CONFIGfile=filename
The /configfile parameter specifies the name of the Data Protection for SQL Server configuration file, which contains the values for the Data Protection for SQL Server configurable options.

Considerations:
• configfilename can include a fully qualified path. If configfilename does not include a path, it uses the directory where Data Protection for SQL Server is installed.

• If configfilename includes spaces, place it in double quotes.

• If you do not specify /configfile, the default value is tdpsql.cfg.

/ENABLEREPlacementchars=No|Yes
The /ENABLEREPlacementchars parameter enables SQL Server databases that have backslash (\) or colon (:) characters in the database name to be backed up. The maximum length of the database name is 128 characters. This parameter applies only to Data Protection for SQL Server version 7.1.1 and later versions.

You can specify the following values:

Yes Enable Data Protection for SQL Server to process backslash (\) or colon (:) characters in a database name, and back up the database to IBM Spectrum Protect. This value is the default.

No Prevent database backups to IBM Spectrum Protect if a user-defined string is substituted for a backslash (\) or colon (:) character in the database name.

/EXCLUDEdb=dblist
The /excludedb parameter specifies the name of the databases to exclude from the backup operation. This parameter is available for all VSS and legacy backup types.

/EXCLUDEALwaysondbs
Use this parameter to exclude all AlwaysOn Availability Databases from the backup operation. If you want to exclude specific databases, use the /excludedb parameter.

/EXCLUDESTandarddbs
Use this parameter to exclude all standard databases from the backup operation. If you want to exclude specific databases, use the /excludedb parameter.

/LOGFile=logfile
The /logfile parameter specifies the name of the activity log that is generated by Data Protection for SQL Server. This activity log records significant events such as completed commands and error messages. The Data Protection for SQL Server activity log is distinct from the SQL Server error log. The logfile variable identifies the name to be used for the activity log generated by Data Protection for SQL Server.

Considerations:
If the log file that you specify does not exist, it is created. If it does exist, new log entries are appended to the file.

The file name can include a fully-qualified path; however, if you specify no path, the file is written to the directory where Data Protection for SQL Server is installed.

You cannot turn Data Protection for SQL Server activity logging off. If you do not specify /logfile, log records are written to the default log file. The default log file is tdpsql.log.

When using multiple simultaneous instances of Data Protection for SQL Server to perform operations, use the /logfile parameter to specify a different log file for each instance used. This directs logging for each instance to a different log file and prevents interspersed log file records. Failure to specify a different log file for each instance can result in unreadable log files.

LOGPrune=numdays | No

When you prune log data, you can discard some of the generated logs according to detailed filtering criteria that you set. In the configuration file, the default value for the LOGPrune is that specified by the logprune configurable option. The default value is 60, which means 60 days of log entries are saved. The option No can be specified to disable log pruning.

Regardless of the option that is set in the configuration file for this parameter, you can explicitly request log pruning at any time.

Considerations:

- For numdays, the range is 0 to 9999. A value of 0 deletes all entries in the activity log file except for the current command entries.
- If you specify the LOGPrune parameter, that value is used instead of the value that is stored in the configuration file. Specifying this parameter does not change the value in the configuration file.
- You can specify LOGPrune without specifying numdays or no; in this case, the default value, 60, is used.
- Changes to the value of the TIMEformat or DATEformat parameter can result in an unwanted pruning of the log file. If you are running a command that might prune the log file, and the value of the TIMEformat or DATEformat parameter is changed, complete one of the following to prevent unintentional pruning of the log file:
 - Make a copy of the existing log file.
 - Specify a new log file with the LOGFile parameter or logfile setting.

/MOUNTWait=Yes | No

The /mountwait parameter is used to specify whether Data Protection for SQL Server waits for removable media to mount, such as tapes or CDs, or stops the current operation. This parameter is not valid for all backup types; the parameter does not work with DIFFFULL or LOG backup types. If the IBM Spectrum Protect server is configured to store backup data on removable media, it is possible that the IBM Spectrum Protect server might indicate to Data Protection for SQL Server that it is waiting for a required storage volume to be mounted. If that occurs, this option allows you to specify whether to wait for the media mount or stop the current operation.

You can specify:

- **Yes** Wait for tape mounts (default).
- **No** Do not wait for tape mounts.
Considerations:

- If you use data striping for legacy operations, Data Protection for SQL Server cannot complete waiting until the initial media for stripes are available, although Data Protection for SQL Server starts to use each stripe as its media becomes available. Because of the way SQL Server distributes data among stripes, if any stripe does not have its media available, each of the stripes may eventually be either waiting for its own or another stripe's media to become available. In this case, it may become necessary to terminate the Data Protection for SQL Server command from a prolonged wait. This can be done only by terminating the Data Protection for SQL Server program (close the command prompt window or enter control-c).

- If the management class for meta objects also requires removable media, Data Protection for SQL Server waits for that volume, but because meta objects are not created until after the data objects are complete, the wait occurs after the data is transferred.

- If you specify /no and any removable media are required, Data Protection for SQL Server terminates the command with an error message. This is also true if the management class for meta objects requires removable media. Since the meta objects are not created until after the data objects are complete, the command termination does not occur until after the database data is transferred.

- If you do not specify /mountwait, the default value is that specified in the mountwait configurable option in the Data Protection for SQL Server configuration file. This is initially yes. Specifying this parameter does not change the value in the configuration file.

/OFFLOAD

Specify this parameter to perform the backup of files to IBM Spectrum Protect on the machine specified by the remotedsagemagentnode instead of the local machine. This parameter is valid when the following parameters and options are set: /backupmethod=VSS and /backupdestination=TSM. Note that this parameter requires a VSS provider that supports transportable shadow copies. You cannot specify this parameter with the default Windows VSS System Provider.

/SQLAUTHentication=INTegrated | SQLuserid

This parameter specifies the authorization mode used when logging on to the SQL Server. The integrated value specifies Windows authentication. The user id you use to log on to Windows is the same id you will use to log on to the SQL Server. This is the default value.

Use the sqluserid value to specify SQL Server user id authorization. The user id specified by the /sqluserid parameter is the id you use to log on to the SQL Server. Any SQL Server user id must have the SQL Server SYSADMIN fixed server role.

/SQLBUFFers=numsqlbuffers

The /sqlbuffers parameter specifies the total number of data buffers SQL Server uses to transfer data between SQL Server and Data Protection for SQL Server. The numsqlbuffers variable refers to the number of data buffers to use. The number can range from 0 to 999. The initial value is 0. When /sqlbuffers is set to 0, SQL Server determines how many buffers should be used.

Considerations:
The default value is the value specified by the SQL Server buffers configurable option in the Data Protection for SQL Server configuration file. This is initially 0.

If you specify /sqlbuffers, its value is used instead of the value stored in the Data Protection for SQL Server configuration file. Specifying this parameter does not change the value in the configuration file.

If you specify /sqlbuffers but not numsqlbuffers, the default value 0 is used.

/sqlbuffersize=sqlbuffersizeinkb
The /sqlbuffersize parameter specifies the size of each buffer (specified by the /sqlbuffers parameter) SQL Server uses to transfer data to Data Protection for SQL Server. The sqlbuffersizeinkb variable refers to the size of data buffers in kilobytes. The number can range from 64 to 4096. The default is 1024.

Considerations:

The default value is the value specified by the SQL Server buffers configurable option in the Data Protection for SQL Server configuration file. This is initially 1024.

If you specify /sqlbuffersize, its value is used instead of the value stored in the Data Protection for SQL Server configuration file. Specifying this parameter does not change the value in the configuration file.

If you specify /sqlbuffersize but not sqlbuffersizeinkb, the default value 1024 is used.

/SQLCHECKSum=No|Yes
The /SQLCHECKSum parameter is used to verify the integrity of a legacy database backup. Integrity checking is a process that validates the values in a file or configuration for unexpected changes. Values are verified between the current state and the baseline state.

You can specify the following values:

No Do not enable integrity checking for a legacy database backup. This value is the default.
Yes Enable integrity checking for a legacy database backup.

In the Performance Properties window of Microsoft Management Console, you can enable or disable the checksum option for all your legacy databases at once. You can override the global setting, and temporarily enable or disable the checksum option for a database backup, by setting this SQLCHECKSum parameter value to Yes or No.

/SQLCOMPression=No|Yes
The /SQLCOMPression parameter specifies whether SQL compression is applied. If you do not specify /SQLCOMPression, the No default value is used. This parameter is only applicable on systems running SQL Server 2008 and later versions. For SQL Server 2008, you can run backup compression only on the Enterprise Edition. For SQL Server 2008 R2, you can run backup compression on Standard, Enterprise, and Datacenter editions.

/SQLPassword=sqlpasswordname
This parameter specifies the SQL Server password that Data Protection for SQL Server uses to log on to the SQL Server that objects are backed up from or restored to.

Considerations:
• Using this parameter means that you are using SQL Server authentication. The SQL Server and the SQL Server user id for this password must both be configured for SQL Server authentication.
• If you do not specify /sqlpassword, the default value is blank (" ").
• If you specify /sqlpassword but not sqlpasswordname, the default is also blank (" ").
• This parameter is ignored if you use the /sqlauth=integrated parameter with it.

/SQLEVER=sqlserver-connection
The /sqlserver parameter specifies the SQL Server that Data Protection for SQL Server logs on to. The sqlserver-connection comprises the sqlprotocol and sqlservername. The sqlprotocol variable specifies the communication protocol to use and with this variable, you can specify an sqlservername. You can check the SQL connection by using the SQL Server Configuration Manager tool (under SQL Server Native Client Configuration client protocols). You can choose from the following protocols:

<table>
<thead>
<tr>
<th>Protocol Name</th>
<th>Description</th>
<th>Example Usage (with sqlserver-connection details)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lpc</td>
<td>Shared Memory</td>
<td>/sqlserver=lpc:servername<instancename></td>
</tr>
<tr>
<td>np</td>
<td>Named Pipes</td>
<td>/sqlserver=np:servername\pipe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You can optionally specify a specific named pipe instance. For example, /sqlserver=np: \hostname\pipe\pipe name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By default, the pipe name is sql\query. If you connect to a named instance, the pipe name is typically in the following format: \<servername>\pipe\ MSSQL$<instancename>\SQL\query</td>
</tr>
<tr>
<td>tcp</td>
<td>Transmission Control</td>
<td>/sqlserver=tcp:servername<instancename></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/sqlserver=tcp:<servername>|<instancename></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/sqlserver=via:<virtualservername><instancename></td>
</tr>
</tbody>
</table>

Attention:
• For tcp protocols only, you have the option of defining a port. If you do not define a port, the default port value is the SQL default port 1433.
• For the via protocol, SQL Server supports this protocol only through SQL Server 2008 R2.
• To enable Data Protection for SQL Server to communicate with AlwaysOn Availability Group (AAG) instances, it is not possible to connect to the SQL Server using AAG listeners. For backup and restore operations, you must use the local SQL Server instance name (or instance name and port number) to communicate with the AAG. For AAG (or non-AAG instances), you can also specify non-default port numbers.

If you do not specify a protocol, Data Protection for SQL Server logs on to the SQL Server according to the first protocol that becomes available.

Considerations:
• The default value is the value specified by the SQL Server configurable option in the Data Protection for SQL Server configuration file. This is initially the local computer name.

• If you specify \sqlserver but not sqlservername, the local computer name is used.

• The following two shortcuts are accepted as the local computer name: . (local) That is, a period or the word local within parentheses.

• If the SQL Server is a member of a fail-over cluster, the CLUSTERNODE option in the IBM Spectrum Protect options file must have the value YES.

• If the SQL Server is not the default instance or is a member of a fail-over cluster, you must specify the name.

• The format of sqlservername depends on what type of instance it is and whether it is clustered or not:

<table>
<thead>
<tr>
<th>Format</th>
<th>Instance?</th>
<th>Clustered?</th>
<th>Name required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>local-computername</td>
<td>default</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>local-computername\instancename</td>
<td>named</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>virtualservername</td>
<td>default</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>virtualservername\instancename</td>
<td>named</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

localcomputername
The network computer name of the computer on which the SQL Server and Data Protection for SQL Server reside. The TCP/IP host name may not always be the same.

instancename
The name given to the named instance of the SQL Server that is specified during installation of the instance.

virtualservername
The name given to the clustered SQL Server that is specified during clustering service setup. This name is not the cluster or node name.

/SQLUSer=sqlusername
The /sqluser parameter specifies the name that Data Protection for SQL Server uses to log on to the SQL Server.

Considerations:
• Using this parameter means that you are using SQL Server authentication. The SQL Server and the SQL Server user id for this password must both be configured for SQL Server authentication.

• The SQL Server user id must have the SQL Server SYSADMIN fixed server role.

• If you do not specify /sqluser, the default is sa.

• If you specify /sqluser but not sqlusername, the default is also sa.

• This parameter is ignored if you use the /sqlauth=integrated parameter with it.
/STRIPes=numstripes
The /stripes parameter specifies the number of data stripes to use in a backup or restore operation. The numstripes variable can range from 1 to 64.

Considerations:
• If you do not specify /stripes, the default value is that specified in the Data Protection for SQL Server configuration file. The initial value is 1.
• If you specify /stripes but not numstripes, the stored value is used.
• You may use up to the number used to create the backup. You can determine the number of data stripes used to create a backup object with the Data Protection for SQL Server command: query tsm dbname backup_object
• You must use the MAXNUMMP parameter on an IBM Spectrum Protect REGISTER NODE or UPDATE NODE command to allow a node to use multiple sessions to store data on removable media (which requires you to allocate multiple mount points to that node). The MAXNUMMP value must be equal to or greater than the maximum number of stripes you desire.
• When you use data striping, you should use IBM Spectrum Protect server file space collocation to try to keep each stripe on a different storage volume.
• The maximum number of data stripes you can use is one less than the value of the IBM Spectrum Protect server TXNGROUPMAX option in the dsmserv.opt file.

/TSMNODE=tsmnodename
The /tsmnode parameter specifies the IBM Spectrum Protect node name that Data Protection for SQL Server uses to log on to the IBM Spectrum Protect server. This identifies which IBM Spectrum Protect client is requesting services. You can also store the node name in the options file. The command line parameter overrides the value in the options file.

Considerations:
• You cannot use the /tsmnode parameter if PASSWORDACCESS GENERATE is specified in the IBM Spectrum Protect options file. You must specify the nodename in the options file. Otherwise, you can change PASSWORDACCESS to PROMPT to utilize the /tsmnode parameter. For more information about the IBM Spectrum Protect options file, see Creating and modifying the client system-options file ().
• If you do not specify /tsmnode, the default value is that specified by the nodename option in the IBM Spectrum Protect options file. Specifying this parameter does not change the value in the options file.

/TSMOPTFile=dsmoptfilename
The /tsmoptfile parameter specifies the IBM Spectrum Protect options file to use. This is similar to selecting an IBM Spectrum Protect server from the server list in the GUI. The IBM Spectrum Protect options file contains the configuration values for the IBM Spectrum Protect API. For more information about the IBM Spectrum Protect options file, see Creating and modifying the client system-options file ().

Considerations:
• The tsmoptfilename variable can include a fully qualified path. If you do not include a path, the directory where Data Protection for SQL Server is installed is used.
If `tsmoptfilename` includes spaces, you must enclose it in double quotes.

If you do not specify `/tsmoptfile`, the default value is `dsm.opt`.

If you specify `/tsmoptfile` but not `tsmoptfilename`, the default is also `dsm.opt`.

```
/TSMPassword=tsmpasswordname
```

The `/tsmpassword` parameter specifies the IBM Spectrum Protect password that Data Protection for SQL Server uses to log on to the IBM Spectrum Protect server. This parameter and the option PASSWORDACCESS in the IBM Spectrum Protect options file interact in the following ways:

<table>
<thead>
<tr>
<th>/tsmpassword</th>
<th>PASSWORDACCESS in IBM Spectrum Protect options file</th>
<th>Password already stored in registry?</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>specified</td>
<td>generate</td>
<td>yes</td>
<td>/tsmpassword ignored</td>
</tr>
<tr>
<td>specified</td>
<td>generate</td>
<td>no</td>
<td>/tsmpassword used and stored</td>
</tr>
<tr>
<td>specified</td>
<td>prompt</td>
<td>—</td>
<td>/tsmpassword used</td>
</tr>
<tr>
<td>not specified</td>
<td>prompt</td>
<td>—</td>
<td>user is prompted</td>
</tr>
</tbody>
</table>

```
/USEALWAYSONnode
```

Specify this parameter to back up standard databases on SQL Server 2012 and later versions by using the AlwaysOn node. By setting this parameter, you can back up all availability databases and standard databases under a single node to help you to manage your database backups more easily. By default, SQL Server 2012 and later version availability databases are backed up to the AlwaysOn node.

Legacy backup examples

The following examples are provided to show how you can issue the `backup` command with various parameters and options.

Full backup examples

If you want to complete a full backup, the following examples are provided to help you to model the command syntax.

- To complete a legacy full backup of two databases (`model` and `msdb`) to IBM Spectrum Protect server server storage with the `/sqlbuffers` and `/stripes` optional parameters, enter the following command:
  ```
tdpsqlc backup model,msdb full /sqlbuffers=2 /stripes=2
  ```

- To complete a legacy full backup of a database (`test2`) with no output displayed, because the `/quiet` parameter is used, and the default Windows authentication mode is overridden with the use of the `/sqlauthentication` parameter, enter the following command:
  ```
tdpsqlc backup test2 full /quiet /sqlauth=sql
  ```

- To complete a legacy full backup of all available databases with the wildcard character (*) while using the `/excludedb` parameter to exclude the `master` and `msdb` databases from the backup process, enter the following command:
  ```
tdpsqlc backup * full /excludedb=master,msdb
  ```

- To complete a full backup of the a database (`test1`) with the parameters that customizes the number of kilobytes, `/adjustkbtsmestimate`, enter the following command:
  ```
tdpsqlc backup test1 full /adjustkbtsmestimate=25
  ```
To complete a full backup of all standard databases, enter the following command:

```
tdpsqlc backup * full /EXCLUDEAlwaysondbs
```

To complete a log backup of all availability databases, enter the following command:

```
tdpsqlc backup * log /EXCLUDESTandarddbs
```

For a more complex example, consider the following scenario: There are three AlwaysOn Availability Groups. The first availability group is called AG01 with the following databases:

- AlwaysOn Availability Database called `AlwaysOnLegacyDB1`
- AlwaysOn Availability Database called `AlwaysOnLegacyDB3`

The second availability group is called AG03 with the following AlwaysOn Availability Database: `AlwaysOnLegacyDB2`. The third availability group is called AG04 with the following databases:

- AlwaysOn Availability Database called `AlwaysOnLegacyDB5`
- AlwaysOn Availability Database called `AlwaysOnLegacyDB6`
- Standard database called `SQL_DB1`
- Standard database called `SQL_DB2`

To complete a full backup with list matching both standard and availability databases, but excluding standard databases, enter the following command:

```
C:\Program Files\tivoli\tsm\TDPSql>tdpsqlc backup AlwaysOnLegacy*,SQL* full /backupdest=TSM /backupmeth=legacy /EXCLUDESTandarddbs
```

When using the `/AAGName` parameter to filter the databases that are backed up, refer to the following scenario with the examples: There are two AlwaysOn Availability Groups. The first availability group is called AG01 with the following databases:

- AlwaysOn Availability Database called `AlwaysOnLegacyDB1`
- AlwaysOn Availability Database called `AlwaysOnLegacyDB3`

The second availability group is called AG04 with the following databases: with databases:

- AlwaysOn Availability Database called `AlwaysOnLegacyDB5`
- AlwaysOn Availability Database called `AlwaysOnLegacyDB6`

When you enter a `backup` command for all databases, but use the `/AAGName` parameter to include only databases from AG01 in the backup, enter the following command:

```
C:\Program Files\tivoli\tsm\TDPSql>tdpsqlc backup * full /backupdest=TSM /backupmeth=legacy /AAGName=AG01
```

When you enter a `backup` command for a database list with wildcards, but use the `/AAGName` parameter to include only databases from AG04 in the backup, enter the following command:

```
C:\Program Files\tivoli\tsm\TDPSql>tdpsqlc backup AlwaysOn*,SQL* full /backupdest=TSM /backupmeth=legacy /AAGName=AG04
```

When you enter a `backup` command for a database list with wildcards, but do not match all databases from the specified AlwaysOn Availability Group, enter the following command:

```
C:\Program Files\tivoli\tsm\TDPSql>tdpsqlc backup *0BS full /backupdest=TSM /backupmeth=legacy /AAGName=AG04
```
Differential backup examples

If you want to complete a differential backup, the following examples are provided to help model the command syntax.

- To complete a legacy differential backup of the previous full backup of a database (test2), including an estimate of the changed portion of the test2 database, enter the following command:

  ```
  tdpsqlc backup test2 difffull /diffest=10
  ```

- To complete a legacy differential backup of all available databases using the wildcard character (*) using the `/excludedb` parameter to exclude the `master` and `msdb` databases from the backup, enter the following command:

  ```
  tdpsqlc backup * difffull /excludedb=master,msdb
  ```

- To complete a differential backup with a database list matching both standard and availability databases, but excluding availability databases, enter the following command:

  ```
  C:\Program Files\tivoli\tsm\TDPSql>tdpsqlc backup AlwaysOnLegacy*,SQL* diff /EXCLUDEAlwayson dbs
  ```

Log backup example

To complete a legacy log backup of the previous full backups of two databases (test2 and model) while overriding the default truncation of the log files, enter the following command:

```
tdpsqlc backup test2,model log /truncate=no
```

Group backup example

To complete a legacy backup of all filegroups belonging to a database called `netapp_db2`, enter the following command:

```
tdpsqlc backup netapp_db2 Group**
```

File backup example

To complete a legacy file backup of all files belonging to a database (test2) using the wildcard character (*), enter the following command:

```
tdpsqlc backup test2 file**
```

Set backup example

To complete a legacy set backup of one filegroup and two separate files (jointly as a single backup object) from a database (test2) while using the `/groups` and `/files` parameters to specify which items constitute this set backup, enter the following command:

```
tdpsqlc backup test2 set /groups=primary /files=test2_2data, test2_3data
```

Copy-only full backup example

To complete a legacy copy-only full backup of the availability database (`filestreamdb`) in an SQL Server 2012 AlwaysOn Availability Group environment, and later versions, enter the following command:

```
tdpsqlc backup filestreamdb CopyFull /backupdestination=TSM
```

```
/backupmethod=legacy
```
VSS backup examples

The following examples are provided to show you how you can issue the `backup` command with various parameters and options.

Full local backup examples

If you want to complete a full local backup, the following examples are provided to help you model the command syntax.

- To complete a VSS full backup of a database (`test1`) to local shadow volumes using the `/backupdestination` and `/backupmethod` optional parameters, enter the following command:

  ```
  tdsqql backup test1 full /backupdestination=local
  /backupmethod=vss
  ```

- To complete a VSS full backup of all available databases to local shadow volumes using the wildcard character (`*`) and the `/excludedb` parameter to exclude the `master` and `msdb` databases from being backed up, enter the following command:

  ```
  tdsqql backup * full /backupdestination=local /backupmethod=vss
  /exclude=master,msdb
  ```

- To complete a VSS full backup of an SQL Server 2012 availability database and later versions (`hkaagdb`) to local shadow volumes, enter the following command:

  ```
  tdsqql backup hkaagdb full /backupdestination=local /backupmethod=vss
  ```

- To complete a full backup of all standard databases, enter the following command:

  ```
  tdsqql backup * full /EXCLUDEAllwaysondbs
  ```

- To complete a log backup of all availability databases, enter the following command:

  ```
  tdsqql backup * log /EXCLUDEStandarddbs
  ```

Full local backup with IBM Spectrum Protect server example

To complete a VSS full backup of database (`model`) to local shadow volumes and IBM Spectrum Protect server storage using the `/backupmethod` parameter, enter the following command:

```
 tdsqql backup model full /backupmethod=vss
```

Copy-only full backup to IBM Spectrum Protect server example

To complete a VSS copy-only full backup of the full backup of the `filestreamdb` database to the IBM Spectrum Protect server storage using the `/backupmethod` parameter, enter the following command:

```
 tdsqql backup filestreamdb CopyFull /backupdestination=TSM
 /backupmethod=vss
```
Changetsmpassword command

To change the IBM Spectrum Protect password that is used by Data Protection for SQL Server, use the **changetsmpassword** command. The password is used to log on to the IBM Spectrum Protect server.

Changetsmpassword

Use the **changetsmpassword** command syntax diagrams as a reference to view available options and truncation requirements.

TDPSQLC CHANGETSMPassword command

```
TDPSQLC—CHANGETSMPassword—oldpassword—newpassword—verifypassword
```

Optional Parameters

- `/CONFIGfile` = `tdpsql.cfg` / `configfilename`
- `/LOGFile` = `tdpsql.log` [or `cfg value`] / `logfilename`
- `/LOGPrune` = `60` [or `cfg value`] / `numdays`
- `/TSMNODE` = `[dsm.opt value]` / `tsmnodename`
- `/TSMOPTFile` = `dsm.opt` / `dsmoptfilename`

Changetsmpassword positional parameters

Positional parameters immediately follow the **changetsmpassword** command and precede the optional parameters.

You are prompted for the following parameters if you do not specify them with the **changetsmpassword** command:

- **oldpassword**
 This specifies the old (current) IBM Spectrum Protect password you want to change.

- **newpassword**
 This specifies the new IBM Spectrum Protect password.

 The password is not case sensitive and may be composed of 1 to 63 of the following characters:
 - the letters A through Z
 - the digits 0 through 9
• the special characters plus (+), period (.), underscore (_), hyphen (—), and ampersand (&)

`verifypassword`
This specifies the new IBM Spectrum Protect password again as a verification that `newpassword` is correct.

Changetspassword optional parameters
Optional parameters follow the `changetspassword` command and positional parameters.

`/CONFIGfile=filename`
The `/configfile` parameter specifies the name of the Data Protection for SQL Server configuration file, which contains the values for the Data Protection for SQL Server configurable options.

Considerations:
• `filename` can include a fully qualified path. If `filename` does not include a path, it uses the directory where Data Protection for SQL Server is installed.
• If `filename` includes spaces, place it in double quotes.
• If you do not specify `/configfile`, the default value is `tdpsql.cfg`.
• If you specify `/configfile` but not `filename`, the default value `tdpsql.cfg` is used.

`/LOGPrune=numdays | No`
When you prune log data, you can discard some of the generated logs according to detailed filtering criteria that you set. Depending on the option that you set for the `/LOGPrune` parameter, a certain number of days of data are saved. By default, 60 days of log entries are saved. The option `No` can be entered to disable log pruning.

Regardless of the option that you set for this parameter, you can explicitly request log pruning at any time.

Considerations:
• For `numdays`, the range is 0 to 9999. A value of 0 deletes all entries in the activity log file except for the current command entries.
• If you specify `No`, the log file is not pruned.
• If you do not specify `/LOGPrune`, the default value is that specified by the logprune configurable option in the configuration file. The default value is 60.
• If you specify `/LOGPrune`, its value is used instead of the value that is stored in the configuration file. Specifying this parameter does not change the value in the configuration file.
• You can specify `/LOGPrune` without specifying `numdays` or `No`; in this case, the default value, 60, is used.
• Changes to the value of the `TIMEformat` or `DATEformat` parameter can result in an unwanted pruning of the log file. If you are running a command that might prune the log file, and the value of the `TIMEformat` or `DATEformat` parameter is changed, complete one of the following to prevent unintentional pruning of the log file:
 – Make a copy of the existing log file.
 – Specify a new log file with the `/LOGFile` parameter or `logfile` setting.
/TSMNODE=tsmnodename

The /tsmnode parameter specifies the IBM Spectrum Protect node name that Data Protection for SQL Server uses to log on to the IBM Spectrum Protect server. This identifies which IBM Spectrum Protect client is requesting services. You can also store the node name in the options file. The command line parameter overrides the value in the options file.

Considerations:
- You cannot use the /tsmnode parameter if PASSWORDACCESS GENERATE is specified in the IBM Spectrum Protect options file. You must specify the nodename in the options file. Otherwise, you can change PASSWORDACCESS to PROMPT to utilize the /tsmnode parameter. For more information about the IBM Spectrum Protect options file, see Creating and modifying the client system-options file.
- If you do not specify /tsmnode, the default value is that specified by the nodename option in the IBM Spectrum Protect options file. Specifying this parameter does not change the value in the options file.

/TSMOPTFile=dsmoptfilename

The /tsmoptfile parameter specifies the IBM Spectrum Protect options file to use. This is similar to selecting an IBM Spectrum Protect server from the server list in the GUI. The IBM Spectrum Protect options file contains the configuration values for the IBM Spectrum Protect API. For more information about the IBM Spectrum Protect options file, see Creating and modifying the client system-options file.

Considerations:
- The tsmoptfilename variable can include a fully qualified path. If you do not include a path, the directory where Data Protection for SQL Server is installed is used.
- If tsmoptfilename includes spaces, you must enclose it in double quotes.
- If you do not specify /tsmoptfile, the default value is dsm.opt.
- If you specify /tsmoptfile but not tsmoptfilename, the default is also dsm.opt.

Related reference:
“Set positional parameters” on page 280

Changetsmpassword output examples

This output example provides a sample of the text, messages, and process status that displays when using the changetsmpassword command.

The following displays changing the IBM Spectrum Protect password.

Command:

tdpsqlc changetsmp sqlv2old sqlv2new sqlv2new

Output:

IBM Tivoli Storage Manager for Databases:
Data Protection for Microsoft SQL Server
Version 7, Release 1, Level 3.0
(C) Copyright IBM Corporation 1998, 2015.
All rights reserved.

