Communications Server for Windows, Version 6.4
Personal Communications for Windows, Version 12.0

<|ll

System Management Programming

SC31-8480-12

Communications Server for Windows, Version 6.4
Personal Communications for Windows, Version 12.0

<|ll

System Management Programming

SC31-8480-12

Note
FBefore using this information and the product it supports, read the information in|Appendix B, “Notices,” on page 635]

Twelfth Edition (February 2016)

This edition applies to Version 6.1 of IBM Communications Server for Windows, Version 12.0 of Personal
Communications for Windows (program number: 5639-170), and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright IBM Corporation 1989, 2016.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Tables Vi

About ThisBook.ix

Who Should Read This Book.ix
How to Use ThisBookX
Icons . L. . X
Number Conventrons D <
Where to Find More Informationxi
Support Options. . . L. ... oxid
Subscribing to Support News B
Support Assistantxii

Part 1. Personal Communications
and Communications Server Node
Operator Facility1

Chapter 1. Introduction3
Purpose of the Document . . .
Personal Communications and Commumcatrons
Server Node Operator Facility

Entry Points .

Verb Control Blocks (VCBS) .

Writing Node Operator Facility (NOF) Programs
Communications Server SNA API Client Support .
Verbs Supported by Communications Server and Not
by Personal Communications .

Ql = = W W O8]

a1

Chapter 2. Overview of the Verbs in This
Book .

. . 7
How to Read Verb Descrrptrons . 7
Supplied Parameters. 4
Returned Parameters7
Common VCB Fields 7
Verb Summary. 8
Node Configuration . S .8
Activation and Deactivation9

Querying the Node.10
Session Limit Verbs.12
Unsolicited Indications12
Security Verbs13
APING Verbs.14
CPI-CVerbs14
Attach Manager Verbs. . . .
DLC Processes, Ports, and Link Statrons P

Chapter 3. Node Operator Facility Entry
Points.17

WinNOF()18
WinAsyncNOF()19
WinAsyncNOFEx() . . . L. 20
WmNOFCancelAsyncRequest() A |
WinNOFCleanup()22
WinNOFStartup()23

© Copyright IBM Corp. 1989, 2016

WinNOFRegisterIndicationSink()24
WinNOFUnregisterIndicationSink()25
WinNOFGetIndication()26

Chapter 4. Node Configuration Verbs 27

DEFINE_ADJACENT_NODE28
DEFINECN3
DEFINE_COS.35
DEFINE_DEFAULT PU41
DEFINE_DEFAULTS43
DEFINE_DLC . . . B 16}
DEFINE_DLUR_ DEFAULTS50
DEFINE_DOWNSTREAM_ LU52
DEFINE_DOWNSTREAM_LU RANGE55
DEFINE_DSPU_TEMPLATE.58
DEFINE_FOCAL_POINT.6l
DEFINE_INTERNAL_PU.65
DEFINE LOCAL LU69
DEFINE LS74
DEFINE_ LU O.TO388
DEFINE_ LU 0_.TO_3 RANGE92
DEFINE LU _POOL.97
DEFINE_LU62_TIMEOUT9
DEFINE MODE101
DEFINE_PARTNER LU.107
DEFINE PORT.11
DEFINE_RTP_TUNING.120
DEFINE_TP. . . . e e 122
DELETE_ADJACENT _ NODE 126
DELETECN128
DELETE_.COS130
DELETE DLC B K 22
DELETE_DOWNSTREAM LU .o I 7
DELETE_DOWNSTREAM_LU_ RANGE ... 136
DELETE_DSPU_TEMPLATE138
DELETE_FOCAL_POINT141
DELETE_INTERNAL PU143
DELETE_LOCAL_LU.145
DELETE LS.147
DELETE_LU 0. TO 3.149
DELETE_LU_0_TO_3_RANGE.151
DELETE_LU_POOL154
DELETEMODE156
DELETE_PARTNER_LU.158
DELETE_PORT.160
DELETE_TP.162

Chapter 5. Activation and Deactivation

Verbs.165
START DLC. 166
START_INTERNAL PU168
START LS170
START PORT173
STOPDLC175
STOP_INTERNAL PU177

iii

STOP_LS .

STOP_PORT.
ACTIVATE_SESSION.
DEACTIVATE_CONV _ GROUP
DEACTIVATE_SESSION.
PATH_SWITCH

Chapter 6. Query Verbs .
QUERY_ADJACENT_NN
QUERY_ADJACENT_NODE
QUERY_CN . :
QUERY_CN_PORT
QUERY_CONVERSATION .
QUERY_COS :
QUERY_DEFAULT _PU .
QUERY_DEFAULTS . :
QUERY_DIRECTORY_ENTRY .
QUERY_DIRECTORY_LU .
QUERY_DIRECTORY_STATS .
QUERY_DLC
QUERY_DLUR_DEFAULTS.
QUERY_DLUR_LU
QUERY_DLUR_PU
QUERY_DLUS . : :
QUERY_DOWNSTREAM_ LU .
QUERY_DOWNSTREAM_PU .
QUERY_DSPU_TEMPLATE
QUERY_FOCAL_POINT.
QUERY_HPR_STATS..
QUERY_ISR_SESSION
QUERY_LOCAL LU
QUERY_LOCAL_TOPOLOGY .
QUERY_LS . :
QUERY_LS_EXCEPTION
QUERY_LU 0_TO 3 .
QUERY_LU_POOL :
QUERY_MDS_APPLICATION.
QUERY_MDS_STATISTICS .
QUERY_MODE
QUERY_MODE_DEFINITION .
QUERY_MODE_TO_COS_MAPPING
QUERY_NMVT_APPLICATION .
QUERY_NN_TOPOLOGY_NODE
QUERY_NN_TOPOLOGY_STATS
QUERY_NN_TOPOLOGY_TG.
QUERY_NODE.
QUERY_PARTNER LU .

QUERY_PARTNER_LU_ DEFINITION .

QUERY_PORT .
QUERY_PU . .
QUERY_RTP CONNECTION
QUERY_RTP_TUNING .
QUERY_SESSION . .
QUERY_SIGNED_ON_LIST
QUERY_STATISTICS .
QUERY_TP . .
QUERY_TP_ DEFINITION .

Chapter 7. Safe-Store Verbs .

SAFE_STORE_TOPOLOGY .

iv System Management Programming

. 179
. 181
. 183
. 186
. 188
. 191

. 193
. 194
. 197
. 200
. 205
. 208
. 212
. 215
. 217
. 219
. 226
. 231
. 233
. 239
. 241
. 245
. 251
. 255
. 264
. 269
. 273
. 278
. 280
. 291
. 299
. 304
. 323
. 328
. 338
. 342
. 345
. 347
. 353
. 358
. 361
. 364
. 370
. 374
. 381
. 394
. 401
. 406
. 417
. 423
. 430
. 432
. 440
. 444
. 446
. 450

. 455
. 456

SFS_ADJACENT_ NN.463
SFS_DIRECTORY Y4
SFS_NN_TOPOLOGY_ NODE473
SFS_NN_TOPOLOGY_TG481
Chapter 8. Session Limit Verbs. . . . 489
CHANGE_SESSION_LIMIT490
INITIALIZE_SESSION_LIMIT49
RESET_SESSION_LIMIT.498

Chapter 9. Node Operator Facility API

Indications503
DLC_INDICATION504
DLUR_LU_INDICATION505
DLUR_PU_INDICATION506
DLUS_INDICATION508
DOWNSTREAM_LU_INDICATION510
DOWNSTREAM_PU_INDICATION.515
FOCAL_POINT_INDICATION518
ISR_INDICATION.520
LOCAL_LU_INDICATION.525
LOCAL_TOPOLOGY_INDICATION.529
LS INDICATION53
LU_0_TO_3_INDICATION536
MODE_INDICATION 540
NN_TOPOLOGY_NODE_INDICATION54
NN_TOPOLOGY_TG_INDICATION.544
PLU_INDICATIONb546
PORT_INDICATIONb548
PU_INDICATION.55
REGISTRATION_FAILURE.553
RTP_INDICATION55
SESSION_FAILURE_INDICATION559
SESSION_INDICATION.561
UNREGISTER_INDICATION_SINK 565
Chapter 10. Security Verbs 567
CONV_SECURITY BYPASSb568
CREATE_PASSWORD_SUBSTITUTE570
DEFINE_LU_LU _PASSWORD.572
DEFINE_USERID_PASSWORD574
DELETE_LU_LU PASSWORD.576
DELETE_USERID_PASSWORD578
SIGNOFF58

Chapter 11. APING and CPI-C Verbs 583

APING b&4
CPI-C Verbs.58
DEFINE_CPIC_. SIDE INFO58
DELETE_CPIC_SIDE_INFO59
QUERY_CPIC_SIDE_INFO.5%

Chapter 12. Attach Manager Verbs 597

DISABLE_ATTACH_MANAGER.598
ENABLE_ATTACH_MANAGER59
QUERY_ATTACH_MANAGER600

Part 2. Personal Communications
and Communications Server
Management Services API

Chapter 13. Introduction to
Management Services API.
Management Services Verbs

Entry Points.

Verb Control Blocks (VCB)

Writing Management Services (MS) Programs
SNA API Client Support.

Chapter 14. Management Services
Entry Points .

WinMS() . .

WinMSCleanup() . .
WinMSGetIndication()
WinMSRegisterApplication()
WinMSStartup() .

. 601

. 603

. 603
. 603
. 603
. 604
. 605

. 607

. 608
. 609
. 610
. 611
. 613

WinMSUnregisterApplication() . 614
Chapter 15. Management Services

Verbs . . 617
ALERT_ INDICATION . 618
FP_NOTIFICATION . . 619
MDS_MU_RECEIVED . 620
NMVT_RECEIVED . 622
SEND_MDS_MU . . 624
TRANSFER_MS_DATA . . 627
Part 3. Appendixes . . 631
Appendix A. IBM APPN MIB Tables 633
Appendix B. Notices . 635
Trademarks . . 636
Index . . 639

Contents V

vi System Management Programming

Tables

1. Header Files and Libraries for NOF.5 4. Implementing Tables from IBM Management
2. Port Types for DLC Types.47 Information Block MIB)633
3. Header Files and Libraries for Management

Services0604

© Copyright IBM Corp. 1989, 2016 vii

viii System Management Programming

About This Book

This book describes how to develop programs that use IBM® Communications
Server for Windows and IBM Personal Communications for Windows.

IBM Communications Server for Windows (referred to as Communications Server) is
a communications services platform. This platform provides a wide range of
services for workstations that communicate with host computers and with other
workstations. Communications Server users can choose from among a variety of
remote connectivity options.

IBM Personal Communications for Windows (referred to as Personal
Communications) is a full-function emulator. In addition to host terminal emulation,
it provides these useful features:

* File transfer

* Dynamic configuration

* An easy-to-use graphical interface

* APIs for SNA-based client applications

* An API allowing TCP/IP-based applications to communicate over an SNA-based
network.

While in most instances, developing programs for Personal Communications and
Communications Server is very similar in that they each support many of the same
verbs, there are some differences. These differences are denoted through the use of
icons. See [“Icons” on page x| for specific details. Throughout this book, the Program
refers to both Personal Communications and Communications Server. When only
the Personal Communications program or only the Communications Server
program applies, then that specific program name is used.

