
Communications Server for Windows, Version 6.4
Personal Communications for Windows, Version 12.0

System Management Programming

SC31-8480-12

���

Communications Server for Windows, Version 6.4
Personal Communications for Windows, Version 12.0

System Management Programming

SC31-8480-12

���

Note
Before using this information and the product it supports, read the information in Appendix B, “Notices,” on page 635.

Twelfth Edition (February 2016)

This edition applies to Version 6.1 of IBM Communications Server for Windows, Version 12.0 of Personal
Communications for Windows (program number: 5639-I70), and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright IBM Corporation 1989, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tables vii

About This Book. ix
Who Should Read This Book. ix
How to Use This Book x

Icons x
Number Conventions x

Where to Find More Information xi
Support Options. xii

Subscribing to Support News xii
Support Assistant xii

Part 1. Personal Communications
and Communications Server Node
Operator Facility 1

Chapter 1. Introduction 3
Purpose of the Document 3
Personal Communications and Communications
Server Node Operator Facility 3
Entry Points 3
Verb Control Blocks (VCBs) 4
Writing Node Operator Facility (NOF) Programs . . 4
Communications Server SNA API Client Support . . 5
Verbs Supported by Communications Server and Not
by Personal Communications 5

Chapter 2. Overview of the Verbs in This
Book 7
How to Read Verb Descriptions 7

Supplied Parameters. 7
Returned Parameters 7

Common VCB Fields 7
Verb Summary. 8
Node Configuration 8
Activation and Deactivation 9
Querying the Node 10
Session Limit Verbs 12
Unsolicited Indications 12
Security Verbs 13
APING Verbs 14
CPI-C Verbs 14
Attach Manager Verbs 14
DLC Processes, Ports, and Link Stations 14

Chapter 3. Node Operator Facility Entry
Points 17
WinNOF() 18
WinAsyncNOF() 19
WinAsyncNOFEx() 20
WinNOFCancelAsyncRequest() 21
WinNOFCleanup() 22
WinNOFStartup() 23

WinNOFRegisterIndicationSink() 24
WinNOFUnregisterIndicationSink() 25
WinNOFGetIndication() 26

Chapter 4. Node Configuration Verbs 27
DEFINE_ADJACENT_NODE 28
DEFINE_CN 31
DEFINE_COS. 35
DEFINE_DEFAULT_PU 41
DEFINE_DEFAULTS 43
DEFINE_DLC 46
DEFINE_DLUR_DEFAULTS 50
DEFINE_DOWNSTREAM_LU 52
DEFINE_DOWNSTREAM_LU_RANGE 55
DEFINE_DSPU_TEMPLATE 58
DEFINE_FOCAL_POINT 61
DEFINE_INTERNAL_PU 65
DEFINE_LOCAL_LU 69
DEFINE_LS 74
DEFINE_LU_0_TO_3 88
DEFINE_LU_0_TO_3_RANGE 92
DEFINE_LU_POOL. 97
DEFINE_LU62_TIMEOUT 99
DEFINE_MODE 101
DEFINE_PARTNER_LU 107
DEFINE_PORT 111
DEFINE_RTP_TUNING 120
DEFINE_TP 122
DELETE_ADJACENT_NODE 126
DELETE_CN 128
DELETE_COS 130
DELETE_DLC 132
DELETE_DOWNSTREAM_LU. 134
DELETE_DOWNSTREAM_LU_RANGE 136
DELETE_DSPU_TEMPLATE 138
DELETE_FOCAL_POINT 141
DELETE_INTERNAL_PU 143
DELETE_LOCAL_LU. 145
DELETE_LS 147
DELETE_LU_0_TO_3 149
DELETE_LU_0_TO_3_RANGE. 151
DELETE_LU_POOL 154
DELETE_MODE 156
DELETE_PARTNER_LU 158
DELETE_PORT. 160
DELETE_TP 162

Chapter 5. Activation and Deactivation
Verbs 165
START_DLC. 166
START_INTERNAL_PU 168
START_LS 170
START_PORT 173
STOP_DLC 175
STOP_INTERNAL_PU 177

© Copyright IBM Corp. 1989, 2016 iii

STOP_LS 179
STOP_PORT. 181
ACTIVATE_SESSION 183
DEACTIVATE_CONV_GROUP 186
DEACTIVATE_SESSION. 188
PATH_SWITCH 191

Chapter 6. Query Verbs 193
QUERY_ADJACENT_NN 194
QUERY_ADJACENT_NODE 197
QUERY_CN 200
QUERY_CN_PORT 205
QUERY_CONVERSATION 208
QUERY_COS 212
QUERY_DEFAULT_PU 215
QUERY_DEFAULTS 217
QUERY_DIRECTORY_ENTRY 219
QUERY_DIRECTORY_LU 226
QUERY_DIRECTORY_STATS 231
QUERY_DLC 233
QUERY_DLUR_DEFAULTS. 239
QUERY_DLUR_LU 241
QUERY_DLUR_PU 245
QUERY_DLUS 251
QUERY_DOWNSTREAM_LU 255
QUERY_DOWNSTREAM_PU 264
QUERY_DSPU_TEMPLATE 269
QUERY_FOCAL_POINT. 273
QUERY_HPR_STATS 278
QUERY_ISR_SESSION 280
QUERY_LOCAL_LU 291
QUERY_LOCAL_TOPOLOGY 299
QUERY_LS 304
QUERY_LS_EXCEPTION 323
QUERY_LU_0_TO_3 328
QUERY_LU_POOL 338
QUERY_MDS_APPLICATION. 342
QUERY_MDS_STATISTICS 345
QUERY_MODE 347
QUERY_MODE_DEFINITION 353
QUERY_MODE_TO_COS_MAPPING 358
QUERY_NMVT_APPLICATION 361
QUERY_NN_TOPOLOGY_NODE 364
QUERY_NN_TOPOLOGY_STATS 370
QUERY_NN_TOPOLOGY_TG 374
QUERY_NODE. 381
QUERY_PARTNER_LU 394
QUERY_PARTNER_LU_DEFINITION 401
QUERY_PORT 406
QUERY_PU 417
QUERY_RTP_CONNECTION 423
QUERY_RTP_TUNING 430
QUERY_SESSION 432
QUERY_SIGNED_ON_LIST 440
QUERY_STATISTICS 444
QUERY_TP 446
QUERY_TP_DEFINITION 450

Chapter 7. Safe-Store Verbs 455
SAFE_STORE_TOPOLOGY 456

SFS_ADJACENT_NN. 463
SFS_DIRECTORY 467
SFS_NN_TOPOLOGY_NODE 473
SFS_NN_TOPOLOGY_TG 481

Chapter 8. Session Limit Verbs. . . . 489
CHANGE_SESSION_LIMIT 490
INITIALIZE_SESSION_LIMIT 494
RESET_SESSION_LIMIT. 498

Chapter 9. Node Operator Facility API
Indications 503
DLC_INDICATION 504
DLUR_LU_INDICATION 505
DLUR_PU_INDICATION 506
DLUS_INDICATION 508
DOWNSTREAM_LU_INDICATION 510
DOWNSTREAM_PU_INDICATION 515
FOCAL_POINT_INDICATION 518
ISR_INDICATION 520
LOCAL_LU_INDICATION 525
LOCAL_TOPOLOGY_INDICATION. 529
LS_INDICATION 531
LU_0_TO_3_INDICATION 536
MODE_INDICATION 540
NN_TOPOLOGY_NODE_INDICATION 542
NN_TOPOLOGY_TG_INDICATION. 544
PLU_INDICATION 546
PORT_INDICATION 548
PU_INDICATION 550
REGISTRATION_FAILURE 553
RTP_INDICATION 555
SESSION_FAILURE_INDICATION 559
SESSION_INDICATION 561
UNREGISTER_INDICATION_SINK 565

Chapter 10. Security Verbs 567
CONV_SECURITY_BYPASS 568
CREATE_PASSWORD_SUBSTITUTE 570
DEFINE_LU_LU_PASSWORD 572
DEFINE_USERID_PASSWORD 574
DELETE_LU_LU_PASSWORD. 576
DELETE_USERID_PASSWORD 578
SIGN_OFF 580

Chapter 11. APING and CPI-C Verbs 583
APING 584
CPI-C Verbs 588

DEFINE_CPIC_SIDE_INFO. 589
DELETE_CPIC_SIDE_INFO 592
QUERY_CPIC_SIDE_INFO 594

Chapter 12. Attach Manager Verbs 597
DISABLE_ATTACH_MANAGER 598
ENABLE_ATTACH_MANAGER 599
QUERY_ATTACH_MANAGER 600

iv System Management Programming

Part 2. Personal Communications
and Communications Server
Management Services API 601

Chapter 13. Introduction to
Management Services API 603
Management Services Verbs 603
Entry Points 603
Verb Control Blocks (VCB) 603
Writing Management Services (MS) Programs . . 604
SNA API Client Support. 605

Chapter 14. Management Services
Entry Points 607
WinMS() 608
WinMSCleanup() 609
WinMSGetIndication() 610
WinMSRegisterApplication() 611
WinMSStartup() 613

WinMSUnregisterApplication() 614

Chapter 15. Management Services
Verbs 617
ALERT_INDICATION 618
FP_NOTIFICATION 619
MDS_MU_RECEIVED 620
NMVT_RECEIVED 622
SEND_MDS_MU 624
TRANSFER_MS_DATA 627

Part 3. Appendixes 631

Appendix A. IBM APPN MIB Tables 633

Appendix B. Notices 635
Trademarks 636

Index 639

Contents v

vi System Management Programming

Tables

1. Header Files and Libraries for NOF 5
2. Port Types for DLC Types. 47
3. Header Files and Libraries for Management

Services 604

4. Implementing Tables from IBM Management
Information Block (MIB) 633

© Copyright IBM Corp. 1989, 2016 vii

viii System Management Programming

About This Book

This book describes how to develop programs that use IBM® Communications
Server for Windows and IBM Personal Communications for Windows.

IBM Communications Server for Windows (referred to as Communications Server) is
a communications services platform. This platform provides a wide range of
services for workstations that communicate with host computers and with other
workstations. Communications Server users can choose from among a variety of
remote connectivity options.

IBM Personal Communications for Windows (referred to as Personal
Communications) is a full-function emulator. In addition to host terminal emulation,
it provides these useful features:
v File transfer
v Dynamic configuration
v An easy-to-use graphical interface
v APIs for SNA-based client applications
v An API allowing TCP/IP-based applications to communicate over an SNA-based

network.

While in most instances, developing programs for Personal Communications and
Communications Server is very similar in that they each support many of the same
verbs, there are some differences. These differences are denoted through the use of
icons. See “Icons” on page x for specific details. Throughout this book, the Program
refers to both Personal Communications and Communications Server. When only
the Personal Communications program or only the Communications Server
program applies, then that specific program name is used.

In this book, Windows refers to Windows 7, Windows 8, Windows 8.1, Windows 10,
Windows Server 2008, and Windows Server 2012. Throughout this book,
workstation refers to all supported personal computers. When only one model or
architecture of the personal computer is referred to, only that type is specified.

Who Should Read This Book
This book is intended for programmers and developers who plan to use Node
Operator Facility (NOF) API messages to manage and query the operation of
Personal Communications or Communications Server, or plan to use ASCII
Configuration files or both.

This book is also intended for developers who are writing network management
applications that use the underlying management services support provided by
Personal Communications and Communications Server to communicate with
remote (host focal point) network management applications.

© Copyright IBM Corp. 1989, 2016 ix

|
|
|
|

How to Use This Book
This book is organized into two parts. Part 1, “Personal Communications and
Communications Server Node Operator Facility,” on page 1 contains the following
chapters:
v Chapter 1, “Introduction,” on page 3 describes the purpose of this book.
v Chapter 2, “Overview of the Verbs in This Book,” on page 7 describes the Node

Operator Facility API structure and the verbs it supports. The chapter outlines
the categories of the verbs implemented and the additional signals provided by
Personal Communications and Communications Server.

v Chapter 3, “Node Operator Facility Entry Points,” on page 17 describes the entry
point extensions.

v Chapters 4 through 12 describe the syntax of each verb. A copy of the structure
that holds the information for each verb is included and each entry described,
followed by a list of possible return codes.

Part 2, “Personal Communications and Communications Server Management
Services API,” on page 601 contains the following chapters:
v Chapter 13, “Introduction to Management Services API,” on page 603 describes

the management services API.
v Chapter 14, “Management Services Entry Points,” on page 607 describes the

entry points for the management services verbs.
v Chapter 15, “Management Services Verbs,” on page 617 describes the syntax of

each verb. A copy of the structure that holds the information for each verb is
included and each entry described, followed by a list of possible return codes.

Icons
In this book, when it is necessary to communicate special information, the
following icons appear:

This icon represents a note, important information that can affect the
operation of Personal Communications or Communications Server or
the completion of a task.

This icon appears when the information applies only to the Personal
Communications program.

This icon appears when the information applies only to the
Communications Server program.

Number Conventions

Binary numbers Represented as BX'xxxx xxxx' or BX'x' except in certain instances where
they are represented with text (“A value of binary xxxx xxxx is...”).

Bit positions Start with 0 at the rightmost position (least significant bit).

Decimal numbers Decimal numbers over 4 digits are represented in metric style. A space is
used rather than a comma to separate groups of 3 digits. For example,
the number sixteen thousand, one hundred forty-seven is written 16 147.

x System Management Programming

Hexadecimal
numbers

Represented in text as hex xxxx or X'xxxx' (“The address of the adjacent
node is hex 5D, which is specified as X'5d'.”)

Where to Find More Information

For more information, refer to Quick Beginnings, which contains a
complete description of both the Communications Server library and
related publications.

To view a specific book after Communications Server has been installed,
use the following path from your desktop:

1. Programs

2. IBM Communications Server

3. Documentation

4. Choose from the list of books

The Communications Server books are in Portable Document Format
(PDF), which is viewable with the Adobe Acrobat Reader. If you do not
have a copy of this program on your machine, you can install it from
the Documentation list.

The Communications Server home page on the Internet has general
product information as well as service information about APARs and
fixes. To get the home page, using an Internet browser, go to the
following URL:

http://www.ibm.com/software/network/commserver/

For more information, refer to Quick Beginnings, which contains a
complete description of both the Personal Communications library and
related publications.

The Personal Communications books are included in the Installation
Image (DVD-ROM) in portable document format (pdf). The books can
be accessed directly from the publications directory of the Personal
Communications Installation Image or from the Launchpad welcome
panel.

To view the Personal Communications documentation using
Launchpad, select View Documentation from the main panel of the
Launchpad. When you click a document link, Adobe Reader will launch
for viewing the books. If Adobe Reader is not detected on your system,
you have the option to install it at this time. After installation of Adobe
Reader is complete, a window opens displaying the books available on
the Installation Image.

Notes:

1. You can copy the books from the Installation Image to a local or
network drive to view at a later time.

2. Quick Beginnings in HTML format is installed during installation of
Personal Communications.

About This Book xi

http://www.ibm.com/software/network/commserver/

The Personal Communications home page on the Internet has general
product information as well as service information about APARs and
fixes. To get the home page, using an Internet browser such as IBM
Web Explorer, go to the following URL:

http://www.ibm.com/software/network/pcomm/

The complete IBM Dictionary of Computing is available on the World
Wide Web at http://www.ibm.com/networking/nsg/nsgmain.htm.

Support Options
If you determine that you need to contact IBM, you can do any of the following:
v Access the Personal Communications Web page at http://www.ibm.com/

software/products/en/pcomm.
v To find the phone number for IBM Software Support, U.S. customers can call

1-800-IBM-4YOU. International customers that have access to the U.S. "800" toll
free numbers can reach the International Support Center by calling
1-800-IBM-4YOU and asking to speak with the International Support Center
(ISC) in Atlanta. International customers without access to the U.S. toll free
numbers can call the ISC directly at 770-863-1234. The ISC's FAX number is
770-863-3030 and is available 24 hours a day.

Subscribing to Support News
To receive Personal Communications support news flashes, complete the following
steps:
1. Go to the IBM support at http://www.ibm.com/support/mynotifications, and

log in with your IBM Registration ID.
2. In the Product lookup field, type Personal Communications.
3. In the drop down list, click the Subscribe link rendered against the product.
4. Select all types of documents for which you would like to receive notifications,

and click Submit.

Support Assistant
The IBM Support Assistant enables you to easily resolve software questions. The
Support Assistant provides the following components:
v Search

Enable search of the software information database.
v Service

Assists customers who choose to submit a PMR by providing access to the
Electronic Service Request Web site.

v Support Links

A consolidated list of IBM web links, organized by brand and product.

Help desk personnel and Personal Communications administrators might want to
install Support Assistant in order to better support end users. The Support
Assistant can be downloaded from the following address: http://www.ibm.com/
software/support/isa/index.html

xii System Management Programming

|
|

|
|

|

|

|
|

http://www.ibm.com/software/products/en/pcomm
http://www.ibm.com/software/products/en/pcomm
http://www.ibm.com/support/mynotifications
http://www.ibm.com/software/support/isa/index.html
http://www.ibm.com/software/support/isa/index.html

Part 1. Personal Communications and Communications
Server Node Operator Facility

© Copyright IBM Corp. 1989, 2016 1

2 System Management Programming

Chapter 1. Introduction

This part describes the Node Operator Facility (NOF) API provided by Personal
Communications and Communications Server.

Purpose of the Document
The intent of this book is to:
v Provide a brief overview of the structure of the Node Operator Facility API
v Define the syntax of the signals that flow across the interface.

Personal Communications and Communications Server Node Operator
Facility

The Personal Communications and Communications Server Node Operator Facility
enables communication between the node operator, and the control point (CP) and
logical units (LUs). The Node Operator Facility receives node configuration
information from the operator, which it uses to initializethe control point when the
node is started. The Node Operator Facility also receives requests to query and
display node configuration information. The node operator is able to:
v Define and delete LUs, DLCs, ports, and links
v Activate and deactivate links and sessions
v Query the control point and LUs for database and status information

The node operator can be a human operator working with an interactive display, a
command file accessed by a file interface, or a transaction program. The Node
Operator Facility communicates with the node operator by using a verb interface.

Entry Points
Personal Communications and Communications Server provide a library file that
handles Node Operator Facility verbs.

Node Operator Facility verbs have a straightforward language interface. Your
program fills in fields in a block of memory called a verb control block. Then your
program calls the entry point and passes a pointer to the verb control block. When
its operation is complete, Node Operator Facility returns, having used and then
modified the fields in the verb control block. Your program can then read the
returned parameters from the verb control block.

Following is a list of entry points for Node Operator Facility verbs:
v WinNOF()
v WinAsyncNOF()
v WinAsyncNOFEx()
v WinNOFCancelAsyncRequest()
v WinNOFCleanup()
v WinNOFStartup()
v WinNOFRegisterIndicationSink()
v WinNOFUnregisterIndicationSink()
v WinNOFGetIndication()

© Copyright IBM Corp. 1989, 2016 3

See Chapter 3, “Node Operator Facility Entry Points,” on page 17 for detailed
descriptions of the entry points.

Verb Control Blocks (VCBs)
Programming Note: The base operating system optimizes performance by
executing some subsystems in the calling application's address space. This means
that incorrect use of local descriptor table (LDT) selectors by application programs
can cause improper operation, or perhaps system failures.Accordingly, application
programs should not perform pointer arithmetic operations that involve changing
the LDT selector field of a pointer.

The segment used for the verb control block (VCB) must be a read/write data
segment. Your program can either declare the VCB as a variable in your program,
allocate it, or suballocate it from a larger segment. It must be sufficiently large to
contain all the fields for the verb your program is issuing.

An application program should not change any part of the verb control block after
it has been issued until the verb completes. When Node Operator Facility finishes
the execution of a verb, it copies a complete, modified VCB back onto the original
block. Therefore, if your program declares a verb control block as a variable,
consider declaring it in static storage rather than on the stack of an internal
procedure.

Fill all reserved and unused fields in each VCB with zeros (X'00'). In fact, it might
be more time-efficient to set the entire verb control block to zeros before your
program assigns the values to the parameters. Setting reserved fields to zeros is
particularly important.

Note: If the VCB is not read/write, or if it is not at least 10 bytes (that is, large
enough to hold the Node Operator Facility primary and secondary return
codes), Node Operator Facility cannot access it, and the base operating
system abnormally ends the process. This termination is recognized as a
general protection fault, processor exception trap D.

Node Operator Facility returns the INVALID_VERB_SEGMENT primary return
code when the VCB is too short or the incorrect type of segment is used.

Writing Node Operator Facility (NOF) Programs
Personal Communications and Communications Server provide a dynamic link
library (DLL) file, that handles NOF verbs.

The DLL is reentrant; multiple application processes and threads can call the DLL
concurrently.

NOF verbs have a straightforward language interface. Your program fills in fields
in a block of memory called a verb control block (VCB). Then it calls the NOF DLL
and passes a pointer to the verb control block. When its operation is complete,
NOF returns, having used and then modified the fields in the VCB. Your program
can then read the returned parameters from the verb control block.

Table 1 on page 5 shows source module usage of supplied header files and libraries
needed to compile and link NOF programs. Some of the header files may include
other required header files.

4 System Management Programming

Table 1. Header Files and Libraries for NOF

Operating System Header File Library DLL Name

Win32 WINNOF.H WINNOF32.LIB WINNOF32.DLL

Communications Server SNA API Client Support

This information applies only to Communications Server.

Included with Communications Server are a set of clients for the Windows Server
2008 and Windows 8/8.1/10 operating systems. These clients are referred to as
SNA API clients in this book and only support a subset of the full node operator
facility. Specifically, WINNOF is the only API supported on the Windows Server
2008 and Windows 8/8.1/10 clients. The following is a list of the NOF verbs
supported:
v QUERY_LOCAL_LU
v QUERY_LU_0_TO_3
v QUERY_LU_POOL
v QUERY_MODE
v QUERY_MODE_DEFINITION
v QUERY_PARTNER_LU
v QUERY_PARTNER_LU_DEFINITION
v QUERY_PU
v QUERY_SESSION
v QUERY_TP
v QUERY_TP_DEFINITION

Verbs Supported by Communications Server and Not by Personal
Communications

This information applies only to Communications Server.

The following list of verbs are supported by Communications Server and not by
Personal Communications.
v DEFINE_DOWNSTREAM_LU
v DEFINE_DOWNSTREAM_LU_RANGE
v DEFINE_DSPU_TEMPLATE
v DELETE_DOWNSTREAM_LU
v DELETE_DOWNSTREAM_LU_RANGE
v DELETE_DSPU_TEMPLATE
v QUERY_ADJACENT_NN
v QUERY_DIRECTORY_STATS
v QUERY_DOWNSTREAM_LU

Chapter 1. Introduction 5

|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

v QUERY_DOWNSTREAM_PU
v QUERY_DSPU_TEMPLATE
v QUERY_HPR_STATS
v QUERY_ISR_SESSION
v QUERY_NN_TOPOLOGY_NODE
v QUERY_NN_TOPOLOGY_STATS
v QUERY_NN_TOPOLOGY_TG
v DOWNSTREAM_LU_INDICATION
v DOWNSTREAM_PU_INDICATION
v ISR_INDICATION
v NN_TOPOLOGY_NODE_INDICATION
v NN_TOPOLOGY_TG_INDICATION

6 System Management Programming

Chapter 2. Overview of the Verbs in This Book

The verb interface described in this book allows your programs to perform most of
the configuration, system management, and node definition functions associated
with a Personal Communications or Communications Server network environment.
This chapter provides an overview of each of these functions and the associated
verbs.

How to Read Verb Descriptions
Chapters 4 through 12 describe the configuration, system management, and attach
manager verbs.

Supplied Parameters
Each verb description has a section that provides a detailed description of the
parameters and any associated parameter values supplied by the program.

In some cases, you must supply a variable value for a parameter.

Returned Parameters
Each verb description has a section that provides a detailed description of the
parameters and any associated parameter values returned to the program.

Return Codes
The configuration, system management, and attach manager verbs described in
this book have return codes associated with them that supply information about
the success of verb execution or that provide error information. These codes are
listed in the “Returned Parameters” section for each verb.

Additional Information
Many of the verb descriptions also contain a section titled “Additional
Information.” This section provides additional useful information about the verb.

Common VCB Fields
This chapter documents the syntax of each verb passed across the Node Operator
Facility API. It also describes the parameters passed in and returned for each verb.
typedef struct nof_hdr
{

unsigned short opcode;
unsigned char reserv2; /* reserved */
unsigned char format;
unsigned short primary_rc;
unsigned long secondary_rc;

} NOF_HDR;

Each VCB has a number of common fields. These are listed and described below.

opcode
Verb operation code. This field identifies the verb.

© Copyright IBM Corp. 1989, 2016 7

format
Identifies the format of the VCB. The value that this field must be set to in
order to specify the current version of the VCB is documented individually
under each verb.

primary_rc
Primary return code. Possible values for each verb are listed in each verb
section.

secondary_rc
Secondary return code. This supplements the information provided by the
primary return code.

Verb Summary
The Node Operator Facility API is composed of verbs that can be used to do the
following things:
v Configure node resources
v Activate and deactivate links and sessions
v Query information held by the node
v Change the number of sessions
v Handle unsolicited indications
v Provide password support
v “ping” a remote LU
v Define, query, and delete CPI-C side information

Node Configuration
The following verbs can be used to define resources:
v DEFINE_ADJACENT_NODE
v DEFINE_CN
v DEFINE_COS
v DEFINE_DEFAULT_PU
v DEFINE_DLC
v DEFINE_DLUR_DEFAULTS
v DEFINE_DOWNSTREAM_LU

DEFINE_DOWNSTREAM_LU is Communications Server only.

v DEFINE_DOWNSTREAM_LU_RANGE

DEFINE_DOWNSTREAM_LU_RANGE is Communications Server only.

v DEFINE_DSPU_TEMPLATE
v DEFINE_FOCAL_POINT
v DEFINE_INTERNAL_PU
v DEFINE_LOCAL_LU
v DEFINE_LS
v DEFINE_LU62_TIMEOUT
v DEFINE_LU_0_TO_3
v DEFINE_LU_0_TO_3_RANGE

8 System Management Programming

v DEFINE_LU_POOL
v DEFINE_MODE
v DEFINE_PARTNER_LU
v DEFINE_PORT
v DEFINE_TP

The following verbs can be used to delete resources:
v DELETE_ADJACENT_NODE
v DELETE_CN
v DELETE_COS
v DELETE_DLC
v DELETE_DOWNSTREAM_LU

DELETE_DOWNSTREAM_LU is Communications Server only.

v DELETE_DOWNSTREAM_LU_RANGE

DELETE_DOWNSTREAM_LU_RANGE is Communications Server only.

v DELETE_DSPU_TEMPLATE
v DELETE_FOCAL_POINT
v DELETE_INTERNAL_PU
v DELETE_LOCAL_LU
v DELETE_LS
v DELETE_LU62_TIMEOUT
v DELETE_LU_0_TO_3
v DELETE_LU_0_TO_3_RANGE
v DELETE_LU_POOL
v DELETE_MODE
v DELETE_PARTNER_LU
v DELETE_PORT
v DELETE_TP

Activation and Deactivation
The following verbs are used at link level:
v START_DLC
v START_LS
v START_PORT
v STOP_DLC
v STOP_LS
v STOP_PORT

The following verbs are used for dependent LU requestor function:
v START_INTERNAL_PU
v STOP_INTERNAL_PU

Chapter 2. Overview of the Verbs in This Book 9

The following verbs are used at session level:
v ACTIVATE_SESSION
v DEACTIVATE_CONV_GROUP
v DEACTIVATE_SESSION

The following verb is used to force a high performance routing (HPR) RTP
connection to switch paths:

PATH_SWITCH

Querying the Node
These verbs return node information in named fields:
v QUERY_DEFAULT_PU
v QUERY_DLUR_DEFAULTS
v QUERY_MDS_STATISTICS
v QUERY_NN_TOPOLOGY_STATS

QUERY_NN_TOPOLOGY_STATS is Communications Server only.

v QUERY_NODE
v QUERY_STATISTICS

The following verbs can return one or more units of information:
v QUERY_ADJACENT_NN
v QUERY_ADJACENT_NODE
v QUERY_CN
v QUERY_CN_PORT
v QUERY_COS
v QUERY_DEFAULTS
v QUERY_DLUS
v QUERY_DOWNSTREAM_PU

QUERY_DOWNSTREAM_PU is Communications Server only.

v QUERY_DSPU_TEMPLATE
v QUERY_FOCAL_POINT
v QUERY_LU_POOL
v QUERY_LU62_TIMEOUT
v QUERY_MDS_APPLICATION
v QUERY_MODE_TO_COS_MAPPING
v QUERY_NMVT_APPLICATION
v QUERY_PU
v QUERY_TP

This information can be thought of as being stored in the form of a list. The verb
can specify a named entry in the list, which is then considered to be a place

10 System Management Programming

marker (or index value) in the list. The list_options field on these verbs specifies
from which point in the list information will be returned.
v If list_options is set to AP_FIRST_IN_LIST, then the fields specifying the index

value will be ignored, and the returned list will start at the beginning.
v If list_options is set to AP_LIST_INCLUSIVE, then the returned list will start

from the specified index value.
v If list_options is set to AP_LIST_FROM_NEXT, then the returned list will start

from the entry after the specified index value.

The index value specifies the starting point for returned information. Once this has
been determined, some of the query verbs also provide additional filtering options
for the returned list. These are specified independently of the index value. Note
that unless specified otherwise, the returned list will be ordered according to IBM's
6611 APPN MIB. (See Appendix A, “IBM APPN MIB Tables,” on page 633 for
information on how verb parameters map to MIB table entries.)

The number of entries to be returned or the buffer size to be filled is set. (If both
are set, then the verb is returned with the lower of the two specified quantities of
information.) Because the application buffer size typically limits the amount of
information that can be returned, the Node Operator Facility returns additional
information indicating the total amount of buffer space required to return the
requested information, and the total number of entries this represents.

In addition to returning one or more units of information, the following verbs are
also able to return different levels of information. The list_options field specifies
whether summary or detailed information will be returned by including either
AP_DETAIL or AP_SUMMARY in the list_options field. These options are
specified by ORing one of the previous list_options, for example: AP_DETAIL |
AP_FIRST_IN_LIST.
v QUERY_DIRECTORY_LU
v QUERY_DLC
v QUERY_DLUR_LU
v QUERY_DLUR_PU
v QUERY_DOWNSTREAM_LU

QUERY_DOWNSTREAM_LU is Communications Server only.

v QUERY_ISR_SESSION

QUERY_ISR_SESSION is Communications Server only.

v QUERY_LOCAL_LU
v QUERY_LOCAL_TOPOLOGY
v QUERY_LS
v QUERY_LU_0_TO_3
v QUERY_MODE
v QUERY_MODE_DEFINITION
v QUERY_NN_TOPOLOGY_NODE

Chapter 2. Overview of the Verbs in This Book 11

QUERY_NN_TOPOLOGY_NODE is Communications Server only.

v QUERY_NN_TOPOLOGY_TG

QUERY_NN_TOPOLOGY_TG is Communications Server only.

v QUERY_PARTNER_LU
v QUERY_PARTNER_LU_DEFINITION
v QUERY_PORT
v QUERY_RTP_CONNECTION
v QUERY_SESSION
v QUERY_TP_DEFINITION

Session Limit Verbs
v CHANGE_SESSION_LIMIT
v INITIALIZE_SESSION_LIMIT
v RESET_SESSION_LIMIT

Unsolicited Indications
Applications displaying node information can use these indications (which are
issued when a change occurs and return summary information only) to trigger the
query verbs (returning detailed information). The node only produces the signals
listed below as unsolicited indications of the named events if there are any
applications registered to receive the information. Applications should therefore
unregister if they no longer require the information.
v DLC_INDICATION
v DLUR_LU_INDICATION
v DLUS_INDICATION
v DOWNSTREAM_LU_INDICATION

DOWNSTREAM_LU_INDICATION is Communications Server only.

v DOWNSTREAM_PU_INDICATION

DOWNSTREAM_PU_INDICATION is Communications Server only.

v FOCAL_POINT_INDICATION
v ISR_INDICATION

ISR_INDICATION is Communications Server only.

v LOCAL_LU_INDICATION
v LOCAL_TOPOLOGY_INDICATION

12 System Management Programming

v LS_INDICATION
v LU_0_TO_3_INDICATION
v MODE_INDICATION
v NN_TOPOLOGY_NODE_INDICATION

NN_TOPOLOGY_NODE_INDICATION is Communications Server only.

v NN_TOPOLOGY_TG_INDICATION

NN_TOPOLOGY_TG_INDICATION is Communications Server only.

v PLU_INDICATION
v PORT_INDICATION
v PU_INDICATION
v REGISTRATION_FAILURE
v RTP_INDICATION
v SESSION_INDICATION
v SESSION_FAILURE_INDICATION

The entry points used for indications are:

WinNOFRegisterIndicationSink
Register to receive an indication

WinNOFUnregisterIndicationSink
Unregister from receiving an indication

WinNOFGetIndication
Receive an indication

These indications are passed to any indication sinks that have registered with the
Node Operator Facility. If the component generating the indication is unable to
send it, then it sets the data_lost indicator on the next indication it issues. If the
data_lost flag has been set to AP_YES on an indication, then subsequent data fields
can be set to null. This flag is used to notify the application that a change has
occurred whose details have been lost, indicating that the application should
respond by issuing the appropriate query verb.

Note that the signal LULU_EVENT is also classified as an indication as it is sent
unsolicited by the node to a process registered using the verbs
REGISTER_LULU_EVENT and UNREGISTER_LULU_EVENT. It is not listed
above, since its behavior is significantly different: registration is for an LU-Partner
LU pair, and there is no equivalent of data_lost — these LULU event indications
are generated without fail.

Security Verbs
The following security verbs allow management of passwords for LU_LU
verification or conversation security.
v DEFINE_LU_LU_PASSWORD
v DEFINE_USERID_PASSWORD
v DELETE_LU_LU_PASSWORD

Chapter 2. Overview of the Verbs in This Book 13

v DELETE_USERID_PASSWORD

APING Verbs
The APING verb allows a management application to ping a remote LU in the
network.

CPI-C Verbs
The following verbs allow CPI-C side information to be defined, queried, and
deleted.
v DEFINE_CPIC_SIDE_INFO
v DELETE_CPIC_SIDE_INFO
v QUERY_CPIC_SIDE_INFO

Refer to CPI-C Reference for more information about the CPI-C support provided by
Personal Communications and Communications Server.

Attach Manager Verbs
The following verbs can be used to control the attach manager:
v DISABLE_ATTACH_MANAGER
v ENABLE_ATTACH_MANAGER
v QUERY_ATTACH_MANAGER

DLC Processes, Ports, and Link Stations

DLC Processes
Personal Communications or Communications Server can create multiple DLC
processes. Each DLC process is created by Personal Communications or
Communications Server in response to a START_DLC verb issued at the Node
Operator Facility API. Each DLC is responsible for communication over a link, or
set of links, using a specific data link protocol (such as SDLC or Token Ring).

Each DLC process can manage one or more ports. Ports are described below.

Ports
A port represents a unique access point (such as a MAC/SAP address pair) in the
local machine and is associated with a DLC process. Each DLC can have one or
more ports. A port can be one of the following types:

Switched port
Can have one or more adjacent link stations that are active at any one
time. (Note that this differs from the definition in SNA APPN Architecture
Reference.)

Nonswitched port
Can have both point-to-point and multipoint link connections. Adjacent
link stations on a nonswitched link connection must be defined by a Node
Operator Facility component. Multipoint nonswitched links require
primary/secondary relationships to be defined properly on all nodes to
avoid unpredictable results.

SATF port
Uses a shared-access transport facility such as token ring. It allows
connectivity between any pair of link stations attaching to the facility. The

14 System Management Programming

initial role for all link stations being activated on a token ring must always
be defined as negotiable, so that link activation can be initiated through
any link station.

Note: SATF ports can also be associated with Connection Networks. In this
case, topology updates are used to broadcast the address of the
unique access point.

Link Stations
A link station is associated with a port and represents a connection to an adjacent
node. A port can have multiple link stations. Link stations can be categorized in
the following way:

Defined link station
A link station that has been defined explicitly (using a DEFINE_LS verb).

Dynamic link station
A link station that has been created as a result of activating a dynamic
connection through a connection network. This is also known as a virtual
routing node (VRN).

Implicit link station
A link station that has been created as a result of a call received from a
previously unknown partner node on a switched or SATF port. This type
of port is not defined in SNA APPN Architecture Reference.

Temporary link station
A link station that is created when a CONNECT_IN is received over the
DLC interface on a switched or SATF port. It is either deleted, or becomes
dynamic or implicit, when the remote node identity is determined.

Chapter 2. Overview of the Verbs in This Book 15

16 System Management Programming

Chapter 3. Node Operator Facility Entry Points

This chapter describes the entry points for Node Operator Facility verbs.

© Copyright IBM Corp. 1989, 2016 17

WinNOF()
This function provides a synchronous entry point for all of the Node Operator
Facility verbs.

Syntax
void WINAPI WinNOF(long vcb,unsigned short vcb_size)

Parameters

vcb Pointer to verb control block.

vcb_size
Number of bytes in the verb control block.

Returns
No return value. The primary_rc and secondary_rc fields in the verb control block
indicate any error.

Remarks
This is the main synchronous entry point for the Node Operator Facility API. This
call blocks until the verb completes.

WinNOF()

18 System Management Programming

WinAsyncNOF()
This function provides an asynchronous entry point for all of the Node Operator
Facility verbs.

Syntax
HANDLE WINAPI WinAsyncNOF(HWND hWnd,

long vcb,
unsigned short vcb_size)

Parameters

hWnd Window handle to receive completion message.

vcb Pointer to verb control block.

vcb_size
Number of bytes in the verb control block.

Returns
The return value specifies whether the asynchronous request was successful. If the
function was successful, the actual return value is a handle. If the function was not
successful, a zero is returned.

Remarks
Each application thread can only have one outstanding request at a time when
using this entry point.

When the asynchronous operation is complete, the application's window hWnd
receives the message returned RegisterWindowMessage with “WinAsyncNOF” as
the input string. The wParam argument contains the asynchronous task handle
returned by the original function call.

If the function returns successfully, a WinAsyncNOF() message will be posted to
the application when the operation completes or the conversation is canceled.

Note: See also WinNOFCancelAsyncRequest() on page 21.

WinAsyncNOF()

Chapter 3. Node Operator Facility Entry Points 19

WinAsyncNOFEx()
This function provides an asynchronous entry point for all of the Node Operator
Facility verbs. Use this entry point instead of the blocking calls to allow multiple
verbs to be handled on the same thread.

Syntax
HANDLE WINAPI WinAsyncNOFEx(HANDLE handle,

long vcb,
unsigned short vcb_size);

Parameters

handle
Handle of the event that the application will wait on.

vcb Pointer to verb control block.

vcb_size
Number of bytes in the verb control block.

Returns
The return value specifies whether the asynchronous request was successful. If the
function was successful, the actual return value is a handle.

Remarks
This entry point is intended for use with WaitForMultipleObjects in the Win32 API.
For more information about this function, see the programming documentation for
the Win32 API.

When the asynchronous operation is complete, the application is notified by way
of the signaling of the event. Upon signaling of the event, examine the primary
return code and secondary return code for any error conditions.

Note: See also WinNOFCancelAsyncRequest() on page 21.

WinAsyncNOFEx()

20 System Management Programming

WinNOFCancelAsyncRequest()
This function cancels an outstanding WinAsyncNOF based request.

Syntax
int WINAPI WinNOFCancelAsyncRequest(HANDLE handle);

Parameters

handle
Supplied parameter; specifies the handle of the request to be canceled.

Returns
The return value specifies whether the asynchronous request was canceled. If the
value is zero, the request was canceled. Otherwise the value is:

WNOFALREADY
An error code indicating that the asynchronous request being canceled has
already completed, or the handle was not valid.

Remarks
An asynchronous request previously issued by one of the WinAsyncNOF functions
can be canceled prior to completion by issuing the WinNOFCancelAsyncRequest()
call, specifying the handle returned by the initial function in handle.

Canceling an asynchronous request stops any update to the application verb
control block and stops the application being notified that the verb has completed
(either by way of the window message or event). It does not cancel the underlying
request. To actually cancel the underlying request, the application must issue the
appropriate NOF verb (that is, STOP_LS to cancel START_LS).

Should an attempt to cancel an existing asynchronous WinAsyncNOF routine fail
with an error code of WNOFALREADY, one of two things has occurred. Either the
original routine has already completed and the application has dealt with the
resulting notification, or the original routine has already completed but the
application has not dealt with the completion notification.

Note: See also WinAsyncNOF() on page 19.

WinNOFCancelAsyncRequest()

Chapter 3. Node Operator Facility Entry Points 21

WinNOFCleanup()
This function terminates and unregisters an application from the Node Operator
Facility API.

Syntax
BOOL WINAPI WinNOFCleanup(void);

Returns
The return value specifies whether the unregistration was successful. If the value is
not zero, the application was successfully unregistered. The application was not
unregistered if a value of zero is returned.

Remarks
Use WinNOFCleanup() to indicate unregistration of a Node Operator Facility
application from the Node Operator Facility API.

WinNOFCleanup unblocks any thread waiting in WinNOFGetIndication. These
return with WNOFNOTREG, (the application is not registered to receive
indication). WinNOFCleanup unregisters the application for all indications.
WinNOFCleanup returns any outstanding verb (synchronous or asynchronous)
with the error AP_CANCELLED. However, the verb completes inside the node.

It is not a requirement to use WinNOFStartup and WinNOFCleanup. However, an
application must be consistent in its use of these calls. You should use both of
them or never use either of them.

Note: See also WinNOFStartup() on page 23.

WinNOFCleanup()

22 System Management Programming

WinNOFStartup()
This function allows an application to specify the version of Node Operator
Facility API required and to retrieve the version of the API supported by the
product. This function can be called by an application before issuing any further
Node Operator Facility API calls to register itself.

Syntax
int WINAPI WinNOFStartup(WORD wVersionRequired,

LPWNOFDATA nofdata);

Parameters

wVersionRequired
Specifies the version of Node Operator Facility API support required. The
high-order byte specifies the minor version (revision) number; the
low-order byte specifies the major version number.

nofdata
Returns the version of Node Operator Facility API and a description of API
implementation.

Returns
The return value specifies whether the application was registered successfully and
whether the Node Operator Facility API implementation can support the specified
version number. If the value is zero, it was registered successfully and the specified
version can be supported. Otherwise, the return value is one of the following
values:

WNOFSYSERROR
The underlying network subsystem is not ready for network communication.

WNOFVERNOTSUPPORTED
The version of Node Operator Facility API support requested is not provided
by this particular implementation.

WNOFBADPOINTER
Incorrect nofdata parameter.

Remarks
This call is intended to help with compatibility of future releases of the API. The
current version is 1.0.

It is not a requirement to use WinNOFStartup and WinNOFCleanup. However, an
application must be consistent in its use of these calls. You should use both of
them or never use either of them.

Note: See also WinNOFCleanup() on page 22.

WinNOFStartup()

Chapter 3. Node Operator Facility Entry Points 23

WinNOFRegisterIndicationSink()
This allows the application to register to receive unsolicited indications.

Syntax
BOOL WINAPI WinNOFRegisterIndicationSink(unsigned short indication_opcode,

unsigned short queue_size,
unsigned short *primary_rc,
unsigned long *secondary_rc);

Parameters

indication_opcode
The indication to register for.

queue_size
Number of unreceived indications to queue. Zero means use the current
value (the initial default value is set to 10). There is only one queue for all
indications registered by application.

primary_rc
Returned: primary return code

secondary_rc
Returned: secondary return code

Returns
The function returns a value indicating whether the registration was successful. If
the value is not zero, the registration was successful. If the value is zero, the
registration was not successful.

Remarks
Use WinNOFRegisterIndicationSink to register to receive unsolicited indications
of type indication_opcode.

An application must issue a WinNOFRegisterIndicationSink for each type of
indication it wants to receive.

Note: See also WinNOFUnregisterIndicationSink() on page 25 and
WinNOFGetIndication() on page 26.

WinNOFRegisterIndicationSink()

24 System Management Programming

WinNOFUnregisterIndicationSink()
This allows the application to stop receiving unsolicited indications.

Syntax
BOOL WINAPI WinNOFUnregisterIndicationSink(unsigned short indication_opcode,

unsigned short *primary_rc,
unsigned long *secondary_rc);

Parameters

indication_opcode
The indication to unregister from.

primary_rc
Returned: primary return code.

secondary_rc
Returned: secondary return code.

Returns
The function returns a value indicating whether the unregistration was successful.
If the value is not zero, the unregistration was successful. If the value is zero, the
unregistration was not successful.

Remarks
Use WinNOFUnregisterIndicationSink to stop receiving unsolicited indications of
type indication_opcode.

An application must issue a WinNOFUnregisterIndicationSink for each type of
indication it wants to stop receiving.

Note: See also WinNOFRegisterIndicationSink() on page 24 and
WinNOFGetIndication() on page 26.

WinNOFUnregisterIndicationSink()

Chapter 3. Node Operator Facility Entry Points 25

WinNOFGetIndication()
This allows the application to received unsolicited indications.

Syntax
int WINAPI WinNOFGetIndication(long buffer,

unsigned short *buffer_size,
unsigned long timeout);

Parameters

buffer Pointer to a buffer to receive indication.

buffer_size
Size of buffer. Returned: the size of the indication.

timeout
Time to wait for indication in milliseconds.

Returns
The function returns a value indicating whether an indication was received.

0 Indication returned.

WNOFTIMEOUT
Timeout waiting for indication.

WNOFSYSNOTREADY
The underlying network subsystem is not ready for network communication.

WNOFNOTREG
The application is not registered to receive indications.

WNOFBADSIZE
The buffer is too small to receive the indication. Reissue the
WinNOFGetIndication call with a large enough buffer. The size of the
indication is returned in the buffer_size parameter.

WNOFBADPOINTER
Either the buffer or buffer_size parameter is not valid.

WNOFSYSERROR
An unexpected system error has occurred.

Remarks
This is a blocking call, it returns in one of the following circumstances:
v An indication is returned
v The timeout expires
v The application issues a WinNOFCleanup call
v The product is stopped
v A system error occurs

Note: See also WinNOFRegisterIndicationSink() on page 24 and
WinNOFUnregisterIndicationSink() on page 25.

WinNOFGetIndication()

26 System Management Programming

Chapter 4. Node Configuration Verbs

The verbs in this chapter are used to define and delete node configuration
information.

© Copyright IBM Corp. 1989, 2016 27

DEFINE_ADJACENT_NODE

DEFINE_ADJACENT_NODE adds entries to the node directory database for the
resources on an adjacent node.

Note: This verb is not required, and should not be issued, if there is an active path
to the adjacent node using CP-CP sessions.

This verb can be issued on an end node, in which case the node's control point is
added to the root of the directory.

To define the node's control point LU, set the following fields:
v Specify the node's control point name in the cp_name field
v Add an ADJACENT_NODE_LU structure, specifying the control point name in

the fqlu_name field.

Any additional LUs on the node are added to the directory as children of the
node's control point.DEFINE_ADJACENT_NODE can also be used to add LU
definitions to an existing node definition. LUs can be removed in the same way by
issuing the DELETE_ADJACENT_NODE verb. If the verb fails part way through
processing, all new directory entries are removed, leaving the directory as it was
before the verb was issued.

VCB Structure
The DEFINE_ADJACENT_NODE verb contains a variable number of
ADJACENT_NODE_LU overlays. The ADJACENT_NODE_LU structures are
concatenated onto the end of DEFINE_ADJACENT_NODE structure.
typedef struct define_adjacent_node
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char cp_name[17]; /* CP name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char reserv3[19]; /* reserved */
unsigned short num_of_lus; /* number of LUs */

} DEFINE_ADJACENT_NODE;

typedef struct adjacent_node_lu
{

unsigned char wildcard_lu; /* wildcard LU name */
/* indicator */

unsigned char fqlu_name[17]; /* fully qualified LU name */
unsigned char reserv1[6]; /* reserved */

} ADJACENT_NODE_LU;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_ADJACENT_NODE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

DEFINE_ADJACENT_NODE

28 System Management Programming

cp_name
The fully qualified name of the control point in the adjacent end node. This
should match the name the node sends on its XIDs (if it supports them),
and the adjacent control point name specified on the DEFINE_LS for the
link to the node. The name is 17 bytes long and is right-padded with
EBCDIC spaces. It is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

description
Resource description (returned on QUERY_DIRECTORY_LU). This is a
16-byte (nonzero) string in a locally displayable character set. All 16 bytes
are significant.

num_of_lus
The number of adjacent LU overlays that follow the
DEFINE_ADJACENT_NODE VCB.

adjacent_node_lu.wildcard_lu
Indicates whether the specified LU name is a wildcard name (AP_YES or
AP_NO).

adjacent_node_lu.fqlu_name
The LU name to be defined. If this name is not fully qualified the network
ID of the CP name is assumed. The name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of either one or two
type-A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

When wildcard_lu is TRUE, a dot (.) followed by EBCDIC spaces means a
Full Wildcard (that will match anything). All EBCDIC spaces will match
anything beginning with the Net id of the CP Name.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_CP_NAME

AP_INVALID_LU_NAME
AP_INVALID_WILDCARD_NAME

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_CP_NAME

DEFINE_ADJACENT_NODE

Chapter 4. Node Configuration Verbs 29

AP_INVALID_LU_NAME

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

secondary_rc
AP_MEMORY_SHORTAGE

AP_DIRECTORY_FULL

DEFINE_ADJACENT_NODE

30 System Management Programming

DEFINE_CN

DEFINE_CN defines a connection network (also known as a virtual routing node
or VRN). The verb provides the network-qualified name of the connection network
along with its transmission group (TG) characteristics. It also provides a list of the
names of the local ports that can access this connection network.

DEFINE_CN can be used to redefine an existing connection network. In particular,
new ports can be added to the list of ports that access the connection network by
issuing another DEFINE_CN. (Ports can be removed in the same way by issuing
the DELETE_CN verb.)

VCB Structure
typedef struct define_cn
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char fqcn_name[17]; /* name of connection network */
CN_DEF_DATA def_data; /* CN defined data */
unsigned char port_name[8][8];

/* port names */
} DEFINE_CN;

typedef struct cn_def_data
{

unsigned char description[RD_LEN];
/* resource description */

unsigned char num_ports; /* number of ports on CN */
unsigned char reserv1[16]; /* reserved */
TG_DEFINED_CHARS tg_chars; /* TG characteristics */

} CN_DEF_DATA;

typedef struct tg_defined_chars
{

unsigned char effect_cap; /* effective capacity */
unsigned char reserve1[5]; /* reserved */
unsigned char connect_cost; /* connection cost */
unsigned char byte_cost; /* byte cost */
unsigned char reserve2; /* reserved */
unsigned char security; /* security */
unsigned char prop_delay; /* propagation delay */
unsigned char modem_class; /* modem class */
unsigned char user_def_parm_1; /* user-defined parameter 1 */
unsigned char user_def_parm_2; /* user-defined parameter 2 */
unsigned char user_def_parm_3; /* user-defined parameter 3 */

} TG_DEFINED_CHARS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_CN

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

DEFINE_CN

Chapter 4. Node Configuration Verbs 31

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

fqcn_name
Fully qualified name (17 bytes long) of connection network being defined.
This name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

def_data.description
Resource description (returned on QUERY_CN). This is a 16-byte string in
a locally displayable character set. All 16 bytes are significant.

def_data.num_ports
Number of ports associated with this connection network. There can be as
many as eight ports per DEFINE_CN verb, and up to and including 239
ports in total per CN.

def_data.tg_chars.effect_cap
Actual units of effective capacity. The value is encoded as a 1-byte
floating-point number, represented by the formula 0.1mmm * 2 eeeee,
where the bit representation of the byte is eeeeemmm. Each unit of effective
capacity is equal to 300 bits per second.

def_data.tg_chars.connect_cost
Cost per connect time. Valid values are integer values in the range 0–255,
where 0 is the lowest cost per connect time and 255 is the highest.

def_data.tg_chars.byte_cost
Cost per byte. Valid values are integer values in the range 0–255, where 0
is the lowest cost per byte and 255 is the highest.

def_data.tg_chars.security
Security values as described in the list below:

AP_SEC_NONSECURE
No security exists.

AP_SEC_PUBLIC_SWITCHED_NETWORK
Data transmitted over this connection network will flow over a
public switched network.

AP_SEC_UNDERGROUND_CABLE
Data transmitted over secure underground cable.

AP_SEC_SECURE_CONDUIT
The line is a secure conduit that is not guarded.

AP_SEC_GUARDED_CONDUIT
Conduit is protected against physical tapping.

AP_SEC_ENCRYPTED
Encryption over the line.

AP_SEC_GUARDED_RADIATION
Line is protected against physical and radiation tapping.

def_data.tg_chars.prop_delay
Propagation delay representing the time it takes for a signal to travel the

DEFINE_CN

32 System Management Programming

length of the link, in microseconds. The value is encoded as a 1-byte
floating-point number, represented by the formula 0.1mmm * 2 eeeee,
where the bit representation of the byte is eeeeemmm. Default values are
listed below:

AP_PROP_DELAY_MINIMUM
No propagation delay.

AP_PROP_DELAY_LAN
Less than 480 microseconds delay.

AP_PROP_DELAY_TELEPHONE
Between 480 and 49 512 microseconds delay.

AP_PROP_DELAY_PKT_SWITCHED_NET
Between 49 512 and 245 760 microseconds delay.

AP_PROP_DELAY_SATELLITE
Longer than 245 760 microseconds delay.

AP_PROP_DELAY_MAXIMUM
Maximum propagation delay.

def_data.tg_chars.modem_class
Reserved. This field should always be set to zero.

def_data.tg_chars.user_def_parm_1
User defined parameter in the range 0–255.

def_data.tg_chars.user_def_parm_2
User defined parameter in the range 0–255.

def_data.tg_chars.user_def_parm_3
User defined parameter in the range 0–255.

port_name
Array of up to eight port names defined on the connection network. Each
named port must have already been defined by a DEFINE_PORT verb.
Each port name is an 8-byte string in a locally displayable character set
and must match that on the associated DEFINE_PORT verb. Additional
ports can be defined on the connection network by issuing another
DEFINE_CN specifying the new port names.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_CN_NAME

AP_INVALID_NUM_PORTS_SPECIFIED
AP_INVALID_PORT_NAME

DEFINE_CN

Chapter 4. Node Configuration Verbs 33

AP_INVALID_PORT_TYPE
AP_DEF_LINK_INVALID_SECURITY
AP_EXCEEDS_MAX_ALLOWED

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PORT_ACTIVE

AP_CANT_MODIFY_VISIBILITY

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEFINE_CN

34 System Management Programming

DEFINE_COS

DEFINE_COS adds a class-of-service definition. The DEFINE_COS verb can also be
used to modify any fields in a previously defined COS.

The definition provides node and TG rows. These rows associate a range of node
and TG characteristics with weights that are used for route calculation. The lower
the weight the more favorable the route.

VCB Structure
The DEFINE_COS verb contains a variable number of cos_tg_row and
cos_node_row overlays. The cos_tg_row structures are concatenated onto the end
of DEFINE_COS (and ordered in ascending weight) and are followed by the
cos_node_row structures (also ordered in ascending weight).
typedef struct define_cos
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char cos_name[8]; /* class-of-service name */
unsigned char description[RD_LEN];

/* resource description */
unsigned char transmission_priority;

/* transmission priority */
unsigned char reserv3[9]; /* reserved */
unsigned char num_of_node_rows; /* number of node rows */
unsigned char num_of_tg_rows; /* number of TG rows */

} DEFINE_COS;

typedef struct cos_node_row
{

COS_NODE_STATUS minimum; /* minimum */
COS_NODE_STATUS maximum; /* max */
unsigned char weight; /* weight */
unsigned char reserv1; /* reserved */

} COS_NODE_ROW;

typedef struct cos_node_status
{

unsigned char rar; /* route additional resistance */
unsigned char status; /* node status. */
unsigned char reserv1[2]; /* reserved */

} COS_NODE_STATUS;

typedef struct cos_tg_row
{

TG_DEFINED_CHARS minimum; /* minimum */
TG_DEFINED_CHARS maximum; /* maximum */
unsigned char weight; /* weight */
unsigned char reserv1; /* reserved */

} COS_TG_ROW;

typedef struct tg_defined_chars
{

unsigned char effect_cap; /* effective capacity */
unsigned char reserve1[5]; /* reserved */
unsigned char connect_cost; /* cost per connect time */
unsigned char byte_cost; /* cost per byte */
unsigned char reserve2; /* reserved */
unsigned char security; /* security */
unsigned char prop_delay; /* propagation delay */
unsigned char modem_class; /* modem class */

DEFINE_COS

Chapter 4. Node Configuration Verbs 35

unsigned char user_def_parm_1; /* user-defined parameter 1 */
unsigned char user_def_parm_2; /* user-defined parameter 2 */
unsigned char user_def_parm_3; /* user-defined parameter 3 */

} TG_DEFINED_CHARS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_COS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

cos_name
Class-of-service name. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.

description
Resource description (returned on QUERY_COS). This is a 16-byte string in
a locally displayable character set. All 16 bytes are significant.

transmission_priority
Transmission priority. This is set to one of the following values:

AP_LOW
AP_MEDIUM
AP_HIGH
AP_NETWORK

num_of_node_rows
Number of node row overlays that follow the DEFINE_COS VCB. The
maximum is 8. Each node row contains a set of minimum node
characteristics, a set of maximum node characteristics, and a weight. When
computing the weights for a node, its characteristics are checked against
the minimum and maximum characteristics defined for each node row. The
node is then assigned the weight of the first node row, which confines all
the node's characteristics within the limits specified. If the node
characteristics do not satisfy any of the listed node rows, the node is
considered unsuitable for this COS, and is assigned an infinite weight.
Note that the node rows must be concatenated in ascending order of
weight.

num_of_tg_rows
Number of TG row overlays that follow the node row overlays. The
maximum is 8. Each TG row contains a set of minimum TG characteristics,
a set of maximum TG characteristics, and a weight. When computing the
weights for a TG, its characteristics are checked against the minimum and
maximum characteristics defined for each TG row. The TG is then assigned
the weight of the first TG row, which confines all the TG's characteristics
within the limits specified. If the TG characteristics do not satisfy any of
the listed TG rows, the TG is considered unsuitable for this COS, and is
assigned an infinite weight. Note that the TG rows must be concatenated
in ascending order of weight.

cos_node_row.minimum.rar
Route additional resistance minimum. Values must be in the range 0–255.

DEFINE_COS

36 System Management Programming

cos_node_row.minimum.status
Specifies the minimum congestion status of the node. This can be one of
the following values:

AP_UNCONGESTED
The node is not congested.

AP_CONGESTED
The number of ISR sessions is greater than the
isr_sessions_upper_threshold.

cos_node_row.maximum.rar
Route additional resistance maximum. Values must be in the range 0–255.

cos_node_row.maximum.status
Specifies the maximum congestion status of the node. This can be one of
the following values:

AP_UNCONGESTED
The node is not congested.

AP_CONGESTED
The number of ISR sessions is greater than the
isr_sessions_upper_threshold.

cos_node_row.weight
Weight associated with this node row. Values must be in the range 0–255.

cos_tg_row.minimum.effect_cap
Minimum limit for actual units of effective capacity. The value is encoded
as a 1-byte floating-point number, represented by the formula 0.1mmm * 2
eeeee, where the bit representation of the byte is eeeeemmm. Each unit of
effective capacity is equal to 300 bits per second.

cos_tg_row.minimum.connect_cost
Minimum limit for cost per connect time. Valid values are integer values in
the range 0–255, where 0 is the lowest cost per connect time and 255 is the
highest.

cos_tg_row.minimum.byte_cost
Minimum limit for cost per byte. Valid values are integer values in the
range 0–255, where 0 is the lowest cost per byte and 255 is the highest.

cos_tg_row.minimum.security
Minimum limits for security values as described in the list below:

AP_SEC_NONSECURE
No security exists.

AP_SEC_PUBLIC_SWITCHED_NETWORK
Data transmitted over this connection network will flow over a
public switched network.

AP_SEC_UNDERGROUND_CABLE
Data transmitted over secure underground cable.

AP_SEC_SECURE_CONDUIT
The line is a secure conduit that is not guarded.

AP_SEC_GUARDED_CONDUIT
Conduit is protected against physical tapping.

AP_SEC_ENCRYPTED
Encryption over the line.

DEFINE_COS

Chapter 4. Node Configuration Verbs 37

AP_SEC_GUARDED_RADIATION
Line is protected against physical and radiation tapping.

cos_tg_row.minimum.prop_delay
Minimum limits for propagation delay representing the time it takes for a
signal to travel the length of the link, in microseconds. The value is
encoded as a 1-byte floating-point number, represented by the formula
0.1mmm * 2 eeeee, where the bit representation of the byte is eeeeemmm.
Default values are listed below:

AP_PROP_DELAY_MINIMUM
No propagation delay.

AP_PROP_DELAY_LAN
Less than 480 microseconds delay.

AP_PROP_DELAY_TELEPHONE
Between 480 and 49 512 microseconds delay.

AP_PROP_DELAY_PKT_SWITCHED_NET
Between 49 512 and 245 760 microseconds delay.

AP_PROP_DELAY_SATELLITE
Longer than 245 760 microseconds delay.

AP_PROP_DELAY_MAXIMUM
Maximum propagation delay.

cos_tg_row.minimum.modem_class
Reserved. This field should always be set to zero.

cos_tg_row.minimum.user_def_parm_1
Minimum limit for user-defined parameter in the range 0–255.

cos_tg_row.minimum.user_def_parm_2
Minimum limit for user-defined parameter in the range 0–255.

cos_tg_row.minimum.user_def_parm_3
Minimum limit for user-defined parameter in the range 0–255.

cos_tg_row.maximum.effect_cap
Maximum limit for actual units of effective capacity. The value is encoded
as a 1-byte floating-point number, represented by the formula 0.1mmm * 2
eeeee, where the bit representation of the byte is eeeeemmm. Each unit of
effective capacity is equal to 300 bits per second.

cos_tg_row.maximum.connect_cost
Maximum limit for cost per connect time. Valid values are integer values in
the range 0–255, where 0 is the lowest cost per connect time and 255 is the
highest.

cos_tg_row.maximum.byte_cost
Maximum limit for cost per byte. Valid values are integer values in the
range 0–255, where 0 is the lowest cost per byte and 255 is the highest.

cos_tg_row.maximum.security
Maximum limits for security values as described in the list below:

AP_SEC_NONSECURE
No security exists.

AP_SEC_PUBLIC_SWITCHED_NETWORK
Data transmitted over this connection network will flow over a
public switched network.

DEFINE_COS

38 System Management Programming

AP_SEC_UNDERGROUND_CABLE
Data transmitted over secure underground cable.

AP_SEC_SECURE_CONDUIT
The line is a secure conduit that is not guarded.

AP_SEC_GUARDED_CONDUIT
Conduit that is protected against physical tapping.

AP_SEC_ENCRYPTED
Encryption over the line.

AP_SEC_GUARDED_RADIATION
Line is protected against physical and radiation tapping.

cos_tg_row.maximum.prop_delay
Maximum limits for propagation delay representing the time it takes for a
signal to travel the length of the link, in microseconds. The value is
encoded as a 1-byte floating-point number, represented by the formula
0.1mmm * 2 eeeee, where the bit representation of the byte is eeeeemmm.
Default values are listed below:

AP_PROP_DELAY_MINIMUM
No propagation delay.

AP_PROP_DELAY_LAN
Less than 480 microseconds delay.

AP_PROP_DELAY_TELEPHONE
Between 480 and 49 512 microseconds delay.

AP_PROP_DELAY_PKT_SWITCHED_NET
Between 49 512 and 245 760 microseconds delay.

AP_PROP_DELAY_SATELLITE
Longer than 245 760 microseconds delay.

AP_PROP_DELAY_MAXIMUM
Maximum propagation delay.

cos_tg_row.maximum.modem_class
Reserved. This field should always be set to zero.

cos_tg_row.maximum.user_def_parm_1
Maximum limit for user-defined parameter in the range 0–255.

cos_tg_row.maximum.user_def_parm_2
Maximum limit for user-defined parameter in the range 0–255.

cos_tg_row.maximum.user_def_parm_3
Maximum limit for user-defined parameter in the range 0–255.

cos_tg_row.weight
Weight associated with this TG row.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

DEFINE_COS

Chapter 4. Node Configuration Verbs 39

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_COS_NAME

AP_INVALID_NUMBER_OF_NODE_ROWS
AP_INVALID_NUMBER_OF_TG_ROWS
AP_NODE_ROW_WGT_LESS_THAN_LAST
AP_TG_ROW_WGT_LESS_THAN_LAST

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_COS_TABLE_FULL

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEFINE_COS

40 System Management Programming

DEFINE_DEFAULT_PU

DEFINE_DEFAULT_PU allows the user to define, redefine, or modify any field of a
default PU. It also allows the user to delete the default PU, by specifying a null PU
name. If a PU name is not specified explicitly on a TRANSFER_MS_DATA verb,
then the management services information carried on the TRANSFER_MS_DATA is
sent on the default PU's session with the host SSCP. For more information about
this see Chapter 15, “Management Services Verbs,” on page 617.

VCB Structure
typedef struct define_default_pu
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char pu_name[8]; /* PU name */
unsigned char description[RD_LEN];

/* resource description */
unsigned char reserv3[16]; /* reserved */

} DEFINE_DEFAULT_PU;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_DEFAULT_PU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

pu_name
Name of local PU that will serve as the default. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

description
Resource description (returned on QUERY_DEFAULT_PU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

DEFINE_DEFAULT_PU

Chapter 4. Node Configuration Verbs 41

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEFINE_DEFAULT_PU

42 System Management Programming

DEFINE_DEFAULTS

DEFINE_DEFAULTS allows the user to define or redefine default actions of the
node.

VCB Structure
typedef struct define_defaults
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
DEFAULT_CHARS default_chars; /* default information */

} DEFINE_DEFAULTS;

typedef struct default_chars
{

unsigned char description[RD_LEN];
/* resource description */

unsigned char mode_name[8]; /* default mode name */
unsigned char implicit_plu_forbidden;

/* disallow implicit */
/* PLUs? */

unsigned char specific_security_codes;
/* generiuc security */
/* sense codes */

unsigned short limited_timeout;/* timeout for limited */
/* sessions */

unsigned char reserv[244]; /* reserved */
} DEFAULT_CHARS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_DEFAULTS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

default_chars.description
Resource description (returned on QUERY_DEFAULTS). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

default_chars.mode_name
Name of the mode that will serve as the default. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

default_chars.implicit_plu_forbidden
Controls whether the Program puts implicit definitions in place for
unknown Partner LUs (AP_YES or AP_NO).

default_chars.specific_security_codes
Controls whether the Program uses specific sense codes on a security
authentication or authorization failure (AP_YES or AP_NO). Note, specific
sense codes will only be returned to those partner LUs that have reported
support for them on the session.

DEFINE_DEFAULTS

Chapter 4. Node Configuration Verbs 43

default_chars.limited_timeout
Specifies the timeout after which free limited-resource conwinner sessions
will be deactivated. Range 0 to 65535 seconds.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb specifies a default mode that is not valid (for example, not EBCDIC A),
or is valid but has not been defined, the Program returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_MODE_NAME

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

The effect of redefinition of each field is as follows:

description
The redefinition takes effect immediately. The updated description is
returned on subsequent QUERY_DEFAULT verbs.

mode_name
The effect of a redefinition applies to all subsequent implicit mode
definitions, for example, the updated mode serves as the default mode.
The effect of a redefinition on a previously unknown mode (for example,
one that had inherited the previous default mode characteristics) is
identical to a redefinition of the unknown mode. For example, if the
default mode is #INTER, and the Program receives a bIND for (an
unknown) MODE1, the effect on MODE1 of the default mode subsequently
being redefined to #BATCH should be identical to the effect of a
DEFINE_MODE(MODE1) specifying the mode characteristics of #BATCH.

implicit_plu_forbidden
The redefinition takes effect immediately. All subsequent implicit PLU
definitions succeed or fail depending on the updated value of this field.

specific_security_codes
The redefinition takes effect immediately.

DEFINE_DEFAULTS

44 System Management Programming

limited_timeout
The updated value is used for all new session established after the
redefinition. The old value is used for existing sessions.

DEFINE_DEFAULTS

Chapter 4. Node Configuration Verbs 45

DEFINE_DLC

DEFINE_DLC defines a new DLC or modifies an existing DLC. This verb defines
the DLC name, which is unique throughout the node, and some DLC-specific data,
which is concatenated to the basic structure. This data is used during initialization
of the DLC, and the format is specific to the DLC type (such as Token Ring). Only
the DLC-specific data appended to the verb can be modified using the
DEFINE_DLC verb. To do this, a STOP_DLC verb must first be issued so that the
DLC is in a reset state.

See “DLC Processes, Ports, and Link Stations” on page 14 for more information
about the relationship between DLCs, ports and link stations.

VCB Structure
typedef struct define_dlc
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dlc_name[8]; /* name of DLC */
DLC_DEF_DATA def_data; /* DLC defined data */

} DEFINE_DLC;

typedef struct dlc_def_data
{

DESCRIPTION description; /* resource description */
unsigned char dlc_type; /* DLC type */
unsigned char neg_ls_supp; /* negotiable LS support */
unsigned char port_types; /* allowable port types */
unsigned char hpr_only; /* DLC only supports HPR links:*/
unsigned char reserv3; /* reserved */
unsigned char retry_flags; /* conditions for automatic */

/* retries */
unsigned short max_activation_attempts;

/* how many automatic retries? */
unsigned short activation_delay_timer;

/* delay between automatic */
/* retries */

unsigned char reserv4[4]; /* reserved */
unsigned short dlc_spec_data_len; /* Length of DLC specific data */

} DLC_DEF_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_DLC

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

DEFINE_DLC

46 System Management Programming

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

dlc_name
Name of the DLC. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant and must be set. For OEM devices, this name
is manufacturer-specific. Valid values are LAN, SDLC, AnyNet®, or X25
(padded to 8 chars with spaces).

def_data.description
Resource description (returned on QUERY_DLC). This is a 16-byte string in
a locally displayable character set. All 16 bytes are significant.

def_data.dlc_type
Type of the DLC.Personal Communications and Communications Server
support the following types:

AP_ANYNET
AP_LLC2
AP_OEM_DLC
AP_SDLC
AP_X25

For EEDLC, use AP_OEM_DLC.

def_data.neg_ls_supp
Specifies whether the DLC supports negotiable link stations (AP_YES or
AP_NO). If the dlc_type is AP_ANYNET, then only AP_YES is supported.

def_data.port_types
Specifies the allowable port types for the supplied dlc_type. The value
corresponds to one or more of the following values ORed together.

AP_PORT_NONSWITCHED
AP_PORT_SWITCHED
AP_PORT_SATF

Use the following table to set the fields for the corresponding DLC type.

Table 2. Port Types for DLC Types

DLC Type Port Type

AP_ANYNET AP_PORT_SATF

AP_LLC2 AP_PORT_SATF

AP_OEM_DLC AP_PORT_SWITCHED or
AP_PORT_NONSWITCHED

AP_SDLC AP_PORT_SWITCHED or
AP_PORT_NONSWITCHED

AP_X25 AP_PORT_SWITCHED or
AP_PORT_NONSWITCHED

def_data.hpr_only
This field specifies whether the DLC only supports HPR links. This must
be set to AP_YES for HPR over IP links.

DEFINE_DLC

Chapter 4. Node Configuration Verbs 47

AP_YES
AP_NO

def_data.retry_flags
This field specifies the conditions under which link stations are subject to
automatic retry. It is a bit field, and may take any of the following values
bit-wise ORed together.

AP_RETRY_ON_START
Link activation will be retried if no response is received from the
remote node when activation is attempted. If the underlying port is
inactive when activation is attempted, the Program will attempt to
activate it.

AP_RETRY_ON_FAILURE
Link activation will be retried if the link fails while active or
pending active. If the underlying port has failed when activation is
attempted, the Program attempts to activate it.

AP_RETRY_ON_DISCONNECT
Link activation will be retried if the link is stopped normally by
the remote node.

AP_DELAY_APPLICATION_RETRIES
Link activation retries, initiated by applications (using START_LS
or on-demand link activation) will be paced using the
activation_delay_timer.

AP_INHERIT_RETRY
This flag has no effect.

def_data.max_activation_attempts
This field has no effect unless at least one flag is set in DEFINE_LS in
def_data.retry_flags, def_data.max_activation_attempts on DEFINE_LS is
set to AP_USE_DEFAULTS, and def_data.max_activation_attempts on
DEFINE_PORT is set to AP_USE_DEFAULTS.

This field specifies the number of retry attempts the Program allows when
the remote node is not responding, or the underlying port is inactive. This
includes both automatic retries and application-driven activation attempts.

If this limit is ever reached, no further attempts are made to automatically
retry. This condition is reset by STOP_LS, STOP_PORT, STOP_DLC or a
successful activation. START_LS or OPEN_LU_SSCP_SEC_RQ results in a
single activation attempt, with no retry if activation fails.

Zero means no limit. The value AP_USE_DEFAULTS means no limit.

def_data.activation_delay_timer
This field has no effect unless at least one flag is set in DEFINE_LS in
def_data.retry_flags, def_data.max_activation_attempts on DEFINE_LS is
set to AP_USE_DEFAULTS, and def_data.max_activation_attempts on
DEFINE_PORT is set to AP_USE_DEFAULTS.

This field specifies the number of seconds that the Program waits between
automatic retry attempts, and between application-driven activation
attempts if the AP_DELAY_APPLICATION_RETRIES bit is set in
def_data.retry_flags.

The value of zero or AP_USE_DEFAULTS results in the use of default
timer duration of thirty seconds.

DEFINE_DLC

48 System Management Programming

def_data.dlc_spec_data_len
This field should always be set to zero.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DLC_NAME

AP_INVALID_DLC_TYPE
AP_INVALID_RETRY_FLAGS
AP_INVALID_PORT_TYPE
AP_HPR_NOT_SUPPORTED

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_DLC_ACTIVE

AP_INVALID_DLC_TYPE
AP_CANT_MODIFY_VISIBILITY

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEFINE_DLC

Chapter 4. Node Configuration Verbs 49

DEFINE_DLUR_DEFAULTS

DEFINE_DLUR_DEFAULTS allows the user to define, redefine, or revoke a default
dependent LU server (DLUS) and a backup default DLUS. The default DLUS name
is used by DLUR when it initiates SSCP-PU activation for PUs that do not have an
explicitly specified associated DLUS. If a DLUS name is not specified explicitly on
the DEFINE_DLUR_DEFAULTS verb then the current default (or backup DLUS) is
revoked.

VCB Structure
typedef struct define_dlur_defaults
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char description[RD_LEN];

/* resource description */
unsigned char dlus_name[17]; /* DLUS name */
unsigned char bkup_dlus_name[17]; /* Backup DLUS name */
unsigned char reserv3; /* reserved */
unsigned short dlus_retry_timeout; /* DLUS Retry Timeout */
unsigned short dlus_retry_limit; /* DLUS Retry Limit */
unsigned char reserv4[16]; /* reserved */

} DEFINE_DLUR_DEFAULTS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_DLUR_DEFAULTS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

description
Resource description. This is a 16-byte string in a locally displayable
character set. All 16 bytes are significant.

dlus_name
Name of the DLUS node that will serve as the default. This should be set
to all zeros or a 17-byte string composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot, which is right-padded with
EBCDIC spaces. (Each name can have a maximum length of 8 bytes with
no embedded spaces.) If this field is set to all zeros, the current default
DLUS is revoked.

bkup_dlus_name
Name of the DLUS node that will serve as the backup default. This should
be set to all zeros or a 17-byte string composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot, which is right-padded
with EBCDIC spaces. (Each name can have a maximum length of 8 bytes
with no embedded spaces.) If this field is set to all zeros, the current
backup default DLUS is revoked.

dlus_retry_timeout
Interval in seconds between second and subsequent attempts to contact a

DEFINE_DLUR_DEFAULTS

50 System Management Programming

DLUS. The interval between the initial attempt and the first retry is always
one second. If zero is specified, the default value of 5 seconds is used.

dlus_retry_limit
Maximum number of retries after an initial failure to contact a DLUS. If
zero is specified, the default value of 3 is used. If X'FFFF' is specified,
Personal Communications or Communications Server will retry
indefinitely.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DLUS_NAME

AP_INVALID_BKUP_DLUS_NAME

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEFINE_DLUR_DEFAULTS

Chapter 4. Node Configuration Verbs 51

DEFINE_DOWNSTREAM_LU

This verb applies only to Communications Server.

The DEFINE_DOWNSTREAM_LU verb is used for PU concentration. When PU
concentration is used, downstream LUs are able to communicate with an upstream
host. To do this, Communications Server maps each downstream LU to a
dependent local LU, referred to as the host LU.

DEFINE_DOWNSTREAM_LU defines a new downstream LU and cannot be used
to modify an existing definition. The downstream LU is mapped to the specified
host LU (defined using the DEFINE_LU_0_TO_3 verb). The host LU can also be
specified in terms of an LU pool.

When DEFINE_DOWNSTREAM_LU is issued for an existing downstream LU
definition, the definition must be identical. If the downstream link is active and the
downstream LU is inactive, the verb will be returned as successful and a
reactivation attempt is made (although this may not be successful). If the
downstream is not active or the downstream LU is already active, the verb failed.
The processing of the reactivation attempt depends on the state of the specified
host LU.
v If the host LU is active, then the ACTLU is resent to the downstream LU

immediately.
v If the host LU is inactive, the node waits for the host LU to become active before

sending the ACTLU to the downstream LU. The node attempts to activate the
link to the host if it is not active (this will not be successful if the host link
cannot be activated automatically).

VCB Structure
typedef struct define_downstream_lu
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dslu_name[8]; /* Downstream LU name */
DOWNSTREAM_LU_DEF_DATA def_data; /* defined data */

} DEFINE_DOWNSTREAM_LU;

typedef struct downstream_lu_def_data
{

unsigned char description[RD_LEN];
/* resource description */

unsigned char nau_address; /* Downstream LU NAU address */
unsigned char dspu_name[8]; /* Downstream PU name */
unsigned char host_lu_name[8]; /* Host LU or Pool name */
unsigned char allow_timeout; /* Allow timeout of host LU? */
unsigned char delayed_logon; /* Allow delayed logon to */

/* host LU */
unsigned char reserv2[6]; /* reserved */

} DOWNSTREAM_LU_DEF_DATA;

Supplied Parameters
The application supplies the following parameters:

DEFINE_DOWNSTREAM_LU

52 System Management Programming

opcode
AP_DEFINE_DOWNSTREAM_LU

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

dslu_name
Name of the downstream LU that is being defined. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

def_data.description
Resource description (returned on QUERY_DOWNSTREAM_LU). The
length of this field should be a multiple of four bytes, and not zero.

def_data.nau_address
Network addressable unit address of the DOWNSTREAM LU. This must
be in the range 1–255.

def_data.dspu_name
Name of the DOWNSTREAM PU (as specified on the DEFINE_LS). This is
an 8-byte alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

def_data.host_lu_name
Name of the host LU or host LU pool that the downstream LU is mapped
to. This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

def_data.allow_timeout
Specifies whether the Program is allowed to time-out host LUs used by
this dowstream LU if the session is left inactive for the timeout period
specified on the host LU definition (AP_YES or AP_NO).

def_data.delayed_logon
Specifies whether the Program should delay connecting the downstream
LU to the host LU until the first data is received from the dowstream LU.
Instead, a simulated logon screen is sent to the downstream LU (AP_YES
or AP_NO).

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

DEFINE_DOWNSTREAM_LU

Chapter 4. Node Configuration Verbs 53

secondary_rc
AP_INVALID_DNST_LU_NAME

AP_INVALID_NAU_ADDRESS

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_PU_NAME

AP_INVALID_PU_TYPE
AP_PU_NOT_DEFINED
AP_LU_ALREADY_DEFINED
AP_LU_NAU_ADDR_ALREADY_DEFD
AP_INVALID_HOST_LU_NAME
AP_LU_NAME_POOL_NAME_CLASH
AP_PU_NOT_ACTIVE
AP_LU_ALREADY_ACTIVATING
AP_LU_DEACTIVATING
AP_LU_ALREADY_ACTIVE
AP_CANT_MODIFY_VISIBILITY
AP_INVALID_ALLOW_TIMEOUT
AP_INVALID_DELAYED_LOGON
AP_DELAYED_VERB_PENDING

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEFINE_DOWNSTREAM_LU

54 System Management Programming

DEFINE_DOWNSTREAM_LU_RANGE

This verb applies only to Communications Server.

The DEFINE_DOWNSTREAM_LU_RANGE verb is used for PU concentration.
When PU concentration is used, downstream LUs are able to communicate with an
upstream host. To do this, Communications Server maps each downstream LU to a
dependent local LU, referred to as the host LU.

DEFINE_DOWNSTREAM_LU_RANGE allows the definition of multiple
downstream LUs within a specified NAU range (but cannot be used to modify an
existing definition). The node operator provides a base name and an NAU range.
The LU names are generated by combining the base name with the NAU
addresses.

For example, a base name of LUNME combined with an NAU range of 1 to 4
would define the LUs LUNME001, LUNME002, LUNME003, and LUNME004. A
base name of less than five non-pad characters results in LU names of less than
eight non-pad characters. Communications Server then right-pads these to eight
characters.

Each downstream LU is mapped to the specified host LU (defined using the
DEFINE_LU_0_TO_3 verb).

VCB Structure
typedef struct define_downstream_lu_range
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dslu_base_name[5];/* Downstream LU base name */
unsigned char description[RD_LEN];

/* resource description */
unsigned char min_nau; /* min NAU address in range */
unsigned char max_nau; /* max NAU address in range */
unsigned char dspu_name[8]; /* Downstream PU name */
unsigned char host_lu_name[8]; /* Host LU or pool name */
unsigned char allow_timeout; /* Allow timeout of host LU? */
unsigned char delayed_logon; /* Allow delayed logon to the */

/* host LU */
unsigned char reserv4[6]; /* reserved */

} DEFINE_DOWNSTREAM_LU_RANGE;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_DOWNSTREAM_LU_RANGE

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

DEFINE_DOWNSTREAM_LU_RANGE

Chapter 4. Node Configuration Verbs 55

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

dslu_base_name
Base name for downstream LU name range. This is a 5-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. This base name is appended with three type-A EBCDIC
numeric characters, representing the decimal value of the NAU address,
for each LU in the NAU range.

description
Resource description (returned on QUERY_DOWNSTREAM_LU). The
length of this field should be a multiple of four bytes, and not zero.

min_nau
Minimum NAU address in the range. This can be from 1 to 255 inclusive.

max_nau
Maximum NAU address in the range. This can be from 1 to 255 inclusive.

dspu_name
Name of the DOWNSTREAM PU (as specified on the DEFINE_LS). This is
an 8-byte alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

host_lu_name
Name of the host LU or host LU pool that all the downstream LUs within
the range are mapped to. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.

allow_timeout
Specifies whether the Program is allowed to time-out host LUs used by
this downstream LU if the session is left inactive for the timeout period
specified on the host LU definition (AP_YES or AP_NO).

delayed_logon
Specifies whether the Program should delay connection of the downstream
LU to the host LU until the first data is received from the downstream LU.
Instead, a simulated logon screen will be sent to the downstream LU
(AP_YES or AP_NO).

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DNST_LU_NAME

DEFINE_DOWNSTREAM_LU_RANGE

56 System Management Programming

AP_INVALID_NAU_ADDRESS
AP_INVALID_ALLOW_TIMEOUT
AP_INVALID_DELAYED_LOGON

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_LU_NAME_POOL_NAME_CLASH

AP_LU_ALREADY_DEFINED
AP_INVALID_HOST_LU_NAME
AP_PU_NOT_DEFINED
AP_INVALID_PU_NAME
AP_INVALID_PU_TYPE
AP_LU_NAU_ADDR_ALREADY_DEFD
AP_CANT_MODIFY_VISIBILITY
AP_DELAYED_VERB_PENDING

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEFINE_DOWNSTREAM_LU_RANGE

Chapter 4. Node Configuration Verbs 57

DEFINE_DSPU_TEMPLATE

This verb applies only to Communications Server.

This verb is used for PU concentration. When PU concentration is used,
downstream LUs are able to communicate with an upstream host. To do this,
Communications Server maps each downstream LU to a dependent local LU,
referred to as the host LU. DEFINE_DSPU_TEMPLATE defines a template for the
downstream LUs which are present on a group of downstream workstations. This
template is used to put in place definitions for the downstream LUs when a
workstation connects into Communications Server over an implicit link (one not
previously defined). These templates are referred to by the implicit_dspu_template
field on the DEFINE_PORT verb. DEFINE_DSPU_TEMPLATE can either be used to
define a new template or to modify an existing template (although the existing
instances of the modified template is not affected).

VCB Structure
typedef struct define_dspu_template
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char template_name[8]; /* name of template */
unsigned char description; /* resource description */
unsigned char modify_template; /* Modify existing template? */
unsigned char reserv1[11]; /* reserved */
unsigned short max_instance; /* Max active template */

/* instances */
unsigned short num_of_dslu_templates;

/* number of DSLU templates */
} DEFINE_DSPU_TEMPLATE;

typedef struct dslu_template
{

unsigned char min_nau; /* min NAU address in range */
unsigned char max_nau; /* max NAU address in range */
unsigned char allow_timeout; /* Allow timeout of host LU? */
unsigned char delayed_logon; /* Allow delayed logon to */

/* host LU */
unsigned char reserv1[8]; /* reserved */
unsigned char host_lu[8]; /* host LU or pool name */

} DSLU_TEMPLATE;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_DSPU_TEMPLATE

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

DEFINE_DSPU_TEMPLATE

58 System Management Programming

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

template_name
Name of the DSPU template. (This corresponds to the name specified in
the implicit_dspu_template field on PORT_DEF_DATA). This is an 8_byte
string in a locally-displayable character set. All 8 bytes are significant and
must be set.

description
Resource description (returned on QUERY_DSPU_TEMPLATE). The length
of this should be a multiple of four bytes, and nonzero.

modify_template
Specifies whether this verb should add additional DSLU templates to an
existing DSPU template or should replace an existing DSPU template
(AP_MODIFY_DSPU_TEMPLATE or AP_REPLACE_DSPU_TEMPLATE).

If modify template is set to AP_MODIFY_DSPU_TEMPLATE and
the named DSPU template does not exist, then it will be created.

If modify_template is set to AP_MODIFY_DSPU_TEMPLATE and
the named DSPU template does not exist, then appended DSLU
templates are added to the existing DSPU template.

If modify_template is set to AP_REPLACE_DSPU_TEMPLATE,
then a new template is created. This can be from 0 to 65535
inclusive, where 0 means no limit.

max_instance
This is the maximum number of instances of the template which can be
active concurrently. While this limit is reached, no new instances can be
created. This can be from 0 to 65535 inclusive, where 0 means no limit.

num_of_dslu_templates
The number of DSLU template overlays which follow the
DEFINE_DSPU_TEMPLATE VCB. This can be from 0 to 255 inclusive.

dslu_template.min_nau
Minimum NAU address in the range. This can be from 1 to 255 inclusive.

dslu_template.max_nau
Maximum NAU address in the range. This can be from 1 to 255 inclusive.

dslu_template.allow_timeout
Specifies whether the Program is allowed to time-out host LUs used by
this downstream LU if the session is left inactive for the timeout period
specified on the host LU definition (AP_YES or AP_NO).

dslu_template.delayed_logon
Specifies whether the Program should delay connecting the downstream
LU to the host LU until the first data is received from the downstream LU.
Instead, a simulated logon screen is sent to the downstream LU (AP_YES
or AP_NO).

dslu_template.host_lu
Name of the host LU or host LU pool that all the downstream LUs within
the range will be mapped onto. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with EBCDIC
Spaces.

DEFINE_DSPU_TEMPLATE

Chapter 4. Node Configuration Verbs 59

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_TEMPLATE_NAME

AP_INVALID_NAU_ADDRESS
AP_INVALID_NAU_RANGE
AP_CLASHING_NAU_RANGE
AP_INVALID_NUM_DSPU_TEMPLATES
AP_INVALID_ALLOW_TIMEOUT
AP_INVALID_DELAYED_LOGON
AP_INVALID_MODIFY_TEMPLATE

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_HOST_LU_NAME

AP_CANT_MODIFY_VISIBILITY

If the verb does not execute because one or more of the relevant START_NODE
parameters were not set, the Program returns the following parameter:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEFINE_DSPU_TEMPLATE

60 System Management Programming

DEFINE_FOCAL_POINT

Personal Communications or Communications Server can have a number of types
of relationships with different focal points. The DEFINE_FOCAL_POINT verb
defines a focal point with which Personal Communications or Communications
Server has an implicit relationship (which can be of type primary or backup).
These relationships, and the ways in which they can be established, are described
below. Relationships between a management services focal point (FP) and a
management services entry point (EP) for a given category are established when
they exchange Management Services Capabilities messages. The following types of
FP-EP relationships can be established.
v Explicit

This relationship is established by an operator at the focal point assigning the
entry point to its sphere of control. The focal point initiates exchange of
Management Services Capabilities.

v Implicit (primary)
The relationship is established when an operator at an entry point assigns the
entry point to a specified focal point (for example, when the operator issues a
DEFINE_FOCAL_POINT verb). The entry point initiates the Management
Services Capabilities exchange.

v Implicit (backup)
This relationship is established when an entry point loses either an explicit or
implicit primary focal point. The entry point initiates Management Services
Capabilities exchange. The identity of the backup focal point can be defined
(using the DEFINE_FOCAL_POINT verb) or can be acquired via
Management Services Capabilities exchange.

v Default
This relationship is established when an FP acquires an EP without operator
intervention. The FP initiates the MS Capabilities exchange. This relationship
only applies to EPs that are NNs.

v Domain
This relationship is established when a serving network node (NN) informs
the end node entry point of the identity of the focal point. Domain
relationships are only valid in end nodes.

v Host
This relationship does not involve Management Services Capabilities
exchange and is established by the configuration of an SSCP-PU session from
the entry point node to a host. It is the lowest precedence focal point
relationship.

Each DEFINE_FOCAL_POINT verb can only be used to define an implicit focal
point (which can be of type primary or backup). Each DEFINE_FOCAL_POINT
verb is issued for a specific management services category. Within this category the
DEFINE_FOCAL_POINT verb can be used to do the following:
v Define a focal point
v Replace a focal point (or backup focal point)
v Revoke the currently active focal point

The fields on a DEFINE_FOCAL_POINT verb are used as follows.

The ms_category must always be filled in. The combination of the fp_fqcp_name
and ms_appl_name fields specify the focal point (or backup focal point if the
backup field is set to AP_YES) for the specified category.

DEFINE_FOCAL_POINT

Chapter 4. Node Configuration Verbs 61

If the verb is being issued to revoke the currently active focal point without
providing a new one, the fp_fqcp_name and ms_appl_name fields should be set
to all zeros. When a DEFINE_FOCAL_POINT verb defining or replacing a focal
point is received, Personal Communications or Communications Server attempts to
establish an implicit primary focal point relationship with the specified focal point
by sending a Management Services Capabilities request. When Personal
Communications or Communications Server receives a DEFINE_FOCAL_POINT
verb revoking the currently active focal point, it sends a Management Services
Capabilities revoke message to the focal point. It is recommended that the
DELETE_FOCAL_POINT verb (specifying AP_ACTIVE) be used to revoke the
currently active focal point.

VCB Structure
typedef struct define_focal_point
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char reserved; /* reserved */
unsigned char ms_category[8]; /* management services category */
unsigned char fp_fqcp_name[17]; /* Fully qualified focal */

/* point CP name */
unsigned char ms_appl_name[8]; /* Focal point application name */
unsigned char description[RD_LEN];

/* resource description */
unsigned char backup; /* is focal point a backup */
unsigned char reserv3[16]; /* reserved */

} DEFINE_FOCAL_POINT;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_FOCAL_POINT

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

ms_category
Management services category. This can either be one of the 4-byte
architecturally defined values (right-padded with EBCDIC spaces) for
management services categories as described in SNA management services,
or an 8-byte type 1134 EBCDIC installation-defined name.

fp_fqcp_name
Focal point's fully qualified control point name. This should be set to all
zeros or a 17-byte string composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.) If the focal point is being revoked, this field should be set to all
zeros.

ms_appl_name
Focal point application name. This can either be one of the 4-byte
architecturally defined values (right-padded with EBCDIC spaces) for
management services applications as described in SNA Management

DEFINE_FOCAL_POINT

62 System Management Programming

Services, or an 8-byte type 1134 EBCDIC installation-defined name. If the
focal point is being revoked, this field should be set to all zeros.

description
Resource description (returned on QUERY_FOCAL_POINT). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

backup
Specifies whether a backup focal point is being defined (AP_YES or
AP_NO). This field is reserved if the currently active focal point is being
revoked. It is recommended that the DELETE_FOCAL_POINT verb
(specifying AP_ACTIVE) be used to revoke the currently active focal point.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_FP_NAME

AP_INVALID_CATEGORY_NAME

If the verb does not execute successfully, the Program returns the following
parameters:

primary_rc
AP_REPLACED

AP_UNSUCCESSFUL

secondary_rc
AP_IMPLICIT_REQUEST_REJECTED

AP_IMPLICIT_REQUEST_FAILED

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

The Program returns the following parameter if the verb does not execute because
of a system error or because the Program failed to contact the focal point
successfully:

DEFINE_FOCAL_POINT

Chapter 4. Node Configuration Verbs 63

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEFINE_FOCAL_POINT

64 System Management Programming

DEFINE_INTERNAL_PU

The DEFINE_INTERNAL_PU verb defines a DLUR-served local PU. This verb is
not used to define a local PU which is directly attached to the host. See
“DEFINE_LS” on page 74 for this purpose.

Note: The DEFINE_LS verb should be used to define the following:
v A downstream PU served by:

– DLUR
– PU concentration

v A local PU that is directly attached to the host

VCB Structure
typedef struct define_internal_pu
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char pu_name[8]; /* internal PU name */
INTERNAL_PU_DEF_DATA def_data; /* defined data */

} DEFINE_INTERNAL_PU;

typedef struct internal_pu_def_data
{

unsigned char description[RD_LEN];
/* resource description */

unsigned char dlus_name[17]; /* DLUS name */
unsigned char bkup_dlus_name[17]; /* backup DLUS name */
unsigned char pu_id[4]; /* PU identifier */
unsigned short dlus_retry_timeout; /* DLUS retry timeout */
unsigned short dlus_retry_limit; /* DLUS retry limit */
unsigned char conventional_lu_compression;

/* Data compression */
/* requested for con- */
/* ventional LU sessions */

unsigned char conventional_lu_cryptography;
/* Cryptography required */
/* for conventional LU */
/* sessions */

unsigned char reserv2[2] ; /* reserved */
} INTERNAL_PU_DEF_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_INTERNAL_PU

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

DEFINE_INTERNAL_PU

Chapter 4. Node Configuration Verbs 65

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

pu_name
Name of the internal PU that is being defined. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

def_data.description
Resource description (returned on QUERY_DLUR_PU and QUERY_PU).
This is a 16-byte string in a locally displayable character set. All 16 bytes
are significant.

def_data.dlus_name
Name of the DLUS node that DLUR will use when it initiates SSCP-PU
activation. This should be set to all zeros or a 17-byte string composed of
two type-A EBCDIC character strings concatenated by an EBCDIC dot, and
is right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) If the field is set to all zeros,
the global default DLUS (if it has been defined, using the
DEFINE_DLUR_DEFAULTS verb) is used in DLUR-initiated SSCP-PU
activation.

def_data.bkup_dlus_name
Name of the DLUS node that will serve as the backup DLUS for this PU.
This should be set to all zeros or a 17-byte string composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot, and is
right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) If the field is set to all zeros,
the global backup default DLUS (if it has been defined by the
DEFINE_DLUR_DEFAULTS verb) is used as the backup for this PU.

def_data.pu_id
PU identifier. This a 4-byte hexadecimal string. Bits 0–11 are set to the
Block number and bits 12–31 to the ID number that uniquely identifies the
PU. This must match the pu_id configured at the host.

def_data.dlus_retry_timeout
Interval in seconds between second and subsequent attempts to contact the
DLUS specified in the def_data.dlus_name and def_data.bkup_dlus_name
fields. The interval between the initial attempt and the first retry is always
one second. If zero is specified, the default value configured through
DEFINE_DLUR_DEFAULTS is used. This field is ignored if
def_data.dspu_services is not set to AP_DLUR.

def_data.dlus_retry_limit
Maximum number of retries after an initial failure to contact the DLUS
specified in the def_data.dlus_name and def_data.bkup_dlus_name fields.
If zero is specified, the default value configured through
DEFINE_DLUR_DEFAULTS is used. If X'FFFF' is specified, the Program
retries indefinitely. This field is ignored if def_data.dspu_services is not set
to AP_DLUR.

def_data.conventional_lu_compression
Specifies whether data compression is requested for conventional LU
sessions dependent on this PU.

DEFINE_INTERNAL_PU

66 System Management Programming

AP_NO
The local node should not be compressing or decompressing data
flowing on conventional LU sessions using this PU.

AP_YES
Data compression should be enabled for conventional LU sessions
dependent on this PU if the host requests compression. If this
value is set, but the node does not support compression (defined
on the START_NODE verb) then the INTERNAL_PU is
successfully defined but without compression support.

def_data.conventional_lu_cryptography
Note: This function applies only to Communications Server.

Specifies whether session level encryption is required for conventional LU
sessions dependent on this PU.

AP_NONE
The local node should not be compressing or decompressing data
flowing on conventional LU sessions using this PU.

AP_MANDATORY
Mandatory session level encryption is performed by APPN if an
import key is available to the LU. Otherwise, it must be performed
by the application that uses the LU (if this is PU Concentration,
then it is performed by a downstream LU).

AP_OPTIONAL
This value allows the cryptography used to be driven by the host
application on a per session basis. If the host request cryptography
for a session is dependent on this PU, then the behaviour of the
Program is the same for AP_MANDATORY. If the host does not
request cryptography, then the behaviour is the same as
AP_NONE.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PU_NAME

AP_INVALID_PU_ID
AP_INVALID_DLUS_NAME
AP_INVALID_BKUP_DLUS_NAME
AP_INVALID_CLU_CRYPTOGRAPHY

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

DEFINE_INTERNAL_PU

Chapter 4. Node Configuration Verbs 67

secondary_rc
AP_PU_ALREADY_DEFINED

AP_CANT_MODIFY_VISIBILITY

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEFINE_INTERNAL_PU

68 System Management Programming

DEFINE_LOCAL_LU

The DEFINE_LOCAL_LU verb requests the definition of a local LU with the
specified characteristics, or, if the LU already exists, the modification of the
attach_routing_data characteristic of the LU. Note that if a DEFINE_LOCAL_LU is
used to modify an existing definition then any parameter other than the
attach_routing_data field will be ignored.