AC00260I Password successfully changed.
Delete Backup command

Use the **delete backup** command to delete a VSS backup of an SQL Server database.

You must have local registry rights (for all versions of SQL Server) to perform a Data Protection for SQL Server delete backup.

Delete Backup syntax

Use the **delete backup** command syntax diagrams as a reference to view available options and truncation requirements.

TDPSQLC command

```
TDPSQLC DElete BACKup dbname FULL

/CONFIGfile= configfilename

/FROMSQLSERVER= sqlservername

/LOGPrune= numdays

/Object= objectname,...

/Quiet
```

Delete Backup positional parameters

Positional parameters immediately follow the **delete backup** command and precede the optional parameters.

The following positional parameters specify the backup to delete:

* * dbname

 Delete the active backups of all databases.

 * dbname

 Delete a backup of the specified database. The active backup is deleted unless you specify a different backup with the `/object` optional parameter.
Multiple entries are separated by commas. If separated by commas, make sure there is no space between the comma and the database name. If any database name contains blanks, enclose the database name in double quotation marks.

The following positional parameter specifies the type of delete backup to run:

FULL Delete full type backups.

Attention: Be careful to delete only the backups that you want.

Delete Backup optional parameters

Optional parameters follow the `delete backup` command and positional parameters.

/BACKUPDESTination=TSM|LOCAL
Use the `/backupdestination` parameter to specify the location from where the backup is to be deleted. The default is the value (if present) specified in the Data Protection for SQL Server preferences file (`tdpsq1.cfg`). If no value is present, the backup is deleted from IBM Spectrum Protect server storage.

You can specify:

- **TSM** The backup is deleted from IBM Spectrum Protect server storage. This option is the default if no value is specified in the Data Protection for SQL Server preferences file (`tdpsq1.cfg`).
- **LOCAL** The backup is deleted from the local shadow volumes.

/CONFIGfile=configfilename
Use the `/configfile` parameter to specify the name (`configfilename`) of the Data Protection for SQL Server configuration file that contains the values to use for a `delete backup` operation.

The `configfilename` variable can include a fully qualified path. If the `configfilename` variable does not include a path, the Data Protection for SQL Server installation directory is used. If the `/configfile` parameter is not specified, or if the `configfilename` variable is not specified, the default value is `tdpsq1.cfg`.

If the `configfilename` variable includes spaces, enclose the entire `/configfile` parameter entry in double quotation marks. For example:

```
/CONFIGfile="c:\Program Files\file.cfg"
```

/FROMSQLSERVer=server-name
Use the `/fromsqlserver` parameter to specify the name of the SQL Server where the original backup is completed. This parameter is necessary only when the name of the SQL Server to delete from, as determined by the `/sqlserver` parameter, is different from the name of the SQL Server that the backup objects were created from. The default value is the `/sqlserver` value or the value set in the Data Protection for SQL Server configuration file.

- If the two SQL Server names are different, you must use this parameter even if `/fromsqlserver` was a non-clustered default instance.

/LOGFile=logfilename
Use the `/logfile` parameter to specify the name of the activity log file that is generated by Data Protection for SQL Server.

The `logfilename` variable identifies the name of the activity log file.
If the specified log file does not exist, a new log file is created. If the specified log file exists, new log entries are appended to the file. The logfilename variable can include a fully qualified path. However, if no path is specified, the log file is written to the Data Protection for SQL Server installation directory.

If the logfilename variable includes spaces, enclose the entire /logfile parameter entry in double quotation marks. For example:

\[LOGfile="c:\Program Files\mytdpsql.log" \]

If the /logfile parameter is not specified, log records are written to the default log file, tdpsql.log.

The /logfile parameter cannot be turned off, logging always occurs.

When you are using multiple simultaneous instances of Data Protection for SQL Server to complete operations, use the /logfile parameter to specify a different log file for each instance used. Logging for each instance is directed to a different log file, which prevents interspersed log file records. Failure to specify a different log file for each instance can result in unreadable log files.

/LOGPrune=numdays|No

When you prune log data, you can discard some of the generated logs according to detailed filtering criteria that you set. Depending on the option that you set for the /LOGPrune parameter, a certain number of days of data are saved. By default, 60 days of log entries are saved. The option No can be entered to disable log pruning.

Regardless of the option that you set for this parameter, you can explicitly request log pruning at any time.

Considerations:

- For numdays, the range is 0 to 9999. A value of 0 deletes all entries in the activity log file except for the current command entries.
- If you specify no, the log file is not pruned.
- If you do not specify /LOGPrune, the default value is that specified by the logprune configurable option in the configuration file. The default value is 60.
- If you specify /LOGPrune, its value is used instead of the value that is stored in the configuration file. Specifying this parameter does not change the value in the configuration file.
- You can specify /LOGPrune without specifying numdays or no; in this case, the default value, 60, is used.
- Changes to the value of the TIMEformat or DATEformat parameter can result in an unwanted pruning of the log file. If you are running a command that might prune the log file, and the value of the TIMEformat or DATEformat parameter is changed, complete one of the following to prevent unintentional pruning of the log file:
 - Make a copy of the existing log file.
 - Specify a new log file with the /LOGFile parameter or logfile setting.

/OBJect=objectname,...

Use the /object parameter to specify the names of backup objects that you want to delete. The object name uniquely identifies each backup object and is created by Data Protection for SQL Server.
Use the Data Protection for SQL Server `query tsm * /all` command to view the names of all available backup objects. This parameter specifies that only particular backup objects for the specified SQL Server databases and backup object type are deleted. The `objectname` variable specifies the names of the backup objects that you want to delete. The object name uniquely identifies each backup object and is created by Data Protection for SQL Server.

/quiet This parameter prevents status information from being displayed. This parameter does not affect the level of information that is written to the activity log.

/tsmnode=tsmnodename
Use the `tsmnodename` variable to refer to the IBM Spectrum Protect node name that Data Protection for SQL Server uses to log on to the IBM Spectrum Protect server.

You can store the node name in the IBM Spectrum Protect options file (dsm.opt). This parameter overrides the value in the IBM Spectrum Protect options file if `PASSWORDACCESS` is set to `PROMPT`. This parameter is not valid when `PASSWORDACCESS` is set to `GENERATE` in the options file.

/TSMOPTFile=tsmoptfilename
Use the `tsmoptfilename` variable to identify the Data Protection for SQL Server options file.

The file name can include a fully qualified path name. If no path is specified, the directory where Data Protection for SQL Server is installed is searched.

If the `tsmoptfilename` variable includes spaces, enclose the entire /tsmoptfile parameter entry in double quotation marks. For example:

/TSMOPTFile="c:\Program Files\file.opt"

The default is `dsm.opt`.

/TSMPassword=tsmpassword
Use the `tsmpassword` variable to refer to the IBM Spectrum Protect password that Data Protection for SQL Server uses to log on to the IBM Spectrum Protect server.

If you specified `PASSWORDACCESS GENERATE` in the Data Protection for SQL Server options file (dsm.opt), you do not need to supply the password here because the one that is stored in the registry is used. However, to store the password in the registry, you must specify the IBM Spectrum Protect password the first time that Data Protection for SQL Server connects to the IBM Spectrum Protect server.

If you do specify a password with this parameter when `PASSWORDACCESS GENERATE` is in effect, the command-line value is ignored unless the password for this node is not yet stored in the registry. In that case, the specified password is stored in the registry and used when you run this command.

If `PASSWORDACCESS PROMPT` is in effect, and you do not specify a password value on the command line, then you are prompted for a password.

The IBM Spectrum Protect password that Data Protection for SQL Server uses to log on to the IBM Spectrum Protect server can be up to 63 characters in length.
Delete Backup example

This output example provides a sample of the text, messages, and process status that displays when using the delete backup command.

In this example, the `tdpsqlc delete backup xivdb1 full` command deletes a full backup of database xivdb1. The following output is displayed:

```
Connecting to SQL Server, please wait...
Querying for Backups ....
Backup(s) to be deleted:
  <xivdb1 : VSS : full : 02/10/2011 10:03:29>
VSS Delete backup operation completed with rc = 0
Files Examined : 1
Files Completed : 1
Files Failed : 0
Total Bytes : 0
```

Help command

Use the `tdpsqlc help` command to display the syntax of all or selected Data Protection for SQL Server commands using a textual notation.

The help command uses the following notation:

- `[a]`
 - `a` is optional; `a` may occur zero or one time

- `{a | b}`
 - select either `a` or `b`, but not both

- `{a} +`
 - `a` must occur at least one time

- `{a} *`
 - `a` may occur zero or more times

- `(a)`
 - comments that are not part of the command

UPPERCASE

- minimum abbreviation (which you can also enter in lowercase)

Tip: When using languages other than English, you might need to set the width of your screen display to a value greater than 80 characters in order to view the entire help description in one screen. For example, set the screen width to 100 characters.

Help syntax

Use the `help` command syntax diagrams as a reference to view available options and truncation requirements.

TDPSQLC help command
Help positional parameters

Positional parameters immediately follow the `help` command. There are no optional parameters with this command.

Use the `help` command to display the syntax of all or selected Data Protection for SQL Server commands using a textual notation.

Help uses the following notation:

- `[a]`
 a is optional; a may occur zero or one time
- `{a | b}`
 select either `a` or `b`, but not both
- `{a} +`
 `a` must occur at least one time
- `{a} *`
 `a` may occur zero or more times
- `(a)`
 comments that are not part of the command

UPPERCASE

minimum abbreviation (which you can also enter in lowercase)

Help output examples

These output examples provide a sample of the text, messages, and process status that displays when using the `help` command.

Help 1-Query TSM

Command:

```
tdpqlc help query tsm *
```

Output:
IBM Spectrum Protect for Databases:
Data Protection for Microsoft SQL Server
Version 8, Release 1, Level 0
All rights reserved.

TDPSQLC Query TSM *|dbname[,dbname,...] [x]

【Active】
【All】
【BUFFers=numbuffers】 default: 3 (or cfg value)
【BUFFERSize=buffersizeinkb】 default: 1024 (or cfg value)
【COMPATibilityinfo】
【CONFIGfile=configfilename】 default: tdpsql.cfg
【FROMSQLserver=sqlservername】 default: sqlservername (or cfg value)
【LOGfile=logfilename】 default: tdpsql.log (or cfg value)
【LOGPrune=numdays|No】 default: 60 (or cfg value)
【OBJECT=*|objectname[,objectname,...]】
【TSMNode=tsmnodename】 default: dsm.opt value
【TSMOPTFile=dsmoptfilename】 default: dsm.opt
【TSMPassword=tsmpassword】 default: dsm.opt value

Help 2-Restore Full

Command:

tdpsqlc help rest full

Output:

IBM Spectrum Protect for Databases:
Data Protection for Microsoft SQL Server
Version 8, Release 1, Level 0
All rights reserved.

TDPSQLC Restore *|dbname[,dbname,...] [Full]

【BACKUPDESTination=TSM|LOCAL】 default: TSM
【BACKUPMETHod=LEGACY|VSS】 default: LEGACY
【BUFFers=numbuffers】 default: 3 (or cfg value)
【BUFFERSize=buffersizeinkb】 default: 1024 (or cfg value)
【CONFIGfile=configfilename】 default: tdpsql.cfg
【DBOnly】
【FILES=*|logicalname[,logicalname,...]】
【FROMSQLserver=sqlservername】 default: sqlservername (or cfg value)
【GROUPs=*|groupname[,groupname,...]】
【INSTANTRestore=Yes|No】 default: Yes
【INTO=dbname】
【LOGfile=logfilename】 default: tdpsql.log (or cfg value)
【LOGPrune=numdays|No】 default: 60 (or cfg value)
【OBJECT=*|objectname[,objectname,...]】
【PARTial】
【Quiet】
【RECOVery=Yes|No】 default: Yes
【RELocate=]name /T=dbname /O=pname 【RELocate=]name /T=dbname ...】
【RELOCATEDirectory=directory[,logfiledirectory[,otherfiledirectory]]】
【REPLACE】
【SQLAUTHentication=INTegrated|SQLuserid】 default: INTegrated (or cfg value)
【SQLBUFFers=numsqlbuffers】 default: 0 (or cfg value)
【SQLBUFFERSize=sqlbuffersizeinkb】 default: 1024 (or cfg value)
【SQLPassword=sqlpasswordname】 default: ""
【SQLSERVER=sqlserver-connection】
【STANDby=undofilename】
【STRIPes=numstripes】 default: 1 (or cfg value)
【TSMNode=tsmnodename】
【TSMOPTFile=dsmoptfilename】 default: dsm.opt value
【TSMPassword=tsmpassword】 default: dsm.opt value

Chapter 8. Reference 199
Help 3-Restore Log

Command:

tdpsqlc help rest log

Output:

IBM Tivoli Storage Manager for Databases:
Data Protection for Microsoft SQL Server
Version 7, Release 1, Level 3.0
(C) Copyright IBM Corporation 1998, 2015.
All rights reserved.

TDPSQLC Restore +[dbname[,dbname,...]] Log=*+[logobjectname[,logobjectname,...]]
[/BUFFers=numbuffers] default: 3 (or cfg value)
[/BUFFERSize=buffersizeinkb] default: 1024 (or cfg value)
[/CONFIGfile=configfilename] default: tdpsql.cfg
[/DBoonly]
[/FROMSQLserver=sqlservername] default: sqlserver value (or cfg value)
[/INTO=dbname]
[/LOGfile=logfile] default: tdpsql.log (or cfg value)
[/LOGPrune=numdays|No] default: 60 (or cfg value)
[/OBJect=*+|objectname[,objectname,...]]
[/Quiet]
[/RECOVery=Yes|No] default: Yes
[/RELocate=lname /TO=pname [/RELocate=lname /TO=pname ...]]
[/RELOCATEDirectory=directory[,logfiledirectory[,otherfiledirectory]]]
[/SQLAUTHentication=INTegrated|SQLuserid] default: INTegrated (or cfg value)
[/SQLBUFFers=numsqlbuffers] default: 0 (or cfg value)
[/SQLBUFFERSize=sqlbuffersizeinkb] default: 1024 (or cfg value)
[/SQLPassword=sqlpasswordname] default: " "
[/SQLSERVER=[sqlserverconnection] default: local computer name (or cfg value)
[/SQLUser=sqlusername] default: sa
[/STANDby=undofilename]
[/STOPAT=datetimel]
[/STOPATMark=markname [/AFTER=datetimel]]
[/STOPBEFOREMark=markname [/AFTER=datetimel]]
[/STRIPes=numstripes] default: 1 (or cfg value)
[/TSMNODE=tsmnode] default: dsm.opt value
[/TSMOPTFile=dsmoptfilename] default: dsm.opt
[/TSMPassword=tsmpassword] default: dsm.opt value

Help 4-Set

Command:

tdpsqlc help set

Output:
Inactivate command (Legacy only)

Use the `inactivate` command to deactivate one or more active legacy backup objects on the IBM Spectrum Protect server.

Most backup objects are automatically deactivated as part of the normally scheduled backup processing. For those occasions when that processing is insufficient, you can issue the `inactivate` command.

IBM Spectrum Protect server does not delete active backup objects from IBM Spectrum Protect managed storage; it will delete only inactive backup objects. Once
a backup object becomes inactive, the expiration processing defined in the object's management class determines exactly when the backup object is deleted.

Inactivate syntax

Use the `inactivate` command syntax diagrams as a reference to view available options and truncation requirements.

Syntax

TDPSQLC command

```
TDPSQLC INACTIVATE abname
  File=logicalfilename
    FULL
    DIFFerential
    Group=groupname
    Log=logobjectname
    Set=setobjectname
    =tdpsql.cfg
    /CONFIGfile=configfilename
    /FROMSQLSERVER=sqlservername
    /LOGFile=logfile
    /LOGPrune=numdays
    /OBJect=objectname
```

Inactivate Optional Parameters:

```
  =sqlserver value [or cfg. value]
  /LOGPrune=60 [or cfg value]
  /OBJect=objectname
```
Inactivate positional parameters

Positional parameters immediately follow the **inactivate** command and precede the optional parameters.

File= *logicalfilename, ...**

This option deactivates only the active file backup objects for the SQL Server databases you specify. The *logicalfilename* variable specifies the names of the SQL Server database logical files you want to deactivate.

Considerations:
- You can specify this parameter more than once per command invocation.
- Use * as a wildcard character in *logicalfilename* to replace zero or more characters for each occurrence. Specifying only the wildcard character indicates all logical files in the SQL Server database.
- If *logicalfilename* includes spaces or special characters, enclose it in double quotes.
- The *logicalfilename* variable is case-sensitive.

FULL

This option deactivates only the active full database backup objects for the SQL Server databases you specify. Each SQL Server database backed up creates a separate backup object on the IBM Spectrum Protect server. A new full database backup object deactivates all prior active backup objects for the same SQL Server database. This inactivation includes any active full backup object as well as any active file, group, set, differential, and log backup objects.

DIFFerential

This option deactivates only the active differential database backup object. Because each SQL Server database backup creates a separate backup object on the IBM Spectrum Protect server, a new differential database backup object deactivates any active differential backup object for the same SQL Server database. Use this option so that all individual log backups since the last full database backup do not need to be applied.

Group= *groupName, ...**

This option deactivates only the active group database backup object for the SQL Server database you specify. The *groupName* variable specifies the names of the SQL Server database filegroups you want to deactivate.

Considerations:
- You can specify this parameter more than once per command invocation.
- Use * as a wildcard character in the *groupName* variable to replace zero or more characters for each occurrence.
- Specifying only the wildcard character indicates all filegroups in the SQL Server database.
If the *groupname* variable includes spaces or special characters, enclose it in double quotes.

*The *groupname* variable is case-sensitive.*

Log or Log=* | logobjectname,...

This option deactivates only the active log database backup object for the SQL Server database you specify. This parameter takes the wildcard or *logobjectname* value. The *logobjectname* variable specifies the log backup objects to deactivate. Use * as a wildcard character in *logobjectname* to replace zero or more characters for each occurrence. Specifying only the wildcard character indicates all log backup objects for the SQL Server databases. You can specify this parameter more than once per command invocation.

Set or Set=* | setobjectname,...

This option deactivates only the active set database backup object for the SQL Server database you specify. This parameter takes the wildcard or *setobjectname* value. The *setobjectname* variable specifies the set backup objects to deactivate. Use * as a wildcard character in *setobjectname* to replace zero or more characters for each occurrence. Specifying only the wildcard character indicates all set backup objects for the SQL Server databases. You can specify this parameter more than once per command invocation.

Inactivate optional parameters

Optional parameters follow the *inactivate* command and positional parameters.

The following are detailed descriptions of each of the optional parameters:

/CONFIGfile= configfilename

The /configfile parameter specifies the name of the Data Protection for SQL Server configuration file, which contains the values for the Data Protection for SQL Server configurable options.

Considerations:

- *configfilename* can include a fully qualified path. If *configfilename* does not include a path, it uses the directory where Data Protection for SQL Server is installed.
- If *configfilename* includes spaces, place it in double quotes.
- If you do not specify /configfile, the default value is *tdpsql.cfg*.
- If you specify /configfile but not *configfilename*, the default value *tdpsql.cfg* is used.

/FROMSQLSERVER= sqlservername

The /fromsqlserver parameter specifies the SQL Server that backup objects were backed up from. This parameter is necessary only when the name of the SQL Server to deactivate from, as determined by the /sqlserver parameter, is different from the name of the SQL Server that the backup objects were created from. The default value is the /sqlserver value or the value set in the Data Protection for SQL Server configuration file. If the two SQL Server names are different, you must use this parameter even if /fromsqlserver was a non-clustered default instance.

/LOGFile= logfilename

The /logfile parameter specifies the name of the activity log that is generated by Data Protection for SQL Server. This activity log records significant events such as completed commands and error messages. The
Data Protection for SQL Server activity log is distinct from the SQL Server error log. The `logfile`name variable identifies the name to be used for the activity log generated by Data Protection for SQL Server.

Considerations:
- If the specified file does not exist, it is created. If it does exist, new log entries are appended to the file.
- The file name can include a fully-qualified path; however, if you specify no path, the file is written to the directory where Data Protection for SQL Server is installed.
- You cannot turn Data Protection for SQL Server activity logging off. If you do not specify `/logfile`, log records are written to the default log file. The default log file is `tdpsql.log`.
- When using multiple simultaneous instances of Data Protection for SQL Server to perform operations, use the `/logfile` parameter to specify a different log file for each instance used. This directs logging for each instance to a different log file and prevents interspersed log file records. Failure to specify a different log file for each instance can result in unreadable log files.

```
 LogPrune=numdays|No
```

When you prune log data, you can discard some of the generated logs according to detailed filtering criteria that you set. Depending on the option that you set for the `/LogPrune` parameter, a certain number of days of data are saved. By default, 60 days of log entries are saved. The option `No` can be entered to disable log pruning.

Regardless of the option that you set for this parameter, you can explicitly request log pruning at any time.

Considerations:
- For `numdays`, the range is 0 to 9999. A value of 0 deletes all entries in the activity log file except for the current command entries.
- If you specify `no`, the log file is not pruned.
- If you do not specify `/LogPrune`, the default value is that specified by the logprune configurable option in the configuration file. The default value is 60.
- If you specify `/LogPrune`, its value is used instead of the value that is stored in the configuration file. Specifying this parameter does not change the value in the configuration file.
- You can specify `/LogPrune` without specifying `numdays` or `no`; in this case, the default value, 60, is used.
- Changes to the value of the `TIMEformat` or `DATEformat` parameter can result in an unwanted pruning of the log file. If you are running a command that might prune the log file, and the value of the `TIMEformat` or `DATEformat` parameter is changed, complete one of the following to prevent unintentional pruning of the log file:
 - Make a copy of the existing log file.
 - Specify a new log file with the `/LogFile` parameter or `logfile` setting.

```
 Object=*|objectname,...
```

This parameter specifies that only particular backup objects for the specified SQL Server databases and backup object type (if specified) be deactivated. The `objectname` variable specifies the names of the backup objects you want to deactivate. The object name uniquely identifies each
backup object and is created by Data Protection for SQL Server. Use query to view the names of backup objects. You can use * as a wildcard character in objectname to replace zero or more characters for each occurrence. Specifying only the wildcard character indicates all backup objects of the specified SQL Server databases and backup object type.

/OLDerthan=numdaysold
This parameter specifies how old a backup object must be before the command can deactivate it.

Considerations:
• The numdaysold variable can range from 0 to 9999.
• If you specify 0, you deactivate all selected backup objects.
• If you specify 1, you deactivate all selected backup objects created prior to the current date. Any part of a day counts as a whole day.
• There is no default value for /olderthan.

/Quiet
The /quiet parameter omits displaying status information from the command. However, the information is appended to the Data Protection for SQL Server activity log.

/TSMNODEnodename
The /tsmnodename parameter specifies the IBM Spectrum Protect node name that Data Protection for SQL Server uses to log on to the IBM Spectrum Protect server. This identifies which IBM Spectrum Protect client is requesting services. You can also store the node name in the options file. The command line parameter overrides the value in the options file.

Considerations:
• You cannot use the /tsmnodename parameter if PASSWORDACCESS GENERATE is specified in the IBM Spectrum Protect options file. You must specify the nodename in the options file. Otherwise, you can change PASSWORDACCESS to PROMPT to utilize the /tsmnodename parameter. For more information about the IBM Spectrum Protect options file, see Creating and modifying the client system-options file.
• If you do not specify /tsmnodename, the default value is that specified by the nodename option in the IBM Spectrum Protect options file. Specifying this parameter does not change the value in the options file.

/TSMOPTFile=tsmoptfilename
The /tsmoptfile parameter specifies the IBM Spectrum Protect options file to use. This is similar to selecting an IBM Spectrum Protect server from the server list in the GUI. The IBM Spectrum Protect options file contains the configuration values for the IBM Spectrum Protect API.

Considerations:
• The tsmoptfilename variable can include a fully qualified path. If you do not include a path, the directory where Data Protection for SQL Server is installed is used.
• If tsmoptfilename includes spaces, you must enclose it in double quotes.
• If you do not specify /tsmoptfile, the default value is dsm.opt.
• If you specify /tsmoptfile but not tsmoptfilename, the default is also dsm.opt.

/TSMPassword=tsmpasswordname
The /tsmpassword parameter specifies the IBM Spectrum Protect password that Data Protection for SQL Server uses to log on to the IBM Spectrum
Protect server. This parameter and the option PASSWORDACCESS in the IBM Spectrum Protect options file interact in the following ways:

<table>
<thead>
<tr>
<th>/tsmpassword</th>
<th>PASSWORDACCESS in IBM Spectrum Protect options file</th>
<th>Password already stored in registry?</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>specified</td>
<td>generate</td>
<td>yes</td>
<td>/tsmpassword ignored</td>
</tr>
<tr>
<td>specified</td>
<td>generate</td>
<td>no</td>
<td>/tsmpassword used and stored</td>
</tr>
<tr>
<td>specified</td>
<td>prompt</td>
<td>—</td>
<td>/tsmpassword used</td>
</tr>
<tr>
<td>not specified</td>
<td>prompt</td>
<td>—</td>
<td>user is prompted</td>
</tr>
</tbody>
</table>

Related reference:
“Set command” on page 278

Inactivate output examples
These output examples provide a sample of the text, messages, and process status that displays when using the inactivate command.

The following operation explicitly deactivates database backup objects. Once a backup object is deactivated, it will expire automatically according to retention policy. In this case, the objects were backed up from a different SQL Server. First, a query is performed to display status information such as active state and backup date.

Command:
```
tdsq clich tsm DB1_XIVmini_G_BAS, model * /fromsqlserv=STRINGVM1\STRINGVM1
```

Output:
Connecting to TSM Server as node 'STRINGVM1_SQL'...

Querying TSM Server for Backups

Backup Object Information

| SQL Server Name | STRINGVM1\STRINGVM1 |
| SQL Database Name | DB1_XIVmini_G_BAS |
| Backup Method | Lgcy |
| Backup Location | Srv |
| Backup Object Type | Full |
| Backup Object State | Active |
| Backup Creation Date / Time | 03/23/2014 06:31:04 |
| Backup Size | 3.35 MB |
| SQL Compressed | No |
| Backup Compressed | No |
| Backup Encryption Type | None |
| Backup Client-deduplicated | No |
| Database Object Name | 20140323063104\00001AC4 |
| Number of stripes in backup object | 1 |
| Assigned Management Class | DEFAULT |

Backup Object Information

| SQL Server Name | STRINGVM1\STRINGVM1 |
| SQL Database Name | DB1_XIVmini_G_BAS |
| Backup Method | Lgcy |
| Backup Location | Srv |
| Backup Object Type | Full |
| Backup Object State | Active |
| Backup Creation Date / Time | 03/20/2014 05:35:14 |
| Backup Size | 3.35 MB |
| SQL Compressed | No |
| Backup Compressed | No |
| Backup Encryption Type | None |
| Backup Client-deduplicated | No |
| Database Object Name | 20140320053514\00001AC4 |
| Number of stripes in backup object | 1 |
| Assigned Management Class | DEFAULT |

Backup Object Information

| SQL Server Name | STRINGVM1\STRINGVM1 |
| SQL Database Name | DB1_XIVmini_G_BAS |
| Backup Method | Lgcy |
| Backup Location | Srv |
| Backup Object Type | Full |
| Backup Object State | Active |
| Backup Creation Date / Time | 03/19/2014 07:01:39 |
| Backup Size | 3.35 MB |
| SQL Compressed | No |
| Backup Compressed | No |
| Backup Encryption Type | None |
| Backup Client-deduplicated | No |
| Database Object Name | 20140319070139\00001AC4 |
| Number of stripes in backup object | 1 |
| Assigned Management Class | DEFAULT |
The user then decides to deactivate all `DB1_XIVmini_G_BAS` database objects older than two days (older than March 23), of which there are two.

Command:

tdpsqlc inactivate DB1_XIVmini_G_BAS * /fromsqlserv=STRINGVM1 /olderthan=2

Output:
Starting SQL database backup inactivation...

Querying Tivoli Storage Manager server for a list of database backups, please wait...

Inactivating full backup DB1_XIVmini_G_BAS
Inactivating log backup DB1_XIVmini_G_BAS\20140320053514\00001AC4

Inactivating full backup DB1_XIVmini_G_BAS
Inactivating log backup DB1_XIVmini_G_BAS\20140319070139\00001AC4

Total database backups inspected: 2
Total database backups requested for inactivation: 2
Total database backups inactivated: 2
Total database skipped: 0
Elapsed processing time: 2.18 Secs

Another IBM Spectrum Protect query displays the current status of these backup objects using the /all parameter; a full and a log backup of test1 are now both inactive.

Command:
```
tdpsqlc query tsm test1 /fromsqlserv=STRINGVM1 /all
```

Output:

<table>
<thead>
<tr>
<th>SQL Server Name</th>
<th>STRINGVM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL Database Name</td>
<td>DB1_XIVmini_G_BAS</td>
</tr>
<tr>
<td>Backup Object Type</td>
<td>Log</td>
</tr>
<tr>
<td>Backup Object State</td>
<td>Inactive</td>
</tr>
<tr>
<td>Backup Creation Date/Time</td>
<td>03/20/2014 05:35:14</td>
</tr>
<tr>
<td>Backup Size</td>
<td>3,349</td>
</tr>
<tr>
<td>Database Object Name</td>
<td>20140320053514\00001AC4</td>
</tr>
<tr>
<td>Number of stripes in backup object</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SQL Server Name</th>
<th>STRINGVM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL Database Name</td>
<td>DB1_XIVmini_G_BAS</td>
</tr>
<tr>
<td>Backup Object Type</td>
<td>Full</td>
</tr>
<tr>
<td>Backup Object State</td>
<td>Inactive</td>
</tr>
<tr>
<td>Backup Creation Date/Time</td>
<td>03/19/2014 07:01:39</td>
</tr>
<tr>
<td>Backup Size</td>
<td>3,349</td>
</tr>
<tr>
<td>Database Object Name</td>
<td>20140320053514\00001AC4</td>
</tr>
<tr>
<td>Number of stripes in backup object</td>
<td>1</td>
</tr>
</tbody>
</table>
Mount Backup command

To mount backups, use the `mount backup` command.