In this book, Windows refers to Windows 7, Windows 8, Windows 8.1, Windows 10,
Windows Server 2008, and Windows Server 2012. Throughout this book,
workstation refers to all supported personal computers. When only one model or
architecture of the personal computer is referred to, only that type is specified.

Who Should Read This Book

This book is intended for programmers and developers who plan to use Node
Operator Facility (NOF) API messages to manage and query the operation of
Personal Communications or Communications Server, or plan to use ASCII
Configuration files or both.

This book is also intended for developers who are writing network management
applications that use the underlying management services support provided by
Personal Communications and Communications Server to communicate with
remote (host focal point) network management applications.

© Copyright IBM Corp. 1989, 2016 ix

How to Use This Book

This book is organized into two parts. [Part 1, “Personal Communications and]
[Communications Server Node Operator Facility,” on page 1| contains the following
chapters:

* [Chapter 1, “Introduction,” on page 3| describes the purpose of this book.

* [Chapter 2, “Overview of the Verbs in This Book,” on page 7] describes the Node
Operator Facility API structure and the verbs it supports. The chapter outlines
the categories of the verbs implemented and the additional signals provided by
Personal Communications and Communications Server.

* |Chapter 3, “Node Operator Facility Entry Points,” on page 17] describes the entry
point extensions.

* Chapters 4 through 12 describe the syntax of each verb. A copy of the structure
that holds the information for each verb is included and each entry described,
followed by a list of possible return codes.

Part 2, “Personal Communications and Communications Server Management|
Services APL,” on page 601| contains the following chapters:

* [Chapter 13, “Introduction to Management Services APL,” on page 603| describes
the management services APL

* |Chapter 14, “Management Services Entry Points,” on page 607| describes the
entry points for the management services verbs.

* [Chapter 15, “Management Services Verbs,” on page 617 describes the syntax of
each verb. A copy of the structure that holds the information for each verb is
included and each entry described, followed by a list of possible return codes.

Ilcons

In this book, when it is necessary to communicate special information, the
following icons appear:

This icon represents a note, important information that can affect the
operation of Personal Communications or Communications Server or
the completion of a task.

This icon appears when the information applies only to the Personal
<Q' Communications program.
This icon appears when the information applies only to the
é Communications Server program.
—=

Number Conventions

Binary numbers Represented as BX'xxxx xxxx' or BX'x' except in certain instances where
they are represented with text (“A value of binary xxxx xxxx is...”).

Bit positions Start with 0 at the rightmost position (least significant bit).

Decimal numbers Decimal numbers over 4 digits are represented in metric style. A space is
used rather than a comma to separate groups of 3 digits. For example,
the number sixteen thousand, one hundred forty-seven is written 16 147.

X System Management Programming

Hexadecimal
numbers

Represented in text as hex xxxx or X'xxxx' (“The address of the adjacent
node is hex 5D, which is specified as X'5d".”)

Where to Find More Information

—=

For more information, refer to Quick Beginnings, which contains a
complete description of both the Communications Server library and
related publications.

To view a specific book after Communications Server has been installed,
use the following path from your desktop:

1. Programs

2. IBM Communications Server

3. Documentation

4. Choose from the list of books

The Communications Server books are in Portable Document Format
(PDF), which is viewable with the Adobe Acrobat Reader. If you do not

have a copy of this program on your machine, you can install it from
the Documentation list.

The Communications Server home page on the Internet has general
product information as well as service information about APARs and
fixes. To get the home page, using an Internet browser, go to the
following URL:

[http://www.ibm.com/software/network/commserver/|

For more information, refer to Quick Beginnings, which contains a
complete description of both the Personal Communications library and
related publications.

The Personal Communications books are included in the Installation
Image (DVD-ROM) in portable document format (pdf). The books can
be accessed directly from the publications directory of the Personal
Communications Installation Image or from the Launchpad welcome
panel.

To view the Personal Communications documentation using
Launchpad, select View Documentation from the main panel of the
Launchpad. When you click a document link, Adobe Reader will launch
for viewing the books. If Adobe Reader is not detected on your system,
you have the option to install it at this time. After installation of Adobe
Reader is complete, a window opens displaying the books available on
the Installation Image.

Notes:

1. You can copy the books from the Installation Image to a local or
network drive to view at a later time.

2. Quick Beginnings in HTML format is installed during installation of
Personal Communications.

About This Book Xi

http://www.ibm.com/software/network/commserver/

The Personal Communications home page on the Internet has general
product information as well as service information about APARs and
fixes. To get the home page, using an Internet browser such as IBM
Web Explorer, go to the following URL:

http://www.ibm.com/software/network/pcomm/

The complete IBM Dictionary of Computing is available on the World
Wide Web at http://www.ibm.com/networking/nsg/nsgmain.htm.

Support Options

xii

If you determine that you need to contact IBM, you can do any of the following:

* Access the Personal Communications Web page at http://www.ibm.com/|
[software /products/en/pcomm}

* To find the phone number for IBM Software Support, U.S. customers can call
1-800-IBM-4YOU. International customers that have access to the U.S. "800" toll
free numbers can reach the International Support Center by calling
1-800-IBM-4YOU and asking to speak with the International Support Center
(ISC) in Atlanta. International customers without access to the U.S. toll free
numbers can call the ISC directly at 770-863-1234. The ISC's FAX number is
770-863-3030 and is available 24 hours a day.

Subscribing to Support News

To receive Personal Communications support news flashes, complete the following
steps:

1. Go to the IBM support at [http:/ /www.ibm.com /support/mynotifications| and
log in with your IBM Registration ID.

2. In the Product lookup field, type Personal Communications.
3. In the drop down list, click the Subscribe link rendered against the product.

4. Select all types of documents for which you would like to receive notifications,
and click Submit.

Support Assistant

The IBM Support Assistant enables you to easily resolve software questions. The
Support Assistant provides the following components:

e Search
Enable search of the software information database.
e Service

Assists customers who choose to submit a PMR by providing access to the
Electronic Service Request Web site.

* Support Links
A consolidated list of IBM web links, organized by brand and product.

Help desk personnel and Personal Communications administrators might want to
install Support Assistant in order to better support end users. The Support

Assistant can be downloaded from the following address: http://www.ibm.com /|
[software /support/isa/index.html|

System Management Programming

http://www.ibm.com/software/products/en/pcomm
http://www.ibm.com/software/products/en/pcomm
http://www.ibm.com/support/mynotifications
http://www.ibm.com/software/support/isa/index.html
http://www.ibm.com/software/support/isa/index.html

Part 1. Personal Communications and Communications
Server Node Operator Facility

© Copyright IBM Corp. 1989, 2016

2 System Management Programming

Chapter 1. Introduction

This part describes the Node Operator Facility (NOF) API provided by Personal
Communications and Communications Server.

Purpose of the Document

The intent of this book is to:
* Provide a brief overview of the structure of the Node Operator Facility API
* Define the syntax of the signals that flow across the interface.

Personal Communications and Communications Server Node Operator
Facility

The Personal Communications and Communications Server Node Operator Facility
enables communication between the node operator, and the control point (CP) and
logical units (LUs). The Node Operator Facility receives node configuration
information from the operator, which it uses to initializethe control point when the
node is started. The Node Operator Facility also receives requests to query and
display node configuration information. The node operator is able to:

* Define and delete LUs, DLCs, ports, and links

* Activate and deactivate links and sessions

* Query the control point and LUs for database and status information

The node operator can be a human operator working with an interactive display, a
command file accessed by a file interface, or a transaction program. The Node
Operator Facility communicates with the node operator by using a verb interface.

Entry Points

Personal Communications and Communications Server provide a library file that
handles Node Operator Facility verbs.

Node Operator Facility verbs have a straightforward language interface. Your
program fills in fields in a block of memory called a verb control block. Then your
program calls the entry point and passes a pointer to the verb control block. When
its operation is complete, Node Operator Facility returns, having used and then
modified the fields in the verb control block. Your program can then read the
returned parameters from the verb control block.

Following is a list of entry points for Node Operator Facility verbs:
* WinNOEF()

* WinAsyncNOEF()

* WinAsyncNOFEX()

* WinNOFCancel AsyncRequest()

* WinNOFCleanup()

* WIinNOFStartup()

* WinNOFRegisterIndicationSink()

* WinNOFUnregisterIndicationSink()

* WinNOFGetIndication()

© Copyright IBM Corp. 1989, 2016 3

See |Chapter 3, “Node Operator Facility Entry Points,” on page 17| for detailed
descriptions of the entry points.

Verb Control Blocks (VCBs)

Programming Note: The base operating system optimizes performance by
executing some subsystems in the calling application's address space. This means
that incorrect use of local descriptor table (LDT) selectors by application programs
can cause improper operation, or perhaps system failures.Accordingly, application
programs should not perform pointer arithmetic operations that involve changing
the LDT selector field of a pointer.

The segment used for the verb control block (VCB) must be a read/write data
segment. Your program can either declare the VCB as a variable in your program,
allocate it, or suballocate it from a larger segment. It must be sufficiently large to
contain all the fields for the verb your program is issuing.

An application program should not change any part of the verb control block after
it has been issued until the verb completes. When Node Operator Facility finishes
the execution of a verb, it copies a complete, modified VCB back onto the original
block. Therefore, if your program declares a verb control block as a variable,
consider declaring it in static storage rather than on the stack of an internal
procedure.

Fill all reserved and unused fields in each VCB with zeros (X'00"). In fact, it might
be more time-efficient to set the entire verb control block to zeros before your
program assigns the values to the parameters. Setting reserved fields to zeros is
particularly important.

Note: If the VCB is not read/write, or if it is not at least 10 bytes (that is, large
enough to hold the Node Operator Facility primary and secondary return
codes), Node Operator Facility cannot access it, and the base operating
system abnormally ends the process. This termination is recognized as a
general protection fault, processor exception trap D.

Node Operator Facility returns the INVALID_VERB_SEGMENT primary return
code when the VCB is too short or the incorrect type of segment is used.

Writing Node Operator Facility (NOF) Programs

4

Personal Communications and Communications Server provide a dynamic link
library (DLL) file, that handles NOF verbs.

The DLL is reentrant; multiple application processes and threads can call the DLL
concurrently.

NOF verbs have a straightforward language interface. Your program fills in fields
in a block of memory called a verb control block (VCB). Then it calls the NOF DLL
and passes a pointer to the verb control block. When its operation is complete,
NOF returns, having used and then modified the fields in the VCB. Your program
can then read the returned parameters from the verb control block.

[Table 1 on page 5|shows source module usage of supplied header files and libraries
needed to compile and link NOF programs. Some of the header files may include
other required header files.

System Management Programming

Table 1. Header Files and Libraries for NOF

Operating System Header File Library DLL Name

Win32 WINNOEH WINNOEF32.LIB WINNOEF32.DLL

Communications Server SNA API Client Support

This information applies only to Communications Server.
=

—=

Included with Communications Server are a set of clients for the Windows Server

2008 and Windows 8/8.1/10 operating systems. These clients are referred to as
SNA API clients in this book and only support a subset of the full node operator
facility. Specifically, WINNOF is the only API supported on the Windows Server
2008 and Windows 8/8.1/10 clients. The following is a list of the NOF verbs
supported:

« QUERY_LOCAL_LU

« QUERY_LU_0_TO_3

« QUERY_LU_POOL

« QUERY_MODE

« QUERY_MODE_DEFINITION
+ QUERY_PARTNER_LU

« QUERY_PARTNER_LU_DEFINITION
« QUERY_PU

« QUERY_SESSION

« QUERY_TP
 QUERY_TP_DEFINITION

Verbs Supported by Communications Server and Not by Personal
Communications

This information applies only to Communications Server.
=

—

The following list of verbs are supported by Communications Server and not by
Personal Communications.

