
Personal Communications for Windows, Version 12.0

Emulator Programming

SC31-8478-11

���

Personal Communications for Windows, Version 12.0

Emulator Programming

SC31-8478-11

���

Note
Before using this information and the product it supports, read the information in Appendix F, “Notices,” on page 429.

Twelfth Edition (February 2016)

This edition applies to Version 12.0 of IBM Personal Communications for Windows (program number: 5639-I70) and
to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1989, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures ix

Tables xi

About This Book xiii
Who Should Read This Book xiii
Where To Find More Information xiii
Support Options xiv

Subscribing to Support News xiv
Support Assistant xiv

Notation xv

Chapter 1. Introduction to Emulator APIs 1
Using API Header Files 2
Critical Sections 2
Stack Size 2
Running 16-bit Windows EHLLAPI programs . . . 2
Windows x64 Platform Support 2
Sample Programs 3

Displaying Arabic data in the VBHLLAPI sample
program 4

Chapter 2. Introduction to IBM Standard
EHLLAPI, IBM Enhanced EHLLAPI and
WinHLLAPI Programming 5
EHLLAPI Overviews 5

IBM Standard EHLLAPI 5
WinHLLAPI 5
WinHLLAPI and IBM Standard EHLLAPI . . . 5
IBM Enhanced EHLLAPI and IBM Standard
EHLLAPI 6

Languages 6
EHLLAPI Call Format 6
Data Structures 7
Memory Allocation 8
EHLLAPI Return Codes 8
Compiling and Linking 9

Static Link Method 10
Dynamic Link Method. 10
Multithreading 11

Presentation Spaces 11
IBM Enhanced 32-Bit Interface Presentation Space
IDs 11
Types of Presentation Spaces. 11
Size of Presentation Spaces 11
Presentation Space IDs 12
Host-Connected Presentation Space 12
Presentation Space ID Handling 12
Sharing EHLLAPI Presentation Space between
Processes 14
Using mouse actions to select, copy, and paste
text in the Presentation Space 16
ASCII Mnemonics 17
Debugging 19

A Simple EHLLAPI Sample Program 19
Standard and Enhanced Interface Considerations 21
Host Automation Scenarios 22

Chapter 3. EHLLAPI Functions 27
Unicode Support for Code Pages 1390/1399 and
1137 27
Page Layout Conventions. 27

Prerequisite Calls 28
Call Parameters 28
Return Parameters 28
Notes on Using This Function 28

Summary of EHLLAPI Functions 28
Allocate Communications Buffer (123) 30
Cancel File Transfer (92) 31
Change PS Window Name (106) 32
Change Switch List LT Name (105) 33
Connect for Structured Fields (120) 34
Connect Presentation Space (1) 36
Connect Window Services (101). 37
Convert Position or Convert RowCol (99) . . . 38
Copy Field to String (34) 40
Copy OIA (13) 48
Copy Presentation Space (5) 57
Copy Presentation Space to String (8). 64
Copy String to Field (33) 72
Copy String to Presentation Space (15) 76
Disconnect from Structured Fields (121) 80
Disconnect Presentation Space (2) 82
Disconnect Window Service (102) 82
EditKey Intercept 83
Find Field Length (32) 85
Find Field Position (31) 86
Free Communications Buffer (124) 88
Get Key (51) 89
Get Request Completion (125) 94
Lock Presentation Space API (60) 97
Lock Window Services API (61). 99
Pause (18) 100
Post Intercept Status (52) 102
Query Additional Field Attribute (45) 103
Query Close Intercept (42) 104
Query Communications Buffer Size (122) . . . 104
Query Communication Event (81) 106
Query Cursor Location (7) 107
Query Field Attribute (14) 107
Query Host Update (24) 109
Query Session Status (22) 110
Query Sessions (10) 112
Query System (20) 113
Query Window Coordinates (103) 115
Read Structured Fields (126) 116
Receive File (91) 121
Release (12) 123
Reserve (11) 123

© Copyright IBM Corp. 1989, 2016 iii

Reset System (21) 124
Search Field (30) 125
Search Presentation Space (6) 129
Send File (90) 133
Send Key (3) 135
Set Cursor (40) 146
Set Session Parameters (9) 147
Start Close Intercept (41) 156
Start Communication Notification (80) 158
Start Host Notification (23) 160
Start Keystroke Intercept (50) 163
Start Playing Macro (110) 165
Stop Close Intercept (43). 166
Stop Communication Notification (82) 167
Stop Host Notification (25) 168
Stop Keystroke Intercept (53) 168
Wait (4) 169
Window Status (104) 170
Write Structured Fields (127) 173

Chapter 4. WinHLLAPI Extension
Functions 179
Summary of WinHLLAPI Functions 179
WinHLLAPI Asynchronous Functions 179

WinHLLAPIAsync. 179
WinHLLAPICancelAsyncRequest 185

Initialization and Termination Functions 186
WinHLLAPI Startup 186
WinHLLAPI Cleanup. 187

Blocking Routines 187
WinHLLAPIIsBlocking 187
WinHLLAPISetBlockingHook 187
WinHLLAPIUnhookBlockingHook 188
WinHLLAPICancelBlockingCall 188

Chapter 5. PCSAPI Functions 191
How to Use PCSAPI 191
Page Layout Conventions 191

Function Type 191
Parameter Type and Description 191
Return Code. 191

pcsConnectSession. 191
Function Type 192
Parameter Type and Description 192
Return Code. 192

pcsDisconnectSession 192
Function Type 192
Parameter Type and Description 192
Return Code. 192

pcsQueryConnectionInfo 193
Function Type 193
Parameter Type and Description 193
Return Code. 193
ConnectionInfo 193
Example 193

pcsQueryEmulatorStatus 194
Function Type 194
Parameter Type and Description 194
Return Code. 194

pcsQuerySessionList 194

Function Type 195
Parameter Type and Description 195
Return Parameters. 195
Example 196

pcsQueryWorkstationProfile 196
Function Type 196
Parameter Type and Description 196
Return Code. 196

pcsSetLinkTimeout 197
Function Prototype 197
Parameter Type and Description 197
Return Code. 197

pcsStartSession 197
Function Type 197
Parameter Type and Description 197
Return Code. 198

pcsStopSession 198
Function Type 198
Parameter Type and Description 198
Return Code. 198

Page Setup Functions. 199
Restrictions 199
pcsGetPageSettings 199
pcsRestorePageDefaults 201
pcsSetPageSettings 202

Printer Setup Functions 205
Restrictions 205
pcsGetPrinterSettings 205
pcsSetPrinterSettings 210

Chapter 6. DDE Functions in a 32–bit
Environment 215
Personal Communications DDE Data Items . . . 215

Using System Topic Data Items 216
Using Session Topic Data Items 216
Using LU Topic Data Items (3270 Only) . . . 216

DDE Functions 217
Naming Conventions for Parameters 218

Code Conversion 218
Conversion Types 218
Personal Communications Response 219

Find Field 220
CF_DSPTEXT 220
CF_TEXT 220
Personal Communications Response 221
Structure of the Field Information 221

Get Keystrokes 222
Personal Communications Response 223
Structure of the Keystroke Information 223

Get Mouse Input 223
Personal Communications Response 224
Structure of the Mouse Input Information . . . 224

Get Number of Close Requests 226
Personal Communications Response 226
Structure of the Number of the Close Requests
Information 227

Get Operator Information Area 227
Personal Communications Response 227
Structure of the Operator Information Area . . 228

Get Partial Presentation Space 228
Personal Communications Response 228

iv Emulator Programming

Structure of the Presentation Space 229
Get Presentation Space 230

Personal Communications Response 231
Structure of the Presentation Space 231

Get Session Status 232
Personal Communications Response 233
Format of Status Information 233

Get System Configuration 234
Personal Communications Response 234
Format of System Configuration Information 235

Get System Formats 235
Personal Communications Response 235

Get System Status 236
Personal Communications Response 236

Get System SysItems 237
Personal Communications Response 237

Get System Topics 238
Personal Communications Response 238

Get Trim Rectangle 238
Personal Communications Response 239

Initiate Session Conversation 239
Personal Communications Response 240

Initiate Structured Field Conversation 240
PC/3270 Response 240

Initiate System Conversation 240
Personal Communications Response 241

Put Data to Presentation Space 241
Personal Communications Response 242

Search for String 242
Personal Communications Response 243
Structure of the Search Information 243

Send Keystrokes 243
Personal Communications Response 244

Session Execute Macro 244
Personal Communications Response 245
Issuing Commands with the Session Execute
Macro Function. 245
WINDOW Command 245
KEYBOARD Command 245
SEND Command 246
RECEIVE Command 246
SENDKEY Command 246
WAIT Command 250

Set Cursor Position 251
Personal Communications Response 252

Set Mouse Intercept Condition 253
Personal Communications Response 255

Set Presentation Space Service Condition 255
Personal Communications Response 257

Set Session Advise Condition 257
Personal Communications Response 258

Set Structured Field Service Condition 258
PC/3270 Response 259

Start Close Intercept 259
Personal Communications Response 260

Start Keystroke Intercept 260
Personal Communications Response 261

Start Mouse Input Intercept 261
Personal Communications Response 262

Start Read SF 264
PC/3270 Response 265

Start Session Advise 266
Personal Communications Response 267

Stop Close Intercept 267
Personal Communications Response 267

Stop Keystroke Intercept. 268
Personal Communications Response 268

Stop Mouse Input Intercept. 268
Personal Communications Response 269

Stop Read SF 269
PC/3270 response 269

Stop Session Advise 270
Personal Communications Response 270

Terminate Session Conversation 270
Personal Communications Response 271

Terminate Structured Field Conversation 271
PC/3270 Response 271

Terminate System Conversation 271
Personal Communications Response 271

Write SF 272
PC/3270 Response 272

DDE Menu Item API in a Windows 32-Bit
Environment 272

DDE Menu Client 273
DDE Menu Server 273

DDE Menu Functions 274
Change Menu Item 275
Create Menu Item 281
Initiate Menu Conversation. 282
Start Menu Advise 282
Stop Menu Advise. 284
Terminate Menu Conversation. 284
Summary of DDE Functions in a Windows
32-Bit Environment 285

Chapter 7. Using DDE Functions with
a DDE Client Application 291
Using the Personal Communications DDE Interface 291

System Conversation 292
Session Conversation 292
Session Conversation (Hot Link) 294

Personal Communications DDE Interface 295
DDE Functions for System Conversation 295

Get System Configuration 295
Get System Formats 296
Get System Status 296
Get System SysItems 297
Get System Topics 297
Initiate System Conversation 297
Terminate System Conversation 298

DDE Functions for Session Conversation 298
Find Field 298
Get Operator Information Area 299
Get Partial Presentation Space 300
Get Presentation Space 301
Get Session Status 302
Get Trim Rectangle 302
Initiate Session Conversation 304
Put Data to Presentation Space 305
Search for String 305
Session Execute Macro 306
Set Cursor Position 307

Contents v

Terminate Session Conversation 307
DDE Functions for Session Conversation (Hot
Link) 307

Initiate Session Conversation 307
Start Close Intercept 308
Start Keystroke Intercept 308
Start Session Advise 309
Stop Close Intercept 310
Stop Keystroke Intercept. 311
Stop Session Advise 311
Terminate Session Conversation 311

Visual Basic Sample Program 311

Chapter 8. Server-Requester
Programming Interface (SRPI) Support 323
How to Use SRPI 323
SRPI Compatibility 323
Using the Server-Requester Programming Interface 324
SEND_REQUEST Parameters 326

Supplied Parameters 326
Returned Parameters 328

How PC/3270 Applications Use SRPI 328
Invoking SEND_REQUEST 329
Performance Considerations 329
Handling the Interrupt (Ctrl+Break) Key 329
C Requesters 329

C send_request Function 330
SRPI Record Definition 330
SRPI Return Codes 330

Chapter 9. Troubleshooting for
Emulator programming 331
Partial EHLLAPI input on Personal
Communications host screen 331
IBM Personal Communications VBHLLAPI sample
does not run in FDCC Windows Vista 333

Appendix A. Query Reply Data
Structures Supported by EHLLAPI . . 335
The DDM Query Reply 335

DDM Application Name Self-Defining
Parameter 336
PCLK Protocol Controls Self-Defining Parameter 336
Base DDM Query Reply Formats 336

The IBM Auxiliary Device Query Reply 338
Optional Parameters 338
Direct Access Self-Defining Parameter 339
PCLK Protocol Controls Self-Defining Parameter 340

The OEM Auxiliary Device Query Reply 340
Direct Access Self-Defining Parameter 341
PCLK Protocol Controls Self-Defining Parameter 341

The Cooperative Processing Requester Query Reply 342
The Product-Defined Query Reply 342

Optional Parameters 342
Direct Access Self-Defining Parameter 343

The Document Interchange Architecture Query
Reply 344

Appendix B. Differences from
Communication Manager/2 EHLLAPI . 347
Set Session Parameter (9) 347

Set Options 347
Return Parameters. 347
EAB Option 347

Copy OIA (13) 348
Copy String to PS (15) 348
Storage Manager (17) 349
Copy String to Field (33) 349
Get Key (51). 349
Window Status (104) 349
Query Sessions (10) 349
Connect for Structured Fields (120) 349
Allocate Communications Buffer (123) 349
ASCII Mnemonics 350
Get Request Completion (125) 350

Appendix C. DOS-Mode EHLLAPI for
Windows 351
Installation 351

Appendix D. SRPI Return Codes . . . 353
Error Handling 353

Transport Layer Errors 353
Application Errors. 353
SEND_REQUEST Processing Errors 353

Types of SRPI Return Codes 353
Type 0 Return Code Definitions 354
Type 1 Return Code Definitions 354
Type 2 Return Code Definitions 356
Type 3 Return Code Definitions 357

Class Definitions for Type 2 and Type 3 357
Exception Code Values for Type 2 and Type 3 . . 358
Exception Object Values for Type 2 and Type 3 . . 358
Server Return Codes 359

Appendix E. DDE Functions in a
16-Bit Environment 361
Personal Communications DDE Data Items in a
16-Bit Environment 361

Using System Topic Data Items 362
Using Session Topic Data Items 362
Using LU Topic Data Items (PC/3270 Only) . . 362

DDE Functions in a 16-Bit Environment 362
Naming Conventions for Parameters 363
Find Field 364
Get Keystrokes 365
Get Mouse Input 366
Get Number of Close Requests 369
Get Operator Information Area 370
Get Partial Presentation Space 371
Get Presentation Space 373
Get Session Status 375
Get System Configuration 376
Get System Formats 377
Get System Status 378
Get System SysItems 379
Get System Topics 380

vi Emulator Programming

|
||
|
||
|
||

Get Trim Rectangle 381
Initiate Session Conversation 381
Initiate Structured Field Conversation 382
Initiate System Conversation 383
Put Data to Presentation Space 383
Search for String 384
Send Keystrokes 385
Session Execute Macro 386
Set Cursor Position 392
Set Mouse Intercept Condition 394
Set Presentation Space Service Condition . . . 396
Set Session Advise Condition 397
Set Structured Field Service Condition 398
Start Close Intercept 399
Start Keystroke Intercept 401
Start Mouse Input Intercept 402
Start Read SF 405
Start Session Advise 406
Stop Close Intercept 407
Stop Keystroke Intercept. 408
Stop Mouse Input Intercept. 409
Stop Read SF 409
Stop Session Advise 410

Terminate Session Conversation 411
Terminate Structured Field Conversation . . . 411
Terminate System Conversation 411
Write SF 412

DDE Menu Item API in a 16-Bit Environment . . 413
DDE Menu Client in a 16-Bit Environment . . 413
DDE Menu Server, 32-Bit 414

DDE Menu Functions in a 16-Bit Environment . . 415
Change Menu Item 415
Create Menu Item 420
Initiate Menu Conversation. 421
Start Menu Advise 422
Stop Menu Advise. 423
Terminate Menu Conversation. 424

Summary of DDE Functions in a 16-Bit
Environment 424

Appendix F. Notices 429
Trademarks 430

Index 433

Contents vii

viii Emulator Programming

Figures

1. Keystroke Flow 25
2. Host Presentation Space Characters 50
3. DDE Menu Server Conversation 273
4. DDE Menu Client Conversation 274
5. Example of PC/3270 SRPI Requester and

Server 324

6. IBM Workstation Requester and IBM Host
Computer Server Relationship 325

7. Example of an SRPI Requester and Server
Flow 326

8. DDE Menu Server Conversation 413
9. DDE Menu Client Conversation 414

© Copyright IBM Corp. 1989, 2016 ix

x Emulator Programming

Tables

1. Sample Program Files 3
2. Sample Program Subdirectories 3
3. EHLLAPI Return Codes. 8
4. EHLLAPI Read and Write Sharing Option

Combinations 15
5. Prerequisite Functions and Associated

Dependent Functions 15
6. EHLLAPI Functions Summary 28
7. Mnemonics with Uppercase Alphabetic

Characters 137
8. Mnemonics with Numbers or Lowercase

Characters 138
9. Mnemonics with @A and @ Uppercase

Alphabetic Characters. 138
10. Mnemonics with @A and @ Lowercase

Alphabetic Characters. 139
11. Mnemonics with @A and @ Alphanumeric

(Special) Characters 140
12. Mnemonics with @S (Shift), @W (Edit) and @

Alphabetic Characters. 140
13. Mnemonics Using @X and @Alphabetic

Lowercase (For DBCS Only) 140
14. Mnemonics Using @M, @Q and @Alphabetic

Lowercase (For VT Only) 141
15. Mnemonics with Special Character Keys 144
16. BIDI Key Mnemonics 144
17. Naming Scheme for Data Items 215
18. DDE Functions Available for Personal

Communications 217
19. SENDKEY Command List 247
20. DDE Function Summary 285
21. Naming Scheme for Data Items 291
22. Topics for Personal Communications 291
23. Mark Word Left. 303
24. Mark Word Right 303
25. Parameters Supplied by the SRPI Requester 326
26. Parameters Returned to the SRPI Requester 328
27. DDM Query Reply Base Format 335
28. DDM Application Name Self-Defining

Parameter. 336
29. DDM PCLK Auxiliary Device Self-Defining

Parameter. 336

30. Base DDM Query Reply Format with Name
and Direct Access Self-Defining Parameters . 337

31. Base DDM Query Reply Format with Direct
Access and Name Self-Defining Parameters . 337

32. IBM Auxiliary Device Base Format with
Direct Access Self-Defining Parameter . . . 339

33. IBM Auxiliary Device Direct Access
Self-Defining Parameter 340

34. IBM Auxiliary Device PCLK Self-Defining
Parameter. 340

35. OEM Auxiliary Device Base Format with
Direct Access Self-Defining Parameter . . . 340

36. OEM Auxiliary Device Direct Access
Self-Defining Parameter 341

37. IBM Auxiliary Device PCLK Self-Defining
Parameter. 341

38. CPR Query Reply Buffer Format 342
39. IBM Product-Defined Query Reply Base

Format. 343
40. Valid REFID and SSID Values for the IBM

Product-Defined Query Reply 343
41. IBM Product-Defined Direct Access

Self-Defining Parameter 344
42. IBM DIA Base Format. 344
43. IBM Product-Defined Direct Access

Self-Defining Parameter 345
44. Type 1 Return Code Definitions and

Descriptions 354
45. Type 3 Return Code Definitions and

Descriptions 357
46. Class Definitions for Type 2 and Type 3 357
47. Exception Code Values for Type 2 and Type 3 358
48. Exception Object Values for Type 2 and Type

3 358
49. Naming Scheme for Data Items 361
50. DDE Functions in a 16–Bit Environment 362
51. SENDKEY Command List 389
52. Summary of DDE Functions in a 16-Bit

Environment 424

© Copyright IBM Corp. 1989, 2016 xi

xii Emulator Programming

About This Book

This book provides necessary programming information for you to use the IBM®

Personal Communications for Windows Emulator High-Level Language
Application Program Interface (EHLLAPI), Dynamic Data Exchange (DDE),
Personal Communications Session API (PCSAPI), and Server-Requester
Programming Interface (SRPI). The Host Access Class Library is described in Host
Access Class Library.

EHLLAPI/DDE/PCSAPI is used with Personal Communications to provide a way
for users and programmers to access the host presentation space with a set of
functions that can be called from an application program running in a workstation
session.

In this book, Windows refers to Windows 7, Windows 8/8.1, Windows 10, Windows
Server 2008, and Windows Server 2012. When information is relevant only to a
specific operating system, this will be indicated in the text.

Who Should Read This Book
This book is intended for programmers who write application programs that use
the APIs documented in this book.

A working knowledge of Windows is assumed. For information about Windows,
refer to the list of publications under “Where To Find More Information.”

The programmer must also be familiar with connecting to a host system from a
terminal or from a workstation with terminal emulation software.

This book assumes you are familiar with the language and the compiler that you
are using. For information on how to write, compile, or link-edit programs, refer to
Where To Find More Information for the appropriate references for the specific
language you are using.

Where To Find More Information
The Personal Communications library includes the following publications:
v Installation Guide
v Quick Beginnings
v Emulator User's Reference
v Administrator's Guide and Reference
v Emulator Programming
v Client/Server Communications Programming
v System Management Programming
v Host Access Class Library
v Configuration File Reference

In addition to the printed books, there are Hypertext Markup Language (HTML)
documents provided with Personal Communications:

© Copyright IBM Corp. 1989, 2016 xiii

|
|
|

Host Access Class Library
This HTML document describes how to write an ActiveX/OLE
2.0–compliant application to use Personal Communications as an
embedded object.

Following is a list of related publications:
v IBM 3270 Information Display System Data Stream Programmer's Reference,

GA23-0059
v IBM 5250 Information Display System Functions Reference Manual, SA21-9247

Refer to the IBM Glossary of Computing Terms at http://
www.networking.ibm.com/nsg/nsgmain.htm for definitions of technical terms
used throughout this book.

Support Options
If you determine that you need to contact IBM, you can do any of the following:
v Access the Personal Communications Web page at http://www.ibm.com/

software/products/en/pcomm.
v To find the phone number for IBM Software Support, U.S. customers can call

1-800-IBM-4YOU. International customers that have access to the U.S. "800" toll
free numbers can reach the International Support Center by calling
1-800-IBM-4YOU and asking to speak with the International Support Center
(ISC) in Atlanta. International customers without access to the U.S. toll free
numbers can call the ISC directly at 770-863-1234. The ISC's FAX number is
770-863-3030 and is available 24 hours a day.

Subscribing to Support News
To receive Personal Communications support news flashes, complete the following
steps:
1. Go to the IBM support at http://www.ibm.com/support/mynotifications, and

log in with your IBM Registration ID.
2. In the Product lookup field, type Personal Communications.
3. In the drop down list, click the Subscribe link rendered against the product.
4. Select all types of documents for which you would like to receive notifications,

and click Submit.

Support Assistant
The IBM Support Assistant enables you to easily resolve software questions. The
Support Assistant provides the following components:
v Search

Enable search of the software information database.
v Service

Assists customers who choose to submit a PMR by providing access to the
Electronic Service Request Web site.

v Support Links

A consolidated list of IBM web links, organized by brand and product.

xiv Emulator Programming

|
|

|
|

|

|

|
|

http://www.ibm.com/software/products/en/pcomm
http://www.ibm.com/software/products/en/pcomm
http://www.ibm.com/support/mynotifications

Help desk personnel and Personal Communications administrators might want to
install Support Assistant in order to better support end users. The Support
Assistant can be downloaded from the following address: http://www.ibm.com/
software/support/isa/index.html

Notation
A table at the beginning of each section explains API or DDE functions in
Chapter 3, “EHLLAPI Functions,” on page 27, Chapter 5, “PCSAPI Functions,” on
page 191, Chapter 6, “DDE Functions in a 32–bit Environment,” on page 215, and
Appendix E, “DDE Functions in a 16-Bit Environment,” on page 361. It shows
whether a function is supported for the products that provide the function
described in the section. Yes means it is supported for a host type, and No means
not supported. For example, the following table indicates that a function is
available for 3270 and VT sessions but not for 5250 sessions.

3270 5250 VT

Yes No Yes

About This Book xv

http://www.ibm.com/software/support/isa/index.html
http://www.ibm.com/software/support/isa/index.html

xvi Emulator Programming

Chapter 1. Introduction to Emulator APIs

The IBM Personal Communications product supplies several application
programming interfaces (APIs). Each interface has a specific set of functions and
may be used for different purposes. Choose the programming interface that best
matches the functional requirements of your application. Some applications may
use more than one interface to achieve the desired results. The programming
interfaces are:
v Emulator High Level Language API (EHLLAPI): This interface provides

functions to access emulator "presentation space" data such as characters on the
host screen. It also provides functions for sending keystrokes to the host,
intercepting user-entered keystrokes, querying the status of the host session,
uploading and downloading files, and other functions. This interface is often
used for automated operator applications which read host screens and enter
keystrokes without direct user intervention. See Chapter 3, “EHLLAPI
Functions,” on page 27.
– IBM Standard HLLAPI Support: This is a standard programming interface

which allows programmatic access to a host emulator session. See Chapter 2,
“Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and
WinHLLAPI Programming,” on page 5.

– IBM Enhanced HLLAPI Support: This interface is based on the IBM
Standard HLLAPI interface. It provides all of the existing functionality but
uses modified data structures. See Chapter 2, “Introduction to IBM Standard
EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming,” on page
5.

– Windows High Level Language API (WinHLLAPI): This interface provides
much of the same functionality of IBM Standard EHLLAPI and adds some
extensions that take advantage of the Windows environment. See Chapter 2,
“Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and
WinHLLAPI Programming,” on page 5.

v Dynamic Data Exchange (DDE): This interface is similar to the EHLLAPI
interface in that it provides a programmable means to read the host screen, send
keystrokes, and perform related functions. It has some additional functions for
access to the emulator clipping rectangle, intercepting mouse events, and
adding/removing commands on the emulator menu bar. See Chapter 6, “DDE
Functions in a 32–bit Environment,” on page 215.

v Personal Communications Session API (PCSAPI): This interface is used to start,
stop, and control emulator sessions and settings. See Chapter 5, “PCSAPI
Functions,” on page 191.
For Personal Communications Version 12.0, functions have been added to allow
control and retrieval of page and printer settings. See “Page Setup Functions” on
page 199 and “Printer Setup Functions” on page 205.

v Server-Requestor Programming Interface (SRPI): This interface is used in
cooperation with an IBM Enhanced Connectivity Facility (ECF) application
running on a host system. This API provides functions for writing synchronous
call-return interfaces to remote server programs. See Chapter 8,
“Server-Requester Programming Interface (SRPI) Support,” on page 323.

v IBM Personal Communications Host Access Class Library (ECL): ECL is a set
of objects that allow application programmers and scripting language writers to
access host applications easily and quickly. Personal Communications supports

© Copyright IBM Corp. 1989, 2016 1

three different ECL layers (C++ objects, ActiveAutomation (OLE), and
LotusScript Extension (LSX)). Refer to Host Access Class Library (HACL) for more
details.

Using API Header Files
The application program should include operating system header files before
including API header files. For example:

#include <windows.h> // Windows main header
#include "pcsapi.h" // PComm PCSAPI header
...

Critical Sections
Use critical sections (EnterCriticalSection function) carefully when your program
calls emulator APIs. Do not make emulator API calls within a critical section. If
one thread of an application establishes a critical section and another thread is
within an emulator API call, the call is suspended until you exit from the critical
section.

During processing of an API call, all signals (except numeric coprocessor signals)
are delayed until the call completes or until the call needs to wait for incoming
data. Also, TerminateProcess issued from another process is held until the
application completes an API call it might be processing.

Stack Size
Emulator APIs use the calling program's stack when they are executed. The
operating system, the application, and the API all require stack space for dynamic
variables and function parameters. At least 8196 bytes (8K) of stack space should
be available at the time of an API call. It is the responsibility of the application
program to ensure sufficient stack space is available for the API.

Running 16-bit Windows EHLLAPI programs
If you are running multiple 16-bit Windows EHLLAPI tasks that use any of the
16-bit EHLLAPI DLLs, each 16-bit EHLLAPI task must run under a separate
NTVDM. You can use any of the following methods to accomplish this:
v Shortcuts used to start 16-bit EHLLAPI applications must specify that the

program run in a separate memory space (NTVDM).
v To start a 16-bit EHLLAPI application such as hllapi16.exe from a command

prompt or batch program, type the following command:
start /separate hllapi16.exe

v If a Win32 application spawns a 16-bit EHLLAPI application using the Windows
API CreateProcess, it must use the Process creation flag named
CREATE_SEPARATE_WOW_VDM.

Windows x64 Platform Support
The x64-based versions of Microsoft Windows Server 2008 and Microsoft Windows
8/8.1/10 x64 Edition are optimized to run native 64-bit programs, but do not
support 32-bit drivers or 16-bit applications.

For these platforms, Personal Communications does not install the following
libraries.

2 Emulator Programming

|
|
|

v DOS EHLLAPI
v 16-bit API support:

– Standard EHLLAPI 16-bit interface
– WinHLLAPI 16-bit interface
– PCSAPI 16-bit interface
– SRPI 16-bit interface

Sample Programs
Several sample programs are provided, each of which illustrates the use of one of
the Personal Communications APIs. If you choose to install the sample programs,
they will be installed in the \SAMPLES directory.

Note: International Business Machines Corporation provides these files as is,
without warranty of any kind, either express or implied, including, but not
limited to, the implied warranties of merchantability or fitness for a
particular purpose.

The sample program files include source and supporting files for the following
Personal Communications APIs:
v Emulator High-Level Language Programming Interface (EHLLAPI)
v Dynamic Data Exchange (DDE)
v Server-Requester Programming Interface (SRPI)
v PCSAPI Functions

The following files are installed in the \SAMPLES directory.

Table 1. Sample Program Files

File Name Description

DDE_C.H DDE include file

EHLAPI32.H IBM standard 32-bit EHLLAPI include file

WHLLAPI.H WinHLLAPI 16-bit include file

HAPI_C.H EHLLAPI include file

PCSAPI.H PCSAPI include file

PCSCALLS.LIB Import library for standard interface

PCSCAL32.LIB Import library for enhanced interface

EHLAPI32.LIB Import library for IBM Standard 32-bit EHLLAPI interface

WHLLAPI.LIB Import library for WinHLLAPI 16-bit interface

WHLAPI32.LIB Import library for WinHLLAPI 32-bit interface

UUCCPRB.H SRPI include file

The following subdirectories are created in the \SAMPLES directory.

Table 2. Sample Program Subdirectories

File Name Description

DDXFER Shows how EHLLAPI can be used to create a “Drag and Drop”
application; in this case, for file transfer

ECL HACL sample files

Chapter 1. Introduction to Emulator APIs 3

Table 2. Sample Program Subdirectories (continued)

File Name Description

HLLSMP Shows how to use EHLLAPI to request a keystroke and log on to a VM
system

LISTFILE Illustrates how DDE can make use of the LOAD button to transfer files
from the host

PCSMAIN Illustrates the use of PCSAPI to start and stop sessions, query the
session status, and query the profile for the session

SPL2FILE A program that uses DDE to save an iSeries®, eServer™ i5, or System i5®

spool file as an ASCII file on the PC

SRPSMP Illustrates the use of the Server Requester Programming Interface (SRPI)

VBDDE VBDDE sample files

VBHLLAPI VBHLLAPI sample files

VBPCSAPI VBPCSAPI sample files

Displaying Arabic data in the VBHLLAPI sample program
For proper display of Arabic data in the VBHLLAPI sample program, you should
do the following:
1. Edit the VBHLLAPI sample program source code. For each form, change the

default font property to a Windows True Type font that supports Arabic script
(for example, Courier New).

2. Recompile the VBHLLAPI sample program.

4 Emulator Programming

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM
Enhanced EHLLAPI and WinHLLAPI Programming

This chapter provides information needed to incorporate IBM Standard EHLLAPI
(16- and 32-bit), WinHLLAPI (16- and 32-bit), and IBM Enhanced 32-bit EHLLAPI
(EHLAPI32) functions into applications written in a high level language. It
provides details on call format, memory allocation considerations, initializing the
interfaces, and compiling and linking applications. Also included is a short sample
EHLLAPI program and the compile/link instructions used to build it. Finally, a set
of possible uses for the EHLLAPI interface (scenarios) is described.

An EHLLAPI application is any application program which uses the EHLLAPI
interface to access the host 3270/5250/VT presentation space. The presentation
space includes the visible emulator character data, fields and attribute data,
keystroke data, and other information.

EHLLAPI Overviews
Following are overviews for HLLAPI programming interfaces.

IBM Standard EHLLAPI
EHLLAPI is a standard programming interface which allows programmatic access
to a host emulator session. Functions are provided for reading host screen data
(such as the characters and attributes), for sending keystrokes, and performing
other emulator-related functions.

The EHLLAPI interface is a single call-point interface. There is a single callable API
through which all EHLLAPI functions are requested. On each call to the interface
the application provides a function number which identifies the function
requested, a pointer to a data buffer, a pointer to the length of the data buffer, and
a pointer to a return code (see “EHLLAPI Call Format” on page 6).

WinHLLAPI
WinHLLAPI is based on the familiar EHLLAPI.API. It encompasses all of the
existing functionality and adds extensions that take advantage of the Windows
message driven environment. Users of the IBM Personal Communications
EHLLAPI interface will notice no functional difference unless they incorporate the
WinHLLAPI extensions.

The WinHLLAPI extension functions and any functions that deviate from the
EHLLAPI form are described in Chapter 4, “WinHLLAPI Extension Functions,” on
page 179. For information on common functions, refer to Chapter 3, “EHLLAPI
Functions,” on page 27.

WinHLLAPI and IBM Standard EHLLAPI
The entry symbol for WinHLLAPI, is appropriately, WinHLLAPI. EHLLAPI users
wishing to switch to the WinHLLAPI implementation must change from the hllapi
standard entry. New users should follow all of the directions in Chapter 3,
“EHLLAPI Functions,” on page 27, and use the WinHLLAPI entry in place of the
standard hllapi entry.

© Copyright IBM Corp. 1989, 2016 5

IBM Enhanced EHLLAPI and IBM Standard EHLLAPI
IBM Enhanced EHLLAPI is based on the familiar EHLLAPI API. It encompasses all
of the existing functionality but takes advantage of the 32-bit environment and
uses modified data structures. Standard interface users wishing to switch to IBM
Enhanced 32-bit EHLLAPI need to change only the entry symbol from LPWORD
to LPINT in the first, third, and fourth parameters. New users should use the
procedures in the following sections.

Languages
Any programming language which can invoke an entry point in a DLL with the
"Pascal" calling convention can be used to execute EHLLAPI functions. However,
the Personal Communications EHLLAPI toolkit provides header files and function
prototypes only for the C++ languages. A clear understanding of data structure
layout and calling conventions is required to use any other language. The
EHLLAPI toolkit supports the following C/C++ compilers:
v IBM VisualAge® for C/C++
v Microsoft Visual C/C++ Version 4.0 and higher

Most other C/C++ compilers will also work with the toolkit.

EHLLAPI C/C++ applications must include the Personal Communications
EHLLAPI header file (HAPI_C.H). This file defines the layout of data structures
and provides a prototype for the EHLLAPI entry point.

Note: The data structure layout for 16- and 32-bit applications are not the same
(see “Standard and Enhanced Interface Considerations” on page 21).

EHLLAPI Call Format
The EHLLAPI entry point (hllapi) is always called with the following four
parameters:
1. EHLLAPI Function Number (input)
2. Data Buffer (input/output)
3. Buffer Length (input/output)
4. Position (input); Return Code (output)

The prototype for IBM Standard EHLLAPI is:
[long hllapi (LPWORD, LPSTR, LPWORD, LPWORD);

The prototype for IBM Enhanced EHLLAPI is:
[long hllapi (LPINT, LPSTR, LPINT, LPINT);

Each parameter is passed by reference not by value. Thus each parameter to the
function call must be a pointer to the value, not the value itself. For example, the
following is a correct example of calling the EHLLAPI Query Session Status
function:

#include "hapi_c.h"
struct HLDQuerySessionStatus QueryData;
int Func, Len, Rc;
long Rc;

memset(QueryData, 0, sizeof(QueryData)); // Init buffer
QueryData.qsst_shortname = ’A’; // Session to query
Func = HA_QUERY_SESSION_STATUS; // Function number

6 Emulator Programming

Len = sizeof(QueryData); // Len of buffer
Rc = 0; // Unused on input

hllapi(&Func, (char *)&QueryData, &Len, &Rc); // Call EHLLAPI
if (Rc != 0) { // Check return code

// ...Error handling
}

All the parameters in the hllapi call are pointers and the return code of the
EHLLAPI function is returned in the value of the 4th parameter, not as the value
of the function. For example, the following is not correct:

if (hllapi(&Func, (char *)&QueryData, &Len, &Rc) != 0) { // WRONG!
// ...Error handling

}

Although the hllapi function is defined to return a long data type for IBM
Standard and Enhanced EHLLAPI, and void data type for WinHLLAPI, its value is
undefined and should not be used.

The second through fourth parameters of the hllapi call can return information to
the application. The description of each EHLLAPI function describes what, if any,
information is returned in these parameters.

Data Structures
Many EHLLAPI functions use a formatted data structure to pass information to or
from the application program. The description of each function shows the layout of
the data structure. The data passed to or from the EHLLAPI function must exist in
storage exactly as documented, byte for byte. Note that the structure layout is the
same for all IBM Standard and WinHLLAPI 16- and 32-bit applications. Data
structures for the IBM Enhanced 32-bit applications are packed to a 4-byte
alignment.

It is highly recommended that the supplied header file and data structure definitions
be used to ensure proper data alignment and layout. Although it is technically
possible, the following is not recommended:

char QueryData[20]; // Not recommended
...
Func = HA_QUERY_SESSION_STATUS;
hllapi(&Func, QueryData, &Len, &Rc);
if (QueryData[13] == ’F’) {

// ...this is a 5250 session
}

The recommended way to write this function would be:
#include "hapi_c.h"
struct HLDQuerySessionStatus QueryData; // Recommended
...
Func = HA_QUERY_SESSION_STATUS;
hllapi(&Func, (char *)&QueryData, &Len, &Rc);
if (QueryData.qsst_sestype == ’F’) {

// ...this is a 5250 session
}

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 7

Memory Allocation
EHLLAPI functions do not allocate or free memory. The application program must
preallocate buffer space for EHLLAPI functions which require it before calling the
hllapi entry point. The buffer space may be pre-allocated as a dynamic variable
such as:

struct HLDQuerySessionStatus QueryBuff;

or it may be allocated by a call to a C library or operating system function such as:
struct HLDQuerySessionStatus *QueryBuff;
...
QueryBuff = malloc(sizeof(struct HLDQuerySessionStatus));

In any case, the application is responsible for allocating sufficient buffer space
before calling EHLLAPI functions and for freeing buffers when they are not
needed.

EHLLAPI Return Codes
EHLLAPI functions return a completion code or return codein the 4th parameter of
the hllapi function call (except for the Convert Position or RowCol (99) function).
The return code indicates the success or failure of the requested function.

Unless indicated otherwise in the description of each function, the following table
shows the meaning of each return code value. Some functions may have a slightly
different interpretation of these return codes; refer to the individual function
descriptions for details.

Table 3. EHLLAPI Return Codes

Return Code Explanation

0 The function successfully executed, or no update since the last call was
issued.

1 An incorrect host presentation space ID was specified. The specified session
either was not connected, does not exist, or is a logical printer session.

2 A parameter error was encountered, or an incorrect function number was
specified. (Refer to the individual function for details.)

4 The execution of the function was inhibited because the target presentation
space was busy, in X CLOCK state (X []), or in X SYSTEM state.

5 The execution of the function was inhibited for some reason other than
those stated in return code 4.

6 A data error was encountered due to specification of an incorrect parameter
(for example, a length error causing truncation).

7 The specified presentation space position was not valid.

8 A functional procedure error was encountered (for example, use of
conflicting functions or missing prerequisite functions).

9 A system error was encountered.

10 This function is not available for EHLLAPI.

11 This resource is not available.

12 This session stopped.

24 The string was not found, or the presentation space is unformatted.

25 Keystrokes were not available on input queue.

8 Emulator Programming

Table 3. EHLLAPI Return Codes (continued)

Return Code Explanation

26 A host event occurred. See Query Host Update (24) for details.

27 File transfer was ended by a Ctrl+Break command.

28 Field length was 0.

31 Keystroke queue overflow. Keystrokes were lost.

32 An application has already connected to this session for communications.

33 Reserved.

34 The message sent to the host was canceled.

35 The message sent from the host was canceled.

36 Contact with the host was lost.

37 Inbound communication has been disabled.

38 The requested function has not completed its execution.

39 Another DDM session is already connected.

40 The disconnection attempt was successful, but there were asynchronous
requests that had not been completed at the time of the disconnection.

41 The buffer you requested is being used by another application.

42 There are no outstanding requests that match.

43 The API was already locked by another EHLLAPI application (on LOCK) or
API not locked (on UNLOCK).

Compiling and Linking
Applications using EHLLAPI functions must include the appropriate header file to
obtain the proper function prototypes, constants, and data structure definitions.
These header files may be used with any of the supported C/C++ compilers (see
“Languages” on page 6). If a different compiler or language is used, then you must
provide your own equivalent definitions and structures.

There are two possible ways to link the application program, depending on how
the entry point is to be resolved. The simplest way is to statically link the
application with the appropriate Personal Communications library. This will
resolve the entry point at link time. The operating system will load the correct DLL
with the application when it starts. Another way to link to the entry point is to
perform dynamic linking. In this case, the application uses operating system calls
to load the correct DLL and obtain the entry point address at run time.

The following table shows which header files to use, which .LIB should be used
for static linking, and which .DLL should be used for dynamic loading.

Interface Entry Point Header File LIB DLL

IBM Standard (16-bit) hllapi hapi_c.h PCSCALLS.DLL PCSHLL.DLL

IBM Standard (32-bit) hllapi ehlapi32.h EHLAPI32.LIB EHLAPI32.DLL

IBM Enhanced (32-bit) hllapi hapi_c.h PCSCAL32.LIB PCSHLL32.DLL

WinHLLAPI (16-bit) winhllapi whllapi.h WHLLAPI.LIB WHLLAPI.DLL

WinHLLAPI (32-bit) winhllapi whllapi.h WHLAPI32.LIB WHLAPI32.DLL

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 9

Static Link Method
Using the static link method the application can simply call the hllapi entry point
when needed such as:
#include "hapi_c.h"
int HFunc, HLen, HRc; // Function parameters
char HBuff[1]; // Function parameters
...
HFunc = HA_RESET_SYSTEM; // Run EHLLAPI function
HLen = 0;
HRc = 0;
hllapi(&Func, HBuff, &HLen, &HRc);
if (HRc != 0) {

// ... EHLLAPI access error
}

When the application is linked, the appropriate Personal Communications library
files must be linked with the application executable code. For example, the
following link command might be used (IBM VisualAge C/C++):

ilink /de /noe pcscal32.lib sample.obj

When the operating system loads an application constructed in this way, the
Personal Communications EHLLAPI module is loaded automatically.

Dynamic Link Method
Using the dynamic link method the application makes calls to the operating system
at run time to load the Personal Communications EHLLAPI module and to locate
the hllapi entry point within it. This method requires more code in the application
but gives the application greater control over error conditions. For example, the
application can display a specific error message to the user if the Personal
Communications EHLLAPI module cannot be found.

To use dynamic linking, the application needs to load the appropriate Personal
Communications module and locate the entry point. It is recommended that the
entry point be located by its ordinal number and not by name. The ordinal number
is defined in the header file. The following 32-bit Windows code loads the IBM
Standard 32-bit EHLLAPI module, locates the hllapi entry point, and makes an
EHLLAPI function call.
#include "hapi_c.h"

HMODULE Hmod; // Handle of PCSHLL32.DLL
long (APIENTRY hllapi)(int *, char *, int *, int *); // Function pointer
int HFunc, HLen, HRc; // Function parameters
char HBuff[1]; // Function parameters

Hmod = LoadLibrary("PCSHLL32.DLL"); // Load EHLLAPI module
if (Hmod == NULL) {

// ... Error, cannot load EHLLAPI module
}

hllapi = GetProcAddress(Hmod, MAKEINTRESOURCE(ord_hllapi));
// Get EHLLAPI entry point

if (hllapi == NULL) {
// ... Error, cannot find EHLLAPI entry point

}

HFunc = HA_RESET_SYSTEM; // Run EHLLAPI function
HLen = 0;
HRc = 0;

10 Emulator Programming

(*hllapi)(&Func, HBuff, &HLen, &HRc);
if (HRc != 0) {

// ... EHLLAPI access error
}

Multithreading
IBM Enhanced EHLLAPI (32-bit) and IBM Standard EHLLAPI 16-bit connect on a
per process basis. All threads access the same connected host session. The thread
that performs the connections must also perform the disconnection.

IBM Standard EHLLAPI (32-bit) and WinHLLAPI connect on a per thread basis.
Each thread must maintain its own connections. This allows a multithreaded
process to maintain connections to more than one connected host session at a time.
This eliminates the need for multi-process schemes when using a WinHLLAPI
program to coordinate data between different hosts. It also puts the burden of
connecting and disconnecting as necessary on the individual thread.

Presentation Spaces
Many EHLLAPI functions require a presentation space ID (PSID) to indicate which
host emulator session is to be used for the function. (This is also referred to as the
short session ID). A presentation space ID is a single character in the range A to Z.
There are a maximum of 26 sessions.

IBM Enhanced 32-Bit Interface Presentation Space IDs
For IBM Enhanced EHLLAPI applications, the session ID is extended with three
additional bytes. These extended session bytes must be set to zero for future
compatibility. This is most easily accomplished by setting the contents of EHLLAPI
buffers to all binary zero before filling them in with the required information. For
example, the following might be used to query the status of session B:

#include "hapi_c.h"
int HFunc, HLen, HRc; // Function parameters
struct HLDPMWindowStatus StatusData; // Function parameters

Func = HA_PM_WINDOW_STATUS;
HLen = sizeof(StatusData);
HRc = 0;

// Set data buffer to zeros and fill in request
memset(&StatusData, 0x00, sizeof(StatusData));
StatusData.cwin_shortname = ’B’; // Short session ID
StatusData.cwin_option = 0x02; // Query command

hllapi(&Func, (char *)&StatusData, &HLen, &HRc);

Types of Presentation Spaces
An emulator session can be configured as a display session or a printer session.
EHLLAPI applications cannot connect to printer or router sessions of PC400. The
Query Sessions (10) function can be used to determine the type of a particular
session.

Size of Presentation Spaces
An emulator display session can be configured for a range of screen sizes from
1920 bytes (24x80 screen size) to 9920 bytes (62x160 screen size). Some EHLLAPI
functions such as Copy PS to String (8) require the application to allocate enough

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 11

storage to hold (possibly) the entire presentation space. The size of the presentation
space for a given session can be obtained using the Query Session Status (22)
function.

Presentation Space IDs
EHLLAPI functions interact with only one presentation space at a time. The
presentation space ID (PSID) is used to identify the particular presentation space in
which a function is to operate.

For some functions, the PSID is contained in a preceding call to the Connect
Presentation Space (1) function. For other functions, the PSID is contained in the
calling data string parameter.

Host-Connected Presentation Space
Connection to the host presentation space (or session) is controlled by using the
Connect Presentation Space (1) and Disconnect Presentation Space (2) functions.
The status of the connection determines whether some functions can be executed.
It also affects how the PSID is defined. The following text explains how to control
the status of the connection to the host presentation space:
v At any given time, there can be either no host-connected presentation space, or

there can be one and only one host-connected presentation space.
v There is no default host-connected presentation space.
v Following a connect, there is one and only one host-connected presentation

space. The host presentation space that is connected is identified in the calling
data string parameter of the connect function.

v A subsequent call to connect can be executed with no intervening disconnect. In
this case, there is still one and only one host-connected presentation space.
Again, the host presentation space that is connected is identified in the calling
data string parameter of the connect function.

v Following a disconnect, there is no host-connected presentation space. This rule
applies following multiple consecutive calls to connect or following a single call
to connect.

v You cannot connect to a logical printer session.

Presentation Space ID Handling
The PSID is used to specify the host presentation space (or session) in which you
desire a function to operate. The way the PSID is handled is affected by two
factors:
1. The method used to specify the PSID:

a. As the calling data string parameter of a preceding call to the Connect
Presentation Space (1) function

b. As a character in the calling data string of the function being executed.
Handling varies depending on whether the character is:
v A letter A through Z

v A blank or a null
2. The status of the connection to the host presentation space.

The following paragraphs describe how the PSID is handled for the various
combinations of these two factors.

12 Emulator Programming

PSID Handling for Functions Requiring Connect
Some functions interact only with the host-connected presentation space. These
functions require the Connect Presentation Space (1) function as a prerequisite
call. The PSID for these functions is determined by the Connect Presentation
Space (1) and the Disconnect Presentation Space (2) functions as follows:
v When there is no host-connected presentation space, these functions do not

interact with any presentation space. A return code of 1 is generated.
v When there is one host-connected presentation space, these functions interact

with the presentation space specified in the calling data string parameter of the
most recent call to the Connect Presentation Space (1) function.

PSID Handling for Functions Not Requiring Connect
Some functions can interact with a host presentation space whether it is connected
or not. These functions allow you to specify the PSID in the calling data string
parameter. They are as follows:
v Connect Presentation Space (1)
v Convert Position RowCol (99)
v Get Key (51)
v Post Intercept Status (52)
v Query Close Intercept (42)
v Query Host Update (24)
v Query Session Status (22)
v Start Close Intercept (41)
v Start Host Notification (23)
v Start Keystroke Intercept (50)
v Stop Close Intercept (43)
v Stop Host Notification (25)
v Stop Keystroke Intercept (53)

All except the first two of these functions allow you to specify the PSID using
either:
v A letter A through Z

v A blank or a null

The first two functions require that a letter be used to specify the PSID.

When there is no host-connected presentation space, the following rules apply:
v The function can interact with any host presentation space if a letter, not a blank

or a null, is used to specify the PSID.
v If a blank or a null is used to specify the PSID, a return code of 1 is generated.

The function does not execute.
v Using a letter to specify the PSID does not establish a host-connected

presentation space, except on a connect PS request.

When there is one host-connected presentation space, the following rules apply:
v The function can interact with any host presentation space if a letter is used to

specify the PSID.
v If a blank or a null is used to specify the PSID, the function operates in the

presentation space identified in the most recent call to the Connect Presentation
Space (1) function.

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 13

v Using a letter to specify the PSID does not change the established PSID of the
host-connected presentation space, except on a connect PS request.

The following functions are available for printer sessions:
v Start Host Notification (23)
v Query Host Update (24)
v Stop Host Notification (25)

Sharing EHLLAPI Presentation Space between Processes
More than one EHLLAPI application can share a presentation space if the
applications support sharing (that is, if they were developed to work together or if
they exhibit predictable behavior1). To determine which applications support
sharing, EHLLAPI applications are specified as one of following types:
v Supervisory
v Exclusive write with read privilege allowed
v Exclusive write without read privilege allowed
v Super write
v Read

The type of shared access can be defined by setting the following read and write
sharing options for each function in the Set Session Parameters (9) function call:

SUPER_WRITE
The application allows other applications that allow sharing and have write access
permissions to concurrently connect to the same presentation space. The
originating application performs supervisory-type functions but does not create
errors for other applications that share the presentation space.

WRITE_SUPER
The application requires write access and allows only supervisory applications to
concurrently connect to its presentation space. This is the default value.

WRITE_WRITE
The application requires write access and allows partner or other applications with
predictable behavior to share the presentation space.

WRITE_READ
The application requires write access and allows other applications that perform
read-only functions to share the presentation space. The application is also allowed
to copy the presentation space and perform other read-only operations as usual.

WRITE_NONE
The application has exclusive use of the presentation space. No other applications
are allowed to share the presentation space, including supervisory applications.
The application is allowed to copy the presentation space and perform read-only
operations as usual.

READ_WRITE
The application requires only read access to monitor the presentation space and
allows other applications that perform read or write, or both, functions to share the

1. This means that two EHLLAPI programs will not be vying for the same Presentation Space at the same time; or that there is logic
in those programs which will allow the program to wait until the PS is available; or that the applications never use the Session in
a way which would lock out other applications.

14 Emulator Programming

presentation space. The application is also allowed to copy the presentation space
and perform other read-only operations as usual.

Note: Sharing presentation space is not available between threads in a process.

Table 4. EHLLAPI Read and Write Sharing Option Combinations

Calling
Application

Super_Write Write_Super Write_Write Write_Read Write_None Read_Write

Super_Write Yes Yes Yes No No Yes

Write_Super
(default)

Yes No No No No No

Write_Write Yes No Yes No No Yes

Write_Read No No No No No Yes

Write_None No No No No No No

Read_Write Yes No Yes Yes No Yes

In addition to specifying compatible read and write access options, applications
that are designed to work together but cannot allow others to work in the same
presentation space can optionally define a keyword, KEY$nnnnnnnn, in the Set
Session Parameters (9) function call. This keyword allows only those applications
that use the same keyword to share the presentation space.

Notes:

1. The Start Keystroke Intercept (50) function is non-shareable. Only one
application at a time can trap keystrokes.

2. The Connect To Presentation Space (1) and Start Keystroke Intercept (50)
functions share common subsystem functions. Successful requests by an
application to share either of these functions can affect the requests of these
two functions by other applications. For example, if application A successfully
requests a Connect To Presentation Space (1) with Write_Read access and
KEY$abcdefgh as the keyword, a request by application B to Connect To
Presentation Space (1) or Start Keystroke Intercept (50) is successful only if
both applications have set compatible read and write options.

Table 5. Prerequisite Functions and Associated Dependent Functions

Prerequisite Call Functions Access

Allocate Communications
Buffer (120)

Free Communication Buffer (120) N/A

Connect Window
Service (101)

Change PS Window Name (106)
Change Switch List Name (105)
Disconnect Window
Service (102)
Query Window Service (103)
Window Status (104)

Write
Read
Query=Read
Set=Write
Write

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 15

Table 5. Prerequisite Functions and Associated Dependent Functions (continued)

Prerequisite Call Functions Access

Connect Presentation
Space (1)

Copy Field to String (34)
Copy OIA (13)
Copy Presentation Space (5)
Copy Presentation Space to String (8)
Copy String to Field (33)
Copy String to Presentation Space (15)
Disconnect Presentation Space (2)
Find Field Length (32)
Find Field Position (31)
Query Cursor Location (7)
Query Field Attribute (14)
Release (12)
Reserve (11)
Search Field (30)
Search Presentation Space (6)
Send key (3)
Set Cursor (40)
Start Playing Macro (110)
Wait (4)

Read
Read
Read
Read
Write
Write
Write
Read
Read
Read
Read
Write
Write
Read
Read
Read
Write
Write
Read

Connect Structured Field (120) Disconnect Structured Field (121)
Get Request Completion (125)
Read Structured Field (126)
Write Structured Field (127)

N/A

Read Structured Field (126) Get Request Completion (125) N/A

Start Close Intercept (41) Query Close Intercept (42)
Stop Close Intercept (43)

N/A

Start Host Notification (23) Query Host Update (24)
Stop Host Notification (25)

Start Keystroke Intercept (50) Get Key (51)
Post Intercept Status (52)
Stop Keystroke Intercept (53)
Send Key (3) if edit keystrokes are to

be sent (edit keystroked support is
available in Enhanced Mode)

N/A

Write Structured Field (127) Get Request Completion (125) N/A

Locking Presentation Space
An application, even if specified with shared presentation space, can obtain
exclusive control of a presentation space by using the Lock Presentation Space
API (60) or the Lock Windows Services API (61) functions. Requests by the other
applications to use a presentation space locked by these functions are queued and
processed in first-in-first-out (FIFO) order when the originating application unlocks
the presentation space.

If the application that locked the presentation space does not unlock it by using the
same call with an Unlock option or Reset System (21) call, the lock is removed
when the application terminates or the session stops.

Using mouse actions to select, copy, and paste text in the
Presentation Space

The following mouse actions can be used in the Presentation Space.
v Select a word by double-clicking the left mouse button.

16 Emulator Programming

v Copy a selected word by clicking the right mouse button.
v Paste a copied word by double-clicking the mouse right button.

ASCII Mnemonics
Keystrokes originating at a host keyboard might have a corresponding ASCII
value. The response of the Get Key (51) function to a keystroke depends on
whether the key is defined and also on whether the key is defined as an ASCII
value or an ASCII mnemonic.

The keyboard for one session might not be capable of producing some codes
needed by the another session. ASCII mnemonics that represent these codes can be
included in the data string parameter of the Send Key (3) function.

The capabilities of the Send Key (3) function and the Get Key (51) function allow
sessions to exchange keystrokes that might not be represented by ASCII values or
by an available key. A set of mnemonics that can be generated from a keyboard is
provided. These mnemonics let you use ASCII characters to represent the special
function keys of the workstation keyboard.

Mnemonics for unshifted keys consist of the escape character followed by an
abbreviation. This is also true for the shift keys themselves, Upper shift, Alt, and
Ctrl. Mnemonics for shifted keys consist of the mnemonic for the shift key
followed by the mnemonic for the unshifted key. Hence the mnemonic for a shifted
key is a 4-character sequence of escape character, abbreviation, escape character,
abbreviation.

The default escape character is @. You can change the value of the escape character
to any other character with the ESC=c option of the Set Session Parameters (9)
function. The following text uses the default escape character, however.

Shift indicators that are not part of the ASCII character set are represented to the
host application by 2-byte ASCII mnemonics as follows:

Upper shift @S
Alt @A
Ctrl @r

Mnemonics for these shift indicators are never received separately by an
application. Likewise, they are never sent separately by an application. Shift
indicator mnemonics are always accompanied by a non-shift-indicator character or
mnemonic.

The abbreviations used make the mnemonics for special keys easy to remember.
An alphabetic key code has been used for the most common keys. For example,
the Clear key is C; the Tab key is T, and so on. Please note that the uppercase and
lowercase alphabetic characters are mnemonic abbreviations for different keys.

The following text describes the use of these functions.

General
All defined keys are represented by either:
v A 1-byte ASCII value that is part of the 256-element ASCII character set, or
v A 2-, 4-, or 6-byte ASCII mnemonic

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 17

To represent a key defined as an ASCII character, a 1-byte ASCII value that
corresponds to that character is used.

To represent a key defined as a function, a 2-, 4-, or 6-byte ASCII mnemonic that
corresponds to that function is used. For example, to represent the backtab key, @B
is used. To represent PF1, @1 is used. To represent Erase Input, @A@F is used. See
the following lists:

@B Left Tab @0 Home @h PF17
@C Clear @1 PF1/F1 @i PF18
@D Delete @2 PF2/F2 @j PF19
@E Enter @3 PF3/F3 @k PF20
@F Erase EOF @4 PF4/F4 @l PF21
@H Help (PC400) @5 PF5/F5 @m PF22
@I Insert @6 PF6/F6 @n PF23
@J Jump @7 PF7/F7 @o PF24
@L Cursor Left @8 PF8/F8 @q End
@N New Line @9 PF9/F9 @u Page UP (PC400)
@O Space @a PF10/F10 @v Page Down (PC400)
@P Print @b PF11/F11 @x PA1
@R Reset @c PF12/F12 @y PA2
@T Right Tab @d PF13 @z PA3
@U Cursor Up @e PF14 @@ @ (at) symbol
@V Cursor Down @f PF15 @$ Alternate Cursor
@X DBCS @g PF16 @< Backspace
@Z Cursor Right

@A@C Test (PC400) @A@e Pink (PC/3270)
@A@D Word Delete @A@f Green (PC/3270)
@A@E Field Exit @A@g Yellow (PC/3270)
@A@F Erase Input @A@h Blue (PC/3270)
@A@H System Request @A@i Turquoise (PC/3270)
@A@I Insert Toggle @A@j White (PC/3270)
@A@J Cursor Select @A@l Reset Host Color (PC/3270)
@A@L Cursor Left Fast @A@t Print (Personal Computer)
@A@Q Attention @A@u Rollup (PC400)
@A@R Device Cancel @A@v Rolldown (PC400)
@A@T Print Presentation Space @A@y Forward Word Tab
@A@U Cursor Up Fast @A@z Backward Word Tab
@A@V Cursor Down Fast @A@- Field - (PC400)
@A@Z Cursor Right Fast @A@+ Field + (PC400)
@A@9 Reverse Video @A@< Record Backspace (PC400)
@A@b Underscore (PC/3270) @S@E Print Presentation Space on Host

(PC400)
@A@c Reset Reverse Video (PC/3270) @S@x Dup
@A@d Red (PC/3270) @S@y Field Mark

Notes:

1. The first @ symbol in the first table represents the escape character. The first
and second @ symbol in the second table is the escape character. The @ symbol
is the default escape character. You can change the value of the escape character
using the ESC=c option of the Set Session Parameters (9) function.
If you change the escape character to #, the literal sequences used to represent
the Backtab, Home, and Erase Input keys become #B, #0, and #A#F, respectively.
Also, the literal sequence used to represent the @ symbol becomes #@.

18 Emulator Programming

2. If you send the mnemonic for print screen (that is, either @P or @A@T), place it at
the end of the calling data string.

3. If you send the mnemonic for device cancel (that is, @A@R), it is passed through
with no error message; however, local copy is not stopped.

Get Key (51) Function
If the terminal operator types a key defined as an ASCII character, the host
application receives a 1-byte ASCII value that corresponds to that character.

If the operator types a key defined as a function, the host application receives a 2-,
4-, or 6-byte ASCII mnemonic that corresponds to that function. For example, if the
Backtab key is typed, @B is received. If PF1 is pressed, @1 is received. If Erase
Input is pressed, @A@F is received.

If the operator types a defined shift key combination, the host application receives
the ASCII character, or the 2-, 4-, or 6-byte ASCII mnemonic that corresponds to
the defined character or function.

If the operator types an individual key that is not defined, the Get Key (51)
function returns a return code of 20 and nothing is sent to the host application.

The Get Key (51) function prefixes all characters and mnemonics sent to the host
application with two ASCII characters. The first ASCII character is the PSID of the
host presentation space to which the keystrokes are sent. The other character is an
A, S, or M for ASCII, special shift, or mnemonic, respectively. See “Return
Parameters” on page 89.

Send Key (3) Function
To send an ASCII character to another session, include that character in the data
string parameter of the Send Key (3) function.

To send a function key to another session, include the ASCII mnemonic for that
function in the data string parameter of the Send Key (3) function.

If the Send Key (3) function sends an unrecognized mnemonic to the host session
a return code rejecting the key might result.

Debugging
As an aid in debugging EHLLAPI applications, the Trace Facility of Personal
Communications may be used. This facility will produce a log of all EHLLAPI
calls, parameters, return values, and return codes. For more information on using
the Trace Facility, refer to Administrator's Guide and Reference.

A Simple EHLLAPI Sample Program
The following sample Windows application will enter the character string "Hello
World!" in the first input field of host session 'A'.

#include <stdlib.h>
#include <stdio.h>
#include <windows.h>
#include "hapi_c.h"

int main(char **argv, int argc) {
int HFunc, HLen, HRc;
char HBuff[1];
struct HLDConnectPS ConnBuff;
// Send Key string for HOME+string+ENTER:

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 19

char SendString[] = "@0Hello World!@E";

HFunc = HA_RESET_SYSTEM;
HLen = 0;
HRc = 0;
hllapi(&HFunc, HBuff, &HLen, &HRc);
if (HRc != HARC_SUCCESS) {

printf("Unable to access EHLLAPI.\n");
return 1;

}

HFunc = HA_CONNECT_PS;
HLen = sizeof(ConnBuff);
HRc = 0;
memset(&ConnBuff, 0x00, sizeof(ConnBuff));
ConnBuff.stps_shortname = ’A’;
hllapi(&HFunc, (char *)&ConnBuff, &HLen, &HRc);
switch (HRc) {

case HARC_SUCCESS:
case HARC_BUSY:
case HARC_LOCKED: // All these are OK

break;
case HARC_INVALID_PS:

printf("Host session A does not exist.\n");
return 1;

case HARC_UNAVAILABLE:
printf("Host session A is in use by another EHLLAPI application.\n");
return 1;

case HARC_SYSTEM_ERROR:
printf("System error connecting to session A.\n");
return 1;

default:
printf("Error connecting to session A.\n");
return 1;

}

HFunc = HA_SENDKEY;
HLen = strlen(SendString);
HRc = 0;
hllapi(&HFunc, SendString, &HLen, &HRc);
switch (HRc) {

case HARC_SUCCESS:
break;

case HARC_BUSY:
case HARC_LOCKED:

printf("Send failed, host session locked or busy.\n");
break;

default:
printf("Send failed.\n");
break;

}

HFunc = HA_DISCONNECT_PS;
HLen = 0;
HRc = 0;
hllapi(&HFunc, HBuff, &HLen, &HRc);

printf("EHLLAPI program ended.\n");
return 0;

}

The following MAKEFILE file could be used to build this application with the IBM
VisualAge C/C++ for Windows compiler (assuming the source file is named
SAMPLE.C):

20 Emulator Programming

all: sample.exe

hlldir = C:\PCOMWIN\SAMPLES
hlllib = C:\PCOMWIN\SAMPLES

.SUFFIXES: .C .OBJ

.c.obj:
icc.exe /Ti /Gh /Gm /Gd /C /I $(hlldir) /Tc $*.c

sample.exe: sample.obj
ilink.exe /de /noe $(hlllib)\pcscal32.lib $**

sample.obj: sample.c

The application could be built with the following command:
nmake /a all

Standard and Enhanced Interface Considerations
There is no functional difference between the standard and enhanced EHLLAPI
interfaces on a given platform. However there are other important differences:
v The enhanced EHLLAPI interface extends the presentation space ID (PSID) from

1 byte to 4 bytes. Currently the additional bytes are not used, but your
application should set them to binary zeros to ensure compatibility with future
versions of enhanced EHLLAPI.

v The position (offset) of data elements in memory buffers passed to and from
EHLLAPI functions are different. Data elements in enhanced EHLLAPI are
aligned to double-word boundaries. Data elements in standard EHLLAPI are not
aligned in any particular way. EHLLAPI applications should not be coded to set
or retrieve data in the buffers by offset (byte) values. Instead, the supplied data
structures in the HAPI_C.H file should be used to set and retrieve data
elements. This will ensure that data is set and retrieved from the correct position
for both 16- and 32-bit programs.

By prefilling EHLLAPI data buffers with binary zeros, and using the data
structures supplied in HAPI_C.H, an application can be compiled for standard or
enhanced operation without any source code changes. For example, the following
section of code would work for standard EHLLAPI but would fail for enhanced
EHLLAPI:

#include "hapi_c.h"
...
int Func, Len, Rc;
char Buff[18];
char SessType;

Func = HA_QUERY_SESSION_STATUS; // Function
Len = 18; // Buffer length
Rc = 0;
Buff[0] = ’A’ // Session to query
hllapi(&Func, Buff, &Len, &Rc); // Execute function

SessType = Buff[9]; // Get session type
...

The above example would fail if compiled as a enhanced EHLLAPI application
because:
v The application does not set the extended session ID bytes to zero.
v The buffer length for this function is 20, not 18.

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 21

v The session type indicator is not at offset 9 in the data buffer, it is at offset 12.

The following is the same function written to work correctly if compiled for
standard or enhanced operation. Changed lines are indicated with a >:

#include "hapi_c.h"
...
int Func, Len, Rc;

> struct HLDQuerySessionStatus Buff;
char SessType;

Func = HA_QUERY_SESSION_STATUS; // Function
> Len = sizeof(Buff); // Buffer length

Rc = 0;
> memset(&Buff, 0x00, sizeof(Buff));// Zero buffer
> Buff.qsst_shortname = ’A’; // Session to query

hllapi(&Func, (char *)&Buff, &Len, &Rc); // Execute function

> SessType = Buff.qsst_sestype; // Get session type
...

Host Automation Scenarios
The sample scenarios presented here provide conceptual information about
activities that can be facilitated by using EHLLAPI. The scenarios deal with the
duties your EHLLAPI programmed operator can perform in these areas:
v Host system operation, including:

– Search function
– Sending keystrokes

v Distributed processing, including:
– Data extraction
– File transfer

v Integrating interfaces

Scenario 1. A Search Function
There are four phases in a typical host system transaction:
1. Starting the transaction
2. Waiting for the host system to respond
3. Analyzing the response to see if it is the expected response
4. Extracting and using the data from the response

Your programmed operator can use a series of EHLLAPI functions to mimic these
actions. After determining the correct starting point for the host system transaction,
the programmed operator can call the Search Presentation Space (6) function to
determine which keyword messages or prompting messages are on the display
screen.

Next, the programmed operator can use the Send Key (3) function to type data
into a host system session and enter a host system transaction. Then the
programmed operator can:
v Use the Wait (4) function that waits for the X CLOCK, X [], or X SYSTEM

condition to end (or returns a keyboard-locked condition if the terminal has
locked up).
If the keyboard is inhibited, your EHLLAPI program can call the Copy OIA (13)
function to get more information about the error condition.

22 Emulator Programming

v Use the Search Presentation Space (6) function to look for an expected keyword
to validate that the proper response had been received.

v Use the Copy Presentation Space to String (8) function (or any of several data
access functions) to extract the desired data.

The Search Presentation Space (6) function is critical to simulate another task of
the terminal operator. Some host systems do not stay locked in X CLOCK, X [], or
X SYSTEM mode until they respond; instead, they quickly unlock the keyboard
and allow the operator to stack other requests. In this environment, the terminal
operator depends on some other visual prompt to know that the data has returned
(perhaps a screen title or label). The Search Presentation Space (6) function allows
your EHLLAPI program to search the presentation space while waiting. Also,
while waiting for a response, calling the Pause (18) function allows other DOS
sessions to share the central processing unit resource. The Pause (18) function has
an option that allows your EHLLAPI program to wait for a host system update
event to occur.

If no host system event occurs after a reasonable time-out period, your EHLLAPI
program could call a customized error message such as:
No Response From Host. Retry?

In this environment, program revisions become very important considerations,
because the programmed operator must be reprogrammed for even minor changes
in the display messages.

For example, if a terminal operator expects the message:
Enter Part Number:

as a prompt, he or she will probably be able to respond properly to an application
change that produces the message:
Enter Component Number:

However, because the programmed operator is looking for a literal keyword string,
subtle changes in message syntax, even as trivial as uppercase versus lowercase,
can make the program take a preprogrammed error action.

Scenario 2. Sending Keystrokes
There are several considerations that demand attention in designing programs that
send keystrokes to the host system. In some application environments, issuing a
command is as simple as typing a string and pressing Enter. Other applications
involve more complex formatted screens in which data can be entered into any one
of several fields. In this environment you must understand the keystrokes required
to fill in the display screen.

The Tab key mnemonic (@T; see “General” on page 17 for a full list of mnemonics)
can be used to skip between fields. When sending keystrokes to a field using the
Send Key (3) function, you should be aware of the field lengths and contents. If
you fill the fields completely and the next attribute byte is autoskip, your cursor
will then be moved to the next field. If you then issued a tab, you would skip to
yet another field.

Likewise, if your keystrokes do not completely fill the field, there might be data
left from prior input. You should use the Erase End of Field (EOF) command to
clear this residual data.

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 23

Scenario 3. Distributed Processing
Some applications fall into the category called collaborative. These applications
provide a single end-user interface, but their processing is performed at two or
more different physical locations.

An EHLLAPI application can interact with host system applications by intercepting
the communication between the host system and the terminal user. The host
system presentation space is the vehicle used to intercept this data. The local
application can request to be notified each time the presentation space is updated
or whenever an AID key is pressed by the operator.

This workstation application can then cooperate with a host system application in
any of the following ways:
v On a field or presentation space basis using either the copy functions that

address fields (Copy String to Field (33) function or Copy Field to String (34)
function) or the functions that let you copy from and into presentation spaces
(for example, Copy String to Presentation Space (15) function or Copy
Presentation Space to String (8) function).

v On a keystroke basis, using the Send Key (3) function.
v On a file basis, for large blocks of data. You can have your application use the

EHLLAPI file transfer capability (using Send File (90) function or Receive File
(91) function) to transfer data or functions (such as load modules) and have it
processed locally or remotely.

Scenario 4. File Transfer
In this scenario, assume that you want to automate a file transfer:
v You could begin by using the procedure discussed in the search scenario earlier

to log on to a host system session.
v Instead of using one of the copy functions (which are inefficient for copying

many screens of data), your EHLLAPI program could call file transfer functions
Send File (90) and Receive File (91) to transfer data.

v Upon successful completion:
– If the Send File (90) function finished executing, your EHLLAPI program

could submit a batch job using either a copy function or the Send Key (3)
function before logging off.

– If the Receive File (91) function finished executing, your EHLLAPI program
could start up a local application.

Scenario 5. Automation
An application can provide all the keystrokes for another application or can
intersperse keystrokes to the target destination with those from the keyboard.
Sometimes, to do this, the application must lock out other sources of keystroke
input that might be destined for a target application or presentation space (using
the Reserve (11) function) and the later unlock it (using the Release (12) function).

The origin of keystrokes presented to any application is determined by the design
of the application. Keystrokes can originate from:
v The keyboard
v Data integrated into the source application
v Secondary storage retrieved through the DOS interface
v The Personal Communications interface

24 Emulator Programming

In all cases the keystrokes that are provided to the target application are
indistinguishable from the ordinary operator input.

Scenario 6. Keystroke Filtering
An application that acts as a filter can intercept a keystroke coming from EHLLAPI
(either from the keyboard or a source application) that is targeted for another
destination. The keystroke can then be:
v Ignored (that is, deleted)
v Redirected to another application
v Validated
v Converted (for example, uppercase to lowercase)
v Enhanced (through keyboard macros)

Figure 1 provides a simplified representation of the keystroke flow and the objects
within a keyboard enhancement environment.

Scenario 7. Keyboard Enhancement
This scenario makes use of filtering to create an enhancer application program. An
enhancer application program is one that monitors the data coming in from the
keyboard and changes it in some specified way. Typically, these application
programs use instructions called keyboard macros, which tell them what
keystrokes to look for and what changes to make. The change might involve
suppressing a keystroke (so it appears to the target application as though it was
never sent), replacing a keystroke with another, or replacing single keystroke with
a series of keystrokes.

To do this using EHLLAPI, you might construct this scenario:
1. Your EHLLAPI application program calls the Connect Presentation Space (1)

function to connect to the presentation space whose keystrokes are to be
filtered.

2. Your EHLLAPI program next calls the Start Keystroke Intercept (50) function
specifying the L option. This causes all keystrokes to be routed to the filtering
application program.

3. The filtering application program can now define a loop in which:

Figure 1. Keystroke Flow

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 25

a. The Get Key (51) function intercepts all keystrokes being sent to the target
presentation space.

b. The filtering application examines each keystroke and performs a keyboard
macro task, such as:
v Abbreviating program commands so that three- or four-keystroke

command can be condensed into a single keystroke
v Customizing commands so that they are easier to remember or consistent

with other software packages
v Creating boiler plates for contracts or frequently used letters
v Rearranging the keyboard for concurrent applications that use the same

keys for differing functions

For example, the filtering application might convert a key combination such
as Alt+Y into a command to move the cursor to column 35 of the second
line in presentation space and write the string “XYZ Tool Corporation,
Dallas, Texas”.

c. If a keystroke is rejected, your EHLLAPI program can cause a beep to be
sounded, using the Post Intercept Status (52) function.

4. After your EHLLAPI program exits the filtering loop, Stop Keystroke Intercept
(53) function to end the filtering process.

26 Emulator Programming

Chapter 3. EHLLAPI Functions

This chapter describes each individual Personal Communications EHLLAPI
function in detail and explains how to use the EHLLAPI program sampler. The
functions are arranged alphabetically by name. The functions are explained for
both the standard and enhanced interfaces.

Note: Throughout this chapter WinHLLAPI, IBM Standard 32-bit HLLAPI and
16-bit EHLLAPI are referred to as Standard Interface, and IBM Enhanced
32-bit EHLLAPI is referred to as Enhanced Interface.

Unicode Support for Code Pages 1390/1399 and 1137
The following EHLLAPI functions are enabled for Japanese code page 1390/1399
and Hindi code page 1137 support on a Unicode session:
v Convert Position or Convert RowCol (1137 only)
v Copy Field to String
v Copy Presentation Space
v Copy Presentation Space to String
v Copy String to Field
v Copy String to Presentation Space
v Get Key
v Search Field
v Search Presentation Space
v Send Key
v Set Cursor (1137 only)
v Set Session Parameters

See the specific section for each function for details on Japanese code page
1390/1399 and Hindi code page 1137.