VCB Structure
Format 1
typedef struct define_local_lu
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
LOCAL_LU_DEF_DATA

def_data; /* defined data */
} DEFINE_LOCAL_LU;

typedef struct local_lu_def_data
{

unsigned char description; /* resource description */
unsigned char lu_alias[8]; /* local LU alias */
unsigned char nau_address; /* NAU address */
unsigned char syncpt_support; /* is sync-point supported? */
unsigned short lu_session_limit; /* LU session limit */
unsigned char default_pool; /* member of default_lu_pool */
unsigned char reserv2; /* reserved */
unsigned char pu_name[8]; /* PU name */
unsigned char lu_attributes; /* LU attributes */
unsigned char sscp_id[6]; /* SSCP ID */
unsigned char disable; /* disable or enable LOCAL LU */
unsigned char attach_routing_data;

/* routing data for */
/* incoming attaches */

unsigned char lu_model; /* LU model for SDDLU */
unsigned char model_name[7]; /* LU model name */

/* for SDDLU */
unsigned char reserv4[16]; /* reserved */

} LOCAL_LU_DEF_DATA;

VCB Structure
Format 0
typedef struct define_local_lu
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
LOCAL_LU_DEF_DATA

def_data; /* defined data */
} DEFINE_LOCAL_LU;

typedef struct local_lu_def_data
{

unsigned char description; /* resource description */
unsigned char lu_alias[8]; /* local LU alias */
unsigned char nau_address; /* NAU address */

DEFINE_LOCAL_LU

Chapter 4. Node Configuration Verbs 69

unsigned char syncpt_support; /* is sync-point supported? */
unsigned short lu_session_limit; /* LU session limit */
unsigned char default_pool; /* member of default_lu_pool */
unsigned char reserv2; /* reserved */
unsigned char pu_name[8]; /* PU name */
unsigned char lu_attributes; /* LU attributes */
unsigned char sscp_id[6]; /* SSCP ID */
unsigned char disable; /* disable or enable LOCAL LU */
unsigned char attach_routing_data;

/* routing data for */
/* incoming attaches */

} LOCAL_LU_DEF_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_LOCAL_LU

format
Identifies the format of the VCB. Set this field to zero or one to specify
either format 0 or format 1 of the VCB listed above.

lu_name
Name of the local LU that is being defined. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

def_data.description
Resource description (returned on QUERY_LOCAL_LU). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

def_data.lu_alias
Alias of the local LU to define. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and must be set.

def_data.nau_address
Network addressable unit address of the LU, which must be in the range
0–255. A nonzero value implies the LU is a dependent LU. Zero implies the
LU is an independent LU.

def_data.syncpt_support
This field should always be set to AP_NO unless a sync point manager is
available for this LU.

def_data.lu_session_limit
Maximum number of sessions supported by the LU. Zero means no limit.
If the LU is independent then this can be set to any value. If the LU is
dependent then this must be set to 1.

def_data.default_pool
Set to AP_YES if the LU is a member of the dependent LU 6.2 default pool,
or if it is to be used as the default Local LU for independent LU 6.2
sessions.

def_data.pu_name
Name of the PU that this LU will use. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. This field is only used by dependent LUs, and should be
set to all binary zeros for independent LUs.

DEFINE_LOCAL_LU

70 System Management Programming

def_data.lu_attributes
Specifies further information about the LU. This field either takes the value
AP_NONE, or one or more following options ORed together.

AP_DISABLE_PWSUB
Disable password substitution support for the local LU.

def_data.sscp_id
This specifies the ID of the SSCP permitted to activate this LU. It is a
6-byte binary field. This field is only used by dependent LUs, and should
be set to all binary zeros for independent LUs or if the LU may be
activated by any SSCP.

def_data.disable
Indicates whether the LOCAL LU should be disabled or enabled. The LU
can be dynamically enabled or disabled by reissuing the
DEFINE_LOCAL_LU with this parameter set as appropriate (AP_YES or
AP_NO). When a disabled LU is enabled, the Program issues a NOTIFY
(on-line). When an enabled LU is disabled, the Program issues a NOTIFY
(off-line). If the LU is bound when it is disabled, then the Program issues
an UNBIND followed by a NOTIFY (off-line).

def_data.attach_routing_data
Type of attach routing data.

AP_REGISTERED_OR_DEFAULT_ATTACH_MGR
Specifies that a DYNAMIC_LOAD_INDICATION resulting from an
attach arriving for the transaction program (TP) at this local LU is
sent to the attach manager that has registered to receive DLIs for
this LU, or to the default attach manager if no attach manager has
registered for this LU.

AP_REGISTERED_ATTACH_MGR_ONLY
Specifies that a DYNAMIC_LOAD_INDICATION resulting from an
attach arriving for the transaction program (TP) at this local LU is
sent only to the attach manager that has registered to receive DLIs
for this LU. If no attach manager has registered for this LU, the
attach is rejected.

def_data.lu_model
Model type and number of the LU. This field is only used by dependent
LUs and should be set to AP_UNKNOWN for independent LUs. For
dependent LUs, this is set to one of the following values:

AP_3270_DISPLAY_MODEL_2
AP_3270_DISPLAY_MODEL_3
AP_3270_DISPLAY_MODEL_4
AP_3270_DISPLAY_MODEL_5
AP_RJE_WKSTN
AP_PRINTER
AP_SCS_PRINTER
AP_UNKNOWN

For dependent LUs, if model_name is not set to all binary zeros, then this
field is ignored. If a value other than AP_UNKNOWN is specified and the
host system supports SDDLU (Self-Defining Dependent LU), the node will
generate an unsolicited PSID NMVT reply in order to dynamically define
the local LU at the host. The PSID subvector will contain the machine type
and model number corresponding to the value of this field. This field may

DEFINE_LOCAL_LU

Chapter 4. Node Configuration Verbs 71

be changed dynamically by reissuing the verb. Changes will not come into
effect until after the LU is closed and deactivated.

def_data.model_name
Model name of the LU. This field is only used by dependent LUs and
should be set to binary zeros for independent LUs. APPN checks that this
field consists of the EBCDIC characters A–Z, 0–9 and @, #, and $.

If this field is not set to binary zeros and the host system supports SDDLU,
the node generates an unsolicited PSID NMVT reply in order to
dynamically define the local LU at the host. The PSID subvector contains
the name supplied in this field. The def_data.model_name can be changed
dynamically by reissuing the verb. Changes will not come into effect until
after the LU is closed and deactivated.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_MODEL

AP_INVALID_LU_NAME
AP_INVALID_NAU_ADDRESS
AP_INVALID_SESSION_LIMIT
AP_INVALID_DISABLE

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PU_NOT_DEFINED

AP_INVALID_LU_NAME
AP_LU_ALREADY_DEFINED
AP_ALLOCATE_NOT_PENDING
AP_LU_ALIAS_ALREADY_USED
AP_PLU_ALIAS_ALREADY_USED
AP_PLU_ALIAS_CANT_BE_CHANGED

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

DEFINE_LOCAL_LU

72 System Management Programming

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

secondary_rc
AP_MEMORY_SHORTAGE

DEFINE_LOCAL_LU

Chapter 4. Node Configuration Verbs 73

DEFINE_LS

DEFINE_LS is used to define a new link station (LS) or modify an existing one.
This verb provides the LS name, which is unique throughout the node, and the
name of the port this LS should use. This port must already have been defined
using a DEFINE_PORT verb. Link-specific data is concatenated to the basic
structure. DEFINE_LS can only be used to modify one or more fields of an existing
link station if the link station is in a reset state (after a STOP_LS has been issued),
and the port_name specified on the DEFINE_LS has not changed since the
previous definition of the LS.

See “DLC Processes, Ports, and Link Stations” on page 14 for more information
about the relationship between DLCs, ports, and link stations.

The setting of a large number of the fields in LS_DEF_DATA depends on the value
of the adj_cp_type field. There are eight values that adj_cp_type can take (which
are described further in “def_data.adj_cp_type” on page 78), four of which are
used for links to adjacent Type 2.1 (APPN) nodes:
v AP_NETWORK_NODE
v AP_END_NODE
v AP_APPN_NODE
v AP_BACK_LEVEL_LEN_NODE

and four of which are used for links carrying PU Type 2.0 traffic only:
v AP_HOST_XID3
v AP_HOST_XID0
v AP_DSPU_XID
v AP_DSPU_NOXID.

There are four types of APPN nodes, which are distinguished as follows
v An APPN network node includes the Network Name Control Vector (CV) in its

XID3, supports parallel TGs, sets the networking capabilities bit in its XID3, and
can support CP-CP sessions on a link.

v An APPN end node includes the Network Name CV in its XID3, supports
parallel TGs, does not set the networking capabilities bit in its XID3, and can
support CP-CP sessions on a link.

v An up-level node includes the Network Name CV in its XID3, can support
parallel TGs, does not set the networking capabilities bit in its XID3, and does
not support CP-CP sessions.

v A back-level node does not include the Network Name CV in its XID3, does not
support parallel TGs, does not set the networking capabilities bit in its XID3,
and does not support CP-CP sessions.

The following fields must be set for all links:
port_name
adj_cp_type
dest_address
auto_act_supp
disable_remote_act
limited_resource
link_deact_timer
ls_attributes
adj_node_id
local_node_id

DEFINE_LS

74 System Management Programming

target_pacing_count
max_send_btu_size
link_spec_data_len
ls_role

Other fields must be set as follows:
v If adj_cp_type is set to AP_NETWORK_NODE, AP_END_NODE, or

AP_APPN_NODE the following fields must be set:
adj_cp_name
tg_number
solicit_sscp_sessions
dspu_services
hpr_supported
hpr_link_lvl_error
default_nn_server
cp_cp_sess_support
use_default_tg_chars
tg_chars

v If adj_cp_type is set to AP_BACK_LEVEL_LEN_NODE the following fields must
be set:

adj_cp_name
solicit_sscp_sessions
dspu_services
use_default_tg_chars
tg_chars

v If a local PU is to use the link (adj_cp_type is set to AP_HOST_XID3 or
AP_HOST_XID0, or solicit_sscp_sessions is set to AP_YES on a link to an APPN
node) the following field must be set:

pu_name

v If a downstream PU is to use the link and will be served by PU Concentration
(dspu_services is set to AP_PU_CONCENTRATION) the following field must be
set:

dspu_name

v If a downstream PU is to use the link and will be served by DLUR
(dspu_services is set to AP_DLUR) the following fields must be set:

dspu_name
dlus_name
bkup_dlus_name

VCB Structure
typedef struct define_ls
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* current format is zero */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char ls_name[8]; /* name of link station */
LS_DEF_DATA def_data; /* LS defined data */

} DEFINE_LS;

typedef struct ls_def_data
{

unsigned char description[RD_LEN];
/* resource description */

unsigned char port_name[8]; /* name of associated port */
unsigned char adj_cp_name[17]; /* adjacent CP name */

DEFINE_LS

Chapter 4. Node Configuration Verbs 75

unsigned char adj_cp_type; /* adjacent node type */
LINK_ADDRESS dest_address; /* destination address */
unsigned char auto_act_supp; /* auto-activate supported */
unsigned char tg_number; /* Pre-assigned TG number */
unsigned char limited_resource; /* limited resource */
unsigned char solicit_sscp_sessions;

/* solicit SSCP sessions */
unsigned char pu_name[8]; /* Local PU name (reserved if */

/* solicit_sscp_sessions is set */
/* to AP_NO) */

unsigned char disable_remote_act; /* disable remote activation flag */
unsigned char dspu_services; /* Services provided for */

/* downstream PU */
unsigned char dspu_name[8]; /* Downstream PU name (reserved */

/* if dspu_services is set to */
/* AP_NONE or AP_DLUR) */

unsigned char dlus_name[17]; /* DLUS name if dspu_services */
/* set to AP_DLUR */

unsigned char bkup_dlus_name[17]; /* Backup DLUS name if */
/* dspu_services set to AP_DLUR */

unsigned char hpr_supported; /* does the link support HPR? */
unsigned char hpr_link_lvl_error; /* does link use link-level */

/* error recovery for HPR frms? */
unsigned short link_deact_timer; /* HPR link deactivation timer */
unsigned char reserv1; /* reserved */
unsigned char default_nn_server; /* Use as deflt LS to NN server */
unsigned char ls_attributes[4]; /* LS attributes */
unsigned char adj_node_id[4]; /* adjacent node ID */
unsigned char local_node_id[4]; /* local node ID */
unsigned char cp_cp_sess_support; /* CP-CP session support */
unsigned char use_default_tg_chars;

/* Use the default tg_chars */
TG_DEFINED_CHARS tg_chars; /* TG characteristics */
unsigned short target_pacing_count;/* target pacing count */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned char ls_role; /* link station role to use */

/* on this link */
unsigned char max_ifrm_rcvd; /* max number of I-frames rcvd */
unsigned short dlus_retry_timeout; /* DLUS retry timeout */
unsigned short dlus_retry_limit; /* DLUS retry limit */
unsigned char conventional_lu_compression;

/* Data compression requested for */
/* conventional LU sessions */

unsigned char conventional_lu_cryptography;
/* Cryptography required for */
/* conventional LU sessions */

unsigned char reserv3; /* reserved */
unsigned char retry_flags; /* conditions LU sessions */
unsigned short max_activation_attempts;

/* how many automatic retries: */
unsigned short activation_delay_timer;

/* delay between automatic retries*/
unsigned char branch_link_type; /* branch link type */
unsigned char adj_brn_cp_support; /* adjacent BrNN CP support */
unsigned char reserv4[20]; /* reserved */
unsigned short link_spec_data_len; /* length of link specific data */

} LS_DEF_DATA;

typedef struct tg_defined_chars
{

unsigned char effect_cap; /* effective capacity */
unsigned char reserve1[5]; /* reserved */
unsigned char connect_cost; /* connection cost */
unsigned char byte_cost; /* byte cost */
unsigned char reserve2; /* reserved */
unsigned char security; /* security */
unsigned char prop_delay; /* propagation delay */
unsigned char modem_class; /* modem class */

DEFINE_LS

76 System Management Programming

unsigned char user_def_parm_1; /* user-defined parameter 1 */
unsigned char user_def_parm_2; /* user-defined parameter 2 */
unsigned char user_def_parm_3; /* user-defined parameter 3 */

} TG_DEFINED_CHARS;

typedef struct link_address
{

unsigned short length; /* length */
unsigned short reserve1; /* reserved */
unsigned char address[MAX_LINK_ADDR_LEN];

/* address */
} LINK_ADDRESS;

typedef struct link_spec_data
{

unsigned char link_data[SIZEOF_LINK_SPEC_DATA];

} LINK_SPEC_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_LS

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

ls_name
Name of link station. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant and must be set.

Setting the field ls_name to the special value “$ANYNET$” (an ASCII
string) has the effect of informing the Node Operator Facility that this is
the link station to which independent LU session traffic that is to be routed
by the AnyNet DLC should be sent. A link station of this name must be
defined on a port over the AnyNet DLC if AnyNet routing is required.

def_data.description
Resource description (returned on QUERY_LS, QUERY_PU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

def_data.port_name
Name of port associated with this link station. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant and must be set.
This named port must have already been defined by a DEFINE_PORT
verb.

def_data.adj_cp_name
Fully qualified 17-byte adjacent control point name, which is right-padded
with EBCDIC spaces. It is composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) This field is only relevant for

DEFINE_LS

Chapter 4. Node Configuration Verbs 77

links to APPN nodes and is otherwise ignored. For links to APPN nodes it
can be set to all zeros unless the field tg_number is set to a number in the
range one to 20 or the field adj_cp_type is set to
AP_BACK_LEVEL_LEN_NODE. If it is set to all zeros, it is not checked
against the name received from the adjacent node during XID exchange.If
it is not set to all zeros, it is checked against the name received from the
adjacent node during XID exchange unless adj_cp_type is set to
AP_BACK_LEVEL_LEN_NODE (in which case it is used to identify the
adjacent node).

def_data.adj_cp_type
Adjacent node type.

AP_NETWORK_NODE
Specifies that the node is an APPN network node.

AP_END_NODE
Specifies that the node is an APPN end node or an up-level node.

AP_APPN_NODE
Specifies that the node is an APPN network node, an APPN end
node, or an up-level node. The node type will be learned during
XID exchange.

AP_BACK_LEVEL_LEN_NODE
Specifies that the node is a back_level_len node; that is, it does not
send the control point name in the XID. For a link using the
AnyNet DLC supporting independent LU sessions, you must
specify AP_BACK_LEVEL_LEN_NODE.

AP_HOST_XID3
Specifies that the node is a host and that Personal Communications
or Communications Server responds to a polling XID from the
node with a format 3 XID.

AP_HOST_XID0
Specifies that the node is a host and that Personal Communications
or Communications Server responds to a polling XID from the
node with a format 0 XID. For a link using the AnyNet DLC
supporting dependent LU sessions, you must specify
AP_HOST_XID0.

AP_DSPU_XID
Specifies that the node is a downstream PU and that Personal
Communications or Communications Server includes XID
exchange in link activation.

AP_DSPU_NOXID
Specifies that the node is a downstream PU and that Personal
Communications or Communications Server does not include XID
exchange in link activation.

Note: A link station to a VRN is always dynamic and is therefore
not defined.

def_data.dest_address.length
Length of destination link station's address on adjacent node.

If def_data.dest_address.length is set to zero and this LS is associated with
a port of type SATF, then the Program considers this link station to be a

DEFINE_LS

78 System Management Programming

wild card link station. This will cause the Program to match LS to any
incoming connection that is not matched by another defined link station.

def_data.dest_address.address
Link station's destination address on adjacent node. For a link using the
AnyNet DLC, the dest_address specifies the adjacent node ID or
adjacent control point name. If an adjacent node ID is specified, the length
must be 4 and the address must contain the 4-byte hexadecimal node ID
(1-byte block ID, 3-byte PU ID). If an adjacent control point name is
specified, the length must be 17 and the address must contain the control
point name in EBCDIC, padded with EBCDIC blanks.

def_data.auto_act_supp
Specifies whether the link can be activated automatically when required by
a session. (AP_YES or AP_NO). If the link is not to an APPN node then
this field can always be set to AP_YES and has no requirements on other
parameters. If the link is to an APPN node, then this field cannot be set to
AP_YES if the link also supports CP-CP sessions; and can only be set to
AP_YES if a preassigned TG number is also defined for the link
tg_number and is set to a value between one and 20). These requirements
will always be met if adj_cp_type is set to AP_BACK_LEVEL_LEN_NODE
because cp_cp_sess_support and tg_number are ignored in this case).

def_data.tg_number
Preassigned TG number. This field is only relevant if the link is to an
adjacent APPN node and is otherwise ignored. If adj_cp_type is set to
AP_BACK_LEVEL_LEN_NODE then it is also ignored and is assumed to
be set to one. For links to adjacent APPN nodes this must be set in the
range one to 20. This number is used to represent the link when the link is
activated. Personal Communications or Communications Server will not
accept any other number from the adjacent node during activation of this
link. To avoid link-activation failure because of a mismatch of preassigned
TG numbers, the same TG number must be defined by the adjacent node
on the adjacent link station (if using preassigned TG numbers). If a
preassigned TG number is defined then the adj_cp_name must also be
defined (and cannot be set to all zeros) and the adj_cp_type must be set to
AP_NETWORK_NODE or AP_END_NODE. If zero is entered the TG
number is not preassigned and is negotiated when the link is activated.

def_data.limited_resource
Specifies whether this link station is to be deactivated when there are no
sessions using the link. This is set to one of the following values:

AP_NO
The link is not a limited resource and will not be deactivated
automatically.

AP_YES or AP_NO_SESSIONS
The link is a limited resource and will be deactivated automatically
when no active sessions are using it. A limited resource link station
can be configured for CP-CP session support. (This is done by
setting this field to AP_YES and cp_cp_sess_support to AP_YES.)
In this case, if CP-CP sessions are brought up over the link,
Personal Communications or Communications Server will not treat
the link as a limited resource (and will not bring the link down).

AP_INACTIVITY
The link is a limited resource and will be deactivated automatically
when no active sessions are using it, or when no data has flowed

DEFINE_LS

Chapter 4. Node Configuration Verbs 79

on the link for the time period specified by the link_deact_timer
field. Note that link stations on a nonswitched port cannot be
configured as limited resource.

Note that link stations on a nonswitched port cannot be configured as
limited resource.

A limited resource link station may be configured for CP-CP session
support. (This is done by setting this field to AP_YES and
cp_cp_sess_support to AP_YES.) In this case, if CP-CP sessions are brought
up over the link, Personal Communications or Communications Server will
not retreat the link as a limited resource (and will not bring the link
down). Note, this does not apply if this field is set to AP_INACTIVITY.

def_data.solicit_sscp_sessions
AP_YES requests the adjacent node to initiate sessions between the SSCP
and the local control point and dependent LUs. (In this case the pu_name
must be set.) AP_NO requests no sessions with the SSCP on this link. This
field is only relevant if the link is to an APPN node and is otherwise
ignored. If the adjacent node is defined to be a host (adj_cp_type is set to
AP_HOST_XID3 or AP_HOST_XID0), then Personal Communications or
Communications Server always requests the host to initiate sessions
between the SSCP and the local control point and dependent LUs (and
again the pu_name must be set).

This field can only be set to AP_YES on a link to an adjacent APPN node if
dspu_services is set to AP_NONE. If this field is set to AP_YES and the
DCL used by this LS is defined as hpr_only, then the DEFINE_LS is
rejected with a parameter check and secondary return code of
AP_INVALID_SOLICIT_SSCP_SESS.

def_data.pu_name
Name of local PU that will use this link if the adjacent node is defined to
be a host or solicit_sscp_sessions is set to AP_YES on a link to an APPN
node. This is an 8-byte alphanumeric type-A EBCDIC string (starting with
a letter), padded to the right with EBCDIC spaces. If the adjacent node is
not defined to be a host, and is not defined as an APPN node with
solicit_sscp_sessions set to AP_YES, this field is ignored.

def_data.disable_remote_act
Specifies whether remote activation of this link is supported (AP_YES or
AP_NO).

def_data.dspu_services
Specifies the services that the local node provides to the downstream PU
across this link. This is set to one of the following:

AP_PU_CONCENTRATION
Local node will provide PU concentration for the downstream PU.

AP_DLUR
Local node will provide DLUR services for the downstream PU.
This setting is only valid if the local node is a Network Node.

AP_NONE
Local node will provide no services for this downstream PU.

The dspu_name must also be set if this field is set to
AP_PU_CONCENTRATION or AP_DLUR.

This field must be set to AP_PU_CONCENTRATION or AP_DLUR
if the adjacent node is defined as a downstream PU (that is,

DEFINE_LS

80 System Management Programming

adj_cp_type is set to AP_DSPU_XID or AP_DSPU_NOXID). It can
be set to AP_PU_CONCENTRATION or AP_DLUR on a link to an
APPN node if solicit_sscp_sessions is set to AP_NO. This field is
ignored if the adjacent node is defined as a host.

If this field is not set to AP_NONE and the DLC used by this LS is
defined as hpr_only, then the DEFINE_LS is rejected with a
parameter check and secondary return code of
SP_INVALID_DSPU_SERVICES.

def_data.dspu_name
Name of the downstream PU. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with EBCDIC
spaces.

This field must be set if dspu_services is set to
AP_PU_CONCENTRATION or AP_DLUR and is otherwise ignored.

def_data.dlus_name
Name of DLUS node which DLUR solicits SSCP services from when the
link to the downstream node is activated. This should be set to all zeros or
a 17-byte string composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, which is right-padded with EBCDIC
spaces. (Each name can have a maximum length of 8 bytes with no
embedded spaces.) If the field is set to all zeros, then the global default
DLUS (if it has been defined using the DEFINE_DLUR_DEFAULTS verb) is
solicited when the link is activated. If the dlus_name is set to zeros and
there is no global default DLUS, then DLUR will not initiate SSCP contact
when the link is activated. This field is ignored if dspu_services is not set
to AP_DLUR.

def_data.bkup_dlus_name
Name of DLUS node which serves as the backup for the downstream PU.
This should be set to all zeros or a 17-byte string composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot, which is
right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) If the field is set to all zeros,
then the global backup default DLUS (if it has been defined by the
DEFINE_DLUR_DEFAULTS verb) is used as the backup for this PU. This
field is ignored if dspu_services is not set to AP_DLUR.

def_data.hpr_supported
Specifies whether HPR is supported on this link (AP_YES or AP_NO). This
field is only relevant if the link is to an APPN node and is otherwise
ignored. If it is not, setting this field to AP_YES results in the verb being
rejected with a parameter check and a secondary return code of
INVALID_NODE_TYPE_FOR_HPR.

def_data.hpr_link_lvl_error
Specifies whether HPR traffic should be sent on this link using link-level
error recovery (AP_YES or AP_NO). This parameter is ignored if
hpr_supported is set to AP_NO.

def_data.link_deact_timer
Limited resource link deactivation timer (in seconds).

If limited_resource is set to AP_INACTIVITY, then a link is automatically
deactivated if no data traverses the link for the duration of this timer.

DEFINE_LS

Chapter 4. Node Configuration Verbs 81

If zero is specified, the default value of 30 is used. Otherwise, the
minimum value is 5. (If it is set any lower, the specified value will be
ignored and 5 will be used.) This parameter is reserved if limited_resource
is set to AP_NO.

def_data.default_nn_server
Specifies whether a link can be automatically activated by an end node to
support CP-CP sessions to a network node server. (AP_YES or AP_NO).
Note that the link must be defined to support CP-CP sessions for this field
to take effect.

def_data.ls_attributes
Specifies further information about the adjacent node.

def_data.ls_attributes[0]
Host type.

AP_SNA
Standard SNA host.

AP_FNA
FNA (VTAM-F) host.

AP_HNA
HNA host.

def_data.ls_attributes[1]
This is a bit field. It may take the value AP_NO, or any of the following
values bit-wise ORed together.

AP_SUPPRESS_CP_NAME
Network Name CV suppression option for a link to a back-level
LEN node. If this bit is set, no Network Name CV is included in
XID exchanges with the adjacent node. (This bit is ignored unless
adj_cp_type is set to AP_BACK_LEVEL_LEN_NODE or
AP_HOST_XID3.)

AP_REACTIVATE_ON_FAILURE
If the link is active and then fails, Personal Communications or
Communications Server will attempt to reactivate the link. If the
reactivation attempt fails, the link will remain inactive.

AP_USE_PU_NAME_IN_XID_CVS
If the adjacent node is defined to be a host or solicit_sscp_sessions
is set to AP_YES on a link to an APPN node, and the
AP_SUPPRESS_CP_NAME bit is not set, then the fully qualified
CP name in Network Name CVs sent on Format 3 XIDs is replaced
by the name supplied in def_data.pu_name, fully qualified with
the network ID of the CP.

def_data.adj_node_id
Node ID of adjacent node. This a 4-byte hexadecimal string. If adj_cp_type
indicates the adjacent node is a T2.1 node, this field is ignored unless it is
nonzero, and either the adj_cp_type is set to
AP_BACK_LEVEL_LEN_NODE or the adjacent node does not send a
Network Name CV in its XID3. If adj_cp_type is set to AP_HOST_XID3 or
AP_HOST_XID0, this field is always ignored. If adj_cp_type is set to
AP_DSPU_XID and this field is nonzero, it is used to check the identity of
the downstream PU. If adj_cp_type is set to AP_DSPU_NOXID, this field
is either ignored (if dspu_services is AP_PU_CONCENTRATION) or used
to identify the downstream PU to DLUS (if dspu_services is AP_DLUR).

DEFINE_LS

82 System Management Programming

def_data.local_node_id
Node ID sent in XIDs on this link station. This a 4-byte hexadecimal string.
If this field is set to zero, the node_id will be used in XID exchanges. If
this field is nonzero, it replaces the value for XID exchanges on this LS.

def_data.cp_cp_sess_support
Specifies whether CP-CP sessions are supported (AP_YES or AP_NO). This
field is only relevant if the link is to an APPN node and is otherwise
ignored. If adj_cp_type is set to AP_BACK_LEVEL_LEN_NODE then it is
also ignored and is assumed to be set to AP_NO.

def_data.use_default_tg_chars
Specifies whether the default TG characteristics supplied on the
DEFINE_PORT verb should be used (AP_YES or AP_NO). If this is set to
AP_YES then the tg_chars field will be ignored. This field is only relevant
if the link is to an APPN node and is otherwise ignored.

def_data.tg_chars
TG characteristics (See “DEFINE_CN” on page 31). This field is only
relevant if the link is to an APPN node and is otherwise ignored.

def_data.target_pacing_count
Numeric value between 1 and 32 767, inclusive, indicating the desired
pacing window size for BINDs on this TG. The number is only significant
when fixed bind pacing is being performed. Personal Communications or
Communications Server does not currently use this value.

def_data.max_send_btu_size
Maximum BTU size that can be sent from this link station. This value is
used to negotiate the maximum BTU size than can be transmitted between
a link station pair. If the link is not HPR-capable then this must be set to a
value greater than or equal to 99. If the link is HPR-capable then this must
be set to a value greater than or equal to 768.

def_data.ls_role
The link station role that this link station should assume. This can be any
one of AP_LS_NEG, AP_LS_PRI or AP_LS_SEC to select a role of
negotiable, primary or secondary. The field can also be set to
AP_USE_PORT_DEFAULTS to select the value configured on the
DEFINE_PORT verb. If dlc_type is AP_ANYNET (and ls_name is
"$ANYNET$"), then AP_LS_PRI is not supported.

def_data.max_ifrm_rcvd
The maximum number of I-frames that can be received by the XID sender
before acknowledgment.

Range: 0–127

If zero is specified, the value of max_ifrm_rcvd from DEFINE_PORT is
used as the default.

def_data.dlus_retry_timeout
Interval in seconds between second and subsequent attempts to contact the
DLUS specified in the def_data.dlus_name and def_data.bkup_dlus_name
fields. The interval between the initial attempt and the first retry is always
one second. If zero is specified, the default value configured through
DEFINE_DLUR_DEFAULTS is used. This field is ignored if
def_data.dspu_services is not set to AP_DLUR.

def_data.dlus_retry_limit
Maximum number of retries after an initial failure to contact the DLUS

DEFINE_LS

Chapter 4. Node Configuration Verbs 83

specified in the def_data.dlus_name and def_data.bkup_dlus_name fields.
If zero is specified, the default value configured through
DEFINE_DLUR_DEFAULTS is used. If X'FFFF' is specified, APPN retries
indefinitely. This field is ignored if def_data.dspu_services is not set to
AP_DLUR.

def_data.conventional_lu_compression
Specifies whether data compression is requested for conventional LU
sessions dependent on this PU. Note that this field is only valid for links
carrying LU 0 to 3 traffic.

AP_NO
The local node should not be compressing or decompressing data
flowing on conventional LU sessions using this PU.

AP_YES
Data compression should be enabled for conventional LU sessions
dependent on this PU if the host requests compression. If this
value is set, but the node does not support compression (defined
on the START_NODE verb) then the link station is successfully
defined but without compression support.

def_data.conventional_lu_cryptography
Specifies whether session level encryption is required for conventional LU
sessions. This field only applies to links carrying conventional LU traffic.

AP_NONE
Session level encryption is not performed by the Program.

AP_MANDATORY
Mandatory session level encryption is performed by the Program if
an import key is available to the LU. Otherwise, it must be
performed by the application that uses the LU (if this is PU
Concentration, then it is performed by a downstream LU).

AP_OPTIONAL
This value allows the cryptography used to be driven by the host
application on a per session basis. If the host requests
cryptography for a session on this LS, then the behavior of the
Program is the same as AP_MANDATORY. If the host does not
request cryptography, then the behaviour is as for AP_NONE.

def_data.retry_flags
This field specifies the conditions under which activation of this link
station is subject to automatic retry. It is a bit field, and may take any of
the following values bit-wise ORed together.

AP_RETRY_ON_START
Link activation will be retried if no response is received from the
remote node when activation is attempted. If the underlying port is
inactive when activation is attempted, the Program will attempt to
activate it.

AP_RETRY_ON_FAILURE
Link activation will be retried if the link fails while active or
pending active. If the underlying port has failed when activation is
attempted, the Program attempts to activate it.

AP_RETRY_ON_DISCONNECT
Link activation will be retried if the link is stopped normally by
the remote node.

DEFINE_LS

84 System Management Programming

AP_DELAY_APPLICATION_RETRIES
Link activation retries, initiated by applications (using START_LS
or on-demand link activation) will be paced using the
activation_delay_timer.

AP_INHERIT_RETRY
In addition to the retry conditions specified by flags in this field,
those specified in the retry_flags field of the underlying port
definition will also be used.

def_data.max_activation_attempts
This field has no effect unless at least one flag is set in retry_flags.

This field specifies the number of retry attempts the Program allows when
the remote node is not responding, or the underlying port is inactive. This
includes both automatic retries and application-driven activation attempts.

If this limit is ever reached, no further attempts are made to automatically
retry. This condition is reset by STOP_LS, STOP_PORT, STOP_DLC or a
successful activation. START_LS or OPEN_LU_SSCP_SEC_RQ results in a
single activation attempt, with no retry if activation fails.

Zero means no limit. The value AP_USE_DEFAULTS results in the use of
max_activiation_attempts supplied on DEFINE_PORT.

def_data.activation_delay_timer
This field has no effect unless at least one flag is set in retry_flags.

This field specifies the number of seconds that the Program waits between
automatic retry attempts, and between application-driven activation
attempts if the AP_DELAY_APPLICATION_RETRIES bit is set in
def_data.retry_flags.

The value AP_USE_DEFAULTS results in the use of
activiation_delay_timer supplied on DEFINE_PORT.

If zero is specified, the Program uses a default timer duration of thirty
seconds.

def_data.branch_link_type
BrNN only. This specifies whether a link is an uplink or a downlink. This
field only applies if the def_data.adj_cp_type is set to
AP_NETWORK_NODE, AP_END_NODE, AP_APPN_NODE, or
AP_BACK_LEVEL_LEN_NODE.

AP_UPLINK
This link is an uplink.

AP_DOWNLINK
The link is a downlink.

If the field adj_cp_type is set to AP_NETWORK_NODE, then this
field must be set to AP_UPLINK.

Other node types: This field is ignored.

def_data.adj_brnn_cp_support
BrNN only. This specifies whether the adjacent CP is allowable, is a
requirement, or prohibited from being an NN(BrNN); for example, a BrNN
showing an NN face. This field only applies if the field adj_cp_type is set
to AP_NETWORK_NODE or AP_APPN_NODE (and the node type learned
during XID exchange is network node).

DEFINE_LS

Chapter 4. Node Configuration Verbs 85

AP_BRNN_ALLOWED
The adjacent CP is allowed (but not required) to be an NN(BrNN).

AP_BRNN_REQUIRED
The adjacent CP is required to be an NN(BrNN).

AP_BRNN_PROHIBITED
The adjacent CP is not allowed to be an NN(BrNN).

If the field adj_cp_type is set to AP_NETWORK_NODE and the field
auto_act_supp is set to AP_YES, then this field must be set to
AP_BRNN_REQUIRED or AP_BRNN_PROHIBITED.

Other node types: This field is ignored.

def_data.link_spec_data_len
This field should always be set to zero.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_DEF_LINK_INVALID_SECURITY

AP_INVALID_CP_NAME
AP_INVALID_LIMITED_RESOURCE
AP_INVALID_LINK_NAME
AP_INVALID_LS_ROLE
AP_INVALID_NODE_TYPE
AP_INVALID_PORT_NAME
AP_INVALID_AUTO_ACT_SUPP
AP_INVALID_PU_NAME
AP_INVALID_SOLICIT_SSCP_SESS
AP_INVALID_DLUS_NAME
AP_INVALID_BKUP_DLUS_NAME
AP_INVALID_NODE_TYPE_FOR_HPR
AP_INVALID_TARGET_PACING_COUNT
AP_INVALID_BTU_SIZE
AP_HPR_NOT_SUPPORTED
AP_INVALID_TG_NUMBER
AP_MISSING_CP_NAME
AP_MISSING_CP_TYPE
AP_MISSING_TG_NUMBER
AP_PARALLEL_TGS_NOT_SUPPORTED
AP_INVALID_DLUS_RETRY_TIMEOUT
AP_INVALID_DLUS_RETRY_LIMIT
AP_INVALID_CLU_CRYPTOGRAPHY
AP_INVALID_RETRY_FLAGS

DEFINE_LS

86 System Management Programming

AP_BRNN_SUPPORT_MISSING
AP_INVALID_BRANCH_LINK_TYPE
AP_INVALID_BRNN_SUPPORT

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_LOCAL_CP_NAME

AP_DEPENDENT_LU_SUPPORTED
AP_DUPLICATE_DEST_ADDR
AP_INVALID_NUM_LS_SPECIFIED
AP_LS_ACTIVE
AP_PU_ALREADY_DEFINED
AP_DSPU_SERVICES_NOT_SUPPORTED
AP_DUPLICATE_TG_NUMBER
AP_TG_NUMBER_IN_USE
AP_CANT_MODIFY_VISIBILITY
AP_INVALID_UPLINK
AP_INVALID_DPWNLINK

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEFINE_LS

Chapter 4. Node Configuration Verbs 87

DEFINE_LU_0_TO_3

This verb defines an LU of type 0, 1, 2 or 3. It allows the LU to be added to an LU
pool. If the pool does not already exist, it is added. This verb cannot be used to
modify the lu_model, model_name, priority, description, and appc_spec_def_data
of an existing definition, but no other fields may be modified.

Personal Communications or Communications Server supports implicit LU type 0,
1, 2 or 3 definition by ACTLU. Implicit definitions cannot be deleted, but are
removed when the LU becomes inactive. To obtain information about implicit
definitions, use QUERY_LU_0_TO_3 or register for LU_0_TO_3_INDICATIONs. An
implicit LU definition can be redefined using DEFINE_LU_0_TO_3, provided
lu_name, pu_name, and nau_address are correct, and pool_name is all zeros (the
LU is then treated as if it had been configured by the operator in the first place).

VCB Structure
Format 1
typedef struct define_lu_0_to_3
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* LU name */
LU_0_TO_3_DEF_DATA

def_data; /* defined data */
} DEFINE_LU_0_TO_3;

typedef struct lu_0_to_3_def_data
{

unsigned char description /* resource description */
unsigned char nau_address; /* LU NAU address */
unsigned char pool_name[8]; /* LU pool name */
unsigned char pu_name[8]; /* PU name */
unsigned char priority; /* LU priority */
unsigned char lu_model; /* LU model */
unsigned char sscp_id[6] /* SSCP ID */
unsigned short timeout; /* Timeout */
unsigned char app_spec_def_data[16]; /* Application Specified Data */
unsigned char model_name[7]; /* LU model name for DDDLU */
unsigned char reserv3[17]; /* reserved */

} LU_0_TO_3_DEF_DATA;

VCB Structure
Format 0
typedef struct define_lu_0_to_3
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* LU name */
LU_0_TO_3_DEF_DATA

def_data; /* defined data */
} DEFINE_LU_0_TO_3;

typedef struct lu_0_to_3_def_data
{

unsigned char description /* resource description */
unsigned char nau_address; /* LU NAU address */

DEFINE_LU_0_TO_3

88 System Management Programming

unsigned char pool_name[8]; /* LU pool name */
unsigned char pu_name[8]; /* PU name */
unsigned char priority; /* LU priority */
unsigned char lu_model; /* LU model */
unsigned char sscp_id[6] /* SSCP ID */
unsigned short timeout; /* Timeout */
unsigned char app_spec_def_data[16]; /* Application Specified Data */
} LU_0_TO_3_DEF_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_LU_0_TO_3

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero or one to specify one
of the versions of the VCB listed above.

lu_name
Name of the local LU that is being defined. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

def_data.description
Resource description (returned on QUERY_LU_0_TO_3). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

def_data.nau_address
Network addressable unit address of the LU, which must be in the range
1–255.

def_data.pool_name
Name of LU pool to which this LU belongs.This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. If the LU does not belong to a pool, this field is set to all
binary zeros. If the pool does not currently exist, it is created.

def_data.pu_name
Name of the PU (as specified on the DEFINE_LS verb) that this LU will
use. This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

def_data.priority
LU priority when sending to the host. This is set to one of the following
values:

AP_NETWORK
AP_HIGH
AP_MEDIUM
AP_LOW

DEFINE_LU_0_TO_3

Chapter 4. Node Configuration Verbs 89

def_data.lu_model
Model type and number of the LU. This is set to one of the following
values:

AP_3270_DISPLAY_MODEL_2
AP_3270_DISPLAY_MODEL_3
AP_3270_DISPLAY_MODEL_4
AP_3270_DISPLAY_MODEL_5
AP_RJE_WKSTN
AP_PRINTER
AP_SCS_PRINTER
AP_UNKNOWN

Format 1 only, if model_name is not set to all binary zeros, then this field
is ignored.

If a value other than AP_UNKNOWN is specified and the host system
supports DDDLU (Dynamic Definition of Dependent LUs), the node will
generate an unsolicited PSID NMVT reply in order to dynamically define
the local LU at the host. For format 1 only, the PSID subvector contains the
machine type and model number corresponding to the value of this field.
This field may be changed dynamically by reissuing the verb. Changes will
not come into effect until the LU is next closed and deactivated.

def_data.sscp_id
This field specifies the ID of the SSCP permitted to activate this LU. It is a
6-byte binary field. If the field is set to binary zeros, then the LU may be
activated by any SSCP.

def_data.timeout
Timeout for LU specified in seconds. If a timeout is supplied and the user
of the LU specified allow_timeout on the OPEN_LU_SSCP_SEC_RQ (or, in
the case of PU concentration, on the Downstream LU definition), then the
LU will be deactivated after the PLU-SLU session is left inactive for this
period and one of the following conditions holds:
v The session passes over a limited resource link
v Another application wishes to use the LU before the session is used

again

If the timeout is set to zero, the LU will not be deactivated.

def_data.app_spec_def_data
Application specified defined data. This field is not interpreted by Personal
Communications or Communications Server, but is stored and
subsequently returned on the QUERY_LU_0_TO_3 verb.

def_data.model_name
Personal Communications or Communications Server checks that this field
consists of the EBCDIC characters A–Z, 0–9 and @, #, and $. If this field is
not set to all binary zeros and the host system supports DDDLU (Dynamic
Definition of Dependent LUs), the node will generate an unsolicited PSID
NMVT reply in order to dynamically define the local LU at the host. The
PSID subvector will contain the name supplied in this field. This field may
be changed dynamically by reissuing the verb. Changes will not come into
effect until the LU is closed and deactivated.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

DEFINE_LU_0_TO_3

90 System Management Programming

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_NAME

AP_INVALID_PU_NAME
AP_INVALID_PU_TYPE
AP_PU_NOT_DEFINED
AP_LU_ALREADY_DEFINED
AP_LU_NAU_ADDR_ALREADY_DEFD
AP_CANT_MODIFY_VISIBILITY

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_PU_NAME

AP_INVALID_PU_TYPE
AP_PU_NOT_DEFINED
AP_LU_NAME_POOL_NAME_CLASH
AP_LU_ALREADY_DEFINED
AP_LU_NAU_ADDR_ALREADY_DEFD

If the verb does not execute because the system has not been built with Dependent
LU support, the Program returns the following parameter:

primary_rc
AP_INVALID_VERB

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEFINE_LU_0_TO_3

Chapter 4. Node Configuration Verbs 91

DEFINE_LU_0_TO_3_RANGE

This verb allows the definition of multiple LUs within a specified NAU range. The
node operator provides a base name and an NAU range. The LU names are
generated by combining the base name with the NAU addresses. This verb cannot
be used to modify existing definitions.

For example, a base name of LUNME combined with an NAU range of 1 to 4
would define the LUs LUNME001, LUNME002, LUNME003, and LUNME004. A
base name of less than five non-pad characters results in LU names of less than
eight non-pad characters. Personal Communications or Communications Server
then right-pads these to eight characters.

VCB Structure
Format 1
typedef struct define_lu_0_to_3_range
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char base_name[5]; /* base name */
unsigned char reserv3; /* reserved */
unsigned char description; /* resource description */
unsigned char min_nau; /* minimum NAU address */
unsigned char max_nau; /* maximum NAU address */
unsigned char pool_name[8]; /* LU pool name */
unsigned char pu_name[8]; /* PU name */
unsigned char priority; /* LU priority */
unsigned char lu_model; /* LU model */
unsigned char sscp_id[6]; /* SSCP ID */
unsigned short timeout; /* Timeout */
unsigned char app_spec_def_data[16]; /* application specified data */
unsigned char model_name[7]; /* LU model name for DDDLU */
unsigned char name_attributes; /* Attributes of base name */
unsigned char base_number; /* Base number for LU names */
unsigned char reserv3[15]; /* reserved */

} DEFINE_LU_0_TO_3_RANGE;

VCB Structure
Format 0
typedef struct define_lu_0_to_3_range
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char base_name[5]; /* base name */
unsigned char reserv3; /* reserved */
unsigned char description; /* resource description */
unsigned char min_nau; /* minimum NAU address */
unsigned char max_nau; /* maximum NAU address */
unsigned char pool_name[8]; /* LU pool name */
unsigned char pu_name[8]; /* PU name */
unsigned char priority; /* LU priority */
unsigned char lu_model; /* LU model */

DEFINE_LU_0_TO_3_RANGE

92 System Management Programming

unsigned char sscp_id[6]; /* SSCP ID */
unsigned short timeout; /* Timeout */
unsigned char app_spec_def_data; /* application specified data */

} DEFINE_LU_0_TO_3_RANGE;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_LU_0_TO_3_RANGE

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero or one to specify one
of the versions of the VCB listed above.

base_name
Base LU name. This is an 5-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces. This base
name is appended with three type-A EBCDIC numeric characters,
representing the decimal value of the NAU address, for each LU in the
NAU range.

This is the field with no bits set in the field name_attributes. Setting bits
changes the meaning of this field.

description
Resource description (returned on QUERY_LU_0_TO_3). The length of this
field should be a multiple of four bytes, and not zero.

min_nau
Minimum NAU address in the range. This can be from 1 to 255 inclusive.

max_nau
Maximum NAU address in the range. This can be from 1 to 255 inclusive.

pool_name
Name of LU pool to which this LU belongs. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. If the LU does not belong to a pool, this field is set to all
binary zeros.

pu_name
Name of the PU (as specified on the DEFINE_LS verb) that this LU uses.
This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

priority
LU priority when sending to the host. This is set to one of the following
values:

AP_NETWORK
AP_HIGH
AP_MEDIUM
AP_LOW

DEFINE_LU_0_TO_3_RANGE

Chapter 4. Node Configuration Verbs 93

lu_model
Model type and number of the LU. This is set to one of the following
values:

AP_3270_DISPLAY_MODEL_2
AP_3270_DISPLAY_MODEL_3
AP_3270_DISPLAY_MODEL_4
AP_3270_DISPLAY_MODEL_5
AP_RJE_WKSTN
AP_PRINTER
AP_SCS_PRINTER
AP_UNKNOWN

Format 1 only, if model_name is not set to all binary zeros, then this field
is ignored.

If a value other than AP_UNKNOWN is specified and the host system
supports DDDLU (Dynamic Definition of Dependent LUs), the node will
generate an unsolicited PSID NMVT reply in order to dynamically define
the local LU at the host. For format 1 only, the PSID subvector contains the
machine type and model number corresponding to the value of this field.
This field may be changed dynamically by reissuing the verb. Changes will
not come into effect until the LU is next closed and deactivated.

sscp_id
This field specifies the ID of the SSCP permitted to activate this LU. It is a
6-byte binary field. If the field is set to binary zeros, then the LU may be
activated by any SSCP.

timeout
Timeout for LU specified in seconds. If a timeout is supplied and the user
of the LU specified allow_timeout on the OPEN_LU_SSCP_SEC_RQ (or, in
the case of PU concentration, on the Downstream LU definition), then the
LU will be deactivated after the PLU-SLU session is left inactive for this
period and one of the following conditions holds:
v The session passes over a limited resource link
v Another application wishes to use the LU before the session is used

again

If the timeout is set to zero, the LU will not be deactivated.

model_name
Personal Communications or Communications Server checks that this field
consists of the EBCDIC characters A–Z, 0–9 and @, #, and $. If this field is
not set to all binary zeros and the host system supports SDDLU
(Self-Defining Dependent LU), the node will generate an unsolicited PSID
NMVT reply in order to dynamically define the local LU at the host. The
PSID subvector will contain the name supplied in this field.

name_attributes
This bit field modifies the interpretation and usage of the supplied
base_name. This field may take the value of zero, or any or all of the
following values bit-wise ORed together.

AP_USE_HEX_IN_NAME
If this bit is set, the interpretation of the base_name is modified as
follows:

DEFINE_LU_0_TO_3_RANGE

94 System Management Programming

This is an 6-byte alphanumeric type-A EBCDIC string (starting
with a letter), padded to the right with EBCDIC spaces. The base
name is appended with two EBCDIC characters, representing the
hexadecimal value of the NAU address, for each LU in the NAU
range.

AP_USE_BASE_NUMBER
If this bit is set, the interpretation base_name is modified as
follows:

This is an 5-byte alphanumeric type-A EBCDIC string (starting
with a letter), padded to the right with EBCDIC spaces. This base
name is appended with three EBCDIC numeric characters,
representing the decimal index of the LU in the range, starting
with base_number and ending with (base_name + max_nau —
min_nau).

base_number
If the AP_USE_BASE_NUMBER bit is not set in name_attributes, this field
is ignored. Otherwise, this field modifies the interpretation of base_name
described previously. Legal values are from zero to (255 – max_nau +
min_nau).

app_spec_def_data
Application specified defined data. This field is not interpreted by Personal
Communications or Communications Server, but is stored and
subsequently returned on the QUERY_LU_0_TO_3 verb (the same data is
returned for each LU in the range).

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_BASE_NUMBER

AP_INVALID_LU_MODEL
AP_INVALID_LU_NAME
AP_INVALID_NAME_ATTRIBUTES
AP_INVALID_NAU_ADDRESS
AP_INVALID_PRIORITY

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PU_NOT_DEFINED

DEFINE_LU_0_TO_3_RANGE

Chapter 4. Node Configuration Verbs 95

AP_INVALID_PU_NAME
AP_INVALID_PU_TYPE
AP_LU_NAME_POOL_NAME_CLASH
AP_LU_ALREADY_DEFINED
AP_LU_NAU_ADDR_ALREADY_DEFD
AP_IMPLICIT_LU_DEFINED
AP_CANT_MODIFY_VISIBILITY

If the verb does not execute because the system has not been built with dependent
LU support, the Program returns the following parameter:

primary_rc
AP_INVALID_VERB

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEFINE_LU_0_TO_3_RANGE

96 System Management Programming

DEFINE_LU_POOL

This verb is used to define an LU pool or to add LUs to an existing pool. The LUs
that are to be added must already have been defined using either a
DEFINE_LU_0_TO_3 verb or a DEFINE_LU_0_TO_3_RANGE verb. LUs can only
belong to one LU pool at a time. If the specified LUs already belong to a pool, they
are removed from the existing pool into the pool being defined. Up to 10 LUs can
be added to a pool at a time, although there is no limit to the total number of LUs
in a pool.

VCB Structure
typedef struct define_lu_pool
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char pool_name[8]; /* LU pool name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char reserv3[4]; /* reserved */
unsigned short num_lus; /* number of LUs to add */
unsigned char lu_names[10][8]; /* LU names */

} DEFINE_LU_POOL;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_LU_POOL

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

pool_name
Name of pool to which these LUs belong. This name is an 8-byte string,
padded to the right with spaces. This can be either an EBCDIC string or a
string in a locally displayable character set.

description
Resource description (returned on QUERY_LU_POOL). The length of this
field should be a multiple of four bytes, and not zero.

num_lus
Number of LUs to add, in the range 0–10.

lu_names
Names of the LUs that are being added to the pool. Each name is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

DEFINE_LU_POOL

Chapter 4. Node Configuration Verbs 97

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_NAME

AP_INVALID_NUM_LUS
AP_INVALID_POOL_NAME

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_LU_NAME_POOL_NAME_CLASH

AP_INVALID_POOL_NAME

If the verb does not execute because the system has not been built with dependent
LU support, the Program returns the following parameter:

primary_rc
AP_INVALID_VERB

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEFINE_LU_POOL

98 System Management Programming

DEFINE_LU62_TIMEOUT
The DEFINE_LU62_TIMEOUT verb defines a timeout period for unused LU 6.2
sessions. Each timeout is for a specific resource type (global, mode, local LU, or
partner LU) and resource name.

If a define is issued for a resource type/name pair that is already defined, it will
overwrite the previous definition. New timeout periods will only take effect for
sessions activated after the definition. If more than one relevant timeout period has
been defined for a session, the shortest period will apply.

VCB Structure
typedef struct define_lu62_timeout
{

NB_USHORT opcode; /* verb operation code */
NB_BYTE reserv2; /* reserved */
NB_BYTE format; /* format */
NB_USHORT primary_rc; /* primary return code */
NB_ULONG secondary_rc; /* secondary return code */
NB_BYTE resource_type; /* type of resource */
NB_BYTE resource_name[17]; /* name of resource */
NB_USHORT timeout; /* timeout period (s) */

} DEFINE_LU62_TIMEOUT;

Supplied Parameters
The application supplies the following parameters:

opcode
NAP_DEFINE_LU62_TIMEOUT

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

resource_type
Specifies the type of the timeout being defined

NAP_GLOBAL_TIMEOUT
Timeout applies to all LU 6.2 sessions for the local node. The
resource name should be set to all zeros.

NAP_LOCAL_LU_TIMEOUT
Timeout applies to all LU 6.2 sessions for the local LU specified in
resource_name. Only the first 8 bytes of resource_name are valid
and should be set to the name of the local LU. This is an 8-byte
alphanumeric type EBCDIC string (starting with a letter), padded
to the right with EBCDIC spaces.

NAP_PARTNER_LU_TIMEOUT
Timeout applies to all LU 6.2 sessions to the partner LU specified
in resource_name. All 17 bytes of resource_name are valid and
should be set to the fully qualified name of the partner LU, which
is padded to the right with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot.
(Each name can have a maximum length of 8 bytes with no
embedded spaces.)

NAP_MODE_TIMEOUT
Timeout applies to all LU 6.2 sessions on the mode specified in the
resource_name. Only the first 8 bytes of resource_name are valid

DEFINE_LU62_TIMEOUT

Chapter 4. Node Configuration Verbs 99

and should be set to the name of the mode. This is an 8-byte
alphanumeric type EBCDIC string (starting with a letter), padded
to the right with EBCDIC spaces.

resource_name
Name of the resource that is being defined. See the description of the
resource_type parameter for the format of this field.

timeout
Timeout period in seconds. If the value is set to zero, the session becomes
free immediately.

Returned Parameters
If the verb executes successfully, SNAP APPN returns the following parameter:

primary_rc
NAP_OK

If the verb does not execute because of a parameter error, SNAP APPN returns the
following parameters:

primary_rc
NAP_PARAMETER_CHECK

secondary_rc
NAP_INVALID_RESOURCE_TYPE
NAP_INVALID_LU_NAME
NAP_INVALID_PARTNER_LU
NAP_INVALID_MODE_NAME

If the verb does not execute because the node has not yet been started, SNAP
APPN returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because a STOP_NODE verb has been issued, SNAP
APPN returns the following parameter:

primary_rc
NAP_NODE_STOPPING

If the verb does not execute because of a system error, SNAP APPN returns the
following parameter:

primary_rc
NAP_UNEXPECTED_SYSTEM_ERROR

DEFINE_LU62_TIMEOUT

100 System Management Programming

DEFINE_MODE

The DEFINE_MODE verb defines a set of networking characteristics to assign to a
particular mode (or group of sessions). This verb can also be used to modify any
fields on a previously defined mode. If the SNASVCMG mode is redefined, its
mode_name and cos_name cannot be modified. The CPSVCMG mode cannot be
redefined.

The DEFINE_MODE verb can also be used to define the default COS, which
unknown modes will be mapped to. This is done by setting mode_name to all
zeros. The default COS is initially #CONNECT.

Note: It is not necessary to define all the modes you want to use locally, though
they must be defined at your network node and potentially, the partner
node. If an ALLOCATE is issued specifying a mode that has not been
defined, the node uses the characteristics for the model default mode
specified on the DEFINE_DEFAULTS verb. If no such model has been
specified, the characteristics of the blank mode are used for the model.

VCB Structure
typedef struct define_mode
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char mode_name[8]; /* mode name */
unsigned short reserv3; /* reserved */
MODE_CHARS mode_chars; /* mode characteristics */

} DEFINE_MODE;

typedef struct mode_chars
{

unsigned char description[RD_LEN]
/* resource description */

unsigned short max_ru_size_upp; /* max RU size upper bound */
unsigned char receive_pacing_win; /* receive pacing window */
unsigned char default_ru_size; /* default RU size to maximize */

/* performance */
unsigned short max_neg_sess_lim; /* max negotiable session limit */
unsigned short plu_mode_session_limit; /* LU-mode session limit */
unsigned short min_conwin_src; /* min source contention winner */

/* sessions */
unsigned char cos_name[8]; /* class-of-service name */
unsigned char cryptography; /* cryptography */
unsigned char compression; /* compression */
unsigned short auto_act; /* initial auto-activation count*/
unsigned short min_conloser_src; /* min source contention loser */
unsigned short max_ru_size_low /* maximum RU size lower bound */
unsigned short max_receive_pacing_win;

/* maximum receive pacing window*/
unsigned char max_compress_lvl; /* maximum compression level */
unsigned char max_decompression_lvl; /* maximum decompression level */
unsigned char comp_in_series; /* support for LZ and RLE */
unsigned char reserv4[24]; /* reserved */

} MODE_CHARS;

Supplied Parameters
The application supplies the following parameters:

DEFINE_MODE

Chapter 4. Node Configuration Verbs 101

opcode
AP_DEFINE_MODE

format
Identifies the format of the VCB. Set this field to zero or one to specify the
version of the VCB listed above.

mode_name
Name of the mode. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces. If this is
set to all zeros, the default COS is set to mode_chars.cos_name, and all
other mode_chars fields are ignored.

mode_chars.description
Resource description (returned on QUERY_MODE_DEFINITION and
QUERY_MODE). The length of this field should be a multiple of four
bytes, and nonzero.

mode_chars.max_ru_size_upp
Upper bound for the maximum size of RUs sent and received on sessions
in this mode. The value is used when the maximum RU size is negotiated
during session activation. The range is 256–61440. This field is ignored if
default_ru_size is set to AP_YES.

mode_chars.receive_pacing_win
Session pacing window for sessions in this mode. For fixed pacing, this
value specifies the receive pacing window. For adaptive pacing, this value
is used as a preferred minimum window size. Note that Personal
Communications or Communications Server will always use adaptive
pacing unless the adjacent node specifies that it does not support it. The
range is 1–63. The value zero is not allowed.

mode_chars.default_ru_size
Specifies whether a default upper bound for the maximum RU size will be
used. If this parameter specifies AP_YES, max_ru_size_upp is ignored, and
the upper bound for the maximum RU size is set to the link BTU size
minus the size of the TH and the RH.

AP_YES
AP_NO

mode_chars.max_neg_sess_lim
Maximum number of sessions allowed on this mode between any local LU
and partner LU. If a value of zero is specified then there will be no implicit
CNOS exchange. The range is 0–32 767.

mode_chars.plu_mode_session_limit
Default session limit for this mode. This limits the number of sessions on
this mode between any one local LU and partner LU pair. This value is
used when CNOS (Change Number of Sessions) exchange is initiated
implicitly. If a value of zero is specified then there will be no implicit
CNOS exchange. The range is 0–32 767.

mode_chars.min_conwin_src
Minimum number of contention winner sessions that can be activated by
any one local LU using this mode. This value is used when CNOS (Change
Number of Sessions) exchange is initiated implicitly. If a value of zero is
specified then there will be no implicit CNOS exchange. The range is
0–32 767.

DEFINE_MODE

102 System Management Programming

mode_chars.cos_name
Name of the class of service to request when activating sessions on this
mode. This is an 8-byte alphanumeric type-A EBCDIC string (starting with
a letter), padded to the right with EBCDIC spaces.

mode_chars.cryptography
Specifies whether session-level cryptography must be used (AP_NONE or
AP_MANDATORY).

mode_chars.compression
Specifies the use of compression for sessions activated using this mode.

AP_COMP_PROHIBITED
Compression is not supported on sessions for this mode.

AP_COMP_REQUESTED
Compression is supported and requested (but not mandated) on
sessions for this mode.

If the format field is set to 0, then the compression and
decompression levels are set to the maximum supported by the
node.

If the format field is set to 1, then the maximum levels of
compression and decompression are defined by the
max_compress_lvl and max_decompress_lvl fields.

mode_chars.auto_act
Specifies how many sessions are automatically activated for this mode.
This value is used when Change Number of Sessions (CNOS) exchange is
initiated implicitly.

The range is 0–32767.

mode_chars.min_consloser_src
Specifies the minimum number of contention loser sessions to be activated
by any one local LU for this mode. This value is used when CNOS (change
number of sessions) exchange is initiated implicitly. The range is 0–32767.

mode_chars.max_ru_size_low
Specifies the lower bound for the maximum size of RUs sent and received
on sessions in this mode. This value is used when the maximum RU size is
negotiated during session activation. The range is 256–61140.

The value zero means that there is no lower bound.

The field is ignored if default_ru_size is set to AP_YES.

mode_chars.max_receive_pacing_win
Specifies the maximum pacing window for sessions in this mode. For
adaptive pacing, this value is used to limit the receive pacing window it
grants. For fixed pacing, this field is not used. Note, the Program always
uses adaptive pacing unless the adjacent node specifies that it does not
support it. The range is 0–32767.

The value of zero means that there is no upper bound.

mode_chars.max_compress_lvl
The maximum compression level that the Program attempts to negotiate
for data flowing supported by the node.

AP_NONE
AP_RLE_COMPRESSION

DEFINE_MODE

Chapter 4. Node Configuration Verbs 103

AP_LZ9_COMPRESSION
AP_LZ10_COMPRESSION
AP_LZ12_COMPRESSION

The level of compression configured cannot be greater than that supported
by the node (specified in the field max_compress_lvl on START_NODE).
Note, if compression is negotiated using a non-extended BIND, then the
compression level is set to RLE compression.

mode_chars.max_decompress_lvl
The maximum decompression level that the Program attempts to negotiate
for data flowing supported by the node.

AP_NONE
AP_RLE_COMPRESSION
AP_LZ9_COMPRESSION
AP_LZ10_COMPRESSION
AP_LZ12_COMPRESSION

The level of compression configured cannot be greater than that supported
by the node (specified in the field max_compress_lvl on START_NODE).
Note, if compression is negotiated using a non-extended BIND, then the
decompression level is set to LZ9 compression.

mode_chars.comp_in_series
Specifies whether the use of LZ compression preceded by RLE compression
is allowed. If this field is set to AP_YES, then max_compress_lvl must be
set to AP_LZ9_COMPRESSION, AP_LZ10_COMPRESSION, or
AP_LZ12_COMPRESSION.

AP_YES

AP_NO

This field cannot be set to AP_YES if the node is configured as not
supporting RLE and LZ compression (specified in the field comp_in_series
on START_NODE).

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_COS_NAME

AP_CPSVCMG_ALREADY_DEFD
AP_INVALID_CNOS_SLIM
AP_INVALID_COS_SNASVCMG_MODE
AP_INVALID_DEFAULT_RU_SIZE
AP_INVALID_MAX_NEGOT_SESS_LIM
AP_INVALID_MAX_RU_SIZE_UPPER

DEFINE_MODE

104 System Management Programming

AP_INVALID_MAX_RU_SIZE_LOW
AP_RU_SIZE_LOW_UPPER_MISMATCH
AP_INVALID_COMPRESSION
AP_INVALID_MIN_CONWINNERS
AP_INVALID_MIN_CONLOSERS
AP_INVALID_MIN_CONTENTION_SUM
AP_INVALID_MODE_NAME
AP_INVALID_RECV_PACING_WINDOW
AP_INVALID_MAX_RECV_PACING_WIN
AP_INVALID_DEFAULT_RU_SIZES
AP_INVALID_SNASVCMG_MODE_LIMIT
AP_MODE_SESS_LIM_EXCEEDS_NEG
AP_INVALID_CRYPTOGRAPHY
AP_INVALID_MAX_COMPRESS_LVL
AP_INVALID_MAX_DECOMPRESS_LVL
AP_INVALID_COMP_IN_SERIES

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Effects of Redefinition

Following is the effect of redefinition of each field:

description
The updated description is returned on subsequent QUERY_MODE verbs.

compression

max_compress_lvl

max_decompress_lvl

comp_in_series

cryptography

max_ru_size_upp

receive_pacing_win

default_ru_size

max_ru_size_low

max_receive_pacing_win
The updated values are used for all subsequent session activation attempts

DEFINE_MODE

Chapter 4. Node Configuration Verbs 105

for this mode and are returned on all subsequent QUERY_MODE verbs.
The change does not effect any existing active sessions.

max_neg_sess_lim

plu_mode_session_limit

min_conwin_src

auto_act

min_conloser_src
The updated values are not used for a particular local LU or partner LU
pair until the next CNOS command (either locally initiated or remotely
initiated). The old value is returned in QUERY_MODE verbs until the next
CNOS command.

cos_name
The updated values are used for all subsequent session activation attempts
for this mode and are returned on all subsequent QUERY_MODE verbs.
The change does not effect any existing active sessions. The updated value
is also used for any subsequent mode to COS mapping operation (for
example, if this node is a network node and provides mode to COS
mapping services or its served end nodes), and is returned on all
subsequent QUERY_MODE_TO_COS_MAPPING verbs.

Note: An implicit mode definition can be made explicit by a DEFINE_MODE. This
is reflected by subsequent QUERY_MODE verbs returning with implicit set
to AP_NO.

DEFINE_MODE

106 System Management Programming

DEFINE_PARTNER_LU

The DEFINE_PARTNER_LU verb defines the parameters of a partner LU for
LU-LU sessions between a local LU and the partner LU. Alternatively,
DEFINE_PARTNER_LU can be used to modify all parameters already defined for
the partner LU, other than the fqplu_name and plu_alias.

VCB Structure
typedef struct define_partner_lu
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
PLU_CHARS plu_chars; /* partner LU characteristics */

} DEFINE_PARTNER_LU;

typedef struct plu_chars
{

unsigned char fqplu_name[17]; /* fully qualified partner */
/* LU name */

unsigned char plu_alias[8]; /* partner LU alias */
unsigned char description[RD_LEN];

/* resource description */
unsigned char plu_un_name[8]; /* partner LU uninterpreted name */
unsigned char preference /* routing preference */
unsigned short max_mc_ll_send_size; /* max MC send LL size */
unsigned char conv_security_ver; /* already_verified accepted? */
unsigned char parallel_sess_supp; /* parallel sessions supported? */
unsigned char reserv2[8]; /* reserved */

} PLU_CHARS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_PARTNER_LU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

plu_chars.fqplu_name
Fully qualified name of the partner LU. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

plu_chars.plu_alias
Alias of the partner LU. This is an 8-byte string in a locally displayable
character set. This field may be set to all zeros for a partner LU with no
alias associated to it.

plu_chars.description
Resource description (returned on QUERY_PARTNER_LU and
QUERY_PARTNER_LU_DEFINITION). This is a 16-byte string in a locally
displayable character set. All 16 bytes are significant.

plu_chars.plu_un_name
Uninterpreted name of the partner LU. This is an 8-byte type-A EBCDIC
character string.

DEFINE_PARTNER_LU

Chapter 4. Node Configuration Verbs 107

plu_chars.max_mc_ll_send_size
Maximum size of LL records sent by and received by mapped conversation
services at the partner LU. Range: 1–32 767 (32 767 is specified by setting
this field to 0)

plu_chars.preference
The preferred routing protocol to be used for session activation to this
partner LU. This field can take the following values:

AP_NATIVE
Use native (APPN) routing protocols only.

AP_NONNATIVE
Use nonnative (AnyNet) protocols only.

AP_NATIVE_THEN_NONNATIVE
Try native (APPN) protocols, and if the partner LU cannot be
located then retry session activation using nonnative (AnyNet)
protocols.

AP_NONNATIVE_THEN_NATIVE
Try nonnative (AnyNet) protocols, and if the partner LU cannot be
located then retry session activation using native (APPN) protocols.

AP_USE_DEFAULT_PREFERENCE
Use the default preference defined when the node was started.
(This can be recalled by QUERY_NODE.)

Note: Nonnative routing is only meaningful when an AnyNet DLC
is available to the Node Operator Facility, and there is an
AnyNet link station defined (see “DEFINE_LS” on page 74).

plu_chars.conv_security_ver
Specifies whether the partner LU is authorized to validate user_ids on
behalf of local LUs, that is whether the partner LU can set the already
verified indicator in an Attach request (AP_YES or AP_NO).

plu_chars.parallel_sess_supp
Specifies whether the partner LU supports parallel sessions (AP_YES or
AP_NO).

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_ANYNET_NOT_SUPPORTED
AP_DEF_PLU_INVALID_FQ_NAME
AP_INVALID_UNINT_PLU_NAME

If the verb does not execute because of a state error, the Program returns the
following parameters:

DEFINE_PARTNER_LU

108 System Management Programming

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PLU_ALIAS_CANT_BE_CHANGED

AP_PLU_ALIAS_ALREADY_USED

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Effects of Redefinition

Following is the effect of redefinition of each field:

fqplu_name
Cannot be changed.

plu_alias
If a previous DEFINE_PARTNER_LU has been issued with a different
plu_alias, the DEFINE_PARTNER_LU fails. If a previous
DEFINE_PARTNER_LU has been issued with an all zero plu_alias, the
redefinition is accepted and will effect all existing PLU records. If no
previous DEFINE_PARTNER_LU has been issued, the specified plu_alias is
copied into all correspondig implicitly defined partner LU records, unless
all zeros are specified, in which case the implicit plu_aliases are left
uchanged.

Note: Issuing DEFINE_PARTNER_LU with a nonzero plu_alias can cause
some running applications to fail, if the applicaiton has already
obtained the implicit plu_alias from an earlier APPC verb and uses
it on a subsequent ALLOCATE.

description
The updated description is returned on subsequent QUERY_PARTNER_LU
verbs.

plu_un_name
The updated plu_un_name is used for all subsequent session activation
requests to this partner LU, and is returned on all subsequent
QUERY_PARTNER_LU verbs.

DEFINE_PARTNER_LU

Chapter 4. Node Configuration Verbs 109

preference
The updated preference is used for all subsequent session activation
requests to this partner LU, and is returned on all subsequent
QUERY_PARTNER_LU verbs.

max_mc_ll_send_size
The updated preference is used for all subsequent session activation
requests to this partner LU (even on existing sessions). The change does
not effect existing conversations. The updated value is returned on all
subsequent QUERY_PARTNER_LU verbs.

conv_security_ver
The updated value is not used for a particular local LU until the number
of sessions between that local LU and the partner LU drops to zero. BINDs
and RSP(BIND)s will flow using the old setting, and the old value will be
returned in QUERY_PARTNER_LU requests until the number of sessions
drops to zero. This is because the partner LU can reject subsequent session
activation attempts if the security support is different than that of existing
active sessions.

parallel_sess_supp
As with conv_security_ver, the updated value is not used for a particular
local LU until the number of sessions between that local LU and the
specified partner LU drops to zero. This is to avoid problems with the
architected LU 6.2 session consistency check.

Note: An implicit mode definition can be made explicit by a
DEFINE_PARTNER_LU. This is reflected by subsequent
QUERY_PARTNER_LU verbs returning with implicit set to AP_NO.

DEFINE_PARTNER_LU

110 System Management Programming

DEFINE_PORT

DEFINE_PORT defines a new port or modifies an existing one. This port belongs
to a specified DLC, which must already have been defined using a DEFINE_DLC
verb. The DEFINE_PORT verb provides the port name, which is unique
throughout the node, along with port specific parameters and default LS
characteristics for use with dynamic link stations. The port specific parameters are
concatenated to the basic structure. The default LS characteristics are concatenated
immediately following the port specific parameters.

DEFINE_PORT can be used to modify one or more fields on an existing port if the
port is in a reset state (after STOP_PORT has been issued) and the dlc_name
specified on the DEFINE_PORT has not changed since the previous definition of
the port.

If the port is active, only the following fields can be modified:

description
implicit_dspu_services
implicit_deact_timer
implicit_cp_cp_sess_support
implicit_link_lvl_error
default_tg_chars
implicit_dspu_template
implicit_ls_limit
link_spec_data_len
link_spec_data

If the port spec data is changed while the port is active, the verb will not be
rejected but the modifications will be ignored.

See “DLC Processes, Ports, and Link Stations” on page 14 for more information
about the relationship between DLCs, ports, and link stations.

VCB Structure
typedef struct define_port
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char port_name[8]; /* name of port */
PORT_DEF_DATA def_data; /* port defined data */

} DEFINE_PORT;

typedef struct port_def_data
{

unsigned char description; /* resource description */
unsigned char dlc_name[8]; /* DLC name associated with port */
unsigned char port_type; /* port type */
unsigned char port_attributes[4]; /* port attributes */
unsigned char implicit_uplink_to_en;/* Implicit links to EN are */

/* uplink */
unsigned char reserv3[2]; /* reserved */
unsigned long port_number; /* port number */
unsigned short max_rcv_btu_size; /* max receive BTU size */
unsigned short tot_link_act_lim; /* total link activation limit */
unsigned short inb_link_act_lim; /* inbound link activation limit */

DEFINE_PORT

Chapter 4. Node Configuration Verbs 111

unsigned short out_link_act_lim; /* outbound link activation */
/* limit */

unsigned char ls_role; /* initial link station role */
unsigned char retry_flags; /* conditions for automatic */

/* retries */
usigned char max_activation_attempts;

/* how many automatic retries? */
unsigned char activation_delay_timer;

/* delay between automatic */
/* retries */

unsigned char reserv1[10]; /* reserved */
unsigned char implicit_dspu_template[8];

/* reserved */
unsigned char implicit_ls_limit; /* max number of implicit links */
unsigned char reserv2; /* reserved */
unsigned char implicit_dspu_services;

/* implicit links support DSPUs */
unsigned char implicit_deact_timer; /* Implicit link HPR link */

/* deactivation timer */
unsigned short act_xid_exchange_limit;

/* act. XID exchange limit */
unsigned short nonact_xid_exchange_limit;

/* nonact. XID exchange limit */
unsigned char ls_xmit_rcv_cap; /* LS transmit-receive */

/* capability */
unsigned char max_ifrm_rcvd; /* max number of I-frames that */

/* can be received */
unsigned short target_pacing_count; /* Target pacing count */
unsigned short max_send_btu_size; /* Desired max send BTU size */
LINK_ADDRESS dlc_data; /* DLC data */
LINK_ADDRESS hpr_dlc_data; /* HPR DLC data */
unsigned char implicit_cp_cp_sess_support;

/* Implicit links allow CP-CP */
/* sessions */

unsigned char implicit_limited_resource;
/* Implicit links are limited */
/* resource */

unsigned char implicit_hpr_support;
/* Implicit links support HPR */

unsigned char implicit_link_lvl_error;
/* Implicit links support HPR */
/* link-level error recovery */

unsigned char retired1; /* reserved */
TG_DEFINED_CHARS default_tg_chars; /* Default TG chars */
unsigned char discovery_supported /* Discovery function */

/* supported? */
unsigned short port_spec_data_len; /* length of port spec data */
unsigned short link_spec_data_len; /* length of link spec data */

} PORT_DEF_DATA;

typedef struct link_address
{

unsigned short length; /* length */
unsigned short reserve1; /* reserved */
unsigned char address[MAX_LINK_ADDR_LEN];

/* address */
} LINK_ADDRESS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_PORT

DEFINE_PORT

112 System Management Programming

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

port_name
Name of port being defined. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and must be set.

port_def_data.description
Resource description (returned on QUERY_PORT). This is a 16-byte string
in a locally displayable character set. All 16 bytes are significant.

port_def_data.dlc_name
Name of the associated DLC, which is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and must be set. This
named DLC must have already been defined by a DEFINE_DLC verb.

port_def_data.port_type
Specifies the type of line used by the port. The value corresponds to one of
the following line types:

AP_PORT_NONSWITCHED
AP_PORT_SWITCHED
AP_PORT_SATF

Note that if this field is set to AP_PORT_SATF then the ls_role must be set
to AP_LS_NEG.

port_def_data.port_attributes[0]
This is the bit field. It may take the value AP_NO, or the following:

AP_RESOLVE_BY_LINK_ADDRESS
This specifies that an attempt is made to resolve incoming calls by
using the link address on CONNECT_IN before using the CP name
(or node ID) carried on the received XID3 to resolve them. This bit
is ignored unless the field port_type is set to
AP_PORT_SWITCHED.

port_def_data.implicit_uplink_to_en
BrNN only: Specifies whether implicit link stations off this port are uplink
or downlink if the adjacent node is an end node. The value of this field
will only be considered if there are no existing links to the same partner, as
such links are used first to determine the link type.

AP_NO
Implicit links are downlink.

AP_YES
Implicit links are uplink.

Other node types: This field is ignored.

port_def_data.port_number
Port number.

DEFINE_PORT

Chapter 4. Node Configuration Verbs 113

port_def_data.max_rcv_btu_size
Maximum BTU size that can be received. If implicit HPR-capable links are
not supported on the port, then this must be set to a value greater than or
equal to 99. If implicit HPR-capable links are supported on the port, then
this must be set to a value greater than or equal to 768.

port_def_data.tot_link_act_lim
Total link activation limit. This specifies the maximum number of link
stations that can be active concurrently. This must be greater than or equal
to the sum of the inb_link_act_lim and out_link_act_lim fields. If the
port_type is set to AP_PORT_NONSWITCHED and the ls_role is set to
AP_LS_NEG or AP_LS_SEC then this field must be set to one. If the
ls_role is set to AP_LS_PRI then this field must be in the range greater
than or equal to one to 256. If this port is for the AnyNet DLC, you must
use 65535.

port_def_data.inb_link_act_lim
Inbound link activation limit. This specifies the number of link stations
reserved for inbound activation on this port. The maximum number of
outbound link stations that can be active concurrently is therefore
port_def_data.tot_link_act_lim - port_def_data.inb_link_act_lim. If the
port_type is set to AP_PORT_NONSWITCHED and the ls_role is set to
AP_LS_NEG or AP_LS_PRI then this field must be set to zero. If the
port_type is set to AP_PORT_NONSWITCHED and the ls_role is set to
AP_LS_SEC then this field must be set to zero or one. If this port is for the
AnyNet DLC, you must use zero.

port_def_data.out_link_act_lim
Outbound link activation limit. This specifies the number of link stations
reserved for outbound activation on this port. The maximum number of
inbound link stations that can be active concurrently is therefore
port_def_data.tot_link_act_lim - port_def_data.out_link_act_lim. If the
port_type is set to AP_PORT_NONSWITCHED and the ls_role is set to
AP_LS_NEG then this field must be set to zero. If the ls_role is set to
AP_LS_PRI then this field must be equal to tot_link_act_lim. If the
port_type is set to AP_PORT_NONSWITCHED and the ls_role is set to
AP_LS_SEC then this field must be set to zero or one. If this port is for the
AnyNet DLC, you must use zero.

port_def_data.ls_role
Link station role. This can be negotiable (AP_LS_NEG), primary
(AP_LS_PRI), or secondary (AP_LS_SEC). The link station role determines
the relationship between the values specified by the tot_act_lim,
inb_link_act_lim, and out_link_act_lim fields as described above. Note
that if the port_type is set to AP_PORT_SATF then the ls_role must be set
to AP_LS_NEG.

port_def_data.retry_flags
This field specifies the conditions under which activation of this link
station is subject to automatic retry if the flag AP_INHERIT_RETRY is set
on DEFINE_LS in port_def_data.retry_flags. It is a bit field, and may take
any of the following values bit-wise ORed together.

AP_RETRY_ON_START
Link activation will be retried if no response is received from the
remote node when activation is attempted. If the underlying port is
inactive when activation is attempted, APPN will attempt to
activate it.

DEFINE_PORT

114 System Management Programming

AP_RETRY_ON_FAILURE
Link activation will be retried if the link fails while active or
pending active. If the underlying port has failed when activation is
attempted, APPN attempts to activate it.

AP_RETRY_ON_DISCONNECT
Link activation will be retried if the link is stopped normally by
the remote node.

AP_DELAY_APPLICATION_RETRIES
Link activation retries, initiated by applications (using START_LS
or on-demand link activation) will be paced using the
activation_delay_timer.

AP_INHERIT_RETRY
In addition to the retry conditions specified by flags in this field,
those specified in the retry_flags field of the underlying port
definition will also be used.

port_def_data.max_activation_attempts
This field has no effect unless at least one flag is set in DEFINE_LS in
port_def_data.retry_flags and port_def_data.max_activation_attempts on
DEFINE_LS is set to AP_USE_DEFAULTS.

This field specifies the number of retry attempts the Program allows when
the remote node is not responding, or the underlying port is inactive. This
includes both automatic retries and application-driven activation attempts.

If this limit is ever reached, no further attempts are made to automatically
retry. This condition is reset by STOP_LS, STOP_PORT, STOP_DLC or a
successful activation. START_LS or OPEN_LU_SSCP_SEC_RQ results in a
single activation attempt, with no retry if activation fails.

Zero means no limit. The value AP_USE_DEFAULTS results in the use of
max_activiation_attempts supplied on DEFINE_DLC.

port_def_data.activation_delay_timer
This field has no effect unless at least one flag is set in DEFINE_LS in
port_def_data.retry_flags and activiation_delay_timer on DEFINE_LS is
set to AP_USE_DEFAULTS.

This field specifies the number of seconds that the Program waits between
automatic retry attempts, and between application-driven activation
attempts if the AP_DELAY_APPLICATION_RETRIES bit is set in
port_def_data.retry_flags.

The value AP_USE_DEFAULTS results in the use of
activiation_delay_timer supplied on DEFINE_DLC.

If zero is specified, the Program uses a default timer duration of thirty
seconds.

port_def_data.implicit_dspu_template
Specifies the DSPU template, defined with the DEFINE_DSPU_TEMPLATE
verb, that is used for definitions if the local node is to provide PU
Concentration for an implicit link activated on this port. If the template
specified does not exist (or is already at its instance limit) when the link is
activated, activation fails. This is an 8-byte string in a locally-displayable
character set. All 8 bytes are significant and must be set.

If the port_def_data.implicit_dspu_services field is not set to
AP_PU_CONCENTRATION, then this field is reserved.

DEFINE_PORT

Chapter 4. Node Configuration Verbs 115

port_def_data.implicit_ls_limit
Specifies the maximum number of implicit link stations that can be active
on this port simultaneously, including dynamic links and links activated
for Discovery. A value of 0 means that there is no limit, a value of
AP_NO_IMPLICIT_LINKS means that no implicit links are allowed.

port_def_data.implicit.dspu_services
Specifies the services that the local node will provide to the downstream
PU across implicit links activated on this port. This is set to one of the
following values:

AP_DLUR
Local node will provide DLUR services for the downstream PU
(using the default DLUS configured through the
DEFINE_DLUR_DEFAULTS verb). This setting is only valid if the
local node is a network node.

AP_PU_CONCENTRATION
Local node will provide PU Concentration for the downstream PU
(and will put in place definitions as specified by the DSPU
template specified in the field
port_def_data.implicit_dspu_template).

AP_NONE
Local node will provide no services for this downstream PU.

port_def_data.implicit_deact_timer
Limited resource link deactivation timer (in seconds). If
implicit_limited_resource is set to AP_YES or AP_NO_SESSIONS, then an
HPR-capable implicit link is automatically deactivated if no data traverses
the link for the duration of this timer, and no sessions are using the link.

If implicit_limited_resource is set to AP_INACTIVITY then an implicit
link is automatically deactivated if no data traverses the link for the
duration of this timer.

The value is an integer in the range of 0–1000 seconds. The default is 10
seconds.

If zero is specified, the default value of 30 is used. Otherwise the minimum
value is 5. (If it is set any lower, the specified value will be ignored and 5
will be used.) Note that this parameter is reserved unless
implicit_limited_resource is set to AP_NO.

port_def_data.act_xid_exchange_limit
Activation XID exchange limit.

port_def_data.nonact_xid_exchange_limit
Non-activation XID exchange limit.

port_def_data.ls_xmit_rcv_cap
Specifies the link station transmit/receive capability. This is either two-way
simultaneous (AP_LS_TWS) (also known as duplex or full-duplex) or two
way alternating (AP_LS_TWA) (also know as half-duplex).

port_def_data.max_ifrm_rcvd
Maximum number of I-frames that can be received by the local link
stations before an acknowledgment is sent. The range is 1–127.

port_def_data.target_pacing_count
Numeric value between 1 and 32 767 inclusive indicating the desired
pacing window size for BINDs on this TG. The number is only significant

DEFINE_PORT

116 System Management Programming

when fixed bind pacing is being performed. Note that Personal
Communications or Communications Server does not currently use this
value.

port_def_data.max_send_btu_size
Maximum BTU size that can be sent from this link station. This value is
used to negotiate the maximum BTU size than can be transmitted between
a link station pair. If implicit HPR-capable links are not supported on the
port then this must be set to a value greater than or equal to 99. If implicit
HPR-capable links are supported on the port then this must be set to a
value greater than or equal to 768.

port_def_data.dlc_data.length
Port address length.

port_def_data.dlc_data.address
Port address.

port_def_data.hpr_dlc_data.length
HPR Port address length.

port_def_data.hpr_dlc_data.address
HPR Port address. This is currently used when supporting HPR links. The
field specifies the information sent by Personal Communications or
Communications Server in the X'80' subfield of the X'61' control vector on
XID3s exchanged on link stations using this port. It is passed on the
ACTIVATE_PORT issued to the DLC by Personal Communications or
Communications Server. Some DLCs can require this information to be
filled in for ports supporting HPR links.

port_def_data.implicit_cp_cp_sess_support
Specifies whether CP-CP sessions are permitted for implicit link stations off
this port (AP_YES or AP_NO).

port_def_data.implicit_limited_resource
Specifies whether implicit link stations off this port should be deactivated
when there are no sessions using the link. This is set to one of the
following values:

AP_NO
Implicit links are not limited resources and will not be deactivated
automatically.

AP_YES or AP_NO_SESSIONS
Implicit links are a limited resource and will be deactivated
automatically when no active sessions are using them.

AP_INACTIVITY
Implicit links are a limited resource and will be deactivated
automatically when no active sessions are using them, or when no
data has followed on the link for the time period specified by the
implicit_deact_timer field.

port_def_data.implicit_hpr_support
Specifies whether HPR should be supported on implicit links (AP_YES or
AP_NO).

port_def_data.implicit_link_lvl_error
Specifies whether HPR traffic should be sent on implicit links using
link-level error recovery (AP_YES or AP_NO). Note that the parameter is
reserved if implicit_hpr_support is set to AP_NO.

DEFINE_PORT

Chapter 4. Node Configuration Verbs 117

port_def_data.default_tg_chars
TG characteristics (See “DEFINE_COS” on page 35). These are used for
implicit link stations off this port and also for defined link stations that
specify use_default_tg_chars.

port_def_data.discovery_supported
Specifies whether Discovery functions are to be performed on this port
(AP_YES or AP_NO).

port_def_data.port_spec_data_len
Length of data to be passed unchanged to port on ACTIVATE_PORT
signal. The data should be concatenated to the basic structure.

port_def_data.link_spec_data_len
This field should always be set to zero.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PORT_NAME

AP_INVALID_DLC_NAME
AP_INVALID_PORT_TYPE
AP_INVALID_BTU_SIZE
AP_INVALID_LS_ROLE
AP_INVALID_LINK_ACTIVE_LIMIT
AP_INVALID_MAX_IFRM_RCVD
AP_INVALID_DSPU_SERVICES
AP_HPR_NOT_SUPPORTED
AP_DLUR_NOT_SUPPORTED
AP_PU_CONC_NOT_SUPPORTED
AP_INVALID_TEMPLATE_NAME
AP_INVALID_RETRY_FLAGS
AP_INVALID_IMPLICIT_UPLINK

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PORT_ACTIVE

AP_DUPLICATE_PORT_NUMBER
AP_CANT_MODIFY_WHEN_ACTIVE
AP_CANT_MODIFY_VISIBILITY
AP_INVALID_IMPLICIT_UPLINK

DEFINE_PORT

118 System Management Programming

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEFINE_PORT

Chapter 4. Node Configuration Verbs 119

DEFINE_RTP_TUNING

DEFINE_RTP_TUNING specifies parameters to be used when setting up RTP
connections. After you issue this verb, the parameters that you specify will be used
for all future RTP connections, until you modify them by issuing a new
DEFINE_RTP_TUNING verb.

VCB Structure
typedef struct define_rtp_tuning
{

unsigned short opcode;
unsigned char reserv2;
unsigned char format;
unsigned short primary_rc;
unsigned long secondary_rc;
unsigned char path_switch_attempts;
unsigned char short_req_retry_limit;
unsigned short path_switch_times[4];
unsigned long refifo_cap;
unsigned long srt_cap;
unsigned short path_switch_delay;
unsigned char reserved[78];

} DEFINE_RTP_TUNING;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_RTP_TUNING

path_switch_attempts
Number of path switch attempts for new RTP connections. Specify a value
in the range 1–255.

Specify a value in the range 1–255. If you specify 0 (zero), Personal
Communications or Communications Server uses the default value of 6.

short_req_retry_limit
Number of times a Status Request is sent before Personal Communications
or Communications Server determines that an RTP connection is
disconnected and starts Path Switch processing.

Specify a value in the range 1–255. If you specify 0 (zero), Personal
Communications or Communications Server uses the default value of 6.

path_switch_times
Length of time in seconds for which Personal Communications or
Communications Server attempts to path switch a disconnected RTP
connection.

This parameter is specified as four separate time limits for each of the
valid transmission priorities in order:
1. AP_LOW
2. AP_MEDIUM
3. AP_HIGH
4. AP_NETWORK

Each of these parameters should be in the range 1–65535. The value that
you specify for each transmission priority must not exceed the value for
any lower transmission priority.

DEFINE_RTP_TUNING

120 System Management Programming

If you specify 0 (zero) for any of the time limits, Personal Communications
or Communications Server uses the corresponding default values:
v AP_LOW: 480 seconds
v AP_MEDIUM: 240 seconds
v AP_HIGH: 120 seconds
v AP_NETWORK : 60 seconds

refifo_cap
The RTP protocol uses the Re-FIFO Timer. The value of this timer is
calculated as part of the protocol, but this parameter specifies a maximum
value (in milliseconds). In some situations, setting this maximum value can
improve performance.

Setting a value of 0 (zero) means that the timer is not limited and can take
any value calculated by the protocol. The default value for this parameter
is 4000 milliseconds, with a range of 250–12000 milliseconds.

srt_cap
The RTP protocol uses the Short Request Timer. The value of this timer is
calculated as part of the protocol, but this parameter specifies a maximum
value (in milliseconds). In some situations, setting this maximum value can
improve performance.

Setting a value of 0 (zero) means that the timer is not limited and can take
any value calculated by the protocol. The default value for this parameter
is 8000 milliseconds, with a range of 500–24000 milliseconds.

path_switch_delay

Minimum delay in seconds before a path switch occurs. Specifying a delay
avoids unnecessary path switch attempts caused by transient delays in
network traffic, in particular when there is no other route available.

Specify a value in the range 0-65535. The default value is zero, indicating
that a path switch attempt can occur as soon as the protocol indicates it is
required.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Values are as follows:

AP_INVALID_PATH_SWITCH_TIMES
The path_switch_times parameter was not valid. For example, you
might have specified a value for one transmission priority that
exceeds the value specified for a lower transmission priority.

DEFINE_RTP_TUNING

Chapter 4. Node Configuration Verbs 121

DEFINE_TP

The DEFINE_TP verb defines transaction program (TP) information for use by the
Node Operator Facility TP Attach Manager when it processes incoming attaches
from partner LUs. This verb can also be used to modify one or more fields on a
previously defined transaction program (but cannot be used to modify Personal
Communications or Communications Server defined transaction programs).

VCB Structure
typedef struct define_tp
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_name[64]; /* TP name */
TP_CHARS tp_chars; /* TP characteristics */

} DEFINE_TP;

typedef struct tp_chars
{

unsigned char description[RD_LEN]
/* resource description */

unsigned char conv_type; /* conversation type */
unsigned char security_rqd; /* security support */
unsigned char sync_level; /* synchronization level support */
unsigned char dynamic_load; /* dynamic load */
unsigned char enabled; /* is the TP enabled? */
unsigned char pip_allowed; /* program initialization */

/* parameters supported */
unsigned char duplex_support; /* duplex supported */
unsigned char reserv3[9]; /* reserved */
unsigned short tp_instance_limit; /* limit on currently active TP */

/* instances */
unsigned short incoming_alloc_timeout;

/* incoming allocation timeout */
unsigned short rcv_alloc_timeout; /* receive allocation timeout */
unsigned short tp_data_len; /* TP data length */
TP_SPEC_DATA tp_data; /* TP data */

} TP_CHARS;

typedef struct tp_spec_data
{

unsigned char pathname[256]; /* path and TP name */
unsigned char parameters[64]; /* parameters for TP */
unsigned char queued; /* queued TP */
unsigned char load_type; /* type of load-DETACHED/CONSOLE */
unsigned char dynamic_load /* dynamic loading of TP enabled */
unsigned char reserved[5]; /* reserved */

} TP_SPEC_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_TP

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

DEFINE_TP

122 System Management Programming

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

tp_name
Name of the transaction program (TP) being defined. This is a 64-byte
EBCDIC string padded to the right with EBCDIC spaces. Note that
Personal Communications or Communications Server does not check the
character set of this field.

tp_chars.description
Resource description (returned on QUERY_TP_DEFINITION and
QUERY_TP). This is a 16-byte string in a locally displayable character set.
All 16 bytes are significant.

tp_chars.conv_type
Specifies the types of conversation supported by this transaction program.

AP_BASIC
AP_MAPPED
AP_EITHER

tp_chars.security_rqd
Specifies whether conversation security information is required to start the
transaction program (AP_NO or AP_YES).

tp_chars.sync_level
Specifies the synchronization levels supported by the transaction program.

AP_NONE
The transaction program supports a synchronization level of None.

AP_CONFIRM_SYNC_LEVEL
The transaction program supports a synchronization level of
Confirm.

AP_EITHER
The transaction program supports a synchronization level of None
or Confirm.

AP_SYNCPT_REQUIRED
The transaction program supports a synchronization level of
Sync-point.

AP_SYNCPT_NEGOTIABLE
The transaction program supports a synchronization level of None,
Confirm or Sync-point.

tp_chars.dynamic_load
Specifies whether the transaction program can be dynamically loaded
(AP_YES or AP_NO).

tp_chars.enabled
Specifies whether the transaction program can be attached successfully
(AP_YES or AP_NO). The default is AP_NO.

tp_chars.pip_allowed
Specifies whether the transaction program can receive program
initialization (PIP) parameters (AP_YES or AP_NO).

DEFINE_TP

Chapter 4. Node Configuration Verbs 123

tp_chars.duplex_support
Indicates whether the transaction program is full or half duplex.

AP_FULL_DUPLEX
Specifies that the transaction program is full duplex.

AP_HALF_DUPLEX
Specifies that the transaction program is half duplex.

AP_EITHER_DUPLEX
Specifies that the transaction program can be either half or full
duplex.

tp_chars.tp_instance_limit
Limit on the number of concurrently active transaction program instances.
A value of zero means no limit.

tp_chars.incoming_alloc_timeout
Specifies the number of seconds that an incoming attach will be queued
waiting for a RECEIVE_ALLOCATE. Zero implies no timeout, and so it
will be held indefinitely.

tp_chars.rcv_alloc_timeout
Specifies the number of seconds that a RECEIVE_ALLOCATE verb will be
queued while waiting for an Attach. Zero implies no timeout, and so it will
be held indefinitely.

tp_chars.tp_data_len
Length of the implementation-dependent transaction program data.

tp_spec_data
Information used by the Attach Manager when launching the transaction
program. Refer to the information about Attach Manager in Client/Server
Communications Programming for further details of how this is used.

tp_spec_data.pathname
Specifies the path and transaction program name.

tp_spec_data.parameters
Specifies the parameters for the transaction program.

tp_spec_data.queued
Specifies whether the transaction program will be queued.

tp_spec_data.load_type
Specifies whether type of load is either AP_AM_CONSOLE,
AP_AM_DETACHED or AP_AM_WINDOW.

tp_spec_data.dynamic_load
Specifies how the transaction program will be loaded.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

DEFINE_TP

124 System Management Programming

secondary_rc
AP_SYSTEM_TP_CANT_BE_CHANGED

AP_INVALID_CONV_TYPE
AP_INVALID_SYNC_LEVEL
AP_INVALID_DYNAMIC_LOAD
AP_INVALID_ENABLED
AP_INVALID_PIP_ALLOWED
AP_INVALID_DUPLEX_SUPPORT

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_CANT_MODIFY_VISIBILITY

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Effects Of Redefinition: The redefinition of each field takes effect immediately (for
example, when the next instance of the transaction program is started). However,
changes to the fields incoming_alloc_timeout and rcv_alloc_timeout will not effect
any attaches or RECEIVE_ALLOCATES that are already queued.

DEFINE_TP

Chapter 4. Node Configuration Verbs 125

DELETE_ADJACENT_NODE

DELETE_ADJACENT_NODE removes entries in the node directory database that
are associated with the resources on an adjacent node.

To remove the node's control point from the directory along with its LUs, set
num_of_lus to zero. If num_of_lus is nonzero, this verb is used to remove node
LUs from the directory, leaving the control point definition intact.

If the verb fails for any reason, no directory entries will be deleted.

VCB Structure
The DELETE_ADJACENT_NODE verb contains a variable number of
ADJACENT_NODE_LU overlays. The ADJACENT_NODE_LU structures are
concatenated onto the end of DELETE_ADJACENT_NODE structure.
typedef struct delete_adjacent_node
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char cp_name[17]; /* CP name */
unsigned short num_of_lus; /* number of LUs */

} DELETE_ADJACENT_NODE;

typedef struct adjacent_node_lu
{

unsigned char wildcard_lu; /* wildcard LU name indicator */
unsigned char fqlu_name[17]; /* fully qualified LU name */
unsigned char reserv1[6]; /* reserved */

} ADJACENT_NODE_LU;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_ADJACENT_NODE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

cp_name
The fully qualified name of the control point in the adjacent LEN end
node. The name is 17 bytes long and is right-padded with EBCDIC spaces.
It is composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8 bytes with no
embedded spaces.)

num_of_lus
The number of LUs to be deleted. Set this to zero if the entire node
definition is to be deleted. This number represents the number of adjacent
LU overlays that follow the DELETE_ADJACENT_NODE VCB.

adjacent_node_lu.wildcard_lu
Indicates whether the specified LU name is a wildcard name (AP_YES or
AP_NO).