* DEFINE_DOWNSTREAM_LU

* DEFINE_DOWNSTREAM_LU_RANGE
e DEFINE_DSPU_TEMPLATE
 DELETE_DOWNSTREAM_LU

« DELETE_DOWNSTREAM_LU_RANGE
* DELETE_DSPU_TEMPLATE

* QUERY_ADJACENT_NN

* QUERY_DIRECTORY_STATS

* QUERY_DOWNSTREAM_LU

Chapter 1. Introduction

5

* QUERY_DOWNSTREAM_PU

* QUERY_DSPU_TEMPLATE

* QUERY_HPR_STATS

* QUERY_ISR_SESSION

* QUERY_NN_TOPOLOGY_NODE

* QUERY_NN_TOPOLOGY_STATS

* QUERY_NN_TOPOLOGY_TG

* DOWNSTREAM_LU_INDICATION
* DOWNSTREAM_PU_INDICATION
* ISR_INDICATION

* NN_TOPOLOGY_NODE_INDICATION
* NN_TOPOLOGY_TG_INDICATION

6 System Management Programming

Chapter 2. Overview of the Verbs in This Book

The verb interface described in this book allows your programs to perform most of
the configuration, system management, and node definition functions associated
with a Personal Communications or Communications Server network environment.
This chapter provides an overview of each of these functions and the associated
verbs.

How to Read Verb Descriptions

Chapters 4 through 12 describe the configuration, system management, and attach
manager verbs.

Supplied Parameters

Each verb description has a section that provides a detailed description of the
parameters and any associated parameter values supplied by the program.

In some cases, you must supply a variable value for a parameter.

Returned Parameters

Each verb description has a section that provides a detailed description of the
parameters and any associated parameter values returned to the program.

Return Codes

The configuration, system management, and attach manager verbs described in

this book have return codes associated with them that supply information about
the success of verb execution or that provide error information. These codes are

listed in the “Returned Parameters” section for each verb.

Additional Information
Many of the verb descriptions also contain a section titled “Additional
Information.” This section provides additional useful information about the verb.

Common VCB Fields

This chapter documents the syntax of each verb passed across the Node Operator
Facility API. It also describes the parameters passed in and returned for each verb.

typedef struct nof_hdr
{
unsigned short opcode;
unsigned char reserv2; /* reserved */
unsigned char format;
unsigned short primary rc;
unsigned long secondary_rc;
} NOF_HDR;

Each VCB has a number of common fields. These are listed and described below.

opcode
Verb operation code. This field identifies the verb.

© Copyright IBM Corp. 1989, 2016 7

format
Identifies the format of the VCB. The value that this field must be set to in
order to specify the current version of the VCB is documented individually
under each verb.

primary_rc
Primary return code. Possible values for each verb are listed in each verb
section.

secondary_rc
Secondary return code. This supplements the information provided by the
primary return code.

Verb Summary

The Node Operator Facility API is composed of verbs that can be used to do the
following things:

* Configure node resources

¢ Activate and deactivate links and sessions

* Query information held by the node

* Change the number of sessions

¢ Handle unsolicited indications

* Provide password support

* “ping” a remote LU

* Define, query, and delete CPI-C side information

Node Configuration
The following verbs can be used to define resources:
* DEFINE_ADJACENT_NODE
* DEFINE_CN
* DEFINE_COS
» DEFINE_DEFAULT_PU
* DEFINE_DLC
* DEFINE_DLUR_DEFAULTS
» DEFINE_DOWNSTREAM_LU

DEFINE_DOWNSTREAM_LU is Communications Server only.
=

* DEFINE_DOWNSTREAM_LU_RANGE

E DEFINE_DOWNSTREAM_LU_RANGE is Communications Server only.
—~=

* DEFINE_DSPU_TEMPLATE
DEFINE_FOCAL_POINT
DEFINE_INTERNAL_PU

* DEFINE LOCAL_LU
DEFINE_LS

* DEFINE_LU62_TIMEOUT
DEFINE_LU_0_TO_3
DEFINE_LU_0_TO_3_RANGE

8 System Management Programming

« DEFINE_LU_POOL

* DEFINE_MODE

* DEFINE_PARTNER_LU
e DEFINE_PORT

* DEFINE_TP

The following verbs can be used to delete resources:
* DELETE_ADJACENT_NODE

DELETE_CN

* DELETE_COS

DELETE_DLC

DELETE_DOWNSTREAM_LU

E DELETE_DOWNSTREAM_LU is Communications Server only.
D

s —

 DELETE_DOWNSTREAM_LU_RANGE
E DELETE_DOWNSTREAM_LU_RANGE is Communications Server only.
D

—

 DELETE _DSPU_TEMPLATE
DELETE_FOCAL_POINT
DELETE_INTERNAL_PU
DELETE_LOCAL_LU
DELETE_LS
 DELETE_LU62_TIMEOUT
DELETE_LU_0_TO_3
DELETE_LU_0_TO_3_RANGE
DELETE_LU_POOL
DELETE_MODE

* DELETE_PARTNER_LU
DELETE_PORT
DELETE_TP

Activation and Deactivation
The following verbs are used at link level:
* START_DLC
e START_LS
* START_PORT
* STOP_DLC
¢ STOP_LS
» STOP_PORT

The following verbs are used for dependent LU requestor function:
* START_INTERNAL_PU
¢ STOP_INTERNAL_PU

Chapter 2. Overview of the Verbs in This Book 9

The following verbs are used at session level:
* ACTIVATE_SESSION

* DEACTIVATE_CONV_GROUP

* DEACTIVATE_SESSION

The following verb is used to force a high performance routing (HPR) RTP
connection to switch paths:
PATH_SWITCH

Querying the Node
These verbs return node information in named fields:
* QUERY_DEFAULT_PU
* QUERY_DLUR_DEFAULTS
* QUERY_MDS_STATISTICS
* QUERY_NN_TOPOLOGY_STATS

E QUERY_NN_TOPOLOGY_STATS is Communications Server only.
D

==

* QUERY_NODE
* QUERY_STATISTICS

The following verbs can return one or more units of information:
* QUERY_ADJACENT_NN

* QUERY_ADJACENT_NODE

* QUERY_CN

* QUERY_CN_PORT

* QUERY_COS

QUERY_DEFAULTS

QUERY_DLUS

* QUERY_DOWNSTREAM_PU

E QUERY_DOWNSTREAM_PU is Communications Server only.
D

—

QUERY_DSPU_TEMPLATE

« QUERY_FOCAL_POINT
QUERY_LU_POOL
QUERY_LU62_TIMEOUT
QUERY_MDS_APPLICATION
QUERY_MODE_TO_COS_MAPPING
QUERY_NMVT_APPLICATION
QUERY_PU

QUERY_TP

This information can be thought of as being stored in the form of a list. The verb
can specify a named entry in the list, which is then considered to be a place

10 System Management Programming

marker (or index value) in the list. The list_options field on these verbs specifies
from which point in the list information will be returned.

* If list_options is set to AP_FIRST_IN_LIST, then the fields specifying the index
value will be ignored, and the returned list will start at the beginning.

 If list_options is set to AP_LIST_INCLUSIVE, then the returned list will start
from the specified index value.

 If list_options is set to AP_LIST_FROM_NEXT, then the returned list will start
from the entry after the specified index value.

The index value specifies the starting point for returned information. Once this has
been determined, some of the query verbs also provide additional filtering options
for the returned list. These are specified independently of the index value. Note
that unless specified otherwise, the returned list will be ordered according to IBM's
6611 APPN MIB. (See|Appendix A, “IBM APPN MIB Tables,” on page 633| for
information on how verb parameters map to MIB table entries.)

The number of entries to be returned or the buffer size to be filled is set. (If both
are set, then the verb is returned with the lower of the two specified quantities of
information.) Because the application buffer size typically limits the amount of
information that can be returned, the Node Operator Facility returns additional
information indicating the total amount of buffer space required to return the
requested information, and the total number of entries this represents.

In addition to returning one or more units of information, the following verbs are
also able to return different levels of information. The list_options field specifies
whether summary or detailed information will be returned by including either
AP_DETAIL or AP_SUMMARY in the list_options field. These options are
specified by ORing one of the previous list_options, for example: AP_DETAIL |
AP_FIRST_IN_LIST.

« QUERY_DIRECTORY_LU

« QUERY_DLC
QUERY_DLUR_LU
QUERY_DLUR_PU
QUERY_DOWNSTREAM_LU

QUERY_DOWNSTREAM_LU is Communications Server only.

* QUERY_ISR_SESSION

E QUERY_ISR_SESSION is Communications Server only.
W=

QUERY_LOCAL_LU
QUERY_LOCAL_TOPOLOGY
QUERY_LS

QUERY_LU_0_TO 3
QUERY_MODE
QUERY_MODE_DEFINITION
QUERY_NN_TOPOLOGY_NODE

Chapter 2. Overview of the Verbs in This Book 11

QUERY_NN_TOPOLOGY_NODE is Communications Server only.
=

* QUERY_NN_TOPOLOGY_TG

QUERY_NN_TOPOLOGY_TG is Communications Server only.
=

QUERY_PARTNER_LU

« QUERY_PARTNER_LU_DEFINITION
« QUERY_PORT
QUERY_RTP_CONNECTION
QUERY_SESSION
QUERY_TP_DEFINITION

Session Limit Verbs
e CHANGE_SESSION_LIMIT
e INITIALIZE _SESSION_LIMIT
e RESET SESSION_LIMIT

Unsolicited Indications

Applications displaying node information can use these indications (which are
issued when a change occurs and return summary information only) to trigger the
query verbs (returning detailed information). The node only produces the signals
listed below as unsolicited indications of the named events if there are any
applications registered to receive the information. Applications should therefore
unregister if they no longer require the information.

* DLC_INDICATION
 DLUR_LU_INDICATION

* DLUS_INDICATION

* DOWNSTREAM_LU_INDICATION

DOWNSTREAM_LU_INDICATION is Communications Server only.

)%j
\

« DOWNSTREAM_PU_INDICATION
DOWNSTREAM_PU_INDICATION is Communications Server only.

=

4

* FOCAL_POINT_INDICATION
* ISR_INDICATION

ISR_INDICATION is Communications Server only.