Notes:

1. The string containing the Unicode characters to be sent to the PCOMM session
should be typecast to WCHAR * for code page 1390/1399 and to char * for code
page 1137.

2. EHLLAPI 1390/1399 Unicode functionality is available only for 3270 and 5250
sessions. EHLLAPI 1137 Unicode functionality is available only for 5250
sessions.

Page Layout Conventions
All EHLLAPI function calls are presented in the same format so that you can
quickly retrieve the information you need. The format is:

Function Name (Function Number)
Prerequisite Calls
Call Parameters
Return Parameters
Notes on Using This Function

© Copyright IBM Corp. 1989, 2016 27

Prerequisite Calls
“Prerequisite Calls” lists any calls that must be made prior to calling the function
being discussed.

Call Parameters
“Call Parameters” lists the parameters that must be defined in your program to
call the discussed EHLLAPI function and explains how those parameters are to be
defined. If a parameter is never used by a function, then NA (not applicable) is
listed. If a parameter can be overridden by certain values of session parameters
defined with calls to the Set Session Parameters (9) function, such session
parameters are named.

Return Parameters
“Return Parameters” lists the parameters that must be received by your program
after a call to the discussed EHLLAPI function and explains how to interpret those
parameters.

Notes on Using This Function
“Notes on Using This Function” lists any session options that affect the function
under discussion. It also provides technical information about using the function
and application development tips.

Summary of EHLLAPI Functions
Table 6 is the summary of the EHLLAPI functions:

Table 6. EHLLAPI Functions Summary

Function 3270 5250 VT

“Connect Presentation Space (1)” on page 36 Yes Yes Yes
“Disconnect Presentation Space (2)” on page
82

Yes Yes Yes

“Send Key (3)” on page 135 Yes Yes Yes
“Wait (4)” on page 169 Yes Yes Yes
“Copy Presentation Space (5)” on page 57 Yes Yes Yes
“Search Presentation Space (6)” on page 129 Yes Yes Yes
“Query Cursor Location (7)” on page 107 Yes Yes Yes
“Copy Presentation Space to String (8)” on
page 64

Yes Yes Yes

“Set Session Parameters (9)” on page 147 Yes Yes Yes
“Query Sessions (10)” on page 112 Yes Yes Yes
“Reserve (11)” on page 123 Yes Yes Yes
“Release (12)” on page 123 Yes Yes Yes
“Copy OIA (13)” on page 48 Yes Yes Yes
“Query Field Attribute (14)” on page 107 Yes Yes Yes
“Copy String to Presentation Space (15)” on
page 76

Yes Yes Yes

“Pause (18)” on page 100 Yes Yes Yes
“Query System (20)” on page 113 Yes Yes Yes
“Reset System (21)” on page 124 Yes Yes Yes
“Query Session Status (22)” on page 110 Yes Yes Yes
“Start Host Notification (23)” on page 160 Yes Yes Yes
“Query Host Update (24)” on page 109 Yes Yes Yes
“Stop Host Notification (25)” on page 168 Yes Yes Yes

28 Emulator Programming

Table 6. EHLLAPI Functions Summary (continued)

Function 3270 5250 VT

“Search Field (30)” on page 125 Yes Yes Yes
“Find Field Position (31)” on page 86 Yes Yes Yes
“Find Field Length (32)” on page 85 Yes Yes Yes
“Copy String to Field (33)” on page 72 Yes Yes Yes
“Copy Field to String (34)” on page 40 Yes Yes Yes
“Set Cursor (40)” on page 146 Yes Yes Yes
“Start Close Intercept (41)” on page 156 Yes Yes Yes
“Query Close Intercept (42)” on page 104 Yes Yes Yes
“Stop Close Intercept (43)” on page 166 Yes Yes Yes
“Query Additional Field Attribute (45)” on
page 103

No Yes No

“Start Keystroke Intercept (50)” on page 163 Yes Yes Yes
“Get Key (51)” on page 89 Yes Yes Yes
“Post Intercept Status (52)” on page 102 Yes Yes Yes
“Stop Keystroke Intercept (53)” on page 168 Yes Yes Yes
“Lock Presentation Space API (60)” on page
97

Yes No No

“Lock Window Services API (61)” on page 99 Yes No No
“Start Communication Notification (80)” on
page 158

Yes Yes Yes

“Query Communication Event (81)” on page
106

Yes Yes Yes

“Stop Communication Notification (82)” on
page 167

Yes Yes Yes

“Send File (90)” on page 183 Yes Yes No
“Receive File (91)” on page 121 Yes Yes No
“Cancel File Transfer (92)” on page 31 Yes Yes Yes
“Convert Position or Convert RowCol (99)”
on page 38

Yes Yes Yes

“Connect Window Services (101)” on page 37 Yes Yes Yes
“Disconnect Window Service (102)” on page
82

Yes Yes Yes

“Query Window Coordinates (103)” on page
115

Yes Yes Yes

“Window Status (104)” on page 170 Yes Yes Yes
“Change Switch List LT Name (105)” on
page 33

Yes Yes Yes

“Change PS Window Name (106)” on page
32

Yes Yes Yes

“Start Playing Macro (110)” on page 165 Yes Yes Yes
“Connect for Structured Fields (120)” on
page 34

Yes No No

“Disconnect from Structured Fields (121)” on
page 80

Yes No No

“Query Communications Buffer Size (122)”
on page 104

Yes No No

“Allocate Communications Buffer (123)” on
page 30

Yes No No

“Free Communications Buffer (124)” on page
88

Yes No No

“Get Request Completion (125)” on page 94 Yes No No
“Read Structured Fields (126)” on page 116 Yes No No
“Write Structured Fields (127)” on page 173 Yes No No

Chapter 3. EHLLAPI Functions 29

Allocate Communications Buffer (123)

3270 5250 VT

Yes No No

The Allocate Communications Buffer function obtains a buffer from the operating
system. A buffer address must be passed on both the Read Structured Fields (126)
and Write Structured Fields (127) functions.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 123

Data String See the following table

Length Must be 6 Must be 8

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1–2 1–4 32-bit or 16-bit buffer length. (0 < size ≤ (64 KB−256
bytes)=X'FF00')

3–6 5–8 32-bit allocated buffer address (returned)

Return Parameters

Return Code Explanation

0 The Allocate Communications Buffer function was successful.

2 An error was made in specifying parameters.

9 A system error occurred.

11 Resource unavailable (memory unavailable).

Notes on Using This Function
1. The EHLLAPI obtains a buffer from the operating system memory management

and places the buffer address into the return parameter string. The requested
buffer size (length) is also passed in the parameter string. The buffer size can
be from 1 byte to 64 KB minus 256 bytes (X'FF00' bytes) in length.
See “Query Communications Buffer Size (122)” for information regarding
buffer size.

2. Buffers obtained using this function must not be shared among different
processes. If this is attempted, the applications will experience unpredictable
results.

30 Emulator Programming

3. An EHLLAPI application must issue a Free Communications Buffer (124)
function to free the allocated memory.

4. A maximum of 10 buffers can be allocated to an application. If this limit is
reached, a return code for resource unavailable (RC=11) will be returned.

5. The Reset System (21) function frees buffers allocated by this function.

Cancel File Transfer (92)

3270 5250 VT

Yes Yes Yes

The Cancel File Transfer function causes any current EHLLAPI initiated Send File
or Receive File for the specified session to immediately return.

Prerequisite Calls
Send File (90) or Receive File (91)

Call Parameters

Enhanced Interface

Function Number Must be 92

Data String 1-character short name of the host presentation space. A blank or
null indicates request for updates to the host-connected
presentation space

Length 4 is implied

PS Position NA

The calling data structure contains these elements

Byte Definition

1 A 1-character presentation space short name (PSID)

2-4 Reserved

Return Parameters

Return Code Definition

0 The function was successful

1 An incorrect PSID was specified

8 No prior call to Start Communication Notification (80) function
was called for the PSID

9 A system error was encountered

Notes on Using This Function
Since both Send File (90) and Receive File (91) are blocking calls, this function
must always be issued on a different thread.

Chapter 3. EHLLAPI Functions 31

Change PS Window Name (106)

3270 5250 VT

Yes Yes Yes

The Change PS Window Name function allows the application to specify a new
name for the presentation space window or reset the presentation space window to
the default name.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 106

Data String See the following table

Length Must be specified (See note.) Must be 68

PS Position NA

Note: The data string length must be specified (normally 3–63 for PC/3270, 4–63
for PC400, 68 for enhanced interface).

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

2–4 Reserved

2 5 A change request option value, select one of:

v X'01' for changing the presentation space window
name.

v X'02' for resetting the presentation space window
name.

3–63 6–66 An ASCII string of from 1 (for PC/3270) or 2 (for PC400)
to 61 bytes including a terminator byte. The ASCII string
must end with a NULL character. This string must
contain at least one non-NULL character followed by a
NULL character.

67–68 Reserved

Return Parameters

Return Code Explanation

0 The Change PS Window Name function was successful.

1 An incorrect host presentation space short session ID was
specified, or the host presentation space was not connected.

2 An error was made in specifying parameters.

9 A system error occurred.

32 Emulator Programming

Return Code Explanation

12 The session stopped.

Notes on Using This Function
A string is ended at the first NULL character found. The NULL character overrides
the specified string length. If the NULL character is not at the end of the specified
length, the last byte at the specified length is replaced by a NULL character, and
the remainder of the data string is lost. If the NULL character is found before the
specified length, the string is truncated at that point, and the remainder of the data
string is lost.

If the application fails to reset the presentation space name before exiting, the exit
list processing resets the name.

Change Switch List LT Name (105)

3270 5250 VT

Yes Yes Yes

The Change Switch List LT Name function allows the application to change or
reset a switch list for a selected logical terminal (LT). The application must specify
on the call the name to be inserted in the switch list.

Note: This is for compatibility with Communication Manager EHLLAPI, and has
the same result as the Change PS Window Name (106) function.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 105

Data String See the following table

Length Normally 4–63 Must be 68

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

2–4 Reserved

2 5 A change request option; select:

v X'01' for changing a switch list LT name

v X'02' for resetting a switch list LT name

Chapter 3. EHLLAPI Functions 33

Byte Definition

3–63 6–66 An ASCII string of 2 to 61 bytes including a terminator
byte. The ASCII string must end with a NULL character.
This string must contain at least one non-NULL
character followed by a NULL character.

67–68 Reserved

Return Parameters

Return Code Explanation

0 The Change Switch List LT Name function was successful.

1 An incorrect host presentation space short session ID was
specified, or the host presentation space was not connected.

2 An error was made in specifying parameters.

9 A system error occurred.

12 The session stopped.

Notes on Using This Function
A string is ended at the first NULL character found. The NULL character overrides
the specified string length. If the NULL character is not at the end of the specified
length, the last byte at the specified length is replaced by a NULL character, and
the remainder of the data string is lost. If the NULL character is found before the
specified length, the string is truncated at that point, and the remainder of the data
string is lost.

If the application fails to reset the switch list LT name before exiting, the exit list
processing resets the name.

Connect for Structured Fields (120)

3270 5250 VT

Yes No No

The Connect for Structured Fields function allows an application to establish a
connection to the emulation program to exchange structured field data with a host
application. The workstation application must provide the Query Reply data field
and must point to it with in the parameter string. The destination/origin ID
returned by the emulator will be returned to the application.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 120

Data String See the following table

Length 7 or 11 Must be 16

PS Position NA

34 Emulator Programming

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

2–4 Reserved

2–5 5–8 Address of the Query Reply data buffer

6–7 9–10 Destination/origin unique ID. (16-bit word, returned)

11–12 Reserved

8–11 13–16 The data in these position is ignored by EHLLAPI.
However, no error is caused if the migrating program has
data in these positions. This data is accepted to provide
compatibility with migrating applications.

Return Parameters

Return Code Explanation

0 The Connect for Structured Fields function was successful.

1 A specified host presentation space short session ID was not valid,
or the host presentation space was not connected.

2 An error was made in specifying parameters.

9 A system error occurred.

10 The function is not supported by the emulation program.

32 An application has already connected to this session for
communications (successful connect).

39 One DDM session is already connected to this session.

Notes on Using This Function
1. EHLLAPI scans the query reply buffers for the destination/origin ID (DOID)

self-defining parameter (SDP) to determine the contents of the DOID field of
the query reply. If this value is X'0000', the emulator will assign a DOID to the
application and EHLLAPI will fill in the DOID field of the query reply with the
assigned ID. If the value specified by the application in the DOID field of the
query reply is a nonzero value, the emulator will assign the specified value as
the application’s DOID, assuming that the ID has not been previously assigned.
If the specified DOID is already in use, a return code of 2 will be returned by
EHLLAPI.

2. The application should build the Query Reply Data structures in the
application’s private memory. Refer to Appendix A, “Query Reply Data
Structures Supported by EHLLAPI,” on page 335, for the detailed formats and
usages of the query reply data structures supported by EHLLAPI.

3. Only cursory checking is performed on the Query Reply Data. Only the ID and
the length of the structure are checked for validity.

4. Only one DDM base type connect is allowed per host session. If the DDM
connection supports the self-defining parameter (SDP) for the destination origin
ID (DOID), then multiple connects are allowed.

5. If return code RC=32 or RC=39 is received, an application is already connected
to the selected session and use of that presentation space should be approached
with caution. Conflicts with SRPI, file transfer, and other EHLLAPI applications
might result.

Chapter 3. EHLLAPI Functions 35

Connect Presentation Space (1)

3270 5250 VT

Yes Yes Yes

The Connect Presentation Space function establishes a connection between your
EHLLAPI application program and the host presentation space.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 1

Data String 1-character short name of the host presentation space

Length 1 is implied Must be 4

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

2–4 Reserved

Return Parameters
The Connect Presentation Space function sets the return code to indicate the
status of the attempt and, if successful, the status of the host presentation space.

Return Code Explanation

0 The Connect Presentation Space function was successful; the host
presentation space is unlocked and ready for input.

1 An incorrect host presentation space ID was specified. The
specified session either does not exist or is a logical printer session.
This return code could also mean that the API Setting for
DDE/EHLLAPI is not set on.

4 Successful connection was achieved, but the host presentation
space is busy.

5 Successful connection was achieved, but the host presentation
space is locked (input inhibited).

9 A system error was encountered.

11 This resource is unavailable. The host presentation space is already
being used by another system function.

Notes on Using This Function
1. The Connect Presentation Space function is affected by the CONLOG/CONPHYS

session option.

36 Emulator Programming

2. An EHLLAPI application cannot be connected to multiple presentation spaces
concurrently. Calls requiring the Connect Presentation Space function as a
prerequisite use the currently connected presentation space. For example, if an
application is connected to presentation space A, B, and C in that order, the
application must connect to B or A again to issue functions.

3. Each thread that requests a Connect Presentation Space must have a
corresponding Disconnect Presentation Space (2), or one of the threads must
issue a Reset System (21), which affects all threads and disconnects any
remaining connections.

4. More than one EHLLAPI application can share a presentation space, if the
applications support sharing (that is, if they were developed to work together
and if they exhibit predictable behavior) and have compatible read/write access
and keyword options as set in the Set Sessions Parameters (9) function. For
more information, see “Set Session Parameters (9)” on page 147.

5. Because the Connect Presentation Space and Start Keystroke Intercept (50)
functions share common subsystem functions, successful requests by an
application to share either of these functions for the same session can affect the
request of these two functions by other applications. For example, if application
A successfully requests a Connect Presentation Space for a session with
Write_Read access and KEY$abcdefgh as the keyword, a request by application
B to Connect Presentation Space for a session and Start Keystroke Intercept is
successful only if both applications have set compatible read/write options.

6. You cannot connect to a session that is defined as a logical printer session.
Refer to Administrator's Guide and Reference for more information.

Connect Window Services (101)

3270 5250 VT

Yes Yes Yes

The Connect Window Services function allows the application to manage the
presentation space windows. Only one EHLLAPI application at a time can be
connected to a presentation space for window services.

An EHLLAPI application can connect to more than one presentation space
concurrently for window services.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 101

Data String 1-character short session ID of the host presentation space

Length 1 is implied Must be 4

PS Position NA

The calling data string can contain:

Chapter 3. EHLLAPI Functions 37

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

2–4 Reserved

Return Parameters

Return Code Explanation

0 The Connect Window Services function was successful.

1 An incorrect host presentation space short session ID was
specified, or the Sessions Window Services manager was not
connected. This return code could also mean that the API Setting
for DDE/EHLLAPI is not set on.

9 A system error occurred.

10 The function is not supported by the emulation program.

11 This resource is unavailable. The host presentation space is already
being used by another system function.

Notes on Using This Function
1. An EHLLAPI application can be connected to multiple presentation space

windows at the same time. The application can go back and forth between the
connected presentation space windows without having to disconnect. For
example, if an application is connected to presentation space windows A, B,
and C, the application can access all of A, B, and C at the same time, and the
other applications cannot access A, B, or C.

2. A Connect Window Services function is sufficient for the process. However,
each thread that requests a Connect Window Services must have a
corresponding Disconnect Window Services (102), or one of the threads must
issue a Reset System (21), which affects all threads and disconnects any
remaining connections.

Convert Position or Convert RowCol (99)

3270 5250 VT

Yes Yes Yes

The Convert Position or Convert RowCol function converts the host presentation
space positional value into the display row and column coordinates or converts the
display row and column coordinates into the host presentation space positional
value. This function does not change the cursor position.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 99

38 Emulator Programming

Standard Interface Enhanced Interface

Data String Host presentation space short name and P for the Convert
Position function (for example, AP converts the presentation
space position of session A); or Host presentation space
short name and R for the Convert RowCol function (for
example, AR converts the row and column coordinates of
session A).

Length Row, when R is specified as the second character in the data
string parameter. The lower limit for valid input is 1. The
upper limit for valid input depends on how your host
presentation space is configured. See “Notes on Using This
Function” on page 40.

NA when P is specified as the second character in the data
string parameter.

PS Position Column, when R is specified as the second character in the
data string parameter. The lower limit for valid input is 1.
The upper limit for valid input ranges from 24 to 43
depending on how your host presentation space is
configured. See “Notes on Using This Function” on page 40.

Host presentation space position, when P is specified as the
second character in the data string parameter. The lower
limit for valid input is 1. The upper limit for valid input
ranges from 1920 to 3564 depending on how your host
presentation space is configured. See “Notes on Using This
Function” on page 40.

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

2–4 Reserved

2 5 Convert option P or R

6–8 Reserved

Return Parameters
This function returns a length and a return code.

Length:
For the Convert Position function (P as the second character in the calling
data string), a number between 1 and 43 (for PC/3270) or 27 (for PC400) is
returned. This value is the number of the row that contains the PS position
contained in the calling PS position parameter. The upper limit can be
smaller than 43 (for PC/3270) or 27 (for PC400) depending on how the
host presentation space is configured.

For the Convert RowCol function (R as the second character in the calling
data string), a value of 0 indicates an error in the input value for row
(calling length parameter).

Return Code:
The Convert Position or RowCol function is the exception to the rule that
the fourth return parameter always contains a return code. For this

Chapter 3. EHLLAPI Functions 39

function, the value returned in the fourth parameter is called a status code.
This status code can contain data or a return code. Your application must
provide for processing of this status code to prevent unpredictable results
or an error.
v If the value of the fourth parameter is 0, 9998, or 9999, it is a return

code.
v For the Convert Position function (P as the second character of the

calling data string), a value in the range of 1–132 is the number of the
column that contains the PS position passed in the calling PS Position
parameter. The upper limit can be smaller than 132 depending on how
the host presentation space is configured.

v For the Convert RowCol function (R as the second character of the
calling data string), a value in the range of 1–3564 represents the host
presentation space position that corresponds to the row and column
values passed in the calling length and PS position parameters,
respectively. The upper limit can be smaller than 3564 depending on
how the host presentation space is configured.

The following status codes are defined:

Status Code Explanation

0 This is an incorrect PS position or column.

>0 This is the PS position or column.

9998 An incorrect host presentation space ID was specified or a system
error occurred.

9999 Character 2 in the data string is not P or R.

Notes on Using This Function
1. To configure your presentation space, refer to Administrator's Guide and Reference

2. To find out how many rows and columns are in your presentation space,
examine the returned data string parameter for the Query Session Status (22)
function. See “Query Session Status (22)” on page 110.

1137 Code Page Support
Unicode functionality is supported only on 5250 sessions.

Convert Position or Convert RowCol is Hindi enabled in order to return the
beginning of the cluster. The usage of Convert Position or Convert RowCol is the
same as the SBCS session.

Copy Field to String (34)

3270 5250 VT

Yes Yes Yes

The Copy Field to String function transfers characters from a field in the
host-connected presentation space into a string.

The Copy Field to String function translates the characters in the host source
presentation space into American National Standard Code for Information
Interchange (ASCII). Attribute bytes and other characters not represented in ASCII
normally are translated into blanks.

40 Emulator Programming

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 34

Data String Preallocated target data string. When the Set Session
Parameters (9) function with Extended Attribute Bytes
(EAB) option is issued, the length of the data string must be
at least twice the length of the field.

DBCS Only: When Extended Attributes Double-byte (EAD)
option is specified, the length of the data string must be at
least three times the length of the field. When both EAB and
EAD options are specified, the length of the data string
must be at least four times the length of the field.

Length Number of bytes to copy (the length of the data string).

PS Position Identifies the target field. This can be the PS position of any
byte within the target field. Copy always starts at the
beginning of the field.

Return Parameters
This function returns a data string, length, and a return code.

Data String:
A string containing data from the identified field in the host presentation
space. The first byte in the returned data string is the beginning byte of the
identified field in the host presentation space. The number of bytes in the
returned data string is determined by the smaller of:
v Number of bytes specified in the calling length parameter
v Number of bytes in the identified field in the host presentation space

Length:
The length of the data returned.

Return Code:
The following codes are defined:

Return Code Explanation

0 The Copy Field to String function was successful.

1 Your program is not connected to a host session.

2 An error was made in specifying parameters.

6 The data to be copied and the target field are not the same size.
The data is truncated if the string length is smaller than the field
copied.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 Unformatted host presentation space.

Chapter 3. EHLLAPI Functions 41

Notes on Using This Function
1. The field position and length information can be found by using the Find Field

Position (31) and Find Field Length (32) functions. The Copy Field to String
function can be used with either protected or unprotected fields, but only in a
field-formatted host presentation space.

2. The copy is ended when one of the following conditions is encountered:
v When the end of the field is reached
v When the length of the target string is exceeded

3. DBCS Only: If the target string is ended at the higher byte of the DBCS
character, the byte is translated into a blank. If the EAD option is set to on,
three bytes are returned for each character. If both the EAB and EAD options
are set to on, four bytes are returned for each character.

Note: When the field wraps at the end of the presentation space, wrapping
occurs when the end of the presentation space is reached.

4. DBCS Only: The Set Session Parameters (9) function EAD option is used with
this function to return a 2-byte EAD. If the EAD option is specified instead of
the EAB option, EAD is returned preceding each character. If both the EAB and
EAD options are specified, EAD is returned preceding the EAB.

5. An EAB can be returned when the Set Session Parameters (9) function EAB
option is used. EAB is related to each character in the presentation space and is
returned preceding each character.

6. The Copy Field to String function is affected by the ATTRB/NOATTRB/NULLATTRB,
the EAB/NOEAB, the XLATE/NOXLATE, the DISPLAY/NODISPLAY, the DISPLAY/NODISPLAY,
the EAD/NOEAD (for DBCS only), and the NOSO/SPACESO/SO (for DBCS only) session
options. Refer to items 5 on page 149; 13 and 14 on page 152; 17 on page 153;
and 20 and 21 on page 154 for more information.
As previously stated, the return of attributes by the various Copy (5, 8, and 34)
functions is affected by the Set Session Parameters (9) function. The involved
set session parameters have the following effect:

Set Session Parameter
Effect on the COPY Function

NOEAB and NOEAD
Attributes are not returned. Only text is copied from the presentation
space to the user buffer.

EAB and NOXLATE
Attributes are returned as defined in the following tables.

EAB and XLATE
The colors used for the presentation space display are returned. Colors
can be remapped; so the attribute colors are not the ones returned by
the COPY functions when XLATE and EAB are on at the same time.

EAD Double-byte character set attributes are returned as shown in the
following tables.

The returned character attributes are defined in the following tables. The
attribute bit positions are in IBM format with bit 0 the left most bit in the byte.
3270 character attributes are returned from the host to the emulator. The
following table applies when EAB and NOXLATE are set.

42 Emulator Programming

Bit Position Meaning

0–1 Character highlighting

00 = Normal

01 = Blink

10 = Reverse video

11 = Underline

2–4 Character color (Color remap can override this color definition.)

000 = Default

001 = Blue

010 = Red

011 = Pink

100 = Green

101 = Turquoise

110 = Yellow

111 = White

5–6 Character attributes

00 = Default value

11 = Double byte character

7 Reserved

5250 character attributes are returned from the host to the emulator. The
following table applies when EAB and NOXLATE are set.

Bit Position Meaning

0 Reverse image

0 = Normal image

1 = Reverse image

1 Underline

0 = No underline

1 = Underline

2 Blink

0 = Not blink

1 = Blink

3 Separator of columns

0 = No separator

1 = Separator

4–7 Reserved

The following table shows Personal Communications character color attributes.
The following table applies when EAB and XLATE are set.

Chapter 3. EHLLAPI Functions 43

Bit Position Meaning

0–3 Background character colors

0000 = Black

0001 = Blue

0010 = Green

0011 = Cyan

0100 = Red

0101 = Magenta

0110 = Brown (3270), Yellow (5250)

0111 = White

4–7 Foreground character colors

0000 = Black

0001 = Blue

0010 = Green

0011 = Cyan

0100 = Red

0101 = Magenta

0110 = Brown (3270), Yellow (5250)

0111 = White

1000 = Gray

1001 = Light blue

1010 = Light green

1011 = Light cyan

1100 = Light red

1101 = Light magenta

1110 = Yellow

1111 = White (high intensity)

v Double-byte character set attributes (for DBCS only)
– The first byte

Bit Position Character Position Field Attribute Position

0 Double-byte character Reserved

1 The first byte of the
double-byte character

Reserved

2 SO Reserved

44 Emulator Programming

Bit Position Character Position Field Attribute Position

3–4 SI (Bit position 3) 5250 DBCS related field

When the value of bit
position 7 is 0:

00 = Default

01 = DBCS only

10 = Either DBCS or
SBCS

11 = Mixture of DBCS
and SBCS

When the value of bit
position 7 is 1:

00 = Reserved

01 = DBCS only
without SO/SI

10 = Reserved

11 = Reserved

5 Reserved SO/SI enable (3270 only)

6 Reserved Character attributes exist
(3270 only)

7 Reserved 5250 DBCS related extended
field

0 = Basic double-byte
field

1 = Extended double-byte
field

– The second byte

Bit Position Character Position Field Attribute Position

0 Reserved Left grid line (3270 only)

1 Reserved Upper grid line (3270 only)

2 Reserved Right grid line (3270 only)

3 Reserved Under grid line (3270 only)

4 Left grid line Left grid line

5 Upper grid line Upper grid line

6–7 Reserved Reserved

For a PS/2 monochrome display, the characters in the application (workstation)
session appear as various shades of gray. This is required to give users their
remapped colors in the EHLLAPI application session so they can get what they
see in their host application presentation spaces.

7. To use this function, preallocate memory to receive the returned data string
parameter. The statements required to preallocate this memory vary depending
on the language in which your application is written. Refer to “Memory
Allocation” on page 8 for more information.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In
some instances, Communication Manager 5250 emulation displays a 25th
row. This occurs when either an error message from the host is displayed or

Chapter 3. EHLLAPI Functions 45

when the operator selects the SysReq key. Personal Communications
displays 25th row information on the status bar. By EXTEND_PS option, an
EHLLAPI application can use the same interface with Communication
Manager EHLLAPI and valid presentation space is extended when this
condition occurs.

1390/1399 Code Page Support
Unicode functionality is supported only on 3270 and 5250 sessions.

In a Unicode session, the characters in the host source presentation space are
translated into Unicode. Attribute bytes are normally translated into blanks.

The XLATE option (that can be specified using the Set Session Parameters
function) is not supported in a Unicode session. This means that even if this option
is issued, the EABs will not be translated to the PC color graphics adapter (CGA)
format.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface Enhanced Interface

Function Number Must be 34

Data String Preallocated target data string. When the Set Session
Parameters (9) function with Extended Attribute Bytes
(EAB) option is issued, the length of the data string must be
at least twice the length of the EBCDIC field.

Length The length of the target data string in Unicode characters.

PS Position Identifies the target field. This can be the PS position of any
byte within the target field. Copy always starts at the
beginning of the field.

Return Parameters: This function returns a data string, length, and a return code.

Data String:
String containing the Unicode data is returned.

Length:
Number of Unicode characters copied into string.

Return Code:
The following codes are defined:

Return Code Explanation

0 The Copy Field to String function was successful.

1 Your program is not connected to a host session.

2 An error was made in specifying parameters.

6 The data to be copied and the target field are not the same size.
The data is truncated if the string length is smaller than the field
copied.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 Unformatted host presentation space.

46 Emulator Programming

Notes on Using This Function: The following options are supported in a Unicode
session for Copy Field To String (34) and function in the same way as in DBCS:
v NOATTRB
v ATTRB
v NULLATTRB
v EAB
v NOEAB
v NOXLATE
v DISPLAY
v NODISPLAY

1137 Code Page Support
Unicode functionality is supported only on 5250 sessions.

In a Unicode session, the characters in the host source presentation space are
translated into Unicode. Attribute bytes are normally translated into blanks.

The XLATE option (that can be specified using the Set Session Parameters
function) is not supported in a Unicode session. This means that even if this option
is issued, the EABs will not be translated to the PC color graphics adapter (CGA)
format.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface Enhanced Interface

Function Number Must be 34

Data String Preallocated target data string. The length should be twice
the number of EBCDIC bytes required to be copied from the
presentation space. When the Set Session Parameters (9)
function with Extended Attribute Bytes (EAB) option is
issued, the length of the data string must be at least four
times the length of the EBCDIC field.

Length The length of the target data string in bytes. This length
should be at least 2 in a Unicode session. If not, an error
code of 2 is returned.

PS Position Identifies the target field. This can be the PS position of any
byte within the target field. Copy always starts at the
beginning of the field.

Return Parameters: This function returns a data string, length, and a return code.

Data String:
String containing the Unicode data is returned.

Length:
Number of Unicode characters copied into string. To get the number of
bytes, multiply by 2.

Return Code:
The following codes are defined:

Chapter 3. EHLLAPI Functions 47

Return Code Explanation

0 The Copy Field to String function was successful.

1 Your program is not connected to a host session.

2 An error was made in specifying parameters.

6 The data to be copied and the target field are not the same size.
The data is truncated if the string length is smaller than the field
copied.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 Unformatted host presentation space.

Notes on Using This Function: The following options are supported in a Unicode
session for Copy Field To String and function in the same way as in SBCS:
v NOATTRB
v ATTRB
v NULLATTRB
v EAB
v NOEAB
v NOXLATE
v DISPLAY
v NODISPLAY

Copy OIA (13)

3270 5250 VT

Yes Yes Yes

The Copy OIA function returns the current operator information area (OIA) data
from the host-connected presentation space.

The OIA is located under the bottom dividing line of the screen and is used to
display session status information about the connection between the workstation
and the host.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 13

Data String Preallocated target data string

Length 103 104

PS Position NA

Return Parameters
This function returns a data string and a return code.

48 Emulator Programming

Data String:
A 103-byte string for 16-bit and 104-byte string for 32-bit. See “Format of
the Returned OIA Data String” for more information.

Return Code:
The following codes are defined:

Return Code Explanation

0 OIA data is returned. The target presentation space is unlocked.

1 Your program is not connected to a host session.

2 An error was made in specifying string length. OIA data was not
returned.

4 OIA data is returned. The target presentation space is busy.

5 OIA data is returned. The target presentation space is locked.
(Input inhibited)

9 An internal system error was encountered. OIA data was not
returned.

Notes on Using This Function
1. The OIA Group consists of the bits that show the status of the connected

sessions. The group is categorized by the represented host function. (For
example, Group 8 consists of the bits that show all conditions of the input
inhibit in the session.) The states of each group are ordered so that the
high-order bits represent the indicators of higher priority. That is, bit 7 has
priority over bit 0. Therefore, if more than one state is active within a group,
the state with the highest priority is the active state within that group.

2. To use this function, preallocate memory to receive the returned data string
parameter. The statements required to preallocate this memory vary depending
on the language in which your application is written. Refer to “Memory
Allocation” on page 8 for more information.

Format of the Returned OIA Data String
The OIA data string contains the following information:

Byte Definition

Standard Enhanced

1 1 The OIA format byte. The value is 1 (PC/3270), 9
(PC400), or 5 (VT).

2–81 2–81 The OIA image in the host code points.

82–103 82–103 OIA group indicator meanings.

104 Reserved.

PC/3270 OIA Group Indicator Meanings and Its Image: The OIA image group
consists of an 80-byte ASCII character string with no attribute bytes that contains
the OIA image in host code points. Figure 2 on page 50 shows the hexadecimal
codes found in the host presentation space, and the characters they represent. The
returned data can be translated into OIA graphics characters. Refer to Quick
Beginnings for information on the OIA indicators.

To translate the returned data into OIA graphics characters, proceed as follows:
1. Print the data returned in bytes 2 through 81 to the screen or to a printer.

Chapter 3. EHLLAPI Functions 49

2. Using the code page chart applicable to the device on which the output
appears, find the hexadecimal value corresponding to each character.

3. Using Figure 2, find the OIA graphics character corresponding to each
hexadecimal value found in step 2.

Note: Group 8 (byte 0) machine, communications, and program check images are
followed by a three-digit number related to the type of check.

The online and screen ownership group images are for non-SNA 3274 controller
configurations. For SNA, the CD hex value is translated by CD (see Figure 2). If
running on a 3174 controller or SDLC connection, the hex value X'F4' is replaced
by X'B2' or X'22'. The highlight indicator is a corresponding image (in the first 80
bytes of the data string) of the “Group 5 (offset 86: Highlight group 1” byte. The
highlight indicator is followed by either X'F9' (blink), X'FC' (underscore), X'D2'
(reverse video), or X'80' (host default).

The short session ID followed by X'20' is in column 7.

All group images are represented by Main Frame Interactive (MFI) hex code
points.

Note: The OIA image data string position minus 1 position equals the OIA
column.

v Group 1 (Offset 82): Online and Screen Ownership

Bit Meaning

0–1 Reserved

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

xA

xB

xC

xD

xE

xF

NUL

EM

FF

NL

STP

CR

SP

=

>

<

[

]

)

(

}

{

,

/

\
|

?

!

S

Pts

0

1

2

3

4

5

6

7

8

9

§

#

@

%

&
_

.

,
:

+

—

a

b
c

d
e

f
g

h

i
j

k

l

m
n

o
p

q

r

s

t
u

v

w

x

y

z

æ

ø Ø

A

B

C

D
E

F

G

H
I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

Æ

a
.

A
.

ç Ç
; ;

* *

Y Î
A Ô

E Û

E Á

I É

O Í

U Ó

Y Ú

C Ñ

|

.

.

”

~

´
´

ç
Ü Ú

ñ

Ù ó

Ò

Ì é

í

é á

è û

è

à ä

ë

ï

ö

À Ä

È Ë

Ì Ï

à ô

ÿ î

õ ê Õ Ê

Ã Â

Ù Ü

Ò Ö

ã â

ù ü

ò

ì

?

4

3

2

µ

Figure 2. Host Presentation Space Characters

50 Emulator Programming

Bit Meaning

2 SSCP-LU session owns screen

3 LU-LU session owns screen

4 Online and not owned

5 Subsystem ready

6–7 Reserved

v Group 2 (Offset 83): Character Selection

Bit Meaning

0 Reserved

1 APL

2 Katakana (Japan only)

3 Alphanumeric

4–5 Reserved

6 Hiragana (Japan only)

7 Double-byte character

v Group 3 (Offset 84): Shift State

Bit Meaning

0 Upper shift

1 Numeric

2 CAPS

3–7 Reserved

v Group 4 (Offset 85): PSS Group 1

Bit Meaning

0–7 Reserved

v Group 5 (Offset 86): Highlight Group 1

Bit Meaning

0 Operator selectable

1 Field inherit

2–7 Reserved

v Group 6 (Offset 87): Color Group 1

Bit Meaning

0 Operator selectable

1 Field inherit

2–7 Reserved

v Group 7 (Offset 88): Insert

Chapter 3. EHLLAPI Functions 51

Bit Meaning

0 Insert mode

1–7 Reserved

v Group 8 (Offset 89–93): Input Inhibited (5 bytes)
– Byte 1 (Offset 89)

Bit Meaning

0 Non-resettable machine check

1 Reserved

2 Machine check

3 Communications check

4 Program check

5–7 Reserved

– Byte 2 (Offset 90)

Bit Meaning

0 Device busy

1 Terminal wait

2 Minus symbol

3 Minus function

4 Too much entered

5–7 Reserved

– Byte 3 (Offset 91)

Bit Meaning

0–2 Reserved

3 Incorrect dead key combination, limited key.

4 Wrong place

5–7 Reserved

– Byte 4 (Offset 92)

Bit Meaning

0–1 Reserved

2 System wait

3–7 Reserved

– Byte 5 (Offset 93)

Bit Meaning

0–7 Reserved

v Group 9 (Offset 94): PSS Group 2

52 Emulator Programming

Bit Meaning

0–7 Reserved

v Group 10 (Offset 95): Highlight Group 2

Bit Meaning

0–7 Reserved

v Group 11 (Offset 96): Color Group 2

Bit Meaning

0–7 Reserved

v Group 12 (Offset 97): Communication Error Reminder

Bit Meaning

0-6 Communications error

1–7 Reserved

v Group 13 (Offset 98): Printer State

Bit Meaning

0–7 Reserved

v Group 14 (Offset 99): Graphics

Bit Meaning

0–7 Reserved

v Group 15 (Offset 100): Reserved
v Group 16 (Offset 101): Automatic Key Play/Record State

Bit Meaning

0–7 Reserved

v Group 17 (Offset 102): Automatic Key Quit/Stop State

Bit Meaning

0–7 Reserved

v Group 18 (Offset 103): Expanded State

Bit Meaning

0–7 Reserved

PC400 OIA Group Indicator Meanings and Its Image: Details of the OIA group
are listed in the following tables.
v Group 1 (Offset 82): Online and Screen Ownership

Bit Meaning Beginning Position of Data String

0–2 Reserved

Chapter 3. EHLLAPI Functions 53

Bit Meaning Beginning Position of Data String

3 System available 1

4 Reserved

5 Subsystem ready

6–7 Reserved

v Group 2 (Offset 83): Character Selection

Bit Meaning Beginning Position of Data String

0–1 Reserved

2 Katakana (Japan
only)

3 Alphanumeric

4–5 Reserved

6 Hiragana (Japan
only)

7 Double-byte
character

v Group 3 (Offset 84): Shift State

Bit Meaning Beginning Position of Data String

0 Reserved

1 Keyboard shift 39

2 CAPS

3–6 Reserved

7 Double-byte
character input
available

v Group 4 (Offset 85): PSS Group 1

Bit Meaning Beginning Position of Data String

0–7 Reserved

v Group 5 (Offset 86): Highlight Group 1

Bit Meaning Beginning Position of Data String

0–7 Reserved

v Group 6 (Offset 87): Color Group 1

Bit Meaning Beginning Position of Data String

0–7 Reserved

v Group 7 (Offset 88): Insert

Bit Meaning Beginning Position of Data String

0 Insert mode 68

1–7 Reserved

54 Emulator Programming

v Group 8 (Offset 89–93): Input Inhibited (5 bytes)
– Byte 1 (Offset 89)

Bit Meaning Beginning Position of Data String

0–7 Reserved

– Byte 2 (Offset 90)

Bit Meaning Beginning Position of Data String

0–7 Reserved

– Byte 3 (Offset 91)

Bit Meaning Beginning Position of Data String

0–4 Reserved

5 Operator input error 64

6–7 Reserved

– Byte 4 (Offset 92)

Bit Meaning Beginning Position of Data String

0–1 Reserved

2 System wait 64

3–7 Reserved

– Byte 5 (Offset 93)

Bit Meaning Beginning Position of Data String

0–7 Reserved

v Group 9 (Offset 94): PSS Group 2

Bit Meaning Beginning Position of Data String

0–7 Reserved

v Group 10 (Offset 95): Highlight Group 2

Bit Meaning Beginning Position of Data String

0–7 Reserved

v Group 11 (Offset 96): Color Group 2

Bit Meaning Beginning Position of Data String

0–7 Reserved

v Group 12 (Offset 97): Communication Error Reminder

Bit Meaning Beginning Position of Data String

0
Communications
Error

Chapter 3. EHLLAPI Functions 55

Bit Meaning Beginning Position of Data String

1–5 Reserved

7 Message wait 3

v Group 13 (Offset 98): Printer State

Bit Meaning Beginning Position of Data String

0–7 Reserved

v Group 14 (Offset 99): Graphics

Bit Meaning Beginning Position of Data String

0–7 Reserved

v Group 15 (Offset 100): Reserved
v Group 16 (Offset 101): Automatic Key Play/Record State

Bit Meaning Beginning Position of Data String

0–7 Reserved

v Group 17 (Offset 102): Automatic Key Quit/Stop State

Bit Meaning Beginning Position of Data String

0–7 Reserved

v Group 18 (Offset 103): Expanded State

Bit Meaning Beginning Position of Data String

0–7 Reserved

VT Host OIA Group Indicator Meanings and Its Image: Details of the VT Host
OIA group are listed in the following tables.
v Group 1 (Offset 82): Online and Screen Ownership

Bit Meaning

5 Subsystem ready

v Group 2 (Offset 83): Character Selection

Bit Meaning

0 Upper shift

2 CAPS

v Group 7 (Offset 88): Insert

Bit Meaning

0 Insert mode

Some columns on the OIA line display different messages for VT than those
messages displayed for 3270/5250. See the following table for specific details.

56 Emulator Programming

Column Symbol

1–7 VT220 7

VT220 8

VT100

VT52

VTANSI

9 - 12 LOCK

61 - 64 HOLD

Copy Presentation Space (5)

3270 5250 VT

Yes Yes Yes

The Copy Presentation Space function copies the contents of the host-connected
presentation space into a data string that you define in your EHLLAPI application
program.

The Copy Presentation Space function translates the characters in the host source
presentation space into ASCII. Attribute bytes and other characters not represented
in ASCII normally are translated into blanks. If you do not want the attribute bytes
translated into blanks, you can override this translation with the ATTRB option
under the Set Session Parameters (9) function.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 5

Data String Preallocated target string the size of your host presentation
space. This can vary depending on how your host
presentation space is configured. When the Set Session
Parameters (9) function with the EAB option is issued, the
length of the data string must be at least twice the length of
the presentation space.

DBCS Only: When the EAD option is specified, the length
of the data string must be at least three times the length of
the presentation space. When both the EAB and EAD
options are specified, the length of the data string must be
at least four times the length of the presentation space.

Length NA (the length of the host presentation space is implied).

PS Position NA.

Return Parameters
This function returns a data string, length, and a return code.

Data String:
Contents of the connected host presentation space.

Chapter 3. EHLLAPI Functions 57

Length:
Length of the data copied.

Return Code:
The following codes are defined:

Return Code Explanation

0 The host presentation space contents were copied to the
application program. The target presentation space was active, and
the keyboard was unlocked.

1 Your program is not connected to a host session.

4 The host presentation space contents were copied. The connected
host presentation space was waiting for host response.

5 The host presentation space was copied. The keyboard was locked.

9 A system error was encountered.

Notes on Using This Function
1. An EAB can be returned when the Set Session Parameters (9) function EAB

option is used. EAB is related to each character in the presentation space and is
returned preceding each character.

2. DBCS Only: The Set Session Parameters (9) function EAD option is used with
this function to return a 2-byte EAD. If the EAD option is specified instead of
the EAB option, EAD is returned preceding each character. If both the EAB and
EAD options are specified, EAD is returned preceding the EAB.
If the start position of the copy is at the second byte in the double-byte
character, or the end position is at the first byte in the double-byte character,
the bytes are translated into blanks.

3. The Copy Presentation Space function is affected by the following session
options:
v ATTRB/NOATTRB/NULLATTRB
v EAB/NOEAB
v XLATE/NOXLATE
v BLANK/NOBLANK
v DISPLAY/NODISPLAY
v EAD/NOEAD (for DBCS only)
v NOSO/SPACESO/SO (for DBCS only)
v EXTEND_PS/NOEXTEND_PS

Refer to items 5 on page 149; 13, 14, 15 and 17 on page 153; and 20 and 21 on page
154 for more information.

If the target data string provided is not long enough to hold the requested data,
unpredictable results can occur.

As previously stated, the return of attributes by the various Copy (5, 8, and 34)
functions is affected by the Set Session Parameters (9) function. The involved set
session parameters have the following effect:

Set Session Parameter
Effect on the COPY Function

58 Emulator Programming

NOEAB and NOEAD
Attributes are not returned. Only text is copied from the presentation space
to the user buffer.

EAB and NOXLATE
Attributes are returned as defined in the following tables.

EAB and XLATE
The colors used for the presentation space display are returned. Colors can
be remapped; so the attribute colors are not the ones returned by the Copy
functions when XLATE and EAB are on at the same time.

EAD Double-byte character set attributes are returned as shown in the following
tables.

NOSO/SPACESO/SO
When NOSO is specified, it works as SPACESO. The size of the
presentation space is not changed.

The returned character attributes are defined in the following tables. The attribute
bit positions are in IBM format with bit 0 the left most bit in the byte.

3270 character attributes are returned from the host to the emulator. The following
table applies when EAB and NOXLATE are set.

Bit Position Meaning

0–1 Character highlighting

00 = Normal

01 = Blink

10 = Reverse video

11 = Underline

2–4 Character color (Color remap can override this color
definition.)

000 = Default

001 = Blue

010 = Red

011 = Pink

100 = Green

101 = Turquoise

110 = Yellow

111 = White

5–6 Character attribute

00 = Default value

11 = Double-byte character

7 Reserved

5250 character attributes are returned from the host to the emulator. The following
table applies when EAB and NOXLATE are set.

Bit Position Meaning

0 Reverse image

0 = Normal image

1 = Reverse image

Chapter 3. EHLLAPI Functions 59

Bit Position Meaning

1 Underline

0 = No underline

1 = Underline

2 Blink

0 = Not blink

1 = Blink

3 Separator of columns

0 = No separator

1 = Separator

4–7 Reserved

The following table shows Personal Communications character color attributes. The
following table applies when EAB and XLATE are set.

Bit Position Meaning

0–3 Background character colors

0000 = Black

0001 = Blue

0010 = Green

0011 = Cyan

0100 = Red

0101 = Magenta

0110 = Brown (3270), Yellow (5250)

0111 = White

4–7 Foreground character colors

0000 = Black

0001 = Blue

0010 = Green

0011 = Cyan

0100 = Red

0101 = Magenta

0110 = Brown (3270), Yellow (5250)

0111 = White

1000 = Gray

1001 = Light blue

1010 = Light green

1011 = Light cyan

1100 = Light red

1101 = Light magenta

1110 = Yellow

1111 = White (high intensity)

v Double-byte character set attributes (for DBCS only)
– The first byte

60 Emulator Programming

Bit Position Character Position Field Attribute Position

0 Double-byte character Reserved

1 The first byte of the
double-byte character

Reserved

2 SO Reserved

3–4 SI (Bit position 3) 5250 DBCS related field

v When the value of bit position 7 is
0:

00 = Default

01 = DBCS only

10 = Either DBCS or SBCS

11 = Mixture of DBCS and SBCS

v When the value of bit position 7 is
1:

00 = Reserved

01 = DBCS only without SO/SI

10 = Reserved

11 = Reserved

5 Reserved SO/SI enabled (3270 only)

6 Reserved Character attributes exist (3270 only)

7 Reserved 5250 DBCS related extended field

0 = Basic double-byte field

1 = Extended double-byte field

– The second byte

Bit Position Character Position Field Attribute Position

0 Reserved Left grid line (3270 only)

1 Reserved Upper grid line (3270 only)

2 Reserved Right grid line (3270 only)

3 Reserved Under grid line (3270 only)

4 Left grid line Left grid line

5 Upper grid line Upper grid line

6–7 Reserved Reserved

For a PS/2 monochrome display, the characters in the application (workstation)
session appear as various shades of gray. This is required to give users their
remapped colors in the EHLLAPI application session so they can get what they see
in their host application presentation spaces.

If you want to copy only a portion of the host presentation space, use the Copy
Presentation Space to String (8) function.

To use this function, preallocate memory to receive the returned data string
parameter. The statements required to preallocate this memory vary depending on
the language in which your application is written. Refer to “Memory Allocation”
on page 8 for more information.

Chapter 3. EHLLAPI Functions 61

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In
some instances, Communication Manager 5250 emulation displays a 25th
row. This occurs when either an error message from the host is displayed or
when the operator selects the SysReq key. Personal Communications
displays 25th row information on row 24, or on the status bar. For
information to be displayed on the status bar, the status bar must be
configured. Refer to Quick Beginnings for information on configuring the
status bar. By the EXTEND_PS option, an EHLLAPI application can use the
same interface with Communication Manager EHLLAPI and valid
presentation space is extended when this condition occurs.

1390/1399 Code Page Support
Unicode functionality is supported only on 3270 and 5250 sessions.

In a Unicode session, the characters in the host source presentation space are
translated into Unicode. Attribute bytes are normally translated into blanks.

The XLATE option (that can be specified using the Set Session Parameters (9)
function) is not supported in a Unicode session. This means that even if this option
is issued, the EABs will not be translated to the PC color graphics adapter (CGA)
format.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface Enhanced Interface

Function Number Must be 5

Data String Preallocated target Unicode string. When the Set Session
Parameters (9) function with Extended Attribute Bytes
(EAB) option is issued, the length of the data string must be
twice the size of the presentation space.

Length NA (the length of the host presentation space is implied).

PS Position NA

Return Parameters: This function returns a data string and a return code.

Data String:
String containing the Unicode representation of the contents of
presentation space is returned

Return Code:
The following codes are defined:

Return Code Explanation

0 The host presentation space contents were copied to the
application program. The target presentation space was active, and
the keyboard was unlocked.

1 Your program is not connected to a host session.

4 The host presentation space contents were copied. The connected
host presentation space was waiting for host response.

5 The host presentation space was copied. The keyboard was locked.

9 A system error was encountered.

62 Emulator Programming

Notes on Using This Function: The following options are supported in a Unicode
session for Copy Presentation Space (5) and function in the same way as in DBCS:
v NOATTRB
v ATTRB
v NULLATTRB
v EAB
v NOEAB
v NOXLATE
v DISPLAY
v NODISPLAY
v BLANK
v NOBLANK

1137 Code Page Support
Unicode functionality is supported only on 5250 sessions.

In a Unicode session, the characters in the host source presentation space are
translated into Unicode. Attribute bytes are normally translated into blanks.

The XLATE option (that can be specified using the Set Session Parameters (9)
function) is not supported in a Unicode session. This means that even if this option
is issued, the EABs will not be translated to the PC color graphics adapter (CGA)
format.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface Enhanced Interface

Function Number Must be 5

Data String Preallocated target Unicode data string. The length (in
bytes) should be twice the size (in bytes) of the presentation
space. When the Set Session Parameters (9) function with
Extended Attribute Bytes (EAB) option is issued, the length
of the data string must be at least four times the size of the
presentation space.

Length NA (the length of the host presentation space is implied).

PS Position NA

Return Parameters: This function returns a data string and a return code.

Data String:
String containing the Unicode representation of the contents of
presentation space is returned

Return Code:
The following codes are defined:

Return Code Explanation

0 The host presentation space contents were copied to the
application program. The target presentation space was active, and
the keyboard was unlocked.

1 Your program is not connected to a host session.

Chapter 3. EHLLAPI Functions 63

Return Code Explanation

4 The host presentation space contents were copied. The connected
host presentation space was waiting for host response.

5 The host presentation space was copied. The keyboard was locked.

9 A system error was encountered.

Notes on Using This Function: The following options are supported in a Unicode
session for Copy Presentation Space (5) and function in the same way as in SBCS:
v NOATTRB
v ATTRB
v NULLATTRB
v EAB
v NOEAB
v NOXLATE
v DISPLAY
v NODISPLAY
v BLANK
v NOBLANK

Copy Presentation Space to String (8)

3270 5250 VT

Yes Yes Yes

The Copy Presentation Space to String function is used to copy all or part of the
host-connected presentation space into a data string that you define in your
EHLLAPI application program.

The input PS position is the offset into the host presentation space. This offset is
based on a layout in which the upper-left corner (row 1/column 1) is location 1
and the bottom-right corner is 3564, which is the maximum screen size for the host
presentation space. The value of PS Position + (Length – 1) cannot exceed the
configured size of your host presentation space.

The Copy Presentation Space to String function translates the characters in the
host source presentation space into ASCII. Attribute bytes and other characters not
represented in ASCII normally are translated into blanks. If you do not want the
attribute bytes translated into blanks, you can override this translation with the
ATTRB option under the Set Session Parameters (9) function.

Prerequisite Calls
Connect Presentation Space (1).

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 8

64 Emulator Programming

Standard Interface Enhanced Interface

Data String Preallocated target string the size of your host presentation
space. When the Set Session Parameters (9) function with
the EAB option is issued, the length of the data string must
be at least twice the length of the presentation space.

DBCS Only: When the EAD option is specified, the length
of the data string must be at least three times the length of
the presentation space. When both the EAB and EAD
options are specified, the length of the data string must be
at least four times the length of the presentation space.

Length Length of the target data string.

PS Position Position within the host presentation space of the first byte
in your target data string.

Return Parameters
This function returns a data string and a return code.

Data String:
Contents of the host presentation space.

Return Code:
The following codes are defined:

Return Code Explanation

0 The host presentation space contents were copied to the application
program. The target presentation space was active, and the
keyboard was unlocked.

1 Your program is not connected to a host session.

2 An error was made in specifying string length, or the sum of
(Length − 1) + PS position is greater than the size of the connected
host presentation space.

4 The host presentation space contents were copied. The host
presentation space was waiting for host response.

5 The host presentation space was copied. The keyboard was locked.

7 The host presentation space position is not valid.

9 A system error was encountered.

Notes on Using This Function
1. An EAB can be returned when the Set Session Parameters (9) function EAB

option is used. EAB is related to each character in the presentation space and is
returned following each character.

2. DBCS Only: The Set Session Parameters (9) function EAD option is used with
this function to return a 2-byte EAD. If the EAD option is specified instead of
the EAB option, EAD is returned preceding each character. If both the EAB and
EAD options are specified, EAD is returned following the EAB.
If the start position of the copy is at the second byte in the double-byte
character, or the end position is at the first byte in the double-byte character,
the bytes are translated into blanks. If the EAD option is set to on, three bytes
are returned for each character. If both the EAB and EAD options are set to on,
four bytes are returned for each character.

3. The Copy Presentation Space to String function is affected by the following
options:

Chapter 3. EHLLAPI Functions 65

v ATTRB/NOATTRB/NULLATTRB
v EAB/NOEAB
v XLATE/NOXLATE
v BLANK/NOBLANK
v DISPLAY/NODISPLAY
v EAD/NOEAD (for DBCS only)
v NOSO/SPACESO/SO (for DBCS only)
v EXTEND_PS/NOEXTEND_PS

Refer to items 5 on page 149; 13 and 14 on page 152; 15 on page 152; 17 on
page 153; and 20 and 21 on page 154
If the target data string provided is not large enough to hold the requested
number of bytes, the copy ends successfully (RC=0, 4, or 5) when the end of
the target data string is reached.
As previously stated, the return of attributes by the various Copy (5, 8, and 34)
functions is affected by the Set Session Parameters (9) function. The involved
set session parameters have the following effect:

Set Session Parameter
Effect on the Copy Function

NOEAB and NOEAD
Attributes are not returned. Only text is copied from the presentation
space to the user buffer.

EAB and NOXLATE
Attributes are returned as defined in the following tables.

EAB and XLATE
The colors used for the presentation space display are returned. Colors
can be remapped, so the attribute colors are not the ones returned by
the Copy functions when XLATE and EAB are on at the same time.

EAD Double-byte character set attributes are returned as shown in the
following tables.

The returned character attributes are defined in the following tables. The
attribute bit positions are in IBM format with bit 0 the left most bit in the byte.
v 3270 character attributes are returned from the host to the emulator. The

following table applies when EAB and NOXLATE are set.

Bit Position Meaning

0–1 Character highlighting

00 = Normal

01 = Blink

10 = Reverse video

11 = Underline

66 Emulator Programming

Bit Position Meaning

2–4 Character color (Color remap can override
this color definition.)

000 = Default

001 = Blue

010 = Red

011 = Pink

100 = Green

101 = Turquoise

110 = Yellow

111 = White

5–7 Reserved

v 5250 character attributes are returned from the host to the emulator. The
following table applies when EAB and NOXLATE are set.

Bit Position Meaning

0 Reverse image

0 = Normal image

1 = Reverse image

1 Underline

0 = No underline

1 = Underline

2 Blink

0 = Not blink

1 = Blink

3 Separator of columns

0 = No separator

1 = Separator

4–7 Reserved

v VT character attributes are returned from the host to the emulator. The
following table applies when EAB and NOXLATE are set.

Bit Position Meaning

0-3 Reserved

4 Bold

1 = On

0 = Off

5 Underscore

1 = On

1 = Off

6 Blink

1 = On

0 = Off

7 Reverse

0 = On

1 = Off

Chapter 3. EHLLAPI Functions 67

v The following table shows Personal Communications character color
attributes. The following table applies when EAB and XLATE are set.

Bit Position Meaning

0–3 Background character colors

0000 = Black

0001 = Blue

0010 = Green

0011 = Cyan

0100 = Red

0101 = Magenta

0110 = Brown (3270), Yellow (5250)

0111 = White

4–7 Foreground character colors

0000 = Black

0001 = Blue

0010 = Green

0011 = Cyan

0100 = Red

0101 = Magenta

0110 = Brown (3270), Yellow (5250)

0111 = White

1000 = Gray

1001 = Light blue

1010 = Light green

1011 = Light cyan

1100 = Light red

1101 = Light magenta

1110 = Yellow

1111 = White (high intensity)

v Double-byte character set attributes
– The first byte

Bit Position Character Position Field Attribute Position

0 Double-byte character Reserved

1 The first byte of the
double-byte character

Reserved

2 SO Reserved

68 Emulator Programming

Bit Position Character Position Field Attribute Position

3–4 SI (Bit position 3) 5250 DBCS related field

When the value of bit
position 7 is 0:

00 = Default

01 = DBCS only

10 = Either DBCS or
SBCS

11 = Mixture of DBCS
and SBCS

When the value of bit
position 7 is 1:

00 = Reserved

01 = DBCS only
without SO/SI

10 = Reserved

11 = Reserved

5 Reserved SO/SI enable (3270 only)

6 Reserved Character Attributes exist
(3270 only)

7 Reserved 5250 DBCS related extended
field

0 = Basic double-byte
field

1 = Extended double-byte
field

– The second byte

Bit Position Character Position Field Attribute Position

0 Reserved Left grid line (3270 only)

1 Reserved Upper grid line (3270 only)

2 Reserved Right grid line (3270 only)

3 Reserved Under grid line (3270 only)

4 Left grid line Left grid line

5 Upper grid line Upper grid line

6–7 Reserved Reserved

For a PS/2 monochrome display, the characters in the application (workstation)
session appear as various shades of gray. This is required to give users their
remapped colors in the EHLLAPI application session so they can get what they
see in their host application presentation spaces.

4. To use this function, preallocate memory to receive the returned data string
parameter. The statements required to preallocate this memory vary depending
on the language in which your application is written. Refer to “Memory
Allocation” on page 8 for more information.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In
some instances, Communication Manager 5250 emulation displays a 25th
row. This occurs when either an error message from the host is displayed or

Chapter 3. EHLLAPI Functions 69

when the operator selects the SysReq key. Personal Communications
displays 25th row information on row 24, or on the status bar. For
information to be displayed on the status bar, the status bar must be
configured. Refer to Quick Beginnings for information on configuring the
status bar. By the EXTEND_PS option, an EHLLAPI application can use the
same interface with Communication Manager EHLLAPI and valid
presentation space is extended when this condition occurs.

1390/1399 Code Page Support
Unicode functionality is supported only on 3270 and 5250 sessions.

In a Unicode session, the characters in the host source presentation space are
translated into Unicode. Attribute bytes are normally translated into blanks.

The XLATE option (that can be specified using the Set Session Parameters (9)
function) is not supported in a Unicode session. This means that even if this option
is issued, the EABs will not be translated to the PC color graphics adapter (CGA)
format.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface Enhanced Interface

Function Number Must be 8

Data String Preallocated target Unicode string. When the Set Session
Parameters (9) function with Extended Attribute Bytes
(EAB) option is issued, the length of the data string must be
at least twice the length of the presentation space.

Length The length of the target Unicode string in Unicode
characters.

PS Position Position within the host presentation space of the first byte
in your target data string.

Return Parameters: This function returns a data string and a return code.

Data String:
String containing the Unicode data is returned

Return Code:
The following codes are defined:

Return Code Explanation

0 The host presentation space contents were copied to the application
program. The target presentation space was active, and the
keyboard was unlocked.

1 Your program is not connected to a host session.

2 An error was made in specifying string length, or the sum of
(Length − 1) + PS position is greater than the size of the connected
host presentation space.

4 The host presentation space contents were copied. The host
presentation space was waiting for host response.

5 The host presentation space was copied. The keyboard was locked.

7 The host presentation space position is not valid.

70 Emulator Programming

Return Code Explanation

9 A system error was encountered.

Notes on Using This Function: The following options are supported in a Unicode
session for Copy Presentation Space to String and function in the same way as in
DBCS:
v NOATTRB
v ATTRB
v NULLATTRB
v EAB
v NOEAB
v NOXLATE
v DISPLAY
v NODISPLAY
v BLANK
v NOBLANK

1137 Code Page Support
Unicode functionality is supported only on 5250 sessions.

In a Unicode session, the characters in the host source presentation space are
translated into Unicode. Attribute bytes are normally translated into blanks.

The XLATE option (that can be specified using the Set Session Parameters (9)
function) is not supported in a Unicode session. This means that even if this option
is issued, the EABs will not be translated to the PC color graphics adapter (CGA)
format.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface Enhanced Interface

Function Number Must be 8

Data String Preallocated target data string. The length should be at least
twice the number of EBCDIC bytes required to be copied
from the presentation space. When the Set Session
Parameters (9) function with Extended Attribute Bytes
(EAB) option is issued, the length of the data string must be
at least four times the length of the EBCDIC string that is to
be copied from the presentation space.

Length The length of the target Unicode string in bytes. This length
should be at least 2 in a Unicode session. If not, an error
code of 2 is returned.

PS Position Position within the host presentation space of the first byte
in your target data string.

Return Parameters: This function returns a data string and a return code.

Data String:
Contents of the host presentation space.

Chapter 3. EHLLAPI Functions 71

Return Code:
The following codes are defined:

Return Code Explanation

0 The host presentation space contents were copied to the application
program. The target presentation space was active, and the
keyboard was unlocked.

1 Your program is not connected to a host session.

2 An error was made in specifying string length, or the sum of
(Length − 1) + PS position is greater than the size of the connected
host presentation space.

4 The host presentation space contents were copied. The host
presentation space was waiting for host response.

5 The host presentation space was copied. The keyboard was locked.

7 The host presentation space position is not valid.

9 A system error was encountered.

Notes on Using This Function: The following options are supported in a Unicode
session for Copy Presentation Space to String and function in the same way as in
SBCS:
v NOATTRB
v ATTRB
v NULLATTRB
v EAB
v NOEAB
v NOXLATE
v DISPLAY
v NODISPLAY
v BLANK
v NOBLANK

Copy String to Field (33)

3270 5250 VT

Yes Yes Yes

The Copy String to Field function transfers a string of characters into a specified
field in the host-connected presentation space. This function can be used only in a
field-formatted host presentation space.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 33

Data String String containing the data to be transferred to a target field
in the host presentation space.

72 Emulator Programming

Standard Interface Enhanced Interface

Length Length, in number of bytes, of the source data string.
Overridden if in EOT mode.

PS Position Identifies the target field. This can be the PS position of any
byte within the target field. Copy always starts at the
beginning of the field.

Return Parameters

Return Code Explanation

0 The Copy String to Field function was successful.

1 Your program is not connected to a host session.

2 Parameter error or zero length for copy.

5 The target field was protected or inhibited, or incorrect data was
sent to the target field (such as a field attribute).

6 Copy was completed, but data is truncated.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 Unformatted host presentation space.

Notes on Using This Function
1. The Copy String to Field function is affected by the following options:
v STRLEN/STREOT
v EOT
v EAB/NOEAB
v XLATE/NOXLATE
v PUTEAB/NOPUTEAB
Refer to items 1 and 2 on page 149; 13 and 14 on page 152; 18 on page 153; and
20 and 21 on page 154 for more information.

2. The string to be transferred is specified with the calling data string parameter.
The string ends when one of these three conditions is encountered:
v When an end-of-text (EOT) delimiter is encountered in the string if EOT

mode was selected using the Set Session Parameters (9) function. (See “Set
Session Parameters (9)” on page 147).

v When the number specified in the length is reached if not in EOT mode.
v When an end-of-field is encountered in the field.

Note: If the field at the end of the host presentation space wraps, wrapping
occurs when the end of the presentation space is reached.

3. The keyboard mnemonics (see Send Key (3) function) cannot be sent using the
Copy String to Field function.

4. The first byte of the data to be transferred is always placed at the beginning of
the field that contains the specified PS position.

5. DBCS Only: Double-byte characters can be included as a part of the string.

Note: PC400 does not add SO and SI to the string. When you write the strings,
including double-byte characters at the DBCS mixed field, generate SO

Chapter 3. EHLLAPI Functions 73

and SI and create the area where double-byte characters are written by
using the Send Key (3) function in advance.

If both single-byte and double-byte characters exist in a string, the data might
be truncated because the data length in EBCDIC is longer than in JISCII. In this
case, only the first byte or the second byte of the double-byte character is not
written.
If the last character in the original string is the first byte of the double-byte
character, the character is not written and not counted in the length.
A control character is converted from single-byte character to double-byte
character, or from double-byte character to single-byte character depending on
the field condition. A pair of NULL+Control Character between SO and SI is
treated as a double-byte control character. For example, the following strings
are copied into the single-byte character field or the double-byte character field:

String Meanings
Single-byte character
field

Double-byte
character field

X'000C' (NULL)(FF)
X'00'X'0C'

(SB NULL)(SB FF)
X'00'X'0C'

(DB NULL)(DB FF)
X'0000'X'000C'

X'0E000C0F' (SO)(DB FF)(SI)
X'0E'X'000C'X'0F'

–S error (DB FF) X'000C'

Note: SB means single-byte characters and DB means double-byte characters.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In
some instances, Communication Manager 5250 emulation displays a 25th
row. This occurs when either an error message from the host is displayed or
when the operator selects the SysReq key. Personal Communications
displays 25th row information on row 24, or on the status bar. For
information to be displayed on the status bar, the status bar must be
configured. Refer to Quick Beginnings for information on configuring the
status bar. By the EXTEND_PS option, an EHLLAPI application can use the
same interface with Communication Manager EHLLAPI and valid
presentation space is extended when this condition occurs.

1390/1399 Code Page Support
Unicode functionality is supported only on 3270 and 5250 sessions.

STREOT option is not supported in a Unicode session. Please refer to “Set Session
Parameters (9)” on page 147 for details.

The XLATE option (that can be specified using the Set Session Parameters (9)
function) is not supported in a Unicode session. This means that even if this option
is issued, the EABs will not be translated to the PC color graphics adapter (CGA)
format.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface Enhanced Interface

Function Number Must be 33

Data String String containing the Unicode data to be transferred to a
target field in the host presentation space.

74 Emulator Programming

Standard Interface Enhanced Interface

Length Length, in number of Unicode characters, of the source
Unicode string.
Note: The EOT mode is not supported in a Unicode
session; therefore, length should be specified for proper
functioning of this function in a Unicode session.

PS Position Identifies the target field. This can be the PS position of any
byte within the target field. Copy always starts at the
beginning of the field.

Return Parameters:

Return Code Explanation

0 The Copy String to Field function was successful.

1 Your program is not connected to a host session.

2 Parameter error or zero length for copy.

5 The target field was protected or inhibited, or incorrect data was
sent to the target field (such as a field attribute).

6 Copy was completed, but data is truncated.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 Unformatted host presentation space.

Notes on Using This Function: The following options are supported in a Unicode
session for Copy String to Field and function in the same way as in DBCS:
v STRLEN
v EAB
v NOEAB
v NOXLATE
v PUTEAB
v NOPUTEAB

1137 Code Page Support
Unicode functionality is supported only on 5250 sessions.

STREOT option is not supported in a Unicode session. Please refer to “Set Session
Parameters (9)” on page 147 for details.

The XLATE option (that can be specified using the Set Session Parameters (9)
function) is not supported in a Unicode session. This means that even if this option
is issued, the EABs will not be translated to the PC color graphics adapter (CGA)
format.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface Enhanced Interface

Function Number Must be 33

Chapter 3. EHLLAPI Functions 75

Standard Interface Enhanced Interface

Data String String containing the Unicode data to be transferred to a
target field in the host presentation space.

Length Length, in number of bytes, of the source Unicode string.
The length should be at least 2 bytes. If not, an error code
of 2 is returned.
Note: The EOT mode is not supported in a Unicode
session; therefore, length should be specified for proper
functioning of this function in a Unicode session.

PS Position Identifies the target field. This can be the PS position of any
byte within the target field. Copy always starts at the
beginning of the field.

Return Parameters:

Return Code Explanation

0 The Copy String to Field function was successful.

1 Your program is not connected to a host session.

2 Parameter error or zero length for copy.

5 The target field was protected or inhibited, or incorrect data was
sent to the target field (such as a field attribute).

6 Copy was completed, but data is truncated.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 Unformatted host presentation space.

Notes on Using This Function: The following options are supported in a Unicode
session for Copy String to Field and function in the same way as in SBCS:
v STRLEN
v EAB
v NOEAB
v NOXLATE
v PUTEAB
v NOPUTEAB

Copy String to Presentation Space (15)

3270 5250 VT

Yes Yes Yes

The Copy String to Presentation Space function copies an ASCII data string
directly into the host presentation space at the location specified by the PS position
calling parameter.

Prerequisite Calls
Connect Presentation Space (1)

76 Emulator Programming

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 15.

Data String String of ASCII data to be copied into the host presentation
space.

Length Length, in number of bytes, of the source data string.
Overridden if in EOT mode.

PS Position Position in the host presentation space to begin the copy, a
value between 1 and the configured size of your host
presentation space.

Return Parameters

Return Code Explanation

0 The Copy String to Presentation Space function was successful.

1 Your program is not connected to a host session.

2 Parameter error or zero length for copy.

5 The target presentation space is protected or inhibited, or incorrect
data was sent to the target presentation space (such as a field
attribute byte).

6 The copy was completed, but the data was truncated.

7 The host presentation space position is not valid.

9 A system error was encountered.

Notes on Using This Function
1. The Copy String to Presentation Space function is affected by the following

options:
v STRLEN/STREOT
v EOT
v EAB/NOEAB
v XLATE/NOXLATE
v PUTEAB/NOPUTEAB
v EAD/NOEAD (for DBCS only)
v NOSO/SPACESO/SO (for DBCS only)
v EXTEND_PS/NOEXTEND_PS

Refer to items 1 and 2 on page 149; 13 and 14 on page 152; 18 on page 153; and
20 and 21 on page 154 for more information.

2. The keyboard mnemonics (see Send Key (3) function) cannot be sent using the
Copy String to Presentation Space function.

3. The string ends when an end-of-text (EOT) delimiter is encountered in the
string if EOT mode was selected using the Set Session Parameters (9) function.
(See “Set Session Parameters (9)” on page 147).

4. Although the Send Key (3) function accomplishes the same purpose, this
function responds with the prompt and enters a command more quickly.
Because the Send Key (3) function emulates the terminal operator typing the
data from the keyboard, its process speed is slow for an application operating
with a lot of data. This function provides a faster input path to the host.

Chapter 3. EHLLAPI Functions 77

5. The original data (the copied string) cannot exceed the size of the presentation
space.

6. DBCS Only: Double-byte characters can be included as a part of the string.

Note: PC400 does not add SO and SI to the string. When you write the strings,
including double-byte characters at the DBCS mixed field, generate SO
and SI and create the area where double-byte characters are written by
using the Send Key (3) function in advance.

If both single-byte and double-byte characters exist in a string, the data might
be truncated because the data length in EBCDIC is longer than in JISCII. If only
the first byte or the second byte of the double-byte character must be written
into the string, a blank is written.
If the last character in the original string is the first byte of the double-byte
character, the character is not written and not counted in the length.
If the character to be written into the last character of the target presentation
space is SO/SI or the first byte of the double-byte character, the character is not
written and truncated, and not counted in the length.
A control character is converted from single-byte character to double-byte
character, or from double-byte character to single-byte character depending on
the field condition. A pair of NULL+Control Character between SO and SI is
treated as a double-byte control character. For example, the following strings
are copied into the single-byte character field or the double-byte character field:

String Meanings
Single-byte character
field

Double-byte
character field

X'000C' (NULL)(FF)
X'00'X'0C'

(SB NULL)(SB FF)
X'00'X'0C'

(DB NULL)(DB FF)
X'0000'X'000C'

X'0E000C0F' (SO)(DB FF)(SI)
X'0E'X'000C'X'0F'

–S error (DB FF) X'000C'

Note: SB means single-byte characters and DB means double-byte characters.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns.
In some instances, Communication Manager 5250 emulation displays a
25th row. This occurs when either an error message from the host is
displayed or when the operator selects the SysReq key. Personal
Communications always displays the same information on the 24th row.
By the EXTEND_PS option, an EHLLAPI application can use the same
interface with Communication Manager EHLLAPI and valid presentation
space is extended when this condition occurs.

7. This function call may cause a cursor movement to an unexpected position
with some host applications. A SendKey function may be a better choice for
filling a field than this function.

Note: This only occurs with VT sessions or connections to an ASCII host.

1390/1399 Code Page Support
Unicode functionality is supported only on 3270 and 5250 sessions.

STREOT option is not supported in a Unicode session. Please refer to “Set Session
Parameters (9)” on page 147 for details.

78 Emulator Programming

The XLATE option (that can be specified using the Set Session Parameters (9)
function) is not supported in a Unicode session. This means that even if this option
is issued, the EABs will not be translated to the PC color graphics adapter (CGA)
format.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface Enhanced Interface

Function Number Must be 15

Data String String containing the Unicode data to be transferred into the
host presentation space.

Length Length, in number of Unicode characters, of the source
Unicode string.
Note: The EOT mode is not supported in a Unicode
session; therefore, length should be specified for proper
functioning of this function in a Unicode session.

PS Position Position in the host presentation space to begin the copy, a
value between 1 and the configured size of your host
presentation space.

Return Parameters:

Return Code Explanation

0 The Copy String to Presentation Space function was successful.

1 Your program is not connected to a host session.

2 Parameter error or zero length for copy.

5 The target presentation space is protected or inhibited, or incorrect
data was sent to the target presentation space (such as a field
attribute byte).

6 The copy was completed, but the data was truncated.

7 The host presentation space position is not valid.

9 A system error was encountered.

Notes on Using This Function: The following options are supported in a Unicode
session for Copy String to Presentation Space and function in the same way as in
DBCS:
v STRLEN
v EAB
v NOEAB
v NOXLATE
v PUTEAB
v NOPUTEAB

1137 Code Page Support
Unicode functionality is supported only on 5250 sessions.

STREOT option is not supported in a Unicode session. Please refer to “Set Session
Parameters (9)” on page 147 for details.

Chapter 3. EHLLAPI Functions 79

The XLATE option (that can be specified using the Set Session Parameters (9)
function) is not supported in a Unicode session. This means that even if this option
is issued, the EABs will not be translated to the PC color graphics adapter (CGA)
format.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface Enhanced Interface

Function Number Must be 15

Data String String containing the Unicode data to be transferred into the
host presentation space.