DELETE_ADJACENT_NODE

126 System Management Programming

adjacent_node_lu.fqlu_name
The LU name to be deleted. If this name is not fully qualified, the network
ID of the CP name is assumed. The name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of one or two type-A
EBCDIC character strings concatenated by an EBCDIC dot. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_CP_NAME

AP_INVALID_LU_NAME

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_CP_NAME

AP_INVALID_LU_NAME

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_ADJACENT_NODE

Chapter 4. Node Configuration Verbs 127

DELETE_CN

DELETE_CN deletes and frees the memory for a connection network control block
if all the associated ports are reset. DELETE_CN can also be used to delete selected
ports from a connection network. To do this, the user should set the num_ports
field to a nonzero value and supply the port names of the ports to be deleted.

VCB Structure
typedef struct delete_cn
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char fqcn_name[17]; /* name of connection network */
unsigned char reserv1; /* reserved */
unsigned short num_ports; /* number of ports to delete */
unsigned char port_name[8] [8];

/* names of ports to delete */
} DELETE_CN;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_CN

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

fqcn_name
Name of connection network (17 bytes long) to be deleted. This name is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

num_ports
The number of ports to delete on the connection network. This should be
set to zero if the entire connection network is to be deleted.

port_name
Names of the ports to be deleted if the num_ports is nonzero. Each port
name is an 8-byte string in a locally displayable character set. All 8 bytes
are significant and must be set. If the num_ports field is zero this field is
reserved.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

DELETE_CN

128 System Management Programming

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_CN_NAME

AP_INVALID_NUM_PORTS_SPECIFIED

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_CN

Chapter 4. Node Configuration Verbs 129

DELETE_COS

DELETE_COS deletes a class-of-service entry unless it is one of the default classes
of service defined by SNA.

VCB Structure
typedef struct delete_cos
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char cos_name[8]; /* class-of-service name */

} DELETE_COS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_COS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

cos_name
Class-of-service name. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_COS_NAME_NOT_DEFD

AP_SNA_DEFD_COS_CANT_BE_DELETE

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

DELETE_COS

130 System Management Programming

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_COS

Chapter 4. Node Configuration Verbs 131

DELETE_DLC

DELETE_DLC deletes all ports, link stations, and connection network transmission
groups (TGs) associated with the DLC if it is reset. All DLC control blocks are
deleted and the memory freed. The Node Operator Facility returns a response
specifying whether the DLC was deleted successfully.

Note that if a link station, which has a PU associated with it, is deleted (because it
is associated with the DLC) then any LUs defined on this PU will also be deleted.

VCB Structure
typedef struct delete_dlc
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dlc_name[8]; /* name of DLC */

} DELETE_DLC;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_DLC

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

dlc_name
Name of DLC to be deleted. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant and must be set.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DLC_NAME

DELETE_DLC

132 System Management Programming

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_DLC_ACTIVE

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_DLC

Chapter 4. Node Configuration Verbs 133

DELETE_DOWNSTREAM_LU

This verb applies only to Communications Server.

VCB Structure
typedef struct delete_downstream_lu
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dslu_name[8]; /* Downstream LU name */

} DELETE_DOWNSTREAM_LU;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_DOWNSTREAM_LU

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

The other values that can be bit-wise ORed into this field are as follows:

AP_DELAY_IF_REQUIRED
This specifies that the downstream LU specified by dslu_name is
currently active, this verb should be queued inside the Program
until the LU becomes inactive. In this case, the verb is processed to
completion when the LU becomes inactive.

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

dslu_name
Name of the downstream LU that is being deleted. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

DELETE_DOWNSTREAM_LU

134 System Management Programming

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_NAME

AP_DSLU_ACTIVE
AP_DELAYED_VERB_PENDING

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_LU_NAME

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_DOWNSTREAM_LU

Chapter 4. Node Configuration Verbs 135

DELETE_DOWNSTREAM_LU_RANGE

This verb applies only to Communications Server.

For example, a base name of LUNME combined with an NAU range of 1 to 4
deletes the LUs LUNME001, LUNME002, LUNME003, and LUNME004. A base
name of less than five non-pad characters results in LU names of less than eight
non-pad characters.

This verb deletes all LUs in the range. If an LU in the range does not exist, then
the verb continues with the next one that does exist. The verb only fails if no LUs
exist in the specified range.

VCB Structure
typedef struct delete_downstream_lu_range
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dslu_base_name[5];/* Downstream LU base name */
unsigned char min_nau; /* min NAU address in range */
unsigned char max_nau; /* max NAU address in range */

} DELETE_DOWNSTREAM_LU_RANGE;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_DOWNSTREAM_LU_RANGE

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

dslu_base_name
Base name for downstream LU name range. This is a 5-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. This base name is appended with three type-A EBCDIC
numeric characters, representing the decimal value of the NAU address,
for each LU in the NAU range.

min_nau
Minimum NAU address in the range. This can be from 1 to 255 inclusive.

max_nau
Maximum NAU address in the range. This can be from 1 to 255 inclusive.

DELETE_DOWNSTREAM_LU_RANGE

136 System Management Programming

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_NAU_ADDRESS

AP_INVALID_LU_NAME

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

AP_INVALID_LU_NAME
AP_DSLU_ACTIVE
AP_DELAYED_VERB_PENDING

secondary_rc
AP_INVALID_LU_NAME

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_DOWNSTREAM_LU_RANGE

Chapter 4. Node Configuration Verbs 137

DELETE_DSPU_TEMPLATE

This verb applies only to Communications Server.

VCB Structure
Format 1
typedef struct delete_dspu_template
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char template_name[8]; /* name of template */
unsigned short num_of_dslu_templates;

/* Number of DSLU templates */
unsigned char reserv1[10]; /* reserved */

} DELETE_DSPU_TEMPLATE;

typedef struct dslu_template
{

unsigned char min_nau; /* min NAU address in range */
unsigned char max_nau; /* max NAU address in range */
unsigned char allow_timeout; /* Allow timeout of host LU? */
unsigned char delayed_logon; /* Allow delayed logon to */

/* host LU */
unsigned char reserv1[8]; /* reserved */
unsigned char host_lu[8]; /* host LU or pool name */

} DSLU_TEMPLATE;

VCB Structure
Format 0
typedef struct delete_dspu_template
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char template_name[8]; /* name of template */

} DELETE_DSPU_TEMPLATE;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_DSPU_TEMPLATE

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibilityof the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

DELETE_DSPU_TEMPLATE

138 System Management Programming

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

template_name
Name of the DSPU template. (This corresponds to the name specified in
the implicit_dspu_template field on PORT_DEF_DATA). This is an 8–byte
string in a locally-displayable character set. All 8 bytes are significant and
must be set.

num_of_dslu_templates
The number of DSLU template overlays which follow the
DEFINE_DSPU_TEMPLATE VCB. This can be from 0 to 255 inclusive. The
DSLU templates are appended as overlays to the end of the
DELETE_DSPU_TEMPLATE VCB.

dslu_template.min_nau
Minimum NAU address in the range. This can be from 1 to 255 inclusive.

dslu_template.max_nau
Maximum NAU address in the range. This can be from 1 to 255 inclusive.

def_data.allow_timeout
This field is reserved.

def_data.delayed_logon
This field is reserved.

dslu_template.host_lu
This field is reserved.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_TEMPLATE_NAME

AP_INVALID_NAU_RANGE

If the verb does not execute because one or more relevant START_NODE
parameters were not set, the Program returns the following parameter:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

DELETE_DSPU_TEMPLATE

Chapter 4. Node Configuration Verbs 139

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_DSPU_TEMPLATE

140 System Management Programming

DELETE_FOCAL_POINT

The DELETE_FOCAL_POINT verb can be used to delete focal points of a specified
type and category. For more information about focal point types, see
“DEFINE_FOCAL_POINT” on page 61. If an active focal point is deleted it will be
revoked. To revoke the active focal point (of any type) specify a type of
AP_ACTIVE. If a backup or implicit focal point is deleted (by specifying
AP_BACKUP or AP_IMPLICIT) when it is not currently active, any information
stored about it will simply be removed.

Note that the DEFINE_FOCAL_POINT verb can also be used to revoke currently
active focal points. This duplicated function is retained for back compatibility.

VCB Structure
typedef struct delete_focal_point
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char reserved; /* reserved */
unsigned char ms_category[8]; /* management services category */
unsigned char type; /* type of focal point */

} DELETE_FOCAL_POINT;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_FOCAL_POINT

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

ms_category
Management services category. This cab either be one of the 4-byte
architecturally defined values (right-padded with EBCDIC spaces) for
management services categories as described in SNA management services,
or an 8-byte type 1134 EBCDIC installation-defined name.

type Specifies the type of the focal point that is being deleted. Possible types
are:

AP_ACTIVE
The currently active focal point (which can be of any type) is
revoked.

AP_IMPLICIT
The implicit definition is removed. If the currently active focal
point is an implicit focal point, then it is revoked.

AP_BACKUP
The backup definition is removed. If the currently active focal
point is a backup focal point, then it is revoked.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

DELETE_FOCAL_POINT

Chapter 4. Node Configuration Verbs 141

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_TYPE

AP_INVALID_CATEGORY_NAME

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_FOCAL_POINT

142 System Management Programming

DELETE_INTERNAL_PU

The DELETE_INTERNAL_PU verb requests the deletion of a DLUR-served local
PU. The verb will only succeed if the PU does not have an active SSCP-PU session.

Any LUs associated with the PU will be deleted.

VCB Structure
typedef struct delete_internal_pu
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char pu_name[8]; /* internal PU name */

} DELETE_INTERNAL_PU;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_INTERNAL_PU

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

pu_name
Name of the internal PU that is being deleted. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PU_NAME

AP_INVALID_PU_TYPE

DELETE_INTERNAL_PU

Chapter 4. Node Configuration Verbs 143

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PU_NOT_RESET

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_INTERNAL_PU

144 System Management Programming

DELETE_LOCAL_LU

The DELETE_LOCAL_LU verb requests deletion of the local LU definition.

VCB Structure
typedef struct delete_local_lu
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */

} DELETE_LOCAL_LU;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_LOCAL_LU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

lu_name
Name of the local LU that is being defined. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_NAME

AP_CANT_DELETE_CP_LU

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

DELETE_LOCAL_LU

Chapter 4. Node Configuration Verbs 145

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_LOCAL_LU

146 System Management Programming

DELETE_LS

DELETE_LS checks that the link station has been previously defined and reset. It
removes the link station control block and returns a response from the Node
Operator Facility specifying whether the link station has been deleted successfully.
Note that any LUs defined on the PU using this link station will also be deleted.

VCB Structure
typedef struct delete_ls
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char ls_name[8]; /* name of link station */

} DELETE_LS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_LS

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

ls_name
Name of link station being deleted. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and must be set.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LINK_NAME

If the verb does not execute because of a state error, the Program returns the
following parameters:

DELETE_LS

Chapter 4. Node Configuration Verbs 147

primary_rc
AP_STATE_CHECK

secondary_rc
AP_LS_ACTIVE

AP_INVALID_LINK_NAME

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_LS

148 System Management Programming

DELETE_LU_0_TO_3

This verb is used to delete a specific LU.

VCB Structure
typedef struct delete_lu_0_to_3
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* LU name */

} DELETE_LU_0_TO_3;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_LU_0_TO_3

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

lu_name
Name of the LU to be deleted. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with EBCDIC
spaces.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_NAME

AP_CANT_DELETE_IMPLICIT_LU

If the verb does not execute because of a state error, the Program returns the
following parameters:

DELETE_LU_0_TO_3

Chapter 4. Node Configuration Verbs 149

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_LU_NAME

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_LU_0_TO_3

150 System Management Programming

DELETE_LU_0_TO_3_RANGE

This verb is used to delete a range of LUs. The node operator provides a base
name and an NAU range. The LU names are generated by combining the base
name with the NAU addresses.

For example, a base name of LUNME combined with an NAU range of 1 to 4
would delete the LUs LUNME001, LUNME002, LUNME003, and LUNME004. A
base name of less than five non-pad characters results in LU names of less than
eight non-pad characters.

All LUs in the range are deleted. If an LU in the range does not exist, then the
verb continues with the next one that does exist. The verb fails if no LUs exist in
the specified range.

VCB Structure
Format 1
typedef struct delete_lu_0_to_3_range
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char base_name[6]; /* base name */
unsigned char min_nau; /* minimum NAU address */
unsigned char max_nau; /* maximum NAU address */
unsigned char name_attributes; /* Attributes of base_name */
unsigned char base_number; /* Base number for LU names */
unsigned char reserv5[16]; /* reserved */

} DELETE_LU_0_TO_3_RANGE;

VCB Structure
Format 0
typedef struct delete_lu_0_to_3_range
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char base_name[5]; /* base name */
unsigned char min_nau; /* minimum NAU address */
unsigned char max_nau; /* maximum NAU address */
unsigned char reserv3; /* reserved */

} DELETE_LU_0_TO_3_RANGE;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_LU_0_TO_3_RANGE

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

DELETE_LU_0_TO_3_RANGE

Chapter 4. Node Configuration Verbs 151

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

base_name
Base LU name. This is an 5-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces. This base
name is appended with three type-A EBCDIC numeric characters,
representing the decimal value of the NAU address, for each LU in the
NAU range.

min_nau
Minimum NAU address in the range. This can be from 1 to 255 inclusive.

max_nau
Maximum NAU address in the range. This can be from 1 to 255 inclusive.

name_attributes
This bit field modifies the interpretation and usage of the supplied
base_name. This field may take the value of zero, or any or all of the
following values bit-wise ORed together.

AP_USE_HEX_IN_NAME
If this bit is set, the interpretation of the base_name is modified as
follows:

This is a 6-byte alphanumeric types A EBCDID string (starting with
a letter), padded to the right with EBCDID spaces. This base name
is appended with two EBCDID characters, representing the
hexadecimal values of the NAU address, for each LU in the NAU
range.

AP_USE_BASE_NUMBER
If this bit is set, the interpretation of the base_name is modified as
follows:

This is a 5-byte alphanumeric type-A EBCDIC string (starting with
a letter), padded to the right with EBCDIC spaces. This base name
is appended with three EBCDIC numeric characters, representing
the decimal index of the LU in the range, starting with
base_number and ending with (base_number + max_nau +
min_nau).

base_number
If the AP_USE_BASE_NUMBER bit is not set in name_attributes this field
is ignored. Otherwise, this field modifies the interpretation of base_name
as described above. Legal values are from zero to (255 – max_nau +
min_nau).

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

DELETE_LU_0_TO_3_RANGE

152 System Management Programming

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_NAU_ADDRESS

AP_INVALID_LU_NAME

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_LU_NAME

AP_CANT_DELETE_IMPLICIT_LU

If the verb does not execute because the system has not been built with dependent
LU support, the Program returns the following parameter:

primary_rc
AP_INVALID_VERB

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_LU_0_TO_3_RANGE

Chapter 4. Node Configuration Verbs 153

DELETE_LU_POOL

This verb is used to delete an LU pool or to remove LUs from a pool. If no LU
names are specified, the entire pool is removed. This verb completes successfully
when the specified LUs within the LU pool, or the LU pool itself, no longer exist.
The verb only fails if none of the specified LUs exist, or if there are no LUs in the
specified pool.

VCB Structure
typedef struct delete_lu_pool
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char pool_name[8]; /* LU pool name */
unsigned short num_lus; /* number of LUs to add */
unsigned char lu_names[10][8]; /* LU names */

} DELETE_LU_POOL;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_LU_POOL

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

pool_name
Name of the LU pool. All 8 bytes are significant and must be set. This
name is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

num_lus
Number of LUs specified in the lu_names list.

lu_names
Names of the LUs to be removed. Each name is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

DELETE_LU_POOL

154 System Management Programming

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_POOL_NAME

AP_INVALID_LU_NAME
AP_INVALID_NUM_LUS

If the verb does not execute because the system has not been built with dependent
LU support, the Program returns the following parameter:

primary_rc
AP_INVALID_VERB

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_LU_POOL

Chapter 4. Node Configuration Verbs 155

DELETE_MODE

The DELETE_MODE verb requests deletion of a mode definition. Default
definitions for CPSVCMG, SNASVCMG, and other standard SNA modes will not
be deleted.

VCB Structure
typedef struct delete_mode
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char mode_name[8]; /* mode name */

} DELETE_MODE;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_MODE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

mode_name
Name of the mode. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_CP_OR_SNA_SVCMG_UNDELETABLE

AP_MODE_UNDELETABLE
AP_DEL_MODE_DEFAULT_SPCD
AP_MODE_NAME_NOT_DEFD

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

DELETE_MODE

156 System Management Programming

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_MODE

Chapter 4. Node Configuration Verbs 157

DELETE_PARTNER_LU

The DELETE_PARTNER_LU requests the deletion of a partner LU definition.

VCB Structure
typedef struct delete_partner_lu
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
} DELETE_PARTNER_LU;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_PARTNER_LU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

fqplu_name
Fully qualified name of the partner LU. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PLU_NAME

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

DELETE_PARTNER_LU

158 System Management Programming

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_PARTNER_LU

Chapter 4. Node Configuration Verbs 159

DELETE_PORT

DELETE_PORT deletes all link stations and connection network transmission
groups (TGs) associated with the port if it is reset. It then deletes the port's control
block, frees the memory, and returns a response from the Node Operator Facility
indicating whether the port has been deleted successfully.

Note that if a link station, which has a PU associated with it, is deleted (because it
is associated with the port) then any LUs defined on this PU will also be deleted.

VCB Structure
typedef struct delete_port
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char port_name[8]; /* name of port */

} DELETE_PORT;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_PORT

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

port_name
Name of port being deleted. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant and must be set.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PORT_NAME

DELETE_PORT

160 System Management Programming

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PORT_ACTIVE

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_PORT

Chapter 4. Node Configuration Verbs 161

DELETE_TP

The DELETE_TP requests the deletion of a transaction program (TP) definition.

VCB Structure
typedef struct delete_tp
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_name[64]; /* TP name */

} DELETE_TP;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_TP

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

tp_name
Name of the transaction program. The Program does not check the
character set of this field.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_TP_NAME

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

DELETE_TP

162 System Management Programming

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_TP

Chapter 4. Node Configuration Verbs 163

DELETE_TP

164 System Management Programming

Chapter 5. Activation and Deactivation Verbs

This chapter describes verbs that are used to activate and deactivate:
v Data link controls (DLCs)
v Internal PUs
v Ports
v Link stations
v Sessions
v Conversation groups

This chapter also describes a verb used to request a path switch to a connection
that supports High-Performance Routing (HPR).

© Copyright IBM Corp. 1989, 2016 165

START_DLC

START_DLC requests the activation of a data link control (DLC). It is subsequently
returned indicating whether the activation of the DLC was successful. Note that
the DLC can be started even if no ports have been defined for it. See “DLC
Processes, Ports, and Link Stations” on page 14 for more information about the
relationship between DLCs, ports, and link stations.

VCB Structure
typedef struct start_dlc
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dlc_name[8]; /* name of DLC */

} START_DLC;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_START_DLC

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

dlc_name
Name of Data Link Control instance that is to be started. This is an 8-byte
string in a locally displayable character set, which must have already been
defined by a DEFINE_DLC verb.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DLC

If the verb does not execute because the DLC is deactivating, the Program returns
the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_DLC_DEACTIVATING

START_DLC

166 System Management Programming

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

START_DLC

Chapter 5. Activation and Deactivation Verbs 167

START_INTERNAL_PU

The START_INTERNAL_PU verb requests the dependent LU requester (DLUR) to
initiate SSCP-PU session activation for a previously defined local PU that is served
by DLUR.

VCB Structure
typedef struct start_internal_pu
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char pu_name[8]; /* internal PU name */
unsigned char dlus_name[17]; /* DLUS name */
unsigned char bkup_dlus_name[17]; /* Backup DLUS name */

} START_INTERNAL_PU;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_START_INTERNAL_PU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

pu_name
Name of the internal PU for which the SSCP-PU session activation flows
will be solicited. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces.

dlus_name
Name of the dependent LU server (DLUS) node that DLUR will contact to
solicit SSCP-PU session activation for the given PU. This should be set to
all zeros or a 17-byte string composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot, and is right-padded with EBCDIC
spaces. (Each name can have a maximum length of 8 bytes with no
embedded spaces.) This value overrides the value specified in the
DEFINE_INTERNAL_PU verb. If the field is set to all zeros, the DLUS
specified in the DEFINE_INTERNAL_PU verb will be used. If no DLUS
has been specified in the DEFINE_INTERNAL_PU verb, then the global
default (if specified by a DEFINE_DLUR_DEFAULTS verb) will be used.

bkup_dlus_name
Name of the DLUS node that DLUR will store as the backup DLUS for the
given PU. This should be set to all zeros or a 17-byte string composed of
two type-A EBCDIC character strings concatenated by an EBCDIC dot, and
is right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) This value overrides the
value specified in the DEFINE_INTERNAL_PU verb. If the field is set to
all zeros, the backup DLUS name specified by a DEFINE_INTERNAL_PU
verb will be retained as the backup DLUS for this PU. If no backup DLUS
was specified by the DEFINE_INTERNAL_PU verb, the global backup
default DLUS (if defined by the DEFINE_DLUR_DEFAULTS verb) is
retained as the backup default for this PU.

START_INTERNAL_PU

168 System Management Programming

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DLUS_NAME

AP_INVALID_BKUP_DLUS_NAME

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_NO_DEFAULT_DLUS_DEFINED

AP_PU_NOT_DEFINED
AP_PU_ALREADY_ACTIVATING
AP_PU_ALREADY_ACTIVE

If the verb does not execute successfully, the Program returns the following
parameters:

primary_rc
AP_UNSUCCESSFUL

secondary_rc
AP_DLUS_REJECTED

AP_DLUS_CAPS_MISMATCH
AP_PU_FAILED_ACTPU

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

START_INTERNAL_PU

Chapter 5. Activation and Deactivation Verbs 169

START_LS

START_LS requests activation of a link. It is returned as a response specifying
whether the link was successfully activated.

See “DLC Processes, Ports, and Link Stations” on page 14 for more information
about the relationship between DLCs, ports and link stations.

VCB Structure
typedef struct start_ls
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char ls_name[8]; /* name of link station */
unsigned char enable; /* whether the link is enabled*/
unsigned char reserv3[3]; /* reserved */

} START_LS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_START_LS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

ls_name
Name of link station to be started. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and must be set. The
value of ls_name must match that on the DEFINE_LS verb.

enable
Set this field to start the link. If this field is set to AP_ACTIVATE, then the
link is started. Otherwise, the link is not started, and the following values
are possible. These values can be ORed together.

AP_AUTO_ACT
The link can subsequently be activated on demand by the local
node. This value is only valid if auto_act_supp was set to AP_YES
on the DEFINE_LS verb.

AP_REMOTE_ACT
The link can subsequently be activated by the remote node. This
does not alter the defined value of disable_remote_act.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

START_LS

170 System Management Programming

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LINK_NAME_SPECIFIED

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PORT_INACTIVE

AP_ACTIVATION_LIMITS_REACHED
AP_PARALLEL_TGS_NOT_SUPPORTED
AP_ALREADY_STARTING
AP_LINK_DEACT_IN_PROGRESS

If the verb does not execute because it was canceled by a subsequent STOP_LS or
STOP_PORT before the link became active, the Program returns the following
parameters:

primary_rc
AP_CANCELLED

secondary_rc
AP_LINK_DEACTIVATED

If the verb does not execute because the partner could not be found by the link
software, the Program returns the following parameters:

primary_rc
AP_LS_FAILURE

secondary_rc
AP_PARTNER_NOT_FOUND

If the verb does not execute because a link error occurred while the link was being
established, the Program returns the following parameters:

primary_rc
AP_LS_FAILURE

secondary_rc
AP_ERROR

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

START_LS

Chapter 5. Activation and Deactivation Verbs 171

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

START_LS

172 System Management Programming

START_PORT

START_PORT requests the activation of a port. It is returned indicating whether
the port was successfully activated. The port can be started even if no link stations
have been defined for it, but it will not be started if its parent DLC is inactive.

See “DLC Processes, Ports, and Link Stations” on page 14 for more information
about the relationship between DLCs, ports and link stations.

VCB Structure
typedef struct start_port
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char port_name[8]; /* name of port */

} START_PORT;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_START_PORT

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

port_name
Name of port to be started. This is an 8-byte string in a locally displayable
character set and must match that on the DEFINE_PORT verb.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PORT_NAME

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_DLC_INACTIVE

START_PORT

Chapter 5. Activation and Deactivation Verbs 173

AP_STOP_PORT_PENDING
AP_DUPLICATE_PORT

If the verb does not execute because it was canceled, the Program returns the
following parameter:

primary_rc
AP_CANCELLED

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

START_PORT

174 System Management Programming

STOP_DLC

STOP_DLC requests that a DLC be stopped. It is returned indicating whether the
DLC was successfully stopped. STOP_DLC is also used to instruct the Program to
stop automatically retrying the activation of any link stations on ports over this
DLC.

VCB Structure
typedef struct stop_dlc
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char stop_type; /* stop type */
unsigned char dlc_name[8]; /* name of DLC */

} STOP_DLC;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_STOP_DLC

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

stop_type
Manner in which DLC should be stopped.

AP_ORDERLY_STOP
Node should perform cleanup operations before stopping DLC.

AP_IMMEDIATE_STOP
Node should stop DLC immediately.

dlc_name
Name of DLC to be stopped. This is an 8-byte string in a locally
displayable character set, which must match that on the DEFINE_DLC
verb.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DLC

AP_UNRECOGNIZED_DEACT_TYPE

STOP_DLC

Chapter 5. Activation and Deactivation Verbs 175

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_STOP_DLC_PENDING

If the verb does not execute because it has been canceled, the Program returns the
following parameter:

primary_rc
AP_CANCELLED

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

STOP_DLC

176 System Management Programming

STOP_INTERNAL_PU

The STOP_INTERNAL_PU verb requests the dependent LU requester (DLUR)
initiate SSCP-PU session deactivation for a previously defined local PU that is
served by DLUR.

VCB Structure
typedef struct stop_internal_pu
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char pu_name[8]; /* internal PU name */
unsigned char stop_type; /* type of stop requested */

} STOP_INTERNAL_PU;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_STOP_INTERNAL_PU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

pu_name
Name of the internal PU for which the SSCP-PU session will be
deactivated. This is an 8-byte alphanumeric type-A EBCDIC string (starting
with a letter), padded to the right with EBCDIC spaces.

stop_type
Specifies stop type requested for the PU. An orderly stop will deactivate all
underlying PLU-SLU and SSCP-LU sessions before deactivating the
SSCP-PU session.

AP_ORDERLY_STOP
AP_IMMEDIATE_STOP

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_STOP_TYPE

If the verb does not execute because of a state error, the Program returns the
following parameters:

STOP_INTERNAL_PU

Chapter 5. Activation and Deactivation Verbs 177

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PU_NOT_DEFINED

AP_PU_ALREADY_DEACTIVATING
AP_PU_NOT_ACTIVE

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

STOP_INTERNAL_PU

178 System Management Programming

STOP_LS

STOP_LS requests the deactivation of a link station. It is returned specifying
whether the link was stopped successfully. STOP_LS can also be used to disable
remote activation of a link station or to disable activation on demand of a link
station. STOP_LS is also used to instruct the Program to stop automatically
retrying the activation of any link station.

VCB Structure
typedef struct stop_ls
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char stop_type; /* stop type */
unsigned char ls_name[8]; /* name of link station */
unsigned char disable; /* whether the link is disabled */
unsigned char reserved[3]; /* reserved */

} STOP_LS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_STOP_LS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

stop_type
Manner in which the link station should be stopped.

AP_ORDERLY_STOP
Node should perform cleanup operations before stopping the link
station.

AP_IMMEDIATE_STOP
Node should stop the link station immediately.

ls_name
Name of link station to be stopped. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and must be set. The
value of ls_name must match that on the DEFINE_LS verb.

disable
This indicates whether remote activation or activation on demand of this
link station should be disabled. If set to AP_NO, then the link station is
returned to the state given by the values of auto_act_supp and
disable_remote_act from the DEFINE_LS verb. Otherwise, the following
values are possible (and can be ORed together).

AP_AUTO_ACT
The link cannot be reactivated on demand by the local node.

AP_REMOTE_ACT
The link cannot be activated by the remote node. For a link

STOP_LS

Chapter 5. Activation and Deactivation Verbs 179

configured with disable_remote_act set to AP_YES, this bit is
ignored (activation by a remote node is always disabled by
STOP_LS).

If the disable field is not set to AP_NO, then STOP_LS can be
issued for a link that is not active or that is in the process of
deactivating, for the purpose of setting the disable field.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_UNRECOGNIZED_DEACT_TYPE

AP_LINK_NOT_DEFD

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_LINK_DEACT_IN_PROGRESS

If the verb does not execute because it was canceled, the Program returns the
following parameter:

primary_rc
AP_CANCELLED

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

STOP_LS

180 System Management Programming

STOP_PORT

STOP_PORT requests that a port be stopped. It is returned specifying whether the
port was stopped successfully. STOP_PORT is also used to instruct the Program to
stop automatically retrying the activation of any link stations on the port.

VCB Structure
typedef struct stop_port
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char stop_type; /* Stop Type */
unsigned char port_name[8]; /* name of port */

} STOP_PORT;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_STOP_PORT

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

stop_type
Manner in which the port should be stopped.

AP_ORDERLY_STOP
Node should perform cleanup operations before stopping the port.

AP_IMMEDIATE_STOP
Node should stop the port immediately.

port_name
Name of port to be stopped. This is an 8-byte string in a locally
displayable character set, which must match that on the DEFINE_PORT
verb.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PORT_NAME

AP_UNRECOGNIZED_DEACT_TYPE

STOP_PORT

Chapter 5. Activation and Deactivation Verbs 181

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_STOP_PORT_PENDING

If the verb does not execute because it has been canceled, the Program returns the
following parameter:

primary_rc
AP_CANCELLED

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

STOP_PORT

182 System Management Programming

ACTIVATE_SESSION

The ACTIVATE_SESSION verb requests activation of a session between the local
LU and a specified partner LU using the characteristic of a particular mode.

VCB Structure
Format 1
typedef struct activate_session
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char mode_name[8]; /* mode name */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char polarity; /* requested session */

/* polarity */
unsigned char session_id[8]; /* session identifier */
unsigned char cnos_permitted; /* is implicit CNOS */

/* permitted? */
unsigned char reserv4[15]; /* reserved */

} ACTIVATE_SESSION;

Format 0 (back-level)
typedef struct activate_session
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char mode_name[8]; /* mode name */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char polarity; /* requested session */

/* polarity */
unsigned char session_id[8]; /* session identifier */

} ACTIVATE_SESSION;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_ACTIVATE_SESSION

format
Identifies the format of the VCB. Set this field to zero or one to specify the
version of the VCB listed above.

lu_name
LU name of the local LU requested to activate a session. This name is an
8-byte type-A EBCDIC character string. If this field is set to all zeros, the
lu_alias field will be used for determining the local LU.

ACTIVATE_SESSION

Chapter 5. Activation and Deactivation Verbs 183

lu_alias
Alias of the local LU requested to activate a session. This is an 8-byte
string in a locally displayable character set. This field is only significant if
the lu_name field is set to all zeros, in which case all 8 bytes are significant
and must be set. If both the lu_alias and the lu_name are set to all zeros
then the verb is forwarded to the LU associated with the control point (the
default LU).

plu_alias
Alias by which the partner LU is known to the local LU. This name must
match the name of a partner LU established during configuration. This is
an 8-byte string in a locally displayable character set. All 8 bytes are
significant and must be set. If this field is set to all zeros, the fqplu_name
field is used to specify the required partner LU.

mode_name
Name of a set of networking characteristics defined during configuration.
This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

fqplu_name
Fully qualified LU name for the partner LU. This name is 17 bytes long
and is right-padded with EBCDIC spaces. It is composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot. (Each name can
have a maximum length of 8 bytes with no embedded spaces.) This field is
only significant if the plu_alias field is set to all zeros.

polarity
The polarity requested for the session. Possible values are:

AP_POL_EITHER
AP_POL_FIRST_SPEAKER
AP_POL_BIDDER

If AP_POL_EITHER is selected, ACTIVATE_SESSION activates a first
speaker session if available; otherwise, a bidder session is activated. For
AP_POL_FIRST_SPEAKER or AP_POL_BIDDER, ACTIVATE_SESSION
only succeeds if a session of the requested polarity is available.

cnos_permitted
This field may be set to AP_YES or AP_NO. If the activation of a new
session is not possible because the session limits for the specified mode are
reset, and this field is set to AP_YES, then the Program initiates implicit
CNOS processing to initialize the session limits. Execution of this verb will
be suspended while CNOS processing takes place.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

secondary_rc
AP_AS_SPECIFIED

AP_AS_NEGOTIATED

session_id
8-byte identifier of the activated session.

ACTIVATE_SESSION

184 System Management Programming

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_EXCEEDS_MAX_ALLOWED

AP_INVALID_CNOS_PERMITTED
AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS
AP_INVALID_MODE_NAME
AP_INVALID_PLU_NAME

If the verb exceeds the session limit for the mode, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

Secondary_rc
AP_EXCEEDS_MAX_ALLOWED

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

If the verb does not execute because of other errors, the Program returns one of the
following parameters:

primary_rc
AP_ACTIVATION_FAIL_NO_RETRY

AP_ACTIVATION_FAIL_RETRY

ACTIVATE_SESSION

Chapter 5. Activation and Deactivation Verbs 185

DEACTIVATE_CONV_GROUP

The DEACTIVATE_CONV_GROUP verb requests the deactivation of the session
corresponding to the specified conversation group. Although this verb is part of
the Node Operator Facility API, it is primarily intended for use by application
programmers writing transaction programs that use the Personal Communications
or Communications Server APPC API. The conversation group identifier is
returned by the MC_ALLOCATE, ALLOCATE, MC_GET_ATTRIBUTES,
GET_ATTRIBUTES and RECEIVE_ALLOCATE verbs defined in Client/Server
Communications Programming.

VCB Structure
typedef struct deactivate_conv_group
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned long conv_group_id; /* conversation group identifier */
unsigned char type; /* deactivation type */
unsigned char reserv3[3]; /* reserved */
unsigned long sense_data; /* deactivation sense data */

} DEACTIVATE_CONV_GROUP;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEACTIVATE_CONV_GROUP

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

lu_name
LU name of the local LU requested to deactivate the conversation group.
This name is an 8-byte type-A EBCDIC character string. If this field is set
to all zeros, the lu_alias field will be used for determining the local LU.

lu_alias
Alias of the local LU requested to deactivate the conversation group. This
is an 8-byte string in a locally displayable character set. This field is only
significant if the lu_name field is set to all zeros, in which case all 8 bytes
are significant and must be set. If both the lu_name and lu_alias are set to
all zeros, the verb is forwarded to the LU associated with the control point
(the default LU).

conv_group_id
Conversation group identifier for the session to be deactivated.

type Type of deactivation. This field is a bitmask consisting of a deactivation
type ORed with a flag indicating whether the verb should complete
asynchronously or synchronously.

Deactivation types:

DEACTIVATE_CONV_GROUP

186 System Management Programming

AP_DEACT_CLEANUP
The session is terminated immediately, without waiting for a
response from the partner LU.

AP_DEACT_NORMAL
The session terminates after all conversations using the session are
ended.

Verb behavior:

AP_ASYNCHRONOUS_DEACTIVATION
The verb returns immediately.

AP_SYNCHRONOUS_DEACTIVATION
The verb returns only after the session has been deactivated.

sense_data
Specifies the sense data for use in the CLEANUP type of deactivation.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_CLEANUP_TYPE

AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEACTIVATE_CONV_GROUP

Chapter 5. Activation and Deactivation Verbs 187

DEACTIVATE_SESSION

The DEACTIVATE_SESSION verb requests the deactivation of a particular session,
or all sessions on a particular mode.

VCB Structure
typedef struct deactivate_session
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned char session_id[8]; /* session identifier */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char mode_name[8]; /* mode name */
unsigned char type; /* deactivation type */
unsigned char reserv3[3]; /* reserved */
unsigned long sense_data; /* deactivation sense data */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char reserv4[20]; /* reserved */

} DEACTIVATE_SESSION;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEACTIVATE_SESSION

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

lu_name
LU name of the local LU requested to deactivate a session. This name is an
8-byte type-A EBCDIC character string. If this field is set to all zeros, the
lu_alias field will be used for determining the local LU.

lu_alias
Alias of the local LU requested to deactivate a session. This is an 8-byte
string in a locally displayable character set. This field is only significant if
the lu_name field is set to all zeros, in which case all 8 bytes are significant
and must be set. If both the lu_name and the lu_alias fields are set to all
zeros then the verb is forwarded to the LU associated with the control
point (the default LU).

session_id
8-byte identifier of the session to deactivate. If this field is set to all zeros,
Personal Communications or Communications Server deactivates all
sessions for the partner LU and mode.

plu_alias
Alias by which the partner LU is known to the local LU. This name must
match the name of a partner LU established during configuration. This is
an 8-byte string in a locally displayable character set. All 8 bytes are
significant and must be set. If this field is set to all zeros, the fqplu_name
field is used to specify the required partner LU.

DEACTIVATE_SESSION

188 System Management Programming

mode_name
Name of a set of networking characteristics defined during configuration.
This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

type Type of deactivation. This field is a bitmask consisting of a deactivation
type ORed with a flag indicating whether the verb should complete
asynchronously or synchronously.

Deactivation types:

AP_DEACT_CLEANUP
The session is terminated immediately, without waiting for a
response from the partner LU.

AP_DEACT_NORMAL
The session terminates after all conversations using the session are
ended.

Verb behavior:

AP_ASYNCHRONOUS_DEACTIVATION
The verb returns immediately.

AP_SYNCHRONOUS_DEACTIVATION
The verb returns only after the session has been deactivated.

sense_data
Specifies the sense data to be used for the CLEANUP type of deactivation.

fqplu_name
Fully qualified LU name for the partner LU. This name is 17 bytes long
and is right-padded with EBCDIC spaces. It is composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot. (Each name can
have a maximum length of 8 bytes with no embedded spaces.) This field is
only significant if the plu_alias field is set to all zeros.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

Note that if the session_id cannot be matched with any existing sessions, it
is assumed that this is because the session has already been deactivated. In
this case the verb completes successfully.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_MODE_NAME

AP_INVALID_PLU_NAME
AP_INVALID_CLEANUP_TYPE
AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS

DEACTIVATE_SESSION

Chapter 5. Activation and Deactivation Verbs 189

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEACTIVATE_SESSION

190 System Management Programming

PATH_SWITCH

The PATH_SWITCH verb requests Personal Communications or Communications
Server to switch routes on a connection that supports high-performance routing
(HPR). If a better path cannot be found, the connection is left unchanged.

VCB Structure
typedef struct path_switch
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char rtp_connection_name[8];

/* RTP connection name */
} PATH_SWITCH;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_PATH_SWITCH

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

rtp_connection_name
Identifies the RTP connection to path-switch. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant and must be set.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_RTP_CONNECTION

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PATH_SWITCH_IN_PROGRESS

If the verb does not execute because the path switch attempt fails, the Program
returns the following parameter:

PATH_SWITCH

Chapter 5. Activation and Deactivation Verbs 191

primary_rc
AP_UNSUCCESSFUL

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

PATH_SWITCH

192 System Management Programming

Chapter 6. Query Verbs

This chapter describes verbs used to query information about node configuration
and status.

Only certain parameters are supported on SNA API clients.

© Copyright IBM Corp. 1989, 2016 193

QUERY_ADJACENT_NN

This verb applies only to Communications Server.

QUERY_ADJACENT_NN is only used at a network node and returns information
about adjacent network nodes (that is, those network nodes to which CP-CP
sessions are active or have been active or have been active at some time).

The adjacent node information is returned as a formatted list. To obtain
information about a specific network node or to obtain the list information in
several chunks, the adj_nncp_name field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 10 for background on how the list
formats are used.

This list is ordered on the adj_nncp_name. Ordering is by name length first, and
then by ASCII lexicographical ordering for names of the same length (in
accordance with IBM's 6611 APPN MIB ordering). If AP_LIST_FROM_NEXT is
selected the list starts from the next entry according to the defined ordering
(whether the specified entry exists or not).

VCB Structure
typedef struct query_adjacent_nn
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char adj_nncp_name[17]; /* CP name of adj network node */

} QUERY_ADJACENT_NN;

typedef struct adj_nncp_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char adj_nncp_name[17]; /* CP name of adj. network node */
unsigned char cp_cp_sess_status; /* CP-CP session status */
unsigned long out_of_seq_tdus; /* out of sequence TDUs */
unsigned long last_frsn_sent; /* last FRSN sent */
unsigned long last_frsn_rcvd; /* last FRSN received */
unsigned char reserva[20]; /* reserved */

} ADJ_NNCP_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_ADJACENT_NN

QUERY_ADJACENT_NN

194 System Management Programming

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information: The
adj_nncp_name specified (see the following parameter, adj_nncp_name)
represents an index value that is used to specify the starting point of the
actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

adj_nncp_name
Fully-qualified, 17 byte, name of adjacent network node composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot, which is
right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
The number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

QUERY_ADJACENT_NN

Chapter 6. Query Verbs 195

adj_nncp_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

adj_nncp_data.adj_nncp_name
17-byte fully-qualified CP name of adjacent network node which is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

adj_nncp_data.cp_cp_sess_status
Status of the CP-CP session. This is set to one of the following:

AP-ACTIVE
AP_CONWINNER_ACTIVE
AP_CONLOSER_ACTIVE
AP_INACTIVE

adj_nncp_data.out_of_seq_tdus
Number of out of sequence TDUs received from this node.

adj_nncp_data.last_frsn_sent
The last flow reduction sequence number sent to this node.

adj_nncp_data.last_frsn_rcvd
The last flow reduction sequence number received from this node.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_ADJ_NNCP_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_ADJACENT_NN

196 System Management Programming

QUERY_ADJACENT_NODE

QUERY_ADJACENT_NODE returns information about adjacent nodes configured
on DEFINE_ADJACENT_NODE.

Information is returned in an ordered list. Each entry in the list consists of an
ADJACENT_NODE_DATA overlay containing information about the adjacent CP,
followed by an ADJACENT_NODE_LU_DATA overlay for each LU associated with
the adjacent CP.

Entries are ordered by cp_name, then by fqlu_name. Ordering is by name length
first, and then by ASCII lexicographical ordering for names of the same length (in
accordance with normal MIB ordering).

If AP_LIST_FROM_NEXT is selected, the list will start from the next entry
according to the defined ordering (whether the specified entry exists or not).

VCB Structure
typedef struct query_adjacent_node
{

unsigned short opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char cp_name[17]; /* CP name of adjacent node */

} QUERY_ADJACENT_NODE;

typedef struct adjacent_node_data
{

unsigned short overlay_size; /* size of this entry */
unsigned short sub_overlay_size; /* size of this stub entry */
unsigned char cp_name[17]; /* CP name */
DESCRIPTION description; /* resource description */
unsigned char reserv3[19]; /* reserved */
unsigned short num_of_lus; /* number of LUs */

} ADJACENT_NODE_DATA;

typedef struct adjacent_node_lu_data
{

unsigned short overlay_size; /* effective capacity */
unsigned char reserve2[2]; /* reserved */
ADJACENT_NODE_LU adj_lu_def_data; /* Adjacent LU defined data */

} ADJACENT_NODE_LU_DATA;

typedef struct adjacent_node_lu
{

unsigned char wildcard_lu; /* Is this LU a wildcard? */
unsigned char fqlu_name[17]; /* Fully-Qualified LU name */
unsigned char reserve1[6]; /* reserved */
ADJACENT_NODE_LU adj_lu_def_data; /* Adjacent LU defined data */

} ADJACENT_NODE_LU;

Supplied Parameters
The application supplies the following parameters:

QUERY_ADJACENT_NODE

Chapter 6. Query Verbs 197

opcode
AP_QUERY_ADJACENT_NODE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information. The
cp_name specified (see the following parameter, cp_name) represents an
index value that is used to specify the starting point of the actual
information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first adjacent node in the directory maintained by the Program.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

cp_name
Fully qualified name of the adjacent node. This name is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot, and is
right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.)

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

QUERY_ADJACENT_NODE

198 System Management Programming

adjacent_node_data.overlay_size
The number of bytes in this entry, including any
ADJACENT_NODE_LU_DATA structures, and hence the offset to the next
entry returned (if any).

adjacent_node_data.sub_overlay_size
The number of bytes in the node part of the entry, not including any
ADJACENT_NODE_LU_DATA structures; this is the offset to the first
ADJACENT_NODE_LU_DATA field in the entry.

adjacent_node_data.cp_name
Fully qualified name of the adjacent node. This name is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot, and is
right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.)

adjacent_node_data.description
Resource description (as specified on DEFINE_ADJACENT_NODE). The
length of this field should be a multiple of four bytes, and nonzero.

adjacent_node_data.num_of_lus
The number of LUs defined for this adjacent node. An
ADJACENT_NODE_LU_DATA structure for each LU follows.

adjacent_node_lu_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

adjacent_node_lu.wildcard_lu
Indicates whether the LU name is defined as a wildcard.

adjacent_node_lu.fqlu_name
Fully qualified name of the adjacent node. The name is 17 bytes long and
is right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) This name is composed of
two type-A EBCDIC character strings concatenated by an EBCDIC dot, and
is right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.)

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_CP_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_ADJACENT_NODE

Chapter 6. Query Verbs 199

QUERY_CN

QUERY_CN returns information about adjacent Connection Networks. This
information is structured as determined data (data gathered dynamically during
execution) and defined data (the data supplied by the application on DEFINE_CN).

The information is returned as a formatted list. To obtain information about a
specific CN, or to obtain the list information in several chunks, the fqcn_name
field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 10 for background on how the list
formats are used.

This list is ordered on the fqcn_name. Ordering is by name length first, and then
by ASCII lexicographical ordering for names of the same length (in accordance
with normal MIB ordering).

If AP_LIST_FROM_NEXT is selected, the list will start from the next entry
according to the defined ordering (whether the specified entry exists or not).

VCB Structure
typedef struct query_cn
{

unsigned short opcode; /* Verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char fqcn_name[17]; /* Name of connection network */

} QUERY_CN;

typedef struct cn_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char fqcn_name[17]; /* Name of connection network */
unsigned char reserv1; /* reserved */
CN_DET_DATA det_data; /* Determined data */
CN_DEF_DATA def_data; /* Defined data */

} CN_DATA;

typedef struct cn_det_data
{

unsigned short num_act_ports; /* number of active ports */
unsigned char reserva[20]; /* reserved */

} CN_DET_DATA;

typedef struct cn_def_data
{

unsigned char description[RD_LEN];
/* resource description */

unsigned char num_ports; /* number of ports on CN */
unsigned char reserv1[16]; /* reserved */
TG_DEFINED_CHARS tg_chars; /* TG characteristics */

} CN_DEF_DATA;

QUERY_CN

200 System Management Programming

typedef struct tg_defined_chars
{

unsigned char effect_cap; /* effective capacity */
unsigned char reserve1[5]; /* reserved */
unsigned char connect_cost; /* connection cost */
unsigned char byte_cost; /* byte cost */
unsigned char reserve2; /* reserved */
unsigned char security; /* security */
unsigned char prop_delay; /* propagation delay */
unsigned char modem_class; /* modem class */
unsigned char user_def_parm_1; /* user-defined parameter 1 */
unsigned char user_def_parm_2; /* user-defined parameter 2 */
unsigned char user_def_parm_3; /* user-defined parameter 3 */

} TG_DEFINED_CHARS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_CN

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information: The
fqcn_name specified (see the following parameter, fqcn_name) represents
an index value that is used to specify the starting point of the actual
information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

QUERY_CN

Chapter 6. Query Verbs 201

fqcn_name
Fully qualified, 17-byte, connection network name. This name is composed
of two type-A EBCDIC character strings concatenated by an EBCDIC dot,
and is right-padded with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

cn_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

cn_data.fqcn_name
Fully qualified, 17-byte, connection network name. This name is composed
of two type-A EBCDIC character strings concatenated by an EBCDIC dot,
and is right-padded with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

cn_data.det_data.num_act_ports
Dynamic value giving number of active ports on the connection network.

cn_data.def_data.description
Resource description (as specified on DEFINE_CN). This is a 16-byte string
in a locally displayable character set. All 16 bytes are significant.

cn_data.def_data.num_ports
Number of ports on the connection network.

cn_data.def_data.tg_chars.effect_cap
Actual units of effective capacity. The value is encoded as a 1-byte
floating-point number, represented by the formula 0.1mmm * 2 eeeee,
where the bit representation of the byte is eeeeemmm. Each unit of effective
capacity is equal to 300 bits per second.

cn_data.def_data.tg_chars.connect_cost
Cost per connect time. Valid values are integer values in the range 0–255,
where 0 is the lowest cost per connect time and 255 is the highest.

cn_data.def_data.tg_chars.byte_cost
Cost per byte. Valid values are integer values in the range 0–255, where 0
is the lowest cost per byte and 255 is the highest.

QUERY_CN

202 System Management Programming

cn_data.def_data.tg_chars.security
Security values as described in the list below.

AP_SEC_NONSECURE
No security exists.

AP_SEC_PUBLIC_SWITCHED_NETWORK
Data transmitted over this connection network will flow over a
public switched network.

AP_SEC_UNDERGROUND_CABLE
Data is transmitted over secure underground cable.

AP_SEC_SECURE_CONDUIT
The line is a secure conduit that is not guarded.

AP_SEC_GUARDED_CONDUIT
Conduit is protected against physical tapping.

AP_SEC_ENCRYPTED
Encryption over the line.

AP_SEC_GUARDED_RADIATION
Line is protected against physical and radiation tapping.

cn_data.def_data.tg_chars.prop_delay
Propagation delay representing the time it takes for a signal to travel the
length of the link, in microseconds. The value is encoded as a 1-byte
floating-point number, represented by the formula 0.1mmm * 2 eeeee,
where the bit representation of the byte is eeeeemmm. Default values are
listed below.

AP_PROP_DELAY_MINIMUM
No propagation delay.

AP_PROP_DELAY_LAN
Less than 480 microseconds delay.

AP_PROP_DELAY_TELEPHONE
Between 480 and 49 512 microseconds delay.

AP_PROP_DELAY_PKT_SWITCHED_NET
Between 49 512 and 245 760 microseconds delay.

AP_PROP_DELAY_SATELLITE
Longer than 245 760 microseconds delay.

AP_PROP_DELAY_MAXIMUM
Maximum propagation delay.

cn_data.def_data.tg_chars.modem_class
Reserved. This field should always be set to zero.

cn_data.def_data.tg_chars.user_def_parm_1
User defined parameter in the range 0–255.

cn_data.def_data.tg_chars.user_def_parm_2
User defined parameter in the range 0–255.

cn_data.def_data.tg_chars.user_def_parm_3
User defined parameter in the range 0–255.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

QUERY_CN

Chapter 6. Query Verbs 203

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_CN_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_CN

204 System Management Programming

QUERY_CN_PORT

QUERY_CN_PORT returns information about ports defined on adjacent connection
networks. The information is returned as a formatted list. To obtain information
about a specific port, or to obtain the list information in several chunks, the
port_name field should be set. Otherwise (if the list_options field is set to
AP_FIRST_IN_LIST), this field will be ignored. Note that the fqcn_name field must
always be set to the name of a valid connection network.

See “Querying the Node” on page 10 for background on how the list formats are
used.

VCB Structure
typedef struct query_cn_port
{

unsigned short opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char fqcn_name[17]; /* Name of connection network */
unsigned char port_name[8]; /* port name */

} QUERY_CN_PORT;

typedef struct cn_port_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char fqcn_name[17]; /* Name of connection network */
unsigned char port_name[8]; /* name of port */
unsigned char tg_num; /* transmission group number */
unsigned char reserva[20]; /* reserved */

} CN_PORT_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_CN_PORT

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

QUERY_CN_PORT

Chapter 6. Query Verbs 205

list_options
This indicates what should be returned in the list information: The
combination of fqcn_name and port_name specified (see the following
parameters, fqcn_name and port_name) represents an index value that is
used to specify the starting point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

fqcn_name
Fully qualified, 17-byte, connection network name. This name is composed
of two type-A EBCDIC character strings concatenated by an EBCDIC dot,
and is right-padded with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This field must
always be set.

port_name
8-byte string in a locally displayable character set. All 8 bytes are
significant and must be set. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

cn_port_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

cn_port_data.fqcn_name
Fully qualified, 17-byte, connection network name. This name is composed
of two type-A EBCDIC character strings concatenated by an EBCDIC dot,
and is right-padded with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

QUERY_CN_PORT

206 System Management Programming

cn_port_data.port_name
Port name in an 8-byte, locally displayable character set. All 8 bytes are
significant.

cn_port_data.tg_num
Transmission group number for specified port.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_CN_NAME

AP_INVALID_PORT_NAME
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_CN_PORT

Chapter 6. Query Verbs 207

QUERY_CONVERSATION

QUERY_CONVERSATION returns list information about conversations running
over the specified LU. To obtain information about a specific conversation or to
obtain the list information in several chunks, the conv_id field should be set.
Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. Note that the lu_alias field must always be set. The lu_name, if nonzero,
will be used in preference to the lu_alias.

See “Querying the Node” on page 10 for background on how the list formats are
used.

This list is ordered by the conv_id. If AP_LIST_FROM_NEXT is selected, the
returned list starts from the next entry according to the index (whether the
specified entry exists or not).

VCB Structure
typedef struct query_conversation
{

unsigned short opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned long conv_id; /* conversation identifier */
unsigned char session_id[8]; /* session identifier */
unsigned char reserv4[12]; /* reserved */

} QUERY_CONVERSATION;

typedef struct conv_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned long conv_id; /* conversation identifier */
unsigned char local_tp_name[64]; /* Name of local TP */
unsigned char partner_tp_name[64];

/* Name of partner TP */
unsigned char tp_id[8]; /* TP identifier */
unsigned char sess_id[8]; /* session identifier */
unsigned long conv_start_time; /* time conversation was */

/* started */
unsigned long bytes_sent; /* bytes sent so far */
unsigned long bytes_received; /* bytes received so far */
unsigned char conv_state; /* conversation state */
unsigned char duplex_type; /* conversation duplex type */

} CONV_SUMMARY;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_CONVERSATION

QUERY_CONVERSATION

208 System Management Programming

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information. The index
specified (see following) represents an index value that is used to specify
the starting point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

lu_name
Name of the local LU. This is an 8–byte alphanumeric type A EBCDIC
string (not starting with a number), and is right-padded with EBCDIC
spaces.

lu_alias
Alias by which the local LU is known by the local TP. This is an 8-byte
string in a locally displayable character set. All 8 bytes are significant and
must be set.

conv_id
Conversation ID.

session_id
If this is all binary zeroes, this field is not used to filter the returned
conversations. If it is not zeroes, only those conversations whose session
IDs match the supplied value are returned.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

QUERY_CONVERSATION

Chapter 6. Query Verbs 209

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

conv_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

conv_summary.conv_id
Conversation ID.

The value of this parameter was returned by the ALLOCATE verb in the
invoking transaction action or by RECEIVE_ALLOCATE in the invoked
transaction program.

conv_summary.local_tp_name
Name of the local transaction program.

conv_summary.partner_tp_name
Name of the partner transaction program. This is only valid for a
locally-initiated conversation. For a remotely initiated conversation, it is
blank.

conv_summary.tp_id
The transaction program identifier assigned to the transaction program.
This identifier is either assigned by the API stub, or by the NOF
transaction program manager.

conv_summary.sess_id
Identifier of the session allocated to this conversation.

conv_summary.conv_start_time
The elapsed time in centiseconds from the time the node was started to the
time the conversation was started.

conv_summary.bytes_sent
The number of bytes sent so far on this conversation.

conv_summary.bytes_received
The number of bytes received so far on this conversation.

conv_summary_conv_state
Current state of the conversation that is identified by conv_id. For
half-duplex conversations, it is one of the following:

AP_RESET_STATE
AP_SEND_STATE
AP_RECEIVE_STATE
AP_CONFIRM_STATE
AP_CONFIRM_SEND_STATE
AP_CONFIRM_DEALL_STATE
AP_PEND_POST_STAT
AP_PEND_DEALL_STATE

QUERY_CONVERSATION

210 System Management Programming

AP_END_CONV_STATE
AP_SEND_PENDING_STATE
AP_POST_ON_RECEIPT_STATE

For full-duplex conversations, it is one of the following:

AP_RESET_STATE
AP_SEND_RECEIVE_STATE
AP_SEND_ONLY_STATE
AP_RECEIVE_ONLY_STATE

conv_summary.duplex_type
Specifies whether this conversation is half or full-duplex.

AP_HALF_DUPLEX
AP_FULL_DUPLEX

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_CONV_ID

AP_INVALID_LU_ALIAS
AP_INVALID_LU_NAME

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_CONVERSATION

Chapter 6. Query Verbs 211

QUERY_COS

QUERY_COS returns route calculation information for a specific class of service.
The information is returned as a formatted list. To obtain information about a
specific COS, or to obtain the list information in several chunks, the cos_name field
should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 10 for background on how the list
formats are used. This list is ordered on the cos_name. Ordering is by name length
first, and then by ASCII lexicographical ordering for names of the same length (in
accordance with IBM's 6611 APPN MIB ordering). If AP_LIST_FROM_NEXT is
selected the returned list starts from the next entry according to the defined
ordering (whether the specified entry exists or not).

VCB Structure
typedef struct query_cos
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char cos_name[8]; /* COS name */

} QUERY_COS;

typedef struct cos_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char cos_name[8]; /* COS name */
unsigned char description[RD_LEN];

/* resource description */
unsigned char transmission_priority;

/* transmission priority */
unsigned char reserv1; /* reserved */
unsigned short num_of_node_rows; /* number of node rows */
unsigned short num_of_tg_rows; /* number of TG rows */
unsigned long trees; /* number of tree caches for COS */
unsigned long calcs; /* number of route calculations */

/* for this COS */
unsigned long rejs; /* number of route rejects */

/* for COS */
unsigned char reserva[20]; /* reserved */

} COS_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_COS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

QUERY_COS

212 System Management Programming

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information: The
cos_name specified (see the following parameter, cos_name) represents an
index value that is used to specify the starting point of the actual
information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

cos_name
Class-of-service name. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.
This field is ignored if list_options is set to AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

cos_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

cos_data.cos_name
Class-of-service name. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.

QUERY_COS

Chapter 6. Query Verbs 213

cos_data.description
Resource description (as specified on DEFINE_COS). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

cos_data.transmission_priority
Transmission priority. This is set to one of the following values:

AP_LOW
AP_MEDIUM
AP_HIGH
AP_NETWORK

cos_data.num_of_node_rows
Number of node rows for this COS.

cos_data.num_of_tg_rows
Number of TG rows for this COS.

cos_data.trees
Number of route tree caches built for this COS since the last initialization.

cos_data.calcs
Number of session activation requests (and therefore route calculations)
specifying this class of service.

cos_data.rejs
Number of session activation requests that failed because there was no
acceptable (using the specified class of service) route from this node to the
named destination through the network. A route is only acceptable if it is
made up entirely of active TGs and nodes that can provide the specified
class of service.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_COS_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_COS

214 System Management Programming

QUERY_DEFAULT_PU

QUERY_DEFAULT_PU allows the user to query the default PU defined using a
DEFINE_DEFAULT_PU verb.

VCB Structure
typedef struct query_default_pu
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char def_pu_name[8]; /* default PU name */
unsigned char description[RD_LEN];

/* resource description */
unsigned char def_pu_sess[8]; /* PU name of active */

/* default session */
unsigned char reserv3[16]; /* reserved */

} QUERY_DEFAULT_PU;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_DEFAULT_PU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

def_pu_name
Name of the PU specified on the most recent DEFINE_DEFAULT_PU verb.
This is an 8-byte alphanumeric type A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces. If no
DEFINE_DEFAULT_PU verb has been issued then this field will be set to
all zeros.

description
Resource description (as specified on DEFINE_DEFAULT_PU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

def_pu_sess
Name of the PU associated with the currently active default PU session.
This will be different from the def_pu_name field if a default PU has been
defined, but the session associated with it is not active. In this case,
Personal Communications or Communications Server continues to use the
session associated with the previous default PU until the session associated
with the defined default PU becomes active. If there are no active PU
sessions then this field will be set to all zeros.

QUERY_DEFAULT_PU

Chapter 6. Query Verbs 215

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_DEFAULT_PU

216 System Management Programming

QUERY_DEFAULTS

QUERY_DEFAULTS allows the user to query the defaults defined using the
DEFINE_DEFAULTS verb.

VCB Structure
typedef struct query_defaults
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
DEFAULT_CHARS default_chars; /* default information */

} QUERY_DEFAULTS;

typedef struct default_chars
{

unsigned char description[RD_LEN];
/* resource description */

unsigned char mode_name[8]; /* default mode name */
unsigned char implicit_plu_forbidden;

/* disallow implicit */
/* PLUs ? */

unsigned char specific_security_codes;
/* generic security */
/* sense codes */

unsigned char limited_timeout;/* timeout for limited */
/* sessions */

unsigned char reserv[244]; /* reserved */
} DEFAULT_CHARS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_DEFAULTS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

default_chars.description
Resource description (as specified on DEFINE_DEFAULTS). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

default_chars.mode_name
Name of the mode specified on the most recent DEFINE_DEFAULTS verb.
This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces. If no DEFINE_DEFAULTS
verb has been issued then this field will be set to all zeros.

QUERY_DEFAULTS

Chapter 6. Query Verbs 217

default_chars.implicit_plu_forbidden
Controls whether the Program will put implicit definitions in place for
unknown Partner LUs (AP_YES or AP_NO).

default_chars.specific_secuity_codes
Controls whether the Program will use specific sense codes on a security
authentication or authorization failure (AP_YES or AP_NO). Note that the
specific sense codes will only be returned to those partner LUs which have
reported support for them on the session.

default_chars.limited_timeout
Specifies the timeout after which free limited-resource conwinnner sessions
will be deactivated. Range 0 to 65535 seconds.

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_DEFAULTS

218 System Management Programming

QUERY_DIRECTORY_ENTRY

QUERY_DIRECTORY_ENTRY returns a list of LUs from the directory database.
The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific LU, or to obtain the
list information in several chunks, the resource_name and resource_type fields
should be set. Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this
field will be ignored. See “Querying the Node” on page 10 for background on how
the list formats are used.

When the local node is a network node, information is returned as follows:

1st Network Node
1st LU located at Network Node
2nd LU locate at Network Node
...
nth LU located at Network Node

1st End Node served by this Network Node
1st LU located at End Node(1)
2nd LU located at End Node(1)
...
nth LU located at End Node(1)

...
nth End Node served by this Network Node

1st LU located at End Node(n)
2nd LU located at End Node(n)
...

2nd Network Node
...etc..

When the Program is operating as an End Node the first entry returned in the first
entry returned in the resource list is the EN CP. (No entry is returned for the End
Node's Network Node server.)

This list of directory entries returned may be filtered by the parent name (and
type). In this case, both the parent_name and parent_type fields should be set
(otherwise these fields should be set to all zeros). Ordering is by name length first,
and then by ASCII lexicographical ordering for names of the same length (in
accordance with IBM's 6611 APPN MIB ordering). If AP_LIST_FROM_NEXT is
selected, the returned list starts from the next entry according to the defined
ordering (whether the specified entry exists or not).

VCB Structure
Format 1
typedef struct query_directory_entry{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */

QUERY_DIRECTORY_ENTRY

Chapter 6. Query Verbs 219

unsigned char resource_name[17]; /* network qualified res name */
unsigned char reserv4; /* reserved */
unsigned short resource_type; /* Resource type */
unsigned char parent_name[17]; /* parent name filter */
unsigned char reserv5; /* reserved */
unsigned short parent_type; /* parent type */
unsigned char reserv6[24]; /* reserved */

} QUERY_DIRECTORY_ENTRY;

typedef struct directory_entry_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char resource_name[17]; /* network qualified res name */
unsigned char reserve1; /* reserved */
unsigned short resource_type; /* Resource type */
unsigned char description[RD_LEN]; /* resource description */
unsigned char real_owning_cp_type; /* real owning CP type */
unsigned char real_owning_cp_name[17];

/* real owning CP name */
} DIRECTORY_ENTRY_SUMMARY;

typedef struct directory_entry_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char resource_name[17]; /* network qualified res name */
unsigned char reserv1a; /* reserved */
unsigned short resource type; /* Resource type */
unsigned char description[RD_LEN]; /* resource description */
unsigned char parent_name[17]; /* network qualified */

/* parent name */
unsigned char reserv1b; /* reserved */
unsigned short parent_type; /* parent resource type */
unsigned char entry_type; /* Type of the directory entry */
unsigned char location; /* Resource location */
unsigned char real_owning_cp_type; /* real owning CP type */
unsigned char real_owning_cp_name[17]; */

/* real owning CP name */
unsigned char reserva; /* reserved */

} DIRECTORY_LU_DETAIL;

VCB Structure
Format 0 (back-level)
typedef struct query_directory_entry{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char resource_name[17]; /* network qualified res name */
unsigned char reserv4; /* reserved */
unsigned short resource_type; /* Resource type */
unsigned char parent_name[17]; /* parent name filter */
unsigned char reserv5; /* reserved */
unsigned short parent_type; /* parent type */

} QUERY_DIRECTORY_ENTRY;

Supplied Parameters
The application supplies the following parameters:

QUERY_DIRECTORY_ENTRY

220 System Management Programming

opcode
AP_QUERY_DIRECTORY_ENTRY

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above. In addition to affecting the format of the VCB,
only format 1 returns resources of AP_DLUR_LU_RESOURCE.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The combination of the resource_name and resource_type
specified (see the following parameters, resource_name and
resource_type) represents an index value that is used to specify the
starting point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

resource_name
Network qualified resource name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

resource_type
Resource type. See one of the following:

AP_NNCP_RESOURCE
AP_ENCP_RESOURCE
AP_LU_RESOURCE
AP_DLUR_LU_RESOURCE

This field is ignored if list_options is set to AP_FIRST_IN_LIST.

QUERY_DIRECTORY_ENTRY

Chapter 6. Query Verbs 221

parent_name
Parent name filter. This name is 17 bytes long and is right-padded with
EBCDIC spaces. It is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a maximum length
of 8 bytes with no embedded spaces.) If this field is set, then only directory
entries belonging to the specified parent are returned (and in this case, the
parent_name field must also be set). This field is if it is set to all zeros.

parent_type
The type of parent specified in the parent_name field. The type must be
specified if the parent_name field is nonzero, otherwise this field should
be set to zero. The can be set to one of the following:

AP_ENCP_RESOURCE
AP_NNCP_RESOURCE

This field is ignored if list_options is set to AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of directory entries returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

directory_entry_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

directory_entry_summary.resource_name
Network qualified resource name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

directory_entry_summary.resource_type
Resource type. This can be one of the following:

AP_NNCP_RESOURCE
AP_ENCP_RESOURCE
AP_LU_RESOURCE
AP_DLUR_LU_RESOURCE

(Not returned if format is set to zero.)

QUERY_DIRECTORY_ENTRY

222 System Management Programming

directory_entry_summary.description
Resource description as specified on:

DEFINE_LOCAL_LU
DEFINE_DIRECTORY_ENTRY
DEFINE_ADJACENT_LEN_NODE or
DEFINE_ADJACENT_NODE

directory_entry_summary.real_owning_cp_type
NN and BrNN only: Real owning CP type. This can be one of the
following:

AP_NONE
The real owning CP is a parent resource.

AP_ENCP_RESOURCE
The real owning CP is not the parent resource and is an EN.

Other node types: This field is set to AP_NONE.

directory_entry_summary.real_owning_cp_name
NN and BrNN only: Fully qualified real owning CP name. This name is 17
bytes long and is right-padded with EBCDIC spaces. It is composed of two
type A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

If the real owning CP is the parent, this field is set to binary zeroes.

If the real owning CP is not the parent, then this field is set to the name of
the real owning CP.

The real owning CP is not the parent in the directory of the NNS of a
BrNN if the resource is owned by an EN in the domain of the BrNN. In
this case, the real owning CP is the EN, but the parent is the BrNN.

Other node types: This field is set to binary zeroes.

directory_entry_detail.overlay_size
The number of bytes in this entry, and therefore the offset to the next entry
returned (if any).

directory_entry_detail.resource_name
Network qualified resource name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

directory_entry_detail.resource_type
Resource type. This can be one of the following:

AP_NNCP_RESOURCE
AP_ENCP_RESOURCE
AP_LU_RESOURCE

directory_entry_detail.description
Resource description as specified on:

DEFINE_LOCAL_LU
DEFINE_DIRECTORY_ENTRY
DEFINE_ADJACENT_LEN_NODE or
DEFINE_ADJACENT_NODE

QUERY_DIRECTORY_ENTRY

Chapter 6. Query Verbs 223

directory_entry_detail.parent_name
Fully qualified parent name of the node serving the LU. This name is 17
bytes long and is right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

directory_entry_detail.parent_type
Parent resource type. This can be one of the following:

AP_NNCP_RESOURCE
AP_ENCP_RESOURCE

directory_entry_detail.entry_type
Specifies the type of the directory entry. This can be one of the following
values:

AP_HOME
Local resource.

AP_CACHE
Cached entry.

AP_REGISTER
Registered resource (NN only).

directory_entry_detail.location
Specifies the location of the resource, which can be one of the following
values:

AP_LOCAL
The resource is at the local node.

AP_DOMAIN
The resource belongs to an attached end node.

AP_CROSS_DOMAIN
The resource is not within the domain of the local node.

directory_entry_detail.real_owning_cp_type
NN and BrNN only: Real owning CP type. This can be one of the
following:

AP_NONE
The real owning CP is a parent resource.

AP_ENCP_RESOURCE
The real owning CP is not the parent resource and is an EN.

Other node types: This field is set to AP_NONE.

directory_entry_detail.real_owning_cp_name
NN and BrNN only: Fully qualified real owning CP name. This name is 17
bytes long and is right-padded with EBCDIC spaces. It is composed of two
type A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

If the real owning CP is the parent, this field is set to binary zeroes.

If the real owning CP is not the parent, then this field is set to the name of
the real owning CP.

The real owning CP is not the parent in the directory of the NNS of a
BrNN if the resource is owned by an EN in the domain of the BrNN. In
this case, the real owning CP is the EN, but the parent is the BrNN.

QUERY_DIRECTORY_ENTRY

224 System Management Programming

Other node types: This field is set to binary zeroes.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_RES_NAME

AP_INVALID_RES_TYPE
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_DIRECTORY_ENTRY

Chapter 6. Query Verbs 225

QUERY_DIRECTORY_LU

QUERY_DIRECTORY_LU returns a list of LUs from the directory database. The
information is returned as a list in one of two formats, either summary or detailed
information. To obtain information about a specific LU, or to obtain the list
information in several chunks, the lu_name field should be set. Otherwise (if the
list_options field is set to AP_FIRST_IN_LIST), this field will be ignored. See
“Querying the Node” on page 10 for background on how the list formats are used.

This list is ordered by the lu_name. Ordering is by name length first, and then by
ASCII lexicographical ordering for names of the same length (in accordance with
IBM's 6611 APPN MIB ordering). If AP_LIST_FROM_NEXT is selected, the
returned list starts from the next entry according to the defined ordering (whether
the specified entry exists or not).

Note that DLUS-served LUs present in the directory are also returned by this
query.

VCB Structure
typedef struct query_directory_lu
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char lu_name[17]; /* network qualified LU name */

} QUERY_DIRECTORY_LU;

typedef struct directory_lu_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char lu_name[17]; /* network qualified LU name */
unsigned char description[RD_LEN]; /* resource description */

} DIRECTORY_LU_SUMMARY;

typedef struct directory_lu_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char lu_name[17]; /* network qualified LU name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char server_name[17]; /* network qualified */

/* server name */
unsigned char lu_owner_name[17]; /* network qualified */

/* LU owner name */
unsigned char location; /* Resource location */
unsigned char entry_type; /* Type of the directory entry */
unsigned char wild_card; /* type of wildcard entry */
unsigned char apparent_lu_owner_name[17];

/* apparent LU owner name */
unsigned char reserva[3]; /* reserved */

} DIRECTORY_LU_DETAIL;

Supplied Parameters
The application supplies the following parameters:

QUERY_DIRECTORY_LU

226 System Management Programming

opcode
AP_QUERY_DIRECTORY_LU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The lu_name specified (see the following parameter, lu_name)
represents an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

lu_name
Network qualified LU name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

QUERY_DIRECTORY_LU

Chapter 6. Query Verbs 227

num_entries
Number of directory entries returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

directory_lu_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

directory_lu_summary.lu_name
Network qualified LU name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

directory_lu_summary.description
Resource description (as specified on DEFINE_LOCAL_LU, or
DEFINE_ADJACENT_NODE). This is a 16-byte string in a locally
displayable character set. All 16 bytes are significant.

directory_lu_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

directory_lu_detail.lu_name
Network qualified LU name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

directory_lu_detail.description
Resource description (as specified on DEFINE_LOCAL_LU, or
DEFINE_ADJACENT_NODE). This is a 16-byte string in a locally
displayable character set. All 16 bytes are significant.

directory_lu_detail.server_name
Network qualified name of the node serving the LU. This name is 17 bytes
long and is right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

directory_lu_detail.lu_owner_name
Network qualified name of the node owning the LU. This name is 17 bytes
long and is right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

directory_lu_detail.location
Specifies the location of the resource, which can be one of the following
values:

AP_LOCAL
The resource is at the local node.

AP_DOMAIN
The resource belongs to an attached end node.

AP_CROSS_DOMAIN
The resource is not within the domain of the local node.

QUERY_DIRECTORY_LU

228 System Management Programming

directory_lu_detail.entry_type
Specifies the type of the directory entry. This can be one of the following
values:

AP_HOME
Local resource.

AP_CACHE
Cached entry.

AP_REGISTER
Registered resource (NN only).

directory_lu_detail.wild_card
Specifies the type of wildcard the LU will match.

AP_OTHER
Unknown type of LU entry.

AP_EXPLICIT
The full lu_name will be used for locating this LU.

AP_PARTIAL_WILDCARD
Only the nonspace portions of lu_name will be used for locating
this LU.

AP_FULL_WILDCARD
All lu_names will be directed to this LU.

directory_lu_detail.apprent_lu_owner_name
NN and BrNN only: Fully qualified apparent LU owner CP name. This
name is 17 bytes long and is right-padded with EBCDIC spaces. It is
composed of two type A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8 bytes with no
embedded spaces.)

If the apparent LU owner is the real LU owner, this field is set to binary
zeroes.

If the apparent LU owner is not the real owner, then this field is set to the
name of the apparent LU owner.

The real LU owner is not the apparent LU owner in the directory of the
NNS of a BrNN if the resource is owned by an EN in the domain of the
BrNN. In this case, the real LU owner is the EN, but the apparent owner is
the BrNN.

Other node types: This field is set to binary zeroes.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

QUERY_DIRECTORY_LU

Chapter 6. Query Verbs 229

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_DIRECTORY_LU

230 System Management Programming

QUERY_DIRECTORY_STATS

This verb applies only to Communications Server.

QUERY_DIRECTORY_STATS returns directory database statistics. (The statistics
that refer to cache information are reserved in the case of an end node). The verb
can be used to gauge the level of network locate traffic. In the case of a network
node this information can be used to tune the size of the directory cache, which is
configurable at node-initialization time.

VCB Structure
typedef struct query_directory_stats
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned long max_caches; /* max number of cache entries */
unsigned long cur_caches; /* cache entry count */
unsigned long cur_home_entries; /* home entry count */
unsigned long cur_reg_entries; /* registered entry count */
unsigned long cur_directory_entries;

/* current number of dir entries */
unsigned long cache_hits; /* count of cache finds */
unsigned long cache_misses; /* count of resources found by */

/* broadcast search (not cache) */
unsigned long in_locates; /* locates in */
unsigned long in_bcast_locates; /* broadcast locates in */
unsigned long out_locates; /* locates out */
unsigned long out_bcast_locates; /* broadcast locates out */
unsigned long not_found_locates; /* unsuccessful locates */
unsigned long not_found_bcast_locates;

/* unsuccessful broadcast */
/* locates */

unsigned long locates_outstanding;
/* total outstanding locates */

unsigned char reserva[20]; /* reserved */
} QUERY_DIRECTORY_STATS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_DIRECTORY_STATS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

max_caches
Reserved.

QUERY_DIRECTORY_STATS

Chapter 6. Query Verbs 231

cur_caches
Reserved.

cur_home_entries
Current number of home entries.

cur_reg_entries
Current number of registered entries.

cur_directory_entries
Total number of entries currently in the directory.

cache_hits
Reserved.

cache_misses
Reserved.

in_locates
Number of directed locates received.

in_bcast_locates
Number of broadcast locates received.

out_locates
Number of directed locates sent.

out_bcast_locates
Number of broadcast locates sent.

not_found_locates
Number of directed locates returned with a “not found.”

not_found_bcast_locates
Number of broadcast locates returned with a “not found.”

locates_outstanding
Current number of outstanding locates, both directed and broadcast.

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_DIRECTORY_STATS

232 System Management Programming

QUERY_DLC

QUERY_DLC returns a list of information about the DLCs defined at the node.
This information is structured as determined data (data gathered dynamically
during execution) and defined data (the data supplied by the application on
DEFINE_DLC).

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific DLC, or to obtain the
list information in several chunks, the dlc_name field should be set. Otherwise (if
the list_options field is set to AP_FIRST_IN_LIST), this field will be ignored. See
“Querying the Node” on page 10 for background on how the list formats are used.

This list is ordered by the dlc_name. Ordering is by name length first, and then by
ASCII lexicographical ordering for names of the same length (in accordance with
normal MIB ordering).

If AP_LIST_FROM_NEXT is selected the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

VCB Structure
typedef struct query_dlc
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* ver attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char dlc_name[8]; /* name of DLC */

} QUERY_DLC;

typedef struct dlc_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char dlc_name[8]; /* name of DLC */
unsigned char description[RD_LEN];

/* resource description */
unsigned char state; /* State of the DLC */
unsigned char dlc_type; /* DLC type */

} DLC_SUMMARY;

typedef struct dlc_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char dlc_name[8]; /* name of DLC */
unsigned char reserv2[2]; /* reserved */
DLC_DET_DATA det_data; /* Determined data */
DLC_DEF_DATA def_data; /* Defined data */

} DLC_DETAIL;

typedef struct dlc_det_data
{

unsigned char state; /* State of the DLC */
unsigned char reserv3[3]; /* reserved */
unsigned char reserva[20]; /* reserved */

} DLC_DET_DATA;

QUERY_DLC

Chapter 6. Query Verbs 233

typedef struct dlc_def_data
{

DESCRIPTION description; /* resource description */
unsigned char dlc_type; /* DLC type */
unsigned char neg_ls_supp; /* negotiable LS support */
unsigned char port_types; /* allowable port types */
unsigned char retry_flags; /* conditions for automatic */

/* retries */
unsigned short max_activaion_attempts;

/* how many automatic retries? */
unsigned short activation_delay_timer;

/* delay between automatic */
/* retries */

unsigned char reserv3[6]; /* reserved */
unsigned short dlc_spec_data_len; /* Length of DLC specific data */

} DLC_DEF_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_DLC

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The dlc_name specified (see the following parameter, dlc_name)
represents an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

QUERY_DLC

234 System Management Programming

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

dlc_name
DLC name. This is an 8-byte string in a locally displayable character set.
All 8 bytes are significant and must be set. This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

dlc_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

dlc_summary.dlc_name
DLC name. This is an 8-byte string in a locally displayable character set.
All 8 bytes are significant.

dlc_summary.description
Resource description (as specified on DEFINE_DLC). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

dlc_summary.state
State of the DLC. This field is set to one of the following values:

AP_ACTIVE
AP_NOT_ACTIVE
AP_PENDING_INACTIVE

dlc_summary.dlc_type
Type of DLC. The Program supports the following types:

AP_ANYNET
AP_LLC2
AP_OEM_DLC
AP_SDLC
AP_X25

QUERY_DLC

Chapter 6. Query Verbs 235

dlc_detail.overlay_size
The number of bytes in this entry (including dlc_spec_data), and hence the
offset to the next entry returned (if any).

dlc_detail.dlc_name
DLC name. This is an 8-byte string in a locally displayable character set.
All 8 bytes are significant.

dlc_detail.det_data.state
State of the DLC. This field is set to one of the following values:

AP_ACTIVE
AP_NOT_ACTIVE
AP_PENDING_INACTIVE

dlc_detail.def_data.description
Resource description (as specified on DEFINE_DLC). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

dlc_detail.def_data.dlc_type
Type of DLC. The Program supports the following types:

AP_ANYNET
AP_LLC2
AP_OEM_DLC
AP_SDLC
AP_X25

dlc_detail.def_data.neg_ls_supp
Specifies whether the DLC supports negotiable link stations (AP_YES or
AP_NO).

dlc_detail.def_data.port_types
Specifies the allowable port types for the supplied dlc_type. The value
corresponds to one or more of the following values ORed together:

AP_PORT_NONSWITCHED
AP_PORT_SWITCHED
AP_PORT_SATF

dlc__detail.def_data.retry_flags
This field specifies the conditions under which link stations, defined on
this DLC, are subject to automatic retry if the flag AP_INHERIT_RETRY is
set on both DEFINE_LS and DEFINE_PORT in def_data.retry_flags. It is a
bit field, and may take any of the following values bitwise ORed together.

AP_RETRY_ON_START
Link activation will be retried if no response is received from the
remote node when activation is attempted. If the underlying port is
inactive when activation is attempted, the Program will attempt to
activate it.

AP_RETRY_ON_FAILURE
Link activation will be retried if the link fails while active or
pending active. If the underlying port has failed when activation is
attempted, the Program attempts to activate it.

AP_RETRY_ON_DISCONNECT
Link activation will be retried if the link is stopped normally by
the remote node.

QUERY_DLC

236 System Management Programming

AP_DELAY_APPLICATION_RETRIES
Link activation retries, initiated by applications (using START_LS
or on-demand link activation) will be paced using the
activation_delay_timer.

AP_INHERIT_RETRY
This flag has no effect.

dlc_detail.def_data.max_activation_attempts
This field has no effect unless at least one flag is set in DEFINE_LS in
def_data.retry_flags, def_data.max_activation_attempts on DEFINE_LS is
set to AP_USE_DEFAULTS, and def_data.max_activation_attempts on
DEFINE_PORT is set to AP_USE_DEFAULTS.

This field specifies the number of retry attempts the Program allows when
the remote node is not responding, or the underlying port is inactive. This
includes both automatic retries and application-driven activation attempts.

If this limit is ever reached, no further attempts are made to automatically
retry. This condition is reset by STOP_LS, STOP_PORT, STOP_DLC or a
successful activation. START_LS or OPEN_LU_SSCP_SEC_RQ results in a
single activation attempt, with no retry if activation fails.

Zero means 'no limit'. The value AP_USE_DEFAULTS means 'no limit'.

dlc_detail.def_data.activation_delay_timer
This field has no effect unless at least one flag is set in DEFINE_LS in
def_data.retry_flags, def_data.max_activation_attempts on DEFINE_LS is
set to AP_USE_DEFAULTS, and def_data.max_activation_attempts on
DEFINE_PORT is set to AP_USE_DEFAULTS.

This field specifies the number of seconds that the Program waits between
automatic retry attempts, and between application-driven activation
attempts if the AP_DELAY_APPLICATION_RETRIES bit is set in
def_data.retry_flags.

The value of zero or AP_USE_DEFAULTS results in the use of default
timer duration of thirty seconds.

dlc_detail.def_data.dlc_spec_data_len
Unpadded length, in bytes, of data specific to the type of DLC. The data
will be concatenated to the DLC_DETAIL structure. This data will be
padded to end on a 4-byte boundary. This field should always be set to
zero.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DLC_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

QUERY_DLC

Chapter 6. Query Verbs 237

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_DLC

238 System Management Programming

QUERY_DLUR_DEFAULTS

QUERY_DLUR_DEFAULTS allows the user to query the defaults defined using the
DEFINE_DLUR_DEFAULTS verb.

VCB Structure
typedef struct query_dlur_defaults
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
DESCRIPTION description; /* resource description */
unsigned char dlus_name[17]; /* DLUS name */
unsigned char bkup_dlus_name[17];/* Backup DLUS name */
unsigned char reserv3; /* reserved */
unsigned short dlus_retry timeout;/* DLUS Retry Timeout */
unsigned short dlus_retry_limit; /* DLUS Retry Limit */
unsigned char reserv4[16]; /* reserved */

} QUERY_DLUR_LU;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_DLUR_DEFAULTS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

description
Resource description. The length of this field should be a multiple of four
bytes and nonzero.

dlus_name
Name of the DLUS node that will serve as the default. This is set to all
zeros or a 17-byte string composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

bkup_dlus_name
Name of the DLUS node that will serve as the backup default. This is set
to all zeros or a 17-byte string composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot, and is right-padded with EBCDIC
spaces. (Each name can have a maximum length of 8 bytes with no
embedded spaces.)

dlus_retry_timeout
Interval in seconds between the second and subsequent attempts to contact
a DLUS. The interval between the initial attempt and the first retry is
always one second.

QUERY_DLUR_DEFAULTS

Chapter 6. Query Verbs 239

dlus_retry_limit
Maximum number of retries after an initial failure to contact a DLUS. If
X'FFFF' is specified, the Program retries indefinitely.

If the verb does not execute because one or more of the relevant START_NODE
parameters were not set, the Program returns the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

If the verb does not execute because the system has not been built with DLUR
support, the Program returns the following parameter:

primary_rc
AP_INVALID_VERB

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because a STOP_NODE verb has been issued, the
Program returns the following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_DLUR_DEFAULTS

240 System Management Programming

QUERY_DLUR_LU

QUERY_DLUR_LU returns a list of information about DLUR-supported LUs.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific LU, or to obtain the
list information in several chunks, the lu_name field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 10 for background on how the list
formats are used.

This list is ordered by the lu_name. Ordering is by name length first, and then by
ASCII lexicographical ordering for names of the same length (in accordance with
normal MIB ordering).

If AP_LIST_FROM_NEXT is selected, the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

The list of LUs returned can be filtered by pu_name or by whether the LU is local
or downstream or by both. If filtering by PU is desired, the pu_name field should
be set (otherwise this field should be set to all zeros). If filtering by location is
desired, the filter field should be set to AP_INTERNAL or AP_DOWNSTREAM
(otherwise, if no filtering is required, this field should be set to AP_NONE).

VCB Structure
typedef struct query_dlur_lu
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char lu_name[8]; /* name of LU */
unsigned char pu_name[8]; /* name of PU to filter on */
unsigned char filter; /* reserved */

} QUERY_DLUR_LU;

typedef struct dlur_lu_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char lu_name[8]; /* name of LU */

} DLUR_LU_SUMMARY;

typedef struct dlur_lu_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char lu_name[8]; /* name of LU */
unsigned char pu_name[8]; /* name of owning PU */
unsigned char dlus_name[17]; /* DLUS name if SSCP-LU */

/* session active */
unsigned char lu_location; /* downstream or local LU */
unsigned char nau_address; /* NAU address of LU */
unsigned char plu_name[17]; /* PLU name if PLU-SLU session */

QUERY_DLUR_LU

Chapter 6. Query Verbs 241

/* active */
unsigned char reserv1[27]; /* reserved */
unsigned char rscv_len; /* length of appended RSCV */

} DLUR_LU_DETAIL;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_DLUR_LU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The lu_name specified (see the following parameter, lu_name)
represents an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

lu_name
Name of LU being queried. This is an 8-byte alphanumeric type A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.
This field is ignored if list_options is set to AP_FIRST_IN_LIST.

pu_name
PU name filter. This should be set to all zeros or an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. If this field is set then only LUs associated with the
specified PU are returned. This field is ignored if it is set to all zeros.

QUERY_DLUR_LU

242 System Management Programming

filter Location filter. Specifies whether the returned LUs should be filtered by
location (AP_INTERNAL or AP_DOWNSTREAM). If no filter is required,
this field should be set to AP_NONE.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

dlur_lu_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

dlur_lu_summary.lu_name
Name of LU. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces.

dlur_lu_detail.overlay_size
The number of bytes in this entry (including appended RSCV), and hence
the offset to the next entry returned (if any).

dlur_lu_detail.lu_name
Name of LU. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces.

dlur_lu_detail.pu_name
Name of PU associated with the LU. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

dlur_lu_detail.dlus_name
Name of the DLUS node if the SSCP-LU session is active. This is a 17-byte
string composed of two type-A EBCDIC character strings concatenated by
an EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.) If the
SSCP-LU session is not active, this field will be set to all zeros.

dlur_lu_detail.lu_location
Location of LU. The only value returned is:

AP_INTERNAL
AP_DOWNSTREAM

dlur_lu_detail.nau_address
Network addressable unit address of the LU. This is in the range 1–255.

QUERY_DLUR_LU

Chapter 6. Query Verbs 243

dlur_lu_detail.plu_name
Name of PLU if the LU has an active PLU-SLU session. This is a 17-byte
string composed of two type-A EBCDIC character strings concatenated by
an EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.) If the
PLU-SLU session is not active, this field will be set to all zeros.

dlur_lu_detail.rscv_len
This value will always be zero.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_NAME

AP_INVALID_FILTER_OPTION
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_DLUR_LU

244 System Management Programming

QUERY_DLUR_PU

QUERY_DLUR_PU returns a list of information about DLUR-supported PUs.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific PU, or to obtain the
list information in several chunks, the pu_name field should be set. Otherwise (if
the list_options field is set to AP_FIRST_IN_LIST), this field will be ignored. See
“Querying the Node” on page 10 for background on how the list formats are used.

This list is ordered by the pu_name. Ordering is by name length first, and then by
ASCII lexicographical ordering for names of the same length (in accordance with
normal MIB ordering).

If AP_LIST_FROM_NEXT is selected, the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

The list of PUs returned can be filtered either by dlus_name or by whether the PU
is local or downstream or by both. If filtering by DLUS is desired, the dlus_name
field should be set (otherwise this field should be set to all zeros). If filtering by
PU location is desired, the filter field should be set to AP_INTERNAL or
AP_DOWNSTREAM (otherwise, if no filtering is required, this field should be set
to AP_NONE).

VCB Structure
typedef struct query_dlur_pu
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char pu_name[8]; /* name of PU */
unsigned char dlus_name[17]; /* fully qualified DLUS name */
unsigned char filter; /* local/downstream filter */

} QUERY_DLUR_PU;

typedef struct dlur_pu_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char pu_name[8]; /* name of PU */
unsigned char description[RD_LEN];

/* resource description */
} DLUR_PU_SUMMARY;

typedef struct dlur_pu_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char pu_name[8]; /* name of PU */
unsigned char description[RD_LEN];

/* resource description */
unsigned char defined_dlus_name[17];

/* defined DLUS name */
unsigned char bkup_dlus_name[17]; /* backup DLUS name */
unsigned char pu_id[4]; /* PU identifier */

QUERY_DLUR_PU

Chapter 6. Query Verbs 245

unsigned char pu_location; /* downstream or local PU */
unsigned char active_dlus_name[17];

/* active DLUS name */
unsigned char ans_support; /* Auto-Network shutdown support */
unsigned char pu_status; /* status of the PU */
unsigned char dlus_session_status; /* status of the DLUS pipe */
unsigned char reserv3; /* reserved */
FQPCID fqpcid; /* FQPCID used on pipe */
unsigned short dlus_retry_timeout; /* DLUS retry timeout */
unsigned short dlus_retry_limit; /* DLUS retry limit */

} DLUR_PU_DETAIL;

typedef struct fqpcid
{

unsigned char pcid[8]; /* proc correlator identifier */
unsigned char fqcp_name[17]; /* originator’s network */

/* qualified CP name */
unsigned char reserve3[3]; /* reserved */

} FQPCID;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_DLUR_PU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The pu_name specified (see the following parameter, pu_name)
represents an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

QUERY_DLUR_PU

246 System Management Programming

pu_name
Name of PU being queried. This is an 8-byte alphanumeric type A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.
This field is ignored if list_options is set to AP_FIRST_IN_LIST.

dlus_name
DLUS filter. This should be set to all zeros or to a 17-byte string composed
of two type-A EBCDIC character strings concatenated by an EBCDIC dot,
and is right-padded with EBCDIC spaces. If this field is set then only PUs
associated with an SSCP-PU session to the specified DLUS node are
returned. This field is ignored if it is set to all zeros.

filter This field should be set to AP_NONE.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

dlur_pu_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

dlur_pu_summary.pu_name
Name of PU. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces.

dlur_pu_summary.description
Resource description (as specified on DEFINE_INTERNAL_PU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

dlur_pu_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

dlur_pu_detail.pu_name
Name of PU. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces.

dlur_pu_detail.description
Resource description (as specified on DEFINE_INTERNAL_PU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

QUERY_DLUR_PU

Chapter 6. Query Verbs 247

dlur_pu_detail.defined_dlus_name
Name of the DLUS node defined by either a DEFINE_INTERNAL_PU verb
or DEFINE_LS verb (with dspu_services set to AP_DLUR). This is a
17-byte string composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

dlur_pu_detail.bkup_dlus_name
Name of backup DLUS node defined by either a DEFINE_INTERNAL_PU
verb or DEFINE_LS verb (with dspu_services set to AP_DLUR). This is a
17-byte string composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

dlur_pu_detail.pu_id
PU identifier defined in a DEFINE_INTERNAL_PU verb or obtained in an
XID from a downstream PU. This a 4-byte hexadecimal string. Bits 0–11 are
set to the Block number and bits 12–31 are set to the ID number that
uniquely identifies the PU.

dlur_pu_detail.pu_location
Location of PU. The only value returned is:

AP_INTERNAL
AP_DOWNSTREAM

dlur_pu_detail.active_dlus_name
Name of the DLUS node that the PU is currently using. This is a 17-byte
string composed of two type-A EBCDIC character strings concatenated by
an EBCDIC dot, which is right-padded with EBCDIC spaces. (Each name
can have a maximum length of 8 bytes with no embedded spaces.) If the
SSCP-PU session is not active, this field will be set to all zeros.

dlur_pu_detail.ans_support
Auto Network Shutdown support. This field is reserved if the SSCP-LU
session is inactive. The support setting is sent to DLUR from the DLUS at
SSCP-PU activation. It specifies whether link-level contact should be
continued if the subarea node initiates an auto network shutdown
procedure for the SSCP controlling the PU. This can be one of the
following values:

AP_CONT
AP_STOP

dlur_pu_detail.pu_status
Status of the PU (as seen by DLUR). This can be set to one of the following
values:

AP_RESET
The PU is in reset state.

AP_PEND_ACTPU
The PU is waiting for an ACTPU from the host.

AP_PEND_ACTPU_RSP
Having forwarded an ACTPU to the PU, DLUR is now waiting for
the PU to respond to it.

QUERY_DLUR_PU

248 System Management Programming

AP_ACTIVE
The PU is active.

AP_PEND_DACTPU_RSP
Having forwarded a DACTPU to the PU, DLUR is waiting for the
PU to respond to it.

AP_PEND_INOP
DLUR is waiting for all necessary events to complete before it
deactivates the PU.

dlur_pu_detail.dlus_session_status
Status of the DLUS pipe currently being used by the PU. This can be one
of the following values:

AP_PENDING_ACTIVE
AP_ACTIVE
AP_PENDING_INACTIVE
AP_INACTIVE

dlur_pu_detail.fqpcid.pcid
Procedure correlator ID used on the pipe. This is an 8-byte hexadecimal
string. If the SSCP-PU session is not active this field will be set to zeros.

dlur_pu_detail.fqpcid.fqcp_name
Fully qualified Control Point name used on the pipe. This name is 17 bytes
long and is right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.) If
the SSCP-PU session is not active this field will be set to zeros.

dlur_pu_detail.dlus_retry_timeout
Interval in seconds between second and subsequent attempts to contact the
DLUS specified in the dlus_name and bkup_dlus_name fields. The
interval between the initial attempt and the first retry is always one
second. If zero is specified, the default value configured through
DEFINE_DLUR_DEFAULTS is used.

def_data.dlus_retry_limit
Maximum number of retries after an initial failure to contact the DLUS
specified in the dlus_name and bkup_dlus_name fields. If zero is
specified, the default value configured through
DEFINE_DLUR_DEFAULTS is used. If X'FFFF' is specified, the Program
retrys indefinitely.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PU_NAME

AP_INVALID_FILTER_OPTION
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

QUERY_DLUR_PU

Chapter 6. Query Verbs 249

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_DLUR_PU

250 System Management Programming

QUERY_DLUS

QUERY_DLUS returns a list of information about DLUS nodes known by DLUR.

The information is returned as a list. To obtain information about a specific DLUS
node, or to obtain the list information in several chunks, the dlus_name field
should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 10 for background on how the list
formats are used.

This list is ordered by the dlus_name. Ordering is by name length first, and then
by ASCII lexicographical ordering for names of the same length (in accordance
with normal MIB ordering).

If AP_LIST_FROM_NEXT is selected, the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

Note that this verb returns pipe statistics.

VCB Structure
typedef struct query_dlus
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char dlus_name[17]; /* fully qualified DLUS name */

} QUERY_DLUS;

typedef struct dlus_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char dlus_name[17]; /* fully qualified DLUS name */
unsigned char is_default; /* is the DLUS the default */
unsigned char is_backup_default; /* is DLUS the backup default */
unsigned char pipe_state; /* state of CPSVRMGR pipe */
unsigned short num_active_pus; /* num of active PUs using pipe */
PIPE_STATS pipe_stats; /* pipe statistics */

} DLUS_DATA;

typedef struct pipe_stats
{

unsigned long reqactpu_sent; /* REQACTPUs sent to DLUS */
unsigned long reqactpu_rsp_received;

/* RSP(REQACTPU)s received */
/* from DLUS */

unsigned long actpu_received; /* ACTPUs received from DLUS */
unsigned long actpu_rsp_sent; /* RSP(ACTPU)s sent to DLUS */
unsigned long reqdactpu_sent; /* REQDACTPUs sent to DLUS */
unsigned long reqdactpu_rsp_received;

/* RSP(REQDACTPU)s received */
/* from DLUS */

QUERY_DLUS

Chapter 6. Query Verbs 251

unsigned long dactpu_received; /* DACTPUs received from DLUS */
unsigned long dactpu_rsp_sent; /* RSP(DACTPU)s sent to DLUS */
unsigned long actlu_received; /* ACTLUs received from DLUS */
unsigned long actlu_rsp_sent; /* RSP(ACTLU)s sent to DLUS */
unsigned long dactlu_received; /* DACTLUs received from DLUS */
unsigned long dactlu_rsp_sent; /* RSP(DACTLU)s sent to DLUS */
unsigned long sscp_pu_mus_rcvd; /* MUs for SSCP-PU */

/* sessions received */
unsigned long sscp_pu_mus_sent; /* MUs for SSCP-PU sessions sent */
unsigned long sscp_lu_mus_rcvd; /* MUs for SSCP-LU sessions */

/* received */
unsigned long sscp_lu_mus_sent; /* MUs for SSCP-LU sessions sent */

} PIPE_STATS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_DLUS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The dlus_name specified (see the following parameter, dlus_name)
represents an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

dlus_name
Name of the DLUS being queried. This should be set to all zeros or a
17-byte string composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, which is right-padded with EBCDIC

QUERY_DLUS

252 System Management Programming

spaces. (Each name can have a maximum length of 8 bytes with no
embedded spaces.) This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

dlus_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

dlus_data.dlus_name
Name of the DLUS. This is a 17-byte string composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot, and is
right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.)

dlus_data.is_default
Specifies whether the DLUS node has been designated as the default by a
DEFINE_DLUR_DEFAULTS verb (AP_YES or AP_NO).

dlus_data.is_backup_default
Specifies whether the DLUS node has been designated as the backup
default by a DEFINE_DLUR_DEFAULTS verb (AP_YES or AP_NO).

dlus_data.pipe_state
State of the pipe to the DLUS. It can have one of the following values:

AP_ACTIVE
AP_PENDING_ACTIVE
AP_INACTIVE
AP_PENDING_INACTIVE

dlus_data.num_active_pus
Number of PUs currently using the pipe to the DLUS.

dlus_data.pipe_stats.reqactpu_sent
Number of REQACTPUs sent to DLUS over the pipe.

dlus_data.pipe_stats.reqactpu_rsp_received
Number of RSP(REQACTPU)s received from DLUS over the pipe.

dlus_data.pipe_stats.actpu_received
Number of ACTPUs received from DLUS over the pipe.