)%j
\

 LOCAL_LU_INDICATION
* LOCAL_TOPOLOGY_INDICATION

12 System Management Programming

LS_INDICATION
LU_0_TO_3_INDICATION
MODE_INDICATION
NN_TOPOLOGY_NODE_INDICATION

g NN_TOPOLOGY_NODE_INDICATION is Communications Server only.
D

s —

* NN_TOPOLOGY_TG_INDICATION
NN_TOPOLOGY_TG_INDICATION is Communications Server only.
&;

—

* PLU_INDICATION
PORT_INDICATION
PU_INDICATION
REGISTRATION_FAILURE
RTP_INDICATION
SESSION_INDICATION
SESSION_FAILURE_INDICATION

The entry points used for indications are:

WinNOFRegisterIndicationSink
Register to receive an indication

WinNOFUnregisterIndicationSink
Unregister from receiving an indication

WinNOFGetIndication
Receive an indication

These indications are passed to any indication sinks that have registered with the
Node Operator Facility. If the component generating the indication is unable to
send it, then it sets the data_lost indicator on the next indication it issues. If the
data_lost flag has been set to AP_YES on an indication, then subsequent data fields
can be set to null. This flag is used to notify the application that a change has
occurred whose details have been lost, indicating that the application should
respond by issuing the appropriate query verb.

Note that the signal LULU_EVENT is also classified as an indication as it is sent
unsolicited by the node to a process registered using the verbs
REGISTER_LULU_EVENT and UNREGISTER_LULU_EVENT. It is not listed
above, since its behavior is significantly different: registration is for an LU-Partner
LU pair, and there is no equivalent of data_lost — these LULU event indications
are generated without fail.

Security Verbs

The following security verbs allow management of passwords for LU_LU
verification or conversation security.

* DEFINE_LU_LU_PASSWORD

* DEFINE_USERID_PASSWORD

e DELETE_LU_LU_PASSWORD

Chapter 2. Overview of the Verbs in This Book 13

14

* DELETE_USERID_PASSWORD

APING Verbs

The APING verb allows a management application to ping a remote LU in the
network.

CPI-C Verbs

The following verbs allow CPI-C side information to be defined, queried, and
deleted.

* DEFINE_CPIC_SIDE_INFO
* DELETE_CPIC_SIDE_INFO
* QUERY_CPIC_SIDE_INFO

Refer to CPI-C Reference for more information about the CPI-C support provided by
Personal Communications and Communications Server.

Attach Manager Verbs

The following verbs can be used to control the attach manager:
e DISABLE_ATTACH_MANAGER

* ENABLE_ATTACH_MANAGER

* QUERY_ATTACH_MANAGER

DLC Processes, Ports, and Link Stations

DLC Processes

Personal Communications or Communications Server can create multiple DLC
processes. Each DLC process is created by Personal Communications or
Communications Server in response to a START_DLC verb issued at the Node
Operator Facility API. Each DLC is responsible for communication over a link, or
set of links, using a specific data link protocol (such as SDLC or Token Ring).

Each DLC process can manage one or more ports. Ports are described below.

Ports

A port represents a unique access point (such as a MAC/SAP address pair) in the
local machine and is associated with a DLC process. Each DLC can have one or
more ports. A port can be one of the following types:

Switched port
Can have one or more adjacent link stations that are active at any one
time. (Note that this differs from the definition in SNA APPN Architecture
Reference.)

Nonswitched port
Can have both point-to-point and multipoint link connections. Adjacent
link stations on a nonswitched link connection must be defined by a Node
Operator Facility component. Multipoint nonswitched links require
primary/secondary relationships to be defined properly on all nodes to
avoid unpredictable results.

SATF port
Uses a shared-access transport facility such as token ring. It allows
connectivity between any pair of link stations attaching to the facility. The

System Management Programming

initial role for all link stations being activated on a token ring must always
be defined as negotiable, so that link activation can be initiated through
any link station.

Note: SATF ports can also be associated with Connection Networks. In this
case, topology updates are used to broadcast the address of the
unique access point.

Link Stations

A link station is associated with a port and represents a connection to an adjacent
node. A port can have multiple link stations. Link stations can be categorized in
the following way:

Defined link station
A link station that has been defined explicitly (using a DEFINE_LS verb).

Dynamic link station
A link station that has been created as a result of activating a dynamic
connection through a connection network. This is also known as a virtual
routing node (VRN).

Implicit link station
A link station that has been created as a result of a call received from a
previously unknown partner node on a switched or SATF port. This type
of port is not defined in SNA APPN Architecture Reference.

Temporary link station
A link station that is created when a CONNECT _IN is received over the
DLC interface on a switched or SATF port. It is either deleted, or becomes
dynamic or implicit, when the remote node identity is determined.

Chapter 2. Overview of the Verbs in This Book 15

16 System Management Programming

Chapter 3. Node Operator Facility Entry Points

This chapter describes the entry points for Node Operator Facility verbs.

© Copyright IBM Corp. 1989, 2016

17

WinNOF()

WinNOF()

This function provides a synchronous entry point for all of the Node Operator
Facility verbs.

Syntax
void WINAPI WinNOF(long vcb,unsigned short vcb size)
Parameters
vcb Pointer to verb control block.
vcb_size

Number of bytes in the verb control block.

Returns
No return value. The primary_rc and secondary_rc fields in the verb control block
indicate any error.

Remarks

This is the main synchronous entry point for the Node Operator Facility APL. This
call blocks until the verb completes.

18 System Management Programming

WinAsyncNOF()

WinAsyncNOF()

This function provides an asynchronous entry point for all of the Node Operator
Facility verbs.

Syntax
HANDLE WINAPI WinAsyncNOF(HWND hWnd,
long vcb,
unsigned short vcb_size)
Parameters

hWnd Window handle to receive completion message.
vcb Pointer to verb control block.

vcb_size
Number of bytes in the verb control block.

Returns

The return value specifies whether the asynchronous request was successful. If the
function was successful, the actual return value is a handle. If the function was not
successful, a zero is returned.

Remarks

Each application thread can only have one outstanding request at a time when
using this entry point.

When the asynchronous operation is complete, the application's window hWnd
receives the message returned RegisterWindowMessage with “WinAsyncNOF” as
the input string. The wParam argument contains the asynchronous task handle
returned by the original function call.

If the function returns successfully, a WinAsyncNOF() message will be posted to
the application when the operation completes or the conversation is canceled.

Note: See also[WinNOFCancelAsyncRequest()| on page

Chapter 3. Node Operator Facility Entry Points 19

WinAsyncNOFEX()

WinAsyncNOFEX()

This function provides an asynchronous entry point for all of the Node Operator
Facility verbs. Use this entry point instead of the blocking calls to allow multiple
verbs to be handled on the same thread.

Syntax
HANDLE WINAPI WinAsyncNOFEx (HANDLE handle,
long vch,
unsigned short vcb_size);
Parameters
handle

Handle of the event that the application will wait on.
vcb Pointer to verb control block.

vcb_size
Number of bytes in the verb control block.

Returns

The return value specifies whether the asynchronous request was successful. If the
function was successful, the actual return value is a handle.

Remarks

This entry point is intended for use with WaitForMultipleObjects in the Win32 APL
For more information about this function, see the programming documentation for
the Win32 APL

When the asynchronous operation is complete, the application is notified by way
of the signaling of the event. Upon signaling of the event, examine the primary
return code and secondary return code for any error conditions.

Note: See also [WinNOFCancel AsyncRequest(){ on page

20 System Management Programming

WinNOFCancelAsyncRequest()

WinNOFCancelAsyncRequest()

This function cancels an outstanding WinAsyncNOF based request.

Syntax

int WINAPI WinNOFCancelAsyncRequest (HANDLE handle);

Parameters

handle
Supplied parameter; specifies the handle of the request to be canceled.

Returns

The return value specifies whether the asynchronous request was canceled. If the
value is zero, the request was canceled. Otherwise the value is:

WNOFALREADY
An error code indicating that the asynchronous request being canceled has
already completed, or the handle was not valid.

Remarks

An asynchronous request previously issued by one of the WinAsyncNOF functions
can be canceled prior to completion by issuing the WinNOFCancelAsyncRequest()
call, specifying the handle returned by the initial function in handle.

Canceling an asynchronous request stops any update to the application verb
control block and stops the application being notified that the verb has completed
(either by way of the window message or event). It does not cancel the underlying
request. To actually cancel the underlying request, the application must issue the
appropriate NOF verb (that is, STOP_LS to cancel START_LS).

Should an attempt to cancel an existing asynchronous WinAsyncNOF routine fail
with an error code of WNOFALREADY, one of two things has occurred. Either the
original routine has already completed and the application has dealt with the
resulting notification, or the original routine has already completed but the
application has not dealt with the completion notification.

Note: See also [WinAsyncNOF()| on page

Chapter 3. Node Operator Facility Entry Points 21

WinNOFCleanup()

WinNOFCleanup()

This function terminates and unregisters an application from the Node Operator
Facility APL

Syntax

BOOL WINAPI WinNOFCleanup(void);

Returns

The return value specifies whether the unregistration was successful. If the value is
not zero, the application was successfully unregistered. The application was not
unregistered if a value of zero is returned.

Remarks

Use WinNOFCleanup() to indicate unregistration of a Node Operator Facility
application from the Node Operator Facility API

WinNOFCleanup unblocks any thread waiting in WinNOFGetIndication. These
return with WNOFNOTREG, (the application is not registered to receive
indication). WinNOFCleanup unregisters the application for all indications.
WinNOFCleanup returns any outstanding verb (synchronous or asynchronous)
with the error AP_CANCELLED. However, the verb completes inside the node.

It is not a requirement to use WinNOFStartup and WinNOFCleanup. However, an
application must be consistent in its use of these calls. You should use both of
them or never use either of them.

Note: See also [WinNOFStartup() on page

22 System Management Programming

WinNOFStartup()

WinNOFStartup()

This function allows an application to specify the version of Node Operator
Facility API required and to retrieve the version of the API supported by the
product. This function can be called by an application before issuing any further
Node Operator Facility API calls to register itself.

Syntax

int WINAPI WinNOFStartup(WORD wVersionRequired,
LPWNOFDATA nofdata);

Parameters

wVersionRequired
Specifies the version of Node Operator Facility API support required. The
high-order byte specifies the minor version (revision) number; the
low-order byte specifies the major version number.

nofdata
Returns the version of Node Operator Facility API and a description of API
implementation.

Returns

The return value specifies whether the application was registered successfully and
whether the Node Operator Facility API implementation can support the specified
version number. If the value is zero, it was registered successfully and the specified
version can be supported. Otherwise, the return value is one of the following
values:

WNOFSYSERROR
The underlying network subsystem is not ready for network communication.

WNOFVERNOTSUPPORTED
The version of Node Operator Facility API support requested is not provided
by this particular implementation.

WNOFBADPOINTER
Incorrect nofdata parameter.

Remarks

This call is intended to help with compatibility of future releases of the APIL. The
current version is 1.0.

It is not a requirement to use WinNOFStartup and WinNOFCleanup. However, an
application must be consistent in its use of these calls. You should use both of
them or never use either of them.

Note: See also [WinNOFCleanup()| on page

Chapter 3. Node Operator Facility Entry Points 23

WinNOFRegisterindicationSink()

WinNOFRegisterindicationSink()

24

This allows the application to register to receive unsolicited indications.

Syntax

BOOL WINAPI WinNOFRegisterIndicationSink(unsigned short indication_opcode,
unsigned short queue_size,
unsigned short #primary_rc,
unsigned long *secondary rc);

Parameters

indication_opcode
The indication to register for.

queue_size
Number of unreceived indications to queue. Zero means use the current
value (the initial default value is set to 10). There is only one queue for all
indications registered by application.

primary_rc
Returned: primary return code

secondary_rc
Returned: secondary return code

Returns

The function returns a value indicating whether the registration was successful. If
the value is not zero, the registration was successful. If the value is zero, the
registration was not successful.