Length Length, in number of Unicode characters, of the source
Unicode string. The length should be at least 2 bytes. If not,
an error code of 2 is retuned.
Note: The EOT mode is not supported in a Unicode
session; therefore, length should be specified for proper
functioning of this function in a Unicode session.

PS Position Position in the host presentation space to begin the copy, a
value between 1 and the configured size of your host
presentation space.

Return Parameters:

Return Code Explanation

0 The Copy String to Presentation Space function was successful.

1 Your program is not connected to a host session.

2 Parameter error or zero length for copy.

5 The target presentation space is protected or inhibited, or incorrect
data was sent to the target presentation space (such as a field
attribute byte).

6 The copy was completed, but the data was truncated.

7 The host presentation space position is not valid.

9 A system error was encountered.

Notes on Using This Function: The following options are supported in a Unicode
session for Copy String to Presentation Space and function in the same way as in
SBCS:
v STRLEN
v EAB
v NOEAB
v NOXLATE
v PUTEAB
v NOPUTEAB

Disconnect from Structured Fields (121)

3270 5250 VT

Yes No No

80 Emulator Programming

The Disconnect from Structured Fields function drops the connection between the
emulation program and the EHLLAPI application. The EHLLAPI application must
disconnect from the emulation program before exiting from the system. The
EHLLAPI application should issue this function request if a previous Connect for
Structured Fields was issued.

The Reset System (21) function will also disconnect any outstanding SF
connections.

Prerequisite Calls
Connect for Structured Fields (120)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 121

Data String See the following table

Length Must be 3 Must be 8

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID).

2–4 Reserved.

2–3 5–6 Destination/origin unique ID returned by the Connect for
structured field (120) functions.

7–8 Reserved.

Return Parameters

Return Code Explanation

0 The Disconnect from Structured Fields function was successful.

1 A specified host presentation space short session ID was not valid
or was not connected.

2 An error was made in specifying parameters.

9 A system error occurred.

40 Disconnected with asynchronous requests pending.

Notes on Using This Function
1. When a Disconnect from Structured Fields function is called, any outstanding

asynchronous Read Structured Fields (126) or Write Structured Fields (127)
function requests are returned if the application issues the Get Request
Completion (125) function call. Use the asynchronous form of this function
when cleaning up after issuing a Disconnect call.

Chapter 3. EHLLAPI Functions 81

2. The Reset System (21) function will also free any outstanding asynchronous
requests (requests that have not been retrieved by the application using the Get
Request Completion (125) function).

Disconnect Presentation Space (2)

3270 5250 VT

Yes Yes Yes

The Disconnect Presentation Space function drops the connection between your
EHLLAPI application program and the host presentation space. Also, if a host
presentation space is reserved using the Reserve (11) function, it is released upon
execution of the Disconnect Presentation Space function.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 2

Data String NA

Length NA

PS Position NA

Return Parameters

Return Code Explanation

0 The Disconnect Presentation Space function was successful.

1 Your program was not currently connected to the host presentation
space.

9 A system error was encountered.

Notes on Using This Function
1. After the Disconnect Presentation Space function is called, functions that

interact with the host-connected presentation space are no longer valid (for
example, the Send Key (3), Wait (4), Reserve (11) and Release (12) functions).

2. Your EHLLAPI application should disconnect from the host presentation space
before exiting.

3. The Disconnect Presentation Space function does not reset the session
parameters to the defaults. Your EHLLAPI application must call the Reset
System (21) function to accomplish this.

Disconnect Window Service (102)

3270 5250 VT

Yes Yes Yes

82 Emulator Programming

The Disconnect Window Service function disconnects the window services
connection between the EHLLAPI program and the specified host presentation
space window.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 102

Data String See the following table

Length 1 4

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

2–4 Reserved

Return Parameters

Return Code Explanation

0 The Disconnect Window Service function was successful.

1 Your program is not connected for Window Services.

9 A system error occurred.

Notes on Using This Function
After the Disconnect Window Service function has been called, your application
no longer manages the presentation space window.

Before exiting the application, you should request a Disconnect Window Service
function for all presentation spaces that have been connected for Presentation
Manager services. If the application exits with an outstanding connection for
window services, the subsystem cancels the outstanding connection.

EditKey Intercept
This feature enables you to intercept Edit keys in addition to the existing all
keystrokes and send them to a session in a Windows 32-bit environment.

Prerequisites
1. Map the Edit functions in the Customize Keyboard window (for example

Ctrl+C for edit copy function).
2. Call the Start Keystroke Intercept (50) EHLLAPI function with the call

parameter data string value set. The values are as follows:

Chapter 3. EHLLAPI Functions 83

Byte Position Contents

1 One of the following values:

v A specific host presentation space short
name (PSID)

v A blank or null indicating a request for
the host-connected host presentation space

2 to 4 Reserved

5 An option code character:

v D for AID keystrokes only

v L for all keystrokes

v E for all keystrokes and Edit keys

v M for requesting the asynchronous
message mode of the notification
(Windows only). If M is specified, a code
character D or L, or E must be placed in
position 13

6 to 8 Reserved

9 to 12 If M is specified in position 5, the window
handle of the window that receives the
message. The message is a non-zero return
value of RegisterWindowMessage (PCSHLL).

13 If M is specified in position 5, one of the
following values:

v D for AID keystrokes only

v L for all keystrokes

v E for all keystrokes and Edit keys

14 to 16 Reserved

3. To get the intercepted Edit keys, use the Get Key (51) EHLLAPI function. The
key mnemonic returned in the data string for the Edit keys will have M
(keystroke type mnemonic) at the 5th byte position. The next 4 bytes will have
one of the following Edit key mnemonics based on the Edit key intercepted:

Key mnemonic Key intercepted

@W@C Edit Copy

@W@D Edit Clear

@W@E Edit Copy Append

@W@L Edit Copy Link

@W@N Edit Paste Next

@W@V Edit Paste

@W@X Edit Cut

@W@Z Edit Undo

4. To send Edit keys to the session, use the Send Key (3) EHLLAPI function. The
data string passed as the call parameter can specify the following Edit key
mnemonics:

Key mnemonic Key sent

@W@C Edit Copy

84 Emulator Programming

Key mnemonic Key sent

@W@D Edit Clear

@W@E Edit Copy Append

@W@L Edit Copy Link

@W@N Edit Paste Next

@W@V Edit Paste

@W@X Edit Cut

@W@Z Edit Undo

Notes:

1. You do not have to call the Get Key (51) EHLLAPI function to use the Send
Key (3) function. For both Get Key (51) and Send Key (3) functions to handle
Edit keys, you must first call Start Keystroke Intercept (50) with the 5th byte
position set to E. If the 5th byte contains M, then position 13 must contain E.

2. The expected return values for Start Keystroke Intercept (50), Get Key (51) and
Send Key (3) functions have not changed.

3. Any prerequisites from the existing documentation should be followed as well
as the prerequisites documented here.

Find Field Length (32)

3270 5250 VT

Yes Yes Yes

The Find Field Length function returns the length of a target field in the connected
presentation space. This function can be used to find either protected or
unprotected fields, but only in a field-formatted host presentation space.

This function returns the number of characters contained in the field identified
using the call PS position parameter. This includes all characters from the
beginning of the target field up to the character preceding the next attribute byte.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 32

Data String See the following table

Length NA NA

PS Position See note

Note: PS Position: Identifies the field within the host presentation space at which
to start the Find. It can be the PS position of any byte within the field in
which you desire the Find to start.

The calling 2-character data string can contain:

Chapter 3. EHLLAPI Functions 85

Code Explanation

�� or T� This field

P� The previous field, either protected or unprotected.

N� The next field, either protected or unprotected

NP The next protected field

NU The next unprotected field

PP The previous protected field

PU The previous unprotected field

Note: The � symbol represents a required blank.

Return Parameters
This function returns a length and a return code.

Length:
The following lengths are valid:

Length Explanation

= 0 When return code = 28, field length is 0. When return code = 24,
host presentation space is not field formatted.

> 0 Required field length in the host presentation space.

Return Code:
The following codes are defined:

Return Code Explanation

0 The Find Field Length function was successful.

1 Your program is not connected to a host session.

2 A parameter error was encountered.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 No such field was found.

28 Field length of 0 bytes.

Notes on Using This Function
Except when �� or T� is used as the calling data string, if the field found is the
same as the field from which the Find started, a return code of 24 is returned.

Find Field Position (31)

3270 5250 VT

Yes Yes Yes

The Find Field Position function returns the beginning position of a target field in
the host-connected presentation space. This function can be used to find either
protected or unprotected fields but only in a field-formatted host presentation space.

86 Emulator Programming

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 31

Data String See the following table

Length NA NA

PS Position See note

Note: PS Position: Identifies the field within the host presentation space at which
to start the Find. It can be the PS position of any byte within the field in
which you want the Find to start.

The calling 2-character data string can contain:

Code Explanation

�� or T� This field

P� The previous field, either protected or unprotected

N� The next field, either protected or unprotected

NP The next protected field

NU The next unprotected field

PP The previous protected field

PU The previous unprotected field

Note: The � symbol represents a required blank.

Return Parameters
This function returns a length and a return code.

Length:
The following lengths are valid:

Length Explanation

= 0 When return code = 28, field length is 0. When return code = 24,
host presentation space is not field-formatted.

> 0 Relative position of the requested field from the origin of the host
presentation space. This position is defined to be the first position
after the attribute byte.

Return Code:
The following codes are defined:

Return Code Explanation

0 The Find Field Position function was successful.

1 Your program is not connected to a host session.

2 A parameter error was encountered.

Chapter 3. EHLLAPI Functions 87

Return Code Explanation

7 The host presentation space position is not valid.

9 A system error was encountered.

24 No such field was found.

28 Field length of 0 bytes.

Notes on Using This Function
Except when �� or T� is used as the calling data string, if the field found is the
same as the field from which the Find started, a return code of 24 is returned.

Free Communications Buffer (124)

3270 5250 VT

Yes No No

The Free Communications Buffer function returns to management memory a
buffer that is no longer required by the application. The application should free the
buffer prior to exiting the system.

Prerequisite Calls
Allocate Communications Buffer (123)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 124

Data String See the following table

Length Must be 6 Must be 8

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1–2 1–4 Must be 0

3–6 5–8 The address of the buffer

Return Parameters

Return Code Explanation

0 The Free Communications Buffer function was successful.

2 An error was made in specifying parameters.

9 A system error occurred.

41 The buffer is in use.

88 Emulator Programming

Notes on Using This Function
1. If the application attempts to free an in use buffer, the free request will be

denied and a return code of 41 will be returned.
2. An application should request the Free Communications Buffer (124) function

before exiting for all communication buffers that have been allocated using the
Allocate Communications Buffer (123) function.

3. The Reset System (21) function will free buffers allocated by the Allocate
Communications Buffer (123) function.

Get Key (51)

3270 5250 VT

Yes Yes Yes

The Get Key function lets your EHLLAPI application program retrieve a keystroke
from a session specified by the Start Keystroke Intercept (50) function and either
process, accept, or reject that keystroke. By placing this function in a loop, you can
use it to intercept a string.

Prerequisite Calls
Start Keystroke Intercept (50)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 51

Data String See the following table

Length 8 12

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 1 One of the following values:

v A 1-character presentation space short name (PSID)

v A blank or null indicating a function call for the
host-connected presentation

2–4 Reserved

2–8 5–11 Blanks that hold space for the symbolic representation of
the requested data

12 Reserved

Return Parameters
This function returns a data string and a return code.

Data String:
See the following table:

Chapter 3. EHLLAPI Functions 89

Byte Definition

Standard Enhanced

1 1 One of the following values:

v A 1-character presentation space short name (PSID)

v A blank or null indicating a function call for the
host-connected presentation

2–4 Reserved

2 5 An option code character, one of the following characters:

v A for ASCII returned

v M for keystroke mnemonic

v S for special mnemonic

3–8 6–11 These 6 bytes of the preallocated buffer space are used
internally to enqueue and dequeue keystrokes. Possible
combinations include:

v Byte 3 contains an ASCII character and byte 4 contains
X'00'

v Bytes 3 and 4 contain a double-byte character

v Byte 3 contains the escape character (either @ or another
character specified using the ESC=c option of function 9)
and byte 4 contains a 1-byte abbreviation for a function.
(See “ASCII Mnemonics” on page 17)

v Bytes 5 through 8 might be similar to bytes 3 and 4 if
the returned ASCII mnemonic is longer than 2 bytes
(for example, if the ASCII mnemonic represents Attn
@A@Q, byte 5 contains @ and byte 6 contains Q). If not
used, bytes 5 through 8 are set to zero (X'00').

For clarification, some examples of returned data strings are provided below:

Note: The @ symbol is the default escape character. The value of the escape
character can be set to any keystroke represented in ASCII by using the
ESC=c option of the Set Session Parameters (9) function. If the escape
character has been changed to another character using this option, the @
symbol in the following examples is replaced by the other character.

16-Bit Interface
EAt E is the presentation space short name. The keystrokes are returned as

ASCII (A), and the returned key is the lowercase letter t. (Bytes 4–8 =
X'00').

EM@2 E is the presentation space short name. The keystrokes are returned as
mnemonics, and the returned key is PF2 (Bytes 5–8 = X'00').

32-Bit Interface
E���At E is the presentation space short name. The keystrokes are returned as

ASCII (A), and the returned key is the lowercase letter t. (Bytes 7–11 =
X'00').

E���M@2
E is the presentation space short name. The keystrokes are returned as
mnemonics, and the returned key is PF2 (Bytes 8–11 = X'00').

Return Code:
The following codes are valid:

90 Emulator Programming

Return Code Explanation

0 The Get Key function was successful.

1 An incorrect presentation space was specified.

5 You specified the AID only option under the Start Keystroke
Intercept (50) function, and non-AID keys are inhibited by this
session type when EHLLAPI tries to write incorrect keys to the
presentation space.

8 No prior Start Keystroke Intercept (50) function was called for this
presentation space.

9 A system error was encountered.

20 An undefined key combination was typed.

25 The requested keystrokes are not available on the input queue.

31 Keystroke queue overflowed and keystrokes were lost.

Notes on Using This Function
1. If a return code of 31 occurs for the Get Key function, either:
v Increase the value of the calling length parameter for the Start Keystroke

Intercept (50) function, or
v Execute the Get Key function more frequently.
An intercepted keystroke occupies 3 bytes in the buffer. The next intercepted
keystroke is placed in the adjacent three bytes. When the Get Key function
retrieves a keystroke (first in first out, FIFO), the three bytes that it occupied
are made available for another keystroke. By increasing the size of the buffer or
the rate at which keystrokes are retrieved from the buffer, you can eliminate
buffer overflow.
For the PC/3270, another way to eliminate return code 31 is to operate the
PC/3270 emulator in the resume mode.

2. You can use the Send Key (3) function to pass both original keystrokes and any
others that your EHLLAPI application might need to the host-connected
presentation space.

3. Keystrokes arrive asynchronously and are enqueued in the keystroke queue
that you have provided in your EHLLAPI application program using the Start
Keystroke Intercept (50) function.

4. The Get Key function behaves like a read. When keystrokes are available, they
are read into the data area that you have provided in your application.

5. In the case of field support for a session, the application might be interested
only in AID keys, for example the Enter key. If so, the Start Keystroke
Intercept (50) function option code should be set to D (meaning for AID Keys
only).

6. To use this function, preallocate memory to receive the returned data string
parameter. The statements required to preallocate this memory vary depending
on the language in which your application is written. Refer to “Memory
Allocation” on page 8 for more information.

1390/1399 Code Page Support
Unicode functionality is supported only on 3270 and 5250 sessions.

Chapter 3. EHLLAPI Functions 91

The session option ESC is not supported in a Unicode session; using this option
you cannot set a Unicode character as an ESC character. Use the default ESC
character @ in a Unicode session. See “Set Session Parameters (9)” on page 147 for
details.

Prerequisite Calls: Start Keystroke Intercept (50)

Call Parameters:

Standard Interface Enhanced Interface

Function Number Must be 51

Data String See the following table

Length 8 12

PS Position NA

Data String Contents:

Byte Definition

Standard Enhanced

1 1 One of the following values:

v A 1-character presentation space short name (PSID)

v A blank or null indicating a function call for the
host-connected presentation

2–4 Reserved

2–8 5–11 Blanks that hold space for the symbolic representation of
the requested data

12 Reserved

Return Parameters: This function returns a data string and a return code.

Data String:
See the following table for 32–bit interface:

Byte Definition

1 One of the following values:

v A 1-character presentation space short name (PSID)

v A blank or null indicating a function call for the host-connected
presentation

2–4 Reserved

5 U is the option code character for a Unicode session.

6–11 The definition of these bytes is similar to the DBCS session; the only
difference is that the Unicode character value is stored in bytes 6 and 7
when the option code character is U. In a DBCS session, the ASCII
character value is stored in byte 3 and byte 4 contains 0X'00' when the
option code character is A.

Return Code:
The following codes are valid:

92 Emulator Programming

Return Code Explanation

0 The Get Key function was successful.

1 An incorrect presentation space was specified.

5 You specified the AID only option under the Start Keystroke
Intercept (50) function, and non-AID keys are inhibited by this
session type when EHLLAPI tries to write incorrect keys to the
presentation space.

8 No prior Start Keystroke Intercept (50) function was called for this
presentation space.

9 A system error was encountered.

20 An undefined key combination was typed.

25 The requested keystrokes are not available on the input queue.

31 Keystroke queue overflowed and keystrokes were lost.

1137 Code Page Support
Unicode functionality is supported only on 5250 sessions.

The session option ESC is not supported in a Unicode session; using this option
you cannot set a Unicode character as an ESC character. Use the default ESC
character @ in a Unicode session. See “Set Session Parameters (9)” on page 147 for
details.

Prerequisite Calls: Start Keystroke Intercept (50)

Call Parameters:

Standard Interface Enhanced Interface

Function Number Must be 51

Data String See the following table

Length 8 12

PS Position NA

Data String Contents:

Byte Definition

Standard Enhanced

1 1 One of the following values:

v A 1-character presentation space short name (PSID)

v A blank or null indicating a function call for the
host-connected presentation

2–4 Reserved

2–8 5–11 Blanks that hold space for the symbolic representation of
the requested data

12 Reserved

Return Parameters: This function returns a data string and a return code.

Data String:
See the following table for 32–bit interface:

Chapter 3. EHLLAPI Functions 93

Byte Definition

1 One of the following values:

v A 1-character presentation space short name (PSID)

v A blank or null indicating a function call for the host-connected
presentation

2–4 Reserved

5 U is the option code character for a Unicode session.

6–11 The definition of these bytes is similar to the SBCS session, the only
difference is that the Unicode character value is stored in bytes 6 and 7
when the option code character is U. In a DBCS session, the ASCII
character value is stored in byte 3 and byte 4 contains 0X'00' when the
option code character is A.

Return Code:
The following codes are valid:

Return Code Explanation

0 The Get Key function was successful.

1 An incorrect presentation space was specified.

5 You specified the AID only option under the Start Keystroke
Intercept (50) function, and non-AID keys are inhibited by this
session type when EHLLAPI tries to write incorrect keys to the
presentation space.

8 No prior Start Keystroke Intercept (50) function was called for this
presentation space.

9 A system error was encountered.

20 An undefined key combination was typed.

25 The requested keystrokes are not available on the input queue.

31 Keystroke queue overflowed and keystrokes were lost.

Get Request Completion (125)

3270 5250 VT

Yes No No

The Get Request Completion function allows an application to determine the
status of a previous asynchronous function request issued to the EHLLAPI and to
obtain the function parameter list before using the data string again. This function
is valid only if the user specified asynchronous (A) completion on a previous
function call such as Read Structured Fields (126) or Write Structured Fields (127).

Each asynchronous request requiring the Get Request Completion function will
return a unique ID from the asynchronous request. The application must save this
ID. This ID is the identification used by the Get Request Completion function to
identify the desired request. The user has three request options using this function:
1. The application can query or wait for a specific asynchronous function request

by supplying the request ID of that function and a nonblank session short
name.

94 Emulator Programming

2. The application can query or wait for the first completed asynchronous
function request for a specified session by supplying a request ID of X'0000'
and a nonblank session short name.

Prerequisite Calls
Connect Structured Fields (120) and Allocate Communications Buffer (123)

and

Read Structured Fields (126) or Write Structured Fields (127)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 125

Data String See the following table

Length Must be 14 Must be 24

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

2–4 Reserved

2 5 N or W N=NOWAIT is required W=WAIT is required

6–8 Reserved

3–4 9–10 Function request ID.

5–6 11–12 Reserved

7–10 13–16 Reserved

11–12 17–20 Reserved

13–14 21–24 Reserved

The Get Request Completion function behaves differently depending upon the
second character of the parameter string, which is one of the following characters:

N Nowait option: If a specific request ID was supplied and the function has
completed, control will be returned to the application with a return code of
zero and a completed data string as defined in “Return Parameters” on
page 96. If a request ID of zero was supplied and any eligible
asynchronous function has completed, control will be returned to the
application with a return code of zero and a completed data string as
defined in “Return Parameters” on page 96.

W Wait option: If a specific request ID was supplied and the function has not
completed, the call will wait until the function has completed before
returning to the application. If the supplied request ID was zero and no
eligible asynchronous function has completed, the call will wait until a
function completes before returning to the calling application. On return,
the return code value will be zero and the data string will be completed as
defined in “Return Parameters” on page 96.

Chapter 3. EHLLAPI Functions 95

Return Parameters

Byte Definition

Standard Enhanced

5–6 11–12 Function number of the completed asynchronous
function (126 or 127). (returned)

7–10 13–16 Address of the data string of the completed
asynchronous function call. (The application must not
reuse the data string until the request has completed).
(returned)

11–12 17–20 Length of the data string of the completed asynchronous
function call. (returned)

13–14 21–24 Return code of the completed asynchronous function
call. (returned)

Return Code Explanation

0 The Get Request Completion function was successful.

2 An error was made in specifying parameters.

9 A system error was encountered.

38 Requested function was not complete.

42 No matching request was found.

There are some differences between return codes 38 and 42:
1. Return code 38

a. If a specific request ID and session were requested, both the session and ID
were found but the request is pending (not in a completed state).

b. If a zero request ID and a specific session were requested, the specified
session has pending requests, but they are not satisfied (complete).

c. If a zero request ID and a blank session were requested, pending requests
were found but none were satisfied (complete).

2. Return code 42
a. If a specific request ID and session were requested, the specific request ID

was not found in either a pending or a completed state.
b. If a zero request ID and a specific session were requested, the specific

session contains no pending or completed requests.
c. If a zero request ID and a blank session were requested, no pending or

completed requests were found.

Notes on Using This Function
1. This function is valid only if the user specified asynchronous completion (A for

Asynchronous) on a previous function call such as Read Structured Fields or
Write Structured Fields.

2. If the return code is a 0, the application should check the returned data string
for information pertaining to the completion of the requested asynchronous
function.

96 Emulator Programming

Lock Presentation Space API (60)

3270 5250 VT

Yes No No

The Lock Presentation Space API function allows the application to obtain or
release exclusive control of the presentation space window over other Windows
32–bit applications. While locked, no other application can connect to the
presentation space window.

Successful processing of this function with the Lock causes EHLLAPI presentation
space window functions requested from other EHLLAPI applications to be queued
until the requesting application unlocks the presentation space. Requests from the
locking application are processed normally.

Prerequisite Calls
Connect to Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 60

Data String See the following table

Length Must be 3 Must be 8

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID).

2–4 Reserved.

2 5 One of the following characters:

v L to lock the API.

v U to unlock the API.

3 6 One of the following characters:

v R to return if the presentation space is already locked
by an application.

v Q to queue the Lock request if the presentation space
is already locked by an application.

7–8 Reserved.

Return Parameters

Return Code Explanation

0 The Lock Presentation Space API function was successful.

1 An incorrect host presentation space short session ID was specified
or was not connected.

2 An error was made in specifying parameters.

Chapter 3. EHLLAPI Functions 97

Return Code Explanation

9 A system error was encountered.

43 The API was already locked by another EHLLAPI application (on
LOCK) or API not locked (on UNLOCK).

Notes on Using This Function
The following EHLLAPI functions are queued when a lock is in effect:
v Send Key (3)
v Copy Presentation Space (5)
v Search Presentation Space (6)
v Copy Presentation Space to String (8)
v Release (11)
v Reserve (12)
v Query Field Attribute (14)
v Copy String to Presentation Space (15)
v Search Field (30)
v Find Field Position (31)
v Find Field Length (32)
v Copy String to Field (33)
v Copy Field to String (34)
v Set Cursor (40)
v Send File (90)
v Receive File (91)
v Connect to Presentation Space (1) with the CONPHYS parameter set in a

previous Set Sessions Parameter (9) function call.

These queued requests are not serviced until the lock is removed. When the lock is
removed, the queued requests are processed in first-in-first-out (FIFO) order.
EHLLAPI functions not listed are run as if there was no lock. The requesting
application unlocks the presentation space window by one of the following
methods:
v Disconnecting from the presentation space while still owning the Lock.
v Issuing the Reset System (21) function while still owning the Lock.
v Stopping the application while still owning the Lock.
v Stopping the session.
v Successfully issuing the Lock Presentation Space API with the Unlock option.

Before exiting the application, you should unlock any presentation space windows
that have been locked with the Lock Presentation Space API function. If the
application exits with outstanding locks, or a Reset System (21), or Disconnect
Presentation Space (2) function is issued, the locks are released.

It is recommended that applications lock the presentation space only for short
periods of time and only when exclusive use of the presentation space is required.

98 Emulator Programming

Lock Window Services API (61)

3270 5250 VT

Yes No No

The Lock Window Services API function allows the application to obtain or
release exclusive control of the presentation space window over other Windows
32-bit applications. While locked, no other application can connect to the
presentation space window.

Successful processing of this function with the Lock causes EHLLAPI presentation
space window functions requested from other EHLLAPI applications to be queued
until the requesting application unlocks the presentation space. Requests from the
locking application are processed normally.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 61

Data String See the following table.

Length Must be 3 Must be 8

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID).

2–4 Reserved.

2 5 One of the following characters:

v L to lock the API.

v U to unlock the API.

3 6 One of the following characters:

v R to return if the presentation space is already locked
by an application.

v Q to queue the Lock request if the presentation space
is already locked by an application.

5–6 11–12 Function number of the completed asynchronous function
(126 or 127). (returned)

7–8 Reserved.

Return Parameters

Return Code Explanation

0 The Lock Window Services API function was successful.

Chapter 3. EHLLAPI Functions 99

Return Code Explanation

1 An incorrect host presentation space short session ID was specified or
was not connected.

2 An error was made in specifying parameters.

9 A system error was encountered.

38 Requested function was not complete.

43 The API was already locked by another EHLLAPI application (on
LOCK) or API not locked (on UNLOCK).

Notes on Using This Function
The following EHLLAPI functions are queued when a lock is in effect:
v Window Status (104)
v Change Switch List Name (105)
v Change PS Window Name (106)

These queued requests are not serviced until the lock is removed. When the lock is
removed, the queued requests are processed in first-in-first-out (FIFO) order.

The requesting application unlocks the presentation space window by one of the
following methods:
v Successfully issuing the Lock Window Services API with the UNLOCK option.
v Disconnecting from the presentation space while still owning the Lock.
v Issuing the Reset System (21) function while still owning the Lock.
v Stopping the application while still owning the Lock.
v Stopping the session.

Before exiting the application, you should Unlock any presentation space windows
that have been locked with the Lock Window Services API function. If the
application exits with outstanding locks, the subsystem releases the locks.

It is recommended that applications lock the presentation space only for short
periods of time and only when exclusive use of the presentation space is required.

Pause (18)

3270 5250 VT

Yes Yes Yes

The Pause function waits for a specified amount of time. It should be used in place
of timing loops to wait for an event to occur. A Pause function can be ended by a
host event if a prior Start Host Notification (23) function has been called and the
IPAUSE option is selected.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 18

100 Emulator Programming

Standard Interface Enhanced Interface

Data String NA

Length Contains the pause duration in half-second increments

PS Position NA

Return Parameters

Return Code Definition

0 The wait duration has expired.

9 An internal system error was encountered. The time results are
unpredictable.

26 The host session presentation space or OIA has been updated. Use
the Query Host Update (24) function to get more information.

Notes on Using This Function
1. Selecting the FPAUSE or IPAUSE option using the Set Session Parameters (9)

function affects the length of the pause you get when you call this function. See
item 6 on page 149 for more information.

2. The value entered in the calling length parameter is the maximum number of
half-second intervals that the Pause function waits. For a pause of 20 seconds, a
hex value of 0028 (decimal 40) must be passed in the calling length parameter.

3. If you use the IPAUSE option and the pause value is zero, then the function
waits up to 2400 half-second intervals, unless interrupted sooner. If you use the
FPAUSE option and the pause value is zero, then the function returns
immediately.

4. If you use the IPAUSE option, once a pause has been satisfied by a host event,
you should call the Query Host Update (24) function to clear the queue prior
to the next Pause function. The Pause function will continue to be satisfied
with the pending event until the Query Host Update (24) function is
completed.

5. A practical maximum value for the Pause function is 2400. You should not use
the Pause function for these kinds of tasks:
v Delay for very long durations (of several hours, for example).
v Delay for more than a moderate length of time (20 minutes) before checking

the system time-of-day clock and proceeding with your EHLLAPI program
execution.

v With applications requiring a high-resolution timer because the time interval
created by a Pause function is approximate.

v Set the time interval to zero in a loop.
6. IPAUSE set and the interruptible pause allow an EHLLAPI application to

determine whether the specified host presentation space (PS) or operator
information area (OIA) is updated. The following three functions are used:
v Start Host Notification (23)
v Query Host Update (24)
v Stop Host Notification (25)
By using IPAUSE when the Start function is called, you can make an
application wait until the host presentation space or OIA (or both) receives an
update. When the receive is completed and the application can issue the Query

Chapter 3. EHLLAPI Functions 101

function to determine the changes, Pause terminates. Then the application
issues the Search Presentation Space (6) to check whether the expected update
occurred.

Post Intercept Status (52)

3270 5250 VT

Yes Yes Yes

The Post Intercept Status function informs the Personal Communications emulator
that a keystroke obtained through the Get Key (51) function was accepted or
rejected. When the application rejects a keystroke, the Post Intercept Status
function issues a beep.

Prerequisite Calls
Start Keystroke Intercept (50)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 52

Data String See the following table

Length Must be 2 Must be 8

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 One of the following values:

v The 1-letter short name of the presentation space.

v A blank or null indicating a function call for the
host-connected presentation space.

2–4 Reserved

2 5 One of the following characters:

v A for accepted keystroke.

v R for rejected keystroke.

6–8 Reserved.

Return Parameters

Return Code Explanation

0 The Post Intercept Status function was successful.

1 An incorrect presentation space was specified.

2 An incorrect session option was specified.

8 No prior Start Keystroke Intercept (50) function was called for this
presentation space ID.

9 A system error was encountered.

102 Emulator Programming

Query Additional Field Attribute (45)

3270 5250 VT

No Yes No

The Query Additional Field Attribute function returns additional information
about the 5250 field containing the input host presentation space position. This
information is returned in the data string parameter in the form of a defined
structure.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 45.

Data String 8 bytes long character string.

Length 8 is implied.

PS Position Identifies the target. This can be the PS position of any byte
within the target field.

The calling data string can contain:

Byte Definition

1–8 Reserved

Return Parameters
This function returns a data string and a return code.

Data String:
The function returns the following data string.

Byte Definition

1–6 Reserved

7–8 Two 8–bit unsigned characters that return:

v R if field is RTL and L if field is LTR.

v U if field is upper case and L if field is a normal case
field.

Return Code:
The following return codes are defined:

Return Code Explanation

0 The Query Additional Field Attribute was successful.

1 Your program is not currently connected to a host session.

7 The host presentation space position is not valid.

9 No field was found in this position.

24 Field is unformatted.

Chapter 3. EHLLAPI Functions 103

Query Close Intercept (42)

3270 5250 VT

Yes Yes Yes

The Query Close Intercept function allows the application to determine if the close
option was selected.

Prerequisite Calls
Start Close Intercept (41)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 42

Data String See the following table.

Length Must be 1 Must be 4

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 1-character short session ID of the host presentation
space, or a blank or null indicating request for querying
the host-connected session

2–4 Reserved

Return Parameters

Return Code Explanation

0 A close intercept event did not occur.

1 The presentation source was not valid.

2 An error was made in specifying parameters.

8 No prior Start Close Intercept (41) function was called for this host
presentation space.

9 A system error occurred.

12 The session stopped.

26 A close intercept occurred since the last query close intercept call.

Query Communications Buffer Size (122)

3270 5250 VT

Yes No No

104 Emulator Programming

The Query Communications Buffer Size function allows an application to
determine both the maximum and the optimum buffer sizes supported by the
emulation program.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 122

Data String See the following table

Length Must be 9 Must be 20

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

2–4 Reserved

2–3 5–8 16- or 32-bit field for the optimum supported inbound
buffer size (Returned value)

4–5 9–12 16- or 32-bit field for the maximum supported inbound
buffer size (Returned value)

6–7 13–16 16- or 32-bit field for the optimum supported outbound
buffer size (Returned value)

8–9 17–20 16- or 32-bit field for the maximum supported outbound
buffer size (Returned value)

Return Parameters

Return Code Explanation

0 The Query Communications Buffer Size function was successful.

1 A specified host presentation space short session ID was not valid
or was not connected.

2 An error was made in specifying parameters.

9 A system error occurred.

10 The function was not supported by the emulation program.

Notes on Using This Function
1. There is no way to require the user to use this function. It is not a required

function so that the application can be tailored to run on any system.
2. The buffer sizes returned represent the record sizes that are actually transmitted

across the medium. For a DDM connection, the 8-byte header supplied in the
Read and Write Structured Fields data buffer is stripped off and 1 byte
containing the structured field AID value is prefixed. The application should
compare the size of the actual data in the data buffer (which does not include
the 8-byte header) with the buffer sizes returned by the Query

Chapter 3. EHLLAPI Functions 105

Communications Buffer Size minus 1 byte. For destination/origin connections,
the 8-byte header supplied in the Read and Write Structured Fields data buffer
is stripped off and 9 bytes are then prefixed to the data. The application should
compare the size of the actual data in the data buffer (which does not include
the 8-byte header) with the buffer size returned by the Query Communications
Buffer Size minus 9 bytes.

3. The maximum buffer sizes returned represent the maximum number of bytes
supported by the workstation hardware and by the emulator. The maximum
buffer size can be used only if the host is also configured to accept at least
these maximum sizes.

4. The optimum buffer sizes returned represent the optimum number of bytes
supported by the both the workstation hardware and the emulator. Some
network configurations might set transmission limits smaller than these values.
In these cases, the data transfer buffer size override value in the emulator
configuration profile will be used for structured field support. The Query
Communications Buffer Size will reflect any buffer size override values
entered in the emulator configuration profile.

Query Communication Event (81)

3270 5250 VT

Yes Yes Yes

The Query Communication Event function lets the EHLLAPI program determine
whether any communication events have occurred.

Prerequisite Calls
Start Communication Notification (80)

Call Parameters

Enhanced Interface

Function Number Must be 81

Data String 1-character short name of the host presentation space or a blank or
null indicating request for updates to the host-connected
presentation space

Length 4 is implied

PS Position NA

The calling data structure contains these elements:

Byte Definition

1 A 1-character presentation space short name (PSID)

2-4 Reserved

Return Parameters

Return Code Definition

0 The function was successful

1 An incorrect PSID was specified

106 Emulator Programming

8 No prior call to Start Communication Notification (80) function
was called for the PSID

9 A system error was encountered

21 The indicated PSID was connected

22 The Indicated PSID was disconnected

Query Cursor Location (7)

3270 5250 VT

Yes Yes Yes

The Query Cursor Location function indicates the position of the cursor in the
host-connected presentation space by returning the cursor position.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 7

Data String NA

Length NA

PS Position NA

Return Parameters
This function returns a length and a return code.

Length:
Host presentation space position of the cursor.

Return Code:
The following codes are defined:

Return Code Explanation

0 The Query Cursor Location function was successful.

1 Your program is not currently connected to a host session.

9 A system error was encountered.

Query Field Attribute (14)

3270 5250 VT

Yes Yes Yes

The Query Field Attribute function returns the attribute byte of the field
containing the input host presentation space position. This information is returned
in the returned length parameter.

For the PC/3270, note also that:

Chapter 3. EHLLAPI Functions 107

v The returned length parameter is set to 0 if the screen is unformatted.
v Attribute bytes are equal to or greater than hex C0.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 14.

Data String NA.

Length NA.

PS Position Identifies the target. This can be the PS position of any byte
within the target field.

Return Parameters
This function returns a length and a return code.

Length:
The attribute value if the screen is formatted, or 0 if the screen is
unformatted.

Return Code:
The following codes are defined:

Return Code Explanation

0 The Query Field Attribute was successful.

1 Your program is not currently connected to a host session.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 Attribute byte not found or unformatted host presentation space.

Notes on Using This Function
The returned field attributes are defined in the following tables. The bit positions
are in IBM format with bit 0 as the left most bit in the byte.
v 3270 field attribute:

Bit Position Meaning

0–1 Both = 1, field attribute byte

2 Unprotected/protected

0 = Unprotected data field

1 = Protected field

3 A/N

0 = Alphanumeric data

1 = Numeric data only

4–5 I/SPD

00 = Normal intensity, pen not detectable

01 = Normal intensity, pen detectable

10 = High intensity, pen detectable

11 = Nondisplay, pen not detectable

108 Emulator Programming

Bit Position Meaning

6 Reserved

7 MDT

0 = Field has not been modified

1 = Field has been modified

v 5250 field attributes:

Bit Position Meaning

0 Field attribute flag

0 = Nonfield attribute flag

1 = Field attribute flag

1 Visibility

0 = Nondisplay

1 = Display

2 Unprotected/protected

0 = Unprotected data field

1 = Protected field

3 Intensity

0 = Normal intensity

1 = High intensity

4–6 Field type

000 = Alphanumeric data: All characters are available

001 = Alphabet only: Uppercase and lowercase, comma, period,
hyphen, blank, or Dup key are available

010 = Numeric shift: Automatic shift for number

011 = Numeric data only: 0–9, comma, period, plus, minus,
blank, or Dup key are available

101 = Numeric data only: 0–9, or Dup key are available

110 = Magnetic stripe reading device data only

111 = Signed-numeric data: 0–9, plus, minus, or Dup key are
available

7 MDT

0 = Field has not been modified

1 = Field has been modified

Query Host Update (24)

3270 5250 VT

Yes Yes Yes

The Query Host Update function lets the programmed operator determine if the
host has updated the host presentation space or OIA because:
v The Start Host Notification (23) function was called (on first call to the Query

Host Update function only)
v The previous call to the Query Host Update function (for all calls to the Query

Host Update function except the first).

Chapter 3. EHLLAPI Functions 109

Prerequisite Calls
Start Host Notification (23)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 24

Data String 1-character short name of the host presentation space, or a
blank or null indicating request for updates to
host-connected presentation space

Length 1 is implied 4 is implied

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

2–4 Reserved

Return Parameters

Return Code Definition

0 No updates have been made since the last call.

1 An incorrect host presentation space was specified.

8 No prior Start Host Notification (23) function was called for the
host presentation space ID.

9 A system error was encountered.

21 The OIA was updated.

22 The presentation space was updated.

23 Both the OIA and the host presentation space were updated.

44 Printing has completed in the printer session.

Notes on Using This Function
The target presentation space must be specified in the data string, even though a
connection to the host presentation space is not necessary to check for updates.

Query Session Status (22)

3270 5250 VT

Yes Yes Yes

The Query Session Status function is used to obtain session-specific information.

Prerequisite Calls
There are no prerequisite calls for this function.

110 Emulator Programming

Call Parameters

16-bit 32-bit

Function Number Must be 22.

Data String An 18/20-byte string consisting of a 1-byte short name of
the target presentation space plus 17 bytes for returned
data. Position 1 can be filled with:

1. A blank or a null to indicate a request for the
host_connected presentation space.

2. An * (asterisk) to indicate a request for the
keyboard-owner presentation space.

Length Must be 18 Must be 20

PS Position NA

Return Parameters
This function returns a data string and a return code.

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

2–4 Reserved

2–9 5–12 Session long name (same as profile name; or, if profile
not set, same as short name)

10 13
Session Type

D 3270 display

E 3270 printer

F 5250 display

G 5250 printer

H ASCII VT

11 14 Session characteristics expressed by a binary number
including the following session-characteristics bits

Bit 0 EAB 0: Session has the basic attribute. 1:
Session has the extended attribute

Bit 1 PSS 0: Session does not support the
programmed symbols 1: Session supports the
programmed symbols

Bits 2–7
Reserved

12–13 15–16 Number of rows in the host presentation space,
expressed as a binary number

14–15 17–18 Number of columns in the host presentation space,
expressed as a binary number

16–17 19–20 Host code page expressed as a binary number

18 Reserved

Return Code:
The following codes are defined:

Chapter 3. EHLLAPI Functions 111

Return Code Explanation

0 The Query Session Status function was successful.

1 An incorrect host presentation space was specified.

2 An incorrect string length was made.

9 A system error was encountered.

Notes on Using This Function
1. To use this function, preallocate memory to receive the returned data string

parameter. The statements required to preallocate this memory vary depending
on the language in which your application is written. See “Memory Allocation”
on page 8 for more information.

Query Sessions (10)

3270 5250 VT

Yes Yes Yes

The Query Sessions function returns a 16-byte (12-byte for standard interface) data
string describing each host session.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Function Description

Standard Interface Enhanced Interface

Function Number Must be 10

Data String Preallocated string of 16n bytes long (12n for 16-bit) (n
=number of sessions) or more

Length 12n bytes 16n bytes

PS Position NA

Note: When the length is not matched to the number of sessions, the return code
is 2.

Return Parameters
This function returns a data string, a length, and a return code.

Data String:
The returned data string is 16n bytes long (12n for standard interface),
where n is the number of host sessions. The descriptors are concatenated
into the data string and each session type, and presentation space size of a
host session.

The format of each 16-byte (12-byte for standard interface) session
descriptor is as follows:

Byte Definition

Standard Enhanced

112 Emulator Programming

Byte Definition

1 1 A 1-character presentation space short name (PSID)

2–4 Reserved

2–9 5–12 Session long name (same as profile name; or, if profile
not set, same as short name)

10 13 Connection type H=host

14 Reserved

11–12 15–16 Host presentation space size (this is a binary number and
is not in display format). If the session type is a print
session, the value is 0.

Length:
The number of host sessions started.

Return Code:
The following codes are defined:

Return Code Explanation

0 The Query Sessions function was successful.

2 An incorrect string length was made.

9 A system error was encountered.

Notes on Using This Function
1. If an application program receives RC=2 or RC=0, the number of the active

sessions is returned in the length field. The application program can recognize
the minimum string length by this number.

2. The Query Sessions function is affected by the CFGSIZE/NOCFGZISE session
option (see item 16 on page 152 for more information) and by the
EXTEND_PS/NOEXTEND_PS option (see item 22 on page 154 for more
information).

Notes:

1. When NOCFGSIZE is set in Set Session Parameters (9) for a 5250 session, the
value of presentation space size returned in byte position 11 and 12 from Query
Sessions(10) will be changed in accordance with the selection of EXTEND_PS
or NOEXTEND_PS.

2. When EXTEND_PS is set in Set Session Parameters (9), presentation space size
returned from Query Sessions (10) will include the size of the message line, if
it exists.

3. When NOEXTEND_PS is set, the value will not change regardless of the
existence of a message line. In the case of 25 row, 80 column presentation space,
the value can be 1920 or 2000.

Query System (20)

3270 5250 VT

Yes Yes Yes

The Query System function can be used by an EHLLAPI application program to
determine the level of Personal Communications support and other system-related
values. This function returns a string that contains the appropriate system data.

Chapter 3. EHLLAPI Functions 113

Most of this information is for use by a service coordinator when you call the IBM
Support Center after receiving a return code 9 (a system error was encountered).

The bytes in this returned string are defined in “Return Parameters.”

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 20

Data String Preallocated string of 35
bytes

36 bytes

Length Must be 35 Must be 36

PS Position NA

Return Parameters
This function returns a data string and a return code.

Data String:
A data string of 35 bytes (for 16–bit) or 36 bytes (for 32–bit) is returned.
The bytes are defined as follows:

Byte Definition

Standard Enhanced

1 1 EHLLAPI version number

2–3 2–3 EHLLAPI level number

4–9 4–9 Reserved

10–12 10–12 Reserved

13 13 Hardware base, U=Unable to determine

14 14 Program type, where P=IBM Personal Communications

15–16 15–16 Reserved

17–18 17–18 Personal Communications version/level as a 2-byte
ASCII value

19 19 Reserved

20–23 20–23 Reserved

24–27 24–27 Reserved

28–29 28–29 Reserved

30 Reserved

30–31 31–32 NLS type expressed as a 2-byte binary number

33–35 34–36 Reserved

Return Code
The following codes are defined:

Return Code Explanation

0 The Query System function was successful; data string has been
returned.

114 Emulator Programming

Return Code Explanation

1 EHLLAPI is not loaded. (PC/3270 only)

2 An incorrect string length was specified. (PC/3270 only)

9 A system error was encountered.

Notes on Using This Function
To use this function, preallocate memory to receive the returned data string
parameter. See “Memory Allocation” on page 8 for more information.

Query Window Coordinates (103)

3270 5250 VT

Yes Yes Yes

The Query Window Coordinates function requests the coordinates for the window
of a presentation space. The window coordinates are returned in pels.

Note: (0,0) indicates the top-left of the window.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 103

Data String 1-character short session ID of the host presentation space

Length 17 is implied 20 is implied

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 One of the following values:

v A 1-character presentation space short name (PSID)

v A blank or null indicating a function call for the
current connection presentation space

2–4 Reserved

2-17 5–20 Reserved

Return Parameters
This function returns a data string and a return code.

Byte Definition

Standard Enhanced

Chapter 3. EHLLAPI Functions 115

Byte Definition

1 1 One of the following values:

v A 1-character presentation space short session ID

v A blank or null indicating a function call for the
current connection presentation space

2–4 Reserved

2–17 5–20 Four 32-bit unsigned integers that return:

2–5 5–8 XLeft Long integer in pels of the left X coordinate of the
rectangular window relative to the desktop window

6–9 9–12 YBottom Long integer in pels of the bottom Y coordinate
of the rectangular window relative to the desktop
window

10–13 13–15 XRight Long integer in pels of the right X coordinate of
the rectangular window relative to the desktop window

14–17 16–20 YTop Long integer in pels of the top Y coordinate of the
rectangular window relative to the desktop window

Return Code:
The following codes are defined:

Return Code Explanation

0 The Query Window Coordinates function was successful.

1 Your program was not currently connected to the host session.

9 A system error occurred.

12 The session stopped.

Read Structured Fields (126)

3270 5250 VT

Yes No No

The Read Structured Fields function allows an application to read structured field
data from the host application. If the call specifies S (for Synchronous), the
application does not receive control until the Read Structured Fields is completed.
If the call specifies A (for Asynchronous), the application receives control
immediately after the call. If the call specifies M (for Asynchronous, message
mode), the application receives control immediately after the call. The application
can wait for the message. In any case (S, A, or M), the application provides the
buffer address in which the data from the host is to be placed.

For a successful asynchronous completion of this function, the following
statements apply:

The return code field in the parameter list might not contain the results of the
requested I/O. If the return code is not 0, the request failed. The application must
take the appropriate action based on the return code.

If the return code for this request is 0, the application must use the request ID
returned with this function call to issue the Get Request Completion function call

116 Emulator Programming

to determine the completion results of the function associated with the request ID.
The Get Request Completion function call returns the following information:
1. Function request ID
2. Address of the data string from the asynchronous request
3. Length of the data string
4. Return code of the completed function

Prerequisite Calls
Connect for Structured Fields (120) and Allocate Communication Buffer (123)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 126

Data String See the following table

Length 8, 10 or 14 20

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID).

2–4 Reserved.

2 5 S or A or M

S = Synchronous. Control is not returned to the
application until the read is satisfied.

A = Asynchronous. Control is returned immediately
to the application, can wait for the event object.

M = Asynchronous. Control is returned immediately
to the application, can wait for the message.

6 Reserved.

3–4 7–8 2-byte destination/origin ID.

5–8 9–12 4-byte address of the buffer into which the data is to be
read. The buffer must be obtained using the Allocate
Communications Buffer (123) function.

9–10 13–16 Reserved.

11–12 17–20 When M is specified in position 2 the window handle of
the window that receives the message should be set. The
message is a return value of RegisterWindowMessage
(“PCSHLL”)(not equal 0).

13–14 The data in these positions is ignored by EHLLAPI.
However, no error is caused if the migrating program
has data in these positions. This data is accepted to
provide compatibility with migrating applications.

Return Parameters
This function returns a data string and a return code.

Chapter 3. EHLLAPI Functions 117

Data String:
If A (asynchronous) is specified in position 5, (2 for standard interface) and
the function is completed successfully, the following data string is
returned:

Byte Definition

Standard Enhanced

9–10 13–14 2-byte function request ID. It is used by the Get Request
Completion (125) function to determine the completion
of this function call.

15–16 Reserved.

17–20 4-byte value in which the event object address is
returned by EHLLAPI. The application can wait for this
event object. When the event object is cleared, the
application must issue the Get Request Completion
(125) function call (32-bit only).

Note: A event object address is returned for each successful asynchronous request.
The event object should not be used again. A new event object is returned
for each request and is valid for only the duration of that request.

Data String:
If “M” (asynchronous message mode) is specified in position 5 (2 for 16-bit
applications) and the function is completed successfully, the following data
string is returned:

Byte Definition

9–10 13–14 A 2-byte function request ID. It is used by the Get Request
Completion (125) function to determine the completion of
this function call.

15–16 Reserved.

11–12 17–18 Task ID of asynchronous message mode.

19–20 Reserved.

Note: If the function is completed successfully, an application window receive a
message. The message is a return value of RegisterWindowMessage
(PCSHLL). The wParam parameter contains Task ID returned by the
function call. The HIWORD of lParam parameter contains Return Code 0,
which shows the function was successful, and LOWORD of lParam
parameter contains function number 126.

Return Code:
The following codes are defined:

Return Code Explanation

0 The Read Structured Fields function was successful.

1 A specified host presentation space short session ID was not valid
or was not connected.

2 An error was made in specifying parameters.

9 A system error occurred.

11 Resource unavailable (memory unavailable).

118 Emulator Programming

Return Code Explanation

35 Request rejected. An outbound transmission from the host was
canceled.

36 Request rejected. Lost contact with the host.

37 The function was successful, but the host is inbound disabled.

Notes on Using This Function
1. Return code 35 will be returned when the first Read Structured Fields or Write

Structured Fields is requested after an outbound transmission from the host is
canceled. Corrective action is the responsibility of the application.

2. Return code 36 requires that the application disconnect from the emulation
program and then reconnect to reestablish communication with the host.
Corrective action is the responsibility of the application.

3. Return code 37 will be returned if the host is inbound disabled. The Read
Structured Fields function was successfully requested.

4. The EHLLAPI allows for a maximum of 20 asynchronous requests per
application to be outstanding. A return code for unavailable resources (RC=11)
is returned if more than 20 asynchronous requests are attempted.

5. If you are using an IBM Global Network connection, the maximum number of
asynchronous requests is 10.

The structured field data contains the application structured fields received from
the host. Structured field headers are removed by the EHLLAPI before the
structured field data reaches the application.

The structured field data format is as follows:

Offset Length Contents

0 1 word X'0000'.

2 1 word m (message length: The number of bytes of data in the
message, the number does not include the buffer header
prefix, which contains 8 bytes). This value is returned by
EHLLAPI.

4 1 word n (buffer size: the supplied length of the data buffer that does
include the 8-byte message header). This value must be set by
the application.

6 1 word X'C000'.

8 8 bytes Length of the first (or only) structured field message.

10 1 byte First nonlength byte of the structured field message.
...

m+7 1 byte Last byte in the structured field message.

Bytes 0 through 7 are the buffer header. These first 8 bytes are used by the
emulation program. The user section of the buffer begins with offset 8. Bytes 8 and
9 contain the number of bytes in the first structured field (a structured field
message can contain multiple structured fields), including 2 bytes for bytes 8 and
9. Bytes 8 through m+7 are used for the structured field message received from the
host (which could contain multiple structured fields).

Chapter 3. EHLLAPI Functions 119

The using application must furnish the complete buffer with the word at offset 0
set to zero. The buffer length must be in the word at offset 4. The word at offset 6
must be X'C000'. The emulation program will place the data message beginning at
offset 8 and place the length of the message in the word at offset 2. The buffer
length is not disturbed by EHLLAPI.

Synchronous Requests: When Read Structured Fields is requested synchronously
(the S option in the data string), control is returned to the application only after the
request is satisfied. The application can assume:
v The return code is correct.
v The data in the communications buffer (read buffer) is correct.
v The host is no longer processing the Read Structured Fields request.

Asynchronous Requests: When Read Structured Fields is requested
asynchronously (the A option in the data string), the application cannot assume:
v The return code is correct.
v The data in the communications buffer (read buffer) is correct.
v The host is no longer processing the Read Structured Fields request.

When requested asynchronously, EHLLAPI returns the following values:
v A 16-bit Request ID in positions 13–14 (9–10 for standard interface) of the data

string
v The address of a event object in positions 17—20 of the data string

These are used to complete the asynchronous Read Structured Fields call.

The following steps must be completed to determine the outcome of an
asynchronous Read Structured Fields function call:
v If the EHLLAPI return code is not zero, the request failed. No asynchronous

request has been made. The application must take appropriate actions before
attempting the call again.

v If the return code is zero, the application should wait until the event object is in
the signaled state by using the Get Request Completion (125) function or Wait
For Single Object. The event object should not be reused. The event object is
valid only for the duration of the Read Structured Fields function call through
the completion of the Get Request Completion (125) function call.

v Once the event object is in the signaled state, use the returned 16-bit Request ID
as the Request ID parameter in a call to the Get Request Completion (125)
function. The data string returned from the Get Request Completion (125)
function call contains the final return code of the Read Structured Fields
function call.

When Read Structured Fields is requested asynchronously (the M option in the
data string), the application cannot assume:
v The return code is correct.
v The data in the communications buffer (read buffer) is correct.
v The host is no longer processing the Read Structured Fields request.

When requested asynchronously with the M option, EHLLAPI returns the
following values:
v A 16-bit Request ID in positions 13–14 (9–10 for standard interface) of the data

string

120 Emulator Programming

v Task ID of asynchronous message mode in positions 17–18 (11–12 for standard
interface) of the data string.

These are used to complete the asynchronous Read Structured Fields call.

Receive File (91)

3270 5250 VT

Yes Yes No

The Receive File function is used to transfer a file from the host session to the
workstation session. It is used the same way as the RECEIVE command is used in
the PC/3270. The Receive File function can be called by an EHLLAPI application
program.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 91.

Data String Refer to the examples.

Length Length, in number of bytes, of the data string. Overridden if
in EOT mode.

Following are examples of the data strings for a single-byte character set (SBSC):

3270 Session

v To receive the file from the VM/CMS host system:
pc_filename [id:]fn ft [fm] [(option]

v To receive the file from the MVS™/TSO host system:
pc_filename[id:]dataset[(member)] [/password] [option]

v To receive the file from the CICS® host system:
pc_filename [id:]host_filename [(option]

5250 Session

v To receive the file from the iSeries, eServer i5, or System i5 host system:
pc_filename [id:]library file member [option]

Following are examples of the data strings for a double-byte character set (DBCS):

3270 Session

v To receive the file from the VM/CMS host system:
pc_filename [id:]fn ft [fm] [(option]

v To receive the file from the MVS/TSO host system:
pc_filename [id:]dataset[(member)] [/password]
[(option]

v To receive the file from the CICS host system:
pc_filename [id:]host_filename [(option]

Chapter 3. EHLLAPI Functions 121

5250 Session

v To receive the file from the iSeries, eServer i5, or System i5 host system:
pc_filename [id:]library file member [option]

Note: Parameters within [] are optional. Available options are listed below.

Host System Common Options

VM/CMS ASCII, JISCII, CRLF, APPEND, TIME n, CLEAR, NOCLEAR,
PROGRESS, QUIET

MVS/TSO ASCII, JISCII, CRLF, APPEND, TIME (n), CLEAR, NOCLEAR,
PROGRESS, QUIET, AVBLOCK|TRACKS|CYLINDERS

CICS ASCII, JISCII, CRLF, NOCRLF, BINARY, TIME n, CLEAR, NOCLEAR,
PROGRESS, QUIET

i5/OS™ or
OS/400®

ASCII, JISCII, CRLF, APPEND, TIME n, CLEAR, NOCLEAR,
PROGRESS, QUIET

Note: JISCII is valid in a DBCS session for Japan only and ASCII is valid for all other
SBCS and DBCS sessions.

Other options specified will be passed to the host transfer program. The file transfer
program on the host side either uses them, ignores them, or returns an error. Consult the
host transfer program documentation to see a complete list of the options supported.

Return Parameters

Return Code Explanation

2 Parameter error or you have specified a length that is too long
(more than 255 bytes) for the EHLLAPI buffer. The file transfer
was unsuccessful.

3 File transfer complete.

4 File transfer complete with segmented records.

9 A system error was encountered.

27 File transfer terminated because of either a Cancel button or the
timeout set by the Set Session Parameter (9) function.

101 File transfer was successful (transfer to/from CICS).

If you receive return code 2 or 9, there is a problem with the system or with the
way you specified your data string.

Other return codes can also be received, which relate to message numbers
generated by the host transfer program. For transfers to a CICS host transfer
program, subtract 100 from the return code to give you the numeric portion of the
message. For example, a return code of 101 would mean that the message number
INW0001 was issued by the host. For other host transfer programs, just use the
return code as the numerical part of the message. For example, a return of 34
would mean that message TRANS34 was issued by the host transfer program. The
documentation for your host transfer program should give more information about
the meanings of the specific messages.

Operating system error codes reported by EHLLAPI are greater than 300. To
determine the error code, subtract 300 and refer to the operating system
documentation for return codes.

122 Emulator Programming

Notes on Using This Function
1. Four sets of parameters under the Set Session Parameters (9) function are

related to this function. They are the STRLEN/STREOT, EOT=c,
QUIET/NOQUIET and the TIMEOUT=c/TIMEOUT=0 session options. See
items 1 and 2 on page 149 and items 7 and 8 on page 150 for more information.

2. If no path is specified when the Receive File function is executed, the received
file is stored in the current subdirectory, which is the directory in which your
application is running.

Release (12)

3270 5250 VT

Yes Yes Yes

The Release function unlocks the keyboard that is associated with the host
presentation space reserved using the Reserve (11) function.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 12

Data String NA

Length NA

PS Position NA

Return Parameters

Return Code Explanation

0 The Release function was successful.

1 Your program is not connected to a host session.

9 A system error was encountered.

Notes on Using This Function
If you do not Release a host presentation space reserved by using the Reserve (11)
function, you are locked out of that session until you call the Reset System (21)
function, you call the Disconnect Presentation Space (2) function, or you terminate
the EHLLAPI application program.

Reserve (11)

3270 5250 VT

Yes Yes Yes

The Reserve function locks the keyboard that is associated with the host-connected
presentation space to block input from the terminal operator.

Chapter 3. EHLLAPI Functions 123

The reserved host presentation space remains locked until one of the following
occurs:
v Connect (1) function is executed to a new session.
v Disconnect Presentation Space (2) function is executed.
v Release (12) function is executed.
v Reset System (21) function is executed.
v Start Keystroke Intercept (50) function is executed.
v EHLLAPI application program is terminated.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 11

Data String NA

Length NA

PS Position NA

Return Parameters

Return Code Explanation

0 The Reserve function was successful.

1 Your program is not connected to a host session.

5 Presentation space cannot be used.

9 A system error was encountered.

Notes on Using This Function
1. If your EHLLAPI application program is sending a series of transactions to the

host, you might need to prevent the user from gaining access to that session
until your application processing is complete.

2. The keyboard input that a user makes while the keyboard is locked by this
function is enqueued and processed after the session is terminated.

3. This function locks both the mouse and the keyboard input. The application
program must unlock the presentation space to enable either the mouse or the
keyboard input.

Reset System (21)

3270 5250 VT

Yes Yes Yes

The Reset System function reinitializes EHLLAPI to its starting state. The session
parameter options are reset to their defaults. Event notification is stopped. The
reserved host session is released. The host presentation space is disconnected.
Keystroke intercept is disabled.

124 Emulator Programming

You can use the Reset System function during initialization or at program
termination to reset the system to a known initial condition.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 21

Data String NA

Length NA

PS Position NA

Return Parameters

Return Code Definition

0 The Reset System function was successful.

1 EHLLAPI is not loaded.

9 A system error was encountered.

Notes on Using this Function
For the PC/3270, this function can be used to check whether EHLLAPI is loaded.
Place a call to this function at the start of your application and check for a return
code of 1.

Search Field (30)

3270 5250 VT

Yes Yes Yes

The Search Field function examines a field within the connected host presentation
space for the occurrence of a specified string. If the target string is found, this
function returns the decimal position of the string numbered from the beginning of
the host presentation space. (For example, in a 24-row by 80-column presentation
space, the row 1, column 1 position is numbered 1 and the row 5, column 1
position is numbered 321.)

This function can be used to search either protected or unprotected fields, but only
in a field-formatted host presentation space.

Note: If the field at the end of the host presentation space wraps, wrapping occurs
when the end of the presentation space is reached.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 30.

Chapter 3. EHLLAPI Functions 125

Standard Interface Enhanced Interface

Data String Target string for search.

Length Length of the target data string. Overridden in EOT mode.

PS Position Identifies the target field. For SRCHALL, this can be the PS
position of any byte within the target field. For SRCHFROM, it
is the beginning point of the search for SRCHFRWD or the
ending point of the search for SRCHBKWD. See note 3.

Return Parameters
This function returns a length and a return code.

Length:
The following codes are defined:

Length Explanation

= 0 The string was not found.

> 0 The string was found at the indicated host presentation space
position.

Return Code:
The following codes are defined:

Return Code Explanation

0 The Search Field function was successful.

1 Your program is not connected to a host session.

2 Parameter error. Either the string length was zero, or EOT mode
was specified but no EOT character was found in calling data
string.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 The search string was not found, or the host presentation space
was unformatted.

Notes on Using This Function
1. Four sets of parameters under the Set Session Parameters (9) function are

related to this function. They are the SRCHALL/SRCHFROM,
STRLEN/STREOT, SRCHFRWD/SRCHBKWD, and the EOT=c session options.
See items 1 on page 148 through 4 on page 149 for more information.

2. You can use the Set Session Parameters (9) function to determine whether your
searches proceed forward (SRCHFRWD) or backward (SRCHBKWD) in a field.

3. The Search Field function normally checks the entire field (SRCHALL default
mode). However, you can use the function 9 to specify SRCHFROM. In this
mode, the calling PS position parameter does more than identify the target
field. It also provides a beginning or ending point for the search.
v If the SRCHFRWD option is in effect, the search for the designated string

begins at the specified PS position and proceeds toward the end of the field.
v If the SRCHBKWD option is in effect, the search for the designated string

begins at the end of the field and proceeds backward toward the specified PS
position. If the target string is not found, the search ends at the PS position
specified in the calling PS position parameter.

126 Emulator Programming

4. DBCS Only: If the start position of the specified search function is the second
byte in a double-byte character, the search is started from the next character for
SRCHFRWD and from the character for SRCHBKWD. If the last character of
the specified string is the first byte of a double-byte character, the character is
not searched for.
The search ignores a pair of SO and SI in the presentation space. When you
search a double-byte control character, put SO (X'0E') before the character and
SI (X'0F') after it. For example, X'0E000C0F' in the data string is treated as a
double-byte character FF (X'000C').

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In
some instances, Communication Manager 5250 emulation displays a 25th
row. This occurs when either an error message from the host is displayed or
when the operator selects the SysReq key. Personal Communications
displays 25th row information on row 24, or on the status bar. For
information to be displayed on the status bar, the status bar must be
configured. Refer to Quick Beginnings for information on configuring the
status bar. By the EXTEND_PS option, an EHLLAPI application can use the
same interface with Communication Manager EHLLAPI and valid
presentation space is extended when this condition occurs.

1390/1399 Code Page Support
Unicode functionality is supported only on 3270 and 5250 sessions.

STREOT option is not supported in a Unicode session. Please see “Set Session
Parameters (9)” on page 147 for details.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface Enhanced Interface

Function Number Must be 30.

Data String Target Unicode string for searching.

Length Length of the target Unicode string in Unicode characters.
Note: The EOT mode is not supported in a Unicode
session; therefore, length should be specified for proper
functioning of this function in a Unicode session.

PS Position Identifies the target field. For SRCHALL, this can be the PS
position of any byte within the target field. For SRCHFROM, it
is the beginning point of the search for SRCHFRWD or the
ending point of the search for SRCHBKWD. See note 3 on page
126.

Return Parameters: This function returns a length and a return code.

Length:
The following codes are defined:

Length Explanation

= 0 The string was not found.

> 0 The string was found at the indicated host presentation space
position.

Chapter 3. EHLLAPI Functions 127

Return Code:
The following codes are defined:

Return Code Explanation

0 The Search Field function was successful.

1 Your program is not connected to a host session.

2 Parameter error. Either the string length was zero, or EOT mode
was specified but no EOT character was found in calling data
string.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 The search string was not found, or the host presentation space
was unformatted.

Notes on Using This Function: The following options are supported in a Unicode
session for Search Field and function in the same way as in DBCS:
v STRLEN
v SRCHALL
v SRCHFROM
v SRCHFRWD
v SRCHBKWD

1137 Code Page Support
Unicode functionality is supported only on 5250 sessions.

STREOT option is not supported in a Unicode session. Please see “Set Session
Parameters (9)” on page 147 for details.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface Enhanced Interface

Function Number Must be 30.

Data String Target Unicode string for search.

Length Length of the target Unicode string in bytes.
Note: The EOT mode is not supported in a Unicode
session; therefore, length should be specified for proper
functioning of this function in a Unicode session.

PS Position Identifies the target field. For SRCHALL, this can be the PS
position of any byte within the target field. For SRCHFROM, it
is the beginning point of the search for SRCHFRWD or the
ending point of the search for SRCHBKWD. See note 3 on page
126.

Return Parameters: This function returns a length and a return code.

Length:
The following codes are defined:

128 Emulator Programming

Length Explanation

= 0 The string was not found.

> 0 The string was found at the indicated host presentation space
position.

Return Code:
The following codes are defined:

Return Code Explanation

0 The Search Field function was successful.

1 Your program is not connected to a host session.

2 Parameter error. Either the string length was zero, or EOT mode
was specified but no EOT character was found in calling data
string.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 The search string was not found, or the host presentation space
was unformatted.

Notes on Using This Function: The following options are supported in a Unicode
session for Search Field and function in the same way as in SBCS:
v STRLEN
v SRCHALL
v SRCHFROM
v SRCHFRWD
v SRCHBKWD

Search Presentation Space (6)

3270 5250 VT

Yes Yes Yes

The Search Presentation Space function lets your EHLLAPI program examine the
host presentation space for the occurrence of a specified string.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 6.

Data String Target string for search.

Length Length of the target data string. Overridden in EOT mode.

PS Position Position within the host presentation space where the search
is to begin (SRCHFRWD option) or to end (SRCHBKWD
option). Overridden in SRCHALL (default) mode.

Chapter 3. EHLLAPI Functions 129

Return Parameters
This function returns a length and a return code.

Length:
The following codes are defined:

Length Explanation

= 0 The string was not found.

> 0 The string was found at the indicated host presentation space
position.

Return Code:
The following codes are defined:

Return Code Explanation

0 The Search Presentation Space function was successful.

1 Your program is not connected to a host session.

2 An error was made in specifying parameters.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 The search string was not found.

Notes on Using This Function
1. Four sets of parameters under the Set Session Parameters (9) function are

related to this function. They are the SRCHALL/SRCHFROM,
STRLEN/STREOT, SRCHFRWD/SRCHBKWD, and the EOT=c session options.
See items 1 on page 148 through 4 on page 149 through for more information.

2. You can use the Set Session Parameters (9) function to specify SRCHBKWD.
When this option is in effect, the search operation locates the last occurrence of
the string.

3. The Search Presentation Space function normally checks the entire host
presentation space. However, you can use the Set Session Parameters (9)
function to specify SRCHFROM. In this mode, the calling PS position
parameter specifies a beginning or ending point for the search.
v If the SRCHFRWD option is in effect, the search for the designated string

begins at the specified PS position and proceeds toward the end of the host
presentation space.

v If the SRCHBKWD option is in effect, the search for the designated string
begins at the end of the PS and proceeds backward toward the specified PS
position. If the target string is not found, the search ends at the PS position
specified in the calling PS position parameter.

4. The SRCHFROM option is also useful if you are looking for a keyword that
might occur more than once in the host presentation space.

5. The Search Presentation Space function is useful in determining when the host
presentation space is available. If your EHLLAPI application is expecting a
specific prompt or message before sending data, the Search Presentation Space
function allows you to check for a prompt message before continuing.

6. DBCS Only: If the start position of the specified search function is the second
byte in a double-byte character, the search is started from the next character for

130 Emulator Programming

SRCHFRWD and from the character for SRCHBKWD. If the last character of
the specified string is the first byte of a double-byte character, the character is
not searched for.
The search ignores a pair of SO and SI in the presentation space. When you
search a double-byte control character, put SO (X'0E') before the character and
SI (X'0F') after it. For example, X'0E000C0F' in the data string is treated as a
double-byte character FF (X'000C').

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In
some instances, Communication Manager 5250 emulation displays a 25th
row. This occurs when either an error message from the host is displayed or
when the operator selects the SysReq key. Personal Communications
displays 25th row information on row 24, or on the status bar. For
information to be displayed on the status bar, the status bar must be
configured. Refer to Quick Beginnings for information on configuring the
status bar. By the EXTEND_PS option, an EHLLAPI application can use the
same interface with Communication Manager EHLLAPI and valid
presentation space is extended when this condition occurs.

1390/1399 Code Page Support
Unicode functionality is supported only on 3270 and 5250 sessions.

STREOT option is not supported in a Unicode session. Please refer to “Set Session
Parameters (9)” on page 147 for details.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface Enhanced Interface

Function Number Must be 6.

Data String Target Unicode string for search.

Length Length of the target Unicode string in Unicode characters.
Note: The EOT mode is not supported in a Unicode
session; therefore, length should be specified for proper
functioning of this function in a Unicode session.

PS Position Position within the host presentation space where the search
is to begin (SRCHFRWD option) or to end (SRCHBKWD
option). Overridden in SRCHALL (default) mode.

Return Parameters: This function returns a length and a return code.

Length:
The following codes are defined:

Length Explanation

= 0 The string was not found.

> 0 The string was found at the indicated host presentation space
position.

Return Code:
The following codes are defined:

Chapter 3. EHLLAPI Functions 131

Return Code Explanation

0 The Search Presentation Space function was successful.

1 Your program is not connected to a host session.

2 An error was made in specifying parameters.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 The search string was not found.

Notes on Using This Function: The following options are supported in a Unicode
session for Search Presentation Space (6) and function in the same way as in
DBCS:
v STRLEN
v SRCHALL
v SRCHFROM
v SRCHFRWD
v SRCHBKWD

1137 Code Page Support
Unicode functionality is supported only on 5250 sessions.

STREOT option is not supported in a Unicode session. Please refer to “Set Session
Parameters (9)” on page 147 for details.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface Enhanced Interface

Function Number Must be 6.

Data String Target Unicode string for search.

Length Length of the target Unicode data string in bytes.
Note: The EOT mode is not supported in a Unicode
session; therefore, length should be specified for proper
functioning of this function in a Unicode session.

PS Position Position within the host presentation space where the search
is to begin (SRCHFRWD option) or to end (SRCHBKWD
option). Overridden in SRCHALL (default) mode.

Return Parameters: This function returns a length and a return code.

Length:
The following codes are defined:

Length Explanation

= 0 The string was not found.

> 0 The string was found at the indicated host presentation space
position.

Return Code:
The following codes are defined:

132 Emulator Programming

Return Code Explanation

0 The Search Presentation Space function was successful.

1 Your program is not connected to a host session.

2 An error was made in specifying parameters.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 The search string was not found.

Notes on Using This Function: The following options are supported in a Unicode
session for Search Presentation Space (6) and function in the same way as in
SBCS:
v STRLEN
v SRCHALL
v SRCHFROM
v SRCHFRWD
v SRCHBKWD

Send File (90)

3270 5250 VT

Yes Yes No

The Send File function is used to transfer a file from the workstation session
where EHLLAPI is running to a host session.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 90.

Data String Refer to the examples.

Length Length of the target data string. Overridden in EOT mode.

PS Position Must be 0.

Following are examples of the data strings for SBCS

3270 Session

v To send the file to the VM/CMS host system:
pc_filename [id:]fn ft [fm] [(option]

v To send the file to the MVS/TSO host system:
pc_filename [id:]dataset[(member)] [/password] [option]

v To send the file to the CICS host system:
pc_filename [id:]host_filename [(option]

5250 Session

Chapter 3. EHLLAPI Functions 133

v To send the file to the iSeries, eServer i5, or System i5 host system:
pc_filename [id:]library file member [option]

Following are examples of the data strings for DBCS:

3270 Session

v To send the file to the VM/CMS host system:
pc_filename [id:]fn ft [fm] [(option]

v To send the file to the MVS/TSO host system:
pc_filename [id:]dataset[(member)] [/password]
[(option]

v To send the file to the CICS host system:
pc_filename [id:]host_filename [(option]

5250 Session

v To send the file to the iSeries, eServer i5, or System i5 host system:
pc_filename [id:]library file member [option]

Note: Parameters within [] are optional. Available options are listed below. For
more information about the options, refer to Administrator's Guide and
Reference.

Host System Common Options

VM/CMS ASCII, JISCII, CRLF, APPEND, LRECL n, RECFM v|f, TIME n, CLEAR,
NOCLEAR, PROGRESS, QUIET

MVS/TSO ASCII, JISCII, CRLF, APPEND, LRECL (n), RECFM (v|f|u), TIME (n),
CLEAR, NOCLEAR, PROGRESS, QUIET, BLKSIZE (n), SPACE (n[,m]),
AVBLOCK|TRACKS|CYLINDERS

CICS ASCII, JISCII, CRLF, BINARY, TIME n, CLEAR, NOCLEAR,
PROGRESS, QUIET

i5/OS or OS/400 ASCII, JISCII, CRLF, APPEND, SRC, LRECL n, TIME n, CLEAR,
NOCLEAR, PROGRESS, QUIET

Note:

JISCII is valid in a DBCS session for Japan only and ASCII is valid for all other SBCS and
DBCS sessions.
Note: Time, if specified, overrides the value in Set Session parameters.
Note:

Other options specified will be passed to the host transfer program. The file transfer
program on the host side either uses them, ignores them, or returns an error. Consult the
host transfer program documentation to see a complete list of the options supported.

Return Parameters

Return Code Explanation

2 Parameter error or you have specified a length that is too long
(more than 255 bytes) for the EHLLAPI buffer. The file transfer
was unsuccessful.

3 File transfer complete.

4 File transfer complete with segmented records.

134 Emulator Programming

Return Code Explanation

5 Workstation file name is not valid or not found. File transfer was
canceled.

9 A system error was encountered.

27 File transfer terminated because of either a Cancel button or the
timeout set by the Set Session Parameter (9) function.

101 File transfer was successful (transfer to/from CICS).

If you receive return code 2 or 9, there is a problem with the system or with the
way you specified your data string.

Other return codes can also be received which relate to message numbers
generated by the host transfer program. For transfers to a CICS host transfer
program, subtract 100 from the return code to give you the numeric portion of the
message. For example, a return code of 101 would mean that the message number
INW0001 was issued by the host. For other host transfer programs, just use the
return code as the numerical part of the message. For example, a return of 34
would mean that message TRANS34 was issued by the host transfer program. The
documentation for your host transfer program should give more information about
the meanings of the specific messages.

Operating system error codes reported by EHLLAPI are greater than 300. To
determine the error code, subtract 300 and refer to the operating system
documentation for return codes.