Mount Backup syntax

Use the `mount backup` command syntax diagrams as a reference to view available options and truncation requirements.

TDPSQLC command

```
TDPSQLC MOUNT BACKup comp name[<object-id>]=mount point root dir
[comp name=mount point root dir]

/CONFIGfile=tdsql.cfg
[configfilename]

/FROMSQLSERVer=servername
[current server]

/LOGFile=tdpsql.log
[logfile]

/LOGPrune=numdays
[60]

/MOUNT_RW=Yes
[No]

/PITDate=date
[latest]

/PITTime=time
[latest]

/QUERYNode=DP
[always=ALWAYSON
[BOTH]

/REMOTECONPUTER=computername

/REMOTECONPUTERUser=user

/REMOTECONPUTERPassword=passwd

/TSMNODE=tsmnodename

/TSMPassword=tsmpassword

/TSMOPTFile=dsm.opt
[tsmoptfilename]

/TSMPID=password
```
Mount backup positional parameter

The positional parameters immediately follow the `mount backup` command and precede the optional parameters.

The following positional parameters specify the objects to mount:

```
component name[(<object-id>)]=mount point root dir,component name=mount point root dir
```

- `component name[(<object-id>)]` Specify the backup of a local SQL Server database or storage group.
- `mount point base dir` Specify the absolute path to the directory where the snapshots are going to be exposed as mount point directories. The directory must be empty. If not empty, an error is reported.

The list must contain all non-qualified objects or all qualified objects. The list cannot contain a combination of non-qualified objects and qualified objects. Specify the list using the following syntax:

```
mount backup object-1[(object-1-id)]=mount-point-1[,object-2[(object-2-id)]=mount-point-2...]
```

Mount Backup optional parameters

Optional parameters follow the `mount backup` command and positional parameters.

```
/CONFIGfile=configfilename
```

Use the `/configfile` parameter to specify the name (`configfilename`) of the IBM Spectrum Protect Snapshot for SQL Server configuration file that contains the values to use for a `mount backup` operation.

The `configfilename` variable can include a fully qualified path. If the `configfilename` variable does not include a path, the IBM Spectrum Protect Snapshot for SQL Server installation directory is used. If the `/configfile` parameter is not specified, or if the `configfilename` variable is not specified, the default value is `tdpsql.cfg`.

If the `configfilename` variable includes spaces, enclose the entire `/configfile` parameter entry in double quotation marks. For example:
```
/CONFIGfile="C:\Program Files\tdpsql.cfg"
```

```
/FROMSQLSERVER=server-name
```

Use the `/fromsqlserver` parameter to specify the name of the server where the original backup was performed. The default is the local server.

```
/LOGFile=logfile
```

Use the `/logfile` parameter to specify the name of the activity log file that is generated by IBM Spectrum Protect Snapshot. The `logfile` variable identifies the name of the activity log file.

If the specified log file does not exist, a new log file is created. If the specified log file exists, new log entries are appended to the file. The `logfile` variable can include a fully-qualified path. However, if no path is specified, the log file is written to the IBM Spectrum Protect Snapshot for SQL Server installation directory.
If the logfilename variable includes spaces, enclose the entire logfile parameter entry in double quotation marks. For example:

/LOGFile="c:\Program Files\tdpsql.log"

If the logfile parameter is not specified, log records are written to the default log file, tdpsql.log.

The logfile parameter cannot be turned off, logging always occurs.

/LOGPrune=numdays|No

When you prune log data, you can discard some of the generated logs according to detailed filtering criteria that you set. Depending on the option that you set for the /LOGPrune parameter, a certain number of days of data are saved. By default, 60 days of log entries are saved. The option No can be entered to disable log pruning.

Regardless of the option that you set for this parameter, you can explicitly request log pruning at any time.

Considerations:
• For numdays, the range is 0 to 9999. A value of 0 deletes all entries in the activity log file except for the current command entries.
• If you specify no, the log file is not pruned.
• If you do not specify /LOGPrune, the default value is that specified by the logprune configurable option in the configuration file. The default value is 60.
• If you specify /LOGPrune, its value is used instead of the value that is stored in the configuration file. Specifying this parameter does not change the value in the configuration file.
• You can specify /LOGPrune without specifying numdays or no; in this case, the default value, 60, is used.
• Changes to the value of the TIMEformat or DATEformat parameter can result in an unwanted pruning of the log file. If you are running a command that might prune the log file, and the value of the TIMEformat or DATEformat parameter is changed, complete one of the following to prevent unintentional pruning of the log file:
 – Make a copy of the existing log file.
 – Specify a new log file with the /LOGFile parameter or logfile setting.

/MOUNTRW=Yes|No

You can mount a read/write copy of your IBM Spectrum Protect backup so that you can modify the copy without invalidating the backup. You use this option to indicate whether a snapshot backup is mounted as read/write. The default value is as specified in the configuration file with the /MOUNTRW parameter. If a default value is not specified in the configuration file, the default value is No. By specifying the /MOUNTRW option, you override the default value.

The following values are available:

No Perform a read-only mount operation.

Yes Perform a read/write mount operation. The behavior of the read/write mount is controlled by the USESNAPOFASNAPTORMount parameter in the configuration file.
 • If USESNAPOFASNAPTORMount is set to No, you can mount only COPYFULL backups as read/write. After mounting, the original
backup is modified and can no longer be used as a restore point in future database restore operations (on the VSS Options properties page, the Mount read/write (modifies backup, applies to COPY backups only) check box is selected).

- If USESNAPOFASNAPTMOUNT is set to Yes, you can mount both FULL and COPYFULL backup types as read/write (on the VSS Options properties page, the Mount read/write (without modifying backup) check box is selected). In this instance, the backups are not modified and can be used in future restore operations.

Important:

This mount option is only available for SAN Volume Controller (SVC) devices and requires IBM System Storage Support for Microsoft Virtual Disk and Volume Shadow Copy Services version 4.12 or later. Dynamic target allocation is not supported. You must allocate more target volumes on your SVC storage device to accommodate the number of concurrent read/write mounts you want to do. An extra target volume, that matches the size of the volume to be mounted, is needed for each concurrent read/write mount of that volume. Also,

/PITDATE=\date
Use the /pitdate parameter with the /pittime parameter to establish a point in time for which you want to mount the latest version of your backups. Backups that were backed up on or before the date and time you specified, and which were not deleted before the date and time you specified, are processed. Backup versions that you create after this date and time are ignored. Specify the appropriate date in the date variable; use the same format that you selected with the DATEformat option in the IBM Spectrum Protect Snapshot for SQL Server options file.

If neither date nor time is specified, then no date and time is established. By default the backup is mounted from the most recent available backup.

If either date or time is specified, then the backup is mounted from the earliest backup taken after the established mount date and time. If no backup after the established date and time is found, by default the backup is mounted from the most recent available backup.

Notes:
- If you specify both date and time, this establishes the mount backup period.
- If you specify date and you do not specify time, time defaults to a value of 23:59:59. This establishes the date at the specified date.
- If you specify time without date, then date defaults to the current date. This establishes the mount date and time as the current date at the specified time.

/PITTIME=time
Use the /pittime parameter with the /pitdate option to establish a point in time for which you want to mount the latest version of your backups. Files or images that were backed up on or before the date and time you specify, and which were not deleted before the date and time you specify, are processed. Backup versions that you create after this date and time are ignored. This option is ignored if you do not specify the /pitdate option.
parameter. Specify the appropriate time in the time variable; use the same format that you selected with the TIMEFORMAT option in the IBM Spectrum Protect Snapshot for SQL Server options file.

If neither date nor time is specified, then no date and time is established. By default the backup is mounted from the most recent available backup.

If either date or time is specified, then the backup is mounted from the earliest backup taken after the established mount date and time. If no backup after the established date and time is found, by default the backup is mounted from the most recent available backup.

Notes:

- If you specify both date and time, this establishes the mount backup period.
- If you specify date and you do not specify time, time defaults to a value of 23:59:59. This establishes the date at the specified date.
- If you specify time without date, then date defaults to the current date. This establishes the mount date and time as the current date at the specified time.

/QUERYNode=DP|ALWAYSON|BOTH
Specify whether you want to query standard databases from SQL Server 2012, and later versions, that were backed up from a standard Data Protection for SQL Server node, the AlwaysOn node, or both nodes. This parameter is ignored for availability databases because the availability databases are always backed up under the AlwaysOn node.

/REMOTECOMPUTER=computername
Enter the IP address or host name for the remote system where you want to mount the data.

/REMOTECOMPUTERUser=user
Enter the user name used to log on to the server specified with the REMOTECOMPUTER parameter. If a domain is required to log on with the domain account, enter Domain\User. To log on to the local account, the domain is not required. There is no default value.

/REMOTECOMPUTERPassword=passwd
Enter the password for the user name specified with the REMOTECOMPUTERUser parameter. There is no default value.

/TSMNODE=tsmnodename
Use the tsmnodename variable to refer to the IBM Spectrum Protect node name that IBM Spectrum Protect Snapshot uses to log on to the IBM Spectrum Protect server.

You can store the node name in the IBM Spectrum Protect options file (dsm.opt). This parameter overrides the value in the IBM Spectrum Protect options file if PASSWORDACCESS is set to PROMPT. This parameter is not valid when PASSWORDACCESS is set to GENERATE in the options file.

/TSMOPTFile=tsmoptfilename
Use the tsmoptfilename variable to identify the IBM Spectrum Protect options file.

The file name can include a fully qualified path name. If no path is specified, the directory where IBM Spectrum Protect Snapshot is installed is searched.
If the tsnoptfilename variable includes spaces, enclose the entire /tsnoptfile parameter entry in double quotation marks. For example:

/TSMOPTFile="c:\Program Files\dsm.opt"

The default is dsm.opt.

/TSMPassword=tsmpassword

Use the tsmpassword variable to refer to the IBM Spectrum Protect password that IBM Spectrum Protect Snapshot uses to log on to the IBM Spectrum Protect server.

If you specified PASSWORDACCESS GENERATE in the IBM Spectrum Protect Snapshot options file (dsm.opt), you do not need to supply the password here because the one that is stored in the registry is used. However, to store the password in the registry, you must specify the IBM Spectrum Protect password the first time IBM Spectrum Protect Snapshot connects to the IBM Spectrum Protect.

If you do specify a password with this parameter when PASSWORDACCESS GENERATE is in effect, the command-line value is ignored unless the password for this node has not yet been stored in the registry. In that case, the specified password is stored in the registry and used when you run this command.

If PASSWORDACCESS PROMPT is in effect, and you do not specify a password value on the command line, then you are prompted for a password.

The IBM Spectrum Protect password that IBM Spectrum Protect Snapshot uses to log on to the IBM Spectrum Protect server can be up to 63 characters in length.

Query command

Use the **query** command to display information about the SQL Server and its databases, about the IBM Spectrum Protect server and its backup objects, and about Data Protection for SQL Server.

Considerations:

- Some of the information displays may have long text lines. You can redirect the informational output of the Data Protection for SQL Server query command to a text file using the Windows command output redirection syntax (command prompt):

 TDPcommandstatement > [[drive:]path\]filename.ext
 This creates or replaces the file.

 TDPcommandstatement >> [[drive:]path\]filename.ext
 This appends to the file.

 You can then browse or edit the file.

- You can use the Windows **more** filter command (command prompt) to display the informational output one screen at a time, in conjunction with the Windows command pipe character: TDPcommandstatement | more
Query syntax

Use the query command syntax diagrams as a reference to view available options and truncation requirements.

Syntax

TDPSQLC query

The syntax diagram of the IBM Spectrum Protect options corresponding to the letter A is shown following the Optional Parameters below.

Query Optional Parameters:
A Query TSM Options:

- Full
- Difffull
- Log=
- File=
- Group=
- Set=
- Types

- /ACTIVE
- /ALL
- /OBJECT=

- /QUERYNode
 - DP
 - ALWAYSON
 - BOTH

- /SQLAUTHentication
 - INTEGRATED [or cfg value]
 - SQL.userid

- /SQLPassword
 - sqlpasswordname

- /SQLSERVER
 - [local computer name or cfg value]
 - sqlserver-connection

- /SQLUSER
 - sqlusername

- /TSMPASSWORD
 - tsmpasswordname

- /TSMOPTFILE
 - dsm.opt
 - dsmoptfilename

- /TSMnode
 - tsmnodename

- /TSMPASSWORD
 - tsmpasswordname
Note: The /QUERYNode parameter is not an optional parameter for all query commands. It is relevant only for query TSM.

Query positional parameters
Positional parameters immediately follow the query command and precede the optional parameters.

Specify one of the following when you issue a Data Protection for SQL Server query command:

Query SQL *|dbname,...
This parameter displays information about the current SQL Server. The dbname variable specifies databases on the current SQL Server to display information about.

When you query an SQL Server, the following information is included:
- Server name
- Database name
- Database data space allocated
- Database space that is used
- Database log space allocated
- Database log space used
- Database options set (SELECT INTO / BULK COPY, TRUNCATE LOG ON CHECKPOINT)

If you specify the /COMPATibilityinfo parameter:
- Server version
- Server clustering state
- Database compatibility level

Query TDP
This parameter displays the Data Protection for SQL Server name and version information and the contents of the current Data Protection for SQL Server configuration file.

Query TSM *|dbname,...
This parameter displays the IBM Spectrum Protect API and IBM Spectrum Protect server version information. The dbname variable names the specified databases from the current SQL Server that have backup objects on the current IBM Spectrum Protect server and node. No name is displayed if specified objects do not exist as backup objects in the SQL Server database. Use the dbname wildcard option to display information about all of the backup objects of one or more SQL Server databases.

When you query any backup object by using dbname parameter, the following information is included:
- SQL Server name
- SQL Server database name
- Backup object type
• Backup object active/inactive state
• Backup object Data Protection for SQL Server creation date and time
• Backup object Data Protection for SQL Server size
• Data Protection for SQL Server backup-object object name
• For legacy backups, whether the integrity of database and log files is verified by checksum processing
• SQL compressed
• Backup compressed
• Backup encryption type
• Backup deduplicated
• Backup method
• Backup location
• Backup on secondary replica
• Number of data stripes in backup object
• For VSS only, whether the backup supports Instant Restore

The following is included if you specify the /COMPATibilityinfo parameter:
• SQL Server version
• SQL Server clustering state
• Data Protection for SQL Server version that created the backup object
• SQL Server database compatibility level
• SQL Server database data space allocated
• SQL Server database data space used
• SQL Server database log space allocated
• SQL Server database log space used
• SQL Server database options

Note:
• You can also determine which backup objects to display through the query TSM optional parameters /active and /all.
• No information is displayed if no backup objects for a specified SQL Server database exist.

File=*|logicalfilename,...
This parameter displays information about file backup objects of one or more SQL Server databases from the current SQL Server that are on the current IBM Spectrum Protect server and node.

Full
This parameter displays information about full backup objects of one or more SQL Server databases from the current SQL Server that are on the current IBM Spectrum Protect server and node.

Difffull
This parameter displays information about differential backup objects of one or more SQL Server databases from the current SQL Server that are on the current IBM Spectrum Protect server and node.

Group=*| grouppname,...
This parameter displays information about one or more group
backup objects of one or more SQL Server databases from the current SQL Server that are on the current IBM Spectrum Protect server and node.

Log=*|logobjectname,...
This parameter displays information about one or more log backup objects of one or more SQL Server databases from the current SQL Server that are on the current IBM Spectrum Protect server and node. The logobjectname variable specifies which log backup objects to display information about. Use * as a wildcard character in logobjectname to replace zero or more characters for each occurrence. Specifying only the wildcard character indicates all log backup objects for the SQL Server databases.

Set=*|setobjectname,...
This parameter displays information about one or more set backup objects of one or more SQL Server databases from the current SQL Server that are on the current IBM Spectrum Protect server and node. The setobjectname variable specifies which set backup objects to display information about. Use * as a wildcard character in setobjectname to replace zero or more characters for each occurrence. Specifying only the wildcard character indicates all set backup objects for the SQL Server databases.

Types (Legacy backups only) This parameter displays a summary list of the backup objects by backup type, of one or more SQL Server databases from the current SQL Server that are on the current IBM Spectrum Protect server and node. Only backup types with one or more backup objects are displayed. If the /all optional parameter is specified, the number of inactive backup objects is included. You cannot specify either the /compatibility or the /fileinfo optional parameter with the types parameter.

Query optional parameters
Optional parameters follow the query command and positional parameters.

The following are detailed descriptions of each of the optional parameters:

/BUFFers=numbuffers
The /buffers parameter specifies the number of data buffers used for each data stripe to transfer data between Data Protection for SQL Server and the IBM Spectrum Protect API. The numbuffers variable refers to the number of data buffers to use. The number can range from 2 to 8. The default is 3.

Considerations:
• You can improve throughput by increasing the number of buffers, but you will also increase storage use. Each buffer is the size specified in the /buffersize parameter.
• The default value is the value specified by the buffers configurable option in the Data Protection for SQL Server configuration file. This is initially 3.
• If you specify /buffers, its value is used instead of the value stored in the Data Protection for SQL Server configuration file. Specifying this parameter does not change the value in the configuration file.

/BUFFERSIze=buffersizeinkb
The /buffersize parameter specifies the size of each Data Protection for SQL Server buffer specified by the /buffers parameter. The buffersizeinkb

variable refers to the size of data buffers in kilobytes. The number can range from 64 to 8192. The default is 1024.

Considerations:

- Though increasing the number of buffers can improve throughput, it also increases storage use as determined by this parameter.
- The default value is the value specified by the buffers configurable option in the Data Protection for SQL Server configuration file. This is initially 1024.
- If you specify /bufferssize, its value is used instead of the value stored in the Data Protection for SQL Server configuration file. Specifying this parameter does not change the value in the configuration file.

/COMPATibilityinfo

For query operations, this parameter displays information related to the compatibility of a backup object with an SQL Server. Certain SQL Server configuration options must be compatible before you can restore a backup object to an SQL Server. When you specify this parameter, Data Protection for SQL Server configuration information is listed to help determine if a backup object is correct for an SQL Server, or to help in problem determination.

Considerations:

- You cannot specify this parameter with the types parameter on a query TSM command.
- Compatible generally means identical. However, if you use a binary sort order for both the SQL Server and the backup object, the code pages may be different, although the interpretation of individual character values may result in different characters being displayed or printed.

/CONFIGfile=configfilename

The /configfile parameter specifies the name of the Data Protection for SQL Server configuration file, which contains the values for the Data Protection for SQL Server configurable options.

Considerations:

- configfilename can include a fully qualified path. If configfilename does not include a path, it uses the directory where Data Protection for SQL Server is installed.
- If configfilename includes spaces, place it in double quotes.
- If you do not specify /configfile, the default value is tdpsql.cfg.
- If you specify /configfile but not configfilename, the default value tdpsql.cfg is used.

/FROMSQLSERVER=servername

For restore, the /fromsqlserver parameter specifies the SQL Server that backup objects were backed up from. This parameter is necessary only when the name of the SQL Server to restore to, as determined by the /sqlserver parameter, is different from the name of the SQL Server that the backup objects were created from. The default value is the /sqlserver value or the value set in the Data Protection for SQL Server configuration file.

Considerations:

- If the two SQL Server names are different, you must use this parameter even if /fromsqlserver was a non-clustered default instance.
- After you restore an SQL Server database to a different SQL Server, the logins of the SQL Server database may not match the logins for the
different SQL Server. If appropriate, you can use the SQL stored procedure `SP_CHANGE_USERS_LOGIN` to find and correct such SQL Server login mismatches.

/LOGFile=logfile

The `/logfile` parameter specifies the name of the activity log that is generated by Data Protection for SQL Server. This activity log records significant events such as completed commands and error messages. The Data Protection for SQL Server activity log is distinct from the SQL Server error log. The `logfile` variable identifies the name to be used for the activity log generated by Data Protection for SQL Server.

Considerations:

- If the specified file does not exist, it is created. If it does exist, new log entries are appended to the file.
- The file name can include a fully-qualified path; however, if you specify no path, the file is written to the directory where Data Protection for SQL Server is installed.
- You cannot turn Data Protection for SQL Server activity logging off. If you do not specify `/logfile`, log records are written to the default log file. The default log file is `tdpsql.log`.
- When using multiple simultaneous instances of Data Protection for SQL Server to perform operations, use the `/logfile` parameter to specify a different log file for each instance used. This directs logging for each instance to a different log file and prevents interspersed log file records. Failure to specify a different log file for each instance can result in unreadable log files.

/LOGPrune=numdays|No

When you prune log data, you can discard some of the generated logs according to detailed filtering criteria that you set. Depending on the option that you set for the `/LOGPrune` parameter, a certain number of days of data are saved. By default, 60 days of log entries are saved. The option `No` can be entered to disable log pruning.

Regardless of the option that you set for this parameter, you can explicitly request log pruning at any time.

Considerations:

- For `numdays`, the range is 0 to 9999. A value of 0 deletes all entries in the activity log file except for the current command entries.
- If you specify no, the log file is not pruned.
- If you do not specify `/LOGPrune`, the default value is that specified by the `logprune` configurable option in the configuration file. The default value is 60.
- If you specify `/LOGPrune`, its value is used instead of the value that is stored in the configuration file. Specifying this parameter does not change the value in the configuration file.
- You can specify `/LOGPrune` without specifying `numdays` or `no`; in this case, the default value, 60, is used.
- Changes to the value of the `TIMEformat` or `DATEformat` parameter can result in an unwanted pruning of the log file. If you are running a command that might prune the log file, and the value of the `TIMEformat` or `DATEformat` parameter is changed, complete one of the following to prevent unintentional pruning of the log file:
- Make a copy of the existing log file.
- Specify a new log file with the /LOGFile parameter or logfile setting.

/OBJect=*|objectname,...
For restore and inactivate operations, /object specifies that only particular backup objects for the specified SQL Server databases and backup object type (if specified) be restored or inactivated. For query operations, /object includes particular objects and object types in the display. The objectname variable specifies the names of the backup objects you want to restore or inactivate. The object name uniquely identifies each backup object and is created by Data Protection for SQL Server. Use query to view the names of backup objects. You can use * as a wildcard character in objectname to replace zero or more characters for each occurrence. Specifying only the wildcard character indicates all backup objects of the specified SQL Server databases and backup object type.

/QUERYNode=DP | ALWAYSON | BOTH
Specify whether you want to query standard databases from SQL Server 2012 and later versions that are backed up from a standard Data Protection for SQL Server node, the AlwaysOn node, or both nodes. This parameter is ignored for availability databases because the availability databases are always backed up under the AlwaysOn node.

Note: This parameter is not relevant for all query commands. It is applicable to the query TSM command only.

/SQLAUTHentication=INTegrated | SQLuserid
This parameter specifies the authorization mode used when logging on to the SQL Server. The integrated value specifies Windows authentication. The user id you use to log on to Windows is the same id you will use to log on to the SQL Server. This is the default value. Use the sqluserid value to specify SQL Server user id authorization. The user id specified by the /sqluserid parameter is the id you will use to log on to the SQL Server. Any SQL Server user id must have the SQL Server SYSADMIN fixed server role.

/SQLPASSWORD=sqlpasswordname
This parameter specifies the SQL Server password that Data Protection for SQL Server uses to log on to the SQL Server that objects are backed up from or restored to.

Considerations:
- Using this parameter means that you are using SQL Server authentication. The SQL Server and the SQL Server user id for this password must both be configured for SQL Server authentication.
- If you do not specify /sqlpassword, the default value is blank (" ").
- If you specify /sqlpassword but not sqlpasswordname, the default is also blank (" ").
- This parameter is ignored if you use the /sqlauth=integrated parameter with it.

/SQLESERVER=sqlserver-connection
The /sqlserver parameter specifies the SQL Server that Data Protection for SQL Server logs on to. The sqlserver-connection comprises the sqlprotocol and sqlservername. The sqlprotocol variable specifies the communication protocol to use and with this variable, you can specify an sqlservername. You can check the SQL connection by using the SQL Server Configuration Manager.
tool (under SQL Server Native Client Configuration client protocols). You
can choose from the following protocols:
Table 26. SQL Server connection protocols
Protocol Name Description

Example Usage (with sqlserver-connection details)

lpc

Shared Memory

/sqlserver=lpc:<servername>\<instancename>

np

Named Pipes

/sqlserver=np:<servername>\pipe
You can optionally specify a specific named pipe
instance. For example, /sqlserver=np:
\\hostname\pipe\pipe name
By default, the pipe name is sql\query. If you connect
to a named instance, the pipe name is typically in the
following format: \\<servername>\pipe\
MSSQL$<instancename>\SQL\query

tcp

Transmission
Control

/sqlserver=[tcp:]<servername>[\
<instancename>][,port]

via

Virtual Interface
Adapter

/sqlserver=via:<virtualservername>[\
<instancename>]

Attention:
v For tcp protocols only, you have the option of defining a port. If you do
not define a port, the default port value is the SQL default port 1433.
v For the via protocol, SQL Server supports this protocol only through
SQL Server 2008 R2.
v To enable Data Protection for SQL Server to communicate with
AlwaysOn Availability Group (AAG) instances, it is not possible to
connect to the SQL Server using AAG listeners. For backup and restore
operations, you must use the local SQL Server instance name (or
instance name and port number) to communicate with the AAG. For
AAG (or non-AAG instances), you can also specify non-default port
numbers.
If you do not specify a protocol, Data Protection for SQL Server logs on to
the SQL Server according to the first protocol that becomes available.
Considerations:
v The default value is the value specified by the SQL Server configurable
option in the Data Protection for SQL Server configuration file. This is
initially the local computer name.
v If you specify /sqlserver but not sqlservername, the local computer name
is used.
v The following two shortcuts are accepted as the local computer name: .
(local) That is, a period or the word local within parentheses.
v If the SQL Server is a member of a fail-over cluster, the CLUSTERNODE
option in the IBM Spectrum Protect options file must have the value
YES.
v If the SQL Server is not the default instance or is a member of a fail-over
cluster, you must specify the name.
v The format of sqlservername depends on what type of instance it is and
whether it is clustered or not:

Chapter 8. Reference

225


<table>
<thead>
<tr>
<th>Format</th>
<th>Instance?</th>
<th>Clustered?</th>
<th>Name required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>local-computername</td>
<td>default</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>local-computername\instancename</td>
<td>named</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>virtualservername</td>
<td>default</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>virtualservername\instancename</td>
<td>named</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

localcomputername

The network computer name of the computer on which the SQL Server and Data Protection for SQL Server reside. The TCP/IP host name may not always be the same.

instancename

The name given to the named instance of the SQL Server that is specified during installation of the instance.

virtualservername

The name given to the clustered SQL Server that is specified during clustering service setup. This name is not the cluster or node name.

/SQLUSer=sqlusername

The /sqluser parameter specifies the name that Data Protection for SQL Server uses to log on to the SQL Server.

Considerations:

- Using this parameter means that you are using SQL Server authentication. The SQL Server and the SQL Server user id for this password must both be configured for SQL Server authentication.
- The SQL Server user id must have the SQL Server SYSADMIN fixed server role.
- If you do not specify /sqluser, the default is sa.
- If you specify /sqluser but not sqlusername, the default is also sa.
- This parameter is ignored if you use the /sqlauth=integrated parameter with it.

/TSMNODE=tsmnodename

The /tsmnode parameter specifies the IBM Spectrum Protect node name that Data Protection for SQL Server uses to log on to the IBM Spectrum Protect server. This identifies which IBM Spectrum Protect client is requesting services. You can also store the node name in the options file. The command line parameter overrides the value in the options file.

Considerations:

- You cannot use the /tsmnode parameter if PASSWORDACCESS GENERATE is specified in the IBM Spectrum Protect options file. You must specify the nodename in the options file. Otherwise, you can change PASSWORDACCESS to PROMPT to utilize the /tsmnode parameter. For more information about the IBM Spectrum Protect options file, see [Creating and modifying the client system-options file](#).
- If you do not specify /tsmnode, the default value is that specified by the nodename option in the IBM Spectrum Protect options file. Specifying this parameter does not change the value in the options file.
/TSMOPTFile=dsnoptfilename

The /tsmoptfile parameter specifies the IBM Spectrum Protect options file to use. This is similar to selecting an IBM Spectrum Protect server from the server list in the GUI. The IBM Spectrum Protect options file contains the configuration values for the IBM Spectrum Protect API. For more information about the IBM Spectrum Protect options file, see Creating and modifying the client system-options file.

Considerations:

- The tsmoptfilename variable can include a fully qualified path. If you do not include a path, the directory where Data Protection for SQL Server is installed is used.
- If tsmoptfilename includes spaces, you must enclose it in double quotes.
- If you do not specify /tsmoptfile, the default value is dsm.opt.
- If you specify /tsmoptfile but not tsmoptfilename, the default is also dsm.opt.