QUERY_DLUS

Chapter 6. Query Verbs 253

dlus_data.pipe_stats.actpu_rsp_sent
Number of RSP(ACTPU)s sent to DLUS over the pipe.

dlus_data.pipe_stats.reqdactpu_sent
Number of REQDACTPUs sent to DLUS over the pipe.

dlus_data.pipe_stats.reqdactpu_rsp_received
Number of RSP(REQDACTPU)s received from DLUS over the pipe.

dlus_data.pipe_stats.dactpu_received
Number of DACTPUs received from DLUS over the pipe.

dlus_data.pipe_stats.dactpu_rsp_sent
Number of RSP(DACTPU)s sent to DLUS over the pipe.

dlus_data.pipe_stats.actlu_received
Number of ACTLUs received from DLUS over the pipe.

dlus_data.pipe_stats.actlu_rsp_sent
Number of RSP(ACTLU)s sent to DLUS over the pipe.

dlus_data.pipe_stats.dactlu_received
Number of DACTLUs received from DLUS over the pipe.

dlus_data.pipe_stats.dactlu_rsp_sent
Number of RSP(DACTLU)s sent to DLUS over the pipe.

dlus_data.pipe_stats.sscp_pu_mus_rcvd
Number of SSCP-PU MUs received from DLUS over the pipe.

dlus_data.pipe_stats.sscp_pu_mus_sent
Number of SSCP-PU MUs sent to DLUS over the pipe.

dlus_data.pipe_stats.sscp_lu_mus_rcvd
Number of SSCP-LU MUs received from DLUS over the pipe.

dlus_data.pipe_stats.sscp_lu_mus_sent
Number of SSCP-LU MUs sent to DLUS over the pipe.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DLUS_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_DLUS

254 System Management Programming

QUERY_DOWNSTREAM_LU

This verb applies only to Communications Server.

QUERY_DOWNSTREAM_LU returns information about downstream LUs served
by DLUR or PU concentration or both. This information is structured as
determined data (data gathered dynamically during execution) and defined data.
(Defined data is supplied by the application on the DEFINE_DOWNSTREAM_LU
verb. Note that for DLUR-supported LUs, implicitly defined data is put in place
when the downstream LU is activated).

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific local LU or to obtain
the list information in several chunks, the dslu_name field should be set.
Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored.

The returned LUs may be filtered by the type of service the local node provides or
the LU's associated downstream PU or both. If filtering by type of service is
desired, the dspu_services field should be set to AP_PU_CONCENTRATION or
AP_DLUR (otherwise, this field should be set to AP_NONE). If filtering by PU is
desired, the dspu_name field should be set (otherwise, this field should be set to
all zeros).

VCB Structure
typedef struct query_downstream_lu
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* Verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char dslu_name[8]; /* Downstream LU name */
unsigned char dspu_name[8]; /* Downstream PU name filter */
unsigned char dspu_services; /* filter on DSPU services type */

} QUERY_DOWNSTREAM_LU;

typedef struct downstream_lu_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char dslu_name[8]; /* LU name */
unsigned char dspu_name[8]; /* PU name */
unsigned char description[RD_LEN];

/* resource description */
unsigned char dspu_services; /* type of service provided to */

/* downstream node */
unsigned char nau_address; /* NAU address */
unsigned char lu_sscp_sess_active;

/* Is LU-SSCP session active */
unsigned char plu_sess_active; /* Is PLU-SLU session active */

} DOWNSTREAM_LU_SUMMARY;

QUERY_DOWNSTREAM_LU

Chapter 6. Query Verbs 255

typedef struct downstream_lu_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char dslu_name[8]; /* LU name */
unsigned char reserv1[2]; /* reserved */
DOWNSTREAM_LU_DET_DATA det_data; /* Determined data */
DOWNSTREAM_LU_DEF_DATA def_data; /* Defined data */

} DOWNSTREAM_LU_DETAIL;

typedef struct downstream_lu_det_data
{

unsigned char lu_sscp_sess_active;
/* Is LU-SSCP session active */

unsigned char plu_sess_active; /* Is PLU-SLU session active */
unsigned char dspu_services; /* type of services provided to */

/* downstream node */
unsigned char reserv1; /* reserved */
SESSION_STATS lu_sscp_stats; /* LU-SSCP session statistics */
SESSION_STATS ds_plu_stats; /* downstream PLU-SLU session */

/* statistics */
SESSION_STATS us_plu_stats; /* upstream PLU_SLU sess stats */
unsigned char host_lu_name[8]; /* Determined host LU name */
unsigned char host_lu_name[8]; /* Determined host PU name */
unsigned char reserva[4]; /* reserved */

} DOWNSTREAM_LU_DET_DATA;

typedef struct downstream_lu_def_data
{

unsigned char description[RD_LEN];
/* resource description */

unsigned char nau_address; /* NAU address */
unsigned char dspu_name[8]; /* Downstream PU name */
unsigned char host_lu_name; /* host LU or pool name */
unsigned char allow_timeout; /* Allow timeout of host LU? */
unsigned char delayed_logon; /* Allow delayed logon to host LU */
unsigned char reserv2[6]; /* reserved */

} DOWNSTREAM_LU_DEF_DATA;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing win size */
unsigned short cur_send_pac_win; /* current send pacing win size */
unsigned short max_rcv_pac_win; /* max receive pacing win size */
unsigned short cur_rcv_pac_win; /* current receive pacing */

/* window size */
unsigned long send_data_frames; /* number of data frames sent */
unsigned long send_fmd_data_frames;

/* num of FMD data frames sent */
unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num data frames received */
unsigned long rcv_fmd_data_frames;

/* num of FMD data frames recvd */
unsigned long rcv_data_bytes; /* number of data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */
unsigned char pacing_type; /* type of pacing in use */

} SESSION_STATS;

Supplied Parameters
The application supplies the following parameters:

QUERY_DOWNSTREAM_LU

256 System Management Programming

opcode
AP_QUERY_DOWNSTREAM_LU

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The dslu_name specified (see the following parameter, dslu_name)
represents an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

dslu_name
Name of the local LU that is being queried. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

dspu_name
PU name filter. This should be set to all zeros or an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. If this field is set, then only LUs associated with the
specified PU are returned. This field is ignored if it is set to all zeros.

dspu_services
DSPU services filter. If set to AP_PU_CONCENTRATION, only

QUERY_DOWNSTREAM_LU

Chapter 6. Query Verbs 257

downstream LUs served by PU concentration are returned. If set to
AP_DLUR, only DLUR-supported LUs are returned. Otherwise, if set to
AP_NONE, information on all downstream LUs is returned.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

downstream_lu_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

downstream_lu_summary.dslu_name
Name of the local LU that is being queried. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

downstream_lu_summary.dspu_name
Name of local PU that this LU is using. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

downstream_lu_summary.description
Resource description (as specified on DEFINE_DOWNSTREAM_LU or
DEFINE_DOWNSTREAM_LU_RANGE). This is a 16-byte string in a
locally displayable character set. All 16 bytes are significant.

downstream_lu_summary.dspu_services
Specifies the services which the local node provides to the downstream LU
across the link. This is set to one of the following:

AP_PU_CONCENTRATION
Local node that provides PU concentration for the downstream LU.

AP_DLUR
Local node that provides DLUR support for the downstream LU.

downstream_lu_summary.nau_address
Network addressable unit address of the LU, which is in the range 1–255.

downstream_lu_summary.lu_sscp_sess_active
Indicates whether the LU-SSCP session is active (AP_YES or AP_NO).

downstream_lu_summary.plu_sess_active
Indicates whether the PLU-SLU session is active (AP_YES or AP_NO).

QUERY_DOWNSTREAM_LU

258 System Management Programming

downstream_lu_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

downstream_lu_detail.dslu_name
Name of the local LU that is being queried. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

downstream_lu_detail.det_data.lu_sscp_sess_active
Indicates whether the LU-SSCP session to the downstream LU is active
(AP_YES or AP_NO).

downstream_lu_detail.det_data.plu_sess_active
Indicates whether the PLU-SLU session to the downstream LU is active
(AP_YES or AP_NO).

downstream_lu_detail.det_data.dspu_services
Specifies the services that the local node provides to the downstream LU
across the link. This is set to one of the following values:

AP_PU_CONCENTRATION
Local node that provides PU concentration for the downstream LU.

AP_DLUR
Local node that provides DLUR support for the downstream LU.

downstream_lu_detail.det_data.lu_sscp_stats.rcv_ru_size
Maximum receive RU size. If
downstream_lu_detail.det_data.dspu_services is set to
AP_PU_CONCENTRATION, then this field is reserved.

downstream_lu_detail.det_data.lu_sscp_stats.send_ru_size
Maximum send RU size. If downstream_lu_detail.det_data.dspu_services
is set to AP_PU_CONCENTRATION, then this field is reserved.

downstream_lu_detail.det_data.lu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

downstream_lu_detail.det_data.lu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

downstream_lu_detail.det_data.lu_sscp_stats.max_send_pac_win
This field will always be set to zero.

downstream_lu_detail.det_data.lu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

downstream_lu_detail.det_data.lu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

downstream_lu_detail.det_data.lu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

downstream_lu_detail.det_data.lu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

downstream_lu_detail.det_data.lu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

downstream_lu_detail.det_data.lu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

downstream_lu_detail.det_data.lu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

QUERY_DOWNSTREAM_LU

Chapter 6. Query Verbs 259

downstream_lu_detail.det_data.lu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

downstream_lu_detail.det_data.lu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

downstream_lu_detail.det_data.lu_sscp_stats.sidh
Session ID high byte.

downstream_lu_detail.det_data.lu_sscp_stats.sidl
Session ID low byte.

downstream_lu_detail.det_data.lu_sscp_stats.odai
Origin Destination Address Indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station, and sets it to one if the BIND sender is the node
containing the secondary link station.

downstream_lu_detail.det_data.lu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant.

downstream_lu_detail.det_data.lu_sscp_stats.pacing_type
Receive pacing in use on the LU-SSCP session. This takes the value
AP_NONE.

downstream_lu_detail.det_data.ds_plu_stats.rcv_ru_size
Maximum receive RU size.

downstream_lu_detail.det_data.ds_plu_stats.send_ru_size
Maximum send RU size.

downstream_lu_detail.det_data.ds_plu_stats.max_send_btu_size
Maximum BTU size that can be sent.

downstream_lu_detail.det_data.ds_plu_stats.max_rcv_btu_size
Maximum BTU size that can be received.

downstream_lu_detail.det_data.ds_plu_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

downstream_lu_detail.det_data.ds_plu_stats.cur_send_pac_win
Current size of the send pacing window on this session.

downstream_lu_detail.det_data.ds_plu_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

downstream_lu_detail.det_data.ds_plu_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

downstream_lu_detail.det_data.ds_plu_stats.send_data_frames
Number of normal flow data frames sent.

downstream_lu_detail.det_data.ds_plu_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

downstream_lu_detail.det_data.ds_plu_stats.send_data_bytes
Number of normal flow data bytes sent.

downstream_lu_detail.det_data.ds_plu_stats.rcv_data_frames
Number of normal flow data frames received.

downstream_lu_detail.det_data.ds_plu_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

QUERY_DOWNSTREAM_LU

260 System Management Programming

downstream_lu_detail.det_data.ds_plu_stats.rcv_data_bytes
Number of normal flow data bytes received.

downstream_lu_detail.det_data.ds_plu_stats.sidh
Session ID high byte.

downstream_lu_detail.det_data.ds_plu_stats.sidl
Session ID low byte.

downstream_lu_detail.det_data.ds_plu_stats.odai
Origin Destination Address Indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the BIND sender is the node
containing the secondary link station.

downstream_lu_detail.det_data.ds_plu_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant.

downstream_lu_detail.det_data.plu_stats.pacing_type
Receive pacing type in use on the downstream PLU-SLU session. This can
take the values AP_NONE or AP_PACING_FIXED.

downstream_lu_detail.det_data.us_plu_stats.rcv_ru_size
Maximum receive RU size.

downstream_lu_detail.det_data.us_plu_stats.send_ru_size
Maximum send RU size.

downstream_lu_detail.det_data.us_plu_stats.max_send_btu_size
Maximum BTU size that can be sent.

downstream_lu_detail.det_data.us_plu_stats.max_rcv_btu_size
Maximum BTU size that can be received.

downstream_lu_detail.det_data.us_plu_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

downstream_lu_detail.det_data.us_plu_stats.cur_send_pac_win
Current size of the send pacing window on this session.

downstream_lu_detail.det_data.us_plu_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

downstream_lu_detail.det_data.us_plu_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

downstream_lu_detail.det_data.us_plu_stats.send_data_frames
Number of normal flow data frames sent.

downstream_lu_detail.det_data.us_plu_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

downstream_lu_detail.det_data.us_plu_stats.send_data_bytes
Number of normal flow data bytes sent.

downstream_lu_detail.det_data.us_plu_stats.rcv_data_frames
Number of normal flow data frames received.

downstream_lu_detail.det_data.us_plu_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

downstream_lu_detail.det_data.us_plu_stats.rcv_data_bytes
Number of normal flow data bytes received.

QUERY_DOWNSTREAM_LU

Chapter 6. Query Verbs 261

downstream_lu_detail.det_data.us_plu_stats.sidh
Session ID high byte. If downstream_lu_detail.det_data_.dspu_services is
set to AP_PU_CONCENTRATION, then this field is reserved.

downstream_lu_detail.det_data.us_plu_stats.sidl
Session ID low byte. If downstream_lu_detail.det_data_.dspu_services is
set to AP_PU_CONCENTRATION, then this field is reserved.

downstream_lu_detail.det_data.us_plu_stats.odai
Origin Destination Address Indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the BIND sender is the node
containing the secondary link station. If
downstream_lu_detail.det_data_.dspu_services is set to
AP_PU_CONCENTRATION, then this field is reserved.

downstream_lu_detail.det_data.us_plu_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. If
downstream_lu_detail.det_data_dspu_services is set to
AP_PU_CONCENTRATION, then this field is reserved.

downstream_lu_detail.det_data.us_plu_stats.pacing_type
Receive pacing type in use on the upstream PLU-SLU session. This can
take the values AP_NONE or AP_PACING_FIXED.

downstream_lu_detail.det_data.host_lu_name
Name of the host LU that the downstream LU is mapped to, or was
mapped to when the PLU-SLU session was last active. This may differ
from def_data.host_lu_name, as that may be the name of the host LU pool.

downstream_lu_detail.det_data.host_pu_name
Name of the host PU that the downstream PU is mapped to, or was
mapped to when the PLU-SLU session was last active.

downstream_lu_detail.def_data.description
Resource description (as specified on DEFINE_DOWNSTREAM_LU or
DEFINE_DOWNSTREAM_LU_RANGE).

downstream_lu_detail.def_data.nau_address
Network addressable unit address of the LU, which is in the range 1–255.

downstream_lu_detail.def_data.dspu_name
Name of PU associated with the LU. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

downstream_lu_detail.def_data.host_lu_name
Name of the host LU or host LU pool that the downstream LU is mapped
to. In the case of an LU, this is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces. In
the case of an LU pool, the Program does not specify a character set for
this field. This field is reserved for DLUR-served downstream LUs.

downstream_lu_detail.def_data.allow_timeout
Specifies whether the Program is allowed to time out host LUs used by
this downstream LU if the session is left inactive for the timeout period
specified on the host LU definition (AP_YES or AP_NO).

downstream_lu_detail.def_data.delayed_logon
Specifies whether the Program should delay connecting the downstream

QUERY_DOWNSTREAM_LU

262 System Management Programming

LU to the host LU until the first data is received from the downstream LU.
Instead, a simulated logon screen will be sent to the downstream LU
(AP_YES or AP_NO).

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_DOWNSTREAM_LU

Chapter 6. Query Verbs 263

QUERY_DOWNSTREAM_PU

This verb applies only to Communications Server.

QUERY_DOWNSTREAM_PU returns information about downstream PUs (defined
using a DEFINE_LS verb).

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific local PU or to obtain
the list information in several chunks, the dspu_name field should be set.
Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field is
ignored.

The list of PUs can be filtered by the type of service the local node provides for the
downstream PU. To do this, the dspu_services field should be set to
AP_PU_CONCENTRATION or AP_DLUR.

VCB Structure
typedef struct query_downstream_pu
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* Verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char dspu_name[8]; /* Downstream PU name */
unsigned char dspu_services; /* filter on DSPU services type */

} QUERY_DOWNSTREAM_PU;

typedef struct downstream_pu_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char dspu_name[8]; /* PU name */
unsigned char description[RD_LEN];

/* resource description */
unsigned char ls_name[8]; /* Link name */
unsigned char pu_sscp_sess_active;

/* Is PU-SSCP session active */
unsigned char dspu_services; /* DSPU service type */
SESSION _STATS pu_sscp_stats; /* SSCP-PU session stats */
unsigned char reserva[20]; /* reserved */

} DOWNSTREAM_PU_DATA

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing win size */
unsigned short cur_send_pac_win; /* current send pacing win size */
unsigned short max_rcv_pac_win; /* max receive pacing win size */
unsigned short cur_rcv_pac_win; /* current receive pacing */

/* window size */

QUERY_DOWNSTREAM_PU

264 System Management Programming

unsigned long send_data_frames; /* number of data frames sent */
unsigned long send_fmd_data_frames;

/* num of FMD data frames sent */
unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num data frames received */
unsigned long rcv_fmd_data_frames;

/* num of FMD data frames recvd */
unsigned long rcv_data_bytes; /* number of data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */
unsigned char pacing_type; /* type of pacing in use */

} SESSION_STATS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_DOWNSTREAM_PU

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The dslu_name specified (see the following parameter, dslu_name)
represents an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

QUERY_DOWNSTREAM_PU

Chapter 6. Query Verbs 265

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

dspu_name
Name of the downstream PU that is being queried. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

dspu_services
DSPU services filter. If set to AP_PU_CONCENTRATION, only
downstream LUs served by PU concentration are returned. If set to
AP_DLUR, only DLUR-supported LUs are returned. Otherwise, if set to
AP_NONE, information on all downstream LUs is returned.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

downstream_pu_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

downstream_pu_data.dspu_name
Name of the downstream PU. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with EBCDIC
spaces.

downstream_pu_data.description
Resource description (as specified on DEFINE_LS).

downstream_pu_data.ls_name
Name of link station. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

downstream_pu_data.pu_sscp_sess_active
Indicates whether the PU_SSCP session to the downstream PU is active.
Set to either AP_YES or AP_NO.

downstream_pu_data.dspu_services
Specifies the services that the local node provides to the downstream PU
across the link. This is set to one of the following values:

AP_PU_CONCENTRATION
Local node that provides PU concentration for the downstream LU.

QUERY_DOWNSTREAM_PU

266 System Management Programming

AP_DLUR
Local node that provides DLUR support for the downstream LU.

downstream_pu_data.pu_sscp_stats.rcv_ru_size
Maximum receive RU size. If
downstream_lu_detail.det_data.dspu_services is set to
AP_PU_CONCENTRATION, then this field is reserved.

downstream_pu_data.pu_sscp_stats.send_ru_size
Maximum send RU size. If downstream_lu_detail.det_data.dspu_services
is set to AP_PU_CONCENTRATION, then this field is reserved.

downstream_pu_data.pu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

downstream_pu_data.pu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

downstream_pu_data.pu_sscp_stats.max_send_pac_win
This field will always be set to zero.

downstream_pu_data.pu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

downstream_pu_data.pu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

downstream_pu_data.pu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

downstream_pu_data.pu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

downstream_pu_data.pu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

downstream_pu_data.pu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

downstream_pu_data.pu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

downstream_pu_data.pu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

downstream_pu_data.pu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

downstream_pu_data.pu_sscp_stats.sidh
Session ID high byte.

downstream_pu_data.pu_sscp_stats.sidl
Session ID low byte.

downstream_pu_data.pu_sscp_stats.odai
Origin Destination Address Indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the BIND sender is the node
containing the secondary link station.

downstream_pu_data.pu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant.

QUERY_DOWNSTREAM_PU

Chapter 6. Query Verbs 267

downstream_pu_data.pu_sscp_stats.pacing_type
Receive pacing type in use on the upstream PU-SSCP session. This will
take the value AP_NONE.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PU_NAME

AP_INVALID_PU_TYPE
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_DOWNSTREAM_PU

268 System Management Programming

QUERY_DSPU_TEMPLATE

This verb applies only to Communications Server.

QUERY_DSPU_TEMPLATE returns information about defined downstream PU
templates used for PU concentration over implicit links. This information is
returned as a list. To obtain information about a specific downstream PU template
or to obtain the list information in several chunks, the template_name field should
be set. Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field is
ignored. See “Querying the Node” on page 10 for background on how the list
formats are used.

VCB Structure
typedef struct query_dspu_template
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* Verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char template_name[8]; /* name of DSPU template */

} QUERY_DSPU_TEMPLATE;

typedef struct dspu_template_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char template_name[8]; /* name of DSPU template */
unsigned char description; /* resource description */
unsigned char reserv1[12]; /* reserved */
unsigned short max_instance; /* max active template instances */
unsigned short active instance; /* current active instances */
unsigned short num_of_dslu_templates;

/* number of DSLU templates */
} DSPU_TEMPLATE_DATA;

Each dspu_template_data is followed by num_of_dslu_templates downstream LU
templates. Each downstream LU template has the following format.
typedef struct dslu_template_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char reserv1[2]; /* reserved */
DSLU_TEMPLATE dslu_template; /* downstream LU template */

} DSLU_TEMPLATE_DATA;

typedef struct dslu_template
{

unsigned char min_nau; /* min NAU address in range */
unsigned char max_nau; /* max NAU address in range */
unsigned char allow_timeout; /* Allow timeout of host LU? */
unsigned char delayed_logon; /* Allow delayed logon to host LU */
unsigned char reserv1[10]; /* reserved */
unsigned char host_lu[8]; /* host LU or pool name */

} DSLU_TEMPLATE;

QUERY_DSPU_TEMPLATE

Chapter 6. Query Verbs 269

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_DSPU_TEMPLATE

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

The template_name specified (see the following parameter,
template_name) represents an index value that is used to specify the
starting point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

template_name
Name of the DSPU template. This is an 8–byte string in a
locally-displayable character set. This field is ignored if list_options is set
to AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

QUERY_DSPU_TEMPLATE

270 System Management Programming

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

dspu_template_data.overlay_size
The number of bytes in this entry (including any downstream LU
templates, and hence the offset to the next entry returned, if any).

dspu_template_data.template_name
Name of the DSPU template. This is an 8–byte string in a
locally-displayable character set.

dspu_template_data.description
Resource description (as specified on QUERY_DSPU_TEMPLATE).

dspu_template_data.max_instance
This is the maximum number of instances of the template which can be
active concurrently.

dspu_template_data.active_instance
This is the number of instances of the template which are currently active.

dspu_template_data.num_of_dslu_templates
Number of downstream LU templates for this downstream PU template.
Following this field are num_of_dslu_templates_application_id entries,
one for each application registered for the focal point category.

dslu_template_data.overlay_size
The number of bytes in this entry (and hence the offset to the next entry
returned, if any).

dslu_template_data.dslu_template.min_nau
Minimum NAU address in the range.

dslu_template_data.dslu_template.max_nau
Maximum NAU address in the range.

dslu_template_data.dslu_template.allow_timeout
Specifies whether the Program is allowed to time out host LUs used by
this downstream LU if the session is left inactive for the timeout period
specified on the host LU definition (AP_YES or AP_NO).

dslu_template_data.dslu_template.delayed_logon
Specifies whether the Program should delay connecting the downstream
LU to the host LU until the first data is received from the downstream LU.
Instead, a simulated logon screen is sent to the downstream LU (AP_YES
or AP_NO).

dslu_template_data.dslu_template.host_lu
Name of the host LU or host LU pool that all the downstream LUs within
the range will be mapped onto. This is an 8-byte alphanumeric type
A-EBCDIC string (starting with a letter), padded to the right with EBCDIC
Spaces.

QUERY_DSPU_TEMPLATE

Chapter 6. Query Verbs 271

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_TEMPLATE_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because one or more of the relevant START_NODE
parameters were not set, the Program returns the following parameter:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_DSPU_TEMPLATE

272 System Management Programming

QUERY_FOCAL_POINT

QUERY_FOCAL_POINT returns information about focal points that Personal
Communications or Communications Server knows about.

This information is returned as a list. To obtain information about a specific focal
point category or to obtain the list information in several chunks, the ms_category
field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 10 for background on how the list
formats are used.

Note: If no focal point is found, then one FP_DATA structure will be returned with
fp_data.fp_type set to AP_NO_FP. See the following structure.

VCB Structure
typedef struct query_focal_point
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char ms_category[8]; /* name of MS category */

} QUERY_FOCAL_POINT;

typedef struct fp_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char ms_appl_name[8]; /* focal point application name */
unsigned char ms_category[8]; /* focal point category */
unsigned char description[RD_LEN];

/* resource description */
unsigned char fp_fqcp_name[17]; /* focal pt fully qual CP name */
unsigned char bkup_appl_name[8]; /* backup focal pt appl name */
unsigned char bkup_fp_fqcp_name[17];

/* backup FP fully qualified */
/* CP name */

unsigned char implicit_appl_name[8];
/* implicit FP appl name */

unsigned char implicit_fp_fqcp_name[17];
/* implicit FP fully */
/* qualified CP name */

unsigned char fp_type; /* focal point type */
unsigned char fp_status; /* focal point status */
unsigned char fp_routing; /* type of MDS routing to use */
unsigned char reserva[20]; /* reserved */
unsigned short number_of_appls; /* number of applications */

} FP_DATA;

Each fp_data is followed by number_of_appls application names. Each application
name has the following format:

QUERY_FOCAL_POINT

Chapter 6. Query Verbs 273

typedef struct application_id
{

unsigned char appl_name[8]; /* application name */
} APPLICATION_ID;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_FOCAL_POINT

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information: The
ms_category specified (see the following parameter, ms_category)
represents an index value that is used to specify the starting point of the
actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

ms_category
Management services category. This can either be one of the 4-byte
architecturally defined values (right-padded with EBCDIC spaces) for
management services categories as described in SNA management services,
or an 8-byte type 1134 EBCDIC installation defined name. This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

QUERY_FOCAL_POINT

274 System Management Programming

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
The number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

fp_data.overlay_size
The number of bytes in this entry (including any application names, and
hence the offset to the next entry returned (if any)).

fp_data.ms_appl_name
Name of the currently active focal point application. This can either be one
of the 4-byte architecturally defined values (right-padded with EBCDIC
spaces) for management services applications as described in SNA
management services, or an 8-byte type 1134 EBCDIC installation defined
name.

fp_data.ms_category
Management services category. This can either be one of the 4-byte
architecturally defined values (right-padded with EBCDIC spaces) for
management services categories as described in SNA management services,
or an 8-byte type 1134 EBCDIC installation defined name.

fp_data.description
Resource description (as specified on DEFINE_FOCAL_POINT). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

fp_data.fp_fqcp_name
Currently active focal point's fully qualified control point name. This name
is 17 bytes long and is right-padded with EBCDIC spaces. It is composed
of two type-A EBCDIC character strings concatenated by an EBCDIC dot.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

fp_data.bkup_appl_name
Name of backup focal point application. This can either be one of the
4-byte architecturally defined values (right-padded with EBCDIC spaces)
for management services applications as described in SNA management
services, or an 8-byte type 1134 EBCDIC installation defined name.

fp_data.bkup_fp_fqcp_name
Backup focal point's fully qualified control point name. This name is 17
bytes long and is right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

fp_data.implicit_appl_name
Name of implicit focal point application (specified using the
DEFINE_FOCAL_POINT verb). This can either be one of the four byte
architecturally defined values (right-padded with EBCDIC spaces) for
management services applications as described in SNA management
services, or an 8-byte type 1134 EBCDIC installation defined name. This
field will be the same as the ms_appl_name if the implicit focal point is
the currently active focal point.

QUERY_FOCAL_POINT

Chapter 6. Query Verbs 275

fp_data.implicit_fp_fqcp_name
Implicit focal point's fully qualified control point name (as specified using
the DEFINE_FOCAL_POINT verb). This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This field will be
the same as the fp_fqcp_name if the implicit focal point is the currently
active focal point.

fp_data.fp_type
Type of focal point. Refer to SNA Management Services for further detail.
This will be one of the following values:

AP_EXPLICIT_PRIMARY_FP
AP_BACKUP_FP
AP_DEFAULT_PRIMARY_FP
AP_IMPLICIT_PRIMARY_FP
AP_DOMAIN_FP
AP_HOST_FP
AP_NO_FP

fp_data.fp_status
Status of the focal point. This can be one of the following values:

AP_NOT_ACTIVE
The focal point is currently not active.

AP_ACTIVE
The focal point is currently active.

AP_PENDING
The focal point is pending active. This occurs after an implicit
request has been sent to the focal point and before the response
has been received.

AP_NEVER_ACTIVE
No focal point information is available for the specified category
although application registrations for the category have been
accepted.

fp_data.fp_routing
Type of routing that applications should specify when using MDS
transport to send data to the focal point.

AP_DEFAULT
Default routing is used to deliver the MDS_MU to the focal point.

AP_DIRECT
The MDS_MU will be routed on a session directly to the focal
point.

fp_data.number_of_appls
Number of applications registered for this focal point category. Following
this field will be number_of_appls application_id entries, one for each
application registered for the focal point category.

application_id.appl_name
Name of application registered for focal point category. This can either be
one of the 4-byte architecturally defined values (right-padded with

QUERY_FOCAL_POINT

276 System Management Programming

EBCDIC spaces) for management services applications as described in SNA
management services, or an 8-byte type 1134 EBCDIC installation defined
name.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_MS_CATEGORY

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_FOCAL_POINT

Chapter 6. Query Verbs 277

QUERY_HPR_STATS

This verb applies only to Communications Server.

QUERY_HPR_STATS returns statistics describing the HPR performance of the
node. QUERY_HPR_STATS is only supported by nodes that support the RTP
Tower.

VCB Structure
typedef struct query_hpr_stats
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned COUNTER

num-orig_rs_sent; /* RS requests sent as origin */
unsigned COUNTER

num_orig_rs_rej; /* RS rejections at orign */
unsigned COUNTER

num_inter_rs_rcvd; /* Intermediate RS requests */
unsigned COUNTER

num_inter_rs_rej; /* Intermediate RS rejections */
unsigned COUNTER

num_dest_rs_rcvd; /* RS reqs as destination */
unsigned COUNTER

num_dest_rs_rej; /* RS rej sent as destination */
unsigned long active_isr_hpr_sessions;

/* ISR sessions active */
unsigned char reserv[28]; /* reserved */

} QUERY_HPR_STATS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_HPR_STATS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

num_orig_rs_sent
The total number HPR Route Setup requests sent that originated in this
node, since the node started.

num_orig_rs_rej
The total number of HPR Route Setup requests that originated in this node
and have been rejected by other nodes since the node started.

QUERY_HPR_STATS

278 System Management Programming

num_inter_rs_rcvd
The total number of HPR Route Setup requests processed by this node
acting as an intermediate node since the node started.

num_inter_rs_rej
The total number of HPR Route Setup requests processed by this node
acting as an intermediate node, that have been rejected by the node since
the node started.

num_dest_rs_rcvd
The total number of HPR Route Setup requests received by this node, that
has this node as the destination, since the node started.

num_dest_rs_rej
The total number of HPR Route Setup requests received by this node, that
has this node as the destination and that have been rejected by the node
since the node started.

active_isr_hpr_sessions
The number of ISR sessions using HPR-APPN Boundary Function that are
currently active in the node.

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node does not support the HPR RTP
Tower function, the Program returns the following parameter:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

QUERY_HPR_STATS

Chapter 6. Query Verbs 279

QUERY_ISR_SESSION

This verb applies only to Communications Server.

QUERY_ISR_SESSION is only used at a Network Node and returns list
information about sessions for which the network node is providing intermediate
session routing.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific session, or to obtain
the list information in several chunks, the fields in the fqpcid structure should be
set. Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), the fields in
this structure is ignored. See “Querying the Node” on page 10 for background on
how the list formats are used.

This list is ordered by fqpcid.pcid first and then by EBCDIC lexicographical
ordering on fqpcid.fqcp_name. The ordering by fqpcid.pcid_name is by name
length first, and then by ASCII lexicographical ordering for names of the same
length (in accordance with IBM's 6611 APPN MIB ordering). If
AP_LIST_FROM_NEXT is selected, the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

The format of the fqpcid structure is an 8-byte Procedure Correlator Identifier
(PCID) and the network qualified CP name of the session originator.

In addition to the detail information for each session, a route selection control
vector (RSVC) is returned if this is specified on the START_NODE parameters. This
RSVC defines the route through the network that the session takes in a hop-by-hop
form.

VCB Structure
Format 2
typedef struct query_isr_session
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char session_type; /* is this query for DLUR or */

/* regular ISR sessions? */
FQPCID fqpcid; /* fully qualified procedure */

/* correlator ID */
} QUERY_ISR_SESSION;

typedef struct isr_session_summary
{

unsigned short overlay_size; /* size of this entry */
FQPCID fqpcid; /* fully qualified procedure */

/* correlator ID */
} ISR_SESSION_SUMMARY;

QUERY_ISR_SESSION

280 System Management Programming

typedef struct isr_session_detail
{

unsigned short overlay_size; /* size of this entry */
FQPCID fqpcid; /* fully qualified procedure */
unsigned short sub_overlay_size; /* offset to appended RSCV */

/* correlator ID */
unsigned char trans_pri; /* Transmission priority: */
unsigned char cos_name[8]; /* Class-of-service name */
unsigned char ltd_res; /* Session spans a limited */
unsigned char reserv1[8]; /* reserved */

/* resource */
SESSION_STATS pri_sess_stats; /* primary hop session stats */
SESSION_STATS sec_sess_stats; /* secondary hop session */

/* statistics */
unsigned char sess_lu_type; /* session LU type */
unsigned char sess_lu_level; /* session LU level */
unsigned char pri_tg_number; /* Primary session TG number */
unsigned char sec_tg_number; /* Secondary session TG number */
unsigned long rtp_tcid; /* RTP TC identifier */
unsigned long time_active; /* time elapsed since */

/* activation */
unsigned char isr_state; /* current state of ISR session */
unsigned char reserv2[11]; /* reserved */
unsigned char mode_name[8]; /* mode name */
unsigned char pri_lu_name[17]; /* primary LU name */
unsigned char sec_lu_name[17]; /* secondary LU name */
unsigned char pri_adj_cp_name[17];

/* primary stage adj CP name */
unsigned char sec_adj_cp_name[17];

/* secondary stage adj CP name */
unsigned char reserv3[3]; /* reserved */
unsigned char rscv_len; /* Length of following RSCV */

} ISR_SESSION_DETAIL;

typedef struct fqpcid
{

unsigned char pcid[8]; /* pro correlator identifier */
unsigned char fqcp_name[17]; /* orig’s network qualified */

/* CP name */
unsigned char reserve3[3]; /* reserved */

} FQPCID;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* Maximum send BTU size */
unsigned short max_rcv_btu_size; /* Maximum rcv BTU size */
unsigned short max_send_pac_win; /* Max send pacing window size */
unsigned short cur_send_pac_win; /* Curr send pacing window size */
unsigned short max_rcv_pac_win; /* Max receive pacing win size */
unsigned short cur_rcv_pac_win; /* Curr rec pacing window size */
unsigned long send_data_frames; /* Number of data frames sent */
unsigned long send_fmd_data_frames;

/* num of FMD data frames sent */
unsigned long send_data_bytes; /* Number of data bytes sent */
unsigned long rcv_data_frames; /* Num data frames received */
unsigned long rcv_fmd_data_frames;

/* num of FMD data frames recvd */
unsigned long rcv_data_bytes; /* Num data bytes received */
unsigned char sidh; /* Session ID high byte */
unsigned char sidl; /* Session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */
unsigned char pacing_type; /* type of pacing in use */

} SESSION_STATS;

QUERY_ISR_SESSION

Chapter 6. Query Verbs 281

VCB Structure
Format 1 (back-level)
typedef struct isr_session_detail
{

unsigned short overlay_size; /* size of this entry */
FQPCID fqpcid; /* fully qualified procedure */
unsigned short sub_overlay_size; /* offset to appended RSCV */

/* correlator ID */
unsigned char trans_pri; /* Transmission priority: */
unsigned char cos_name[8]; /* Class-of-service name */
unsigned char ltd_res; /* Session spans a limited */
unsigned char reserv1[2]; /* reserved */

/* resource */
SESSION_STATS pri_sess_stats; /* primary hop session stats */
SESSION_STATS sec_sess_stats; /* secondary hop session */

/* statistics */
unsigned char sess_lu_type; /* session LU type */
unsigned char sess_lu_level; /* session LU level */
unsigned char pri_tg_number; /* Primary session TG number */
unsigned char sec_tg_number; /* Secondary session TG number */
unsigned long rtp_tcid; /* RTP TC identifier */
unsigned long time_active; /* time elapsed since */

/* activation */
unsigned char isr_state; /* current state of ISR session */
unsigned char reserv2[11]; /* reserved */
unsigned char mode_name[8]; /* mode name */
unsigned char pri_lu_name[17]; /* primary LU name */
unsigned char sec_lu_name[17]; /* secondary LU name */
unsigned char pri_adj_cp_name[17];

/* primary stage adj CP name */
unsigned char sec_adj_cp_name[17];

/* secondary stage adj CP name */
unsigned char reserv3[3]; /* reserved */
unsigned char rscv_len; /* Length of following RSCV */

} ISR_SESSION_DETAIL;

typedef struct fqpcid
{

unsigned char pcid[8]; /* pro correlator identifier */
unsigned char fqcp_name[17]; /* orig’s network qualified */

/* CP name */
unsigned char reserve3[3]; /* reserved */

} FQPCID;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* Maximum send BTU size */
unsigned short max_rcv_btu_size; /* Maximum rcv BTU size */
unsigned short max_send_pac_win; /* Max send pacing window size */
unsigned short cur_send_pac_win; /* Curr send pacing window size */
unsigned short max_rcv_pac_win; /* Max receive pacing win size */
unsigned short cur_rcv_pac_win; /* Curr rec pacing window size */
unsigned long send_data_frames; /* Number of data frames sent */
unsigned long send_fmd_data_frames;

/* num of FMD data frames sent */
unsigned long send_data_bytes; /* Number of data bytes sent */
unsigned long rcv_data_frames; /* Num data frames received */
unsigned long rcv_fmd_data_frames;

/* num of FMD data frames recvd */
unsigned long rcv_data_bytes; /* Num data bytes received */
unsigned char sidh; /* Session ID high byte */
unsigned char sidl; /* Session ID low byte */

QUERY_ISR_SESSION

282 System Management Programming

unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */
unsigned char pacing_type; /* type of pacing in use */

} SESSION_STATS;

VCB Structure
Format 0 (back-level)
typedef struct isr_session_detail
{

unsigned short overlay_size; /* size of this entry */
FQPCID fqpcid; /* fully qualified procedure */
unsigned char trans_pri; /* Transmission priority: */
unsigned char cos_name[8]; /* Class-of-service name */
unsigned char ltd_res; /* Session spans a limited */
unsigned char reserv1[8]; /* reserved */

/* resource */
SESSION_STATS pri_sess_stats; /* primary hop session stats */
SESSION_STATS sec_sess_stats; /* secondary hop session */

/* statistics */
unsigned char reserv3[3]; /* reserved */
unsigned char reserva[20]; /* reserved */
unsigned char rscv_len; /* Length of following RSCV */

} ISR_SESSION_DETAIL;

Note: The ISR session detail overlay may be followed by a Route Selection Control
Vector (RSCV) as defined by SNA formats. This control vector defines the
session route through the network and is carried on the BIND. The inclusion
of this RSCV is decided when the node is started (as an option of the
START_NODE), and can be altered later using DEFINE_ISR_STATS. If these
verbs have been used to specify that RSCVs should not be stored, then the
rscv_len is set to zero.

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_ISR_SESSION

format
Identifies the format of the VCB and also the format of the returned
overlays. Set this field to zero to specify the version of the VCB and
overlays listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information.

AP_SUMMARY
Returns summary information only.

QUERY_ISR_SESSION

Chapter 6. Query Verbs 283

AP_DETAIL
Returns detailed information.

The fqpcid specified (see the following parameter, fqpcid)
represent an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

session_type
Does this verb query DLUR-maintained sessions, or regular ISR sessions?

AP_ISR_SESSION ISR sessions
AP_DLUR_SESSIONS DLUR sessions

fqpcid.pcid
Procedure Correlator ID. This is an 8-byte hexadecimal string. This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

fqpcid.fqcp_name
Fully qualified Control Point name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

isr_session_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

isr_session_summary.fqpcid.pcid
Procedure Correlator ID.

QUERY_ISR_SESSION

284 System Management Programming

isr_session_summary.fqpcid.fqcp_name
Fully qualified Control Point name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

isr_session_detail.overlay_size
The number of bytes in this entry (including any appended RSCV), and
hence the offset to the next entry returned (if any).

isr_session_detail.sub_overlay_size
This field gives the size of this detail overlay. If an RSCV is appended,
then this is the offset to the start of the RSCV. This field can be equal to or
greater than the size of the format of one detail structure (allowing future
expansion).

isr_session_detail.fqpcid.pcid
Procedure Correlator ID.

isr_session_detail.fqpcid.fqcp_name
Fully qualified Control Point name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

session_detail.trans_pri
Transmission priority. This is set to one of the following values:

AP_LOW
AP_MEDIUM
AP_HIGH
AP_NETWORK

session_detail.cos_name
Class-of-service name. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.

session_detail.ltd_res
Specifies whether the session uses a limited resource link (AP_YES or
AP_NO).

isr_session_detail.pri_sess_stats.rcv_ru_size
Maximum receive RU size.

isr_session_detail.pri_sess_stats.send_ru_size
Maximum send RU size.

isr_session_detail.pri_sess_stats.max_send_btu_size
Maximum BTU size that can be sent on primary session hop.

isr_session_detail.pri_sess_stats.max_rcv_btu_size
Maximum BTU size that can be received on the primary session hop.

isr_session_detail.pri_sess_stats.max_send_pac_win
Maximum size of the send pacing window on the primary session hop.

isr_session_detail.pri_sess_stats.cur_send_pac_win
Current size of the send pacing window on the primary session hop.

isr_session_detail.pri_sess_stats.max_rcv_pac_win
Maximum size of the receive pacing window on the primary session hop.

QUERY_ISR_SESSION

Chapter 6. Query Verbs 285

isr_session_detail.pri_sess_stats.cur_rcv_pac_win
Current size of the receive pacing window on the primary session hop.

isr_session_detail.pri_sess_stats.send_data_frames
Number of normal flow data frames sent on the primary session hop.

isr_session_detail.pri_sess_stats.send_data_frames
Number of normal flow data frames sent on the primary session hop. Zero
will be returned in this field if collection of statistics has been disabled
using DEFINE_ISR_STATS.

isr_session_detail.pri_sess_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent on the primary session hop.
Zero will be returned in this field if collection of statistics has been
disabled using DEFINE_ISR_STATS.

isr_session_detail.pri_sess_stats.send_data_bytes
Number of normal flow data bytes sent on the primary session hop. Zero
will be returned in this field if collection of statistics has been disabled
using DEFINE_ISR_STATS.

isr_session_detail.pri_sess_stats.rcv_data_frames
Number of normal flow data frames received on the primary session hop.
Zero will be returned in this field if collection of statistics has been
disabled using DEFINE_ISR_STATS.

isr_session_detail.pri_sess_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received on the primary session
hop. Zero will be returned in this field if collection of statistics has been
disabled using DEFINE_ISR_STATS.

isr_session_detail.pri_sess_stats.rcv_data_bytes
Number of normal flow data bytes received on the primary session hop.
Zero will be returned in this field if collection of statistics has been
disabled using DEFINE_ISR_STATS.

isr_session_detail.pri_sess_stats.sidh
Session ID high byte.

isr_session_detail.pri_sess_stats.sidl
Session ID low byte.

isr_session_detail.pri_sess_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station. It sets it to one if the BIND sender is the node
containing the secondary link station.

isr_session_detail.pri_sess_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. This field can
be used to correlate the session statistics with the link over which session
data flows.

isr_session_detail.sec_sess_stats.rcv_ru_size
Maximum receive RU size.

isr_session_detail.pri_sess_stats.pacing_type
Receive pacing type in use on primary session. This may take the values
AP_NONE, AP_PACING_FIXED or AP_PACING_ADAPTIVE.

isr_session_detail.sec_sess_stats.send_ru_size
Maximum send RU size.

QUERY_ISR_SESSION

286 System Management Programming

isr_session_detail.sec_sess_stats.max_send_btu_size
Maximum BTU size that can be sent on secondary session hop.

isr_session_detail.sec_sess_stats.max_rcv_btu_size
Maximum BTU size that can be received on the secondary session hop.

isr_session_detail.sec_sess_stats.max_send_pac_win
Maximum size of the send pacing window on the secondary session hop.

isr_session_detail.sec_sess_stats.cur_send_pac_win
Current size of the send pacing window on the secondary session hop.

isr_session_detail.sec_sess_stats.max_rcv_pac_win
Maximum size of the receive pacing window on the secondary session
hop.

isr_session_detail.sec_sess_stats.cur_rcv_pac_win
Current size of the receive pacing window on the secondary session hop.

isr_session_detail.sec_sess_stats.send_data_frames
Number of normal flow data frames sent on the secondary session hop.
Zero will be returned in this field if collection of statistics has been
disabled using DEFINE_ISR_STATS.

isr_session_detail.sec_sess_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent on the secondary session
hop. Zero will be returned in this field if collection of statistics has been
disabled using DEFINE_ISR_STATS.

isr_session_detail.sec_sess_stats.send_data_bytes
Number of normal flow data bytes sent on the secondary session hop. Zero
will be returned in this field if collection of statistics has been disabled
using DEFINE_ISR_STATS.

isr_session_detail.sec_sess_stats.rcv_data_frames
Number of normal flow data frames received on the secondary session
hop. Zero will be returned in this field if collection of statistics has been
disabled using DEFINE_ISR_STATS.

isr_session_detail.sec_sess_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received on the secondary
session hop. Zero will be returned in this field if collection of statistics has
been disabled using DEFINE_ISR_STATS.

isr_session_detail.sec_sess_stats.rcv_data_bytes
Number of normal flow data bytes received on the secondary session hop.
Zero will be returned in this field if collection of statistics has been
disabled using DEFINE_ISR_STATS.

isr_session_detail.sec_sess_stats.sidh
Session ID high byte.

isr_session_detail.sec_sess_stats.sidl
Session ID low byte (from LFSID).

isr_session_detail.sec_sess_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station. It sets it to one if the BIND sender is the node
containing the secondary link station.

isr_session_detail.sec_sess_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a

QUERY_ISR_SESSION

Chapter 6. Query Verbs 287

locally displayable character set. All 8 bytes are significant. This field can
be used to correlate the intermediate session statistics with a particular link
station.

isr_session_detail.sec_sess_stats.pacing_type
Receive pacing type in use on primary session. This can take the values
AP_NONE, AP_PACING_FIXED, or AP_PACING_ADAPTIVE.

isr_session_detail.sess_lu_type
The LU type of the session specified on the BIND. This field takes one of
the following values:

AP_LU_TYPE_0
AP_LU_TYPE_1
AP_LU_TYPE_2
AP_LU_TYPE_3
AP_LU_TYPE_4
AP_LU_TYPE_6
AP_LU_TYPE_7
AP_LU_TYPE_UNKNOWN
(LU type 5 is intentionally omitted.)

AP_LU_TYPE_UNKNOWN will always be returned unless collection of
names has been enabled using DEFINE_ISR_STATS.

isr_session_detail.sess_lu_level
The LU level of the session. This field takes one of the following values:

AP_LU_LEVEL_0
AP_LU_LEVEL_1
AP_LU_LEVEL_2
AP_LU_LEVEL_UNKNOWN

For LU types other than 6, this field is set to AP_LU_LEVEL_0.
AP_LU_LEVEL_UNKNOWN will always be returned unless collection of
names has been enabled using DEFINE_ISR_STATS.

isr_session_detail.pri_tg_number
The TG number associated with the link traversed by the primary session
hop. If the primary session stage traverses an RTP connection, zero is
returned. Zero will always be returned unless collection of names has been
enabled using DEFINE_ISR_STATS.

isr_session_detail.sec_tg_number
The TG number associated with the link traversed by the primary session
hop. If the primary session stage traverses an RTP connection, zero is
returned. Zero will always be returned unless collection of names has been
enabled using DEINE_ISR_STATS.

isr_session_detail.rtp_tcid
The local TC ID for the RTP connection, returned in cases where this ISR
session forms part of an ANR/ISR boundary. In other cases, this field is set
to zero. Zero will always be returned unless collection of names has been
enabled using DEINE_ISR_STATS.

isr_session_detail.time_active
The elapsed time since the activation of the session, measured in
hundredths of a second. Zero will always be returned unless collection of
names has been enabled using DEINE_ISR_STATS.

QUERY_ISR_SESSION

288 System Management Programming

isr_session_detail.isr_state
The current state of the session. This field is set to one of the following
values:

AP_ISR_INACTIVE
AP_ISR_PENDING_ACTIVE
AP_ISR_ACTIVE
AP_ISR_PENDING_INACTIVE

isr_session_detail.mode_name
The mode name for the session. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with EBCDIC
spaces. All binary zeros will always be returned unless collection of names
has been enabled using DEFINE_ISR_STATS.

isr_session_detail.pri_lu_name
The primary LU name of the session. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type A EBCDIC
character strings concatenated by an EBCDIC dot. Each name can have a
maximum of 8 bytes with no embedded spaces. If this name is not
available, all binary zeros are returned in this field. All binary zeros will
always be returned unless a collection of names has been enabled using
DEFINE_ISR_STATS.

isr_session_detail.sec_lu_name
The secondary LU name of the session. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type A EBCDIC
character strings concatenated by an EBCDIC dot. Each name can have a
maximum of 8 bytes with no embedded spaces. If this name is not
available, all binary zeros are returned in this field. All binary zeros will
always be returned unless a collection of names has been enabled using
DEFINE_ISR_STATS.

isr_session_detail.pri_adj_cp_name
The primary stage adjacent CP name of this session. If the primary session
stage traverses an RTP connection, the CP name of the remote RTP
endpoint is returned. This name is 17 bytes long and is right-padded with
EBCDIC spaces. It is composed of two type A EBCDIC character strings
concatenated by an EBCDIC dot. Each name can have a maximum of 8
bytes with no embedded spaces. If this name is not available, all binary
zeros are returned in this field. All binary zeros will always be returned
unless a collection of names has been enabled using DEFINE_ISR_STATS.

isr_session_detail.sec_adj_cp_name
The secondary stage adjacent CP name of this session. If the secondary
session stage traverses an RTP connection, the CP name of the remote RTP
endpoint is returned. This name is 17 bytes long and is right-padded with
EBCDIC spaces. It is composed of two type A EBCDIC character strings
concatenated by an EBCDIC dot. Each name can have a maximum of 8
bytes with no embedded spaces. If this name is not available, all binary
zeros are returned in this field. All binary zeros will always be returned
unless a collection of names has been enabled using DEFINE_ISR_STATS.

isr_session_detail.rscv_len
Length of the RSCV which is appended to the session_detail structure. (If
none is appended, then the length is zero.) The RSCV will be padded to
end on a 4–byte boundary.

QUERY_ISR_SESSION

Chapter 6. Query Verbs 289

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_FQPCID

AP_INVALID_LIST_OPTION
AP_INVALID_SESSION_TYPE

If the verb does not execute because one or more of the relevant START_NODE
parameters were not set, the Program returns the following parameter:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

If the verb does not execute because the node has not been built with network
node support, the Program returns the following parameter:

primary_rc
AP_INVALID_VERB

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_ISR_SESSION

290 System Management Programming

QUERY_LOCAL_LU

QUERY_LOCAL_LU returns information about local LUs. QUERY_LOCAL_LU can
be issued to retrieve information about the Personal Communications or
Communications Server control point LU.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific local LU, or to obtain
the list information in several chunks, the lu_name or lu_alias field should be set.
If the lu_name field is nonzero it will be used to determine the index. If the
lu_name field is set to all zeros, the lu_alias will be used to determine the index. If
both the lu_name and the lu_alias fields are set to all zeros then the LU associated
with the control point (the default LU) will be used. If the list_options field is set
to AP_FIRST_IN_LIST then both of these fields will be ignored. (In this case, the
returned list will be ordered by LU alias if the AP_LIST_BY_ALIAS list_options is
set, otherwise it will be ordered by LU name). See “Querying the Node” on page
10 for background on how the list formats are used.

This list is ordered on either lu_alias or lu_name according to the options
specified. The field is ordered by EBCDIC lexicographical ordering.

The list of local LUs returned can be filtered by the name of the PU that they are
associated with. In this case, the pu_name field should be set (otherwise this field
should be set to all zeros).

VCB Structure
Format 1
typedef struct query_local_lu
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_alias[8]; /* LU alias */
unsigned char pu_name[8]; /* PU name filter */

} QUERY_LOCAL_LU;

typedef struct local_lu_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_alias[8]; /* LU alias */
unsigned char description; /* resource description */

} LOCAL_LU_SUMMARY;

typedef struct local_lu_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char lu_name[8]; /* LU name */
LOCAL_LU_DEF_DATA def_data; /* defined data */
LOCAL_LU_DET_DATA det_data; /* determined data */

} LOCAL_LU_DETAIL;

QUERY_LOCAL_LU

Chapter 6. Query Verbs 291

typedef struct local_lu_def_data
{

unsigned char description[RD_LEN];
/* resource description */

unsigned char lu_alias[8]; /* local LU alias */
unsigned char nau_address; /* NAU address */
unsigned char syncpt_support; /* Reserved */
unsigned short lu_session_limit; /* LU session limit */
unsigned char default_pool; /* member of default_lu_pool */
unsigned char reserv2; /* reserved */
unsigned char pu_name[8]; /* PU name */
unsigned char lu_attributes; /* LU attributes */
unsigned char sscp_id[6]; /* SSCP ID */
unsigned char disable; /* disable or enable Local LU */
unsigned char attach_routing_data[128];

/* routing data for */
/* incoming attaches */

unsigned char lu_model; /* LU model name for SDDLU */
unsigned char model_name[8]; /* LU model name for SDDLU */
unsigned char reserv4[16]; /* reserved */

} LOCAL_LU_DEF_DATA;

typedef struct local_lu_det_data
{

unsigned char lu_sscp_sess_active;
/* Is LU-SSCP session active */

unsigned char appl_conn_active; /* Is LU-SSCP session active */
unsigned char reserv1[2]; /* reserved */
SESSION_STATS lu_sscp_stats; /* LU-SSCP session statistics */
unsigned char sscp_id[6]; /* SSCP ID */

} LOCAL_LU_DET_DATA;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing win size */
unsigned short cur_send_pac_win; /* current send pacing win size */
unsigned short max_rcv_pac_win; /* max receive pacing win size */
unsigned short cur_rcv_pac_win; /* current receive pacing */

/* window size */
unsigned long send_data_frames; /* number of data frames sent */
unsigned long send_fmd_data_frames;

/* num of FMD data frames sent */
unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num data frames received */
unsigned long rcv_fmd_data_frames;

/* num of FMD data frames recvd */
unsigned long rcv_data_bytes; /* number of data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */
unsigned char pacing _type; /* Type of pacing in use */

} SESSION_STATS;

VCB Structure
Format 0
typedef struct local_lu_def_data
{

unsigned char description[RD_LEN];
/* resource description */

unsigned char lu_alias[8]; /* local LU alias */
unsigned char nau_address; /* NAU address */
unsigned char syncpt_support; /* Reserved */

QUERY_LOCAL_LU

292 System Management Programming

unsigned short lu_session_limit; /* LU session limit */
unsigned char default_pool; /* member of default_lu_pool */
unsigned char reserv2; /* reserved */
unsigned char pu_name[8]; /* PU name */
unsigned char lu_attributes; /* LU attributes */
unsigned char sscp_id[6]; /* SSCP ID */
unsigned char disable; /* disable or enable Local LU */
unsigned char attach_routing_data[128];

/* routing data for */
/* incoming attaches */

} LOCAL_LU_DEF_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_LOCAL_LU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The lu_name (or lu_alias if the lu_name is set to all zeros)
specified represents an index value that is used to specify the
starting point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

AP_LIST_BY_ALIAS
The returned list is ordered by lu_alias. This option is only valid
when AP_FIRST_IN_LIST is specified. If AP_LIST_FROM_NEXT or
AP_LIST_INCLUSIVE is specified, the list ordering will depend on
whether an lu_name or lu_alias has been supplied as a starting
point.

QUERY_LOCAL_LU

Chapter 6. Query Verbs 293

lu_name
LU name. This name is an 8-byte type-A EBCDIC character string. If this
field is set to all zeros, the lu_alias field will be used for determining the
index. This field is ignored if list_options is set to AP_FIRST_IN_LIST.

lu_alias
Locally defined LU alias. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant and must be set. If both the
lu_name and the lu_alias field are set to all zeros, the LU associated with
the control point (the default LU) is used. This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

pu_name
PU name filter. This should be set to all zeros or an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. If this field is set then only Local LUs associated with this
PU are returned. This field is ignored if it is set to all zeros.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

local_lu_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

local_lu_summary.lu_name
LU name. This name is an 8-byte type-A EBCDIC character string.

local_lu_summary.lu_alias
Locally defined LU alias. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

local_lu_summary.description
Resource description (as specified on DEFINE_LOCAL_LU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

local_lu_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

local_lu_detail.lu_name
LU name. This name is an 8-byte type-A EBCDIC character string.

QUERY_LOCAL_LU

294 System Management Programming

local_lu_detail.def_data.description
Resource description (as specified on DEFINE_LOCAL_LU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

local_lu_detail.def_data.lu_alias
Locally defined LU alias. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

local_lu_detail.def_data.nau_address
Network addressable unit address of the LU, which is in the range 0–255.
A nonzero value implies the LU is a dependent LU. Zero implies the LU is
an independent LU.

local_lu_detail.def_data.syncpt_support
Reserved.

local_lu_detail.def_data.lu_session_limit
Maximum number of sessions for the local LU. A value of zero indicates
that there is no limit.

local_lu_detail.def_data.default_pool
AP_YES if the LU is a member of the dependent LU 6.2 default pool.
Always AP_NO for independent LUs.

local_lu_detail.def_data.pu_name
Name of the PU that this LU will use. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. This field is only used by dependent LUs, and will be set
to all binary zeros for independent LUs.

local_lu_detail.def_data.lu_attributes
Configured LU attributes. This field either takes the value AP_NONE, or
the following option ORed together:

AP_DISABLE_PWSUB
Password substitution support disabled for the local LU.

local_lu_detail.def_data.sscp_id
This field specifies the ID of the SSCP permitted to activate this LU. It is a
6–byte binary field. This field is only used by dependent LUs, and should
be set to all binary zeros for independent LUs or if the LU can be activated
by any SSCP.

local_lu_detail.def_data.disable
This field indicates whether the LOCAL LU should be disabled or enabled.
The LU can be dynamically enabled or disabled by re-issuing the
DEFINE_LOCAL_LU with this parameter set as appropriate (AP_YES or
AP_NO). When a disabled LU is enabled, the Program issues a NOTIFY
(online). When an enabled LU is disabled, the Program issues a NOTIFY
(off-line). If the LU is bound when it is disabled, then the Program issues
an UNBIND followed by a NOTIFY (offline).

local_lu_detail.def_data.attach_routing_data
This field indicates data passed out unchanged on a
DYNAMIC_LOAD_INDICATION resulting from attaches arriving for the
transaction program at this local LU. For example, this field may be used
to set a path to the transaction program's working directory.

local_lu_detail.def_data.lu_model
Model type and number of the LU. This field is only used by dependent

QUERY_LOCAL_LU

Chapter 6. Query Verbs 295

LUs and should be set to AP_UNKNOWN for independent LUs. For
dependent LUs, this is set to one of the following values:

AP_3270_DISPLAY_MODEL_2
AP_3270_DISPLAY_MODEL_3
AP_3270_DISPLAY_MODEL_4
AP_3270_DISPLAY_MODEL_5
AP_RJE_WKSTN
AP_PRINTER
AP_SCS_PRINTER
AP_UNKNOWN

For dependent LUs, if model_name is not set to all binary zeros, then this
field is ignored. If a value other than AP_UNKNOWN is specified and the
host system supports SDDLU (Self-Defining Dependent LU), the node will
generate an unsolicited PSID NMVT reply in order to dynamically define
the local LU at the host. The PSID subvector will contain the machine type
and model number corresponding to the value of this field. This field may
be changed dynamically by re-issuing the verb. Changes will not come into
effect until after the LU is closed and deactivated.

local_lu_detail.def_data.model_name
Model name of the LU. This field is only used by dependent LUs and
should be set to binary zeros for independent LUs.

If this field is not set to binary zeros and the host system supports SDDLU,
the node generates an unsolicited PSID NMVT reply in order to
dynamically define the local LU at the host. The PSID subvector contains
the name supplied in this field. The field may be changed dynamically
reissuing the verb. Changes do not come into effect until after the LU is
closed and deactivated.

local_lu_detail.det_data.lu_sscp_session_active
Specifies whether the LU-SSCP session is active (AP_YES or AP_NO). If
the def_data.nau_address is zero, then this field is reserved.

local_lu_detail.det_data.appl_conn_active
Specifies whether an application is using the LU (AP_YES or AP_NO). If
the def_data.nau_address is zero, then this field is reserved.

local_lu_detail.det_data.lu_sscp_stats.rcv_ru_size
This field is always reserved.

local_lu_detail.det_data.lu_sscp_stats.send_ru_size
This field is always reserved.

local_lu_detail.det_data.lu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

local_lu_detail.det_data.lu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

local_lu_detail.det_data.lu_sscp_stats.max_send_pac_win
This field will always be set to zero.

local_lu_detail.det_data.lu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

local_lu_detail.det_data.lu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

QUERY_LOCAL_LU

296 System Management Programming

local_lu_detail.det_data.lu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

local_lu_detail.det_data.lu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

local_lu_detail.det_data.lu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

local_lu_detail.det_data.lu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

local_lu_detail.det_data.lu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

local_lu_detail.det_data.lu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

local_lu_detail.det_data.lu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

local_lu_detail.det_data.lu_sscp_stats.sidh
Session ID high byte.

local_lu_detail.det_data.lu_sscp_stats.sidl
Session ID low byte.

local_lu_detail.det_data.lu_sscp_stats.odai
Origin Destination Address Indicator. When bringing up a session, the
sender of the ACTLU sets this field to zero if the local node contains the
primary link station, and sets it to one if the ACTLU sender is the node
containing the secondary link station.

local_lu_detail.det_data.lu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. This field can
be used to correlate this session with the link over which the session flows.

Note: The LU-SSCP statistics (local_lu_detail.det_data.lu_sscp_stats) are
valid only when nau_address is not zero. Otherwise the fields are
reserved.

local_lu_detail.det_data.lu_sscp_stats.pacing_type
Receive pacing type in use on the LU-SSCP session. This will be set to
AP_NONE.

local_lu_detail.det_data.sscp_id
This is a 6–byte field containing the SSCP ID received in the ACTPU for
the PU used by this LU.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_ALIAS

AP_INVALID_LU_NAME
AP_INVALID_LIST_OPTION

QUERY_LOCAL_LU

Chapter 6. Query Verbs 297

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_LOCAL_LU

298 System Management Programming

QUERY_LOCAL_TOPOLOGY

All APPN nodes maintain a local topology database that holds information about
the transmission groups (TGs) to all adjacent nodes.

QUERY_LOCAL_TOPOLOGY allows information about these TGs to be returned.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific local TG, or to obtain
the list information in several chunks, the dest, dest_type, and tg_num fields
should be set. Otherwise (if the list_options field is set to AP_FIRST_IN_LIST),
these fields will be ignored. See “Querying the Node” on page 10 for background
on how the list formats are used. This list is ordered on dest first, then on
dest_type and finally on tg_num. The dest name is ordered by name length first,
then by lexicographical ordering for names of the same length. The dest_type field
follows the order: AP_LEN_NODE, AP_NETWORK_NODE, AP_END_NODE,
AP_VRN. The tg_num is ordered numerically.

If AP_LIST_INCLUSIVE is selected, the returned list starts from the first valid
record of that name.

If AP_LIST_FROM_NEXT is selected, the list will begin from the first valid record
with a name following the one specified.

VCB Structure
typedef struct query_local_topology
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char dest[17]; /* TG destination node */
unsigned char dest_type; /* TG destination node type */
unsigned char tg_num; /* TG number */

} QUERY_LOCAL_TOPOLOGY;

typedef struct local_topology_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char dest[17]; /* TG destination node */
unsigned char dest_type; /* TG destination node type */
unsigned char tg_num; /* TG number */

} LOCAL_TOPOLOGY_SUMMARY;

typedef struct local_topology_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char dest[17]; /* TG destination node */
unsigned char dest_type; /* TG destination node type */
unsigned char tg_num; /* TG number */
unsigned char reserv1; /* reserved */
LINK_ADDRESS dlc_data; /* DLC signalling data */
unsigned long rsn; /* resource sequence number */

QUERY_LOCAL_TOPOLOGY

Chapter 6. Query Verbs 299

unsigned char status; /* TG status */
TG_DEFINED_CHARS tg_chars; /* TG characteristics */
unsigned char cp_cp_session_active;

/* CP-CP session is active */
unsigned char branch_link_type; /* branch link type */
unsigned char branch_tg; /* TG is a branch TG */
unsigned char reserva[13]; /* reserved */

} LOCAL_TOPOLOGY_DETAIL;

typedef struct link_address
{

unsigned short length; /* length */
unsigned short reserve1; /* reserved */
unsigned char address[MAX_LINK_ADDR_LEN];

/* address */
} LINK_ADDRESS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_LOCAL_TOPOLOGY

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The combination of the dest, dest_type and tg_num specified (see
the following parameters, dest, dest_type, and tg_num) represents
an index value that is used to specify the starting point of the
actual information to be returned .

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

QUERY_LOCAL_TOPOLOGY

300 System Management Programming

dest Fully qualified destination node name for the TG. This name is 17 bytes
long and is right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)
This field is ignored if list_options is set to AP_FIRST_IN_LIST.

dest_type
Node type of the destination node for this TG. This can be one of the
following values:

AP_NETWORK_NODE
AP_VRN
AP_END_NODE
AP_LEARN_NODE

If the dest_type is unknown, AP_LEARN_NODE must be specified. This
field is ignored if list_options is set to AP_FIRST_IN_LIST.

tg_num
Number associated with the TG. This field is ignored if list_options is set
to AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

local_topology_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

local_topology_summary.dest
Fully qualified destination node name for the TG. This name is 17 bytes
long and is right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

local_topology_summary.dest_type
Type of the destination node for this TG. This is set to one of the following
values:

AP_NETWORK_NODE
AP_VRN
AP_END_NODE

QUERY_LOCAL_TOPOLOGY

Chapter 6. Query Verbs 301

Note that if dest_type is set to AP_END_NODE, this specifies that the TG
destination is either to a LEN node or to an end node.

local_topology_summary.tg_num
Number associated with the TG.

local_topology_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

local_topology_detail.dest
Fully qualified destination node name for the TG. This name is 17 bytes
long and is right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

local_topology_detail.dest_type
Type of the destination node for this TG. This is set to one of the following
values:

AP_NETWORK_NODE
AP_VRN
AP_END_NODE

Note that if dest_type is set to AP_END_NODE, this specifies that the TG
destination is either to a LEN node or to an end node.

local_topology_detail.tg_num
Number associated with the TG.

local_topology_detail.dlc_data.length
Length of DLC address of connection to a VRN (set to zero if dest_type is
not AP_VRN).

local_topology_detail.dlc_data.address
DLC address of connection to VRN.

local_topology_detail.rsn
Resource Sequence Number. This is assigned by the network node that
owns this resource.

local_topology_detail.status
Specifies the status of the TG. This can be one or more of the following
values ORed together:

AP_TG_OPERATIVE
AP_TG_CP_CP_SESSIONS
AP_TG_QUIESCING
AP_TG_HPR
AP_TG_RTP
AP_NONE

local_topology_detail.tg_chars
TG characteristics (See “DEFINE_CN” on page 31).

local_topology_detail.cp_cp_session_active
Specifies whether the local node's contention winner CP-CP session is
active (AP_NO or AP_YES).

local_topology_detail.branch_link_type
BrNN only. This branch link type of this TG. This is set to one of the
following:

QUERY_LOCAL_TOPOLOGY

302 System Management Programming

AP_UPLINK
This link is an uplink.

AP_DOWNLINK
The link is a downlink to an EN.

AP_DOWNLINK_TO_BRNN
The TG is a downlink to a BrNN that is showing its EN face.

AP_OTHERLINK
This link is an otherlink.

Other node types: This field is not meaningful and is always set to
AP_BRNN_NOT_SUPPORTED.

local_topology_detail.branch_tg
NN only. Specifies whether the TG is a branch TG.

AP_NO
The TG is not a branch TG.

AP_YES
The TG is a branch TG.

Other node types: This field is not meaningful and is always set to
AP_NO.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_TG

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_LOCAL_TOPOLOGY

Chapter 6. Query Verbs 303

QUERY_LS

QUERY_LS returns a list of information about the link stations defined at the node.
This information is structured as determined data (data gathered dynamically
during execution) and defined data (the data supplied by the application on
DEFINE_LS).

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific LS, or to obtain the list
information in several chunks, the ls_name field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 10 for background on how the list
formats are used.

This list is ordered by the ls_name. Ordering is according to name length first, and
then by ASCII lexicographical ordering for names of the same length (in
accordance with IBM's 6611 APPN MIB ordering). If AP_LIST_FROM_NEXT is
selected, the returned list starts from the next entry according to the defined
ordering (whether the specified entry exists or not).

The list of link stations returned can be filtered by the name of the port that they
belong to. In this case, the port_name field should be set (otherwise this field
should be set to all zeros).

VCB Structure
Format 1
typedef struct query_ls
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* Verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char ls_name[8]; /* name of link station */
unsigned char port_name[8]; /* name of link station */

} QUERY_LS;

typedef struct ls_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char ls_name[8]; /* link station name */
unsigned char description[RD_LEN];

/* resource description */
unsigned char dlc_type; /* DLC type */
unsigned char state; /* link station state */
unsigned short act_sess_count; /* currently active sess count */
unsigned char det_adj_cp_name[17];

/* determined adj CP name */
unsigned char det_adj_cp_type; /* determined adj node type */
unsigned char port_name[8]; /* port name */
unsigned char adj_cp_name[17]; /* adjacent CP name */
unsigned char adj_cp_type; /* adjacent node type */

} LS_SUMMARY;

QUERY_LS

304 System Management Programming

typedef struct ls_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char ls_name[8]; /* link stations name */
LS_DET_DATA det_data; /* determined data */
LS_DEF_DATA def_data; /* defined data */

} LS_DETAIL;

typedef struct ls_det_data
{

unsigned short act_sess_count; /* curr active sessions count */
unsigned char dlc_type; /* DLC type */
unsigned char state; /* link station state */
unsigned char sub_state; /* link station sub state */
unsigned char det_adj_cp_name[17];

/* adjacent CP name */
unsigned char det_adj_cp_type; /* adjacent node type */
unsigned char dlc_name[8]; /* name of DLC */
unsigned char dynamic; /* is LS is dynamic ? */
unsigned char migration; /* supports migration partners */
unsigned char tg_num; /* TG number */
LS_STATS ls_stats; /* link station statistics */
unsigned long start_time; /* time LS started */
unsigned long stop_time; /* time LS stopped */
unsigned long up_time; /* total time LS active */
unsigned long current_state_time; /* time in current state */
unsigned char deact_cause; /* deactivation cause */
unsigned char hpr_support; /* TG HPR support */
unsigned char anr_label[2]; /* local ANR label */
unsigned char hpr_link_lvl_error; /* HPR link-level error */
unsigned char auto_act; /* auto activate */
unsigned char ls_role; /* link station role */
unsigned char reserva; /* reserved */
unsigned char node_id[4]; /* determined node id */
unsigned short active_isr_count; /* currently active ISR sessions */
unsigned short active_lu_sess_count;

/* active LU-LU session count */
unsigned short active_sscp_sess_count;

/* active SSCP session count */
ANR_LABEL reverse_anr_label; /* reverse ANR label */
LINK STATION local_address; /* local LS address */
unsigned short max_send_btu_size; /* negotiated max BTU length */
unsigned char brnn_link_type; /* branch link type */
unsigned char adj_cp_is_brnn; /* adjacent CP is a BrNN */
unsigned char mltg_member; /* Reserved */
unsigned char tg_sharing; /* Reserved */
unsigned char reservb[6]; /* reserved */

} LS_DET_DATA;

typedef struct anr_label
{

unsigned short length; /* ANR label length */
unsigned short reserv; /* reserved */
unsigned char label[MAX_ANR_LABEL_SIZE];

/* ANR label */
} ANR_LABEL;

typedef struct ls_def_data
{

unsigned char description[RD_LEN];
/* resource description */

unsigned char port_name[8]; /* name of associated port */
unsigned char adj_cp_name[17]; /* adjacent CP name */
unsigned char adj_cp_type; /* adjacent node type */
LINK_ADDRESS dest_address; /* destination address */
unsigned char auto_act_supp; /* auto-activate supported */
unsigned char tg_number; /* Pre-assigned TG number */
unsigned char limited_resource; /* limited resource */
unsigned char solicit_sscp_sessions;

QUERY_LS

Chapter 6. Query Verbs 305

/* solicit SSCP sessions */
unsigned char pu_name[8]; /* Local PU name (reserved if */

/* solicit_sscp_sessions is set */
/* to AP_NO) */

unsigned char disable_remote_act; /* disable remote activation flag */
unsigned char dspu_services; /* Services provided for */

/* downstream PU */
unsigned char dspu_name[8]; /* Downstream PU name (reserved */

/* if dspu_services is set to */
/* AP_NONE or AP_DLUR) */

unsigned char dlus_name[17]; /* DLUS name if dspu_services */
/* is set to AP_DLUR */

unsigned char bkup_dlus_name[17]; /* Backup DLUS name if */
/* dspu_services is set */
/* to AP_DLUR */

unsigned char hpr_supported; /* does the link support HPR? */
unsigned char hpr_link_lvl_error; /* does the link support HPR */

/* link-level error recovery? */
unsigned short link_deact_timer; /* HPR link deactivation timer */
unsigned char reserv1; /* reserved */
unsigned char default_nn_server; /* Use as default LS to NN server */
unsigned char ls_attributes[4]; /* LS attributes */
unsigned char adj_node_id[4]; /* adjacent node ID */
unsigned char local_node_id[4]; /* local node ID */
unsigned char cp_cp_sess_support; /* CP-CP session support */
unsigned char use_default_tg_chars;

/* Use default tg_chars */
TG_DEFINED_CHARS tg_chars; /* TG characteristics */
unsigned short target_pacing_count;

/* target pacing count */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned char ls_role; /* link station role to use */

/* on this link */
unsigned char max_ifrm_rcvd; /* max number of I-frames rcvd */
unsigned short dlus_retry_timeout; /* DLUS retry timeout */
unsigned short dlus_retry_limit; /* DLUS retry limit */
unsigned char conventional_lu_compression;

/* Data compression requested for */
/* conventional LU sessions */

unsigned char conventional_lu_cryptography;
/* Cryptography required for */
/* conventional LU sessions */

unsigned char reserv3; /* reserved */
unsigned char retry_flags; /* conditions for automatic */

/* retries */
unsigned short max_activation_attempts;

/* how many automatic retries: */
unsigned short activation_delay_timer;

/* delay between automatic */
/* retries */

unsigned char branch_link_type; /* branch link type */
unsigned char adj_brnn_cp_support;/* adjacent BrNN CP support */
unsigned char reserv4[20]; /* reserved */
unsigned short link_spec_data_len; /* length of link specific data */

} LS_DEF_DATA;

typedef struct link_address
{

unsigned short length; /* length */
unsigned short reserve1; /* reserved */
unsigned char address[MAX_LINK_ADDR_LEN];

/* address */
} LINK_ADDRESS;

QUERY_LS

306 System Management Programming

typedef struct link_spec_data
{

unsigned char link_data[SIZEOF_LINK_SPEC_DATA];

} LINK_SPEC_DATA;

typedef struct tg_defined_chars
{

unsigned char effect_cap; /* Effective capacity */
unsigned char reserve1[5]; /* Reserved */
unsigned char connect_cost; /* Connection Cost */
unsigned char byte_cost; /* Byte cost */
unsigned char reserve2; /* Reserved */
unsigned char security; /* Security */
unsigned char prop_delay; /* Propagation delay */
unsigned char modem_class; /* Modem class */
unsigned char user_def_parm_1; /* User-defined parameter 1 */
unsigned char user_def_parm_2; /* User-defined parameter 2 */
unsigned char user_def_parm_3; /* User-defined parameter 3 */

} TG_DEFINED_CHARS;

typedef struct ls_stats
{

unsigned long in_xid_bytes; /* number of XID bytes received */
unsigned long in_msg_bytes; /* num message bytes received */
unsigned long in_xid_frames; /* num XID frames received */
unsigned long in_msg_frames; /* num message frames received */
unsigned long out_xid_bytes; /* num XID bytes sent */
unsigned long out_msg_bytes; /* num message bytes sent */
unsigned long out_xid_frames; /* num XID frames sent */
unsigned long out_msg_frames; /* num message frames sent */
unsigned long in_invalid_sna_frames;

/* num invalid frames received */
unsigned long in_session_control_frames;

/* num control frames received */
unsigned long out_session_control_frames;

/* num control frames sent */
unsigned long echo_rsps; /* response from adj LS count */
unsigned long current_delay; /* time taken for last test sig */
unsigned long max_delay; /* max delay by test signal */
unsigned long min_delay; /* min delay by test signal */
unsigned long max_delay_time; /* time since longest delay */
unsigned long good_xids; /* successful XID on LS count */
unsigned long bad_xids; /* unsuccessful XID on LS count */

} LS_STATS;

VCB Structure
Format 0 (back-level)
typedef struct ls_det_data
{

unsigned short act_sess_count; /* curr active sessions count */
unsigned char dlc_type; /* DLC type */
unsigned char state; /* link station state */
unsigned char sub_state; /* link station sub state */
unsigned char det_adj_cp_name[17];

/* adjacent CP name */
unsigned char det_adj_cp_type; /* adjacent node type */
unsigned char dlc_name[8]; /* name of DLC */
unsigned char dynamic; /* is LS is dynamic ? */
unsigned char migration; /* supports migration partners */
unsigned char tg_num; /* TG number */
LS_STATS ls_stats; /* link station statistics */
unsigned long start_time; /* time LS started */
unsigned long stop_time; /* time LS stopped */
unsigned long up_time; /* total time LS active */
unsigned long current_state_time; /* time in current state */
unsigned char deact_cause; /* deactivation cause */

QUERY_LS

Chapter 6. Query Verbs 307

unsigned char hpr_support; /* TG HPR support */
unsigned char anr_label[2]; /* local ANR label */
unsigned char hpr_link_lvl_error; /* HPR link-level error */
unsigned char auto_act; /* auto activate */
unsigned char ls_role; /* link station role */
unsigned char reserva; /* reserved */
unsigned char node_id[4]; /* determined node id */
unsigned short active_isr_count; /* currently active ISR sessions */
unsigned char reservb[30]; /* reserved */

} LS_DET_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_LS

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to one to specify the format
1 version of the VCB listed above. If this is set to 0, the Program returns
the format 0 LS_DET_DATA structure.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The ls_name specified (see the following parameter, ls_name)
represents an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

QUERY_LS

308 System Management Programming

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

ls_name
Link station name. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant and must be set. This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

port_name
Port name filter. This should be set to all zeros or an 8-byte alphanumeric
type A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. If this field is set then only link stations belonging to this
port are returned. This field is ignored if it is set to all zeros.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

ls_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

ls_summary.ls_name
Name of link station. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

ls_summary.description
Resource description (as specified on DEFINE_LS). This is a 16-byte string
in a locally displayable character set. All 16 bytes are significant.

ls_summary.dlc_type
Type of DLC. The Program supports the following types:

AP_ANYNET
AP_LLC2
AP_OEM_DLC
AP_SDLC
AP_X25

Additional DLC types can be defined by specifying the new type on the
DEFINE_DLC verb. See “DEFINE_DLC” on page 46 for more information.

ls_summary.state
State of this link station. This field is set to one of the following values:

QUERY_LS

Chapter 6. Query Verbs 309

AP_NOT_ACTIVE
AP_PENDING_ACTIVE
AP_ACTIVE
AP_PENDING_INACTIVE

ls_summary.act_sess_count
The total number of active sessions (both endpoint and intermediate) using
the link.

ls_summary.det_adj_cp_name
Fully qualified, 17-byte, adjacent CP name determined during link
activation. It is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.) This will be null if the LS is inactive.

If ls_summary.adj_cp_type is not one of AP_NETWORK_NODE,
AP_END_NODE, AP_APPN_NODE, or AP_BACK_LEVEL_LEN_NODE,
then this field is reserved.

ls_summary.det_adj_cp_type
Type of the adjacent node determined during link activation. It is one of
the following values:

AP_END_NODE
AP_NETWORK_NODE
AP_LEARN_NODE
AP_VRN

This will be AP_LEARN_NODE if the LS is inactive.

If ls_summary.adj_cp_type is not one of AP_NETWORK_NODE,
AP_END_NODE, AP_APPN_NODE, or AP_BACK_LEVEL_LEN_NODE,
then this field is reserved.

ls_summary.port_name
Name of port associated with this link station. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant.

ls_summary.adj_cp_name
Fully qualified, 17-byte, adjacent control point name composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot, which is
right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) This will be null for an
implicit link.

ls_summary.adj_cp_type
Type of the adjacent node. It is one of the following values:

AP_END_NODE
AP_NETWORK_NODE
AP_APPN_NODE
AP_BACK_LEVEL_LEN__NODE
AP_HOST_XID3
AP_HOST_XID0
AP_DSPU_XID
AP_DSPU_NOXID

QUERY_LS

310 System Management Programming

ls_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

ls_detail.ls_name
Name of link station. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

ls_detail.det_data.act_sess_count
Total number of active sessions (both endpoint and intermediate) using the
link.

ls_detail.det_data.dlc_type
Type of DLC. The Program supports the following types:

AP_ANYNET
AP_LLC2
AP_OEM_DLC
AP_SDLC
AP_X25

Additional DLC types can be defined by specifying the new type on the
DEFINE_DLC verb. See “DEFINE_DLC” on page 46 for more information.

ls_detail.det_data.state
State of this link station. This field is set to one of the following values:

AP_NOT_ACTIVE
AP_PENDING_ACTIVE
AP_ACTIVE
AP_PENDING_INACTIVE

ls_detail.det_data.sub_state
This field provides more detailed information about the state of this link
station. This field is set to one of the following values:

AP_SENT_CONNECT_OUT
AP_PENDING_XID_EXCHANGE
AP_SENT_ACTIVATE_AS
AP_SENT_SET_MODE
AP_ACTIVE
AP_SENT_DEACTIVATE_AS_ORDERLY
AP_SENT_DISCONNECT
AP_WAITING_STATS
AP_RESET

ls_detail.det_data.det_adj_cp_name
Fully qualified, 17-byte, adjacent control point name determined during
link activation. It is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

If ls_summary.adj_cp_type is not one of AP_NETWORK_NODE,
AP_END_NODE, AP_APPN_NODE, or AP_BACK_LEVEL_LEN_NODE,
then this field is reserved.

ls_detail.det_data.det_adj_cp_type
Type of the adjacent node determined during link activation. It is one of
the following values:

QUERY_LS

Chapter 6. Query Verbs 311

AP_END_NODE
AP_NETWORK_NODE
AP_LEARN_NODE
AP_VRN

If ls_summary.adj_cp_type is not one of AP_NETWORK_NODE,
AP_END_NODE, AP_APPN_NODE, or AP_BACK_LEVEL_LEN_NODE,
then this field is reserved.

ls_detail.det_data.dlc_name
Name of the DLC. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant.

ls_detail.det_data.dynamic
Specifies whether the link was defined explicitly (by a DEFINE_LS
command), or implicitly or dynamically (either in response to a connection
request from the adjacent node, or to connect dynamically to another node
across a connection network). This can be AP_YES or AP_NO.

ls_detail.det_data.migration
Specifies whether the adjacent node is a migration level node (such as a
low entry networking (LEN) node), or a full APPN network node or end
node (AP_YES, AP_NO, or AP_UNKNOWN).

ls_detail.det_data.tg_num
Number associated with the TG.

ls_detail.det_data.ls_stats.in_xid_bytes
Total number of XID (Exchange Identification) bytes received on this link
station.

ls_detail.det_data.ls_stats.in_msg_bytes
Total number of data bytes received on this link station.

ls_detail.det_data.ls_stats.in_xid_frames
Total number of XID (Exchange Identification) frames received on this link
station.

ls_detail.det_data.ls_stats.in_msg_frames
Total number of data frames received on this link station.

ls_detail.det_data.ls_stats.out_xid_bytes
Total number of XID (Exchange Identification) bytes sent on this link
station.

ls_detail.det_data.ls_stats.out_msg_bytes
Total number of data bytes sent on this link station.

ls_detail.det_data.ls_stats.out_xid_frames
Total number of XID (Exchange Identification) frames sent on this link
station.

ls_detail.det_data.ls_stats.out_msg_frames
Total number of data frames sent on this link station.

ls_detail.det_data.ls_stats.in_invalid_sna_frames
Total number of SNA incorrect frames received on this link station.

ls_detail.det_data.ls_stats.in_session_control_frames
Total number of session control frames received on this link station.

ls_detail.det_data.ls_stats.out_session_control_frames
Total number of session control frames sent on this link station.

QUERY_LS

312 System Management Programming

ls_detail.det_data.ls_stats.echo_rsps
Number of echo responses received from the adjacent node. Echo requests
are sent periodically to gauge the propagation delay to the adjacent node.

ls_detail.det_data.ls_stats.current_delay
Time (in milliseconds) that it took for the last test signal to be sent and
returned from this link station to the adjacent link station.

ls_detail.det_data.ls_stats.max_delay
Longest time taken (in milliseconds) for a test signal to be sent and
returned from this link station to the adjacent link station.

ls_detail.det_data.ls_stats.min_delay
Shortest time taken (in milliseconds) for a test signal to be sent and
returned from this link station to the adjacent link station.

ls_detail.det_data.ls_stats.max_delay_time
Time since system startup (in hundredths of a second) when the longest
delay occurred.

ls_detail.det_data.ls_stats.good_xids
Total number of successful XID exchanges that have occurred on this link
station since it was started.

ls_detail.det_data.ls_stats.bad_xids
Total number of unsuccessful XID exchanges that have occurred on this
link station since it was started.

ls_detail.det_data.start_time
Time since system startup (in hundredths of a second) when the link
station was last activated (that is, the mode setting commands completed).

ls_detail.det_data.stop_time
Time since system startup (in hundredths of a second) when the link
station was last deactivated.

ls_detail.det_data.up_time
The total time (in hundredths of a second) that this link station has been
active since system startup.

ls_detail.det_data.current_state_time
The total time (in hundredths of a second) that this link station has been in
the current state.

ls_detail.det_data.deact_cause
The cause of the last deactivation of the link station. The field is set to one
of the following values:

AP_NONE
The link station has never been deactivated.

AP_DEACT_OPER_ORDERLY
The link station was deactivated as a result of an orderly STOP
command from an operator.

AP_DEACT_OPER_IMMEDIATE
The link station was deactivated as a result of an immediate STOP
command from an operator.

AP_DEACT_AUTOMATIC
The link station was deactivated automatically, for example
because there were no more sessions using the link station.

QUERY_LS

Chapter 6. Query Verbs 313

AP_DEACT_FAILURE
The link station was deactivated because of a failure.

ls_detail.det_data.hpr_support
The level of high-performance routing (HPR) supported on this TG
(AP_NONE, AP_BASE or AP_RTP), taking account of the capabilities of
the local and adjacent nodes.

ls_detail.det_data.anr_label
The HPR automatic network routing (ANR) label allocated to the local link.

ls_detail.det_data.hpr_link_lvl_error
Specifies whether link-level error recovery is being used for HPR traffic on
the link.

ls_detail.def_data.auto_act
Specifies whether the link currently allows remote activation or activation
on demand. The following values are returned (and may be ORed together:

AP_AUTO_ACT
The link can be activated on demand by the local node.

AP_REMOTE_ACT
The link can be activated by the remote node.

ls_detail.det_data.ls_role
The link station role for this link station. This is initially set to the link
station role defined for the link station. If the defined role is negotiable,
this value changes to the negotiated role (primary or secondary) during the
XID exchange, and reverts back to negotiable when the link is deactivated.

AP_LS_NEG
The link station role is negotiable.

AP_LS_PRI
The link station role is primary.

AP_LS_SEC
The link station role is secondary.

ls_detail.det_data.node_id
Node ID received from adjacent node during XID exchange. This a 4-byte
hexadecimal string.

ls_detail.det_data.active_isr_count
Number of active intermediate sessions using the link.

ls_detail.det_data.active_lu_sess_count
The count of active LU-LU sessions using the link.

ls_detail.det_data.active_sscp_sess_count
The count of active LU-SSCP and PU-SSCP sessions using the link.

ls_detail.det_data.reverse_anr_label.length
The length of the reverse Automatic Network Routing (ANR) label for the
link station. If the link does not support HPR, or the label is not known,
this field is zeroed.

ls_detail.det_data.reverse_anr_label.label
The reverse Automatic Network Routing (ANR) label for the link station. If
the link does not support HPR, or the label is not known, this field is
zeroed.

QUERY_LS

314 System Management Programming

ls_detail.det_data.local_address
The local address of this link station.

ls_detail.det_data.max_send_btu_size
The maximum BTU size that can be sent on this link, as determined by
negotiation with the adjacent node. If link activation has not yet been
attempted, zero is returned.

ls_detail.det_data.brnn_link_type
BrNN only. This branch link type. It is one of the following:

AP_UPLINK
This link is an uplink.

AP_DOWNLINK
The link is a downlink.

AP_OTHERLINK
This link is an otherlink.

AP_UNKNOWN_LINK_TYPE
This link is an otherlink.

AP_BRNN_NOT_SUPPORTED
This link supports PU 2.0 traffic only.

Other node types: This field is not meaningful and is always set to
AP_BRNN_NOT_SUPPORTED.

ls_detail.det_data.adj_cp_is_brnn
All node types: Specifies whether the adjacent node is a BrNN.

AP_UNKNOWN
It is not known whether the adjacent node is a BrNN.

AP_NO
The adjacent node is not a BrNN.

AP_YES
The adjacent node is BrNN.

ls_detail.def_data.description
Resource description (as specified on DEFINE_LS). This is a 16-byte string
in a locally displayable character set. All 16 bytes are significant.

ls_detail.def_data.port_name
Name of port associated with this link station. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. If the link is to
a VRN, this field specifies the name of the actual port used to connect to
the VRN (as specified in the DEFINE_CN verb).

ls_detail.def_data.adj_cp_name
Fully qualified 17-byte adjacent control point name, which is composed of
two type-A EBCDIC character strings concatenated by an EBCDIC dot, and
is right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) This is defined if
back_lvl_len_end_node is not set to AP_NO, or if the port associated with
the link station is defined to be switched.

ls_detail.def_data.adj_cp_type
Adjacent node type.

AP_NETWORK_NODE
Specifies that the node is an APPN network node.

QUERY_LS

Chapter 6. Query Verbs 315

AP_END_NODE
Specifies that the node is an APPN end node or an up-level LEN
node.

AP_APPN_NODE
Specifies that the node is an APPN network node, an APPN end
node, or an up-level LEN node. The node type will be learned
during XID exchange.

AP_BACK_LEVEL_LEN_NODE
Specifies that the node is a back-level LEN node.

AP_HOST_XID3
Specifies that the node is a host and that the Node Operator
Facility responds to a polling XID from the node with a format 3
XID.

AP_HOST_XID0
Specifies that the node is a host and that the Node Operator
Facility responds to a polling XID from the node with a format 0
XID.

AP_DSPU_XID
Specifies that the node is a downstream PU and that the Node
Operator Facility includes XID exchange in link activation.

AP_DSPU_NOXID
Specifies that the node is a downstream PU and that the Node
Operator Facility does not include XID exchange in link activation.

Note: A link station to a VRN is always dynamic and is therefore
not defined.

ls_detail.def_data.dest_address.length
Length of destination link station's address on adjacent node.

ls_detail.def_data.dest_address.address
Link station's destination address on adjacent node.

ls_detail.def_data.auto_act_supp
Specifies whether the link will be activated automatically after it has been
started by a START_LS verb, and stopped by a STOP_LS. (AP_YES or
AP_NO).

ls_detail.def_data.tg_number
Preassigned TG number (in the range one to 20). This number is used to
represent the link when the link is activated. Zero indicates that the TG
number is not preassigned but is negotiated when the link is activated.

ls_detail.def_data.limited_resource
Specifies whether this link station is to be deactivated when there are no
sessions using the link. This is set to one of the following values:

AP_NO
The link is not a limited resource and will not be deactivated
automatically.

AP_YES or AP_NO_SESSIONS
The link is a limited resource and will be deactivated automatically
when no active sessions are using it.

AP_INACTIVITY
The link is a limited resource and will be deactivated automatically

QUERY_LS

316 System Management Programming

when no active sessions are using it, or when no data has flowed
on the link for the time period specified by the link_deact_timer
field.

ls_detail.def_data.solicit_sscp_sessions
AP_YES requests the host to initiate sessions between the SSCP and the
local control point and dependent LUs. AP_NO requests no sessions with
the SSCP on this link.

ls_detail.def_data.pu_name
Name of the local PU that is going to use this link if solicit_sscp_sessions
is set to AP_YES. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces. If
solicit_sscp_sessions is set to AP_NO, this field is reserved.

ls_detail.def_data.disable_remote_act
Specifies whether remote activation of this link is supported (AP_YES or
AP_NO).

ls_detail.def_data.dspu_services
Specifies the services that the local node provides to the downstream PU
across this link if solicit_sscp_sessions is set to AP_NO. This is set to one
of the following:

AP_PU_CONCENTRATION
Local node will provide PU concentration for the downstream PU.

AP_DLUR
Local node will provide DLUR services for the downstream PU.

AP_NONE
Local node will provide no services for this downstream PU.

If solicit_sscp_sessions is set to AP_YES, this field is reserved.

ls_detail.def_data.dspu_name
Name of the downstream PU. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with EBCDIC
spaces. This is only valid if solicit_sscp_sessions is set to AP_NO.

ls_detail.def_data.dlus_name
Name of DLUS node which DLUR solicits SSCP services from when the
link to the downstream node is activated. This is either set to all zeros or a
17-byte string composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, which is right-padded with EBCDIC
spaces. (Each name can have a maximum length of 8 bytes with no
embedded spaces.) If the field is set to all zeros, then the global default
DLUS (if defined by the DEFINE_DLUR_DEFAULTS verb) is solicited
when the link is activated. If the dlus_name is set to zeros and there is no
global default DLUS, then DLUR will not initiate SSCP contact when the
link is activated. This field is reserved if dspu_services is not set to
AP_DLUR.

ls_detail.def_data.bkup_dlus_name
Name of DLUS node which serves as the backup for the downstream PU.
This is either set to all zeros or to a 17-byte string composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot, which is
right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) If the field is set to all zeros,
then the global backup default DLUS (if defined by the

QUERY_LS

Chapter 6. Query Verbs 317

DEFINE_DLUR_DEFAULTS verb) is used as the backup for this PU. This
field is reserved if dspu_services is not set to AP_DLUR.

ls_detail.def_data.hpr_supported
Specifies whether HPR is supported on this link (AP_YES or AP_NO).

ls_detail.def_data.hpr_link_lvl_error
Specifies whether the HPR link-level error recovery tower is supported on
this link (AP_YES or AP_NO). Note that the parameter is reserved if
hpr_supported is set to AP_NO.

ls_detail.def_data.link_deact_timer
Limited resource link deactivation timer (in seconds).

If limited_resource is set to AP_YES or AP_NO_SESSIONS, a link is
automatically deactivated if no data traverses the link for the duration of
this timer, and no sessions are using the link.

If limited_resource is set to AP_INACTIVITY then a link is automatically
deactivated if no data traverses the link for the duration of this timer.

ls_detail.def_data.default_nn_server
Specifies whether a link can be automatically activated by an end node to
support CP-CP sessions to a network node server. (AP_YES or AP_NO).
The link must be defined to support CP-CP sessions for this field to take
effect.

ls_detail.def_data.ls_attributes
Specifies further information about the adjacent node.

ls_detail.def_data.ls_attributes[0]
Host type.

AP_SNA
Standard SNA host.

AP_FNA
FNA (VTAM-F) host.

AP_HNA
HNA host.

ls_detail.def_data.ls_attributes[1]
This is a bit field. It may take the value AP_NO, or any of the following
values bitwise ORed together

AP_SUPPRESS_CP_NAME
Network Name CV suppression option for a link to a back-level
LEN node. If this bit is set, no Network Name CV is included in
XID exchanges with the adjacent node. (This bit is ignored unless
adj_cp_type is set to AP_BACK_LEVEL_LEN_NODE or
AP_HOST_XID3.)