Remarks

Use WinNOFRegisterIndicationSink to register to receive unsolicited indications
of type indication_opcode.

An application must issue a WinNOFRegisterIndicationSink for each type of
indication it wants to receive.

Note: See also [WinNOFUnregisterIndicationSink()| on page [25/and
|[WinNOFGetIndication() on page [26]

System Management Programming

WinNOFUnregisterindicationSink()

WinNOFUnregisterindicationSink()

This allows the application to stop receiving unsolicited indications.

Syntax

BOOL WINAPI WinNOFUnregisterIndicationSink(unsigned short indication_opcode,
unsigned short *primary_rc,
unsigned Tong *secondary rc);

Parameters

indication_opcode
The indication to unregister from.

primary_rc
Returned: primary return code.

secondary_rc
Returned: secondary return code.

Returns

The function returns a value indicating whether the unregistration was successful.
If the value is not zero, the unregistration was successful. If the value is zero, the
unregistration was not successful.

Remarks

Use WinNOFUnregisterIndicationSink to stop receiving unsolicited indications of
type indication_opcode.

An application must issue a WinNOFUnregisterIndicationSink for each type of
indication it wants to stop receiving.

Note: See also [WinNOFRegisterIndicationSink()| on page @ and
|[WinNOFGetIndication()| on page |26}

Chapter 3. Node Operator Facility Entry Points 25

WinNOFGetIndication()

WinNOFGetIndication()

This allows the application to received unsolicited indications.

Syntax

int WINAPI WinNOFGetIndication(long buffer,
unsigned short *buffer_size,
unsigned long timeout);

Parameters
buffer Pointer to a buffer to receive indication.

buffer_size
Size of buffer. Returned: the size of the indication.

timeout
Time to wait for indication in milliseconds.

Returns

The function returns a value indicating whether an indication was received.
0 Indication returned.

WNOFTIMEOUT
Timeout waiting for indication.

WNOFSYSNOTREADY
The underlying network subsystem is not ready for network communication.

WNOFNOTREG
The application is not registered to receive indications.

WNOFBADSIZE
The buffer is too small to receive the indication. Reissue the
WinNOFGetIndication call with a large enough buffer. The size of the
indication is returned in the buffer_size parameter.

WNOFBADPOINTER
Either the buffer or buffer_size parameter is not valid.

WNOFSYSERROR
An unexpected system error has occurred.

Remarks
This is a blocking call, it returns in one of the following circumstances:
* An indication is returned
¢ The timeout expires
* The application issues a WinNOFCleanup call
¢ The product is stopped
* A system error occurs

Note: See also [WinNOFRegisterIndicationSink()| on page 24| and
[WinNOFUnregisterIndicationSink()| on page

26 System Management Programming

Chapter 4. Node Configuration Verbs

The verbs in this chapter are used to define and delete node configuration
information.

© Copyright IBM Corp. 1989, 2016

27

DEFINE_ADJACENT_NODE

DEFINE_ADJACENT_NODE

28

DEFINE_ADJACENT_NODE adds entries to the node directory database for the
resources on an adjacent node.

Note: This verb is not required, and should not be issued, if there is an active path
to the adjacent node using CP-CP sessions.

This verb can be issued on an end node, in which case the node's control point is
added to the root of the directory.

To define the node's control point LU, set the following fields:
* Specify the node's control point name in the cp_name field

* Add an ADJACENT_NODE_LU structure, specifying the control point name in
the fqlu_name field.

Any additional LUs on the node are added to the directory as children of the
node's control point. DEFINE_ADJACENT_NODE can also be used to add LU
definitions to an existing node definition. LUs can be removed in the same way by
issuing the DELETE_ADJACENT_NODE verb. If the verb fails part way through
processing, all new directory entries are removed, leaving the directory as it was
before the verb was issued.

VCB Structure

The DEFINE_ADJACENT_NODE verb contains a variable number of
ADJACENT_NODE_LU overlays. The ADJACENT_NODE_LU structures are
concatenated onto the end of DEFINE_ADJACENT_NODE structure.

typedef struct define_adjacent_node

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code x/
unsigned long secondary rc; /* secondary return code */
unsigned char cp_name[17]; /* CP name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char reserv3[19]; /* reserved */
unsigned short num_of lus; /* number of LUs x/

} DEFINE_ADJACENT NODE;
typedef struct adjacent node Tu

unsigned char wildcard_Tu; /* wildcard LU name */

/* indicator */
unsigned char fqlu_name[17]; /* fully qualified LU name */
unsigned char reservl[6]; /* reserved */

} ADJACENT_NODE_LU;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_ADJACENT_NODE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

System Management Programming

DEFINE_ADJACENT_NODE

cp_name
The fully qualified name of the control point in the adjacent end node. This
should match the name the node sends on its XIDs (if it supports them),
and the adjacent control point name specified on the DEFINE_LS for the
link to the node. The name is 17 bytes long and is right-padded with
EBCDIC spaces. It is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

description
Resource description (returned on QUERY_DIRECTORY_LU). This is a
16-byte (nonzero) string in a locally displayable character set. All 16 bytes
are significant.

num_of_lus
The number of adjacent LU overlays that follow the
DEFINE_ADJACENT_NODE VCB.

adjacent_node_lu.wildcard_lu
Indicates whether the specified LU name is a wildcard name (AP_YES or
AP_NO).

adjacent_node_lu.fqlu_name
The LU name to be defined. If this name is not fully qualified the network
ID of the CP name is assumed. The name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of either one or two
type-A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

When wildcard_lu is TRUE, a dot (.) followed by EBCDIC spaces means a
Full Wildcard (that will match anything). All EBCDIC spaces will match
anything beginning with the Net id of the CP Name.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_CP_NAME

AP_INVALID_LU_NAME
AP_INVALID_WILDCARD_NAME

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_CP_NAME

Chapter 4. Node Configuration Verbs 29

DEFINE_ADJACENT_NODE

AP_INVALID_LU_NAME
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

secondary_rc
AP_MEMORY_SHORTAGE

AP_DIRECTORY_FULL

30 System Management Programming

DEFINE_CN

DEFINE_CN

DEFINE_CN defines a connection network (also known as a virtual routing node
or VRN). The verb provides the network-qualified name of the connection network
along with its transmission group (TG) characteristics. It also provides a list of the
names of the local ports that can access this connection network.

DEFINE_CN can be used to redefine an existing connection network. In particular,
new ports can be added to the list of ports that access the connection network by
issuing another DEFINE_CN. (Ports can be removed in the same way by issuing
the DELETE_CN verb.)

VCB Structure

typedef struct define_cn
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format x/
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char fqcn_name[17]; /* name of connection network =*/
CN_DEF_DATA def_data; /* CN defined data */

unsigned char port_name[8][8];
/* port names */
} DEFINE_CN;

typedef struct cn_def data

{
unsigned char description[RD_LEN];

/* resource description */
unsigned char num_ports; /* number of ports on CN */
unsigned char reservl[16]; /* reserved */
TG_DEFINED_CHARS tg_chars; /* TG characteristics */

} CN_DEF_DATA;

typedef struct tg defined chars

{
unsigned char effect_cap; /+ effective capacity */
unsigned char reservel[5]; /* reserved */
unsigned char connect_cost; /* connection cost */
unsigned char byte cost; /* byte cost x/
unsigned char reserveZ2; /* reserved x/
unsigned char security; /* security */
unsigned char prop_delay; /* propagation delay */
unsigned char modem_class; /* modem class */

unsigned char user_def parm_1; /* user-defined parameter 1 */

unsigned char user_def_parm_2; /+ user-defined parameter 2 */

unsigned char user_def parm 3; /* user-defined parameter 3 */
} TG_DEFINED_CHARS;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_CN

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

Chapter 4. Node Configuration Verbs 31

DEFINE_CN

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

fqen_name
Fully qualified name (17 bytes long) of connection network being defined.
This name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

def_data.description
Resource description (returned on QUERY_CN). This is a 16-byte string in
a locally displayable character set. All 16 bytes are significant.

def data.num_ports
Number of ports associated with this connection network. There can be as
many as eight ports per DEFINE_CN verb, and up to and including 239
ports in total per CN.

def_data.tg chars.effect_cap
Actual units of effective capacity. The value is encoded as a 1-byte
floating-point number, represented by the formula 0.Immm * 2 eeeee,
where the bit representation of the byte is eeeeemmm. Each unit of effective
capacity is equal to 300 bits per second.

def_data.tg_chars.connect_cost
Cost per connect time. Valid values are integer values in the range 0-255,
where 0 is the lowest cost per connect time and 255 is the highest.

def_data.tg_chars.byte_cost
Cost per byte. Valid values are integer values in the range 0-255, where 0
is the lowest cost per byte and 255 is the highest.

def_data.tg_chars.security
Security values as described in the list below:

AP_SEC_NONSECURE
No security exists.

AP_SEC_PUBLIC_SWITCHED_NETWORK
Data transmitted over this connection network will flow over a
public switched network.

AP_SEC_UNDERGROUND_CABLE
Data transmitted over secure underground cable.

AP_SEC_SECURE_CONDUIT
The line is a secure conduit that is not guarded.

AP_SEC_GUARDED_CONDUIT
Conduit is protected against physical tapping.

AP_SEC_ENCRYPTED
Encryption over the line.

AP_SEC_GUARDED_RADIATION
Line is protected against physical and radiation tapping.

def_data.tg_chars.prop_delay
Propagation delay representing the time it takes for a signal to travel the

32 System Management Programming

DEFINE_CN

length of the link, in microseconds. The value is encoded as a 1-byte
floating-point number, represented by the formula 0.Immm * 2 eeeee,
where the bit representation of the byte is eeeeemmm. Default values are
listed below:

AP_PROP_DELAY_MINIMUM
No propagation delay.

AP_PROP_DELAY_LAN
Less than 480 microseconds delay.

AP_PROP_DELAY_TELEPHONE
Between 480 and 49 512 microseconds delay.

AP_PROP_DELAY PKT_SWITCHED_NET
Between 49 512 and 245 760 microseconds delay.

AP_PROP_DELAY_SATELLITE
Longer than 245 760 microseconds delay.

AP_PROP_DELAY_MAXIMUM
Maximum propagation delay.

def_data.tg_chars.modem_class
Reserved. This field should always be set to zero.

def_data.tg_chars.user_def_parm_1
User defined parameter in the range 0-255.

def_data.tg chars.user_def_parm_2
User defined parameter in the range 0-255.

def_data.tg_chars.user_def parm_3
User defined parameter in the range 0-255.

port_name
Array of up to eight port names defined on the connection network. Each
named port must have already been defined by a DEFINE_PORT verb.
Each port name is an 8-byte string in a locally displayable character set
and must match that on the associated DEFINE_PORT verb. Additional
ports can be defined on the connection network by issuing another
DEFINE_CN specifying the new port names.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:
primary_rc

AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_CN_NAME

AP_INVALID_NUM_PORTS_SPECIFIED
AP_INVALID_PORT_NAME

Chapter 4. Node Configuration Verbs 33

DEFINE_CN

AP_INVALID_PORT_TYPE
AP_DEF_LINK_INVALID_SECURITY
AP_EXCEEDS_MAX_ALLOWED

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc

AP_PORT_ACTIVE

AP_CANT_MODIFY_VISIBILITY
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP _UNEXPECTED_SYSTEM_ERROR

34 System Management Programming

DEFINE_COS

DEFINE_COS

DEFINE_COS adds a class-of-service definition. The DEFINE_COS verb can also be
used to modify any fields in a previously defined COS.