Notes on Using This Function
1. Four sets of parameters under the Set Session Parameters (9) function are

related to this function. They are the QUIET/NOQUIET, STRLEN/STREOT,
TIMEOUT=c/TIMEOUT=0, and the EOT=c session options. See items 1 and 2
on page 149 plus items 7 and 8 on page 150 for more information.

Send Key (3)

3270 5250 VT

Yes Yes Yes

The Send Key function is used to send either a keystroke or a string of keystrokes
to the host presentation space.

You define the string of keystrokes to be sent with the calling data string
parameter. The keystrokes appear to the target session as though they were entered
by the terminal operator. You can also send all attention identifier (AID) keys such
as Enter and so on. All host fields that are input protected or are numeric only
must be treated accordingly.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 3.

Chapter 3. EHLLAPI Functions 135

Standard Interface Enhanced Interface

Data String A string of keystrokes, maximum 255. Uppercase and
lowercase ASCII characters are represented literally.
Function keys and shifted function keys are represented by
mnemonics. See “Keyboard Mnemonics” on page 137.

Length Length of the source data string. Overridden if in EOT
mode.

PS Position NA

Return Parameters

Return Code Explanation

0 The keystrokes were sent; status is normal.

1 Your program is not connected to a host session.

2 An incorrect parameter was passed to EHLLAPI.

4 The host session was busy; all of the keystrokes could not be sent.

5 Input to the target session was inhibited or rejected; all of the
keystrokes could not be sent.

9 A system error was encountered.

Notes on Using This Function
1. The parameters under the Set Session Parameters (9) function are related to

this function. They are the AUTORESET/NORESET, STRLEN/STREOT, EOT=c,
ESC=c, and RETRY/NORETRY session options. See items 1 and 2 on page 149,
9 and 10 on page 151, and 19 on page 153 for more information.

2. Keystrokes cannot be sent to the host session when the keyboard is locked or
busy. You can check this condition with the Wait (4) function.

3. If the host is busy, input might be rejected.
4. The length of the data string must be explicitly defined by the default length

parameter, but it can be defined implicitly by the EOT=c option of the Set
Session Parameters (9) function.
When explicitly defining length (see item 1), the value for the length parameter
passed by the application must be calculated. For this calculation, allow 2 bytes
for compound keystrokes such as @E and allow 4 bytes for compound
keystrokes such as @A@C.

5. To send special control keys, a compound character coding scheme is used. In
this coding scheme, one keystroke is represented by a sequence of two to four
ASCII characters. The first and third character are always the escape character.
The second and fourth character are always a keycode.
To send the sequence LOGON ABCDE followed by the Enter key, you would code
the string LOGON ABCDE@E. A complete list of these keycodes is represented in
“Keyboard Mnemonics” on page 137.
This compound coding technique allows an ASCII string representation of all
necessary keystroke codes without requiring the use of complex hexadecimal
key codes.
The default escape character is @. The value of the escape character can be
changed to any other character with the ESC=c option of the Set Session
Parameters (9) function.

6. Users needing higher levels of performance should use the Copy String to
Field (33) or Copy String to Presentation Space (15) function rather than send

136 Emulator Programming

keystrokes with the Send Key (3) function. But remember, only the Send Key
(3) function can send the special control keys.

7. Refer to Set Session Parameters (9) session option 10 on page 151 (NORESET
option) to improve the performance of this function.
Unless NORESET is required, the reset mnemonic is added to the keystroke
strings as a prefix. Therefore, all resettable status except input inhibit are reset.
The NORESET option is not the same as the Reset System (21) function.

8. The keystroke strings, including the AID key, are sent to the host via multiple
paths. Each path sends the strings before the first AID key (or including the
AID key). EHLLAPI adjusts the string length and the start position of each
path. For a host application program, any keystroke might be lost by the AID
key process. Therefore, you should not send a keystroke list that includes
plural AID keys.

9. During the @P (Print) or @A@T (Print Presentation Space) process, all requests
that update the presentation space are rejected. If the presentation space is busy
or the interruption request occurs during the print request, the mnemonic
@A@R (Device Reset – Cancel to print the Presentation Space) cancels the
request and resets the status.

Keyboard Mnemonics
The keyboard mnemonics provide the ASCII characters representing the special
function keys of the keyboard in the workstation. The abbreviation codes make the
mnemonics for special keys easy to remember. An alphabetic key code is used for
the most common keys. For example, the Clear key is C, and the Tab key is T.

Table 7 shows the mnemonics using uppercase alphabetic characters:

Table 7. Mnemonics with Uppercase Alphabetic Characters

Mnemonic Meaning 3270 5250 VT

@B Left Tab Yes Yes No

@C Clear Yes Yes No

@D Delete Yes Yes No

@E Enter Yes Yes No

@F Erase EOF Yes Yes No

@H Help No Yes No

@I Insert Yes Yes No

@J Jump (Set Focus) Yes Yes No

@L Cursor Left Yes Yes Yes

@N New Line Yes Yes Yes

@O Space Yes Yes Yes

@P Print Yes Yes Yes

@R Reset Yes Yes No

@T Right Tab Yes Yes Yes

@U Cursor Up Yes Yes Yes

@V Cursor Down Yes Yes Yes

@X* DBCS (Reserved) Yes Yes No

@Z Cursor Right Yes Yes Yes

Chapter 3. EHLLAPI Functions 137

Table 8 shows the mnemonics using a number or lowercase alphabetic characters.

Table 8. Mnemonics with Numbers or Lowercase Characters

Mnemonic Meaning 3270 5250 VT

@0 Home Yes Yes No

@1 PF1/F1 Yes Yes No

@2 PF2/F2 Yes Yes No

@3 PF3/F3 Yes Yes No

@4 PF4/F4 Yes Yes No

@5 PF5/F5 Yes Yes No

@6 PF6/F6 Yes Yes Yes

@7 PF7/F7 Yes Yes Yes

@8 PF8/F8 Yes Yes Yes

@9 PF9/F9 Yes Yes Yes

@a PF10/F10 Yes Yes Yes

@b PF11/F11 Yes Yes Yes

@c PF12/F12 Yes Yes Yes

@d PF13 Yes Yes Yes

@e PF14 Yes Yes Yes

@f PF15 Yes Yes Yes

@g PF16 Yes Yes Yes

@h PF17 Yes Yes Yes

@i PF18 Yes Yes Yes

@j PF19 Yes Yes Yes

@k PF20 Yes Yes Yes

@l PF21 Yes Yes No

@m PF22 Yes Yes No

@n PF23 Yes Yes No

@o PF24 Yes Yes No

@q End Yes Yes No

@u Page Up No Yes No

@v Page Down No Yes No

@x PA1 Yes Yes No

@y PA2 Yes Yes No

@z PA3 Yes Yes No

Table 9 shows the mnemonics using the combination @A and @alphabetic
uppercase (A–Z) key.

Table 9. Mnemonics with @A and @ Uppercase Alphabetic Characters

Mnemonic Meaning 3270 5250 VT

@A@C Test No Yes No

@A@D Word Delete Yes Yes No

@A@E Field Exit Yes Yes No

138 Emulator Programming

Table 9. Mnemonics with @A and @ Uppercase Alphabetic Characters (continued)

Mnemonic Meaning 3270 5250 VT

@A@F Erase Input Yes Yes No

@A@H System Request Yes Yes No

@A@I Insert Toggle Yes Yes No

@A@J Cursor Select Yes Yes No

@A@L Cursor Left Fast Yes Yes No

@A@Q Attention Yes Yes No

@A@R Device Cancel
(Cancels Print
Presentation
Space)

Yes Yes No

@A@T Print
Presentation
Space

Yes Yes Yes

@A@U Cursor Up Fast Yes Yes No

@A@V Cursor Down
Fast

Yes Yes No

@A@Z Cursor Right
Fast

Yes Yes No

Table 10 shows the mnemonics using the combination @A and @number or @A and
@alphabetic lowercase (a–z) key.

Table 10. Mnemonics with @A and @ Lowercase Alphabetic Characters

Mnemonic Meaning 3270 5250 VT

@A@9 Reverse Video Yes Yes No

@A@b Underscore Yes No No

@A@c Reset Reverse
Video

Yes No No

@A@d Red Yes No No

@A@e Pink Yes No No

@A@f Green Yes No No

@A@g Yellow Yes No No

@A@h Blue Yes No No

@A@i Turquoise Yes No No

@A@j White Yes No No

@A@l Reset Host
Colors

Yes No No

@A@t Print (Personal
Computer)

Yes Yes No

@A@y Forward Word
Tab

Yes Yes No

@A@z Backward Word
Tab

Yes Yes No

Chapter 3. EHLLAPI Functions 139

Table 11 shows the mnemonics using the combination @A and @special character.

Table 11. Mnemonics with @A and @ Alphanumeric (Special) Characters

Mnemonic Meaning 3270 5250 VT

@A@− Field − No Yes No

@A@+ Field + No Yes No

@A@< Record
Backspace

No Yes No

Table 12 shows the mnemonics using the combination @S , @W, and @alphabetic
lowercase.

Table 12. Mnemonics with @S (Shift), @W (Edit) and @ Alphabetic Characters

Mnemonic Meaning 3270 5250 VT

@S@E Print
Presentation
Space on Host

No Yes No

@S@x Dup Yes Yes No

@S@y Field Mark Yes Yes No

@W@C Edit Copy Yes Yes Yes

@W@D Edit Clear Yes Yes Yes

@W@E Edit Copy
Append

Yes Yes Yes

@W@L Edit Copy Link Yes Yes Yes

@W@N Edit Paste Next Yes Yes Yes

@W@V Edit Paste Yes Yes Yes

@W@X Edit Cut Yes Yes Yes

@W@Z Edit Undo Yes Yes Yes

Note: @W Edit mnemonics are supported only in EHLLAPI functions in Enhanced
mode. See Start Keystroke Intercept function under “Summary of EHLLAPI
Functions” on page 28.

DBCS Only: Table 13 shows the mnemonics using the combination @X and
@number or @alphabetic lowercase (a–z).

Table 13. Mnemonics Using @X and @Alphabetic Lowercase (For DBCS Only)

Mnemonic Meaning 3270 5250 VT

@X@1 Display SO/SI Yes Yes No

@X@5 Generate SO/SI No Yes No

@X@6 Display
Attribute

No Yes No

@X@7 Forward
Character

No Yes No

@X@c Split Vertical Bar No Yes No

VT Only: Table 14 on page 141 shows the mnemonics using the combination @M
and @number or @alphabetic lowercase (a-z)

140 Emulator Programming

Table 14. Mnemonics Using @M, @Q and @Alphabetic Lowercase (For VT Only)

Mnemonic Meaning 3270 5250 VT

@M@0 VT Numeric Pad
0

No No Yes

@M@1 VT Numeric Pad
1

No No Yes

@M@2 VT Numeric Pad
2

No No Yes

@M@3 VT Numeric Pad
3

No No Yes

@M@4 VT Numeric Pad
4

No No Yes

@M@5 VT Numeric Pad
5

No No Yes

@M@6 VT Numeric Pad
6

No No Yes

@M@7 VT Numeric Pad
7

No No Yes

@M@8 VT Numeric Pad
8

No No Yes

@M@9 VT Numeric Pad
9

No No Yes

@M@- VT Numeric Pad
-

No No Yes

@M@, VT Numeric Pad
,

No No Yes

@M@. VT Numeric Pad
.

No No Yes

@M@e VT Numeric Pad
Enter

No No Yes

@M@f VT Edit Find No No Yes

@M@i VT Edit Insert No No Yes

@M@r VT Edit Remove No No Yes

@M@s VT Edit Select No No Yes

@M@p VT Edit Previous
Screen

No No Yes

@M@n VT Edit Next
Screen

No No Yes

@M@a VT PF1 No No Yes

@M@b VT PF2 No No Yes

@M@c VT PF3 No No Yes

@M@d VT PF4 No No Yes

@M@h VT HOld Screen No No Yes

@M@(space) Control Code
NUL

No No Yes

@M@A Control Code
SOH

No No Yes

Chapter 3. EHLLAPI Functions 141

Table 14. Mnemonics Using @M, @Q and @Alphabetic Lowercase (For VT
Only) (continued)

Mnemonic Meaning 3270 5250 VT

@M@B Control Code
STX

No No Yes

@M@C Control Code
ETX

No No Yes

@M@D Control Code
EOT

No No Yes

@M@E Control Code
ENQ

No No Yes

@M@F Control Code
ACK

No No Yes

@M@G Control Code
BEL

No No Yes

@M@H Control Code BS No No Yes

@M@I Control Code
HT

No No Yes

@M@J Control Code LF No No Yes

@M@K Control Code VT No No Yes

@M@L Control Code FF No No Yes

@M@M Control Code
CR

No No Yes

@M@N Control Code SO No No Yes

@M@O Control Code SI No No Yes

@M@P Control Code
DLE

No No Yes

@M@Q Control Code
DC1

No No Yes

@M@R Control Code
DC2

No No Yes

@M@S Control Code
DC3

No No Yes

@M@T Control Code
DC4

No No Yes

@M@U Control Code
NAK

No No Yes

@M@V Control Code
SYN

No No Yes

@M@W Control Code
ETB

No No Yes

@M@X Control Code
CAN

No No Yes

@M@Y Control Code
EM

No No Yes

@M@Z Control Code
SUB

No No Yes

142 Emulator Programming

Table 14. Mnemonics Using @M, @Q and @Alphabetic Lowercase (For VT
Only) (continued)

Mnemonic Meaning 3270 5250 VT

@M@u Control Code
ESC

No No Yes

@M@v Control Code FS No No Yes

@M@w Control Code GS No No Yes

@M@x Control Code RS No No Yes

@M@y Control Code US No No Yes

@M@z Control Code
DEL

No No Yes

@Q@A VT User Defined
Key 6

No No Yes

@Q@B VT User Defined
Key 7

No No Yes

@Q@C VT User Defined
Key 8

No No Yes

@Q@D VT User Defined
Key 9

No No Yes

@Q@E VT User Defined
Key 10

No No Yes

@Q@F VT User Defined
Key 11

No No Yes

@Q@G VT User Defined
Key 12

No No Yes

@Q@H VT User Defined
Key 13

No No Yes

@Q@I VT User Defined
Key 14

No No Yes

@Q@J VT User Defined
Key 15

No No Yes

@Q@K VT User Defined
Key 16

No No Yes

@Q@L VT User Defined
Key 17

No No Yes

@Q@M VT User Defined
Key 18

No No Yes

@Q@N VT User Defined
Key 19

No No Yes

@Q@0 VT User Defined
Key 20

No No Yes

@Q@a VT Backtab No No Yes

@Q@r VT Clear Page No No Yes

@Q@s VT Edit No No Yes

The following table shows the mnemonics using a special character.

Chapter 3. EHLLAPI Functions 143

Table 15. Mnemonics with Special Character Keys

Mnemonic Meaning 3270 5250 VT

@@ @ Yes Yes Yes

@$ Alternate Cursor
(The
Presentation
Manager
Interface only)

Yes Yes Yes

@< Backspace Yes Yes Yes

The following table shows BIDI key mnemonics:

Table 16. BIDI Key Mnemonics

Mnemonic Meaning 3270 5250 VT

@:@s Screen Reverse Yes Yes Yes

@:@n Bidi Layer Yes Yes Yes

@:@l Latin Layer Yes Yes Yes

@:@F Field Reverse Yes Yes No

@:@p Push Yes No No

@:@e End Push Yes No No

@:@a Auto Push Yes No No

@:@r Auto Reverse Yes No No

@:@d CSD Yes No No

@:@f Final Yes No No

@:@i Isolated Yes No No

@:@m Middle Yes No No

@:@t Initial Yes No No

@:@h Field Shape Yes No No

@:@u Field Base Yes No No

@:@b Base No Yes No

@:@o Close No Yes No

@:@K Column Heading No No Yes

@:@B Cursor Direction No No Yes

@:@D Encoding Mode No No Yes

@:@M VT Change
Display Mode

No No Yes (Hebrew
only)

The following character keys are interpreted as they are.

a–z ! ' ' < }
A–Z $ (. > [
0–9 %) / =]
~ & * : ? |
" + ; {

144 Emulator Programming

1390/1399 Code Page Support
Unicode functionality is supported only on 3270 and 5250 sessions.

STREOT option is not supported in a Unicode session. Please see “Set Session
Parameters (9)” on page 147 for details.

The session option ESC is not supported in a Unicode session; using this option,
you cannot set a Unicode character as an ESC character. Use the default ESC
character @ in a Unicode session. Please see “Set Session Parameters (9)” on page
147 for details.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface Enhanced Interface

Function Number Must be 3

Data String A Unicode string of keystrokes, maximum 255. Uppercase
and lowercase ASCII characters are represented literally.
Function keys and shifted function keys are represented by
mnemonics. See “Keyboard Mnemonics” on page 137.

Length The length of the Unicode string in Unicode characters.

PS Position NA

Return Parameters:

Return Code Explanation

0 The keystrokes were sent; status is normal.

1 Your program is not connected to a host session.

2 An incorrect parameter was passed to EHLLAPI.

4 The host session was busy; all of the keystrokes could not be sent.

5 Input to the target session was inhibited or rejected; all of the
keystrokes could not be sent.

9 A system error was encountered.

Notes on Using This Function: Before sending keystrokes to a PCOMM session,
be sure that the session is a Unicode session and the Windows operating system
supports Unicode. .

The string length should indicate the number of Unicode characters and not the
number of ANSI characters to be sent.

1137 Code Page Support
Unicode functionality is supported only on 5250 sessions.

STREOT option is not supported in a Unicode session. Please see “Set Session
Parameters (9)” on page 147 for details.

The session option ESC is not supported in a Unicode session; using this option,
you cannot set a Unicode character as an ESC character. Use the default ESC
character @ in a Unicode session. Please see “Set Session Parameters (9)” on page
147 for details.

Chapter 3. EHLLAPI Functions 145

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface Enhanced Interface

Function Number Must be 3

Data String A Unicode string of keystrokes, maximum 255. Uppercase
and lowercase ASCII characters are represented literally.
Function keys and shifted function keys are represented by
mnemonics. See “Keyboard Mnemonics” on page 137.

Length Length of the Unicode data string in bytes. If the length is
not a multiple of 2 then an error code of 2 is returned.

PS Position NA

Return Parameters:

Return Code Explanation

0 The keystrokes were sent; status is normal.

1 Your program is not connected to a host session.

2 An incorrect parameter was passed to EHLLAPI.

4 The host session was busy; all of the keystrokes could not be sent.

5 Input to the target session was inhibited or rejected; all of the
keystrokes could not be sent.

9 A system error was encountered.

Notes on Using This Function: Before sending keystrokes to a PCOMM session,
be sure that the session is a Unicode session. If the session is ANSI and a Unicode
string is sent, junk characters will be displayed.

The string length should indicate the number bytes and not the number of
Unicode characters to be sent. Therefore the length should be a multiple of 2. If
not, a parameter error will be returned by the function.

Set Cursor (40)

3270 5250 VT

Yes Yes Yes

The Set Cursor function is used to set the position of the cursor within the host
presentation space. Before using the Set Cursor function, a workstation application
must be connected to the host presentation space.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 40

Data String NA

146 Emulator Programming

Standard Interface Enhanced Interface

Length NA

PS Position Desired cursor position in the connected host presentation
space

Return Parameters

Return Code Explanation

0 Cursor was successfully located at the specified position.

1 Your program is not connected to a host session.

4 The session is busy.

7 A cursor location less than 1 or greater than the size of the
connected host presentation space was specified.

9 A system error occurred.

Notes on Using This Function
DBCS Only: If the specified cursor is the second byte of the double-byte character,
the cursor moves to the first byte of the character and an error code is not
returned.

1137 Code Page Support
The usage of Set Cursor in a Unicode session is the same as that for a SBCS
session except:
v Unicode functionality is supported only on 5250 sessions.
v In a Unicode session only, if the specified cursor is in the middle of a cluster (for

example, a Hindi language cluster), then the cursor is positioned to the
beginning of the cluster automatically.

Set Session Parameters (9)

3270 5250 VT

Yes Yes Yes

The Set Session Parameters function lets you change certain default session
options in EHLLAPI for all sessions. When EHLLAPI is loaded, the default settings
for session options are as indicated by the underscored entries in the tables that
appear in “Session Options” on page 148. Any, some, or all of these settings can be
changed by including the desired option in the calling data string as explained
below. Specified settings remain in effect until:
v Changed by a subsequent Set Session Parameters (9) function that specifies a

new value.
v The Reset System (21) function is executed.
v The EHLLAPI application program is terminated.

The following table lists those EHLLAPI functions that are affected by session
options. Functions not listed in the table are not affected by any of the session
options. Session options that affect each function are indicated by corresponding
entries in the “See Items” column. These entries are indexed to the list that follows
“Call Parameters” on page 148.

Chapter 3. EHLLAPI Functions 147

Function
Number Function Name See Items

1 Connect Presentation Space 11, 23, 24

3 Send Key 1, 2, 9, 10, 19

4 Wait 12

5 Copy Presentation Space 5, 13, 14, 15, 17, 20, 21, 22

6 Search Presentation Space 1, 2, 3, 4

8 Copy Presentation Space to String 5, 13, 14, 15, 17, 20, 21, 22

10 Query Sessions 16, 22

15 Copy String to Presentation Space 1, 2, 13, 14, 18, 20, 21, 22

18 Pause 6

30 Search Field 1, 2, 3, 4, 22

33 Copy String to Field 1, 2, 13, 14, 18, 20, 21, 22

34 Copy Field to String 5, 13, 14, 17, 20, 21, 22

51 Get Key 9, 12

90 Send File 1, 2, 7, 8

91 Receive File 1, 2, 7, 8

101 Connect Window Services 23, 24

Note: Items 20 and 21 in this table are for DBCS only

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 9.

Data String String containing the desired values of those session options
that are to be changed. The data string can contain any of
the values in the tables of “Session Options.” The values
should be placed on the data string line, separated by
commas or blanks. The sets of parameters are explained in
terms of the functions they affect.

Length Explicit length of the source data string (the STREOT option
is not allowed).

PS Position NA.

Session Options
The following tables show the session options. The default is underlined.
1. The values in the following table determine how the data string length is

defined for functions Send Key (3), Search Presentation Space (6), Copy
String to Presentation Space (15), Search Field (30), Copy String to Field
(33), Send File (90), and Receive File (91).

Value Explanation

STRLEN An explicit length is passed for all strings.

148 Emulator Programming

Value Explanation

STREOT Lengths are not explicitly coded. Calling (source) data strings are
terminated with an EOT character.

2. The statement in the following table is used to specify the character that is
used as the end-of-text (EOT) delimiter in the calling (source) data string for
EHLLAPI functions Send Key (3), Search Presentation Space (6), Copy String
to Presentation Space (15), Search Field (30), Copy String to Field (33), Send
File (90), and Receive File (91).

Value Explanation

EOT=c Allows you to specify the EOT character for string terminators (in
STREOT mode). Binary zero is the default. Do not leave a blank
after the equal sign.

To be valid, c must be entered as a 1-byte string literal character with no
preceding blanks. The EOT character specified by this statement is used to
determine the length of a calling data string only when the STREOT option
(see item 1) is in effect.

3. The values in the following table affect the Search Presentation Space (6) and
Search Field (30) search functions.

Value Explanation

SRCHALL The Search Presentation Space (6) function and Search Field (30)
function scan the entire host presentation space or field.

SRCHFROM The Search Presentation Space (6) function and Search Field (30)
function start from a specified PS position (for SRCHFRWD) or end at
a specified PS position (for SRCHBKWD).

4. The values in the following table affect the Search Presentation Space (6) and
Search Field (30) search functions. They determine the direction for the
search.

Value Explanation

SRCHFRWD The Search Presentation Space (6) function and Search Field (30)
function perform in an ascending direction.

SRCHBKWD The Search Presentation Space (6) function and Search Field (30)
function perform in a descending direction. A search is satisfied if
the first character of the requested string starts within the bounds
specified for the search.

5. The values in the following table determine how attribute bytes are treated for
functions Copy Presentation Space (5), Copy Presentation Space to String
(8), and Copy Field to String (34).

Value Explanation

NOATTRB Convert all unknown values to blanks.

ATTRB Pass back all codes that do not have an ASCII equivalent as their
original values.

NULLATTRB Convert all field attributes to null characters.

6. The values in the following table affect the Pause (18) function.

Chapter 3. EHLLAPI Functions 149

Value Explanation

FPAUSE A full-duration pause lasts for however long you specified in the
Pause (18) function.

IPAUSE Interruptible pause. After the Start Host Notification (23) function
is executed, a host event satisfies a pause.

7. The values in the following table determine whether messages generated by
file transfer functions Send File (90) and Receive File (91) are displayed.

Value Explanation

NOQUIET SEND and RECEIVE messages are displayed.

QUIET SEND and RECEIVE messages are not displayed.

8. The statements in the following table determine how long Personal
Communications EHLLAPI waits before it automatically issues a Cancel
during execution of file transfer functions Send File (90) and Receive File
(91). To be valid, c must be an Arabic number 0–9 or a capital letter J–N and
must not be preceded by a blank.

Value Explanation

TIMEOUT=0 A Cancel is automatically issued following a 20-second
(approximate) delay.

TIMEOUT=c A Cancel is automatically issued following a specified delay. A
1-character indicator from the table below tells Personal
Communications how many 30-second cycles it should accept
before issuing a Cancel itself.

Character Value (in minutes)

1 0.5

2 1.0

3 1.5

4 2.0

5 2.5

6 3.0

7 3.5

8 4.0

9 4.5

J 5.0

K 5.5

L 6.0

M 6.5

N 7.0

9. The statement in the following table is used to define the escape character for
keystroke mnemonics. This session option affects functions Send Key (3) and
Get Key (51). The value of c must be entered as a 1-byte literal character
string with no preceding blanks.

150 Emulator Programming

Value Explanation

ESC=c Specifies the escape character for keystroke mnemonics (@ is the
default). Do not leave a blank after the equal sign. A blank is not a
valid escape character.

10. The values in the following table determine whether EHLLAPI automatically
precedes strings sent using the Send Key (3) function with a reset.

Value Explanation

AUTORESET EHLLAPI attempts to reset all inhibited conditions by prefixing all
strings of keys sent using the Send Key (3) function with a reset.

NORESET Do not AUTORESET.

11. The values in the following table affect the manner in which the Connect
Presentation Space (1) command function.

Value Explanation

CONLOG Establishes a logical connection between the workstation session
and a host session. During Connect, does not jump to the
requested presentation space.

CONPHYS Establishes a physical connection between the workstation session
and a host session. During Connect, jumps to the requested
presentation space.

12. The values in the following table affect the Wait (4) function and Get Key (51)
function. For each value, there are two different effects, one for each function.

Value Explanation

TWAIT For the Wait (4) function, waits up to a minute before timing out
on XCLOCK (X []) or XSYSTEM.

For the Get Key (51) function, does not return control to your
EHLLAPI application program until it has intercepted a key
(normal or AID key based on the option specified under the Start
Keystroke Intercept (50) function).

LWAIT For the Wait (4) function, waits until XCLOCK (X [])/XSYSTEM
clears. This option is not recommended, because control does not
return to your application until the host is available.

For the Get Key (51) function, does not return control to your
EHLLAPI application program until it has intercepted a key
(normal or AID key based on the option specified under the Start
Keystroke Intercept (50) function).

NWAIT For the Wait (4) function, checks status and returns immediately
(no wait).

For the Get Key (51) function, returns return code 25 (keystrokes
not available) in the fourth parameter if nothing is queued
matching the option specified under the Start Keystroke Intercept
(50) function.

Note: Use of NWAIT is recommended.
13. The values in the following table affect Copy Presentation Space (5), Copy

Presentation Space to String (8), Copy String to Presentation Space (15),

Chapter 3. EHLLAPI Functions 151

Copy String to Field (33), and Copy Field to String (34). Extended attribute
bytes (EAB) include extended character attributes and extended field
attributes.

Value Explanation

NOEAB Pass data only, no EABs.

EAB Pass the presentation space data with extended attribute bytes. For
each character that appears on the screen, 2 bytes of data are
passed. Therefore, a buffer twice the size of the presentation space
must be preallocated; for example 2 x 1920 = 3840 for a 24-row by
80-column presentation space.

Extended attributes for a string of characters may be reported as
attributes of the field byte, rather than as attributes of each
individual character in the field. In this case, to tell if a particular
character or set of characters on a screen is underscored, do a
CopyPStoString specifying the position of the field attribute byte
(the byte before the field that is displayed on the screen) to get the
EAB information that applies to all of the characters in that field.

Note: When using EHLLAPI Copy PS to String, text is copied which should
be invisible to the operator. Use the EHLLAPI Set Session Parameters
function to set the NODISPLAY option to determine if there is hidden
data. This causes EHLLAPI to return nondisplay fields as nulls.
Another common procedure for hiding data is to set the foreground
and background colors the same (BLACK, for instance) so the text is
displayed, but not visible to the human operator. The only way for
your application to detect this is to use the EAB and XLATE session
parameters and then copying the PS. The foreground/background color
of each position is returned and you can determine which characters
are invisible.

14. The values in the following table affect Copy Presentation Space (5), Copy
Presentation Space to String (8), Copy String to Presentation Space (15),
Copy String to Field (33), and Copy Field to String (34).

Value Explanation

NOXLATE EABs are not translated.

XLATE EABs are translated to the PC color graphics adapter (CGA) format.

15. The values in the following table affect Copy Presentation Space (5) and
Copy Presentation Space to String (8) if NOATTRB and NOEAB are
specified.

Value Explanation

BLANK Convert all unknown values to X'20'.

NOBLANK Convert all unknown values to X'00'.

The default value is BLANK. If you want to change the default value to
NOBLANK, add the following statement in the PCSWIN.INI file located in the
Personal Communications user-class application data directory:
[API]
NullToBlank=NO

16. The values in the following table affect the presentation space size that is
returned by the Query Sessions (10).

152 Emulator Programming

Value Explanation

CFGSIZE Returns the configured size of the connected presentation space.
This option ignores any override of the configured size by the host.

NOCFGSIZE Returns the current size of the connected presentation space.

17. The values in the following table affect Copy Presentation Space (5), Copy
Presentation Space to String (8), and Copy Field to String (34).

Value Explanation

DISPLAY Copy nondisplay fields in the presentation space to the target
buffer area in the same manner as display fields. Current
applications function normally.

NODISPLAY Do not copy nondisplay fields in the presentation space to the
target buffer area. Copy the nondisplay fields to the target buffer as
a string of null characters. This allows applications to display the
copied buffers in the presentation widow without displaying
confidential information, such as passwords.

18. The values in the following table affect Copy String to Presentation Space
(15) and Copy String to Field (33).

Value Explanation

NOPUTEAB EAB (or EAD for DBCS) is not contained in the data string of Copy
String to Presentation Space or Copy String to Field.

PUTEAB EAB is contained with character data in the data string of Copy
String to Presentation Space or Copy String to Field.

This option is used for the compatibility with Communication Manager/2. For
Communication Manager/2, the data string, which is specified in Copy String
to Presentation Space or Copy String to Field, must be contain EAB (or EAD)
with character data when EAB (or EAD) is valid in Set Session Parameters.
Whereas, for the previous Personal Communications, the data string specified
in these functions must consist of character data only even if EAB (or EAD) is
valid. But Personal Communications allows that the data string contains EAB
(or EAD) by setting PUTEAB to provide the compatibility with
Communication Manager/2.

19. The values in the following table affect the Send Key (3) function. Keystrokes
are not processed if the keyboard is blocked or in use. The options determine
whether the function tries to resend the keystrokes until a 4-minute timeout
occurs or if the function returns immediately after determining the keyboard
is blocked or in use.

Value Explanation

RETRY Continues to attempt to send keystrokes until they are sent or until
a 4-minute timeout occurs.

NORETRY Returns immediately after determining the keyboard is blocked or
in use.

20. DBCS Only: The values in the following table affect Copy Presentation Space
(5), Copy Presentation Space to String (8), Copy String to Presentation Space
(15), Copy String to Field (33), and Copy Field to String (34).

Chapter 3. EHLLAPI Functions 153

Value Explanation

NOEAD DBCS attribute characters are not passed.

EAD Pass the presentation space data and two attribute characters for
the double-byte character set (DBCS). (Users receive 2 bytes for
each character other than the data. Therefore, a buffer twice the
size of the presentation space must be preallocated.)

21. DBCS Only: The values in the following table affect Copy Presentation Space
(5), Copy Presentation Space to String (8), Copy String to Presentation Space
(15), Copy String to Field (33), and Copy Field to String (34).

Value Explanation

NOSO Pass the presentation space data except Shift-in (SI) and Shift-out
(SO) control characters.

SO Pass the presentation space data including translated SI control
character to X'0E' and SO control character to X'0F'. The allocated
buffer size depends on the length of the stored data.

SPACESO Pass the presentation space data including translated SI and SO
control characters to X'20' (blank). The allocated buffer size
depends on the length of the stored data.

22. The values in the following table affect Copy Presentation Space (5), Copy
Presentation Space to String (8), Copy String to Presentation Space (15),
Copy String to Field (33), Copy Field to String (34) Search Field (30) and
Query Sessions. (10)

Value Explanation

EXTEND_PS 5250 emulation supports a presentation space of 24 rows by 80
columns. In some instances, Communication Manager 5250
emulation displays a 25th row. This occurs when either an error
message from the host is displayed or when the operator selects
the SysReq key. Personal Communications displays 25th row
information on row 24, but EHLLAPI normally sees the real 24th
row. By EXTEND_PS option, an EHLLAPI application can use the
same interface with Communication Manager EHLLAPI and valid
presentation space is extended when this condition occurs.

NOEXTEND_PS The presentation space is not extended when the above condition
occurs. This is the default value.

23. The values in the following table affect the Connect Presentation Space (1)
and Connect Window Services (101) functions. The options specify whether
an application can or will share the presentation space to which it is
connected with another application. Only one of the following values can be
specified with each Set Session Parameter call.

Value Explanation

SUPER_WRITE The application allows other applications that allow sharing and
have write access permissions to concurrently connect to the same
presentation space. The originating application performs
supervisory-type functions but does not create errors for other
applications that share the presentation space.

WRITE_SUPER The application requires write access and allows only supervisory
application to concurrently connect to its presentation space. This is
the default value.

154 Emulator Programming

Value Explanation

WRITE_WRITE The application requires write access and allows partner or other
applications with predictable behavior to share the presentation
space.

WRITE_READ The application requires write access and allows other applications
that perform read-only functions to share the presentation space.
The application is also allowed to copy the presentation space and
perform other read-only operations as usual.

WRITE_NONE The application has exclusive use of the presentation space. No
other applications are allowed to share the presentation space,
including supervisory applications. The application is allowed to
copy the presentation space and perform read-only operations as
usual.

READ_WRITE The application requires only read access to monitor the
presentation space and allows other applications that perform read
or write, or both, functions to share the presentation space. The
application is also allowed to copy the presentation space and
perform other read-only operations as usual.

24. The values in the following table allow applications that have presentation
space sharing requirements to limit the sharing to a partner application (an
application that was developed to work with it).

Value Explanation

NOKEY Allows the application to be compatible with existing applications
that do not specify the KEY parameter.

KEY$nnnnnnnn Uses a keyword to restrict sharing access to the presentation space
that it supports. The keyword must be exactly 8 bytes in length.

Return Parameters
This function returns a length and a return code.

Length:
Number of valid session parameters that are set.

Return Code:
The following codes are defined:

Return Code Explanation

0 The session parameters have been set.

2 One or more parameters were not valid.

9 A system error was encountered.

1390/1399 and 1137 Code Page Support
Code page 1390/1399 Unicode functionality is available only for 3270 and 5250
sessions. Code page 1137 Unicode functionality is available only for 5250 sessions.

The following session option differences must be noted for 1390/1399 and 1137
code page support in a Unicode session:
v The session option STREOT should not be used for Unicode strings for the

following reasons:
– The session option STREOT specifies that the length of the string is not

explicitly given. An EOT character indicates the end of the string. By scanning

Chapter 3. EHLLAPI Functions 155

for the EOT character, the length of the string can be found. This EOT
character is stored as a single-byte value. The single-byte EOT character
cannot be used for Unicode strings.
- Scenario: A user sets the EOT character as 'A' whose ASCII value is 0X'41'.

If the string buffer that the user passes to the function contains a Unicode
character, then the low byte of this Unicode character will be taken as the
string delimiter. Therefore, a single-byte EOT character cannot be used as a
string delimiter.

– The EOT character cannot be stored as a Unicode character since the Set
Session Parameter function is independent of the PCOMM session and the
same setting applies to all the sessions of PCOMM. If the EOT is to be stored
as a Unicode character, then SBCS and DBCS implementations will be affected
by the way the EOT character is passed. At present, the EOT character is
expected to be a single-byte value.

Note: If you use the session option STREOT, then the results may not be as
expected. You can use a single-byte delimiter with the Unicode strings
if you are certain that the single-byte delimiter will not be a part of the
Unicode values that you are passing in the buffer.

v The session option ESC is not supported in a Unicode session for the same
reason as listed for “STREOT” on page 155.

v The session option XLATE is not supported in Unicode. Even if this option is
set, it will be ignored.

Start Close Intercept (41)

3270 5250 VT

Yes Yes Yes

The Start Close Intercept function allows the application to intercept close requests
generated when a user selects the close option from the emulator session window.
This function intercepts the close request and discards it until a Stop Close
Intercept (43) function is requested.

After using this function, your application program can use the Query Close
Intercept (42) function to determine when a close request has occurred.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Byte Definition

Standard Interface Enhanced Interface

Function Number Must be 41

Data String See the following table

Length 5 or 6 Must be 12

PS Position NA

The data string contains the following items.

156 Emulator Programming

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID).

2–4 Reserved.

4–5 The data in these positions is ignored by EHLLAPI.
However, no error is caused if the migrating program has
data in these positions. This data is accepted to provide
compatibility with migrating applications.

6 5 Specify M to request asynchronous message mode
(Windows only).

6–8 Reserved.

2–3 9–12 When M is specified in position 5 (6 for 16-bit), the
window handle of the window that receives the message
should be set. The message is a return value of
RegisterWindowMessage (PCSHLL) (not equal 0).

Return Parameters
This function returns a data string and a return code.

Data String:
If asynchronous message mode is not specified in position 5 (6 for
standard interface) and the function is completed successfully, the
following data string is returned.

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID).

2–8 Reserved.

9–12 4 byte value in which the event object address is returned
by EHLLAPI. The application can wait for this event
object. (32-bit only).

Data String:
If M (asynchronous message mode) is specified in position 5 (6 for
standard interface) and the function is completed successfully, the
following data string is returned.

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

2–8 Reserved

2–3 9–10 Task ID of asynchronous message mode

Note: If a user selects the close option, an application window receives a message.
The message is a return value of RegisterWindowMessage (PCSHLL). The
wParam parameter will contain the Task ID returned by this function call.
The HIWORD of the lParam parameter will contain the Return Code 26,
which shows a close intercept occurred, and the LOWORD of the lParam
parameter will contain the function number 41.

Chapter 3. EHLLAPI Functions 157

Return Code:
The following codes are defined:

Return Code Explanation

0 The Start Close Intercept function was successful.

1 An incorrect host presentation space was specified.

2 A parameter error occurred.

9 A system error occurred.

10 The function is not supported by the emulation program.

Notes on Using This Function
1. The returned event object or semaphore is in a non-signaled state when the

start request function returns. The event object is in the signaled state each time
a close request occurs. To receive notification of multiple close request events,
put the event object into the signaled state each time using SetEvent or the
Query Close Intercept (42) function.

2. After using this function, your application program can use the Query Close
Intercept (42) function to determine when a close request has occurred. The
application can wait on the returned event object to determine when the event
has occurred.

3. This is not an exclusive call. Multiple applications can request this function for
the same short session ID.

4. If there are no applications intercepting close requests for a session, any
subsequent close requests selected by the user from the emulator operations
dialog result in a normal stop requested for that session.

Start Communication Notification (80)

3270 5250 VT

Yes Yes Yes

The Start Communication Notification function begins the process by which your
EHLLAPI application can determine whether the specified session is connected to
a host.

After using this function, the application can use Query Communication Event
(81) to determine whether the session is connected or disconnected.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Enhanced Interface

Function Number Must be 80

Data String Preallocated structure; see the following table

Length 16

PSPosition NA

The calling data structure contains these elements

158 Emulator Programming

Byte Definition

1 A 1-character presentation space short name (PSID).

2-4 Reserved

5 One of the following values:

v The character C asks for notification when the session either
disconnects or connects to the host.

v The character A requests the asynchronous mode of notification.
When A is specified, position 9-12 returns the address of an
event object (Windows). The character C must be placed in
position 13.

v The character M requests the asynchronous message mode of
the notification. When M is specified, the event selection
character C must be placed in position 13.

6-8 Reserved

9-12 When M is specified in position 5, the window handle of the
window that receives the message should be set. The message is a
return value of RegisterWindowMessage (PCSHLL)—(not zero).

13 This should contain the character C if position 5 is A or M.

14-16 Reserved

Data String
If A (asynchronous mode) is specified in position 5 of the calling data structure
and the function is completed successfully, the following data string is returned:

Byte Definition

1 A 1-character presentation space short-name (PSID)

2-8 Reserved

9-12 4-byte binary value in which the event object handle is returned by
EHLLAPI. The application can wait for this event object.

If M (asynchronous message mode) is specified in position 5 of the calling data
structure and the function is completed successfully, the following data string is
returned:

Byte Definition

1 A 1-character presentation space short-name (PSID)

2-8 Reserved

9-10 Task ID of asynchronous message mode

When the session connects or disconnects an application window receives a
message. The message is the return value of RegisterWindow Message (PCSHLL).
The wParam contains the Task ID returned by the function call. HIWORD of
lParam contains a 21 if the session is connected to the host or a 22 if the session is
disconnected. The LOWORD of lParam contains the function number 80.

Return Parameters

Return Code Definition

0 The function was successful

Chapter 3. EHLLAPI Functions 159

1 An incorrect PSID was specified

2 An error was made in designating parameters

9 A system error was encountered

Notes on using this Function
1. An application program can issue this function for multiple host sessions. The

Query Communication Event (81) function can be used to determine the
session communication status.

2. If the application chooses the asynchronous option, it can use the Windows
SDK call WaitForSingleObject to wait until the sessions communication status
has changed.

3. The event object is initially in a non-signaled state. It is signaled each time an
event occurs. To receive notification for multiple events the application must
put the event object into the non-signaled state each time it is signaled, by
using the Windows SDK call ResetEvent, or by using function 81 Query
Communications Event.

4. Multiple calls to this function with the same options from the same application
will be ignored.

5. This is not exclusive to one application. Several applications can request this
function for the same Session ID.

Start Host Notification (23)

3270 5250 VT

Yes Yes Yes

The Start Host Notification function begins the process by which your EHLLAPI
application program determines if the host presentation space or OIA have been
updated.

After using this function, your application program can use the Query Host
Update (24) function to determine when a host event has occurred.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 23

Data String Preallocated string; see the following table

Length 6 or 7 implied 16

PS Position NA

The calling data string contains these elements:

Byte Definition

Standard Enhanced

160 Emulator Programming

Byte Definition

1 1 One of the following values:

v A 1-character presentation space short name (PSID)

v A blank or null indicating a request for the
host-connected host presentation space

2–4 Reserved.

2 5 One of the following values:

v The character B asking for notification of both host
presentation space and OIA updates.

v The character O asking for notification of only OIA
updates.

v The character P asking for notification of only host
presentation space updates.

v The character A requesting the asynchronous mode of
the notification When A is specified, position 9–12
returns the address of an event object. The event
selection character B, O, or P must be placed in
position 13.

v The character M requesting the asynchronous message
mode of the notification.

When M is specified, the event selection character B, O,
or P must be placed in position 13 (7 for 16-bit).

v E The character E asking for notification of completion
during a printer session.

6–8 Reserved.

3–4 9–12 When M is specified in position 5 (2 for 16-bit), the
window handle of the window that receives the message
should be set. The message is a return value of
RegisterWindowMessage (PCSHLL) (not equal 0).

7 13 One of the following values if position 5 (2 for 16-bit) is
A or M:

v The character B asking for notification of both host
presentation space and OIA updates

v The character O asking for notification of only OIA
updates

v The character P asking for notification of only host
presentation update.

14–16 Reserved.

Return Parameters
This function returns a data string and a return code.

Data String:
If A (asynchronous mode of notification) is specified in position 5 and the
function is completed successfully, the following data string is returned:

Byte Definition

Standard Enhanced

Chapter 3. EHLLAPI Functions 161

Byte Definition

1 1 A 1-character presentation space short name (PSID).

2–8 Reserved.

9–12 4-byte value in which the event object address is
returned by EHLLAPI. The application can wait for this
event object (32-bit only).

Data String:
If M (asynchronous message mode) is specified in position 5 (2 for
standard interface) and the function is completed successfully, the
following data string is returned:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

2–8 Reserved

3–4 9–10 Task ID of asynchronous message mode

Note: If OIA or presentation space is updated, an application window receives a
message. The message is a return value of RegisterWindowMessage
(PCSHLL). The wParam parameter contains the Task ID returned by the
function call. HIWORD of lParam contains Return Code 21 (shows the OIA
is updated), 22 (shows the host presentation space is updated), or 23 (shows
both the OIA and the host presentation space are updated), and LOWORD
of lParam parameter contains function number 23.

Return Code:
The following codes are defined:

Return Code Definition

0 The Start Host Notification function was successful.

1 An incorrect host presentation space was specified.

2 An error was made in designating parameters.

9 A system error was encountered.

Notes on Using This Function
1. An application program can issue this function for multiple host sessions. The

Pause (18) function can notify the application when one or more host sessions
(PS, OIA, or both of them) are updated. The Query Host Update (24) function
can be used to determine whether a PS, OIA, or both of them have been
updated.

2. If the application chooses the asynchronous option, it can wait for the returned
event object or semaphore to determine when a host event has occurred.

3. The event object or semaphore is initially in a non-signaled state and is
signaled each time an appropriate event occurs. To receive notification for
multiple events, the application must put the event object into the non-signaled
state each time it has been signaled using either the ResetEvent or the Query
Host Update (24) function.

4. An application cannot request Start Host Notification more than once with the
same options.

162 Emulator Programming

5. This is not an exclusive call. Multiple applications can request this function for
the same short session ID.

Start Keystroke Intercept (50)

3270 5250 VT

Yes Yes Yes

The Start Keystroke Intercept function allows a workstation application to filter
any keystrokes sent to a session by a terminal operator. After a call to this function,
keystrokes are intercepted and saved until the keystroke queue overflows or until
the Stop Keystroke Intercept (53) function or Reset System (21) function is called.
The intercepted keystrokes can be:
v Received through the Get Key (51) function and sent to the same or another

session with the Send Key (3) function
v Accepted or rejected through the Post Intercept Status (52) function
v Replaced by other keystrokes with the Send Key (3) function
v Used to trigger other processes

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 50

Data String See the following table

Length Keystroke buffer size EHLLAPI allocates 32 bytes minimum
for this buffer.

PS Position NA

The calling data string contains:

Byte Definition

Standard Enhanced

1 1 One of the following values:

v A specific host presentation space short name (PSID)

v A blank or null indicating a request for the
host-connected host presentation space

2–4 Reserved.

Chapter 3. EHLLAPI Functions 163

Byte Definition

2 5 An option code character:

v D for AID keystrokes only.

v L for all keystrokes.

v E for edit keys and all keystrokes (Available in
Enhanced mode only)

v M for requesting the asynchronous message mode of
the notification (Windows only).

When M is specified, a code character D, or L, or E
(Enhanced Monde) must be placed in position 13 (7 for
16-bit).

Prerequisite: keyboard keys must be mapped to edit
functions, e.g. Ctrl+C mapped to edit copy function. See
Table 12 on page 140 for edit functions supported.

6–8 Reserved.

3–4 9–12 When M is specified in position 5 (2 for 16-bit), the
window handle of the window that receives the message
should be set. The message is a return value of
RegisterWindowMessage (PCSHLL) (not equal 0).

7 13 One of the following values if position 5 (2 for 16-bit) is
M:

v D for AID keystrokes only.

v L for all keystrokes.

v E for edit keys and all keystrokes. (Available in
Enhanced mode only.)

14–16 Reserved.

Data String:
If M (asynchronous message mode) is specified in position 5 (2 for
standard interface) and the function is completed successfully, the
following data string is returned:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

2–8 Reserved

3–4 9–10 Task ID of asynchronous message mode

Note: If a user sends keystrokes to a session, an application window receives a
message. The message is a return value of RegisterWindowMessge
(PCSHLL). The wParam parameter contains the Task ID returned by the
function call. HIWORD of lParam parameter contains return code 0, which
shows that the function was successful, and LOWORD of lParam parameter
contains function number 50.

Return Parameters

Return Code Explanation

0 The Start Keystroke Intercept function was successful.

1 An incorrect presentation space was specified.

164 Emulator Programming

Return Code Explanation

2 An incorrect option was specified.

4 The execution of the function was inhibited because the target
presentation space was busy.

9 A system error was encountered. Release is being used.

Notes on Using This Function
1. If a return code of 31 occurs for the Get Key (51) function, either:
v Increase the value of the calling length parameter for this function, or
v Execute the Get Key (51) function more frequently.
An intercepted keystroke occupies 3 bytes in the buffer. The next intercepted
keystroke is placed in the adjacent 3 bytes. When the Get Key (51) function
retrieves a keystroke (first-in first-out, or FIFO), the 3 bytes that it occupied are
made available for another keystroke. By increasing the size of the buffer or the
rate at which keystrokes are retrieved from the buffer, you can eliminate buffer
overflow.
In the PC/3270, another way to eliminate return code 31 is to operate the
PC/3270 emulator in the resume mode.

2. If option code D is provided, EHLLAPI writes intercepted non-AID keys to the
presentation space to which they were originally intended, and returns only
AID keys to the application.

3. Call the Stop Keystroke Intercept (53) function before exiting your EHLLAPI
application. Otherwise, keystroke interception remains enabled with
unpredictable results.

Start Playing Macro (110)

3270 5250 VT

Yes Yes Yes

The Start Playing Macro function invokes a macro. The macro will be executed in
the connected session.

Note: This macro must exist in the Personal Communications user-class
application data directory and no extension should be specified in the
function call for the macro name.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface

Function Number Must be 110

Data String See the following table

Length Length of macro name, plus 3

PS Position NA

Chapter 3. EHLLAPI Functions 165

Byte Definition

Standard Enhanced

1-2 Reserved

3-n Null terminated macro name

Return Parameters

Return Code Explanation

0 The Start Playing Macro function was successful.

1 The programs is not connected to a host session.

2 An error was made in specifying parameters.

9 A system error was encountered.

Stop Close Intercept (43)

3270 5250 VT

Yes Yes Yes

The Stop Close Intercept function allows the application to turn off the Start
Close Intercept (41) function. After the application has issued the Stop Close
Intercept function, subsequent close requests result in a normal stop sent to the
logical terminal session.

Prerequisite Calls
Start Close Intercept (41)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 43

Data String 1-character short session ID of the host presentation space

Length 1 Must be 4

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

2–4 Reserved

Return Parameters

Return Code Explanation

0 The Stop Close Intercept function was successful.

1 An incorrect host presentation space was specified.

166 Emulator Programming

Return Code Explanation

2 An error was made in specifying parameters.

8 No previous Start Close Intercept (41) function was issued.

9 A system error occurred.

12 The session stopped.

Stop Communication Notification (82)

3270 5250 VT

Yes Yes Yes

The Stop Communication Notification function disables the capability of the
Query Communication Event (81) function to determine whether any
communication events have occurred in the specified Session.

Prerequisite Calls
Start Communication Notification (80)

Call Parameters

Enhanced Interface

Function Number Must be 82

Data String 1-character short name of the host
presentation space, or a blank or null
indicating request for updates to the
host-connected presentation space

Length 4 is implied

PSPosition NA

The calling data structure contains these elements:

Byte Definition

1 A 1-character presentation space short name (PSID)

2-4 Reserved

Return Parameters

Return Code Definition

0 The function was successful

1 An incorrect PSID was specified

8 No prior call to Start Communication Notification (80) function
was called for the PSID

9 A system error was encountered

Chapter 3. EHLLAPI Functions 167

Stop Host Notification (25)

3270 5250 VT

Yes Yes Yes

The Stop Host Notification function disables the capability of the Query Host
Update (24) function to determine if the host presentation space or OIA has been
updated. This function also stops host events from affecting the Pause (18)
function.

Prerequisite Calls
Start Host Notification (23)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 121

Data String See the following note

Length 1 is implied Must be 4

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

2–4 Reserved

Note: 1-character short name of the target presentation space ID, or a blank or a
null to indicate a request for the host-connected presentation space.

Return Parameters

Return Code Definition

0 The Stop Host Notification function was successful.

1 An incorrect host presentation space was specified.

8 No previous Start Host Notification (23) function was issued.

9 A system error was encountered.

Stop Keystroke Intercept (53)

3270 5250 VT

Yes Yes Yes

The Stop Keystroke Intercept function ends your application program's ability to
intercept keystrokes.

168 Emulator Programming

Prerequisite Calls
Start Keystroke Intercept (50)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 53

Data String Short name of the target presentation space (PSID)

Length 1 is implied Must be 4

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

2–4 Reserved

Return Parameters

Return Code Explanation

0 The Stop Keystroke Intercept function was successful.

1 An incorrect presentation space was specified.

8 No prior Start Keystroke Intercept (50) function was called for this
presentation space.

9 A system error was encountered.

Wait (4)

3270 5250 VT

Yes Yes Yes

The Wait function checks the status of the host-connected presentation space. If the
session is waiting for a host response (indicated by XCLOCK (X []) or XSYSTEM),
the Wait function causes EHLLAPI to wait up to 1 minute to see if the condition
clears.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 4

Data String NA

Length NA

PS Position NA

Chapter 3. EHLLAPI Functions 169

Return Parameters

Return Code Definition

0 The keyboard is unlocked and ready for input.

1 Your application program is not connected to a valid session.

4 Timeout while still in XCLOCK (X []) or XSYSTEM.

5 The keyboard is locked.

9 A system error was encountered.

Notes on Using This Function
1. The Wait function is used to give host requests like those made by the Send

Key (3) function the time required to be completed. Using the Set Session
Parameters (9) function, you can request the TWAIT, LWAIT, or the NWAIT option.
See item 12 on page 151.

2. You can use this function to see if the host OIA is inhibited.
3. The Wait function is satisfied by the host unlocking the keyboard. Therefore, a

return code of 0 does not necessarily mean that the transaction has been
completed. To verify completion of the transaction, you should use the Search
Field (30) function or Search Presentation Space (6) function combined with
the Wait function to look for expected keyword prompts.

Window Status (104)

3270 5250 VT

Yes Yes Yes

The Window Status function allows the application to query or change a window's
presentation space size, location, or visible state.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 104

Data String See the following table

Length 16 or 20 24 or 28

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

2–4 Reserved

170 Emulator Programming

Byte Definition

2 5 A request option value, select one of the following
values:

v X'01' for set status
Note: When the session is embedded In-Place in a
compound OLE document, the set form of this
function (byte 5 = X'01') always returns 0 but has no
effect.

v X'02' for query for status

v X'03' for query for extended status

6 Reserved

If the request option value is X'01' (set status):

Byte Definition

Standard Enhanced

3–4 7–8 A 16- or 32-bit word containing the status set bits if the
request option is 1 (set status). The following codes are
valid return values if the request option is set status:

X'0001' Change the window size. (Not valid with
minimize, maximize, restore, or move.)

X'0002' Move the window. (Not valid with minimize,
maximize, size, or restore.)

X'0004' ZORDER window replacement.

X'0008' Set the window to visible.

X'0010' Set the window to invisible.

X'0080' Activate the window. (Sets focus to window and
places it in the foreground unless ZORDER is
specified. In this case, the ZORDER placement is
used.)

X'0100' Deactivate the window. (Deactivates the window
and makes the window the bottom window
unless ZORDER is also specified. In this case,
the ZORDER placement is used.)

X'0400' Set the window to minimized. (Not valid with
maximize, restore, size, or move.)

X'0800' Set the window to maximized. (Not valid with
minimize, restore, size, or move.)

X'1000' Restore the window. (Not valid with minimize,
maximize, size, or move.)

5–6 9–12 A 16- or 32-bit word containing the X window position
coordinate. (Ignored if the move option is not set.)

7–8 13–16 A 16- or 32-bit word containing the Y window position
coordinate. (Ignored if the move option is not set.)

9–10 17–20 A 16- or 32-bit word containing the X window size in
device units. (Ignored if the size option is not set.)

11–12 21–24 A 16- or 32-bit word containing the Y window size in
device units. (Ignored if the size option is not set.)

Chapter 3. EHLLAPI Functions 171

Byte Definition

13–16 25–28 A 16- or 32-bit word containing a window handle for
relative window placement. These two words are only for
the set option. (Ignored if the ZORDER option is not set.)
Valid values are as follows:

X'00000003' Place in front of all sibling windows.
X'00000004' Place behind all sibling windows.

If the request option value is X'02' (query for status):

Byte Definition

Standard Enhanced

3–4 7–8 A 16- or 32-bit word containing X'0000' if the request
option is 2 (query for status). The following codes are
possible return values if the request option is query for
status. More than one state is possible.

X'0008' The window is visible.

X'0010' The window is invisible.

X'0080' The window is activated.

X'0100' The window is deactivated.

X'0400' The window is minimized.

X'0800' The window is maximized.

5–6 9–12 A 16- or 32-bit word containing the X window position
coordinate. (Ignored if the move option is not set.)

7–8 13–16 A 16- or 32-bit word containing the Y window position
coordinate. (Ignored if the move option is not set.)

9–10 17–20 A 16- or 32-bit word containing the X window size in
device units. (Ignored if the size option is not set.)

11–12 21–24 A 16- or 32-bit word containing the Y window size in
device units. (Ignored if the size option is not set.)

13–16 25–28 A 16- or 32-bit word containing a window handle for
relative window placement. These two words are only for
the set option. (Ignored if the ZORDER option is not set.)
Valid values are as follows:

X'00000003' Place in front of all sibling windows.
X'00000004' Place behind all sibling windows.

If the request option value is X'03' (query for extended status):

Byte Definition

Standard Enhanced

172 Emulator Programming

Byte Definition

3–4 7–8 A 16- or 32-bit word containing X'0000' if the request
option is 3 (query for extended status). The following
codes are possible return values if the request option is
query for extended status. More than one state is
possible.

X'0008' The window is visible.

X'0010' The window is invisible.

X'0080' The window is activated.

X'0100' The window is deactivated.

X'0400' The window is minimized.

X'0800' The window is maximized.

5–6 9–10 A 16- or 32-bit word containing the current font size in
the X-dimension. The value is in screen pels.

7–8 11–12 A 16- or 32-bit word containing the current font size in
the Y-dimension. The value is in screen pels.

9–12 13–16 Reserved. This value is always zero.

13–14 17–18 A 16- or 32-bit word containing the row number of the
first visible character of the presentation space. This
value is usually one, unless the Fixed Size font option is
in effect, and the window has been resized such that
some of the presentation space is hidden.

15–16 19–20 A 16- or 32-bit word containing the column number of
the first visible character of the presentation space.

17–20 21–24 A 16- or 32-bit word containing the presentation space
window handle of the session.

Return Parameters

Return Code Explanation

0 The Window Status function was successful.

1 The presentation space was not valid or not connected.

2 An incorrect option was specified.

9 A system error occurred.

12 The session stopped.

Notes on Using This Function
The logical terminal (LT) windows use character cells. When resizing the LT
windows, the LT rounds the number to prevent character cell truncation. The
requested size and position might be slightly different from what was requested.
Follow the set option with a query option to determine the final Presentation
Manager window position and size. All x and y coordinate positions and sizes are
in pels.

Write Structured Fields (127)

3270 5250 VT

Yes No No

Chapter 3. EHLLAPI Functions 173

The Write Structured Fields function allows an application to write structured
field data to the host application. If the call specifies S (for Synchronous), the
application does not receive control until the Write Structured Fields function is
completed. If the call specifies A (for Asynchronous), the application receives
control immediately after the call. If the call specifies M, the application receives
control immediately after the call. The application may wait for the message. In
any case (S, A or M), the application provides the buffer address in which data to
the host is to be placed.

For a successful asynchronous completion of this function, the following
statements apply:

The return code field in the parameter list might not contain the results of the
requested I/O. If the return code is not 0, then the request failed. The application
must take the appropriate action based on the return code.

If the return code for this request is 0, the application must use the request ID
returned with this function call to issue the Get Request Completion function call
to determine the completion results of the function associated with the request ID.
The Get Request Completion function call returns the following information:
1. Function request ID
2. Address of the data string from the asynchronous request
3. Length of the data string
4. Return code of the completed function

Prerequisite Calls
Connect for Structured Fields (120) Allocate Communication Buffer (123)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 127

Data String See the following table

Length 8, 10, or 14 Must be 20

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID).

2–4 Reserved.

2 5 S or A or M

S = Synchronous. Control is not returned to the
application until the read is satisfied.

A = Asynchronous. Control is returned immediately
to the application, can wait for the event object.

M = Asynchronous. Control is returned immediately
to the application, can wait for the message.

6 Reserved.

174 Emulator Programming

Byte Definition

3–4 7–8 2-byte destination/origin ID.

5–8 9–12 4-byte address of the buffer from which the data is to be
written. The buffer must be obtained using the Allocate
Communications Buffer (123) function.

9–10 13–16 Reserved.

11–12 17–20 When “M” is specified in position 5 (2 for 16-bit), the
window handle of the window that receives the message
should be set, The message is a return value of
RegisterWindowMessage (“PCSHLL”) (not equal 0).

13–14 The data in these positions is ignored by EHLLAPI
However, no error is caused if the migrating program has
data in these positions. This data is accepted to provide
compatibility with migrating applications.

Return Parameters
This function returns a data string and a return code.

Data String:
If A (asynchronous) is specified in position 5 (2 for standard interface) and
the function is completed successfully, the following data string is
returned:

Byte Definition

9–10 13–14 2-byte Function Request ID. It is used by the Get Request
Completion (125) function to determine the completion of this
function call.

15–16 Reserved.

17–20 4-byte value in which the event object address is returned by
EHLLAPI. The application can wait for this event object. When
the event object is cleared, the application must issue the Get
Request Completion (125) function call to get results of the Write
Structured Fields request. (32-bit only).

Note: An event object is returned for each successful asynchronous request. The
event object should not be used again. A new event object is returned for
each request and is valid for only the duration of that request.

Data String:
If M (asynchronous message mode) is specified in position 5 (2 for
standard interface) and the function is completed successfully, the
following data string is returned:

Byte Definition

9–10 13–14 2-byte Function Request ID. It is used by the Get Request
Completion (125) function to determine the completion of this
function call.

15–16 Reserved.

11–12 17–18 Task ID of asynchronous message mode.

19–20 Reserved.

Chapter 3. EHLLAPI Functions 175

Note: If the function is completed successfully, an application window receive a
message. The message is a return value of RegisterWindowMessage
(PCSHLL). The wParam parameter contains the Task ID returned by the
function call. HIWORD of lParam parameter contains return code 0, which
shows the function was successful, and LOWORD of lParam parameter
contains function number 127.

Return Code:
The following codes are defined:

Return Code Explanation

0 The Write Structured Fields function was successful.

1 A specified host presentation space short session ID was not valid
or was not connected.

2 An error was made in specifying parameters.

9 A system error occurred.

11 Resource unavailable (memory unavailable).

34 The message sent inbound to the host was canceled.

35 An outbound transmission from the host was canceled.

36 Request rejected. Lost contact with the host.

37 Failed. The host is inbound disabled.

Notes on Using This Function
1. Return code 35 will be returned when the first Read Structured Fields or Write

Structured Fields is requested after an outbound transmission from the host is
canceled. Corrective action is the responsibility of the application.

2. Return code 36 requires that the application disconnect from the emulation
program and then reconnect to reestablish communications with the host.
Corrective action is the responsibility of the application.

3. Return code 37 will be returned if the host is inbound disabled.
4. The EHLLAPI allows for a maximum of 20 asynchronous requests per

application to be outstanding. A return code for unavailable resources (RC=11)
is returned if more than 20 asynchronous requests are attempted.

5. If you are using IBM Global Network connections, the maximum number of
asynchronous requests is 10.

The structured field data format is as follows:

Offset Length Contents

0 1 word X'0000'

2 1 word m (message length: the number of bytes of data in the
message, the number does not include the buffer header
prefix, which contains 8 bytes) This value must be set by the
application.

4 1 word X'0000'

6 1 word X'0000'

8 8 bytes Length of the first (or only) structured field message.

10 1 byte First nonlength byte of the structured field message.

176 Emulator Programming

Offset Length Contents
...

m+7 1 byte Last byte in the structured field message.

Bytes 0 through 7 are the buffer header. These first 8 bytes are used by the
emulation program. The user section of the buffer begins with offset 8. Bytes 8 and
9 contain the number of bytes in the first structured field (a structured field
message can contain multiple structured fields) including 2 bytes for bytes 8 and 9.
Bytes 8 through m+7 are used for the structured field message sent to the host.

Synchronous Requests: When Write Structured Fields is requested
synchronously (the S option in the data string), control is returned to the
application only after the request is satisfied. The application can assume:
v The return code is correct.
v The data in the communications buffer (read buffer) is correct.
v The host is no longer processing the Write Structured Fields request.

Asynchronous Requests: When Write Structured Fields is requested
asynchronously (the A option in the data string), the application cannot assume:
v The return code is correct.
v The data in the communications buffer (write buffer) is correct.
v The host is no longer processing the Write Structured Fields request.

When requested asynchronously, EHLLAPI returns the following values:
v A 16-bit Request ID in positions 13–14 (9–10 for standard interface) of the data

string
v The address of a event object in positions 17–20 of the data string.

These are used to complete the asynchronous Write Structured Fields call.

The following steps must be completed to determine the outcome of an
asynchronous Write Structured Fields function call:
v If the EHLLAPI return code is not zero, the request failed. No asynchronous

request has been made. The application must take appropriate actions before
attempting the call again.

v If the return code is zero, the application should wait until the event object is in
the signaled state by using the Get Request Completion (125) function. The
event object Get Request Completion (125) function) and should not be reused.
The event object is valid only for the duration of the Write Structured Fields
function call through the completion of the Get Request Completion (125)
function call.

v Once the event object is in the signaled state use the returned 16-bit Request ID
as the Request ID parameter in a call to the Get Request Completion (125)
function. The data string returned from the Get Request Completion (125)
function call contains the final return code of the Write Structured Fields
function call.

Asynchronous Requests: When Write Structured Fields is requested
asynchronously (the M option in the data string), the application cannot assume:
v The return code is correct

Chapter 3. EHLLAPI Functions 177

v The data in the communications buffer (write buffer) is correct
v The host is no longer processing the Write Structured Fields request

When requested asynchronously with the M option, EHLLAPI returns the
following values:
v A 16-bit request ID in positions 13–14 (9–10 for standard interface) of the data

string
v Task ID of asynchronous message mode in position 17–18 (11–12 for standard

interface)

These are used to complete the asynchronous Write Structured Fields call.

178 Emulator Programming

Chapter 4. WinHLLAPI Extension Functions

This chapter describes the extension functions provided when using WinHLLAPI
programming support.

Summary of WinHLLAPI Functions
The following WinHLLAPI functions are available for 3270, 5250, and VT:
v “Wait (4)”
v “Start Host Notification (23)” on page 180
v “Start Close Intercept (41)” on page 181
v “Start Keystroke Intercept (50)” on page 182
v “Send File (90)” on page 183
v “Receive File (91)” on page 184

WinHLLAPI Asynchronous Functions
The following sections describe the WinHLLAPI asynchronous functions.

WinHLLAPIAsync
This entry point is used for six WinHLLAPI functions that often take a long time
to complete. With WinHLLAPIAsync, the function will be launched
asynchronously and will not interfere with the continued progression of the calling
application. These functions are: Wait (04), Start Host Notify (23), Start Close
Intercept (41), Start Keystroke Intercept (50), Send File (90), and Receive File (91),
and are described in Chapter 4, “WinHLLAPI Extension Functions.”

HANDLE WinHLLAPIAsync (HWIND hWnd, LPWORD lpnFunction, LPBYTE
lpData, LPWORD lpnLength, LPWORD lpnRetC)*

The parameter list is the same as WinHLLAPI except a window handle is required
before the function number. Since the function operates asynchronously, its
completion is signaled by a registered message. The window handle is required as
the target of the message.

There are two messages that must be registered by the WinHLLAPI application
through calls to RegisterWindowsMessage() with the strings
WinHLLAPIAsync(for all functions except 90 and 91) and
WinHLLAPIAsyncFileTransfer (for functions 90 and 91). The standard format is as
follows:

WPARAM
contains the Task Handle returned by the original function call.

LPARAM
the high word contains the error code and the low word contains the
original function number.

Wait (4)
This function determines whether the Host session is in an inhibited state. If, for
some reason, the session is in an inhibited state, this function will signal your

© Copyright IBM Corp. 1989, 2016 179

application with a message when either the inhibited state expires or your wait
period has expired. The amount of time to wait is set with the Set Session
Parameters (9) function.

Prerequisite Functions: Connect Presentation Space (1)

WinHLLAPIAsync(hWnd, lpwFunction, lpbyString, lpwLength, lpwReturnCode)

Call Parameters:

Parameter Description

Data String NA

Data Length NA

PS Position NA

Return Codes:

Code Description

WHLLOK The PS is uninhibited and ready for input.

WHLLNOTCONNECTED Your WinHLLAPI application is not connected to
a valid host session.

WHLLPSBUSY Function timed out while still inhibited.

WHLLNHIBITED The PS is inhibited.

SHLLSYSERROR The function failed due to a system error.

WHLLCANCEL The asynchronous function was cancelled.

Remarks: Asynchronous Wait is used to notify the calling application when the
inhibited state of the PS is expired. When inhibited state has expired, this version
of Wait will post a WinHLLAPIAsync message to the window specified by the
hWnd. The session options TWAIT, LWAIT, and NWAITaffect the length of time
that this function will wait. See “Set Session Parameters (9)” on page 147 for
details on these session options.

Note: If NWAIT is specified in the session parameters and the application registers
using revision 1.1 of the WinHLLAPI implementation, the
WINHLLAPIAsync call will work the same as the WinHLLAPI call and not
send a message. If revision 1.0 is being used then Wait will return a message
immediately with the inhibited status of the PS.

Start Host Notification (23)
This function enables you to notify your WinHLLAPI application of changes in the
Host Session Presentation Space (PS) or Operation Information Area (OIA).

Prerequisite Functions: There are no prerequisite functions for this function.

WinHLLAPIAsync (hWnd, lpwFunction, lpbyString, lpwLength, lpwReturnCode)

180 Emulator Programming

Call Parameters:

Parameter Description

Data String A 7-byte string in the following format:

Byte 1 Short name session ID of the desired Host
session, or space or null for the current Host
session.

Byte 2 Notification mode. "P" for presentation space
update only, "O" for OIA update only, "B" for
both presentation space and OIA updates.
When calling WinHLLAPIAsync, this
position can be "A".

Byte 3-6
Not used. Provided for compatibility with
older applications.

Byte 7 Reserved or replaced with one of the
following if using WinHLLAPIAsync and A
in byte 2: P for presentation space update
only, O for OIA update only; and B for both
presentation space and OIA updates.

Data Length Length of Host event buffer (256 recommended).

PS Position NA

Return Parameters:

Parameter Description

Data String Same as Data String on the call.

Return Codes:

Code Description

WHLLOK Host notification enabled.

WHLLNOTCONNECTED The specified Host session is invalid.

WHLLPARAMETERERROR One of more parameters are invalid.

WHLLSYSERROR The function failed due to a system error.

WHLLCANCEL The asynchronous function was cancelled.

Remarks: Once enabled, Host notification is enabled until you call Stop Host
Notification (25) or WinHLLAPICancelAsyncRequest(). The function initiates host
notification and immediately returns control to your Windows HLLAPI
application. This frees your application to perform other tasks while waiting for
host updates. When an update occurs, the function will notify the window
specified by hWnd with the registered message WinHLLAPIAsync.

Start Close Intercept (41)
This function intercepts user requests to close Personal Communications.

Prerequisite Functions: There are no prerequisite functions for this function.

WinHLLAPIAsync (hWnd, lpwFunction, lpbyString, lpwLength, lpwReturnCode)

Chapter 4. WinHLLAPI Extension Functions 181

Call Parameters:

Parameter Description

Data String A 5-byte string for returned semaphore address. The
first byte is the session short name of the session to
query, or space or null for the current session.

Data Length Must be specified.

PS Position NA

Return Parameters:

Parameter Description

Data String A 5-byte string with the following format:

Byte 1 Session short name, or space or null for the
current session

Bytes 2-5
Semaphore address.

Return Code:

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified.

WHLLPARAMETERERROR An invalid option was specified.

WHLLSYSERROR The function failed due to a system error.

WHLLCANCEL The asynchronous function was cancelled.

Remarks: Once enabled, Host notification remains enabled until you call Stop
Close Intercept (43) or WinHLLAPICancelAsyncRequest (). Initially, the
semaphore is set. After using this function, close requests from the user are
discarded and the semaphore is cleared.

The function initiates close intercept and immediately returns control to your
Windows HLLAPI application. This frees your application to perform other tasks
while waiting for close requests. When a close request occurs, the function will
notify the window specified by hWnd with the registered message
WinHLLAPIAsync.

Start Keystroke Intercept (50)
This function intercepts keystrokes sent to a session by the user.

Prerequisite Functions: There are no prerequisite functions for this function.

WinHLLAPIAsync (hWnd, lpwFunction, lpbyString, lpwLength, lpwReturnCode)

182 Emulator Programming

Call Parameters:

Parameter Description

Data String A 6-byte string in the following format:

Byte 1 Session short name, or space or null for the
current Host session.

Byte 2 Keystroke intercept code. "D" causes only
AID keystrokes to be intercepted; "L" causes
all keystrokes to be intercepted.

Bytes 3-6
Reserved

Data Length Variable (256 is recommended)

PS Position NA

Return Code:

Code Description

WHLLOK Keystroke intercept has been initiated.

WHLLNOTCONNECTED The Host session presentation space is invalid.

WHLLPARAMETERERROR One or more parameters are invalid.

WHLLPSBUSY Session is busy.

WHLLSYSERROR Function failed due to a system error.

WHLLCANCEL Asynchronous function was cancelled.

Remarks: The function initiates keystroke intercept and immediately returns
control to your Windows HLLAPI application. This frees your application to
perform other tasks while waiting for keystrokes. Once initiated, the function will
post a WinHLLAPIAsync message to the window specified by hWnd whenever the
user sends a key to the PS. After notification, the intercepted keystrokes can be
handled in any way that is allowed by a normal EHLLAPI application. Take note
that the keystroke buffer is of limited size so each keystroke should be handled
and removed from the buffer.

Send File (90)
This function transfers a file from the PC to the Host.

Prerequisite Functions: There are no prerequisite functions for this function.

WinHLLAPIAsync (hWnd, lpwFunction, lpbyString, lpwLength, lpwReturnCode)

Call Parameters:

Parameter Description

Data String SEND command parameters.

Data Length Length of Data String. NA if session option EOT is
specified.

PS Position NA

Chapter 4. WinHLLAPI Extension Functions 183

Return Codes:

Code Description

WHLLOK File transfer started successfully.

WHLLPARAMETERERROR Parameter error or Data Length is zero
or greater than 255.

WHLLFTXCOMPLETE File transfer complete.

WHLLFTXSEGMENTED Transfer is complete with segmented
records.

WHLLSYSERROR The function failed due to a system
error.

WHLLTRANSABORTED File transfer aborted, either due to the
user clicking the cancel button or
because the timeout period has
elapsed.

WHLLFILENOTFOUND PC file not found.

WHLLFTXCOMPLETECICS File transfer was successful (transfer to
CICS).

WHLLACCESSDENIED Access denied to PC file.

WHLLMEMORY Insufficient memory.

WHLLINVALIDENVIRONMENT Invalid environment.

Remarks: Only one file transfer operation is supported per connected Host
session.