AP_REACTIVATE_ON_FAILURE
If the link is active and then fails, Personal Communications or
Communications Server will attempt to reactivate the link. If the
reactivation attempt fails, the link will remain inactive.

AP_USE_PU_NAME_IN_XID_CVS
If the adjacent node is defined to be a host or solicit_sscp_sessions
is set to AP_YES on a link to an APPN node, and the
AP_SUPPRESS_CP_NAME bit is not set, then the fully-qualified

QUERY_LS

318 System Management Programming

CP name in Network Name CVs sent on Format 3 XIDs is replaced
by the name supplied in def_data.pu_name, fully-qualified with
the network ID of the CP.

ls_detail.def_data.adj_node_id
Defined node ID of adjacent node.

ls_detail.def_data.local_node_id
Node ID sent in XIDs on this link station. This is a 4-byte hexadecimal
string. If this field is set to zero, the node_id is used in XID exchanges. If
this field is nonzero, it replaces the value for XID exchanges on this LS.

ls_detail.def_data.cp_cp_sess_support
Specifies whether CP-CP sessions are supported (AP_YES or AP_NO).

ls_detail_def_data.use_default_tg_chars
Specifies whether the TG characteristics supplied on the DEFINE_LS were
discarded in favor of the default characteristics supplied on the
DEFINE_PORT (AP_YES or AP_NO). This field does not apply to implicit
links.

ls_detail.def_data.tg_chars
TG characteristics (See “DEFINE_CN” on page 31).

ls_detail.def_data.target_pacing_count
Numeric value between 1 and 32 767 inclusive indicating the desired
pacing window size for BINDs on this TG. The number is only significant
when fixed bind pacing is being performed. Note that Personal
Communications or Communications Server does not currently use this
value.

ls_detail.def_data.max_send_btu_size
Maximum BTU size that can be sent.

ls_detail.def_data.ls_role
The link station role that this link station should assume. This can be any
one of AP_LS_NEG, AP_LS_PRI or AP_LS_SEC to select a role of
negotiable, primary or secondary. The field can also be set to
AP_USE_PORT_DEFAULTS to select the value configured on the
DEFINE_PORT verb.

ls_detail.def_data.max_ifrm_rcvd
The maximum number of I-Frames that can be received by the XID sender
before acknowledgment. Set to zero if the default value from
DEFINE_PORT should be used.

ls_detail.def_data.dlus_retry_timeout
Interval in seconds between second and subsequent attempts to contact
DLUS specified in the Is_detail.def_data.dlus_name and
Is_detail.def_data.bkup_dlus_name fields. The interval between the initial
attempt and the first retry is always one second. If zero is specified, the
default value configured through DEFINE_DLUR_DEFAULTS is used. This
field is ignored if def_data.dspu_services is not set to AP_DLUR.

ls_detail.def_data.dlus_retry_limit
Maximum number of retries after an initial failure to contact a DLUS
specified in the Is_detail.def_data.dlus_name and
Is_detail.def_data.bkup_dlus_name fields. If zero is specified, the default
value configured through DEFINE_DLUR_DEFAULTS is used. If X'FFFF' is
specified, the Program retries indefinitely. This field is ignored if
def_data.dspu_services is not set to AP_DLUR.

QUERY_LS

Chapter 6. Query Verbs 319

ls_detail.def_data.link_spec_data_len
Unpadded length, in bytes, of data passed unchanged to link station
component during initialization. The data is concatenated to the
LS_DETAIL structure. This data will be padded to end on a 4-byte
boundary.

ls_detail.def_data.conventional_lu_compression
Specifies whether data compression is requested for sessions on this link.
Note that this field is only valid for links carrying LU 0 to 3 traffic.

AP_NO
The local node should not compress or decompress conventional
LU data flowing over this link.

AP_YES
Data compression should be enabled for conventional LU sessions
on this link if the host requests compression.

ls_detail.def_data.conventional_lu_cryptography
Specifies whether session level encryption is required for conventional LU
sessions. This field only applies for links carrying conventional LU traffic.

AP_NONE
Session level encryption is not performed by the Program.

AP_MANDATORY
Mandatory session level encryption is performed by the Program if
an import key is available to the LU. Otherwise, it must be
performed by the application that uses the LU (if this is PU
Concentration, it is performed by a downstream LU).

AP_OPTIONAL
This value allows the cryptography used to be driven by the host
application on a per session basis. If the host request cryptography
for a session dependent on this PU, then the behaviour of the
Program is as for AP_MANDATORY. If the host does not request
cryptography, then the behaviour is the same as AP_NONE.

ls_detail.def_data.retry_flags
This field specifies the conditions under which activation of this link
station is subject to automatic retry. It is a bit field, and may take any of
the following values bit-wise ORed together.

AP_RETRY_ON_START
Link activation will be retried if no response is received from the
remote node when activation is attempted. If the underlying port is
inactive when activation is attempted, the Program will attempt to
activate it.

AP_RETRY_ON_FAILURE
Link activation will be retried if the link fails while active or
pending active. If the underlying port has failed when activation is
attempted, the Program attempts to activate it.

AP_RETRY_ON_DISCONNECT
Link activation will be retried if the link is stopped normally by
the remote node.

AP_DELAY_APPLICATION_RETRIES
Link activation retries, initiated by applications (using START_LS
or on-demand link activation) will be paced using the
activation_delay_timer.

QUERY_LS

320 System Management Programming

AP_DELAY_INHERIT_RETRY
In addition to the retry conditions specified by flags in this field,
those specified in the retry_flags field of the underlying port
definition will also be used.

ls_detail.def_data.max_activation_attempts
This field has no effect unless at least one flag is set in retry_flags.

This field specifies the number of retry attempts the Program allows when
the remote node is not responding, or the underlying port is inactive. This
includes both automatic retries and application-driven activation attempts.

If this limit is ever reached, no further attempts are made to automatically
retry. This condition is reset by STOP_LS, STOP_PORT, STOP_DLC or a
successful activation. START_LS or OPEN_LU_SSCP_SEC_RQ results in a
single activation attempt, with no retry if activation fails.

Zero means 'no limit'. The value AP_USE_DEFAULTS results in the use of
max_activiation_attempts supplied on DEFINE_PORT.

ls_detail.def_data.activation_delay_timer
This field has no effect unless at least one flag is set in retry_flags.

This field specifies the number of seconds that the Program waits between
automatic retry attempts, and between application-driven activation
attempts if the AP_DELAY_APPLICATION_RETRIES bit is set in
def_data.retry_flags.

The value AP_USE_DEFAULTS results in the use of
activiation_delay_timer supplied on DEFINE_PORT.

If zero is specified, the Program uses a default timer duration of thirty
seconds.

ls_detail.def_data.branch_link_type
BrNN only. Specifies whether a link is an uplink or a downlink. This field
only applies if the field def_data.adj_cp_type is set to AP_NETWORK,
NODE, AP_END_NODE, AP_APPN_NODE, or
AP_BACK_LEVEL_LEN_NODE.

AP_UPLINK
This link is an uplink.

AP_DOWNLINK
The link is a downlink.

If the field adj_cp_type is set to AP_NETWORK_NODE, then this field
must be set to AP_UPLINK.

Other node types: This field is ignored.

ls_detail.det_data.adj_brnn_cp_support
BrNN only. Specifies whether the adjacent CP is allowed to be, required to
be, or prohibited from being an NN(BrNN), for example, a BrNN showing
its NN face. This field only applies if the field adj_cp_type is set to
AP_NETWORK_ NODE or AP_APPN_NODE, (and the node type learned
during XID exchange is network node).

AP_BRNN_ALLOWED
The adjacent CP is allowed (but not required) to be an NN(BrNN).

AP_BRNN_REQUIRED
The adjacent CP is not allowed to be an NN(BrNN).

QUERY_LS

Chapter 6. Query Verbs 321

AP_BRNN_PROHIBITED
The adjacent CP is not allowed to be an NN(BrNN).

If the field adj_cp_type is set to AP_NETWORK_NODE and the field
auto_act_supp is set to AP_YES, then this field must be set to
AP_BRNN_REQUIRED or AP_BRNN_PROHIBITED.

Other node types: This field is ignored.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LINK_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_LS

322 System Management Programming

QUERY_LS_EXCEPTION

QUERY_LS_EXCEPTION returns a list of information about the link stations
defined at the node. This information is structured as determined data (data
gathered dynamically during execution) and defined data (the data supplied by the
application on DEFINE_LS).

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific LS, or to obtain the list
information in several chunks, the ls_name field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 10 for background on how the list
formats are used.

This list is ordered by the ls_name. Ordering is according to name length first, and
then by ASCII lexicographical ordering for names of the same length (in
accordance with IBM's 6611 APPN MIB ordering). If AP_LIST_FROM_NEXT is
selected, the returned list starts from the next entry according to the defined
ordering (whether the specified entry exists or not).

The list of link stations returned can be filtered by the name of the port that they
belong to. In this case, the port_name field should be set (otherwise this field
should be set to all zeros).

VCB Structure
typedef struct query_ls_exception
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned long exception_index; /* index of LS exception entry */
unsigned char ls_name; /* name of link station */

} QUERY_LS_EXCEPTION;

typedef struct LS_EXCEPTION
{

unsigned short overlay_size; /* size of this entry */
unsigned long exception_indes; /* index of this entry */
unsigned_DATE_TIME

time; /* date and time */
unsigned char ls_name[8]; /* link station name */
unsigned char adj_cp_name[17];

/* adjacent CP name */
unsigned char adj_node_id[4];

/* adjacent node id */
unsigned short tg_number; /* TG number */
unsigned long general_sense; /* general sense data */
unsigned char retry; /* wil retry request */
unsigned long end_sense; /* termination sense data */
unsigned long xid_local_sense; /* XID local sense data */
unsigned long xid_remote_sense; /* XID remote sense data */

QUERY_LS_EXCEPTION

Chapter 6. Query Verbs 323

unsigned short xid_error_byte; /* offset of byte in error */
unsigned short xid_error_bit; /* offset of bit in error */
unsigned char dlc_type; /* DLC type */
LINK_ADDRESS local_addr; /* local address */
LINK_ADDRESS destination_addr; /* destination address */
unsigned char reserved[20]; /* reserved */

} LS_EXCEPTION;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_LS_EXCEPTION

format
Identifies the format of the VCB. Set this field to one to specify the format
1 version of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information.

The index specified in the following parameter represents an index value
that is used to specify the starting point of the actual information to be
returned.

AP_FIRST_IN_LIST
The index value is ignore and the returned list starts from the first
entry in the list.

AP_LIST_FROM_NEXT
The returned lists starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

exception_index
Index of the LS exception entry. This field is ignored if list_options is set
to AP_FIRST_IN_LIST.

ls_name
Name of the link station that returned entries relate. This is an 8–byte
string in a locally displayable character set. All 8 bytes are significant. If
this field is set to null, then entries that relate to any or all links stations
are returned.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

QUERY_LS_EXCEPTION

324 System Management Programming

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

ls_exception.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

ls_exception.exception_index
The index assigned for this LS exception entry. The value of the index
begins at zero and increases incrementally up to a maximum value of
2**31–1 (2,147,483,647) before wrapping.

ls_exception.time
Time and date that the LS exception entry was generated.

ls_exception.ls_name
Name of link station. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

ls_exception.adj_cp_name
Fully qualified, 17-byte, adjacent CP name. It is composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot, and is
right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) The value of this field is
determined as follows:

If an adjacent CP name was received on XID, it is returned.

If an adjacent CP name was received on XID, but a locally-defined value is
available, it is returned.

Otherwise, null is returned.

ls_exception.node_id
Node ID received from adjacent node during XID exchange (or null if none
is received). This is a 4–byte hexadecimal string.

ls_exception.tg_number
Number associated with the TG to this link station. Range 0 through 256.
A value of 256 indicates that the TG number was unknown at the time of
the failure.

ls_exception.general_sense
The error sense data associated with the start sequence of activation of a
link up to the beginning of the XID sequence. This is generated by the
node.

ls_exception.retry
Indicates whether the node will retry the start request to activate the link.

AP_NO
The node will not retry the start request.

QUERY_LS_EXCEPTION

Chapter 6. Query Verbs 325

AP_YES
The node will retry the start request.

ls_exception.end_sense
Sense data associated with the termination of the activation attempt. This
is generated by the DLC layer.

ls_exception.xid_local_sense
Locally generated sense data sent in XID.

ls_exception.xid.remote_sense
Remotely generated sense data received in XID.

ls_exception.xid_error_byte
Offset of error bit in error byte in XID (range 0 through 65535). The value
65535 indicates that this field has no meaning.

ls_exception.xid_error_bit
Offset of error bit in error byte in XID (range 0 through 7). The value 8
indicates that this field has no meaning.

ls_exception.dlc_type
Type of DLC. The Program supports the following types:

AP_SDLC
AP_X25
AP_TR

Additional DLC types can be defined by specifying the new type on the
DEFINE_DLC verb. See “DEFINE_DLC” on page 46 for more information.

ls_exception.local_addr.length
The length of local link station's address.

ls_exception.local_addr.address
The local link station's address.

ls_exception.destination_addr.length
The length of destination link station's address on adjacent node.

ls_exception.destination_addr.address
Destination link station's address on adjacent node.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_EXCEPTION_INDEX

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

QUERY_LS_EXCEPTION

326 System Management Programming

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_LS_EXCEPTION

Chapter 6. Query Verbs 327

QUERY_LU_0_TO_3

QUERY_LU_0_TO_3 returns information about local LUs of type 0, 1, 2, or 3. This
information is structured as determined data (data gathered dynamically during
execution) and defined data (the data supplied by the application on
DEFINE_LU_0_TO_3).

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific local LU, or to obtain
the list information in several chunks, the lu_name field should be set. Otherwise
(if the list_options field is set to AP_FIRST_IN_LIST), this field will be ignored.

Only certain parameters are supported on SNA API clients. See the note pad icon
throughout this chapter for specific details.

This icon represents important information that can affect the operation
of Communications Server and Personal Communications.

VCB Structure
typedef struct query_lu_0_to_3
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* Verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char pu_name[8]; /* PU name filter */
unsigned char lu_name[8]; /* LU name */
unsigned char host_attachment; /* Host attachment filter */

} QUERY_LU_0_TO_3;

typedef struct lu_0_to_3_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char pu_name[8]; /* PU name */
unsigned char lu_name[8]; /* LU name */
unsigned char description[RD_LEN];

/* resource description */
unsigned char nau_address; /* NAU address */
unsigned char lu_sscp_sess_active;

/* Is LU-SSCP session active */
unsigned char appl_conn_active; /* Is connection to appl active? */
unsigned char plu_sess_active; /* Is PLU-SLU session active */
unsigned char host_attachment; /* LU’s host attachment */

} LU_0_TO_3_SUMMARY;

typedef struct lu_0_to_3_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char lu_name[8]; /* LU name */

QUERY_LU_0_TO_3

328 System Management Programming

unsigned char reserv1[2]; /* reserved */
LU_0_TO_3_DET_DATA det_data; /* Determined data */
LU_0_TO_3_DEF_DATA def_data; /* Defined data */

} LU_0_TO_3_DETAIL;

typedef struct lu_0_to_3_det_data
{

unsigned char lu_sscp_sess_active;
/* Is LU-SSCP session active */

unsigned char appl_conn_active; /* Application is using LU */
unsigned char plu_sess_active; /* Is PLU-SLU session active */
unsigned char host_attachment; /* Host attachment */
SESSION_STATS lu_sscp_stats; /* LU-SSCP session statistics */
SESSION_STATS plu_stats; /* PLU-SLU session statistics */
unsigned char plu_name[8]; /* PLU name */
unsigned char session_id[8]; /* Internal ID of PLU-SLU sess */
unsigned char app_spec_det_data[256];

/* Application Specified Data */
unsigned char app_type; /* Application type */
unsigned char sscp_id[6]; /* SSCP ID */
unsigned char bind_lu_type; /* LU type issuing BIND */
unsigned char reserva[12]; /* reserved */

} LU_0_TO_3_DET_DATA;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing win size */
unsigned short cur_send_pac_win; /* current send pacing win size */
unsigned short max_rcv_pac_win; /* max receive pacing win size */
unsigned short cur_rcv_pac_win; /* current receive pacing */

/* window size */
unsigned long send_data_frames; /* number of data frames sent */
unsigned long send_fmd_data_frames;

/* num of FMD data frames sent */
unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num data frames received */
unsigned long rcv_fmd_data_frames;

/* num of FMD data frames recvd */
unsigned long rcv_data_bytes; /* number of data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */
unsigned char pacing_type; /* type of pacing in use */

} SESSION_STATS;

typedef struct lu_0_to_3_def_data
{

unsigned char description[RD_LEN];
/* resource description */

unsigned char nau_address; /* LU NAU address */
unsigned char pool_name[8]; /* LU Pool name */
unsigned char pu_name[8]; /* PU name */
unsigned char priority; /* LU priority */
unsigned char lu_model; /* LU model */
unsigned char sscp_id[6];
unsigned char timeout; /* Timeout */
unsigned char app_spec_def_data[16];

/* Application Specified Data */
unsigned char model_name[7]; /* LU model */
unsigned char reserv3[17]; /* reserved */

} LU_0_TO_3_DEF_DATA;

QUERY_LU_0_TO_3

Chapter 6. Query Verbs 329

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_LU_0_TO_3

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information.

AP_SUMMARY
Returns summary information only.

AP_SUMMARY value is also supported for SNA API clients.

AP_DETAIL
Returns detailed information.

The lu_name specified (see the following parameter, lu_name)
represents an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list

AP_FIRST_IN_LIST value is also supported for SNA API clients.

.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

QUERY_LU_0_TO_3

330 System Management Programming

lu_name
Name of the local LU that is being queried. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

The list_options value is ignored for SNA API clients.

pu_name
PU name. Only LUs that use this PU will be returned. If a list of all LUs is
required then this field should be set to all binary zeros. The list_options
value is ignored for SNA API clients. The list_options value is ignored for
SNA API clients.

The pu_name value is ignored for SNA API clients.

host_attachment
Filter for host attachment.

AP_NONE
Return information about all LUs.

AP_NONE is the only value supported for SNA API clients.

AP_DLUR_ATTACHED
Return information about all LUs that are supported by DLUR.

AP_DIRECT_ATTACHED
Return information about only those LUs that are directly attached
to the host system.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

QUERY_LU_0_TO_3

Chapter 6. Query Verbs 331

lu_0_to_3_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

lu_0_to_3_summary.pu_name
Name of local PU that this LU is using. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

The lu_0_to_3_summary.pu_name value is not returned on SNA API
clients.

lu_0_to_3_summary.lu_name
Name of the local LU that is being queried. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

lu_0_to_3_summary.description
Resource description (as specified on DEFINE_LU_0_TO_3). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

The lu_0_to_3_summary.description value is not returned on SNA API
clients.

lu_0_to_3_summary.nau_address
Network addressable unit address of the LU, which is in the range 1–255.

The lu_0_to_3_summary.nau_address value is not returned on SNA API
clients.

lu_0_to_3_summary.lu_sscp_sess_active
Specifies whether the LU-SSCP session is active (AP_YES or AP_NO).

The lu_0_to_3_summary.lu_sscp_sess_active value is not returned on
SNA API clients.

lu_0_to_3_summary.appl_conn_active
Specifies whether an application is using the LU (AP_YES or AP_NO).

The lu_0_to_3_summary.aapl_conn_active value is not returned on SNA
API clients.

lu_0_to_3_summary.plu_sess_active
Specifies whether the PLU-SLU session is active (AP_YES or AP_NO).

QUERY_LU_0_TO_3

332 System Management Programming

The lu_0_to_3_summary.plu_sess_active value is not returned on SNA
API clients.

lu_0_to_3_summary.host_attachment
LU host attachment type:

AP_DLUR_ATTACHED
LU is attached to host system using DLUR.

AP_DIRECT_ATTACHED
LU is directly attached to host system.

lu_0_to_3_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

lu_0_to_3_detail.lu_name
Name of the local LU that is being queried. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

lu_0_to_3_detail.det_data.lu_sscp_sess_active
Specifies whether the LU-SSCP session is active (AP_YES or AP_NO).

lu_0_to_3_detail.det_data.appl_conn_active
Specifies whether this LU is currently being used by an application
(AP_YES or AP_NO).

lu_0_to_3_detail.det_data.plu_sess_active
Specifies whether the PLU-SLU session is active (AP_YES or AP_NO).

lu_0_to_3_detail.det_data.host_attachment
LU host attachment type:

AP_DLUR_ATTACHED
LU is attached to host system using DLUR.

AP_DIRECT_ATTACHED
LU is directly attached to host system.

lu_0_to_3_detail.det_data.lu_sscp_stats.rcv_ru_size
This field is always reserved.

lu_0_to_3_detail.det_data.lu_sscp_stats.send_ru_size
This field is always reserved.

lu_0_to_3_detail.det_data.lu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

lu_0_to_3_detail.det_data.lu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

lu_0_to_3_detail.det_data.lu_sscp_stats.max_send_pac_win
This field will always be set to zero.

lu_0_to_3_detail.det_data.lu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

lu_0_to_3_detail.det_data.lu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

lu_0_to_3_detail.det_data.lu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

QUERY_LU_0_TO_3

Chapter 6. Query Verbs 333

lu_0_to_3_detail.det_data.lu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

lu_0_to_3_detail.det_data.lu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

lu_0_to_3_detail.det_data.lu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

lu _0_to_3_detail.det_data.lu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

lu_0_to_3_detail.det_data.lu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

lu_0_to_3_detail.det_data.lu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

lu_0_to_3_detail.det_data.lu_sscp_stats.sidh
Session ID high byte.

lu_0_to_3_detail.det_data.lu_sscp_stats.sidl
Session ID low byte.

lu_0_to_3_detail.det_data.lu_sscp_stats.odai
Origin Destination Address Indicator. When bringing up a session, the
sender of the ACTLU sets this field to zero if the local node contains the
primary link station, and sets it to one if the ACTLU sender is the node
containing the secondary link station.

lu_0_to_3_detail.det_data.lu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. This field can
be used to correlate this session with the link over which the session flows.

lu_0_to_3_detail.det_data.lu_sscp_stats.pacing_type
Receive pacing type in use on the LU-SSCP session. This will be set to
AP_NONE.

lu_0_to_3_detail.det_data.plu_stats.rcv_ru_size
Maximum receive RU size.

lu_0_to_3_detail.det_data.plu_stats.send_ru_size
Maximum send RU size.

lu_0_to_3_detail.det_data.plu_stats.max_send_btu_size
Maximum BTU size that can be sent.

lu_0_to_3_detail.det_data.plu_stats.max_rcv_btu_size
Maximum BTU size that can be received.

lu_0_to_3_detail.det_data.plu_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

lu_0_to_3_detail.det_data.plu_stats.cur_send_pac_win
Current size of the send pacing window on this session.

lu_0_to_3_detail.det_data.plu_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

lu_0_to_3_detail.det_data.plu_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

lu_0_to_3_detail.det_data.plu_stats.send_data_frames
Number of normal flow data frames sent.

QUERY_LU_0_TO_3

334 System Management Programming

lu_0_to_3_detail.det_data.plu_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

lu_0_to_3_detail.det_data.plu_stats.send_data_bytes
Number of normal flow data bytes sent.

lu_0_to_3_detail.det_data.plu_stats.rcv_data_frames
Number of normal flow data frames received.

lu_0_to_3_detail.det_data.plu_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

lu_0_to_3_detail.det_data.plu_stats.rcv_data_bytes
Number of normal flow data bytes received.

lu_0_to_3_detail.det_data.plu_stats.sidh
Session ID high byte.

lu_0_to_3_detail.det_data.plu_stats.sidl
Session ID low byte.

lu_0_to_3_detail.det_data.plu_stats.odai
Origin Destination Address Indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station, and sets it to one if the BIND sender is the node
containing the secondary link station.

lu_0_to_3_detail.det_data.plu_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant.

lu_0_to_3_detail.det_data.plu_stats.pacing_type
Receive pacing type in use on the PLU-SSCP session. This can take the
values AP_NONE or AP_PACING_FIXED.

lu_0_to_3_detail.det_data.plu_name
Primary LU name. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces. (If the
PLU-SLU session is inactive this field is reserved).

lu_0_to_3_detail.det_data.session_id
Eight byte internal identifier of the PLU-SLU session.

lu_0_to_3_detail.det_data.app_spec_det_data
Reserved.

lu_0_to_3_detail.det_data.app_type
Reserved.

lu_0_to_3_detail.det_data.sscp_id
This is a 6–byte field containing the SSCP ID received in the ACTPU for
the PU used by this LU.

If lu_sscp_sess_active is not AP_YES, then this field will be zeroed.

lu_0_to_3_detail.det_data.bind_lu_type
The LU type of the LU that issued the original BIND. If there is an active
LU-LU session, then this can be one of the following:

AP_LU_TYPE_0
AP_LU_TYPE_1
AP_LU_TYPE_2
AP_LU_TYPE_3
AP_LU_TYPE_6 (for downstream dependent LU 6.2)

QUERY_LU_0_TO_3

Chapter 6. Query Verbs 335

If there is no active LU—LU session, then this field takes the following
value:

AP_LU_TYPE_UNKNOWN

lu_0_to_3_detail.def_data.description
Resource description (as specified on DEFINE_LU_0_TO_3). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

lu_0_to_3_detail.def_data.nau_address
Network addressable unit address of the LU, which is in the range 1–255.

lu_0_to_3_detail.def_data.pool_name
Name of pool to which this LU belongs. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. If the LU does not belong to a pool, this field is set to all
binary zeros.

lu_0_to_3_detail.def_data.pu_name
Name of the PU (as specified on the DEFINE_LS verb) that this LU will
use. This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

lu_0_to_3_detail.def_data.priority
LU priority when sending to the host. This is set to one of the following
values:

AP_NETWORK
AP_HIGH
AP_MEDIUM
AP_LOW

lu_0_to_3_detail.def_data.lu_model
Model type and number of the LU. This is set to one of the following
values:

AP_3270_DISPLAY_MODEL_2
AP_3270_DISPLAY_MODEL_3
AP_3270_DISPLAY_MODEL_4
AP_3270_DISPLAY_MODEL_5
AP_RJE_WKSTN
AP_PRINTER
AP_SCS_PRINTER
AP_UNKNOWN

lu_0_to_3_detail.def_data.sscp_id
This field specifies the ID of the SSCP permitted to activate this LU. It is a
6–byte binary field. If the field is set to binary zeros, then the LU may be
activated by any SSCP.

lu_0_to_3_detail.def_data.timeout
Timeout for LU specified in seconds. If a timeout is supplied and the user
of the LU specified allow_timeout on the OPEN_LU_SSCP_SEC_RQ (or, in
the case of PU concentration, on the Downstream LU definition), then the
LU will be deactivated after the PLU-SLU session is left inactive for this
period and one of the following conditions holds:
v The session passes over a limited resource link

QUERY_LU_0_TO_3

336 System Management Programming

v Another application wishes to use the LU before the session is used
again

If the timeout is set to zero, the LU will not be deactivated.

lu_0_to_3_detail.def_data.app_spec_def_data
Application-specified data from DEFINE_LU_0_TO_3; the Program does
not interpret this field, it is simply stored and returned on the
QUERY_LU_0_TO_3 verb.

lu_0_to_3_detail.def_data.model_name
The value returned is the value specified in the format 1
DEFINE_LU_0_TO_3 verb, or hex zeros if the DEFINE verb was format 0.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_LU_0_TO_3

Chapter 6. Query Verbs 337

QUERY_LU_POOL

QUERY_LU_POOL returns a list of pools and the LUs that belong to them.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific LU pool or to obtain
the list information in several chunks, the pool_name and lu_name fields should
be set. If the lu_name field is set to all zeros, then the information returned starts
from the first LU in the specified pool. If the list_options field is set to
AP_FIRST_IN_LIST, then both of these fields are ignored.

VCB Structure
typedef struct query_lu_pool
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char pool_name[8]; /* pool name */
unsigned char lu_name[8]; /* LU name */

} QUERY_LU_POOL;

typedef struct lu_pool_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char pool_name[8]; /* pool name */
unsigned char description[RD_LEN]; /* resource description */
unsigned short num_active_lus; /* num of currently active LUs */
unsigned char num_avail_lus; /* num of currently available */

/* LUs */
} LU_POOL_SUMMARY;

typedef struct lu_pool_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char pool_name[8]; /* pool name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_sscp_sess_active; /* Is LU-SSCP session active */
unsigned char appl_conn_active; /* Is SSCP connection open */
unsigned char plu_sess_active; /* Is PLU-SLU session active */

} LU_POOL_DETAIL;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_LU_POOL

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

QUERY_LU_POOL

338 System Management Programming

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The combination of the pool_name and lu_name specified (see the
following parameters, pool_name and lu_name) represents an
index value that is used to specify the starting point of the actual
information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

pool_name
Name of LU pool. This name is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.
This field is ignored if list_options is set to AP_FIRST_IN_LIST.

lu_name
LU name. This name is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces. If this is
set to all binary zeros, the LUs belonging to the specified pool are listed
from the beginning of the pool. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

QUERY_LU_POOL

Chapter 6. Query Verbs 339

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of directory entries returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

lu_pool_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

lu_pool_summary.pool_name
Name of LU pool to which the specified LU belongs. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces. (Note that if this field is specified on the
request and the lu_name field is set to all binary zeros, then only LUs in
the pool are returned.)

lu_pool_summary.description
LU pool description (as specified on DEFINE_LU_POOL).

lu_pool_summary.num_active_lus
The number of LUs in the specified pool that have active LU-SSCP
sessions.

lu_pool_summary.num_avail_lus
The number of LUs in the specified pool available to satisfy an
OPEN_LU_SSCP_SEC_REQ with open_force set to AP_YES. It includes all
LUs whose PU is active or whose host link is automatically activated, and
whose connection is free. This count is regardless of the LU model_type,
model_name, and the DDDLU support of the PU. There might be less LUs
available to satisfy an OPEN_LU_SSCP_SEC_REQ that specifies a
particular value for model_type.

lu_pool_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

lu_pool_detail.pool_name
Name of LU pool to which the specified LU belongs. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces. (Note that if this field is specified on the
request and the lu_name field is set to all binary zeros, then only LUs in
the pool are returned.)

lu_pool_detail.description
LU description (as specified on DEFINE_LU_0_TO_3).

lu_pool_detail.lu_name
LU name of LU belonging to the pool. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. If this name is set to all zeros then, this indicates that the
specified pool is empty.

lu_pool_detail.lu_sscp_sess_active
Specifies whether the LU-SSCP session is active (AP_YES or AP_NO).

QUERY_LU_POOL

340 System Management Programming

lu_pool_detail.appl_conn_active
Specifies whether the LU session is currently being used by an application
(AP_YES or AP_NO).

lu_pool_detail.plu_sess_active
Specifies whether the PLU-SLU session is active (AP_YES or AP_NO).

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LIST_OPTION

AP_INVALID_POOL_NAME
AP_INVALID_LU_NAME

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_LU_POOL

Chapter 6. Query Verbs 341

QUERY_MDS_APPLICATION

QUERY_MDS_APPLICATION returns a list of applications that have registered for
MDS level messages.

Applications register by issuing the REGISTER_MS_APPLICATION verb described
in Chapter 15, “Management Services Verbs,” on page 617.

To obtain information about a specific application, or to obtain the list information
in several chunks, the application field should be set. Otherwise (if the
list_options field is set to AP_FIRST_IN_LIST), this field will be ignored. See
“Querying the Node” on page 10 for background on how the list formats are used.

VCB Structure
typedef struct query_mds_application
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char application[8]; /* application */

} QUERY_MDS_APPLICATION;

typedef struct mds_application_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char application[8]; /* application name */
unsigned short max_rcv_size; /* max data size application */

/* can receive */
unsigned char reserva[20]; /* reserved */

} MDS_APPLICATION_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_MDS_APPLICATION

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

QUERY_MDS_APPLICATION

342 System Management Programming

list_options
This indicates what should be returned in the list information: The
application specified (see the following parameter, application) represents
an index value that is used to specify the starting point of the actual
information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

application
Application name. The name is an 8-byte alphanumeric type-A EBCDIC
character string. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
The number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

mds_application_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

mds_application_data.application
Name of registered application. The name is an 8-byte alphanumeric
type-A EBCDIC character string.

mds_application_data.max_rcv_size
The maximum number of bytes that the application can receive in one
chunk (this is specified when an application registers with MDS). For more
information about MDS-level application registration refer to Chapter 15,
“Management Services Verbs,” on page 617.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

QUERY_MDS_APPLICATION

Chapter 6. Query Verbs 343

secondary_rc
AP_INVALID_APPLICATION_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_MDS_APPLICATION

344 System Management Programming

QUERY_MDS_STATISTICS

QUERY_MDS_STATISTICS returns management services statistics. This verb can be
used to gauge the level of MDS routing traffic.

VCB Structure
typedef struct query_mds_statistics
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned long alerts_sent; /* number of alert sends */
unsigned long alert_errors_rcvd; /* error messages received */

/* for alert sends */
unsigned long uncorrelated_alert_errors;

/* uncorrelated alert */
/* errors received */

unsigned long mds_mus_rcvd_local; /* number of MDS_MUs received */
/* from local applications */

unsigned long mds_mus_rcvd_remote;
/* number of MDS_MUs received */
/* from remote applications */

unsigned long mds_mus_delivered_local;
/* num of MDS_MUs delivered */
/* to local applications */

unsigned long mds_mus_delivered_remote;
/* num of MDS_MUs */
/* delivered to remote appls */

unsigned long parse_errors; /* number of MDS_MUs received */
/* with parse errors */

unsigned long failed_deliveries; /* number of MDS_MUs where */
/* delivery failed */

unsigned long ds_searches_performed;
/* number of DS searches done */

unsigned long unverified_errors; /* number of unverified errors */
unsigned char reserva[20]; /* reserved */

} QUERY_MDS_STATISTICS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_MDS_STATISTICS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

alerts_sent
Number of locally originated alerts sent using the MDS transport system.

alert_errors_rcvd
Number of error messages received by MDS indicating a delivery failure
for a message containing an alert.

QUERY_MDS_STATISTICS

Chapter 6. Query Verbs 345

uncorrelated_errors_rcvd
Number of error messages received by MDS indicating a delivery failure
for a message containing an alert. Delivery failure occurs when the error
message could not be correlated to an alert on the MDS send alert queue.
MDS maintains a fixed-size queue where it caches alerts sent to the
problem determination focal point. Once the queue reaches maximum size,
the oldest alert will be discarded and replaced by the new alert. If a
delivery error message is received, MDS attempts to correlate the error
message to a cached alert so that the alert can be held until the problem
determination focal point is restored.

Note: The two counts, alert_errors_rcvd and uncorrelated_errors_rcvd are
maintained such that the size of the send alert queue can be tuned.
An increasing uncorrelated_errors_rcvd over time indicates that the
send alert queue size is too small.

mds_mus_rcvd_local
Number of MDS_MUs received from local applications.

mds_mus_rcvd_remote
Number of MDS_MUs received from remote nodes using the
MDS_RECEIVE and MSU_HANDLER transaction programs.

mds_mus_delivered_local
Number of MDS_MUs successfully delivered to local applications.

mds_mus_delivered_remote
Number of MDS_MUs successfully delivered to a remote node using the
MDS_SEND transaction program.

parse_errors
Number of MDS_MUs received that contained header format errors.

failed_deliveries
Number of MDS_MUs this node failed to deliver.

ds_searches_performed
Reserved.

unverified_errors
Reserved.

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_MDS_STATISTICS

346 System Management Programming

QUERY_MODE

QUERY_MODE returns information about modes that have been used by a local
LU with a particular partner LU. The information is returned as a list in one of
two formats, either summary or detailed information. To obtain information about
a specific mode, or to obtain the list information in several chunks, the
mode_name field should be set. Otherwise (if the list_options field is set to
AP_FIRST_IN_LIST), this field will be ignored. Note that the lu_name (or lu_alias)
and plu_alias (or fqplu_name) fields must always be set. The lu_name, if nonzero,
will be used in preference to the lu_alias. See “Querying the Node” on page 10 for
background on how the list formats are used.

The list only includes information for the local LU specified by the lu_name (or
lu_alias). This list is ordered by the fqplu_name followed by the mode_name.
Ordering is by name length first, and then by ASCII lexicographical ordering for
names of the same length (in accordance with normal MIB ordering).

If plu_alias is set to all zeros, the fqplu_name value will be used, otherwise the
plu_alias is always used and the fqplu_name is ignored.

The list of modes returned can be filtered according to whether they currently have
any active sessions. If filtering is desired, the active_sessions field should be set to
AP_YES (otherwise this field should be set to AP_NO). This verb returns
information that is determined once the mode begins to be used by a local LU
with a partner LU. The QUERY_MODE_DEFINITION verb returns definition
information only.

VCB Structure
typedef struct query_mode
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_alias[8]; /* LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char mode_name[8]; /* mode name */
unsigned char active_sessions; /* active sessions only filter */

} QUERY_MODE;

typedef struct mode_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char mode_name[8]; /* mode name */
unsigned char description[RD_LEN];

/* resource description */
unsigned short sess_limit; /* current session limit */

QUERY_MODE

Chapter 6. Query Verbs 347

unsigned short act_sess_count; /* curr active sessions count */
unsigned char fqplu_name[17]; /* partner LU name */
unsigned char reserv1[3]; /* reserved */

} MODE_SUMMARY;

typedef struct mode_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char mode_name[8]; /* mode name */
unsigned char description[RD_LEN];

/* resource description */
unsigned short sess_limit; /* session limit */
unsigned short act_sess_count; /* currently active sess count */
unsigned char fqplu_name[17]; /* partner LU name */
unsigned char reserv1[3]; /* reserved */
unsigned short min_conwinners_source;

/* min conwinner sess limit */
unsigned short min_conwinners_target;

/* min conloser limit */
unsigned char drain_source; /* drain source? */
unsigned char drain_partner; /* drain partner? */
unsigned short auto_act; /* auto activated conwinner */

/* session limit */
unsigned short act_cw_count; /* active conwinner sess count */
unsigned short act_cl_count; /* active conloser sess count */
unsigned char sync_level; /* synchronization level */
unsigned char default_ru_size; /* default RU size to maximize */

/* performance */
unsigned short max_neg_sess_limit; /* max negotiated session limit */
unsigned short max_rcv_ru_size; /* max receive RU size */
unsigned short pending_session_count;

/* pending sess count for mode */
unsigned short termination_count; /* termination count for mode */
unsigned char implicit; /* implicit or explicit entry */
unsigned char reserva[15]; /* reserved */

} MODE_DETAIL;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_MODE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

QUERY_MODE

348 System Management Programming

AP_DETAIL
Returns detailed information.

The combination of lu_name (or lu_alias if the lu_name is set to
all zeros), plu_alias (or fqplu_name if the plu_alias is set to all
zeros) and mode_name specified (see the following parameters,
lu_name, plu_alias, and mode_name) represents an index value
that is used to specify the starting point of the actual information
to be returned . When a partner LU index is specified, information
about other partner LUs is included in the list, if possible.

AP_FIRST_IN_LIST
If plu_alias and fqplu_name are set to all zeros, the returned list
starts from the first partner LU in the list, and the mode_name
index is ignored. If either plu_alias or fqplu_name is specified, the
list starts at this index, but the mode_name index value is ignored,
and the returned list starts from the first mode entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

lu_name
LU name. This name is an 8-byte type-A EBCDIC character string. If this
field is set to all zeros, the lu_alias field will be used for determining the
index.

lu_alias
Locally defined LU alias. This is an 8-byte string in a locally displayable
character set. This field is only significant if the lu_name field is set to all
zeros, in which case all 8 bytes are significant and must be set. If both the
lu_name and the lu_alias are set to all zeros then the LU associated with
the control point (the default LU) is used.

plu_alias
Partner LU alias. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant and must be set. If this field is set to all
zeros, the fqplu_name field will be used for determining the index.

fqplu_name
17-byte fully qualified network name for the partner LU. This name is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

mode_name
Mode name, which designates the network properties for a group of
sessions. This is an 8-byte alphanumeric type-A EBCDIC string (starting
with a letter), padded to the right with EBCDIC spaces. This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

active_sessions
Active session filter. Specifies whether the returned modes should be
filtered according to whether they currently have any active sessions
(AP_YES or AP_NO).

QUERY_MODE

Chapter 6. Query Verbs 349

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

mode_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

mode_summary.mode_name
Mode name, which designates the network properties for a group of
sessions. This is an 8-byte alphanumeric type-A EBCDIC string (starting
with a letter), padded to the right with EBCDIC spaces.

mode_summary.description
Resource description (as specified on DEFINE_MODE). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

mode_summary.sess_limit
Current session limit.

mode_summary.act_sess_count
Total number of active sessions using the mode. If the active_sessions filter
has been set to AP_YES, then this field will always be greater than zero.

mode_summary.fqplu_name
17-byte fully qualified network name for the partner LU. This name is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

mode_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

mode_detail.mode_name
Mode name, which designates the network properties for a group of
sessions. This is an 8-byte alphanumeric type-A EBCDIC string (starting
with a letter), padded to the right with EBCDIC spaces.

mode_detail.description
Resource description (as specified on DEFINE_MODE).

mode_detail.sess_limit
Current session limit.

QUERY_MODE

350 System Management Programming

mode_detail.act_sess_count
Total number of active sessions using the mode. If the active_sessions filter
has been set to AP_YES, then this field will always be greater than zero.

mode_detail.fqplu_name
17-byte fully qualified network name for the partner LU. This name is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

mode_detail.min_conwinners_source
Specifies the minimum number of sessions on which the local LU is the
contention winner (or first speaker).

mode_detail.min_conwinners_target
Specifies the minimum number of sessions on which the local LU is the
contention loser (or bidder).

mode_detail.drain_source
Specifies whether the local LU satisfies waiting session requests before
deactivating a session when session limits are changed or reset (AP_NO or
AP_YES).

mode_detail.drain_partner
Specifies whether the partner LU satisfies waiting session requests before
deactivating a session when session limits are changed or reset (AP_NO or
AP_YES).

mode_detail.auto_act
Number of contention winner sessions that are automatically activated
following the Change Number of Sessions exchange with the partner LU.

mode_detail.act_cw_count
Number of active, contention winner (or first speaker) sessions using this
mode. (The local LU does not need to bid before using one of these
sessions.)

mode_detail.act_cl_count
Number of active, contention loser (or bidder) sessions using this mode.
(The local LU must bid before using one of these sessions.)

mode_detail.sync_level
Specifies the synchronization levels supported by the mode (AP_NONE,
AP_CONFIRM, or AP_SYNCPT).

mode_detail.default_ru_size
Specifies whether a default upper bound for the maximum RU size will be
used. If this parameter has a value of AP_YES, the
mode_chars.max_ru_size_upp field specified on define_mode is ignored,
and the upper bound for the maximum RU size is set to the link BTU size
minus the size of the TH and the RH.

AP_YES
AP_NO

mode_detail.max_neg_sess_limit
Maximum negotiable session limit. Specifies the maximum session limit for
the mode name that a local LU can use during its CNOS processing as the
target LU.

mode_detail.max_rcv_ru_size
Maximum received RU size.

QUERY_MODE

Chapter 6. Query Verbs 351

mode_detail.pending_session_count
Specifies the number of sessions pending (waiting for session activation to
complete).

mode_detail.termination_count
If a previous CNOS verb has caused the mode session limit to be reset to
zero, there might have been conversations using, or waiting to use these
sessions. This field is a count of how many of these sessions have not yet
been deactivated.

mode_detail.implicit
Specifies whether the entry was put in place because of an implicit
(AP_YES) or explicit (AP_NO) definition.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_MODE_NAME

AP_INVALID_PLU_NAME
AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_MODE

352 System Management Programming

QUERY_MODE_DEFINITION

QUERY_MODE_DEFINITION returns both information previously passed in on a
DEFINE_MODE verb and information about SNA-defined default modes.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific mode, or to obtain the
list information in several chunks, the mode_name field should be set. Otherwise
(if the list_options field is set to AP_FIRST_IN_LIST), this field will be ignored. See
“Querying the Node” on page 10 for background on how the list formats are used.

This list is ordered by the mode_name. Ordering is by name length first, and then
by ASCII lexicographical ordering for names of the same length (in accordance
with normal MIB ordering).

If AP_LIST_FROM_NEXT is selected, the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

This verb returns definition information only. The QUERY_MODE verb returns
information that is determined once the mode starts to be used by a local LU with
a partner LU.

VCB Structure
typedef struct query_mode_definition
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char mode_name[8]; /* mode name */

} QUERY_MODE_DEFINITION;

typedef struct mode_def_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char mode_name[8]; /* mode name */
unsigned char description[RD_LEN];

/* resource description */
} MODE_DEF_SUMMARY;

typedef struct mode_def_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char mode_name[8]; /* mode name */
MODE_CHARS mode_chars; /* mode characteristics */

} MODE_DEF_DETAIL;

typedef struct mode_chars
{

unsigned char description[RD_LEN];
/* resource description */

unsigned short max_ru_size_upp; /* max RU size upper bound */
unsigned char receive_pacing_win; /* receive pacing window */
unsigned char default_ru_size; /* default RU size to maximize */

/* performance */

QUERY_MODE_DEFINITION

Chapter 6. Query Verbs 353

unsigned short max_neg_sess_lim; /* max negotiable session limit */
unsigned short plu_mode_session_limit;

/* LU-mode session limit */
unsigned short min_conwin_src; /* min source contention winner */

/* sessions */
unsigned char cos_name[8]; /* class-of-service name */
unsigned char cryptography; /* cryptography */
unsigned char compression; /* compression */
unsigned short auto_act; /* initial auto-activation count*/
unsigned short min_conloser_src; /* min source contention loser */
unsigned short max_ru_size_low /* maximum RU size lower bound */
unsigned short max_receive_pacing_win;

/* maximum receive pacing window*/
} MODE_CHARS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_MODE_DEFINITION

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The mode_name specified (see the following parameter,
mode_name) represents an index value that is used to specify the
starting point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

mode_name
Mode name, which designates the network properties for a group of
sessions. This is an 8-byte alphanumeric type-A EBCDIC string (starting

QUERY_MODE_DEFINITION

354 System Management Programming

with a letter), padded to the right with EBCDIC spaces. This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

mode_def_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

mode_def_summary.mode_name
8-byte mode name, which designates the network properties for a group of
sessions.

mode_def_summary.description
Resource description (as specified on DEFINE_MODE). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

mode_def_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

mode_def_detail.mode_name
Mode name, which designates the network properties for a group of
sessions. This is an 8-byte alphanumeric type-A EBCDIC string (starting
with a letter), padded to the right with EBCDIC spaces.

mode_def_detail.mode_chars.description
Resource description (as specified on DEFINE_MODE). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

mode_def_detail.mode_chars.max_ru_size_upp
Upper boundary for the maximum RU size to be used on sessions with
this mode name.

mode_def_detail.mode_chars.receive_pacing_win
Specifies the session pacing window for the sessions when fixed pacing is
used. Specifies the preferred minimum window size when adaptive pacing
is used.

mode_def_detail.mode_chars.default_ru_size
Specifies whether a default upper bound for the maximum RU size will be
used. If this parameter specifies AP_YES, max_ru_size_upp is ignored.

QUERY_MODE_DEFINITION

Chapter 6. Query Verbs 355

AP_YES
AP_NO

mode_def_detail.mode_chars.max_neg_sess_lim
Maximum negotiable session limit. Value used to negotiate the maximum
number of sessions permissible between the local LU and the partner LU
for the designated mode name.

mode_def_detail.mode_chars.plu_mode_session_limit
Session limit to negotiate initially on this mode. This value indicates a
preferred session limit and is used for implicit CNOS.

Range: 0–32767

mode_def_detail.mode_chars.min_conwin_src
Minimum number of contention winner sessions that can be activated by
local LU using this mode.

Range: 0–32767

mode_def_detail.mode_chars.cos_name
Class-of-service name. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.

mode_def_detail.mode_chars.cryptography
Specifies whether cryptography is used on sessions using this mode
(AP_NONE or AP_MANDATORY).

mode_def_detail.mode_chars.compression
Specifies the use of compression for sessions activated using this mode.

AP_COMP_PROHIBITED
RLE compression is not supported on sessions for this mode.

AP_COMP_REQUESTED
RLE compression is supported and requested (but not mandated)
on sessions for this mode.

mode_def_detail.mode_chars.auto_act
Specifies the number of session to be auto-activated for this mode. The
value is used for implicit CNOS.

Range: 0–32767

mode_def_detail.mode_chars.min_consloser_src
Specifies the minimum number of contention loser sessions to be activated
by any one local LU for this mode. This value is used when CNOS (change
number of sessions) exchange is initiated implicitly.

Range: 0–32767

mode_def_detail.mode_chars.max_ru_size_low
Specifies the lower bound for the maximum size of RUs sent and received
on sessions in this mode. This value is used when the maximum RU size is
negotiated during session activation.

Range: 0–61140

The field is ignored if default_ru_size is set to AP_YES.

mode_def_detail.mode_chars.max_receive_pacing_win
Specifies the maximum pacing window for sessions in this mode. For

QUERY_MODE_DEFINITION

356 System Management Programming

adaptive pacing, this value is used to limit the receive pacing window it
grants. For fixed pacing, this field is not used.

Note: The Program always uses adaptive pacing unless the adjacent node
specifies that it does not support it.

Range: 0–32767

The value of zero means that there is no upper bound.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_MODE_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_MODE_DEFINITION

Chapter 6. Query Verbs 357

QUERY_MODE_TO_COS_MAPPING

QUERY_MODE_TO_COS_MAPPING returns information about the mode to COS
mapping.

The information is returned as a formatted list. To obtain information about a
specific mode, or to obtain the list information in several chunks, the mode_name
field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 10 for background on how the list
formats are used.

This list is ordered by the mode_name. Ordering is by name length first, and then
by ASCII lexicographical ordering for names of the same length (in accordance
with IBM's 6611 APPN MIB ordering). If AP_LIST_FROM_NEXT is selected, the
returned list starts from the next entry according to the defined ordering (whether
the specified entry exists or not).

If the default COS (which unknown modes are mapped to) has been overridden
using DEFINE_MODE, QUERY_MODE_TO_COS_MAPPING also returns an entry
with null mode_name (all zeros) and the default COS. This entry is first in the
ordering.

VCB Structure
typedef struct query_mode_to_cos_mapping
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char mode_name[8]; /* mode name */

} QUERY_MODE_TO_COS_MAPPING;

typedef struct mode_to_cos_mapping_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char mode_name[8]; /* mode name */
unsigned char cos_name[8]; /* COS name */
unsigned char reserva[20]; /* reserved */

} MODE_TO_COS_MAPPING_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_MODE_TO_COS_MAPPING

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

QUERY_MODE_TO_COS_MAPPING

358 System Management Programming

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information: The
mode_name specified (see the following parameter, mode_name)
represents an index value that is used to specify the starting point of the
actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

mode_name
Mode name, which designates the network properties for a group of
sessions. This is an 8-byte alphanumeric type-A EBCDIC string (starting
with a letter), padded to the right with EBCDIC spaces. This field is
ignored if list_options is set to AP_FIRST_IN_LIST. This can be set to all
zeros to indicate the entry for the default COS.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

mode_to_cos_mapping_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

QUERY_MODE_TO_COS_MAPPING

Chapter 6. Query Verbs 359

mode_to_cos_mapping_data.mode_name
8-byte mode name, which designates the network properties for a group of
sessions. If this is set to all zeros, it indicates the entry for the default COS.

mode_to_cos_mapping_data.cos_name
Class-of-service name associated with the mode name. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_MODE_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_MODE_TO_COS_MAPPING

360 System Management Programming

QUERY_NMVT_APPLICATION

QUERY_NMVT_APPLICATION returns a list of applications that have registered
for network management vector transport (NMVT) level messages by previously
issuing the REGISTER_NMVT_APPLICATION verb (see Chapter 15, “Management
Services Verbs,” on page 617 for more details).

The information is returned as a list. To obtain information about a specific
application, or to obtain the list information in several chunks, the application
field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 10 for background on how the list
formats are used.

VCB Structure
typedef struct query_nmvt_application
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char application[8]; /* application */

} QUERY_NMVT_APPLICATION;

typedef struct nmvt_application_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char application[8]; /* application name */
unsigned short ms_vector_key_type; /* MS vector key accepted */

/* by appl */
unsigned char conversion_required;

/* conversion to MDS_MU required */
unsigned char reserv[5]; /* reserved */
unsigned char reserva[20]; /* reserved */

} NMVT_APPLICATION_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_NMVT_APPLICATION

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

QUERY_NMVT_APPLICATION

Chapter 6. Query Verbs 361

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information: The
application specified (see the following parameter, application) represents
an index value that is used to specify the starting point of the actual
information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

application
Application name. The name is an 8-byte alphanumeric type-A EBCDIC
character string or all EBCDIC zeros. This field is ignored if list_options is
set to AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
The number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

nmvt_application_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

nmvt_application_data.application
Name of registered application. The name is an 8-byte alphanumeric
type-A EBCDIC character string.

nmvt_application_data.ms_vector_key_type
Management services vector key accepted by the application. When the
application registers for NMVT messages, it specifies which management

QUERY_NMVT_APPLICATION

362 System Management Programming

services vector keys it will accept. For more information on NMVT
application registration see Chapter 15, “Management Services Verbs,” on
page 617.

nmvt_application_data.conversion_required
Specifies whether the registered application requires messages to be
converted from NMVT to MDS_MU format (AP_YES or AP_NO). When
the application registers for NMVT messages, it will specify whether this
conversion is required. For more information on NMVT application
registration, see Chapter 15, “Management Services Verbs,” on page 617.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_APPLICATION_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_NMVT_APPLICATION

Chapter 6. Query Verbs 363

QUERY_NN_TOPOLOGY_NODE

This verb applies only to Communications Server.

Each network node maintains a network topology database that holds information
about the network nodes, VRNs and network-node-to-network-node TGs in the
network.

QUERY_NN_TOPOLOGY_NODE returns information about the network node and
VRN entries in this database.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific node or to obtain the
list information in several chunks, the node_name, node_type and frsn fields
should be set. Otherwise (if the list_options field is set to AP_FIRST_IN_LIST),
these fields are ignored. See “Querying the Node” on page 10 for background on
how the list formats are used.

This list is by node_name, node_type, and frsn. The node_name is ordered by
name length first, and then by ASCII lexicographical ordering for names of the
same length (in accordance with IBM's 6611 APPN MIB ordering). The node_type
field follows the order: AP_NETWORK_NODE, AP_VRN. The frsn is ordered
numerically.

If AP_LIST_INCLUSIVE is selected, the returned list starts from the first valid
record of that name.

If AP_LIST_FROM_NEXT is selected, the list will begin from the first valid record
with a name following the one specified.

If the frsn field (flow reduction sequence number) is set to a nonzero value, then
only database entries with FRSNs higher than this are returned. This allows a
consistent topology database to be returned in a number of chunks by first getting
the node's current FRSN. This would work as follows:
1. Issue QUERY_NODE, which returns node's current FRSN.
2. Issue as many QUERY_NN_TOPOLOGY_NODE (with FRSN set to zero) as

necessary to get all the database entries in chunks.
3. Issue QUERY_NODE again and compare the new FRSN with the one returned

in step 1.
4. If the two FRSNs are different, then the database has changed, so issue a

QUERY_NN_TOPOLOGY_NODE with the FRSN set to 1 greater than the
FRSN supplied in step 1.

VCB Structure
typedef struct query_nn_topology_node
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */

QUERY_NN_TOPOLOGY_NODE

364 System Management Programming

unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char node_name[17]; /* network qualified node name */
unsigned char node_type; /* node type */
unsigned long frsn; /* flow reduction sequence num */

} QUERY_NN_TOPOLOGY_NODE;

Note: If the frsn field is set to a nonzero value, then only node entries with FRSNs
greater than the one specified are returned. If it is set to zero, then all node
entries are returned.

typedef struct nn_topology_node_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char node_name[17]; /* network qualified node name */
unsigned char node_type; /* node type */

} NN_TOPOLOGY_NODE_SUMMARY;

typedef struct nn_topology_node_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char node_name[17]; /* network qualified node name */
unsigned char node_type; /* node type */
unsigned short days_left; /* days left until entry purged */
unsigned char reserv1[2]; /* reserved */
unsigned long frsn; /* flow reduction sequence num */
unsigned long rsn; /* resource sequence number */
unsigned char rar; /* route additional resistance */
unsigned char status; /* node status */
unsigned char function_support; /* function support */
unsigned char reserv2; /* reserved */
unsigned char branch_aware; /* node is branch aware */
unsigned char reserva[20]; /* reserved */

} NN_TOPOLOGY_NODE_DETAIL;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_NN_TOPOLOGY_NODE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

QUERY_NN_TOPOLOGY_NODE

Chapter 6. Query Verbs 365

AP_DETAIL
Returns detailed information.

The combination of the node_name, node_type, and frsn specified
(see the following parameters, node_name, node_type, and frsn)
represents an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

node_name
Network qualified node name from network topology database. This name
is 17 bytes long and is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot and is right padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

node_type
Type of the node. This can be one of the following values:

AP_NETWORK_NODE
AP_VRN

If the node_type is unknown, AP_LEARN_NODE must be specified.

frsn Flow Reduction Sequence Number. If this is nonzero, then only nodes with
a FRSN greater than or equal to this value are returned.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

nn_topology_node_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

QUERY_NN_TOPOLOGY_NODE

366 System Management Programming

nn_topology_node_summary.node_name
Network qualified node name from network topology database. This name
is 17 bytes long and is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot and is right padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

nn_topology_node_summary.node_type
Type of the node. This is set to one of the following values:

AP_NETWORK_NODE
AP_VRN

nn_topology_node_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

nn_topology_node_detail.node_name
Network qualified node name from network topology database. This name
is 17 bytes long and is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot and is right padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

nn_topology_node_detail.node_type
Type of the node. This is set to one of the following values:

AP_NETWORK_NODE
AP_VRN

nn_topology_node_detail.days_left
Number of days before deletion of this node entry from the topology
database. This will be set to zero for the local node entry (this entry is
never deleted).

nn_topology_node_detail.frsn
Flow Reduction Sequence Number. It indicates the last time that this
resource was updated at the local node.

nn_topology_node_detail.rsn
Resource Sequence Number. This is assigned by the network node that
owns this resource.

nn_topology_node_detail.rar
The node's route additional resistance.

nn_topology_node_detail.status
Specifies the status of the node. This can be AP_UNCONGESTED or one
or more of the following values ORed together:

AP_CONGESTED
The number of ISR sessions is greater than the
isr_sessions_upper_threshold.

AP_ERR_DEPLETED
The number of endpoint sessions has reached the maximum
specified.

AP_IRR_DEPLETED
The number of ISR sessions has reached the maximum.

QUERY_NN_TOPOLOGY_NODE

Chapter 6. Query Verbs 367

AP_QUIESCING
A STOP_NODE or type AP_QUIESCE or AP_QUIESCE_ISR has
been issued

nn_topology_node_detail.function_support
Specifies which functions are supported. This can be one or more of the
following values:

AP_PERIPHERAL BORDER_NODE
Peripheral Border Node function is supported.

AP_EXTENDED BORDER_NODE
Extended Border Node function is supported.

AP_CDS
Node supports central directory server function.

AP_GATEWAY
Node is a gateway Node. (This function is not yet architecturally
defined.)

AP_INTERCHANGE_NODE
This node is a Gateway Node. (This function is not yet
architecturally defined.)

AP_ISR
Node supports intermediate session routing.

AP_HPR
Node supports the base functions of High-Performance Routing.

AP_RTP_TOWER
Node supports the RTP tower of HPR.

AP_CONTROL_OVER_RTP_TOWER
Node supports the control flows over the RTP tower.

Note: The AP_CONTROL_OVER_RTP_TOWER corresponds to the
setting of both AP_HPR and AP_RTP_TOWER.

nn_topology_node_detail.branch_aware
Specifies whether the node is branch aware.

AP_NO
The node is not branch aware.

AP_YES
The node is branch aware.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_NODE

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

QUERY_NN_TOPOLOGY_NODE

368 System Management Programming

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_NN_TOPOLOGY_NODE

Chapter 6. Query Verbs 369

QUERY_NN_TOPOLOGY_STATS

This verb applies only to Communications Server.

QUERY_NN_TOPOLOGY_STATS returns statistical information about the topology
database and is only issued at a network node.

VCB Structure
typedef struct query_nn_topology_stats
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned long max_nodes; /* max num of nodes in database */
unsigned long cur_num_nodes; /* current number of nodes in */

/* database */
unsigned long node_in_tdus; /* number of TDUs received */
unsigned long node_out_tdus; /* number of TDUs sent */
unsigned long node_low_rsns; /* node updates received with */

/* low RSNs */
unsigned long node_equal_rsns; /* node updates in with */

/* equal RSNs */
unsigned long node_good_high_rsns;

/* node updates in with */
/* high RSNs */

unsigned long node_bad_high_rsns;
/* node updates in with */
/* high and odd RSNs */

unsigned long node_state_updates; /* number of node updates sent */
unsigned long node_errors; /* number of node entry */

/* errors found */
unsigned long node_timer_updates; /* number of node records built */

/* due to timer updates */
unsigned long node_purges; /* num node records purged */
unsigned long tg_low_rsns; /* TG updates received with */

/* low RSNs */
unsigned long tg_equal_rsns; /* TG updates in with equal RSNs */
unsigned long tg_good_high_rsns; /* TG updates in with high RSNs */
unsigned long tg_bad_high_rsns; /* TG updates in with high */

/* and odd RSNs */
unsigned long tg_state_updates; /* number of TG updates sent */
unsigned long tg_errors; /* number of TG entry errors */

/* found */
unsigned long tg_timer_updates; /* number of node records */

/* built due to timer updates */
unsigned long tg_purges; /* num node records purged */
unsigned long total_route_calcs; /* num routes calculated for COS */
unsigned long total_route_rejs; /* num failed route calculations */
unsigned long total_tree_cache_hits;

/* total num of tree cache hits */
unsigned long total_tree_cache_misses;

/* total num of tree cache */
/* misses */

unsigned counter
total_tdu_wars; /* total number TDU war */

unsigned char reserva[16]; /* reserved */
} QUERY_NN_TOPOLOGY_STATS;

QUERY_NN_TOPOLOGY_STATS

370 System Management Programming

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_NN_TOPOLOGY_STATS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

max_nodes
Maximum number of node records in the topology database (zero means
unlimited).

cur_num_nodes
Current number of nodes in this node's topology database. If this value
exceeds the maximum number of nodes allowed, an Alert is issued.

node_in_tdus
Total number of topology database updates (TDUs) received by this node.

node_out_tdus
Total number of topology database updates (TDUs) built by this node to be
sent to all adjacent network nodes since the last initialization.

node_low_rsns
Total number of topology node updates received by this node with an RSN
less than the current RSN. Both even and odd RSNs are included in this
count. (These TDUs are not errors, but result when TDUs are broadcast to
all adjacent network nodes. No update to this node's topology database
occurs, but this node sends a TDU with its higher RSN to the adjacent
node that sent this low RSN.)

node_equal_rsns
Total number of topology node updates received by this node with an RSN
equal to the current RSN. Both even and odd RSNS are included in this
count. (These TDUs are not errors, but result when TDUs are broadcast to
all adjacent network nodes. No update to this node's topology database
occurs.)

node_good_high_rsns
Total number of topology node updates received by this node with an RSN
greater than the current RSN. The node updates its topology and
broadcasts a TDU to all adjacent network nodes. It is not required to send
a TDU to the sender of this update, because that node already has the
update.

node_bad_high_rsns
Total number of topology node updates received by this node with an odd
RSN greater than the current RSN. These updates represent a topology
inconsistency detected by one of the APPN network nodes. The node
updates its topology and broadcasts a TDU to all adjacent network nodes.

node_state_updates
Total number of topology node updates built as a result of internally

QUERY_NN_TOPOLOGY_STATS

Chapter 6. Query Verbs 371

detected node state changes that affect APPN topology and routing.
Updates are sent by TDUs to all adjacent network nodes.

node_errors
Total number of topology node update inconsistencies detected by this
node. This occurs when this node attempts to update its topology database
and detects a data inconsistency. This node creates a TDU with the current
RSN incremented to the next odd number and broadcasts it to all adjacent
network nodes.

node_timer_updates
Total number of topology node updates built for this node's resource due
to timer updates. Updates are sent by TDUs to all adjacent network nodes.
These updates ensure that other network nodes do not delete this node's
resource from their topology database.

node_purges
Total number of topology node records purged from this node's topology
database. This occurs when a node record has not been updated in a
specified amount of time. The owning node is responsible for broadcasting
updates for its resource that it wants kept in the network topology.

tg_low_rsns
Total number of topology TG updates received by this node with an RSN
less than the current RSN. Both even and odd RSNs are included in this
count. (These TDUs are not errors, but result when TDUs are broadcast to
all adjacent network nodes. No update to this node's topology database
occurs, but this node sends a TDU with its higher RSN to the adjacent
node that sent this low RSN.)

tg_equal_rsns
Total number of topology TG updates received by this node with an RSN
equal to the current RSN. Both even and odd RSNs are included in this
count. (These TDUs are not errors, but result when TDUs are broadcast to
all adjacent network nodes. No update to this node's topology database
occurs.)

tg_good_high_rsns
Total number of topology TG updates received by this node with an RSN
greater than the current RSN. The node updates its topology and
broadcasts a TDU to all adjacent network nodes.

tg_bad_high_rsns
Total number of topology TG updates received by this node with an odd
RSN greater than the current RSN. These updates represent a topology
inconsistency detected by one of the APPN Network Nodes. The node
updates its topology and broadcasts a TDU to all adjacent network nodes.

tg_state_updates
Total number of topology TG updates built as a result of internally
detected node state changes that affect APPN topology and routing.
Updates are sent by TDUs to all adjacent network nodes.

tg_errors
Total number of topology TG update inconsistencies detected by this node.
This occurs when this node attempts to update its topology database and
detects a data inconsistency. This node creates a TDU with the current RSN
incremented to the next odd number and broadcasts it to all adjacent
network nodes.

QUERY_NN_TOPOLOGY_STATS

372 System Management Programming

tg_timer_updates
Total number of topology TG updates built for this node's resource due to
timer updates. Updates are sent by TDUs to all adjacent network nodes.
These updates ensure that other network nodes do not delete this node's
resource from their topology database.

tg_purges
Total number of topology TG records purged from this node's topology
database. This occurs when a node record has not been updated in a
specified amount of time. The owning node is responsible for broadcasting
updates for its resource that it wants kept in the network topology.

total_route_calcs
Number of routes calculated for all classes of service since the last.

total_route_rejs
Number of route requests for all classes of service that could not be
calculated since the last initialization.

total_tree_cache_hits
Number of route computations that were satisfied by a cached routing tree.
Note that this number may be greater than the total number of computed
routes, because each route may require inspection of several trees.

total_tree_cache_misses
Number of route computations that were not satisfied by a cached routing
tree, so that a new routing tree had to be built.

total_tdu_wars
Number of TDU wars the local node has detected and prevented.

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_NN_TOPOLOGY_STATS

Chapter 6. Query Verbs 373

QUERY_NN_TOPOLOGY_TG

This verb applies only to Communications Server.

Each network node maintains a network topology database which holds
information about the network nodes, VRNs and network-node-to-network-node
TGs in the network. QUERY_NN_TOPOLOGY_TG returns information about the
TG entries in this database.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific node or to obtain the
list information in several chunks, the owner, owner_type, dest, dest_type,
tg_num, and frsn fields should be set. Otherwise (if the list_options field is set to
AP_FIRST_IN_LIST), these fields are ignored. See “Querying the Node” on page 10
for background on how the list formats are used.

This list is by owner, owner_type, dest, dest_type, tg_num, and frsn. The owner
name and dest name are ordered by name length first, and then by ASCII
lexicographical ordering for names of the same length (in accordance with IBM's
6611 APPN MIB ordering). The owner_type and dest_type follow the order:
AP_NETWORK_NODE, AP_VRN. The tg_num and frsn are ordered numerically.

If AP_LIST_INCLUSIVE is selected, the returned list starts from the first valid
record of that name.

If AP_LIST_FROM_NEXT is selected, the list will begin from the first valid record
with a name following the one specified.

If the frsn field (flow reduction sequence number) is set to a nonzero value, then
only database entries with FRSNs higher than this are returned. This allows a
consistent topology database to be returned in a number of chunks by first getting
the node's current FRSN. This works as follows:
1. Issue QUERY_NODE, which returns the node's current FRSN.
2. Issue as many QUERY_NN_TOPOLOGY_TG (with FRSN set to zero) as

necessary to get all the database entries in chunks.
3. Issue QUERY_NODE again and compare the new FRSN with the one returned

in step 1.
4. If the two FRSNs are different, then the database has changed, so issue a

QUERY_NN_TOPOLOGY_TG with the FRSN set to 1 greater than the FRSN
supplied in step 1.

VCB Structure
typedef struct query_nn_topology_tg
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

QUERY_NN_TOPOLOGY_TG

374 System Management Programming

unsigned char reserv3; /* reserved */
unsigned char owner[17]; /* node that owns the TG */
unsigned char owner_type; /* type of node that owns the TG*/
unsigned char dest[17]; /* TG destination node */
unsigned char dest_type; /* TG destination node type */
unsigned char tg_num; /* TG number */
unsigned char reserv1; /* reserved */
unsigned long frsn; /* flow reduction sequence num */

} QUERY_NN_TOPOLOGY_TG;

typedef struct topology_tg_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char owner[17]; /* node that owns the TG */
unsigned char owner_type; /* type of node that owns the TG*/
unsigned char dest[17]; /* TG destination node */
unsigned char dest_type; /* TG destination node type */
unsigned char tg_num; /* TG number */
unsigned char reserv3[1]; /* reserved */
unsigned long frsn; /* flow reduction sequence num */

} TOPOLOGY_TG_SUMMARY;

typedef struct topology_tg_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char owner[17]; /* node that owns the TG */
unsigned char owner_type; /* type of node that owns the TG*/
unsigned char dest[17]; /* TG destination node */
unsigned char dest_type; /* TG destination node type */
unsigned char tg_num; /* TG number */
unsigned char reserv3[1]; /* reserved */
unsigned long frsn; /* flow reduction sequence num */
unsigned short days_left; /* days left until entry purged */
LINK_ADDRESS dlc_data /* DLC signalling data */
unsigned long rsn; /* resource sequence number */
unsigned char status; /* node status */
TG_DEFINED_CHARS tg_chars; /* TG characteristics */
unsigned char subarea_number[4];

/* subarea number */
unsigned char tg_type; /* TG type */
unsigned char intersubnet_tg; /* intersubnet TG */
unsigned char cp_cp_session_active;

/* CP-CP session is active */
unsigned char branch_tg; /* TG is a branch TG */
unsigned char reserva[12]; /* reserved */

} TOPOLOGY_TG_DETAIL;

typedef struct link_address
{

unsigned short length; /* length */
unsigned short reserve1; /* reserved */
unsigned char address[MAX_LINK_ADDR_LEN];

/* address */
} LINK_ADDRESS;

Note: If the frsn field is set to a nonzero value, then only node entries with that
FRSN are returned. If it is set to zero, then all node entries are returned.

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_NN_TOPOLOGY_TG

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

QUERY_NN_TOPOLOGY_TG

Chapter 6. Query Verbs 375

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The combination of the owner, owner_type, dest, dest_type,
tg_num, and frsn specified (see the following parameters, owner,
owner_type, dest, dest_type, tg_num, and frsn) represents an
index value that is used to specify the starting point of the actual
information to be returned .

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

owner Name of the TG's originating node. This name is 17 bytes long and is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot and is right padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.) This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

owner_type
Type of the node that owns the TG. This can be one of the following
values:

AP_NETWORK_NODE
AP_VRN

If the owner_type is unknown, AP_LEARN_NODE must be specified. This
field is ignored if list_options is set to AP_FIRST_IN_LIST.

dest Fully qualified destination node name for the TG. This name is 17 bytes
long and is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot and is right padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.) This field is ignored if list_options is set to AP_FIRST_IN_LIST.

QUERY_NN_TOPOLOGY_TG

376 System Management Programming

dest_type
Type of the destination node for this TG. This can be one of the following
values:

AP_NETWORK_NODE
AP_VRN

If the dest_type is unknown, AP_LEARN_NODE must be specified. This
field is ignored if list_options is set to AP_FIRST_IN_LIST.

tg_num
Number associated with the TG. This field is ignored if list_options is set
to AP_FIRST_IN_LIST.

frsn Flow Reduction Sequence Number. If this is nonzero, then only nodes with
a FRSN greater than or equal to this value are returned.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

topology_tg_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

topology_tg_summary.owner
Name of the TG's originating node. This name is 17 bytes long and is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot and is right padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

topology_tg_summary.owner_type
Type of the node that owns the TG. This is set to one of the following
values:

AP_NETWORK_NODE
AP_VRN

topology_tg_summary.dest
Fully qualified destination node name for the TG. This name is 17 bytes
long and is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot and is right padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

QUERY_NN_TOPOLOGY_TG

Chapter 6. Query Verbs 377

topology_tg_summary.dest_type
Type of the destination node for this TG. This is set to one of the following
values:

AP_NETWORK_NODE
AP_VRN

topology_tg_summary.tg_num
Number associated with the TG.

topology_tg_summary.frsn
Flow Reduction Sequence Number. It indicates the last time that this
resource was updated at the local node.

topology_tg_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

topology_tg_detail.owner
Name of the TG's originating node. This name is 17 bytes long and is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot and is right padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

topology_tg_detail.owner_type
Type of the node that owns the TG. This is set to one of the following
values:

AP_NETWORK_NODE
AP_VRN

topology_tg_detail.dest
Fully qualified destination node name for the TG. This name is 17 bytes
long and is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot and is right padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

topology_tg_detail.dest_type
Type of the destination node for this TG. This is set to one of the following
values:

AP_NETWORK_NODE
AP_VRN

topology_tg_detail.tg_num
Number associated with the TG.

topology_tg_detail.frsn
Flow Reduction Sequence Number. It indicates the last time that this
resource was updated at the local node.

topology_node_detail.days_left
Number of days before deletion of this node entry from the topology
database.

topology_tg_detail.dlc_data.length
Length of DLC address of connection to a VRN (set to zero if dest_type is
not AP_VRN).

QUERY_NN_TOPOLOGY_TG

378 System Management Programming

topology_tg_detail.dlc_data.address
DLC address of connection to VRN. This is set to zero if dest_type is not
AP_VRN.

topology_tg_detail.rsn
Resource Sequence Number. This is assigned by the network node that
owns this resource.

topology_tg_detail.status
Specifies the status of the TG. This can be one or more of the following
values ORed together:

AP_TG_OPERATIVE
AP_TG_QUIESCING
AP_TG_GARBAGE_COLLECT
AP_TG_CP_CP_SESSIONS
AP_TG_HPR
AP_TG_RTP
AP_TG_NONE

topology_tg_detail.tg_chars
TG characteristics (See “DEFINE_COS” on page 35).

topology_tg_detail.subarea_number
If the owner or destination node of the TG is subarea-capable, this field
contains the subarea number of the type 4 or type 5 node that owns the
link station associated with this TG on the subarea-capable node.
Otherwise, this field is set to all binary zeros.

topology_tg_detail.tg_type
TG type. This field takes one of the following values:

AP_APPN_OR_BOUNDARY_TG
APPN TG or boundary-function-based TG

AP_INTERCHANGE_TG
Interchange TG

AP_VIRTUAL_ROUTE_BASED_TG
Virtual-route-based TG

AP_UNKNOWN
The TG type of this TG reported in the topology is unknown.

topology_tg_detail.intersubnet.tg
This TG is an intersubnetwork TG. This field takes the following values:

AP_YES
AP_NO

topology_tg_detail.cp_cp_session_active
Specifies whether the owning node's contention winner CP-CP session is
active (AP_UNKNOWN, AP_NO or AP_YES).

topology_tg_detail.branch_tg
Specifies whether the TG is a branch TG.

AP_NO
The TG is not a branch TG.

QUERY_NN_TOPOLOGY_TG

Chapter 6. Query Verbs 379

AP_YES
The TG is a branch TG.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_TG

AP_INVALID_ORIGIN_NODE
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_NN_TOPOLOGY_TG

380 System Management Programming

QUERY_NODE

QUERY_NODE returns node specific information and statistics. In addition to
returning information determined dynamically during execution, QUERY_NODE
also returns parameters which are set during node initialization.

VCB Structure
Format 2
typedef struct query_node
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
CP_CREATE_PARMS cp_create_parms; /* create parameters */
unsigned long up_time; /* time since node started */
unsigned long mem_size; /* size of memory available */
unsigned long mem_used; /* size of memory used */
unsigned long mem_warning_threshold;

/* memory constrained */
/* threshold */

unsigned long mem_critical_threshold;
/* memory critical threshold */

unsigned char nn_functions_supported;
/* NN functions supported */

unsigned char functions_supported;
/* functions supported */

unsigned char en_functions_supported;
/* EN functions supported */

unsigned char nn_status; /* node status. One or more of */
unsigned long nn_frsn; /* NN flow reduction */

/* sequence number */
unsigned long nn_rsn; /* Resource sequence number */
unsigned short def_ls_good_xids; /* Good XIDs for defined */

/* link stations */
unsigned short def_ls_bad_xids; /* Bad XIDs for defined */

/* link stations */
unsigned short dyn_ls_good_xids; /* Good XIDs for dynamic */

/* link stations */
unsigned short dyn_ls_bad_xids; /* Bad XIDs for dynamic */

/* link stations */
unsigned char dlur_release_level; /* Current DLUR release level */
unsigned char nns_dlus_served_lu_reg_supp;

/* NNS support for registration */
/* of DLUS-served LUs reserved */

unsigned char reserva[19]; /* reserved */
unsigned char fq_nn_server_name[17]; */

/* FQ name of NN server */
unsigned long current_isr_sessions;/* current ISR sessions */
unsigned char nn_functions2; /* NN functions continued */
unsigned char branch_ntwk_arch_version;

/* branch network architecture */
/* version supported */

unsigned char reservb[28]; /* reserved */
} QUERY_NODE;

typedef struct cp_create_parms
{

unsigned short crt_parms_len; /* length of CP_CREATE_PARMS */
unsigned char description[RD_LEN];

/* resource description */
unsigned char node_type; /* node type */
unsigned char fqcp_name[17]; /* fully qualified CP name */

QUERY_NODE

Chapter 6. Query Verbs 381

unsigned char cp_alias[8]; /* CP alias */

unsigned char mode_to_cos_map_supp;
/* mode to COS mapping support */

unsigned char mds_supported; /* MDS and MS capabilities */
unsigned char node_id[4]; /* node ID */
unsigned short max_locates; /* max locates node can process */
unsigned short dir_cache_size; /* directory cache size */

/* (reserved) if not NN) */
unsigned short max_dir_entries; /* max directory entries */
unsigned short locate_timeout; /* locate timeout in seconds */
unsigned char reg_with_nn; /* register resources with NNS */
unsigned char reg_with_cds; /* resource registration with */

/* CDS */
unsigned short mds_send_alert_q_size;

/* size of MDS send alert queue */
unsigned short cos_cache_size; /* number of COS definitions */
unsigned short tree_cache_size; /* Topology Database routing */

/* tree cache size */
unsigned short tree_cache_use_limit;

/* num times tree can be used */
unsigned short max_tdm_nodes; /* max num nodes that can be */

/* stored in Topology Database */
unsigned short max_tdm_tgs; /* max num TGs that can be */

/* stored in Topology Database */
unsigned long max_isr_sessions; /* max ISR sessions */
unsigned long isr_sessions_upper_threshold;

/* upper threshold for ISR sess */
unsigned long isr_sessions_lower_threshold;

/* lower threshold for ISR sess */
unsigned short isr_max_ru_size; /* max RU size for ISR */
unsigned short isr_rcv_pac_window; /* ISR rcv pacing window size */
unsigned char store_endpt_rscvs; /* endpoint RSCV storage */
unsigned char store_isr_rscvs; /* ISR RSCV storage */
unsigned char store_dlur_rscvs; /* DLUR RSCV storage */
unsigned char dlur_support; /* is DLUR supported? */
unsigned char pu_conc_support; /* is PU conc supported? */
unsigned char nn_rar; /* Route additional resistance */
unsigned char hpr_support; /* level of HPR support */
unsigned char mobile; /* HPR path-switch controller? */
unsigned char discovery_support; /* Discovery function utilized */
unsigned char discovery_group_name[8];

/* Group name for Discovery */
unsigned char implicit_lu_0_to_3;

/* Implicit LU 0 to 3 support */
unsigned char default_preference;

/* Default routing preference */
unsigned char anynet_supported;

/* level of AnyNet support */
unsigned short max_ls_exception_events;

/* maximum LS Exception events */
unsigned char comp_in_series; /* compression in series allowed*/
unsigned char max_compress_lvl; /* maximum compression level */
unsigned char node_spec_data_len; /* length of node specific data */
unsigned char cos_table_version;/* COS Table version */
unsigned char send_term_self;

/* Should we send a TERM_SELF instead of UNBIND */
unsigned char reserved2[3]; /* reserved */
unsigned char maximum_locate_size;

/* Maximum Locate size supported by the node (KB units)*/
unsigned char sli_close_sync_enabled;

/* whether SLI_CLOSE needs to be Synchronous */
unsigned char reserved[93]; /* reserved */

} CP_CREATE_PARMS;

Format 1 (back-level)

QUERY_NODE

382 System Management Programming

typedef struct query_node
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
CP_CREATE_PARMS cp_create_parms; /* create parameters */
unsigned long up_time; /* time since node started */
unsigned long mem_size; /* size of memory available */
unsigned long mem_used; /* size of memory used */
unsigned long mem_warning_threshold;

/* memory constrained */
/* threshold */

unsigned long mem_critical_threshold;
/* memory critical threshold */

unsigned char nn_functions_supported;
/* NN functions supported */

unsigned char functions_supported;
/* functions supported */

unsigned char en_functions_supported;
/* EN functions supported */

unsigned char nn_status; /* node status. One or more of */
unsigned long nn_frsn; /* NN flow reduction */

/* sequence number */
unsigned long nn_rsn; /* Resource sequence number */
unsigned short def_ls_good_xids; /* Good XIDs for defined */

/* link stations */
unsigned short def_ls_bad_xids; /* Bad XIDs for defined */

/* link stations */
unsigned short dyn_ls_good_xids; /* Good XIDs for dynamic */

/* link stations */
unsigned short dyn_ls_bad_xids; /* Bad XIDs for dynamic */

/* link stations */
unsigned char dlur_release_level; /* Current DLUR release level */
unsigned char reserva[19]; /* reserved */

} QUERY_NODE;

Format 0 (back-level)
typedef struct query_node
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
CP_CREATE_PARMS cp_create_parms; /* create parameters */
unsigned long up_time; /* time since node started */
unsigned long mem_size; /* size of memory available */
unsigned long mem_used; /* size of memory used */
unsigned long mem_warning_threshold;

/* memory constrained */
/* threshold */

unsigned long mem_critical_threshold;
/* memory critical threshold */

unsigned char nn_functions_supported;
/* NN functions supported */

unsigned char functions_supported;
/* functions supported */

unsigned char en_functions_supported;
/* EN functions supported */

unsigned char nn_status; /* node status. One or more of */
unsigned long nn_frsn; /* NN flow reduction */

/* sequence number */
unsigned long nn_rsn; /* Resource sequence number */
unsigned short def_ls_good_xids; /* Good XIDs for defined */

QUERY_NODE

Chapter 6. Query Verbs 383

/* link stations */
unsigned short def_ls_bad_xids; /* Bad XIDs for defined */

/* link stations */
unsigned short dyn_ls_good_xids; /* Good XIDs for dynamic */

/* link stations */
unsigned short dyn_ls_bad_xids; /* Bad XIDs for dynamic */

/* link stations */
unsigned char dlur_release_level; /* Current DLUR release level */
unsigned char reserva[19]; /* reserved */

} QUERY_NODE;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_NODE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

When this field is set to zero, the following four fields are Unsigned short
rather than Unsigned_COUNTER:def_Is_good_xids,
def_Is_bad_xids,dyn_Is_good_xids, dyn_Is_bad_xids.

When this field is set to two, the following fields are used as described:
fq_nn_server_name and current_isr_sessions.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

cp_create_parms.crt_parms_len
Length of create parameters structure.

cp_create_parms.description
Resource description. This is a 16-byte string in a locally displayable
character set. All 16 bytes are significant.

cp_create_parms.node_type
This is always:

AP_END_NODE
AP_NETWORK_NODE
AP_LEN_NODE
AP_BRANCH_NETWORK_NODE

cp_create_parms.fqcp_name
Node's 17-byte fully qualified control point name. This name is composed
of two type-A EBCDIC character strings concatenated by an EBCDIC dot,
and is right-padded with EBCDIC spaces. (Each name has a maximum
length of 8 bytes with no embedded spaces.)

cp_create_parms.cp_alias
Locally used control point alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

cp_create_parms.mode_to_cos_map_supp
Specifies whether mode to COS mapping is supported by the node
(AP_YES or AP_NO). If this is set to AP_YES then the COS specified on a

QUERY_NODE

384 System Management Programming

DEFINE_MODE verb must either be an SNA defined COS or have been
defined by issuing a DEFINE_COS verb.

cp_create_parms.mds_supported
Specifies whether management services supports Multiple Domain Support
and Management Services Capabilities (AP_YES or AP_NO).

cp_create_parms.node_id
Node identifier used in XID exchange. This a 4-byte hexadecimal string.

cp_create_parms.max_locates
Maximum number of locates that the node can process.

cp_create_parms.dir_cache_size
Network node only: Size of the directory cache.

cp_create_parms.max_dir_entries
Maximum number of directory entries. This is unlimited if this field is set
to zero.

cp_create_parms.locate_timeout
Specifies the time in seconds before a network search will time out. A
value of zero indicates that the search has no timeout.

cp_create_parms.reg_with_nn
Specifies whether resources will be registered with the network node
server. Registration failure does not affect successful completion of node
initialization. See “REGISTRATION_FAILURE” on page 553 for details.
This field is interpreted differently by an EN and a BrNN.

End Node:

AP_NO
The node does not register any LUs with its NN server. The NNS
forwards all broadcast searches to the end node.

AP_YES
The node registers all local dependent (if the NNS supports option
set 1116) and all local independent LUs with its NNS. The NNS
only forwards directed locates to it (unless it owns dependent LUs
that could not be registered).

Branch Network Node:

AP_REGISTER_NONE
The node does not register any LUs with its NN server.

AP_REGISTER_ALL
The node registers all local dependent (if it supports DLUR full
multi-subnet and the NNS supports option set 1116) and all
domain independent LUs with its NNS.

AP_REGISTER_LOCAL_ONLY
The node registers all local dependent (if it supports DLUR full
multi-subnet and the NNS supports option set 1116) and all local
independent LUs with its NNS.

cp_create_parms.reg_with_cds
Specifies whether resources are allowed to be registered with a central
directory server (CDS). This field is interpreted differently by an EN, NN,
or BrNN.

End Node: Specifies whether the NNS is allowed to register with CDS end
node resources. This field is ignored if reg_with_nn is set to AP_NONE.

QUERY_NODE

Chapter 6. Query Verbs 385

AP_NO
EN resources cannot be registered with a CDS.

AP_YES
EN resources can be registered with a CDS.

Network Node: Specifies whether local resources and domain resources
(that the owning EN allows to be registered with a CDS) can be registered
with a CDS.

AP_NO
Local or domain resources cannot be registered with a CDS.

AP_YES
Local or domain resources can be registered with a CDS.
Registration failure does not affect successful completion of the
START_NODE verb.

Branch Network Node: Specifies whether the NNS is allowed to register
with a CDS BrNN resources (local to the BrNN or from the BrNN's
domain). This field is ignored if reg_with_nn is set to AP_NO.

AP_REGISTER_NONE
The node does not register any LUs with its NN server.

AP_REGISTER_ALL
The node registers all local dependent (if it supports DLUR full
multi-subnet and the NNS supports option set 1116) and all
domain independent LUs with its NNS.

AP_REGISTER_LOCAL_ONLY
The node registers all local dependent (if it supports DLUR full
multi-subnet and the NNS supports option set 1116) and all local
independent LUs with its NNS.

cp_create_parms.mds_send_alert_q_size
Size of the MDS send alert queue. When this limit is reached, the MDS
component deletes the oldest entry on the queue.

cp_create_parms.cos_cache_size
Size of the COS Database weights cache.

cp_create_parms.tree_cache_size
Size of the topology database routing tree cache size.

cp_create_parms.tree_cache_use_limit
Maximum number of uses of a cached tree. Once this number is exceeded,
the tree is discarded and recomputed. This allows the node to balance
sessions among equal weight routes. A low value provides better load
balancing at the expense of increased activation latency.

cp_create_parms.max_tdm_nodes
Maximum number of nodes that can be stored in topology database (zero
means unlimited).

cp_create_parms.max_tdm_tgs
Maximum number of TGs that can be stored in topology database (zero
means unlimited).

cp_create_parms.max_isr_sessions
Maximum number of ISR sessions the node can participate in at once.

cp_create_parms.isr_sessions_upper_threshold
See cp_create_parms.isr_sessions_lower_threshold

QUERY_NODE

386 System Management Programming

cp_create_parms.isr_sessions_lower_threshold
The upper and lower thresholds control the node's congestion status. The
node state changes from not congested to congested if the number of ISR
sessions exceeds the upper threshold. The node state changes back to not
congested once the number of ISR sessions dips below the lower threshold.

cp_create_parms.isr_max_ru_size
Maximum RU size supported for intermediate sessions.

cp_create_parms.isr_rcv_pac_window
Suggested receive pacing window size for intermediate sessions. This value
is only used on the secondary hop of intermediate sessions if the adjacent
node does not support adaptive pacing.

cp_create_parms.store_endpt_rscvs
Specifies whether RSCVs are stored for diagnostic purposes (AP_YES or
AP_NO).

cp_create_parms.store_isr_rscvs
Specifies whether RSCVs are stored for diagnostic purposes (AP_YES or
AP_NO).

cp_create_parms.store_dlur_rscvs
Specifies whether the node stores RSCVs for diagnostic purposes (AP_YES
or AP_NO). If this field is set to AP_YES, then an RSCV is returned on the
QUERY_DLUR_LU verb.

cp_create_parms.dlur_support
Specifies the level of support for DLUR provided by the node. This is a bit
field and may take the following values:

AP_NO
DLUR is not supported.

AP_YES
DLUR full multi-subnet is supported.

(AP_YES | AP_LIMITED_DLUR_MULTI_SUBNET)
DLUR limited, DLUR multi-subnet is supported. This is only valid
if the node is an end node.

cp_create_parms.pu_conc_support
Specifies whether PU concentration is supported (always AP_NO).

cp_create_parms.nn_rar
The network node's route additional resistance.

cp_create_parms.hpr_support
Specifies the level of support for HPR that is provided by the node
(AP_NONE, AP_BASE, or AP_RTP).

cp_create_parms.mobile
Specifies whether the node is an HPR path-switch controller (AP_YES or
AP_NO). If the cp_create_parms.hpr_support field is not set to AP_RTP
this field is reserved.

cp_create_parms.discovery_support
Specifies whether Discovery functions are utilized by this node.

AP_DISCOVERY_CLIENT
Discovery client functions are used by this node

AP_DISCOVERY_SERVER
Discovery server functions are used by this node.

QUERY_NODE

Chapter 6. Query Verbs 387

cp_create_parms.discovery_group_name
Specifies the group name used on Discovery functions utilized by the
node. If this field is set to all zeros, the default group name is used.

cp_create_parms.implicit_lu_0_to_3
Specifies whether the node supports implicit definition of LUs of type 0 to
3 by ACTLU (AP_YES or AP_NO).

cp_create_parms.default_preference
Specifies the preferred method of routing when initiating sessions from this
node.

Note: This can be overridden on a per LU basis using the
DEFINE_PARTNER_LU verb.

This field can take the following values:

AP_NATIVE
Use native (APPN) routing protocols only.

AP_NONNATIVE
Use nonnative (AnyNet) routing protocols only.

AP_NATIVE_THEN_NONNATIVE
Try native (APPN) protocols, and if the partner LU cannot be
located, then retry session activation using nonnative (AnyNet)
protocols.

AP_NONNATIVE_THEN_NATIVE
Try nonnative (AnyNet) protocols, and if the partner LU cannot be
located, then retry session activation using native (APPN)
protocols.

Note: The latter three values are only meaningful when an AnyNet
DLC is available to the Node Operator Facility, and there is
an AnyNet Link Station defined.

cp_create_parms.anynet_supported
Specifies support for the AnyNet DLC. This field can be one of the
following

AP_NONE
No ANYNET function will be supported. The field
default_preference must take the value AP_NATIVE.

AP_ACCESS_NODE
Use nonnative (AnyNet) routing protocols only.

AP_NATIVE_THEN_NONNATIVE
This node will support ANYNET access node functions.

AP_GATEWAY
This node will start ANYNET gateway functions. This value is only
valid if node_type AP_NETWORK_NODE.

cp_create_parms.comp_in_series
Specifies whether the use of LZ compression preceded by RLE compression
is allowed:

AP_YES

AP_NO

QUERY_NODE

388 System Management Programming

cp_create_parms.max_ls_exception_events
Specifies the maximum number of LS_EXCEPTION entries recorded by the
node. Range 0 through 200.

cp_create_parms.max_compress_lvl
The maximum compression level supported by the node.

AP_NONE
The node does not support compression.

AP_RLE_COMPRESSION
The node can support RLE compression and decompression on LU
6.2 sessions, and RLE compression and LZ9 decompression on
conventional LU sessions.

AP_LZ9_COMPRESSION
The node can support LZ9 and RLE compression and
decompression.

AP_LZ10_COMPRESSION
The node can support LZ10, LZ9, and RLE compression and
decompression.

AP_LZ12_COMPRESSION
The node can support LZ12, LZ10, LZ9, and RLE compression and
decompression.

cp_create_parms.node_spec_data_len
This field should always be set to zero.

cp_create_parms.ptf
Array for configuring and controlling future program temporary fix (PTF)
operation.

cp_create_parms.ptf[0]
REQDISCONT support. Personal Communications or Communications
Server normally uses REQDISCONT to deactivate limited resource host
links that are no longer required by session traffic. This byte can be used to
suppress Personal Communications or Communications Server's use of
REQDISCONT, or to modify the settings used on REQDISCONT requests
sent by Personal Communications or Communications Server.

AP_SUPPRESS_REQDISCONT
If this bit is set, Personal Communications or Communications
Server does not use REQDISCONT (all other bits in this byte are
ignored).

AP_OVERRIDE_REQDISCONT
If this bit is set, Personal Communications or Communications
Server overrides the normal settings on REQDISCONT, based on
the following two bits:

AP_REQDISCONT_TYPE
If this bit is set, Personal Communications or Communications
Server specifies a type of “immediate” on REQDISCONT.
Otherwise, Personal Communications or Communications Server
specifies a type of “normal”. (This bit is ignored if
AP_OVERRIDE_REQDISCONT is not set.)

AP_REQDISCONT_RECONTACT
If this bit is set, Personal Communications or Communications
Server specifies “immediate recontact” in REQDISCONT.

QUERY_NODE

Chapter 6. Query Verbs 389

Otherwise,Personal Communications or Communications Server
specifies “no immediate recontact”. (This bit is ignored if
AP_OVERRIDE_REQDISCONT is not set.)

cp_create_parms.ptf[1]
ERP support.

Personal Communications or Communications Server normally processes
an ACTPU(ERP) as an ERP (ACTPU(ERP) requests the PU-SSCP session be
reset, but, unlike ACTPU(cold), does not request implicit deactivation of
the subservient LU-SSCP and PLU-SLU sessions). SNA implementations
can legally process ACTPU(ERP) as if it were ACTPU(cold).

AP_OVERRIDE_ERP
If this bit is set, Personal Communications or Communications
Server processes all ACTPU requests as ACTPU(cold).

cp_create_parms.ptf[2]
BIS support.

Personal Communications or Communications Server normally uses the
BIS protocol prior to deactivating a limited resource LU 6.2 session. This
byte allows the use of BIS to be overridden.

AP_SUPPRESS_BIS
If this bit is set, Personal Communications or Communications
Server does not use the BIS protocol. Limited resource LU 6.2
session are deactivated immediately using UNBIND(cleanup).

cp_create_parms.cos_table_version

Specifies the version of the COS tables used by the node. Specify one of
the following values:

VERSION_0_COS_TABLES

Use the COS tables originally defined in the APPN Architecture Reference.

VERSION_1_COS_TABLES

Use the COS tables originally defined for HPR over ATM.

cp_create_parms.send_term_self

Specifies the default method for ending a PLU-SLU session to a host. The
value you specify is used for all type 0-3 LUs on the node, unless you
override it by specifying a different value in the LU definition. Specify one
of the following values:

YES

Send a TERM_SELF on receipt of a CLOSE_PLU_SLU_SEC_RQ.

NO

Send an UNBIND on receipt of a CLOSE_PLU_SLU_SEC_RQ.

cp_create_parms.maximum_locate_size
Maximum Locate size (KB) supported by the node.

cp_create_parms.sli_close_sync_enabled

Force the SLI_CLOSE verb to return synchronously. This is useful when
migrating existing applications from other SNA stacks where the verb
returns synchronously.

Specify one of the following values:

QUERY_NODE

390 System Management Programming

YES

Return the SLI_CLOSE verb synchronously

NO

Return the SLI_CLOSE verb asynchronously (Default)

up_time
Time (in hundredths of a second) since the node was started (or restarted).

mem_size
Size of the available storage, as obtained by storage management from the
underlying operating system.

mem_used
Number of bytes of storage that are currently allocated to a process.

mem_warning_threshold
Allocation threshold beyond which storage management considers the
storage resources to be constrained.

mem_critical_threshold
Allocation threshold beyond which storage management considers the
storage resources to be critically constrained.

nn_functions_supported
Reserved.

functions_supported
Specifies which functions are supported. This can be one or more of the
following values:

AP_NEGOTIABLE_LS
AP_SEGMENT_REASSEMBLY
AP_BIND_REASSEMBLY
AP_PARALLEL_TGS
AP_CALL_IN
AP_ADAPTIVE_PACING
AP_TOPOLOGY_AWARENESS

en_functions_supported
Specifies the end-node functions supported.

AP_SEGMENT_GENERATION
Node supports segment generation.

AP_MODE_TO_COS_MAP
Node supports mode name to COS name mapping.

AP_LOCATE_CDINIT
Node supports generation of locates and cross-domain initiate GDS
variables for locating remote LUs.

AP_REG_WITH_NN
Node will register its LUs with the adjacent serving network node.

AP_REG_CHARS_WITH_NN
Node supports send register characteristics (can only be supported
when send registered names is also supported).

nn_status
Reserved.