The definition provides node and TG rows. These rows associate a range of node
and TG characteristics with weights that are used for route calculation. The lower

the weight the more favorable the route.

VCB Structure

The DEFINE_COS verb contains a variable number of cos_tg_row and
cos_node_row overlays. The cos_tg_row structures are concatenated onto the end

of DEFINE_COS (and ordered in ascending weight) and are followed by the
cos_node_row structures (also ordered in ascending weight).

typedef struct define_cos

{

unsigned short opcode;

unsigned char
unsigned char

reserve;
format;

unsigned short primary_rc;

unsigned Tong
unsigned char
unsigned char

unsigned char
unsigned char

unsigned char
unsigned char

} DEFINE_COS;
typedef struct cos_node_row

{

secondary_rc;
cos_name[8];

/*
/*
/*
/*
/*
/*

description[RD_LEN];

/*

verb operation code

reserved
format

primary return code
secondary return code
class-of-service name

resource description

transmission_priority;

reserv3[9];

num_of_node_rows;
num_of tg rows;

COS_NODE_STATUS minimum;
COS_NODE_STATUS maximum;

unsigned char
unsigned char

} COS_NODE_ROW;
typedef struct cos_node_status

{

unsigned char
unsigned char
unsigned char

} COS_NODE_STATUS;
typedef struct cos_tg_row

{

weight;
reservl;

rar;
status;
reservl[2];

TG_DEFINED_CHARS minimum;
TG_DEFINED_CHARS maximum;

unsigned char
unsigned char

} COS_TG_ROW;
typedef struct tg_defined_chars

{

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

weight;
reservl;

effect_cap;
reservel[5];
connect_cost;
byte cost;
reservez;
security;
prop_delay;
modem_class;

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*

transmission priority

reserved

number of node rows
number of TG rows

minimum
max
weight
reserved

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

route additional resistance =/

node status.
reserved

minimum
maximum
weight
reserved

effective capacity

reserved

cost per connect time

cost per byte
reserved
security

propagation delay

modem class

Chapter 4. Node Configuration Verbs

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

35

DEFINE_COS

unsigned char user_def parm_1; /* user-defined parameter 1 */

unsigned char user_def_parm_2; /* user-defined parameter 2 */

unsigned char user_def parm_3; /* user-defined parameter 3 */
} TG_DEFINED_CHARS;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_COS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

cos_name
Class-of-service name. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.

description
Resource description (returned on QUERY_COS). This is a 16-byte string in
a locally displayable character set. All 16 bytes are significant.

transmission_priority
Transmission priority. This is set to one of the following values:

AP_LOW
AP_MEDIUM
AP_HIGH
AP_NETWORK

num_of_node_rows
Number of node row overlays that follow the DEFINE_COS VCB. The
maximum is 8. Each node row contains a set of minimum node
characteristics, a set of maximum node characteristics, and a weight. When
computing the weights for a node, its characteristics are checked against
the minimum and maximum characteristics defined for each node row. The
node is then assigned the weight of the first node row, which confines all
the node's characteristics within the limits specified. If the node
characteristics do not satisfy any of the listed node rows, the node is
considered unsuitable for this COS, and is assigned an infinite weight.
Note that the node rows must be concatenated in ascending order of
weight.

num_of_tg_rows
Number of TG row overlays that follow the node row overlays. The
maximum is 8. Each TG row contains a set of minimum TG characteristics,
a set of maximum TG characteristics, and a weight. When computing the
weights for a TG, its characteristics are checked against the minimum and
maximum characteristics defined for each TG row. The TG is then assigned
the weight of the first TG row, which confines all the TG's characteristics
within the limits specified. If the TG characteristics do not satisfy any of
the listed TG rows, the TG is considered unsuitable for this COS, and is
assigned an infinite weight. Note that the TG rows must be concatenated
in ascending order of weight.

cos_node_row.minimum.rar
Route additional resistance minimum. Values must be in the range 0-255.

36 System Management Programming

DEFINE_COS

cos_node_row.minimum.status
Specifies the minimum congestion status of the node. This can be one of
the following values:

AP_UNCONGESTED
The node is not congested.

AP_CONGESTED
The number of ISR sessions is greater than the
isr_sessions_upper_threshold.

cos_node_row.maximum.rar
Route additional resistance maximum. Values must be in the range 0-255.

cos_node_row.maximum.status
Specifies the maximum congestion status of the node. This can be one of
the following values:

AP_UNCONGESTED
The node is not congested.

AP_CONGESTED
The number of ISR sessions is greater than the
isr_sessions_upper_threshold.

cos_node_row.weight
Weight associated with this node row. Values must be in the range 0-255.

cos_tg_row.minimum.effect_cap
Minimum limit for actual units of effective capacity. The value is encoded
as a 1-byte floating-point number, represented by the formula 0.Immm * 2
eeeee, where the bit representation of the byte is eeeeemmm. Each unit of
effective capacity is equal to 300 bits per second.

cos_tg_row.minimum.connect_cost
Minimum limit for cost per connect time. Valid values are integer values in
the range 0-255, where 0 is the lowest cost per connect time and 255 is the
highest.

cos_tg_row.minimum.byte_cost
Minimum limit for cost per byte. Valid values are integer values in the
range 0-255, where 0 is the lowest cost per byte and 255 is the highest.

cos_tg_row.minimum.security
Minimum limits for security values as described in the list below:

AP_SEC_NONSECURE
No security exists.

AP_SEC_PUBLIC_SWITCHED_NETWORK
Data transmitted over this connection network will flow over a
public switched network.

AP_SEC_UNDERGROUND_CABLE
Data transmitted over secure underground cable.

AP_SEC_SECURE_CONDUIT
The line is a secure conduit that is not guarded.

AP_SEC_GUARDED_CONDUIT
Conduit is protected against physical tapping.

AP_SEC_ENCRYPTED
Encryption over the line.

Chapter 4. Node Configuration Verbs 37

DEFINE_COS

AP_SEC_GUARDED_RADIATION
Line is protected against physical and radiation tapping.

cos_tg_row.minimum.prop_delay
Minimum limits for propagation delay representing the time it takes for a
signal to travel the length of the link, in microseconds. The value is
encoded as a 1-byte floating-point number, represented by the formula
0.Immm * 2 eeeee, where the bit representation of the byte is eeeeemmm.
Default values are listed below:

AP_PROP_DELAY_MINIMUM
No propagation delay.

AP_PROP_DELAY_LAN
Less than 480 microseconds delay.

AP_PROP_DELAY_TELEPHONE
Between 480 and 49 512 microseconds delay.

AP_PROP_DELAY_PKT_SWITCHED_NET
Between 49 512 and 245 760 microseconds delay.

AP_PROP_DELAY_SATELLITE
Longer than 245 760 microseconds delay.

AP_PROP_DELAY_MAXIMUM
Maximum propagation delay.

cos_tg_row.minimum.modem_class
Reserved. This field should always be set to zero.

cos_tg_row.minimum.user_def_parm_1
Minimum limit for user-defined parameter in the range 0-255.

cos_tg row.minimum.user_def parm_2
Minimum limit for user-defined parameter in the range 0-255.

cos_tg row.minimum.user_def_parm_3
Minimum limit for user-defined parameter in the range 0-255.

cos_tg_row.maximum.effect_cap
Maximum limit for actual units of effective capacity. The value is encoded
as a 1-byte floating-point number, represented by the formula 0.lmmm * 2
eeeee, where the bit representation of the byte is eeeeemmm. Each unit of
effective capacity is equal to 300 bits per second.

cos_tg_row.maximum.connect_cost
Maximum limit for cost per connect time. Valid values are integer values in
the range 0-255, where 0 is the lowest cost per connect time and 255 is the
highest.

cos_tg row.maximum.byte_cost
Maximum limit for cost per byte. Valid values are integer values in the
range 0-255, where 0 is the lowest cost per byte and 255 is the highest.

cos_tg_row.maximum.security
Maximum limits for security values as described in the list below:

AP_SEC_NONSECURE
No security exists.

AP_SEC_PUBLIC_SWITCHED_NETWORK
Data transmitted over this connection network will flow over a
public switched network.

38 System Management Programming

DEFINE_COS

AP_SEC_UNDERGROUND_CABLE
Data transmitted over secure underground cable.

AP_SEC_SECURE_CONDUIT
The line is a secure conduit that is not guarded.

AP_SEC_GUARDED_CONDUIT
Conduit that is protected against physical tapping.

AP_SEC_ENCRYPTED
Encryption over the line.

AP_SEC_GUARDED_RADIATION
Line is protected against physical and radiation tapping.

cos_tg row.maximum.prop_delay
Maximum limits for propagation delay representing the time it takes for a
signal to travel the length of the link, in microseconds. The value is
encoded as a 1-byte floating-point number, represented by the formula
0.Immm * 2 eeeee, where the bit representation of the byte is eeeeemmm.
Default values are listed below:

AP_PROP_DELAY_MINIMUM
No propagation delay.

AP_PROP_DELAY_LAN
Less than 480 microseconds delay.

AP_PROP_DELAY_TELEPHONE
Between 480 and 49 512 microseconds delay.

AP_PROP_DELAY_PKT_SWITCHED_NET
Between 49 512 and 245 760 microseconds delay.

AP_PROP_DELAY_SATELLITE
Longer than 245 760 microseconds delay.

AP_PROP_DELAY_MAXIMUM
Maximum propagation delay.

cos_tg_row.maximum.modem_class
Reserved. This field should always be set to zero.

cos_tg_row.maximum.user_def_parm_1
Maximum limit for user-defined parameter in the range 0-255.

cos_tg_row.maximum.user_def_parm_2
Maximum limit for user-defined parameter in the range 0-255.

cos_tg_row.maximum.user_def_parm_3
Maximum limit for user-defined parameter in the range 0-255.

cos_tg_row.weight
Weight associated with this TG row.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

Chapter 4. Node Configuration Verbs 39

DEFINE_COS

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_COS_NAME

AP_INVALID_NUMBER_OF_NODE_ROWS
AP_INVALID_NUMBER_OF_TG_ROWS
AP_NODE_ROW_WGT_LESS_THAN_LAST
AP_TG_ROW_WGT_LESS_THAN_LAST

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_COS_TABLE_FULL
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

40 System Management Programming

DEFINE_DEFAULT_PU

DEFINE_DEFAULT_PU

DEFINE_DEFAULT_PU allows the user to define, redefine, or modify any field of a
default PU. It also allows the user to delete the default PU, by specifying a null PU
name. If a PU name is not specified explicitly on a TRANSFER_MS_DATA verb,
then the management services information carried on the TRANSFER_MS_DATA is
sent on the default PU's session with the host SSCP. For more information about
this see [Chapter 15, “Management Services Verbs,” on page 617

VCB Structure

typedef struct define_default pu
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code =*/
unsigned long secondary_rc; /* secondary return code */
unsigned char pu_name[8]; /* PU name */

unsigned char description[RD_LEN];
/* resource description =/
unsigned char reserv3[16]; /* reserved */
} DEFINE_DEFAULT_PU;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_DEFAULT_PU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

pu_name
Name of local PU that will serve as the default. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

description
Resource description (returned on QUERY_DEFAULT_PU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

Chapter 4. Node Configuration Verbs 41

DEFINE_DEFAULT_PU

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

42 System Management Programming

DEFINE_DEFAULTS

DEFINE_DEFAULTS

DEFINE_DEFAULTS allows the user to define or redefine default actions of the
node.