The function initiates the file transfer and immediately returns control to your
Windows HLLAPI application. This frees your application to perform other tasks
while the file transfer is occurring. Once initiated the function will regularly post
WinHLLAPIAsyncFileTransfer messages to the window specified by hWnd. These
messages will notify the WinHLLAPI application of the status of the transfer and
send a final message when the transfer is complete.

wParm
Is the status indicator: the high byte contains the Session ID, the low byte
contains the status. If the low byte is zero, the file transfer is still in
progress. If the low byte is one, the file transfer has completed.

lParm If the low byte of wParm is zero (in progress), lParm is the number of bytes
transferred. If the low byte wParm is one (completed), lParm is the
completion code.

Receive File (91)
This function transfers a file from the PC to the Host.

Prerequisite Functions: There are no prerequisite functions for this function.

WinHLLAPIAsync (hWnd, lpwFunction, lpbyString, lpwLength, lpwReturnCode)

Call Parameters:

Parameter Description

Data String RECEIVE command parameters.

184 Emulator Programming

Parameter Description

Data Length Length of Data String. NA if session option EOT is
specified.

PS Position NA

Return Codes:

Code Description

WHLLOK File transfer started successfully.

WHLLPARAMETERERROR Parameter error or Data Length is zero
or greater than 255.

WHLLFTXCOMPLETE File transfer complete.

WHLLFTXSEGMENTED Transfer is complete with segmented
records.

WHLLSYSERROR The function failed due to a system
error.

WHLLTRANSABORTED File transfer aborted, either due to the
user clicking the cancel button or
because the timeout period has
elapsed.

WHLLFILENOTFOUND PC file not found.

WHLLFTXCOMPLETECICS File transfer was successful (transfer to
CICS).

WHLLACCESSDENIED Access denied to PC file.

WHLLMEMORY Insufficient memory.

WHLLINVALIDENVIRONMENT Invalid environment.

Remarks: Only one file transfer operation is supported per connected Host
session.

The function initiates the file transfer and immediately returns control to your
Windows HLLAPI application. This frees your application to perform other tasks
while the file transfer is occurring. Once initiated the function will regularly post
WinHLLAPIAsyncFileTransfer messages to the window specified by hWnd. These
messages will notify the WinHLLAPI application of the status of the transfer and
send a final message when the transfer is complete.

wParm
Is the status indicator: the high byte contains the Session ID, the low byte
contains the status. If the low byte is zero, the file transfer is still in
progress. If the low byte is one, the file transfer has completed.

lParm If the low byte of wParm is zero (in progress), lParm is the number of bytes
transferred. If the low byte wParm is one (completed), lParm is the
completion code.

WinHLLAPICancelAsyncRequest
This function cancels an outstanding asynchronous function launched by a call to
WinHLLAPIAsync().

Chapter 4. WinHLLAPI Extension Functions 185

Syntax
int WinHLLAPICancelAsyncRequest (HANDLE hAsyncTask, WORD wFunction)

Parameters
hAsyncTask

The handle returned by WinHLLAPIAsync() when the function was
initiated.

wFunction
The function number of the asynchronous task to cancel. Because this
parameter is required for revision 1.1 but not in 1.0, it is optional.

With this function, any asynchronous task previously initiated by a call to
WinHLLAPIAsync() may be canceled while still outstanding.

Returns
The return value indicates if the specified function was, in fact, canceled. If the
function was canceled then the return value is WHLLOK (0). If the outstanding
asynchronous function was not cancelled, one of the following codes will be
returned.

WHLLINVALID
hAsyncTask is not a valid task handle.

WHLLALREADY
The asynchronous task specified by hAsyncTask has already completed.

Initialization and Termination Functions
The following section describes the initialization and termination functions of
WinHLLAPI programming support.

WinHLLAPI Startup
This function is used to register the application with the WinHLLAPI
implementation and should be called before any other call to the WinHLLAPI
implementation. This implementation supports Versions 1.0 and 1.1 of the
WinHLLAPI specification. The WinHLLAPI application should negotiate version
compatibility with this function.

Syntax
int WinHLLAPIStartup(WORD wVersionRequired, LPWHLLAPIDATA lpData)

Parameters
wVersionRequired

This is the version required by the WinHLLAPI application. The low byte
contains the major version number and the high byte contains the minor
version (or revision) number.

lpData
This is a pointer to a WHLLAPIDATA structure which will receive the
implementations version number and a string describing the WinHLLAPI
implementation provider. The WHLLAPIDATA structure is defined as:
#define WHLLDESCRIPTION_LEN 127
typedef struct tagWHLLAPIDATA
{

WORD wVersion;
Char szDescription[WHLLDESCRIPTION_LEN + 1];

}WHLLAPIDATA, * PWHLLAPIDATA, FAR *LPWHLLAPIDATA;

186 Emulator Programming

Returns
The return value indicates success or failure of registering the WinHLLAPI
application with the implementation. If registration was successful, the return
value is WHLLOK (zero). Otherwise, it is one of the following:

WHLLSYSNOTREADY
Indicates that the underlying network subsystem is unavailable.

WHLLVERNOTSUPPORTED
Indicates that the version requested is not provided by this
implementation. This implementation supports Versions 1.0 and 1.1 only.

WinHLLAPI Cleanup
The WinHLLAPI specification recommends that this function be used by the
WinHLLAPI application to de-register from the WinHLLAPI implementation.

Syntax
BOOL WinHLLAPICleanup()

Returns
Returns TRUE if the unregistration was successful. Otherwise, it returns FALSE.

Blocking Routines
The following sections describe the blocking routines supported by WinHLLAPI
programming.

Note: Although blocking routines are supported for WinHLLAPI compliance, use
of them is not recommended. Use of the WinHLLAPIAsync functions are the
recommended method for asynchronous processing.

WinHLLAPIIsBlocking
This function tells the calling WinHLLAPI application thread whether it is in the
process of executing a blocking call. A blocking call is any synchronous function
that takes a long time to execute and does not return until complete. There are five
blocking calls in this implementation of WinHLLAPI. The blocking calls are: Get
Key (51), Wait (4), Pause (18), Send File (90), and Receive File (91).

Syntax
BOOL WinHLLAPIIsBlocking()

Returns
If the WinHLLAPI application thread is in the middle of a blocking call, the
function returns TRUE, otherwise, it returns FALSE.

Remarks
Because the default blocking-hook allows messages to be processed during
blocking calls, it is possible to call the blocking call again.

WinHLLAPISetBlockingHook
This function sets an application-defined procedure to be executed while waiting
for the completion of a blocking call. A blocking call is any synchronous function
that takes a long time to execute and does not return until complete. There are five
blocking calls in this implementation of WinHLLAPI. The blocking calls are: Get
Key (51), Wait (4), Pause (18), Send File (90), and Receive File (91).

Chapter 4. WinHLLAPI Extension Functions 187

Syntax
FARPROC WinHLLAPISetBlockingHook(FARPROC lpfnBlockingHook)

Parameters
lpfnBlockingHook

This is a pointer to the new blocking procedure.

Description
The WinHLLAPI implementation has a default blocking procedure that consists of
nothing more than a message handler. This default mechanism is shown in the
following example:
BOOL DefaultBlockingHook
{

MSG msg;

if (PeekMessage (&msg, NULL, 0, 0, xfPM_NOREMOVE))
{

if(msg.message = = WM_QUIT)
{

return FALSE;
}
PeekMessage (&msg, NULL, 0, 0, PM_REMOVE);
TranslateMessage (&msg);
DispatchMessage (&msg);

}
return TRUE;
}

The blocking hook is implemented on a per-thread basis. A blocking hook set by
this function will stay in effect for the thread until it is replaced by another call to
WinHLLAPISetBlockingHook() or until the default is restored by a call to
WinHLLAPIUnhookBlockingHook().

The Blocking function must return FALSE if it receives a WM_QUIT message so
WinHLLAPI can return control to the application to process the message and
terminate gracefully. Otherwise, the function should return TRUE.

Returns
This function returns a pointer to the blocking function being replaced.

WinHLLAPIUnhookBlockingHook
This function restores the default blocking-hook for the calling thread.

Syntax
BOOL WinHLLAPIUnhookBlockingHook()

Returns
This function returns TRUE if the default blocking mechanism was successfully
restored, otherwise it returns FALSE.

WinHLLAPICancelBlockingCall
This function cancels an executing blocking call in the current thread. A blocking
call is any synchronous function that takes a long time to execute and does not
return until complete. There are five blocking calls in this implementation of
WinHLLAPI. The blocking calls are Get Key (51), Wait (4), Pause (18), Send File
(90), and Receive File (91). If one of these is blocking calls are cancelled, the
cancelled function will return WHLLCANCEL.

188 Emulator Programming

Syntax
int WinHLLAPICancelBlockingCall()

Returns
The return value indicates if the specified function was, in fact, canceled. If the
function was canceled, then the return value is WHLLOK (0). If there are no
outstanding blocking functions, then the following return code will be returned:

WHLLINVALID
Indicates that there is no blocking call currently executing.

Chapter 4. WinHLLAPI Extension Functions 189

190 Emulator Programming

Chapter 5. PCSAPI Functions

Personal Communications provides an API set, which is defined here and called
PCSAPI. Whereas EHLLAPI is used to manage the interaction between a
workstation application program and host systems after the session is established,
the PCSAPI can be used to control the Personal Communications session itself.

How to Use PCSAPI
You can write application programs using the PCSAPI in C or C++. To develop a
PCSAPI application, do the following:
1. Prepare source code and add the appropriate PCSAPI calls.
2. Include the header file PCSAPI.H in the application program.
3. Compile the source code.
4. Link the resultant .OBJ files with the appropriate object file or libraries.

You must also link it with the PCSAPI import library, PCSCALLS.LIB for 16-bit
and PCSCAL32.LIB for 32-bit.

Page Layout Conventions
All PCSAPI function calls are presented in the same format so that you can quickly
retrieve the information you need. The format is:

Function Name
Function Type
Parameter Type and Description
Return Code

Function Type
“Function Type” shows the type of the function in the following format:

TYPE FunctionName(TYPE Parameter1, ...)

Parameter Type and Description
“Parameter Type and Description” lists the type and describes each of the
parameters to be specified in the PCSAPI function call.

Return Code
“Return Code” lists the codes that must be received by your program after a call to
the PCSAPI function.

pcsConnectSession

3270 5250 VT

Yes Yes Yes

© Copyright IBM Corp. 1989, 2016 191

The pcsConnectSession function starts the communications with a host session
specified by the short session ID. The session must already be started. This call is
equivalent to the Communications → Connect menu item on the emulator session
panel.

Function Type
BOOL WINAPI pcsConnectSession(char cShortSessionID)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

Return Code

Return Code Meaning

TRUE Function ended successfully.

FALSE It means one of the following things:

v The session has not started.

v An incorrect session ID was specified.

v Call failed.

pcsDisconnectSession

3270 5250 VT

Yes Yes Yes

The pcsDisconnectSession function stops the communications link with a host
session specified by the short session ID. This only disconnects the link; it does not
stop the session. This call is equivalent to the Communications → Disconnect menu
item on the emulator session panel.

Function Type
BOOL WINAPI pcsDisconnectSession(char cShortSessionID)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

Return Code

Return Code Meaning

TRUE Function ended successfully.

FALSE It means one of the following things:

v The session has not started.

v An incorrect session ID was specified.

v Call failed.

192 Emulator Programming

pcsQueryConnectionInfo

3270 5250 VT

Yes No No

The pcsQueryConnectionInfo function returns information about the Telnet
connection of the specified host session. The resulting information is returned into
the buffer supplied by the application.

Function Type
BOOL WINAPI pcsQueryConnectionInfo(char cShortSessionID,
CONNECTIONINFO *ConnectionInfo)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

CONNECTIONINFO *ConnectionInfo
Pointer to a CONNECTIONINFO structure where the connection info data
will be returned.

Return Code

Return Code Meaning

TRUE Function ended successfully.

FALSE It means one of the following things:

v The session has not started.

v An incorrect session ID was specified.

v The session specified was not a supported connection
type for this API (not Telnet).

ConnectionInfo
The CONNECTIONINFO structure will be filled with the information about the
host connection, consisting of the following information:

Structure Information

Host name States the name of the currently connected Telnet host.

LU name States the LU name currently assigned.

Port number States the host port number being used for the connection.

SSL indicator Indicates a Secure Connection (1 = secure; 0 = not secure).

Note: This API is valid only with the 32-bit version of PCSAPI, and only works for
Telnet connections.

Example
typedef struct_CONNECTIONINFO
{ //Description of a connection @WD06A

char hostName[63]; //telnet host name @WD06A
char reserved[1]; //reserved @wD06A

Chapter 5. PCSAPI Functions 193

int portNumber; //host port number @WD06A
char luName[17]; //LU name @WD06A
char reserved2[3]; //reserved @WD06A
BOOL sslIndicator; //Secure Connection @WD06A

indicator
char reserved3[256]; //reserved @WD06A

}CONNECTIONINFO;

pcsQueryEmulatorStatus

3270 5250 VT

Yes Yes Yes

The pcsQueryEmulatorStatus function returns the status of the host session
specified by the short session ID.

Function Type
ULONG WINAPI pcsQueryEmulatorStatus(char cShortSessionID)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

Return Code
The return code value should be processed bit-significantly, that is, by either one of
the following values or an ORed value out of the following values:

Return Code Value Meaning

PCS_SESSION_STARTED 0x00000001 Specified session has
started. When this bit
is off, the specified
session has not started
or an incorrect session
ID was specified.

PCS_SESSION_ONLINE 0x00000002 Specified session is
online (connected).
When this bit is off,
the specified session is
offline (disconnected).

PCS_SESSION_API_ENABLED 0x00000004 API (EHLLAPI, DDE)
is enabled on the
specified session. If
this bit is off, API is
disabled on this
session.

pcsQuerySessionList

3270 5250 VT

Yes Yes Yes

194 Emulator Programming

The pcsQuerySessionList function returns a list of all the current host sessions.
The application must supply an array of SESSINFO structures as defined in the
PCSAPI.H file, and a count of the number of elements in the array. This function
fills in the structures with information about each session and returns the number
of sessions found.

If the array has fewer elements than there are host sessions, then only the supplied
elements of the array are filled in. The function always returns the actual number
of sessions, even if the array is too small.

An application can call this function with zero array elements to determine how
many sessions exist. A second call can then be made to obtain the session
information.

Function Type
ULONG WINAPI pcsQuerySessionList(ULONG Count, SESSINFO *SessionList)

Parameter Type and Description
ULONG Count

Number of elements in the SessionList array.

SESSINFO *SessionList
Pointer to an array of SESSINFO structures as defined in PCSAPI.H.

Return Parameters
Return Code

Total number of Personal Communications sessions. This may be greater
than or less than the Count parameter.

SessionList
The array of SESSINFO structures is filled with information about the host
sessions. Sessions may be placed in the list in any order. Each SESSINFO
structure contains the following fields (defined in PCSAPI32.H)

Name A union of char and ULONG which contains the session ID (A–Z).
In the current implementation of Personal Communications, only
the lower byte (char) is used, the other bytes are returned as zero.

Status A combination of bit flags which indicate the current status of the
session. The flags (PCS_SESSION_*) are defined in the following
table.

The status value should be processed bit-significantly, that is, by either one of the
following values or an ORed value out of the following values:

Return Code Meaning

PCS_SESSION_STARTED The session is running. If this flag is not set,
all others are undefined.

PCS_SESSION_ONLINE The session has established a
communications link to the host (this is, the
session is connected).

PCS_SESSION_API_ENABLED The session is enabled for programming
APIs. If this flag is not set, the EHLLAPI
and Host Access Class Library APIs cannot
be used on this session.

Chapter 5. PCSAPI Functions 195

Example
ULONG NumSessions, i; // Session counters
SESSINFO *SessList; // Array of session information structures
// Find out number of sessions that exist
NumSessions = pcsQuerySessionList (0,NULL);
if (NumSessions == 0) {

printf("There are no sessions.");
exit;

}

// Allocate array large enough for all sessions
SessList = (SESSINFO *)malloc(NumSessions * sizeof(SESSINFO));
memset(SessList, 0x00, NumSessions * sizeof(SESSINFO));

// Now read actual session info
pcsQuerySessionList(NumSessions, SessList);

for (i=0; i<NumSessions; i++) {
if ((SessList[i].Status & PCS_SESSION_STARTED) &&

(SessList[i].Status & PCS_SESSION_ONLINE)) {

printf("Session %c is started and connected.",
SessList[i].Name.ShortName);

}
}

exit;

pcsQueryWorkstationProfile

3270 5250 VT

Yes Yes Yes

The pcsQueryWorkstationProfile function returns the workstation profile name
that has been used to invoke the host session. To specify the host session, the short
session ID must be used. The workstation profile name is copied to the work
buffer supplied by the application.

Function Type
BOOL WINAPI pcsQueryWorkstationProfile(char cShortSessionID, PSZ lpBuffer)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

PSZ lpBuffer
Work buffer to copy a null-terminated workstation profile name. The buffer
must be large enough to contain a fully qualified file name.

Return Code

Return Code Meaning

TRUE Function ended successfully.

FALSE It means one of the following things:

v The session has not started.

v An incorrect session ID was specified.

196 Emulator Programming

pcsSetLinkTimeout

3270 5250 VT

Yes Yes Yes

The pcsSetLinkTimeout function sets the idle timeout of a Telnet link which is
SSCP owned. This function has no effect on non-TN connections or connections
which are not in SSCP owned state. If the timeout value is set to zero the link will
not time out. Otherwise the link will time out (disconnect) after being idle in
SSCP-owned state for the number of minutes specified.

Function Prototype
ULONG WINAPI pcsSetLinkTimeout(char cShortSessionID, USHORT Timeout)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

USHORT Timeout
Timeout value in minutes. A value of zero disables timeout.

Return Code

Return Code Meaning

PCS_SUCCESSFUL The function ended successfully.

PCS_SYSTEM_ERROR A system error occurred.

pcsStartSession

3270 5250 VT

Yes Yes Yes

The pcsStartSession function starts a host session by using a specified workstation
profile. A short session ID can also be specified.

Function Type
ULONG WINAPI pcsStartSession(PSZ lpProfile, char cShortSessionID, USHORT
fuCmdShow)

Parameter Type and Description
PSZ lpProfile

Path and complete filename of the profile to load. Path is optional but
complete filename must be specified (.ws extension is not assumed).

char cShortSessionID
Presentation space short session ID. Space or NULL indicates the next
available session ID.

Chapter 5. PCSAPI Functions 197

USHORT fuCmdShow
Specifies how the window is to be displayed. One of the following values
from PCSAPI.H:
v PCS_HIDE
v PCS_SHOW
v PCS_MINIMIZE
v PCS_MAXIMIZE

Return Code

Return Code Value Meaning

PCS_SUCCESSFUL 0 The function ended successfully.

PCS_INVALID_ID 1 An incorrect session ID was specified.

PCS_USED_ID 2 The specified short session ID is already used.

PCS_INVALID_PROFILE 3 An error was made in specifying the workstation
profile, or the window parameter was not valid.

PCS_SYSTEM_ERROR 9 A system error occurred.

pcsStopSession

3270 5250 VT

Yes Yes Yes

The pcsStopSession function stops a host session specified by the short session ID.

Function Type
BOOL WINAPI pcsStopSession(char cShortSessionID, USHORT fuSaveProfile)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

USHORT fuSaveProfile
This parameter can be one of the following values:

fuSaveProfile Value Meaning

PCS_SAVE_AS_PROFILE 0 Save the profile as specified in the current
profile.

PCS_SAVE_ON_EXIT 1 Save the profile on exit.

PCS_NOSAVE_ON_EXIT 2 Do not save the profile on exit.

Return Code

Return Code Meaning

TRUE The function ended successfully.

198 Emulator Programming

Return Code Meaning

FALSE It means one of the following things:

v The session has not started.

v An incorrect session ID was specified.

Page Setup Functions
The PCSAPI functions listed in this section enable you to control and retrieve the
Personal Communications emulator session Page Setup settings.

Restrictions
If the following restrictions are not satisfied, the API will fail. The return code
indicates the reason for the failure.
v The host session specified in the argument cShortSessionID should not be in

PDT mode.
v The host session should not be printing when the API is invoked.
v The File → Page Setup dialog should not be in use.

Some members in the PAGEINFO structure might be valid or supported only for
specific session types. If a restriction is not specified, then that member is valid or
supported for the following session types:
v 3270 display
v 3270 printer
v 5250 display
v ASCII VT

5250 printer sessions are not supported.

Note: These functions are not currently supported for DBCS and bidirectional
sessions.

pcsGetPageSettings

3270 5250 VT

Yes Yes Yes

The pcsGetPageSettings function retrieves the host session page settings values
(similar to the File → Page Setup dialog settings). Only the settings in the Text tab
of the dialog are supported.

Function Type
ULONG WINAPI pcsGetPageSettings(char cShortSessionID, PAGEINFO * const
pPageInfo, ULONG * const pErrorInfo)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

PAGEINFO * const pPageInfo
Pointer to PAGEINFO structure, where the page settings are returned.

nFlags Combination of bit flags that indicates which members in the

Chapter 5. PCSAPI Functions 199

structure are valid. These flags can be used independently or by
ORing them together to restore the property page (defined in
PCSAPI32.H). The flags, along with the corresponding valid
members in the structure, are as follows:

Flag Valid members in the structure

PCS_PAGE_CPI nCPI

PCS_PAGE_LPI nLPI

PCS_PAGE_FACE_NAME szFaceName

PCS_PAGE_MPL nMPL

PCS_PAGE_MPP nMPP

nCPI The number of characters printed per inch.

LOWORD is the actual CPI value.

If Font CPI is configured in the session, HIWORD is 1. If Font CPI
is not configured, HIWORD is 0.

nLPI The number of lines printed per inch.

LOWORD is the actual LPI value.

If Font LPI is configured in the session, HIWORD is 1. If Font LPI
is not configured, HIWORD is 0.

szFaceName
Face name of the printer font. This must be a null-terminated
string.

nFontSize
Size of the printer font.

Note: This is supported only for DBCS host sessions. This is
ignored for SBCS host sessions.

nMPL Maximum number of lines that can be printed per page.

This is also called MPL (Maximum Print Lines). Supported range is
1 to 255.

nMPP Maximum number of characters that can be printed per line.

This is also called MPP (Maximum Print Position). Supported
range is 1 to 255.

ULONG * const pErrorInfo
Not used. This must be set to NULL by the caller.

Return Code

Return Code Value Meaning

PCS_SUCCESSFUL 0 Function ended successfully.

PCS_INVALID_ID 1 Incorrect session ID was specified.

PCS_INVALID_SESS_TYPE 2 Not supported for the host session type.

PCS_DIALOG_IN_USE 3 Failed because the host session Page Setup or
Printer Setup dialog was in use.

PCS_PRINTING 4 Page settings cannot be obtained because host
session was printing.

200 Emulator Programming

Return Code Value Meaning

PCS_PDT_MODE 5 Page settings cannot be obtained because host
session is in PDT mode.

PCS_SYSTEM_ERROR 9 A system error occurred.

Example
{

ULONG Rc = 0;
PAGEINFO *PageInfo;

PageInfo = (PAGEINFO *) malloc(sizeof(PAGEINFO));
memset(PageInfo, 0, sizeof(PAGEINFO));

PageInfo->nFlags = PCS_PAGE_CPI | PCS_PAGE_LPI | PCS_PAGE_FACE_NAME|
PCS_PAGE_MPL | PCS_PAGE_MPP;

Rc = pcsGetPageSettings(’A’, PageInfo, NULL);

if (Rc == PCS_SUCCESSFUL) {
printf("CPI = %d,

LPI = %d,
FaceName = %s,
MPL = %d,
MPP = %d\n",
LOWORD(PageInfo->nCPI),
LOWORD(PageInfo->nLPI),
PageInfo->szFaceName,
PageInfo->nMPL,
PageInfo->nMPP);

if (HIWORD(PageInfo->nCPI))
printf("FontCPI\n");

else
printf("No FontCPI\n");

if (HIWORD(PageInfo->nLPI))
printf("FontLPI\n");

else
printf("No FontLPI\n");

} else
printf("Failure. Return code = %d\n", Rc);

free(PageInfo);
}

pcsRestorePageDefaults

3270 5250 VT

Yes Yes Yes

The pcsRestorePageDefaults function restores the system default values of the
Page Setup property pages defined in the nFlags field. This is equivalent to
clicking Default in the property pages of the File → Page Setup dialog. Only the
settings in the Text tab are supported.

Function Type
ULONG WINAPI pcsRestorePageDefaults(char cShortSessionID, ULONG nFlags)

Chapter 5. PCSAPI Functions 201

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

ULONG nFlags
The following flag describes the name of the specified Page Setup dialog
property page. This flag can be bitwise ORed to restore the property page
(defined in PCSAPI32.H).

PCS_PAGE_TEXT
This flag describes the Text property page. This is the only
property page currently supported.

Return Code

Return Code Value Meaning

PCS_SUCCESSFUL 0 Function ended successfully.

PCS_INVALID_ID 1 Incorrect session ID was specified.

PCS_INVALID_SESS_TYPE 2 The nFlags parameter has one or more options
that are not valid for the host session type. No
settings were restored.

PCS_DIALOG_IN_USE 3 Failed because the host session Page Setup or
Printer Setup dialog was in use.

PCS_PRINTING 4 Page settings cannot be changed because host
session was printing.

PCS_PDT_MODE 5 Page settings cannot be changed because host
session is in PDT mode.

PCS_SYSTEM_ERROR 9 A system error occurred.

Example
{

ULONG Rc = 0;

Rc = pcsRestorePageDefaults(’A’, PCS_PAGE_TEXT);

if (Rc != PCS_SUCCESSFUL)
printf("Failure. Return code = %d\n", Rc);

}

pcsSetPageSettings

3270 5250 VT

Yes Yes Yes

The pcsSetPageSettings function sets the host session page settings. This is similar
to configuring the File → Page Setup dialog settings. Only the settings in the Text
tab are supported.

Notes:

1. CPI, LPI, and FontSize are dependent on the FaceName configured in the host
session. If this API is used to set CPI, LPI, FontSize, and FaceName together,
FaceName is set first, then the dependent properties.

202 Emulator Programming

2. If this API is used to set FaceName and the dependent properties in separate
invocations, set FaceName first, then set CPI, LPI and FontSize. Otherwise, each
time FaceName is set, query CPI, LPI and FontSize and ensure that they have
the desired values.

3. If CPI, LPI, or FontSize are set before FaceName, then different values for CPI,
LPI, or FontSize might be configured in the host session. This might occur if
the current CPI, LPI, or FontSize values are not valid for the new FaceName
set.

Function Type
ULONG WINAPI pcsSetPageSettings(char cShortSessionID, const PAGEINFO * const
pPageInfo, ULONG * const pErrorInfo)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

const PAGEINFO * const pPageInfo
Pointer to PAGEINFO structure, where the page settings are mentioned.

nFlags Combination of bit flags that indicates which members in the
structure are valid. These flags can be used independently or by
ORing them together to restore the property page (defined in
PCSAPI32.H). The flags, along with the corresponding valid
members in the structure, are as follows:

Flag Valid members in the structure

PCS_PAGE_CPI nCPI

PCS_PAGE_LPI nLPI

PCS_PAGE_FACE_NAME szFaceName

PCS_PAGE_MPL nMPL

PCS_PAGE_MPP nMPP

nCPI The number of characters printed per inch.

To select Font CPI, set the HIWORD of nCPI to 1. LOWORD of
nCPI will be ignored.

To select a particular CPI value, do the following:
1. Set the HIWORD of nCPI to 0.
2. Set the LOWORD of nCPI to the actual CPI value.

nLPI The number of lines printed per inch.

To select Font LPI, set the HIWORD of nLPI to 1. LOWORD of
nLPI will be ignored

To select a particular LPI value, do the following:
1. Set the HIWORD of nLPI to 0.
2. Set the LOWORD of nLPI to the actual LPI value.

szFaceName
Face name of the printer font. This must be a null-terminated
string.

nFontSize
Size of the printer font.

Chapter 5. PCSAPI Functions 203

Note: This is supported only for DBCS host sessions. This is
ignored for SBCS host sessions.

nMPL Maximum number of lines that can be printed per page.

This is also called MPL (Maximum Print Lines). Supported range is
1 to 255.

nMPP Maximum number of characters that can be printed per line.

This is also called MPP (Maximum Print Position). Supported
range is 1 to 255.

ULONG * const pErrorInfo
Contains the extended error info when the API fails with the return code
of PCS_FAILURE. If the detailed error information is not needed, this flag
must be set to NULL by the caller.

This is a combination of bit flags that describe which members of the
PAGEINFO structure could not be set successfully. The flags that are
defined in PCSAPI32.H are as follows:

Flag Valid members in the structure

PCS_PAGE_CPI Only nCPI is not valid.

PCS_PAGE_LPI Only nLPI is not valid.

PCS_PAGE_FACE_NAME Only szFaceName is not valid.

PCS_PAGE_MPL Only nMPL is not valid.

PCS_PAGE_MPP Only nMPP is not valid.

Return Code

Return Code Value Meaning

PCS_SUCCESSFUL 0 Function ended successfully.

PCS_INVALID_ID 1 Incorrect session ID was specified.

PCS_INVALID_SESS_TYPE 2 Not supported for the host session type.

PCS_DIALOG_IN_USE 3 Failed because the host session Page Setup or
Printer Setup dialog was in use.

PCS_PRINTING 4 Page settings cannot be changed because host
session was printing.

PCS_PDT_MODE 5 Page settings cannot be changed because host
session is in PDT mode.

PCS_FAILURE 6 Host session page settings are not fully
applied. This could be because invalid data
was given for some or all fields in the
PAGEINFO structure.

Examine pErrorInfo for details about settings
that are not applied.

PCS_SYSTEM_ERROR 9 A system error occurred.

Example
{

ULONG Rc = 0, Error = 0;
PAGEINFO *PageInfo;

PageInfo = (PAGEINFO *) malloc(sizeof(PAGEINFO));

204 Emulator Programming

memset(PageInfo, 0, sizeof(PAGEINFO));

PageInfo->nFlags = PCS_PAGE_CPI | PCS_PAGE_LPI |
PCS_PAGE_FACE_NAME| PCS_PAGE_MPL |
PCS_PAGE_MPP;

PageInfo->nCPI = MAKELONG(10, 0);
PageInfo->nLPI = MAKELONG(8, 0);
PageInfo->nMPL = 40;
PageInfo->nMPP = 60;
strcpy(PageInfo->szFaceName, "CourierPS");

Rc = pcsSetPageSettings(’A’, PageInfo, &Error);

if (Rc != PCS_SUCCESSFUL) {
printf("Failure. Return code = %d\n", Rc);
printf("Following members could not be set : ");

if (Rc == PCS_FAILURE) {
if (Error & PCS_PAGE_CPI) printf(" nCPI");
if (Error & PCS_PAGE_LPI) printf(" nLPI");
if (Error & PCS_PAGE_FACE_NAME) printf(" szFaceName");
if (Error & PCS_PAGE_MPL) printf(" nMPL");
if (Error & PCS_PAGE_MPP) printf(" nMPP");
printf("\n");

}
}
free(PageInfo);

}

Printer Setup Functions
The PCSAPI functions listed in this section enable you to control and retrieve the
Personal Communications emulator session Printer Setup settings.

Restrictions
If the following restrictions are not met, the API will fail. The return code indicates
the reason for the failure.
v The host session should not be printing when the API is invoked.
v The File → Printer Setup dialog should not be in use.

Note: These functions are not currently supported for DBCS and bidirectional
sessions.

pcsGetPrinterSettings

3270 5250 VT

Yes Yes Yes

The pcsGetPrinterSettings function retrieves the host session printer settings
(similar to the File → Printer Setup dialog settings).

Function Type
ULONG WINAPI pcsGetPrinterSettings(char cShortSessionID, PRINTINFO * const
pPrintInfo, ULONG * const pErrorInfo)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

Chapter 5. PCSAPI Functions 205

PRINTINFO * const pPrintInfo
Pointer to PRINTINFO structure, where the printer settings are specified.

nFlags Must be set to 0. This is ignored.

nBufSize
Size of the buffer allocated for the following fields:
v lpPDTFile
v lpPrtToDskAppFile
v lpPrtToDskSepFile
v lpPrinterName

If more than one of these members is retrieved in a single API call,
then the caller must allocate the same size for all the buffers and
pass that size in this member.

If this member is set to 0, the fields are ignored. The maximum
size required for the buffers of the fields is returned in
nSizeNeeded.

nSizeNeeded
The value of this member is determined by conditions related to
the following fields:
v lpPDTFile
v lpPrtToDskAppFile
v lpPrtToDskSepFile
v lpPrinterName

The conditions are as follows:
v The value is the number of bytes needed, if the size of the buffer

allocated by the caller is not big enough to return the fields
listed above.

v The value is the maximum size of the required buffer, if more
than one of the fields listed above are obtained by the caller.

v If nBufSize is set to 0 by the caller, this member contains the
maximum size required for the buffers of the fields listed above.

bPromptDialog
Possible values are as follows:
v If TRUE, the Printer Setup dialog is shown before printing.
v If FALSE, the Printer Setup dialog is not shown before printing.

bPDTMode
Possible values are as follows:
v If TRUE, the host session is in PDT mode.
v If FALSE, the host session is in non-PDT mode (GDI mode).

lpPDTFile
Must be set to NULL if the caller is not interested in getting this
member. The PDT file is returned if this is not a null pointer. This
must point to the buffer of size nBufSize allocated by the caller.

When the API returns, this member contains one of the following:
v The fully qualified path name of the session PDT file.
v An empty string ("") if no PDT file is configured in the session.

206 Emulator Programming

v A truncated file name if the buffer size is not sufficient. The
member nSizeNeeded contains the size of the buffer needed.

nPrtMode
This is an enumerated value that indicates the PrintMode of the
connection. The enum data type PRINTMODE is defined in
PCSAPI32.H. The nPrtMode setting must be one of the following:
v PrtToDskAppend (Print to Disk-Append mode)

This is equivalent to selecting the Append option in the host
session Printer Setup → Printer → Print to Disk dialog.

v PrtToDskSeparate (Print to Disk-Separate mode)
This is equivalent to selecting the Separate option in the host
session Printer Setup → Printer → Print to Disk dialog.

v WinDefaultPrinter (Windows Default Printer mode)
This is equivalent to selecting the Use Windows Default Printer
option in the host session Printer Setup dialog.

v SpecificPrinter (Specific Printer mode)
This is equivalent to selecting a printer in the host session
Printer Setup dialog, while leaving Use Windows Default
Printer unchecked.

lpPrtToDskAppFile
Must be set to NULL if the caller is not interested in getting this
member. The Print to Disk-Append file is returned if this is not a
null pointer. This must point to the buffer of size nBufSize
allocated by the caller.

When the API returns, this member contains one of the following:
v The fully qualified path name of the session Print to

Disk-Append file.
v An empty string ("") if no Print to Disk-Append file is

configured for the session.
v A truncated file name if the buffer size is not sufficient. The

nSizeNeeded member contains the size of the buffer needed.

lpPrtToDskSepFile
Must be set to NULL if the caller is not interested in getting this
member. The Print to Disk-Separate file is returned if this is not a
null pointer. This must point to the buffer of size nBufSize
allocated by the caller.

When the API returns, this member contains one of the following:
v The fully qualified path name of the session Print to

Disk-Separate file.
v An empty string ("") if no Print to Disk-Separate file is

configured for the session.
v A truncated file name if the buffer size is not sufficient. The

nSizeNeeded member contains the size of the buffer needed.

lpPrinterName
Must be set to NULL if the caller is not interested in getting this
member. The name of the printer is returned if this is not a null
pointer. This must point to the buffer of size nBufSize allocated by
the caller.

When the API returns, this member has one of the following:

Chapter 5. PCSAPI Functions 207

v The name of the specific printer configured in the session, if the
host session nPrtMode is SpecificPrinter.

v The name of the Windows default printer configured in the
session, if the host session nPrtMode is WinDefaultPrinter.

v An empty string (""), if the host session nPrtMode is
PrtToDskAppend or PrtToDskSeparate.

v A truncated printer name, if the buffer size is not sufficient.
nSizeNeeded has the size of the buffer needed.

PrinterName must have the following format:
<Printer name> on <Port Name>

For example:
v IBM InfoPrint 40 PS on Network Port

v HP LaserJet 4050 Series PCL 6 on LPT1

ULONG * const pErrorInfo
This is filled with the extended error info when the API fails with the
return code of PCS_FAILURE. pErrorInfo must be set to NULL by the
caller, if the details of errors are not needed.

The following section describes the flags that are defined in PCSAPI32.H.

Flags for the pErrorInfo member of the PRINTINFO structure
PCS_PRINT_PRINTMODE_ERROR

PrintMode is not configured in the host session.

PCS_PRINT_PDTFILE_SIZEERR
The buffer size is not sufficient for lpPDTFile, so the file name is truncated.
The nSizeNeeded member contains the actual size of the buffer required to
return the PDT file.

PCS_PRINT_DSKAPPFILE_SIZEERR
The buffer size is not sufficient for lpPrtToDskAppFile, so the file name is
truncated. The nSizeNeeded member contains the actual size of the buffer
required to return the Print to Disk-Append file.

PCS_PRINT_DSKSEPFILE_SIZEERR
The buffer size is not sufficient for lpPrtToDskSepFile, so the file name is
truncated. The nSizeNeeded member contains the actual size of the buffer
required to return the Print to Disk-Separate file.

PCS_PRINT_PRINTERNAME_SIZEERR
The buffer size is not sufficient for lpPrinterName, so the printer name is
truncated. The nSizeNeeded member contains the actual size of the buffer
required to return the printer name.

Return Code

Return Code Value Meaning

PCS_SUCCESSFUL 0 The function ended successfully.

PCS_INVALID_ID 1 An incorrect session ID was specified.

PCS_DIALOG_IN_USE
3

Failed because the host session Page Setup or
Printer Setup dialog was in use.

PCS_PRINTING
4

The printer settings could not be changed
because the host session was printing. The
application must retry later

208 Emulator Programming

Return Code Value Meaning

PCS_FAILURE

6

Some printer settings could not be retrieved
successfully. pErrorInfo contains detailed error
information on which settings could not be
retrieved.

PCS_SYSTEM_ERROR 9 A system error occurred.

Example
{

ULONG Rc = 0, Error=0, Size;
PRINTINFO *PrintInfo;

PrintInfo = (PRINTINFO *) malloc(sizeof(PRINTINFO));
memset(PrintInfo, 0, sizeof(PRINTINFO));

PrintInfo->nBufSize = 0;

Rc = pcsGetPrinterSettings(’A’, PrintInfo, &Error);
if (Rc != PCS_SUCCESSFUL)

printf("Failure. Return code = %d\n", Rc);
else {

Size = PrintInfo->nSizeNeeded;
PrintInfo->nBufSize = Size;
PrintInfo->lpPDTFile = (char *)malloc(sizeof(char) * Size);
PrintInfo->lpPrtToDskAppFile = (char *)malloc(sizeof(char) * Size);
PrintInfo->lpPrtToDskSepFile = (char *)malloc(sizeof(char) * Size);
PrintInfo->lpPrinterName = (char *)malloc(sizeof(char) * Size);
Rc = pcsGetPrinterSettings(’A’, PrintInfo, &Error);

if (Rc != PCS_SUCCESSFUL)
printf("Failure. Return code = %d, Extended Error = 0x%08x\n", Rc, Error);

else {
if (PrintInfo->bPromptDialog)

printf("PromptDialog\n");
else

printf("No PromptDialog\n");
if (PrintInfo->bPDTMode)

printf("PDT Mode\n");
else

printf("Not PDT Mode\n");

switch(PrintInfo->nPrtMode) {

case PrtToDskAppend:
printf("Print to Disk-Append Mode\n");
break;

case PrtToDskSeparate:
printf("Print to Disk-Separate Mode\n");
break;

case SpecificPrinter:
printf("Specific Printer Mode\n");
break;

case WinDefaultPrinter:
printf("Windows Default Printer Mode\n");
break;

}
if (PrintInfo->lpPDTFile[0] == ’\0’)

printf("No PDT File configured\n");
else

printf("PDT File = %s\n", PrintInfo->lpPDTFile);
if (PrintInfo->lpPrtToDskAppFile[0] == ’\0’)

printf("No Disk Append File configured\n");
else

printf("DiskAppend File=%s\n", PrintInfo->lpPrtToDskAppFile);

Chapter 5. PCSAPI Functions 209

if (PrintInfo->lpPrtToDskSepFile[0] == ’\0’)
printf("No Disk Separate File configured\n");

else
printf("DiskSeparate File=%s\n", PrintInfo->lpPrtToDskSepFile);

if ((PrintInfo->nPrtMode == SpecificPrinter) ||
(PrintInfo->nPrtMode == WinDefaultPrinter))
printf("Printer = %s\n", PrintInfo->lpPrinterName);

}
free(PrintInfo->lpPDTFile);
free(PrintInfo->lpPrtToDskAppFile);
free(PrintInfo->lpPrtToDskSepFile);
free(PrintInfo->lpPrinterName);

}
free(PrintInfo);

}

pcsSetPrinterSettings

3270 5250 VT

Yes Yes Yes

The pcsSetPrinterSettings function controls the host session printer settings
(similar to the File → Printer Setup dialog settings).

Function Type
ULONG WINAPI pcsSetPrinterSettings(char cShortSessionID, const PRINTINFO *
const pPrintInfo, ULONG * const pErrorInfo)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

const PRINTINFO * const pPrintInfo
Pointer to PRINTINFO structure, where the printer settings are mentioned.

nFlags Combination of bit flags that indicates which members in the
structure are valid. These flags can be used independently or by
ORing them together to restore the property page (defined in
PCSAPI32.H). The flags, along with the corresponding valid
members in the structure, are as follows:

Flag Valid members in the structure

PCS_PRINT_PDT bPDTMode, lpPDTFile

PCS_PRINT_PRINTMODE nPrtMode, lpPrtToDskAppFile,
lpPrtToDskSepFile, lpPrinterName

PCS_PRINT_PROMPT_DIALOG
bPromptDialog

nBufSize
Must be set to 0. This is ignored.

nSizeNeeded
Must be set to 0. This is ignored.

bPromptDialog
Possible values are as follows:
v If TRUE, the Printer Setup dialog is shown before printing.
v If FALSE, the Printer Setup dialog is not shown before printing.

210 Emulator Programming

bPDTMode
Possible values are as follows:
v If TRUE, the connection is set to PDT mode.
v If FALSE, the connection is set to non-PDT mode (GDI mode).

lpPDTFile
Used only if bPDTMode is set to TRUE. This is ignored if
bPDTMode is set to FALSE.

This is a null-terminated string containing the name of the PDT file
and must be one of the following:
v NULL

The PDT file that is currently configured in the connection is
used. If there is no PDT file already configured in the
connection, the API fails with an exception.

v File name, without the path
lpPDTFile in the PDFPDT subfolder in the Personal
Communications installation path is used.

v Fully qualified path name of the file
If lpPDTFile does not exist, the API fails.

nPrtMode
This is an enumerated value that indicates the PrintMode of the
connection. The enum data type PRINTMODE is defined in
PCSAPI32.H. The nPrtMode setting must be one of the following:
v PrtToDskAppend (Print to Disk-Append mode)

This is equivalent to selecting the Append option in the host
session Printer Setup → Printer → Print to Disk dialog.

v PrtToDskSeparate (Print to Disk-Separate mode)
This is equivalent to selecting the Separate option in the host
session Printer Setup → Printer → Print to Disk dialog.

v WinDefaultPrinter (Windows Default Printer mode)
This is equivalent to selecting the Use Windows Default Printer
option in the host session Printer Setup dialog.

v SpecificPrinter (Specific Printer mode)
This is equivalent to selecting a printer in the host session
Printer Setup dialog, while leaving the Use Windows Default
Printer option unchecked.

lpPrtToDskAppFile
This is used only if nPrtMode is set to PrtToDskAppend.

This is a null-terminated string containing the name of the Print to
Disk-Append file and must be one of the following:
v NULL

The file that is currently configured for the PrtToDskAppend
mode in the connection is used. If there is no PDT file already
configured in the connection, the API will fail.

v File name, without the path
The user-class application data directory path is used to locate
the file. If the file exists, it is used. Otherwise, it will be created
when printing is complete.

v Fully qualified path name of the file

Chapter 5. PCSAPI Functions 211

The directory must exist in the path, or the API will fail. It is not
necessary that the file exist in the path.

lpPrtToDskSepFile
The possible values are as follows:
v Fully qualified path name of the Print to Disk-Separate file for

the session.
v An empty string ("") if no Print to Disk-Separate file is

configured for the session.
v A truncated file name if the buffer size is not sufficient. The

nSizeNeeded member contains the size of the buffer needed.

lpPrinterName
This is used only if nPrtMode is set to SpecificPrinter. It is ignored
otherwise. This is a null-terminated string containing the printer
name. If the printer does not exist, this member fails.

PrinterName must have the following format:
<Printer name> on <Port Name>

For example:
v IBM InfoPrint 40 PS on Network Port

v HP LaserJet 4050 Series PCL 6 on LPT1

ULONG * const pErrorInfo
This is filled with the extended error info when the API fails with the
return code of PCS_FAILURE. pErrorInfo must be set to NULL by the
caller, if the details of errors are not needed.

The following section describes the flags that are defined in PCSAPI32.H.

Flags for the pErrorInfo member of the PRINTINFO structure
PCS_PRINT_PDTMODE_ERROR

This can occur for one of one of the following reasons:
v bPDTMode is set to TRUE, lpPDTFile is set to NULL, and there is no

PDT file already configured for the host session.
v nPrtMode is set to PrtToDskAppend or PrtToDskSeparate,

PCS_PRINT_PDT is not set in nFlags, and the host session is not already
in PDT mode.

v nPrtMode is set to PrtToDskAppend or PrtToDskSeparate and
bPDTMode is set to FALSE.

PCS_PRINT_PDTFILE_ERROR
The file or the path specified in lpPDTFile was not found.

PCS_PRINT_PRTTODSK_FILE_ERROR
This can occur for one of one of the following reasons:
v The folder specified in the field lpPrtToDskAppFile or lpPrtToDskSepFile

does not exist or does not have write access.
v An extension is specified in the field lpPrtToDskSepFile.

PCS_PRINT_PRINTMODE_ERROR
nPrtMode cannot be set successfully. This can occur for one of the
following reasons:
v The value of nPrtMode is not one of the enumerated constants of the

PRINTMODE enum data type.

212 Emulator Programming

v nPrtMode is set to PrtToDskAppend, lpPrtToDskAppFile is set to NULL,
and there is no Print to Disk-Append file already configured in the host
session.

v nPrtMode is set to PrtToDskSeparate, lpPrtToDskSepFile is set to NULL,
and there is no Print to Disk-Separate file already configured in the host
session.

v nPrtMode is set to SpecificPrinter and the printer given in the
lpPrinterName field was not found.

v nPrtMode is set to WinDefaultPrinter and there is no default Windows
printer configured in the system.

v bPDTMode is set to FALSE and PCS_PRINT_PRINTMODE is not set in
nFlags, but the host session PrintMode is PrtToDskAppend or
PrtToDskSeparate.

Return Code

Return Code Value Meaning

PCS_SUCCESSFUL 0 The function ended successfully.

PCS_INVALID_ID 1 An incorrect session ID was specified.

PCS_DIALOG_IN_USE
3

Failed because the host session Page Setup or
Printer Setup dialog was in use.

PCS_PRINTING
4

The printer settings could not be changed
because the host session was printing. The
application must retry later.

PCS_FAILURE

6

No host session printer settings were applied.
This might occur because invalid data was
given for some or all of the fields in the
PRINTINFO structure. pErrorInfo contains
details about the errors.

PCS_SYSTEM_ERROR 9 A system error occurred.

Example
{

ULONG Rc = 0, Error=0;
PRINTINFO *PrintInfo;
char PDTFile[] = "epson.pdt";
char SepFile[] = "DiskSep";

PrintInfo = (PRINTINFO *) malloc(sizeof(PRINTINFO));
memset(PrintInfo, 0, sizeof(PRINTINFO));

PrintInfo->nFlags = PCS_PRINT_PDT | PCS_PRINT_PRINTMODE |
PCS_PRINT_PROMPT_DIALOG;

PrintInfo->nBufSize = 0;
PrintInfo->nSizeNeeded = 0;
PrintInfo->bPDTMode = TRUE;
PrintInfo->lpPDTFile =

(char *)malloc(sizeof(char) * (strlen(PDTFile)+1));
strcpy(PrintInfo->lpPDTFile, PDTFile);
PrintInfo->nPrtMode = PrtToDskSeparate;
PrintInfo->lpPrtToDskSepFile =

(char *)malloc(sizeof(char) * (strlen(SepFile)+1));
strcpy(PrintInfo->lpPrtToDskSepFile, SepFile);
PrintInfo->bPromptDialog = TRUE;
Rc = pcsSetPrinterSettings(’A’, PrintInfo, &Error);
if (Rc != PCS_SUCCESSFUL)

printf("Failure. Return code = %d, Extended Error = 0x%08x\n", Rc, Error);

Chapter 5. PCSAPI Functions 213

free(PrintInfo->lpPDTFile);
free(PrintInfo->lpPrtToDskSepFile);
free(PrintInfo);

}

214 Emulator Programming

Chapter 6. DDE Functions in a 32–bit Environment

This chapter contains information for DDE functions, as used in a Windows 32–bit
environment.

Personal Communications provides a 32-bit dynamic data exchange (DDE)
interface that allows applications to exchange data. The exchange of data between
two Windows applications can be thought of as a conversation between a client
and a server. The client initiates DDE conversations. The server in turn responds to
the client. Personal Communications is a DDE server for the open sessions that
Personal Communications is managing. For more information about DDE, refer to
Microsoft Windows Software Development Kit Guide to Programming.

Note: If you use DDE functions with Visual Basic, see Chapter 7, “Using DDE
Functions with a DDE Client Application,” on page 291.

Personal Communications also supports 16-bit DDE applications. See Appendix E,
“DDE Functions in a 16-Bit Environment,” on page 361.

Personal Communications DDE Data Items
Microsoft Windows DDE uses a three-level naming scheme to identify data items:
application, topic, and item. Table 17 describes these levels.

Table 17. Naming Scheme for Data Items

Level Description Example

Application A Windows task or a particular task of an
application. In this book, the application is
Personal Communications.

IBM327032

Topic A specific part of an application. SessionA

Item A data object that can be passed in a data
exchange. An item is an application-defined
data item that conforms to one of the Windows
clipboard formats or to a private,
application-defined, clipboard format. For
more information regarding Windows
clipboard formats, refer to Microsoft Windows
Software Development Kit Guide to Programming.

PS (presentation space)

Personal Communications supports IBM327032 and IBM525032 applications as
Win32 DDE server.

You can use the following topics:
v System
v SessionA, SessionB, ..., SessionZ
v LUA_xxxx, LUB_xxxx, ..., LUZ_xxxx

In DDE, atoms identify application names, topic names, and data items. Atoms
represent a character string that is reduced to a unique integer value. The character
string is added to an atom table, which can be referred to for the value of the
string associated with an atom. Atoms are created with the GlobalAddAtom

© Copyright IBM Corp. 1989, 2016 215

function call. Refer to Microsoft Windows Software Development Kit Guide to
Programming for more information about how to create and use atoms.

Using System Topic Data Items
Applications that provide a DDE interface should also provide a special topic
SYSTEM. This topic provides a context for items of information that might be of
general interest to an application. The SYSTEM topic for Personal Communications
contains these associated data items:

Item Function
Formats Returns the list of clipboard formats (numbers) that Personal

Communications is capable of rendering.
Status Returns information about the status of each Personal Communications

session.
SysCon Returns the level of Personal Communications support and other system

related values.
SysItems Returns the list of data items that are available when connected to the

Personal Communications system topic.
Topics Returns the list of Personal Communications topics that are available.

Using Session Topic Data Items
For each Session topic, the following data items are supported:

Item Function
CLOSE Retrieves the window close requests.
CONV Requests Code Conversion from ASCII to EBCDIC and EBCDIC to

ASCII.
EPS Retrieves the session presentation space with additional data.
EPSCOND Retrieves the presentation space service condition.
FIELD Retrieves the field in the presentation space of the session.
KEYS Retrieves the keystrokes.
MOUSE Retrieves the mouse input.
OIA Retrieves the operator information area status line.
PS Retrieves the session presentation space.
PSCOND Retrieves the session advise condition.
SSTAT Retrieves the session status.
STRING Retrieves the ASCII string data.
TRIMRECT Retrieves the session presentation space within the current trim

rectangle.

Using LU Topic Data Items (3270 Only)
For each LU topic, the following data items are supported:

Item Function
SF Retrieves the destination/origin structured field data.
SFCOND Retrieves the query reply data.

216 Emulator Programming

DDE Functions
Table 18 lists the DDE functions that are available for use with Personal
Communications.

Table 18. DDE Functions Available for Personal Communications

Function 3270 5250 VT

“Code Conversion” on page 218 Yes Yes Yes
“Find Field” on page 220 Yes Yes Yes
“Get Keystrokes” on page 222 Yes Yes Yes
“Get Mouse Input” on page 223 Yes Yes Yes
“Get Number of Close Requests” on page 226 Yes Yes Yes
“Get Operator Information Area” on page 227 Yes Yes Yes
“Get Partial Presentation Space” on page 228 Yes Yes Yes
“Get Presentation Space” on page 230 Yes Yes Yes
“Get Session Status” on page 232 Yes Yes Yes
“Get System Configuration” on page 234 Yes Yes Yes
“Get System Formats” on page 235 Yes Yes Yes
“Get System Status” on page 236 Yes Yes Yes
“Get System SysItems” on page 237 Yes Yes Yes
“Get System Topics” on page 238 Yes Yes Yes
“Get Trim Rectangle” on page 238 Yes Yes Yes
“Initiate Session Conversation” on page 239 Yes Yes Yes
“Initiate Structured Field Conversation” on page 240 Yes No No
“Initiate System Conversation” on page 240 Yes Yes Yes
“Put Data to Presentation Space” on page 241 Yes Yes Yes
“Search for String” on page 242 Yes Yes Yes
“Send Keystrokes” on page 243 Yes Yes Yes
“Session Execute Macro” on page 244 Yes Yes Yes
“Set Cursor Position” on page 251 Yes Yes Yes
“Set Mouse Intercept Condition” on page 253 Yes Yes Yes
“Set Presentation Space Service Condition” on page 255 Yes Yes Yes
“Set Session Advise Condition” on page 257 Yes Yes Yes
“Set Structured Field Service Condition” on page 258 Yes No No
“Start Close Intercept” on page 259 Yes Yes Yes
“Start Keystroke Intercept” on page 260 Yes Yes Yes
“Start Mouse Input Intercept” on page 261 Yes Yes Yes
“Start Read SF” on page 264 Yes No No
“Start Session Advise” on page 266 Yes Yes Yes
“Stop Close Intercept” on page 267 Yes Yes Yes
“Stop Keystroke Intercept” on page 268 Yes Yes Yes
“Stop Mouse Input Intercept” on page 268 Yes Yes Yes
“Stop Read SF” on page 269 Yes No No
“Stop Session Advise” on page 270 Yes Yes Yes
“Terminate Session Conversation” on page 270 Yes Yes Yes
“Terminate Structured Field Conversation” on page 271 Yes No No
“Terminate System Conversation” on page 271 Yes Yes Yes
“Write SF” on page 272 Yes No No

Refer to “Summary of DDE Functions in a Windows 32-Bit Environment” on page
285 for a summary of the DDE functions.

Chapter 6. DDE Functions in a 32–bit Environment 217

Naming Conventions for Parameters
Most DDE parameter names have local variables. These variables have a prefix that
indicates the general type of the parameter, followed by one or more words that
describe the content of the parameter. Prefixes presented in this book are:

a Atom

c Character (a 1-byte value)

f Bit flags packed into a 16-bit integer

h 16-bit handle

p Short (16-bit) pointer

lp Long (32-bit) pointer

w Short (16-bit) unsigned integer

u Unsigned integer

sz Null-terminated character string

Code Conversion

3270 5250 VT

Yes Yes Yes

The Code Conversion function allows a client application to convert ASCII to
EBCDIC or EBCDIC to ASCII. This function is only available to 32–bit applications.

Send the message as follows:
PostMessage (hServerWnd,

WM_DDE_POKE,
hClientWnd,
PackDDEIParam (WM_DDE_POKE, hData, aCONV));

where:

hDATA
typedef struct tagWCDDE_CONV
{

BYTE ddepoke[(sizeof(DDEPOKE)-1)];
char szSourceName[256]; // name of memory-mapped file
char szTargetName[256]; // name of memory-mapped file
BYTE ConvType; // Conversion method
WORD uSourceLength; // Length of source buffer
WORD uTargetLength; // Length of target buffer

}WCDDE_CONV;

typedef union tagDDE_CONV
{

DDEPOKE DDEpoke;
WCDDE_CONV DDEConv;

}DDE_CONV;

typedef DDE_CONV FAR *LPDDE_CONV;

Conversion Types
ConvType = 0x01 ASCII to EBCDIC
ConvType = 0x02 EBCDIC to ASCII

218 Emulator Programming

Note: The string to be converted must be stored in a memory block that is
accessible across processes. In Win32, this can only be accomplished by use
of memory-mapped files. The global memory is created and named in the
client application and the names are sent to Personal Communications
through the DDE message. The steps required to implement this are
demonstrated in the following example:
//Steps for a Source Buffer (done in client application)
HANDLE hMapFile;
LPVOID lpMapAddress;
ATOM aCONV;

hMapFile = CreateFileMapping((HANDLE)0xFFFFFFFF, // not a real file
NULL, // Default security.
PAGE_READWRITE, // Read/write
(DWORD)0, // Ignored
(DWORD)nStringLength, // Length of string
(LPCTSTR)szSourceName); // Name of

// mapping object.

If (hMapFile == NULL)
{

MessageBox ("Could not create file-mapping Source object.");
return;

}
// Now treat buffer like local memory
strcpy((LPSTR)lpMapAddress, szConcersionString);

// Repeat steps for a Target Buffer
.....
.....
// Set up ATOM information

aCONV = GlobalAddAtom("CONV"); // MUST be this string

// Post DDE Message Now

// When done with memory blocks, clean up
if (!UnmapViewOfFile(lpMapAddress))
{

MessageBox ("Could not unmap view of Target.");
}

CloseHandle(hMapSFile);

// CODE ENDS

Personal Communications Response
The function responds with a WM_DDE_ACK message for DDE_POKE. A result
value is returned in the high-order byte of the fsStatus word. The following return
codes are valid:

Return Code Explanation

0x0000 Normal End

0x0200 An incorrect conversion type or incorrect parameter
was specified

0x0600 An incorrect format was specified

0x0900 A system error occurred

0x1000 The destination buffer was exceeded

0x1100 An internal translation error occurred

Chapter 6. DDE Functions in a 32–bit Environment 219

Find Field

3270 5250 VT

Yes Yes Yes

The Find Field function returns information about the specified field to the client.
It can be used in two ways.

Send the message as follows:
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat, aFIELD));

where:

cfFormat
Identifies the format for the field information. This value can be
CF_DSPTEXT or CF_TEXT.

aFIELD
Is the atom that specifies the Find Field function. The string identified by
the atom can have different values depending on the value of cfFormat.

CF_DSPTEXT
If CF_DSPTEXT is specified for cfFormat then aFIELD must be an atom that
represents the string, FIELD. The PS position must be specified in a previous call to
the Set Presentation Space Service Condition function. This version will return
information only about the field which contains that position. The information will
be returned in a WM_DDE_DATA(hData, aFIELD) message where:

hData Represents
typedef struct tagFINDFIELD
{

unsigned char
data[sizeof(DDEDATA)-1];
unsigned short uFieldStart; //Field start position
unsigned short uFieldLength; //Field Length
unsigned char cAttribute; //Attribute character value
unsigned char ubReserved; //reserved, no information for client

} FINDFIELD;

typedef union tagDDE_FINDFIELD
{

DDEDATA DDEdata;
FINDFIELD DDEfield;

} DDE_FINDFIELD, *lpDDE_FINDFIELD;

CF_TEXT
If CF_TEXT is specified for cfFormat then aFIELD must be an atom that represents
the string, FIELD (pos, "XX") where:

pos Is the PS position

XX Is a code representing which field relative to pos for which information
will be returned. These codes are described below:

220 Emulator Programming

Type Meaning

�� or T� The field containing pos.

P� The field previous to pos, either protected or
unprotected.

PP The previous protected field to pos.

PU The previous unprotected field to pos.

N� The next field after pos, either protected or
unprotected.

NP The next protected field after pos.

NU The next unprotected field after pos.

Note: The � symbol represents a required blank.

These codes must appear in quotes as demonstrated above. The information will
be returned in a WM_DDE_DATA(hData, aFIELD) message where:

hData Represents
typedef struct tagFINDFIELD_CF_TEXT
{

uchar data[sizeof(DDEDATA)-1];
uchar Fielddata[80];

} FINDFIELD_CF_TEXT;

typedef FINDFIELD_CF_TEXT FAR *LPFINDFIELD_CF_TEXT;

typedef union tagDDE_FIELD
{

DDEDATA DDEdata;
FINDFIELD DDEFindField;
FINDFIELD_CF_TEXT DDEFindField_cftext;

} DDE_FIELD;

typedef DDE_FIELD FAR *LPDDE_FIELD;

Personal Communications Response
If the function is successful, it will respond with a WM_DDE_DATA message with
information as described above. If it fails, it will return with a
WM_DDE_ACK(wStatus, aFIELD). A result value is returned in the low-order byte of
the wStatus word. The following return codes are valid:

Return Code Explanation

0x0001 PS position is not valid.

0x0002 PS is unformatted.

0x0006 The specified format is not valid.

0x0009 A system error occurred.

Structure of the Field Information
The field information will be returned in the Fielddata member of the
FINDFIELD_CF_TEXT structure as a string in the following formats.

For 3270:

Chapter 6. DDE Functions in a 32–bit Environment 221

"Formatted\t%01d\t%01d\t%01d\t%01d\t%04d\t%04d"

FA bit 2 Unprotected / Protected 0 or 1

FA bit 3 Alphanumeric / Numeric 0 or 1

FA bit 4–5 Intensity / High / Normal 1, 2 or 3

FA bit 7 Unmodified / Modified 0 or 1

Start Pos Field Start Position (excluding FA)

Length Field Length (excluding FA)

Note: FA = Field Attribute

For 5250:
"Formatted\t%01d\t%01d\t%01d\t%01d\t%01d\t%01d\t%04d\t%04d"

FA bit 0 Field Attribute Flag 0 or 1

FA bit 1 Invisible / Visible 0 or 1

FA bit 2 Unprotected / Protected 0 or 1

FA bit 3 Intensity Low/High 0 or 1

FA bit 4–6 Field Type

0 = Alphanumeric

1 = Alphabetic

2 = Numeric Shift

3 = Numeric

4 = Default

5 = Digits only

6 = Mag-Stripe Reader Data

7 = Signed Numeric

0 — 7

FA bit 7 Unmodified / Modified 0 or 1

Start Pos Field Start Position (excluding FA)

Length Field Length (excluding FA)

Note: FA = Field Attribute

Get Keystrokes

3270 5250 VT

Yes Yes Yes

The Get Keystrokes function returns to the client the keystrokes that are
intercepted by the Start Keystroke Intercept function. The client sends the
following message to receive the keystroke information.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat, aKEYS));

where:

222 Emulator Programming

cfFormat
Identifies the format for the keystroke information. This must be
CF_DSPTEXT.

aKEYS
Identifies a keystroke data item.

Personal Communications Response
Personal Communications either returns the keystrokes in a DDE data message, or
responds with one of these ACK messages containing status information:
v WM_DDE_DATA(hData, aKEYS)
v WM_DDE_ACK(wStatus, aKEYS)

If Personal Communications cannot return the keystroke information, one of the
following status codes is returned in the low-order byte of the wStatus word:

Return Code Explanation

2 No keystroke was intercepted.

6 The specified format is not valid.

9 A system error occurred.

Structure of the Keystroke Information
Personal Communications returns the keystroke information in the following
structure:
typedef struct tagKEYSTROKE
{

unsigned char data[(sizeof(DDEDATA)-1)];
unsigned short uTextType; /* Type of keystrokes
unsigned char szKeyData_1}; /* Keystrokes

} KEYSTROKE;

typedef union tagDDE_GETKEYSTROKE
{

DDEDATA DDEdata;
KEYSTROKE DDEkey;

} DDE_GETKEYSTROKE, *lpDDE_GETKEYSTROKE;

The format for the keystrokes parameters is the same as for the Session Execute
Macro function SENDKEY command.

The following key text types are supported:
PCS_PURETEXT 0 /* Pure text, no HLLAPI commands
PCS_HLLAPITEXT 1 /* Text, including HLLAPI tokens

Get Mouse Input

3270 5250 VT

Yes Yes Yes

The Get Mouse Input function returns the latest mouse input intercepted by the
Start Mouse Input Intercept function to the client.

Chapter 6. DDE Functions in a 32–bit Environment 223

Note: The client must call the Start Mouse Input Intercept function before using
this function.

The client sends the following command to receive the mouse input information.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat, aMOUSE));

where:

cfFormat
Identifies the format for the presentation space. Valid values are CF_TEXT
or CF_DSPTEXT. The structure of the mouse input data, in these two
formats, is shown below.

aMOUSE
Identifies the mouse input as the item.

Personal Communications Response
Personal Communications either returns the mouse input data in a DDE data
message, or responds with one of these ACK messages:
v WM_DDE_DATA(hData, aMOUSE)
v WM_DDE_ACK(wStatus, aMOUSE)

If Personal Communications cannot return the mouse input information, one of the
following status codes is returned in the low-order byte of the wStatus word:

Return Code Explanation

2 No mouse input information was intercepted.

6 The specified format is not valid.

9 A system error occurred.

Structure of the Mouse Input Information
If the format is CF_TEXT, Personal Communications returns the mouse input
information in the following format:
typedef struct tagMOUSE_CF_TEXT
{

unsigned char data[(sizeof(DDEDATA)-1)];
unsigned char PSPos[4]; /* PS Offset - Mouse position
unsigned char Tab1[1]; /* Tab character
unsigned char PSRowPos[4]; /* ROW number of Mouse position
unsigned char Tab2[1]; /* Tab character
unsigned char PSColPos[4]; /* Col number of Mouse position
unsigned char Tab3[1]; /* Tab character
unsigned char PSSize[4]; /* Size of Presentation Space
unsigned char Tab4[1]; /* Tab character
unsigned char PSRows[4]; /* Row number of PS
unsigned char Tab5[1]; /* Tab character
unsigned char PSCols[4]; /* Column number of PS
unsigned char Tab6[1]; /* Tab character
unsigned char Button[1]; /* Type of clicked mouse button
unsigned char Tab7[1]; /* Tab character
unsigned char Click[1]; /* Type of clicking
unsigned char Tab8[1]; /* Tab character
unsigned char zClickString[1];/* Retrieved string

} MOUSE_CF_TEXT;

224 Emulator Programming

typedef union tagDDE_MOUSE_CF_TEXT
{

DDEDATA DDEdata;
MOUSE_CF_TEXT DDEmouse;

} DDE_MOUSE_CF_TEXT, *lpDDE_MOUSE_CF_TEXT;

The following table shows the values in the parameters:

Parameter Name Meaning Value

PSPos PS offset of the position where the
mouse was clicked

0 ... (PSSize – 1)

PSRowPos Row number of the position where
the mouse was clicked

0 ... (PSRows – 1)

PSColPos Column number of the position
where the mouse was clicked

0 ... (PSCols – 1)

PSSize Size of the presentation space

PSRows Number of rows of presentation
space

PSCols Number of columns of
presentation space

ButtonType Type of the clicked mouse button
L Left button

M Middle button

R Right button

ClickType Type of clicking
S Single click

D Double click

ClickString Retrieved string to which the
mouse pointed

A character string terminated with
a ‘\0’

Tab1–8 A tab character for delimiter ‘\t’

If the format is CF_DSPTEXT, Personal Communications returns the mouse input
information in the following format:
typedef struct tagMOUSE_CF_DSPTEXT
{

unsigned char data[(sizeof(DDEDATA)-1)];
unsigned short uPSPos; /* PS Offset of the Mouse position
unsigned short uPSRowPos; /* ROW number of Mouse position
unsigned short uPSColPos; /* Column number of Mouse position
unsigned short uPSSize; /* Size of Presentation Space
unsigned short uPSRows; /* Row number of PS
unsigned short uPSCols; /* Column number of PS
unsigned short uButtonType; /* Type of clicked mouse button
unsigned short uClickType; /* Type of clicking
unsigned char zClickString[1]; /* Retrieved string

} MOUSE_CF_DSPTEXT;

typedef union tagDDE_MOUSE_CF_DSPTEXT
{

DDEDATA DDEdata;
MOUSE_CF_DSPTEXT DDEmouse;

} DDE_MOUSE_CF_DSPTEXT, *lpDDE_MOUSE_CF_DSPTEXT;

The following table shows the values in the parameters:

Chapter 6. DDE Functions in a 32–bit Environment 225

Parameter Name Meaning Value

uPSPos PS offset of the position where the
mouse was clicked

0 ... (uPSSize – 1)

uPSRowPos Row number of the position where
the mouse was clicked

0 ... (uPSRows – 1)

uPSColPos Column number of the position
where the mouse was clicked

0 ... (uPSCols – 1)

uPSSize Size of the presentation space

uPSRows Number of rows of the
presentation space

uPSCols Number of columns of the
presentation space

uButtonType Type of the clicked mouse button
0x0001 Left button

0x0002 Middle button

0x0003 Right button

uClickType Type of clicking
0x0001 Single click

0x0002 Double click

szClickString Retrieved string that the mouse
pointed to

A character string terminated with
a ‘\0’

Get Number of Close Requests

3270 5250 VT

Yes Yes Yes

The Get Number of Close Requests function returns to the client the number of
the close requests that are intercepted by the Start Close Intercept function. The
client sends the following message to receive the number of the close requests.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat, aCLOSE));

where:

cfFormat
Identifies the format for the close intercept information. This must be
CF_DSPTEXT.

aCLOSE
Identifies a close intercept data item.

Personal Communications Response
Personal Communications either returns the number of the close requests in a DDE
data message, or responds with one of these ACK messages:
v WM_DDE_DATA(hData, aCLOSE)
v WM_DDE_ACK(wStatus, aCLOSE)

226 Emulator Programming

If Personal Communications cannot return the close intercept information, one of
the following status codes is returned in the low order byte of the wStatus word:

Return Code Explanation

6 The specified format is not valid.

9 A system error occurred.

Structure of the Number of the Close Requests Information
Personal Communications returns the close intercept information in the following
structure:
typedef struct tagCLOSEREQ
{

unsigned char data[(sizeof(DDEDATA)-1)];
unsigned short uCloseReqCount; /* Number of the close requests.

} CLOSEREQ;

typedef union tagDDE_CLOSEREQ
{

DDEDATA DDEdata;
CLOSEREQ DDEclose;

} DDE_CLOSEREQ, *lpDDE_CLOSEREQ;

Get Operator Information Area

3270 5250 VT

Yes Yes Yes

The Get Operator Information Area (OIA) function returns a copy of the OIA to
the client. The client sends the following message to request the OIA.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat, aOIA));

where:

cfFormat
Identifies the format for the OIA. For the OIA, this format must be
CF_DSPTEXT.

aOIA Identifies the operator information area as the item.

Personal Communications Response
Personal Communications either returns the OIA in a DDE data message, or
responds with one of these ACK messages:
v WM_DDE_DATA(hData, aOIA)
v WM_DDE_ACK(wStatus, aOIA)

If Personal Communications cannot return the OIA, one of the following status
codes is returned in the low-order byte of the wStatus word:

Return Code Explanation

6 The specified format is not valid.

Chapter 6. DDE Functions in a 32–bit Environment 227

Return Code Explanation

9 A system error occurred.

Structure of the Operator Information Area
Personal Communications returns the operator information area in the following
structure:
typedef struct tagOIADATA
{

unsigned char data[(sizeof(DDEDATA)-1)];
unsigned char OIA[80];

} OIADATA;

typedef union tagDDE_OIADATA
{

DDEDATA DDEdata;
OIADATA DDEoia;

} DDE_OIADATA, *lpDDE_OIADATA;

Get Partial Presentation Space

3270 5250 VT

Yes Yes Yes

The Get Partial Presentation Space function returns all or part of the session
presentation space to the client.

Note: The client must set the start PS position and either the PS length or End of
Field (EOF) flag by using the Set Presentation Space Service Condition
function before using this function. If the EOF flag is set to PCS_EFFECTEOF,
the function will return the entire field specified by the start PS position

The client sends the following command to get the presentation space.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat, aEPS));

where:

cfFormat
Identifies the format for the presentation space. Valid values are CF_TEXT
or CF_DSPTEXT. The structure of the presentation space, in these two
formats, is shown below.

aEPS Identifies the session presentation space as the item.

Personal Communications Response
Personal Communications either returns the presentation space data, or responds
with one of these ACK messages containing an error code in the low order byte of
the wStatus word:
v WM_DDE_DATA(hData, aEPS)
v WM_DDE_ACK(wStatus, aEPS)

228 Emulator Programming

If Personal Communications cannot return the presentation space, one of the
following status codes is returned in the low-order byte of the wStatus word:

Return Code Explanation

1 No prior Set Presentation Space Service Condition function was
called, or an incorrect parameter was set.

6 The specified format is not valid.

9 A system error occurred.

Structure of the Presentation Space
Personal Communications returns the part of the presentation space in the format
specified in the Get Partial Presentation Space request.

If the format is CF_DSPTEXT, Personal Communications returns the presentation
space in the following format:
typedef struct tagEPS_CF_DSPTEXT
{

unsigned char data[(sizeof(DDEDATA)-1)];
unsigned short uPSPosition; /* Position of the part of PS
unsigned short uPSLength; /* Length of the part of the PS
unsigned short uPSRows; /* PS number of rows
unsigned short uPSCols; /* PS number of columns
unsigned short uPSOffset; /* Offset to the presentation space
unsigned short uFieldCount; /* Number of fields
unsigned short uFieldOffset; /* Offset to the field array
unsigned char PSData[1]; /* PS + Field list Array(lpPSFIELDS)

} EPS_CF_DSPTEXT;

typedef union tagDDE_EPS_CF_DSPTEXT
{

DDEDATA DDEdata;
EPS_CF_DSPTEXT DDEeps;

} DDE_EPS_CF_DSPTEXT, *lpDDE_EPS_CF_DSPTEXT;

The PSFIELDS structure is replaced with below structure.

typedef struct tagPSFIELDS
{

unsigned short uFieldStart; /* Field start offset
unsigned short uFieldLength; /* Field Length
unsigned char cAttribute; /* Attribute character
unsigned char ubReserved; /* *** Reserved ***

} PSFIELDS, *lpPSFIELDS;

Note: The following examples show how to obtain long pointers to the PS and the
PSFIELDS array.

lpDDE = (lpDDE_EPS_CF_DSPTEXT)GlobalLock(hData);
lpps = lpDDE->DDEeps.PSData + lpDDE->DDEeps.uPSOffset;
lppsfields = lpDDE->DDEeps.PSData + lpDDE->DDEeps.uFieldOffset;

If the format is CF_TEXT, Personal Communications returns the part of the
presentation space in the following format:
typedef struct tagEPS_CF_TEXT
{

unsigned char data[(sizeof(DDEDATA)-1)];
unsigned char PSPOSITION[4];/* Position of part of the PS
unsigned char Tab1[1]; /* Tab character
unsigned char PSLENGTH[4]; /* Length of the part of the PS
unsigned char Tab2[1]; /* Tab character

Chapter 6. DDE Functions in a 32–bit Environment 229

unsigned char PSROWS[4]; /* Number of rows in the PS
unsigned char Tab3[1]; /* Tab character
unsigned char PSCOLS[4]; /* Number of Cols in the PS
unsigned char Tab4[1]; /* Tab character
unsigned char PS[1]; /* PS

} EPS_CF_TEXT;

typedef union tagDDE_EPS_CF_TEXT
{

DDEDATA DDEdata;
EPS_CF_TEXT DDEeps;

} DDE_EPS_CF_TEXT, *lpDDE_EPS_CF_TEXT;

Following the PS in the buffer is the following additional structure of fields that
compose the field list.
typedef struct tagFL_CF_TEXT
{

unsigned char Tab5[1]; /* Tab character
unsigned char PSFldCount[4]; /* Number of fields in the PS
unsigned char Tab6[1]; /* Tab character
PS_FIELD Field[1]; /* Field List Array

} FL_CF_TEXT, *lpFL_CF_TEXT;

typedef struct tagPS_FIELD
{

unsigned char FieldStart[4];
unsigned char TabF1[1];
unsigned char FieldLength[4];
unsigned char TabF2[1];

Note: The following examples show how to obtain long pointers to the PS and the
PS_FIELD array.

lpDDE = (lpDDE_EPS_CF_TEXT)GlobalLock(hData);
lpps = lpDDE->DDEeps.PS;
lpps_field = lpDDE->DDEeps.PS

+ atoi(lpDDE->DDEeps.PSLENGTH)
+ ((atoi(lpDDE->DDEeps.PSROWS) -1) * 2) // CR/LF
+ 1 + 1 + 4 + 1; // Tabs + size of field count

Get Presentation Space

3270 5250 VT

Yes Yes Yes

The Get Presentation Space function returns the session presentation space to the
client. The client sends the following command to get the presentation space.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat, aPS));

where:

cfFormat
Identifies the format for the presentation space. Valid values are CF_TEXT
or CF_DSPTEXT. The structure of the presentation space, in these two
formats, is shown below.

aPS Identifies the session presentation space as the item.