QUERY_NODE

Chapter 6. Query Verbs 391

nn_frsn
Reserved.

nn_rsn
Reserved.

def_ls_good_xids
Total number of successful XID exchanges that have occurred on all
defined link stations since the node was last started.

def_ls_bad_xids
Total number of unsuccessful XID exchanges that have occurred on all
defined link stations since the node was last started.

dyn_ls_good_xids
Total number of successful XID exchanges that have occurred on all
dynamic link stations since the node was last started.

dyn_ls_bad_xids
Total number of unsuccessful XID exchanges that have occurred on all
dynamic link stations since the node was last started.

dlur_release_level
Specifies the current DLUR release level.

nns_dlus_served_lu_reg_supp
End node only. Specifies whether the end node's network node server
supports DLUS-served LU registration.

AP_NO
Registration of DLUS-served LU registration is not supported by
the network node server.

AP_YES
Registration of DLUS-served LUs is supported by the network
node server.

AP_UNKNOWN
The end node does not have a network node server.

NN only: This field is set to AP_NO.

fq_nn_server_name
Fully qualified, 17 byte long, name of the current network node server. It is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

If this node is not an end node or does not have an active network node
server, this field is set to null.

current_isr_sessions
The number of active ISR sessions that are currently routed through this
node. If this node is not a network node, this field is set to zero.

nn_functions2
Specifies the network node functions supported.

AP_BRANCH_AWARENESS
The node is branch aware.

branch_ntwk_arch_version
Specifies the version of the branch network architecture supported or zero
if the node does not support the branch network architecture.

QUERY_NODE

392 System Management Programming

AP_BRANCH_AWARENESS
The node is branch aware.

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_NODE

Chapter 6. Query Verbs 393

QUERY_PARTNER_LU

QUERY_PARTNER_LU returns information about partner LUs that have been used
by a local LU.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific partner LU, or to
obtain the list information in several chunks, the plu_alias field should be set (or
the fqplu_name if the plu_alias is set to all zeros). If the list_options field is set to
AP_FIRST_IN_LIST, both of these fields will be ignored. The lu_name or lu_alias
field must always be set. The lu_name, if nonzero, will be used in preference to
the lu_alias. See “Querying the Node” on page 10 for background on how the list
formats are used.

This list is ordered by the fqplu_name. Ordering is by name length first, and then
by ASCII lexicographical ordering for names of the same length (in accordance
with normal MIB ordering). If AP_LIST_FROM_NEXT is selected, the returned list
starts from the next entry according to the defined ordering (whether the specified
entry exists or not).

If plu_alias is set to all zeros, the fqplu_name value will be used; otherwise, the
plu_alias is always used and the fqplu_name is ignored.

The list of partner LUs returned can be filtered according to whether they currently
have any active sessions. If filtering is desired, the active_sessions field should be
set to AP_YES (otherwise this field should be set to AP_NO).

This verb returns information that is determined when at least one session is
established with the partner LU.

The QUERY_PARTNER_LU_DEFINITION verb returns definition information only.

VCB Structure
typedef struct query_partner_lu
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_alias[8]; /* LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char active_sessions; /* active sessions only filter */

} QUERY_PARTNER_LU;

typedef struct plu_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

QUERY_PARTNER_LU

394 System Management Programming

/* LU name */
unsigned char reserv1; /* reserved */
unsigned char description[RD_LEN];

/* resource description */
unsigned short act_sess_count; /* curr active sessions count */
unsigned char partner_cp_name[17]; /* partner LU CP name */
unsigned char partner_lu_located; /* CP name resolved? */

} PLU_SUMMARY;

typedef struct plu_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char reserv1; /* reserved */
unsigned char description[RD_LEN];

/* resource description */
unsigned short act_sess_count; /* curr active sessions count */
unsigned char partner_cp_name[17]; /* partner LU CP name */
unsigned char partner_lu_located; /* CP name resolved? */
unsigned char plu_un_name[8]; /* partner LU uninterpreted name */
unsigned char parallel_sess_supp; /* parallel sessions supported? */
unsigned char conv_security; /* conversation security */
unsigned short max_mc_ll_send_size; /* max send LL size for mapped */

/* conversations */
unsigned char implicit; /* implicit or explicit entry */
unsigned char security_details; /* conversation security detail */
unsigned char duplex_support; /* full-duplex support */
unsigned char preference; /* routing preference */
unsigned char reserva[16]; /* reserved */

} PLU_DETAIL;

The application supplies the following parameters:

Supplied Parameters
opcode

AP_QUERY_PARTNER_LU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

QUERY_PARTNER_LU

Chapter 6. Query Verbs 395

The combination of the lu_name (or lu_alias if the lu_name is set
to all zeros) and plu_alias (or fqplu_name if the plu_alias is set to
all zeros) specified (see the following parameter, lu_name and
plu_alias) represents an index value that is used to specify the
starting point of the actual information to be returned:

AP_FIRST_IN_LIST
The plu_alias and fqplu_name fields are ignored and the returned
list starts from the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

lu_name
LU name. This name is an 8-byte type-A EBCDIC character string. If this
field is set to all zeros, the lu_alias field will be used for determining the
index.

lu_alias
Locally defined LU alias. This is an 8-byte string in a locally displayable
character set. This field is only significant if the lu_name field is set to all
zeros, in which case all 8 bytes are significant and must be set. If both the
lu_name and the lu_alias are set to all zeros then the LU associated with
the control point (the default LU) is used.

plu_alias
Partner LU alias. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant and must be set. If this field is set to all
zeros, the fqplu_name field will be used as the index value.

fqplu_name
17-byte fully qualified network name for the partner LU. This name is 17
bytes long and is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

active_sessions
Active session filter. Specifies whether the returned partner LUs should be
filtered according to whether they currently have any active sessions
(AP_YES or AP_NO).

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

QUERY_PARTNER_LU

396 System Management Programming

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

plu_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

plu_summary.plu_alias
Partner LU alias. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant.

plu_summary.fqplu_name
17-byte fully qualified network name for the partner LU. This name is 17
bytes long and is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

plu_summary.description
Resource description (as specified on DEFINE_PARTNER_LU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

plu_summary.act_sess_count
Total number of active sessions between the local LU and the partner LU.
If the active_sessions filter has been set to AP_YES, then this field will
always be greater than zero.

plu_summary.partner_cp_name
17-byte fully qualified network name for the control point of the partner
LU. This name is composed of two type A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

plu_summary.partner_lu_located
Specifies whether the control point name for the partner LU has been
resolved (AP_YES or AP_NO).

plu_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

plu_detail.plu_alias
Partner LU alias. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant.

plu_detail.fqplu_name
17-byte fully qualified network name for the partner LU. This name is
composed of two type A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

plu_detail.description
Resource description (as specified on DEFINE_PARTNER_LU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

QUERY_PARTNER_LU

Chapter 6. Query Verbs 397

plu_detail.act_sess_count
Total number of active sessions between the local LU and the partner LU.
If the active_sessions filter has been set to AP_YES, then this field will
always be greater than zero.

plu_detail.partner_cp_name
17-byte fully qualified network name for the control point of the partner
LU. This name is composed of two type A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

plu_detail.partner_lu_located
Specifies whether the control point name for the partner LU has been
resolved (AP_YES or AP_NO).

plu_detail.plu_un_name
Uninterpreted name of the partner LU. This is an 8-byte type-A EBCDIC
character string.

plu_detail.parallel_sess_supp
Specifies whether parallel sessions are supported (AP_YES or AP_NO).

plu_detail.conv_security
Specifies whether conversation security information can be sent to this
partner LU (AP_YES or AP_NO). If it is set to AP_NO, then any security
information supplied by a transaction program is not sent to the partner
LU. If there are currently no active sessions to this partner LU, this is set to
AP_UNKNOWN.

plu_detail.max_mc_ll_send_size
Maximum size of logical length (LL) record that can be sent to the partner
LU. Data records that are larger than this are broken down into several LL
records before being sent to the partner LU. The maximum value
max_mc_ll_send_size can take is 32 767.

plu_detail.implict
Specifies whether the entry is the result of an implicit (AP_YES) or explicit
(AP_NO) definition.

plu_detail.security_details
Returns the conversation security support as negotiated on the BIND. This
can be one or more of the following values:

AP_CONVERSATION_LEVEL_SECURITY
Conversation security information will be accepted on requests to
or from the partner LU to allocate a conversation. The specific
types of conversation security support are described by the
following values.

AP_ALREADY_VERIFIED
Both local and partner LU agree to accept already verified
requests to allocate a conversation. An already verified
request need carry only a user ID, and not a password.

AP_PERSISTENT_VERIFICATION
Persistent verification is supported on the session between
the local and partner LUs. This means that, once the initial
request (carrying a user ID and, typically, a password) for a
conversation has been verified, subsequent requests for a
conversation need only carry the user ID.

QUERY_PARTNER_LU

398 System Management Programming

AP_PASSWORD_SUBSTITUTION
The local and partner LU support password substitution
conversation security. When a request to allocate a
conversation is issued, the request carries an encrypted
form of the password. If password substitution is not
supported, the password is carried in clear text
(nonencrypted) format.

Note: If the session does not support password
substitution, then an ALLOCATE or
SEND_CONVERSATION with security type of
AP_PGM_STRONG will fail.

AP_UNKNOWN
There are currently no active sessions to this partner LU.

plu_detail.duplex_support
Returns the conversation duplex support as negotiated on the BIND. This
is one of the following values:

AP_HALF_DUPLEX
Only half-duplex conversations are supported.

AP_FULL_DUPLEX
Full-duplex as well as half-duplex conversations are supported.

AP_UNKNOWN
The conversation duplex support is not known because there are
no active sessions to the partner LU.

plu_detail.preference
Returns the routing protocols preference as specified in the
DEFINE_PARTNER_LU verb.

AP_NATIVE
Use native (APPN) routing protocols only.

AP_NONNATIVE
Use nonnative (AnyNet) protocols, and if the partner LU cannot be
located, then retry session activation using nonnative (AnyNet)
protocols.

AP_NATIVE_THEN_NONNATIVE
Try native (APPN) protocols, and if the partner LU cannot be
located then retry session activation using native (APPN) protocols.

AP_USE_DEFAULT_PREFERENCE
Use the default preference defined when the node was started.
(This is set on START_NODE and can be recalled by
QUERY_NODE.)

Note that nonnative routing is only meaningful when an AnyNet DLC is
available to the Program, and there is an AnyNet Link Station defined. See
“DEFINE_LS” on page 74 for more information.

If the field anynet_supported supplied on START_NODE was set to
AP_NO this field must take the value AP_NATIVE or
AP_USE_DEFAULT_PREFERENCE.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

QUERY_PARTNER_LU

Chapter 6. Query Verbs 399

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PLU_NAME

AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_PARTNER_LU

400 System Management Programming

QUERY_PARTNER_LU_DEFINITION

QUERY_PARTNER_LU_DEFINITION returns information that had previously been
passed in on a DEFINE_PARTNER_LU verb.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific partner LU, or to
obtain the list information in several chunks, the plu_alias field (or the
fqplu_name if the plu_alias is set to all zeros) should be set. If the plu_alias field
is nonzero it will be used to determine the index and the fqplu_name is ignored. If
the plu_alias field is set to all zeros, the fqplu_name will be used to determine the
index. If the list_options field is set to AP_FIRST_IN_LIST then both of these fields
will be ignored. (In this case the returned list will be ordered by plu_alias if the
AP_LIST_BY_ALIAS list_options is set, otherwise it will be ordered by
fqplu_name). See “Querying the Node” on page 10 for background on how the list
formats are used.

This list is ordered on either plu_alias or fqplu_name according to the options
specified. Ordering is by name length first, and then by ASCII lexicographical
ordering for names of the same length (in accordance with normal MIB ordering).
If AP_LIST_FROM_NEXT is selected the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

Note this verb returns definition information only. The QUERY_PARTNER_LU
verb returns information that is determined when at least one session is
established with the partner LU.

VCB Structure
typedef struct query_partner_lu_definition
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
} QUERY_PARTNER_LU_DEFINITION;

typedef struct partner_lu_def_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char description[RD_LEN];

/* resource description */
} PARTNER_LU_DEF_SUMMARY;

typedef struct partner_lu_def_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char plu_alias[8]; /* partner LU alias */

QUERY_PARTNER_LU_DEFINITION

Chapter 6. Query Verbs 401

unsigned char fqplu_name[17]; /* fully qualified partner */
/* LU name */

unsigned char reserv1; /* reserved */
PLU_CHARS plu_chars; /* partner LU characteristics */

} PARTNER_LU_DEF_DETAIL;

typedef struct plu_chars
{

unsigned char fqplu_name[17]; /* fully qualified partner */
/* LU name */

unsigned char plu_alias[8]; /* partner LU alias */
unsigned char description[RD_LEN]; /* resource description */
unsigned char plu_un_name[8]; /* partner LU uninterpreted name */
unsigned char preference; /* routing preference */
unsigned short max_mc_ll_send_size;

/* max MC send LL size */
unsigned char conv_security_ver; /* already_verified accepted */
unsigned char parallel_sess_supp; /* parallel sessions supported? */
unsigned char reserv2[8]; /* reserved */

} PLU_CHARS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_PARTNER_LU_DEFINITION

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The plu_alias (or the fqplu_name if the plu_alias is set to all
zeros) specified (see the following parameter, plu_alias) represents
an index value that is used to specify the starting point of the
actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

QUERY_PARTNER_LU_DEFINITION

402 System Management Programming

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

AP_LIST_BY_ALIAS
The returned list is ordered by plu_alias. This option is only valid
when AP_FIRST_IN_LIST is specified. If AP_LIST_FROM_NEXT or
AP_LIST_INCLUSIVE is specified, the list ordering will depend on
whether the plu_alias or fqplu_name has been supplied as a
starting point.

plu_alias
Partner LU alias. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant and must be set. If this field is set to all
zeros, the fqplu_name field is used to specify the required partner LU.
This field is ignored if list_options is set to AP_FIRST_IN_LIST.

fqplu_name
17-byte fully qualified network name for the partner LU. This name is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.) This field is
only significant if the plu_alias field is set to all zeros. This field is ignored
if list_options is set to AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries

partner_lu_def_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

partner_lu_def_summary.plu_alias
Partner LU alias. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant.

partner_lu_def_summary.fqplu_name
17-byte fully qualified network name for the partner LU. This name is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

QUERY_PARTNER_LU_DEFINITION

Chapter 6. Query Verbs 403

partner_lu_def_summary.description
Resource description (as specified on DEFINE_PARTNER_LU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

partner_lu_def_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

partner_lu_def_detail.plu_alias
Partner LU alias. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant.

partner_lu_def_detail.fqplu_name
17-byte fully qualified network name for the partner LU. This name is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

partner_lu_def_detail.plu_chars.fqplu_name
17-byte fully qualified network name for the partner LU. This name is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

partner_lu_def_detail.plu_chars.plu_alias
Partner LU alias.

partner_lu_def_detail.plu_chars.description
Resource description (as specified on DEFINE_PARTNER_LU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

partner_lu_def_detail.plu_chars.plu_un_name
Uninterpreted name of the partner LU. This is an 8-byte type-A EBCDIC
character string.

partner_lu_def_detail.plu_chars.preference
The set of routing protocols to be preferred for session activation to this
partner LU. This field can take the following values:

AP_NATIVE
Use native (APPN) routing protocols only.

AP_NONNATIVE
Use nonnative (AnyNet) routing protocols only.

AP_NATIVE_THEN_NONNATIVE
Try native (APPN) protocols, and if the partner LU cannot be
located then retry session activation using nonnative (AnyNet)
protocols.

AP_NONNATIVE_THEN_NATIVE
Try nonnative (AnyNet) protocols, and if the partner LU cannot be
located then retry session activation using native (APPN) protocols.

AP_USE_DEFAULT_PREFERENCE
Use the default preference defined when the node was started.

Note: Nonnative routing is only meaningful when an AnyNet DLC
is available to the Node Operator Facility, and there is an
AnyNet link station defined.

QUERY_PARTNER_LU_DEFINITION

404 System Management Programming

partner_lu_def_detail.plu_chars.max_mc_ll_send_size
Maximum size of logical length (LL) record that can be sent to the partner
LU. Data records that are larger than this are broken down into several LL
records before being sent to the partner LU. The maximum value
max_mc_ll_send_size can take is 32 767.

partner_lu_def_detail.plu_chars.conv_security_ver
Specifies whether the partner LU is authorized to validate user_ids on
behalf of local LUs, that is whether the partner LU can set the already
verified indicator in an Attach request.

AP_YES
AP_NO

partner_lu_def_detail.plu_chars.parallel_sess_supp
Specifies whether parallel sessions are supported (AP_YES or AP_NO).

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PLU_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_PARTNER_LU_DEFINITION

Chapter 6. Query Verbs 405

QUERY_PORT

QUERY_PORT returns a list of information about a node's ports. This information
is structured as determined data (data gathered dynamically during execution) and
defined data (the data supplied by the application on DEFINE_PORT).

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific port, or to obtain the
list information in several chunks, the port_name field should be set. Otherwise (if
the list_options field is set to AP_FIRST_IN_LIST), this field will be ignored. See
“Querying the Node” on page 10 for background on how the list formats are used.

This list is ordered by the port_name. Ordering is by name length first, and then
by ASCII lexicographical ordering for names of the same length (in accordance
with IBM's 6611 APPN MIB ordering). If AP_LIST_FROM_NEXT is selected, the
returned list starts from the next entry according to the defined ordering (whether
the specified entry exists or not).

The list of ports returned can be filtered by the name of the DLC that they belong
to. In this case the dlc_name field should be set (otherwise this field should be set
to all zeros).

VCB Structure
typedef struct query_port
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* Verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char port_name[8]; /* port name */
unsigned char dlc_name[8]; /* DLC name filter */

} QUERY_PORT;

typedef struct port_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char port_name[8]; /* port name */
unsigned char description[RD_LEN];

/* resource description */
unsigned char port_state; /* port state */
unsigned char reserv1[1]; /* reserved */
unsigned char dlc_name[8]; /* name of DLC */

} PORT_SUMMARY;

typedef struct port_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char port_name[8]; /* port name */
unsigned char reserv1[2]; /* reserved */
PORT_DET_DATA det_data; /* determined data */
PORT_DEF_DATA def_data; /* defined data */

} PORT_DETAIL;

QUERY_PORT

406 System Management Programming

typedef struct port_det_data
{

unsigned char port_state; /* port state */
unsigned char dlc_type; /* DLC type */
unsigned char port_sim_rim; /* port initialization options */
unsigned char reserv1; /* reserved */
unsigned short def_ls_good_xids; /* number of successful XIDs */
unsigned short def_ls_bad_xids; /* number of unsuccessful XIDs */
unsigned short dyn_ls_good_xids; /* successful XIDs on dynamic */

/* LS count */
unsigned short dyn_ls_bad_xids; /* failed XIDs on dynamic */
unsigned short num_implicit_links; /* number of implicit links */

/* active on this port */
unsigned char neg_ls_supp; /* are negotiable LSs supported? */

/* LS count */
unsigned char abm_ls_supp; /* are ABM LSs supported? */
unsigned long start_time /* start time */
unsigned char reserva[12]; /* reserved */

} PORT_DET_DATA;

typedef struct port_def_data
{

unsigned char description; /* resource description */
unsigned char dlc_name[8]; /* DLC name associated with port */
unsigned char port_type; /* port type */
unsigned char port_attributes[4]; /* port attributes */
unsigned char implicit_uplink_to_en;

/* implicit links to EN are uplink */
unsigned char reserv3[2]; /* NB_BYTE */
unsigned long port_number; /* port number */
unsigned short max_rcv_btu_size; /* max receive BTU size */
unsigned short tot_link_act_lim; /* total link activation limit */
unsigned short inb_link_act_lim; /* inbound link activation limit */
unsigned short out_link_act_lim; /* outbound link activation limit */
unsigned char ls_role; /* initial link station role */
unsigned char retry_flags; /* conditions for automatic retrys */

/* retries */
unsigned short max_activation_attempts; */

/* how many automatic retries */
unsigned short activation_delay_timer;

/* delay between automatic retries */
unsigned char reserv1[10]; /* reserved */
unsigned char implicit_dspu_template[8];

/* implicit DSPU template */
unsigned short implicit_ls_limit /* max number of implicit links */
unsigned char reserv2 /* reserved */
unsigned char implicit_dspu_services;

/* implicit links support DSPUs */
unsigned short implicit_deact_timer;

/* Implicit link HPR link */
/* deactivation timer */

unsigned short act_xid_exchange_limit;
/* activation XID exchange limit */

unsigned short nonact_xid_exchange_limit;
/* non-act. XID exchange limit */

unsigned char ls_xmit_rcv_cap; /* LS transmit-rcv capability */
unsigned char max_ifrm_rcvd; /* max number of I-frames that */

/* can be received */
unsigned short target_pacing_count;

/* target pacing count */
unsigned short max_send_btu_size; /* max send BTU size */
LINK_ADDRESS dlc_data; /* DLC data */
LINK_ADDRESS hpr_dlc_data; /* HPR DLC data */
unsigned char implicit_cp_cp_sess_support;

/* Implicit links allow CP-CP */
/* sessions */

unsigned char implicit_limited_resource;
/* Implicit links are */

QUERY_PORT

Chapter 6. Query Verbs 407

/* limited resource */
unsigned char implicit_hpr_support;

/* Implicit links support HPR */
unsigned char implicit_link_lvl_error;

/* Implicit links support */
/* HPR link-level error recovery */

unsigned char retired1; /* reserved */
TG_DEFINED_CHARS default_tg_chars; /* Default TG chars */
unsigned char discovery_supported;

/* Discovery function supported? */
unsigned short port_spec_data_len; /* length of port spec data */
unsigned short link_spec_data_len; /* length of link spec data */

} PORT_DEF_DATA;

typedef struct link_address
{

unsigned short length; /* length */
unsigned short reserve1; /* reserved */
unsigned char address[MAX_LINK_ADDR_LEN];

/* address */
} LINK_ADDRESS;

typedef struct tg_defined_chars
{

unsigned char effect_cap; /* effective capacity */
unsigned char reserve1[5]; /* reserved */
unsigned char connect_cost; /* connection cost */
unsigned char byte_cost; /* byte cost */
unsigned char reserve2; /* reserved */
unsigned char security; /* security */
unsigned char prop_delay; /* propagation delay */
unsigned char modem_class; /* modem class */
unsigned char user_def_parm_1;

/* user_defined parameter 1 */
unsigned char user_def_parm_2;

/* user_defined parameter 2 */
unsigned char user_def_parm_3;

/* user_defined parameter 3 */
} TG_DEFINED_CHARS;

typedef struct port_spec_data
{

unsigned char port_data[SIZEOF_PORT_SPEC_DATA];

} PORT_SPEC_DATA;

typedef struct link_spec_data
{

unsigned char link_data[SIZEOF_LINK_SPEC_DATA];

} LINK_SPEC_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_PORT

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

QUERY_PORT

408 System Management Programming

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information.

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The port_name specified (see the following parameter, port_name)
represents an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

port_name
Name of port being queried. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and must be set. This
field is ignored if list_options is set to AP_FIRST_IN_LIST.

dlc_name
DLC name filter. This should be set to all zeros or an 8-byte string in a
locally displayable character set. If this field is set then only ports
belonging to this DLC are returned. This field is ignored if it is set to all
zeros.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

QUERY_PORT

Chapter 6. Query Verbs 409

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

port_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

port_summary.port_name
Name of port associated with this link station. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant.

port_summary.description
Resource description (as specified on DEFINE_PORT). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

port_summary.port_state
Specifies the current state of the port.

AP_NOT_ACTIVE
AP_PENDING_ACTIVE
AP_ACTIVE
AP_PENDING_INACTIVE

port_summary.dlc_name
Name of the DLC. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant.

port_detail.overlay_size
The number of bytes in this entry (including any link_spec_data), and
hence the offset to the next entry returned (if any).

port_detail.port_name
Name of port associated with this link station. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant.

port_detail.det_data.port_state
Specifies the current state of the port.

AP_NOT_ACTIVE
AP_PENDING_ACTIVE
AP_ACTIVE
AP_PENDING_INACTIVE

port_detail.det_data.dlc_type
Type of DLC. The Program supports the following types:

AP_ANYNET
AP_LLC2
AP_OEM_DLC
AP_SDLC
AP_X25

QUERY_PORT

410 System Management Programming

port_detail.det_data.port_sim_rim
Specifies whether Set Initialization Mode (SIM) and Receive Initialization
Mode (RIM) are supported (AP_YES or AP_NO).

port_detail.det_data.def_ls_good_xids
Total number of successful XID exchanges that have occurred on all
defined link stations on this port since the last time this port was started.

port_detail.det_data.def_ls_bad_xids
Total number of unsuccessful XID exchanges that have occurred on all
defined link stations on this port since the last time this port was started.

port_detail.det_data.dyn_ls_good_xids
Total number of successful XID exchanges that have occurred on all
dynamic link stations on this port since the last time this port was started.

port_detail.det_data.dyn_ls_bad_xids
Total number of unsuccessful XID exchanges that have occurred on all
dynamic link stations on this port since the last time this port was started.

port_detail.det_data.num_implicit_links
Total number of implicit links currently active on this port. This includes
dynamic links, and implicit links created following use of Discovery. The
number of such links allowed on this port is limited by the
implicit_ls_limit field of PORT_DEF_DATA.

port_detail.det_data.neg_ls_supp
Support for negotiable link stations, AP_YES or AP_NO.

port_detail.det_data.abm_ls_supp
Support for ABM link stations. This is not known until the DLC is started

AP_NO
AP_YES
AP_UNKNOWN

port_detail.det_data.start_time
Time elapsed between the time the node was started and the last time this
port was started, measured in hundredths of a second. If this port was
started, zero is returned in this field.

port_detail.def_data.description
Resource description (as specified on DEFINE_PORT). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

port_detail.def_data.dlc_name
Name of associated DLC. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

port_detail.def_data.port_type
Specifies the type of line used by the port. The value corresponds to one of
the following values:

AP_PORT_NONSWITCHED
AP_PORT_SWITCHED
AP_PORT_SATF

port_detail.def_data.port_attributes[0]
This is the bit field. It may take the value AP_NO, or the following:

AP_RESOLVE_BY_LINK_ADDRESS
This specifies that an attempt is made to resolve incoming calls by

QUERY_PORT

Chapter 6. Query Verbs 411

using the link address on CONNECT_IN before using the CP name
(or node ID) carried on the received XID3 to resolve them. This bit
is ignored unless the field port_type is set to
AP_PORT_SWITCHED.

port_detail.def_data.implicit_uplink_to_en
BrNN only: Specifies whether implicit link stations off this port are uplink
or downlink if the adjacent node is an end node. The value of this field
will only be considered if there are no existing links to the same partner, as
such links are used first to determine the link type.

AP_NO
Implicit links are downlink.

AP_YES
Implicit links are uplink.

Other node types: This is set to AP_NO.

port_detail.def_data.port_number
Port number.

port_detail.def_data.max_rcv_btu_size
Maximum BTU size that can be received.

port_detail.def_data.tot_link_act_lim
Total link activation limit.

port_detail.def_data.inb_link_act_lim
Inbound link activation limit.

port_detail.def_data.out_link_act_lim
Outbound link activation limit.

port_detail.def_data.ls_role
Link station role. This can be negotiable (AP_LS_NEG), primary
(AP_LS_PRI), or secondary (AP_LS_SEC). Reserved if
implicit_hpr_support is set to AP_NO.

port_detail.def_data.implicit_dspu_template
Specifies the DSPU template, defined with the DEFINE_DSPU_TEMPLATE
verb, that is used for definitions if the local node is to provide PU
Concentration for an implicit link activated on this port. If the template
specified does not exist (or is already at its instance limit) when the link is
activated, activation fails. This is an 8-byte string in a locally-displayable
character set. All 8 bytes are significant and must be set.

If the def_data.implicit_dspu_services field is not set to
AP_PU_CONCENTRATION, then this field is reserved.

port_detail.def_data.implicit_ls_limit
Specifies the maximum number of implicit link stations that can be active
on this port simultaneously, including dynamic links and links activated
for Discovery. A value of 0 means that there is no limit, a value of
AP_NO_IMPLICIT_LINKS means that no implicit links are allowed.

port_detail.def_data.retry_flags
This field specifies the conditions under which activation of this port are
subject to automatic retry if the flag AP_INHERIT_RETRY is set on
DEFINE_LS in def_data.retry_flags. It is a bit field, and may take any of
the following values bit-wise ORed together.

QUERY_PORT

412 System Management Programming

AP_RETRY_ON_START
Link activation will be retried if no response is received from the
remote node when activation is attempted. If the underlying port is
inactive when activation is attempted, the Program will attempt to
activate it.

AP_RETRY_ON_FAILURE
Link activation will be retried if the link fails while active or
pending active. If the underlying port has failed when activation is
attempted, the Program attempts to activate it.

AP_RETRY_ON_DISCONNECT
Link activation will be retried if the link is stopped normally by
the remote node.

AP_DELAY_APPLICATION_RETRIES
Link activation retries, initiated by applications (using START_LS
or on-demand link activation) will be paced using the
activation_delay_timer.

AP_DELAY_INHERIT_RETRY
In addition to the retry conditions specified by flags in this field,
those specified in the retry_flags field of the underlying port
definition will also be used.

port_detail.def_data.max_activation_attempts
This field has no effect unless at least one flag is set in DEFINE_LS in
def_data.retry_flags and def_data.max_activation_attempts on DEFINE_LS
is set to AP_USE_DEFAULTS.

This field specifies the number of retry attempts the Program allows when
the remote node is not responding, or the underlying port is inactive. This
includes both automatic retries and application-driven activation attempts.

If this limit is ever reached, no further attempts are made to automatically
retry. This condition is reset by STOP_LS, STOP_PORT, STOP_DLC or a
successful activation. START_LS or OPEN_LU_SSCP_SEC_RQ results in a
single activation attempt, with no retry if activation fails.

Zero means 'no limit'. The value AP_USE_DEFAULTS results in the use of
max_activiation_attempts supplied on DEFINE_PORT.

ls_detail.def_data.activation_delay_timer
This field has no effect unless at least one flag is set in DEFINE_LS in
def_data.retry_flags and def_data.max_activation_attempts on DEFINE_LS
is set to AP_USE_DEFAULTS.

This field specifies the number of seconds that the Program waits between
automatic retry attempts, and between application-driven activation
attempts if the AP_DELAY_APPLICATION_RETRIES bit is set in
def_data.retry_flags.

The value AP_USE_DEFAULTS results in the use of
activiation_delay_timer supplied on DEFINE_PORT.

If zero is specified, the Program uses a default timer duration of thirty
seconds.

ls_detail.def_data.implicit_dspu_template
Specifies the DSPU template, defined with the DEFINE_DSPU_TEMPLATE
verb, that is used for definitions if the local node is to provide PU
Concentration for an implicit link activated on this port. If the template

QUERY_PORT

Chapter 6. Query Verbs 413

specified does not exist (or is already at its instance limit) when the link is
activated, activation fails. This is an 8-byte string in a locally-displayable
character set. All 8 bytes are significant and must be set.

If the def_data.implicit_dspu_services field is not set to
AP_PU_CONCENTRATION, then this field is reserved.

ls_detail.def_data.implicit_dspu_services
Specifies the services that the local node will provide to the downstream
PU across implicit links activated on this port. This is set to one of the
following values:

AP_DLUR
Local node will provide DLUR services for the downstream PU
(using the default DLUS configured through the
DEFINE_DLUR_DEFAULTS verb).

AP_PU_CONCENTRATION
Local node will provide PU Concentration for the downstream PU
(and will put in place definitions as specified by the DSPU
template specified in the field def_data.implicit_dspu_template).

AP_NONE
Local node will provide no services for this downstream PU.

ls_detail.def_data.implicit_deact_timer
Limited resource link deactivation timer (in seconds). If
implicit_limited_resource is set to AP_YES or AP_NO_SESSIONS, then an
HPR-capable implicit link is automatically deactivated if no data traverses
the link for the duration of this timer, and no sessions are using the link.

If implicit_limited_resource is set to AP_INACTIVITY then an implicit
link is automatically deactivated if no data traverses the link for the
duration of this timer.

If zero is specified the default value of 30 is used. Otherwise the minimum
value is 5. (If it is set any lower, the specified value will be ignored and 5
will be used.) Note that this parameter is reserved unless
implicit_limited_resource is set to AP_NO.

port_detail.def_data.act_xid_exchange_limit
Activation XID exchange limit.

port_detail.def_data.nonact_xid_exchange_limit
Nonactivation XID exchange limit.

port_detail.def_data.ls_xmit_rcv_cap
Specifies the link station transmit/receive capability. This is either two-way
simultaneous (AP_LS_TWS) or two way alternating (AP_LS_TWA).

port_detail.def_data.max_ifrm_rcvd
Maximum number of I-frames that can be received by local link stations
before an acknowledgment is sent. Range: 1–127

port_detail.def_data.target_pacing_count
Numeric value between 1 and 32 767 inclusive indicating the desired
pacing window size for BINDs on this TG. The number is only significant
when fixed bind pacing is being performed. Personal Communications or
Communications Server does not currently use this value.

port_detail.def_data.max_send_btu_size
Maximum BTU size that can be sent.

QUERY_PORT

414 System Management Programming

port_detail.def_data.dlc_data.length
Port address length.

port_detail.def_data.dlc_data.address
Port address.

port_detail.def_data.hpr_dlc_data.length
HPR Port address length.

port_detail.def_data.hpr_dlc_data.address
HPR Port address. This is currently used when supporting HPR links. The
field specifies the information sent by Personal Communications or
Communications Server in the X'80' subfield of the X'61' control vector on
XID3 exchanged on link stations using this port.

port_detail.def_data.implicit_cp_cp_sess_support
Specifies whether CP-CP sessions are permitted for implicit link stations off
this port (AP_YES or AP_NO).

port_detail.def_data.implicit_limited_resource
Specifies whether implicit link stations off this port should be deactivated
when there are no sessions using the link. This is set to one of the
following values:

AP_NO
Implicit links are not limited resources and will not be deactivated
automatically.

AP_YES or AP_NO_SESSIONS
Implicit links are a limited resource and will be deactivated
automatically when no active sessions are using them.

AP_INACTIVITY
Implicit links are a limited resource and will be deactivated
automatically when no active sessions are using them, or when no
data has followed on the link for the time period specified by the
implicit_deact_timer field.

port_detail.def_data.implicit_hpr_support
Specifies whether HPR is supported on implicit links (AP_YES or AP_NO).

port_detail.def_data.implicit_link_lvl_error
Specifies whether HPR traffic is sent on implicit links using link-level error
recovery (AP_YES or AP_NO).

port_detail.def_data.default_tg_chars
TG characteristics (See “DEFINE_COS” on page 35). These are used for
implicit link stations off this port and also for defined link stations which
specify use_default_tg_chars.

port_detail.def_data.discovery_supported
Specifies whether Discovery search functions are performed on this port
(AP_YES or AP_NO).

port_detail.def_data.port_spec_data_len
Unpadded length, in bytes, of data passed unchanged to the port on the
ACTIVATE_PORT signal. The data is concatenated to the PORT_DETAIL
structure.

port_detail.def_data.link_spec_data_len
Data passed unchanged to the link station component during initialization.
The data is concatenated to the PORT_DETAIL structure immediately
following the port-specific data. The port-specific data and the link-specific

QUERY_PORT

Chapter 6. Query Verbs 415

data together will be padded to end on a 4-byte boundary. There will be
no explicit padding between the port-specific data and the link-specific
data.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PORT_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_PORT

416 System Management Programming

QUERY_PU

QUERY_PU returns a list of local PUs and the links associated with them.

The information is returned as a list. To obtain information about a specific PU, or
to obtain the list information in several chunks, the pu_name field should be set.
Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 10 for background on how the list
formats are used.

The verb specifies whether local PUs are attached directly to the host system or
attached via DLUR. The host_attachment field can be used as a filter so that only
information about the specified attachment type is returned.

VCB Structure
typedef struct query_pu
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* Verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char pu_name[8]; /* PU name */
unsigned char host_attachment; /* Host Attachment */

} QUERY_PU;

typedef struct pu_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char pu_name[8]; /* PU name */
unsigned char description[RD_LEN];

/* resource description */
unsigned char ls_name[8]; /* LS name */
unsigned char pu_sscp_sess_active;

/* Is PU-SSCP session active */
unsigned char host_attachment; /* Host attachment */
SESSION_STATS pu_sscp_stats; /* PU-SSCP session statistics */
unsigned char sscp_id[6]; /* SSCP ID */
unsigned char conventional_lu_compression;

/* Data compression requested */
/* for conventional LU sessions */

unsigned char conventional_lu_cryptography;
/* Cryptography required for */
/* conventional LU sessions */

unsigned char reserva[12]; /* reserved */
} PU_DATA;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing window size */
unsigned short cur_send_pac_win; /* curr send pacing window size */
unsigned short max_rcv_pac_win; /* max recv pacing window size */
unsigned short cur_rcv_pac_win; /* current receive pacing */

QUERY_PU

Chapter 6. Query Verbs 417

/* window size */
unsigned long send_data_frames; /* number of data frames sent */
unsigned long send_fmd_data_frames;

/* num of FMD data frames sent */
unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num data frames received */
unsigned long rcv_fmd_data_frames;

/* num of FMD data frames rcvd */
unsigned long rcv_data_bytes; /* number of data bytes received */
unsigned char sidh; /* session ID high byte */

/* (from LFSID) */
unsigned char sidl; /* session ID low byte */

/* (from LFSID) */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */
unsigned char pacing_type; /* type of pacing in use */

} SESSION_STATS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_PU

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information.

The pu_name specified (see the following parameter, pu_name) represents
an index value that is used to specify the starting point of the actual
information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

QUERY_PU

418 System Management Programming

pu_name
Name of the first PU to be listed. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with EBCDIC
spaces. This field is ignored if list_options is set to AP_FIRST_IN_LIST.

host_attachment
Filter for host attachment:

AP_NONE
Return information about all local PUs.

AP_DLUR_ATTACHED
Return information about all local PUs that are supported by
DLUR.

AP_DIRECT_ATTACHED
Return information about only those PUs that are directly attached
to the host system.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

pu_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

pu_data.pu_name
PU name. This is an 8-byte alphanumeric type-A EBCDIC string (starting
with a letter), padded to the right with EBCDIC spaces.

pu_data.description
Resource description (as specified on DEFINE_LS or
DEFINE_INTERNAL_PU). This is a 16-byte string in a locally displayable
character set. All 16 bytes are significant.

pu_data.ls_name
Name of the link station associated with this PU. This is an 8-byte string in
a locally displayable character set. All 8 bytes are significant.

pu_data.pu_sscp_sess_active
Specifies whether the PU-SSCP session is active (AP_YES or AP_NO).

pu_data.host_attachment
Local PU host attachment type:

QUERY_PU

Chapter 6. Query Verbs 419

AP_DLUR_ATTACHED
PU is attached to host system using DLUR.

AP_DIRECT_ATTACHED
PU is directly attached to host system.

pu_data.pu_sscp_stats.rcv_ru_size
This field is always reserved.

pu_data.pu_sscp_stats.send_ru_size
This field is always reserved.

pu_data.pu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

pu_data.pu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

pu_data.pu_sscp_stats.max_send_pac_win
This field will always be set to zero.

pu_data.pu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

pu_data.pu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

pu_data.pu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

pu_data.pu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

pu_data.pu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

pu_data.pu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

pu_data.pu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

pu_data.pu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

pu_data.pu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

pu_data.pu_sscp_stats.sidh
Session ID high byte.

pu_data.pu_sscp_stats.sidl
Session ID low byte.

pu_data.pu_sscp_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the ACTPU sets this field to zero if the local node contains the
primary link station, and sets it to one if the ACTPU sender is the node
containing the secondary link station.

pu_data.pu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant.

QUERY_PU

420 System Management Programming

pu_data.pu_sscp_stats.pacing_type
Receiving pacing type in use on the PU-SSCP session. This will take the
value AP_NONE.

pu_data.sscp_id
This is a 6–byte field containing the SSCP ID received in the ACTPU for
the PU.

If pu_sscp_sess_active is not AP_YES, then this field will be zeroed.

pu_data.conventional_lu_compression
Specifies whether data compression is requested for sessions using this PU.

AP_NO
The local node should not be compressing or decompressing data
flowing on sessions using this PU.

AP_YES
Data compression should be enabled for sessions dependent on
this PU if the host requests compression.

pu_data.conventional_lu_cryptography
Specifies whether session level encryption is required for conventional LU
sessions dependent on this PU.

AP_NONE
Session level encryption is not performed by the Program.

AP_MANDATORY
Mandatory session level encryption is performed by the Program if
an import key is available to the LU. Otherwise, it must be
performed by the application that uses the LU (if this is PU
Concentration, then it is performed by a downstream LU).

AP_OPTIONAL
This value allows the cryptography used to be driven by the host
application on a per session basis. If the host requests
cryptography for a session dependent on this PU, then the
behaviour of the Program is as for AP_MANDATORY. If the host
does not request cryptography, then the behaviour is the same as
AP_NONE.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PU_NAME

AP_INVALID_PU_TYPE
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

QUERY_PU

Chapter 6. Query Verbs 421

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_PU

422 System Management Programming

QUERY_RTP_CONNECTION

QUERY_RTP_CONNECTION is used at a network node or an end node and
returns list information about Rapid Transport Protocol (RTP) connections for
which the node is an endpoint.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific RTP connection, or to
obtain the list information in several chunks, the rtp_name field should be set.
Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 10 for background on how the list
formats are used.

This list is ordered by the rtp_name. Ordering is according to name length first,
and then by ASCII lexicographical ordering for names of the same length (in
accordance with normal MIB ordering). If AP_LIST_FROM_NEXT is selected the
returned list starts from the next entry according to the defined ordering (whether
the specified entry exists or not).

VCB Structure
typedef struct query_rtp_connection
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char rtp_name[8]; /* name of RTP connection */

} QUERY_RTP_CONNECTION;

typedef struct rtp_connection_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char rtp_name[8]; /* RTP connection name */
unsigned char first_hop_ls_name[8];

/* LS name of first hop */
unsigned char dest_node_name[17]; /* fully qualified name of */

/* destination node */
unsigned char reserv1; /* reserved */
unsigned char cos_name[8]; /* class-of-service name */
unsigned short num_sess_active; /* number of active sessions */

} RTP_CONNECTION_SUMMARY;

typedef struct rtp_connection_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char rtp_name[8]; /* RTP connection name */
unsigned char first_hop_ls_name[8];

/* LS name of first hop */
unsigned char dest_node_name[17]; /* fully qualified name of */

/* destination node */
unsigned char isr_boundary_fn; /* connection provides ISR BF */
unsigned char reserv1[3]; /* reserved */
unsigned char cos_name[8]; /* class-of-service name */
unsigned short max_btu_size; /* max BTU size */
unsigned long liveness_timer; /* liveness timer */

QUERY_RTP_CONNECTION

Chapter 6. Query Verbs 423

unsigned char local_tcid[8]; /* local TCID */
unsigned char remote_tcid[8]; /* remote TCID */
RTP_STATISTICS rtp_stats; /* RTP statistics */
unsigned short num_sess_active; /* number of active sessions */
unsigned char reserv2[16]; /* reserved */
unsigned short rscv_len; /* length of appended RSCV */

} RTP_CONNECTION_DETAIL;

typedef struct rtp_statistics
{

unsigned long bytes_sent; /* total number of bytes sent */
unsigned long bytes_received; /* total number of bytes received */
unsigned long bytes_resent; /* total number of bytes resent */
unsigned long bytes_discarded; /* total number bytes discarded */
unsigned long packets_sent; /* total number of packets sent */
unsigned long packets_received; /* total number packets received */
unsigned long packets_resent; /* total number of packets resent */
unsigned long packets_discarded; /* total number packets discarded */
unsigned long gaps_detected; /* gaps detected */
unsigned long send_rate; /* current send rate */
unsigned long max_send_rate; /* maximum send rate */
unsigned long min_send_rate; /* minimum send rate */
unsigned long receive_rate; /* current receive rate */
unsigned long max_receive_rate; /* maximum receive rate */
unsigned long min_receive_rate; /* minimum receive rate */
unsigned long burst_size; /* current burst size */
unsigned long up_time; /* total uptime of connection */
unsigned long smooth_rtt; /* smoothed round-trip time */
unsigned long last_rtt; /* last round-trip time */
unsigned long short_req_timer; /* SHORT_REQ timer duration */
unsigned long short_req_timeouts; /* number of SHORT_REQ timeouts */
unsigned long liveness_timeouts; /* number of liveness timeouts */
unsigned long in_invalid_sna_frames;

/* number of invalid SNA frames */
/* received */

unsigned long in_sc_frames; /* number of SC frames received */
unsigned long out_sc_frames; /* number of SC frames sent */
unsigned char reserve[40]; /* reserved */

} RTP_STATISTICS;

Note: The rtp_connection_detail overlay will be followed by a Route Selection
Control Vector (RSCV) as defined by SNA. After RTP connection setup and
before any path switch, the RSCV for an RTP connection will be stored and
displayed at each node as follows:
v The RSCV will contain all the hops from the local node to the partner

RTP node.
v If the partner RTP node is not an endpoint of the session causing the RTP

connection to be activated, the RSCV will also store one “boundary
function hop” leading away from the partner RTP node.

v The RSCV will never contain a boundary function hop leading into the
local node, even if the local node does not contain a session endpoint.

After path switch has occurred, the RSCVs stored and displayed will only include
the hops from the local node to the partner RTP node. (Never a boundary function
hop.)

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_RTP_CONNECTION

QUERY_RTP_CONNECTION

424 System Management Programming

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information.

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The rtp_name represents an index value that is used to specify the
starting point of the actual information to be returned.

AP_FIRST_IN_LIST
The rtp_name is ignored and the returned list starts from the first
entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

rtp_name
RTP connection name. This name is an 8-byte string in a locally displayable
character set. All 8 bytes are significant and must be set.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

QUERY_RTP_CONNECTION

Chapter 6. Query Verbs 425

rtp_connection_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

rtp_connection_summary.rtp_name
RTP connection name. This name is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

rtp_connection_summary.first_hop_ls_name
Link station name of the first hop of the RTP connection. This name is an
8-byte string in a locally displayable character set. All 8 bytes are
significant.

rtp_connection_summary.dest_node_name
Fully qualified, 17-byte name of the destination node of the RTP
connection composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

rtp_connection_summary.cos_name
Class-of-service name for the RTP connection. This is an 8-byte
alphanumeric type-A EBCDIC character string, padded to the right with
EBCDIC spaces.

rtp_connection_summary.num_sess_active
Number of sessions currently active on the RTP connection.

rtp_connection_detail.overlay_size
The number of bytes in this entry (including any appended RSCV), and
hence the offset to the next entry returned (if any).

rtp_connection_detail.rtp_name
RTP connection name. This name is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

rtp_connection_detail.first_hop_ls_name
Link station name of the first hop of the RTP connection. This name is an
8-byte string in a locally displayable character set. All 8 bytes are
significant.

rtp_connection_detail.dest_node_name
Fully qualified, 17-byte name of the destination node of the RTP
connection composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded-with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

rtp_connection_detail.isr_boundary_fn
AP_YES if the RTP Connection is being used for any ISR session for which
the local node is providing HPT-APPN Boundary Function, AP_NO
otherwise.

rtp_connection_detail.cos_name
Class-of-service name for the RTP connection. This is an 8-byte
alphanumeric type-A EBCDIC character string, padded to the right with
EBCDIC spaces.

rtp_connection_detail.max_btu_size
Maximum BTU size for the RTP connection measured in bytes.

QUERY_RTP_CONNECTION

426 System Management Programming

rtp_connection_detail.liveness_timer
Liveness timer for the RTP connection, measured in seconds.

rtp_connection_detail.local_tcid
Local TCID for the RTP connection.

rtp_connection_detail.remote_tcid
Remote TCID for the RTP connection.

rtp_connection_detail.rtp_stats.bytes_sent
Total number of bytes that the local node has sent on this RTP connection.

rtp_connection_detail.rtp_stats.bytes_received
Total number of bytes that the local node has received on this RTP
connection.

rtp_connection_detail.rtp_stats.bytes_resent
Total number of bytes resent by the local node owing to loss in transit.

rtp_connection_detail.rtp_stats.bytes_discarded
Total number of bytes sent by the other end of the RTP connection and
were discarded as duplicates of data already received.

rtp_connection_detail.rtp_stats.packets_sent
Total number of packets that the local node has sent on this RTP
connection.

rtp_connection_detail.rtp_stats.packets_received
Total number of packets that the local node has received on this RTP
connection.

rtp_connection_detail.rtp_stats.packets_resent
Total number of packets resent by the local node owing to loss in transit.

rtp_connection_detail.rtp_stats.packets_discarded
Total number of packets sent by the other end of the RTP connection that
were discarded as duplicates of data already received.

rtp_connection_detail.rtp_stats.gaps_detected
Total number of gaps detected by the local node. Each gap corresponds to
one or more lost frames.

rtp_connection_detail.rtp_stats.send_rate
Current send rate on this RTP connection (measured in kilobits per
second). This is the maximum allowed send rate as calculated by the ARB
algorithm.

rtp_connection_detail.rtp_stats.max_send_rate
Maximum send rate on this RTP connection (measured in kilobits per
second).

rtp_connection_detail.rtp_stats.min_send_rate
Minimum send rate on this RTP connection (measured in kilobits per
second).

rtp_connection_detail.rtp_stats.receive_rate
Current receive rate on this RTP connection (measured in kilobits per
second). This is the actual receive rate calculated over the last
measurement interval.

rtp_connection_detail.rtp_stats.max_receive_rate
Maximum receive rate on this RTP connection (measured in kilobits per
second).

QUERY_RTP_CONNECTION

Chapter 6. Query Verbs 427

rtp_connection_detail.rtp_stats.min_receive_rate
Minimum receive rate on this RTP connection (measured in kilobits per
second).

rtp_connection_detail.rtp_stats.burst_size
Current burst size on the RTP Connection measured in bytes.

rtp_connection_detail.rtp_stats.up_time
Total number of seconds the RTP connection has been active.

rtp_connection_detail.rtp_stats.smooth_rtt
Smoothed measure of round-trip time between the local node and the
partner RTP node (measured in milliseconds).

rtp_connection_detail.rtp_stats.last_rtt
The last measured round-trip time between the local node and the partner
RTP node (measured in milliseconds).

rtp_connection_detail.rtp_stats.short_req_timer
The current duration used for the SHORT_REQ timer (measured in
milliseconds).

rtp_connection_detail.rtp_stats.short_req_timeouts
Total number of times the SHORT_REQ timer has expired for this RTP
connection.

rtp_connection_detail.rtp_stats.liveness_timeouts
Total number of times the liveness timer has expired for this RTP
connection. The liveness timer expires when the connection has been idle
for the period specified in rtp_connection_detail.liveness_timer.

rtp_connection_detail.rtp_stats.in_invalid_sna_frames
Total number of SNA frames received and discarded as not valid on this
RTP connection.

rtp_connection_detail.rtp_stats.in_sc_frames
Total number of session control frames received on this RTP connection.

rtp_connection_detail.rtp_stats.out_sc_frames
Total number of session control frames sent on this RTP connection.

rtp_connection_detail.num_sess_active
Number of sessions currently active on the RTP connection.

rtp_connection_detail.rscv_len
Length of the appended Route Selection Control Vector for the RTP
connection. (If none is appended, then the length is zero.) The RSCV will
be padded to end on a 4-byte boundary to ensure correct alignment of the
next detail entry, but the rscv_len does not include this padding.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_RTP_CONNECTION

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

QUERY_RTP_CONNECTION

428 System Management Programming

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_RTP_CONNECTION

Chapter 6. Query Verbs 429

QUERY_RTP_TUNING

QUERY_RTP_TUNING specifies parameters to be used when setting up RTP
connections. After you issue this verb, the parameters that you specify will be used
for all future RTP connections, until you modify them by issuing a new
QUERY_RTP_TUNING verb.

VCB Structure
typedef struct query_rtp_tuning
{

AP_UINT16 opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* reserved */
AP_UINT16 primary_rc; /* primary return code */
AP_UINT32 secondary_rc; /* secondary return code */
unsigned char path_switch_attempts; /* number of path switch attempts */
unsigned char short_req_retry_limit; /* short request timer retry limit */
AP_UINT16 path_switch_times[4]; /* path switch times */
AP_UINT32 refifo_cap; /* maximum for refifo timer */
AP_UINT32 srt_cap; /* maximum for short request timer */
unsigned char reserved[82]; /* reserved */

} QUERY_RTP_TUNING;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_RTP_TUNING

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

path_switch_attempts
Number of path switch attempts for new RTP connections. Specify a value
in the range 1–255.

Specify a value in the range 1–255. If you specify 0 (zero), Personal
Communications or Communications Server uses the default value of 6.

short_req_retry_limit
Number of times a Status Request is sent before Personal Communications
or Communications Server determines that an RTP connection is
disconnected and starts Path Switch processing.

Specify a value in the range 1–255. If you specify 0 (zero), Personal
Communications or Communications Server uses the default value of 6.

path_switch_times
Length of time in seconds for which Personal Communications or
Communications Server attempts to path switch a disconnected RTP
connection.

This parameter is specified as four separate time limits for each of the
valid transmission priorities in order:
1. AP_LOW
2. AP_MEDIUM

QUERY_RTP_TUNING

430 System Management Programming

3. AP_HIGH
4. AP_NETWORK

Each of these parameters should be in the range 1–65535. The value that
you specify for each transmission priority must not exceed the value for
any lower transmission priority.

If you specify 0 (zero) for any of the time limits, Personal Communications
or Communications Server uses the corresponding default values:
v AP_LOW: 480 seconds
v AP_MEDIUM: 240 seconds
v AP_HIGH: 120 seconds
v AP_NETWORK : 60 seconds

refifo_cap
The RTP protocol uses the Re-FIFO Timer. The value of this timer is
calculated as part of the protocol, but this parameter specifies a maximum
value (in milliseconds). In some situations, setting this maximum value can
improve performance.

Setting a value of 0 (zero) means that the timer is not limited and can take
any value calculated by the protocol. The default value for this parameter
is 4000 milliseconds, with a range of 250–12000 milliseconds.

srt_cap
The RTP protocol uses the Short Request Timer. The value of this timer is
calculated as part of the protocol, but this parameter specifies a maximum
value (in milliseconds). In some situations, setting this maximum value can
improve performance.

Setting a value of 0 (zero) means that the timer is not limited and can take
any value calculated by the protocol. The default value for this parameter
is 8000 milliseconds, with a range of 500–24000 milliseconds.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Values are as follows:

AP_INVALID_PATH_SWITCH_TIMES
The path_switch_times parameter was not valid. For example, you
might have specified a value for one transmission priority that
exceeds the value specified for a lower transmission priority.

QUERY_RTP_TUNING

Chapter 6. Query Verbs 431

QUERY_SESSION

QUERY_SESSION returns list information about sessions for which the node is an
endpoint.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific session, or to obtain
the list information in several chunks, the session_id field should be set. Otherwise
(if the list_options field is set to AP_FIRST_IN_LIST), this field will be ignored.
Note that the lu_name (or lu_alias) and plu_alias (or fqplu_name) fields must
always be set. The lu_name, if nonzero, will be used in preference to the lu_alias.
See “Querying the Node” on page 10 for background on how the list formats are
used.

The list of sessions returned may be filtered by the name of the partner LU. To do
this, the fqplu_name or plu_alias fields should be set. If plu_alias is set to all
zeros, the fqplu_name value will be used, otherwise the plu_alias is always used
and the fqplu_name is ignored.

The list of sessions returned can be filtered by the name of the mode that they are
associated with. In this case the mode_name field should be set (otherwise this
field should be set to all zeros).

In addition to the detail information for each session, a route selection control
vector (RSCV) will be returned (in key-length format) if this is specified on the
START NODE parameters. This RSCV (specified in SNA Formats) defines the route
through the network that the session takes in hop-by-hop form.

VCB Structure
typedef struct query_session
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_alias[8]; /* LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char mode_name[8]; /* mode name */
unsigned char session_id[8]; /* session ID */

} QUERY_SESSION;

typedef struct session_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char reserv3[1]; /* reserved */
unsigned char mode_name[8]; /* mode name */

QUERY_SESSION

432 System Management Programming

unsigned char session_id[8]; /* session ID */
FQPCID fqpcid; /* fully qualified procedure */

/* correlator ID */
} SESSION_SUMMARY;

typedef struct session_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char reserv3[1]; /* reserved */
unsigned char mode_name[8]; /* mode name */
unsigned char session_id[8]; /* session ID */
FQPCID fqpcid; /* fully qualified procedure */

/* correlator ID */
unsigned char cos_name[8]; /* Class-of-service name */
unsigned char trans_pri; /* Transmission priority: */
unsigned char ltd_res; /* Session spans a limited */

/* resource */
unsigned char polarity; /* Session polarity */
unsigned char contention; /* Session contention */
SESSION_STATS sess_stats; /* Session statistics */
unsigned char duplex_support; /* full-duplex support */
unsigned char sscp_id[6]; /* SSCP ID of host */
unsigned char reserva[20]; /* reserved */
unsigned long session_start_time;/* start time of the session */
unsigned short session_timeout; /* session timeout */
unsigned char reservb[7]; /* reserved */
unsigned char plu_slu_comp_lvl; /* PLU to SLU compression level */
unsigned char slu_plu_comp_lvl; /* SLU to PLU compression level */
unsigned char rscv_len; /* Length of following RSCV */

} SESSION_DETAIL;

typedef struct fqpcid
{

unsigned char pcid[8]; /* pro correlator identifier */
unsigned char fqcp_name[17]; /* orig’s network qualified */

/* CP name */
unsigned char reserve3[3]; /* reserved */

} FQPCID;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* Maximum send BTU size */
unsigned short max_rcv_btu_size; /* Maximum rcv BTU size */
unsigned short max_send_pac_win; /* Max send pacing window size */
unsigned short cur_send_pac_win; /* Curr send pacing window size */
unsigned short max_rcv_pac_win; /* Max receive pacing win size */
unsigned short cur_rcv_pac_win; /* Curr rec pacing window size */
unsigned long send_data_frames; /* Number of data frames sent */
unsigned long send_fmd_data_frames;

/* num of FMD data frames sent */
unsigned long send_data_bytes; /* Number of data bytes sent */
unsigned long rcv_data_frames; /* Num data frames received */
unsigned long rcv_fmd_data_frames;

/* num of FMD data frames recvd */
unsigned long rcv_data_bytes; /* Num data bytes received */
unsigned char sidh; /* Session ID high byte */
unsigned char sidl; /* Session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */
unsigned char pacing_type; /* type of pacing in use */

} SESSION_STATS;

QUERY_SESSION

Chapter 6. Query Verbs 433

Note: The session detail overlay may be followed by a route selection control
vector (RSCV) as defined by SNA Formats. This control vector defines the
session route through the network and is carried on the BIND. The RSCV is
included (in key-length format) if the field on the START_NODE verb is set
to AP_YES. If the START_NODE rscv_len is set to zero.

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_SESSION

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information.

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The combination of lu_name (or lu_alias if the lu_name is set to
all zeros), pu_alias (or fqplu_name if the plu_alias is set to all
zeros), mode_name and session_id specified (see the following
parameters, lu_name, pu_alias, mode_name, and session_id)
represent an index value that is used to specify the starting point
of the actual information to be returned .

AP_FIRST_IN_LIST
The session_id is ignored and the returned list starts from the first
entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

lu_name
LU name. This name is an 8-byte type-A EBCDIC character string. If this
field is set to all zeros, the lu_alias field will be used for determining the
index.

lu_alias
Locally defined LU alias. This is an 8-byte string in a locally displayable

QUERY_SESSION

434 System Management Programming

character set. This field is only significant if the lu_name field is set to all
zeros, in which case all 8 bytes are significant and must be set. If both the
lu_name and the lu_alias fields are set to all zeros, the LU associated with
the control point (the default LU) is used.

plu_alias
Partner LU alias. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant and must be set. If this field is set to all
zeros, the fqplu_name field will be used for determining the index.

fqplu_name
17-byte fully qualified network name for the partner LU. This name is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

mode_name
Mode name filter. This should be set to all zeros or an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. If this field is set then only sessions associated with this
mode are returned. This field is ignored if it is set to all zeros.

session_id
8-byte identifier of the session. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

session_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

session_summary.plu_alias
Partner LU alias. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant.

session_summary.fqplu_name
17-byte fully qualified network name for the partner LU. This name is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces.

QUERY_SESSION

Chapter 6. Query Verbs 435

session_summary.mode_name
Mode name. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces.

session_summary.session_id
8-byte identifier of the session.

session_summary.fqpcid.pcid
Procedure correlator ID. This is an 8-byte hexadecimal string.

session_summary.fqpcid.fqcp_name
Fully qualified control point name. This 17-byte name is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot, and is
right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.)

session_detail.overlay_size
The number of bytes in this entry (including any appended RSCV), and
hence the offset to the next entry returned (if any).

session_detail.plu_alias
Partner LU alias. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant.

session_detail.fqplu_name
17-byte fully qualified network name for the partner LU. This name is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces.

session_detail.mode_name
Mode name. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces.

session_detail.session_id
8-byte identifier of the session.

session_detail.fqpcid.pcid
Procedure correlator ID. This is an 8-byte hexadecimal string.

session_detail.fqpcid.fqcp_name
Fully qualified control point name. This 17-byte name is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot, and is
right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.)

session_detail.cos_name
Class-of-service name. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.

session_detail.trans_pri
Transmission priority. This is set to one of the following values:

AP_LOW
AP_MEDIUM
AP_HIGH
AP_NETWORK

session_detail.ltd_res
Specifies whether the session uses a limited resource link (AP_YES or
AP_NO).

session_detail.polarity
Specifies the polarity of the session (AP_PRIMARY or AP_SECONDARY).

QUERY_SESSION

436 System Management Programming

session_detail.contention
Specifies the session contention polarity. This indicates whether the local
LU has 'first refusal' for the use of this session (AP_CONWINNER) or
whether it must bid before using the session (AP_CONLOSER).

session_detail.sess_stats.rcv_ru_size
Maximum receive RU size.

session_detail.sess_stats.send_ru_size
Maximum send RU size.

session_detail.sess_stats.max_send_btu_size
Maximum BTU size that can be sent.

session_detail.sess_stats.max_rcv_btu_size
Maximum BTU size that can be received.

session_detail.sess_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

session_detail.sess_stats.cur_send_pac_win
Current size of the send pacing window on this session.

session_detail.sess_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

session_detail.sess_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

session_detail.sess_stats.send_data_frames
Number of normal flow data frames sent.

session_detail.sess_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

session_detail.sess_stats.send_data_bytes
Number of normal flow data bytes sent.

session_detail.sess_stats.rcv_data_frames
Number of normal flow data frames received.

session_detail.sess_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

session_detail.sess_stats.rcv_data_bytes
Number of normal flow data bytes received.

session_detail.sess_stats.sidh
Session ID high byte.

session_detail.sess_stats.sidl
Session ID low byte.

session_detail.sess_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station. It sets it to one if the BIND sender is the node
containing the secondary link station.

session_detail.sess_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. This field can
be used to correlate the session statistics with the link over which session
data flows.

QUERY_SESSION

Chapter 6. Query Verbs 437

session_detail.sess_stats.pacing_type
Type of receive pacing in use on this session. This may take the values
AP_NONE, AP_PACING_FIXED, or AP_PACING_ADAPTIVE.

session_detail.duplex_support
Returns the conversation duplex support as negotiated on the BIND. This
is one of the following values:

AP_HALF_DUPLEX
Only half-duplex conversations are supported.

AP_FULL_DUPLEX
Full-duplex as well as half-duplex conversations are supported.
Expedited data is also supported.

session_detail.sscp_id
For dependent LU sessions, this field contains the SSCP ID received in the
ACTPU from the host for the PU that the local LU is mapped to. For
independent LU sessions, this field will be set to all binary zeros.

session_detail.session_start_time
The time that elapsed between the CP starting and this session becoming
active, measured in one-hundredths of a second. If the session is not
fully-active when the query is processed, zero is returned in this field.

session_detail.session_timeout
Specifies the timeout associated with the session. This is derived from the
following values:
v LU6.2 timeout associated with the local LU
v LU6.2 timeout associated with the remote LU
v mode timeout
v global timeout
v limited resource timeout if this session is running over a limited resource

link

session_detail.plu_slu_comp_lvl
Specifies the compression level for data sent from the PLU to the SLU.

AP_NONE
Compression is not used.

AP_RLE_COMPRESSION
RLE compression is used.

AP_LZ9_COMPRESSION
This node can supports LZ9 compression.

AP_LZ10_COMPRESSION
The node can supports LZ10 compression.

AP_LZ12_COMPRESSION
The node can supports LZ12 compression.

session_detail.slu_plu_comp_lvl
Specifies the compression level for data sent from the SLU to the PLU.

AP_NONE
Compression is not used.

AP_RLE_COMPRESSION
RLE compression is used.

QUERY_SESSION

438 System Management Programming

AP_LZ9_COMPRESSION
This node can supports LZ9 compression.

AP_LZ10_COMPRESSION
The node can supports LZ10 compression.

AP_LZ12_COMPRESSION
The node can supports LZ12compression.

session_detail.rscv_len
Length of the RSCV that is appended to the session_detail structure. (If
none is appended, then the length is zero.) The RSCV will be padded to
end on a 4-byte boundary.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_SESSION_ID

AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_SESSION

Chapter 6. Query Verbs 439

QUERY_SIGNED_ON_LIST

QUERY_SIGNED_ON_LIST retrieves information about users signed on to a
particular LU.

The local LU is specified by lu_name or lu_alias. Buf_ptr, buf_size, total_buf_size,
num_entries, total_num_entries and overlay_size have the usual meanings for a
QUERY verb.

Entries are returned as a list of SIGNED_ON_LIST_ENTRY structures, pointed to
by buf_ptr, or appended to the QUERY_SIGNED_ON_LIST VCB if buf_ptr is
NULL. The list is ordered by plu_alias/fqplu_name, then by user_id and then by
profile. If plu_alias is specified, fqplu_name is ignored.

The list_options can take the values AP_FIRST_IN_LIST, AP_LIST_FROM_NEXT,
AP_LIST_INCLUSIVE. If list_options is AP_FIRST_IN_LIST, plu_alias,
fqplu_name, user_id, and profile are ignored. The list specifies which list to
return entries from, which must be AP_SIGNED_ON_TO_LIST.

VCB Structure
typedef struct query_signed_on_list
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_alias[8]; /* LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char user_id[10]; /* User ID */
unsigned char profile[10]; /* Profile */
unsigned char list; /* Signed-on list type */

} QUERY_SIGNED_ON_LIST;

typedef struct signed_on_list_entry
{

unsigned short overlay_size; /* size of this entry */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char user_id[10]; /* fully qualified partner */
unsigned char profile[10]; /* profile */

} SIGNED_ON_LIST_ENTRY;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_SIGNED_ON_LIST

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

QUERY_SIGNED_ON_LIST

440 System Management Programming

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information.

The combination of lu_name (or lu_alias if the lu_name is set to all zeros),
pu_alias (or fqplu_name if the plu_alias is set to all zeros), user_id and
profile specified (see the following parameters, lu_name, pu_alias,
user_id, and profile) represent an index value that is used to specify the
starting point of the actual information to be returned .

AP_FIRST_IN_LIST
The pu_alias, fqplu_name, user_id, and profile are ignored and
the returned list starts from the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

lu_name
LU name. This name is an 8-byte type-A EBCDIC character string. If this
field is set to all zeros, the lu_alias field will be used for determining the
index.

lu_alias
Locally defined LU alias. This is an 8-byte string in a locally displayable
character set. This field is only significant if the lu_name field is set to all
zeros, in which case all 8 bytes are significant and must be set. If both the
lu_name and the lu_alias fields are set to all zeros, the LU associated with
the control point (the default LU) is used.

plu_alias
Partner LU alias. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant and must be set. If this field is set to all
zeros, the fqplu_name field will be used for determining the index.

fqplu_name
17-byte fully qualified network name for the partner LU. This name is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

user_id
User ID. This should be set to a 10–byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces. If
this field is set then only sessions associated with this mode are returned.
This field is ignored if list_options is set to AP_FIRST_IN_LIST.

QUERY_SIGNED_ON_LIST

Chapter 6. Query Verbs 441

profile
This is a 10-byte alphanumeric EBCDIC string. Note, the Program currently
supports only the blank profile (10 eBCDIC spaces). This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

list Signed–on list type. This must be set to AP_SIGNED_ON_TO_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

signed_on_list_entry.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

signed_on_list_entry.plu_alias
Partner LU alias. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant.

signed_on_list_entry.user_id
User ID. This is a 10-byte alphanumeric type-A EBCDIC string (starting
with a letter), padded to the right with EBCDIC spaces.

signed_on_list_entry.profile
10-byte alphanumeric EBCDIC string.

Note: The Program currently supports only the blank profile (10 EBCDIC
spaces).

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_ALIAS

AP_INVALID_LU_NAME
AP_INVALID_PLU_NAME
AP_INVALID_USERID
AP_INVALID_PROFILE
AP_INVALID_LIST
AP_INVALID_LIST_OPTION

QUERY_SIGNED_ON_LIST

442 System Management Programming

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node stopped, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

QUERY_SIGNED_ON_LIST

Chapter 6. Query Verbs 443

QUERY_STATISTICS

QUERY_STATISTICS queries link station and port statistics. Personal
Communications or Communications Server passes this query directly to the DLC.
The format of the statistics depends on the DLC implementation.

VCB Structure
typedef struct query_statistics
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char name[8]; /* LS or port name */
unsigned char stats_type; /* LS or port statistics? */
unsigned char table_type; /* statistics table requested */
unsigned char reset_stats; /* reset the statistics? */
unsigned char dlc_type; /* type of DLC */
unsigned char statistics[256]; /* current statistics */
unsigned char reserva[20]; /* reserved */

} QUERY_STATISTICS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_STATISTICS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

name Name defined for the link station or port (depending on setting of
stats_type parameter). This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant and must be set. Personal
Communications or Communications Server uses this to correlate the
response to the correct link station or port.

stats_type
The type of resource for which statistics are requested. This must be set to
one of the following values:

AP_LS
AP_PORT

table_type
The type of statistics table requested. This must be set to one of the
following categories of information:

AP_STATS_TBL
Specifies that statistical information will be returned.

AP_ADMIN_TBL
Specifies that administrative information will be returned.

AP_OPER_TBL
Specifies that operational information will be returned. The format
of the information returned for each category is DLC
implementation specific.

QUERY_STATISTICS

444 System Management Programming

reset_stats
Specifies whether the statistics should be reset (AP_YES or AP_NO).

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

dlc_type
Type of the DLC. The value of this field is DLC implementation specific.
The values are as follows:

AP_ANYNET
AP_LLC2
AP_OEM_DLC
AP_SDLC
AP_X25

statistics
Current statistics of link station or port.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LINK_NAME

AP_INVALID_PORT_NAME
AP_INVALID_STATS_TYPE
AP_INVALID_TABLE_TYPE

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_LINK_DEACTIVATED

AP_PORT_DEACTIVATED

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_STATISTICS

Chapter 6. Query Verbs 445

QUERY_TP

QUERY_TP returns information about transaction programs currently being used
by a local LU.

The information is returned as a list. To obtain information about a specific
transaction program, or to obtain the list information in several chunks, the
tp_name field should be set. If the list_options field is set to AP_FIRST_IN_LIST
then this field will be ignored. Note that the lu_name or lu_alias field must always
be set. The lu_name field, if nonzero, will be used in preference to the lu_alias
field. See “Querying the Node” on page 10 for background on how the list formats
are used.

This list is ordered by the tp_name using EBCDIC lexicographical ordering for
names of the same length. This verb returns information that is determined once
the TP starts to be used by a local LU. The QUERY_TP_DEFINITION verb returns
definition information only.

VCB Structure
typedef struct query_tp
{

unsigned short opcode; /* Verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_alias[8]; /* LU alias */
unsigned char tp_name[64]; /* TP name */

} QUERY_TP;

typedef struct tp_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char tp_name[64]; /* TP name */
unsigned char description[RD_LEN];

/* resource description */
unsigned short instance_limit; /* max instance count */
unsigned short instance_count; /* current instance count */
unsigned short locally_started_count;

/* locally started instance */
/* count */

unsigned short remotely_started_count;
/* remotely started instance */
/* count */

unsigned char reserva[20]; /* reserved */
} TP_DATA;

typedef struct tp_spec_data
{

unsigned char pathname[256]; /* path and TP name */
unsigned char parameters[64]; /* parameters for TP */
unsigned char queued; /* queued TP (AP_YES) */

QUERY_TP

446 System Management Programming

unsigned char load_type; /* type of load-DETACHED/CONSOLE */
unsigned char dynamic_load; /* dynamic loading of TP enabled */
unsigned char reserved[5]; /* max size is 120 bytes */

} TP_SPEC_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_TP

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information: The
combination of lu_name (or lu_alias if the lu_name is set to all zeros) and
tp_name specified (see the following parameters, lu_name and tp_name)
represents an index value that is used to specify the starting point of the
actual information to be returned .

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

lu_name
LU name. This name is an 8-byte type-A EBCDIC character string. If this
field is set to all zeros, the lu_alias field will be used for determining the
index.

lu_alias
Locally defined LU alias. This is an 8-byte string in a locally displayable
character set. This field is only significant if the lu_name field is set to all
zeros, in which case all 8 bytes are significant and must be set. If both the

QUERY_TP

Chapter 6. Query Verbs 447

lu_name and the lu_alias are set to all zeros, the LU that is associated with
the control point (the default LU) is used.

tp_name
Transaction program name. This is a 64-byte string, padded to the right
with spaces. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

tp_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

tp_data.tp_name
Transaction program name. This is a 64-byte string, padded to the right
with spaces.

tp_data.description
Resource description (as specified on DEFINE_TP). This is a 16-byte string
in a locally displayable character set. All 16 bytes are significant.

tp_data.instance_limit
Maximum number of concurrently active instances of the specified
transaction program.

tp_data.instance_count
Number of instances of the specified transaction program that are currently
active.

tp_data.locally_started_count
Number of instances of the specified transaction program which have been
started locally (by the transaction program issuing a TP_STARTED verb).

tp_data.remotely_started_count
Number of instances of the specified transaction program that have been
started remotely (by a received Attach request).

tp_spec_data.pathname
Specifies the path and transaction program name.

tp_spec_data.parameters
Specifies the parameters for the transaction program.

QUERY_TP

448 System Management Programming

tp_spec_data.queued
Specifies whether the transaction program will be queued.

tp_spec_data.load_type
Specifies how the transaction program will be loaded.

tp_spec_data.dynamic_load
Specifies whether the TP can be dynamically loaded (AP_YES or AP_NO).

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_TP_NAME

AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_TP

Chapter 6. Query Verbs 449

QUERY_TP_DEFINITION

QUERY_TP_DEFINITION returns both information previously passed in on a
DEFINE_TP verb and information about Personal Communications or
Communications Server defined transaction programs.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific transaction program,
or to obtain the list information in several chunks, the tp_name field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 10 for background on how the list
formats are used.

This list is ordered by the tp_name, using EBCDIC lexicographical ordering. If
AP_LIST_FROM_NEXT is selected the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

This verb returns definition information only. The QUERY_TP verb returns
information that is determined once the transaction program starts to be used by a
local LU.

VCB Structure
typedef struct query_tp_definition
{

unsigned short opcode; /* Verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char tp_name[64]; /* TP name */

} QUERY_TP_DEFINITION;

typedef struct tp_def_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char tp_name[64]; /* TP name */
unsigned char description[RD_LEN];

/* resource description */
} TP_DEF_SUMMARY;

typedef struct tp_def_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char tp_name[64]; /* TP name */
TP_CHARS tp_chars; /* TP characteristics */

} TP_DEF_DETAIL;

typedef struct tp_chars
{

unsigned char description[RD_LEN];
/* resource description */

unsigned char conv_type; /* conversation type */
unsigned char security_rqd; /* security support */
unsigned char sync_level; /* synchronization level support */
unsigned char dynamic_load; /* dynamic load */

QUERY_TP_DEFINITION

450 System Management Programming

unsigned char enabled; /* is the TP enabled? */
unsigned char pip_allowed; /* program initialization */

/* parameters supported */
unsigned char duplex_support; /* duplex supported */
unsigned char reserv3[9]; /* reserved */
unsigned short tp__instance_limit; /* limit on currently active TP */

/* instances */
unsigned short incoming_alloc_timeout;

/* incoming allocation timeout */
unsigned short rcv_alloc_timeout; /* receive allocation timeout */
unsigned short tp_data_len; /* TP data length */
TP_SPEC_DATA tp_data; /* TP data */

} TP_CHARS;

typedef struct tp_spec_data
{

unsigned char pathname[256]; /* path and TP name */
unsigned char parameters[64]; /* parameters for TP */
unsigned char queued; /* queued TP (AP_YES) */
unsigned char load_type; /* type of load-DETACHED/CONSOLE */
unsigned char dynamic_load; /* dynamic loading of TP enabled */
unsigned char reserved[5]; /* max size is 120 bytes */

} TP_SPEC_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_TP_DEFINITION

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

QUERY_TP_DEFINITION

Chapter 6. Query Verbs 451

The tp_name specified (see the following parameter, tp_name)
represents an index value that is used to specify the starting point
of the actual information to be returned:

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

tp_name
Name of the defined transaction program. This is a 64-byte string, padded
to the right with spaces. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

tp_def_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

tp_def_summary.tp_name
Defined transaction program name. This is a 64-byte string, padded to the
right with spaces.

tp_def_summary.description
Resource description (as specified on DEFINE_TP). This is a 16-byte string
in a locally displayable character set. All 16 bytes are significant.

tp_def_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

tp_def_detail.tp_name
Defined transaction program name. This is a 64-byte string, padded to the
right with spaces.

QUERY_TP_DEFINITION

452 System Management Programming

tp_def_detail.tp_chars.description
Resource description (as specified on DEFINE_TP). This is a 16-byte string
in a locally displayable character set. All 16 bytes are significant.

tp_def_detail.tp_chars.conv_type
Specifies the types of conversation supported by the transaction program:

AP_BASIC
AP_MAPPED
AP_EITHER

tp_def_detail.tp_chars.security_rqd
Specifies whether conversation security information is required to start the
transaction program (AP_NO or AP_YES).

tp_def_detail.tp_chars.sync_level
Specifies the synchronization levels supported by the transaction program:

AP_NONE
The transaction program supports a synchronization level of None.

AP_CONFIRM_SYNC_LEVEL
The transaction program supports a synchronization level of
Confirm.

AP_EITHER
The transaction program supports a synchronization level of None
or Confirm.

AP_SYNCPT_REQUIRED
The transaction program supports a synchronization level of
Sync-point.

AP_SYNCPT_NEGOTIABLE
The transaction program supports a synchronization level of None,
Confirm, or Sync-point.

tp_def_detail.tp_chars.dynamic_load
Specifies whether the transaction program can be dynamically loaded
(AP_YES or AP_NO).

tp_def_detail.tp_chars.enabled
Specifies whether the transaction program can be attached successfully
(AP_YES or AP_NO). The default is AP_NO.

tp_def_detail.tp_chars.pip_allowed
Specifies whether the transaction program can receive program
initialization (PIP) parameters (AP_YES or AP_NO).

tp_def_detail.tp_chars.duplex_support
Indicates whether the transaction program is full or half duplex.

AP_FULL_DUPLEX
Specifies the transaction program is full duplex.

AP_HALF_DUPLEX
Specifies the transaction program is half duplex.

AP_EITHER_DUPLEX
Specifies the transaction program can be either half or full duplex

tp_def_detail.tp_chars.tp_instance_limit
Limit on the number of concurrently active transaction program instances.

QUERY_TP_DEFINITION

Chapter 6. Query Verbs 453

tp_def_detail.tp_chars.incoming_alloc_timeout
Specifies the number of seconds that an incoming Attach will be queued
waiting for a RECEIVE_ALLOCATE. Zero implies no timeout, and so it
will be held indefinitely.

tp_def_detail.tp_chars.rcv_alloc_timeout
Specifies the number of seconds that a RECEIVE_ALLOCATE verb will be
queued while waiting for an Attach. Zero implies no timeout, and so it will
be held indefinitely.

tp_def_detail.tp_chars.tp_data_len
Length of the implementation-dependent transaction program data.

tp_def_detail.tp_chars.tp_data
Implementation-dependent transaction program data that is passed
unchanged on the DYNAMIC_LOAD_INDICATION.

tp_spec_data.pathname
Specifies the path and transaction program name.

tp_spec_data.parameters
Specifies the parameters for the transaction program.

tp_spec_data.queued
Specifies whether the transaction program will be queued.

tp_spec_data.load_type
Specifies how the transaction program will be loaded.

tp_spec_data.dynamic_load
Specifies whether the TP can be dynamically loaded (AP_YES or AP_NO).

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_TP_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameters:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_TP_DEFINITION

454 System Management Programming

Chapter 7. Safe-Store Verbs

This chapter describes verbs that are issued at network nodes.

© Copyright IBM Corp. 1989, 2016 455

SAFE_STORE_TOPOLOGY

SAFE_STORE_TOPOLOGY is only used at a network node and safely stores
topology information that can be later accessed if the node is restarted. The restore
flag is used to indicate whether information is being stored (AP_NO) or accessed
(AP_YES).

The store node information is returned as a formatted list. To obtain information
about a specific network node or to obtain the list information in several chunks,
the index field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 10 for background on how the list
formats are used.

This list is ordered on the index_node_name. Ordering is by name length first, and
then by ASCII lexicographical ordering for names of the same length (in
accordance with IBM's 6611 APPN MIB ordering). Next, the list is ordered on
index_node_type by numeric value. If TGs are being stored or restored, ordering is
on index.tg_dest_node_name (MIB ordering), then index.tg_dest_node_type (by
numeric value), and thirdly on index.tg_number (by numeric value).

SAFE_STORE_TOPOLOGY verb supercedes the SFS_ADJACENT_NN,
SFS_NN_TOPOLOGY_NODE and SFS_NN_TOPOLOGY_TG verbs. It stores
topology information using control vectors as they appear in the topology, instead
of translating to and from query overlays. Unknown control vectors are stored and
restored, and a checksum is provided to prevent corrupt data from being
introduced into the topology.

VCB Structure
typedef struct safe_store_topology
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */

/* to hold all information */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char restore; /* store or restore; */
unsigned char resource_types; /* resource types (nodes, TGs...)*/
RESOURCE_INDEX index; /* resource index */
unsigned long frsn; /* flow-reduction sequence */

/* number */
unsigned char reserv3[16]; /* reserved */

} SAFE_STORE_TOPOLOGY;

typedef struct resource_index
{

unsigned char node_name[17]; /* FQ node name */
unsigned char node_type; /* node type */
unsigned char tg_dest_node_name[17];

/* FQ name of TG destination node*/

SAFE_STORE_TOPOLOGY

456 System Management Programming

unsigned char tg_dest_node_type; /* TG destination node type */
unsigned char tg_number; /* TG number */
unsigned char reserv1[3]; /* reserved */

} RESOURCE_INDEX;

typedef struct safe_store_data
{

unsigned short overlay_size; /* overalllength of safe */
/* store data */

unsigned short sub_overlay_size; /* offset to first appended */
/* resource */

RESOURCE_INDEX index; /* index of appended resource */
unsigned char checksum[16]; /* reserved */

} SAFE_STORE_DATA;

typedef struct safe_store_node_data
{

unsigned short overlay_size; /* overalllength of safe */
/* store data */

unsigned short sub_overlay_size; /* offset to first appended */
unsigned char adjacent; /* is this NNCP and adjacent */

/* NNCP? */
unsigned char reserv1; /* reserved */
unsigned long last_frsn_sent; /* last flow reduction sequence */

/* num sent (if node is adjacent)*/
/* resource */

unsigned long last_frsn_rcvd; /* last flow reduction sequence */
/* num rcvd (if node is adjacent)*/

unsigned long frsn; /* flow reduction sequence number*/
unsigned short days_left /* days left in database */
unsigned short; vector_len /* length of appended vector */

} SAFE_STORE_NODE_DATA;

typedef struct safe_store_tg_data
{

unsigned short overlay_size; /* overalllength of safe */
/* store data */

unsigned short sub_overlay_size; /* offset to first appended */
/* resource */

unsigned long frsn; /* flow reduction sequence number*/
unsigned short days_left /* days left in database */
unsigned short vector_len; /* length of appended vector(s) */

} SAFE_STORE_TG_DATA;

Supplied Parameters
Supplied Parameters when restore = AP_NO

The application supplies the following parameters:

opcode
AP_SAFE_STORE_TOPOLOGY

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer where list information can be written. The application
can append data to the end of the VCB, in which case buf_ptr must be set
to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

SAFE_STORE_TOPOLOGY

Chapter 7. Safe-Store Verbs 457

list_options
This indicates what should be returned in the list information. The
resource_types and index specified (see the following parameters,
resource_types and index) represents an index value that is used to specify
the starting point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

restore
Flag indicating whether the information should be restored (AP_YES) or
stored (AP_NO). In this case, it is set to AP_NO.

resource_types
This bit field controls the topology data to be stored. Any combination of
the following values may be bit-wise ORed together in this field:

AP_SFS_NODES
Store topology nodes

AP_SFS_ADJ_NODES
Store adjacent nodes

AP_SFS_TGS
Store TGs

Note: At least one of these three flags must be set. Adjacent nodes and
topology nodes are separate entities within APPN, so the first two
flags can be set in any combination.

index.node_name
Network qualified node name from the Network Topology Database. This
name is a 17-byte adjacent control point name, which is right-padded with
EBCDIC spaces. It is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a maximum length
of 8 bytes with no embedded spaces.) This field is only relevant for links to
APPN nodes and is otherwise ignored. This field is ignored if list_options
is set to AP_FIRST_IN_LIST. This field is also ignored if neither
AP_SFS_NODES nor AP_SFS_ADJ_NODES is set in resource_types.

index.node_type
Type of the node. This node is set to one of the following:

AP_NETWORK_NODE
AP_VRN
AP_LEARN_NODE

If the node_type is unknown, AP_LEARN_NODE must be specified. This
field is ignored if list_options is set to AP_FIRST_IN_LIST. This field is
also ignored if neither AP_SFS_NODES nor AP_SFS_ADJ is set in
resource_types.

SAFE_STORE_TOPOLOGY

458 System Management Programming

index.tg_dest_node_name
Fully qualified destination node name for the TG. This name is a 17-byte
adjacent control point name, which is right-padded with EBCDIC spaces. It
is composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8 bytes with no
embedded spaces.) This field is only relevant for links to APPN nodes and
is otherwise ignored. This field is ignored if list_options is set to
AP_FIRST_IN_LIST. This field is also ignored if neither AP_SFS_NODES
nor AP_SFS_ADJ_NODES is set in resource_types.

index.tg_dest_node_type
Type of the the destiation node for this TG. This node is set to one of the
following:

AP_NETWORK_NODE
AP_VRN

If the tg_dest_node_type is unknown, AP_LEARN_NODE must be
specified. This field is ignored if list_options is set to AP_FIRST_IN_LIST.
This field is also ignored if neither AP_SFS_TGS is not set in
resource_types.

index.tg_number
The number associated with the TG. This field is ignored if list_options is
set to AP_FIRST_IN_LIST. This field is also ignored if neither AP_SFS_TGS
is not set in resource_types.

frsn Flow Reduction Sequence Number (FRSN). If this is nonzero, then only
topology resources with a FRSN greater than or equal to this value is
returned.

safe_store_data.overlay_size
The length of this entry, including any padding. This is the offset to the
next SAFE_STORE_DATA overlay, if any.

safe_store_data.sub_overlay_size
The length of this entry, including any padding. This is the offset to the
appended SAFE_STORE_DATA or SAFE_STORE_TG_DATA. This field
should always be used when accessing the appended data.

safe_store_data.index
The index for this entry. This structure can be supplied on subsequent
SAFE_STORE_TOPOLOGY verbs to list subsequent entries. If
dest_tg_name is set to all binary zeros, a SAFE_STORE_NODE_DATA
overlay follows. Otherwise, a SAFE_STORE_TG_DATA overlay follows.

safe_store_data.checksum
The 128–bit checksum for the appended overlay and vectors. If this
checksum and the following data becomes corrupted, it is highly probable
that the corruption is detected and the verb is rejected.

safe_store_node_data.overlay_size
The length of this entry, including any padding. This is the offset to the
appended SAFE_STORE_DATA or SAFE_STORE_TG_DATA.

safe_store_node_data.sub_overlay_size
The length of this entry, including any padding. This is the offset to the
appended SAFE_STORE_DATA or SAFE_STORE_TG_DATA. This field
should always be used to access the appended vectors.

SAFE_STORE_TOPOLOGY

Chapter 7. Safe-Store Verbs 459

safe_store_node_data.adjacent
AP_YES or AP_NO. If AP_YES, this entry corresponds to an adjacent
Network Node.

safe_store_node_data.last_frsn_sent
If adjacent is set to AP_YES, this field holds the last FRSN sent to the
adjacent Network Node. Otherwise, this field is set to zero.

safe_store_node_data.last_frsn_rcvd
If adjacent is set to AP_YES, this field holds the last FRSN sent to the
adjacent Network Node. Otherwise, this field is set to zero.

safe_store_node_data.frsn
The Flow Reduction Sequence Number for this topology resource, if this
node appears in the topology. Otherwise, this field is set to zero.

safe_store_node_data.days_left
The number of days this node remains in the topology database before
being removed, unless its existence is can be confirmed. Zero signifies no
limit.

safe_store_node_data.vector_len
The length of appended vectors. Zero signifies no vectors are appended.

safe_store_tg_data.overlay_size
The length of this entry, including any padding. This is the offset to the
appended SAFE_STORE_DATA or SAFE_STORE_TG_DATA.

safe_store_tg_data.sub_overlay_size
The length of this entry, including any padding. This is the offset to the
appended vectors, if there are any. This field should always be used to
accessed appended vectors.

safe_store_tg_data.frsn
The Flow Reduction Sequence Number for this TG.

safe_store_tg_data.days_left
The number of days this TG remains in the topology database before being
removed, unless its existence is can be confirmed. Zero signifies no limit.

safe_store_tg_data.vector_len
The length of appended vectors. Zero signifies no vectors are appended.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

num_entries
The number of entries actually returned.

SAFE_STORE_TOPOLOGY

460 System Management Programming

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LIST_OPTION

AP_INVALID_NODE
AP_INVALID_RESOURCE_TYPES
AP_INVALID_TG

Supplied Parameters
Supplied Parameters when restore = AP_YES

The application supplies the following parameters:

opcode
AP_SAFE_STORE_TOPOLOGY

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer where list information can be written. The application
can append data to the end of the VCB, in which case buf_ptr must be set
to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

restore
Flag indicating whether the information should be restored (AP_YES) or
stored (AP_NO). In this case, it is set to AP_NO.

resource_types
This bit field controls the topology data to be stored. Any combination of
the following values may be bit-wise ORed together in this field:

AP_SFS_NODES
Restore topology nodes

AP_SFS_ADJ_NODES
Restore adjacent nodes

AP_SFS_TGS
Restore TGs

Note: At least one of these three flags must be set. Adjacent nodes and
topology nodes are separate entities within APPN, so the first two
flags can be set in any combination.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

SAFE_STORE_TOPOLOGY

Chapter 7. Safe-Store Verbs 461

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameter:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_CHECKSUM_FAILED

AP_DATA_CORRUPT
AP_INVALID_RESOURCE_TYPES

If the verb does not execute because one or more of the relevant START_NODE
parameters were not set, the Program returns the following parameter:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

If the verb does not execute because the system has not been built with Network
Node support, the Program returns the following parameter:

primary_rc
AP_INVALID_VERB

If the verb does not execute because the Node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

SAFE_STORE_TOPOLOGY

462 System Management Programming

SFS_ADJACENT_NN

Note: This verb has been superceded by SAFE_STORE_TOPOLOGY and is only
retained for compatibility with previous versions of the Program.

SFS_ADJACENT_NN is used to safely store topology information that can be later
accessed if the node is restarted. The restore flag is used to indicate whether
information is being stored (AP_NO) or accessed (AP_YES).

When the restore flag is set to AP_NO, SFS_ADJACENT_NN returns information
about adjacent network nodes (that is, those network nodes which CP-CP sessions
are active, have been active, or have been active at some time).

The SFS information is returned as a formatted list. To obtain information about a
specific network node or to obtain the list information in several chunks, the
adj_nncp_name field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 10 for background on how the list
formats are used.

This list is ordered on the adj_nncp_name. Ordering is by name length first, and
then by ASCII lexicographical ordering for names of the same length (in
accordance with IBM's 6611 APPN MIB ordering). If AP_LIST_FROM_NEXT is
selected, the list starts from the next entry according to the defined ordering
(whether the specified entry exists or not).

VCB Structure
typedef struct sfs_adjacent_nn
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */

/* to hold all information */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char restore; /* store or restore; */
unsigned char adj_nncp_name[17]; /* CP name of adj Network Node */

} SFS_ADJACENT_NN;

typedef struct adj_nncp_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char adj_nncp_name[17]; /* CP name of adj Network Node */
unsigned char cp_cp_sess_status; /* CP-CP session status */
unsigned COUNTER

out_of_seq_tdus; /* out of sequence TDUs */
unsigned long last_frsn_sent; /* last FSRN sent */
unsigned long last_frsn_rcvd; /* last FRSN received */
unsigned char reserva[20]; /* reserved */

} ADJ_NNCP_DATA;

SFS_ADJACENT_NN

Chapter 7. Safe-Store Verbs 463

Supplied Parameters
Supplied Parameters when restore = AP_NO

The application supplies the following parameters:

opcode
AP_SFS_ADJACENT_NN

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer where list information can be written. The application
can append data to the end of the VCB, in which case buf_ptr must be set
to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information. The
adj_nncp_name specified (see the following parameter, adj_nncp_name)
represents an index value that is used to specify the starting point of the
actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

restore
Flag indicating whether the information should be restored (AP_YES) or
stored (AP_NO). In this case, it is set to AP_NO.

adj_nncp_name
Fully-qualified, 17 byte, CP name of the adjacent network node composed
of two type-A EBCDIC character strings concatenated by an EBCDIC dot,
which is right-padded with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

SFS_ADJACENT_NN

464 System Management Programming

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
The number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

adj_nncp_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

adj_nncp_data.adj_nncp_name
This is a 17-byte fully-qualified CP name of adjacent network node which
is composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

adj_nncp_data.cp_cp_sess_status
Status of the CP-CP session (AP_ACTIVE or AP_INACTIVE).

adj_nncp_data.out_of_seq_tdus
Number of out of sequence TDUs received from this node.

adj_nncp_data.last_frsn_sent
The last flow reduction sequence number sent to this node.

adj_nncp_data.last_frsn_rcvd
The last flow reduction sequence number received from this node.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_OK

secondary_rc
AP_INVALID_ADJ_NNCP_NAME

AP_INVALID_LIST_OPTION

Supplied Parameters
Supplied Parameters when restore = AP_YES

The application supplies the following parameters:

opcode
AP_SFS_ADJACENT_NN

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer where list information can be written. The application
can append data to the end of the VCB, in which case buf_ptr must be set
to NULL.

SFS_ADJACENT_NN

Chapter 7. Safe-Store Verbs 465

num_entries
The number of entries actually returned.

restore
Flag indicating whether the information should be restored (AP_YES) or
stored (AP_NO). In this case, it is set to AP_NO.

adj_nncp_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

adj_nncp_data.adj_nncp_name
This is a 17-byte fully-qualified CP name of adjacent network node which
is composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

adj_nncp_data.cp_cp_sess_status
This field is ignored when restore is set to AP_YES.

adj_nncp_data.out_of_seq_tdus
This field is ignored when restore is set to AP_YES.

adj_nncp_data.last_frsn_sent
The last flow reduction sequence number sent to this node.

adj_nncp_data.last_frsn_rcvd
The last flow reduction sequence number received from this node.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because the node has not been started, the Program
returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because one or more of the relevant START_NODE
parameters were not sent, the Program returns the following parameter:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

If the verb does not execute because the system is not built with network node
support, the Program returns the following parameter:

primary_rc
AP_INVALID_VERB

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

SFS_ADJACENT_NN

466 System Management Programming

SFS_DIRECTORY

In addition to the QUERY_DIRECTORY_ENTRY verb, there is the
SFS_DIRECTORY verb that allows the local directory cache on a network node to
be safely stored and can be later accessed if the node is restarted. The restore flag
is used to indicate whether information is being stored (AP_NO) or accessed
(AP_YES).

When the restore flag is set to AP_YES, SFS_DIRECTORY allows the directory
database to be rebuilt using directory_entry_summary overlays. To obtain
information about a specific network node or to obtain the list information in
several chunks, the resource_name and resource_type fields should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 10 for background on how the list
formats are used.

Resource information on the cached entries and their parents is returned in the
following order:

1st Network Node
1st LU located at Network Node
2nd LU locate at Network Node
...
nth LU located at Network Node

1st End Node served by this Network Node
1st LU located at End Node(1)
2nd LU located at End Node(1)
...
nth LU located at End Node(1)

...
nth End Node served by this Network Node

1st LU located at End Node(n)
2nd LU located at End Node(n)
...

2nd Network Node
...etc..

VCB Structure
typedef struct sfs_directory
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char restore; /* store or restore flag */
unsigned char resource_name[17]; /* network qualified res name */
unsigned char reserv3; /* reserved */
unsigned short resource_type; /* Resource type */
} SFS_DIRECTORY;

SFS_DIRECTORY

Chapter 7. Safe-Store Verbs 467

typedef struct directory_entry_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char resource_name[17]; /* network qualified res name */
unsigned char reserve1; /* reserved */
unsigned short resource_type; /* Resource type */
unsigned short real_owning_cp_type; /* real owning CP type */
unsigned char real_owning_cp_name[17];

/* real owning CP name */
unsigned char description[RD_LEN]; /* resource description */

} DIRECTORY_ENTRY_SUMMARY;

Supplied Parameters
Supplied Parameters when restore = AP_NO

The application supplies the following parameters:

opcode
AP_SFS_DIRECTORY

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer where list information can be written. The application
can append data to the end of the VCB, in which case buf_ptr must be set
to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information. The
resource_name and resource_type specified (see the following parameters,
resource_name and resource_type) represents an index value that is used
to specify the starting point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

restore
Flag indicating whether the information should be restored (AP_YES) or
stored (AP_NO). In this case, it is set to AP_NO.

resource_name
Network qualified resource name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composes of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

resource_type
Resource type. See one of the following:

SFS_DIRECTORY

468 System Management Programming

AP_NNCP_RESOURCE
AP_ENCP_RESOURCE
AP_LU_RESOURCE

This field is ignored if list_options is set to AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

num_entries
The number of entries actually returned.

directory_entry_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

directory_entry_summary.resource_name
Network qualified resource name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composes of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

directory_entry_summary.resource_type
Resource type. See one of the following:

AP_NNCP_RESOURCE
AP_ENCP_RESOURCE
AP_LU_RESOURCE

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_RES_NAME

AP_INVALID_LIST_OPTION
AP_INVALID_RES_TYPE

directory_entry_summary.real_owning_cp_type
NN and BrNN only: Real owning CP type. This can be one of the
following:

SFS_DIRECTORY

Chapter 7. Safe-Store Verbs 469

AP_NONE
The real owning CP is a parent resource.