/TSMPassword=tsmpasswordname

The /tsmpassword parameter specifies the IBM Spectrum Protect password that Data Protection for SQL Server uses to log on to the IBM Spectrum Protect server. This parameter and the option PASSWORDACCESS in the IBM Spectrum Protect options file interact in the following ways:

<table>
<thead>
<tr>
<th>/tsmpassword in IBM Spectrum Protect options file</th>
<th>Password already stored in registry?</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>specified</td>
<td>generate</td>
<td>yes</td>
</tr>
<tr>
<td>specified</td>
<td>generate</td>
<td>no</td>
</tr>
<tr>
<td>specified</td>
<td>prompt</td>
<td>—</td>
</tr>
<tr>
<td>not specified</td>
<td>prompt</td>
<td>—</td>
</tr>
</tbody>
</table>

Related reference:

“Set command” on page 278
“Set command” on page 278

Query output examples

These output examples provide a sample of the text, messages, and process status that displays when using the query commands.

Query 1–SQL Server

Query 1 queries the SQL Server STRINGVM1. Note that it is set up for VSS operations.

Command:

```
  tdpsqlc query sql
```

Output:
Query 2—SQL Database

Query 2 queries SQL Server database, *DB1_XIVmini_G_BAS* and includes compatibility information.

Command:

```
tdpsqlc query sql DB1_XIVmini_G_BAS /compat
```

Output:

```
IBM Spectrum Protect for Databases:
Data Protection for Microsoft SQL Server
Version 8, Release 1, Level 0
(C) Copyright IBM Corporation 1997, 2016.
All rights reserved.

Connecting to SQL Server, please wait...

SQL Server Information
----------------------
SQL Server Name ................... STRINGVM1\STRINGVM1
SQL Server Version .................. 10.0.2573 (SQL Server 2008)

Volume Shadow Copy Service (VSS) Information
---------------------------------------------
Writer Name : SqlServerWriter
Local DSMAgent Node : STRINGVM1
Remote DSMAgent Node :
Writer Status : Online
Selectable Components : 4

Completed

---

IBM Spectrum Protect for Databases:
Data Protection for Microsoft SQL Server
Version 8, Release 1, Level 0
(C) Copyright IBM Corporation 1997, 2016.
All rights reserved.

Connecting to SQL Server, please wait...

SQL Server Information
----------------------
SQL Server Name ................... STRINGVM1\STRINGVM1
SQL Server Version .................. 10.0.2573 (SQL Server 2008)

Cluster ......................... No

SQL Database Information
---------------------------
SQL Database Name .................. DB1_XIVmini_G_BAS
SQL Database Data Space Allocated ........ 3,145,728
SQL Database Data Space Used ............. 1,376,256
SQL Database Log Space Allocated .......... 2,097,152
SQL Database Log Space Used .............. 393,216
SQL Database Compatibility level......... 100
SQL Database Options ................

Completed
```
Query 3–TDP (Legacy)

Query 3 queries Data Protection for SQL Server for configuration file information. Note that this configuration is for legacy operations only as BACKUPDESTination TSM, BACKUPMETHODod LEGACY, and the LOCALDSMAgentnode and REMOTEDSMAgentnode are not set.

Command:

```
tdpsqic query tdp
```

Output:

```
IBM Spectrum Protect for Databases:  
Data Protection for Microsoft SQL Server  
Version 8, Release 1, Level 0  
(C) Copyright IBM Corporation 1997, 2016.  
All rights reserved.  

Data Protection for SQL configuration settings  
---------------------------------------------  
BACKUPDESTination ......................... TSM  
BACKUPMETHODod ......................... LEGACY  
BUFFers ............................. 3  
BUFFERSize ......................... 1024  
DATEformat ......................... 1  
DIFFESTimate ....................... 20  
FROMSQLserver .....................  
LANGUAGE ......................... ENU  
LOCALDSMAgentnode ...........  
LOGFile ............................ tdpsql.log  
LOGPrune ............................ 60  
NUMBERformat ..................... 1  
REMOTEDSMAgentnode ..........  
SQLAUTHentication ................. INTEGRATED  
SQLBUFFers ......................... 0  
SQLBUFFERSize .................... 1024  
SQLCOMPression .................. No  
SQLSERVer ......................... STRINGVMI  
STRIPes ........................... 1  
TIMEformat ....................... 1  
Completed
```

Query 4 – TDP (VSS)

Query 3 queries Data Protection for SQL for configuration file information. Note that this configuration is set for VSS operations as BACKUPDESTination LOCAL, BACKUPMETHODod VSS, and the LOCALDSMAgentnode and REMOTEDSMAgentnode options are set.

Command:

```
tdpsqic query tdp
```

Output:
Query 5 – IBM Spectrum Protect Types

Query 5 queries the IBM Spectrum Protect for the types of backup objects from all databases, including both active and inactive objects.

Command:

```bash
tdpsqlc query tsm * /all
```

Output:
IBM Spectrum Protect for Databases:
Data Protection for Microsoft SQL Server
Version 8, Release 1, Level 0
(C) Copyright IBM Corporation 1997, 2016.
All rights reserved.

Connecting to TSM Server as node 'STRINGVM1_SQL'...

Querying TSM Server for Backups

Backup Object Information

SQL Server Name STRINGVM1\STRINGVM1
SQL Database Name DB1_XIVmini_6_BAS
Backup Method VSS
Backup Location Srv
Backup Object Type full
Backup Object State Inactive
Backup Creation Date / Time 09/23/2013 06:23:14
Backup Size 5.00 MB
Backup Compressed No
Backup Encryption Type None
Backup Client-deduplicated No
Backup Supports Instant Restore No
Database Object Name 20130923062314
Assigned Management Class DEFAULT

Backup Object Information

SQL Server Name STRINGVM1\STRINGVM1
SQL Database Name DB1_XIVmini_6_BAS
Backup Method VSS
Backup Location Srv
Backup Object Type full
Backup Object State Active
Backup Creation Date / Time 09/23/2013 06:39:31
Backup Size 5.00 MB
Backup Compressed No
Backup Encryption Type None
Backup Client-deduplicated No
Backup Supports Instant Restore No
Database Object Name 20130923063931
Assigned Management Class DEFAULT

Backup Object Information

SQL Server Name STRINGVM1\STRINGVM1
SQL Database Name DB1_XIVmini_6_BAS
Backup Method VSS
Backup Location Loc
Backup Object Type full
Backup Object State Inactive
Backup Creation Date / Time 09/23/2013 06:41:14
Backup Size 5.00 MB
Backup Compressed No
Backup Encryption Type None
Backup Client-deduplicated No
Backup Supports Instant Restore Yes
Database Object Name 20130923064114
Assigned Management Class DEFAULT
Backup Object Information

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL Server Name</td>
<td>STRINGVM1\STRINGVM1</td>
</tr>
<tr>
<td>SQL Database Name</td>
<td>DB1_XIVmini_G_BAS</td>
</tr>
<tr>
<td>Backup Method</td>
<td>VSS</td>
</tr>
<tr>
<td>Backup Location</td>
<td>Loc</td>
</tr>
<tr>
<td>Backup Object Type</td>
<td>full</td>
</tr>
<tr>
<td>Backup Object State</td>
<td>Active</td>
</tr>
<tr>
<td>Backup Creation Date / Time</td>
<td>09/23/2013 06:45:57</td>
</tr>
<tr>
<td>Backup Size</td>
<td>5.00 MB</td>
</tr>
<tr>
<td>Backup Compressed</td>
<td>No</td>
</tr>
<tr>
<td>Backup Encryption Type</td>
<td>None</td>
</tr>
<tr>
<td>Backup Client-deduplicated</td>
<td>No</td>
</tr>
<tr>
<td>Backup Supports Instant Restore</td>
<td>Yes</td>
</tr>
<tr>
<td>Database Object Name</td>
<td>20130923064557</td>
</tr>
<tr>
<td>Assigned Management Class</td>
<td>DEFAULT</td>
</tr>
</tbody>
</table>

Backup Object Information

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL Server Name</td>
<td>STRINGVM1\STRINGVM1</td>
</tr>
<tr>
<td>SQL Database Name</td>
<td>DB1_XIVmini_G_BAS</td>
</tr>
<tr>
<td>Backup Method</td>
<td>Lgcy</td>
</tr>
<tr>
<td>Backup Location</td>
<td>Srv</td>
</tr>
<tr>
<td>Backup Object Type</td>
<td>Full</td>
</tr>
<tr>
<td>Backup Object State</td>
<td>Active</td>
</tr>
<tr>
<td>Backup Creation Date / Time</td>
<td>09/23/2013 06:31:04</td>
</tr>
<tr>
<td>Backup Size</td>
<td>2.08 MB</td>
</tr>
<tr>
<td>SQL Compressed</td>
<td>No</td>
</tr>
<tr>
<td>Backup Compressed</td>
<td>No</td>
</tr>
<tr>
<td>Backup Encryption Type</td>
<td>None</td>
</tr>
<tr>
<td>Backup Client-deduplicated</td>
<td>No</td>
</tr>
<tr>
<td>Database Object Name</td>
<td>20130923063104\00001AC4</td>
</tr>
<tr>
<td>Number of stripes in backup object</td>
<td>1</td>
</tr>
<tr>
<td>Assigned Management Class</td>
<td>DEFAULT</td>
</tr>
</tbody>
</table>

Backup Object Information

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL Server Name</td>
<td>STRINGVM1\STRINGVM1</td>
</tr>
<tr>
<td>SQL Database Name</td>
<td>model</td>
</tr>
<tr>
<td>Backup Method</td>
<td>VSS</td>
</tr>
<tr>
<td>Backup Location</td>
<td>Srv</td>
</tr>
<tr>
<td>Backup Object Type</td>
<td>full</td>
</tr>
<tr>
<td>Backup Object State</td>
<td>Inactive</td>
</tr>
<tr>
<td>Backup Creation Date / Time</td>
<td>09/23/2013 06:23:14</td>
</tr>
<tr>
<td>Backup Size</td>
<td>3.75 MB</td>
</tr>
<tr>
<td>Backup Compressed</td>
<td>No</td>
</tr>
<tr>
<td>Backup Encryption Type</td>
<td>None</td>
</tr>
<tr>
<td>Backup Client-deduplicated</td>
<td>No</td>
</tr>
<tr>
<td>Backup Supports Instant Restore</td>
<td>No</td>
</tr>
<tr>
<td>Database Object Name</td>
<td>20130923062314</td>
</tr>
<tr>
<td>Assigned Management Class</td>
<td>DEFAULT</td>
</tr>
</tbody>
</table>
Backup Object Information

<table>
<thead>
<tr>
<th>SQL Server Name</th>
<th>STRINGVM1\STRINGVM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL Database Name</td>
<td>model</td>
</tr>
<tr>
<td>Backup Method</td>
<td>VSS</td>
</tr>
<tr>
<td>Backup Location</td>
<td>Srv</td>
</tr>
<tr>
<td>Backup Object Type</td>
<td>full</td>
</tr>
<tr>
<td>Backup Object State</td>
<td>Active</td>
</tr>
<tr>
<td>Backup Creation Date / Time</td>
<td>09/23/2013 06:43:11</td>
</tr>
<tr>
<td>Backup Size</td>
<td>3.75 MB</td>
</tr>
<tr>
<td>Backup Compressed</td>
<td>No</td>
</tr>
<tr>
<td>Backup Encryption Type</td>
<td>None</td>
</tr>
<tr>
<td>Backup Client-deduplicated</td>
<td>No</td>
</tr>
<tr>
<td>Backup Supports Instant Restore</td>
<td>No</td>
</tr>
<tr>
<td>Database Object Name</td>
<td>20130923064311</td>
</tr>
<tr>
<td>Assigned Management Class</td>
<td>DEFAULT</td>
</tr>
</tbody>
</table>

Backup Object Information

<table>
<thead>
<tr>
<th>SQL Server Name</th>
<th>STRINGVM1\STRINGVM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL Database Name</td>
<td>model</td>
</tr>
<tr>
<td>Backup Method</td>
<td>VSS</td>
</tr>
<tr>
<td>Backup Location</td>
<td>Loc</td>
</tr>
<tr>
<td>Backup Object Type</td>
<td>full</td>
</tr>
<tr>
<td>Backup Object State</td>
<td>Active</td>
</tr>
<tr>
<td>Backup Creation Date / Time</td>
<td>09/23/2013 06:45:58</td>
</tr>
<tr>
<td>Backup Size</td>
<td>4.00 MB</td>
</tr>
<tr>
<td>Backup Compressed</td>
<td>No</td>
</tr>
<tr>
<td>Backup Encryption Type</td>
<td>None</td>
</tr>
<tr>
<td>Backup Client-deduplicated</td>
<td>No</td>
</tr>
<tr>
<td>Backup Supports Instant Restore</td>
<td>No</td>
</tr>
<tr>
<td>Database Object Name</td>
<td>20130923064558</td>
</tr>
<tr>
<td>Assigned Management Class</td>
<td>DEFAULT</td>
</tr>
</tbody>
</table>

Backup Object Information

<table>
<thead>
<tr>
<th>SQL Server Name</th>
<th>STRINGVM1\STRINGVM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL Database Name</td>
<td>model</td>
</tr>
<tr>
<td>Backup Method</td>
<td>Lgcy</td>
</tr>
<tr>
<td>Backup Location</td>
<td>Srv</td>
</tr>
<tr>
<td>Backup Object Type</td>
<td>Full</td>
</tr>
<tr>
<td>Backup Object State</td>
<td>Active</td>
</tr>
<tr>
<td>Backup Creation Date / Time</td>
<td>09/23/2013 06:31:05</td>
</tr>
<tr>
<td>Backup Size</td>
<td>2.08 MB</td>
</tr>
<tr>
<td>SQL Compressed</td>
<td>No</td>
</tr>
<tr>
<td>Backup Compressed</td>
<td>No</td>
</tr>
<tr>
<td>Backup Encryption Type</td>
<td>None</td>
</tr>
<tr>
<td>Backup Client-deduplicated</td>
<td>No</td>
</tr>
<tr>
<td>Database Object Name</td>
<td>20130923063105\00001AC4</td>
</tr>
<tr>
<td>Number of stripes in backup object</td>
<td>1</td>
</tr>
<tr>
<td>Assigned Management Class</td>
<td>DEFAULT</td>
</tr>
</tbody>
</table>

Query 6–IBM Spectrum Protect Database

Query 6 queries the IBM Spectrum Protect for database `netapp_db2`, and displays all of its active backup objects by default.

Command:

```
tdpsqlc query tsm model
```

Output:

```ruby
Completed
```

Chapter 8. Reference 233
Query 7—IBM Spectrum Protect Database

Query 7 queries the IBM Spectrum Protect server for information on database netapp_db2 Group-type backup objects.
Command:

```
tdpsqlc query tsm netapp_db2 Group**
```

Output:

```
IBM Spectrum Protect for Databases:
Data Protection for Microsoft SQL Server
Version 8, Release 1, Level 0
(C) Copyright IBM Corporation 1997, 2016.
All rights reserved.

Connecting to TSM Server as node 'STRINGVM1_SQL'...

Backup Object Information

-------------------------
SQL Server Name ....................... STRINGVM1\STRINGVM1
SQL Database Name ..................... netapp_db2
Backup Method ........................ Lgcy
Backup Location ....................... Srv
Backup Object Type .................... Group
SQL Group Logical Name ............... PRIMARY
Backup Object State ................... Active
Backup Creation Date / Time .......... 09/27/2013 08:23:58
Backup Size ......................... 2.08 MB
SQL Compressed ....................... No
Backup Compressed .................... No
Backup Encryption Type ............... None
Backup Client-deduplicated .......... No
Database Object Name ................ 20130927082358\00001A4C
Number of stripes in backup object .... 1
Assigned Management Class .......... DEFAULT
```

Query 8 – IBM Spectrum Protect Database

Query 8 displays both active and inactive full backup objects of database *Test1*. In addition, file information is requested.

Command:

```
tdpsqlc q tsm DB1_XIVmini_G_BAS full /fileinfo /all
```

Output:
Connecting to TSM Server as node 'STRINGVM1_SQL'...

Querying TSM Server for Backups

Backup Object Information

SQL Server Name STRINGVM1\STRINGVM1
SQL Database Name DB1_XIVmini_G_BAS
Backup Method VSS
Backup Location Srv
Backup Object Type full
Backup Object State Inactive
Backup Creation Date / Time 09/23/2013 06:23:14
Backup Size 5.00 MB
Backup Compressed No
Backup Encryption Type None
Backup Client-deduplicated No
Backup Supports Instant Restore .. No
Database Object Name 20130923062314
Assigned Management Class DEFAULT

Backup Object Information

SQL Server Name STRINGVM1\STRINGVM1
SQL Database Name DB1_XIVmini_G_BAS
Backup Method VSS
Backup Location Srv
Backup Object Type full
Backup Object State Active
Backup Creation Date / Time 09/23/2013 06:39:31
Backup Size 5.00 MB
Backup Compressed No
Backup Encryption Type None
Backup Client-deduplicated No
Backup Supports Instant Restore .. No
Database Object Name 20130923063931
Assigned Management Class DEFAULT

Backup Object Information

SQL Server Name STRINGVM1\STRINGVM1
SQL Database Name DB1_XIVmini_G_BAS
Backup Method VSS
Backup Location Loc
Backup Object Type full
Backup Object State Inactive
Backup Creation Date / Time 09/23/2013 06:41:14
Backup Size 5.00 MB
Backup Compressed No
Backup Encryption Type None
Backup Client-deduplicated No
Backup Supports Instant Restore .. Yes
Database Object Name 20130923064114
Assigned Management Class DEFAULT
Backup Object Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL Server Name</td>
<td>STRINGVM1\STRINGVM1</td>
</tr>
<tr>
<td>SQL Database Name</td>
<td>DB1_XIVmini_G_BAS</td>
</tr>
<tr>
<td>Backup Method</td>
<td>VSS</td>
</tr>
<tr>
<td>Backup Location</td>
<td>Loc</td>
</tr>
<tr>
<td>Backup Object Type</td>
<td>full</td>
</tr>
<tr>
<td>Backup Object State</td>
<td>Active</td>
</tr>
<tr>
<td>Backup Creation Date</td>
<td>09/23/2013 06:45:57</td>
</tr>
<tr>
<td>Backup Size</td>
<td>5.00 MB</td>
</tr>
<tr>
<td>Backup Compressed</td>
<td>No</td>
</tr>
<tr>
<td>Backup Encryption Type</td>
<td>None</td>
</tr>
<tr>
<td>Backup Client-deduplicated</td>
<td>No</td>
</tr>
<tr>
<td>Backup Supports Instant Restore</td>
<td>Yes</td>
</tr>
<tr>
<td>Database Object Name</td>
<td>20130923064557</td>
</tr>
<tr>
<td>Assigned Management Class</td>
<td>DEFAULT</td>
</tr>
</tbody>
</table>

Backup Object Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL Server Name</td>
<td>STRINGVM1\STRINGVM1</td>
</tr>
<tr>
<td>SQL Database Name</td>
<td>DB1_XIVmini_G_BAS</td>
</tr>
<tr>
<td>Backup Method</td>
<td>Lgcy</td>
</tr>
<tr>
<td>Backup Location</td>
<td>Srv</td>
</tr>
<tr>
<td>Backup Object Type</td>
<td>Full</td>
</tr>
<tr>
<td>Backup Object State</td>
<td>Active</td>
</tr>
<tr>
<td>Backup Creation Date</td>
<td>09/23/2013 06:31:04</td>
</tr>
<tr>
<td>Backup Size</td>
<td>2.08 MB</td>
</tr>
<tr>
<td>SQL Compressed</td>
<td>No</td>
</tr>
<tr>
<td>Backup Compressed</td>
<td>No</td>
</tr>
<tr>
<td>Backup Encryption Type</td>
<td>None</td>
</tr>
<tr>
<td>Backup Client-deduplicated</td>
<td>No</td>
</tr>
<tr>
<td>Database Object Name</td>
<td>20130923063104\00001AC4</td>
</tr>
<tr>
<td>Number of stripes in backup object</td>
<td>1</td>
</tr>
<tr>
<td>Assigned Management Class</td>
<td>DEFAULT</td>
</tr>
<tr>
<td>SQL Server Version</td>
<td>10.0.2573 (SQL Server 2008)</td>
</tr>
<tr>
<td>Cluster</td>
<td>No</td>
</tr>
<tr>
<td>DP Version</td>
<td>6.4.0.0</td>
</tr>
<tr>
<td>SQL Database Data Space Allocated</td>
<td>3,145,728</td>
</tr>
<tr>
<td>SQL Database Data Space Used</td>
<td>1,376,256</td>
</tr>
<tr>
<td>SQL Database Log Space Allocated</td>
<td>2,097,152</td>
</tr>
<tr>
<td>SQL Database Log Space Used</td>
<td>344,064</td>
</tr>
<tr>
<td>SQL Database Options</td>
<td></td>
</tr>
<tr>
<td>SQL Group Logical Name</td>
<td>PRIMARY</td>
</tr>
<tr>
<td>SQL Group Space Allocated</td>
<td>3,145,728</td>
</tr>
<tr>
<td>SQL Group Space Used</td>
<td>1,376,256</td>
</tr>
<tr>
<td>SQL File Logical Name</td>
<td>DB1_XIVmini_G_BAS</td>
</tr>
<tr>
<td>SQL File Physical Name</td>
<td>G:\SQLSERVER\DB1_XIVmini_G_BAS\DB1_XIVmini_G_BAS.mdf</td>
</tr>
<tr>
<td>SQL File Space Allocated</td>
<td>3,145,728</td>
</tr>
<tr>
<td>SQL File Space Used</td>
<td>1,376,256</td>
</tr>
<tr>
<td>SQL Group Logical Name</td>
<td>TRANSACTION LOG</td>
</tr>
<tr>
<td>SQL Group Space Allocated</td>
<td>2,097,152</td>
</tr>
<tr>
<td>SQL Group Space Used</td>
<td>344,064</td>
</tr>
<tr>
<td>SQL File Logical Name</td>
<td>DB1_XIVmini_G_BAS_log</td>
</tr>
<tr>
<td>SQL File Physical Name</td>
<td>G:\SQLSERVER\DB1_XIVmini_G_BAS\DB1_XIVmini_G_BAS_log.ldf</td>
</tr>
<tr>
<td>SQL File Space Allocated</td>
<td>2,097,152</td>
</tr>
</tbody>
</table>

Completed

Query 9 – IBM Spectrum Protect types on AlwaysOn node

Query 9 queries the IBM Spectrum Protect server for the types of backup objects from all standard databases that are backed up to the AlwaysOn node, including both active and inactive objects.

Command:

```sql
Chapter 8. Reference 237```
tdpsqlc query TSM */all/querynode=alwayson

Output:

C:\Program Files\Tivoli\TSM\TDPSql>tdpsqlc query TSM */all/querynode=alwayson

IBM Spectrum Protect for Databases:
Data Protection for Microsoft SQL Server
Version 8, Release 1, Level 0
(C) Copyright IBM Corporation 1997, 2016. All rights reserved.

Connecting to TSM Server as node 'c64'...
Querying TSM Server for Backups....
Backup Object Information
-------------------------------------
SQL Server Name ......................... hkgroup
SQL Database Name ...................... hkaagdb
Backup Method ......................... VSS
Backup Location ......................... Loc
Backup Object Type ..................... full
Backup on Secondary Replica .......... No
Backup Object State ................... Active
Backup Creation Date / Time .......... 06/11/2013 10:18:11
Backup Size .............................. 3.12 GB
Backup Compressed ..................... No
Backup Encryption Type ............... None
Backup Client-deduplicated .......... No
Backup Supports Instant Restore ...... Yes
Database Object Name .................. 20130611101811
Assigned Management Class .......... DEFAULT

Query Managedcapacity command

Use the Query Managedcapacity command to assist with storage planning by determining the amount of managed capacity in use.

Purpose

The query managedcapacity command displays capacity related information about the volumes that are represented in the local inventory, and are managed by Data Protection for SQL Server. This command is valid for all Windows operating systems that are supported by Data Protection for SQL Server.

The capacity that is displayed includes deactivated backups, that is, backups which have not expired, on the IBM Spectrum Protect server. Once a deleted backup has been expired by the IBM Spectrum Protect server, the capacity that is displayed no longer contains capacity for the deleted backup.

TDPSQLC command

TDPSQLC—Query MANAGEDCAPacity /DETAILED

Parameters

/DETAILED

Results in a detailed listing of snapped volumes. If this option is not specified then only the total capacity is displayed.
Example

Query the total managed capacity of SQL Server data represented in the local inventory with a detailed listing of snapped volumes:

tdpsqlc query managedcapacity /detailed

<table>
<thead>
<tr>
<th>Volume</th>
<th>Managed Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>H:</td>
<td>16.00 GB (17,176,719,360 bytes)</td>
</tr>
<tr>
<td>I:</td>
<td>16.00 GB (17,176,719,360 bytes)</td>
</tr>
<tr>
<td>Q:</td>
<td>16.00 GB (17,176,719,360 bytes)</td>
</tr>
<tr>
<td>N:</td>
<td>16.00 GB (17,176,719,360 bytes)</td>
</tr>
</tbody>
</table>

Total Managed Capacity: 63.99 GB (68,706,877,440 bytes)

Query Policy command

Use the query policy command to query local policy information.

Query Policy

This command is used to list the attributes of a policy.

Parameters: * (required) specifies all policies are to be queried. The results of the query will be displayed as follows:

<table>
<thead>
<tr>
<th>Policy</th>
<th>Number of snapshots to keep</th>
<th>Days to keep a snapshot</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQLPOL</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>STANDARD</td>
<td>2</td>
<td>30</td>
</tr>
</tbody>
</table>

Restore command

Use the restore command to restore all or part of one or more SQL Server databases.

Use this command to restore all or part of one or more SQL Server databases from IBM Spectrum Protect storage to an SQL Server.

- You cannot restore SQL Server databases that are in use. By placing SQL Server databases to be restored in single-user mode, you can avoid attempting such restores. If you are restoring the master database, start the SQL Server in single-user mode by using the -m SQL SERVER startup option. In addition, the single user of the SQL Server databases or server must be the same user that Data Protection for SQL Server uses to log on to the SQL Server for the restore. SQL Enterprise Manager, SQL Server Application Client, and other SQL Server services can be users of databases and the SQL Server.
- The user used by Data Protection for SQL Server to log on to the SQL Server must have the SQL Server SYSADMIN fixed server role.

Chapter 8. Reference 239
You can use the TRANSACT-SQL database consistency checker statement DBCC CHECKDB ('DBNAME') to verify the integrity of the restored SQL Server databases.

During SQL Server database restore processing, the SQL Server prepares the database files after first restoring a minimal amount of metadata. For large SQL Server databases, the preparation of the database files can be time consuming. To prevent a restore operation from ending prematurely, specify a value of at least 10000 in the commtimeout option. If the restore operation is performed in a LAN free environment, this value must be specified for the Storage Agent.

**Date and time recovery (Legacy only)**

The `restoredate` and `restoret ime` parameters allow restore and recovery of the specified database to the date and time specified. These parameters automate the restore of the appropriate full backup, related differential and log backups, and recovers the database to the specified point in time. The behavior when these parameters are used is as follows:

- If only full plus log backups exist, then the following actions occur:
  - The most recent full backup prior to the specified `restoredate` and `restoret ime` is restored.
  - All logs up to the first log backed up after the specified `restoredate` and `restoret ime` is restored.
  - Recovery up to the specified `restoredate` and `restoret ime` (using `stopat`) is completed.
- If only full backups or full plus differential backups exist, then the following actions occur:
  - The most recent full backup prior to the specified `restoredate` and `restoret ime` is restored.
  - The most recent differential backup (if any exists) prior to the specified `restoredate` and `restoret ime` is restored.
- If full plus differential plus log backups exist, then the following actions occur:
  - The most recent full backup prior to the specified `restoredate` and `restoret ime` is restored.
  - The most recent differential backup prior to the specified `restoredate` and `restoret ime` is restored.
  - All log backups after the differential and up to the first log backed up after the `restoredate` and `restoret ime` is restored.
  - Recovery up to the specified `restoredate` and `restoret ime` (using `stopat`) is completed.

**VSS restore command-line considerations**

Refer to the following considerations when performing VSS restores. Unless otherwise specified, `VSS restores` refers to all restore types that use VSS (VSS restore, VSS fast restore, VSS instant restore):

- A VSS instant restore overwrites the entire contents of the source volumes. However, you can avoid overwriting the source volumes by specifying `/instantrestore=no`. This parameter setting bypasses volume-level copy and uses file-level copy instead to restore the files from a VSS backup that resides on local shadow volumes. The source volume contains only the SQL Server database.
- When a VSS restore from local shadow volumes is completed, the bytes transferred is displayed as 0. This value is displayed because no data (0) is restored from the IBM Spectrum Protect server.
- To perform a VSS instant restore with versions of the IBM Spectrum Protect Backup-Archive Client earlier than 6.1.0, the IBM Spectrum Protect for FlashCopy Manager Hardware Devices Snapshot Integration Module must be installed.
- When performing VSS instant restores, you must make sure that any previous background copies that involve the volumes being restored are completed prior to initiating the VSS instant restore.

**Restore syntax**

Use the `restore` command syntax diagrams as a reference to view available options and truncation requirements.

**Syntax**

```
TDPSQLC - Restore dbname
```

- `FULL`
  - `FILE=logicalfilename` A
  - `FULL` B
  - `DIFFerential` C
  - `Group=groupname` D
  - `Log=logobjectname` E
  - `Set=setobjectname` F

The syntax diagrams of the backup object type options corresponding to the letters A, B, C, D, E, F are shown following the Optional Parameters below.

**Restore optional parameters:**

```
/BACKUPDESTination= [backupdestination [or cfg value]]
```
A Restore File Options:

B Restore Full Options:

B1 Restore Full Options 1:

B2 Restore Full Options 2:

C Restore Diff Options:
D Restore Group Options:

```
/FIles=logicalfilename
/REPlace
```

E Restore Log Options:

```
/RECOvery=Yes
/STANDby=undofilename
/STOPAT=datetime
/STOPATMark=markname
/AFTER=datatime
/STOPBEFOREMark=markname
/AFTER=datatime
/KEEPCDC
```

F Restore Set Options:

```
/FIles=logicalfilename
/Groups=groupName
/REPlace
```

**Restore positional parameters**

Positional parameters immediately follow the `restore` command and precede the optional parameters.

**File=**`logicalfilename`,...

A file backup contains only the contents of the SQL Server logical file you specify. You can use this option when it is not practical to back up an entire SQL Server database due to available backup time and space or due to performance requirements. This option restores file backup objects for the SQL Server databases you specify. The `logicalfilename` variable specifies the names of the SQL Server database logical files you want to restore to.

**Considerations:**

- You can specify this parameter more than once per command invocation.
• Use * as a wildcard character in logicalfilename to replace zero or more characters for each occurrence. Specifying only the wildcard character indicates all logical files in the SQL Server database. Since each logical file backed up creates a separate backup object on the IBM Spectrum Protect server, specifying only the wildcard character results in a separate backup object for each logical file in the SQL Server database.

• If logicalfilename includes spaces or special characters, enclose it in double quotes.

• The logicalfilename variable is case-sensitive.

• You cannot specify the recovery parameter with restore file operations.

FULL
This option restores all full database backup objects for the SQL Server databases you specify.

COPYFull
This option restores a copy-only full backup, which contains a copy-only version of a full backup. These backups are considered out of the regular sequence of backups, and do not affect the transaction logs or any sequence of backups like differential backups or full backups.

DIFFerential
A differential database backup contains only the parts of a SQL Server database changed since the latest full backup plus enough of the SQL Server database’s transaction log to make a restore consistent. As such, a differential backup usually takes up less space than a full backup. Use this option so that all individual log backups since the last full database backup do not need to be applied. This option saves time during a restore by replacing the restore of a number of transaction log backups.

Group=*|groupname,...
This option restores all group database backup objects for the SQL Server databases you specify. The groupname variable specifies the names of the SQL Server database filegroups you want to restore.

Considerations:
• You can specify this parameter more than once per command invocation.
• Use * as a wildcard character in the groupname variable to replace zero or more characters for each occurrence.
• Specifying only the wildcard character indicates all filegroups in the SQL Server database.
• If the groupname variable includes spaces or special characters, enclose it in double quotes.
• The groupname variable is case-sensitive.
• You cannot specify the recovery parameter with restore group operations.

Log or Log=*|logobjectname,...
This option restores all log database backup objects for the SQL Server databases you specify. The log parameter takes the wildcard or logobjectname value. The logobjectname variable specifies the log backup objects to restore. Use * as a wildcard character in logobjectname to replace zero or more characters for each occurrence. Specifying only the wildcard character indicates all log backup objects for the SQL Server databases. You can specify this parameter more than once per command invocation.

Set or Set=*|setobjectname,...
This option restores all set database backup objects for the SQL Server databases you specify.
databases you specify. The set parameter takes the wildcard or
setobjectname value. The setobjectname variable specifies the set backup
objects to restore. Use * as a wildcard character in setobjectname to replace
zero or more characters for each occurrence. Specifying only the wildcard
character indicates all set backup objects for the SQL Server databases.

Considerations:
• You can specify this parameter more than once per command invocation.
• You cannot specify the /recovery parameter with restore set operations.

Restore optional parameters
Optional parameters follow the restore command and positional parameters.

The following are detailed descriptions of each of the optional parameters:

/BACKUPDESTination=TSM|LOCAL
Use the /BACKUPDESTination parameter to specify the location from where
the backup is to be restored. The default is the value (if present) specified
in the Data Protection for SQL Server preferences file (tdpsq1.cfg). If no
value is present, the backup is restored from IBM Spectrum Protect server
storage.

You can specify:

TSM The backup is restored from IBM Spectrum Protect server storage.
This option is the default if no value is specified in the Data
Protection for SQL Server preferences file (tdpsq1.cfg).

LOCAL The backup is restored from the local shadow volumes.

/BACKUPMETHOD=LEGACY|VSS
Use the /BACKUPMETHOD parameter to specify the manner in which the
restore is completed. The default is the value (if present) specified in the
Data Protection for SQL Server preferences file (tdpsq1.cfg). If no value is
present, the backup is restored with the legacy API.

You can specify:

LEGACY The restore operation is completed with the legacy API. This
option is the default if no value is specified in the Data Protection
for SQL Server preferences file (tdpsq1.cfg).

VSS The restore operation is completed with VSS.

/BUFFers=numbuffers
The /BUFFers parameter specifies the number of data buffers used for each
data stripe to transfer data between Data Protection for SQL Server and the
IBM Spectrum Protect API. The numbuffers variable refers to the number of
data buffers to use. The number can range from 2 to 8. The default is 3.

Considerations:
• You can improve throughput by increasing the number of buffers, but
you also increase storage use. Each buffer is the size that is specified in
the /BUFFERSIZE parameter.
• The default value is the value that is specified by the buffers
configurable option in the Data Protection for SQL Server configuration
file. This value is initially 3.
If you specify `/BUFFers`, its value is used instead of the value that is stored in the Data Protection for SQL Server configuration file. Specifying this parameter does not change the value in the configuration file.

If you specify `/BUFFers` but not `numbuffers`, the default value 3 is used.

`/BUFFERSIze=buffersizeinkb`

The `/BUFFERSIze` parameter specifies the size of each Data Protection for SQL Server buffer that is specified by the `/BUFFers` parameter. The `buffersizeinkb` variable refers to the size of data buffers in KB. The number can be in the range 64 - 8192. The default is 1024.

Considerations:
- Though increasing the number of buffers can improve throughput, it also increases storage use as determined by this parameter.
- The default value is the value that is specified by the `buffersizeinkb` configurable option in the Data Protection for SQL Server configuration file. This value is initially 1024.
- If you specify `/BUFFERSIze`, its value is used instead of the value that is stored in the Data Protection for SQL Server configuration file. Specifying this parameter does not change the value in the configuration file.
- If you specify `/BUFFERSIze` but not `buffersizeinkb`, the default value 1024 is used.

`/CONFIGfile=configfilename`

The `/CONFIGfile` parameter specifies the name of the Data Protection for SQL Server configuration file, which contains the values for the Data Protection for SQL Server configurable options.

Considerations:
- `configfilename` includes a fully qualified path. If `configfilename` does not include a path, it uses the directory where Data Protection for SQL Server is installed.
- If `configfilename` includes spaces, place it in double quotation marks.
- If you do not specify `/CONFIGfile`, the default value is `tdpsql.cfg`.
- If you specify `/CONFIGfile` but not `configfilename`, the default value `tdpsql.cfg` is used.

`/DBOonly`

Specifying the `/DBOonly` parameter prevents general users from accessing a restored database before it is determined to be ready for such access. This parameter ensures that the database option RESTRICTED USER is set after a restore operation.

`/FROMSQLSERVer=sqlservername`

For `restore`, the `/FROMSQLSERVer` parameter specifies the SQL Server that backup objects were backed up from. This parameter is necessary only when the name of the SQL Server to restore to, as determined by the `/sqlserver` parameter, is different from the name of the SQL Server that the backup objects were created from. Use `/FROMSQLSERVer` for query FCM commands, but use `/sqlserver` for query SQL commands. The default value is the `/sqlserver` value or the value that is set in the Data Protection for SQL Server configuration file. If the two SQL Server names are different, you must use this parameter even if `/FROMSQLSERVer` was a non-clustered default instance.
/INSTANTRestore=Yes|No
Use the /INSTANTRestore parameter to specify whether to use volume level snapshot or file level copy to restore a VSS backup that is stored on local shadow volumes. An IBM Systems Storage SAN Volume Controller, DS8000, the XIV system, or IBM Storwize V7000 storage system is required to run VSS instant restores.

You can specify:

Yes  Use volume level snapshot restore for a VSS backup that is stored on local shadow volumes if the backup exists on volumes that support it. This option is the default.

No   Use file-level copy to restore the files from a VSS backup that is stored on local shadow volumes. Bypassing volume-level copy means that SQL Server database files and log files are the only data overwritten on the source volumes.

When you are running VSS instant restore on IBM System Storage DS8000 series and Storwize family, ensure that any previous background copies that involve the volumes you are restoring, complete before you initiate the VSS instant restore.

/IncludeTSMVM=Yes
Set the /IncludeTSMVM to Yes to view all database backups that includes Virtual Environment backup SQL Server databases in the Databases view. The backup method is listed as TSMVM to distinguish these databases from the others that are listed.

Alternatively, open the Properties page from the Actions pane, and select Data Center Node to choose IncludeTSMVM to access databases from Virtual Environments in the Databases view.

/INSTANTRestore=Yes|No
Use the /INSTANTRestore parameter to specify whether to use volume level snapshot or file level copy to restore a VSS backup that is stored on local shadow volumes. An IBM Systems Storage SAN Volume Controller, DS8000, the XIV system, or IBM Storwize V7000 storage system is required to run VSS instant restores.

You can specify:

Yes  Use volume level snapshot restore for a VSS backup that is stored on local shadow volumes if the backup exists on volumes that support it. This option is the default.

No   Use file-level copy to restore the files from a VSS backup that is stored on local shadow volumes. Bypassing volume-level copy means that SQL Server database files and log files are the only data overwritten on the source volumes.

When you are running VSS instant restore on IBM System Storage DS8000 series and Storwize family, ensure that any previous background copies that involve the volumes you are restoring, complete before you initiate the VSS instant restore.

/INTO=dbname
For restore operations, /INTO specifies the SQL Server database that you want a backup object that is restored into. This parameter is necessary only when the name of the SQL Server database to restore into is different from the backup object database name. Considerations:
• When you specify /INTO, wildcards (*) might not be used in either the command dbname variable or the /INTO dbname variable.

• There must be exactly one item in the /INTO dbname variable list in addition to in the command dbname list.

• Make sure to use the /relocatedir parameter when you specify /INTO dbname.

/KEEPCdc

If change data capture is enabled for an SQL Server database and database tables, change-data-capture records that recorded activity, such as insertions, deletions, and edits to the database tables can be retained when you restore the database. The /KEEPCdc parameter is necessary if you are restoring the database to a different database name on the same SQL Server instance or to a different SQL Server instance. When you run restore operations with the /KEEPCdc parameter, you must also set /RECOvery=Yes.

This parameter applies to the following types of legacy backups: full, copy-only full, differential, file, set, and group. For VSS restore operations, you do not need to maintain change data capture information.

Note: If you are restoring the database to its original location, that is the SQL Server instance and database name, change data capture records are retained automatically.

For more information about change data capture, see Microsoft documentation.

/LOGFile=logfilename

The /LOGFile parameter specifies the name of the activity log that is generated by Data Protection for SQL Server. This activity log records significant events such as completed commands and error messages. The Data Protection for SQL Server activity log is distinct from the SQL Server error log. The /LOGFile variable identifies the name to be used for the activity log generated by Data Protection for SQL Server. Considerations:

• If the specified file does not exist, it is created. If it does exist, new log entries are appended to the file.

• The file name can include a fully qualified path; however, if you specify no path, the file is written to the directory where Data Protection for SQL Server is installed.

• You cannot turn off Data Protection for SQL Server logging activity. If you do not specify /LOGFile, log records are written to the default log file. The default log file is tdpsql.1og.

• When you use multiple simultaneous instances of Data Protection for SQL Server for operations, use the /LOGFile parameter to specify a different log file for each instance used. This function directs logging for each instance to a different log file and prevents interspersed log file records. Failure to specify a different log file for each instance can result in unreadable log files.

/LOGPrune=numdays|No

When you prune log data, you can discard some of the generated logs according to detailed filtering criteria that you set. Depending on the option that you set for the /LOGPrune parameter, a certain number of days of data are saved. By default, 60 days of log entries are saved. The option No can be entered to disable log pruning.
Regardless of the option that you set for this parameter, you can explicitly request log pruning at any time.

Considerations:
- For `numdays`, the range is 0 to 9999. A value of 0 deletes all entries in the activity log file except for the current command entries.
- If you specify `no`, the log file is not pruned.
- If you do not specify `/LOGPrune`, the default value is that specified by the `logprune` configurable option in the configuration file. The default value is 60.
- If you specify `/LOGPrune`, its value is used instead of the value that is stored in the configuration file. Specifying this parameter does not change the value in the configuration file.
- You can specify `/LOGPrune` without specifying `numdays` or `no`; in this case, the default value, 60, is used.
- Changes to the value of the `TIMEformat` or `DATEformat` parameter can result in an unwanted pruning of the log file. If you are running a command that might prune the log file, and the value of the `TIMEformat` or `DATEformat` parameter is changed, complete one of the following to prevent unintentional pruning of the log file:
  - Make a copy of the existing log file.
  - Specify a new log file with the `/LOGFile` parameter or `logfile` setting.

`/MOUNTWait=Yes|No`
This parameter is not valid for all backup types; does not work with `DIFFFULL` or `LOG` backup types. If the IBM Spectrum Protect server is configured to store backup data on removable media, the IBM Spectrum Protect server might send a message to indicate to Data Protection for SQL Server that the server is waiting for a required storage volume to be mounted. If that occurs, with this option, you can specify whether Data Protection for SQL Server `backup`, `restore`, and `query TSM /fileinfo` commands wait for the media mount or stop the current operation.

You can specify:
- **Yes** Wait for tape mounts (default for `backup` and `restore`).
- **No** Do not wait for tape mounts (default for `query TSM /fileinfo`).

Considerations:
- If you use data striping, Data Protection for SQL Server cannot complete the operations unless it has concurrent access to the media for each stripe. Because of the way SQL Server distributes data among stripes, if any stripe does not have its media available, each of the stripes might eventually be either waiting for its own or another stripe's media to become available. In this case, it might become necessary to end the Data Protection for SQL Server command from a prolonged wait. This action can be completed by closing the Data Protection for SQL Server program (close the command prompt window or enter `control-c`).
- For `backup`, if the management class for meta objects also requires removable media, Data Protection for SQL Server waits for that volume, but because meta objects are not created until after the data objects are complete, the wait occurs after all of the data is transferred.
- If you specify `no` and any removable media are required, Data Protection for SQL Server ends the command with an error message. The same outcome happens if the management class for meta objects requires
removable media. For **backup**, since the meta objects are not created until after the data objects are complete, the command termination does not occur until after all of the database data is transferred.

- If you do not specify /MOUNTWait with **backup** or **restore**, the default value is that specified in the **mountwait** configurable option in the Data Protection for SQL Server configuration file. This value is initially yes. Specifying this parameter does not change the value in the configuration file.

- If you specify /MOUNTWait, but do not specify either yes, or no, the default, yes, is used.

- If you do not specify /MOUNTWait with a **query TSM /fileinfo** request, the default value no is used.

/OBJect=*|objectname,...

For **restore** and deactivate operations, /OBJect specifies that only particular backup objects for the specified SQL Server databases and backup object type if specified are restored. For query operations, /OBJect includes particular objects and object types in the display. The **objectname** variable specifies the names of the backup objects you want to restore or deactivate. The object name uniquely identifies each backup object and is created by Data Protection for SQL Server. Use **query** to view the names of backup objects. Considerations:

- If you do not specify restore, only the active backup object is included in the restore.

- You can use * as a wildcard character in **objectname** to replace zero or more characters for each occurrence. Specifying only the wildcard character indicates all backup objects of the specified SQL Server databases and backup object type.

/PARTial

The /PARTial parameter restores only part of an SQL Server database. You can complete partial restores only on full database backup objects. The primary purpose of a partial restore is to retrieve lost or damaged data. A partial restore creates a subset of the SQL Server database. After the partial restore, differential database restores and transaction log restores can return the subset SQL Server database to a point where the required data exists or is undamaged. You can then copy the required data from the subset SQL Server database to the original SQL Server database. You can also use partial restores whenever you need a subset of an SQL Server database, such as for development or reporting purposes.

A partial restore always restores the entire backup object from the IBM Spectrum Protect server although only a portion of the restored object might be used to complete a recovery. The statistics that are displayed reflect the amount of data that is restored from the IBM Spectrum Protect server only, not the amount of data that is used by the SQL Server for database recovery.

Considerations:

- You can specify the content of a partial restore with the **files** or **groups** parameters.
  - You can restore only complete SQL Server groups, even if you did not specify all SQL Server files in an SQL Server group with the **files** option.
  - The primary group is always included.
- SQL Server groups that are not restored are marked offline and are not accessible.

- If you are restoring the subset SQL Server database to a location where it was backed up, you must use the `/RELocate` and `/to` parameters.

- Microsoft Management Console (MMC) does not support the `/RELocate` and `/to` parameters. You must use the command-line interface when you are completing a partial restore that requires these parameters.

- You can specify the `/RECOVery` parameter with `/PARTial`.

`/QUERYNode=DP | ALWAYSON | BOTH`

Specify whether you want to query standard databases from SQL Server 2012 and later versions that are backed up from a standard Data Protection for SQL Server node, the AlwaysOn node, or both nodes. This parameter is ignored for availability databases because the availability databases are always backed up under the AlwaysOn node.

**Note:** This parameter is not relevant for all query commands. It is applicable to the query TSM command only.

`/Quiet` The `/Quiet` parameter omits displaying status information from the command. However, the information is appended to the activity log.

`/RECOVery=Yes | No`

For restore operations, `/RECOVery` specifies whether you want to restore more SQL Server database that are not on a standby SQL Server. A restored database cannot be used until the `/RECOVery=Yes` parameter is administered to the database. You can specify:

**Yes (default)**

Whenever you make a sequence of restores to an SQL Server database and the current restore is the final restore in the sequence, or is the only restore to an SQL Server database. The SQL Server detects that the restore operation is complete and ready for incomplete transactions to be rolled back.

**No**

Whenever you make a sequence of restores to an SQL Server database and the current restore is not the final restore in the sequence. Issue `/RECOVery=no` for all restore commands except the last one.

Considerations:

- After the `/RECOVery=yes` parameter is administered, you cannot restore any more differential or log backups to the database.

- You cannot specify `/RECOVery` for restore operations of file, group, or set backup objects. Data Protection for SQL Server forces such restores to `/RECOVery=no`.

- For full restores that specify `/groups` or `/files`, unless you also specify `/partial`, you cannot specify `/RECOVery`. Without `/partial`, Data Protection for SQL Server forces such restores to `/RECOVery=no`.

- Not specifying this option automatically rolls back incomplete transactions for the database.

- When you specify yes and you are restoring several restore objects for the same database, only the final restore object for the database uses `/RECOVery=yes`; all others use `/RECOVery=no`. You can specify a list of logs without having to specify the final log in a separate command.

The following is a sample scenario:
### Sequence of restore operations

<table>
<thead>
<tr>
<th></th>
<th>Specify</th>
</tr>
</thead>
<tbody>
<tr>
<td>full database</td>
<td>no</td>
</tr>
<tr>
<td>differential database</td>
<td>no</td>
</tr>
<tr>
<td>transaction log backup object</td>
<td>no</td>
</tr>
<tr>
<td>transaction log backup object</td>
<td>yes</td>
</tr>
</tbody>
</table>

1. Data Protection for SQL Server sorts the restore objects by database name, and, within database name, by backup time stamp from earliest to latest. A query TSM command also displays this order.

2. If a restore object fails, all subsequent restore objects for that database in a single restore command are skipped regardless of the /RECOVery or /STANDby settings.

/RELocate=logicalfilename,... /TO=physicalfilename,...

For restore operations, the /RELocate and /TO parameters as a pair specify the new location of an SQL Server database file. You must use this parameter for every SQL Server database file that you are not restoring to its original drive, complete path, and file name. The logicalfilename variable specifies the logical file name of the SQL Server database file you want to relocate. The physicalfilename variable specifies the new physical Windows file name where you want to relocate the SQL Server database file. This parameter is available when you are restoring legacy backups only.

**Considerations:**

- You cannot specify more than one database name as the value for the restore command when you are specifying /RELocate.
- /RELocate and /TO can each take a list of values and can be specified more many times. However, as a pair, /RELocate and /TO must take the same number of values, and the values must be paired in order of appearance. For example,