230 Emulator Programming

Personal Communications Response
Personal Communications either returns the presentation space and a list of the
fields that comprise the presentation space, or responds with one of these ACK
messages containing an error code in the low-order byte of the wStatus word:
v WM_DDE_DATA(hData, aPS)
v WM_DDE_ACK(wStatus, aPS)

If Personal Communications cannot return the presentation space, one of the
following status codes is returned in the low-order byte of the wStatus word:

Return Code Explanation

6 The specified format is not valid.

9 A system error occurred.

Structure of the Presentation Space
Personal Communications returns the presentation space in the format specified in
the Get Presentation Space request.

If the format is CF_DSPTEXT, Personal Communications returns the presentation
space in the following format:
typedef struct tagPS_CF_DSPTEXT
{

unsigned char data[(sizeof(DDEDATA)-1)];
unsigned short uPSSize; /* Size of the presentation space
unsigned short uPSRows; /* PS number of rows
unsigned short uPSCols; /* PS number of columns
unsigned short uPSOffset; /* Offset to the presentation space
unsigned short uFieldCount; /* Number of fields
unsigned short uFieldOffset; /* Offset to the field array
unsigned char PSData_1}; /* PS and Field list Array(lpPSFIELDS)

} PS_CF_DSPTEXT;

typedef union tagDDE_PS_CF_DSPTEXT
{

DDEDATA DDEdata;
PS_CF_DSPTEXT DDEps;

} DDE_PS_CF_DSPTEXT, *lpDDE_PS_CF_DSPTEXT;

typedef struct tagPSFIELDS
{

unsigned short uFieldStart; /* Field start offset
unsigned short uFieldLength; /* Field Length
unsigned char cAttribute; /* Attribute character
unsigned char ubReserved; /* *** Reserved ***

} PSFIELDS, *lpPSFIELDS;

Note: The following examples show how to obtain long pointers to the PS and the
PSFIELDS array.

lpDDE = (lpDDE_PS_CF_DSPTEXT)GlobalLock(hData);
lpps = lpDDE->DDEps.PSData + lpDDE->DDEps.uPSOffset;
lppsfields = lpDDE->DDEps.PSData + lpDDE->DDEps.uFieldOffset;

If the format is CF_TEXT, Personal Communications returns the presentation space
in the following format:
typedef struct tagPS_CF_TEXT
{

unsigned char data[(sizeof(DDEDATA)-1)];

Chapter 6. DDE Functions in a 32–bit Environment 231

unsigned char PSSIZE[4]; /* Size of the PS
unsigned char Tab1[1]; /* Tab character
unsigned char PSROWS[4]; /* Number of rows in the PS
unsigned char Tab2[1]; /* Tab character
unsigned char PSCOLS[4]; /* Number of Cols in the PS
unsigned char Tab3[1]; /* Tab character
unsigned char PS[1]; /* PS

} PS_CF_TEXT;

typedef union tagDDE_PS_CF_TEXT
{

DDEDATA DDEdata;
PS_CF_TEXT DDEps;

} DDE_PS_CF_TEXT, *lpDDE_PS_CF_TEXT;

Following the PS in the buffer is the following additional structure of fields that
compose the field list.
typedef struct tagPS_FIELD
{

unsigned char FieldStart[4];
unsigned char TabF1[1];
unsigned char FieldLength[4];
unsigned char TabF2[1];
unsigned char Attribute;
unsigned char TabF3[1];

} PS_FIELD, *lpPS_FIELD;

Note: The following example shows how to obtain long pointers to the PS and the
PS_FIELD array.

lpDDE = (lpDDE_PS_CF_TEXT)GlobalLock(hData);
lpps = lpDDE->DDEps.PS;
lpps_field = lpDDE->DDEps.PS

+ atoi(lpDDE->DDEps.PSSIZE)
+ ((atoi(lpDDE->DDEps.PSROWS) -1) * 2) // CR/LF
+ 1 + 1 + 4 + 1; // Tabs + size of field count

Get Session Status

3270 5250 VT

Yes Yes Yes

The Get Session Status function returns the status of the connected session. The
client sends the following message to request session status:
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat, aSSTAT));

where:

cfFormat
Identifies the DDE format for the status information. The value used is
CF_TEXT.

aSSTAT
Identifies session status as the data item requested.

232 Emulator Programming

Personal Communications Response
Personal Communications either returns the session status in a DDE data message,
or responds with one of these ACK messages containing status information:
v WM_DDE_DATA(hData, aSSTAT)
v WM_DDE_ACK(wStatus, aSSTAT)

If Personal Communications cannot return the session status, one of the following
status codes is returned in the low-order byte of the wStatus word:

Return Code Explanation

6 The specified format is not valid.

9 A system error occurred.

Format of Status Information
Personal Communications returns the session status as text in CF_TEXT format.
The following fields are returned with the following possible values:

Fields Returned Values Description

Status Closed, Invisible, Maximized,
Minimized, Normal

The window is in one of these
states.

Usage DDE, User The session is connected in
either a DDE session or a user
session.

ScreenX NN Defines the horizontal size of the
screen.

ScreenY NN Defines the vertical size of the
screen.

CursorX NN Defines the horizontal position
of the cursor. (0 ... ScreenX – 1)

CursorY NN Defines the vertical position of
the cursor. (0 ... ScreenY – 1)

TrimRect Status Closed, Moved, Sized The current status of the trim
rectangle.

Trim Rectangle X1 N The top-left corner X position of
the trim rectangle in character
coordinates.

Trim Rectangle Y1 N The top-left corner Y position of
the trim rectangle in character
coordinates.

Trim Rectangle X2 N The lower-right corner X
position of the trim rectangle in
character coordinates.

Trim Rectangle Y2 N The lower-right corner Y
position of the trim rectangle in
character coordinates.

Chapter 6. DDE Functions in a 32–bit Environment 233

Fields Returned Values Description

Session Presentation
Space Status

N The current status of the
presentation space. The
following values are possible:

0: The presentation space
is unlocked.

4: The presentation space
is busy.

5: The presentation space
is locked.

Session Window
Handle

XXXX Window handle of the session.

Note:

v The status of each field is updated each time the status is requested.
v A new field might be added in a future version of Personal Communications.

Get System Configuration

3270 5250 VT

Yes Yes Yes

The Get System Configuration function returns the level of Personal
Communications support and other system-related values. Most of this information
is for use by a service coordinator when a customer calls the IBM Support Center
after receiving a system error.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat, aSYSCON));

where:

cfFormat
Identifies the DDE format for the data item requested. The value used is
CF_TEXT.

aSYSCON
Identifies system configuration as the data item requested.

Personal Communications Response
Personal Communications either returns the system configuration data item in a
DDE DATA message, or responds with one of these ACK messages containing
status information:
v WM_DDE_DATA(hData, aSYSCON)
v WM_DDE_ACK(wStatus, aSYSCON)

If Personal Communications cannot return the system configuration, a DDE ACK
message is returned with an error code in the low-order byte of the wStatus word:
WM_DDE_ACK(wStatus, aSYSCON)

234 Emulator Programming

Return Code Explanation

9 A system error occurred.

Format of System Configuration Information
Personal Communications returns the system configuration as text in CF_TEXT
format. The following fields are returned with the following possible values:

Fields Returned values Description

Version N The version of Personal
Communications

Level NN The level of Personal
Communications

Reserved XXXXXX Reserved

Reserved XXXX Reserved

Monitor Type MONO, CGA, EGA, VGA, XGA Type of the monitor

Country Code NNNN Country code used with 3270 or
5250

Get System Formats

3270 5250 VT

Yes Yes Yes

The Get System Formats function returns the list of Windows clipboard formats
supported by Personal Communications. The client application sends the following
message to retrieve the format list supported by Personal Communications:
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat, aFORMATS));

where:

cfFormat
Identifies the DDE format for the data item requested. The value used is
CF_TEXT.

aFORMATS
Identifies formats as the data item requested.

Personal Communications Response
Personal Communications returns the list of supported Windows clipboard formats
in CF_TEXT format in a DDE DATA message.
WM_DDE_DATA(hData, aFORMATS)

The following Windows clipboard formats are supported by Personal
Communications:
v CF_TEXT
v CF_DSPTEXT

Chapter 6. DDE Functions in a 32–bit Environment 235

If Personal Communications cannot return the formats data item, a DDE ACK
message is returned with an error code in the low-order byte of the wStatus word:
WM_DDE_ACK(wStatus, aFORMATS)

Return Code Explanation

9 A system error occurred.

Get System Status

3270 5250 VT

Yes Yes Yes

The Get System Status function returns the status of each 3270 or 5250 session that
is available with the current Personal Communications configuration. The client
application sends the following message to retrieve the status data item:
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat, aSTATUS));

where:

cfFormat
Identifies the DDE format for the data item requested. The value used is
CF_TEXT.

aSTATUS
Identifies status as the data item requested.

Personal Communications Response
Personal Communications returns the status data item in CF_TEXT format in a
DDE DATA message:
WM_DDE_DATA(hData, aSTATUS)

For each opened session, Personal Communications returns a line of status
information. Each line contains a series of fields with the following range of
values:

Fields Range of values Description

Session ID A, B, ..., Z The short ID of the session.

Host Type 370, 400, ASCII The host system currently
supported by Personal
Communications.

Emulation Type 3270, 5250, VT The emulation type supported
by Personal Communications.

Session Status Closed, Invisible, Normal,
Minimized, Maximized

The current status of the
session's window.

If Personal Communications cannot return the status data item, a DDE ACK
message is returned with an error code in the low-order byte of the wStatus word:
WM_DDE_ACK(wStatus, aSTATUS)

236 Emulator Programming

Return Code Explanation

9 A system error occurred.

Get System SysItems

3270 5250 VT

Yes Yes Yes

Personal Communications supports the DDE system topic so that a client
application can connect to the system topic and retrieve information about
Personal Communications and the status of the sessions that Personal
Communications is managing.

The Get System SysItems function returns the list of data items available in the
Personal Communications system topic. The client application sends the following
message to get the system topic data items:
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat, aSYSITEMS));

where:

cfFormat
Identifies the DDE format for the data item requested. The value used is
CF_TEXT.

aSYSITEMS
Identifies SysItems as the data item requested.

Personal Communications Response
Personal Communications returns the list of system topic data items in CF_TEXT
format in a DDE DATA message.
WM_DDE_DATA(hData, aSYSITEMS)

The following data items are supported by Personal Communications:
v SysItems
v Topics
v Status
v Formats
v SysCon

If Personal Communications cannot return the system data items, a DDE ACK
message is returned with an error code in the low-order byte of the wStatus word:
WM_DDE_ACK(wStatus, aSYSITEMS)

Return Code Explanation

9 A system error occurred.

Chapter 6. DDE Functions in a 32–bit Environment 237

Get System Topics

3270 5250 VT

Yes Yes Yes

The Get System Topics function returns the list of active DDE topics currently
supported by Personal Communications. The client application sends the following
message to the system topic to retrieve the list of topics that are currently active:
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat, aTOPICS));

where:

cfFormat
Identifies the DDE format for the data item requested. The value used is
CF_TEXT.

aTOPICS
Identifies topics as the data item requested.

Personal Communications Response
Personal Communications returns the list of DDE topics in CF_TEXT format in a
DDE DATA message.
WM_DDE_DATA(hData, aTOPICS)

The following list of topics are supported by Personal Communications:
v System – System Topic
v SessionA – Session A Topic

...
v SessionZ – Session Z Topic

Note: The actual number of session topics supported depends on the number of
sessions currently opened. The client program should always query the
topics data item of the system topic to obtain the list of sessions currently
opened.

If Personal Communications cannot return the list of topics, a DDE ACK message
will be returned with an error code in the low-order byte of the wStatus word:
WM_DDE_ACK(wStatus, aTOPICS)

Return Code Explanation

9 A system error occurred.

Get Trim Rectangle

3270 5250 VT

Yes Yes Yes

238 Emulator Programming

The Get Trim Rectangle function returns to the client the area of the presentation
space that is within the current trim rectangle. The client sends the following
message to receive the trim rectangle.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat, aTRIMRECT));

where:

cfFormat
Identifies the format for the trim rectangle. This is CF_TEXT.

aTRIMRECT
Identifies trim rectangle as the data item requested.

Personal Communications Response
Personal Communications either returns trim rectangle in a DDE data message, or
responds with one of these ACK messages:
v WM_DDE_DATA(hData, aTRIMRECT)
v WM_DDE_ACK(wStatus, aTRIMRECT)

If Personal Communications cannot return the trim rectangle, one of the following
status codes is returned in the low-order byte of the wStatus word:

Return Code Explanation

6 The specified format is not valid.

9 A system error occurred.

Initiate Session Conversation

3270 5250 VT

Yes Yes Yes

The Initiate Session Conversation function connects a client application to an
available session of Personal Communications. Once a session conversation has
been established, the session is reserved for exclusive use by the client until the
conversation is terminated.

The client application sends the following message to initiate a DDE conversation
with a session:
SendMessage(-1,

WM_DDE_INITIATE,
hClientWnd,
MAKELPARAM(aIBM327032, aSessionN));

where:

aIBM327032
Identifies the application atom. The string used to create atom aIBM327032
is IBM327032. In the PC400, the application atom is aIBM525032 and the
string IBM525032 is used to create it.

Chapter 6. DDE Functions in a 32–bit Environment 239

aSessionN
Identifies the topic atom. The string used to create atom aSessionN is
either NULL or Session appended with the session ID A, B, ..., Z.

Personal Communications Response
If a specific topic is selected and Personal Communications can support a
conversation with the client application, Personal Communications acknowledges
the INITIATE transaction with:
WM_DDE_ACK(aIBM327032, aSessionN)

If a topic is not selected (aSessionN = NULL), Personal Communications responds
by acknowledging all topics that are currently available:
WM_DDE_ACK(aIBM327032, aSystem)
WM_DDE_ACK(aIBM327032, aSessionA)...
WM_DDE_ACK(aIBM327032, aSessionZ)

The client application selects the conversation it wishes to communicate with from
the returned list of topics and terminates all other unwanted conversations.

Initiate Structured Field Conversation

3270 5250 VT

Yes No No

The Initiate Structured Field Conversation function connects a client application
and a host application. This allows the applications to send data to each other and
to receive data from each other.

The client sends the following command to initiate a structured field conversation:
SendMessage(-1,

WM_DDE_INITIATE,
hClientWnd,
MAKELPARAM(aIBM327032, aLUN_xxxx));

Where:

aIBM327032
Identifies the application atom.

aLUN_xxxx
Identifies the topic atom. The string used to create atom aLUN_xxxx is LU
appended with the session ID A, B, ..., Z, appended with an underscore (_),
and appended with the user-defined string of any length.

PC/3270 Response
If PC/3270 can support a structured field conversation with the client application,
it returns an acknowledgment message with the following parameter:
WM_DDE_ACK(aIBM327032, aLUN_xxxx)

Initiate System Conversation

3270 5250 VT

240 Emulator Programming

Yes Yes Yes

The Initiate System Conversation function connects a client application to the
system conversation. Only one client can be connected to the system conversation
at a given time. The client sends the following command to initiate a system
conversation:
SendMessage(-1,

WM_DDE_INITIATE,
hClientWnd,
MAKELPARAM(aIBM327032, aSystem));

where:

aIBM327032
Identifies the application atom.

aSystem
Identifies the topic atom.

Personal Communications Response
If Personal Communications can support a system topic conversation with the
client application, it returns an acknowledgment message with the following
parameters:
WM_DDE_ACK(aIBM327032, aSystem)

Put Data to Presentation Space

3270 5250 VT

Yes Yes Yes

The Put Data to Presentation Space function sends an ASCIIZ data string to be
written into the host presentation space at the location specified by the calling
parameter. The client sends the following message to the session to send the string.
PostMessage(hServerWnd,

WM_DDE_POKE,
hClientWnd,
PackDDElParam(WM_DDE_POKE,
hdata, aEPS));

where:

hData Identifies a handle to a Windows global memory object that contains the
string to be sent to the session. The global memory object contains the
following structure:
typedef struct tagPutString
{

unsigned char poke[(sizeof(DDEPOKE)-1)];
unsigned short uPSStart; /* PS Position
unsigned short uEOFflag; /* EOF effective switch
unsigned char szStringData[1]; /* String Data

} PUTSTRING;

typedef union tagDDE_PUTSTRING
{

DDEPOKE DDEpoke;
PUTSTRING DDEputstring;

} DDE_PUTSTRING, *lpDDE_PUTSTRING;

Chapter 6. DDE Functions in a 32–bit Environment 241

These values are valid at the uEOFflag field:
PCS_UNEFFECTEOF 0 /* The string is not truncated at EOF.
PCS_EFFECTEOF 1 /* The string is truncated at EOF.

aEPS Identifies the presentation space atom as the item.

Personal Communications Response
Personal Communications receives the string data and sends them to the
presentation space, and returns a positive ACK message.

If the presentation space does not accept the string data, Personal Communications
returns a negative ACK message containing one of the following status codes in
the low-order byte of the wStatus word:
WM_DDE_ACK(wStatus, aEPS)

Return Code Explanation

1 PS position is not valid.

2 Length is not valid.

3 The value of EOF flag is not valid.

5 Input to the target PS was inhibited.

6 The specified format is not valid.

7 The string was truncated (successful putting).

9 A system error occurred.

Search for String

3270 5250 VT

Yes Yes Yes

This function allows a client application to examine the presentation space for a
specified string in a specified area.

Note: The client must set the start PS position, string to be searched for, and either
the PS Length and Search Direction or End of Field (EOF) flag by using the
Set Presentation Space Service Condition function before using this
function. If the EOF flag is set to PCS_EFFECTEOF, the function will search the
entire field specified by the Start PS Position parameter.

The client sends the following message to search for the string.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat, aSTRING));

where:

cfFormat
Identifies the format for the search information. This must be
CF_DSPTEXT.

aSTRING
Identifies the search data item.

242 Emulator Programming

Personal Communications Response
Personal Communications returns the start position of the string in a DDE data
message if the string was found in the specified area:
v WM_DDE_DATA(hData, aSTRING)
v WM_DDE_ACK(wStatus, aSTRING)

If Personal Communications cannot return the start position of the string, one of
the following status codes is returned in the low-order byte of the wStatus word:

Return Code Explanation

1 PS position is not valid or the string is too long.

2 The string cannot be found.

6 The specified format is not valid.

9 A system error occurred.

Structure of the Search Information
Personal Communications returns the search information in the following
structure:
typedef struct tagSEARCH
{

unsigned char data[(sizeof(DDEDATA)-1)];
unsigned short uFieldStart; /* String start offset

} SEARCH;

typedef union tagSEARCH
{

DDEDATA DDEdata;
SEARCH DDEsearch;

} DDE_SEARCH, *lpDDE_SEARCH;

Send Keystrokes

3270 5250 VT

Yes Yes Yes

The Send Keystrokes function sends keystrokes to the connected session. The
client sends the following message to the session to send keystrokes.
PostMessage(hServerWnd,

WM_DDE_POKE,
hClientWnd,
PackDDElParam(WM_DDE_POKE,
hData, aKEYS));

where:

hData Identifies a handle to a Windows global memory object that contains the
keystrokes to be sent to the session. The global memory object contains the
following structure:
typedef struct tagKeystrokes
{

unsigned char poke[(sizeof(DDEPOKE)-1)];
unsigned short uTextType; /* Type of keystrokes
unsigned short uRetryCount; /* Retry count 1 .. 16
unsigned char szKeyData[1]; /* Keystrokes

Chapter 6. DDE Functions in a 32–bit Environment 243

} KEYSTROKES;

typedef union tagDDE_SENDKEYSTROKES
{

DDEPOKE DDEpoke;
KEYSTROKES DDEkeys;

} DDE_SENDKEYSTROKES, *lpDDE_SENDKEYSTROKES;

The following key text types are supported:
PCS_PURETEXT 0 /* Pure text, no HLLAPI commands
PCS_HLLAPITEXT 1 /* Text, including HLLAPI tokens

Note: If the keystrokes are pure text, then specifying PCS_PURETEXT will
transfer the keystrokes to the host in the fastest possible manner. If
PCS_HLLAPITEXT is specified, then the keystroke data can contain
HLLAPI commands interspersed with the text.

aKEYS
Identifies keystrokes as the item.

Personal Communications Response
Personal Communications receives the keystrokes and sends them to the
presentation space. If the presentation space does not accept the keystrokes, a reset
is sent to the presentation space and the keystrokes are sent again. This procedure
continues until the presentation space accepts the keystrokes or the retry count is
reached. If Personal Communications cannot send the keystrokes to the host,
Personal Communications returns a negative ACK message containing one of the
following status codes in the low-order byte of the wStatus word. Otherwise,
Personal Communications returns a positive ACK message signalling the
keystrokes have been sent.
WM_DDE_ACK(wStatus, aKEYS)

Return Code Explanation

1 Retry count is not valid.

2 Type of key strokes is not valid.

6 The specified format is not valid.

9 A system error occurred.

Session Execute Macro

3270 5250 VT

Yes Yes Yes

You can issue commands and macros with the DDE_EXECUTE function. The
DDE_EXECUTE function passes command strings to Personal Communications.
The command strings must conform to DDE specifications. Refer to Microsoft
Windows Software Development Kit Guide to Programming for more information about
the DDE command syntax.

The client sends the following command to issue a DDE_EXECUTE function.
PostMessage (hServerWnd,

WM_DDE_EXECUTE,
hClientWnd,
(LPARAM)hCommands));

244 Emulator Programming

where:

hCommands
Identifies a handle to a Windows global memory object containing
Personal Communications commands. For a list of commands you can
issue, see “Issuing Commands with the Session Execute Macro Function.”

Personal Communications Response
If Personal Communications can process the command string, Personal
Communications returns an ACK message containing positive status information to
the client. If Personal Communications cannot perform the command string,
Personal Communications returns an ACK message containing this error code in
the low-order word of the wStatus word:

Return Code Explanation

9 A system error occurred.

Issuing Commands with the Session Execute Macro Function
You can issue the following commands with the Session Execute Macro function:
v KEYBOARD
v RECEIVE
v SEND
v SENDKEY
v WAIT
v WINDOW

Use a separate DDE_EXECUTE message for each command.

Note:

v Enclose values that contain nonalphanumeric characters or blanks in double
quotation marks ("value value").

v To include a double quotation mark within a string, type it twice (for example,
"This is a double quotation mark:""").

v The maximum length for any command is 255 characters.

WINDOW Command
[WINDOW(action[, "name"])]

Performs window actions, where:
action = HIDE|RESTORE|MAXIMIZE|MINIMIZE|

SHOW|CNGNAME
name = LT name or Switch List Entry name

Note: name should be specified when CNGNAME is specified at action. If name is a
NULL string, the default caption will be displayed.

KEYBOARD Command
[KEYBOARD(action)]

Enables or disables the session keyboard, including the mouse, where:

Chapter 6. DDE Functions in a 32–bit Environment 245

action= LOCK|UNLOCK

SEND Command
[SEND("pcfilename","hostfilename","options")]

Sends files to the host, where:
pcfilename = [path]filename[.ext]
hostfilename =

For VM system:
filename filetype[filemode]

For MVS system:
[’]filename[(membername)][’]

For CICS system:
For OS/400 system:

library name filename member name

Any combination of the following file transfer options can be included in options:
MVS, VM, CICS, QUIET, OS/400, and emulation-specific transfer options,
separated by spaces.

Refer to Administrator's Guide and Reference for more information about the transfer
options.

RECEIVE Command
[RECEIVE("pcfilename","hostfilename","options")]

Receives files from the host, where:
pcfilename = [path]filename[.ext]
hostfilename =

For VM system:
filename filetype[filemode]

For MVS system:
[’]filename[(membername)][’]

For CICS system:
For OS/400 system:

library name filename member name

Any combination of the following file transfer options can be included in options:
MVS, VM, CICS, QUIET, OS/400, and emulation-specific transfer options,
separated by spaces.

Refer to Administrator's Guide and Reference for more information about the transfer
options.

SENDKEY Command
[SENDKEY(token,token)]

Sends keystrokes to Personal Communications, where:
token = text string|command|macro macroname

Notes:

1. Text strings are enclosed in double quotation marks.
2. Macros are prefixed with “macro”.
3. The argument string for SENDKEY must be 255 characters or fewer.
4. The following commands are supported.

246 Emulator Programming

Table 19. SENDKEY Command List

Command Name Token PC/3270 PC400 VT

Alternate Cursor alt cursor Yes Yes No

Alternate Viewing Mode alt view Yes Yes No

Attention sys attn Yes Yes No

Backspace backspace Yes Yes Yes

Back Tab backtab Yes Yes No

Backtab Word backtab word Yes Yes No

Character Advance character
advance

No Yes No

Character Backspace backspace
valid

No Yes No

Clear Screen clear Yes Yes No

Clicker click Yes Yes No

Color Blue blue Yes No No

Color Field Inherit field color Yes No No

Color Green green Yes No No

Color Pink pink Yes No No

Color Red red Yes No No

Color Turquoise turquoise Yes No No

Color White white Yes No No

Color Yellow yellow Yes No No

Cursor Blink cursor blink Yes Yes No

Cursor Down down Yes Yes Yes

Cursor Left left Yes Yes Yes

Cursor Right right Yes Yes Yes

Cursor Select cursor select Yes Yes No

Cursor Up up Yes Yes Yes

Delete Character delete char Yes Yes No

Delete Word delete word Yes Yes No

Device Cancel device cancel Yes Yes No

Dup Field dup Yes Yes No

Edit Clear edit-clear Yes Yes Yes

Edit Copy edit-copy Yes Yes Yes

Edit Cut edit-cut Yes Yes Yes

Edit Paste edit-paste Yes Yes Yes

Edit Undo edit-undo Yes Yes Yes

End Field end field Yes Yes No

Enter enter Yes Yes No

Erase EOF erase eof Yes Yes No

Erase Field erase field Yes No No

Erase Input erase input Yes Yes No

Chapter 6. DDE Functions in a 32–bit Environment 247

Table 19. SENDKEY Command List (continued)

Command Name Token PC/3270 PC400 VT

Fast Cursor Down fast down Yes Yes No

Fast Cursor Left fast left Yes Yes No

Fast Cursor Right fast right Yes Yes No

Fast Cursor Up fast up Yes Yes No

Field Exit field exit No Yes No

Field Mark field mark Yes Yes No

Field + field + No Yes No

Field − field - No Yes No

Graphic Cursor +cr Yes No No

Help help Yes Yes No

Highlighting Field Inherit field hilight Yes No No

Highlighting Reverse reverse Yes No No

Highlighting Underscore underscore Yes No No

Home home Yes Yes No

Host Print host print Yes No No

Input input Yes Yes No

Input nondisplay input nd Yes Yes No

Insert Toggle insert Yes Yes No

Lower case to lower Yes No No

Mark Down mark down Yes Yes Yes

Mark Left mark left Yes Yes Yes

Mark Right mark right Yes Yes Yes

Mark Up mark up Yes Yes Yes

Move Mark Down move down Yes Yes Yes

Move Mark Left move left Yes Yes Yes

Move Mark Right move right Yes Yes Yes

Move Mark Up move up Yes Yes Yes

New Line newline Yes Yes Yes

Next Page page down No Yes No

Pause 1 second pause Yes Yes No

Previous Page page up No Yes No

Print Screen local copy Yes Yes Yes

Program Attention Key 1 pa1 Yes No No

Program Attention Key 2 pa2 Yes No No

Program Attention Key 3 pa3 Yes No No

Program Function Key 1...
Program Function Key 5

pf1...
pf5

Yes...
Yes

Yes...
Yes

No...
No

248 Emulator Programming

Table 19. SENDKEY Command List (continued)

Command Name Token PC/3270 PC400 VT

Program Function Key 6...
Program Function Key 20

pf6...
pf20

Yes...
Yes

Yes...
Yes

Yes...
Yes

Program Function Key 21...
Program Function Key 24

pf21...
pf24

Yes...
Yes

Yes...
Yes

No...
No

Quit quit Yes Yes No

Reset reset Yes Yes No

Response Time Monitor rtm Yes No No

Roll Down roll down No Yes No

Roll Up roll up No Yes No

Rubout rubout Yes Yes Yes

Rule rule Yes Yes Yes

SO/SI Display so si Yes Yes No

SO/SI Generate so si generate No Yes No

System Request sys req Yes Yes No

Tab Field tab field Yes Yes Yes

Tab Word tab word Yes Yes No

Test test request No Yes No

Unmark unmark Yes Yes Yes

Upper case to upper Yes No No

Upper/Lower Change to other Yes No No

Wait for bind wait app Yes Yes No

Wait for System wait sys Yes Yes No

Wait transition wait trn Yes Yes No

Wait while input inh. wait inp inh Yes Yes No

Window Relocation 1...
Window Relocation 8

view 1...
view 8

Yes...
X

Yes...
X

Yes...
X

VT compose vt compose No No Yes

VT find vt find No No Yes

VT hold screen vt hold No No Yes

VT insert here vt insert No No Yes

VT next screen vt next No No Yes

VT numeric keypad 0 vt numpad 0 No No Yes

VT numeric keypad 1 vt numpad 1 No No Yes

VT numeric keypad 2 vt numpad 2 No No Yes

VT numeric keypad 3 vt numpad 3 No No Yes

VT numeric keypad 4 vt numpad 4 No No Yes

VT numeric keypad 5 vt numpad 5 No No Yes

VT numeric keypad 6 vt numpad 6 No No Yes

Chapter 6. DDE Functions in a 32–bit Environment 249

Table 19. SENDKEY Command List (continued)

Command Name Token PC/3270 PC400 VT

VT numeric keypad 7 vt numpad 7 No No Yes

VT numeric keypad 8 vt numpad 8 No No Yes

VT numeric keypad 9 vt numpad 9 No No Yes

VT numeric keypad - vt numpad
minus

No No Yes

VT numeric keypad , vt numpad
comma

No No Yes

VT numeric keypad . vt numpad
period

No No Yes

VT numeric keypad enter vt numpad
enter

No No Yes

VT PF1 vt pf1 No No Yes

VT PF2 vt pf2 No No Yes

VT PF3 vt pf3 No No Yes

VT PF4 vt pf4 No No Yes

VT prev. screen vt prev No No Yes

VT remove vt remove No No Yes

VT select vt select No No Yes

VT user defined function 6 vt user f6 No No Yes

VT user defined function 7 vt user f7 No No Yes

VT user defined function 8 vt user f8 No No Yes

VT user defined function 9 vt user f9 No No Yes

VT user defined function 10 vt user f10 No No Yes

VT user defined function 11 vt user f11 No No Yes

VT user defined function 12 vt 12 No No Yes

VT user defined function 13 vt user f13 No No Yes

VT user defined function 14 vt user f14 No No Yes

VT user defined function 15 vt user f15 No No Yes

VT user defined function 16 vt user f16 No No Yes

VT user defined function 17 vt user f17 No No Yes

VT user defined function 18 vt user f18 No No Yes

VT user defined function 19 vt user f19 No No Yes

VT user defined function 20 vt user f20 No No Yes

Examples:

1. To logon
[SENDKEY("Logon")]

2. To get reader list
[SENDKEY("RDRL", enter)]

WAIT Command
[WAIT("[time out][wait condition]")]

250 Emulator Programming

Waits until the timeout expires or the wait condition the client specified occurs. For
this command, the client has to set at least one option, where:

time out (optional)
If the client sets a timeout value in the command statements, the following
units are available in the wait statement.
v msec
v millisecond
v milliseconds
v sec
v second
v seconds
v minute
v minutes
v hour
v hours

wait condition (optional)
For the wait condition option, the client can select the following options:

while cursor at (cursor row, cursor column)
While the cursor is at (cursor row, cursor column), it keeps
waiting.

while “string”
While the “string” is somewhere on the screen, it keeps waiting.

while “string” at (cursor row, cursor column)
While the “string” is at (cursor row, cursor column) on the screen,
it keeps waiting.

until cursor at (cursor row, cursor column)
Until the cursor moves to (cursor row, cursor column), it keeps
waiting.

until “string”
Until the “string” is displayed somewhere on the screen, it keeps
waiting.

until “string” at (cursor row, cursor column)
Until the “string” is displayed at (cursor row, cursor column), it
keeps waiting.

Examples:

1. To wait 10 seconds
[WAIT("10 seconds")]

2. To wait while "ABCDEF" is displayed at (2,9) on the screen
[WAIT("while ""ABCDEF"" at (2,9)")]

3. To wait until "ABCDEF" is displayed at (2,9) on the screen, or after 8 seconds
[WAIT("8 seconds until ""ABCDEF"" at (2,9)")]

Set Cursor Position

3270 5250 VT

Yes Yes Yes

Chapter 6. DDE Functions in a 32–bit Environment 251

The Set Cursor Position function allows the client application to set the cursor
position in the session window.
PostMessage(hServerWnd,

WM_DDE_POKE,
hClientWnd,
PackDDELParam(WW_DDE_POKE,
hData, aSETCURSOR));

where:

hData

Identifies a handle to a Windows global memory object that contains the
cursor positioning information in the following structure:
typedef struct tagSETCURSOR
{

unsigned char poke[(sizeof(DDEPOKE)-1)];
unsigned short uSetCursorType; /* Cursor Set Type
unsigned short uSetCursor1; /* Cursor Row or PS Offset
unsigned short uSetCursor2; /* Cursor Col

} SETCURSOR;

typedef union tagDDE_SETCURSOR
{

DDEPOKE DDEpoke;
SETCURSOR DDEsetcursor;

} DDE_SETCURSOR, *lpDDE_SETCURSOR;

Personal Communications supports two ways to set the cursor position:
v PS Offset (uSetCursorType = 0)
v Row/Column number (uSetCursorType = 1)

The application specifies which method by setting the uSetCursorType
field to the appropriate value, followed by setting the two other fields
uSetCursor1 and uSetCursor2 to their appropriate values as follows:
v uSetCursorType = 0 offset

– uSetCursor1: 0 ... (PSsize – 1)
v uSetCursorType = 1 row/col

– uSetCursor1: 0 ... (PSrows – 1)
– uSetCursor2: 0 ... (PScols – 1)

aSETCURSOR
Identifies cursor position as the item.

Personal Communications Response
Personal Communications receives the cursor information and moves the cursor to
the specified position in the PS. If the cursor is positioned successfully, Personal
Communications returns a positive ACK message to the client application.
Otherwise, a negative ACK message is returned with one of the following error
codes in the low-order byte of the wStatus word.
WM_DDE_ACK(wStatus, aSETCURSOR)

Return Code Explanation

1 Cursor set type is not valid. Must be 0 or 1.

2 Cursor PS offset is not valid. Must be 0 ...
(PSsize – 1).

252 Emulator Programming

Return Code Explanation

3 Cursor row value is not valid. Must be 0 ...
(PSrows – 1).

4 Cursor column value is not valid. Must be 0
... (PScols – 1).

6 The specified format is not valid.

9 A system error occurred.

Set Mouse Intercept Condition

3270 5250 VT

Yes Yes Yes

This function specifies the mouse input to be intercepted. The client sends the
following command to set the mouse event to be intercepted.
PostMessage(hServerWnd,

WM_DDE_POKE,
hClientWnd,
PackDDElParam(WM_DDE_POKE,
hData, aMOUSE));

where:

hData Identifies a handle to a Windows global memory object that specifies the
condition of intercepting the mouse input.

If the format is CF_TEXT, the client program sends the condition in the
following structure:
typedef struct tagSETMOUSE_CF_TEXT
{

unsigned char poke[(sizeof(DDEPOKE)-1)];
unsigned char zMouseCondition[1];

} SETMOUSE_CF_TEXT;

typedef union tagDDE_SETMOUSE_CF_TEXT
{

DDEPOKE DDEpoke;
SETMOUSE_CF_TEXT DDEcond;

} DDE_SETMOUSE_CF_TEXT, *lpDDE_SETMOUSE_CF_TEXT;

The following table shows the parameters' values:

Chapter 6. DDE Functions in a 32–bit Environment 253

Parameter Name Meaning Value

Condition Condition of intercepting the
mouse input

A string terminated with ‘\0’,
consists of the constants defined as
follows in any order:

L Enable intercepting the
left button

l Disable intercepting the
left button

R Enable intercepting the
right button

r Disable intercepting the
right button

M Enable intercepting the
middle button

m Disable intercepting the
middle button

S Enable intercepting a
single click

s Disable intercepting a
single click

D Enable intercepting a
double click

d Disable intercepting a
double click

T Retrieve the pointed string

t Do not retrieve the
pointed string

If the format is CF_DSPTEXT, the client program sends the condition in the
following structure:
typedef struct tagSETMOUSE_CF_DSPTEXT
{

unsigned char poke[(sizeof(DDEPOKE)-1)];
BOOL bLeftButton; /* Enable intercepting left button
BOOL bRightButton; /* Enable intercepting right button
BOOL bMiddleButton; /* Enable intercepting middle button
BOOL bSingleClick; /* Enable intercepting single click
BOOL bDoubleClick; /* Enable intercepting double click
BOOL bRetrieveString; /* Enable intercepting retrieve string

} SETMOUSE_CF_DSPTEXT;

typedef union tagDDE_SETMOUSE_CF_DSPTEXT
{

DDEPOKE DDEpoke;
SETMOUSE_CF_DSPTEXT DDEcond;

} DDE_SETMOUSE_CF_DSPTEXT, *lpDDE_SETMOUSE_CF_DSPTEXT;

The following table shows the values in the parameters:

254 Emulator Programming

Parameter Name Meaning Value

bLeftButton Enable or disable interception of
the left mouse button True Enable intercepting the

left button

False Disable intercepting the
left button

bRightButton Enable or disable interception of
the right mouse button True Enable intercepting the

right button

False Disable intercepting the
right button

bMiddleButton Enable or disable interception of
the middle mouse button True Enable intercepting the

middle button

False Disable intercepting the
middle button

bSingleClick Enable or disable interception of
the single click True Enable intercepting the

single click

False Disable intercepting the
single click

bDoubleClick Enable or disable interception of
the double click True Enable intercepting the

double click

False Disable intercepting the
double click

bRetrieveString Retrieve or do not retrieve the
pointed string True Retrieve the pointed string

False Do not retrieve the
pointed string

aMOUSE
Identifies the mouse as the item.

Personal Communications Response
When receiving the Set Mouse Intercept Condition request, Personal
Communications returns an ACK message if it can set the intercept condition to
the specified status. Otherwise, a negative ACK message is returned to the client
with one of the following return codes in the low-order byte of the wStatus field:
WM_DDE_ACK(wStatus, aMOUSE)

Return Code Explanation

2 A character in the Condition parameter is
not valid.

6 The specified format is not valid.

9 A system error occurred.

Set Presentation Space Service Condition

3270 5250 VT

Yes Yes Yes

Chapter 6. DDE Functions in a 32–bit Environment 255

The Set Presentation Space Service Condition function sets the condition for
using the following functions:
v Get Partial Presentation Space

v Find Field

v Search for String

The client application sets the condition by calling a function such as:
v Start PS position

v PS length

v EOF flag

v Search direction

v ASCIIZ string

The client must specify the Set Presentation Space Service Condition function
before invoking the functions listed above. The conditions set by this function
remain in effect until the next Set Presentation Space Service Condition function
is called. The client sends the following message to set the condition:
PostMessage(hServerWnd,

WM_DDE_POKE,
hClientWnd,
PackDDELParam(WM_DDE_POKE,
(hData, aEPSCOND));

where:

hData

Identifies a handle to a Windows global memory object containing:
typedef struct tagPSSERVCOND
{

unsigned char poke[(sizeof(DDEPOKE)-1)];
unsigned short uPSStart; /* PS Position
unsigned short uPSLength; /* Length of String or PS
unsigned short uSearchDir; /* Direction for search
unsigned short uEOFflag; /* EOF effective switch
unsigned char szTargetString[1]; /* Target String

} PSSERVCOND;

typedef union tagDDE_PSSERVCOND
{

DDEPOKE DDEpoke;
PSSERVCOND DDEcond;

} DDE_PSSERVCOND, *lpDDE_PSSERVCOND;

The following values are valid at the uSearchDir field:
PCS_SRCHFRWD 0 /* Search forward.
PCS_SRCHBKWD 1 /* Search backward.

The following values are valid for the uEOFflag field:
PCS_UNEFFECTEOF 0 /* The PS Area is not truncated at End of Field (EOF).
PCS_EFFECTEOF 1 /* The PS Area is truncated at End of Field (EOF).

If the value of uEOFflag is PCS_EFFECTEOF then the PS length and Search
Direction are not used.

aEPSCOND
Identifies the item for the Set Presentation Space Service Condition
function.

256 Emulator Programming

Personal Communications Response
If Personal Communications can perform the Set Presentation Space Service
Condition function, then Personal Communications returns an ACK message:
WM_DDE_ACK(wStatus, aEPSCOND)

If Personal Communications cannot perform the Set Presentation Space Service
Condition function, then Personal Communications returns a negative ACK
message containing the following return codes in the low-order byte of wStatus:

Return Code Explanation

1 PS position is not valid.

2 Length is not valid.

3 The value of EOF flag is not valid.

4 The value of Search Direction is not valid.

6 The specified format is not valid.

9 A system error occurred.

Set Session Advise Condition

3270 5250 VT

Yes Yes Yes

This function sets the condition for the DDE_ADVISE of the Start Session Advise
function. The client can specify a search string and a region of the screen. When
the advise condition is met, the server notifies the client of the condition according
to the options specified by the Start Session Advise function.

Note: The client must specify the Set Session Advise Condition function before
invoking Start Session Advise. If the advise condition is set after the Start
Session Advise function is started, the advise condition will be ignored and
the client will receive a negative ACK message. See “Start Session Advise”
on page 266 for more information about starting the advise.

The client sends the following message to set the advise condition.
PostMessage(hServerWnd,

WM_DDE_POKE,
hClientWnd,
PackDDElParam(WM_DDE_POKE,
(hData, aPSCOND));

where:

hData Identifies a handle to a Windows global memory object containing:
typedef struct tagSEARCHDATA
{

unsigned char poke[(sizeof(DDEPOKE)-1)];
unsigned short uPSStart; /* PS Position of string
unsigned short uPSLength; /* Length of String
BOOL bCaseSensitive; /* Case Sensitive TRUE=YES
unsigned char SearchString[1]; /* Search String

} SEARCHDATA;

typedef union tagDDE_SEARCHDATA

Chapter 6. DDE Functions in a 32–bit Environment 257

{
DDEPOKE DDEpoke;
SEARCHDATA DDEcond;

} DDE_SEARCHDATA, *lpDDE_SEARCHDATA;

aPSCOND
Identifies the item for the Set Session Advise Condition function.

Personal Communications Response
If Personal Communications can perform the Set Session Advise Condition
function, Personal Communications returns this ACK message:
WM_DDE_ACK(wStatus, aPSCOND)

If Personal Communications cannot perform the Set Session Advise Condition
function, then Personal Communications returns an negative ACK message
containing one of the following return codes in the low-order byte of wStatus:

Return Code Explanation

1 Advise is already active.

2 Advise condition is already active.

3 PS position is not valid.

4 String length is not valid.

6 The specified format is not valid.

9 A system error occurred.

Set Structured Field Service Condition

3270 5250 VT

Yes No No

The Set Structured Field Service Condition function passes the Query Reply data
provided by the client application.

Note: The client must call the Set Structured Field Service Condition function
before invoking the Start Read SF function or the Write SF function.

The client sends the following message to set the condition.
PostMessage(hServerWnd,

WM_DDE_POKE,
hClientWnd,
PackDDElParam(WM_DDE_POKE,
(hData, aSFCOND));

where:

hData Identifies a handle to a Windows global memory object containing:
typedef struct tagSFSERVCOND
{

unsigned char poke[(sizeof(DDEPOKE)-1)];
unsigned short uBufferLength; /* Buffer size of Read_SF
unsigned short uQRLength; /* Length of Query Reply dat
unsigned char szQueryReply[1]; /* Query Reply data

} SFSERVCOND;

258 Emulator Programming

typedef union tagDDE_SFSERVCOND
{

DDEPOKE DDEpoke;
SFSERVCOND DDEcond;

} DDE_SFSERVCOND, *lpDDE_SFSERVCOND;

aSFCOND
Identifies the item for the Set Structured Field Service Condition function.

PC/3270 Response
PC/3270 checks the Query Reply ID and Type (not DOID) and the length. If they
are valid, then PC/3270 returns an ACK message:
WM_DDE_ACK(wStatus, aSFCOND)

If PC/3270 cannot perform the Set Structured Field Service Condition function,
then PC/3270 returns a negative ACK message containing one of the following
return codes in the low-order byte of wStatus:

Return Code Explanation

1 PS SF ID is not valid.

2 Length is not valid.

3 One DDM base type is already connected to
this session.

4 Structured Field Service Condition is already
set.

6 The specified format is not valid.

9 A system error occurred.

Start Close Intercept

3270 5250 VT

Yes Yes Yes

The Start Close Intercept function allows a client application to intercept close
requests generated when a user selects the close option from the emulator session
window. This function intercepts the close request and discards it until the Stop
Close Intercept function is requested. After using this function, the client receives
DATA messages notifying it that close requests occurred (CLOSE).

The client sends the following command to begin a session advise.
PostMessage(hServerWnd,

WM_DDE_ADVISE,
hClientWnd,
Pack DDElParam(WM_DDE_ADVISE,
(hOptions, aCLOSE));

where:

hOptions
Is a handle to a Windows global memory object DDEADVISE structure.

If the value of fDeferUpd is 1, DDE Data messages will be sent to the
client application with the hData set to NULL. The client must then issue a
DDE REQUEST to request the data item.

Chapter 6. DDE Functions in a 32–bit Environment 259

If the value of fAckReq is 1, the server does not notify the client of further
close requests until the server receives an ACK message from the client in
response to any previous notification.

The cfFormat field specifies the format to send the close request. (Must be
CF_DSPTEXT.)

aCLOSE
Identifies close intercept as the item.

Personal Communications Response
Personal Communications receives the Start Close Intercept and returns an ACK
message if it can start the intercept. Otherwise a negative ACK message is returned
to the client with one of the following return codes in the low-order byte of the
wStatus field:
WM_DDE_ACK(wStatus, aCLOSE)

Return Code Explanation

1 Close Intercept is already working.

6 The specified format is not valid.

9 A system error occurred.

Once the intercept starts, the client receives DATA messages notifying it that the
close request is intercepted:
WM_DDE_DATA(hData, aCLOSE)

where:

hData Identifies a handle to a Windows global memory object containing:
typedef struct tagCLOSEREQ
{

unsigned char data[(sizeof(DDEDATA)-1)];
unsigned short uCloseReqCount; /* Number of the close requests.

} CLOSEREQ;

typedef union tagDDE_CLOSEREQ
{

DDEDATA DDEdata;
CLOSEREQ DDEclose;

} DDE_CLOSEREQ, *lpDDE_CLOSEREQ;

The DATA messages continue until a Stop Close Intercept message is sent to
Personal Communications.

Start Keystroke Intercept

3270 5250 VT

Yes Yes Yes

The Start Keystroke Intercept function allows a client application to filter any
keystrokes sent to a session by a terminal operator. After a call to this function,
keystrokes are intercepted, and the client receives them (KEYS).

The client sends the following command to begin intercept.

260 Emulator Programming

PostMessage(hServerWnd,
WM_DDE_ADVISE,
hClientWnd,
PackDDElParam(WM_DDE_ADVISE,
(hOptions, aKEYS));

where:

hOptions
Is a handle to a Windows global memory object DDEADVISE structure.

If the value of fDeferUpd is 1, DDE Data messages are sent to the client
application with the hData set to NULL. The client then issues a DDE
REQUEST to request the data item.

If the value of fAckReq is 1, the server does not notify the client of further
keystrokes until the server receives an ACK message from the client in
response to any previous keystrokes notification.

The cfFormat field specifies the format to send the keystrokes when the
keystroke is sent by a terminal operator. (Must be CF_DSPTEXT.)

aKEYS
Identifies keystrokes as the item.

Personal Communications Response
Personal Communications receives the Start Keystroke Intercept and returns an
ACK message if it can start the intercept. Otherwise a negative ACK message is
returned to the client with one of the following return codes in the low-order byte
of the wStatus field:
WM_DDE_ACK(wStatus, aKEYS)

Return Code Explanation

1 Keystroke Intercept is already started.

6 The specified format is not valid.

9 A system error occurred.

Once the intercept has started, the client receives DATA messages notifying it that
the keystroke is intercepted:
WM_DDE_DATA(hData, aKEYS)

The DATA messages continue until a Stop Keystroke Intercept message is sent to
Personal Communications. The format of the data item is the same format as if the
client requested the data item via a DDE_REQUEST.

Start Mouse Input Intercept

3270 5250 VT

Yes Yes Yes

The Start Mouse Input Intercept function allows a client application to intercept
mouse input when a terminal operator presses the mouse button on an emulator
session window. After calling this function, the client receives DATA messages that
include the PS position where mouse input occurred.

Chapter 6. DDE Functions in a 32–bit Environment 261

The client sends the following command to begin to intercept the mouse input.
PostMessage(hServerWnd,

WM_DDE_ADVISE,
hClientWnd,
PackDDElParam(WM_DDE_ADVISE,
(hOptions, aMOUSE));

where:

hOptions
Is a handle to a Windows global memory object DDEADVISE structure.

If the value of fDeferUpd is 1, DDE Data messages will be sent to the
client application with the hData set to NULL. The client must then issue a
DDE REQUEST to request the data item.

If the value of fAckReq is 1, the server does not notify the client of further
structured field data until the server receives an ACK message from the
client in response to any previous notification.

The cfFormat field specifies the format to send the data item has been
updated.

aMOUSE
Identifies the mouse as the item.

Personal Communications Response
Personal Communications receives the Start Mouse Input Intercept and returns an
ACK message if it can start this function. Otherwise a negative ACK message is
returned to the client with one of the following return codes in the low-order byte
of the wStatus field:
WM_DDE_ACK(wStatus, aMOUSE)

Return Code Explanation

1 Mouse Input Intercept has been already
started.

6 The specified format is not valid.

9 A system error occurred.

Once the Mouse Input Intercept starts, the client receives DATA messages of the
structured field:
WM_DDE_DATA(hData, aMOUSE)

where:

hData

If the format is CF_TEXT, Personal Communications returns the mouse
input information in the following format:
typedef struct tagMOUSE_CF_TEXT
{

unsigned char data[(sizeof(DDEDATA)-1)];
unsigned char PSPos[4]; /* PS Offset - Mouse position
unsigned char Tab1[1]; /* Tab character
unsigned char PSRowPos[4]; /* ROW number of Mouse position
unsigned char Tab2[1]; /* Tab character
unsigned char PSColPos[4]; /* Col number of Mouse position
unsigned char Tab3[1]; /* Tab character
unsigned char PSSize[4]; /* Size of Presentation Space

262 Emulator Programming

unsigned char Tab4[1]; /* Tab character
unsigned char PSRows[4[; /* Row number of PS
unsigned char Tab5[1]; /* Tab character
unsigned char PSCols[4]; /* Column number of PS
unsigned char Tab6[1]; /* Tab character
unsigned char Button[1]; /* Type of clicked mouse butt n
unsigned char Tab7[1]; /* Tab character
unsigned char Click[1]; /* Type of clicking
unsigned char Tab8[1]; /* Tab character
unsigned char zClickString[1];/* Retrieved string

} MOUSE_CF_TEXT;

typedef union tagDDE_MOUSE_CF_TEXT
{

DDEDATA DDEdata;
MOUSE_CF_TEXT DDEmouse;

} DDE_MOUSE_CF_TEXT, *lpDDE_MOUSE_CF_TEXT;

The following table shows the values in the parameters:

Parameter Name Meaning Value

PSPos PS offset of the position where
mouse was clicked

0 ... (PSSize – 1)

PSRowPos Row number of the position where
mouse was clicked

0 ... (PSRows – 1)

PSColPos Column number of the position
where mouse was clicked

0 ... (PSCols – 1)

PSSize Presentation space size

PSRows Number of presentation space
rows

PSCols Number of presentation space
columns

ButtonType Type of clicked mouse button
L Left button

M Middle button

R Right button

ClickType Type of clicking
S Single click

D Double click

ClickString Retrieved string to which the
mouse pointed

A character string terminated with
a ‘\0’

Tab1–8 A tab character for delimiter ‘\t’

If the format is CF_DSPTEXT, Personal Communications returns the mouse
input information in the following format:
typedef struct tagMOUSE_CF_DSPTEXT
{

unsigned char data[(sizeof(DDEDATA)-1)];
unsigned short uPSPos; /* PS Offset - Mouse position
unsigned short uPSRowPos; /* ROW number - Mouse position
unsigned short uPSColPos; /* Col number - Mouse position
unsigned short uPSSize; /* Size of Presentation Space
unsigned short uPSRows; /* Row number of PS
unsigned short uPSCols; /* Column number of PS
unsigned short uButtonType; /* Type of clicked mouse button
unsigned short uClickType; /* Type of clicking
unsigned char zClickString[1]; /* Retrieved string

} MOUSE_CF_DSPTEXT;

Chapter 6. DDE Functions in a 32–bit Environment 263

typedef union tagDDE_MOUSE_CF_DSPTEXT
{

DDEDATA DDEdata;
MOUSE_CF_DSPTEXT DDEmouse;

} DDE_MOUSE_CF_DSPTEXT, *lpDDE_MOUSE_CF_DSPTEXT;

The following table shows the values in the parameters:

Parameter Name Meaning Value

uPSPos PS offset of the position where the
mouse was clicked

0 ... (uPSSize – 1)

uPSRowPos Row number of the position where
the mouse was clicked

0 ... (uPSRows – 1)

uPSColPos Column number of the position
where the mouse was clicked

0 ... (uPSCols – 1)

uPSSize Size of the presentation space

uPSRows Number of rows of the
presentation space

uPSCols Number of columns of the
presentation space

uButtonType Type of the clicked mouse button
0x0001 Left button

0x0002 Middle button

0x0003 Right button

uClickType Type of clicking
0x0001 Single click

0x0002 Double click

szClickString Retrieved string to which the
mouse pointed

A character string terminated with
a ‘\0’

The DATA messages continue until a Stop Mouse Input Intercept message is sent
to Personal Communications.

Start Read SF

3270 5250 VT

Yes No No

The Start Read SF function allows a client application to read structured field data
from the host application. After using this function, the client receives DATA
messages notifying it that close requests occurred.

Note: Before using this function, the client must call the Set Structured Field
Service Condition function to pass the Query Reply data to the server.

The client sends the following command to begin a Read SF.
PostMessage(hServerWnd,

WM_DDE_ADVISE,
hClientWnd,
PackDDElParam(WM_DDE_ADVISE,
(hOptions, aSF));

264 Emulator Programming

where:

hOptions
Is a handle to a Windows global memory object DDEADVISE structure.

If the value of fDeferUpd is 1, DDE Data messages will be sent to the
client application with the hData set to NULL. The client must then issue a
DDE REQUEST to request the data item.

If the value of fAckReq is 1, the server does not notify the client of further
structured field data until the server receives an ACK message from the
client in response to any previous notification.

The cfFormat field specifies the format to send the structured field data. (It
must be CF_DSPTEXT.)

aSF Identifies structured field as the item.

PC/3270 Response
PC/3270 receives the Start Read SF and returns an ACK message if it can start the
Read SF. Otherwise a negative ACK message is returned to the client with one of
the following return codes in the low-order byte of the wStatus field:
WM_DDE_ACK(wStatus, aSF)

Return Code Explanation

1 Read SF is already started.

3 No prior Set Structured Field Service Condition function was
called.

6 The specified format is not valid.

9 A system error occurred.

Once the Read SF has started, the client receives DATA messages of the structured
field:
WM_DDE_DATA(hData, aSF)

where:

hData Identifies a handle to a Windows global memory object containing:
typedef struct tagMOUSE_CF_DSPTEXT
{

unsigned char data[(sizeof(DDEDATA)-1)];
unsigned short uPSPos; /* PS Offset - Mouse position
unsigned short uPSRowPos; /* ROW number - Mouse position
unsigned short uPSColPos; /* Col number - Mouse position
unsigned short uPSSize; /* Size of Presentation Space
unsigned short uPSRows; /* Row number of PS
unsigned short uPSCols; /* Column number of PS
unsigned short uButtonType; /* Type of clicked mouse button
unsigned short uClickType; /* Type of clicking
unsigned char zClickString[1]; /* Retrieved string

} MOUSE_CF_DSPTEXT;

typedef union tagDDE_MOUSE_CF_DSPTEXT
{

DDEDATA DDEdata;
MOUSE_CF_DSPTEXT DDEmouse;

} DDE_MOUSE_CF_DSPTEXT, *lpDDE_MOUSE_CF_DSPTEXT;
typedef struct tagSFDATA
{

unsigned char data[(sizeof(DDEDATA)-1)];

Chapter 6. DDE Functions in a 32–bit Environment 265

unsigned short uSFLength; /* Length of SF data
unsigned char szSFData[1]; /* SF data

} SFDATA;

typedef union tagDDE_SFDATA
{

DDEDATA DDEdata;
SFDATA DDEsfdata;

} DDE_SFDATA, *lpDDE_SFDATA;

The DATA messages continue until a Stop Read SF message is sent to PC/3270.

Start Session Advise

3270 5250 VT

Yes Yes Yes

The Start Session Advise function establishes a link between the Personal
Communications session and the client. This lets the client receive updates of the
presentation space (PS), the operator information area (OIA), or the trim rectangle
(TRIMRECT) when the data item is updated.

Note: If the client application needs conditional notification when the presentation
space is updated, set an advise condition prior to invoking the advise
function for the presentation space. See “Set Session Advise Condition” on
page 257.

The client sends the following command to begin a session advise.
PostMessage(hServerWnd,

WM_DDE_ADVISE,
hClientWnd,
PackDDElParam(WM_DDE_ADVISE,
hOptions, aItem));

where:

hOptions
Is a handle to a Windows global memory object DDEADVISE structure.
This is the structure:
typedef struct tagDDEADVISE
{
unsigned reserved:14; // Reserved
unsigned fDeferUpd:1; // Send notification only
unsigned fAckReq:1; // Client will ACK all notices
WORD cfFormat; // Clipboard format to use
} DDEADVISE, *lpDDEADVISE;

If the value of fDeferUpd is 1, DDE Data messages are sent to the client
application with the hData set to NULL. The client must then issue a DDE
REQUEST to request the data item.

If the value of fAckReq is 1, the server does not notify the client of further
changes to the data item until the server receives an ACK message from
the client in response to any previous update notification.

The cfFormat field specifies the format to send the data item when the
item has been updated.

266 Emulator Programming

aItem Specifies the item of information being requested; in this case, the value
can be PS, OIA, or TRIMRECT.

Personal Communications Response
Personal Communications receives the Start Session Advise and returns an ACK
message if it can start the advise. Otherwise, a negative ACK message is returned
to the client with one of the following return codes in the low-order byte of the
wStatus field:
WM_DDE_ACK(wStatus, aItem)

Return Code Explanation

1 Advise already active for data item.

6 Advise parameter not valid.

9 A system error occurred.

Once the advise has started, the client receives DATA messages notifying it that the
data item (PS, OIA, or TRIMRECT) has changed:
WM_DDE_DATA(hData, aItem)

The DATA messages continue until a Stop Session Advise message is sent to
Personal Communications. The format of the data item is the same as if the client
requested the data item via a DDE_REQUEST.

Stop Close Intercept

3270 5250 VT

Yes Yes Yes

The Stop Close Intercept function ends a client application's ability to intercept
close requests. The client sends the following command to perform the Stop Close
Intercept function.
PostMessage(hServerWnd,

WM_DDE_UNADVISE,
hClientWnd,
MAKELPARAM(NULL, aCLOSE));

where:

aCLOSE
Identifies close intercept as the item.

Personal Communications Response
If Personal Communications can perform the DDE_UNADVISE, Personal
Communications returns an ACK message containing positive status information to
the client:
WM_DDE_ACK(wStatus, aCLOSE)

If Personal Communications cannot perform the DDE_UNADVISE, Personal
Communications returns an ACK message containing negative status information
and one of the following return codes in the low-order byte of the wStatus word:

Chapter 6. DDE Functions in a 32–bit Environment 267

Return Code Explanation

1 Advise has not started yet.

9 A system error occurred.

Stop Keystroke Intercept

3270 5250 VT

Yes Yes Yes

The Stop Keystroke Intercept function ends a client application's ability to
intercept keystrokes. The client sends the following command to perform the Stop
Keystroke Intercept function.
PostMessage(hServerWnd,

WM_DDE_UNADVISE,
hClientWnd,
MAKELPARAM(NULL, aKEYS));

where:

aKEYS
Identifies keystrokes as the item.

Personal Communications Response
If Personal Communications can perform the DDE_UNADVISE, Personal
Communications returns an ACK message containing positive status information to
the client:
WM_DDE_ACK(wStatus, aKEYS)

If Personal Communications cannot perform the DDE_UNADVISE, Personal
Communications returns an ACK message containing negative status information
and one of the following return codes in the low-order byte of the wStatus word.

Return Code Explanation

1 Advise has not started yet.

9 A system error occurred.

Stop Mouse Input Intercept

3270 5250 VT

Yes Yes Yes

The Stop Mouse Input Intercept function ends a client application's ability to
intercept mouse input.

The client sends the following command to perform the Stop Mouse Input
Intercept function.
PostMessage(hServerWnd,

WM_DDE_UNADVISE,
hClientWnd,
MAKELPARAM(NULL, aMOUSE));

268 Emulator Programming

where:

aMOUSE
Identifies the mouse as the item.

Personal Communications Response
If Personal Communications can perform the DDE_UNADVISE, Personal
Communications returns an ACK message containing positive status information to
the client:
WM_DDE_ACK(wStatus, aMOUSE)

If Personal Communications cannot perform the DDE_UNADVISE, Personal
Communications returns an ACK message containing negative status information
and one of the following return codes in the low-order byte of the wStatus word.

Return Code Explanation

1 Advise has not started yet.

9 A system error occurred.

Stop Read SF

3270 5250 VT

Yes No No

The Stop Read SF function ends a client application's ability to read structured
field data.

The client sends the following command to perform the Stop Read SF function.
PostMessage(hServerWnd,

WM_DDE_UNADVISE,
hClientWnd,
MAKELPARAM(NULL, aSF));

where:

aSF Identified structured field as the item.

PC/3270 response
If PC/3270 can perform the DDE_UNADVISE, PC/3270 returns an ACK message
containing positive status information to the client:
WM_DDE_ACK(wStatus, aSF)

If PC/3270 cannot perform the DDE_UNADVISE, PC/3270 returns an ACK
message containing negative status information and one of the following return
codes in the low-order byte of the wStatus word.

Return Code Explanation

1 Advise has not started yet.

9 A system error occurred.

Chapter 6. DDE Functions in a 32–bit Environment 269

Stop Session Advise

3270 5250 VT

Yes Yes Yes

The Stop Session Advise function disconnects a link between Personal
Communications and the client. The client sends the following command to
perform the Stop Session Advise function.
PostMessage(hServerWnd,

WM_DDE_UNADVISE,
hClientWnd,
MAKELPARAM(NULL, aItem));

where:

aItem Specifies the item of information being requested; in this case, the value
can be PS, OIA, TRIMRECT, or NULL.

If the value of aItem is NULL, then the client has requested termination of all
active notifications for the conversation.

Personal Communications Response
If Personal Communications can perform the DDE_UNADVISE, Personal
Communications returns an ACK message containing positive status information to
the client:
WM_DDE_ACK(wStatus, aItem)

If Personal Communications cannot perform the DDE_UNADVISE, Personal
Communications returns an ACK message containing negative status information
and one of the following return codes in the low-order byte of the wStatus word.

Return Code Explanation

1 Advise has not started yet.

9 A system error occurred.

Terminate Session Conversation

3270 5250 VT

Yes Yes Yes

The Terminate Session Conversation function disconnects the client from the
Personal Communications session the client has previously started a conversation
with.

The client sends the following command to terminate a session conversation.
SendMessage(hServerWnd,

WM_DDE_TERMINATE,
hClientWnd,
0);

270 Emulator Programming

Personal Communications Response
Personal Communications acknowledges the terminate command with a terminate
message:
WM_DDE_TERMINATE

Terminate Structured Field Conversation

3270 5250 VT

Yes No No

The Terminate Structured Field Conversation function disconnects the client from
a structured field conversation.

The client sends the following command to terminate a structured field
conversation.
SendMessage(hServerWnd,

WM_DDE_TERMINATE,
hClientWnd,
0);

PC/3270 Response
PC/3270 acknowledges the terminate command with a terminate message:
WM_DDE_TERMINATE

Terminate System Conversation

3270 5250 VT

Yes Yes Yes

This disconnects the client from a system conversation.

The client sends the following command to terminate a system conversation.
SendMessage(hServerWnd,

WM_DDE_TERMINATE,
hClientWnd,
0);

Personal Communications Response
Personal Communications acknowledges the terminate command with this
message:
WM_DDE_TERMINATE

When the user closes a Personal Communications session, any global memory
blocks that were allocated by Personal Communications will be freed by Windows.
This can cause problems for the client if the client retains any of these global
memory objects for long periods of time. If the client application needs to keep the
information in a global memory item for a long time, it is suggested that the client
make a copy of global memory item into a global memory item the client
application owns.

Chapter 6. DDE Functions in a 32–bit Environment 271

Write SF

3270 5250 VT

Yes No No

The Write SF function allows a client application to write structured field data to
the host application.

Note: The client must call the Set Structured Field Service Condition function
before invoking the Write SF function.

The client sends the following message to write structured field data.
PostMessage(hServerWnd,

WM_DDE_POKE,
hClientWnd,
PackDDELParam(WM_DDE_POKE,
hData, aSF));

where:

hData Identifies a handle to a Windows global memory object containing:
typedef struct tagWRITESF
{

unsigned char poke[(sizeof(DDEPOKE)-1)];
unsigned short uSFLength; /* Length of SF data
unsigned char Work[8]; /* Work area
unsigned char szSFData[1]; /* SF data

} WRITESF;

typedef union tagDDE_WRITESF
{

DDEPOKE DDEpoke;
WRITESF DDEwritesf;

} DDE_WRITESF, *lpDDE_WRITESF;

aSF Identifies structured field as the item.

PC/3270 Response
PC/3270 receives structured field data and sends it to the host application. If the
data transmission completes successfully, then PC/3270 returns an ACK message:
WM_DDE_ACK(wStatus, aSF)

Otherwise PC/3270 returns an negative ACK message containing one of the
following return codes in the low-order byte of wStatus:

Return Code Explanation

2 Length is not valid.

6 The specified format is not valid.

9 A system error occurred.

DDE Menu Item API in a Windows 32-Bit Environment
Personal Communications supports the addition, deletion, and changing of
attributes of a dynamic menu item to the session menu bar. A menu will then be
created for this menu item with space for up to 16 submenu items.

272 Emulator Programming

Personal Communications supports two kinds of DDE conversation. One is
Personal Communications, which acts as a DDE menu client application, and the
other is Personal Communications, which acts as a DDE menu server.

DDE Menu Client
To add, delete, and change menu items, the following DDE conversation must take
place between the session and DDE menu server application.

The following data hierarchy details the menu map Personal Communications
expects when adding a dynamic menu item and submenu to a session menu bar:

POPUP "MyMenu"
BEGIN

MENUITEM "Send Files to Host", SEND
MENUITEM "Receive Files from Host", RECEIVE
MENUITEM SEPARATOR
MENUITEM "Convert Files", CONVERT

END

When the user selects a menu item from the new menu, Personal Communications
will send a DDE Initiate with 3270MenuN or 5250MenuN as the application and
itemN token as the topic. If an ACK is received from the DDE application,
Personal Communications will inhibit the session from accepting user input. The
menu client application can then display a dialog, and so on. When the menu
server application has completed processing of the menu item, it will send a DDE
Terminate to signal Personal Communications the process is complete. Personal
Communications will then reenable the window for the user.

DDE Menu Server
To add, delete, and change menu items, the following DDE conversation must take
place between the session and a DDE menu client application.

Session Menu Server
Application

INITIATE (a3270MenuX, aMenuBar)

ACK (a3270MenuX, aMenuBar)

REQUEST (aMenuMap, CF_TEXT)

DATA (aMenuMap, hData)

TERMINATE (NULL, NULL)

TERMINATE (NULL, NULL)

Figure 3. DDE Menu Server Conversation

Chapter 6. DDE Functions in a 32–bit Environment 273

When the user selects a menu item from the new menu, Personal Communications
will send a DDE DATA with aSELECTMENU as the item. When Personal
Communications sends DDE DATA to the client application, Personal
Communications will inhibit the session from accepting user input. The menu
client application can then display a dialog, and so on. When the menu client
application has completed processing of the menu item, it will send a DDE ACK to
signal Personal Communications the process is complete. Personal
Communications will then reenable the window for the user.

DDE Menu Functions
The DDE Menu Item API functions listed below are available for use with Personal
Communications. PC/3270 Windows mode and PC400 provide all of the following
functions.
v “Change Menu Item” on page 275
v “Create Menu Item” on page 281
v “Initiate Menu Conversation” on page 282
v “Start Menu Advise” on page 282
v “Stop Menu Advise” on page 284
v “Terminate Menu Conversation” on page 284

Menu Client
Application

Session
INITIATE (a3270MenuSX, aIBM3270)

ACK (a3270MenuSX, aIBM3270)

REQUEST (aCREATEMENU, CF_DSPTEXT)

DATA (aCREATEMENU, CF_DSPTEXT

POKE (aCHANGEMENU, CF_DSPTEXT)

ACK (aCHANGEMENU, wStatus)

ADVISE (aSELECTMENU, CF_DSPTEXT)

ACK (aSELECTMENU, wStatus)

DATA (sSELECTMENU, CF_DSPTEXT)

ACK (aSELECTMENU, CF_DSPTEXT)

UNADVISE (aSELECTMENU, CF_DSPTEXT)

ACK (aSELECTMENU, wStatus)

TERMINATE (NULL, NULL)

TERMINATE (NULL, NULL)

•
•
•

•
•
•

Figure 4. DDE Menu Client Conversation

274 Emulator Programming

Change Menu Item

3270 5250 VT

Yes Yes Yes

The Change Menu Item function appends, deletes, inserts, modifies, and removes
menu items. The client sends the following message to the session to change a
menu.
PostMessage(hServerWnd,

WM_DDE_POKE,
hClientWnd,
PackDDElParam(WM_DDE_POKE,
hData,aCHANGEMENU));

where:

hData

Identifies a handle to a Windows global memory object that contains the
requests for changing a menu. The global memory object contains the
following structure:
typedef struct tagChangeMenu
{

unsigned char poke[(sizeof(DDEPOKE)-1)];
HWND hMenu; /* Window handle of menu item
unsigned long wIDNew; /* Menu ID of new menu item
unsigned short wPosition; /* The position of menu item
unsigned short wOperation; /* Specifies the operation
unsigned short wFlags; /* Specifies the options
unsigned char szItemName[1]; /* String of the item

} CHANGEMENU;

typedef union tagDDE_CHANGEMENU
{

DDEPOKE DDEpoke;
CHANGEMENU DDEmenu;

} DDE_CHANGEMENU,*lpDDE_CHANGEMENU;

The following operations are supported:
MF_APPEND,MF_CHANGE ... MF_BYCOMMANDS are replaced with below commands.
PCS_INSERT 0x0000 /* Inserts a menu item into a menu.
PCS_CHANGE 0x0080 /* Modifies a menu item in a menu.
PCS_APPEND 0x0100 /* Appends a menu item to the end of a menu
PCS_DELETE 0x0200 /* Deletes a menu item from a menu,

/* destroying the menu item.
PCS_REMOVE 0x1000 /* Removes a menu item from a menu but

/* does not destroy the menu item.

PCS_CHECKED 0x0008 /* Places a check mark next to the item.
PCS_DISABLED 0x0002 /* Disables the menu item so that it cannot

/* be selected, but does not gray it.
PCS_ENABLED 0x0000 /* Enables the menu item so that it can be

/* selected and restores from its grayed
/* state.

PCS_GRAYED 0x0001 /* Disables the menu item so that it cannot
/* be selected, and grays it.

PCS_MENUBARBREAK 0x0020 /* Same as PCS_MENUBREAK except that for
/* popup menus, separates the new column
/* from the old column with a vertical line

PCS_MENUBREAK 0x0040 /* Places the item on a new line for menu
/* bar items. For popup menus, places the
/* item in a new column, with no dividing
/* line between the columns.

Chapter 6. DDE Functions in a 32–bit Environment 275

PCS_SEPARATOR 0x0800 /* Draws a horizontal dividing line. Can
/* only be used in a popup menu. This line
/* cannot be grayed, disabled, or
/* highlighted. The wIDNew and szItemName
/* fields are ignored.

PCS_UNCHAKED 0x0000 /* Does not place a check mark next to the
/* item (default).

PCS_BYCOMMAND 0x0000 /* Specifies that the nPosition parameter
/* gives the menu item control ID number.
/* This is the default if neither item
/* control ID number. This is the default
/* if neither PCS_BYCOMMAND nor
/* PCS_POSITION is set.

PCS_BYPOSITION 0x0400 /* Specifies that the nPosition parameter
/* gives the position of the menu item
/* to be deleted rather than an ID number.

If the MF_APPEND is specified in the wOperation field, the following
fields must be filled:

hMenu

Identifies the menu to be appended. To append a new item to a
pop-up menu, specify the handle that is returned from Personal
Communications when the Create Menu Item function is executed.
To append a new item to a top-level menu bar, specify NULL.

wIDNew

Specifies the command ID of the new menu item. If a new item is
added to the top-level menu bar, the handle of the menu item
returned from Personal Communications when Create Menu Item
function is executed.

wFlags

The following options can be set:
MF_CHECKED // Places a check mark next to

// the item.
MF_DISABLED // Disables the menu item so

// that it cannot be selected,
// but does not gray it.

MF_ENABLED // Enables the menu item so that
// it can be selected and
// restores from its grayed
// state.

MF_GRAYED // Disables the menu item so
// that it cannot be selected,
// and grays it.

MF_MENUBARBREAK // Same as MF_MENUBREAK except
// that for pop-up menus,
// separates the new column from
// the old column with a
// vertical line.

MF_MENUBREAK // Places the item on a new line
// for menu bar items.
// For pop-up menus, places the
// item in a new column, with
// no dividing line between the
// columns.

MF_SEPARATOR // Draws a horizontal dividing
// line. Can only be used in a
// pop-up menu. This line cannot
// be grayed, disabled, or
// highlighted. The wIDNew and
// szItemName fields are

276 Emulator Programming

// ignored.
MF_UNCHECKED // Does not place a check mark

// next to the item (default).

szItemName

Specifies the contents of the new menu item. Contains a
null-terminated character string.

If the MF_CHANGE is specified in the wOperation field, fill these fields:

hMenu

Identifies the menu to be changed. To change an item of a pop-up
menu, specify the handle that is returned from Personal
Communications when the Create Menu Item function is executed.
To change an item to a top-level menu bar, specify NULL.

nPosition

Specifies the menu item to be changed. The interpretation of the
wPosition parameter depends on the setting of the wFlags
parameter.

MF_BYPOSITION
Specifies the position of the existing menu item. The first
item in the menu is at position zero.