AP_ENCP_RESOURCE
The real owning CP is not the parent resource and is an EN.

Other node types: This field is set to AP_NONE.

directory_entry_summary.real_owning_cp_name
NN and BrNN only: Fully qualified real owning CP name. This name is 17
bytes long and is right-padded with EBCDIC spaces. It is composed of two
type A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

If the real owning CP is the parent, this field is set to binary zeroes.

If the real owning CP is not the parent, then this field is set to the name of
the real owning CP.

The real owning CP is not the parent in the directory of the NNS of a
BrNN if the resource is owned by an EN in the domain of the BrNN. In
this case, the real owning CP is the EN, but the parent is the BrNN.

Other node types: This field is set to binary zeroes.

Supplied Parameters
Supplied Parameters when restore = AP_YES

The application supplies the following parameters:

opcode
AP_SFS_DIRECTORY

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer where list information can be written. The application
can append data to the end of the VCB, in which case buf_ptr must be set
to NULL.

buf_size
Size of the buffer supplied.

restore
Flag indicating whether the information should be restored (AP_YES) or
stored (AP_NO). In this case, it is set to AP_NO.

resource_name
Network qualified resource name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composes of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) If the application is
restoring the first “chunk” of the directory, then this should be set to all
zeros. Otherwise, the application should set this to the resource name of
the last item in the previous “chunk”.

resource_type
Resource type. See one of the following:

SFS_DIRECTORY

470 System Management Programming

AP_NNCP_RESOURCE
AP_ENCP_RESOURCE
AP_LU_RESOURCE

This field should be set to zero if the application is restoring the first
“chunk” of the directory.

directory_entry_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any). This must be the same as the overlay_size value returned
when restore is set to AP_NO.

directory_entry_summary.resource_name
Network qualified resource name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composes of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

directory_entry_summary.resource_type
Resource type. See one of the following:

AP_NNCP_RESOURCE
AP_ENCP_RESOURCE
AP_LU_RESOURCE

directory_entry_summary.real_owning_cp_type
NN and BrNN only: Real owning CP type. This can be one of the
following:

AP_NONE
The real owning CP is a parent resource.

AP_ENCP_RESOURCE
The real owning CP is not the parent resource and is an EN.

Other node types: This field is set to AP_NONE.

directory_entry_summary.real_owning_cp_name
NN and BrNN only: Fully qualified real owning CP name. This name is 17
bytes long and is right-padded with EBCDIC spaces. It is composed of two
type A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

If the real owning CP is the parent, this field is set to binary zeroes.

If the real owning CP is not the parent, then this field is set to the name of
the real owning CP.

The real owning CP is not the parent in the directory of the NNS of a
BrNN if the resource is owned by an EN in the domain of the BrNN. In
this case, the real owning CP is the EN, but the parent is the BrNN.

Other node types: This field is set to binary zeroes.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

SFS_DIRECTORY

Chapter 7. Safe-Store Verbs 471

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_RES_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because one or more of the relevant START_NODE
parameters were not set, the Program returns the following parameter:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

If the verb does not execute because the system is not built with network node
support, the Program returns the following parameter:

primary_rc
AP_INVALID_VERB

If the verb does not execute because the Node has not been started, the Program
returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

SFS_DIRECTORY

472 System Management Programming

SFS_NN_TOPOLOGY_NODE

Note: This verb has been superceded by SAFE_STORE_TOPOLOGY and is only
retained for compatibility with previous versions of the Program.

Each network node maintains a network topology database that holds information
about all network nodes, VRNs, and network node to network node TGs in the
network. The SFS_NN_TOPOLOGY_NODE verb is used to safely store the
topology database node entries that can be later accessed if the node is restarted.
The restore flag is used to indicate whether information is being stored (AP_NO)
or accessed (AP_YES).

To obtain information about a specific network node or to obtain the list
information in several chunks, the node_name and node_type fields should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 10 for background on how the list
formats are used.

This list is by node_name, and node_name_type, and frsn. Ordering is by name
length first, and then by ASCII lexicographical ordering for names of the same
length (in accordance with IBM's 6611 APPN MIB ordering). Ordering for the
node_type is AP_NETWORK_NODE, then AP_VRN. The frsn is ordered
numerically.
v If AP_LIST_INCLUSIVE is selected, the returned list starts from the first valid

record of that name.
v If AP_LIST_FROM_NEXT is selected, the list will begin from the first valid

record with a name following the one specified.

Note that if the frsn field is set to a nonzero value, only database entries with
Flow Reduction Sequence Number (FRSNs) higher than this are returned. This
allows a consistent topology database to be returned in a number of chunks by
first getting the node's current FRSN. This works as follows:
1. Issue QUERY_NODE that returns the node's current FRSN.
2. Issue as many SFS_NN_TOPOLOGY_NODE (with FRSN set to zero) as

necessary to get all the database entries in chunks.
3. Issue QUERY_NODE again and compare the new FRSN with the one returned

in stage one.
4. If the two FRSNs are different then what has changed in the database, issue a

SFS_NN_TOPOLOGY_NODE with the FRSN set to one greater than the FRSN
supplied in stage one.

VCB Structure
typedef struct sfs_nn_topology_node
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */

SFS_NN_TOPOLOGY_NODE

Chapter 7. Safe-Store Verbs 473

unsigned char list_options; /* listing options */
unsigned char restore; /* store or restore; */
unsigned char node_name[17]; /* network qualified */

/* node name */
unsigned char node_type; /* node type */
unsigned long frsn; /* flow-reduction sequence */

/* number */
} SFS_NN_TOPOLOGY_NODE;

typedef struct nn_topology_node_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char node_name[17]; /* network qualified */
unsigned char node_type; /* node type */
unsigned short days_left /* days left in database */
unsigned long frsn; /* flow reduction sequence number*/
unsigned long rsn; /* resource sequence number */
unsigned char rar; /* route additional resistence */
unsigned char status; /* node status */
unsigned char function_support; /* function support */
unsigned char reserv2; /* reserved */
unsigned char reserva[20]; /* reserved */

} NN_TOPOLOGY_NODE_DETAIL;

Supplied Parameters
Supplied Parameters when restore = AP_NO

The application supplies the following parameters:

opcode
AP_SFS_NN_TOPOLOGY_NODE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer where list information can be written. The application
can append data to the end of the VCB, in which case buf_ptr must be set
to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information. The
node_name, node_types and frsn specified (see the following parameters,
node_name, node_types and frsn) represents an index value that is used
to specify the starting point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

SFS_NN_TOPOLOGY_NODE

474 System Management Programming

restore
Flag indicating whether the information should be restored (AP_YES) or
stored (AP_NO). In this case, it is set to AP_NO.

node_name
Network qualified node name from the Network Topology Database. This
name is a 17-byte adjacent control point name, which is right-padded with
EBCDIC spaces. It is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a maximum length
of 8 bytes with no embedded spaces.) This field is only relevant for links to
APPN nodes and is otherwise ignored. This field is ignored if list_options
is set to AP_FIRST_IN_LIST.

node_type
Type of the node. This node is set to one of the following:

AP_NETWORK_NODE
AP_VRN

If the node_type is unknown, AP_LEARN_NODE must be specified. This
field is ignored if list_options is set to AP_FIRST_IN_LIST.

frsn Flow Reduction Sequence Number. If this is nonzero, then only topology
resources with a FRSN greater than or equal to this value is returned.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

num_entries
The number of entries actually returned.

nn_topology_node_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

nn_topology_node_detail.node_name
Network qualified node name from the Network Topology Database. This
name is a 17-byte adjacent control point name, which is right-padded with
EBCDIC spaces. It is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

nn_topology_node_detail.node_type
Type of the node. It is one of the following:

SFS_NN_TOPOLOGY_NODE

Chapter 7. Safe-Store Verbs 475

AP_NETWORK_NODE
AP_VRN

nn_topology_node_detail.days_left
Number of days before deletion of this node entry from the topology
database. This will be set to zero for the local node entry (this entry is
never deleted). This must be set to zero when the record is restored (for
example, restore is set to AP_YES).

nn_topology_node_detail.frsn
The Flow Reduction Sequence Number. This indicates the last time that the
resource was updated at the local node.

nn_topology_node_detail.rsn
The Resource Sequence Number. This is assigned by the network node that
owns this resource.

nn_topology_node_detail.rar
The network node's route additional resistance.

nn_topology_node_detail.status
This field specifies the status of the node and can be AP_UNCONGESTED
or one or more of the following ORed together:

AP_CONGESTED
The number of ISR sessions is greater than the
isr_sessions_upper_threshold specified on the START_NODE verb.

AP_IRR_DEPLETED
The number of ISR sessions has reached the maximum specified on
the max_isr_sessions parameter of the START_NODE verb.

AP_ERR_DEPLETED
The number of endpoint sessions has reached the maximum
specified.

AP_QUIESCING
A STOP_NODE of type AP_QUIENCE or AP_QUIENCE_ISR was
issued.

nn_topology_node_detail.function_support
This field specifies which functions are supported. This can be one or more
of the following:

AP_BORDER_NODE
Border Node Function is supported.

AP_CDS
The Central Directory Server is supported.

AP_GATEWAY
The node is a Gateway Node (the function is not yet architecturally
defined).

AP_ISR
This node supports the Intermediate Session Routing.

AP_HPR
This node supports the Intermediate Session Routing.

AP_RTP_TOWER
This node supports the RTP Tower of HPR.

SFS_NN_TOPOLOGY_NODE

476 System Management Programming

AP_CONTROL_OVER_RTP_TOWER
This node supports the Control Flows Over the RTP Tower.

Note: The AP_CONTROL_OVER_RTP_TOWER node corresponds to the
setting of both AP_HPR and AP_RTP_TOWER.

If the verb does not execute successfully, the Program returns the following
parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LIST_OPTION

AP_INVALID_NODE
AP_INVALID_LIST_OPTIONS

Supplied Parameters
Supplied Parameters when restore = AP_YES

The application supplies the following parameters:

opcode
AP_SFS_NN_TOPOLOGY_NODE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer where list information can be written. The application
can append data to the end of the VCB, in which case buf_ptr must be set
to NULL.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

restore
Flag indicating whether the information should be restored (AP_YES) or
stored (AP_NO). In this case, it is set to AP_NO.

nn_topology_node_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

nn_topology_node_detail.node_name
Network qualified node name from the Network Topology Database. This
name is a 17-byte adjacent control point name, which is right-padded with
EBCDIC spaces. It is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a maximum length
of 8 bytes with no embedded spaces.) This field is only relevant for links to
APPN nodes and is otherwise ignored. This field is ignored if list_options
is set to AP_FIRST_IN_LIST.

nn_topology_node_detail.node_type
Type of the node. It is one of the following:

SFS_NN_TOPOLOGY_NODE

Chapter 7. Safe-Store Verbs 477

AP_NETWORK_NODE
AP_VRN

nn_topology_node_detail.days_left
Number of days before deletion of this node entry from the topology
database. If the node is not the local node, this field must be set to a value
greater than zero.

nn_topology_node_detail.frsn
The Flow Reduction Sequence Number. This indicates the last time that the
resource was updated at the local node.

nn_topology_node_detail.rsn
The Resource Sequence Number. This is assigned by the network node that
owns this resource.

nn_topology_node_detail.rar
The network node's route additional resistance.

nn_topology_node_detail.status
This field specifies the status of the node and can be AP_UNCONGESTED
or one or more of the following ORed together:

AP_CONGESTED
The number of ISR sessions is greater than the
isr_sessions_upper_threshold specified on the START_NODE verb.

AP_IRR_DEPLETED
The number of ISR sessions has reached the maximum specified on
the max_isr_sessions parameter of the START_NODE verb.

AP_ERR_DEPLETED
The number of endpoint sessions has reached the maximum
specified.

AP_QUIESCING
A STOP_NODE of type AP_QUIENCE or AP_QUIENCE_ISR was
issued.

nn_topology_node_detail.function_support
This field specifies which functions are supported. This can be one or more
of the following:

AP_BORDER_NODE
Border Node Function is supported.

AP_CDS
The Central Directory Server is supported.

AP_GATEWAY
The node is a Gateway Node (the function is not yet architecturally
defined).

AP_ISR
This node supports the Intermediate Session Routing.

AP_HPR
This node supports the Intermediate Session Routing.

AP_RTP_TOWER
This node supports the RTP Tower of HPR.

AP_CONTROL_OVER_RTP_TOWER
This node supports the Control Flows Over the RTP Tower.

SFS_NN_TOPOLOGY_NODE

478 System Management Programming

Note: The AP_CONTROL_OVER_RTP_TOWER node corresponds to the
setting of both AP_HPR and AP_RTP_TOWER.

node_type
Type of the node. This node is set to one of the following:

AP_NETWORK_NODE
AP_VRN

If the node_type is unknown, AP_LEARN_NODE must be specified. This
field is ignored if list_options is set to AP_FIRST_IN_LIST.

frsn Flow Reduction Sequence Number. If this is nonzero, then only topology
resources with a FRSN greater than or equal to this value is returned.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

secondary_rc
AP_INVALID_DAYS_LEFT

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DAYS_LEFT

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DAYS_LEFT

If the verb does not execute because one or more of the relevant START_NODE
parameters were not set, the Program returns the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

secondary_rc
AP_INVALID_DAYS_LEFT

If the verb does not execute because the system was not build with network node
support, the Program returns the following parameters:

primary_rc
AP_INVALID_VERB

If the verb does not execute because of a system error, the Program returns the
following parameters:

SFS_NN_TOPOLOGY_NODE

Chapter 7. Safe-Store Verbs 479

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

SFS_NN_TOPOLOGY_NODE

480 System Management Programming

SFS_NN_TOPOLOGY_TG

Note: This verb has been superceded by SAFE_STORE_TOPOLOGY and is only
retained for compatibility with previous versions of the Program.

Each network node maintains a network topology database that holds information
about all network nodes, VRNs, and network node to network node TGs in the
network. The SFS_NN_TOPOLOGY_TG verb is used to safely store the topology
database node entries that can be later accessed if the node is restarted. The restore
flag is used to indicate whether information is being stored (AP_NO) or accessed
(AP_YES). The verb uses topology_tg_detail overlay.

To obtain information about a specific network node or to obtain the list
information in several chunks, the owner, owner_type, dest, dest_type, and
tg_num fields should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 10 for background on how the list
formats are used.

This list is by owner, owner_type, dest, dest_type, tg_num, and frsn. The
owner_type and dest name are ordered by name length first, and then by ASCII
lexicographical ordering for names of the same length (in accordance with IBM's
6611 APPN MIB ordering). The ordering for owner_type and dest are: AP_
NETWORK_NODE, then AP_VRN. The tg_num and frsn is ordered numerically.
v If AP_LIST_INCLUSIVE is selected, the returned list starts from the first valid

record of that name.
v If AP_LIST_FROM_NEXT is selected, the list will begin from the first valid

record with a name following the one specified.

Note that if the frsn field is set to a nonzero value, only database entries with
Flow Reduction Sequence Number (FRSNs) higher than this are returned. This
allows a consistent topology database to be returned in a number of chunks by
first getting the node's current FRSN. This works as follows:
1. Issue QUERY_NODE that returns the node's current FRSN.
2. Issue as many SFS_NN_TOPOLOGY_NODE (with FRSN set to zero) as

necessary to get all the database entries in chunks.
3. Issue QUERY_NODE again and compare the new FRSN with the one returned

in stage one.
4. If the two FRSNs are different then what has changed in the database, issue a

SFS_NN_TOPOLOGY_NODE with the FRSN set to one greater than the FRSN
supplied in stage one.

VCB Structure
typedef struct sfs_nn_topology_tg
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */

SFS_NN_TOPOLOGY_TG

Chapter 7. Safe-Store Verbs 481

unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char restore; /* store or restore; */
unsigned char owner[17]; /* network qualified */

/* node name */
unsigned char owner_type; /* node type */
unsigned char dest[17]; /* TG destination node */
unsigned char dest_type; /* TG destination node type */
unsigned char tg_num; /* TG number */
unsigned char reserv1; /* reserved */
unsigned long frsn; /* flow-reduction sequence */

/* number */
} SFS_NN_TOPOLOGY_TG;

typedef struct nn_topology_tg_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char owner[17]; /* network qualified */
unsigned char owner_type; /* node type */
unsigned char dest[17]; /* TG destination node */
unsigned char dest_type /* TG destination node type */
unsigned char tg_num; /* TG number */
unsigned char reserv3[1]; /* reserved */
unsigned long frsn; /* flow reduction sequence number*/
unsigned short days_left /* days left in database */
LINK_ADDRESS dlc_data; /* DLC signalling data */
unsigned long rsn; /* resource sequence number */
unsigned char status; /* node status */
TG_DEFINED_CHAR tg_chars; /* TG characteristics */
unsigned char reserva[20]; /* reserved */

}TOPOLOGY_TG_DETAIL;

typedef struct link_address
{

unsigned short length /* length */
unsigned short reserve1; /* reserved */
unsigned char address[MAX_LINK_ADDR_LEN];

/* address */
}LINK_ADDRESS;

Supplied Parameters
Supplied Parameters when restore = AP_NO

The application supplies the following parameters:

opcode
AP_SFS_NN_TOPOLOGY_TG

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer where list information can be written. The application
can append data to the end of the VCB, in which case buf_ptr must be set
to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information. The owner,

SFS_NN_TOPOLOGY_TG

482 System Management Programming

owner_type, dest, dest_type, tg_num, and frsn specified (see the following
parameters, owner, owner_type, dest, dest_type, tg_num, and frsn)
represents an index value that is used to specify the starting point of the
actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

restore
Flag indicating whether the information should be restored (AP_YES) or
stored (AP_NO). In this case, it is set to AP_NO.

owner Name of the TG's originating node (always set to the local node name).
This name is a 17-byte adjacent control point name, which is right-padded
with EBCDIC spaces. It is composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) This field is only relevant for
links to APPN nodes and is otherwise ignored. This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

owner_type
Type of the node. This node is set to one of the following:

AP_NETWORK_NODE
AP_VRN

If the owner_type is unknown, AP_LEARN_NODE must be specified. This
field is ignored if list_options is set to AP_FIRST_IN_LIST.

dest Fully qualified destination node name for the TG. This name is a 17-byte
adjacent control point name, which is right-padded with EBCDIC spaces. It
is composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8 bytes with no
embedded spaces.) This field is only relevant for links to APPN nodes and
is otherwise ignored. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

dest_type
Type of the node. This node is set to one of the following:

AP_NETWORK_NODE
AP_VRN

If the dest_type is unknown, AP_LEARN_NODE must be specified. This
field is ignored if list_options is set to AP_FIRST_IN_LIST.

tg_num
Number associated with the TG. This field is ignored if list_options is set
to AP_FIRST_IN_LIST.

frsn Flow Reduction Sequence Number. If this is nonzero, then only topology
resources with a FRSN greater than or equal to this value is returned.

SFS_NN_TOPOLOGY_TG

Chapter 7. Safe-Store Verbs 483

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
The number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

nn_topology_tg_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

nn_topology_detail.owner
Name of the TG's originating node. This name is a 17-byte adjacent control
point name, which is right-padded with EBCDIC spaces. It is composed of
two type-A EBCDIC character strings concatenated by an EBCDIC dot.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

nn_topology_tg_detail.owner_type
Type of the node. It is one of the following:

AP_NETWORK_NODE
AP_VRN

nn_topology_tg_detail.dest
Fully qualified destination node name for the TG. This name is a 17-byte
adjacent control point name, which is right-padded with EBCDIC spaces. It
is composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8 bytes with no
embedded spaces.) This field is only relevant for links to APPN nodes and
is otherwise ignored. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

nn_topology_tg_detail.dest_type
Type of the node. It is one of the following:

AP_NETWORK_NODE
AP_VRN

nn_topology_tg_detail.tg_num
The number associated with the TG.

nn_topology_tg_detail.frsn
The Flow Reduction Sequence Number. This indicates the last time that the
resource was updated at the local node.

nn_topology_tg_detail.days_left
The number of days this node remains in the topology database before

SFS_NN_TOPOLOGY_TG

484 System Management Programming

being removed, unless its existence is can be confirmed. If the node
specified by the owner field is not the local node, this field must be set to
a value greater than zero.

nn_topology_tg_detail.dlc_data.length
The address length.

nn_topology_tg_detail.dlc_data.address
The address.

nn_topology_tg_detail.rsn
The Resource Sequence Number. This is assigned by the network node that
owns this resource.

nn_topology_tg_detail.status
This field specifies the status of the TG. This can be one or more of the
following ORed together:

AP_TG_OPERATIVE
AP_TG_CP_CP_SESSIONS
AP_TG_QUIESCING
AP_TG_HPR
AP_TG_RTP
AP_NONE

nn_topology_tg_detail.tg_chars
The TG characteristics. See “DEFINE_CN” on page 31 for additional
information.

Returned Parameters
If the verb does not execute successfully because of a parameter error, the Program
returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_TG

AP_INVALID_ORIGIN_NODE
AP_INVALID_LIST_OPTION

If the verb does not execute successfully, the Program returns the following
parameters:

primary_rc
AP_OK

Supplied Parameters
Supplied Parameters when restore = AP_YES

This application supplies the following parameters:

opcode
AP_SFS_NN_TOPOLOGY_TG

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

SFS_NN_TOPOLOGY_TG

Chapter 7. Safe-Store Verbs 485

buf_ptr
Pointer to a buffer where list information can be written. The application
can append data to the end of the VCB, in which case buf_ptr must be set
to NULL.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

buf_size
Length of the information returned in the buffer.

restore
Flag indicating whether the information should be restored (AP_YES) or
stored (AP_NO). In this case, it is set to AP_NO.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

nn_topology_tg_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any). This must be the same as the overlay_size value returned
when restore = AP_NO.

nn_topology_detail.owner
Name of the TG's originating node. This name is a 17-byte adjacent control
point name, which is right-padded with EBCDIC spaces. It is composed of
two type-A EBCDIC character strings concatenated by an EBCDIC dot.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

nn_topology_tg_detail.owner_type
Type of the node that owns the TG. It is one of the following:

AP_NETWORK_NODE
AP_VRN

nn_topology_tg_detail.dest
Fully qualified destination node name for the TG. This name is a 17-byte
adjacent control point name, which is right-padded with EBCDIC spaces. It
is composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8 bytes with no
embedded spaces.) This field is only relevant for links to APPN nodes and
is otherwise ignored. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

nn_topology_tg_detail.dest_type
Type of the node. It is one of the following:

AP_NETWORK_NODE
AP_VRN

nn_topology_tg_detail.tg_num
The number associated with the TG.

nn_topology_tg_detail.frsn
The Flow Reduction Sequence Number. This indicates the last time that the
resource was updated at the local node.

nn_topology_tg_detail.days_left
The number of days this node remains in the topology database before

SFS_NN_TOPOLOGY_TG

486 System Management Programming

being removed, unless its existence is can be confirmed. If the node
specified by the owner field is not the local node, this field must be set to
a value greater than zero.

nn_topology_tg_detail.dlc_data.length
The address length.

nn_topology_tg_detail.dlc_data.address
The address.

nn_topology_tg_detail.rsn
The Resource Sequence Number. This is assigned by the network node that
owns this resource.

nn_topology_tg_detail.status
This field specifies the status of the TG. This can be one or more of the
following ORed together:

AP_TG_OPERATIVE
AP_TG_CP_CP_SESSIONS
AP_TG_QUIESCING
AP_TG_HPR
AP_TG_RTP
AP_NONE

nn_topology_tg_detail.tg_chars
The TG characteristics. See “DEFINE_CN” on page 31 for additional
information.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DAYS_LEFT

If the verb does not execute because one or more of the relevant START_NODE
parameters were not set, the Program returns the following parameter:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

If the verb does not execute because the system was not built with the network
node support, the Program returns the following parameter:

primary_rc
AP_INVALID_VERB

If the verb does not execute because the node has not been started, the Program
returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

SFS_NN_TOPOLOGY_TG

Chapter 7. Safe-Store Verbs 487

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSYEM_ERROR

SFS_NN_TOPOLOGY_TG

488 System Management Programming

Chapter 8. Session Limit Verbs

This chapter describes verbs used to initialize, change, or reset session limits.

© Copyright IBM Corp. 1989, 2016 489

CHANGE_SESSION_LIMIT

The CHANGE_SESSION_LIMIT verb requests that the session limits of a particular
mode (or session group) be changed. Sessions can be activated or deactivated as a
result of processing this verb.

VCB Structure
typedef struct change_session_limit
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char reserv3; /* reserved */
unsigned char mode_name[8]; /* mode name */
unsigned char reserv3a; /* reserved */
unsigned char set_negotiable; /* set max negotiable limit? */
unsigned short plu_mode_session_limit;

/* session limit */
unsigned short min_conwinners_source;

/* min source contention */
/* winner sessions */

unsigned short min_conwinners_target;
/* min target contention */
/* winner sessions */

unsigned short auto_act; /* auto activation limit */
unsigned char responsible; /* responsible indicator */
unsigned char reserv4[3]; /* reserved */
unsigned long sense_data; /* sense data */

} CHANGE_SESSION_LIMIT;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_CHANGE_SESSION_LIMIT

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

lu_name
LU name of the local LU requested to change session limits. This name is
an 8-byte type-A EBCDIC character string. If this field is set to all zeros,
the lu_alias field will be used for determining the local LU.

lu_alias
Alias of the local LU requested to change session limits. This is an 8-byte
string in a locally displayable character set. This field is only significant if
the lu_name field is set to all zeros, in which case all 8 bytes are significant
and must be set. If both the lu_name and the lu_alias fields are set to all
zeros then the verb is forwarded to the LU associated with the control
point (the default LU).

CHANGE_SESSION_LIMIT

490 System Management Programming

plu_alias
Alias by which the partner LU is known to the local LU. This name must
match the name of a partner LU established during configuration. This is
an 8-byte string in a locally displayable character set. All 8 bytes are
significant and must be set. If this field is set to all zeros, the fqplu_name
field is used to specify the required partner LU.

fqplu_name
Fully qualified LU name for the partner LU. This name is 17 bytes long
and is right-padded with EBCDIC spaces. It is composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot. (Each name can
have a maximum length of 8 bytes with no embedded spaces.) This field is
only significant if the plu_alias field is set to all zeros.

mode_name
Name of a set of networking characteristics defined during configuration.
This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

SNASVCMG and CPSVCMG mode limits cannot be changed.
Set_negotiable specifies whether the maximum negotiable session limit for
this mode should be modified to become the plu_mode_session_limit.

set_negotiable
Specifies whether the maximum negotiable session limit for this mode
should be modified to become the plu_mode_session_limit.

AP_YES
AP_NO

plu_mode_session_limit
Requested total session limit for this mode. The actual session limit (which
can be negotiated with the partner LU), is the agreed maximum number of
sessions supported between the local LU and the partner LU on this mode.

min_conwinners_source
Minimum number of sessions in this mode for which the local LU is the
contention winner.

min_conwinners_target
Minimum number of sessions in this mode for which the partner LU is the
contention winner.

auto_act
Number of sessions to automatically activate after the session limit is
changed. The actual number of automatically activated sessions is the
minimum of this value and the negotiated minimum number of contention
winner sessions for the local LU. When sessions are deactivated normally
(specifying AP_DEACT_NORMAL) below this limit, new sessions are
activated up to this limit.

responsible
Indicates whether the source (local) or target (partner) LU is responsible for
deactivating sessions after the session limit is changed (AP_SOURCE or
AP_TARGET).

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

CHANGE_SESSION_LIMIT

Chapter 8. Session Limit Verbs 491

primary_rc
AP_OK

secondary_rc
AP_AS_SPECIFIED

AP_AS_NEGOTIATED

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_LU_MODE_SESSION_LIMIT_ZERO

AP_EXCEEDS_MAX_ALLOWED
AP_INVALID_MODE_NAME
AP_INVALID_PLU_NAME
AP_INVALID_RESPONSIBLE
AP_INVALID_SET_NEGOTIABLE
AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_MODE_RESET

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of an allocation error, the Program returns the
following parameters:

primary_rc
AP_ALLOCATION_ERROR

secondary_rc
AP_ALLOCATION_FAILURE_NO_RETRY

sense_data
Sense data associated with allocation error.

If the verb does not execute because of a system error, the Program returns the
following parameter:

CHANGE_SESSION_LIMIT

492 System Management Programming

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

If the verb does not execute because of an error, the Program returns the following
parameters:

primary_rc
AP_CONV_FAILURE_NO_RETRY
AP_CNOS_PARTNER_LU_REJECT

secondary_rc
AP_CNOS_COMMAND_RACE_REJECT

AP_CNOS_MODE_NAME_REJECT

CHANGE_SESSION_LIMIT

Chapter 8. Session Limit Verbs 493

INITIALIZE_SESSION_LIMIT

The INITIALIZE_SESSION_LIMIT verb initializes the mode session limits.

VCB Structure
typedef struct initialize_session_limit
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned char plu_alias[8]; /* partner */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char reserv3; /* reserved */
unsigned char mode_name[8]; /* mode name */
unsigned char reserv3a; /* reserved */
unsigned char set_negotiable; /* set max negotiable limit? */
unsigned short plu_mode_session_limit;

/* session limit */
unsigned short min_conwinners_source;

/* min source contention */
/* winner sessions */

unsigned short min_conwinners_target;
/* min target contention */
/* winner sessions */

unsigned short auto_act; /* auto activation limit */
unsigned char reserv4[4]; /* reserved */
unsigned long sense_data; /* sense data */

} INITIALIZE_SESSION_LIMIT;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_INITIALIZE_SESSION_LIMIT

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

lu_name
LU name of the local LU requested to initialize session limits. This name is
an 8-byte type-A EBCDIC character string. If this field is set to all zeros,
the lu_alias field will be used for determining the local LU.

lu_alias
Alias of the local LU requested to initialize session limits. This is an 8-byte
string in a locally displayable character set. This field is only significant if
the lu_name field is set to all zeros, in which case all 8 bytes are significant
and must be set. If both the lu_name and lu_alias are set to all zeros, the
verb is forwarded to the LU associated with the control point (the default
LU).

plu_alias
Alias by which the partner LU is known to the local LU. This name must
match the name of a partner LU established during configuration. This is
an 8-byte string in a locally displayable character set. All 8 bytes are

INITIALIZE_SESSION_LIMIT

494 System Management Programming

significant and must be set. If this field is set to all zeros, the fqplu_name
field is used to specify the required partner LU.

fqplu_name
Fully qualified LU name for the partner LU. This name is 17 bytes long
and is right-padded with EBCDIC spaces. It is composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot. (Each name can
have a maximum length of 8 bytes with no embedded spaces.) This field is
only significant if the plu_alias field is set to all zeros.

mode_name
Name of a set of networking characteristics defined during configuration.
This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

This verb is rejected if one of the mode names SNASVCMG or CPSVCMG
is supplied in this field and limits take values other than
plu_mode_session_limit 2, min_conwinners_source 1, and
min_conwinners target 1.

set_negotiable
Specifies whether the maximum negotiable session limit for this mode
should be modified to become the plu_mode_session_limit.

AP_YES
AP_NO

plu_mode_session_limit
Requested total session limit for this mode. The actual session limit (which
can be negotiated with the partner LU), is the agreed maximum number of
sessions supported between the local LU and the partner LU on this mode.
This must be set to a value in the range one to 32 767.

min_conwinners_source
Minimum number of sessions in this mode for which the local LU is the
contention winner. This must be set to a value in the range zero to 32 767.

min_conwinners_target
Minimum number of sessions in this mode for which the partner LU is the
contention winner. This must be set to a value in the range zero to 32 767.

auto_act
Number of sessions to automatically activate after the session limit is
changed. The actual number of automatically activated sessions is the
minimum of this value and the negotiated minimum number of contention
winner sessions for the local LU. When sessions are deactivated normally
(specifying AP_DEACT_NORMAL) below this limit, new sessions are
activated up to this limit. This must be set to a value in the range zero to
32 767.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

secondary_rc
AP_AS_SPECIFIED

AP_AS_NEGOTIATED

INITIALIZE_SESSION_LIMIT

Chapter 8. Session Limit Verbs 495

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_CANT_CHANGE_TO_ZERO

AP_EXCEEDS_MAX_ALLOWED
AP_INVALID_SET_NEGOTIABLE
AP_INVALID_PLU_NAME
AP_INVALID_MODE_NAME
AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS
AP_INVALID_SCVMG_LIMITS

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_MODE_NOT_RESET

If the verb does not execute because the node has not yet been started, the
Program returns the following parameters:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of an allocation error, the Program returns the
following parameters:

primary_rc
AP_ALLOCATION_ERROR

secondary_rc
AP_ALLOCATION_FAILURE_NO_RETRY

sense_data
Sense data associated with allocation error.

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

If the verb does not execute because of an error, the Program returns the following
parameters:

INITIALIZE_SESSION_LIMIT

496 System Management Programming

primary_rc
AP_CONV_FAILURE_NO_RETRY
AP_CNOS_PARTNER_LU_REJECT

secondary_rc
AP_CNOS_COMMAND_RACE_REJECT

AP_CNOS_MODE_NAME_REJECT

INITIALIZE_SESSION_LIMIT

Chapter 8. Session Limit Verbs 497

RESET_SESSION_LIMIT

The RESET_SESSION_LIMIT verb requests that the mode session limits be reset.

VCB Structure
typedef struct reset_session_limit
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qual partner LU name */
unsigned char reserv3; /* reserved */
unsigned char mode_name[8]; /* mode name */
unsigned char mode_name_select; /* select mode name */
unsigned char set_negotiable; /* set max negotiable limit? */
unsigned char reserv4[8]; /* reserved */
unsigned char responsible; /* responsible */
unsigned char drain_source; /* drain source */
unsigned char drain_target; /* drain target */
unsigned char force; /* force */
unsigned long sense_data; /* sense data */

} RESET_SESSION_LIMIT;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_RESET_SESSION_LIMIT

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

lu_name
LU name of the local LU requested to reset session limits. This name is an
8-byte type-A EBCDIC character string. If this field is set to all zeros, the
lu_alias field will be used for determining the local LU.

lu_alias
Alias of the local LU requested to reset session limits. This is an 8-byte
string in a locally displayable character set. This field is only significant if
the lu_name field is set to all zeros, in which case all 8 bytes are significant
and must be set. If this is set to all zeros, the verb is forwarded to the LU
associated with the control point (the default LU).

plu_alias
Alias by which the partner LU is known to the local LU. This name must
match the name of a partner LU established during configuration. This is
an 8-byte string in a locally displayable character set. All 8 bytes are
significant and must be set. If this field is set to all zeros, the fqplu_name
field is used to specify the required partner LU.

fqplu_name
Fully qualified LU name for the partner LU. This name is 17 bytes long
and is right-padded with EBCDIC spaces. It is composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot. (Each name can

RESET_SESSION_LIMIT

498 System Management Programming

have a maximum length of 8 bytes with no embedded spaces.) This field is
only significant if the plu_alias field is set to all zeros.

mode_name
Name of a set of networking characteristics defined during configuration.
This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

mode_name_select
Selects whether session limits should be reset on a single specified mode,
or on all modes between the local and partner LUs.

AP_ONE
AP_ALL

set_negotiable
Specifies whether the maximum negotiable session limit for this mode
should be modified.

AP_YES
AP_NO

responsible
Indicates whether the source (local) or target (partner) LU is responsible for
deactivating sessions after the session limit is reset (AP_SOURCE or
AP_TARGET).

drain_source
Specifies whether the source LU satisfies waiting session requests before
deactivating a session when session limits are changed or reset (AP_NO or
AP_YES).

drain_target
Specifies whether the target LU satisfies waiting session requests before
deactivating a session when session limits are changed or reset (AP_NO or
AP_YES).

force Specifies whether session limits will be set to zero even if CNOS
negotiation fails (AP_YES or AP_NO).

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

secondary_rc
AP_FORCED

AP_AS_SPECIFIED
AP_AS_NEGOTIATED

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_EXCEEDS_MAX_ALLOWED

RESET_SESSION_LIMIT

Chapter 8. Session Limit Verbs 499

AP_INVALID_PLU_NAME
AP_INVALID_MODE_NAME
AP_INVALID_MODE_NAME_SELECT
AP_INVALID_RESPONSIBLE
AP_INVALID_DRAIN_SOURCE
AP_INVALID_DRAIN_TARGET
AP_INVALID_FORCE
AP_INVALID_SET_NEGOTIABLE
AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_MODE_RESET

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of an allocation error, the Program returns the
following parameter:

primary_rc
AP_ALLOCATION_ERROR

secondary_rc
AP_ALLOCATION_FAILURE_NO_RETRY

sense_data
Sense data associated with allocation error.

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

If the verb does not execute because of an error, the Program returns the following
parameters:

primary_rc
AP_CONV_FAILURE_NO_RETRY

AP_CNOS_PARTNER_LU_REJECT

secondary_rc
AP_CNOS_COMMAND_RACE_REJECT

RESET_SESSION_LIMIT

500 System Management Programming

AP_CNOS_MODE_NAME_REJECT

RESET_SESSION_LIMIT

Chapter 8. Session Limit Verbs 501

RESET_SESSION_LIMIT

502 System Management Programming

Chapter 9. Node Operator Facility API Indications

The Node Operator Facility API generates indication verbs to notify a node
operator about changes in the node. Indication verbs use the following general
structure:
typedef struct indication_hdr

{
unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */

} INDICATION_HDR;

© Copyright IBM Corp. 1989, 2016 503

DLC_INDICATION

This indication is generated when the DLC goes from active to inactive, or from
inactive to active.

VCB Structure
typedef struct dlc_indication
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char deactivated; /* has session been deactivated? */
unsigned char dlc_name[8]; /* link station name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char reserva[20]; /* reserved */

} DLC_INDICATION;

Parameters
opcode

AP_DLC_INDICATION

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure that has caused a previous indication
to be lost. If the data_lost flag is set to AP_YES then subsequent data fields
can be set to null. The application should issue a QUERY verb to update
the information that has been lost.

deactivated
Set to AP_YES when the DLC becomes inactive. Set to AP_NO when the
DLC becomes active.

dlc_name
Name of DLC. This is an 8-byte string in a locally displayable character set.
All 8 bytes are significant.

description
Resource description (as specified on DEFINE_DLC). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

DLC_INDICATION

504 System Management Programming

DLUR_LU_INDICATION

This indication is generated whenever a DLUR LU is activated or deactivated. This
allows a registered application to maintain a list of currently active DLUR LUs.

VCB Structure
typedef struct dlur_lu_indication
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char reason; /* reason for this indication */
unsigned char lu_name[8]; /* LU name */
unsigned char pu_name[8]; /* PU name */
unsigned char nau_address; /* NAU address */
unsigned char reserv5[7]; /* reserved */

} DLUR_LU_INDICATION;

Parameters
opcode

AP_DLUR_LU_INDICATION

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure that has caused a previous indication
to be lost. If the data_lost flag is set to AP_YES then subsequent data fields
can be set to null. The application should issue a QUERY verb to update
the information that has been lost.

reason Set to AP_ADDED if the DLUR LU has just been activated by the DLUS.
Set to AP_REMOVED if the DLUR LU has been deactivated, either
explicitly by the DLUS or implicitly by a link failure or the deactivation of
the PU.

lu_name
Name of the LU. This is an 8-byte alphanumeric type A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces.

pu_name
Name of the PU that this LU uses. This is an 8-byte alphanumeric type A
EBCDIC string (starting with a letter), padded to the right with EBCDIC
spaces.

nau_address
Network addressable unit address of the LU, which must be in the range
1–255.

DLUR_LU_INDICATION

Chapter 9. Node Operator Facility API Indications 505

DLUR_PU_INDICATION

This indication is generated whenever a DLUR PU is activated or deactivated. This
allows a registered application to maintain a list of currently active DLUR PUs.

VCB Structure
typedef struct dlur_pu_indication
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char reason; /* reason for this indication */
unsigned char pu_name[8]; /* PU name */
unsigned char pu_id[4]; /* PU identifier */
unsigned char pu_location; /* downstream or local PU */
unsigned char pu_status; /* status of the PU */
unsigned char dlus_name[17]; /* current DLUS name */
unsigned char dlus_session_status; /* status of the DLUS pipe */
unsigned char reserv5[2]; /* reserved */

} DLUR_PU_INDICATION;

Parameters
opcode

AP_DLUR_PU_INDICATION

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure that has caused a previous indication
to be lost. If the data_lost flag is set to AP_YES then subsequent data fields
can be set to null. The application should issue a QUERY verb to update
the information that has been lost.

reason The cause of the indication. It is one of the following:

AP_ACTIVATION_STARTED
The PU is activating.

AP_ACTIVATING
The PU has become active.

AP_DEACTIVATING
The PU has become inactive.

AP_FAILED
The PU has failed.

AP_ACTIVATION_FAILED
The PU has failed to activate.

DLUR__PU_INDICATION

506 System Management Programming

pu_name
Name of the PU. This is an 8-byte alphanumeric type A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces.

pu_id The PU identifier defined in a DEFINE_INTERNAL_PU verb or obtained
in an XID from a downstream PU. This is a 4–byte hexadecimal string. Bits
0–11 are set to the block number and bits 12–31 are set to the ID number
that uniquely identifies the PU.

pu_location
The location of the PU. This can be one of the following:

AP_INTERNAL
AP_DOWNSTREAM

pu_status
The status of the PU (as seen by DLUR). This can be set to one of the
following:

AP_RESET_NO_RETRY
The PU is in reset state and will not be retried.

AP_RESET_RETRY
The PU is in reset state and be retried.

AP_PEND_ACTPU
The PU is waiting for an ACTPU from the host.

AP_PEND_ACTPU_RSP
After forwarding an ACTPU to the PU, DLUR is waiting for the
PU to respond.

AP_ACTIVE
The PU is activate.

AP_PEND_DACTPU_RSP
After forwarding an DACTPU to the PU, DLUR is waiting for the
PU to respond.

AP_PEND_INOP
DLUR is waiting for all necessary events to complete before it
deactivates the PU.

dlus_name
The name of the DLUS node that the PU is currently using (or attempting
to use). This is a 17–byte string composed of two type A EBCDIC character
strings concatenated by an EBCDIC dot, that is right padded with EBCDIC
spaces. (Each name can have a maximum length of 8 bytes with no
embedded spaces.) If the PU activation has failed, this field will be set to
all zeros.

dlus_session_status
The status of the DLUS pipe currently being used by the PU. This can be
one of the following:

AP_PENDING_ACTIVE
AP_ACTIVE
AP_PENDING_INACTIVE
AP_INACTIVE

DLUR__PU_INDICATION

Chapter 9. Node Operator Facility API Indications 507

DLUS_INDICATION

This indication is generated when a pipe to a DLUS node goes from inactive to
active (or vice versa). Pipe statistics are supplied when the pipe becomes inactive.

VCB Structure
typedef struct dlus_indication
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char deactivated; /* has session been deactivated? */
unsigned char dlus_name[17]; /* DLUS name */
unsigned char reserv1; /* reserved */
PIPE_STATS pipe_stats; /* pipe statistics */
unsigned char reserva[20]; /* reserved */

} DLUS_INDICATION;

typedef struct pipe_stats
{

unsigned long reqactpu_sent; /* REQACTPUs sent to DLUS */
unsigned long reqactpu_rsp_received;

/* RSP(REQACTPU)s received */
/* from DLUS */

unsigned long actpu_received; /* ACTPUs received from DLUS */
unsigned long actpu_rsp_sent; /* RSP(ACTPU)s sent to DLUS */
unsigned long reqdactpu_sent; /* REQDACTPUs sent to DLUS */
unsigned long reqdactpu_rsp_received;

/* RSP(REQDACTPU)s received */
/* from DLUS */

unsigned long dactpu_received; /* DACTPUs received from DLUS */
unsigned long dactpu_rsp_sent; /* RSP(DACTPU)s sent to DLUS */
unsigned long actlu_received; /* ACTLUs received from DLUS */
unsigned long actlu_rsp_sent; /* RSP(ACTLU)s sent to DLUS */
unsigned long dactlu_received; /* DACTLUs received from DLUS */
unsigned long dactlu_rsp_sent; /* RSP(DACTLU)s sent to DLUS */
unsigned long sscp_pu_mus_rcvd; /* MUs for SSCP-PU sess received */
unsigned long sscp_pu_mus_sent; /* MUs for SSCP-PU sessions sent */
unsigned long sscp_lu_mus_rcvd; /* MUs for SSCP-LU sess received */
unsigned long sscp_lu_mus_sent; /* MUs for SSCP-LU sessions sent */

} PIPE_STATS;

Parameters
opcode

AP_DLUS_INDICATION

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure that has caused a previous indication

DLUS_INDICATION

508 System Management Programming

to be lost. If the data_lost flag is set to AP_YES then subsequent data fields
can be set to null. The application should issue a QUERY verb to update
the information that has been lost.

deactivated
Set to AP_YES when the pipe becomes inactive. Set to AP_NO when the
pipe becomes active.

dlus_name
Name of the DLUS. This is a 17-byte string composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot, which is
right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.)

pipe_stats.reqactpu_sent
Number of REQACTPUs sent to DLUS over the pipe.

pipe_stats.reqactpu_rsp_received
Number of RSP(REQACTPU)s received from DLUS over the pipe.

pipe_stats.actpu_received
Number of ACTPUs received from DLUS over the pipe.

pipe_stats.actpu_rsp_sent
Number of RSP(ACTPU)s sent to DLUS over the pipe.

pipe_stats.reqdactpu_sent
Number of REQDACTPUs sent to DLUS over the pipe.

pipe_stats.reqdactpu_rsp_received
Number of RSP(REQDACTPU)s received from DLUS over the pipe.

pipe_stats.dactpu_received
Number of DACTPUs received from DLUS over the pipe.

pipe_stats.dactpu_rsp_sent
Number of RSP(DACTPU)s sent to DLUS over the pipe.

pipe_stats.actlu_received
Number of ACTLUs received from DLUS over the pipe.

pipe_stats.actlu_rsp_sent
Number of RSP(ACTLU)s sent to DLUS over the pipe.

pipe_stats.dactlu_received
Number of DACTLUs received from DLUS over the pipe.

pipe_stats.dactlu_rsp_sent
Number of RSP(DACTLU)s sent to DLUS over the pipe.

pipe_stats.sscp_pu_mus_rcvd
Number of SSCP-PU MUs received from DLUS over the pipe.

pipe_stats.sscp_pu_mus_sent
Number of SSCP-PU MUs sent to DLUS over the pipe.

pipe_stats.sscp_lu_mus_rcvd
Number of SSCP-LU MUs received from DLUS over the pipe.

pipe_stats.sscp_lu_mus_sent
Number of SSCP-LU MUs sent to DLUS over the pipe.

DLUS_INDICATION

Chapter 9. Node Operator Facility API Indications 509

DOWNSTREAM_LU_INDICATION

This verb applies only to Communications Server.

This indication is generated when the LU-SSCP session between the downstream
LU and the host goes from inactive to active (or vice-versa) or when the PLU-SLU
session goes from inactive to active (or vice-versa). LU-SSCP statistics are supplied
when the LU-SSCP session deactivates and PLU-SLU statistics are supplied when
the PLU-SLU session deactivates.

VCB Structure
typedef struct downstream_lu_indication
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char dspu_name[8]; /* PU Name */
unsigned char ls_name[8]; /* Link station name */
unsigned char dslu_name[8]; /* LU Name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char nau_address; /* NAU address */
unsigned char lu_sscp_sess_active;

/* Is SSCP session active? */
unsigned char plu_sess_active; /* Is PLU-SLU session active? */
unsigned char dspu_services; /* DSPU services */
unsigned char reserv1; /* reserved */
SESSION_STATS lu_sscp_stats; /* LU-SSCP session statistics */
SESSION_STATS ds_plu_stats; /* Downstream PLU-SLU sess stats */
SESSION_STATS us_plu_stats; /* Upstream PLU-SLU sess stats */

} DOWNSTREAM_LU_INDICATION;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing window size */
unsigned short cur_send_pac_win; /* curr send pacing window size */
unsigned short max_rcv_pac_win; /* max rcv pacing window size */
unsigned short cur_rcv_pac_win; /* curr receive pacing win size */
unsigned long send_data_frames; /* number of data frames sent */
unsigned long send_fmd_data_frames;

/* num FMD data frames sent */
unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num of data frames received */
unsigned long rcv_fmd_data_frames;

/* num FMD data frames received */
unsigned long rcv_data_bytes; /* num data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */
unsigned char pacing_type; /* type of pacing in use */

} SESSION_STATS;

DOWNSTREAM_LU__INDICATION

510 System Management Programming

Parameters
opcode

AP_DOWNSTREAM_LU_INDICATION

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure that has caused a previous indication
to be lost. If the data_lost flag is set to AP_YES then subsequent data fields
can be set to null. The application should issue a QUERY verb to update
the information that has been lost.

dspu_name
Name of the downstream PU associated with the downstream LU. This is
an 8-byte alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

ls_name
Name of link station. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant and must be set.

dslu_name
Name of the downstream LU. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with EBCDIC
spaces.

description
Resource description (as specified on DEFINE_DOWNSTREAM_LU).

nau_address
Network addressable unit address of the LU which must be in the range
1–255.

lu_sscp_sess_active
Indicates whether the LU-SSCP session to the downstream LU is active. Set
to either AP_YES or AP_NO.

plu_sess_active
Indicates whether the PLU-SLU session to the downstream LU is active.
Set to either AP_YES or AP_NO.

dspu_services
Specifies the services which the local node provides to the downstream LU
across the link. This is set to one of the following.

DOWNSTREAM_LU__INDICATION

Chapter 9. Node Operator Facility API Indications 511

AP_PU_CONCENTRATION
Local node provides PU concentration for the downstream PU.

AP_DLUR
Local node provides DLUR support for the downstream PU.

lu_sscp_stats.rcv_ru_size
This field is always reserved.

lu_sscp_stats.send_ru_size
This field is always reserved.

lu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

lu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

lu_sscp_stats.max_send_pac_win
This field will always be set to zero.

lu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

lu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

lu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

lu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

lu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

lu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

lu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

lu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

lu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

lu_sscp_stats.sidh
Session ID high byte.

lu_sscp_stats.sidl
Session ID low byte.

lu_sscp_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the BIND sender is the node
containing the secondary link station.

lu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant.

DOWNSTREAM_LU__INDICATION

512 System Management Programming

lu_sscp_stats.pacing_type
Receive pacing type in use on the upstream LU-SSCP session. This will
take the value AP_NONE.

ds_plu_stats.rcv_ru_size
Maximum receive RU size.

ds_plu_stats.send_ru_size
Maximum send RU size.

ds_plu_stats.max_send_btu_size
Maximum BTU size that can be sent.

ds_plu_stats.max_rcv_btu_size
Maximum BTU size that can be received.

ds_plu_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

ds_plu_stats.cur_send_pac_win
Current size of the send pacing window on this session

ds_plu_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

ds_plu_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

ds_plu_stats.send_data_frames
Number of normal flow data frames sent.

ds_plu_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

ds_plu_stats.send_data_bytes
Number of normal flow data bytes sent.

ds_plu_stats.rcv_data_frames
Number of normal flow data frames received.

ds_plu_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

ds_plu_stats.rcv_data_bytes
Number of normal flow data bytes received.

ds_plu_stats.sidh
Session ID high byte.

ds_plu_stats.sidl
Session ID low byte.

ds_plu_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the BIND sender is the node
containing the secondary link station.

ds_plu_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant.

ds_plu_sscp_stats.pacing_type
Receive pacing type in use on the downstream PLU-SLU session. This can
be set to AP_NONE or AP_PACING_FIXED.

DOWNSTREAM_LU__INDICATION

Chapter 9. Node Operator Facility API Indications 513

us_plu_stats.rcv_ru_size
Maximum receive RU size.

us_plu_stats.send_ru_size
Maximum send RU size.

us_plu_stats.max_send_btu_size
Maximum BTU size that can be sent.

us_plu_stats.max_rcv_btu_size
Maximum BTU size that can be received.

us_plu_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

us_plu_stats.cur_send_pac_win
Current size of the send pacing window on this session

us_plu_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

us_plu_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

us_plu_stats.send_data_frames
Number of normal flow data frames sent.

us_plu_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

us_plu_stats.send_data_bytes
Number of normal flow data bytes sent.

us_plu_stats.rcv_data_frames
Number of normal flow data frames received.

us_plu_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

us_plu_stats.rcv_data_bytes
Number of normal flow data bytes received.

us_plu_stats.sidh
Session ID high byte. This field is reserved if dspu_services is set to
AP_PU_CONCENTRATION.

us_plu_stats.sidl
Session ID low byte. This field is reserved if dspu_services is set to
AP_PU_CONCENTRATION.

us_plu_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the BIND sender is the node
containing the secondary link station. This field is reserved if
dspu_services is set to AP_PU_CONCENTRATION.

us_plu_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. This field is
reserved if dspu_services is set to AP_PU_CONCENTRATION.

us_plu_stats.pacing_type
Receive pacing type in use on the upstream PLU-SLU session. This can
take the values AP_NONE or AP_PACING_FIXED.

DOWNSTREAM_LU__INDICATION

514 System Management Programming

DOWNSTREAM_PU_INDICATION

This verb applies only to Communications Server.

This indication is generated when the PU-SSCP session between the downstream
PU and the host goes from inactive to active (or vice-versa). PU-SSCP statistics are
supplied when the PU-SSCP session deactivates.

VCB Structure
typedef struct downstream_pu_indication
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char dspu_name[8]; /* PU Name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char ls_name[8]; /* Link Station name */
unsigned char pu_sscp_sess_active;

/* Is PU-SSCP session active? */
unsigned char dspu_services; /* DSPU services */
unsigned char reserv1[2]; /* reserved */
SESSION_STATS pu_sscp_stats; /* PU-SSCP session statistics */

} DOWNSTREAM_PU_INDICATION;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing window size */
unsigned short cur_send_pac_win; /* curr send pacing window size */
unsigned short max_rcv_pac_win; /* max rcv pacing window size */
unsigned short cur_rcv_pac_win; /* curr receive pacing win size */
unsigned long send_data_frames; /* number of data frames sent */
unsigned long send_fmd_data_frames;

/* num FMD data frames sent */
unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num of data frames received */
unsigned long rcv_fmd_data_frames;

/* num FMD data frames received */
unsigned long rcv_data_bytes; /* num data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */
unsigned char pacing; /* pacing_type */

} SESSION_STATS;

Parameters
opcode

AP_DOWNSTREAM_PU_INDICATION

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

DOWNSTREAM_PU__INDICATION

Chapter 9. Node Operator Facility API Indications 515

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure that has caused a previous indication
to be lost. If the data_lost flag is set to AP_YES then subsequent data fields
can be set to null. The application should issue a QUERY verb to update
the information that has been lost.

dspu_name
Name of the downstream PU. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with EBCDIC
spaces.

description
Resource description (as specified on DEFINE_LS).

ls_name
Name of link station. This is a 8-byte string in a locally displayable
character set. All 8 bytes are significant.

pu_sscp_sess_active
Indicates whether the PU-SSCP session to the downstream PU is active. Set
to either AP_YES or AP_NO.

dspu_services
Specifies the services which the local node provides to the downstream PU
across the link. This is set to one of the following.

AP_PU_CONCENTRATION
Local node provides PU concentration for the downstream PU.

AP_DLUR
Local node provides DLUR support for the downstream PU.

pu_sscp_stats.rcv_ru_size
This field is always reserved.

pu_sscp_stats.send_ru_size
This field is always reserved.

pu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

pu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

pu_sscp_stats.max_send_pac_win
This field will always be set to zero.

pu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

DOWNSTREAM_PU__INDICATION

516 System Management Programming

pu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

pu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

pu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

pu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

pu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

pu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

pu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

pu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

pu_sscp_stats.sidh
Session ID high byte.

pu_sscp_stats.sidl
Session ID low byte.

pu_sscp_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the BIND sender is the node
containing the secondary link station.

pu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant.

pu_sscp_stats.pacing_type
Receive pacing type in use on the upstream PU-SSCP session. This will
take the value AP_NONE.

DOWNSTREAM_PU__INDICATION

Chapter 9. Node Operator Facility API Indications 517

FOCAL_POINT_INDICATION

This indication is generated whenever a focal point is acquired, changed or
revoked.

VCB Structure
typedef struct focal_point_indication
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char ms_category[8]; /* Focal point category */
unsigned char fp_fqcp_name[17]; /* Fully qualified focal */

/* point CP name */
unsigned char ms_appl_name[8]; /* Focal point application name */
unsigned char fp_type; /* type of current focal point */
unsigned char fp_status; /* status of focal point */
unsigned char fp_routing; /* type of MDS routing to */

/* reach FP */
unsigned char reserva[20]; /* reserved */

} FOCAL_POINT_INDICATION;

Parameters
opcode

AP_FOCAL_POINT_INDICATION

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure that has caused a previous indication
to be lost. If the data_lost flag is set to AP_YES then subsequent data fields
can be set to null. The application should issue a QUERY verb to update
the information that has been lost.

ms_category
Category of focal point where the focal point has been acquired, changed
or revoked. This can either be one of the 4-byte architecturally defined
values (right-padded with EBCDIC spaces) for management services
categories as described in SNA Management Services , or an 8-byte type 1134
EBCDIC installation defined name.

fp_fqcp_name
The fully qualified control point name of the current focal point. This name
is 17 bytes long and is right-padded with EBCDIC spaces. It is composed
of two type-A EBCDIC character strings concatenated by an EBCDIC dot.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.) This name will be all zeros if the focal point has been revoked and
not replaced (so that there is no currently active focal point).

FOCAL_POINT__INDICATION

518 System Management Programming

ms_appl_name
Name of the current focal point application. This can either be one of the
4-byte architecturally defined values (right-padded with EBCDIC spaces)
for management services applications as described in SNA Management
Services , or an 8-byte type-1134 EBCDIC installation defined name. This
will be all zeros if the focal point has been revoked and not replaced (so
that there is no currently active focal point).

fp_type
Type of focal point. Refer to SNA Management Services for further details.

AP_EXPLICIT_PRIMARY_FP
AP_BACKUP_FP
AP_DEFAULT_PRIMARY_FP
AP_DOMAIN_FP
AP_HOST_FP
AP_NO_FP

fp_status
Status of the focal point:

AP_NOT_ACTIVE
The focal point has gone from active to inactive.

AP_ACTIVE
The focal point has gone from inactive or pending active to active.

fp_routing
Type of routing that applications should specify when using MDS
transport to send data to the focal point (only significant if the focal point
status is AP_ACTIVE):

AP_DEFAULT
Default routing is used to deliver the MDS_MU to the focal point.

AP_DIRECT
The MDS_MU will be routed on a session directly to the focal
point.

FOCAL_POINT__INDICATION

Chapter 9. Node Operator Facility API Indications 519

ISR_INDICATION

This verb applies only to Communications Server.

This indication is generated when an ISR session is activated or deactivated. When
the session is deactivated, final session statistics are returned. When the session is
activated the pri_sess_stats and sec_sess_stats fields are reserved.

VCB Structure
typedef struct isr_indication
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char deactivated; /* has ISR session been */

/* deactivated? */
FQPCID fqpcid; /* fully qualified procedure */

/* correlator ID */
unsigned char fqplu_name[17]; /* fully qualified primary */

/* LU name */
unsigned char fqslu_name[17]; /* fully qualified secondary */

/* LU name */
unsigned char mode_name[8]; /* mode name */
unsigned char cos_name[8]; /* COS name */
unsigned char transmission_priority;

/* transmission priority */
unsigned long sense_data; /* sense data */
unsigned char reserv2a[2]; /* reserved */
SESSION_STATS pri_sess_stats; /* primary hop session stats */
SESSION_STATS sec_sess_stats; /* secondary hop session */

/* statistics */
unsigned char reserva[20]; /* reserved */

} ISR_INDICATION;

typedef struct fqpcid
{

unsigned char pcid[8]; /* pro correlator identifier */
unsigned char fqcp_name[17]; /* orig’s network qualified */

/* CP name */
unsigned char reserve3[3]; /* reserved */

} FQPCID;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* Maximum send BTU size */
unsigned short max_rcv_btu_size; /* Maximum rcv BTU size */
unsigned short max_send_pac_win; /* Max send pacing window size */
unsigned short cur_send_pac_win; /* Curr send pacing window size */
unsigned short max_rcv_pac_win; /* Max receive pacing win size */
unsigned short cur_rcv_pac_win; /* Curr rec pacing window size */
unsigned long send_data_frames; /* Number of data frames sent */
unsigned long send_fmd_data_frames;

/* num of FMD data frames sent */
unsigned long send_data_bytes; /* Number of data bytes sent */
unsigned long rcv_data_frames; /* Num data frames received */
unsigned long rcv_fmd_data_frames;

/* num of FMD data frames recvd */
unsigned long rcv_data_bytes; /* Num data bytes received */
unsigned char sidh; /* Session ID high byte */

ISR_INDICATION

520 System Management Programming

unsigned char sidl; /* Session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */
unsigned char pacing_type; /* type of pacing in use */

} SESSION_STATS;

Parameters
The application supplies the following parameters:

opcode
AP_ISR_INDICATION

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

primary_rc
AP_OK

secondary rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure which has caused a previous
indication to be lost. If the data_lost flag is set to AP_YES then subsequent
data fields may be set to null. The application should issue a QUERY verb
to update the information which has been lost.

deactivated
Set to AP_YES when the ISR session is deactivated. Set to AP_NO when
the session is activated.

fqpcid.pcid
Procedure Correlator ID. This is an 8-byte hexadecimal string.

fqpcid.fqcp_name
Fully qualified Control Point name. This name is 17-bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

fqplu_name
Fully qualified primary LU name (as specified on the BIND request). This
name is 17-bytes long and is right-padded with EBCDIC spaces. It is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8 bytes with no
embedded spaces.) This name will be all zeros if deactivated is AP_YES.

fqslu_name
Fully qualified secondary LU name (as specified on the BIND request).
This name is 17-bytes long and is right-padded with EBCDIC spaces. It is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8 bytes with no
embedded spaces.) This name will be all zeros if deactivated is AP_YES.

mode_name
Mode name which designates the network properties for a group of
sessions (as specified on the BIND request). This is an 8–byte alphanumeric
type A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. This name will be all zeros if deactivated is AP_YES.

ISR_INDICATION

Chapter 9. Node Operator Facility API Indications 521

cos_name
Class of Service name. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.
This name will be all zeros if deactivated is AP_YES.

transmission_priority
The transmission priority associated with the session. This field is reserved
if deactivated is AP_YES.

sense_data
The sense data sent or received on the UNBIND request. This field is
reserved if deactivated is AP_YES.

pri_sess_stats.rcv_ru_size
Maximum receive RU size.

pri_sess_stats.send_ru_size
Maximum send RU size.

pri_sess_stats.max_send_btu_size
Maximum BTU size that can be sent.

pri_sess_stats.max_rcv_btu_size
Maximum BTU size that can be received.

pri_sess_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

pri_sess_stats.cur_send_pac_win
Current size of the send pacing window on this session.

pri_sess_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

pri_sess_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

pri_sess_stats.send_data_frames
Number of normal flow data frames sent.

pri_sess_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

pri_sess_stats.send_data_bytes
Number of normal flow data bytes sent.

pri_sess_stats.rcv_data_frames
Number of normal flow data frames received.

pri_sess_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

pri_sess_stats.rcv_data_bytes
Number of normal flow data bytes received.

pri_sess_stats.sidh
Session ID high byte.

pri_sess_stats.sidl
Session ID low byte.

pri_sess_stats.odai
Origin destination address indicator. When bringing up a session, the

ISR_INDICATION

522 System Management Programming

sender of the BIND sets this field to zero if the local node contains the
primary link station. It sets it to one if the BIND sender is the node
containing the secondary link station.

pri_sess_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. This field can
be used to correlate the session statistics with the link over which session
traffic flows.

pri_sess_stats.pacing_type
Receive pacing type in use on the primary session. This can take the values
AP_NONE, AP_PACING_FIXED, or AP_PACING_ADAPTIVE.

sec_sess_stats.rcv_ru_size
Maximum receive RU size.

sec_sess_stats.send_ru_size
Maximum send RU size.

sec_sess_stats.max_send_btu_size
Maximum BTU size that can be sent.

sec_sess_stats.max_rcv_btu_size
Maximum BTU size that can be received.

sec_sess_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

sec_sess_stats.cur_send_pac_win
Current size of the send pacing window on this session.

sec_sess_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

sec_sess_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

sec_sess_stats.send_data_frames
Number of normal flow data frames sent.

sec_sess_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

sec_sess_stats.send_data_bytes
Number of normal flow data bytes sent.

sec_sess_stats.rcv_data_frames
Number of normal flow data frames received.

sec_sess_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

sec_sess_stats.rcv_data_bytes
Number of normal flow data bytes received.

sec_sess_stats.sidh
Session ID high byte.

sec_sess_stats.sidl
Session ID low byte.

sec_sess_stats.odai
Origin destination address indicator. When bringing up a session, the

ISR_INDICATION

Chapter 9. Node Operator Facility API Indications 523

sender of the BIND sets this field to zero if the local node contains the
primary link station. It sets it to one if the BIND sender is the node
containing the secondary link station.

sec_sess_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. This field can
be used to correlate the session statistics with the link over which session
traffic flows.

sec_sess_stats.pacing_type
Receive pacing type in use on the secondary session. This can take the
values AP_NONE, AP_PACING_FIXED, or AP_PACING_ADAPTIVE.

ISR_INDICATION

524 System Management Programming

LOCAL_LU_INDICATION

This indication is generated whenever a LOCAL LU is defined or deleted. This
allows a registered application to maintain a list of all local LUs currently defined.

VCB Structure
typedef struct local_lu_indication
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char reason; /* reason for this indication */
unsigned char lu_name[8]; /* LU name */
unsigned char description[RD_LEN];

/* resource description */
unsigned char lu_alias[8]; /* LU alias */
unsigned char nau_address; /* NAU address */
unsigned char reserv4; /* reserved */
unsigned char pu_name[8]; /* PU name */
unsigned char lu_sscp_active; /* Is LU-SSCP session active */
unsigned char reserv5; /* reserved */
SESSION_STATS lu_sscp_stats; /* LU-SSCP session statistics */
unsigned char sscp_id[6]; /* SSCP ID */

} LOCAL_LU_INDICATION;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing window size */
unsigned short cur_send_pac_win; /* current send pacing win size */
unsigned short max_rcv_pac_win; /* max receive pacing win size */
unsigned short cur_rcv_pac_win; /* curr receive pacing winsize */
unsigned long send_data_frames; /* number of data frames sent */
unsigned long send_fmd_data_frames;

/* num of FMD data frames sent */
unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num of data frames received */
unsigned long rcv_fmd_data_frames;

/* num FMD data frames received */
unsigned long rcv_data_bytes; /* number of data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */
unsigned char pacing_type; /* type of pacing in use */

} SESSION_STATS;

Note: The LU-SSCP statistics are only valid when both nau_address is nonzero
and the LU-SSCP session goes from active to inactive. In all other cases the
fields are reserved.

Parameters
opcode

AP_LOCAL_LU_INDICATION

LOCAL_LU__INDICATION

Chapter 9. Node Operator Facility API Indications 525

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure that has caused a previous indication
to be lost. If the data_lost flag is set to AP_YES, then subsequent data
fields can be set to null. The application should issue a QUERY verb to
update the information that has been lost.

reason Reason for indication being issued:

AP_ADDED
The LU has been defined.

AP_REMOVED
The LU has been deleted, either explicitly using
DELETE_LOCAL_LU or implicitly using DELETE_LS,
DELETE_PORT or DELETE_DLC.

AP_SSCP_ACTIVE
The LU-SSCP session has become active after the node has
successfully processed an ACTLU.

AP_SSCP_INACTIVE
The LU-SSCP session has become inactive after a normal DACTLU
or a link failure.

lu_name
Name of the LU. Name of the local LU whose state has changed. This is an
8-byte alphanumeric type A EBCDIC string (starting with a letter), padded
to the right with EBCDIC spaces.

description
Resource description (as specified on DEFINE_LOCAL_LU).

lu_alias
Locally defined LU alias. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

nau_address
Network addressable unit address of the LU, which must be in the range
0–255. A nonzero value implies the LU is a dependent LU. Zero implies the
LU is an independent LU.

pu_name
Name of the PU that this LU uses. This is an 8-byte alphanumeric type A
EBCDIC string. This field is only significant if the LU is a dependent LU
(that is, nau_address is nonzero), and will be set to all binary zeros for
independent LUs.

lu_sscp_sess_active
Specifies whether the LU-SSCP session is active (AP_YES or AP_NO). If
nau_address is zero then this field is reserved.

LOCAL_LU__INDICATION

526 System Management Programming

lu_sscp_stats.rcv_ru_size
This field is always reserved.

lu_sscp_stats.send_ru_size
This field is always reserved.

lu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

lu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

lu_sscp_stats.max_send_pac_win
This field will always be set to zero.

lu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

lu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

lu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

lu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

lu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

lu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

lu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

lu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

lu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

lu_sscp_stats.sidh
Session ID high byte.

lu_sscp_stats.sidl
Session ID low byte.

lu_sscp_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the ACTLU sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the ACTLU sender is the node
containing the secondary link station.

lu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. This field can
be used to correlate this session with the link over which the session flows.

lu_sscp_stats.pacing_type
Receiving pacing type in use on the LU-SSCP session. This will take the
value AP_NONE.

LOCAL_LU__INDICATION

Chapter 9. Node Operator Facility API Indications 527

sscp_id
This is a 6–byte field containing the SSCP ID received in the ACTPU for
the PU used by this LU.

This field is only used by dependent LUs, and will be set to all binary
zeros for independent LUs or if lu_sscp_sess_active is not set to AP_YES.

LOCAL_LU__INDICATION

528 System Management Programming

LOCAL_TOPOLOGY_INDICATION

This indication is generated when a TG entry in a node's local topology database
changes from active to inactive, or from inactive to active.

VCB Structure
typedef struct local_topology_indication
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char status; /* TG status */
unsigned char dest[17]; /* name of TG destination node */
unsigned char dest_type; /* TG destination node type */
unsigned char tg_num; /* TG number */
unsigned char cp_cp_session_active;

/* CP-CP session is active */
unsigned char branch_link_type;

/* branch link type */
unsigned char branch_tg; /* TG is a branch TG */
unsigned char reserva[17]; /* reserved */

} LOCAL_TOPOLOGY_INDICATION;

Parameters
opcode

AP_LOCAL_TOPOLOGY_INDICATION

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure that has caused a previous indication
to be lost. If the data_lost flag is set to AP_YES then subsequent data fields
can be set to null. The application should issue a QUERY verb to update
the information that has been lost.

status Specifies the status of the TG. This can be one or more of the following
values ORed together:

AP_TG_OPERATIVE
AP_TG_CP_CP_SESSIONS
AP_TG_QUIESCING
AP_NONE

dest Fully qualified destination node name for the TG. This name is 17 bytes
long and is right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

LOCAL_TOPOLOGY__INDICATION

Chapter 9. Node Operator Facility API Indications 529

dest_type
Type of the node. It is one of the following values:

AP_END_NODE
AP_NETWORK_NODE
AP_VRN

tg_num
Number associated with the TG.

cp_cp_session_active
Specifies whether the local node's contention winner CP-CP session is
active (AP_NO or AP_YES).

branch_link_type
BrNN only. This branch link type of this TG. This is set to one of the
following:

AP_UPLINK
This link is an uplink.

AP_DOWNLINK
The link is a downlink to an EN.

AP_DOWNLINK_TO_BRNN
The TG is a downlink to a BrNN that is showing its EN face.

AP_OTHERLINK
This link is an otherlink.

Other node types: This field is not meaningful and is always set to
AP_BRNN_NOT_SUPPORTED.

branch_tg
NN only. Sepcifies whether the TG is a branch TG.

AP_NO
The TG is not a branch TG.

AP_YES
The TG is a branch TG.

Other node types: This field is not meaningful and is always set to
AP_NO.

LOCAL_TOPOLOGY__INDICATION

530 System Management Programming

LS_INDICATION

This indication is generated when the number of active sessions using the link
changes, or the external state of the link station changes. Link station statistics are
supplied when the link station becomes inactive.

VCB Structure
typedef struct ls_indication
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char deactivated; /* has session been deactivated? */
unsigned char ls_name[8]; /* link station name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char adj_cp_name[17]; /* network qualified Adj CP name */
unsigned char adj_node_type; /* adjacent node type */
unsigned short act_sess_count; /* active session count on link */
unsigned char indication_cause; /* cause of indication */
LS_STATS ls_stats; /* link station statistics */
unsigned char tg_num; /* TG number */
unsigned long sense_data; /* sense data */
unsigned char brnn_link_type; /* branch link type */
unsigned char adj_cp_is_brnn; /* adjacent CP is a BrNN */
unsigned char reserva[17]; /* reserved */

} LS_INDICATION;

typedef struct ls_stats
{

unsigned long in_xid_bytes; /* num of XID bytes received */
unsigned long in_msg_bytes; /* num message bytes received */
unsigned long in_xid_frames; /* num XID frames received */
unsigned long in_msg_frames; /* num message frames received */
unsigned long out_xid_bytes; /* num XID bytes sent */
unsigned long out_msg_bytes; /* num message bytes sent */
unsigned long out_xid_frames; /* number of XID frames sent */
unsigned long out_msg_frames; /* num message frames sent */
unsigned long in_invalid_sna_frames;

/* num invalid frames recvd */
unsigned long in_session_control_frames;

/* number of control */
/* frames recvd */

unsigned long out_session_control_frames;
/* number of control */
/* frames sent */

unsigned long echo_rsps; /* response from adj LS count */
unsigned long current_delay; /* time taken for last */

/* test signal */
unsigned long max_delay; /* max delay by test signal */
unsigned long min_delay; /* min delay by test signal */
unsigned long max_delay_time; /* time since longest delay */
unsigned long good_xids; /* successful XID on LS count */
unsigned long bad_xids; /* unsuccessful XID on LS count */

} LS_STATS;

Parameters
opcode

AP_LS_INDICATION

LS_INDICATION

Chapter 9. Node Operator Facility API Indications 531

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure that has caused a previous indication
to be lost. If the data_lost flag is set to AP_YES then subsequent data fields
can be set to null. The application should issue a QUERY verb to update
the information that has been lost.

deactivated
Set to AP_YES when the LS becomes inactive. Set to AP_NO when the LS
becomes active.

ls_name
Name of link station. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

description
Resource description (as specified on DEFINE_LS). This is a 16-byte string
in a locally displayable character set. All 16 bytes are significant.

adj_cp_name
Fully-qualified, 17-byte long, adjacent control point name. It is composed
of two type-A EBCDIC character strings concatenated by an EBCDIC dot,
and is right-padded with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

adj_node_type
Type of the node. It is one of the following values:

AP_END_NODE
AP_NETWORK_NODE
AP_LEN_NODE
AP_VRN

act_sess_count
Total number of active sessions (both endpoint and intermediate) using the
link.

indication_cause
Cause of the indication. It is one of the following values:

AP_ACTIVATION_STARTED
The link is activating.

LS_INDICATION

532 System Management Programming

AP_ACTIVATING
The link has become active.

AP_DEACTIVATION_STARTED
The link is being deactivated.

AP_DEACTIVATING
The link has become inactive.

AP_SESS_COUNT_CHANGING
The number of active sessions using the link has changed.

AP_CP_NAME_CHANGING
An adjacent node has changed its control point name.

AP_FAILED
The link has failed.

AP_ACTIVATION_FAILED
The link failed to activate.

AP_PENDING_RETRY
A retry timer has been started. When the timer expires, activation
of the link is automatically retried.

AP_DATA_LOST
A previous indication has been lost. Note that link station statistics
are only supplied when the link station goes from active to inactive
(that is, deactivating is set to AP_YES and indication_cause is set
to AP_DEACTIVATING). In all other cases the fields are reserved.

ls_stats.in_xid_bytes
Total number of XID (Exchange Identification) bytes received on this link
station.

ls_stats.in_msg_bytes
Total number of data bytes received on this link station.

ls_stats.in_xid_frames
Total number of XID (Exchange Identification) frames received on this link
station.

ls_stats.in_msg_frames
Total number of data frames received on this link station.

ls_stats.out_xid_bytes
Total number of XID (Exchange Identification) bytes sent on this link
station.

ls_stats.out_msg_bytes
Total number of data bytes sent on this link station.

ls_stats.out_xid_frames
Total number of XID (Exchange Identification) frames sent on this link
station.

ls_stats.out_msg_frames
Total number of data frames sent on this link station.

ls_stats.in_invalid_sna_frames
Total number of SNA incorrect frames received on this link station.

ls_stats.in_session_control_frames
Total number of session control frames received on this link station.

LS_INDICATION

Chapter 9. Node Operator Facility API Indications 533

ls_stats.out_session_control_frames
Total number of session control frames sent on this link station.

ls_stats.echo_rsps
Number of echo responses received from the adjacent node. Echo requests
are sent periodically to gauge the propagation delay to the adjacent node.

ls_stats.current_delay
Time (in milliseconds) that it took for the last test signal to be sent and
returned from this link station to the adjacent link station.

ls_stats.max_delay
Longest time taken (in milliseconds) for a test signal to be sent and
returned from this link station to the adjacent link station.

ls_stats.min_delay
Shortest time taken (in milliseconds) for a test signal to be sent and
returned from this link station to the adjacent link station.

ls_stats.max_delay_time
Time since system startup (in hundredths of a second) when the longest
delay occurred.

ls_stats.good_xids
Total number of successful XID exchanges that have occurred on this link
station since it was started.

ls_stats.bad_xids
Total number of unsuccessful XID exchanges that have occurred on this
link station since it was started.

tg_num
Number associated with the TG.

sense_data
This sense data is set if Personal Communications or Communications
Server detects an XID protocol error. This field is reserved unless
indication_cause is AP_FAILED.

brnn_link_type
BrNN only. This branch link type. It is one of the following:

AP_UPLINK
This link is an uplink.

AP_DOWNLINK
The link is a downlink.

AP_OTHERLINK
This link is an otherlink.

AP_UNKNOWN_LINK_TYPE
This link is an otherlink.

Other node types: This field is not meaningful and is always set to
AP_BRNN_NOT_SUPPORTED.

adj_cp_is_brnn
All node types: Specifies whether the adjacent node is a BrNN.

AP_UNKNOWN
It is not known whether the adjacent node is a BrNN.

AP_NO
The adjacent node is not a BrNN.

LS_INDICATION

534 System Management Programming

AP_YES
The adjacent node is BrNN.

LS_INDICATION

Chapter 9. Node Operator Facility API Indications 535

LU_0_TO_3_INDICATION

This indication is generated when the state of a local LU (Type 0-3) changes.

VCB Structure
typedef struct lu_0_to_3_indication
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char pu_name[8]; /* PU Name */
unsigned char lu_name[8]; /* LU Name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char nau_address; /* NAU address */
unsigned char lu_sscp_sess_active;

/* Is SSCP session active? */
unsigned char appl_conn_active; /* Is application using LU? */
unsigned char plu_sess_active; /* Is PLU-SLU session active? */
unsigned char host_attachment; /* Host attachment */
SESSION_STATS lu_sscp_stats; /* LU-SSCP session statistics */
SESSION_STATS plu_stats; /* PLU-SLU session statistics */
unsigned char sscp_id[16]; /* SSCP ID */

} LU_0_TO_3_INDICATION;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing window size */
unsigned short cur_send_pac_win; /* current send pacing win size */
unsigned short max_rcv_pac_win; /* max receive pacing win size */
unsigned short cur_rcv_pac_win; /* curr receive pacing winsize */
unsigned long send_data_frames; /* number of data frames sent */
unsigned long send_fmd_data_frames;

/* num of FMD data frames sent */
unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num of data frames received */
unsigned long rcv_fmd_data_frames;

/* num FMD data frames received */
unsigned long rcv_data_bytes; /* number of data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */
unsigned char pacing_type; /* type of pacing in use */

} SESSION_STATS;

Parameters
opcode

AP_LU_0_TO_3_INDICATION

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

LU_0_TO_3__INDICATION

536 System Management Programming

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

If data lost is set to AP_YES, this is set to AP_EXTERNALLY_VISIBLE.

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure that has caused a previous indication
to be lost. If the data_lost flag is set to AP_YES then subsequent data fields
can be set to null. The application should issue a QUERY verb to update
the information that has been lost.

pu_name
Name of local PU. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces.

lu_name
Name of the local LU whose state has changed. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

description
Resource description (as specified on DEFINE_LU_0_TO_3). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

nau_address
Network addressable unit address of the LU (which will be in the range
10–2554).

lu_sscp_sess_active
Specifies whether the ACTLU has been successfully processed (AP_YES or
AP_NO).

appl_conn_active
Set if the application is using this LU (AP_YES or AP_NO).

plu_sess_active
Specifies whether the PLU-SLU session has been activated (AP_YES or
AP_NO).

host_attachment
Specifies the LU host attachment type:

AP_DLUR_ATTACHED
LU is attached to host system using DLUR.

AP_DIRECT_ATTACHED
LU is directly attached to host system. Note the LU-SSCP and
PLU-SLU statistics are only valid when the sessions go from active
to inactive. In all other cases the fields are reserved.

LU_0_TO_3__INDICATION

Chapter 9. Node Operator Facility API Indications 537

lu_sscp_stats.rcv_ru_size
This field is always reserved.

lu_sscp_stats.send_ru_size
This field is always reserved.

lu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

lu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

lu_sscp_stats.max_send_pac_win
This field will always be set to zero.

lu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

lu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

lu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

lu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

lu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

lu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

lu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

lu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

lu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

lu_sscp_stats.sidh
Session ID high byte.

lu_sscp_stats.sidl
Session ID low byte.

lu_sscp_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the ACTLU sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the ACTLU sender is the node
containing the secondary link station.

lu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. This field can
be used to correlate this session with the link over which the session flows.

lu_sscp_stats.pacing_type
Receiving pacing type in use on the LU-SSCP session. This will take the
value AP_NONE.

plu_stats.rcv_ru_size
Maximum receive RU size.

LU_0_TO_3__INDICATION

538 System Management Programming

plu_stats.send_ru_size
Maximum send RU size.

plu_stats.max_send_btu_size
Maximum BTU size that can be sent.

plu_stats.max_rcv_btu_size
Maximum BTU size that can be received.

plu_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

plu_stats.cur_send_pac_win
Current size of the send pacing window on this session.

plu_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

plu_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

plu_stats.send_data_frames
Number of normal flow data frames sent.

plu_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

plu_stats.send_data_bytes
Number of normal flow data bytes sent.

plu_stats.rcv_data_frames
Number of normal flow data frames received.

plu_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

plu_stats.rcv_data_bytes
Number of normal flow data bytes received.

plu_stats.sidh
Session ID high byte.

plu_stats.sidl
Session ID low byte.

plu_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the ACTLU sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the ACTLU sender is the node
containing the secondary link station.

plu_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. This field can
be used to correlate this session with the link over which the session flows.

plu_stats.pacing_type
Receiving pacing type in use on the PLU-SLU session. This will take the
value AP_NONE or AP_PACING_FIXED.

sscp_id
This is a 6–byte field containing the SSCP ID received in the ACTPU for
the PU used by this LU.

If lu_sscp_sess_active is not AP_YES, then this field will be zeroed.

LU_0_TO_3__INDICATION

Chapter 9. Node Operator Facility API Indications 539

MODE_INDICATION

This indication is sent when a local LU and partner LU combination start to use a
particular mode, and when the current session count for the local LU, partner LU,
and mode combination changes.

VCB Structure
typedef struct mode_indication
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char removed; /* is entry being removed? */
unsigned char lu_alias[8]; /* LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char mode_name[8]; /* mode name */
unsigned char description[RD_LEN]; /* resource description */
unsigned short curr_sess_count; /* current session count */
unsigned char reserva[20]; /* reserved */

} MODE_INDICATION;

Parameters
opcode

AP_MODE_INDICATION

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure that has caused a previous indication
to be lost. If the data_lost flag is set to AP_YES then subsequent data fields
can be set to null. The application should issue a QUERY verb to update
the information that has been lost.

removed
Specifies whether an entry is being removed (AP_YES or AP_NO). It is set
when entry is being removed rather than added.

lu_alias
Locally defined LU alias. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

plu_alias
Partner LU alias. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant.

fqplu_name
17-byte fully qualified network name for the partner LU. This name is

MODE_INDICATION

540 System Management Programming

composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

mode_name
Mode name, which designates the network properties for a group of
sessions. This is an 8-byte alphanumeric type-A EBCDIC string (starting
with a letter), padded to the right with EBCDIC spaces.

description
Resource description (as specified on DEFINE_MODE). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

curr_sess_count
Current count of sessions for this local LU, partner LU, and mode
combination.

MODE_INDICATION

Chapter 9. Node Operator Facility API Indications 541

NN_TOPOLOGY_NODE_INDICATION

This verb applies only to Communications Server.

This indication is generated when a node entry in a network node's topology
database changes from active to inactive, or from inactive to active.

VCB Structure
typedef struct nn_topology_node_indication
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char deactivated; /* has the node become inactive? */
unsigned char node_name[17]; /* node name */
unsigned char node_type; /* node type */
unsigned char branch_aware; /* node is branch aware */
unsigned char reserva[19]; /* reserved */

} NN_TOPOLOGY_NODE_INDICATION;

Parameters
opcode

AP_NN_TOPOLOGY_NODE_INDICATION

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure that has caused a previous indication
to be lost. If the data_lost flag is set to AP_YES then subsequent data fields
can be set to null. The application should issue a QUERY verb to update
the information that has been lost.

deactivated
Set to AP_YES when the node becomes inactive. Set to AP_NO when the
node becomes active.

node_name
Network qualified node name from network topology database. This name
is 17 bytes long and is right-padded with EBCDIC spaces. It is composed
of two type-A EBCDIC character strings concatenated by an EBCDIC dot.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

node_type
Type of the node. It is one of the following.

NN_TOPOLOGY_NODE__INDICATION

542 System Management Programming

AP_NETWORK_NODE
AP_VRN

branch_aware
Specifies whether the node is branch aware.

AP_NO
The node is not branch aware.

AP_YES
The node is branch aware.

NN_TOPOLOGY_NODE__INDICATION

Chapter 9. Node Operator Facility API Indications 543

NN_TOPOLOGY_TG_INDICATION

This verb applies only to Communications Server.

This indication is generated when a TG entry in a network node's topology
database changes from active to inactive, or from inactive to active.

VCB Structure
typedef struct nn_topology_tg_indication
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char status; /* TG status */
unsigned char owner[17]; /* name of TG owner node */
unsigned char dest[17]; /* name of TG destination node */
unsigned char tg_num; /* TG number */
unsigned char owner_type; /* Type of node that owns the TG */
unsigned char dest_type; /* TG destination node type */
unsigned char cp_cp_session_active;

/* CP-CP session is active */
unsigned char branch_tg; /* TG is a branch TG */
unsigned char reserva[16]; /* reserved */

} NN_TOPOLOGY_TG_INDICATION;

Parameters
opcode

AP_NN_TOPOLOGY_TG_INDICATION

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure that has caused a previous indication
to be lost. If the data_lost flag is set to AP_YES then subsequent data fields
can be set to null. The application should issue a QUERY verb to update
the information that has been lost.

status Specifies the status of the TG. This can be one or more of the following
values ORed together:

AP_TG_OPERATIVE
AP_TG_QUIESCING
AP_TG_CP_CP_SESSIONS
AP_NONE

owner Name of the TG's originating node (always set to the local node name).
This name is 17 bytes long and is right-padded with EBCDIC spaces. It is

NN_TOPOLOGY_TG_INDICATION

544 System Management Programming

composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8 bytes with no
embedded spaces.)

dest Fully qualified destination node name for the TG. This name is 17 bytes
long and is right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

tg_num
Number associated with the TG.

owner_type
Type of the node that owns the TG.

AP_NETWORK_NODE
AP_VRN

dest_type
Type of the node.

AP_NETWORK_NODE
AP_VRN

cp_cp_session_active
Specifies whether the owning node's contention winner CP-CP session is
active (AP_NO or AP_YES).

branch_tg
Sepcifies whether the TG is a branch TG.

AP_NO
The TG is not a branch TG.

AP_YES
The TG is a branch TG.

NN_TOPOLOGY_TG_INDICATION

Chapter 9. Node Operator Facility API Indications 545

PLU_INDICATION

This indication is generated when a local LU first connects to a partner LU. This
will happen when the first ALLOCATE to this PLU is processed or when the first
BIND is received from this PLU. This indication is also generated if the partner
control point name changes.

VCB Structure
typedef struct plu_indication
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* has previous indication */

/* been lost? */
unsigned char removed; /* is entry being removed? */
unsigned char lu_alias[8]; /* LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char partner_cp_name[17]; /* partner CP name */
unsigned char partner_lu_located; /* partner CP name resolved? */
unsigned char reserva[20]; /* reserved */

} PLU_INDICATION;

Parameters
opcode

AP_PLU_INDICATION

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost
Specifies whether one or more indications have been lost (AP_YES or
AP_NO). It is set when an internal component was unable to send a
previous indication. If the data_lost flag is set to AP_YES then subsequent
data fields can be set to null. The application should issue a QUERY verb
to update the information that has been lost.

removed
Specifies whether an entry is being removed (AP_YES or AP_NO). It is set
when entry is being removed rather than added.

lu_alias
Locally defined LU alias. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

plu_alias
Partner LU alias. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant.

PLU_INDICATION

546 System Management Programming

fqplu_name
17-byte fully qualified network name for the partner LU. This name is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

description
Resource description (as specified on DEFINE_PARTNER_LU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

partner_cp_name
17-byte fully qualified network name for the control point of the partner
LU. This name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

partner_lu_located
Specifies whether the partner control point name has been resolved
(AP_YES or AP_NO), and thus whether the partner_cp_name field
contains the control point name.

PLU_INDICATION

Chapter 9. Node Operator Facility API Indications 547

PORT_INDICATION

This indication is generated when the port goes from active to inactive (or vice
versa).

VCB Structure
typedef struct port_indication
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char deactivated; /* has session been deactivated? */
unsigned char port_name[8]; /* link station name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char reserva[20]; /* reserved */

} PORT_INDICATION;

Parameters
opcode

AP_PORT_INDICATION

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure that has caused a previous indication
to be lost. If the data_lost flag is set to AP_YES then subsequent data fields
can be set to null. The application should issue a QUERY verb to update
the information that has been lost.

deactivated
Set to AP_YES when the port becomes inactive. Set to AP_NO when the
port becomes active.

port_name
Name of port. This is an 8-byte string in a locally displayable character set.
All 8 bytes are significant.

PORT_INDICATION

548 System Management Programming

description
Resource description (as specified on DEFINE_PORT). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

PORT_INDICATION

Chapter 9. Node Operator Facility API Indications 549

PU_INDICATION

This indication is generated when the state of a local PU changes.

VCB Structure
typedef struct pu_indication
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char pu_name[8]; /* PU Name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char pu_sscp_sess_active;

/* Is SSCP session active? */
unsigned char host_attachment; /* Host attachment */
unsigned char reserv1[2]; /* reserved */
SESSION_STATS pu_sscp_stats; /* PU-SSCP session statistics */
unsigned char sscp_id[6]; /* SSCP ID */

} PU_INDICATION;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing window size */
unsigned short cur_send_pac_win; /* curr send pacing window size */
unsigned short max_rcv_pac_win; /* max rcv pacing window size */
unsigned short cur_rcv_pac_win; /* curr receive pacing win size */
unsigned long send_data_frames; /* number of data frames sent */
unsigned long send_fmd_data_frames;

/* num FMD data frames sent */
unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num of data frames received */
unsigned long rcv_fmd_data_frames;

/* num FMD data frames received */
unsigned long rcv_data_bytes; /* num data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */
unsigned char pacing_type; /* type of pacing in use */

} SESSION_STATS;

Parameters
opcode

AP_PU_INDICATION

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

If data lost is set to AP_YES, this is set to AP_EXTERNALLY_VISIBLE.

PU_INDICATION

550 System Management Programming

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure that has caused a previous indication
to be lost. If the data_lost flag is set to AP_YES then subsequent data fields
can be set to null. The application should issue a QUERY verb to update
the information that has been lost.

pu_name
Name of the PU (configured on the DEFINE_LS verb). This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

description
Resource description (as specified on DEFINE_LS or
DEFINE_INTERNAL_PU). This is a 16-byte string in a locally displayable
character set. All 16 bytes are significant.

pu_sscp_sess_active
Specifies whether the ACTPU has been successfully processed (AP_YES or
AP_NO).

host_attachment
PU host attachment type:

AP_DLUR_ATTACHED
PU is attached to host system using DLUR.

AP_DIRECT_ATTACHED
PU is directly attached to host system.

Note: PU-SSCP statistics are valid only when the session state has
moved from active to inactive.

In all other cases the following fields are reserved:

pu_sscp_stats.rcv_ru_size
This field is always reserved.

pu_sscp_stats.send_ru_size
This field is always reserved.

pu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

pu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

pu_sscp_stats.max_send_pac_win
This field will always be set to zero.

pu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

pu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

PU_INDICATION

Chapter 9. Node Operator Facility API Indications 551

pu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

pu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

pu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

pu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

pu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

pu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

pu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

pu_sscp_stats.sidh
Session ID high byte.

pu_sscp_stats.sidl
Session ID low byte.

pu_sscp_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the ACTPU sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the ACTPU sender is the node
containing the secondary link station.

pu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. This field can
be used to correlate this session with the link over which the session flows.

pu_stats.pacing_type
Receiving pacing type in use on the PU-SSCP session. This will take the
value AP_NONE.

sscp_id
This is a 6–byte field containing the SSCP ID received in the ACTPU for
this PU.

If plu_sscp_sess_active is not AP_YES, then this field will be zeroed.

PU_INDICATION

552 System Management Programming

REGISTRATION_FAILURE

REGISTRATION_FAILURE indicates that an attempt to register resources with the
network node server failed.

VCB Structure
typedef struct registration_failure
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char resource_name[17]; /* network qualified */

/* resource name */
unsigned short resource_type; /* resource type */
unsigned char description[RD_LEN]; /* resource description */
unsigned char reserv2b[2]; /* reserved */
unsigned long sense_data; /* sense data */
unsigned char reserva[20]; /* reserved */

} REGISTRATION_FAILURE;

Parameters
opcode

AP_REGISTRATION_FAILURE

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure that has caused a previous indication
to be lost. If the data_lost flag is set to AP_YES, then subsequent data
fields may be set to null. The application should issue a QUERY verb to
update the information that has been lost.

resource_name
Name of resource that failed to register. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

resource_type
Resource type. One of the following values:

AP_NNCP_RESOURCE
AP_ENCP_RESOURCE
AP_LU_RESOURCE

description
Resource description (as specified on DEFINE_LOCAL_LU, or
DEFINE_ADJACENT_NODE).

REGISTRATION_FAILURE

Chapter 9. Node Operator Facility API Indications 553

sense_data
Sense data (specified in SNA Formats).

REGISTRATION_FAILURE

554 System Management Programming

RTP_INDICATION

This indication is generated when:
v An RTP connection is connected or disconnected
v The active session count changes
v The connection performs a path-switch

When the connection is disconnected, final RTP statistics will be returned. At other
times the rtp_stats field is reserved.

VCB Structure
typedef struct rtp_indication
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication(s) lost */
unsigned char connection_state; /* the current state of the RTP */

/* connection */
unsigned char rtp_name[8]; /* name of the RTP connection */
unsigned short num_sess_active; /* number of active sessions */
unsigned char indication_cause; /* reason for this indication */
unsigned char reserv3[3]; /* reserved */
RTP_STATISTICS rtp_stats; /* RTP statistics */

} RTP_INDICATION;

typedef struct rtp_statistics
{

unsigned long bytes_sent; /* total num of bytes sent */
unsigned long bytes_received; /* total num bytes received */
unsigned long bytes_resent; /* total num of bytes resent */
unsigned long bytes_discarded; /* total num bytes discarded */
unsigned long packets_sent; /* total num of packets sent */
unsigned long packets_received; /* total num packets received */
unsigned long packets_resent; /* total num of packets resent */
unsigned long packets_discarded; /* total num packets discarded */
unsigned long gaps_detected; /* gaps detected */
unsigned long send_rate; /* current send rate */
unsigned long max_send_rate; /* maximum send rate */
unsigned long min_send_rate; /* minimum send rate */
unsigned long receive_rate; /* current receive rate */
unsigned long max_receive_rate; /* maximum receive rate */
unsigned long min_receive_rate; /* minimum receive rate */
unsigned long burst_size; /* current burst size */
unsigned long up_time; /* total uptime of connection */
unsigned long smooth_rtt; /* smoothed round-trip time */
unsigned long last_rtt; /* last round-trip time */
unsigned long short_req_timer; /* SHORT_REQ timer duration */
unsigned long short_req_timeouts; /* number of SHORT_REQ timeouts */
unsigned long liveness_timeouts; /* number of liveness timeouts */
unsigned long in_invalid_sna_frames;

/* number of invalid SNA frames */
/* received */

unsigned long in_sc_frames; /* number of SC frames received */
unsigned long out_sc_frames; /* number of SC frames sent */
unsigned char reserve[40]; /* reserved */

} RTP_STATISTICS;

RTP_INDICATION

Chapter 9. Node Operator Facility API Indications 555

Parameters
opcode

AP_RTP_INDICATION

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure that has caused a previous indication
to be lost. If the data_lost flag is set to AP_YES then the data contained
might have changed more than once since the previous indication received.

connection_state
The current state of the RTP connection. It is one of the following values:

AP_CONNECTING
Connection setup has started, but is not yet complete.

AP_CONNECTED
The connection is fully active.

AP_DISCONNECTED
The connection is no longer active.

rtp_name
RTP connection name. This name is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

num_sess_active
Number of sessions currently active on the connection.

indication_cause
Cause of the indication. It is one of the following values:

AP_ACTIVATED
The connection has become active.

AP_DEACTIVATED
The connection has become inactive.

AP_PATH_SWITCHED
The connection has successfully completed a path switch.

AP_SESS_COUNT_CHANGING
The number of active sessions using the connection has changed.

AP_SETUP_FAILED
The connection has failed before becoming fully active. Note that
RTP connection statistics are only supplied when the connection
becomes inactive, that is when indication_cause is
AP_DEACTIVATED or AP_SETUP_FAILED. In all other cases the
fields are reserved.

rtp_stats.bytes_sent
Total number of bytes that the local node has sent on this RTP connection.