```
/relocate=a,b,c /to=a¹,b¹,c¹
```

is valid, but not

```
/relocate=a,b,c /to=b¹,a¹
```

- MMC does not support the /RELocate and /TO parameters. You must use the command-line interface when you are completing a partial restore that requires these parameters.
- You can use the query command with the /fileinfo parameter to determine the logical file names and physical file names in the backup object.
- If either logicalfilename or physicalfilename includes spaces, you must enclose it in double quotation marks.
- For physicalfilename, include the complete drive, path, and file name of the new file.
- The drive and path of the new physical file name must exist, but if the file does not yet exist, SQL Server creates it. Additionally, if the file does exist, you might be required to use the /replace parameter.
- The wildcard (*) is not allowed in the values for either /RELocate or /TO.

/RELOCATEDir=dir1,dir2...

The /RELOCATEDir parameter specifies the new destination locations in which to restore the backed up SQL Server databases, logs, and SQL Server full-text index files. FILESTREAM files are included for SQL Server 2008,
SQL Server 2008 R2, or later versions. This parameter is available when you are restoring VSS backups or legacy backups.

The dbfiledir variable specifies the directory location of the SQL Server database you want to relocate. If the logfiledir and otherfiledir variables are not specified, the logs and SQL Server full-text index files are restored to the directory specified by dbfiledir.

The logfiledir variable specifies the directory location of the SQL Server log files you want to relocate. If the logfiledir variable is not specified, the SQL Server log files are restored to the directory specified by dbfiledir.

The otherfiledir variable specifies the directory location of the SQL Server full-text index files and FILESTREAM files (SQL Server 2008, SQL Server 2008 R2, or later versions). If the otherfiledir variable is not specified, the SQL Server full-text index files and FILESTREAM files (SQL Server 2008, SQL Server 2008 R2, or later versions) are restored to the directory specified by dbfiledir.

/REPlace

For restore operations, the /REPlace parameter specifies that you want existing SQL Server files to be overwritten when they otherwise would not be.

Restriction: This restore option is available only with legacy backups. You can use this parameter in the following instances:

- You are completing a full database restore, and one of the following statements is true:
  - You are using the /into parameter, and the /into database exists on the SQL Server.
  - The database exists on the SQL Server, and one of the following statements is also true:
    - The number of SQL Server files in the existing database differs from the number of SQL Server files in the full database backup object.
    - The names of one or more SQL Server files in the existing database are not the names of any of the SQL Server files in the full database backup object.
- You are completing a file, group, or set restore, and one or more of the SQL Server files exist.

/RESTOREDate=date

The /RESTOREDate parameter specifies a date to which the database identified by dbname is to be recovered. The date value must be specified in the same date format that is defined in the Data Protection for SQL Server preferences file. If /RESTOREDate is not specified but /RESTORETime is specified, the /RESTOREDate value is the current date. The /RESTOREDate parameter is only available for legacy restore operations. It can be specified only when you are restoring a full database backup. The /RESTORETime parameter cannot be used to restore file, group, and set backups.

/RESTORETime=time

The /RESTORETime parameter specifies the time of day to which the database identified by dbname is to be recovered. The time value must be specified in the same time format that is defined in the Data Protection for SQL Server preferences file. If /RESTORETime is not specified but /RESTOREDate is specified, the /RESTORETime is the current time. The
/RESTORETime parameter is only available for legacy restore operations. It can be specified only when you are restoring a full database backup. The /RESTORETime parameter cannot be used to restore file, group, and set backups.

/SQLAUTHentication=INTEGRATED|SQLUSERID
This parameter specifies the authorization mode that is used when logging on to the SQL Server. The INTEGRATED value specifies Windows authentication. The user ID that you use to log on to Windows is the same ID you will use to log on to the SQL Server. This is the default value. Use the sqluserid value to specify SQL Server user ID authorization. The user ID that is specified by the sqluserid parameter is the ID that you use to log on to the SQL Server. Any SQL Server user ID must have the SQL Server SYSADMIN fixed server role.

(SQLBUFFERS=numsmbuffers
The /SQLBUFFERS parameter specifies the total number of data buffers SQL Server uses to transfer data between SQL Server and Data Protection for SQL Server. The numsmbuffers variable refers to the number of data buffers to use. The number can range from 0 to 999. The initial value is 0. When /SQLBUFFERS is set to 0, SQL Server determines how many buffers must be used.

Considerations:
• The default value is the value that is specified by the SQL Server buffers configurable option in the Data Protection for SQL Server configuration file. This value is initially 0.
• If you specify /SQLBUFFERS, its value is used instead of the value that is stored in the Data Protection for SQL Server configuration file. Specifying this parameter does not change the value in the configuration file.
• If you specify /SQLBUFFERS but not numsmbuffers, the default value 0 is used.

(SQLBUFFERSIZE=smbuffersizeinkb
The /SQLBUFFERSIZE parameter specifies the size of each buffer (specified by the /SQLBUFFERS parameter) SQL Server uses to transfer data to Data Protection for SQL Server. The smbuffersizeinkb variable refers to the size of data buffers in KB. The number be in the range 64 - 4096. The default value is 1024.

Considerations:
• The default value is the value that is specified by the SQL Server buffers configurable option in the Data Protection for SQL Server configuration file. This value is initially 1024.
• If you specify /SQLBUFFERSIZE, its value is used instead of the value that is stored in the Data Protection for SQL Server configuration file. Specifying this parameter does not change the value in the configuration file.
• If you specify /SQLBUFFERSIZE, but not smbuffersizeinkb, the default value 1024 is used.

/SQLPassword=sqlpasswordname
This parameter specifies the SQL Server password that Data Protection for SQL Server uses to log on to the SQL Server that objects are backed up from or restored to.

Considerations:
Using this parameter means that you are using SQL Server authentication. The SQL Server and the SQL Server user ID for this password must both be configured for SQL Server authentication.

- If you do not specify `/SQLPassword`, the default value is blank (" ").
- If you specify `/SQLPassword` but not `sqlpasswordname`, the default is also blank (" ").
- This parameter is ignored if you use the `/sqlauth=integrated` parameter with it.

`/SQLSERVER=sqlserver-connection`  
The `/SQLSERVER` parameter specifies the SQL Server that Data Protection for SQL Server logs on to. For restore operations, this server is the SQL Server that backup objects are restored to. However, if the backup objects were created from a different SQL Server name, you must use the `/fromsqlserver` parameter. Use `/sqlserver` for the query SQL and backup commands, but use `/fromsqlserver` for the query TSM and inactivate commands.

The `sqlprotocol` variable specifies the communication protocol to use. With this variable, you can specify an `sqlservername`. You can check the SQL connection by using the SQL Server Configuration Manager tool (under SQL Server Native Client Configuration client protocols). You can choose from the following protocols:

### Table 27. SQL Server connection protocols

<table>
<thead>
<tr>
<th>Protocol Name</th>
<th>Description</th>
<th>Example Usage (with <code>sqlserver-connection</code> details)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lpc</td>
<td>Shared Memory</td>
<td><code>/sqlserver=lpc:&lt;servername&gt;\&lt;instancename&gt;</code></td>
</tr>
<tr>
<td>np</td>
<td>Named Pipes</td>
<td><code>/sqlserver=np:&lt;servername&gt;\pipe</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>You can optionally specify a specific named pipe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>instance. For example, <code>/sqlserver=np:</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>\hostname\pipe\pipe name</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>By default, the pipe name is <code>sql\query</code>. If you</td>
</tr>
<tr>
<td></td>
<td></td>
<td>connect to a named instance, the pipe name is</td>
</tr>
</tbody>
</table>
|              |                     | typically in the following format: `\<servername>\pipe\`
|              |                     | `MSSQL$<instancename>\SQL\query`                    |
| tcp          | Transmission Control| `/sqlserver=[tcp:]<servername>[:<instancename>[:<port>]]` |
| via          | Virtual Interface Adapter | `/sqlserver=via:<virtualservername>[:<instancename>][:<port>]` |
Attention:
• For tcp protocols only, you have the option of defining a port. If you do not define a port, the default port value is the SQL default port 1433.
• For the via protocol, SQL Server supports this protocol only through SQL Server 2008 R2.
• To enable Data Protection for SQL Server to communicate with AlwaysOn Availability Group (AAG) instances, it is not possible to connect to the SQL Server using AAG listeners. For backup and restore operations, you must use the local SQL Server instance name (or instance name and port number) to communicate with the AAG. For AAG (or non-AAG instances), you can also specify non-default port numbers.

If you do not specify a protocol, Data Protection for SQL Server logs on to the SQL Server according to the first protocol that becomes available.

Considerations:
• The default value is the value that is specified by the SQL Server configurable option in the Data Protection for SQL Server configuration file. This value is initially the local computer name.
• If you specify /SQLSERVER but not sqlservername, the local computer name is used.
• The following two shortcuts are accepted as the local computer name: . (local) That is, a period or the word local within parentheses.
• You must specify the name if the SQL Server is not the default instance or is a member of a failover cluster.
• The format of sqlservername depends on what type of instance it is and whether it is clustered or not:

<table>
<thead>
<tr>
<th>Format</th>
<th>Instance?</th>
<th>Clustered?</th>
<th>Name required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>local-computername</td>
<td>default</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>local-computername\instancename</td>
<td>named</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>virtualservername</td>
<td>default</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>virtualservername\instancename</td>
<td>named</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

local-computername
The network computer name of the computer where the SQL Server and Data Protection for SQL Server is located. The TCP/IP host name might not always be the same.

instancename
The name that is given to the named instance of SQL Server that is specified during installation of the instance.

virtualservername
The name that is given to the clustered SQL Server specified during clustering service setup. This name is not the cluster or node name.

/SQLUSer=sqlusername
The /SQLUSer parameter specifies the name that Data Protection for SQL Server uses to log on to the SQL Server.
Considerations:

- Using this parameter means that you are using SQL Server authentication. The SQL Server and the SQL user ID for this password must both be configured for SQL Server authentication.
- The SQL Server user ID must have the SQL Server SYSADMIN fixed server role.
- If you do not specify /SQLUSer, the default is sa.
- If you specify /SQLUSer, but not sqlusername, the default is also sa.
- This parameter is ignored if you use the /sqlauth=integrated parameter with it.

/STANDby=undofilename

Specifies that the restore is to a standby SQL Server, and specifies the name of an undo file.

Considerations:

- You cannot specify more than one database name as the restore command value.
- A standby SQL Server can be in read-only mode between restores and can accept more restore operations to its databases.
- You can use the same undo file for a database for each restore to the database, but you cannot use a single undo file for more than one database.
- The undofilename variable can include a fully qualified path. However, if a fully qualified path is not specified, the undo file is created in the directory that is specified by the %TEMP% environment variable.
- If undofilename includes spaces, you must enclose it in double quotation marks.
- If the specified undo file does not exist, SQL Server creates it. If the file exists but was not used for the same SQL Server database, SQL Server overwrites it.
- If you do not specify either /recovery or /STANDby, the default is /recovery=yes.

/STOPAT=datetime

For restore operations, /STOPAT specifies the point in time that you restore an SQL Server database to. Only transaction logs that are written before the point in time is applied to the SQL Server database. The datetime variable specifies both the date and time, separated by a space. Use any valid date and time format that is accepted by SQL Server.

Considerations:

- This parameter applies only to transaction log restores, but the base restore that the transaction logs apply to must be a full database restore. You cannot restore file, group, and set restores to a point in time.
- You cannot also specify /recovery=no or /standby with the /STOPAT parameter.
- Because datetime includes a space, you must enclose it in double quotation marks.
- If the restore operation with the /STOPAT parameter does not encounter a transaction in the restored transaction log that has a time stamp equal to or greater than the specified point in time, the SQL Server database remains in an unrecovered state, even if you also specify /recovery=yes.
/STOPATMark=markname [/AFTER=datetime]
The /STOPATMark parameter specifies a named point in time to restore a
database to. You can specify a time after a specified point in time if you
specify the /AFTER option. Only transaction log records written up to and
including the named transaction (which can be found at or after the
specified point in time) are applied to the SQL Server database. The
markname variable specifies the name of an SQL Server transaction. The
SQL Server transaction might be a local transaction or a distributed
transaction. If it is a distributed transaction name, the named mark exists
in the transaction log of each SQL Server database in the distributed
transaction.

markname is the transaction name, not the description that follows the
MARK keyword in an SQL BEGIN TRANSACTION or BEGIN DISTRIBUTED
TRANSACTION statement. The datetime variable specifies both the date and
time, separated by a space. Use any valid date and time format that is
accepted by SQL Server.

Considerations:
• This parameter applies only to transaction log restores. The base restore
  that the transaction logs apply to must be a full database restore. You
cannot restore file, group, and set restores to a mark.
• You can use the same named mark for several SQL Server transactions.
• If you do not specify /AFTER, the restore stops at the first mark it
  encounters with the specified name.
• If you specify /AFTER, the restore stops at the first mark it encounters
  with the specified name after the specified date and time.
• If markname includes spaces, you must enclose it in double quotation
  marks.
• You cannot use a Data Protection for SQL Server restore command with
  /STOPATMark and also specify /recovery=no or /standby.
• If the restore operation with /STOPATMark does not encounter a
  transaction in the restored transaction log to stop at, the SQL Server
database remains in an unrecovered state, even if you also specify
/recovery=yes.

/STOPBEFOREMark=markname [/AFTER=datatime]
This parameter specifies a named point in time to restore a database to.
You can specify a later point in time if you specify the /AFTER option. Only
transaction log records written before and not including the named
transaction (which can be found at or after the specified point in time) are
applied to the SQL Server database. The markname variable specifies the
name of an SQL Server transaction. The SQL Server transaction might be a
local transaction or a distributed transaction. If it is a distributed
transaction name, the named mark exists in the transaction log of each
SQL Server database in the distributed transaction.

markname is the transaction name, not the description that follows the
MARK keyword in an SQL BEGIN TRANSACTION or BEGIN DISTRIBUTED
TRANSACTION statement. The datetime variable specifies both the date and
time, separated by a space. Use any valid date and time format that is
accepted by SQL Server.

Considerations:
This parameter applies only to transaction log restores. The base restore that the transaction logs apply to must be a full database restore. You cannot restore file, group, and set restores to a mark.

You can use the same named mark for several SQL Server transactions.

If you do not specify /AFTER, the restore stops before the first mark it encounters with the specified name.

If you specify /AFTER, the restore stops before the first mark it encounters with the specified name, or after the specified date and time.

If markname includes spaces, you must enclose it in double quotation marks.

You cannot use a Data Protection for SQL Server restore command with /STOPBEFOREMark and also specify /recovery=no or /standby.

If the restore operation with /STOPBEFOREMark does not encounter a transaction in the restored transaction log to stop before, the SQL Server database remains in an unrecovered state, even if you also specify /recovery=yes.

/STRIPes=numstripes
The /STRIPes parameter specifies the number of data stripes to use in a backup or restore operation. The numstripes variable can range from 1 to 64.

Considerations:

If you do not specify /STRIPes, the default value is that specified in the Data Protection for SQL Server configuration file. The initial value is 1. For restore, the value is the same value that is used in the backup operation.

If you specify /STRIPes but not numstripes, the stored value is used.

Restore must use the same number of stripes as were used for backup. You can determine the number of data stripes that are used to create a backup object with the Data Protection for SQL Server command: query tsm dbname backup_object

You must use the MAXNUMMP parameter on an IBM Spectrum Protect REGISTER NODE or UPDATE NODE command to allow a node to use multiple sessions to store data on removable media (which requires you to allocate multiple mount points to that node). The MAXNUMMP value must be equal to or greater than the maximum number of stripes that you require.

When you use data striping, you must use IBM Spectrum Protect server file space collocation to try to keep each stripe on a different storage volume.

The maximum number of data stripes you can use is one less than the value of theIBM Spectrum Protect server TXNGROUPMAX option in the dsmserv.opt file. SQL Server allows a maximum of 64 data stripes.

/TSMNode=tsmnodename
The /tsmnode parameter specifies the IBM Spectrum Protect node name that Data Protection for SQL Server uses to log on to the IBM Spectrum Protect server. This parameter identifies which IBM Spectrum Protect client is requesting services. You can also store the node name in the options file. The command-line parameter overrides the value in the options file.

Considerations:

You cannot use the /TSMNode parameter if PASSWORDACCESS GENERATE is specified in the IBM Spectrum Protect options file. You must specify the
node name in the options file. Otherwise, you can change PASSWORDACCESS to PROMPT to use the /TSMNODE parameter. For
more information about the IBM Spectrum Protect options file, see Creating and modifying the client system-options file. If
you do not specify /TSMNODE, the default value is that specified by the
node name option in the IBM Spectrum Protect options file. Specifying
this parameter does not change the value in the options file.

[TSMOPTFile=tsmoptfilename]

The /TSMOPTFile parameter specifies the IBM Spectrum Protect options file
to use. This operation is similar to selecting an IBM Spectrum Protect
server from the server list in the GUI.

The IBM Spectrum Protect options file contains the configuration values for
the IBM Spectrum Protect API. For more information about the IBM
Spectrum Protect options file, see Creating and modifying the client
system-options file. Considerations:

- The tsmoptfilename variable can include a fully qualified path. If you do
  not include a path, the directory where Data Protection for SQL Server is
  installed is used.
- If tsmoptfilename includes spaces, you must enclose it in double quotation
  marks.
- If you do not specify /TSMOPTFile, the default value is dsm.opt.
- If you specify /TSMOPTFile but not tsmoptfilename, the default is also
dsm.opt.

[TSMPassword=tsmpasswordname]

The /TSMPassword parameter specifies the IBM Spectrum Protect password
that Data Protection for SQL Server uses to log on to the IBM Spectrum
Protect server. This parameter and the option PASSWORDACCESS in the
IBM Spectrum Protect options file interact in the following ways:

<table>
<thead>
<tr>
<th>/TSMPassword</th>
<th>PASSWORDACCESS in IBM Spectrum Protect options file</th>
<th>Password already stored in registry?</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>specified</td>
<td>generate</td>
<td>yes</td>
<td>/TSMPassword ignored</td>
</tr>
<tr>
<td>specified</td>
<td>generate</td>
<td>no</td>
<td>/TSMPassword used and stored</td>
</tr>
<tr>
<td>specified</td>
<td>prompt</td>
<td>—</td>
<td>/TSMPassword used</td>
</tr>
<tr>
<td>not specified</td>
<td>prompt</td>
<td>—</td>
<td>user is prompted</td>
</tr>
</tbody>
</table>

[VerifyOnly]

The /VerifyOnly parameter specifies that a database restore action reads
backup data to verify the integrity of the data only; it does not save the
backup to disk or overwrite the current database of that name on the SQL
server. Before you restore a backup, you can use this parameter to evaluate
whether the backup volume is complete and can be read.

If this parameter is not specified, the restore action both verifies the
integrity of the backup and also saves the backup to disk on the SQL
server.
Restriction: The /VerifyOnly parameter is available only for legacy database backups. This parameter is only a command optional parameter, and it cannot be set as a configuration option.

To verify a backup done with multiple stripes, set the Verify Only parameter to Yes and ensure that the number of stripes that are used for the restore is equal to or greater than the number of stripes that are used for the backup you are verifying. If it is not, the Restore VerifyOnly operation terminates with an error.

Related reference:
“Set command” on page 278

Legacy restore output examples
These output examples provide a sample of the text, messages, and process status that displays when using the restore command.

Legacy Restore 2–Differential

Legacy Restore 2 displays restoring a differential backup object of database Test1 into database Test2. Note that the Test2 database must already exist for the restore to be successful.

Command:
```
tdpsqlc restore Test1 diff /into=Test2
```

Output:
Legacy Restore 3–Group

Legacy Restore 3 displays restoring a filegroup backup object named Group1 to database Test1.

Command:

```
tdpsqlc restore Test1 group=Group1
```

Output:

```
IBM Spectrum Protect for Databases
Data Protection for Microsoft SQL Server
Version 8, Release 1, Level 0
All rights reserved.

Starting Sql database restore...

Querying IBM Spectrum Protect server for a list of database backups, please wait...

Beginning difffull restore of backup object Test1, 1 of 1, to database Test2
Full: 0 Read: 478720 Written: 478720 Rate: 40.62 Kb/Sec
Restore of Test1 completed successfully.

Total database backups inspected: 1
Total database backups requested for restore: 1
Total database backups restored: 1
Total database skipped: 0
Throughput rate: 40.61 Kb/Sec
Total bytes transferred: 478720
LanFree bytes transferred: 0
Elapsed processing time: 11.51 Secs
```
Legacy Restore 4–Set

Legacy Restore 4 displays restoring all active set backup objects to database Test1.

**Command:**

tdpqlc restore Test1 set=*  

**Output:**

```
IBM IBM Spectrum Protect for Databases
Data Protection for Microsoft SQL Server
Version 8, Release 1, Level 0
All rights reserved.
Starting Sql database restore...
Querying IBM Spectrum Protect server for a list of database backups,
please wait...
Restoring meta data ...
Beginning set restore of backup object Test1\20120718141546\00000700,
1 of 1, to database Test1
Full: 0 Read: 88489472 Written: 88489472 Rate: 8,125.58 Kb/Sec
Restore of Test1\20120718141546\00000700 completed successfully.
Total database backups inspected: 1
Total database backups requested for restore: 1
Total database backups restored: 1
Total database skipped: 0
Throughput rate: 8,122.52 Kb/Sec
Total bytes transferred: 88,489,472
LanFree bytes transferred: 0
Elapsed processing time: 10.64 Secs
```
Legacy Restore 6–Log (named mark)

Legacy Restore 6 displays restoring all active log backup objects to database Testmark to a named point in time. The first mark with the specified name, mark2, is encountered in the third log backup object applied to the restore. The restore stops once this mark is encountered.

**Command:**
```
tdpsqlc restore Testmark log=* /stopatmark=mark2
```

**Output:**
Legacy Restore 7–Log (inactive object)

Legacy Restore 7 begins with a query to display both active and inactive log backup objects for database Test1.

Command:
```
tdpsqlc q tsm netapp_db2 log=* /all
```

Output:
Connecting to TSM Server as node 'STRINGVM1_SQL'...

Backup Object Information
---------------------------------
SQL Server Name .................... STRINGVM1\STRINGVM1
SQL Database Name .................... netapp_db2
Backup Method ....................... Lgcy
Backup Object Type ................... Log
Backup Object State ................... Active
Backup Creation Date / Time .......... 09/27/2012 08:36:28
Backup Size ......................... 82.50 KB
SQL Compressed ...................... No
Backup Compressed .................... No
Backup Encryption Type ............... None
Backup Client-deduplicated .......... No
Database Object Name ................. 20120927083628\00001AAC
Number of stripes in backup object .... 1
Assigned Management Class .......... DEFAULT

The restore operation for Legacy Restore 7 applies a specifically named inactive log backup object of database Test1 to the restore. Since an inactive log backup object is being requested, the /object parameter must be used on the restore command.

Command:
   tdpsqlc restore Test1 log=* /object=20120622135511\00000700

Output:

IBM Spectrum Protect for Databases
Data Protection for Microsoft SQL Server
Version 8, Release 1, Level 0
All rights reserved.

Starting Sql database restore...

Querying IBM Spectrum Protect server for a list of database backups, please wait...

Beginning log restore of backup object Test1\20120622135511\00000700,1 of 1, to database Test1
Full: 0  Read: 214528  Written: 214528  Rate: 29.47 Kb/Sec
Restore of Test1\20120622135511\00000700 completed successfully.

Total database backups inspected: 1
Total database backups requested for restore: 1
Total database backups restored: 1
Total database backups skipped: 0

Throughput rate: 29.46 Kb/Sec
Total bytes transferred: 214,528
LanFree bytes transferred: 0
Elapsed processing time: 7.11 Secs

Legacy Restore 8–Full (partial)

Legacy Restore 8 displays restoring part of a full backup object, filegroup Group1, to database Test1.
Legacy Restore 9—Full (relocate)

Legacy Restore 9 displays restoring a full backup object of database Test1, specifically relocating logical file File1Group1 to a new physical location.

Command:

tdpsqlc restore Test1 full /relocate=File1Group1
/to=e:\sqldata\File1Group1.NDF

Output:
VSS restore output examples

These output examples provide a sample of the text, messages, and process status that displays when using the `restore` command.

**VSS restore from IBM Spectrum Protect server**

Restore database `msdb` from IBM Spectrum Protect server storage using the optional parameters, `/backupdestination` and `/backupmethod`.

**Command:**

tdpqlc restore msdb full /backupdestination=tsm /backupmethod=vss

**Output:**

IBM Tivoli Storage Manager for Databases:
Data Protection for Microsoft SQL Server
Version 7, Release 1, Level 3.0
(C) Copyright IBM Corporation 1998, 2015.
All rights reserved.

Connecting to SQL Server, please wait...

Querying TSM Server for Backups ....

Starting Sql database restore...

Beginning VSS restore of 'msdb'...

Files Examined/Completed/Failed: [ 2 / 2 / 0 ]  Total Bytes: 8062302

VSS Restore operation completed with rc = 0
Files Examined : 2
Files Completed : 2
Files Failed : 0
Total Bytes : 8062302
Total LanFree Bytes : 0

Completed
VSS restore from local

Restore database DEMODB from local shadow volumes using the new optional parameters, /backupdestination and /backupmethod.

Command:

tdpsqlc restore DEMODB full /backupdestination=local
    /backupmethod=vss /instantrestore=no

Output:

IBM Tivoli Storage Manager for Databases:
Data Protection for Microsoft SQL Server
Version 7, Release 1, Level 3.0
(C) Copyright IBM Corporation 1998, 2015.
All rights reserved.

Connecting to SQL Server, please wait...

Querying TSM Server for Backups ....

Starting Sql database restore...

Beginning VSS restore of 'DEMODB'...

Files Examined/Completed/Failed: [ 2 / 2 / 0 ] Total Bytes: 5243190

VSS Restore operation completed with rc = 0
Files Examined: 2
Files Completed: 2
Files Failed: 0
Total Bytes: 5243190
Total LanFree Bytes: 0

VSS restore: Instant restore from local

Use instant restore to restore database testdb2 from local shadow volumes using the new /instantrestore parameter.

Command:

tdpsqlc restore testdb2 /backupmethod=vss
    /backupdest=local /instantrestore=yes

Output:
VSS restore: Relocate directory

Restore and relocates database svtdb from IBM Spectrum Protect server storage to directory m:\svtdb using the new optional parameter, /relocatedir. All SQL logs and full-text index files associated with database svtdb are also restored and relocated.

**Command:**

tdpsqlc restore svtdb full /relocatedir=m:\svtdb /backupdestination=tsm /backupmethod=vss

**Output:**
Connecting to SQL Server, please wait...

Querying TSM Server for Backups ....

Starting Sql database restore...

Beginning VSS restore of 'svtdb'...

Preparing for restore of 'svtdb' from TSM backup.

Files Examined/Completed/Failed: [ 5 / 5 / 0 ]  Total Bytes: 418328259

VSS Restore operation completed with rc = 0
Files Examined : 5
Files Completed : 5
Files Failed : 0
Total Bytes : 418328259
Total LanFree Bytes : 0

To restore and relocate the database svtdb, its logs, and its full-text index files into their own respective locations, the following command is issued:

tdpsqlc restore svtdb full /relocatedir=m:\svtdb,e:\svtdb,f:\svtdb /backupdestination=tsm /backupmethod=vss

The /relocatedir values in this command are as follows:
- m:\svtdb: The directory where only the svtdb database is relocated.
- e:\svtdb: The directory where only the svtdb logs are relocated.
- f:\svtdb: The directory where only the svtdb full-text index files are relocated.

**Restorefiles command**

Use the `restorefiles` command to restore VSS-based backups on the IBM Spectrum Protect server (/BACKUPDESTINATION=TSN), or stored locally (/BACKUPDESTINATION=LOCAL).

Consider the following information before using the `restorefiles` command.
- The `restorefiles` command restores .mdf, .ldf, and other flat files from a specified Data Protection for SQL Server, VSS-based backup into a specified directory.
- A destination directory can be specified as a directory on a fixed file system (for example C:\temp), or on a network share (for example \server\dest) that is accessible to the IBM Spectrum Protect server Remote Agent (VSS Requestor). It is not possible to use a mapped network drive as a destination directory.
- The `restorefiles` command does not restore the data to the SQL Server.
- This command does not require the SQL Server to be installed on the machine where the `restorefiles` command is run. Files can be restored to another machine or directory on the same machine as the SQL Server.
- A restore continues until it completed, unless the destination volume does not have enough space to fulfill the restore operation.
- VSS-based backups that are located on the IBM Spectrum Protect server (/BACKUPDESTINATION=TSM) can be restored by using **restorefiles** on the same machine that performed the VSS-based backup, or by running the command on a machine that has the Data Protection for SQL Server client installed and configured for VSS operations.

- The directory specified in the **restorefiles** command has the VSS component name appended so that multiple databases can be restored to the same target directory.

- VSS-based backups that are stored on the local machine by using a persistent snapshot (/BACKUPDESTINATION=LOCAL), can be restored only by running the **restorefiles** command on the same machine that performed the VSS-based backup, and has access to the persistent snapshot.

- To run a full restore: `tdpsqlc restorefiles DB1 FULL relocatedir=d:\temprestore`

- Use `/RELOCATEDIR` to restore a database that exists to a different directory, even if your backup contains files that are located in different directories. Run the **restorefiles** command and specify just one restore destination directory. For example, issue `restorefiles db1 full /relocatedir=d:\temp` to place the files into the `d:\temp\db1\*` directory.

- If you are in a non-clustered environment, you can restore only a local snapshot to the machine that generated the snapshot.

- If you are in a clustered environment, you can run a **restorefiles** command from any of the machines in the cluster.

**Restorefiles syntax**

Use the **restorefiles** command syntax diagram as a reference for available options and truncation requirements.

**TDPSQLC command**
The syntax diagrams of the backup object type contain options corresponding to the letters A, B, C, D, E, F. Follow the Optional Parameters for the `restorefiles` command.

**Restorefiles positional parameters**

Positional parameters immediately follow the `restorefiles` command and precede the optional parameters.

The following positional parameters specify the object to restore:

```
 tdpsqlc restorefiles
 * |componentname1, ..., componentnameN
```

* Sequentially restore all flat files for the database.

The following positional parameters specify the type of backup from which the files are restored:

```
 FULL Restore the files from a Full type backup for VSS.
```

**Restorefiles optional parameters**

Optional parameters for the Data Protection for SQL Server `restorefiles` command and optional parameters.

```
 /BACKUPDESTINATION
 VSS backups that are located on the IBM Spectrum Protect server are restored using the `restorefiles` command with
 /BACKUPDESTINATION=TSM. VSS backups that are running on a local machine using a persistent snapshot are restored using the `restorefiles` command with /BACKUPDESTINATION=LOCAL. TSM is the default destination for `restorefiles`.

 /CONFIGfile=configfilename
 Use the `/configfile` parameter to specify the name of the Data Protection
for SQL Server configuration file that contains the values for the Data Protection for SQL Server configuration options.

The `configfilename` variable can include a fully qualified path. If the `configfilename` variable does not include a path, the Data Protection for SQL Server installation directory is used. If the `/configfile` parameter is not specified, or if the `configfilename` variable is not specified, the default value is `tdpsql.cfg`.

If the `configfilename` variable includes spaces, enclose the entire `/configfile` parameter entry in double quotation marks. For example:

```
/CONFIGfile="c:\Program Files\file.cfg"
```

/FROMSQLserver=servername

Use the `/fromsqlserver` parameter to specify the name of the SQL Server where the original backup was performed. The default is the local SQL Server name.

/LOGFile=logfile

Use the `/logfile` parameter to specify the name of the activity log file that is generated by Data Protection for SQL Server.

The `logfile` variable identifies the name of the activity log file.

If the specified log file does not exist, a new log file is created. If the specified log file exists, new log entries are appended to the file. The `logfile` variable can include a fully-qualified path. However, if no path is specified, the log file is written to the Data Protection for SQL Server installation directory.

If the `logfile` variable includes spaces, enclose the entire `/logfile` parameter entry in double quotation marks. For example:

```
/LOGFile="c:\Program Files\mytdpsqlserver.log"
```

If the `/logfile` parameter is not specified, log records are written to the default log file, `tdpsqlserver.log`.

The `/logfile` parameter cannot be turned off, logging always occurs.

When using multiple simultaneous instances of Data Protection for SQL Server to perform operations, use the `/logfile` parameter to specify a different log file for each instance used. This directs logging for each instance to a different log file and prevents interspersed log file records. Failure to specify a different log file for each instance can result in unreadable log files.

/LOGPrune=numdays|No

Use the `/logprune` parameter to disable log pruning or to explicitly request that the log be pruned for one command run. By default, log pruning is enabled and performed once per day. The `numdays` variable represents the number of days to save log entries. By default, 60 days of log entries are saved in the pruning process. You can use Microsoft Management Console (MMC) or the `set` command to change the defaults so that log pruning is disabled, or so that more or less days of log entries are saved. If you use the command line, you can use the `/logprune` parameter to override these defaults. When the value of the `/logprune` variable `numdays` is a number in the range 0 to 9999, the log is pruned even if log pruning has already been performed for the day.

Changes to the value of the `timeformat` or `dateformat` parameter can result in the log file being pruned unintentionally. If the value of the `timeformat` or `dateformat` parameter has changed, prior to issuing a Data Protection
for SQL Server command that might prune the log file, perform one of the following actions to prevent the log file from being pruned:

- Make a copy of the existing log file.
- Specify a new log file with the /logfile parameter or logfile setting.

/MOUNTWait=Yes|No
This parameter is not valid for all backup types; does not work with DIFFFULL or LOG backup types. The /mountwait parameter is used to specify whether Data Protection for SQL Server should wait for removable media to mount (such as tapes or CDs) or to stop the current operation. This situation occurs when the IBM Spectrum Protect server is configured to store backup data on removable media and waits for a required storage volume to be mounted.

You can specify:

Yes Wait for tape mounts. This is the default.
No Do not wait for tape mounts.

/OBJect=object name
Use the /object parameter to specify the name of the backup object files that you want to restore. The object name uniquely identifies each backup object and is created by Data Protection for SQL Server.

Use the Data Protection for SQL Server query tsm * command to view the names of the backup objects.

/ Quiet
This parameter prevents status information from being displayed. This does not affect the level of information written to the activity log.

/RELOCATEDir=dbfiledir [logfiledir [, otherfiledir | , filestream files]]

The /relocatedir parameter specifies the destination locations in which to restore the flat files. This includes databases, logs, and FILESTREAM files. It is not possible to use a mapped network drive as a destination directory.

The dbfiledir variable specifies the directory location of the SQL Server database you want to relocate. Note that if the logfiledir or otherfiledir variables are not specified, the logs and SQL Server full-text index files are restored to the directory specified by dbfiledir.

The logfiledir variable specifies the directory location of the SQL Server log files you want to relocate. Note that if the logfiledir variable is not specified, the SQL Server log files are restored to the directory specified by dbfiledir.

The otherfiledir variable specifies the directory location of the SQL Server full-text index files you want to relocate. Note that if the otherfiledir variable is not specified, the SQL Server full-text index files are restored to the directory specified by dbfiledir. The restorefiles operation creates a subdirectory under the root directory that contains the name of the database name. Restored files are placed in that subdirectory. If the /relocatedir parameter is not specified, the files will be restored into the directory where the restorefiles command is issued. For example, if Data Protection for SQL Server is installed in the c:\Program Files\Tivoli\TSM\TDPSQLC directory and the following command is issued from E:\Somedir:

e:\Somedir> c:\"Program Files"\Tivoli\TSM\TDPSQLC\tdpsqlc restorefiles db1 full

Then, the files are restored to the subdirectories in the e:\Somedir location:
e:\Somedir\db1\db1.mdf
e:\Somedir\db1\db1.ldf

/TSMNODE=tsmnodename
Use the tsmnodename variable to refer to the IBM Spectrum Protect node name that Data Protection for SQL Server uses to log on to the IBM Spectrum Protect server.

You can store the node name in the IBM Spectrum Protect options file (dsm.opt). This parameter overrides the value in the IBM Spectrum Protect options file if PASSWORDACCESS is set to PROMPT. This parameter is not valid when PASSWORDACCESS is set to GENERATE in the options file.

/TSMOPTFile=tsmoptfilename
Use the tsmoptfilename variable to identify the Data Protection for SQL Server options file.

The file name can include a fully qualified path name. If no path is specified, the directory where Data Protection for SQL Server is installed is searched.

If the tsmoptfilename variable includes spaces, enclose the entire /tsmoptfile parameter entry in double quotation marks. For example:
/TSMOPTFile="c:\Program Files\file.opt"

The default is dsm.opt.

/TSMPassword=tsmpassword
Use the tsmpassword variable to refer to the IBM Spectrum Protect password that Data Protection for SQL Server uses to log on to the IBM Spectrum Protect server.

If you specified PASSWORDACCESS GENERATE in the Data Protection for SQL Server options file (dsm.opt), you do not need to supply the password here because the one that is stored in the registry is used. However, to store the password in the registry, you must specify the IBM Spectrum Protect password the first time Data Protection for SQL Server connects to the IBM Spectrum Protect server.

If you do specify a password with this parameter when PASSWORDACCESS GENERATE is in effect, the command-line value is ignored unless the password for this node has not yet been stored in the registry. In that case, the specified password is stored in the registry and used when you run this command.

If PASSWORDACCESS PROMPT is in effect, and you do not specify a password value on the command line, then you are prompted for a password.

The IBM Spectrum Protect password that Data Protection for SQL Server uses to log on to the IBM Spectrum Protect server can be up to 63 characters in length.
Restorefiles examples

This output example provides a sample of the text, messages, and process status that displays when using the `restorefiles` command.

This command, `tdpsqlc restorefiles Finance FULL /backupdestination=local /RELOCEATEDir=e:\test/FROMSQLServer=sqlsrv12`, restores VSS files from a FULL type backup of the `Finance` database from the SQL Server named `sqlsrv12` into the `e:\test` directory. The restored files are:

```
e:\test\Finance\finance.mdf
e:\test\Finance\finance_log.ldf
```

Set command

Use the `set` command to change the values for the Data Protection for SQL Server configurable parameters and options.

The values are saved in a configuration file. The default file is `tdpsql.cfg`. Configuration values can also be set in the Data Protection Properties window in the GUI.

If a configuration file is not specified, the values in the `tdpsql.cfg` are used, and a default configuration file is created with only the `lastprunedate` value. If an invalid or non-existent file is specified, the default values are used.

Set syntax

Use the `set` command syntax diagrams as a reference to view available options and truncation requirements.