MF_BYCOMMAND
Specifies the command ID of the existing menu item.

wIDNew

Specifies the command ID of the menu item. If an item of the
top-level menu bar is changed, the handle of the menu item
returned from Personal Communications when the Create Menu
Item function is executed.

wFlags

The following options can be set:
MF_BYCOMMAND // Specifies that the nPosition

// parameter gives the menu
// item control ID number.
// This is the default if
// neither MF_BYCOMMAND nor
// MF_BYPOSITION is set.

MF_BYPOSITION // Specifies that the nPosition
// parameter gives the position
// of the menu item to be
// changed rather than an ID
// number.

MF_CHECKED // Places a check mark next to
// the item.

MF_DISABLED // Disables the menu item so
// that it cannot be selected,
// but does not gray it.

MF_ENABLED // Enables the menu item so
// that it can be selected and
// restores from its grayed
// state.

MF_GRAYED // Disables the menu item so
// that it cannot be selected,
// and grays it.

MF_MENUBARBREAK // Same as MF_MENUBREAK except
// that for pop-up menus,
// separates the new column

Chapter 6. DDE Functions in a 32–bit Environment 277

// from the old column with a
// vertical line.

MF_MENUBREAK // Places the item on a new
// line for menu bar items.
// For pop-up menus, places the
// item in a new column, with
// no dividing line between
// the columns.

MF_SEPARATOR // Draws a horizontal dividing
// line. Can only be used in
// a pop-up menu. This line
// cannot be grayed, disabled,
// or highlighted. The wIDNew
// and szItemName fields are
// ignored.

MF_UNCHECKED // Does not place a check mark
// next to the item (default).

szItemName

Specifies the contents of the menu item. Contains a null-terminated
character string.

If the MF_DELETE is specified in the wOperation field, fill these fields:

hMenu

Identifies the menu to be deleted. To delete an item from a pop-up
menu, specify the handle that is returned from Personal
Communications when the Create Menu Item, function is
executed. To delete an item from a top-level menu bar, specify
NULL.

nPosition

Specifies the menu item to be deleted. The interpretation of the
nPosition parameter depends on the setting of the wFlags
parameter.

MF_BYPOSITION
Specifies the position of the existing menu item. The first
item in the menu is at position zero.

MF_BYCOMMAND
Specifies the command ID of the existing menu item.

wFlags

The following options can be set:
MF_BYCOMMAND // Specifies that the nPosition

// parameter gives the menu
// item control ID number.
// This is the default if
// neither MF_BYCOMMAND nor
// MF_BYPOSITION is set.

MF_BYPOSITION // Specifies that the nPosition
// parameter gives the position
// of the menu item to be
// deleted rather than an ID
// number.

If the MF_INSERT is specified in the wOperation field, the following fields
must be filled:

hMenu

278 Emulator Programming

Identifies the menu to be inserted. To insert an item to a pop-up
menu, specify the handle that is returned from Personal
Communications when the Create Menu Item function is executed.
To change an item to a top-level menu bar, specify NULL.

nPosition

Specifies the menu item before the new menu item is to be
inserted. The interpretation of the nPosition parameter depends on
the setting of the wFlags parameter.

MF_BYPOSITION
Specifies the position of the existing menu item. The first
item in the menu is at position zero.

MF_BYCOMMAND
Specifies the command ID of the existing menu item.

wIDNew

Specifies the command ID of the menu item or, if an item of the
top-level menu bar is changed, the handle of the menu item
returned from Personal Communications when the Create Menu
Item function is executed.

wFlags

The following options can be set:
MF_BYCOMMAND // Specifies that the nPosition

// parameter gives the menu
// item control ID number. This
// is the default if neither
// MF_BYCOMMAND nor MF_BYPOSITION
// is set.

MF_BYPOSITION // Specifies that the nPosition
// parameter gives the position
// of the menu item to be
// changed rather than an ID
// number.

MF_CHECKED // Places a check mark next to
// the item.

MF_DISABLED // Disables the menu item so
// that it cannot be selected,
// but does not gray it.

MF_ENABLED // Enables the menu item so
// that it can be selected and
// restores from its grayed
// state.

MF_GRAYED // Disables the menu item so
// that it cannot be selected,
// and grays it.

MF_MENUBARBREAK // Same as MF_MENUBREAK except
// that for pop-up menus,
// separates the new column
// from the old column with a
// vertical line.

MF_MENUBREAK // Places the item on a new
// line for menu bar items.
// For pop-up menus, places the
// item in a new column, with
// no dividing line between the
// columns.

MF_SEPARATOR // Draws a horizontal dividing
// line. Can only be used in
// a pop-up menu. This line
// cannot be grayed, disabled,

Chapter 6. DDE Functions in a 32–bit Environment 279

// or highlighted. The wIDNew
// and szItemName fields are
// ignored.

MF_UNCHECKED // Does not place a check mark
// next to the item (default).

szItemName

Specifies the contents of the menu item. Contains a null-terminated
character string.

If the MF_REMOVE is specified in the wOperation field, the following
fields must be filled:

hMenu

Identifies the menu to be removed. To remove an item from a
pop-up menu, specify the handle that is returned from Personal
Communications when the Create Menu Item function is executed.
To remove an item from a top-level menu bar, specify NULL.

nPosition

Specifies the menu item to be removed. The interpretation of the
nPosition parameter depends upon the setting of the wFlags
parameter.

MF_BYPOSITION
Specifies the position of the existing menu item. The first
item in the menu is at position zero.

MF_BYCOMMAND
Specifies the command ID of the existing menu item.

wFlags

The following options can be set:
MF_BYCOMMAND // Specifies that the nPosition

// parameter gives the menu
// item control ID number.
// This is the default if
// neither MF_BYCOMMAND nor
// MF_BYPOSITION is set.

MF_BYPOSITION // Specifies that the nPosition
// parameter gives the
// position of the menu item to
// be removed rather than an ID
// number.

Personal Communications Response
Personal Communications receives the requests to change a menu and processes
them. If the requests cannot be accepted, Personal Communications returns a
negative ACK message containing one of the following status codes in the
low-order byte of the wStatus word. Otherwise, Personal Communications returns
a positive ACK message signalling that the keystrokes have been sent.
WM_DDE_ACK(wStatus,aCHANGEMENU)

Return code Explanation

1 The specified parameters are not valid.

6 The specified format is not valid.

9 A system error occurred.

280 Emulator Programming

Create Menu Item

3270 5250 VT

Yes Yes Yes

The Create Menu Item function requests Personal Communications to add a menu
item to the menu bar. A pop-up menu will be created at the same time, but it is
initially empty and can be filled with menu items by using this function. The
string of the new menu item that will be added to a top-level menu bar, is also
specified by using the Change Menu Item function.

The client sends the following message to create a menu item.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat,aCREATEMENU));

where:

cfFormat

Identifies the format for the ID of the new menu item. The valid value is
CF_DSPTEXT.

aCREATEMENU

Identifies the create menu item.

Personal Communications Response
Personal Communications returns the handle of the newly created menu item in a
DDE data message if the Personal Communications can create a menu item.
WM_DDE_DATA(hData,aCREATEMENU)

where:

hData

Identifies a handle to a windows global memory object that contains the
handle of the menu item. The global memory object contains the following
structure:
typedef struct tagCreateMenu
{

unsigned char data[(sizeof(DDEDATA)-1)];
HWND hMemuItem; /* Handle of the menu item

} CREATEMENU;

typedef union tagDDE_CREATEMENU
{

DDEDATA DDEdata;
CREATEMENU DDEmenu;

} DDE_CREATEMENU,*lpDDE_CREATEMENU;

or
WM_DDE_ACK(wStatus,aCREATEMENU)

If Personal Communications cannot create a menu item, one of the following status
codes is returned in the low-order byte of the wStatus word:

Chapter 6. DDE Functions in a 32–bit Environment 281

Return Code Explanation

6 The specified format is not valid.

9 A system error occurred.

Initiate Menu Conversation

3270 5250 VT

Yes Yes Yes

The Initiate Menu Conversation function connects a client application to an
available session of Personal Communications. Once a menu conversation is
established, the session menu is reserved exclusively for the client until the
conversation is terminated.

The client application sends the following message to initiate a DDE conversation
with a menu:
SendMessage(-1,

WM_DDE_INITIATE,
hClientWnd,
MAKELPARAM(aIBM327032,SN));

where:

aIBM327032

Identifies the application atom. The string used to create atom aIBM327032
is IBM327032. In the PC400, the application atom is aIBM525032 and the
string IBM525032 is used to create it.

SN

Identifies the topic atom. The string used to create atom a3270MenuSN is
3270MenuS appended with the session ID A, B, ..., Z. In the PC400, the
topic atom is a5250MenuSN and the string 5250MenuS appended with the
session ID A, B, ..., Z. is used to create it.

Personal Communications Response
If Personal Communications can support a conversation with the client application,
Personal Communications acknowledges the INITIATE transaction with:
WM_DDE_ACK(aIBM327032,SN)

Start Menu Advise

3270 5250 VT

Yes Yes Yes

The Start Menu Advise function allows a client application to process a user
defined routine when the menu item that is added by the client application, is
selected. After using this function, the client receives DATA messages indicating
which menu item is selected.

The client sends the following command to begin a menu advise.

282 Emulator Programming

PostMessage(hServerWnd,
WM_DDE_ADVISE,
hClientWnd,
PackDDElParam(WM_DDE_ADVISE,
hOptions,aSELECTMENU));

where:

hOptions

Is a handle to a Windows global memory object with the following
structure:
typedef struct tagOPTIONS
{
unsigned reserved:14; // Reserved
unsigned fDeferUpd:1; // Send notification only

// (Must be 0)
unsigned fAckReq:1; // Client will ACK all notices

// (Must be 1)
WORD cfFormat; // Always CF_DSPTEXT
} OPTIONS,FAR *lpOPTIONS;

aSELECTMENU

Identifies a menu advise as the item.

Personal Communications Response
Personal Communications receives the Start Menu Advise and returns an ACK
message if it can start the function. Otherwise, a negative ACK message is returned
to the client with one of the following return codes in the low-order byte of the
wStatus field.

Return Code Explanation

1 Menu Advise has been already started.

6 The specified format is not valid.

9 A system error occurred.

WM_DDE_ACK(wStatus,aSELECTMENU)

Once the menu item (added to the client application) is selected, the client receives
DATA messages notifying it which menu item is selected:
WM_DDE_DATA(hData,aSELECTMENU)

where:

hData

Identifies a handle to a Windows global memory object containing:
typedef struct tagSELECTMENU
{

unsigned char data[(sizeof(DDEDATA)-1)];
unsigned short uIDSelected; /* Command ID of the selected menu item

} SELECTMENU;

typedef union tagDDE_SELECTMENU
{

DDEDATA DDEdata;
SELECTMENU DDEmenu;

} DDE_SELECTMENU,*lpDDE_SELECTMENU;

Chapter 6. DDE Functions in a 32–bit Environment 283

The DATA messages continue until a Stop Menu Advise message is sent to
Personal Communications.

Stop Menu Advise

3270 5250 VT

Yes Yes Yes

The Stop Menu Advise function ends a client application's ability to process a
user-defined routine when the menu item added by the client application is
selected. The client sends the following command to perform the Stop Menu
Advise function.
PostMessage(hServerWnd,

WM_DDE_UNADVISE,
hClientWnd,
MAKELPARAM(NULL,aSELECTMENU));

where:

aSELECTMENU

Identifies a menu advise as the item.

Personal Communications Response
If Personal Communications can perform the DDE_UNADVISE, Personal
Communications returns an ACK message containing positive status information to
the client:
WM_DDE_ACK(wStatus,aCLOSE)

If Personal Communications cannot perform the DDE_UNADVISE, Personal
Communications returns an ACK message containing negative status information
and one of the following return codes in the low-order byte of the wStatus word:

Return Code Explanation

1 Advise has not started yet.

9 A system error occurred.

Terminate Menu Conversation

3270 5250 VT

Yes Yes Yes

The Terminate Menu Conversation function disconnects the client from the
Personal Communications session with which a conversation had been previously
started.

The client sends the following command to terminate a session conversation:
SendMessage(hServerWnd,

WM_DDE_TERMINATE,
hClientWnd,
0);

284 Emulator Programming

Personal Communications Response
Personal Communications acknowledges the terminate command with this
message:
WM_DDE_TERMINATE

Summary of DDE Functions in a Windows 32-Bit Environment
The following table lists the DDE functions that can be used with PC/3270 or
PC400. The table lists the name of the DDE function, the command the client sends
to PC/3270 or PC400, the values that can be used for the variables in the client
command, and the server response.

Table 20. DDE Function Summary

Function Name Client Command Server Response

Code
Conversion
(system)

PostMessage(hServerWnd
WM_DDE_POKE,
hClientWnd,
PackDDEIParam(WM_DDE_POKE,hData,
aCONV));

UnPackDDElParam(WM_DDE_ACK,wStatus,aCONV)

Initiate System
Conversation
(system)

SendMessage(-1,
WM_DDE_INITIATE,
hClientWnd,
MAKELPARAM(aIBM327032,aSystem));

LOWORD/HIWORD to unpack
WM_DDE_ACK(aIBM327032,aSystem)

Get System
Configuration
(system)

PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat,aSYSCON));

UnPackDDElParam(WM_DDE_DATA,hData,aSYSCON)
or
UnPackDDElParam(WM_DDE_ACK,wStatus,aSYSCON)

cfFormat = CF_TEXT

Get System
Formats
(system)

PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat,aFORMATS));

UnPackDDElParam(WM_DDE_DATA,hData,aFORMATS)
or
UnPackDDElParam(WM_DDE_ACK,wStatus,aFORMATS)

cfFormat = CF_TEXT

Get System
Status (system)

PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat,aSTATUS));

UnPackDDElParam(WM_DDE_DATA,hData,aSTATUS)
or
UnPackDDElParam(WM_DDE_ACK,wStatus,aSTATUS)

cfFormat = CF_TEXT

Get System
SysItems
(system)

PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat,aSYSITEMS));

UnPackDDElParam(WM_DDE_DATA,hData,aSYSITEMS)
or
UnPackDDElParam(WM_DDE_ACK,wStatus,aSYSITEMS)

cfFormat = CF_TEXT

Get System
Topics (system)

PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat,aTOPICS));

UnPackDDElParam(WM_DDE_DATA,hData,aTOPICS)
or
UnPackDDElParam(WM_DDE_ACK,wStatus,aTOPICS)

cfFormat = CF_TEXT

Terminate
System
Conversation
(system)

SendMessage(hServerWnd,
WM_DDE_TERMINATE,
hClientWnd,
0);

WM_DDE_TERMINATE

Chapter 6. DDE Functions in a 32–bit Environment 285

Table 20. DDE Function Summary (continued)

Function Name Client Command Server Response

Initiate Session
Conversation
(session)

SendMessage(-1,
WM_DDE_INITIATE,
hClientWnd,
MAKELPARAM(aIBM327032,aSessionN));

LOWORD/HIWORD to unpack
WM_DDE_ACK(aIBM327032,aSessionN)

N = a session letter A through Z.

Find Field
(session)

PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat,aFIELD));

UnPackDDElParam(WM_DDE_DATA,hData,aFIELD)
or
UnPackDDElParam(WM_DDE_ACK,wStatus,aFIELD)

cfFormat = CF_DSPTEXT

Get Keystrokes
(session)

PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat,aKEYS));

UnPackDDElParam(WM_DDE_DATA,hData,aKEYS)
or
UnPackDDElParam(WM_DDE_ACK,wStatus,aKEYS)

cfFormat = CF_DSPTEXT

Get Mouse
Input (session)

PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat,aMOUSE));

UnPackDDElParam(WM_DDE_DATA,hData,aMOUSE)
or
UnPackDDElParam(WM_DDE_ACK,wStatus,aMOUSE)

cfFormat = CF_TEXT | CF_DSPTEXT

Get Number of
Close Requests
(session)

PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat,aCLOSE));

UnPackDDElParam(WM_DDE_DATA,hData,aCLOSE)
or
UnPackDDElParam(WM_DDE_ACK,wStatus,aCLOSE)

cfFormat = CF_DSPTEXT

Get Operator
Information
Area (session)

PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat,aOIA));

UnPackDDElParam(WM_DDE_DATA,hData,aOIA)
or
UnPackDDElParam(WM_DDE_ACK,wStatus,aOIA)

cfFormat = CF_DSPTEXT

Get Partial
Presentation
Space (session)

PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat,aEPS));

UnPackDDElParam(WM_DDE_DATA,hData,aEPS)
or
UnPackDDElParam(WM_DDE_ACK,wStatus,aEPS)

cfFormat = CF_TEXT | CF_DSPTEXT

Get
Presentation
Space (session)

PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat,aPS));

UnPackDDElParam(WM_DDE_DATA,hData,aPS)
or
UnPackDDElParam(WM_DDE_ACK,wStatus,aPS)

cfFormat = CF_TEXT | CF_DSPTEXT

Get Session
Status (session)

PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat,aSSTAT));

UnPackDDElParam(WM_DDE_DATA,hData,aSSTAT)
or
UnPackDDElParam(WM_DDE_ACK,wStatus,aSSTAT)

cfFormat = CF_TEXT

Get Trim
Rectangle
(session)

PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat,aTRIMRECT));

UnPackDDElParam(WM_DDE_DATA,hData,aTRIMRECT)
or
UnPackDDElParam(WM_DDE_ACK,wStatus,aTRIMRECT)

cfFormat = CF_TEXT

286 Emulator Programming

Table 20. DDE Function Summary (continued)

Function Name Client Command Server Response

Put Data to
Presentation
Space (session)

PostMessage(hServerWnd,
WM_DDE_POKE,
hClientWnd,
PackDDElParam(WM_DDE_POKE,
hData,aEPS));

UnPackDDElParam(WM_DDE_ACK,wStatus,aEPS)

hData = Handle to a
global memory object

Search for
String (session)

PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat,aSTRING));

UnPackDDElParam(WM_DDE_DATA,hData,aSTRING)
or
UnPackDDElParam(WM_DDE_ACK,wStatus,aSTRING)

cfFormat = CF_DSPTEXT

Send
Keystrokes
(session)

PostMessage(hServerWnd,
WM_DDE_POKE,
hClientWnd,
PackDDElParam(WM_DDE_POKE,
hData,aKEYS));

UnPackDDElParam(WM_DDE_ACK,wStatus,aKEYS)

hData = Handle to a
global memory object

Session Execute
Macro (session)

PostMessage(hServerWnd,
WM_DDE_EXECUTE,
hClientWnd,
(LPARAM)hCommands);

UnPackDDElParam(WM_DDE_ACK,wStatus, NULL)

hCommands = Handle to a
global memory object

Set Cursor
Position
(session)

PostMessage(hServerWnd,
WM_DDE_POKE,
hClientWnd,
PackDDElParam(WM_DDE_POKE,
hData,aSETCURSOR));

UnPackDDElParam(WM_DDE_ACK,wStatus,aSETCURSOR)

hData = Handle to a
global memory object

Set Mouse
Intercept
Condition
(session)

PostMessage(hServerWnd,
WM_DDE_POKE,
hClientWnd,
PackDDElParam(WM_DDE_POKE,
hData,aMOUSE));

UnPackDDElParam(WM_DDE_ACK,wStatus,aMOUSE)

cfFormat = CF_TEXT | CF_DSPTEXT
hData = Handle to a

global memory object

Set
Presentation
Space Service
Condition
(session)

PostMessage(hServerWnd,
WM_DDE_POKE,
hClientWnd,
PackDDElParam(WM_DDE_POKE,
hData,aEPSCOND));

UnPackDDElParam(WM_DDE_ACK,wStatus,aEPSCOND)

hData = Handle to a
global memory object

Set Session
Advise
Condition
(session)

PostMessage(hServerWnd,
WM_DDE_POKE,
hClientWnd,
PackDDElParam(WM_DDE_POKE,
hData,aPSCOND));

UnPackDDElParam(WM_DDE_ACK,wStatus,aPSCOND)

hData = Handle to a
global memory object

Chapter 6. DDE Functions in a 32–bit Environment 287

Table 20. DDE Function Summary (continued)

Function Name Client Command Server Response

Start Close
Intercept
(session)

SendMessage(hServerWnd,
WM_DDE_ADVISE,
hClientWnd,
PackDDElParam(WM_DDE_ADVISE,
hOptions,aCLOSE));

UnPackDDElParam(WM_DDE_ACK,wStatus,aCLOSE)
or
UnPackDDElParam(WM_DDE_DATA,hData,aCLOSE)

hOptions = Handle to a
global memory object

Start Keystroke
Intercept
(session)

SendMessage(hServerWnd,
WM_DDE_ADVISE,
hClientWnd,
PackDDElParam(WM_DDE_ADVISE,
hOptions,aKEYS));

UnPackDDElParam(WM_DDE_ACK,wStatus,aKEYS)
or
UnPackDDElParam(WM_DDE_DATA,hData,aKEYS)

hOptions = Handle to a
global memory object

Start Mouse
Input Intercept
(session)

SendMessage(hServerWnd,
WM_DDE_ADVISE,
hClientWnd,
PackDDElParam(WM_DDE_ADVISE,
hOptions,aMOUSE));

UnPackDDElParam(WM_DDE_ACK,wStatus,aMOUSE)
or
UnPackDDElParam(WM_DDE_DATA,hData,aMOUSE)

hOptions = Handle to a
global memory object

Start Session
Advise
(session)

PostMessage(hServerWnd,
WM_DDE_ADVISE,
hClientWnd,
PackDDElParam(WM_DDE_ADVISE,
hOptions,aItem));

UnPackDDElParam(WM_DDE_ACK,wStatus,aItem)
or
UnPackDDElParam(WM_DDE_DATA,hData,aItem)

hOptions = Handle to a
global memory object

aItem = OIA | PS | TRIMRECT

Stop Close
Intercept
(session)

PostMessage(hServerWnd,
WM_DDE_UNADVISE,
hClientWnd,
MAKELPARAM(NULL,aCLOSE));

UnPackDDElParam(WM_DDE_ACK,wStatus,aCLOSE)

Stop Keystroke
Intercept
(session)

PostMessage(hServerWnd,
WM_DDE_UNADVISE,
hClientWnd,
MAKELPARAM(NULL,aKEYS));

UnPackDDElParam(WM_DDE_ACK,wStatus,aKEYS)

Stop Mouse
Input Intercept
(session)

PostMessage(hServerWnd,
WM_DDE_UNADVISE,
hClientWnd,
MAKELPARAM(NULL,aMOUSE));

UnPackDDElParam(WM_DDE_ACK,wStatus,aMOUSE)

Stop Session
Advise
(session)

PostMessage(hServerWnd,
WM_DDE_UNADVISE,
hClientWnd,
MAKELPARAM(NULL,aItem));

UnPackDDElParam(WM_DDE_ACK,wStatus,aItem)

aItem = SysItems | Topics | NULL

Terminate
Session
Conversation
(session)

SendMessage(hServerWnd,
WM_DDE_TERMINATE,
hClientWnd,
0);

WM_DDE_TERMINATE

288 Emulator Programming

Table 20. DDE Function Summary (continued)

Function Name Client Command Server Response

Initiate
Structured
Field
Conversation
(structured
field)

SendMessage(-1,
WM_DDE_INITIATE,
hClientWnd,
MAKELPARAM(aIBM327032,aLUN_xxxx));

LOWORD/HIWORD to unpack
WM_DDE_ACK(aIBM327032,aLUN_xxxx)

N = a session letter A through Z.
xxxx = a user defined string.

Terminate
Structured
Field
Conversation
(structured
field)

SendMessage(hServerWnd,
WM_DDE_TERMINATE,
hClientWnd,
0);

WM_DDE_TERMINATE

Set Structured
Field Service
Condition
(structured
field)

PostMessage(hServerWnd,
WM_DDE_POKE,
hClientWnd,
PackDDElParam(WM_DDE_POKE,
hData,aSFCOND));

UnPackDDElParam(WM_DDE_ACK,wStatus,aSFCOND)

hData = Handle to a
global memory object

Start Read SF
(structured
field)

PostMessage(hServerWnd,
WM_DDE_ADVISE,
hClientWnd,
PackDDElParam(WM_DDE_ADVISE,
hOptions,aSF));

UnPackDDElParam(WM_DDE_ACK,wStatus,aSF)
or
UnPackDDElParam(WM_DDE_DATA,hData,aSF)

hOptions = Handle to a
global memory object

Stop Read SF
(structured
field)

PostMessage(hServerWnd,
WM_DDE_UNADVISE,
hClientWnd,
MAKELPARAM(NULL,aSF));

UnPackDDElParam(WM_DDE_ACK,wStatus,aSF)

Write SF
(structured
field)

PostMessage(hServerWnd,
WM_DDE_POKE,
hClientWnd,
PackDDElParam(WM_DDE_POKE,
hData,aSF));

UnPackDDElParam(WM_DDE_ACK,wStatus,aSF)

hData = Handle to a
global memory object

Initiate Menu
Conversation
(menu)

SendMessage(-1,
WM_DDE_INITIATE,
hClientWnd,
MAKELPARAM(aIBM327032,a3270MenuSN));

LOWORD/HIWORD to unpack
WM_DDE_ACK(aIBM327032,a3270MenuSN)

N = a session letter A through Z

Change Menu
Item (menu)

PostMessage(hServerWnd,
WM_DDE_POKE,
hClientWnd,
PackDDElParam(WM_DDE_POKE,
hData,aCHANGEMENU));

UnPackDDElParam(WM_DDE_ACK,wStatus,aCHANGEMENU)

hData = Handle to a
global memory object

Create Menu
Item (menu)

PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELPARAM(cfFormat,aCREATEMENU));

UnPackDDElParam(WM_DDE_DATA,hData,aCREATEMENU)
or
UnPackDDElParam(WM_DDE_ACK,wStatus,aCREATEMENU)

cfFormat = CF_DSPTEXT

Chapter 6. DDE Functions in a 32–bit Environment 289

Table 20. DDE Function Summary (continued)

Function Name Client Command Server Response

Start Menu
Advise (menu)

PostMessage(hServerWnd,
WM_DDE_ADVISE,
hClientWnd,
PackDDElParam(WM_DDE_ADVISE,
hOption,aSELECTMENU));

UnPackDDElParam(WM_DDE_ACK,wStatus,aSELECTMENU)
or
UnPackDDElParam(WM_DDE_DATA,hData,aSELECTMENU)

hData = Handle to a
global memory object

Stop Menu
Advise (menu)

PostMessage(hServerWnd,
WM_DDE_UNADVISE,
hClientWnd,
MAKELPARAM(NULL,aSELECTMENU));

UnPackDDElParam(WM_DDE_ACK,wStatus,aCLOSE)

Terminate
Menu
Conversation
(menu)

SendMessage(hServerWnd,
WM_DDE_TERMINATE,
hClientWnd,
0);

WM_DDE_TERMINATE

290 Emulator Programming

Chapter 7. Using DDE Functions with a DDE Client
Application

Windows allows users to run multiple application programs and to exchange data
between Windows application programs. Dynamic data exchange (DDE) allows
users this data exchange. Data exchange among Windows application programs
can be considered as conversations between server and client application programs.
The client application is an application program that starts DDE, and the server
application is an application program that responds to the client application.

The client application needs three names (application program name, topic name,
and item name) that are recognized by the server application to start the
conversation to exchange data. The client application starts a DDE conversation
with the server application by specifying the application program and topic names,
and defines the exchange data by specifying the item name.

Personal Communications has a function as a DDE server, and can establish DDE
conversations with other Windows application programs (Microsoft Visual Basic,
Microsoft Excel, Microsoft Word) that have DDE client functions.

Using the Personal Communications DDE Interface
To start a DDE conversation and data exchange with Personal Communications,
client application programs need to know the application program name, topic
name, and item name that Personal Communications can recognize. The exchange
data type between an application program and Personal Communications is
defined with the combination of these names.

Table 21. Naming Scheme for Data Items

Level Description Example

Application A Windows task or a specific task of
the application. In this book,
application programs are Personal
Communications.

IBM327032

Topic A specific part of application
programs.

SessionA

Item Type of data passed during DDE
conversation.

PS (Presentation Space)

Application
As a Windows DDE server, Personal Communications supports application
name IBM327032 or IBM525032 for 32-bit applications, IBM3270 or
IBM5250 for 16-bit applications.

Topic Topic specifies the corresponding topic in the application. The following
table shows the topics available to the users:

Table 22. Topics for Personal Communications

Topic Conversation Name Conversation Type

System System conversation Cold link

SessionA, SessionB, ..., SessionZ Session conversation Cold link and hot link

© Copyright IBM Corp. 1989, 2016 291

Table 22. Topics for Personal Communications (continued)

Topic Conversation Name Conversation Type

SessA_xxxx, SessB_xxxx, ...,
SessZ_xxxx

Session conversation Hot link

Item The client application programs can exchange data and information with
Personal Communications. Types of data and information are specified by
item name.

Explanations for topic conversation procedures and data items to be used follow.

System Conversation
To use the Personal Communications system DDE interface, do as follows:
1. Start the system conversation.
2. Request system information.
3. Terminate the system conversation.

Starting the DDE System Conversation with Personal
Communications
To use the DDE interface with Personal Communications, the client application
should first start a DDE conversation with Personal Communications. To start a
DDE conversation, specify IBM327032 or IBM525032 as an application name for
32-bit applications; IBM3270 or IBM5250 for 16-bit applications and System as a
topic name in the DDE function (Initiate) in the client application.

Requesting System Information
After starting the DDE conversation, the client application can request data or
information using the DDE function. System information can be requested by
specifying the following item names in the DDE function (Request) in the client
application:

Item Return Data DDE Function

Formats List of supported Windows clipboard
format

Get System Formats

Status Each session status information Get System Status

SysCon Information of emulator support-level and
other system-related values

Get System Configuration

SysItems List of available data items Get System SysItems

Topics List of available topics Get System Topics

Terminating the DDE System Conversation with Personal
Communications
To complete the conversation, the client application needs to terminate the DDE
conversation with Personal Communications. To terminate the conversation, use
the DDE function (Terminate) in the client application.

Session Conversation
To use the Personal Communications session DDE interface, do as follows:
1. Start the session conversation.
2. Use DDE functions (Request, Poke, Execute).

292 Emulator Programming

3. Terminate the session conversation.

Starting the DDE Session Conversation
To use the DDE interface with Personal Communications sessions, the client
application should start the DDE conversation with Personal Communications. To
start DDE conversation, specify IBM327032 or IBM525032 as an application name
for 32-bit applications; IBM3270 or IBM5250 for 16-bit applications and SessionA,
SessionB, ..., SessionZ as topic names in the DDE function (Initiate) in the client
application.

Requesting Data
After starting the DDE conversation, the client application can request data using
the DDE function. Session information can be requested by specifying the
following item names in the DDE function (Request) in the client application:

Item Return Data DDE Function

EPS(pos,len,bEOF) All or a part of session
presentation space

Get Partial
Presentation Space

FIELD(pos,"type") Field information Find Field

OIA Operator Information Area (OIA)
status line information

Get Operator
Information Area

PS Session presentation space Get Presentation Space

SSTAT Session status information Get System Status

STRING(pos,bDir,"string") String offset start Search for string

TRIMRECT * Session presentation space of trim
rectangle

Get Trim Rectangle

*: Parameter should be added.

Sending Data to the Emulator Window (Poke)
After starting the DDE conversation, the client application can send data to
Personal Communications sessions using the DDE functions. The following table
shows the valid items for the DDE functions:

Item Explanation DDE Function

EPS(pos,bEOF) Sends an ASCII data string to the
host presentation space

Put Data to Presentation
Space

SETCURSOR Sets the cursor position Set Cursor Position

Executing Commands
After starting a DDE conversation, the client application can send commands to
the Personal Communications session window using the DDE functions. Specify
the command in the DDE function (Execute) of the client application. See “Session
Execute Macro” on page 244 for details.

Terminating the DDE Session Conversation
The client application should terminate the DDE conversation with Personal
Communications when completing the task. To terminate the conversation, use the
DDE function (Terminate) in the client application.

Chapter 7. Using DDE Functions with a DDE Client Application 293

Session Conversation (Hot Link)
To use the Personal Communications session DDE interface, do as follows:
1. Start the session conversation.
2. Start the Advise function.
3. Stop the Advise function.
4. Terminate the session conversation.

Starting the DDE Session Conversation (Hot Link)
To use the DDE interface with Personal Communications sessions, the client
application should start the DDE conversation with Personal Communications. To
start the DDE conversation, specify IBM327032 or IBM525032 as an application
name for 32-bit applications; IBM3270 or IBM5250 for 16-bit applications, and
SessionA, SessionB, ..., SessionZ as topic names in the DDE function (Initiate) in the
client application.

Starting the Hot Link with the Session Window
After starting the DDE conversation, the client application can start the Advise
function. Specify the following item names in the DDE function (Advise) in the
client application to start the hot link, which enables the automatic data update:

Item Explanation DDE Function

CLOSE Starts to intercept Window Close
requests

Start Close Intercept

KEYS Starts to intercept keystrokes Start Keystroke Intercept

PS *
OIA
TRIMRECT *

Start to retrieve data of PS, OIA, or
trim rectangle

Start Session Advise

*: Parameter should be added.

Stopping the Hot Link with the Session Window
To terminate the Advise function, the client application needs to use the DDE
function. Specify the following item names in the DDE function, Unadvise, in the
client application to stop the hot link, which enables the automatic data update:

Item Explanation DDE function

CLOSE Stops to intercept Close request Stop Close Intercept

KEYS Stops to intercept keystrokes Stop Keystroke Intercept

PS *
OIA

TRIMRECT *

Stops to Advise function for the
session

Stop Session Advise

*: Use the same parameter that is used when Start Session Advise was called.

Terminating the DDE Session Conversation
The client application should terminate the DDE conversation with Personal
Communications when completing the task. To terminate the conversation, use the
DDE function (Terminate) in the client application.

294 Emulator Programming

Personal Communications DDE Interface
This section describes the DDE functions that can be used from the other
applications, such as Microsoft Excel, Microsoft Word, and Microsoft Visual Basic.

DDE functions for system conversation

v “Initiate System Conversation” on page 297
v “Get System Configuration”
v “Get System Formats” on page 296
v “Get System Status” on page 296
v “Get System SysItems” on page 297
v “Get System Topics” on page 297
v “Terminate System Conversation” on page 298

DDE functions for session conversation

v “Initiate Session Conversation” on page 304 *1
v “Find Field” on page 298
v “Get Operator Information Area” on page 299
v “Get Partial Presentation Space” on page 300
v “Get Presentation Space” on page 301
v “Get Session Status” on page 302
v “Get Trim Rectangle” on page 302
v “Put Data to Presentation Space” on page 305
v “Search for String” on page 305
v “Session Execute Macro” on page 306
v “Set Cursor Position” on page 307
v “Terminate Session Conversation” on page 307 *2

DDE functions for session conversation (hot link)

v “Initiate Session Conversation” on page 307 (same as *1)
v “Start Close Intercept” on page 308
v “Start Keystroke Intercept” on page 308
v “Start Session Advise” on page 309
v “Stop Close Intercept” on page 310
v “Stop Keystroke Intercept” on page 311
v “Stop Session Advise” on page 311
v “Terminate Session Conversation” on page 311 (same as *2)

DDE Functions for System Conversation
The following DDE functions are provided for Personal Communications system
conversation.

Get System Configuration
The Get System Configuration function returns the Personal Communications
support level and other system-related values.

DDE Parameter Value
Item SysCon

Chapter 7. Using DDE Functions with a DDE Client Application 295

The client application can use the Personal Communications DDE function by
specifying the DDE function (Request) of the client application with the topic name
(System).

Personal Communications Response
The Personal Communications system returns the Personal Communications
system configuration data item.

Returned Information: See “Get System Configuration” on page 234 for details.

If Personal Communications do not return the system configuration data item, it
may be because:
v An incorrect item name was specified.
v A system error has occurred.

Get System Formats
The Get System Formats function returns a list of Windows Clipboard formats that
are supported by Personal Communications.

DDE Parameter Value
Item Formats

The client application can use the Personal Communications DDE function by
specifying the DDE function (Request) of the client application with the item name
(Formats).

Personal Communications Response
Personal Communications returns a list of supported Windows Clipboard formats.

If Personal Communications do not return the format data item, it may be because:
v An incorrect item name was specified.
v A system error has occurred.

Get System Status
The Get System Status function returns the status of each configured Personal
Communicationssession.

DDE Parameter Value
Item SysCon

The client application can use the Personal Communications DDE function by
specifying the DDE function (Request) of the client application with the item name
(SysCon).

Personal Communications Response
Personal Communications returns a series of status information to each open
session.

Returned Information: See “Get System Status” on page 236 for details.

If Personal Communications do not return the status data item, it may be because:
v An incorrect item name was specified.
v A system error has occurred.

296 Emulator Programming

Get System SysItems
The Get System SysItems function returns a list of data items that can be used
with the Personal Communications system topic.

DDE Parameter Value
Item SysItems

The client application can use the Personal Communications DDE function by
specifying the DDE function (Request) of the client application with the item name
(SysItems).

Personal Communications Response
Personal Communications returns a list of Personal Communications system topic
data items. The following data items are supported by Personal Communications:
v SysItems
v Topics
v Status
v Formats
v SysCon

If Personal Communications do not return the system data item, it may be because:
v An incorrect item name was specified.
v A system error has occurred.

Get System Topics
The Get System Topics function returns a list of active DDE topics that are
supported by Personal Communications.

DDE Parameter Value
Item Topics

The client application can use the Personal Communications DDE function by
specifying the DDE function (Request) of the client application with the item name
(Topics).

Personal Communications Response
The following topics are supported by Personal Communications:
v System
v SessionA, SessionB, ..., SessionZ

If Personal Communications do not return the system data item, it may be because:
v An incorrect item name was specified.
v A system error has occurred.

Initiate System Conversation
The Initiate System Conversation function starts the system conversation. Only
one client application can be connected to one system.

DDE Parameter Value
Topic System

Chapter 7. Using DDE Functions with a DDE Client Application 297

The client application should start DDE conversation using the DDE function
(Initiate) with the Personal Communications application name (IBM327032 or
IBM525032 for 32-bit applications) or (IBM3270 or IBM5250 for 16-bit applications)
and the topic name (System).

Terminate System Conversation
The Terminate System Conversation function terminates the system conversation.
Use the DDE function (Terminate) to terminate the DDE conversation from the
client application.

DDE Functions for Session Conversation
The following DDE functions are provided for Personal Communications session
conversation.

Find Field
The Find Field function passes the field information to the client application.

DDE Parameter Value
Item FIELD (pos, "type")

Parameter Value Explanation

pos NNNN PS position.

"type" "��" or "T�" "P�"
"N�" "NP" "NU"
"PP" "PU"

This field. The previous field, either
protected or unprotected. The next field,
either protected or unprotected. The next
protected field. The next unprotected field.
The previous protected field. The previous
unprotected field.

Note: The � symbol represents a required blank.

An item in the IBM Personal Communications Version 3.1 format is also
supported.

The client application can use the Personal Communications DDE function by
specifying the DDE function (Request) of the client application with the foregoing
item name.

Personal Communications Response
The following table shows the field information that PC/3270 returns:

Field
Returned
Information Explanation

Formatted/Unformatted Formatted,
Unformatted

Whether the presentation space is formatted
or unformatted. If Unformatted is specified,
no other field information will be returned.

Unprotected/Protected N 0 = Unprotected data field. 1 = Protected
data field.

A/N N 0 = Alphanumeric. 1 = Numeric.

298 Emulator Programming

Field
Returned
Information Explanation

I/SPD N 0 = Normal intensity, undetectable. 1 =
Normal intensity, detectable. 2 = High
intensity, detectable. 3 = Nondisplay,
undetectable.

MDT N 0 = Field is not changed. 1 = Field is
changed.

Field start offset NNNN Field starts this field position.

Field length NNNN Field length.

The following table shows the field information that PC400 returns:

Field
Returned
Information Explanation

Formatted/Unformatted Formatted,
Unformatted

Whether the presentation space is formatted
or unformatted. If Unformatted is specified,
no other field information will be returned.

Field attribute N 0 = Not field attribute byte. 1 = Field
attribute byte.

Visibility N 0 = Nondisplay. 1 = Display.

Unprotected/Protected N 0 = Unprotected data field. 1 = Protected
data field.

Intensity N 0 = Normal. 1 = High.

Field Type N 0 = Alphanumeric: all characters allowed. 1
= Alphabet only: uppercase and lowercase
letters, comma, period, hyphen, blank, and
Dup key allowed. 2 = Numeric shift:
automatic shift for numerics. 3 = Numeric
only: numbers 0–9, comma, period, plus,
minus, blank, and Dup key allowed. 5 =
Digits only: numbers 0–9 and Dup key
allowed. 6 = Magnetic stripe reader data
only. 7 = Sighed numeric: numbers 0–9,
plus, minus, and Dup key allowed.

MDT N 0 = Field is not changed. 1 = Field is
changed.

Field start offset NNNN Field starts this field position.

Field length NNNN Field length.

If Personal Communications do not return the field information, it may be because:
v An incorrect item name was specified.
v A system error has occurred.

Get Operator Information Area
The Get Operator Information Area function returns the OIA data information to
the client application.

DDE Parameter Value
Item OIA

Chapter 7. Using DDE Functions with a DDE Client Application 299

The client application can use the Personal Communications DDE function by
specifying the DDE function (Request) of the client application with the item name
(OIA).

Personal Communications Response
The following table shows the OIA information that Personal Communications
returns:

Offset Returned Information Meaning

0 ONLINE LU-LU SSCP-LU Online, the screen is unowned LU-LU
session owns the screen SSCP-LU session
owns the screen

9 X X MCHK X CCHK X
PCHK X DNW X BUSY X
TWAIT X -S X -f X MUCH X
UA X -fUA X DEAD X
WRONG X SYSTEM X II

Input inhibit Machine check
Communication check Program check
Device not working Printing Terminal
waiting Minus symbol Minus function
Input too much Unauthorized operator
Unauthorized operator Minus function
Incorrect dead key combination Wrong
position System waiting Operator input
error (PC400)

19 COMM Communication error

25 MW Message waiting (PC400)

36 APL APL (PC/3270)

42 U NUM Uppercase Numeric

43 A Caps lock

47 S I High intensity, operator selectable High
intensity, field inherit

49 CS CI Color, operator selectable Color, field inherit

52 ^ Insert mode

61 P-MAL P-PRN P-ASS Printer malfunction Printer printing Printer
assignment

If Personal Communications do not return the OIA information, it may be because:
v An incorrect item name was specified.
v A system error has occurred.

Get Partial Presentation Space
The Get Partial Presentation Space function returns whole or partial presentation
space data to the client application.

DDE Parameter Value
Item EPS (pos, len, bEOF)

Parameter Value Explanation

pos NNNN PS position

len NNNN PS length

300 Emulator Programming

Parameter Value Explanation

bEOF 1 or 0 EOF switch

1 Yes

0 No

Note: An item in the IBM Personal Communications Version 3.1 format is also
supported.

The client application can use the Personal Communications DDE function by
specifying the DDE function (Request) of the client application with the foregoing
item names.

Personal Communications Response
The following table shows the information Personal Communications returns:

Field
Returned
Information Explanation

PS start position NNNN Specified by pos parameter

PS length NNNN Specified by len parameter

PS rows NNNN Specified by the number of rows

PS columns NNNN Specified by the number of columns

PS NNNN PS data starts from this position

If Personal Communications do not return the format data items, it may be
because:
v An incorrect item name was specified.
v A system error has occurred.

Get Presentation Space
The Get Presentation Space function returns presentation space data to the client
application.

DDE Parameter Value
Item PS

The client application can use the Personal Communications DDE function by
specifying the DDE function (Request) of the client application with the item name
(PS).

Personal Communications Response
The following table shows the information Personal Communications returns:

Field
Returned
Information Explanation

PS size NNNN Size of presentation space

PS rows NNNN Number of rows

PS columns NNNN Number of columns

PS NNNN PS data starts from this position

Chapter 7. Using DDE Functions with a DDE Client Application 301

If Personal Communications do not return the format data items, it may be
because:
v An incorrect item name was specified.
v A system error has occurred.

Get Session Status
The Get Session Status function returns the connected session status to the client
application.

DDE Parameter Value
Item SSTAT

The client application can use the Personal Communications DDE function by
specifying the DDE function (Request) of the client application with the item name
(SSTAT).

Personal Communications Response
Refer to “Get Session Status” on page 375 for the returned information.

If Personal Communications do not return the format data items, it may be
because:
v An incorrect item name was specified.
v A system error has occurred.

Get Trim Rectangle
The Get Trim Rectangle function returns the presentation space area of the current
(or specified) trim rectangle to the client application.

DDE Parameter Value
Item TRIMRECT (row1, col1, row2, col2) TRIMRECT (pos1, pos2) TRIMRECT

Parameter Value Explanation

row1 NN Top-left corner row of the trim rectangle

col1 NN Top-left corner column of the trim rectangle

row2 NN Bottom-right corner row of the trim
rectangle

col2 NN Bottom-right corner column of the trim
rectangle

pos1 NNNN PS position of the top-left corner of the trim
rectangle

pos2 NNNN PS position of the bottom-right corner of
the trim rectangle

Note: An item in the IBM Personal Communications Version 3.1 format is also
supported.

The current specified PS trim rectangle is used unless the client application
specifies the PS trim rectangle in the parameter.

302 Emulator Programming

The client application can use the Personal Communications DDE function by
specifying the DDE function (Request) of the client application with the item name
(TRIMRECT).

Trim Rectangle Word by Word
This feature enables you to resize the trim rectangle along word boundaries. The
Mark Word Left function moves the left side of the rectangle to the front of the
previous word in the first line of the rectangle. The Mark Word Right function
moves the right side of the rectangle to the front of the next word in the first line
of the rectangle.

These functions are available only for single-byte languages. They are not available
for Thai, Hindi, double-byte languages, or bidirectional sessions.

You can enable the Trim Rectangle Word by Word functions by adding the
following keyword to the PCSWIN.INI file:
[Edit]
TrimRectJumpToWord=Y

When the feature is enabled, Mark Word Left can be invoked with the key
combination Ctrl+Shift+LeftArrow. Mark Word Right can be invoked with the
Ctrl+Shift+Right Arrow key combination.

The Mark Word Left and Mark Word Right functions can also be added to the
popup keypad, a macro or script, or to a mouse button.

Table 23. Mark Word Left

Token name mark word left

Face name MrkWd<

Context Available

Keyboard Yes

Popup keypad Yes

Mouse Yes

Macro Yes

Keyboard/macro function Yes

3270 SBCS Yes

3270 DBCS No

3270 AEA (SBCS) Yes

5250 SBCS Yes

5250 DBCS No

VT SBCS Yes

Table 24. Mark Word Right

Token name mark word right

Face name MrkWd>

Context Available

Keyboard Yes

Chapter 7. Using DDE Functions with a DDE Client Application 303

Table 24. Mark Word Right (continued)

Popup keypad Yes

Mouse Yes

Macro Yes

Keyboard/macro function Yes

3270 SBCS Yes

3270 DBCS No

3270 AEA (SBCS) Yes

5250 SBCS Yes

5250 DBCS No

VT SBCS Yes

Autocopy
This feature enables you to automatically copy the trim rectangle text to the
clipboard.

After you mark an area on the screen with a trim rectangle, the text inside the
Trim Rectangle is automatically copied to the clipboard. When an existing trim
rectangle is moved to another screen area, the text inside the new trim rectangle is
automatically copied to the clipboard.

Enable the feature by adding the following keywords to the .WS profile. Both
keywords must be enabled in order for Autocopy to work correctly.
[Edit]
AutoCopy=Y
TrimRectRemainAfterEdit=Y

Personal Communications Response
The information returned from Personal Communications is as follows:

Field
Returned
Information Explanation

PS PS data starts from this position.

If Personal Communications do not return the trim rectangle items, it may be
because:
v An incorrect item name was specified.
v A system error has occurred.

Initiate Session Conversation
The Initiate Session Conversation function starts a DDE conversation in the
available session window. Only one client application can be connected to one
session conversation:

DDE Parameter Value
Topic SessionA, SessionB, ..., SessionZ

304 Emulator Programming

Parameter Value Explanation

SessionA, SessionB, ..., SessionZ "SessionA" implies a string combined
"Session" and a session ID “A”, “B”, ..., “Z”.

The client application should start the DDE conversation by specifying the DDE
function (Initiate) of the client application with the topic name (SessionA, SessionB,
..., SessionZ).

Personal Communications Response
If a topic is not specified, Personal Communications responds after confirming the
following available topics:
v System
v SessionA, SessionB, ..., SessionZ

Put Data to Presentation Space
The Put Data to Presentation Space function sends an ASCII data string to write
on the specified host presentation space.

DDE Parameter Value
Item EPS (pos, bEOF)

Parameter Value Explanation

pos NNNN PS position to start writing the data

bEOF 1 or 0 EOF switch

1 Yes

0 No

Note: An item in the IBM Personal Communications Version 3.1 format is also
supported.

The client application can use the Personal Communications DDE function by
specifying the DDE function (Poke) of the client application with the foregoing
item name.

Personal Communications Response
If Personal Communications do not accept the string data, it may be because:
v An incorrect item name was specified.
v The PS position is not valid.
v The length is not valid.
v The PS input was inhibited.
v A system error has occurred.

Search for String
Using the Search for String function, the client application can check whether the
specified strings exist within the specified presentation space area.

DDE Parameter Value
Item STRING (pos, bDir, "string")

Chapter 7. Using DDE Functions with a DDE Client Application 305

Parameter Value Explanation

pos NNNN PS start position of the string search

bDir 1 or 0 Search Direction

1 Forward

0 Backward

"string" Search string

v Enclose a string including blanks with
double quotation marks.

v To specify a double quotation mark
within the string, enclose the double
quotation mark with another set of
double quotation marks. Example: This is
a double quotation" mark. is specified as
"This is a double quotation""" mark."

Note: An item in the IBM Personal Communications Version 3.1 format is also
supported.

The maximum length of the search string is 255.

The client application can use the Personal Communications DDE function by
specifying the DDE function (Request) of the client application with the foregoing
item names.

Personal Communications Response
Personal Communications returns the following information:

Field
Returned
Information Explanation

String start offset NNNN, None "None" is returned if the string is not
found.

If Personal Communications do not return the string start position, it may be
because:
v An incorrect item name was specified.
v The PS position is not valid, or the string is too long.
v A system error has occurred.

Session Execute Macro
The Session Execute Macro function enables users to send commands and macro
strings to Personal Communications.

Refer to “Session Execute Macro” on page 386 for details of commands and macro
strings.

The client application can use the Personal Communications DDE function by
specifying the DDE function (Execute) of the client application.

Personal Communications Response
A system error can cause Personal Communications not to return the string start
position.

306 Emulator Programming

Set Cursor Position
Using the Set Cursor Position function, the client application can set the cursor
position in the session window.

DDE Parameter Value
Item SETCURSOR
Data (Cursor
position)

NNNN or Rn1Rn2

Parameter Value Explanation

NNNN PS offset

Rn1Rn2 Row/column

n1 PS position row

n2 PS position column

The client application can use the Personal Communications DDE function by
specifying the DDE function (Poke) of the client application with the foregoing
item names.

Personal Communications Response
If Personal Communications do not move the cursor to the specified PS position, it
may be because:
v An incorrect item name was specified.
v The Cursor PS offset is not valid (it must be from 0 to PS size−1).
v The Cursor row value is not valid (it must be from 0 to PS row−1).
v The Cursor column value is not valid (it must be from 0 to PS column−1).
v A system error has occurred.

Terminate Session Conversation
The Terminate Session Conversation function terminates the DDE conversation
between the client application and Personal Communications.

Use the DDE function (Terminate) of the client application to terminate the DDE
conversation.

DDE Functions for Session Conversation (Hot Link)
The following DDE functions are provided for Personal Communications session
conversation with hot link connection.

Initiate Session Conversation
The Initiate Session Conversation function starts a DDE conversation with the
available session window.

DDE Parameter Value
Topic SessionA, SessionB, ..., SessionZ or SessA_xxxx, SessB_xxxx, ...,

SessZ_xxxx

Note: If SessA_xxxx, SessB_xxxx, ..., SessZ_xxxx is used, the client application
allows only hot link session conversation.

Chapter 7. Using DDE Functions with a DDE Client Application 307

Parameter Value Explanation

SessA_xxxx, SessB_xxxx, ..., SessZ_xxxx String 'SessA_xxxx' indicates session A
(SessA_) with any user-defined strings
(xxxx). The length of the user-defined strings
is not limited.

Specify the Personal Communications application name and the foregoing topic
name in the DDE function (Initiate) of the client application to start a DDE
conversation.

Start Close Intercept
Using the Start Close Intercept function, the client application can intercept the
Close request generated by selecting the Close option from the emulator session
window. When this service is started, the client application receives the Close
request event data.

DDE Parameter Value
Item CLOSE

The client application can use the Personal Communications DDE function by
specifying the DDE function (Advise) of the client application with the foregoing
item name.

Personal Communications Response
Personal Communications returns the following information:

Field
Returned
Information Explanation

Number of PS close request NNNN When a Close request is generated, the
client application receives "0001".

If Personal Communications do not start to Close intercept, it may be because:
v An incorrect item name was specified.
v The Close intercept for the session has already started with the same topic name.
v A system error has occurred.

Start Keystroke Intercept
Using the Start Keystroke Intercept function, the client application can filter
keystrokes that are entered by the terminal operator. When started, the keystrokes
are intercepted and received by the client application.

DDE Parameter Value
Item KEYS

The client application can use the Personal Communications DDE function by
specifying the DDE function (Advise) of the client application with the foregoing
item name.

308 Emulator Programming

Personal Communications Response
Personal Communications returns the following information:

Field
Returned
Information Explanation

Keys Refer to Table 19 on page 247.

If Personal Communications do not start KeyStroke Intercept, it may be because:
v An incorrect item name was specified.
v The Keystroke Intercept for the session has already started with the same topic

name.
v A system error has occurred.

Start Session Advise
The Start Session Advise function establishes the link between the client
application and Personal Communications. As the data item is changed, the client
application receives the changed data of the presentation space (PS), operator
information area (OIA), or trim rectangle (TRIMRECT).

DDE Parameter Value
Item PS (pos, len, bCaseSen, "string") PS TRIMRECT (row1, col1, row2, col2)

TRIMRECT (pos1, pos2) TRIMRECT OIA

The maximum length of the search string is 255.

Parameter Value Explanation

pos NNNN PS start position of the string search (PS
offset)

len NNNN Length of the search string

bCaseSen 1 or 0 Case sensitivity

1 Yes

0 No

"string" Search string

v Enclose a string including blanks with
double quotation marks.

v To specify a double quotation mark
within the string, enclose the double
quotation mark with another set of
double quotation marks. Example: This is
a double quotation" mark. is specified as
"This is a double quotation""" mark."

Note: An item in the IBM Personal Communications Version 3.1 format is also
supported.

To receive a conditional advice when the presentation space is updated, the
client application needs to set the advise conditions as well as the foregoing
parameter values. The foregoing parameter values can be used when the
presentation space is specified as the item name.

Chapter 7. Using DDE Functions with a DDE Client Application 309

Parameter Value Explanation

row1 NN Top-left corner row of the trim rectangle

col1 NN Top-left corner column of the trim rectangle

row2 NN Bottom-right corner row of the trim
rectangle

col2 NN Bottom-right corner column of the trim
rectangle

pos1 NNNN PS position of the top-left corner of the trim
rectangle

pos2 NNNN PS position of the bottom-right corner of
the trim rectangle

Note: An item in the IBM Personal Communications Version 3.1 format is also
supported.

The current specified presentation space trim rectangle is used unless the
client application specifies the presentation space trim rectangle in the item
name parameter. This parameter value can be used when TRIMRECT is
specified as the item name.

The client application can use the Personal Communications DDE function by
specifying the DDE function (Advise) of the client application with the foregoing
item name.

Personal Communications Response
Refer to “Get Partial Presentation Space” on page 300, “Get Operator Information
Area” on page 299, and “Get Trim Rectangle” on page 302.

If Personal Communications do not start Advise, it may be because:
v An incorrect item name was specified.
v The Advise for the session has already started with the same topic name
v A system error has occurred.

Stop Close Intercept
Using the Stop Close Intercept function, the client application stops intercepting
the close requests.

DDE Parameter Value
Item CLOSE

The client application can use the Personal Communications DDE function by
specifying the DDE function, Unadvise, of the client application with the foregoing
item name.

Personal Communications Response
If Personal Communications do not stop Close Intercept, it may be because:
v The Advise has not been started.
v A system error has occurred.

310 Emulator Programming

Stop Keystroke Intercept
Using the Stop Keystroke Intercept function, the client application stops
intercepting the keystrokes.

DDE Parameter Value
Item KEYS

The client application can use the Personal Communications DDE function by
specifying the DDE function, Unadvise, of the client application with the foregoing
item name.

Personal Communications Response
If Personal Communications do not stop Keystroke Intercept, it may be because:
v An incorrect item name was specified.
v The Advise has not been started.
v A system error has occurred.

Stop Session Advise
The Stop Session Advise function closes the link between the client application
and Personal Communications.

DDE Parameter Value
Item PS (pos, len, bCaseSen, "string") PS TRIMRECT (row1, col1, row2, col2)

TRIMRECT (pos1, pos2) TRIMRECT OIA

The maximum length of the search string is 255.

The item name must be the same item name that was used when Start Session
Advise was called.

The client application can use the Personal Communications DDE function by
specifying the DDE function, Unadvise, of the client application with the foregoing
item name.

Personal Communications Response
If Personal Communications do not stop Advise, it may be because:
v An incorrect item name was specified.
v The Advise has not been started
v A system error has occurred.

Terminate Session Conversation
The Terminate Session Conversation function terminates the DDE conversation
between the client application and the Personal Communications session.

Use the DDE function (Terminate) of the client application to terminate the DDE
conversation.

Visual Basic Sample Program
Following is a sample program with Visual Basic:

Chapter 7. Using DDE Functions with a DDE Client Application 311

Note: This sample program is simplified and differs from the actual sample file
provided.

’/***/
’/* */
’/* System conversation */
’/* */
’/***/

’***
’*** ***
’*** Initiate System Conversation ***
’*** ***
’***
’
’ Start DDE Conversation with system
’
Sub Command1_Click ()
On Error GoTo ErrHandlerInit

Dim COLD As Integer
COLD = 2
FunctionComp& = True

DoEvents
Text1.LinkTopic = "|System"
Text1.LinkMode = COLD

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandlerInit:
FunctionComp& = False
Resume Next

End Sub

’-- note ---
’
’ If you use VisualBasic Version2.0, use "DoEvents"
’ function before starting DDE conversation by
’ calling "LinkMode" function.
’
’---
’***
’*** ***
’*** Get System Format ***
’*** ***
’***
’
’ Request a list of Personal Communications’ Clipboard Format
’
Sub Command2_Click ()
On Error GoTo ErrHandler

FunctionComp& = True

Text1.LinkItem = "Formats"
Text1.LinkRequest

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandler:
FunctionComp& = False
Resume Next

312 Emulator Programming

End Sub

’***
’*** ***
’*** Get System Status ***
’*** ***
’***
’
’ Requests each Personal Communications’ Session Status
’
Sub Command2_Click ()
On Error GoTo ErrHandler

FunctionComp& = True

Text1.LinkItem = "Status"
Text1.LinkRequest

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandler:
FunctionComp& = False
Resume Next

End Sub

’***
’*** ***
’*** Get System Configuration ***
’*** ***
’***
’
’ Requests Personal Communications’ System Configuration Values
’
Sub Command2_Click ()
On Error GoTo ErrHandler

FunctionComp& = True

Text1.LinkItem = "SysCon"
Text1.LinkRequest

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandler:
FunctionComp& = False
Resume Next

End Sub

’***
’*** ***
’*** Get System SysItems ***
’*** ***
’***
’
’ Requests a list of Data Items for
’ Personal Communications System Conversation
’
Sub Command2_Click ()
On Error GoTo ErrHandler

FunctionComp& = True

Text1.LinkItem = "SysItems"
Text1.LinkRequest

Chapter 7. Using DDE Functions with a DDE Client Application 313

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandler:
FunctionComp& = False
Resume Next

End Sub

’***
’*** ***
’*** Get System Topics ***
’*** ***
’***
’
’ Requests a list of Personal Communications’ Topics
’
Sub Command2_Click ()
On Error GoTo ErrHandler

FunctionComp& = True

Text1.LinkItem = "Topics"
Text1.LinkRequest

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandler:
FunctionComp& = False
Resume Next

End Sub

’***
’*** ***
’*** Terminate System Conversation ***
’*** ***
’***
’
’ Terminates DDE Conversation with system
’
Sub Command3_Click ()
On Error GoTo ErrHandler

Dim NONE As IntegerTerm
NONE = 0
FunctionComp& = True

Text1.LinkMode = NONE

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandlerTerm:
FunctionComp& = False
Resume Next

End Sub

’/***/
’/* */
’/* Session conversation */
’/* */
’/***/

314 Emulator Programming

’***
’*** ***
’*** Initiate Session Conversation ***
’*** ***
’***
’
’ Initiate DDE Conversation with system
’
Sub Command1_Click ()
On Error GoTo ErrHandlerInit

Dim COLD As Integer
COLD = 2
FunctionComp& = True

DoEvents
Text1.LinkTopic = "|SessionA"
Text1.LinkMode = COLD

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandlerInit:
FunctionComp& = False
Resume Next

End Sub

’-- note ---
’
’ If you use VisualBasic Version2.0, use "DoEvents"
’ function before starting DDE conversation by
’ calling "LinkMode" function.
’
’---
’***
’*** ***
’*** Find Field ***
’*** ***
’***
’
’ Requests 100 Field Information of PS Position
’
Sub Command2_Click ()
On Error GoTo ErrHandler

FunctionComp& = True

Text1.LinkItem = "FILED(100,"" "")"
Text1.LinkRequest

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandler:
FunctionComp& = False
Resume Next

End Sub

’***
’*** ***
’*** Get Operator Information Area ***
’*** ***
’***
’

Chapter 7. Using DDE Functions with a DDE Client Application 315

’ Requests OIA Data
’
Sub Command2_Click ()
On Error GoTo ErrHandler

FunctionComp& = True

Text1.LinkItem = "OIA"
Text1.LinkRequest

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandler:
FunctionComp& = False
Resume Next

End Sub
’***
’*** ***
’*** Get Partial Presentation Space ***
’*** ***
’***
’
’ Requests PS Data Bytes from PS Position from 100 to 1000
’
Sub Command2_Click ()
On Error GoTo ErrHandler

FunctionComp& = True

Text1.LinkItem = "EPS(100,1000,1)"
Text1.LinkRequest

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandler:
FunctionComp& = False
Resume Next

End Sub

’***
’*** ***
’*** Get Presentation Space ***
’*** ***
’***
’
’ Requests PS Data
’
Sub Command2_Click ()
On Error GoTo ErrHandler

FunctionComp& = True

Text1.LinkItem = "PS"
Text1.LinkRequest

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandler:
FunctionComp& = False
Resume Next

End Sub

316 Emulator Programming

’***
’*** ***
’*** Get Session Status ***
’*** ***
’***
’
’ Requests Session Connection Status
’
Sub Command2_Click ()
On Error GoTo ErrHandler

FunctionComp& = True

Text1.LinkItem = "SSTAT"
Text1.LinkRequest

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandler:
FunctionComp& = False
Resume Next

End Sub
’***
’*** ***
’*** Get Trim Rectangle ***
’*** ***
’***
’
’ Requests PS Data in Current Specified Trim Rectangle
’
Sub Command2_Click ()
On Error GoTo ErrHandler

FunctionComp& = True

Text1.LinkItem = "TRIMRECT"
Text1.LinkRequest

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandler:
FunctionComp& = False
Resume Next

End Sub

’***
’*** ***
’*** Put Data to Presentation Space ***
’*** ***
’***
’
’ Writes string "Hello, World!" from PS Position 200
’
Sub Command2_Click ()
On Error GoTo ErrHandler

FunctionComp& = True

Text1.Text = "Hello, World!"
Text1.LinkItem = "EPS(200,1)"
Text1.LinkPoke

If FunctionComp&= False Then

Chapter 7. Using DDE Functions with a DDE Client Application 317

MsgBox "Error has occurred", 48, "DDE sample"
End If
Exit Sub

ErrHandler:
FunctionComp& = False
Resume Next

End Sub

’***
’*** ***
’*** Search for String ***
’*** ***
’***

’
’ Search forward for string "Hello!" from PS Position 1
’
Sub Command2_Click ()
On Error GoTo ErrHandler

FunctionComp& = True

Text1.LinkItem = "STRING(1,1,""Hello!"")"
Text1.LinkRequest

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandler:
FunctionComp& = False
Resume Next

End Sub

’***
’*** ***
’*** Session Execute Macro ***
’*** ***
’***
’
’ Maximize the Session
’
Sub Command2_Click ()
On Error GoTo ErrHandler

FunctionComp& = True

Text1.LinkExecute "[WINDOW(MAXIMIZE)]"

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandler:
FunctionComp& = False
Resume Next

End Sub

’***
’*** ***
’*** Set Cursor Position ***
’*** ***
’***
’
’ Set Cursor Position (Row,Column) = (1,1)
’

318 Emulator Programming

Sub Command2_Click ()
On Error GoTo ErrHandler

FunctionComp& = True

Text1.Text = "R1C1"
Text1.LinkItem = "SETCURSOR"
Text1.LinkPoke

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandler:
FunctionComp& = False
Resume Next

End Sub

’***
’*** ***
’*** Terminate Session Conversation ***
’*** ***
’***
’
’ Terminate DDE Conversation with session
’
Sub Command3_Click ()
On Error GoTo ErrHandlerTerm

Dim NONE As Integer
NONE = 0
FunctionComp& = True

Text1.LinkMode = NONE

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandlerTerm:
FunctionComp& = False
Resume Next

End Sub

’/***/
’/* */
’/* Session conversation(Hot Link) */
’/* */
’/***/

’***
’*** ***
’*** Start Close Intercept ***
’*** ***
’***
’
’ Start Intercepting Close request
’
Sub Command1_Click ()
On Error GoTo ErrHandlerInit

Dim HOT As Integer
HOT = 1
FunctionComp& = True

DoEvents
Text1.LinkTopic = "|SessionA"
Text1.LinkItem = "CLOSE"

Chapter 7. Using DDE Functions with a DDE Client Application 319

Text1.LinkMode = HOT

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandlerInit:
FunctionComp& = False
Resume Next

End Sub

’-- note ---
’
’ If you use VisualBasic Version2.0, use "DoEvents"
’ function before starting DDE conversation by
’ calling "LinkMode" function.
’
’---
’***
’*** ***
’*** Start Keystroke Intercept ***
’*** ***
’***
’
’ Start Intercepting Keystrokes
’
Sub Command1_Click ()
On Error GoTo ErrHandlerInit

Dim HOT As Integer
HOT = 1
FunctionComp& = True

DoEvents
Text1.LinkTopic = "|SessionA"
Text1.LinkItem = "KEYS"
Text1.LinkMode = HOT

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandlerInit:
FunctionComp& = False
Resume Next

End Sub

’-- note ---
’
’ If you use VisualBasic Version2.0, use "DoEvents"
’ function before starting DDE conversation by
’ calling "LinkMode" function.
’
’---
’***
’*** ***
’*** Start Session Advise(PS) ***
’*** ***
’***
’
’ Receives PS Data when updated
’ (only when "Hello!" is displayed from PS Position 1)
’
Sub Command1_Click ()
On Error GoTo ErrHandlerInit

Dim HOT As Integer

320 Emulator Programming

HOT = 1
FunctionComp& = True

DoEvents
Text1.LinkTopic = "|SessA_PS"
Text1.LinkItem = "PS(1,6,1,""Hello!"")"
Text1.LinkMode = HOT

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If

Exit Sub

ErrHandlerInit:
FunctionComp& = False
Resume Next

End Sub

’-- note ---
’
’ If you use VisualBasic Version2.0, use "DoEvents"
’ function before starting DDE conversation by
’ calling "LinkMode" function.
’
’---
’***
’*** ***
’*** Start Session Advise(TRIMRECT) ***
’*** ***
’***
’
’ Receives PS Data in Trim Rectangle when PS Data in Trim Rectangle
’ specified by R1C1:R20C40 is changed
’
Sub Command1_Click ()
On Error GoTo ErrHandlerInit

Dim HOT As Integer
HOT = 1
FunctionComp& = True

DoEvents
Text1.LinkTopic = "|SessA_TRIMRECT"
Text1.LinkItem = "TRIMRECT(1,1,20,40)"
Text1.LinkMode = HOT

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandlerInit:
FunctionComp& = False
Resume Next

End Sub

’-- note ---
’
’ If you use VisualBasic Version2.0, use "DoEvents"
’ function before starting DDE conversation by
’ calling "LinkMode" function.
’
’---
’***
’*** ***
’*** Start Session Advise(OIA) ***
’*** ***

Chapter 7. Using DDE Functions with a DDE Client Application 321

’***
’
’ Receives OIA Data when changed
’
Sub Command1_Click ()
On Error GoTo ErrHandlerInit

Dim HOT As Integer
HOT = 1
FunctionComp& = True

DoEvents
Text1.LinkTopic = "|SessA_OIA"
Text1.LinkItem = "OIA"
Text1.LinkMode = HOT

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandlerInit:
FunctionComp& = False
Resume Next

End Sub

’-- note ---
’
’ If you use VisualBasic Version2.0, use "DoEvents"
’ function before starting DDE conversation by
’ calling "LinkMode" function.
’
’---
’***
’*** ***
’*** Terminate Session Conversation(Hot Link) ***
’*** ***
’***
’
’ Terminate DDE Conversation with session (Hot Link)
’
Sub Command3_Click ()
On Error GoTo ErrHandlerTerm

Dim NONE As Integer
NONE = 0
FunctionComp& = True

Text1.LinkMode = NONE

If FunctionComp&= False Then
MsgBox "Error has occurred", 48, "DDE sample"

End If
Exit Sub

ErrHandlerTerm:
FunctionComp& = False
Resume Next

End Sub

322 Emulator Programming

Chapter 8. Server-Requester Programming Interface (SRPI)
Support

The Server-Requester Programming Interface (SRPI) is an API that provides access
to IBM Enhanced Connectivity Facility (ECF) providing the tools to write SRPI
requester programs. SRPI uses a single verb, SEND_REQUEST, to provide a
synchronous call-return interface to remote server programs.

Note: SRPI is not available on Personal Communications for iSeries and will not
work when connected to an iSeries, eServer i5, or System i5 host.

PC/3270 SRPI supports 32-bit SRPI Requester Program written in C or C++.

How to Use SRPI
You can write the application program using the SRPI in C or C++. To develop a
SRPI application, do as follows:
1. Prepare the source code and add the appropriate SRPI calls.
2. Include the header file UUCCPRB.H in the application program.
3. Compile the source code.
4. Link the resultant .OBJ files with the appropriate object file or libraries.

You must also link it with the SRPI import library, PCSCAL32.LIB for 32-bit and
PCSCALLS.LIB for 16-bit.

SRPI Compatibility
PC/3270 supports the SRPI function with:
v SRPI interface is the same as Personal Communications Version 3.1.
v The SRPI interface is usable via a host connect of the emulator in all modes

(except asynchronous and Control Unit Terminal connection) when the physical
connection to the host is through a token ring or a coaxial cable, or through
SNA or non-SNA protocols.

v If a call is made to the SRPI interface but there is no response from the host due
to a communication failure, an associated error is returned to the caller.

v SRPI and EHLLAPI are capable of concurrent operations.
v SRPI is supported only for C requester.
v Server Alias is not supported.
v The 3270 screen update notify is not supported.

PCSSRPI.DLL is provided to support the existing 16-bit SRPI applications for
Personal Communications PCSSRPI.DLL converts 16-bit addressing to 32-bit
addressing and passes it to PC/3270 SRPI DLL.

© Copyright IBM Corp. 1989, 2016 323

Using the Server-Requester Programming Interface
The API between SRPI requesters from the workstation and servers on the host
computer is the Server-Requester Programming Interface (SRPI).

Note: For information about a corresponding interface for servers on the IBM host
computer, see one of the following publications:
v TSO/E Version 2 Guide to the Server-Requester Programming Interface

v IBM Programmer's Guide to the Server-Requester Programming Interface for
VM/System Product

When used on a workstation, SRPI supports only SRPI requesters. It provides a
call-return function for application-to-application communication. Using the
SEND_REQUEST function, a program on a workstation calls (requests) for service
from a partner program on a host computer, which returns (services) the results.

See Figure 6 for an illustration of the workstation and host computer relationship.

IBM Workstation

3270 Emulator (PC/3270)

Router

IBM Host Computer

Router

Request

Reply

SRPI for Requester

PCSSRP32.DLL

SRPI Server Program
32-bit SRPI
Requester
Program

PCSSRPI.DLL

16-bit SRPI
Requester
Program

SRPI for Server

Figure 5. Example of PC/3270 SRPI Requester and Server

324 Emulator Programming

Applications use SRPI by issuing the SEND_REQUEST verb.

When a workstation SRPI requester issues the SEND_REQUEST verb using SRPI:
1. The SRPI router converts the request into a structure that the host computer

router recognizes.
2. The SRPI router passes the request to the host computer router, using the

appropriate 3270 terminal emulation session.
3. The host computer router passes the request to the appropriate host computer

server.
4. The host computer server processes the request and passes a reply back to the

host computer router.
5. The host computer router passes the reply back to the SRPI router.
6. The SRPI router converts and returns the reply to the originating SRPI

requester application. See Figure 7 for for an illustration of the requester and
server flow.

IBM Host Computer

IBM
Workstation

main:

send_reply (parm, data,

server_x

server return code)

send_request (server_x,func, data,

end

parms)

Figure 6. IBM Workstation Requester and IBM Host Computer Server Relationship

Chapter 8. Server-Requester Programming Interface (SRPI) Support 325

SEND_REQUEST Parameters
The SRPI router sends the request to the host computer using the communication
facilities provided by 3270 terminal emulation. SRPI returns control to the SRPI
requester with an appropriate return code, optional parameters, and optional data.

The parameters and data associated with the SEND_REQUEST function are
described in Table 25 on page 326 and in Table 26 on page 328.

Supplied Parameters
Table 25. Parameters Supplied by the SRPI Requester

Name of Parameter
Required/
Optional Default Value Description

Function ID Optional 0 A 2-byte unsigned binary
number that specifies the server
function being requested. Values
of 0 through 65535 are valid for
specification by an SRPI
requester.

Requester

SEND_REQUEST

- validate request
- pass request to server

- return reply

REPLY PARMS =
REPLY DATA =
SERVER RETURN CODE =

Perform service
SEND REPLY

SERVER =
FUNCTION =
REQUEST PARMS =
REQUEST DATA =

SRPI return code

- returned from
IBM PC router

ServerIBM Enhanced
Connectivity Facilities

Figure 7. Example of an SRPI Requester and Server Flow

326 Emulator Programming

Table 25. Parameters Supplied by the SRPI Requester (continued)

Name of Parameter
Required/
Optional Default Value Description

Reply data buffer
length

Optional 0 A 2-byte unsigned binary
number that specifies the length
in bytes of the reply data buffer
supplied by the SRPI requester.
Values of 0 through 65535 are
valid. A value of 0 indicates that
no reply data is expected from
the server.

Reply data buffer
pointer

Optional 0 The 4-byte address of the reply
data buffer. A nonzero value in
the reply data buffer length
indicates that there is reply data
to be received.

Reply parameters
buffer length

Optional 0 A 2-byte unsigned binary
number that specifies the length
in bytes of the reply parameter
buffer supplied by the SRPI
requester. Values of 0 through
32763 are valid. A value of 0
indicates that no reply
parameters are expected from
the server.

Reply parameters
buffer pointer

Optional 0 The 4-byte address of the reply
parameter buffer. Its presence is
indicated by a nonzero value in
the reply parameters buffer
length.

Request data length Optional 0 A 2-byte unsigned binary
number that specifies the byte
length of the request data to be
passed to the server. Values of 0
through 65535 are valid. A value
of 0 indicates that there is no
request data to be passed.

Request data pointer Optional 0 The 4-byte address of the data,
if any, to be passed to the
server. A nonzero value in the
request data length indicates
that there is data to be passed.