VCB Structure

typedef struct define_defaults
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */

unsigned long secondary rc; /* secondary return code */
DEFAULT_CHARS default_chars; /* default information x/
} DEFINE_DEFAULTS;

typedef struct default_chars
{
unsigned char description[RD_LEN];
/* resource description =/

unsigned char mode name[8]; /* default mode name */
unsigned char implicit_plu_forbidden;
/* disallow implicit */
/* PLUs? */
unsigned char specific_security codes;
/* generiuc security */
/* sense codes */
unsigned short 1imited_timeout;/* timeout for Timited =/
/* sessions */
unsigned char reserv[244]; /* reserved */

} DEFAULT_CHARS;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_DEFAULTS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

default_chars.description
Resource description (returned on QUERY_DEFAULTS). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

default_chars.mode_name
Name of the mode that will serve as the default. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

default_chars.implicit_plu_forbidden
Controls whether the Program puts implicit definitions in place for
unknown Partner LUs (AP_YES or AP_NO).

default_chars.specific_security_codes
Controls whether the Program uses specific sense codes on a security
authentication or authorization failure (AP_YES or AP_NO). Note, specific
sense codes will only be returned to those partner LUs that have reported
support for them on the session.

Chapter 4. Node Configuration Verbs 43

DEFINE_DEFAULTS

default_chars.limited_timeout
Specifies the timeout after which free limited-resource conwinner sessions
will be deactivated. Range 0 to 65535 seconds.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb specifies a default mode that is not valid (for example, not EBCDIC A),
or is valid but has not been defined, the Program returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_MODE_NAME

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

The effect of redefinition of each field is as follows:

description
The redefinition takes effect immediately. The updated description is
returned on subsequent QUERY_DEFAULT verbs.

mode_name
The effect of a redefinition applies to all subsequent implicit mode
definitions, for example, the updated mode serves as the default mode.
The effect of a redefinition on a previously unknown mode (for example,
one that had inherited the previous default mode characteristics) is
identical to a redefinition of the unknown mode. For example, if the
default mode is #INTER, and the Program receives a bIND for (an
unknown) MODE], the effect on MODEI of the default mode subsequently
being redefined to #BATCH should be identical to the effect of a
DEFINE_MODE(MODE]1) specifying the mode characteristics of #BATCH.

implicit_plu_forbidden
The redefinition takes effect immediately. All subsequent implicit PLU
definitions succeed or fail depending on the updated value of this field.

specific_security_codes
The redefinition takes effect immediately.

44 System Management Programming

DEFINE_DEFAULTS

limited_timeout
The updated value is used for all new session established after the
redefinition. The old value is used for existing sessions.

Chapter 4. Node Configuration Verbs 45

DEFINE_DLC

DEFINE_DLC

DEFINE_DLC defines a new DLC or modifies an existing DLC. This verb defines
the DLC name, which is unique throughout the node, and some DLC-specific data,
which is concatenated to the basic structure. This data is used during initialization
of the DLC, and the format is specific to the DLC type (such as Token Ring). Only
the DLC-specific data appended to the verb can be modified using the
DEFINE_DLC verb. To do this, a STOP_DLC verb must first be issued so that the
DLC is in a reset state.

See ["DLC Processes, Ports, and Link Stations” on page 14| for more information
about the relationship between DLCs, ports and link stations.

VCB Structure

typedef struct define_dlc
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dlc_name[8]; /* name of DLC */
DLC_DEF_DATA def data; /* DLC defined data */

} DEFINE_DLC;

typedef struct dlc_def_data
{

DESCRIPTION description; /* resource description */
unsigned char dlc_type; /* DLC type */
unsigned char neg_ls_supp; /* negotiable LS support */
unsigned char port_types; /* allowable port types x/
unsigned char hpr_only; /* DLC only supports HPR Tinks:*/
unsigned char reserv3; /* reserved */
unsigned char retry flags; /* conditions for automatic */

/* retries */

unsigned short max_activation_attempts;
/* how many automatic retries? x/
unsigned short activation_delay_timer;

/* delay between automatic */
/* retries */
unsigned char reserv4[4]; /* reserved */

unsigned short dlc_spec_data_len; /* Length of DLC specific data */
} DLC_DEF_DATA;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_DLC

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

46 System Management Programming

DEFINE_DLC

Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

dlc_name

Name of the DLC. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant and must be set. For OEM devices, this name
is manufacturer-specific. Valid values are LAN, SDLC, AnyNet®, or X25

(padded to 8 chars with spaces).

def_data.description

Resource description (returned on QUERY_DLC). This is a 16-byte string in
a locally displayable character set. All 16 bytes are significant.

def_data.dlc_type

Type of the DLC.Personal Communications and Communications Server
support the following types:

AP_ANYNET
AP_LLC2
AP_OEM_DLC
AP_SDLC
AP_X25

For EEDLC, use AP_OEM_DLC.

def_data.neg_ls_supp

Specifies whether the DLC supports negotiable link stations (AP_YES or
AP_NO). If the dlc_type is AP_ANYNET, then only AP_YES is supported.

def_data.port_types

Specifies the allowable port types for the supplied dlc_type. The value
corresponds to one or more of the following values ORed together.

AP_PORT_NONSWITCHED

AP_PORT_SWITCHED
AP_PORT_SATF

Use the following table to set the fields for the corresponding DLC type.

Table 2. Port Types for DLC Types

DLC Type Port Type

AP_ANYNET AP_PORT_SATF

AP_LLC2 AP_PORT_SATF

AP_OEM_DLC AP_PORT_SWITCHED or
AP_PORT_NONSWITCHED

AP_SDLC AP_PORT_SWITCHED or
AP_PORT_NONSWITCHED

AP_X25 AP_PORT_SWITCHED or
AP_PORT_NONSWITCHED

def_data.hpr_only

This field specifies whether the DLC only supports HPR links. This must
be set to AP_YES for HPR over IP links.

Chapter 4. Node Configuration Verbs

47

DEFINE_DLC

AP_YES
AP_NO

def_data.retry_flags

This field specifies the conditions under which link stations are subject to
automatic retry. It is a bit field, and may take any of the following values
bit-wise ORed together.

AP_RETRY_ON_START
Link activation will be retried if no response is received from the
remote node when activation is attempted. If the underlying port is
inactive when activation is attempted, the Program will attempt to
activate it.

AP_RETRY_ON_FAILURE
Link activation will be retried if the link fails while active or
pending active. If the underlying port has failed when activation is
attempted, the Program attempts to activate it.

AP_RETRY_ON_DISCONNECT
Link activation will be retried if the link is stopped normally by
the remote node.

AP_DELAY_APPLICATION_RETRIES
Link activation retries, initiated by applications (using START_LS
or on-demand link activation) will be paced using the
activation_delay_timer.

AP_INHERIT_RETRY
This flag has no effect.

def_data.max_activation_attempts

This field has no effect unless at least one flag is set in DEFINE_LS in
def_data.retry_flags, def_data.max_activation_attempts on DEFINE_LS is
set to AP_USE_DEFAULTS, and def_data.max_activation_attempts on
DEFINE_PORT is set to AP_USE_DEFAULTS.

This field specifies the number of retry attempts the Program allows when
the remote node is not responding, or the underlying port is inactive. This
includes both automatic retries and application-driven activation attempts.

If this limit is ever reached, no further attempts are made to automatically
retry. This condition is reset by STOP_LS, STOP_PORT, STOP_DLC or a
successful activation. START_LS or OPEN_LU_SSCP_SEC_RQ results in a
single activation attempt, with no retry if activation fails.

Zero means no limit. The value AP_USE_DEFAULTS means no limit.

def_data.activation_delay_timer

This field has no effect unless at least one flag is set in DEFINE_LS in
def_data.retry_flags, def_data.max_activation_attempts on DEFINE_LS is
set to AP_USE_DEFAULTS, and def_data.max_activation_attempts on
DEFINE_PORT is set to AP_USE_DEFAULTS.

This field specifies the number of seconds that the Program waits between
automatic retry attempts, and between application-driven activation
attempts if the AP_DELAY_APPLICATION_RETRIES bit is set in
def_data.retry_flags.

The value of zero or AP_USE_DEFAULTS results in the use of default
timer duration of thirty seconds.

48 System Management Programming

DEFINE_DLC

def_data.dlc_spec_data_len
This field should always be set to zero.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DLC_NAME

AP_INVALID_DLC_TYPE
AP_INVALID_RETRY_FLAGS
AP_INVALID_PORT_TYPE
AP_HPR_NOT_SUPPORTED

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc

AP_DLC_ACTIVE

AP_INVALID_DLC_TYPE
AP_CANT_MODIFY_VISIBILITY

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 49

DEFINE_DLUR_DEFAULTS

DEFINE_DLUR_DEFAULTS

50

DEFINE_DLUR_DEFAULTS allows the user to define, redefine, or revoke a default
dependent LU server (DLUS) and a backup default DLUS. The default DLUS name
is used by DLUR when it initiates SSCP-PU activation for PUs that do not have an
explicitly specified associated DLUS. If a DLUS name is not specified explicitly on

the DEFINE_DLUR_DEFAULTS verb then the current default (or backup DLUS) is

revoked.

VCB Structure

typedef struct define_dlur defaults
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */

unsigned char description[RD_LEN];
/* resource description =/

unsigned char dlus_name[17]; /* DLUS name */
unsigned char bkup_dlus_name[17]; /* Backup DLUS name */
unsigned char reserv3; /* reserved */
unsigned short dlus_retry timeout; /* DLUS Retry Timeout */
unsigned short dlus_retry Timit; /* DLUS Retry Limit */
unsigned char reserv4[16]; /* reserved */

} DEFINE_DLUR DEFAULTS;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_DLUR_DEFAULTS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

description
Resource description. This is a 16-byte string in a locally displayable
character set. All 16 bytes are significant.

dlus_name
Name of the DLUS node that will serve as the default. This should be set
to all zeros or a 17-byte string composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot, which is right-padded with
EBCDIC spaces. (Each name can have a maximum length of 8 bytes with
no embedded spaces.) If this field is set to all zeros, the current default
DLUS is revoked.

bkup_dlus_name
Name of the DLUS node that will serve as the backup default. This should
be set to all zeros or a 17-byte string composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot, which is right-padded
with EBCDIC spaces. (Each name can have a maximum length of 8 bytes
with no embedded spaces.) If this field is set to all zeros, the current
backup default DLUS is revoked.

dlus_retry_timeout
Interval in seconds between second and subsequent attempts to contact a

System Management Programming

DEFINE_DLUR_DEFAULTS

DLUS. The interval between the initial attempt and the first retry is always
one second. If zero is specified, the default value of 5 seconds is used.

dlus_retry_limit
Maximum number of retries after an initial failure to contact a DLUS. If
zero is specified, the default value of 3 is used. If X'FFFF' is specified,
Personal Communications or Communications Server will retry
indefinitely.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:
primary_rc

AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_DLUS_NAME

AP_INVALID_BKUP_DLUS_NAME
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 51

DEFINE_DOWNSTREAM_LU

DEFINE_DOWNSTREAM_LU

E This verb applies only to Communications Server.
p;

—

The DEFINE_DOWNSTREAM_LU verb is used for PU concentration. When PU
concentration is used, downstream LUs are able to communicate with an upstream
host. To do this, Communications Server maps each downstream LU to a
dependent local LU, referred to as the host LU.