TDPSQLC command
Set Optional Parameters

```
/TDPSQLC—Set

ALWAYSONNode=nodename

BACKUPDESTINATION=
  - TSM
  - LOCAL
  - BOTH

BACKUPMETHOD=
  - LEGACY
  - VSS

BUFFers=numbuffers

BUFFERSize=buffersizeinkb

DATEformat=dateformatnum

DIFFESTime=percent

FROMSQLserver=fromsqlserver

IMPORTVSSSNAPSHOTONLYWhenneeded=Yes
  No

LOCALDSMAGENTNODE=nodename

LOGFile=logfilename

LOGPrune=numdays
  - No

NUMBERformat=numberformatnum
  - No

MOUNTRW=Yes
  No

MOUNTWaitfordata=Yes
  No

REMOTEAGENTSERVER=nodename

SQLAUTHentication=INTEGRATED
  SQLuserid

SQLBUFFers=numsqlbuffers

SQLBUFFERSize=sqlbuffersizeinkb
  - No

SQLCHECKSum=Yes
  No

SQLCOMPression=Yes
  No

SQLSERVER=sqlprotocol:sqlservername

STRIPes=numstripes

TIMEformat=timeformatnum

USESNAPOFASNAPSHOTMount=Yes
  No

/CONFIGfile=tdpsql.cfg

=CONFIGfilename
```
Set positional parameters

Positional parameters immediately follow the `set` command and precede the optional parameters.

To set default values in the Data Protection for SQL Server configuration file, specify one of the following when you issue a `set` command.

ALWAYSONNode=`nodename`

Specify the IBM Spectrum Protect node name that is used to back up AlwaysOn availability databases with SQL Server 2012 and later versions. This parameter is required when you are configuring Data Protection for SQL Server with SQL Server 2012 and later versions. All availability databases in an availability group are backed up under this node name, regardless of which availability replica they are from. The databases that are not in an availability group are backed up under the standard Data Protection for SQL Server node name unless you specify the `/USEALWAYSONnode` parameter.

BACKUPDESTination=`TSM|LOCAL|BOTH`

Use the `BACKUPDESTination` positional parameter to specify the storage location for your backup. You can specify:

- **TSM** By default, the backup is stored on IBM Spectrum Protect server storage only.
- **LOCAL** The backup is stored on local shadow volumes only.
- **BOTH** The backup is stored on both IBM Spectrum Protect server storage and local shadow volumes.

BACKUPMETHod=`LEGACY|VSS`

Use the `BACKUPMETHod` positional parameter to specify the method for your backup. You can specify:

- **LEGACY** By default, Data Protection for SQL Server uses the legacy API to complete the backup.
- **VSS** Data Protection for SQL Server uses VSS to complete the backup.

BUFFers=`numbuffers`

The `BUFFers` parameter specifies the number of data buffers that are used for each data stripe to transfer data between Data Protection for SQL Server and the IBM Spectrum Protect API. You can improve throughput by increasing the number of buffers, but you also increase storage use. Each buffer is the size that is specified by the `BUFFERSIze` parameter. The `numbuffers` variable refers to the number of data buffers to use. The number can be in the range 2 - 8. The initial value is 3.

BUFFERSIze=`buffersizeinkb`

The `BUFFERSIze` parameter specifies the size of each Data Protection for SQL Server buffer that is specified by the `BUFFers` parameter. The `buffersizeinkb` variable refers to the size of data buffers in KB. The number can be in the range 64 - 8192. The default is initially 1024.

DATEformat=`dateformatnum`

The `DATEformat` parameter selects the format that you want to use to display dates.

The `dateformatnum` variable can be in the range 1 - 7. The initial value is 1. The number values specify the following formats:

1 MM/DD/YYYY.
Changes to the value of the **DATE**format parameter can result in an undesired pruning of the Data Protection for SQL Server log file (tdpsql.log by default). You can avoid losing existing log file data by completing one of the following steps:

- After you change the value of the **DATE**format parameter, make a copy of the existing log file before you run Data Protection for SQL Server.
- Specify a new log file with the **LOGFile** parameter.

DIFFESTimate=numpercent

For differential database backups by using the Data Protection for SQL Server **backup** command, **DIFFESTimate** specifies the estimated fraction of an entire SQL Server database that changed since its last full database backup. This estimate is needed because SQL Server does not provide a way to determine the size of a differential backup, and because the IBM Spectrum Protect server requires an accurate size estimate to efficiently allocate space and place objects. The IBM Spectrum Protect server uses this value to determine whether enough space exists in the primary storage pool to contain the SQL Server database backup. Because a separate backup object is created for each specified SQL Server database, this estimate applies to each specified SQL Server database individually. The **numpercent** variable can be in the range 1 - 99. Because a differential backup backs up database pages, this number is the percent of database pages that changed since the last full database backup. The initial value is 20.

Considerations:

- If the estimate is smaller than the actual quantity of changes, the IBM Spectrum Protect server might be forced to abnormally end the backup because the backup size is larger than the space the IBM Spectrum Protect server allocated for it.
- If the estimate is larger than the actual quantity of changes, the server might be forced to place the backup object higher in the storage pool hierarchy than otherwise necessary, possibly on removable media.

FROMSQLSERVER=sqlservername

The **FROMSQLSERVER** parameter specifies the SQL Server that backup objects were backed up from. This parameter is necessary only when the name of the SQL Server to restore to, as determined by the **sqlserver** parameter, is different from the name of the SQL Server that the backup objects were created from. Use **FROMSQLSERVER** for query TSM and inactivate commands, but use **sqlserver** for query SQL commands. The default value is the **sqlserver** value or the value set in the Data Protection for SQL Server configuration file.

IMPORTVSSSNAPSHOTSONLYWhenneeded

Use the **IMPORTVSSSNAPSHOTSONLYWhenneeded** parameter to specify whether
Data Protection for SQL Server automatically imports VSS snapshots to the Windows system where the snapshots are created.

Specify one of the following values:

Yes Import VSS snapshots to the Windows system where the snapshots are created. The option is the default. During backup processing, transportable snapshots are automatically created and imported to storage systems when the snapshots are required. This option is the default.

No Do not create transportable VSS snapshots during backup processing, and do not automatically import the snapshot to storage systems after the backup is completed.

LOGPrune=numdays | No

When you prune log data, you can discard some of the generated logs according to detailed filtering criteria that you set. In the configuration file, the default value for the **LOGPrune** is that specified by the **logprune** configurable option. The default value is 60, which means 60 days of log entries are saved. The option **No** can be specified to disable log pruning.

Regardless of the option that is set in the configuration file for this parameter, you can explicitly request log pruning at any time.

Considerations:

- For **numdays**, the range is 0 to 9999. A value of 0 deletes all entries in the activity log file except for the current command entries.
- If you specify the **LOGPrune** parameter, that value is used instead of the value that is stored in the configuration file. Specifying this parameter does not change the value in the configuration file.
- You can specify **LOGPrune** without specifying **numdays** or **no**; in this case, the default value, 60, is used.
- Changes to the value of the **TIMEformat** or **DATEformat** parameter can result in an unwanted pruning of the log file. If you are running a command that might prune the log file, and the value of the **TIMEformat** or **DATEformat** parameter is changed, complete one of the following to prevent unintentional pruning of the log file:
 - Make a copy of the existing log file.
 - Specify a new log file with the **LOGFile** parameter or **logfile** setting.

/MOUNTRW=Yes|No

You can mount a read/write copy of your IBM Spectrum Protect backup so that you can modify the copy without invalidating the backup. You use this option to indicate whether a snapshot backup is mounted as read/write. The default value is as specified in the configuration file with the **/MOUNTRW** parameter. If a default value is not specified in the configuration file, the default value is **No**. By specifying the **/MOUNTRW** option, you override the default value.

The following values are available:

No Perform a read-only mount operation.

Yes Perform a read/write mount operation. The behavior of the read/write mount is controlled by the **USESNAPOFASNAPTOMount** parameter in the configuration file.
If \texttt{USESNAPOFASNAPTONMount} is set to \texttt{No}, you can mount only \texttt{COPYFULL} backups as read/write. After mounting, the original backup is modified and can no longer be used as a restore point in future database restore operations (on the \texttt{VSS Options} properties page, the \texttt{Mount read/write (modifies backup, applies to COPY backups only)} check box is selected).

If \texttt{USESNAPOFASNAPTONMount} is set to \texttt{Yes}, you can mount both \texttt{FULL} and \texttt{COPYFULL} backup types as read/write (on the \texttt{VSS Options} properties page, the \texttt{Mount read/write (without modifying backup)} check box is selected). In this instance, the backups are not modified and can be used in future restore operations.

\textbf{Important:}

This mount option is only available for SAN Volume Controller (SVC) devices and requires IBM System Storage Support for Microsoft Virtual Disk and Volume Shadow Copy Services version 4.12 or later. Dynamic target allocation is not supported. You must allocate more target volumes on your SVC storage device to accommodate the number of concurrent read/write mounts you want to do. An extra target volume, that matches the size of the volume to be mounted, is needed for each concurrent read/write mount of that volume. Also,

\texttt{USESNAPOFASNAPTONMount}=\texttt{Yes} | \texttt{No}

During mount operations, you can specify that you want to do a read/write mount by setting $\texttt{/MOUNTRW}=\texttt{Yes}$. When you set the $\texttt{/MOUNTRW}=\texttt{Yes}$, the \texttt{USESNAPOFASNAPTONMount} parameter applies and you can further specify whether you want to mount an existing backup or to create a snapshot of an existing backup. You can only set the \texttt{USESNAPOFASNAPTONMount} parameter in your configuration file.

- If \texttt{USESNAPOFASNAPTONMount} is set to \texttt{No}, the \texttt{Mount read/write (modifies backup, applies to COPYFULL backups only)} check box is selected on the \texttt{VSS Options} properties page. After mounting, the original \texttt{COPYFULL} backup can be modified and so can no longer be used as a restore point for future database restore operations.

- If \texttt{USESNAPOFASNAPTONMount} is set to \texttt{Yes}, the \texttt{Mount read/write (without modifying backup)} check box is selected on the \texttt{VSS Options} properties page. This option is only available for SAN Volume Controller (SVC) devices.

\textbf{Important:} You can set \texttt{USESNAPOFASNAPTONMount}=\texttt{Yes} only for SAN Volume Controller (SVC) devices with IBM System Storage Support for Microsoft Virtual Disk and Volume Shadow Copy Services version 4.12 or later. Also, you must allocate more target volumes on your SVC storage device to accommodate the number of concurrent read/write mounts you want to do. An extra target volume matching the size of the volume to be mounted is needed for each concurrent read/write mount of that volume.
Set optional parameters

Optional parameters follow the `set` command and positional parameters.

`/CONFIGfile=configfilename`

The `/configfile` parameter specifies the name of the Data Protection for SQL Server configuration file, which contains the values for the Data Protection for SQL Server configurable options.

Considerations:
- `configfilename` can include a fully qualified path. If `configfilename` does not include a path, it uses the directory where Data Protection for SQL Server is installed.
- If `configfilename` includes spaces, place it in double quotation marks.
- If you do not specify `/configfile`, the default value is `tdpsql.cfg`.
- If you specify `/configfile` but not `configfilename`, the default value `tdpsql.cfg` is used.

Set output examples

These output examples provide a sample of the text, messages, and process status that displays when using the `set` command.

Example 1

The following example specifies the `STRINGVM1` server as the default SQL Server in the configuration file.

Command:

```
tdpsqlc set sqlserver=STRINGVM1
```

Output:

```
IBM Spectrum Protect for Databases:
Data Protection for Microsoft SQL Server
Version 8, Release 1, Level 0
(C) Copyright IBM Corporation 1997, 2016. All rights reserved.
AC05054I The configuration option was set successfully.
```

Example 2

The following example specifies `c64` as the AlwaysOn node name in the configuration file.

Command:

```
tdpsqlc set alwaysonnode=c64
```

Output:

```
IBM Spectrum Protect for Databases:
Data Protection for Microsoft SQL Server
Version 8, Release 1, Level 0
(C) Copyright IBM Corporation 1997, 2016. All rights reserved.
Connecting to SQL Server, please wait...
AC05054I The configuration option was set successfully.
```

The following statement is added to the `tdpsql.cfg` configuration file:
Unmount Backup command

Use the unmount backup command to unmount backups that have been previously mounted, and are managed by IBM Spectrum Protect Snapshot for SQL Server.

Unmount Backup syntax

Use the unmount backup command syntax diagrams as a reference to view available options and truncation requirements.

TDPSQLC command

```
TDPSQLC UNMOUNT BACKup
```

```
/CONFIGfile=tdpsql.xml
/LOGFile=tdpsql.log

/LOGPrune=numdays

/QUERYNode=ALWAYSON

/REMOtECOMPUTER=computername
/REMOtECOMPUTERUser=user

/REMOtECOMPUTERPassword=passwd
/TSMNoDe=tsmnodename

/TSMOPTFile=dsm.opt
/TSMPassword=tsmpassword
```

Unmount Backup positional parameter

The positional parameter immediately follows the unmount backup command and precedes the optional parameters.

mount points root directory
Unmount Backup optional parameters

Optional parameters follow the `unmount backup` command and positional parameters.

`/CONFIGfile=configfilename`

Use the `/configfile` parameter to specify the name (`configfilename`) of the configuration file that contains the values to use for an `unmount backup` operation.

The `configfilename` variable can include a fully qualified path. If the `configfilename` variable does not include a path, the installation directory is used. If the `/configfile` parameter is not specified, or if the `configfilename` variable is not specified, the default value is `tdpsql.cfg`.

If the `configfilename` variable includes spaces, enclose the entire `/configfile` parameter entry in double quotation marks. For example:

```
/CONFIGfile="c:\Program Files\tdpsql.cfg"
```

`/LOGFile=logfilename`

Use the `/logfile` parameter to specify the name of the activity log file. The `logfilename` variable identifies the name of the activity log file.

If the specified log file does not exist, a new log file is created. If the specified log file exists, new log entries are appended to the file. The `logfilename` variable can include a fully-qualified path. However, if no path is specified, the log file is written to the installation directory.

If the `logfilename` variable includes spaces, enclose the entire `/logfile` parameter entry in double quotation marks. For example:

```
/LOGFile="c:\Program Files\tdpsql.log"
```

If the `/logfile` parameter is not specified, log records are written to the default log file, `tdpsql.log`.

The `/logfile` parameter cannot be turned off, logging always occurs.

`/LOGPrune=numdays | No`

When you prune log data, you can discard some of the generated logs according to detailed filtering criteria that you set. Depending on the option that you set for the `/LOGPrune` parameter, a certain number of days of data are saved. By default, 60 days of log entries are saved. The option `No` can be entered to disable log pruning.

Regardless of the option that you set for this parameter, you can explicitly request log pruning at any time.

Considerations:

- For `numdays`, the range is 0 to 9999. A value of 0 deletes all entries in the activity log file except for the current command entries.
- If you specify `no`, the log file is not pruned.
- If you do not specify `/LOGPrune`, the default value is that specified by the `logprune` configurable option in the configuration file. The default value is 60.
- If you specify `/LOGPrune`, its value is used instead of the value that is stored in the configuration file. Specifying this parameter does not change the value in the configuration file.
- You can specify `/LOGPrune` without specifying `numdays` or `no`; in this case, the default value, 60, is used.
- Changes to the value of the TIMEformat or DATEformat parameter can result in an unwanted pruning of the log file. If you are running a command that might prune the log file, and the value of the TIMEformat or DATEformat parameter is changed, complete one of the following to prevent unintentional pruning of the log file:
 - Make a copy of the existing log file.
 - Specify a new log file with the /LOGFile parameter or logfile setting.

/QUERYNode=DP|ALWAYSON|BOTH
Specify whether you want to query standard databases from SQL Server 2012 and later versions that were backed up from a standard Data Protection for SQL Server node, the AlwaysOn node, or both nodes. This parameter is ignored for availability databases because the availability databases are always backed up under the AlwaysOn node.

/REMOVETEOMPUTER=computername
Enter the IP address or host name for the remote system where you want to unmount the data.

/REMOVETEOMPUTERUser=user
Enter the user name used to log on to the server specified with the REMOTECOMPUTER parameter. If a domain is required to log on with the domain account, enter Domain\User. To log on to the local account, the domain is not required. There is no default value.

/REMOVETEOMPUTERPassword=passwd
Enter the password for the user name specified with the REMOTECOMPUTERUser parameter. There is no default value.

/TSMNODEx=tsmnodename
Use the tsmnodename variable to refer to the IBM Spectrum Protect node name that IBM Spectrum Protect Snapshot uses to log on to the IBM Spectrum Protect server.

You can store the node name in the IBM Spectrum Protect options file (dsm.opt). This parameter overrides the value in the IBM Spectrum Protect options file if PASSWORDACCESS is set to PROMPT. This parameter is not valid when PASSWORDACCESS is set to GENERATE in the options file.

/TSMOPTFile=tsmoptfilename
Use the tsmoptfilename variable to identify the IBM Spectrum Protect options file.

The file name can include a fully qualified path name. If no path is specified, the directory where IBM Spectrum Protect Snapshot is installed is searched.

If the tsmoptfilename variable includes spaces, enclose the entire /TSMOPTFile parameter entry in double quotation marks. For example:
/TSMOPTFile="c:\Program Files\dsm.opt"
The default is dsm.opt.

/TSMPassword=tsmpassword
Use the tsmpassword variable to refer to the IBM Spectrum Protect password that IBM Spectrum Protect Snapshot uses to log on to the IBM Spectrum Protect server.

If you specified PASSWORDACCESS GENERATE in the IBM Spectrum Protect Snapshot options file (dsm.opt), you do not need to supply the
password here because the one that is stored in the registry is used. However, to store the password in the registry, you must specify the IBM Spectrum Protect password the first time IBM Spectrum Protect Snapshot connects to the IBM Spectrum Protect server.

If you do specify a password with this parameter when PASSWORDACCESS GENERATE is in effect, the command-line value is ignored unless the password for this node has not yet been stored in the registry. In that case, the specified password is stored in the registry and used when you run this command.

If PASSWORDACCESS PROMPT is in effect, and you do not specify a password value on the command line, then you are prompted for a password.

The IBM Spectrum Protect password that IBM Spectrum Protect Snapshot uses to log on to the IBM Spectrum Protect server can be up to 63 characters in length.
Appendix A. Frequently asked questions

Review the answers to the following frequently asked questions about Data Protection for SQL Server.

How can I compress my Data Protection for SQL Server backups?
You can use the following methods to compress your Data Protection for SQL Server backups:

- Use the `compression` option to instruct the IBM Spectrum Protect API to compress data before sending it to the IBM Spectrum Protect server. Compression reduces traffic and storage requirements.

Where you specify the `compression` option depends on the backup method that you are using:
- For legacy backups, specify the `compression` option in the Data Protection for SQL Server options file.
- For VSS backups, specify the `compression` option in the backup-archive client options file that is used as the Local DSMAGENT Node. If the environment is configured for VSS offloaded backups, you must also specify the compression option in the backup-archive client options file that is used as the Remote DSMAGENT Node. Review the compression information available in the client documentation before attempting to compress your data.

For more information about the `compression` option, see “Specifying configuration parameters for IBM Spectrum Protect” on page 47.

- You can specify SQL Server backup compression from the SQL Properties windows in Microsoft Management Console (MMC), or you can use the `sqlcompression` option from the command line to set SQL Server native backup compression for Data Protection for SQL Server backups. For more information, see “Enabling SQL Server backup compression” on page 109.

Backup compression is only available with legacy backups. You can run backup compression only on Enterprise Edition. You can run SQL Server 2008 R2 backup compression on Standard, Enterprise, and Datacenter editions. Any edition can restore a compressed backup.

How do I encrypt my Data Protection for SQL Server backups?
Use the `enableclientencryptkey` and `encryptiontype` options to encrypt Microsoft SQL Server databases during backup and restore processing.

Where you specify these options depends on the backup method that you are using:

- For legacy backups, specify these options in the Data Protection for SQL Server options file.
- For VSS backups, specify the encryption options in the backup-archive client options file that is used as the Local DSMAGENT Node. If the environment is configured for VSS offloaded backups, you must also specify the encryption options in the backup-archive client options file that is used as the Remote DSMAGENT Node. Review the encryption information available in the client documentation before attempting to encrypt your databases.
For more information about the `enableclientencryptkey` and `encryptiontype` options, see “Specifying configuration parameters for IBM Spectrum Protect” on page 47.

How do I deduplicate my Data Protection for SQL Server backups?

Use the `deduplication` option to enable client-side data deduplication. Client-side data deduplication is used by the IBM Spectrum Protect API to remove redundant data during backup processing before the data is transferred to the IBM Spectrum Protect server.

Where you specify these options depends on the backup method that you are using:

- For legacy backups, specify the `deduplication` encryption options in the Data Protection for SQL Server options file.
- For VSS backups, specify the `deduplication` option in the backup-archive client options file that is used as the Local DSMAGENT Node. If the environment is configured for VSS offloaded backups, you must also specify the `deduplication` option in the backup-archive client options file that is used as the Remote DSMAGENT Node. Review the deduplication information available in the client documentation before attempting to encrypt your databases.

For more information about the `deduplication` option, see “Specifying configuration parameters for IBM Spectrum Protect” on page 47.

Can I restore an individual table from an SQL Server backup?

Yes, but only for legacy backups. You cannot restore an individual table from a VSS backup. To restore an individual table from a legacy SQL Server backup, place the tables that require individual restore granularity into their own filegroup. Then, use Data Protection for SQL Server to restore a single filegroup from a full backup.

Can I restore an SQL Server database backup to an alternate SQL Server machine or instance?

Yes. You can restore legacy backups and VSS backups directly to an alternate SQL Server machine or instance.

Can I restore VSS backups to alternate locations within the same SQL Server instance?

You can restore VSS backups to alternate locations within the same SQL Server instance as follows:

- Use the `/relocatedir` parameter from the command line.
- Use the Relocate option in the Restore Databases window from the GUI.

Can I restore VSS backups to alternate database names within the same SQL Server instance?

You can restore VSS backups to alternate database names as follows:

- Use the `/into` parameter from the command line.
- Use the Restore Into option in the Restore Databases window from the GUI.

Can I use Data Protection for SQL Server to back up SQL Server databases, logs, and then also shrink the transaction log file?

Modify the command file that is used for scheduled backups with an entry that calls a T-SQL command file that shrinks the transaction log file. For example, in the following command file that is used for scheduled backups:
tdpsqlc backup * full
tdpsqlc backup * log
osql -E -i shrinkjob.sql

The file shrinkjob.sql is a T-SQL command file that shrinks the transaction log file.

Should I create a separate node name in order to create an archive backup of an SQL Server database?
First, use the same node name as the primary SQL Server node but add an extension for the archive node. For example:
Primary: SQLSRV550_SQL
Archive: SQLSRV550_SQL_ARCH

Second, use a separate Data Protection for SQL Server options file (dsmarchive.opt) that contains the archive node with the archive settings that you want. See the following sections for more information about nodes and options:
- “Specifying Data Protection for SQL Server node name parameters” on page 49
- “Specifying configuration parameters for IBM Spectrum Protect” on page 47

Can I perform VSS operations in a clustered SQL Server environment?
Yes, you can run Data Protection for SQL Server VSS operations in a clustered SQL Server environment. For more information, see “Failover clustering and AlwaysOn Availability” on page 2.

How can I perform VSS offloaded backups or manage local snapshots?
Install Data Protection for SQL Server to perform VSS offloaded backups, or to back up and restore local snapshots. For more information, see “Prerequisites” on page 31.

How can I use VSS and legacy backups together in a common backup strategy?
For more information, see “Choosing your backup strategy” on page 93.

Can I use legacy backups and VSS backups together?
Yes, you can apply legacy differential and legacy log backups after a full VSS backup has been restored. In order to do this, you must leave the database in a recovering state by specifying /recovery=no on the command-line interface or by making sure that the Recovery option in the graphical-user interface Restore Databases or Restore Groups/Files is not selected when restoring the VSS backup. With VSS, you can run only full backups. You cannot run log, differential, individual filegroups, individual files, and set backups with VSS. For more information, see “Choosing your backup strategy” on page 93.

When restoring very large SQL Server databases, how can I prevent the restore operation from failing due to a timeout error?
SQL Server rebuilds and formats new physical files into which the backup data is restored. Because this process can continue for more than an hour for large databases, the IBM Spectrum Protect session might timeout and cause the restore process to fail. To prevent such a failure, set the value of the IBM Spectrum Protect COMMTIMEOUT option to 3600 or higher. Set the value to 10000 or higher for databases larger than 100 GB. For a LANFREE restore operation, increase the value of both the COMMTIMEOUT and IDLETIMEOUT options for the Storage Agent.
How does VSS instant restore operations work?

In a VSS instant restore operation, a volume-level hardware-assisted copy that includes target volumes (that contain the snapshot) are copied back to the original source volumes. A SAN Volume Controller, Storwize family, XIV, or IBM System Storage DS8000 series storage system is required to complete VSS instant restore operations. For more information, see “VSS instant restore processing” on page 29.

Now that I am performing VSS operations, why are there so many active backups?

IBM Spectrum Protect policy manages VSS backups that are located on local shadow volumes and on IBM Spectrum Protect server storage. With this feature, you can use different policies that can lead to an increase in the number of active backups. For more information, see “How policy affects backup management on Data Protection for SQL Server” on page 17 and “Choosing your backup strategy” on page 93.

Why do I receive a TCP/IP timeout failure when I have Windows internal VSS tracing turned on?

Data Protection for SQL Server VSS operations might timeout with a TCP/IP failure when Windows internal VSS tracing is turned on because of the additional time required to write entries to the trace file. You can avoid this issue by increasing the values for the IBM Spectrum Protect server commtimeout and idletimeout options or by decreasing the amount of Windows internal VSS tracing.

What are the settings to use for optimal performance?

The default value of the buffers parameter (3) and the buffersize parameter (1024) have demonstrated the best performance in testing. However, environment factors such as network speed, physical database layout, machine resources, and SQL Server resources all affect Data Protection for SQL Server performance and should be considered when determining your settings. Note that the buffers and buffersize parameters apply to legacy backups only. For more information, see the following topics:

- Chapter 7, “Performance tuning,” on page 165
- “Specifying configuration parameters for IBM Spectrum Protect” on page 47
- “/buffers and /buffersize parameters” (with the backup command) on “Backup optional parameters” on page 177.
- “/buffers and /buffersize parameters” (with the restore command) on “Restore optional parameters” on page 246.
- “/buffers and /buffersize parameter” (with the set command) on “Set optional parameters” on page 284.

How do I schedule Data Protection for SQL Server backups?

You can schedule Data Protection for SQL Server backups by using the IBM Spectrum Protect backup-archive client scheduler or MMC scheduler.

How do I set up Data Protection for SQL Server to run in a cluster?

The following sections contain information about using Data Protection for SQL Server in a cluster environment:

- “Failover clustering and AlwaysOn Availability” on page 2

How do I know if my backup ran successfully?

A message displays that states the backup completed successfully. In
addition, the Task Manager in MMC provides centralized information about the status of your tasks. Processing information is also available in the following files:

- **Data Protection for SQL Server log file (default: tdpsql.log)**
 This file indicates the date and time of a backup, data backed up, and any error messages or completion codes.

- **IBM Spectrum Protect server activity log**
 Data Protection for SQL Server logs information about backup and restore commands to the IBM Spectrum Protect server activity log. An IBM Spectrum Protect administrator can view this log for you if you do not have an IBM Spectrum Protect administrator user ID and password.

- **IBM Spectrum Protect API error log file (default: dsierror.log).**

Should I use the same nodename as used by my backup-archive client?

Legacy backups: Use different node names to simplify scheduling, data separation, and policy management tasks.

VSS backups: You must use different node names.

For more information, see “Specifying Data Protection for SQL Server node name parameters” on page 49.

How do I set up LAN Free to back up Data Protection for SQL Server over my SAN?

See the LAN-free section in Chapter 7, “Performance tuning,” on page 165.

For more information, see http://www.redbooks.ibm.com/abstracts/sg246148.html.
Appendix B. Accessibility features for the IBM Spectrum Protect product family

Accessibility features assist users who have a disability, such as restricted mobility or limited vision, to use information technology content successfully.

Overview

The IBM Spectrum Protect family of products includes the following major accessibility features:

- Keyboard-only operation
- Operations that use a screen reader

The IBM Spectrum Protect family of products uses the latest W3C Standard, WAI-ARIA 1.0 (www.w3.org/TR/wai-aria/), to ensure compliance with US Section 508 (www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards) and Web Content Accessibility Guidelines (WCAG) 2.0 (www.w3.org/TR/WCAG20/). To take advantage of accessibility features, use the latest release of your screen reader and the latest web browser that is supported by the product.

The product documentation in IBM Knowledge Center is enabled for accessibility. The accessibility features of IBM Knowledge Center are described in the Accessibility section of the IBM Knowledge Center help (www.ibm.com/support/knowledgecenter/about/releasenotes.html?view=kc#accessibility).

Keyboard navigation

This product uses standard navigation keys.

Interface information

User interfaces do not have content that flashes 2 - 55 times per second.

Web user interfaces rely on cascading style sheets to render content properly and to provide a usable experience. The application provides an equivalent way for low-vision users to use system display settings, including high-contrast mode. You can control font size by using the device or web browser settings.

Web user interfaces include WAI-ARIA navigational landmarks that you can use to quickly navigate to functional areas in the application.

Vendor software

The IBM Spectrum Protect product family includes certain vendor software that is not covered under the IBM license agreement. IBM makes no representation about the accessibility features of these products. Contact the vendor for accessibility information about its products.
Related accessibility information

In addition to standard IBM help desk and support websites, IBM has a TTY telephone service for use by deaf or hard of hearing customers to access sales and support services:

TTY service
800-IBM-3383 (800-426-3383)
(within North America)

For more information about the commitment that IBM has to accessibility, see IBM Accessibility (www.ibm.com/able).
Notices

This information was developed for products and services offered in the US. This material might be available from IBM in other languages. However, you may be required to own a copy of the product or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions. Actual results may vary.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.
Each copy or any portion of these sample programs or any derivative work must include a copyright notice as follows: © (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe is a registered trademark of Adobe Systems Incorporated in the United States, and/or other countries.