RTP_INDICATION

556 System Management Programming

rtp_stats.bytes_received
Total number of bytes that the local node has received on this RTP
connection.

rtp_stats.bytes_resent
Total number of bytes resent by the local node owing to loss in transit.

rtp_stats.bytes_discarded
Total number of bytes sent by the other end of the RTP connection that
were discarded as duplicates of data already received.

rtp_stats.packets_sent
Total number of packets that the local node has sent on this RTP
connection.

rtp_stats.packets_received
Total number of packets that the local node has received on this RTP
connection.

rtp_stats.packets_resent
Total number of packets resent by the local node owing to loss in transit.

rtp_stats.packets_discarded
Total number of packets sent by the other end of the RTP connection that
were discarded as duplicates of data already received.

rtp_stats.gaps_detected
Total number of gaps detected by the local node. Each gap corresponds to
one or more lost frames.

rtp_stats.send_rate
Current send rate on this RTP connection (measured in kilobits per
second). This is the maximum allowed send rate as calculated by the ARB
algorithm.

rtp_stats.max_send_rate
Maximum send rate on this RTP connection (measured in kilobits per
second).

rtp_stats.min_send_rate
Minimum send rate on this RTP connection (measured in kilobits per
second).

rtp_stats.receive_rate
Current receive rate on this RTP connection (measured in kilobits per
second). This is the actual receive rate calculated over the last
measurement interval.

rtp_stats.max_receive_rate
Maximum receive rate on this RTP connection (measured in kilobits per
second).

rtp_stats.min_receive_rate
Minimum receive rate on this RTP connection (measured in kilobits per
second).

rtp_stats.burst_size
Current burst-size on the RTP Connection measured in bytes.

rtp_stats.up_time
Total number of seconds the RTP connection has been active.

RTP_INDICATION

Chapter 9. Node Operator Facility API Indications 557

rtp_stats.smooth_rtt
Smoothed measure of round-trip time between the local node and the
partner RTP node (measured in milliseconds).

rtp_stats.last_rtt
The last measured round-trip time between the local node and the partner
RTP node (measured in milliseconds).

rtp_stats.short_req_timer
The current duration used for the SHORT_REQ timer (measured in
milliseconds).

rtp_stats.short_req_timeouts
Total number of times the SHORT_REQ timer has expired for this RTP
connection.

rtp_stats.liveness_timeouts
Total number of times the liveness timer has expired for this RTP
connection. The liveness timer expires when the connection has been idle
for the period specified in rtp_connection_detail.liveness_timer.

rtp_stats.in_invalid_sna_frames
Total number of SNA frames received and discarded as not valid on this
RTP connection.

rtp_stats.in_sc_frames
Total number of session control frames received on this RTP connection.

rtp_stats.out_sc_frames
Total number of session control frames sent on this RTP connection.

RTP_INDICATION

558 System Management Programming

SESSION_FAILURE_INDICATION

This indication is generated whenever a session is deactivated. This indication is
guaranteed; that is, generated without fail.

VCB Structure
typedef struct session_failure_indication
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char reserv3[3]; /* reserved */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_alias[8]; /* LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char mode_name[8]; /* mode name */
unsigned char session_id[8]; /* session ID */
unsigned long sense_data; /* sense_data */
} SESSION_FAILURE_INDICATION;

Parameters
opcode

AP_SESSION_FAILURE_INDICATION

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

lu_name
LU name. This name is an 8-byte type-A EBCDIC character string.

lu_alias
Locally defined LU alias. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

plu_alias
Partner LU alias. This is an 8-byte string in a locally displayable character
set.

fqplu_name
17-byte fully qualified network name for the partner LU. This name is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

mode_name
Mode name, which designates the network properties for a group of
sessions. This is an 8-byte alphanumeric type-A EBCDIC string (starting
with a letter), padded to the right with EBCDIC spaces.

SESSION_FAILURE_INDICATION

Chapter 9. Node Operator Facility API Indications 559

session_id
8-byte identifier of the session.

sense_data
The sense data detailing the cause of the session deactivation.

SESSION_FAILURE_INDICATION

560 System Management Programming

SESSION_INDICATION

This indication is generated when a session is activated or deactivated. When a
session is deactivated, final session statistics will be returned. When a session is
activated, the sess_stats field is reserved.

VCB Structure
typedef struct session_indication
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char deactivated; /* has session been deactivated? */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_alias[8]; /* LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char mode_name[8]; /* mode name */
unsigned char session_id[8]; /* session ID */
FQPCID fqpcid; /* fully qualified procedure */
unsigned long sense_data; /* sense_data */
unsigned char duplex_support; /* full-duplex support */
SESSION_STATS sess_stats; /* session statistics */
unsigned char sscp_id[6]; /* SSCP ID of host */
unsigned char plu_slu_comp_lvl; /* PLU to SLU compression level */
unsigned char slu_plu_comp_lvl; /* SLU to PLU compressionlevel */

/* correlator ID */
unsigned char reserva[12]; /* reserved */

} SESSION_INDICATION;

typedef struct fqpcid
{

unsigned char pcid[8]; /* procedure correlator */
/* identifier */

unsigned char fqcp_name[17]; /* originator’s network */
/* qualified CP name */

unsigned char reserve3[3]; /* reserved */
} FQPCID;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing window size */
unsigned short cur_send_pac_win; /* curr send pacing window size */
unsigned short max_rcv_pac_win; /* max receive pacing win size */
unsigned short cur_rcv_pac_win; /* curr receive pacing win size */
unsigned long send_data_frames; /* number of data frames sent */
unsigned long send_fmd_data_frames;

/* num FMD data frames sent */
unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num data frames received */
unsigned long rcv_fmd_data_frames;

/* num FMD data frames received */
unsigned long rcv_data_bytes; /* num data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */

SESSION_INDICATION

Chapter 9. Node Operator Facility API Indications 561

unsigned char ls_name[8]; /* Link station name */
unsigned char pacing_type; /* type of pacing in use */
unsigned char reserve; /* reserved */

} SESSION_STATS;

Parameters
opcode

AP_SESSION_INDICATION

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost
Specifies whether data has been lost (AP_YES or AP_NO). It is set when an
internal component detects a failure that has caused a previous indication
to be lost. If the data_lost flag is set to AP_YES then subsequent data fields
can be set to null. The application should issue a QUERY verb to update
the information that has been lost.

deactivated
Set to AP_NO when a session is activated. Set to AP_YES when a session is
deactivated.

lu_name
LU name. This name is an 8-byte type-A EBCDIC character string.

lu_alias
Locally defined LU alias. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

plu_alias
Partner LU alias. This is an 8-byte string in a locally displayable character
set.

fqplu_name
17-byte fully qualified network name for the partner LU. This name is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

mode_name
Mode name, which designates the network properties for a group of
sessions. This is an 8-byte alphanumeric type-A EBCDIC string (starting
with a letter), padded to the right with EBCDIC spaces.

session_id
8-byte identifier of the session.

fqpcid.pcid
Procedure correlator ID. This is an 8-byte hexadecimal string.

fqpcid.fqcp_name
Fully qualified control point name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC

SESSION_INDICATION

562 System Management Programming

character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

sense_data
The sense data sent or received on the UNBIND request. This field is
reserved if deactivated is AP_NO.

duplex_support
Returns the conversation duplex support as negotiated on the BIND. This
is one of the following values:

AP_HALF_DUPLEX
Only half-duplex conversations are supported.

AP_FULL_DUPLEX
Full-duplex as well as half-duplex conversations are supported.

AP_UNKNOWN
The conversation duplex support is not known because there are
no active sessions to the partner LU.

sess_stats.rcv_ru_size
Maximum receive RU size.

sess_stats.send_ru_size
Maximum send RU size.

sess_stats.max_send_btu_size
Maximum BTU size that can be sent.

sess_stats.max_rcv_btu_size
Maximum BTU size that can be received.

sess_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

sess_stats.cur_send_pac_win
Current size of the send pacing window on this session.

sess_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

sess_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

sess_stats.send_data_frames
Number of normal flow data frames sent.

sess_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

sess_stats.send_data_bytes
Number of normal flow data bytes sent.

sess_stats.rcv_data_frames
Number of normal flow data frames received.

sess_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

sess_stats.rcv_data_bytes
Number of normal flow data bytes received.

sess_stats.sidh
Session ID high byte.

SESSION_INDICATION

Chapter 9. Node Operator Facility API Indications 563

sess_stats.sidl
Session ID low byte.

sess_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the BIND sender is the node
containing the secondary link station.

sess_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. This field can
be used to correlate the session statistics with the link over which session
traffic flows.

sess_stats.pacing_type
Receive pacing type in use on this session. This can take the values
AP_NONE, AP_PACING_ADAPTVE or AP_PACING_FIXED.

sscp_id
For dependent LU sessions, this field contains the SSCP ID received in the
ACTPU from the host for the PU that the local LU is mapped to. For
independent LU sessions, this field will be set to all binary zeros.

plu_slu_comp_lvl
Specifies the compression level for data sent from the PLU to the SLU.

AP_NONE
Compression is not used.

AP_RLE_COMPRESSION
RLE compression is used.

AP_LZ9_COMPRESSION
This node can support LZ9 compression.

AP_LZ10_COMPRESSION
The node can support LZ10 compression.

AP_LZ12_COMPRESSION
The node can support LZ12 compression.

slu_plu_comp_lvl
Specifies the compression level for data sent from the SLU to the PLU.

AP_NONE
Compression is not used.

AP_RLE_COMPRESSION
RLE compression is used.

AP_LZ9_COMPRESSION
This node can support LZ9 compression.

AP_LZ10_COMPRESSION
The node can support LZ10 compression.

AP_LZ12_COMPRESSION
The node can support LZ12 compression.

SESSION_INDICATION

564 System Management Programming

UNREGISTER_INDICATION_SINK

UNREGISTER_INDICATION_SINK removes the identifications of processes and
queues that are receiving unsolicited indications.

If the specified combination of proc_id, queue_id, and indication_opcode has only
been registered once, the entry is removed. If the specified combination has been
registered more than once, the entry that matches orig_verb_datain the verb_signal
header of UNREGISTER_INDICATION_SINK is removed.

VCB Structure
typedef struct unregister_indication_sink
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned PROC_ID

proc_id; /* process identifier of sink */
unsigned QUEUE_ID

queue_id; /* queue identifier where */
/* indications will be sent */

unsigned short indication_opcode; /* opcode of indication to */
/* be sunk */

} UNREGISTER_INDICATION_SINK;

Parameters
opcode

AP_UNREGISTER_INDICATION_SINK

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

proc_id
Process ID of process where indication are being sent.

queue_id
Queue ID of queue where indications are being sent.

indication_opcode
Opcode of indications that are being returned.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_OP_CODE

UNREGISTER_INDICATION_SINK

Chapter 9. Node Operator Facility API Indications 565

AP_DYNAMIC_LOAD_ALREADY_REGD

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_LU_NAME

If the verb does not execute because one or more of the relevant START_NODE
parameters were not set, the Program returns the following parameter:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because a STOP_NODE verb has been issued, the
Program returns the following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

UNREGISTER_INDICATION_SINK

566 System Management Programming

Chapter 10. Security Verbs

This chapter describes verbs used to define and delete security passwords.

© Copyright IBM Corp. 1989, 2016 567

CONV_SECURITY_BYPASS

CONV_SECURITY_BYPASS allows an application to control whether the Program
will enforce conversation-level security for a local LU. Once security has been
bypassed, the Program will not do any authentication or authorization for the
conversations on the local LU.

VCB Structure
typedef struct conv_security_bypass
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned char bypass_security; /* should security be */

/* bypassed? */
unsigned char reserv3[3]; /* reserved */

} CONV_SECURITY_BYPASS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_CONV_SECURITY_BYPASS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

lu_name
LU name of the local LU. This name is an 8-byte type-A EBCDIC character
string. If this field is set to all zeros, the lu_alias field will be used for
determining the local LU.

lu_alias
Local LU alias. This is an 8-byte string in a locally displayable character
set. This field is only significant if the lu_name field is set to all zeros, in
which case all 8 bytes are significant and must be set. If both the lu_alias
and the lu_name are set to all zeros, the verb is forwarded to the LU
associated with the control point (the default LU).

bypass_security
Specifies whether security should be bypassed (AP_YES or AP_NO).

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

CONV_SECURITY_BYPASS

568 System Management Programming

secondary_rc
AP_INVALID_LU_NAME

AP_INVALID_LU_ALIAS
AP_INVALID_BYPASS_SECURITY

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

CONV_SECURITY_BYPASS

Chapter 10. Security Verbs 569

CREATE_PASSWORD_SUBSTITUTE

CREATE_PASSWORD_SUBSTITUTE returns the password substitute, password
verifier, and the send sequence number used to generate the substitute and verifier
for the specified session.

VCB Structure
typedef struct create_password_substitute
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_alias[8]; /* LU alias */
unsigned char conv_group_id[8]; /* partner LU alias */
unsigned char user_id[10]; /* user ID */
unsigned char pw[10]; /* clear text password */
unsigned char seq_no[8]; /* sequence number */
unsigned char pw_sub[10]; /* password substitute */
unsigned char pw_verifier[10]; /* password verifier */

} CREATE_PASSWORD_SUBSTITUTE;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_CREATE_PASSWORD_SUBSTITUTE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

lu_alias
Locally defined LU alias. This is an 8-byte string in a locally displayable
character set.

conv_group_id
Conversation group identifier for the session used by the LU.

user_id
The user ID.

pw Clear text password to be used in the encryption algorithm.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

seq_no
Send sequence number used in the encryption algorithm. Note, if the verb
is successful, the internal value of the send sequence number for this
session is incremented. The value returned is the value after incrementing.

pw_sub
Password substitute generated by the encryption algorithm.

pw_verifier
Password verifier generated by the encryption algorithm.

CREATE_PASSWORD_SUBSTITUTE

570 System Management Programming

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_LU_ALIAS

AP_DEACT_CG_INVALID_CGID

If the verb does not execute because the session does not support password
substitution, the Program returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PW_SUB_NOT_SUPP_ON_SESS

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

CREATE_PASSWORD_SUBSTITUTE

Chapter 10. Security Verbs 571

DEFINE_LU_LU_PASSWORD

DEFINE_LU_LU_PASSWORD provides a password that is used for session-level
verification between a local LU and a partner LU.

VCB Structure
typedef struct define_lu_lu_password
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char verification_protocol

/* LULU verification protocol */
unsigned char description[RD_LEN];

/* resource description */
unsigned char reserv3[8]; /* reserved */
unsigned char password[8]; /* password */

} DEFINE_LU_LU_PASSWORD;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_LU_LU_PASSWORD

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

lu_name
LU name of the local LU. This name is an 8-byte type-A EBCDIC character
string. If this field is set to all zeros, the lu_alias field will be used for
determining the local LU.

lu_alias
Local LU alias. This is an 8-byte string in a locally displayable character
set. This field is only significant if the lu_name field is set to all zeros, in
which case all 8 bytes are significant and must be set. If both the lu_alias
and the lu_name are set to all zeros, the verb is forwarded to the LU
associated with the control point (the default LU).

fqplu_name
Fully qualified partner LU name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

verification_protocol
LU-LU verification protocol for use with this partner LU:

AP_BASIC_PROTOCOL
Only the basic protocol will be used with this partner LU.

AP_ENHANCED_PROTOCOL
Only the enhanced protocol will be used with this partner LU.

DEFINE_LU_LU_PASSWORD

572 System Management Programming

AP_EITHER_PROTOCOL
Either the basic or the enhanced protocol can be used with this
partner LU, subject to the following details:
v The default setting of this field is AP_EITHER_PROTOCOL.
v The value AP_EITHER_PROTOCOL is provided to ease

migration to the use of the enhanced protocol. The local LU
accepts the basic protocol until the partner LU once agrees to
run the enhanced protocol. From then on, the basic protocol is
not accepted unless a subsequent DEFINE_LU_LU_PASSWORD
is issued to allow it.

description
Resource description.

password
Password. This is an 8-byte hexadecimal string. Note that the least
significant bit of each byte in the password is not used in session-level
verification.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PLU_NAME

AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEFINE_LU_LU_PASSWORD

Chapter 10. Security Verbs 573

DEFINE_USERID_PASSWORD

DEFINE_USERID_PASSWORD defines a password associated with a user ID.

VCB Structure
define_userid_password
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned short define_type; /* what the define type is */
unsigned char user_id[10]; /* user id */
unsigned char reserv3[8]; /* reserved */
USERID_PASSWORD_CHARS password_chars;

/* password characteristics */
} DEFINE_USERID_PASSWORD;

typedef struct userid_password_chars
{

unsigned char description[RD_LEN];
/* resource description */

unsigned short profile_count; /* number of profiles */
unsigned short reserv1; /* reserved */
unsigned char password[10]; /* password */
unsigned char profiles[10][10]; /* profiles */

} USERID_PASSWORD_CHARS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_USERID_PASSWORD

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

define_type
Specifies the type of user password being defined:

AP_ADD_USER
Specifies a new user, or change of password for an existing user.

AP_ADD_PROFILES
Specifies an addition to the profiles for an existing user.

user_id
User identifier. This is a 10-byte type-AE EBCDIC character string, padded
to the right with EBCDIC spaces.

password_chars.description
Resource description. This is a 16-byte string in a locally displayable
character set. All 16 bytes are significant.

password_chars.profile_count
Number of profiles.

password_chars.password
User's password. This is a 10-byte type-AE EBCDIC character string,
padded to the right with EBCDIC spaces.

DEFINE_USERID_PASSWORD

574 System Management Programming

password_chars.profiles
Profiles associated with user. Each of these is a 10-byte type-AE EBCDIC
character string, padded to the right with EBCDIC spaces.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_NO_PROFILES

AP_UNKNOWN_USER
AP_INVALID_UPDATE_TYPE
AP_TOO_MANY_PROFILES
AP_INVALID_USERID
AP_INVALID_PROFILE
AP_INVALID_PASSWORD

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEFINE_USERID_PASSWORD

Chapter 10. Security Verbs 575

DELETE_LU_LU_PASSWORD

DELETE_LU_LU_PASSWORD deletes an LU-LU password.

VCB Structure
typedef struct delete_lu_lu_password
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char reserv3; /* reserved */

} DELETE_LU_LU_PASSWORD;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_LU_LU_PASSWORD

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

lu_name
LU name of the local LU. This name is an 8-byte type-A EBCDIC character
string. If this field is set to all zeros, the lu_alias field will be used for
determining the local LU.

lu_alias
Local LU alias. This is an 8-byte string in a locally displayable character
set. This field is only significant if the lu_name field is set to all zeros, in
which case all 8 bytes are significant and must be set. If both the lu_alias
and the lu_name are set to all zeros, the verb is forwarded to the LU
associated with the control point (the default LU).

fqplu_name
Fully qualified partner LU name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

DELETE_LU_LU_PASSWORD

576 System Management Programming

secondary_rc
AP_INVALID_PLU_NAME

AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_LU_LU_PASSWORD

Chapter 10. Security Verbs 577

DELETE_USERID_PASSWORD

DELETE_USERID_PASSWORD deletes a password associated with a user ID.

VCB Structure
typedef struct delete_userid_password
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned short delete_type; /* type of delete */
unsigned char user_id[10]; /* user id */
USERID_PASSWORD_CHARS password_chars;

/* password characteristics */

} DELETE_USERID_PASSWORD;

typedef struct userid_password_chars
{

unsigned char description[RD_LEN]; /* resource description */
unsigned short profile_count; /* number of profiles */
unsigned short reserv1; /* reserved */
unsigned char password[10]; /* password */
unsigned char profiles[10][10]; /* profiles */

} USERID_PASSWORD_CHARS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_USERID_PASSWORD

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

delete_type
Specifies the type of delete:

AP_REMOVE_USER
Deletes the user password, and all associated profiles.

AP_REMOVE_PROFILES
Deletes the specified profiles.

user_id
User identifier. This is a 10-byte type-AE EBCDIC character string, padded
to the right with EBCDIC spaces.

password_chars.description
This field is ignored when processing this verb.

password_chars.profile_count
Number of profiles.

password_chars.password
This field is ignored when processing this verb.

password_chars.profiles
Profiles associated with user. Each of these is a 10-byte type-AE EBCDIC
character string, padded to the right with EBCDIC spaces.

DELETE_USERID_PASSWORD

578 System Management Programming

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_NO_PROFILES

AP_UNKNOWN_USER
AP_INVALID_UPDATE_TYPE

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_USERID_PASSWORD

Chapter 10. Security Verbs 579

SIGN_OFF

SIGN_OFF instructs an LU to remove entries from signed on lists. Currently, only
entries from the signed-on list are removed. The verb can specify that all entries
are removed, or that only those in the appended sign_off_data structures.

VCB Structure
typedef struct query_sign_off
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_alias[8]; /* LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char list; /* signed on to/from list */
unsigned char all_in_list; /* sign off all entries in list */
unsigned char immediate; /* remove entries immediately */
unsigned char num_entries; /* number of entries */

} QUERY_SIGN_OFF;

typedef struct sign_off_data
{

unsigned char user_id[10]; /* user ID */
unsigned char all_profiles; /* all profiles for this user */
unsigned char profile[10]; /* specific profile */

} SIGN_OFF_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_SIGN_OFF

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

lu_name
LU name. This name is an 8-byte type-A EBCDIC character string. If this
field is set to all zeros, the lu_alias field will be used for determining the
index.

lu_alias
Locally defined LU alias. This is an 8-byte string in a locally displayable
character set. This field is only significant if the lu_name field is set to all
zeros, in which case all 8 bytes are significant and must be set. If both the
lu_name and the lu_alias fields are set to all zeros, the LU associated with
the control point (the default LU) is used.

plu_alias
Partner LU alias. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant and must be set. If this field is set to all
zeros, the fqplu_name field will be used for determining the index.

fqplu_name
17-byte fully qualified network name for the partner LU. This name is
composed of two type-A EBCDIC character strings concatenated by an

SIGN_OFF

580 System Management Programming

EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

list Signed–on list type. This must be set to AP_SIGNED_ON_TO_LIST.

AP_SIGNED_ON_TO_LIST
The list of users who are signed on to the remote LU from the local
LU. Note, the remote LU is not informed when entries are
removed from this list. This is the only value currently supported.

all_in_list
If set to AP_YES, all users in the list specified by list are signed off.

immediate
If set to AP_YES, users are removed immediately. If set to AP_NO, users
are removed once the remote LU has confirmed that the sign-off completed
successfully. This field is reserved if list is AP_SIGNED_ON_TO_LIST.

num_entries
Number of entries actually returned.

If all_in_list is AP_NO, a list of users must be appended to the SIGN_OFF VCB, as
a series of SIGN_OFF_DATA structures. The parameters in the SIGN_OFF_DATA
structure are as follows:

sign_off_data.user_id
The user ID.

sign_off_data.all_profiles
Total number of entries that could have been returned. This can be higher
than num_entries.

sign_off_data.profile
This is a 10-byte alphanumeric EBCDIC string. Note, the Program currently
supports only the blank profile (10 eBCDIC spaces). This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_ALIAS

AP_INVALID_LU_NAME
AP_INVALID_PLU_NAME
AP_INVALID_USERID
AP_INVALID_PROFILE
AP_INVALID_LIST
AP_INVALID_LIST_OPTION

Any SIGN_OFF_DATA user_id/profile combinations that are not successfully
processed by the Program, are returned to the application appended to the VCB,

SIGN_OFF

Chapter 10. Security Verbs 581

and the returned value of num_entries is the number of SIGN_OFF_DATA entries
(which could not be processed) returned by the Program.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_ALIAS

AP_INVALID_LU_NAME
AP_INVALID_LU_NAME
AP_INVALID_LIST

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node stopped, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

SIGN_OFF

582 System Management Programming

Chapter 11. APING and CPI-C Verbs

This chapter describes verbs used to ping another node and verbs used to define,
delete, and query CPI-C side information.

© Copyright IBM Corp. 1989, 2016 583

APING

APING allows a management application to ping a remote LU in the network. A
verification data string (of specified length) can be appended to the end of the VCB
and returned when the partner_ver_len field is set to a value greater than zero.

Personal Communications or Communications Server APING is implemented as an
internal service transaction program, which uses the Personal Communications or
Communications Server APPC API (described in Personal Communications
Client/Server Communications Programming).

VCB Structure
typedef struct aping
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned long sense_data; /* sense data */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char mode_name[8]; /* mode name */
unsigned char tp_name[64]; /* destination TP name */
unsigned char security; /* security level */
unsigned char reserv3a[3]; /* reserved */
unsigned char pwd[10]; /* password */
unsigned char user_id[10]; /* user ID */
unsigned short dlen; /* length of data to send */
unsigned short consec; /* number of consecutive sends */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char echo; /* data echo flag */
unsigned short iterations; /* number of iterations */
unsigned long alloc_time; /* time taken for ALLOCATE */
unsigned long min_time; /* min send/receive time */
unsigned long avg_time; /* average send/receive time */
unsigned long max_time; /* max send/receive time */
unsigned short partner_ver_len; /* size of string to receive */

} APING;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_APING

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

lu_name
LU name of the local LU from which the APING verb is sent. This name is
an 8-byte type-A EBCDIC character string. If this field is set to all zeros,
the lu_alias field will be used for determining the local LU.

lu_alias
Alias for the local LU from which the APING verb is sent. This is an 8-byte
string in a locally displayable character set. This field is only significant if
the lu_name field is set to all zeros, in which case all 8 bytes are significant

APING

584 System Management Programming

and must be set. If both the lu_name and the lu_alias are set to binary
zeros then the default (control point) LU is used.

plu_alias
Alias by which the partner LU is known to the local transaction program.
This is an 8-byte string in a locally displayable character set. All 8 bytes are
significant and must be set. This name must match the name of a partner
LU established during configuration. If this parameter is set to binary
zeros, the fqplu_name parameter is used instead.

mode_name
Name of the mode to be used. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with EBCDIC
spaces.

tp_name
Name of the invoked transaction program. This is a 64-byte string. The
Node Operator Facility does not check the character set of this string. The
value of tp_name must match that configured on the remote LU. The
string is usually set to APINGD in EBCDIC padded to the right with
EBCDIC spaces.

security
Specifies the information the partner LU requires in order to validate
access to the invoked transaction program:

AP_NONE
AP_PGM
AP_SAME
AP_PGM_STRONG

pwd Password associated with user_id. This is a 10-byte type-AE EBCDIC
character string, padded to the right with EBCDIC spaces. Only needed if
security is set to AP_PGM or AP_PGM_STRONG.

user_id
User ID required to access the partner transaction program. This is a
10-byte type-AE EBCDIC character string, padded to the right with
EBCDIC spaces. Needed if security is set to AP_PGM, AP_PGM_STRONG
or AP_SAME.

dlen Length of data to be sent by APING transaction program. APING sends a
string of zeros, of length dlen.

consec Number of consecutive sends performed during each iteration. APING
issues this number of MC_SEND_DATA verbs, each consisting of dlen
bytes of data. If the echo parameter is set to AP_YES, APING marks the
last MC_SEND_DATA as AP_SEND_DATA_P_TO_R_FLUSH (Prepare to
Receive Flush) and awaits a response containing data from the partner
APINGD transaction program (by issuing a MC_RECEIVE_AND_WAIT). If
the echo parameter is set to AP_NO, APING flushes the data and awaits a
confirm (by marking the last MC_SEND_DATA as
AP_SEND_DATA_CONFIRM). In either case, the sequence described here
corresponds to an SNA chain.

fqplu_name
This is a 17-byte fully qualified network name for the partner LU. This
name is composed of two type-A EBCDIC character strings concatenated
by an EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name

APING

Chapter 11. APING and CPI-C Verbs 585

can have a maximum length of 8 bytes with no embedded spaces.) This
field is only significant if the plu_alias field is set to all zeros.

echo Specifies whether the APING transaction program expects a response when
it has completed sending the required amount of data:

AP_YES
AP_NO

iterations
Number of iterations of consecutive sequences (defined by the consec
parameter) issued by APING. In SNA terms, this parameter defines the
number of chains that will be sent.

partner_ver_len
Maximum length of the partner transaction program verification data
string that can be received by the management application.

Returned Parameters
If the verb executes successfully, APING returns the following parameters:

primary_rc
AP_OK

sense_data
This will be zero if the verb has returned successfully.

alloc_time
Time required (in milliseconds) for the MC_ALLOCATE to the remote
transaction program to complete.

min_time
Minimum time (in milliseconds) required for a data-sending iteration. This
parameter includes the time required for the partner to respond (either by
sending data or issuing a confirm, depending on the setting of the echo
parameter).

avg_time
Average time (in milliseconds) required for a data-sending iteration. This
parameter includes the time required for the partner to respond (either by
sending data or issuing a confirm, depending on the setting of the echo
parameter).

max_time
Maximum time (in milliseconds) required for a data-sending iteration. This
parameter includes the time required for the partner to respond (either by
sending data or issuing a confirm, depending on the setting of the echo
parameter).

partner_ver_len
Length of verification string returned by the partner transaction program.
The string itself is appended to the end of the VCB.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_NAME

APING

586 System Management Programming

AP_INVALID_LU_ALIAS

APING uses the MC_ALLOCATE, MC_SEND_DATA, MC_RECEIVE_AND_WAIT,
MC_CONFIRM, and MC_DEALLOCATE verbs provided by the Personal
Communications or Communications Server APPC API. The parameters returned
by these verbs in the case of unsuccessful execution are documented in Personal
Communications Client/Server Communications Programming.

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

APING

Chapter 11. APING and CPI-C Verbs 587

CPI-C Verbs
This section describes the verbs used to define, delete, and query CPI-C side
information.

CPI-C Verbs

588 System Management Programming

DEFINE_CPIC_SIDE_INFO

This verb adds or replaces a side information entry in memory. A CPI-C side
information entry associates a set of conversation characteristics with a symbolic
destination name. If there is already a side information entry in memory with the
same symbolic destination name as the one supplied with this verb, it is
overwritten with the data supplied to this call. Refer to CPI-C Reference for more
information about the CPI-C support provided by Personal Communications or
Communications Server.

VCB Structure
typedef struct define_cpic_side_info
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char reserv2a[8]; /* reserved */
unsigned char sym_dest_name[8]; /* Symbolic destination name */
CPIC_SIDE_INFO_DEF_DATA def_data; /* defined data */

} DEFINE_CPIC_SIDE_INFO;

typedef struct cpic_side_info_def_data
{

unsigned char description[RD_LEN];
/* resource description */

CPIC_SIDE_INFO side_info; /* CPIC side info */
unsigned char user_data[32]; /* User defined data */

} CPIC_SIDE_INFO_DEF_DATA;

typedef struct cpic_side_info
{

unsigned char partner_lu_name[17];
/* Fully qualified partner */
/* LU name */

unsigned char reserved[3]; /* Reserved */
unsigned long tp_name_type; /* TP name type */
unsigned char tp_name[64]; /* TP name */
unsigned char mode_name[8]; /* Mode name */
unsigned long conversation_security_type;

/* Conversation security type */
unsigned char security_user_id[CPIC_SECURITY_INFO_LEN];

/* User ID */
unsigned char security_password[CPIC_SECURITY_INFO_LEN];

/* Password */
} CPIC_SIDE_INFO;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_CPIC_SIDE_INFO

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

sym_dest_name
Symbolic destination name that identifies the side information entry. This
is up to 8 bytes long, padded with spaces, in the locally displayable
character set. The allowed characters are the uppercase letters (A to Z) and
the digits 0–9.

DEFINE_CPIC_SIDE_INFO

Chapter 11. APING and CPI-C Verbs 589

def_data.description
Resource description (returned on QUERY_CPIC_SIDE_INFO). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

def_data.side_info.partner_lu_name
Fully qualified name of the partner LU. This name is 17 bytes long and is
right-padded with spaces, in the locally displayable character set. It is
composed of two character strings concatenated by a dot. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

def_data.side_info.tp_name_type
Transaction program name type. This field is set to one of the following
values:

XC_APPLICATION_TP
Specifies that the transaction program name supplied is not a
service transaction program. All characters specified in the
transaction program name must be valid characters in the locally
displayable character set.

XC_SNA_SERVICE_TP
Specifies that the transaction program name supplied is that of a
service transaction program. All characters, except the first,
specified in the transaction program must be valid characters in the
locally displayable character set. The first character must be a
hexadecimal digit in the range X'01' to X'3F', excluding X'0E' and
X'0F'.

def_data.side_info.tp_name
Transaction program name, a 64-byte character string in the locally
displayable character set, right-padded with spaces.

def_data.side_info.mode_name
Mode name, an 8-byte character string in the locally displayable character
set, padded to the right with spaces.

def_data.side_info.conversation_security_type
Conversation security type. This field is set to one of the following values:

XC_SECURITY_NONE
XC_SECURITY_SAME
XC_SECURITY_PROGRAM
XC_SECURITY_PROGRAM_STRONG.

def_data.side_info.security_user_id
User ID. Personal Communications or Communications Server will use this
field for enforcing conversation-level security.

def_data.side_info.security_password
Password. Personal Communications or Communications Server will use
this field for enforcing conversation-level security.

def_data.user_data
User data. This data is returned on QUERY_CPIC_SIDE_INFO but not
used or interpreted by Communications Server. Personal Communications
may use it to store the LOCAL_LU_ALIAS name specified in the Define
CPI-C Side Information configuration definition.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

DEFINE_CPIC_SIDE_INFO

590 System Management Programming

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_SYM_DEST_NAME

AP_INVALID_LENGTH

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DEFINE_CPIC_SIDE_INFO

Chapter 11. APING and CPI-C Verbs 591

DELETE_CPIC_SIDE_INFO

This verb deletes a CPI-C side information entry. Refer to CPI-C Reference for more
information about the CPI-C support provided by Personal Communications or
Communications Server.

VCB Structure
typedef struct delete_cpic_side_info
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char reserv2a[8]; /* reserved */
unsigned char sym_dest_name[8]; /* Symbolic destination name */

} DELETE_CPIC_SIDE_INFO;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_CPIC_SIDE_INFO

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

sym_dest_name
Symbolic destination name that identifies the side information entry. This
is up to 8 bytes long, padded with spaces, in the locally displayable
character set. The allowed characters are the uppercase letters (A to Z) and
the digits 0–9.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_SYM_DEST_NAME

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

DELETE_CPIC_SIDE_INFO

592 System Management Programming

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DELETE_CPIC_SIDE_INFO

Chapter 11. APING and CPI-C Verbs 593

QUERY_CPIC_SIDE_INFO

This verb returns the side information entry for a given symbolic destination name.
The information is returned as a list. To obtain a specific side information entry, or
a specific chunk of entries, the sym_dest_name field should be set. Otherwise this
field should be set to all zeros.

VCB Structure
typedef struct query_cpic_side_info
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char sym_dest_name[8]; /* Symbolic destination name */

} QUERY_CPIC_SIDE_INFO;

typedef struct cpic_side_info_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char sym_dest_name[8]; /* Symbolic destination name */
unsigned char reserv1[2]; /* reserved */
CPIC_SIDE_INFO_DEF_DATA def_data;

} CPIC_SIDE_INFO_DATA;

typedef struct cpic_side_info
{

unsigned char partner_lu_name[17];
/* Fully qualified partner */
/* LU name */

unsigned char reserved[3]; /* Reserved */
unsigned long tp_name_type; /* TP name type */
unsigned char tp_name[64]; /* TP name */
unsigned char mode_name[8]; /* Mode name */
unsigned long conversation_security_type;

/* Conversation security type */
unsigned char security_user_id[CPIC_SECURITY_INFO_LEN];

/* User ID */
unsigned char security_password[CPIC_SECURITY_INFO_LEN];

/* Password */
} CPIC_SIDE_INFO;

typedef struct cpic_side_info_def_data
{

unsigned char description[RD_LEN];
/* resource description */

CPIC_SIDE_INFO side_info; /* CPIC side info */
unsigned char user_data[32]; /* User defined data */

} CPIC_SIDE_INFO_DEF_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_QUERY_CPIC_SIDE_INFO

QUERY_CPIC_SIDE_INFO

594 System Management Programming

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information. The
sym_dest_name specified (see below) represents an index value that is
used to specify the starting point of the actual information to be returned:

AP_FIRST_IN_LIST
The index value is ignored and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

sym_dest_name
Symbolic destination name that identifies the side information entry. This
is up to 8 bytes long, padded with spaces, in the locally displayable
character set. The allowed characters are the uppercase letters (A to Z) and
the digits 0-9.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This may be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This may be higher
than num_entries.

cpic_side_info_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

cpic_side_info_data.sym_dest_name
Symbolic destination name for the returned side information entry.

QUERY_CPIC_SIDE_INFO

Chapter 11. APING and CPI-C Verbs 595

cpic_side_info_data.def_data
Defined CPI-C side information as supplied on DEFINE_CPIC_SIDE_INFO
verb.

Note: CPIC calls may change the side information returned on this verb
after the DEFINE_CPIC_SIDE_INFO has been processed by Personal
Communications or Communications Server.

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_SYM_DEST_NAME

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_CPIC_SIDE_INFO

596 System Management Programming

Chapter 12. Attach Manager Verbs

The Personal Communications or Communications Server Attach Manager is used
to manage the launching of APPC or CPI-C programs. A description of the Attach
Manager function is provided in Personal Communications Client/Server
Communications Programming.

Personal Communications or Communications Server Node Operator Facility
supports three verbs to control the Attach Manager. These verbs are available to
any application program that uses Personal Communications or Communications
Server Node Operator Facility.

© Copyright IBM Corp. 1989, 2016 597

DISABLE_ATTACH_MANAGER

The Personal Communications or Communications Server Attach Manager is
enabled by default when the node is started. The user can issue this verb to
disable all dynamic loading, This verb resets a global flag that the Attach Manager
checks before launching a transaction program.

VCB Structure
typedef struct disable_am
{

unsigned short opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */

} DISABLE_AM;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DISABLE_ATTACH_MGR

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

Returned Parameters
If the verb executes successfully, the Attach Manager returns the following
parameter:

primary_rc
AP_OK

If the verb does not execute because the node has not yet been started, the Attach
Manager returns the following parameter:

primary_rc
AP_NODE_NOT STARTED

If the verb does not execute because of a system error, the Attach Manager returns
the following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

DISABLE_ATTACH_MANAGER

598 System Management Programming

ENABLE_ATTACH_MANAGER

If the Attach Manager has been disabled, it can be re-enabled by issuing the
Personal Communications or Communications Server Node Operator Facility verb,
ENABLE_AM. This sets a global flag that the Attach Manager checks before
launching a Transaction Program.

VCB Structure
typedef struct enable_am
{

unsigned short opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */

} ENABLE_AM

Supplied Parameters
The application supplies the following parameters:

opcode
AP_ENABLE_ATTACH_MGR

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

Returned Parameters
If the verb executes successfully, the Attach Manager returns the following
parameter:

primary_rc
AP_OK

If the verb does not execute because the node has not yet been started, the Attach
Manager returns the following parameter:

primary_rc
AP_NODE_NOT STARTED

If the verb does not execute because of a system error, the Attach Manager returns
the following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

ENABLE_ATTACH_MANAGER

Chapter 12. Attach Manager Verbs 599

QUERY_ATTACH_MANAGER

The QUERY_ATTACH_MANAGER verb can be used to discover the status of the
Attach Manager component, which can be started and stopped using the
ENABLE_ATTACH_MANAGER and DISABLE_ATTACH_MANAGER commands.

VCB Structure
typedef struct query_am
{

unsigned short opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned short active; /* status of the Attach Manager */

} QUERY_AM;

Supplied Parameters
opcode

AP_QUERY_ATTACH_MGR

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

Returned Parameters
If the verb executes successfully, the following parameters are returned:

primary_rc
AP_OK

active This field reports the status of the Attach Manager component:

AP_YES
The Attach Manager is active.

AP_NO
The Attach Manager is not active.

If the verb does not execute because of a parameter error, the following parameter
is returned:

primary_rc
AP_PARAMETER_CHECK

If the verb does not execute because the node has not yet been started, the Attach
Manager returns the following parameter:

primary_rc
AP_NODE_NOT STARTED

If the verb does not execute because of a system error, the Attach Manager returns
the following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

QUERY_ATTACH_MANAGER

600 System Management Programming

Part 2. Personal Communications and Communications
Server Management Services API

© Copyright IBM Corp. 1989, 2016 601

602 System Management Programming

Chapter 13. Introduction to Management Services API

This chapter describes the management services API provided by Personal
Communications or Communications Server.

Management Services Verbs
Personal Communications or Communications Server supports the following
management services (MS) verbs, providing an application program with a method
for reporting potential problems to management services focal points available in
an SNA network.
v ALERT_INDICATION
v FP_INDICATION
v MDS_MU_RECEIVED
v NMVT_RECEIVED
v SEND_MDS_MU
v TRANSFER_MS_DATA

Entry Points
Personal Communications or Communications Server provides a library file that
handles management services verbs.

Management services verbs have a straightforward language interface. Your
program fills in fields in a block of memory called a verb control block Then your
program calls the entry point and passes a pointer to the verb control block. When
its operation is complete, management services (MS) API returns, having used and
then modified the fields in the verb control block. Your program can then read the
returned parameters from the verb control block. Following is a list of entry points
for management services verbs:
v WinMS()
v WinMSCleanup()
v WinMSGetIndication()
v WinMSRegisterApplication()
v WinMSStartup()
v WinMSUnregisterApplication()

WINMS is the only API supported on the Windows 2000 client; see “WinMS() ” on
page 608 for more information.

See Chapter 14, “Management Services Entry Points,” on page 607 for detailed
descriptions of the entry points.

Verb Control Blocks (VCB)
Programming Note: The base operating system optimizes performance by
executing some subsystems in the calling application's address space. This means
that incorrect use of local descriptor table (LDT) selectors by application programs
that have not been fully or correctly debugged can cause improper operation, or

© Copyright IBM Corp. 1989, 2016 603

perhaps system failures.Accordingly, application programs should not perform
pointer arithmetic operations that involve changing the LDT selector field of a
pointer.

The segment used for the verb control block (VCB) must be a read/write data
segment. Your program can either declare the VCB as a variable in your program,
allocate it or suballocate it from a larger segment. It must be sufficiently large to
contain all the fields for the verb your program is issuing.

An application program should not change any part of the verb control block after
it has been issued until the verb completes. When management services finishes
the execution of a verb, it copies a complete, modified VCB back onto the original
block. Therefore, if your program declares a verb control block as a variable,
consider declaring it in static storage rather than on the stack of an internal
procedure.

Fill all reserved and unused fields in each VCB with zeros (X'00'). In fact, it might
be more time-efficient to set the entire verb control block to zeros before your
program assigns the values to the parameters. Setting reserved fields to zeros is
particularly important.

Note: If the VCB is not read/write, or if it is not at least 10 bytes (that is, large
enough to hold the management services primary and secondary return
codes), management services cannot access it, and the base operating system
abnormally ends the process. This termination is recognized as a general
protection fault, processor exception trap D.

Management services returns the INVALID_VERB_SEGMENT primary return code
when the VCB is too short or the incorrect type of segment is used.

Writing Management Services (MS) Programs
Personal Communications or Communications Server provides a dynamic link
library (DLL) file, that handles Management Services verbs.

The DLL is reentrant; multiple application processes and threads can call the DLL
concurrently.

Management Services verbs have a straightforward language interface. Your
program fills in fields in a block of memory called a verb control block (VCB). Then
it calls the Management Services DLL and passes a pointer to the verb control
block. When its operation is complete, Management Services returns, having used
and then modified the fields in the VCB. Your program can then read the returned
parameters from the verb control block.

Table 3 shows source module usage of supplied header files and libraries needed
to compile and link Management Services programs. Some of the header files may
include other required header files.

Table 3. Header Files and Libraries for Management Services

Operating System* Header File Library DLL Name

WIN32 WINMS.H WINMS32.LIB WINMS32.DLL

* WIN32 = Windows 8/8.1, Windows 10, or Windows Server 2008.

604 System Management Programming

|

SNA API Client Support
Included with Communications Server are a set of clients for the Windows 2008
operating systems. These clients are referred to as SNA API clients in this book and
only support a subset of the full management services verbs. Specifically, WINMS
is the only API supported on the Windows 2000 client; see “WinMS() ” on page
608 for more information.

The following is a list of the management services verbs supported:
v TRANSFER_MS_DATA
v SEND_MDS_MU

Chapter 13. Introduction to Management Services API 605

|
|
|
|
|

606 System Management Programming

Chapter 14. Management Services Entry Points

This chapter describes the entry points for management services verbs.

© Copyright IBM Corp. 1989, 2016 607

WinMS()

This is the only entry point supported for Windows 2000.

This provides a synchronous entry point for issuing the following management
services API verbs:
v SEND_MDS_MU
v TRANSFER_MS_DATA

Syntax
void WINAPI WinMS(long vcb, unsigned short vcb_size);

Parameters

vcb Pointer to verb control block

vcb_size
Number of bytes in the verb control block

Returns
No return value. The primary_rc and secondary_rc fields in the verb control block
indicate any error.

Remarks
This is the main synchronous entry point for the management services API. This
call blocks until the verb completes.

WinMS()

608 System Management Programming

WinMSCleanup()
This function terminates and unregisters an application from the management
services API.

Syntax
BOOL WINAPI WinMSCleanup(void);

Returns
The return value specifies whether the unregistration was successful. If the value is
not zero, the application was successfully unregistered. The application was not
unregistered if a value of zero is returned.

Remarks
Use WinMSCleanup() to indicate unregistration of a management services
application from the management services API.

WinMSCleanup unblocks any thread waiting in WinMSGetIndication. These
return with WMSNOTREG (the application is not registered to receive indication).
WinMSCleanup unregisters the application for all indications. WinMSCleanup
returns any outstanding verb (synchronous or asynchronous) with the error
AP_CANCELLED. However, the verb completes inside the node.

It is not a requirement to use WinMSStartup and WinMSCleanup. However, an
application must be consistent in its use of these calls. You should use both of
them or never use either of them.

Note: See also WinMSStartup().

WinMSCleanup()

Chapter 14. Management Services Entry Points 609

WinMSGetIndication()
This allows the application to receive unsolicited indications.

Syntax
int WINAPI WinMSGetIndication(long buffer,

unsigned short *buffer_size,
unsigned long timeout);

Parameters

buffer Pointer to a buffer into which to receive the indication.

buffer_size
Size of buffer. Returned: the size of the indication.

timeout
Time to wait for indication in milliseconds.

Returns
The function returns a value indicating whether an indication was received.

0 Indication returned.

WMSTIMEOUT
Timeout waiting for indication.

WMSSYSNOTREADY
The underlying network subsystem is not ready for network communication.

WMSNOTREG
The application is not registered to receive indications.

WMSBADSIZE
The buffer is too small to receive the indication. Reissue the
WinMSGetIndication call with a large enough buffer. The size of the
indication is returned in the buffer_size parameter.

WMSBADPOINTER
Either the buffer or buffer_size parameter is not valid.

WMSSYSERROR
An unexpected system error has occurred.

Remarks
This is a blocking call, it returns in one of the following circumstances:
v An indication is returned
v The timeout expires
v The application issues a WinMSCleanup call
v The product is stopped
v A system error occurs

Note: See also WinMSRegisterApplication and WinMSUnregisterApplication.

WinMSGetIndication()

610 System Management Programming

WinMSRegisterApplication()
This function registers the application as an NMVT-level application, an MDS-level
application, or an alert handler. Such registrations determine which unsolicited
indications the application receives.
v An NMVT-level application receives NMVT_RECEIVED indications.
v An MDS-level application receives MDS_MU_RECEIVED indications and also

FP_NOTIFICATION indications when focal-point status changes.
v An alert handler receives ALERT_INDICATION indications.

Note: It is also possible to register to receive NMVTs with conversion to MDS
MUs.

Applications that do not process these indications should not call
WinMSRegisterApplication.

Syntax
BOOL WINAPI WinMSRegisterApplication(unsigned short reg_type,

unsigned char *ms_appl_name,
unsigned short vector_key,
unsigned char mds_conv_reqd,
unsigned char *ms_category,
unsigned short max_rcv_size,
unsigned char alert_dest,
unsigned short *primary_rc,
unsigned long *secondary_rc);

Parameters

reg_type
Registration type
WMSNMVTAPP NMVT-level application

(or MDS-level application
registering to receive NMVTs)

WMSMDSAPP MDS-level application
WMSALERTHANDLER Alert handler

ms_appl_name
Management services application name. Valid names can be either an
8-byte alphanumeric type-1134 EBCDIC string, padded with trailing space
(X'40') characters if necessary, or one of the management services
discipline-specific application programs specified in SNA Management
Services Reference padded with trailing space (X'40') characters.

This name is used when reg_type is WMSNMVTAPP or WMSMDSAPP. The name is
not applicable when reg_type is WMSALERTHANDLER.

vector_key
Management services major vector keys accepted by the application
Permitted values are:
X’YYYY’ specific major vector key
AP_SPCF_KEYS major vector keys X’8061’

through X’8064’
AP_ALL_KEYS all major vector keys

This key is used when reg_type is WMSNMVTAPP. The key is not applicable
when reg_type is WMSMDSAPP or WMSALERTHANDLER.

WinMSRegisterApplication()

Chapter 14. Management Services Entry Points 611

mds_conv_reqd
Specifies whether the registering application is MDS-level and requires
NMVTs sent to it to be converted to MDS MUs
(AP_YES or AP_NO)

This parameter is used when reg_type is WMSNMVTAPP. The parameter is not
applicable when reg_type is WMSMDSAPP or WMSALERTHANDLER.

ms_category
Specifies a management services category when the application desires
information pertaining to the focal point for that category. The
management services category can be either one of the category codes
specified in the management services discipline-specific application
programs table provided in SNA Management Services Reference padded
with trailing space (X'40') characters or a user-defined category.
User-defined category names should be an 8-byte alphanumeric type-1134
EBCDIC string, padded with trailing space (X'40') characters if necessary.

This parameter is used when reg_type is WMSMDSAPP. The parameter is not
applicable when reg_type is WMSNMVTAPP or WMSALERTHANDLER.

max_rcv_size
Maximum number of bytes the application is capable of receiving in one
chunk. MDS MUs bigger that this size will be segmented, and each
segment delivered in a separate MDS_MU_RECEIVED indication.

This parameter is used when reg_type is WMSMDSAPP. The parameter is not
applicable when reg_type is WMSNMVTAPP or WMSALERTHANDLER.

alert_dest
Specifies whether the application wishes to be the only destination of all
alerts. If this is set to AP_YES then all alerts will be routed to the
application, and will not be routed anywhere else. If set to AP_NO, alerts
will be routed to the application and over the SNA network in the usual
way.

This parameter is used when reg_type is WMSALERTHANDLER. The parameter
is not applicable when reg_type is WMSNMVTAPP or WMSMDSAPP.

primary_rc
Returned: primary return code

secondary_rc
Returned: secondary return code

Returns
The function returns a value indicating whether the registration was successful. If
the value is not zero, the registration was successful. If the value is zero, the
registration was not successful.

Remarks
Applications can make multiple calls to register more than one class of indications.

Applications that call WinMSRegisterApplication must call WinMSGetIndication
to receive indications that are queued for them.

Note: See also WinMSUnregisterApplication and WinMSGetIndication.

WinMSRegisterApplication()

612 System Management Programming

WinMSStartup()
This function allows an application to specify the version of management services
API required and to retrieve the version of the API supported by the product. This
function can be called by an application before issuing any further management
services API calls to register itself.

Syntax
int WINAPI WinMSStartup(WORD wVersionRequired,

LPWMSDATA msdata);

Parameters

wVersionRequired
Specifies the version of management services API support required. The
high-order byte specifies the minor version (revision) number; the
low-order byte specifies the major version number.

msdata
Returns the version of management services API and a description of
management services implementation.

Returns
The return value specifies whether the application was registered successfully and
whether the management services API implementation can support the specified
version number. If the value is zero, it was registered successfully and the specified
version can be supported. Otherwise, the return value is one of the following
values:

WMSSYSERROR
The underlying network subsystem is not ready for network communication.

WMSVERNOTSUPPORTED
The version of management services API support requested is not provided by
this particular management services API implementation.

WMSBADPOINTER
Incorrect msdata parameter.

Remarks
WinMSStartup is intended to help with compatibility with future versions of the
API. The current version supported is 1.0.

It is not a requirement to use WinMSStartup and WinMSCleanup. However, an
application must be consistent in its use of these calls. You should use both of
them or never use either of them.

Note: See also WinMSCleanup().

WinMSStartup()

Chapter 14. Management Services Entry Points 613

WinMSUnregisterApplication()
This function unregisters the application, reversing the effect of an earlier
WinMSRegisterApplication call, and stopping further indications from being
queued for the application.

Syntax
BOOL WINAPI WinMSUnregisterApplication(unsigned short reg_type,

unsigned char *ms_appl_name,
unsigned short *primary_rc,
unsigned long *secondary_rc);

Parameters

reg_type
Registration type. It can have one of the following values:

WMSNMVTAPP
NMVT-level application

WMSMDSAPP
MDS-level application

WMSALERTHANDLER
Alert handler

ms_appl_name
MS application name. Valid names can be either an 8-byte alphanumeric
type-1134 EBCDIC string, padded with trailing space (X'40') characters if
necessary, or one of the management services discipline-specific application
programs specified in SNA Management Services Reference padded with
trailing space (X'40') characters.

This parameter is used when reg_type is WMSNMVTAPP or WMSMDSAPP. The
parameter is not applicable when reg_type is WMSALERTHANDLER.

primary_rc
Returned: primary return code

secondary_rc
Returned: secondary return code

Returns
The function returns a value indicating whether the unregistration was successful.
If the value is not zero, the unregistration was successful. If the value is zero, the
unregistration was not successful.

Remarks
Each call to WinMSUnregisterApplication terminates a registration made by an
earlier call to WinMSRegisterApplication. An application that has made multiple
calls to WinMSRegisterApplication needs to make multiple calls to
WinMSUnregisterApplication in order to terminate all its registrations.

WinMSUnregisterApplication and WinMSCleanup differ as follows:
v WinMSUnregisterApplication terminates an earlier registration to receive

indications, but does not prevent the application from making other
management services API calls (for example, WinMS).

v WinMSCleanup terminates use of the management services API.

WinMSUnregisterApplication()

614 System Management Programming

Indications might already be queued for an application when the application calls
WinMSUnregisterApplication. Any such indications remain queued, and the
application should call WinMSGetIndication to receive and process them. Once
they have been unregistered, no new indications will be queued for the
application.

Note: See also WinMSRegisterApplication and WinMSGetIndication.

WinMSUnregisterApplication()

Chapter 14. Management Services Entry Points 615

WinMSUnregisterApplication()

616 System Management Programming

Chapter 15. Management Services Verbs

The management services API verbs provided by Personal Communications or
Communications Server enable an application to send alerts and MDS MU's, and
to receive indications when the node receives MDS or NMVT data or issues an
alert.

© Copyright IBM Corp. 1989, 2016 617

ALERT_INDICATION

This verb indication is used by management services to send alert major vectors to
a registered alert handler or registered held alert handler that will process them.

VCB Structure
typedef struct ms_alert_indication
{

unsigned short opcode; /* AP_AlERT_INDICATION */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned short alert_length; /* Length of alert */
unsigned char reserv3[6]; /* reserved */
unsigned char *alert; /* Alert data */

} MS_ALERT_INDICATION;

Supplied Parameters
opcode

AP_ALERT_INDICATION

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

alert_length
Length of the alert data.

alert Pointer to the alert data. The data pointer is set to NULL, and the data is
contiguous with (and begins immediately following) the VCB.

ALERT_INDICATION

618 System Management Programming

FP_NOTIFICATION

If an MDS-level application has been registered for a particular management
services category and the status of a focal point for that category changes, then
management services sends this verb signal to the application.

VCB Structure
typedef struct ms_fp_notification
{

unsigned short opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char fp_routing; /* Type of routing to focal pt */
unsigned char reserv1; /* reserved */
unsigned short fp_data_length; /* Length of incoming focal */

/* point data */
unsigned char *fp_data; /* focal point data */

} MS_FP_NOTIFICATION;

Supplied Parameters
opcode

AP_FP_NOTIFICATION

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

fp_routing
Type of routing that should be specified on the SEND_MDS_MU when
sending a message to the focal point (AP_DEFAULT or AP_DIRECT).

fp_data_length
Length of focal point data.

fp_data
Focal point data containing a Focal Point Notification (X'E1') subvector and
a Focal Point Identification (X'21') subvector. This data pointer is set to
NULL, and the data is contiguous with (and begins immediately following)
the VCB.

FP_NOTIFICATION

Chapter 15. Management Services Verbs 619

MDS_MU_RECEIVED

This verb indication is sent by management services to a registered MDS-level
application when:
v An MDS_MU has been received from a peer MDS-level application
v An NMVT has been received, and

– an appropriate NMVT-level application has not registered
– The MDS-level application registered with a name that corresponds to the

name carried within the management services major vector key in the
incoming NMVT (management services performs the conversion from NMVT
to MDS_MU).

VCB Structure
typedef struct ms_mds_mu_received
{

unsigned short opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char first_message; /* First message for curr MDS_MU */
unsigned char last_message; /* Last message for curr MDS_MU */
unsigned char pu_name[8]; /* Physical unit name */
unsigned char reserv3[8]; /* reserved */
unsigned short mds_mu_length; /* Length of incoming MDS_MU */
unsigned char *mds_mu; /* MDS_MU data */

} MS_MDS_MU_RECEIVED;

Supplied Parameters
opcode

AP_MDS_MU_RECEIVED

format
Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

first_message
Flag indicating whether this is the first message for the MDS_MU (AP_YES
or AP_NO). If the max_rcv_size specified in the
WinMSRegisterApplication call is smaller than the length of the MDS_MU
being delivered, the MDS_MU will be sent to the application in chunks.

last_message
Flag indicating whether this is the last message for the MDS_MU (AP_YES
or AP_NO).

pu_name
Name of the physical unit from which the NMVT (which has been
converted to an MDS_MU) originated. It is the responsibility of the
application to respond to the incoming NMVT. The application uses
SEND_MDS_MU to send the response. When sending responses the
application must set the pu_name field of the SEND_MDS_MU to the
pu_name supplied in the MDS_MU_RECEIVED signal. If the MDS_MU
was received from the MDS level transport mechanism, the pu_name will
be set to all binary zeros.

mds_mu_length
Length of MDS_MU portion included with the signal.

MDS_MU_RECEIVED

620 System Management Programming

mds_mu
MDS_MU data. The data pointer is set to NULL, and the data is
contiguous with (and begins immediately following) the VCB.

MDS_MU_RECEIVED

Chapter 15. Management Services Verbs 621

NMVT_RECEIVED

This verb signal is sent by management services to a registered NMVT-level
application when an NMVT is received from a remote node.

In routing incoming NMVTs, management services applies the following rules:
1. Try to route to an NMVT-level application registered with the major vector key

carried on the incoming NMVT, else...
2. If the major vector key is one of X'8061' through X'8064', try to route to a

registered NMVT-level AP_SPCF_KEYS application, else...
3. Try to route to an NMVT-level registered AP_ALL_KEYS application, else...
4. Try to route the NMVT (after conversion to an MDS_MU) to an MDS-level

application, registered with the major vector key carried on the incoming
NMVT, else...

5. If the major vector key is one of X'8061' through X'8064', try to route the NMVT
(after conversion to an MDS_MU) to a registered MDS-level application, else...

6. Try to route (after conversion to an MDS_MU) to a registered AP_ALL_KEYS
MDS-level application, else...

7. Negatively respond to the NMVT.

VCB Structure
typedef struct ms_nmvt_received
{

unsigned short opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char pu_name[8]; /* Physical unit name */
unsigned char reserv3[6]; /* reserved */
unsigned short nmvt_length; /* Length of incoming NMVT */
unsigned char *nmvt; /* NMVT data */

} MS_NMVT_RECEIVED;

Supplied Parameters
opcode

AP_NMVT_RECEIVED

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

pu_name
Name of the physical unit from which the NMVT originated. It is the
responsibility of the application to respond to the incoming NMVT. The
application uses TRANSFER_MS_DATA to send the response. When
sending responses, the application must set the pu_name field of the
TRANSFER_MS_DATA to the pu_name supplied in the NMVT_RECEIVED
signal.

nmvt_length
Length of NMVT data.

nmvt Full NMVT, containing management services major vector of the types

NMVT_RECEIVED

622 System Management Programming

specified on the REGISTER_NMVT_APPLICATION. This data pointer is
set to NULL, and the data is contiguous with (and begins immediately
following) the VCB.

NMVT_RECEIVED

Chapter 15. Management Services Verbs 623

SEND_MDS_MU

This verb is used by a MDS-level application to send network management data
other than alerts using the WinMS entry point. If an error occurs during the
sending of the MDS_MU to the destination application, the error is reported back
to the origin application in one of two ways. If the error is detected at the local
node, the application will be notified via the return codes of the SEND_MDS_MU
response. If the error is detected at a remote node, the error is reported by means
of an error MDS_MU transported in an MDS_MU_RECEIVED VCB. Management
services can convert the outgoing MDS_MU to an NMVT if the destination node is
to be reached via an SSCP-PU session. The application does not need to know the
identity of its local node. If the application supplies 8 EBCDIC blanks in the netid
or nau or both subfields of the origin location name subvector of the MDS Routing
Information GDS variable, Personal Communications or Communications Server
will supply the appropriate values. If an application does not fill in either the netid
or nau but supplies fewer than 8 blanks, Personal Communications or
Communications Server will return a secondary return code of
AP_INVALID_MDS_MU_FORMAT.

VCB Structure
typedef struct ms_send_mds_mu
{

unsigned short opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char options; /* Verb options */
unsigned char reserv3; /* reserved */
unsigned char originator_id[8]; /* Originator ID */
unsigned char pu_name[8]; /* Physical unit name */
unsigned char reserv4[4]; /* reserved */
unsigned short dlen; /* Length of data */
unsigned char *dptr; /* Data */

} MS_SEND_MDS_MU;

Supplied Parameters
opcode

AP_SEND_MDS_MU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

options
Specifies optional processing on the data supplied on this verb. This
parameter is a one-byte value, with individual bit settings indicating the
options selected. If all options are specified, set this byte to zero.

Bit 0 is the most significant, and bit 7 is the least significant bit.
Bit 0: Adds Date/Time (X'01') subvector to the data if set to zero.
Bit 1: Adds Product Set ID (X'10') subvector to the data if set to zero. If
the application supplies data that already contains a Product Set ID
subvector, then management services adds Personal Communications or
Communications Server's Product Set ID subvector immediately before
the existing one.
Bit 2: reserved.

SEND_MDS_MU

624 System Management Programming

Bit 3: Logs the data via the Personal Communications or
Communications Server problem determination facility if set to zero.

Note: The following constants are provided in the management services
header file that refer to bits 0, 1, and 3 specified above.
– SV_TIME_STAMP_SUBVECTOR
– SV_PRODUCT_SET_ID_SUBVECTOR
– SV_LOCAL_LOGGING

Bit 4: Specifies whether management services is to use default or direct
routing to send the management services data to the destination
application (AP_DEFAULT or AP_DIRECT).

Note: To set bit 4, use AP_DEFAULT or AP_DIRECT shifted
appropriately (for example, AP_DIRECT<<3).

Bits 5–7: reserved.

originator_id
Name of component that issued the verb. This field is only used by
management services when logging the SEND_MDS_MU.

pu_name
Name of the physical unit to send the data to. This should be set to either
an 8-byte alphanumeric type-A EBCDIC string, padded to the right with
EBCDIC spaces, or set to all binary zeros if no pu_name is specified.
Applications using SEND_MDS_MU to respond to MDS_MU_RECEIVED
indications that were converted from incoming NMVTs should specify the
pu_name received in the MDS_MU_RECEIVED signal. MDS_MUs that are
to be transported using the MDS transport facility should set the pu_name
to all binary zeros.

dlen Length of data.

dptr Pointer to data. If this is set to NULL, management services assumes that
the data is contiguous with (and begins immediately following) the VCB.

Returned Parameters
If the verb executes successfully, the Program management services returns the
following parameter:

primary_rc
AP_OK

If the verb fails to execute because of a parameter error, the Program management
services returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PU_NAME

AP_INVALID_MDS_MU_FORMAT
SV_INVALID_DATA_SIZE

If the verb fails to execute because of a state error, the Program management
services returns the following parameters:

primary_rc
AP_STATE_CHECK

SEND_MDS_MU

Chapter 15. Management Services Verbs 625

secondary_rc
AP_SSCP_PU_SESSION_NOT_ACTIVE

If the verb does not execute because of a system error, the Program management
services returns the following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

SEND_MDS_MU

626 System Management Programming

TRANSFER_MS_DATA

This verb is used by NMVT-level applications to send unsolicited alerts and to
respond to previously-received NMVT requests.

TRANSFER_MS_DATA is also used by MDS-level applications to send unsolicited
alerts. This verb can be used by the application using the WinMS call.

VCB Structure
typedef struct ms_transfer_ms_data
{

unsigned short opcode; /* Verb operation code */
unsigned char data_type; /* Data type supplied by app */
unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char options; /* Verb options */
unsigned char reserv3; /* reserved */
unsigned char originator_id[8]; /* Originator ID */
unsigned char pu_name[8]; /* Physical unit name */
unsigned char reserv4[4]; /* reserved */
unsigned short dlen; /* Length of data */
unsigned char *dptr; /* Data */

} MS_TRANSFER_MS_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
SV_TRANSFER_MS_DATA

data_type
Specifies the type of data enclosed. management services processes the
data as described below. Allowed values:

SV_NMVT
The data contains a complete NMVT request unit. Management
services converts the data to MDS_MU or CP_MSU format if the
data contains an alert, and the alert is to be sent to an MDS-level
or migration-level focal point. This is the type required when an
application is responding to an NMVT_RECEIVED signal.

SV_ALERT_SUBVECTORS
The data contains management services subvectors in the
SNA-defined format for an Alert major vector. Management
services adds an NMVT header and an alert major vector header.
Subsequently, management services converts the data to MDS_MU
or CP_MSU format if the alert is to be sent to an MDS-level or
migration-level focal point.

SV_USER_DEFINED
The data contains a complete NMVT request unit. Management
services always logs the data, but does not send it.

SV_PDSTATS_SUBVECTORS
The data contains problem determination statistics. Management
services always logs the data, and if an alert handler has been
registered, then management services sends it the data within an
ALERT_INDICATION.

TRANSFER_MS_DATA

Chapter 15. Management Services Verbs 627

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

options
Specifies optional processing on the data supplied on this verb. Note that
management services processes the data primarily according to the type
specified if there is any conflict between the data_type and the option
specified. This parameter is a one-byte value, with individual bit settings
indicating the options selected. If all options are specified, set this byte to
zero.

Bit 0 is the most significant, and bit 7 is the least significant bit.
(Bits 1–3 are ignored if data_type is set to SV_USER_DEFINED.)
Bit 0: Adds Date/Time (X'01') subvector to the data if set to zero.
Bit 1: Adds Product Set ID (X'10') subvector to the data if set to zero. If
the application supplies data that already contains a Product Set ID
subvector, management services adds Personal Communications or
Communications Server's Product Set ID subvector immediately before
the existing one.
Bit 2: Sends the data on an SNA session if set to zero. Management
services sends the data on the default SSCP-PU session if the data does
not contain an alert. If the data contains an alert, management services
sends the data on either an SSCP-PU session, a CP-CP session or an
LU-LU session, depending on which type of session Personal
Communications or Communications Server uses to transmit alerts to
the alert focal point.
Bit 3: Logs the data via the Personal Communications or
Communications Server problem determination facility if set to zero.

Note: The following constants are provided in the management services
header file and they refer to the individual bits specified above.
– SV_TIME_STAMP_SUBVECTOR
– SV_PRODUCT_SET_ID_SUBVECTOR
– SV_SEND_ON_SESSION
– SV_LOCAL_LOGGING

Bits 4–7: reserved.

originator_id
Name of the component that issued the verb. This is an 8-byte string in a
locally displayable character set. This field is only used by management
services when logging the TRANSFER_MS_DATA.

pu_name
Name of the physical unit to send the data to. This should be set to either
an 8-byte alphanumeric type-A EBCDIC string, padded to the right with
EBCDIC spaces, or set to all binary zeros if no pu_name is specified.
Applications using TRANSFER_MS_DATA to respond to
NMVT_RECEIVED signals should specify the pu_name received in the
NMVT_RECEIVED signal. The data contained in TRANSFER_MS_DATA
signals of type SV_NMVT that do not specify a pu_name will be sent over
the default PU session if available. TRANSFER_MS_DATA signals
containing alerts should not specify a pu_name unless the application
expressly wishes the alert data to be sent to a specific PU. This will bypass
the normal management services alert routing algorithm.

dlen Length of data.

TRANSFER_MS_DATA

628 System Management Programming

dptr Pointer to data. If this is set to NULL, then management services assumes
that the data is contiguous with (and begins immediately following) the
VCB.

Returned Parameters
If the verb executes successfully, management services returns the following
parameter:

primary_rc
AP_OK

If the verb fails to execute because of a parameter error, management services
returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
SV_INVALID_DATA_TYPE

SV_DATA_EXCEEDS_RU_SIZE
AP_INVALID_PU_NAME

If the verb fails to execute because of a state error, management services returns
the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
SV_SSCP_PU_SESSION_NOT_ACTIVE

If the verb does not execute because of a system error, the Program management
services returns the following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

TRANSFER_MS_DATA

Chapter 15. Management Services Verbs 629

TRANSFER_MS_DATA

630 System Management Programming

Part 3. Appendixes

© Copyright IBM Corp. 1989, 2016 631

632 System Management Programming

Appendix A. IBM APPN MIB Tables

Table 4 gives details on implementing the tables from the IBM APPN management
information block (MIB), as defined by RFC1593. The table defines:
v Node Operator Facility QUERY verb used to implement each MIB table
v Input parameter settings
v Any filtering operations required

(The mapping between the returned parameters and the MIB tables variables can
be derived from the definition of the Node Operator Facility QUERY verbs).
Personal Communications or Communications Server does not currently support
the ibmappnNodePortDlcTraceTable and the ibmappnLsStatusTable MIB tables.

Table 4. Implementing Tables from IBM Management Information Block (MIB)

IBM MIB Table Node Operator Facility Verb and
MIB Table Variables

Input Parameter Settings

ibmappnNodePortTable QUERY_PORT port_name ibmappnNodePortName

ibmappnNodePortIpTable (Note 1)

ibmappnNodePortDlsTable QUERY_PORT

(select entries with
dlc_type of AP_SDLC)

port_name
ibmappnNodePortDlsName

ibmappnNodePortTrTable QUERY_PORT port_name
ibmappnNodePortTrName

ibmappnNodeLsTable QUERY_LS ls_name ibmappnNodeLsName

ibmappnNodeLsIpTable (Note 1)

ibmappnNodeLsDlsTable QUERY_LS

(select entries with
dlc_type of AP_SDLC)

ls_name ibmappnNodeLsDlsName

ibmappnNodeLsTrTable QUERY_LS ls_name ibmappnNodeLsTrName

ibmappnNnTopoRouteTable QUERY_COS cos_name ibmappnNnTopoRouteCos

ibmappnNnAdjNodeTable QUERY_ADJACENT_NN adj_nncp_name
ibmappnNnAdjNodeAdjName

ibmappnNnTopologyTable QUERY_NN_TOPOLOGY_NODE node_name
ibmappnNnNodeName

node_type
AP_LEARN_NODE

frsn 0

ibmappnNnTgTopologyTable QUERY_NN_TOPOLOGY_TG owner ibmappnNnTgOwner
owner_type

AP_LEARN_NODE
dest ibmappnNnTgDest
dest_type

AP_LEARN_NODE
tg_num

ibmappnNnTgNum
frsn 0

© Copyright IBM Corp. 1989, 2016 633

Table 4. Implementing Tables from IBM Management Information Block (MIB) (continued)

IBM MIB Table Node Operator Facility Verb and
MIB Table Variables

Input Parameter Settings

ibmappnNnTopologyFRTable QUERY_NN_TOPOLOGY_NODE node_name
ibmappnNnFRNode

node_type
AP_LEARN_NODE

frsn ibmappnNnFRFrsn

ibmappnNnTgTopologyFRTable QUERY_NN_TOPOLOGY_TG owner ibmappnNnTgFROwner
owner_type

AP_LEARN_NODE
dest ibmappnNnTgFRDest
dest_type

AP_LEARN_NODE
tg_num

ibmappnNnTgFRNum
frsn ibmappnNnTgFRFrsn

ibmappnLocalTgTable QUERY_LOCAL_TOPOLOGY dest ibmappnLocalTGDest
dest_type

AP_LEARN_NODE
tg_num

ibmappnLocalTgNum

ibmappnLocalEnTable QUERY_LOCAL_TOPOLOGY

(select entries with
unique dest) (Note 2)

dest ibmappnLocalEnName
dest_type

AP_END_NODE
dest_type

AP_LEARN_NODE

ibmappnLocalEnTgTable QUERY_LOCAL_TOPOLOGY (Note
3)

dest ibmappnLocalEnTgOrigin
dest_type

AP_LEARN_NODE
tg_num

ibmappnLocalEnTgNum

ibmappnDirTable QUERY_DIRECTORY_LU lu_name ibmappnDirLuName

ibmappnCosModeTable QUERY_MODE_TO_COS_MAPPING mode_name ibmappnCosModeName

ibmappnCosNameTable QUERY_COS cos_name ibmappnCosName

Notes:

1. Personal Communications or Communications Server does not support IP as a
DLC type.

2. Entries with the same dest are ordered consecutively by
QUERY_LOCAL_TOPOLOGY.

3. The ibmappnLocalEnTgTable views TGs from the attached end node's
perspective (that is, as a TG from the end node). However, a network node
compliant with the current level of the APPN architecture only stores end node
TG information for TGs between itself and directly attached end nodes.
Therefore all the entries in this table have ibmappnLocalEnTgDest set to the
name of the local node (ibmappnNodeCpName).

634 System Management Programming

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1989, 2016 635

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
TL3B/062
3039 Cornwallis Road
RTP, NC 27709-2195
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States,
or other countries, or both:

AnyNet
IBM
OS/2

636 System Management Programming

Microsoft, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix B. Notices 637

638 System Management Programming

Index

A
ACTIVATE_SESSION 183
activation and deactivation verbs

ACTIVATE_SESSION 183
DEACTIVATE_CONV_GROUP 186
DEACTIVATE_SESSION 188
general 9
PATH_SWITCH 191
START_DLC 166
START_INTERNAL_PU 168
START_LS 170
START_PORT 173
STOP_DLC 175
STOP_INTERNAL_PU 177
STOP_LS 179
STOP_PORT 181

ALERT_INDICATION 618
alerts, unsolicited 627
APING 584
Attach Manager verbs

DISABLE_ATTACH_MANAGER 598
ENABLE_ATTACH_MANAGER 599
QUERY_ATTACH_MANAGER 600

B
buffer space required 11

C
CHANGE_SESSION_LIMIT 490
children 28
common VCB fields 7
connection network 14, 200
CPI-C verbs

DEFINE_CPIC_ SIDE_INFO 589
DELETE_CPIC_SIDE_INFO 592
QUERY_CPIC_SIDE_INFO 594

D
data_lost indicator 13
DEACTIVATE_CONV_GROUP 186
DEACTIVATE_SESSION 188
DEFINE_ADJACENT_NODE 28, 126
DEFINE_CN 31
DEFINE_COS 35
DEFINE_CPIC_SIDE_INFO 589
DEFINE_DEFAULT_PU 41, 43
DEFINE_DLC 46
DEFINE_DLUR_DEFAULTS 50
DEFINE_DOWNSTREAM_LU 52
DEFINE_DOWNSTREAM_LU_RANGE 55
DEFINE_DSPU_TEMPLATE 58
DEFINE_FOCAL_POINT 61
DEFINE_INTERNAL_PU 65
DEFINE_LOCAL_LU 69
DEFINE_LS 74
DEFINE_LU_0_TO_3 88

DEFINE_LU_0_TO_3_RANGE 92
DEFINE_LU_LU_PASSWORD 572
DEFINE_LU_POOL 97
DEFINE_MODE 101
DEFINE_PARTNER_LU 107
DEFINE_PORT 111
DEFINE_RTP_TUNING 120
DEFINE_TP 122
DEFINE_USERID_PASSWORD 574
defining resources

DEFINE_LU62_TIMEOUT 99
DELETE_CN 128
DELETE_COS 130
DELETE_CPIC_SIDE_INFO 592
DELETE_DLC 132
DELETE_DOWNSTREAM_LU 134
DELETE_DOWNSTREAM_LU_RANGE 136
DELETE_DSPU_TEMPLATE 138
DELETE_FOCAL_POINT 141
DELETE_INTERNAL_PU 143
DELETE_LOCAL_LU 145
DELETE_LS 147
DELETE_LU_0_TO_3 149
DELETE_LU_0_TO_3_RANGE 151
DELETE_LU_LU_PASSWORD 576
DELETE_LU_POOL 154
DELETE_MODE 156
DELETE_PARTNER_LU 158
DELETE_PORT 160
DELETE_TP 162
DELETE_USERID_PASSWORD 578
detailed information 11
DISABLE_ATTACH_MANAGER 598
DLC processes 14
DLC_INDICATION 504
DLL (dynamic link library) 613
DLUR_LU_INDICATION 505
DLUS_INDICATION 508
DOWNSTREAM_LU_INDICATION 510
DOWNSTREAM_PU_INDICATION 515
dynamic link library (DLL)

See DLL (dynamic link library)

E
ENABLE_ATTACH_MANAGER 599
entry points

for management services verbs
WinMS() 608
WinMSCleanup() 609
WinMSRegisterApplication() 611
WinMSStartup() 613
WinMSUnregisterApplication() 614

for Node Operator Facility verbs
WinAsyncNOF() 19
WinAsyncNOFEx() 20
WinNOF() 18
WinNOFCancelAsyncRequest() 21
WinNOFCleanup() 22
WinNOFGetIndication() 13, 26, 610
WinNOFRegisterIndicationSink() 13, 24

© Copyright IBM Corp. 1989, 2016 639

entry points (continued)
WinNOFStartup() 23
WinNOFUnregisterIndicationSink() 13, 25

introduction 3, 603

F
focal point

domain 61
explicit 61
host 61
implicit backup 61
implicit primary 61

FOCAL_POINT_INDICATION 518
FP_NOTIFICATION 619

G
general protection fault 4, 604

H
HPR (high-performance routing) 191

I
indication verbs

DLC_INDICATION 504
DLUR_LU_INDICATION 505
DLUS_INDICATION 508
FOCAL_POINT_INDICATION 518
LOCAL_LU_INDICATION 525
LOCAL_TOPOLOGY_INDICATION 529
LS_INDICATION 531
LU_0_TO_3_INDICATION 536
MODE_INDICATION 540
PLU_INDICATION 546
PORT_INDICATION 548
PU_INDICATION 550
REGISTRATION_FAILURE 553
RTP_INDICATION 555
SESSION_FAILURE_INDICATION 559
SESSION_INDICATION 561
UNREGISTER_INDICATION_SINK_ 565

INITIALIZE_SESSION_LIMIT 494
ISR_INDICATION 520

L
limited resource 79
link stations

defined link stations 15
dynamic link stations 15
implicit link stations 15
temporary link stations 15

list_options field
AP_FIRST_IN_LIST 11
AP_LIST_FROM_NEXT 11
AP_LIST_INCLUSIVE 11
filtering options 11
index value 11

local descriptor table 4, 604
LOCAL_LU_INDICATION 525
LOCAL_TOPOLOGY_INDICATION 529
LS_INDICATION 531

LU pool 89
LU_0_TO_3_INDICATION 536

M
management services verbs

ALERT_INDICATION 618
FP_NOTIFICATION 619
MDS_MU_RECEIVED 620
NMVT_RECEIVED 622
SEND_MSD_MU 624
TRANSFER_MS_DATA 627

MDS_MU_RECEIVED 620
MODE_INDICATION 540

N
NMVT_RECEIVED 622
NN_TOPOLOGY_NODE_INDICATION 542
NN_TOPOLOGY_TG_INDICATION 544
node 3
node configuration verbs

DEFINE_ADJACENT_NODE 28
DEFINE_CN 31
DEFINE_COS 35
DEFINE_DEFAULT_PU 41
DEFINE_DEFAULTS 43
DEFINE_DLC 46
DEFINE_DLUR_DEFAULTS 50
DEFINE_FOCAL_POINT 61
DEFINE_INTERNAL_PU 65
DEFINE_LOCAL_LU 69
DEFINE_LS 74
DEFINE_LU_0_TO_3 88
DEFINE_LU62_TIMEOUT 99
DEFINE_MODE 101
DEFINE_PARTNER_LU 107
DEFINE_PORT 111
DEFINE_TP 122
DELETE_ADJACENT_NODE 126
DELETE_CN 128
DELETE_COS 130
DELETE_DLC 132
DELETE_FOCAL_POINT 141
DELETE_INTERNAL_PU 143
DELETE_LOCAL_LU 145
DELETE_LS 147
DELETE_LU_0_TO_3 149
DELETE_MODE 156
DELETE_PARTNER_LU 158
DELETE_PORT 160
DELETE_TP 162

node row (in a class-of-service definition) 35

P
PATH_SWITCH 191
PLU_INDICATION 546
PORT_INDICATION 548
ports

description 14
nonswitched ports 14
SATF ports 14
switched ports 14

PU_INDICATION 550

640 System Management Programming

Q
query verbs

description 10
QUERY_CN 200
QUERY_CN_PORT 205
QUERY_COS 212
QUERY_DEFAULT_PU 215
QUERY_DEFAULTS 217
QUERY_DIRECTORY_LU 226
QUERY_DIRECTORY_STATS 231
QUERY_DLC 233
QUERY_DLUR_LU 241
QUERY_DLUR_PU 245
QUERY_DLUS 251
QUERY_FOCAL_POINT 273
QUERY_LOCAL_LU 291
QUERY_LOCAL_TOPOLOGY 299
QUERY_LS 304
QUERY_LU_0_TO_3 328
QUERY_MDS_APPLICATION 342
QUERY_MDS_STATISTICS 345
QUERY_MODE 347
QUERY_MODE_DEFINITION 353
QUERY_MODE_TO_COS_MAPPING 358
QUERY_NMVT_APPLICATION 361
QUERY_NODE 381
QUERY_PARTNER_LU 394
QUERY_PARTNER_LU_DEFINITION 401
QUERY_PORT 406
QUERY_PU 417
QUERY_RTP_CONNECTION 423
QUERY_SESSION 432
QUERY_STATISTICS 444
QUERY_TP 446
QUERY_TP_DEFINITION 450

QUERY_ADJACENT_NN 194
QUERY_ATTACH_MANAGER 600
QUERY_CN 200
QUERY_CN_PORT 205
QUERY_COS 212
QUERY_CPIC_SIDE_INFO 594
QUERY_DEFAULT_PU 215
QUERY_DEFAULTS 217
QUERY_DIRECTORY_LU 226
QUERY_DIRECTORY_STATS 231
QUERY_DLC 233
QUERY_DLUR_LU 241
QUERY_DLUR_PU 245
QUERY_DLUS 251
QUERY_DOWNSTREAM_LU 255
QUERY_DOWNSTREAM_PU 264
QUERY_DSPU_TEMPLATE 269
QUERY_FOCAL_POINT 273
QUERY_ISR_SESSION 280
QUERY_LOCAL_LU 291
QUERY_LOCAL_TOPOLOGY 299
QUERY_LS 304
QUERY_LU_0_TO_3 328
QUERY_LU_POOL 338
QUERY_MDS_APPLICATION 342
QUERY_MDS_STATISTICS 345
QUERY_MODE 347
QUERY_MODE_DEFINITION 353
QUERY_MODE_TO_COS_MAPPING 358
QUERY_NMVT_APPLICATION 361
QUERY_NN_TOPOLOGY_NODE 364
QUERY_NN_TOPOLOGY_STATS 370

QUERY_NN_TOPOLOGY_TG 374
QUERY_NODE 381
QUERY_PARTNER_LU 394
QUERY_PARTNER_LU_DEFINITION 401
QUERY_PORT 406
QUERY_PU 417
QUERY_RTP_CONNECTION 423
QUERY_RTP_TUNING 430
QUERY_SESSION 432
QUERY_STATISTICS 444
QUERY_TP 446
QUERY_TP_DEFINITION 450

R
REGISTRATION_FAILURE 553
RESET_SESSION_LIMIT 498
RTP_INDICATION 555

S
SATF (shared-access transport facility) 14
security verbs

CONV_SECURITY_BYPASS 568
CREATE_PASSWORD_SUBSTITUTE 570
DEFINE_LU_LU_PASSWORD 572
DEFINE_USERID_PASSWORD 574
DELETE_LU_LU_PASSWORD 576
DELETE_USERID_PASSWORD 578
SIGN_OFF 580

SEND_MDS_MU 624
session limit verbs

CHANGE_SESSION_LIMIT 490
INITIALIZE_SESSION_LIMIT 494
RESET_SESSION_LIMIT 498

SESSION_FAILURE_INDICATION 559
SESSION_INDICATION 561
START_DLC 166
START_INTERNAL_PU 168, 177
START_LS 170
START_PORT 173
STOP_DLC 175
STOP_INTERNAL_PU 177
STOP_LS 179
STOP_PORT 181
summary information 11

T
TG row (in a class-of-service definition) 35
the Program management services API 603
the Program Node Operator Facility API 3
TRANSFER_MS_DATA 627

U
unsolicited alerts 627

V
verb control block

common fields 7
introduction 3, 4, 603

Index 641

verbs
activating and deactivating at link level

general 9
START_DLC 166
START_INTERNAL_PU 168
START_LS 170
START_PORT 173
STOP_DLC 175
STOP_INTERNAL_PU 177
STOP_LS 179
STOP_PORT 181

activating and deactivating at session level
ACTIVATE_SESSION 183
DEACTIVATE_CONV_GROUP 186
DEACTIVATE_SESSION 188
general 10

allowing a management application to "ping" a remote LU
APING 584
general 14

allowing CPI-C side information to be managed
DEFINE_CPIC_SIDE_INFO 589
DELETE_CPIC_SIDE_INFO 592
general 14
QUERY_CPIC_SIDE_INFO 594

changing the number of sessions
CHANGE_SESSION_LIMIT 490
general 12
INITIALIZE_SESSION_LIMIT 494
RESET_SESSION_LIMIT 498

controlling the Attach Manager
DISABLE_ATTACH_MANAGER 598
ENABLE_ATTACH_MANAGER 599
general 14
QUERY_ATTACH_MANAGER 600

defining resources
DEFINE_ADJACENT_NODE 28
DEFINE_CN 31
DEFINE_COS 35
DEFINE_DEFAULT_PU 41
DEFINE_DEFAULTS 43
DEFINE_DLC 46
DEFINE_DLUR_DEFAULTS 50
DEFINE_FOCAL_POINT 61
DEFINE_INTERNAL_PU 65
DEFINE_LOCAL_LU 69
DEFINE_LS 74
DEFINE_LU_0_TO_3 88
DEFINE_MODE 101
DEFINE_PARTNER_LU 107
DEFINE_PORT 111
DEFINE_TP 122
general 8

deleting resources
DELETE_ADJACENT_NODE 126
DELETE_CN 128
DELETE_COS 130
DELETE_DLC 132
DELETE_FOCAL_POINT 141
DELETE_INTERNAL_PU 143
DELETE_LOCAL_LU 145
DELETE_LS 147
DELETE_LU_0_TO_3 149
DELETE_MODE 156
DELETE_PARTNER_LU 158
DELETE_PORT 160
DELETE_TP 162
general 9

verbs (continued)
description of, how to read

common VCB fields 7
general 7
returned parameters 7
supplied parameters 7

forcing an RTP connection to switch paths
general 10
PATH_SWITCH 191

overview 7
providing security

DEFINE_LU_LU_PASSWORD 572
DEFINE_USERID_PASSWORD 574
DELETE_LU_LU_PASSWORD 576
DELETE_USERID_PASSWORD 578
general 13

reporting potential problems to management services focal
points

ALERT_INDICATION 618
FP_NOTIFICATION 619
general 603
MDS_MU_RECEIVED 620
NMVT_RECEIVED 622
SEND_MDS_MU 624
TRANSFER_MS_DATA 627

returning different levels of information
general 193
QUERY_DIRECTORY_LU 226
QUERY_DLC 233
QUERY_DLUR_LU 241
QUERY_DLUR_PU 245
QUERY_LOCAL_LU 291
QUERY_LOCAL_TOPOLOGY 299
QUERY_LS 304
QUERY_LU_0_TO_3 328
QUERY_MODE 347
QUERY_MODE_DEFINITION 353
QUERY_PARTNER_LU 394
QUERY_PARTNER_LU_DEFINITION 401
QUERY_PORT 406
QUERY_RTP_CONNECTION 423
QUERY_SESSION 432
QUERY_TP_DEFINITION 450

returning node information in named fields
general 10
QUERY_DEFAULT_PU 215
QUERY_DIRECTORY_STATS 231
QUERY_MDS_STATISTICS 345
QUERY_NODE 381
QUERY_STATISTICS 444

returning one or more units of information
general 10
QUERY_CN 200
QUERY_CN_PORT 205
QUERY_COS 212
QUERY_DEFAULTS 217
QUERY_DLUS 251
QUERY_FOCAL_POINT 273
QUERY_MDS_APPLICATION 342
QUERY_MODE_TO_COS_MAPPING 358
QUERY_NMVT_APPLICATION 361
QUERY_PU 417
QUERY_TP 446

summary 8
unsolicited indications of named events

DLC_INDICATION 504
DLUR_LU_INDICATION 505

642 System Management Programming

verbs (continued)
unsolicited indications of named events (continued)

DLUS_INDICATION 508
FOCAL_POINT_INDICATION 518
general 12
LOCAL_TOPOLOGY_INDICATION 529
LOCAL-LU_INDICATION 525
LS_INDICATION 531
LU_0_TO_3_INDICATION 536
MODE_INDICATION 540
PLU_INDICATION 546
PORT_INDICATION 548
PU_INDICATION 550
registering an application to receive information 12
REGISTRATION_FAILURE 553
RTP_INDICATION 555
SESSION_FAILURE_INDICATION 559
SESSION_INDICATION 561
unregistering an application when it no longer requires

information 12

W
WinAsyncNOF() 19
WinAsyncNOFEx() 20
WinMS() 608
WinMSCleanup() 609
WinMSRegisterApplication() 611
WinMSStartup() 613
WinMSUnregisterApplication() 614
WinNOF() 18
WinNOFCancelAsyncRequest() 21
WinNOFCleanup() 22
WinNOFGetIndication() 13, 26, 610
WinNOFRegisterIndicationSink() 13, 24
WinNOFStartup() 23
WinNOFUnregisterIndicationSink() 13, 25
writing management services programs 604
writing NOF programs 4

X
XID 78
XID0 74
XID3 74

Index 643

644 System Management Programming

����

Product Number: 5639-I70

Printed in USA

SC31-8480-12

	Contents
	Tables
	About This Book
	Who Should Read This Book
	How to Use This Book
	Icons
	Number Conventions

	Where to Find More Information
	Support Options
	Subscribing to Support News
	Support Assistant

	Part 1. Personal Communications and Communications Server Node Operator Facility
	Chapter 1. Introduction
	Purpose of the Document
	Personal Communications and Communications Server Node Operator Facility
	Entry Points
	Verb Control Blocks (VCBs)
	Writing Node Operator Facility (NOF) Programs
	Communications Server SNA API Client Support
	Verbs Supported by Communications Server and Not by Personal Communications

	Chapter 2. Overview of the Verbs in This Book
	How to Read Verb Descriptions
	Supplied Parameters
	Returned Parameters
	Return Codes
	Additional Information

	Common VCB Fields
	Verb Summary
	Node Configuration
	Activation and Deactivation
	Querying the Node
	Session Limit Verbs
	Unsolicited Indications
	Security Verbs
	APING Verbs
	CPI-C Verbs
	Attach Manager Verbs
	DLC Processes, Ports, and Link Stations
	DLC Processes
	Ports
	Link Stations

	Chapter 3. Node Operator Facility Entry Points
	WinNOF()
	WinAsyncNOF()
	WinAsyncNOFEx()
	WinNOFCancelAsyncRequest()
	WinNOFCleanup()
	WinNOFStartup()
	WinNOFRegisterIndicationSink()
	WinNOFUnregisterIndicationSink()
	WinNOFGetIndication()

	Chapter 4. Node Configuration Verbs
	DEFINE_ADJACENT_NODE
	DEFINE_CN
	DEFINE_COS
	DEFINE_DEFAULT_PU
	DEFINE_DEFAULTS
	DEFINE_DLC
	DEFINE_DLUR_DEFAULTS
	DEFINE_DOWNSTREAM_LU
	DEFINE_DOWNSTREAM_LU_RANGE
	DEFINE_DSPU_TEMPLATE
	DEFINE_FOCAL_POINT
	DEFINE_INTERNAL_PU
	DEFINE_LOCAL_LU
	DEFINE_LS
	DEFINE_LU_0_TO_3
	DEFINE_LU_0_TO_3_RANGE
	DEFINE_LU_POOL
	DEFINE_LU62_TIMEOUT
	DEFINE_MODE
	DEFINE_PARTNER_LU
	DEFINE_PORT
	DEFINE_RTP_TUNING
	DEFINE_TP
	DELETE_ADJACENT_NODE
	DELETE_CN
	DELETE_COS
	DELETE_DLC
	DELETE_DOWNSTREAM_LU
	DELETE_DOWNSTREAM_LU_RANGE
	DELETE_DSPU_TEMPLATE
	DELETE_FOCAL_POINT
	DELETE_INTERNAL_PU
	DELETE_LOCAL_LU
	DELETE_LS
	DELETE_LU_0_TO_3
	DELETE_LU_0_TO_3_RANGE
	DELETE_LU_POOL
	DELETE_MODE
	DELETE_PARTNER_LU
	DELETE_PORT
	DELETE_TP

	Chapter 5. Activation and Deactivation Verbs
	START_DLC
	START_INTERNAL_PU
	START_LS
	START_PORT
	STOP_DLC
	STOP_INTERNAL_PU
	STOP_LS
	STOP_PORT
	ACTIVATE_SESSION
	DEACTIVATE_CONV_GROUP
	DEACTIVATE_SESSION
	PATH_SWITCH

	Chapter 6. Query Verbs
	QUERY_ADJACENT_NN
	QUERY_ADJACENT_NODE
	QUERY_CN
	QUERY_CN_PORT
	QUERY_CONVERSATION
	QUERY_COS
	QUERY_DEFAULT_PU
	QUERY_DEFAULTS
	QUERY_DIRECTORY_ENTRY
	QUERY_DIRECTORY_LU
	QUERY_DIRECTORY_STATS
	QUERY_DLC
	QUERY_DLUR_DEFAULTS
	QUERY_DLUR_LU
	QUERY_DLUR_PU
	QUERY_DLUS
	QUERY_DOWNSTREAM_LU
	QUERY_DOWNSTREAM_PU
	QUERY_DSPU_TEMPLATE
	QUERY_FOCAL_POINT
	QUERY_HPR_STATS
	QUERY_ISR_SESSION
	QUERY_LOCAL_LU
	QUERY_LOCAL_TOPOLOGY
	QUERY_LS
	QUERY_LS_EXCEPTION
	QUERY_LU_0_TO_3
	QUERY_LU_POOL
	QUERY_MDS_APPLICATION
	QUERY_MDS_STATISTICS
	QUERY_MODE
	QUERY_MODE_DEFINITION
	QUERY_MODE_TO_COS_MAPPING
	QUERY_NMVT_APPLICATION
	QUERY_NN_TOPOLOGY_NODE
	QUERY_NN_TOPOLOGY_STATS
	QUERY_NN_TOPOLOGY_TG
	QUERY_NODE
	QUERY_PARTNER_LU
	QUERY_PARTNER_LU_DEFINITION
	QUERY_PORT
	QUERY_PU
	QUERY_RTP_CONNECTION
	QUERY_RTP_TUNING
	QUERY_SESSION
	QUERY_SIGNED_ON_LIST
	QUERY_STATISTICS
	QUERY_TP
	QUERY_TP_DEFINITION

	Chapter 7. Safe-Store Verbs
	SAFE_STORE_TOPOLOGY
	SFS_ADJACENT_NN
	SFS_DIRECTORY
	SFS_NN_TOPOLOGY_NODE
	SFS_NN_TOPOLOGY_TG

	Chapter 8. Session Limit Verbs
	CHANGE_SESSION_LIMIT
	INITIALIZE_SESSION_LIMIT
	RESET_SESSION_LIMIT

	Chapter 9. Node Operator Facility API Indications
	DLC_INDICATION
	DLUR_LU_INDICATION
	DLUR_PU_INDICATION
	DLUS_INDICATION
	DOWNSTREAM_LU_INDICATION
	DOWNSTREAM_PU_INDICATION
	FOCAL_POINT_INDICATION
	ISR_INDICATION
	LOCAL_LU_INDICATION
	LOCAL_TOPOLOGY_INDICATION
	LS_INDICATION
	LU_0_TO_3_INDICATION
	MODE_INDICATION
	NN_TOPOLOGY_NODE_INDICATION
	NN_TOPOLOGY_TG_INDICATION
	PLU_INDICATION
	PORT_INDICATION
	PU_INDICATION
	REGISTRATION_FAILURE
	RTP_INDICATION
	SESSION_FAILURE_INDICATION
	SESSION_INDICATION
	UNREGISTER_INDICATION_SINK

	Chapter 10. Security Verbs
	CONV_SECURITY_BYPASS
	CREATE_PASSWORD_SUBSTITUTE
	DEFINE_LU_LU_PASSWORD
	DEFINE_USERID_PASSWORD
	DELETE_LU_LU_PASSWORD
	DELETE_USERID_PASSWORD
	SIGN_OFF

	Chapter 11. APING and CPI-C Verbs
	APING
	CPI-C Verbs
	DEFINE_CPIC_SIDE_INFO
	DELETE_CPIC_SIDE_INFO
	QUERY_CPIC_SIDE_INFO

	Chapter 12. Attach Manager Verbs
	DISABLE_ATTACH_MANAGER
	ENABLE_ATTACH_MANAGER
	QUERY_ATTACH_MANAGER

	Part 2. Personal Communications and Communications Server Management Services API
	Chapter 13. Introduction to Management Services API
	Management Services Verbs
	Entry Points
	Verb Control Blocks (VCB)
	Writing Management Services (MS) Programs
	SNA API Client Support

	Chapter 14. Management Services Entry Points
	WinMS()
	WinMSCleanup()
	WinMSGetIndication()
	WinMSRegisterApplication()
	WinMSStartup()
	WinMSUnregisterApplication()

	Chapter 15. Management Services Verbs
	ALERT_INDICATION
	FP_NOTIFICATION
	MDS_MU_RECEIVED
	NMVT_RECEIVED
	SEND_MDS_MU
	TRANSFER_MS_DATA

	Part 3. Appendixes
	Appendix A. IBM APPN MIB Tables
	Appendix B. Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	X