DEFINE_DOWNSTREAM_LU defines a new downstream LU and cannot be used
to modify an existing definition. The downstream LU is mapped to the specified
host LU (defined using the DEFINE_LU_0_TO_3 verb). The host LU can also be
specified in terms of an LU pool.

When DEFINE_DOWNSTREAM_LU is issued for an existing downstream LU
definition, the definition must be identical. If the downstream link is active and the
downstream LU is inactive, the verb will be returned as successful and a
reactivation attempt is made (although this may not be successful). If the
downstream is not active or the downstream LU is already active, the verb failed.

The processing of the reactivation attempt depends on the state of the specified
host LU.

e If the host LU is active, then the ACTLU is resent to the downstream LU
immediately.

e If the host LU is inactive, the node waits for the host LU to become active before
sending the ACTLU to the downstream LU. The node attempts to activate the
link to the host if it is not active (this will not be successful if the host link
cannot be activated automatically).

VCB Structure

typedef struct define_downstream_ lu

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dslu_name[8]; /* Downstream LU name */
DOWNSTREAM_LU_DEF_DATA def data; /* defined data */

} DEFINE_DOWNSTREAM_LU;
typedef struct downstream_lu_def_data

unsigned char description[RD_LEN];

/* resource description */
unsigned char nau_address; /* Downstream LU NAU address x/
unsigned char dspu_name[8]; /* Downstream PU name */
unsigned char host_Tu name[8]; /* Host LU or Pool name */

unsigned char allow_timeout; /* Allow timeout of host LU? =/
unsigned char delayed Togon; /* Allow delayed logon to */
/* host LU */
unsigned char reserv2[6]; /* reserved */
} DOWNSTREAM_LU_DEF_DATA;

Supplied Parameters
The application supplies the following parameters:

52 System Management Programming

DEFINE_DOWNSTREAM_LU

opcode
AP_DEFINE_DOWNSTREAM_LU

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

dslu_name
Name of the downstream LU that is being defined. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

def_data.description
Resource description (returned on QUERY_DOWNSTREAM_LU). The
length of this field should be a multiple of four bytes, and not zero.

def_data.nau_address
Network addressable unit address of the DOWNSTREAM LU. This must
be in the range 1-255.

def data.dspu_name
Name of the DOWNSTREAM PU (as specified on the DEFINE_LS). This is
an 8-byte alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

def_data.host_lu_name
Name of the host LU or host LU pool that the downstream LU is mapped
to. This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

def data.allow_timeout
Specifies whether the Program is allowed to time-out host LUs used by
this dowstream LU if the session is left inactive for the timeout period
specified on the host LU definition (AP_YES or AP_NO).

def_data.delayed_logon
Specifies whether the Program should delay connecting the downstream
LU to the host LU until the first data is received from the dowstream LU.
Instead, a simulated logon screen is sent to the downstream LU (AP_YES
or AP_NO).

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:
primary_rc

AP_OK
If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

Chapter 4. Node Configuration Verbs 53

DEFINE_DOWNSTREAM_LU

54

secondary_rc
AP_INVALID_DNST_LU_NAME

AP_INVALID_NAU_ADDRESS

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP _INVALID_PU _NAME

AP_INVALID_PU_TYPE
AP_PU_NOT_DEFINED
AP_LU_ALREADY_DEFINED

AP_LU NAU_ADDR_ALREADY_DEFD
AP_INVALID_HOST LU _NAME
AP_LU_NAME_POOL_NAME_CLASH
AP_PU_NOT_ACTIVE
AP_LU_ALREADY_ACTIVATING
AP_LU_DEACTIVATING
AP_LU_ALREADY_ACTIVE
AP_CANT_MODIFY_VISIBILITY
AP_INVALID_ALLOW_TIMEOUT
AP_INVALID_DELAYED_LOGON
AP_DELAYED VERB_PENDING

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

System Management Programming

DEFINE_DOWNSTREAM_LU_RANGE

DEFINE_DOWNSTREAM_LU_RANGE

E This verb applies only to Communications Server.
p

=

The DEFINE_DOWNSTREAM_LU_RANGE verb is used for PU concentration.
When PU concentration is used, downstream LUs are able to communicate with an
upstream host. To do this, Communications Server maps each downstream LU to a
dependent local LU, referred to as the host LU.

DEFINE_DOWNSTREAM_LU_RANGE allows the definition of multiple
downstream LUs within a specified NAU range (but cannot be used to modify an
existing definition). The node operator provides a base name and an NAU range.
The LU names are generated by combining the base name with the NAU
addresses.

For example, a base name of LUNME combined with an NAU range of 1 to 4
would define the LUs LUNMEO01, LUNME(002, LUNMEO003, and LUNMEQ04. A
base name of less than five non-pad characters results in LU names of less than
eight non-pad characters. Communications Server then right-pads these to eight
characters.

Each downstream LU is mapped to the specified host LU (defined using the
DEFINE_LU_0_TO_3 verb).

VCB Structure

typedef struct define_downstream Tu_range

{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */

unsigned char dslu_base name[5];/* Downstream LU base name %/
unsigned char description[RD_LEN];

/* resource description */
unsigned char min_nau; /* min NAU address in range =/
unsigned char max_nau; /* max NAU address in range =*/
unsigned char dspu_name[8]; /* Downstream PU name %/
unsigned char host_Tu_name[8]; /* Host LU or pool name */
unsigned char allow timeout; /* Allow timeout of host LU? =/
unsigned char delayed_Togon; /* Allow delayed logon to the =*/

/* host LU */
unsigned char reserv4[6]; /* reserved */

} DEFINE_DOWNSTREAM_LU_RANGE;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_DOWNSTREAM_LU_RANGE

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following;:

Chapter 4. Node Configuration Verbs 55

DEFINE_DOWNSTREAM_LU_RANGE

56

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

dslu_base_name
Base name for downstream LU name range. This is a 5-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. This base name is appended with three type-A EBCDIC
numeric characters, representing the decimal value of the NAU address,
for each LU in the NAU range.

description
Resource description (returned on QUERY_DOWNSTREAM_LU). The
length of this field should be a multiple of four bytes, and not zero.

min_nau
Minimum NAU address in the range. This can be from 1 to 255 inclusive.

max_nau
Maximum NAU address in the range. This can be from 1 to 255 inclusive.

dspu_name
Name of the DOWNSTREAM PU (as specified on the DEFINE_LS). This is
an 8-byte alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

host_lu_name
Name of the host LU or host LU pool that all the downstream LUs within
the range are mapped to. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.

allow_timeout
Specifies whether the Program is allowed to time-out host LUs used by
this downstream LU if the session is left inactive for the timeout period
specified on the host LU definition (AP_YES or AP_NO).

delayed_logon
Specifies whether the Program should delay connection of the downstream
LU to the host LU until the first data is received from the downstream LU.
Instead, a simulated logon screen will be sent to the downstream LU
(AP_YES or AP_NO).

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:
primary_rc

AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DNST_LU_NAME

System Management Programming

DEFINE_DOWNSTREAM_LU_RANGE

AP_INVALID_NAU_ADDRESS
AP_INVALID_ALLOW_TIMEOUT
AP_INVALID_DELAYED_LOGON

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_LU_NAME_POOL_NAME_CLASH

AP_LU_ALREADY_DEFINED
AP_INVALID_HOST_LU_NAME
AP_PU_NOT_DEFINED
AP_INVALID_PU_NAME
AP_INVALID_PU_TYPE
AP_LU_NAU_ADDR_ALREADY_DEFD
AP_CANT_MODIFY_VISIBILITY
AP_DELAYED_VERB_PENDING

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 57

DEFINE_DSPU_TEMPLATE

DEFINE_DSPU_TEMPLATE

E This verb applies only to Communications Server.
p;

—

This verb is used for PU concentration. When PU concentration is used,
downstream LUs are able to communicate with an upstream host. To do this,
Communications Server maps each downstream LU to a dependent local LU,
referred to as the host LU. DEFINE_DSPU_TEMPLATE defines a template for the
downstream LUs which are present on a group of downstream workstations. This
template is used to put in place definitions for the downstream LUs when a
workstation connects into Communications Server over an implicit link (one not
previously defined). These templates are referred to by the implicit_dspu_template
field on the DEFINE_PORT verb. DEFINE_DSPU_TEMPLATE can either be used to
define a new template or to modify an existing template (although the existing
instances of the modified template is not affected).

VCB Structure

typedef struct define_dspu_template

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char template name[8]; /* name of template */
unsigned char description; /* resource description */
unsigned char modify_template; /* Modify existing template? =/
unsigned char reservl[11]; /* reserved */
unsigned short max_instance; /* Max active template */

/* instances */

unsigned short num_of dslu_templates;
/* number of DSLU templates =*/
} DEFINE_DSPU TEMPLATE;

typedef struct dslu_template
{

unsigned char min_nau; /* min NAU address in range =*/
unsigned char max_nau; /* max NAU address in range =/
unsigned char allow_timeout; /* Allow timeout of host LU? */
unsigned char delayed Togon; /% Allow delayed logon to */

/* host LU */
unsigned char reservl[8]; /* reserved */
unsigned char host_Tu[8]; /* host LU or pool name */

} DSLU_TEMPLATE;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_DSPU_TEMPLATE

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

58 System Management Programming

DEFINE_DSPU_TEMPLATE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

template_name
Name of the DSPU template. (This corresponds to the name specified in
the implicit_dspu_template field on PORT_DEF_DATA). This is an 8_byte
string in a locally-displayable character set. All 8 bytes are significant and
must be set.

description
Resource description (returned on QUERY_DSPU_TEMPLATE). The length
of this should be a multiple of four bytes, and nonzero.

modify_template
Specifies whether this verb should add additional DSLU templates to an
existing DSPU template or should replace an existing DSPU template
(AP_MODIFY_DSPU_TEMPLATE or AP_REPLACE_DSPU_TEMPLATE).

If modify template is set to AP_MODIFY_DSPU_TEMPLATE and
the named DSPU template does not exist, then it will be created.

If modify_template is set to AP_MODIFY_DSPU_TEMPLATE and
the named DSPU template does not exist, then appended DSLU
templates are added to the existing DSPU template.

If modify_template is set to AP_REPLACE_DSPU_TEMPLATE,
then a new template is created. This can be from 0 to 65535
inclusive, where 0 means no limit.

max_instance
This is the maximum number of instances of the template which can be
active concurrently. While this limit is reached, no new instances can be
created. This can be from 0 to 65535 inclusive, where 0 means no limit.

num_of_dslu_templates
The number of DSLU template o