Linear Tape-Open, LTO, and Ultrium are trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the United States, other countries, or both.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

SoftLayer® is a registered trademark of SoftLayer, Inc., an IBM Company.

UNIX is a registered trademark of The Open Group in the United States and other countries.

VMware, VMware vCenter Server, and VMware vSphere are registered trademarks or trademarks of VMware, Inc. or its subsidiaries in the United States and/or other jurisdictions.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices are preserved. You may not distribute, display or make derivative work of these publications, or any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within
your enterprise provided that all proprietary notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display these publications or any portion thereof outside your enterprise, without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or implied, to the publications or any information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Privacy policy considerations

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies or other technologies to collect product usage information, to help improve the end user experience, to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable information is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect personally identifiable information. If this Software Offering uses cookies to collect personally identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect personally identifiable information from end users via cookies and other technologies, you should seek your own legal advice about any laws applicable to such data collection, including any requirements for notice and consent.

Glossary

A glossary is available with terms and definitions for the IBM Spectrum Protect family of products.

See the IBM Spectrum Protect glossary.

To view glossaries for other IBM products, see IBM Terminology.
Special characters

/alwaysonpriority parameter and backup command 177
/querynode parameter and query command 221
and restore command 246
/RELocate and /TO parameters 253
/usealwaysonnodename parameter and backup command 186
USESNAPOFASNAPTomount parameter and set command 283

A
access to databases, restricting 247
accessibility features 295
active/inactive state
affected by full backup 174, 203
in restore operations 251
adjustkbtstemestimate parameter 177
adjustpercentestimate parameter 177
AlwaysOn node
transitioning standard databases to 89
alwaysonnodename parameter and set command 280
APAR 163
API, IBM Spectrum Protect 219
architecture
Data Protection for SQL Server and IBM Spectrum Protect 1
authorization mode, setting
using the CLI 181, 182, 184, 224, 226, 255, 257
auto select option, GUI 115
automated failover
overview 6
automatic expiration policy, setting 68
availability database restores
overview 4, 5, 130

B
backing up data
quick instructions 101
backing up SQL availability databases
by using the legacy method 103
backing up SQL databases
by using the legacy method 103
on Windows Server Core 110
backing up SQL databases with Data Protection for SQL Server
AlwaysOn Availability 131
on Windows Server Core 135
backing up SQL Server availability databases
by using the VSS method 107
backing up SQL Server groups or files
by using the legacy method 106
backup
alwayson availability 134
cluster 134
copy-only full 93
backup (continued)
file backup 93
full 93
full plus differential plug log 93
full plus differentials 93
full plus log 93
Legacy 14
backup command
and /alwaysonpriority parameter 177
and /backupdestination parameter 177
and /backupmethod parameter 178
and /logfile parameter 194
and /offload parameter 181
and /quiet parameter 196
and /usealwaysonnodename parameter 186
optional parameters 177
positionalsparameters 173
backup object types 14
copyfull 245
COPYFull 174
differential 174, 203, 245
file 203, 244
File 173
for query Data Protection for SQL Server 220
full 203, 245
FULL 174
group 203, 245
Group 174
log 204, 245
Log 175
set 204, 245
Set 176
backup objects
compatibility with server 222
query of 219
backup operations
time-saving strategy 93
using the GUI
backup databases tab 107
backup groups/files tab 106
backup strategy
copy-only full 93
failover cluster 70
file backup 93
full backup 93
full plus differential plug log 93
full plus differentials 93
full plus log 93
group backup 93
IBM Spectrum Protect versus local shadow volumes 93
VSS cluster 72, 155
backupdestination parameter
and backup command 177
and delete backup command 194
and restore command 246
BACKUP/DESTination parameter
and set command 280
backupmethod parameter
and backup command 178
and restore command 246
and restorefiles command 274
BACKUPMETHod parameter
and set command 280
backups of availability databases
overview 3
binary sort order 222
buffering data 247
Data Protection for SQL Server performance 165
for Data Protection for SQL Server 178, 221, 246, 280
for SQL Server 178, 221, 246
for TDP 178, 221
used with stripes 181, 255
buffers parameter 178, 221, 246
BUFFers parameter 280
buffersize parameter 178, 221, 247

C

capacity
determining managed storage 99
change
tsmpassword command
optional parameters 191
position parameters 190
changing configuration values
on Windows Server Core 85, 136
checksum
SQL Server 110
CHECKSum
SQL Server 110
cluster
VSS 72, 155
clustering
strategy 3
clustering state
querying 219
code page ID
querying 220
command
policy 239
command line parameters
/alwaysonnode
and set 280
/alwaysonpriority
and backup 177, 186
/backupdestination
and backup 177
and restore 194, 246
/backupmethod
and backup 178
and restore 246
/instantrestore
and restore 248
/INSTANTRestore
and restore 248
/offload
and backup 181
/pitdate
and mount backup 214
/pittime
and mount backup 214
/querynode
and query 221
and restore 246
/quiet
and backup 196
BACKUPDESTination
and set 280
command line parameters (continued)
BACKUPMETHod
and set 280
command-line considerations
VSS restore 240
command-line interface
overview 167
command-line parameters
/backupdestination
and restorefiles 274
/configfile
and delete backup 194
and mount backup 212
and restorefiles 274
and unmount backup 286
/fromsqlserver
and delete backup 194
and mount backup 212
and restorefiles 275
/IMPORTVSSSNAPSHOTONLYWhenneeded
and set 281
/into
and restorefiles 276
/logfile
and backup 194
and mount backup 212
and restorefiles 275
and unmount backup 286
/logprune
and restorefiles 275
/muntrw
and mount backup 213, 282
/mountwait
and restorefiles 276
/object
and delete backup 195
and restorefiles 276
/quiet
and restorefiles 276
/tsmnode
and mount backup 215
and restore 196
and restorefiles 277
and unmount backup 287
/tsmoptfile
and mount backup 215
and restore 196
and restorefiles 277
and unmount backup 287
/tsmpassword
and mount backup 216
and restore 196
and restorefiles 277
and unmount backup 287
/USESNAPOFASNAPTomount
and set backup 283
and local 274
and tsm 274
and vss 274
commands
query managedcapacity 238
commands, Data Protection for SQL
tdpsqlc changetsmpassword 190
commands, Data Protection for SQL Server
tdpsqlc help 198
tdpsqlc set 280
tdpsqlc communicate protocol option 47
compatibility level
querying 219
compatibilityinfo
query of Data Protection for SQL Server 220
compatibilityinfo parameter 222
compression
SQL Server 109
compression option 48
configfile parameter 179, 191, 204, 222, 247, 284
and delete backup command 194
and mount backup command 212
and restorefiles command 274
and unmount backup command 286
configuration
IBM SAN Volume Controller and IBM Storwize V7000 89
manual procedure
IBM Spectrum Protect server 75
offloaded backups 76
SQL Server 74
options 47
configuration file, Data Protection for SQL Server
query TDP 219
setting values, CLI 179, 191, 204, 222, 247, 280, 284
configuration files
non-default locations 50
configuration information, listing 222
configuration tasks
Data Protection for SQL Server on Windows Server Core 79
configuring
backup priority of replicas 73
binding
policy 22
Data Protection for SQL Server 47, 65
policy 22
quick instructions 32
where scheduled backups are run 73
configuring Data Protection for SQL Server for Windows Server configuration 83
configuring the backup-archive client
for Windows Server configuration 81
considerations
considerations 11
VSS restore 11
copyfull parameter
described 245
COPYFull parameter
described 174
create index operation 174, 175
creating a client node
for Windows Server Core configuration 79
custom settings 62

data objects
in object naming 24
data protection
Data Protection for SQL Server with VSS backup/restore support
tracing when using VSS 159
general help 152
SQL Server with VSS backup/restore support
gathering files before calling IBM 160
general help 147
SQL with VSS backup/restore support
gathering information before calling IBM 159
data protection (continued)
SQL with VSS backup/restore support
determining the issue 148
troubleshooting 156
Data Protection for Microsoft SQL Server
silent installation with batch file 40
Data Protection for SQL
backup types 14
options file
automatic expiration policy 68
Data Protection for SQL Server
buffersize 178, 221, 247
BUFFERSIZE 280
commands 167
configuration file query 219
configuration file, setting
using the CLI 179, 191, 204, 222, 247, 284
configuration parameters 68
configuring 47, 65
configuring options 47
creating an installation package on a DVD 43
installing on a local system 35
installing on Windows Server Core 37
number of buffers 178, 221, 246, 280
operating environment 1
overview 1, 93
policy settings 17
quick backup reference 101
quick configuration 32
quick installation 32
reference 167
registering 49
restore types 28
silent installation 38
silent installation on Windows Server Core (spinstall.exe) 39
standalone 1
version query 220
VSS planning 9
Data Protection for SQL Server GUI
starting 93, 96
Data Protection for SQL Server on Windows Server Core
collection tasks 79
overview 135
Data Protection for SQL Server scripts
adding 161
editing 161
viewing 161
Data Protection for SQL Server silent installation
playing back the installation 43
setup error messages 44
Data Protection for SQL Server tasks
automating 143

Data Protection for SQL Server tasks 143
Data Protection for SQL Server trace and log files
viewing 158
Data Protection for SQL Server VSS backup
policy binding 22
Data Protection for VMware Recovery Agent 124
data stripes
buffering 178, 221, 246, 280
Data Protection for SQL Server performance 165
querying 219
used with /sqlbuffers 181, 185, 255, 260
using the CLI 185, 260
data striping
buffering 178, 221, 247
database
- delete backup
 command line 193
- options set 219
- querying 219
- restoring master 123
- restoring to alternate 120
- restoring using the GUI 128
- restoring with full-text catalogs and indexes 124
VSS backup
 GUI 101
 VSS restore
 GUI 114
database backups, verifying 261
database integrity checking 261
database name
- restorefiles
 command line 274
database owner option, GUI 116
DATFormat parameter 280
dboonly parameter 247
deactivate operations
 using the GUI 112
delete backup
 database
 command line 193
delete backup command
 and /backupdestination parameter 194
 and /configfile parameter 194
 and /fromsqlserver parameter 194
 and /object parameter 195
 optional parameters 194
 overview 193
 syntax diagram 193
deleting SQL Server VSS backups 111
described
 set parameter 221
developerWorks wiki 163
diagnostics properties 57
differential backup
 overview 14
differential parameter
 described 174, 203, 220, 245
differential restore
 using the GUI 118, 128
differential versus log backup strategy 93
DIFFESTimate parameter 281
disability 295
dsm.opt file 47
 communication protocol 47
 compression 48
 enableclientencryptkey 48
 enablelanfree 49
 encryptiontype 48
 include.encrypt 48
 nodename 47
enableclientencryptkey option 48
enablelanfree option 49
ENABLEREPlacementchars parameter 179
encryption 48
encryptiontype option 48
error log files 147
example
 restorefiles command 278

exfull.log 144
excludedb parameter 179
excsched.log 144
expiration policy, setting 68
expiring VSS backups
 policy 16

failover
 cluster 70
 overview 6
FAQ 289
file backup
 overview 14
 strategy 93
file parameter
 described 203, 220, 244
File parameter
 described 173
file restore
 using the GUI 118, 128
files
 Data Protection for SQL Server options 196, 277
dsm.opt 47
 excfull.log 144
 excsched.log 144
IBM Spectrum Protect Snapshot options 216, 287
tdpexc.cfg
 and delete backup command 194
tdpexc.log
 and delete backup command 194
 and mount backup command 213, 282
tdpsql.cfg
 and mount backup command 212
 and restorefiles command 274
 and unmount backup command 286
 vsspolicy option 68
tdpsql.log 293
 and mount backup command 212
 and restorefiles command 275
 and unmount backup command 286
tdpsql.exe 167
frequently asked questions 289
from SQL Server option, GUI 117
fromsqlserver parameter 204, 222, 247, 281
 and delete backup command 194
 and mount backup command 212
 and restorefiles command 275
full backup
 overview 14
 strategy 93
full parameter
 described 203, 220, 245
FULL parameter
 described 174
full plus differential backup
 strategy 93
full plus differential plus log backup
 strategy 93
full plus log backup
 strategy 93
full restore
 using the GUI 118, 128
G

general properties for SQL Server 59
Getting started 1
graphical user interface
backup groups/files tab 106
graphical user interface (GUI)
backup databases tab 107
inactivating SQL Server databases 112
restore groups/files tab 128
restore options 115
restoring SQL Server databases 128
group backup
overview 14
strategy 93
group parameter
described 203, 220, 245
Group parameter
described 174
group restore
using the GUI 118, 128
GUI
SQL Server VSS backup 101
SQL VSS restore 114

H

help command
described 198

I

IBM Knowledge Center ix
IBM SAN Volume Controller and IBM Storwize V7000 configurations 89
using Data Protection for SQL Server 12
IBM Spectrum Protect
cluster 1
policy settings 17
IBM Spectrum Protect API 219
IBM Spectrum Protect client
silent installation on Windows Server Core 38
IBM Spectrum Protect server
querying 219
IBM Spectrum Protect Snapshot
transitioning backups 85
IBM System Storage DS8000 series
requirements 13
inactivate command
optional parameters 204
positional parameters 203
include/exclude
syntax 68
INCLUDE/EXCLUDE
sample statements 24
include.encrypt option 48
IncludeTsmVm 117
indexes and tables
backing up 93
installation
configuring options 47
registering Data Protection for SQL Server 49
installing
creating an installation package on a DVD 43
on a local system 35
quick instructions 32
silently with batch file 40
installing (continued)
silently with msiexec.exe 40
installing Data Protection for SQL Server
on multiple servers (silent) 38
on Windows Server core 37
unattended (silent) 38
installing IBM Spectrum Protect client on Windows Server Core
on multiple servers (silent) 38
unattended (silent) 38
instantrestore parameter
and restore command 248
integrated user id mode 181, 224, 255
integrity checking, database backups 261
into parameter 248
and restorefiles command 276

K

keepcdc parameter 249
keyboard 295
Knowledge Center ix

L

LAN-free
Data Protection for SQL Server performance 166
Legacy backup
overview 14
local backup policy
setting 21
log backup
overview 14
log files
using for problem determination 147
log parameter
described 204, 221, 245
Log parameter
described 175
log restore
using the GUI 118, 128
logfile parameter 179, 204, 223, 249
and delete backup command 194
and mount backup command 212
and restorefiles command 275
and unmount backup command 286
logging properties 60
login settings
using the CLI 181, 224, 255
logprune parameter 180, 191, 195, 205, 207, 213, 223, 249, 282, 286
and restorefiles command 275

M

managed storage
determining capacity 99
management class
INCLUDE statements 24
meta and data objects 24
object naming 68
master database, restoring 123
media migration 68
meta objects
in object naming 24
metadata policy, setting 24
migration 44
MMC GUI
starting 93, 96
mount backup command
and /configfile parameter 212
and /fromsqlserver parameter 212
and /logfile parameter 212
and / PITdate parameter 214
and /PITtime parameter 214
and /tsmnode parameter 215
and /tsmoptfile parameter 215
and /tsmpassword parameter 216
and /tsmoptfile parameter 215
and /PITdate parameter 214
and /PITtime parameter 214
and /tsmnode parameter 215
and /tsmoptfile parameter 215
and /tsmpassword parameter 216
and mountrw parameter 213, 282
overview 211
syntax diagram 211
mountrw parameter
and mount backup command 213, 282
mountwait parameter 180, 250
and restorefiles command 276
msiexec.exe
used for silent installation 40
multiple-user mode 114

N
New in Data Protection for SQL Server Version 8.1.4 xiii
node name
Data Protection for SQL Server 49
offloaded backup 52
proxy nodes 51
VSS 52
nodename option 47
number of buffers
for Data Protection for SQL Server 178, 221, 246, 280
for SQL Server 181, 255
used with stripes 181, 255

O
object parameter 205, 224, 251
and delete backup command 195
and restorefiles command 276
offload parameter
and backup command 181
offloaded backup
manual configuration procedure 76
node names 52
offloaded VSS backup
overview 13
olderthan parameter 206
operating environment 1
optional
/keepcdc 249
optional parameters
backup command 177
change tsmpassword command 191
delete backup command 194
inactivate command 204
query command 221
restore command 246
set command 284
options file, Data Protection for SQL
INCLUDE/EXCLUDE statements 24
options files
non-default locations 50
overview 93
availability database restores 4, 5, 130

overview (continued)
backups of availability databases 3
Data Protection for SQL Server on Windows Server Core 135
Legacy backup 14
offloaded VSS backup 13
SQL Server AlwaysOn Availability Groups 2
VSS backup 8, 9
VSS restore 10
VSS service 8

P
parameters
/alwaysonnode
and set command 280
/alwaysonpriority
and backup command 177
/backu pdestination
and backup command 177
and delete backup command 194
and restore command 246
and restorefiles command 274

/backu pmethod
and backup command 178
and restore command 246
/configfile
and delete backup command 194
and mount backup command 212
and restorefiles command 274
and unmount backup command 286
/fromsqlserver
and delete backup command 194
and mount backup command 212
and restorefiles command 275
/IMPORTVSSSNAPSHOTONLYWhenneeded
and set command 281
/instantrestore
and restore command 248
/INSTANTRestore
and restore command 248
/into
and restorefiles command 276
/logfile
and delete backup command 194
and mount backup command 212
and restorefiles command 274
and unmount backup command 286
/logprune
and restorefiles command 275
/mountrw
and mount backup command 213, 282
/mountwait
and mount backup command 213, 282
and restorefiles command 276
/object
and delete backup command 195
and restorefiles command 276
/offload
and backup command 181
/PITdate
and mount backup command 214
/PITTime
and mount backup command 214
/querynode
and query command 221
and restore command 246

308 IBM Spectrum Protect for Databases: Data Protection for Microsoft SQL Server Installation and User's Guide
parameters (continued)

/quiet
and delete backup command 196
and restorefiles command 276
/tsmnod
and mount backup command 215
and restore command 196
and restorefiles command 277
and unmount backup command 287
/tsmoptfile
and mount backup command 215
and restore command 196
and restorefiles command 277
and unmount backup command 287
/tsmpassword
and mount backup command 216
and restore command 196
and restorefiles command 277
and unmount backup command 287
/usealwaysonnode
and backup command 186
/USESNAPOFASTMNTmount
and set command 283
BACKUPDESTination
and set command 280
BACKUPMETHod
and set command 280
parameters, described (continued)

/to 253
optional
/adjustktbesmate 177
/buffers 178, 221, 246
/buffersize 178, 221, 247
/comaptibilityinof 222
/configfile 179, 191, 204, 222, 247, 284
/dboonly 247
/excludedb 179
/fromsqlserver 204, 222, 247
/into 248
/logfile 179, 204, 223, 249
/logprune 180, 191, 195, 205, 213, 223, 249, 282, 286
/mountwait 180, 250
/object 205, 224, 251
/oldeball 206
/partial 251
/quiet 206, 252
/recovery 252
/relocate 253
/relocatedir 253
/replace 254
/restoredate 254
/restoretime 254
/sqlauthentication 181, 224, 255
/sqlbuffers 181, 255
/sqlbuffersize 182, 255
/sqlpassword 182, 224, 255
/sqlserver 183, 224, 256
/sqluser 184, 226, 257
/standby 258
/stp 258
/stpamark 259
/stpbeforemark 259
/strips 185, 260
/tsmnod 185, 192, 206, 226, 260
/tsmoptfile 185, 192, 206, 227, 261
/tsmpassword 186, 206, 227, 261
/VerifyOnly 261
parameters, described (continued)
optional (continued)
ENABLERPlacementchars 179
SQLCHECKSum 182
SQLCOMPrssion 182
positional
backup object types 220
copyfull 245
COPYFull 174
differential 174, 203, 245
file 203, 244
File 173
for changetsmpassword command 190
for set command 280
full 203, 245
FULL 174
group 203, 245
Group 174
log 204, 245
Log 175
set 204, 245
Set 176
partial parameter 251
password, IBM Spectrum Protect
changing
using the CLI 190
performance issues 173, 203, 244
performance properties 64
pitdate parameter
and mount backup command 214
pittime parameter
and mount backup command 214
planning requirementsVSS backup 9
point in time named marks restore
using the CLI 259
policy 23
binding 22
binding Data Protection for SQL Server VSS backups 22
configuring 22
expiring VSS backups 16
setting local policy 21
policy command
overview 239
policy management properties 56
policy settings
Data Protection for SQL Server and IBM Spectrum
Protect 17
positional parameters
backup command 173
inactivate command 203
query command 219
restore command 244
printing reports 137
problem determination 147, 222
product support 163
properties
custom settings 62
diagnostics 57
general SQL Server 59
logging 60
performance 64
policy management 56
regional settings 60
SQL Server 59
VSS 61
protecting SQL Server data with Data Protection for SQL Server
on Windows failover cluster 129
on Windows Server Core 135
Windows Server Core
protecting SQL Server data with Data Protection for SQL Server 135
Windows Server Core
protecting SQL Server data with Data Protection for SQL Server 129
proxy nodes 51
publications ix

Q
query command
and /querynode parameter 221
optional parameters 221
positional parameters 219
query managedcapacity command
overview 238
query operations
query SQL 219
query TDP 219
query TSM 219
sample output 227
query TSM options 218, 220
querying backup objects 219
quiet parameter 206, 252
and delete backup command 196
and restore files command 276

R
recovery model
querying 219
recovery option, GUI 116
recovery parameter 252
reference
Data Protection for SQL Server 167
regional properties 60
registration 49
relocatedir parameter 253
removable media 68
replace option, GUI 116
replace parameter 254
reports
viewing, printing, and saving 137
requirements 13
IBM System Storage DS8000 series 13
SAN Volume Controller 13
Storwize family 13
XIV 13
restore 28
database 28
databases 124
restore files command 28
transaction log 28
types 28
VSS 10
restore command
and /backupdestination parameter 246
and /backupmethod parameter 246
and /instantrestore parameter 248
and /INSTANTIESTORE parameter 248
and /querynode parameter 246
restore command (continued)
and /tsmnode parameter 196
and /tsmoptfile parameter 196
and /tsmpassword parameter 196
optional parameters 246
positional parameters 244
restore operations
master database 123
named marks 259
of inactive objects 251
point in time 258, 259
SQL Server databases with full-text catalogs and indexes 124
to alternate instance 120
using the GUI 128
auto select option 115
database owner option 116
from SQL Server option 117
instant restore 118
keep cdc option 116
recovery option 116
replace option 116
restore options 115
standby server undo file option 117
stripes option 116
verify only option 117
Wait for Tape Mounts for File Information 117
wait for tape mounts options 117
restore date parameter 254
restore files command
and /backupmethod parameter 274
and /configfile parameter 274
and /fromsqlserver parameter 275
and /into parameter 276
and /logfile parameter 275
and /logprune parameter 275
and /mountwait parameter 276
and /object parameter 276
and /quiet parameter 276
and /tsmnode parameter 277
and /tsmoptfile parameter 277
and /tsmpassword parameter 277
example 278
restore time parameter 254
restoring SQL databases with Data Protection for SQL Server
on Windows Server Core 136
restoring SQL Server availability databases 118
restoring SQL Server databases
on Windows Server Core 127
restoring SQL Server file groups and files
from availability databases 128
restoring VE databases 118
restricting database access 247

S
sample output
query command 227
set command 284
saving reports 137
scheduler
 guidelines 144
server, IBM Spectrum Protect
querying 219
server, SQL
querying 219
Service Management Console 163
set backup
 overview 14
set command
 and /alwaysnonode parameter 280
 and /IMPORTVSMSNAPSHOTONLYWhenneeded parameter 281
 and /USESNAPSHOTmount parameter 283
 and BACKUPDESTINATION parameter 280
 and BACKUPMETHOD parameter 280
 optional parameters 284
 positional parameters 280
 sample output 284
set parameter
described 204, 245
Set parameter
 described 176
set restore
 using the GUI 118, 128
setting up a proxy node for offloaded VSS backups
 for Windows Server configuration 80
silent installation
 with spinstall.exe 39
 silent installation (spinstall.exe)
 Data Protection for SQL Server on Windows Server Core 39
 silent installation of Data Protection for SQL Server 38
 silent installation on Windows Server Core of IBM Spectrum Protect client 38
single-user mode 114
size of buffers 247, 280
 for SQL Server 182, 255
 for TDP 178, 221
sort order ID
 querying 220
space allocated and used
 querying 219, 220
space-saving considerations 173, 174, 203, 244, 245
space, saving
 strategy 93
spinstall.exe
 used for silent installation 39
SQL availability databases
 backing up with the legacy method 103
SQL login properties 59
SQL restore
 DAG environment 114
 VSS
 GUI 114
SQL Server
 number of buffers 181, 255
 size of buffers 182, 255
 user id 181, 224, 255
SQL Server 2000
 differential strategy 93
 query of 219
SQL Server AlwaysOn Availability Groups
 overview 2
SQL Server availability databases
 backing up with VSS 107
 restoring 118
 restoring SQL Server file groups and files 128
SQL Server backup
 VSS
 GUI 101
SQL Server compression 109
SQL Server databases with full-text catalogs and indexes, restoring 124
SQL Server groups or files
 backing up with the legacy method 106
SQL Server integrity checking
 checksum 110
SQL Server VSS backup
 deleting 111
 sqlauthentication parameter 181, 224, 255
 sqlbuffers parameter 181, 255
 sqlbuffersize parameter 182, 255
 SQLCHECKSum parameter 182
 SQLCOMPReSSion parameter 182
 sqlpassword parameter 182, 224, 255
 sqlserver parameter 183, 224, 256
 sqluser parameter 184, 226, 257
 standby parameter 258
 standby server undo file option, GUI 117
starting
 Data Protection for SQL Server GUI 93, 96
 MMC GUI 93, 96
 stopat parameter 258
 stopatmark parameter 259
 stopbeforemark parameter 259
 storage
 determining managed capacity 99
 storage management, policy 16
Storwize family
 requirements 13
 stripes option, GUI 116
 stripes parameter 185, 260
 stripes, data
 Data Protection for SQL Server performance 165
 used with /sqlbuffers 181, 185, 255, 260
 using the CLI 185, 260
 support files
 sending to IBM with email 162
syntax diagrams
 delete backup command 193
 mount backup command 211
 reading ix
 unmount backup command 285
sysadmin fixed server role 239
T
 tables and indexes
 backing up 93
 task manager 100
tdpexc.cfg file
 and delete backup command 194
 tdpexc.log file
 and delete backup command 194
 and mount backup command 213, 282
tdpsql.cfg file
 and mount backup command 212
 and restorefiles command 274
 and unmount backup command 268
 tdpsql.cfg, setting values
 using the CLI 179, 191, 204, 222, 247, 284
 tdpsql.log file
 and mount backup command 212
 and restorefiles command 275
 and unmount backup command 286
tdsqlc.exe
 overview 167
throughput, improving 178, 221, 222, 246, 247
 time-saving considerations 173, 174, 203, 244, 245
transact-SQL command 114

Index 311
transaction log
 querying 219
 restore 28
transitioning standard SQL Server databases to the AlwaysOn node 89
tsmnode parameter 185, 192, 206, 226, 260
 and mount backup command 215
 and restore command 196
 and restorefiles command 277
 and unmount backup command 287
tsmoptfile parameter 185, 192, 206, 227, 261
 and mount backup command 215
 and restore command 196
 and restorefiles command 277
 and unmount backup command 287
tsmpassword parameter 186, 206, 227, 261
 and mount backup command 216
 and restore command 196
 and restorefiles command 277
 and unmount backup command 287
TSMVM 117
 types parameter
 described 221
 syntax 218

U
Unicode information
 querying 220
 unmount backup command
 and /configfile parameter 286
 and /logfile parameter 286
 and /tsmnode parameter 287
 and /tsmoptfile parameter 287
 and /tsmpassword parameter 287
 overview 285
 syntax diagram 285
 user mode, setting 114
 using
 syntax diagrams ix
 using command-line help
 on Windows Server Core 97
using Data Protection for SQL Server
 with IBM SAN Volume Controller and IBM Storwize V7000 12
using the backup command
 on Windows Server Core 110, 135
using the help command
 on Windows Server Core 97
using the restore command
 on Windows Server Core 127, 136
using the set command
 on Windows Server Core 85, 136

V
Verify Only option, GUI 117
verifyonly parameter 261
 viewing reports 137
 viewing system information for Data Protection for SQL Server 161
 volume mount 68
VSS
 cluster 72, 155
 N-series and NetApp storage 11
VSS (continued)
 node names 52
 overview 8
 proxy nodes 51
VSS backup 9
 overview 8
 planning requirements 9
VSS fast restore
 method 28
VSS instant restore
 method 29
VSS planning 9
VSS properties 61
VSS provider 8
VSS Requestor 8
VSS restore
 command-line considerations 240
VSS writer 8
vspolicy option 68
VSPOLICY, statements 23

W
wait for tape mounts for file information, GUI 117
wait for tape mounts options, GUI 117
Windows authentication mode, setting
 using the CLI 181, 224, 255
Windows Server Core
 backing up SQL databases 110
 backing up SQL databases with Data Protection for SQL Server 135
 changing configuration values 85, 136
 restoring SQL databases with Data Protection for SQL Server 136
 restoring SQL Server databases 127
 using command-line help 97
 using the backup command 110, 135
 using the help command 97
 using the restore command 127, 136
 using the set command 85, 136
Windows Server Core configuration
 configuring Data Protection for SQL Server 83
 configuring the backup-archive client 81
 creating a client node 79
 setting up a proxy node for offloaded backups 80

X
XIV requirements 13
Product Number: 5725-X01

Printed in USA