Request parameters
length

Optional 0 A 2-byte unsigned binary
number that specifies the byte
length of the request parameters
to be passed to the server.
Values of 0 through 32763 are
valid. A value of 0 indicates that
there are no request parameters
to be passed.

Request parameters
pointer

Optional 0 The 4-byte address of the
parameters, if any, to be passed
to the server. A nonzero value in
the request parameters length
indicates that there are
parameters to be passed.

Chapter 8. Server-Requester Programming Interface (SRPI) Support 327

Table 25. Parameters Supplied by the SRPI Requester (continued)

Name of Parameter
Required/
Optional Default Value Description

Server name Required Blanks The name of the host computer
server must be 8 bytes long
(PC/ASCII), left-justified, and
padded with blanks (X'20');
leading blanks, embedded
blanks, and names consisting of
all blanks are not valid. The
valid PC/ASCII characters are A
through Z (uppercase and
lowercase), 0 through 9, $, #,
and @. The name is converted
to EBCDIC before the request is
sent to the host computer.

Returned Parameters
Table 26. Parameters Returned to the SRPI Requester

Name of Parameter Description

SRPI return code A 4-byte value that specifies the results of the
SEND_REQUEST execution. See Appendix D, for a
complete description of SRPI return codes.

Server return code A 4-byte value returned by the server. The contents and
meaning of the return status are defined by the requester or
the server, but the length of the field is always 32 bits.

Replied parameter length A 2-byte unsigned binary storage location that specifies the
number, in bytes, of parameters returned by the server.
Values of 0 through 32763 are valid. A value of 0 indicates
that no reply parameters were received from the server.

Replied data length A 2-byte unsigned binary storage location that specifies the
length in bytes of the data returned by the server. Values of
0 through 65535 are valid. A value of 0 indicates that no
reply data was received from the server.

Notes:

1. You can set the default values by using the appropriate request record
initialization function.

2. The server name is used to route the SEND_REQUEST to a 3270 session and
to invoke the host server.

3. SRPI requesters and servers determine the contents and meaning of the
application data and parameters pointed to by the addresses in the connectivity
programming request block (CPRB).

How PC/3270 Applications Use SRPI
A local application running on PC/3270 can issue the SEND_REQUEST verb to an
application on a connected remote computer. The local application is the SRPI
requester and the remote application is the intended server. The SRPI requester can
identify a specific function of the server by specifying a function ID.

328 Emulator Programming

If the contact is successful, the remote application can provide its services to the
SRPI requester. Information on invoking and implementing the SEND_REQUEST
function follows.

Invoking SEND_REQUEST
When an application invokes SEND_REQUEST, it appears to the program that the
main routine (the local application) calls a subroutine (the remote application). The
programmer who writes the requester application must perform the following
tasks:
1. Obtain storage for the connectivity programming request block (CPRB).
2. Initialize the CPRB. This involves setting the default values and completing the

application parameters.
PC/3270 provides initialization routines and macros for each supported
language. These initialization facilities insulate the application from the CPRB
mapping and call mechanisms.

3. Call the SRPI dynamic link library (DLL) by issuing SEND_REQUEST.
4. Validate the SRPI return code received in the CPRB.

The SEND_REQUEST function is implemented as a DLL.

Performance Considerations
The size of the data transfer buffers used by the SRPI router to exchange data with
the host computer is calculated automatically by PC/3270. If your SRPI requester
produces requests that transfer large blocks of data to and from the server,
performance might be improved by overriding the data transfer buffer size
calculated by PC/3270. This is accomplished by changing the definition of the
logical 3270 display terminals used for SRPI.

The data transfer buffer-size override parameter supplied on the Create/Change
Logical 3270 Display Terminal window is used to change the buffer size used by
SRPI. A value of 0 indicates that PC/3270 calculates the buffer size. Other values
(from 1 through 32) specify the buffer size in multiples of 1024 bytes. Be aware that
large values (such as 30) might improve SRPI performance at the expense of
overall system performance. Note that the data transfer buffer-size override
parameter also sets the size of the data transfer buffers used by the File Transfer
feature.

Handling the Interrupt (Ctrl+Break) Key
During processing of a SEND_REQUEST verb, all signals (except numeric
coprocessor signals) are delayed until verb completion. In particular, pressing the
Interrupt (Ctrl+Break) key does not cancel a program during execution of a
SEND_REQUEST verb.

C Requesters
This section is for programmers who want to write a requester in the C language.
It describes:
v C send_request function
v SRPI record definition
v Send_request function definition

Chapter 8. Server-Requester Programming Interface (SRPI) Support 329

v SRPI return codes

Sample programs are supplied on the Personal Communications installation.

Note: To follow C conventions, the function called SEND_REQUEST in other
sections is spelled send_request in this section.

C send_request Function
The send_request parameters are grouped into a single C structure of type
UERCPRB. The init_send_req_parms function is provided to initialize all
send_request parameters in the UERCPRB structure to their defaults. This allows
the default values to be set once for parameters not used by a requester. The
send_request function is provided to make synchronous calls to the server
program.

The init_send_req_parms and send_request functions must be linked with your C
application. PCSSRP32.DLL for 32-bit interface and PCSSRPI.DLL for 16-bit
interface; both of these object files are provided with PC/3270.

The send_request function copies the contents of the UERCPRB structure into a
connectivity programming request block (CPRB) and calls the PCSSRP32.DLL.
After the server has completed its processing, the send_request procedure copies
the returned parameters from the CPRB into the UERCPRB structure and returns
control to the C application.

If the request parameters or data consist of several structures, the application must
convert the data or parameters into a single flat structure that consists of a
contiguous sequence of bytes that are stored in a buffer. The requesting program
must package the request parameters and data in a format recognizable by the
server.

UERCPRB is a packed structure. That is, each structure member after the first
member is stored at the first available byte.

The memory used for the request parameters can also be used for the reply
parameters; the memory used for the request data can also be used for the reply
data. The application program must ensure that the reply data and parameters are
written into the request data and parameters buffer only when the request data
and parameters are no longer needed.

SRPI Record Definition
The UERCPRB record type defines a record passed to the SRPI router using the
send_request function. The record is defined in an application program by using
the #include preprocessor directive to include the UUCCPRB.H file. For the
definitions and value ranges of the supplied and returned parameters, see
“Supplied Parameters” on page 326 and “Returned Parameters” on page 328.

SRPI Return Codes
See Appendix D, “SRPI Return Codes,” on page 353 for the SRPI return codes.

330 Emulator Programming

Chapter 9. Troubleshooting for Emulator programming

You can use the following self-help information resources and tools to help you
troubleshoot problems:
v Refer to the release information for your product for known issues, workaround,

and troubleshooting information.
v Check if a download or fix is available to resolve your problem.
v Search the available knowledge bases to see if the resolution to your problem is

already documented.
v If you still need help, contact IBM Software Support and report your problem.

Partial EHLLAPI input on Personal Communications host screen
Problem

Truncated command text was sent to a host when using IBM Personal
Communications.

Cause

If an EHLLAPI application sends a SYSREQ key to the host and then tries
to input a command onto the host screen, sometimes only a truncated part
of the command is sent to the host. This problem occurs due to lack of
synchronization between the SYSREQ processing at the Personal
Communications host side and the input of commands from the EHLLAPI
application.

When the application sends a SYSREQ command to the host, the following
situations occur:
v The OIA is updated to indicate that you are in a SSCP-LU session.
v The Personal Communications session sends the AO command (the

SYSREQ) to the 3270 host.

As soon as the host receives the SYSREQ, it responds to Personal
Communications with the 0x15 or NL (NewLine) code. When Personal
Communications processes this NL command by filling the rest of the line
with NULLs, and moving the cursor to the beginning of the next line.

A problem occurs when the EHLLAPI application continues to input
various commands in the host screen (through the SendKeys function),
even before the Personal Communications session has received the NL
command from the host and processed it. As a result, a part of the input
command is first entered onto the screen, while the NL command is
processed and the cursor is moved over to the next line. Then the
remaining part of the command is input on the next line. Thus, only the
truncated second part of the command is sent to the host, causing
erroneous results.

Resolution

The solution for this problem is to force the EHLLAPI application to wait
until the NL command is received and processed, before continuing to
input the commands to the host screen. Once the session has notified the
EHLLAPI application that the host response for SYSREQ has been
processed, the EHLLAPI application can then continue with its input

© Copyright IBM Corp. 1989, 2016 331

|

|

|
|

|
|

|

|
|

|

|
|

|
|
|

|

|
|
|
|
|
|

|
|

|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

(because the session is now in the right state to accept new input). To
accomplish this, use the following EHLLAPI function calls:
Start_Host_Notification (23)
Pause (18)
Set_Session_Parameters (9)
Query_Host_Update (24).

Possible code in the EHLLAPI application is as follows:
v Call Sendkeys(@A@H). This sends the SYSREQ command to the session.
v Call StartHostNotify with input B, where B indicates notification of both

OIA and PS. This tells the session to notify the EHLLAPI application
when the session's OIA and/or PS is updated by the host.

v Call Pause, specifying a sufficient timeout period. This causes the
EHLLAPI application to wait until the session notifies it of a host update
to the session's OIA and/or PS. This occurs when the session receives
the most-awaited host response for the SYSREQ command. Note that if
the timeout value has been exceeded, and no host notification has been
received, the Pause function call still returns.

Also, for this Pause call to work, you must use the Set_Session_Parameters
(9) function call to enable the IPAUSE option. This is required because it
tells the Pause API call to return when the host notifies the session of an
OIA and/or PS update.

If Pause has returned due to an OIA/PS update (host notification), it has a
return value of 26. If this is the case, you are ready to send the host
command. Otherwise, you must wait again for the host response.

The EHLLAPI application can continue with the command once it knows
that either the OIA or the Presentation Space (or both) has been updated
by the host. The QueryHostUpdate is used to check what was updated:
that is, whether the OIA alone was updated (return code 21), or the PS
alone was updated (return code 22) or whether both the OIA and the PS
were updated (return code 23).

For example, the EHLLAPI code might resemble the following part:
Send Keys(@A@H) /* Send SYSREQ command to the host */

Start Host Notification with ’B’ in byte 2 /* Enable notification to EHLLAPI application
when session’s OIA and/or PS are updated */

Set Session Parms with IPAUSE option /* Allow Pause to be interrupted */

Label WW:

Pause for 15 seconds /* 15 secs is a sample time-out value */

retVal = Query Host Update /* Store return value of QueryHostUpdate() into retVal */

If (retVal = 21 or 22 or 23) /* OIA and/or PS was updated */

Send Keys("Your Input Command to host") /* Send input command to host */

else

goto (Label WW)

Stop Host Notification /* Disable host notification */

332 Emulator Programming

|
|

|
|
|
|

|

|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

This is the most appropriate solution for this problem, because the
EHLLAPI application waits for the exact minimum time required to allow
the session to receive and process the SYSREQ host response, before
sending its command input.

Another solution is to add a delay [for example, Sleep(1000)] in the
EHLLAPI application between the SYSREQ command and the subsequent
command, so that the session has enough time to receive and process the
host response. However, this solution is not the best, because the delay
might be too little or might be excessive.

Refer to RFC 2355 (TN3270 Enhancements) for more information about the
3270 SYSREQ functionality.

IBM Personal Communications VBHLLAPI sample does not run in
FDCC Windows Vista

Problem
The IBM Personal Communications VBHLLAPI sample uses controls
provided by comdlg32.ocx, which is not installed in the Federal Desktop
Core Configuration (FDCC) of Microsoft Windows Vista.

Cause VBHLLAPI uses ActiveX and Common Dialog controls that are provided
by the Microsoft comdlg32.ocx module. For security purposes, the FDCC of
Windows Vista does not contain this particular module.

Resolution

The FDCC version of Windows Vista is customized, and changes are not
recommended.

If HLLAPI samples containing VBHLLAPI need to be run, then the
comdlg32.ocx module must be copied from a standard Windows Vista
machine into the \Windows\System32\ directory of the FDCC Windows
Vista installation.

Then reboot the system for the change to take effect.

Chapter 9. Troubleshooting for Emulator programming 333

|
|
|
|

|
|
|
|
|

|
|

|
|

|

|
|
|
|

||
|
|

|

|
|

|
|
|
|

|

334 Emulator Programming

Appendix A. Query Reply Data Structures Supported by
EHLLAPI

This appendix lists and defines the query reply structures supported by the
EHLLAPI structured field interface for PC/3270. Refer to IBM 3270 Information
Display System Data Stream Programmer's Reference or, in the case of an IBM licensed
program, the documentation for the specific licensed program.

Notes:

1. EHLLAPI must scan the query reply buffers to locate the destination/origin ID
(DOID) self-defining parameter (SDP) for the structured field support to work
and be reliable. The DOID field is then filled in with the assigned ID.

2. The application should build the query reply data structures in the application's
private memory.

3. Only cursory checking is performed on the query reply data. Only the ID and
the length of the structure are checked for validity.

4. The 2-byte length field at the beginning of each query reply is not byte
reversed.

5. Only one distributed data management (DDM) base-type connection is allowed
per host session. If the DDM connection supports the SDP for the DOID,
multiple connections are allowed.

6. If a nonzero return code is received indicating that an application is already
connected to the selected session (RC 32 or 39), use that presentation space
with caution. Conflicts with SRPI, File Transfer, and other EHLLAPI
applications might result.

The DDM Query Reply
Several DDM query reply formats are supported. Here are some of them:

Table 27. DDM Query Reply Base Format

Offset Length Content Meaning

0 1 word Length Length of structure

2 1 byte X'81' Query reply ID

3 1 byte X'95' Query reply type

4–5 2 bytes FLAGS Reserved

6–7 2 bytes LIMIN Maximum DDM
bytes allowed in
inbound transmission

8–9 2 bytes LIMOUT Maximum DDM
bytes allowed in
outbound
transmission

10 1 byte NSS Number of subsets
identifier

11 1 byte DDMSS DDM subset
identifier

© Copyright IBM Corp. 1989, 2016 335

DDM Application Name Self-Defining Parameter
The DDM application name self-defining parameter provides the host application
with the name of the application containing control of the DDM auxiliary device.
The controlling application is identified by the DOID in the Direct Access
self-defining parameter.

This self-defining parameter is optional, but it is necessary if a host application is
to identify a distinct DDM auxiliary device when more than one application is in
existence at a remote workstation.

Table 28. DDM Application Name Self-Defining Parameter

Offset Length Content Meaning

0 1 byte Length Parameter length

1 1 byte X'02' DDM application
name

2–n n−2 bytes NAME Name of the remote
application program

NAME The name consists of 8 characters or less and is the means by
which a host application can relate to an application in a remote
workstation. It is the responsibility of the host and remote
application users to ensure that the name is understood by the
application at each end.

PCLK Protocol Controls Self-Defining Parameter
The PCLK Protocol Controls self-defining parameter indicates that the PCLK
Protocol Controls structured field, ID = X'1013', can be used for both inbound and
outbound in data streams destined to or from the DDM auxiliary device processor.

Table 29. DDM PCLK Auxiliary Device Self-Defining Parameter

Offset Length Content Meaning

0 1 byte X'04' Parameter length

1 1 byte X'03' PCLK protocol
controls

2–3 2 bytes VERS Protocol version

VERS The value given in VERS is used to indicate the versions of PCLK
installed in the terminal at the time the query reply is returned. For
example, X'0001' indicates PCLK Version 1.1.

Refer to IBM 3270 Information Display System Data Stream Programmer's Reference for
the field definitions for this query reply.

Base DDM Query Reply Formats
The following query reply formats are examples of some of the Base + SDP
(self-defining parameter) combinations possible. Not all of the combinations are
shown.

336 Emulator Programming

Table 30. Base DDM Query Reply Format with Name and Direct Access Self-Defining
Parameters

Offset Length Content Meaning

0 1 word Length Length of structure
(includes
self-defining
parameters)

2 1 byte X'81' Query reply ID

3 1 byte X'95' Query Reply type

4–5 2 bytes FLAGS Reserved

6–7 2 bytes LIMIN Maximum DDM
bytes allowed in
inbound transmission

8–9 2 bytes LIMOUT Maximum DDM
bytes allowed in
outbound
transmission

10 1 byte NSS Number of subsets
supported

11 1 byte DDMSS DDM subset
identifier

12 1 byte Length (n+2) Parameter length

13 1 byte X'02' DDM application
name

14– (13+n) n bytes Name Name of the remote
application program

14+n 1 byte X'04' Parameter length

15+n 1 byte X'01' Direct access ID

16+n – 17+n 2 bytes DOID Destination/origin ID
assigned by the
subsystem

The self-defining parameters begin at offsets 12 and (14 + n) where n is the length
of the application name supplied at offset 14.

Refer to IBM 3270 Information Display System Data Stream Programmer's Reference for
the field definitions for this query reply.

Table 31. Base DDM Query Reply Format with Direct Access and Name Self-Defining
Parameters

Offset Length Content Meaning

0 1 word Length Length of structure
(includes
self-defining
parameters)

2 1 byte X'81' Query reply ID

3 1 byte X'95' Query reply type

4–5 2 bytes FLAGS Reserved

Appendix A. Query Reply Data Structures Supported by EHLLAPI 337

Table 31. Base DDM Query Reply Format with Direct Access and Name Self-Defining
Parameters (continued)

Offset Length Content Meaning

6–7 2 bytes LIMIN Maximum DDM
bytes allowed in
inbound transmission

8–9 2 bytes LIMOUT Maximum DDM
bytes allowed in
outbound
transmission

10 1 byte NSS Number of subsets
supported

11 1 byte DDMSS DDM subset
identifier

12 1 byte X'04' Parameter length

13 1 byte X'01' Direct access ID

14–15 2 bytes DOID Destination/origin ID
assigned by the
subsystem

16 1 byte Length (n+2) Parameter length

17 1 byte X'02' DDM application
name

16+n – 17+n n bytes Name Name of the remote
application program

The self-defining parameters begin at offsets 12 and 16.

Refer to IBM 3270 Information Display System Data Stream Programmer's Reference for
the field definitions for this query reply.

The IBM Auxiliary Device Query Reply
The Auxiliary Device Query Reply is used to indicate to the host application the
support of an IBM auxiliary device that uses a data stream defined by IBM, refer
to IBM 3270 Information Display System Data Stream Programmer's Reference for more
details.

When the function is supported, the query reply is transmitted inbound in reply to
a Read Partition structured field specifying Query or Query List (QCODE List =
X'9E', Equivalent, or All).

When a workstation supports multiple auxiliary devices, the IBM auxiliary devices
query reply must be sent for each device.

Optional Parameters
All parameters shown in the base part of the query reply must be present.
Parameters not used are set to X'00'.

At least one self-defining parameter must be present.

338 Emulator Programming

Table 32. IBM Auxiliary Device Base Format with Direct Access Self-Defining Parameter

Offset Length Content Meaning

0–1 1 word Length Length of structure (includes self-defining
parameters)

2 1 byte X'81' Query reply ID

3 1 byte X'9E' IBM auxiliary device reply

4 1 byte

BIT 0

1–7

FLAGS

QUERY
B'1'

RES

Reserved

Read Part (Query, Query List)
Auxiliary device supports Query

Reserved, must be B'0's

5 1 byte FLAGS Reserved

6–7 2 bytes LIMIN Maximum DDM bytes allowed in inbound
transmission

8–9 2 bytes LIMOUT Maximum DDM bytes allowed in
outbound transmission

10 1 byte TYPE
X'01'
X'02'
Others

Type of auxiliary device supported
IBM auxiliary device display
IBM auxiliary device printer
Reserved

11 1 byte X'04' Parameter length

12 1 byte X'01' Direct access

13–14 1 word DOID Destination/origin ID assigned by the
subsystem

QUERY This bit must be set to B'1' for all IBM auxiliary devices to indicate that it
supports receiving a Read Partition (Query, Query List). The host applications
can then use a Read Partition directed to the auxiliary device to determine its
characteristics. The destination/origin structured field is used to direct the
Read Partition structured field to the auxiliary device.

The minimum support level for the IBM auxiliary device is to return the Null
query reply in response to the Read Partition.

LIMIN States the maximum number of bytes that can be sent in an inbound
transmission. A LIMIN value of X'0000' indicates no implementation limit on
the number of bytes transmitted inbound.

LIMOUT States the maximum number of bytes that can be sent to an IBM auxiliary
device in an outbound transmission. A LIMOUT value of X'0000' indicates no
implementation limit on the number of bytes transmitted outbound.

TYPE Identifies the auxiliary device being supported. Two values are valid. One
identifies an auxiliary display and the other identifies an auxiliary printer. All
other values are reserved.

The IBM auxiliary device processor supports two self-defining parameters, 01 and
03. These are defined in Table 33 on page 340.

Direct Access Self-Defining Parameter
The direct access self-defining parameter provides the ID for use in the
destination/origin structured field in the direct access of the IBM auxiliary device.

This SDP is always required to accompany the base query reply.

Appendix A. Query Reply Data Structures Supported by EHLLAPI 339

Table 33. IBM Auxiliary Device Direct Access Self-Defining Parameter

Offset Length Content Meaning

0 1 byte X'04' Parameter length

1 1 byte X'01' Direct access ID

2–3 2 bytes DOID Destination/origin ID

DOID The value in these bytes is used in the ID field of the
destination/origin structured field to identify the auxiliary device
as the destination or origin of the data that follows.

PCLK Protocol Controls Self-Defining Parameter
The presence of the PCLK protocol controls self-defining parameter indicates that
the PCLK protocol controls structured field, ID = X'1013', can be used for both
inbound and outbound in data streams destined to or from the IBM auxiliary
device processor.

Table 34. IBM Auxiliary Device PCLK Self-Defining Parameter

Offset Length Content Meaning

0 1 byte X'04' Parameter length

1 1 byte X'03' PCLK protocol
controls

2–3 2 bytes VERS Protocol version

VERS The value given in VERS is used to indicate the versions of PCLK
installed in the terminal at the time the query reply is returned. For
example, X'0001' indicates PCLK version 1.1.

Refer to IBM 3270 Information Display System Data Stream Programmer's Reference for
the field definitions for this query reply.

The OEM Auxiliary Device Query Reply
The OEM Auxiliary Device query reply format is as follows:

Table 35. OEM Auxiliary Device Base Format with Direct Access Self-Defining Parameter

Offset Length Content Meaning

0–1 1 word Length Length of structure
(includes
self-defining
parameters)

2 1 byte X'81' Query reply ID

3 1 byte X'8F' OEM query reply

4–5 2 bytes FLAGS Reserved

6–13 4 words DTYPE Device type

14–21 4 words UNAME User assigned name

22 1 byte X'04' Parameter length

23 1 byte X'01' Direct access

340 Emulator Programming

Table 35. OEM Auxiliary Device Base Format with Direct Access Self-Defining
Parameter (continued)

Offset Length Content Meaning

24–25 1 word DOID Destination/origin ID
assigned by the
subsystem

Refer to IBM 3270 Information Display System Data Stream Programmer's Reference for
the field definitions for this query reply.

The OEM auxiliary device processor supports two self-defining parameters, 01 and
03. These are defined in Table 36.

Direct Access Self-Defining Parameter
The direct access self-defining parameter provides the ID for use in the
destination/origin structured field in the direct access of the OEM auxiliary device.

Table 36. OEM Auxiliary Device Direct Access Self-Defining Parameter

Offset Length Content Meaning

0 1 byte X'04' Parameter length

1 1 byte X'01' Direct access ID

2–3 2 bytes DOID Destination/origin ID

DOID The value in these bytes is used in the ID field of the
destination/origin structured field to identify the auxiliary device
as the destination or origin of the data that follows.

PCLK Protocol Controls Self-Defining Parameter
The presence of the PCLK protocol controls self-defining parameter indicates that
the PCLK Protocol Controls structured field, ID = X'1013', can be used for both
inbound and outbound in data streams destined to or from the OEM auxiliary
device processor.

Table 37. IBM Auxiliary Device PCLK Self-Defining Parameter

Offset Length Content Meaning

0 1 byte X'04' Parameter length

1 1 byte X'03' PCLK protocol
controls

2–3 2 bytes VERS Protocol version

VERS The value given in VERS is used to indicate the versions of PCLK
installed in the terminal at the time the query reply is returned. For
example, X'0001' indicates PCLK version 1.1.

Appendix A. Query Reply Data Structures Supported by EHLLAPI 341

The Cooperative Processing Requester Query Reply
The Cooperative Processing Requester query reply is also called the SRPI query
reply or CPSI query reply. The format is as follows:

Table 38. CPR Query Reply Buffer Format

Offset Length Content Meaning

0 1 word Length Length of structure
(includes
self-defining
parameters)

2 1 byte X'81' Query reply ID

3 1 byte X'AB' Query reply type

4–5 2 bytes FLAGS Reserved

6–7 2 bytes LIMIN Maximum DDM
bytes allowed in
inbound transmission

8–9 2 bytes LIMOUT Maximum DDM
bytes allowed in
outbound
transmission

10 1 byte FETAL Length (in bytes) of
the following feature
information

11–12 1 word FEATS CPR length and
feature flags

13– (N*2)+12 0–2 bytes FEATSs Additional flags

(N*2)+12 1 byte X'04' Length of DOID SDP

(N*2)+13 1 byte X'01' Type of D/O ID

(N*2)+14 1 word DOID Destination/origin ID
assigned by the
subsystem

Refer to IBM 3270 Information Display System Data Stream Programmer's Reference for
the field definitions for this query reply.

The Product-Defined Query Reply
This query reply is used by IBM products using registered subidentifiers within the
X'9C' data structure. The Product-Defined Data Stream query reply indicates
support of a 3270DS workstation auxiliary device that uses an IBM
product-defined data stream. The data stream is not defined by a format
architecture document having an identifiable control point such as an architecture
review board.

When an auxiliary device supports an IBM product-defined data stream, this query
reply is transmitted inbound in reply to a Query List (QCODE List = X'9C' or All).

Optional Parameters
All parameters shown in the base part of the query reply and the direct access
self-defining parameter must be present.

342 Emulator Programming

The format of the Product-Defined query reply is as follows:

Table 39. IBM Product-Defined Query Reply Base Format

Offset Length Content Meaning

0–1 1 word Length Length of structure
(includes
self-defining
parameters)

2 1 byte X'81' Query reply ID

3 1 byte X'9C' IBM product-defined
data stream

4–5 2 bytes FLAGS Reserved

6 1 byte REFID Reference identifier

7 1 byte SSID Subset identifier

8 1 byte X'04' Parameter length

9 1 byte X'01' Direct access

10–11 1 word DOID Destination/origin ID
assigned by the
subsystem

Valid values for REFID (offset 6) and SSID (offset 7) of the Product-Defined query
reply are as follows:

Table 40. Valid REFID and SSID Values for the IBM Product-Defined Query Reply

REFID SSID Product and Data Stream Documentation

X'01' 5080 Graphics System:

This reference ID indicates the 5080 Graphics System
data stream is supported by the auxiliary device.
Descriptions of the 5080 Graphics Architecture,
structured field, subset ID, DOID, and associated
function sets are defined in IBM 5080 Graphics
System Principles of Operation

X'01' X'02' 5080 HGFD Graphics Subset 5080 RS232 Ports
Subset

X'02' WHIP API (replaced by SRL name when written)

This reference ID indicates that the WHIP API data
stream is supported by the auxiliary device. A
description of the WHIP API architecture is defined
in IBM RT PC Workstation Host Interface Program
Version 1.1 User's Guide and Reference Manual

X'01' WHIP Subset 1

X'03' to X'FF' All other values are reserved.

The IBM product-defined processor supports only the direct access self-defining
parameter. It is defined in Table 41 on page 344.

Direct Access Self-Defining Parameter
The presence of the Direct Access ID self-defining parameter indicates that the
auxiliary device can be accessed directly by using the destination/origin structured

Appendix A. Query Reply Data Structures Supported by EHLLAPI 343

field. When multiple auxiliary devices are supported that use a product-defined
data stream, separate Product-Defined Data Stream query replies must be
provided, each of which has a unique DOID.

Table 41. IBM Product-Defined Direct Access Self-Defining Parameter

Offset Length Content Meaning

0 1 byte X'04' Parameter length

1 1 byte X'01' Direct access ID

2–3 2 bytes DOID Destination/origin ID

DOID The value in these bytes is used in the ID field of the
destination/origin structured field to identify the auxiliary device
as the destination or origin of the data that follows.

The Document Interchange Architecture Query Reply
This query reply indicates the Document Interchange Architecture (DIA) function
set supported. The format of the DIA Query Reply is as follows:

Table 42. IBM DIA Base Format

Offset Length Content Meaning

0 1 word Length Length of structure
(includes
self-defining
parameters)

2 1 byte X'81' Query reply ID

3 1 byte X'97' IBM DIA

4–5 2 bytes FLAGS Reserved

6–7 2 bytes LIMIN Maximum DDM
bytes allowed in
inbound transmission

8–9 2 bytes LIMOUT Maximum DDM
bytes allowed in
outbound
transmission

10 1 byte NFS Number of 3-byte
function set IDs that
follow

11–13 3 bytes DIAFS DIA function set
identifier

14– (13+(N*3)) N*3 bytes DIAFSs Additional DIA
function set IDs

14+(N*3) 1 byte X'04' Parameter length

15+(N*3) 1 byte X'01' Direct access

16+(N*3) 1 word DOID Destination/origin ID
assigned by the
subsystem

The DIA auxiliary device processor supports only the direct access self-defining
parameter. It is defined in Table 43 on page 345.

344 Emulator Programming

The presence of the direct access ID self-defining parameter indicates that the
auxiliary device can be accessed directly by using the destination/origin structured
field.

Table 43. IBM Product-Defined Direct Access Self-Defining Parameter

Offset Length Content Meaning

0 1 byte X'04' Parameter length

1 1 byte X'01' Direct access ID

2–3 2 bytes DOID Destination/origin ID

DOID The value in these bytes is used in the ID field of the
destination/origin structured field to identify the auxiliary device
as the destination or origin of the data that follows.

Refer to IBM 3270 Information Display System Data Stream Programmer's Reference for
the field definitions for this query reply.

Appendix A. Query Reply Data Structures Supported by EHLLAPI 345

346 Emulator Programming

Appendix B. Differences from Communication Manager/2
EHLLAPI

This appendix describes the differences between EHLLAPI of Personal
Communications and EHLLAPI for Communication Manager/2.

The following EHLLAPI functions are different from those with the same names in
Communication Manager/2. You need to understand the differences when you use
these functions:
v Set Session Parameter (9)
v Copy OIA (13)
v Copy String to PS (15)
v Storage Manager (17)
v Copy String to Field (33)
v Get Key (51)
v Window Status (104)
v Query Sessions (10)
v Connect for Structured Field (120)
v Allocate Communications Buffer (123)
v ASCII mnemonics

Set Session Parameter (9)

Set Options
Personal Communications does not provide the following set options provided by
Communication Manager:

OLDOIA, NEWOIA
COMPCASE, COMPICASE
OLD5250OIA, NEW5250OIA

Return Parameters
When the Set Session Parameter (9) function is terminated, Communication
Manager returns a length of the valid data string as the third parameter, the data
string length. However, Personal Communications returns a number of the valid
set options as the data string length.

EAB Option
In Communication Manager/2, a color remap affects the value of the character
color in the EAB attribute copied by Copy PS (5) or Copy PS to String (8) function
when the EAB option is specified in the Set Session Parameter (9) function.

In Personal Communications, however, the value of the character color in the EAB
attribute depends on the contents of the presentation space regardless of a color
remap, and it is not affected by a color remap.

© Copyright IBM Corp. 1989, 2016 347

Copy OIA (13)
The Copy OIA (13) function has the following differences between Communication
Manager/2 and Personal Communications. For more information of the group and
the column positions, refer to “Copy OIA (13)” on page 48.
v Byte Position 21

– Personal Communications returns X'F6'.
– Communication Manager/2 returns X'20'.

v Byte Positions 61–63
– Personal Communications does not return the printer information.
– Communication Manager/2 returns the printer information.

v Group 3: Shift State
Communication Manager/2 does not return the value of bit 2. Bit 2 is reserved,
and bit 0 contains both the Upper Shift and the Caps Lock.

v Group 8 Byte 1: Input Inhibited
– Personal Communications does not return bit 6 (Device not working).
– Communication Manager/2 can return bit 6.

v Group 8 Byte 3: Input Inhibited
– Personal Communications does not return bit 1 (Operator unauthorized) and

bit 2 (Operator unauthorized -f).
– Communication Manager/2 can return bits 1 and 2.

v Group 8 Byte 4: Input Inhibited
– Personal Communications does not return bit 2 (System wait).
– Communication Manager/2 can return bit 2.

v Group 10: Highlight Group 2
– Personal Communications does not return bit 0 (Selected).
– Communication Manager/2 can return bit 0.

v Group 11: Color Group 2
– Personal Communications does not return bit 0 (Selected).
– Communication Manager/2 can return bit 0.

v Group 13: Printer Status
– In Personal Communications, this group is reserved.
– Communication Manager/2 can return this group.

v Group 14: Graphics
Communication Manager/2 does not return bit 0 (Graphic cursor).

Copy String to PS (15)
In Communication Manager/2, the EAB option of the Set Session Parameter (9)
function affects the Copy String to PS function. When you specify the EAB option,
pass the attribute data that has the same size as the text data to the function with
the text data.

In Personal Communications, however, the data to be passed is only text data
regardless of EAB option. If you want to use the same interface with
Communication Manager/2, use the PUTEAB option of Set Session Parameter (9).

348 Emulator Programming

Storage Manager (17)
Storage Manager (17) function provided by Communication Manager/2 is not
supported by Personal Communications. Use the APIs provided by Windows to
allocate the memory for the applications.

Copy String to Field (33)
In Communication Manager/2, when the EAB option of the Set Session Parameter
(9) function is specified, the attribute data is passed to the function as a part of the
data. Therefore, when you specify the EAB option, pass the attribute data that has
the same size as the text data to the function with the text data.

In Personal Communications, however, the EAB option does not affect the data
contents of the Copy String to Field (33) function. The data to be passed is not the
attribute data, but only the text data. If you want to use the same interface with
Communication Manager/2, use the PUTEAB option of Set Session Parameter (9).

Get Key (51)
Communication Manager/2 returns shift state using @A, @S, or @r, if the shift
state of a passed key is not a key or function recognized by the emulator session.
Personal Communications does not support these ASCII mnemonics.

Window Status (104)
EHLLAPI function 104 (PM_WINDOW_STATUS) ‘query extended status’
command (0x03) will return the handle of the emulator presentation space window.
This is consistent with the definition of the function and the Communication
Manager/2 implementation. However, Personal Communications for Windows
EHLLAPI returns the handle of the frame window. EHLLAPI applications written
for Personal Communications for Windows using this function need to use the
parent of the window handle returned.

Query Sessions (10)
In Communication Manager/2, the descriptor for personal computer is returned.
However, the descriptor is not returned in Personal Communications.

Connect for Structured Fields (120)
The event object for communication connection status provided by Communication
Manager/2 is not in Personal Communications.

Allocate Communications Buffer (123)
In Communication Manager/2, the maximum value of the requested buffer size is
64 KB minus 8 bytes (X'FFF8').

In Personal Communications, however, it is 64 KB minus 256 bytes (X'FF00').

Appendix B. Differences from Communication Manager/2 EHLLAPI 349

ASCII Mnemonics
The following ASCII mnemonics are not supported in Personal Communications:

Mnemonics Meaning

@A@N Get Cursor

@A@O Locate Cursor

@A@X Hexadecimal

@A@Y Cmd (Function) Key

@A@a Destructive Backspace

@S@A Erase EOL

@S@B Field Advance

@S@C Field Backspace

@S@D Valid Character Backspace

@S@P POR (For sending only)

@S@T Jump to Task Manager

@/ Overrun of queue (Only in the Get Key function)

Get Request Completion (125)
Personal Communications does not support a blank or null session ID.

350 Emulator Programming

Appendix C. DOS-Mode EHLLAPI for Windows

Personal Communications supports EHLLAPI applications for DOS. This appendix
provides information about this support.

Installation
To install DOS EHLLAPI support for Personal Communications do the following:
1. Select the Emulator Utilities folder from the Utilities folder in the IBM Personal

Communications folder.
2. Select DOS EHLLAPI application from the Emulator Utilities folder.
3. Select the check box of the DOS MODE EHLLAPI to enable DOS EHLLAPI

support.
4. Enter the major DOS version for which your DOS EHLLAPI applications are

written. (For example, 2 for DOS Emulator Version 2.x).
5. Select OK to enable changes.
6. Shut down the workstation and restart it again.

This procedure adds the following statement in config.nt.
device=%SystemRoot%\system32\drivers\hlldrvr.com

Note: DOS EHLLAPI applications assert interrupt X'7F' to request EHLLAPI
services. Any other proprietary DOS application using interrupt X'7F' will
not work with DOS EHLLAPI enabled and vice-versa.

© Copyright IBM Corp. 1989, 2016 351

352 Emulator Programming

Appendix D. SRPI Return Codes

This appendix describes error handling in the SRPI environment. Types 0, 1, 2,
and 3 return codes and their definitions are listed. Exception class definitions, code
values, and object values are listed. Server return codes are also discussed.

Error Handling
An unsuccessful service request in the SRPI environment can result from problems
at any of the different layers. SRPI shields applications from transport layer errors
as much as possible. Errors within server processing are handled by the
applications. The other errors are caused by SRPI and are treated accordingly.

Transport Layer Errors
SRPI tries to recover from transport layer errors. When recovery is not possible,
SRPI returns to the requester with a return code indicating transport layer failure.
The programmer should handle such failures using the problem determination
procedures of the transport mechanism.

Application Errors
SRPI is responsible for routing requests to servers and returning replies to
requesters. Requesters and servers are responsible for handling errors (except for
abend) that servers encounter. When a server ends abnormally, SRPI returns to the
requester with an abend notice in the SRPI return code.

The server return code is set by the server on the IBM host computer running
under VM or MVS. The value and meaning of the server return code is dependent
on the requester or the server.

SEND_REQUEST Processing Errors
SRPI return codes can encounter a number of errors in processing the
SEND_REQUEST function. Such errors include:
v Incorrect function parameters
v Unidentified server
v Inability to contact the server

There are also system error codes for internal SRPI errors.

Types of SRPI Return Codes
SRPI return codes include types 0, 1, 2, and 3:

Type 0
Indicates successful completion of the SEND_REQUEST function.

Type 1
Indicates errors detected by the SRPI router that prevent a request from
being processed.

Type 2
Indicates errors detected by the SRPI router and reported to the remote
computer by an acknowledge interchange unit.

© Copyright IBM Corp. 1989, 2016 353

Type 3
Indicates errors detected by the remote computer and reported to the SRPI
router by an acknowledge interchange unit.

The return code values are word-reversed and byte-reversed within each word. For
example, the SRPI return code X'0100 0402' is stored in the CPRB memory as
X'0204 0001'.

Type 0 Return Code Definitions
The type 0 return code (constant return code UERERROK) has the following
format: X'0000 0000'. This return code value indicates that the SRPI function
completed successfully.

Type 1 Return Code Definitions
Type 1 return codes have the following format: X'0100 nnnn'.

The nnnn bytes are the hexadecimal value that indicates the specific error detected.

The return code definitions and descriptions are listed in Table 44.

Table 44. Type 1 Return Code Definitions and Descriptions

Hexadecimal
Return Code Constant Return Code Description

X'0100 0402' UERERRT1START SRPI is not started because the host
ECF program is not started.

X'0100 0404' UERERRT1LOAD The SRPI router is not loaded.

X'0100 0408' UERERRT1BUSY The SRPI router is busy. This return
code is not used by the Personal
Communications program.

X'0100 040A' UERERRT1VER The version ID in the CPRB passed to
the SRPI router is not supported by the
resident portion of the SRPI router. The
version ID is automatically put into the
CPRB by the C interface facility.

X'0100 040C' UERERRT1EMU Personal Communications is not loaded.

X'0100 040E' UERERRT1ROUT The server name supplied in the CPRB
is not defined in the server routing
table. Default routing is not configured
so SRPI is unable to route the request.
Use a valid server name or update the
configuration to include the server
name.

X'0100 0410' UERERRT1COMMR Communications resource not available.

X'0100 0412' UERERRT1REST 3270 emulation has been restarted since
the application last used SRPI. End the
application and restart it before using
SRPI.

X'0100 0414' UERERRT1INUSE The request has been routed to a
communication session that is in use by
File Transfer.

X'0100 0602' UERERRT1QPLEN Request parameters length exceeds the
maximum value. The maximum value
allowed is 32763.

354 Emulator Programming

Table 44. Type 1 Return Code Definitions and Descriptions (continued)

Hexadecimal
Return Code Constant Return Code Description

X'0100 0604' UERERRT1RPLEN Reply parameters buffer length exceeds
the maximum value. The maximum
value allowed is 32763.

X'0100 0606' UERERRT1VERB Incorrect or unsupported verb type. The
verb type in the CPRB passed to the
SRPI router is not recognized. The verb
type is put into the CPRB automatically
by the C interface facility.

X'0100 0608' UERERRT1SERV Incorrect server name. One or more
characters in the server name could not
be converted to EBCDIC for sending to
the host.

X'0100 060C' UERERRT1QPAD One of the following conditions exists:

v The request parameter address is not
valid.

v The request parameter length extends
beyond the end of the request
parameter buffer.

v The request parameter address is 0
with a nonzero request parameter
length.

X'0100 060E' UERERRT1QDAD One of the following conditions exists:

v The request data address is not valid.

v The request data length extends
beyond the end of the request data
buffer.

v The request data address is 0 with a
nonzero request data length.

X'0100 0610' UERERRT1RPAD One of the following conditions exists:

v The reply parameter buffer address is
not valid.

v The reply parameter buffer length
extends beyond the end of the reply
parameter buffer.

v The reply parameter buffer address is
0 with a nonzero reply parameter
length.

X'0100 0612' UERERRT1RDAD One of the following conditions exists:

v The reply data buffer address is not
valid.

v The reply data buffer length extends
beyond the end of the reply data
buffer.

v The reply data buffer address is 0
with a nonzero reply data length.

X'0100 0616' UERERRT1TOPV The TopView environment is not
supported. This return code is not used
by the Personal Communications
program.

Appendix D. SRPI Return Codes 355

Table 44. Type 1 Return Code Definitions and Descriptions (continued)

Hexadecimal
Return Code Constant Return Code Description

X'0100 0622' UERERRT1INV3270 d Notification of 3270 screen update
indicator is not valid. The Notification
of 3270 screen update indicator must be
set to X'00' (notify user of 3270 screen
update) or X'FF' (suppress user
notification of 3270 screen update) in
the CPRB.

X'0100 0624' UERERRT1INVCPRB Incorrect CPRB segment. The CPRB
address points to a truncated CPRB
structure. Use a read/write data
segment large enough to contain the
entire CPRB structure.

X'0100 0802' UERERRT1CNCL The remote computer canceled the
communication session while the
request was being processed. You can
cause this to happen by stopping the
remote program with the F3 key in the
emulator session. However, use of this
value is not limited to user-initiated
cancellation of the session. It is used
any time SRPI receives notification from
the host that the session is canceled
while processing a request.

X'0100 0C00' UERERRT1CONV A system error occurred. Conversation
with the host ended for one of the
following reasons:

v The host communication session is
not active.

v A link-level communication error
occurred.

v The system was unable to transmit
data reliably to or from the host. For
example, a sequence error occurred.

X'0100 0C02' UERERRT1ISE A system error occurred because of an
internal software error in the SRPI
router.

X'0100 0C04' UERERRT1PROT A system error occurred. This is a
protocol violation error or a system
software error in the SRPI router or the
host.

X'0100 0C06' UERERRT1SYIN A system error occurred. The error is
caused by system inconsistency. This is
a system software error in the SRPI
router.

Type 2 Return Code Definitions
Type 2 return codes have the following format: X'02xx yyzz'.

The 3 error-specific bytes consist of the following exception conditions from the
acknowledge interchange unit:
v xx exception class

356 Emulator Programming

v yy exception code
v zz exception object

Note: No constants are supplied.

Type 3 Return Code Definitions
Type 3 return codes have the following format: X'03xx yyzz'.

The 3 error-specific bytes consist of the following exception conditions from the
acknowledge interchange unit:
v xx exception class
v yy exception code
v zz exception object

The return code definitions and descriptions are listed in Table 45.

Table 45. Type 3 Return Code Definitions and Descriptions

Hexadecimal
Return Code Constant Return Code Description

X'0304 1D00' UERERRT3NORES A resource required by the host SRPI
router to process the request is not
available. This might be a temporary
condition.

X'0304 1E00' UERERRT3NOSER The server is unknown at the host.

X'0304 1F00' UERERRT3UNSER The server is not available at the host.

X'0304 2200' UERERRT3TERMS The server terminated in a normal
fashion but did not send a reply.

X'0304 2300' UERERRT3ABNDS The server terminated abnormally and
did not send a reply.

Class Definitions for Type 2 and Type 3
The exception classes are syntax, semantic, and process.
v Syntax exception class. This class reports violations of the transmission unit

syntax rules (for example, omitting the server return code parameter: X'0202
1A08'). In general, a return code reporting a syntax exception indicates a system
software error in the SRPI router or in the host.

v Semantic exception class. This class reports conflicting parameters (for example,
an incorrect correlation value: X'0203 1B00'). In general, a return code reporting a
semantic exception indicates a system software error in the SRPI router or in the
host.

v Process exception class. This class reports exception conditions during request
processing (for example, server unknown: X'0304 1E00').

The exception class definitions are listed in Table 46.

Table 46. Class Definitions for Type 2 and Type 3

Value Definition

X'00' to X'01' Reserved

X'02' Syntax

Appendix D. SRPI Return Codes 357

Table 46. Class Definitions for Type 2 and Type 3 (continued)

Value Definition

X'03' Semantic

X'04' Process

X'05' to X'FF' Reserved

Exception Code Values for Type 2 and Type 3
The exception code defines a specific error condition and is required with every
error. The exception code values are listed in Table 47.

Table 47. Exception Code Values for Type 2 and Type 3

Value Definition

X'00' Reserved

X'08' Segmentation

X'0C' Incorrect operand ID

X'0F' Incorrect length

X'16' Incorrect subfield type

X'18' Incorrect subfield value

X'19' Required operand missing

X'1A' Required subfield missing

X'1B' Correlation error

X'1C' Data exceeds allowable maximum length

X'1D' Resource not available

X'1E' Server unknown

X'1F' Server not available

X'20' Parameter length

X'21' Data length

X'22' Normal termination

X'23' Abnormal termination (server abend)

X'24' Multiple occurrences of a subfield

X'25' Multiple occurrences of operand

Note: All exception code values not specified in this table are reserved.

Exception Object Values for Type 2 and Type 3
The exception object defines the incorrect transmission unit object. An exception
object is required with syntax errors. The exception object values are listed in
Table 48.

Table 48. Exception Object Values for Type 2 and Type 3

Value Definition

X'00' Not specified

X'01' Prefix

358 Emulator Programming

Table 48. Exception Object Values for Type 2 and Type 3 (continued)

Value Definition

X'07' Command operand

X'08' Command subfields

X'1C' Parameters operand

X'1D' Data operand

X'13' Suffix

Note: All exception object values not specified in this table are reserved.

Server Return Codes
A server return code is a doubleword (4-byte) return code supplied by the server
program and is returned to the requester program. The contents and meaning of
the return status are defined by the requester or the server. For information about
server return codes, contact your host personnel or see one of the following
manuals:
v TSO/E Version 2 Guide to the Server-Requester Programming Interface

v IBM Programmer's Guide to the Server-Requester Programming Interface for
VM/System Product

Appendix D. SRPI Return Codes 359

360 Emulator Programming

Appendix E. DDE Functions in a 16-Bit Environment

This appendix describes DDE functions in 16-bit mode. This is useful information
when you are migrating from 16-bit to 32-bit mode.

PC/3270 Windows mode and PC400 provide a dynamic data exchange (DDE)
interface that allows applications to exchange data. The exchange of data between
two Windows applications can be thought of as a conversation between a client
and a server. The client initiates DDE conversations. The server in turn responds to
the client. Personal Communications is a DDE server for the open sessions that
Personal Communications is managing. For more information about DDE, refer to
Microsoft Windows Software Development Kit Guide to Programming.

Note: If you use DDE functions with Visual Basic, see Chapter 7, “Using DDE
Functions with a DDE Client Application,” on page 291.

Personal Communications DDE Data Items in a 16-Bit Environment
Microsoft Windows DDE uses a three-level naming scheme to identify data items:
application, topic, and item. Table 49 describes these levels.

Table 49. Naming Scheme for Data Items

Level Description Example

Application A Windows task or a particular task of an application. In
this book, the application is Personal Communications.

IBM3270

Topic A specific part of an application. SessionA

Item A data object that can be passed in a data exchange. An
item is an application-defined data item that conforms to
one of the Windows clipboard formats or to a private,
application-defined, clipboard format. For more
information regarding Windows clipboard formats, refer
to Microsoft Windows Software Development Kit Guide to
Programming.

PS (presentation
space)

Personal Communications supports IBM3270 IBM5250 as Windows DDE server.

You can use the following topics:
v System
v SessionA, SessionB, ..., SessionZ
v LUA_xxxx, LUB_xxxx, ..., LUZ_xxxx

In DDE, atoms identify application names, topic names, and data items. Atoms
represent a character string that is reduced to a unique integer value. The character
string is added to an atom table, which can be referred to for the value of the
string associated with an atom. Atoms are created with the GlobalAddAtom
function call. Refer to Microsoft Windows Software Development Kit Guide to
Programming for more information about how to create and use atoms.

© Copyright IBM Corp. 1989, 2016 361

Using System Topic Data Items
Applications that provide a DDE interface should also provide a special topic
SYSTEM. This topic provides a context for items of information that might be of
general interest to an application. The SYSTEM topic for Personal Communications
contains these associated data items:

Item Function
Formats Returns the list of clipboard formats (numbers) that Personal

Communications is capable of rendering.
Status Returns information about the status of each Personal Communications

session.
SysCon Returns the level of Personal Communications support and other system

related values.
SysItems Returns the list of data items that are available when connected to the

Personal Communications system topic.
Topics Returns the list of Personal Communications topics that are available.

Using Session Topic Data Items
For each Session topic, the following data items are supported:

Item Function
CLOSE Retrieves the window close requests.
EPS Retrieves the session presentation space with additional data.
EPSCOND Retrieves the presentation space service condition.
FIELD Retrieves the field in the presentation space of the session.
KEYS Retrieves the keystrokes.
MOUSE Retrieves the mouse input.
OIA Retrieves the operator information area status line.
PS Retrieves the session presentation space.
PSCOND Retrieves the session advise condition.
SSTAT Retrieves the session status.
STRING Retrieves the ASCII string data.
TRIMRECT Retrieves the session presentation space within the current trim rectangle.

Using LU Topic Data Items (PC/3270 Only)
For each LU topic, the following data items are supported:

Item Function
SF Retrieves the destination/origin structured field data.
SFCOND Retrieves the query reply data.

DDE Functions in a 16-Bit Environment
Table 50 lists the DDE functions that are available for use with Personal
Communications.

Table 50. DDE Functions in a 16–Bit Environment

Function PC/3270
Windows

PC400

“Find Field” on page 364 Yes Yes
“Get Keystrokes” on page 365 Yes Yes
“Get Mouse Input” on page 366 Yes Yes

362 Emulator Programming

Table 50. DDE Functions in a 16–Bit Environment (continued)

Function PC/3270
Windows

PC400

“Get Number of Close Requests” on page 369 Yes Yes
“Get Operator Information Area” on page 370 Yes Yes
“Get Partial Presentation Space” on page 371 Yes Yes
“Get Presentation Space” on page 373 Yes Yes
“Get Session Status” on page 375 Yes Yes
“Get System Configuration” on page 376 Yes Yes
“Get System Formats” on page 377 Yes Yes
“Get System Status” on page 378 Yes Yes
“Get System SysItems” on page 379 Yes Yes
“Get System Topics” on page 380 Yes Yes
“Get Trim Rectangle” on page 381 Yes Yes
“Initiate Session Conversation” on page 381 Yes Yes
“Initiate Structured Field Conversation” on page 382 Yes No.
“Initiate System Conversation” on page 383 Yes Yes
“Put Data to Presentation Space” on page 383 Yes Yes
“Search for String” on page 384 Yes Yes
“Send Keystrokes” on page 385 Yes Yes
“Session Execute Macro” on page 386 Yes Yes
“Set Cursor Position” on page 392 Yes Yes
“Set Mouse Intercept Condition” on page 394 Yes Yes
“Set Presentation Space Service Condition” on page
396

Yes Yes

“Set Session Advise Condition” on page 397 Yes Yes
“Set Structured Field Service Condition” on page 398 Yes No
“Start Close Intercept” on page 399 Yes Yes
“Start Keystroke Intercept” on page 401 Yes Yes
“Start Mouse Input Intercept” on page 402 Yes Yes
“Start Read SF” on page 405 Yes No
“Start Session Advise” on page 406 Yes Yes
“Stop Close Intercept” on page 407 Yes Yes
“Stop Keystroke Intercept” on page 408 Yes Yes
“Stop Mouse Input Intercept” on page 409 Yes Yes
“Stop Read SF” on page 409 Yes No
“Stop Session Advise” on page 410 Yes Yes
“Terminate Session Conversation” on page 411 Yes Yes
“Terminate Structured Field Conversation” on page
411

Yes No

“Terminate System Conversation” on page 411 Yes Yes
“Write SF” on page 412 Yes No

Refer to “Summary of DDE Functions in a 16-Bit Environment” on page 424 for a
summary of the 16-bit DDE functions.

Naming Conventions for Parameters
Most DDE parameter names and local variables. These variables have a prefix that
indicates the general type of the parameter, followed by one or more words that
describe the content of the parameter. Prefixes presented in this book are:

a Atom

c Character (a 1-byte value)

Appendix E. DDE Functions in a 16-Bit Environment 363

f Bit flags packed into a 16-bit integer

h 16-bit handle

p Short (16-bit) pointer

lp Long (32-bit) pointer

w Short (16-bit) unsigned integer

u Unsigned integer

sz Null-terminated character string

Find Field

3270 5250 VT

Yes Yes Yes

The Find Field function returns to the client the information of the field specified
by the Set Presentation Space Service Condition function.

Note: The client must set the PS position by using the Set Presentation Service
Condition function before using this function.

The client sends this following message to receive the field information.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aFIELD));

where:

cfFormat Identifies the format for the field information. This must be CF_DSPTEXT.
aFIELD Identifies field data item.

The Find Field function supports a new format like Visual Basic. Using the new
format, the Find Field function can find a field with specifying its type. The new
format is:
FIELD (pos, type)

pos Position where Personal Communications starts to search a target field.
type Target field type. The field type are:

Type Meaning

�� or T� This field.

P� The previous field, either protected or unprotected.

N� The next field, either protected or unprotected.

NP The next protected field.

NU The next unprotected field.

PP The previous protected field.

PU The previous unprotected field.

Note: The � symbol represents a required blank.

364 Emulator Programming

Personal Communications Response
Personal Communications returns the following information of the field in a DDE
data message,
v Start PS position
v Length
v Attribute value
WM_DDE_DATA(hData, aFIELD)

or responds with an ACK message containing status information.
WM_DDE_ACK(wStatus, aFIELD)

If Personal Communications cannot return the field information, one of the
following status codes is returned in the low-order byte of the wStatus word:

Return Code Explanation

1 PS position is not valid.

2 PS is unformatted.

6 The specified format is not valid.

9 A system error occurred.

Structure of the Field Information
Personal Communications returns the field information in the following structure:
typedef struct tagFINDFIELD
{
unsigned unused:12; // *** unused ***
unsigned fResponse:1; // TRUE = DDE_REQUEST response
unsigned fRelease:1; // TRUE = Client frees this data
unsigned reserved:1; // *** reserved ***
unsigned fAckReq:1; // TRUE = Client returns DDE_ACK
int cfFormat; // Format of Field data CF_DSPTEXT
unsigned char cAttribute; // Attribute character
unsigned uFieldStart; // Field start offset
unsigned uFieldLength; // Field Length;
} FINDFIELD, far *lpFINDFIELD;

Get Keystrokes

3270 5250 VT

Yes Yes Yes

The Get Keystrokes function returns to the client the keystrokes that are
intercepted by the Start Keystroke Intercept function. The client sends the
following message to receive the keystroke information.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aKEYS));

where:

cfFormat Identifies the format for the keystroke information. This must be
CF_DSPTEXT.

aKEYS Identifies keystroke data item.

Appendix E. DDE Functions in a 16-Bit Environment 365

Personal Communications Response
Personal Communications either returns the keystrokes in a DDE data message, or
responds with one of these ACK messages containing status information:
v WM_DDE_DATA(hData, aKEYS)
v WM_DDE_ACK(wStatus, aKEYS)

If Personal Communications cannot return the keystroke information, one of the
following status codes is returned in the low-order byte of the wStatus word:

Return Code Explanation

2 No keystroke was intercepted.

6 The specified format is not valid.

9 A system error occurred.

Structure of the Keystroke Information
Personal Communications returns the keystroke information in the following
structure:
typedef struct tagKEYSTROKE
{
unsigned unused:12; // *** unused ***
unsigned fResponse:1; // TRUE = DDE_REQUEST response
unsigned fRelease:1; // TRUE = Client frees this data
unsigned reserved:1; // *** reserved ***
unsigned fAckReq:1; // TRUE = Client returns DDE_ACK
int cfFormat; // Format of keystroke data CF_DSPTEXT
unsigned uTextType; // Type of keystrokes
unsigned char szKeyData[1];// Keystrokes
} KEYSTROKE, far *lpKEYSTROKE;

The format for the keystrokes parameters is the same as for the Session Execute
Macro function SENDKEY command.

The following key text types are supported:
WC_CHARACTER 0 // Pure text, no command
WC_TOKEN 1 // including commands

Get Mouse Input

3270 5250 VT

Yes Yes Yes

The Get Mouse Input function returns the latest mouse input intercepted by Start
Mouse Input Intercept function to the client.

Note: The client must call the Start Mouse Input Intercept function before using
this function.

The client sends the following command to receive the mouse input information.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aMOUSE));

where:

366 Emulator Programming

cfFormat Identifies the format for the presentation space. Valid values are CF_TEXT or
CF_DSPTEXT. The structure of the mouse input data, in these two formats,
is shown below.

aMOUSE Identifies the mouse input as the item.

Personal Communications Response
Personal Communications either returns the mouse input data in a DDE data
message, or responds with one of these ACK messages:
v WM_DDE_DATA(hData, aMOUSE)
v WM_DDE_ACK(wStatus, aMOUSE)

If Personal Communications cannot return the mouse input information, one of the
following status codes is returned in the low-order byte of the wStatus word:

Return Code Explanation

2 No mouse input information was intercepted.

6 The specified format is not valid.

9 A system error occurred.

Structure of the Mouse Input Information
If the format is CF_TEXT, Personal Communications returns the mouse input
information in the following format:
typedef struct tagMOUSE_CF_TEXT
{
unsigned unused:12, // **** Unused ****
unsigned fRespons:1, // TRUE = DDE_REQUEST response
unsigned fRelease:1, // TRUE = Client frees this data
unsigned reserved:1, // **** Reserved ****
unsigned fAckReq:1; // TRUE = Client returns DDE_ACK
int cfFormat; // CF_TEXT
unsigned char PSPos[4]; // PS position
unsigned char Tab1[1]; // TAB character
unsigned char PSRowPos[4]; // PS row position
unsigned char Tab2[1]; // TAB character
unsigned char PSColPos[4]; // PS columns position
unsigned char Tab3[1]; // TAB character
unsigned char PSSize[4]; // Size of the PS
unsigned char Tab4[1]; // TAB character
unsigned char PSRows[4]; // PS number of rows
unsigned char Tab5[1]; // TAB character
unsigned char PSCols[4]; // PS number of columns
unsigned char Tab6[1]; // TAB character
unsigned char ButtonType[1]; // Pressed button type
unsigned char Tab7[1]; // TAB character
unsigned char ClickType[1]; // Click type
unsigned char Tab8[1]; // TAB character
unsigned char ClickString[1]; // Retrieved string
} MOUSE_CF_TEXT, FAR *lpMOUSE_CF_TEXT;

The following table shows the values in the parameters:

Parameter Name Meaning Value

PSPos PS offset of the position where
mouse was clicked

0 ... (PSSize – 1)

PSRowPos Row number of the position where
mouse was clicked

0 ... (PSRows – 1)

Appendix E. DDE Functions in a 16-Bit Environment 367

Parameter Name Meaning Value

PSColPos Column number of the position
where mouse was clicked

0 ... (PSCols – 1)

PSSize Size of the presentation space

PSRows Number of rows of presentation
space

PSCols Number of columns of
presentation space

ButtonType Type of the clicked mouse button
L Left button

M Middle button

R Right button

ClickType Type of clicking
S Single click

D Double click

ClickString Retrieved string to which the
mouse pointed

A character string terminated with
a ‘\0’

Tab1–8 A tab character for delimiter ‘\t’

If the format is CF_DSPTEXT, Personal Communications returns the mouse input
information in the following format:
typedef struct tagMOUSE_CF_DSPTEXT
{
unsigned unused:12, // **** Unused ****
unsigned fRespons:1, // TRUE = DDE_REQUEST response
unsigned fRelease:1, // TRUE = client frees the storage
unsigned reserved:1, // **** Reserved ****
unsigned fAckReq:1; // TRUE = client returns DDE_ACK
int cfFormat; // CF_DSPTEXT
unsigned uPSPos; // PS position
unsigned uPSRowPos; // PS row position
unsigned uPSColPos; // PS column position
unsigned uPSSize; // Size of the presentation space
unsigned uPSRows; // PS number of rows
unsigned uPSCols; // PS number of columns
unsigned uButtonType; // Pressed button type
unsigned uClickType; // Click type
unsigned char szClickString[1]; // Retrieved string
} MOUSE_CF_DSPTEXT, FAR *lpMOUSE_CF_DSPTEXT;

The following table shows the values in the parameters:

Parameter Name Meaning Value

uPSPos PS offset of the position where
mouse was clicked

0 ... (uPSSize – 1)

uPSRowPos Row number of the position where
mouse was clicked

0 ... (uPSRows – 1)

uPSColPos Column number of the position
where mouse was clicked

0 ... (uPSCols – 1)

uPSSize Size of the presentation space

uPSRows Number of rows of the
presentation space

368 Emulator Programming

Parameter Name Meaning Value

uPSCols Number of columns of the
presentation space

uButtonType Type of the clicked mouse button
0x0001 Left button

0x0002 Middle button

0x0003 Right button

uClickType Type of clicking
0x0001 Single click

0x0002 Double click

szClickString Retrieved string that the mouse
pointed to

A character string terminated with
a ‘\0’

Get Number of Close Requests

3270 5250 VT

Yes Yes Yes

The Get Number of Close Requests function returns to the client the number of
the close requests that are intercepted by the Start Close Intercept function. The
client sends the following message to receive the number of the close requests.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aCLOSE));

where:

cfFormat Identifies the format for the close intercept information. This must be
CF_DSPTEXT.

aCLOSE Identifies close intercept data item.

Personal Communications Response
Personal Communications either returns the number of the close requests in a DDE
data message, or responds with one of these ACK messages:
v WM_DDE_DATA(hData, aCLOSE)
v WM_DDE_ACK(wStatus, aCLOSE)

If Personal Communications cannot return the close intercept information, one of
the following status codes is returned in the low-order byte of the wStatus word:

Return Code Explanation

6 The specified format is not valid.

9 A system error occurred.

Structure of the Number of the Close Requests Information
Personal Communications returns the close intercept information in the following
structure:

Appendix E. DDE Functions in a 16-Bit Environment 369

typedef struct tagCLOSEREQ
{
unsigned unused:12; // *** unused ***
unsigned fResponse:1; // TRUE = DDE_REQUEST response
unsigned fRelease:1; // TRUE = Client frees this data
unsigned reserved:1; // *** reserved ***
unsigned fAckReq:1; // TRUE = Client returns DDE_ACK
int cfFormat; // Format of close intercept data CF_DSPTEXT
unsigned uCloseReqCount; // Number of the close requests.
} CLOSEREQ, far *lpCLOSEREQ;

Get Operator Information Area

3270 5250 VT

Yes Yes Yes

The Get Operator Information Area (OIA) function returns a copy of the OIA to
the client. The client sends the following message to request the OIA.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aOIA));

where:

cfFormat Identifies the format for the OIA. For the OIA this format must be
CF_DSPTEXT.

aOIA Identifies the operator information area as the item.

Personal Communications Response
Personal Communications either returns the OIA in a DDE data message, or
responds with one of these ACK messages:
v WM_DDE_DATA(hData, aOIA)
v WM_DDE_ACK(wStatus, aOIA)

If Personal Communications cannot return the OIA, one of the following status
codes is returned in the low-order byte of the wStatus word:

Return Code Explanation

6 The specified format is not valid.

9 A system error occurred.

Structure of the Operator Information Area
Personal Communications returns the operator information area in the following
structure:
typedef struct tagOIADATA
{
unsigned unused:12; // *** unused ***
unsigned fResponse:1; // TRUE = DDE_REQUEST response
unsigned fRelease:1; // TRUE = Client frees this data
unsigned reserved:1; // *** reserved ***
unsigned fAckReq:1; // TRUE = Client returns DDE_ACK
int cfFormat; // Format of OIA data CF_DSPTEXT
} OIADATA, far *lpOIADATA;

370 Emulator Programming

Get Partial Presentation Space

3270 5250 VT

Yes Yes Yes

The Get Partial Presentation Space function returns all or part of the session
presentation space to the client.

Note: The client must set the start PS position and the length (or set the EOF flag)
by using the Set Presentation Space Service Condition function before
using this function.

The client sends the following command to get the presentation space.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aEPS));

where:

cfFormat Identifies the format for the presentation space. Valid values are CF_TEXT or
CF_DSPTEXT. The structure of the presentation space, in these two formats,
is shown below.

aEPS Identifies presentation space atom as the item.

Personal Communications Response
Personal Communications either returns the presentation space data, or responds
with one of these ACK messages containing an error code in the low-order byte of
the wStatus word:
v WM_DDE_DATA(hData, aEPS)
v WM_DDE_ACK(wStatus, aEPS)

If Personal Communications cannot return the presentation space, one of the
following status codes is returned in the low-order byte of the wStatus word:

Return Code Explanation

1 No prior Set Presentation Space Service Condition function was
called, or an incorrect parameter was set.

6 The specified format is not valid.

9 A system error occurred.

Structure of the Presentation Space
Personal Communications returns the part of the presentation space in the format
specified in the Get Partial Presentation Space request.

If the format is CF_DSPTEXT, Personal Communications returns the presentation
space in the following format:
typedef struct tagEPS_CF_DSPTEXT
{
unsigned Unused:12, // Unused
unsigned fResponse:1, // TRUE = DDE_REQUEST response
unsigned fRelease:1, // TRUE = client frees the storage
unsigned reserved:1, // **** Reserved ****

Appendix E. DDE Functions in a 16-Bit Environment 371

unsigned fAckReq:1, // TRUE = DDE_ACK requested
int cfFormat; // Format data is rendered in
unsigned uPSPosition; // Start PS position
unsigned uPSLength; // Length of the part of the PS
unsigned uPSRows; // PS number of rows
unsigned uPSCols; // PS number of columns
unsigned uPSOffset; // Offset to the presentation space
unsigned uFieldCount; // Number of fields
unsigned uFieldOffset; // Offset to the field array
unsigned char PSData[1]; // PS and Field list Array
} EPS_CF_DSPTEXT, FAR *lpEPS_CF_DSPTEXT;

typedef struct tagPSFIELDS
{
unsigned char cAttribute; // Attribute Character
unsigned uFieldStart; // Field start offset
unsigned uFieldLength; // Field Length
} PSFIELDS, FAR *lpPSFIELDS;

Note: The following examples show how to obtain long pointers to the PS and the
PSFIELDS array.

lpps = (lp_EPS_CF_DSPTEXT) lpEPS_CF_DSPTEXT->PSData
+ lpEPS_CF_DSPTEXT->uPSOffset;

lppsfields = (lpPSFIELDS) lpEPS_CF_DSPTEXT->PSData
+ lpEPS_CF_DSPTEXT->uFieldOffset;

If the format is CF_TEXT, Personal Communications returns the part of the
presentation space in the following format:
typedef struct tagEPS_CF_TEXT
{
unsigned Unused:12; // **** Unused ****
unsigned fResponse:1; // TRUE = DDE_REQUEST response
unsigned fRelease:1; // TRUE = Client frees this data
unsigned reserved:1; // **** Reserved ****
unsigned fAckReq:1; // TRUE = Client returns DDE_ACK
int cfFormat; // Format of the data
unsigned char PSPOSITION[4]; // Start PS position
unsigned char Tab1[1]; // Tab character
unsigned char PSLENGTH[4]; // Length of the part of the PS
unsigned char Tab2[1]; // Tab character
unsigned char PSROWS[4]; // Number of rows in the Partial PS
unsigned char Tab3[1]; // Tab character
unsigned char PSCOLS[4]; // Number of columns in the PS
unsigned char Tab4[1]; // Tab character
unsigned char PS[1]; // PS
} EPS_CF_TEXT, FAR *lpEPS_CF_TEXT;

Following the PS in the buffer is the following additional structure of fields that
compose the field list.
typedef struct tagFL_CF_TEXT
{
unsigned char Tab5[1]; // Tab character
unsigned char PSFldCount[4]; // Number of fields in the PS
unsigned char Tab6[1]; // Tab character
PS_FIELD Field[1]; // Field List Array
} FL_CF_TEXT, FAR *lpFL_CF_TEXT;

typedef struct tagPS_FIELD
{
unsigned char FieldStart[4];
unsigned char TabF1[1];
unsigned char FieldLength[4];

372 Emulator Programming

unsigned char TabF2[1];
unsigned char Attribute;
unsigned char TabF3[1[;
} PS_FIELD, FAR *lpPS_FIELD;

Note: The following examples show how to obtain long pointers to the PS and the
PS_FIELD array.

lpps = lpEPS_CF_TEXT->PS;
lpps_field = (lpPS_FIELD) lpEPS_CF_TEXT->PS

+ atoi(lpEPS_CF_TEXT->PSLENGTH)
+ ((atoi(lpEPS_CF_TEXT->PSROWS) - 1) * 2) // CR/LF
+ 1 + 1 + 4 + 1; // Tabs + size of field count

Get Presentation Space

3270 5250 VT

Yes Yes Yes

The Get Presentation Space function returns the session presentation space to the
client. The client sends the following command to get the presentation space.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aPS));

where:

cfFormat Identifies the format for the presentation space. Valid values are CF_TEXT or
CF_DSPTEXT. The structure of the presentation space, in these two formats,
is shown below.

aPS Identifies presentation space atom as the item.

Personal Communications Response
Personal Communications either returns the presentation space and a list of the
fields that comprise the presentation space, or responds with one of these ACK
messages containing an error code in the low-order byte of the wStatus word:
v WM_DDE_DATA(hData, aPS)
v WM_DDE_ACK(wStatus, aPS)

If Personal Communications cannot return the presentation space, one of the
following status codes is returned in the low-order byte of the wStatus word:

Return Code Explanation

6 The specified format is not valid.

9 A system error occurred.

Structure of the Presentation Space
Personal Communications returns the presentation space in the format specified in
the Get Presentation Space request.

If the format is CF_DSPTEXT, Personal Communications returns the presentation
space in the following format:

Appendix E. DDE Functions in a 16-Bit Environment 373

typedef struct tagPS_CF_DSPTEXT
{
unsigned Unused:12, // Unused
unsigned fResponse:1, // TRUE = DDE_REQUEST response
unsigned fRelease:1, // TRUE = client frees the storage
unsigned reserved:1, // **** Reserved ****
unsigned fAckReq:1, // TRUE = DDE_ACK requested
int cfFormat; // Format data is rendered in
unsigned uPSSize; // Size of the presentation space
unsigned uPSRows; // PS number of rows
unsigned uPSCols; // PS number of columns
unsigned uPSOffset; // Offset to the presentation space
unsigned uFieldCount; // Number of fields
unsigned uFieldOffset; // Offset to the field array
unsigned char PSData[1]; // PS and Field list Array
} PS_CF_DSPTEXT, FAR *lpPS_CF_DSPTEXT;

typedef struct tagPSFIELDS
{
unsigned char cAttribute; // Attribute Character
unsigned uFieldStart; // Field start offset
unsigned uFieldLength; // Field Length
} PSFIELDS, FAR *lpPSFIELDS;

Note: The following examples show how to obtain long pointers to the PS and the
PSFIELDS array.

lpps = (lp_PS_CF_DSPTEXT) lpPS_CF_DSPTEXT->PSData
+ lpPS_CF_DSPTEXT->uPSOffset;

lppsfields = (lpPSFIELDS) lpPS_CF_DSPTEXT->PSData
+ lpPS_CF_DSPTEXT->uFieldOffset;

If the format is CF_TEXT, Personal Communications returns the presentation space
in the following format:
typedef struct tagPS_CF_TEXT
{
unsigned Unused:12; // **** Unused ****
unsigned fResponse:1; // TRUE = DDE_REQUEST response
unsigned fRelease:1; // TRUE = Client frees this data
unsigned reserved:1; // **** Reserved ****
unsigned fAckReq:1; // TRUE = Client returns DDE_ACK
int cfFormat; // Format of the data
unsigned char PSSIZE[4]; // Size of the PS
unsigned char Tab1[1]; // Tab character
unsigned char PSROWS[4]; // Number of rows in the PS
unsigned char Tab2[1]; // Tab character
unsigned char PSCOLS[4]; // Number of Cols in the PS
unsigned char Tab3[1]; // Tab character
unsigned char PS[1]; // PS
} PS_CF_TEXT, FAR *lpPS_CF_TEXT;

Following the PS in the buffer is the following additional structure of fields that
compose the field list.
typedef struct tagFL_CF_TEXT
{
unsigned char Tab4[1]; // Tab character
unsigned char PSFldCount[4]; // Number of fields in the PS
unsigned char Tab5[1]; // Tab character
PS_FIELD Field[1]; // Field List Array
} FL_CF_TEXT, FAR *lpFL_CF_TEXT;

typedef struct tagPS_FIELD
{
unsigned char FieldStart[4];
unsigned char TabF1[1];

374 Emulator Programming

unsigned char FieldLength[4];
unsigned char TabF2[1];
unsigned char Attribute;
unsigned char TabF3[1];
} PS_FIELD, FAR *lpPS_FIELD;

Note: The following example shows how to obtain long pointers to the PS and the
PS_FIELD array.

lpps = lpPS_CF_TEXT->PS;
lpps_field = (lpPS_FIELD) lpPS_CF_TEXT->PS

+ atoi(lpPS_CF_TEXT->PSSIZE)
+ ((atoi(lpPS_CF_TEXT->PSROWS) - 1) * 2) // CR/LF
+ 1 + 1 + 4 + 1; // Tabs + size of field count

Get Session Status

3270 5250 VT

Yes Yes Yes

The Get Session Status function returns the status of the connected session. The
client sends the following message to request session status:
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aSSTAT));

where:

cfFormat Identifies the DDE format for the status information. The value used is
CF_TEXT.

aSSTAT Identifies session status as the data item requested.

Personal Communications Response
Personal Communications either returns the session status in a DDE data message,
or responds with one of these ACK messages containing status information:
v WM_DDE_DATA(hData, aSSTAT)
v WM_DDE_ACK(wStatus, aSSTAT)

If Personal Communications cannot return the session status, one of the following
status codes is returned in the low-order byte of the wStatus word:

Return Code Explanation

6 The specified format is not valid.

9 A system error occurred.

Format of Status Information
Personal Communications returns the session status as text in CF_TEXT format.
The following fields are returned with the following possible values:

Fields Returned values Description

Status Closed, Invisible, Maximized,
Minimized, Normal

The window is in one of these
states.

Appendix E. DDE Functions in a 16-Bit Environment 375

Fields Returned values Description

Usage DDE, User The session is connected in
either a DDE session or a user
session.

ScreenX NN Defines the horizontal size of the
screen.

ScreenY NN Defines the vertical size of the
screen.

CursorX NN Defines the horizontal position
of the cursor. (0 ... ScreenX – 1)

CursorY NN Defines the vertical position of
the cursor. (0 ... ScreenY – 1)

TrimRect Status Closed, Moved, Sized The current status of the trim
rectangle.

Trim Rectangle X1 N The top-left corner X position of
the trim rectangle in character
coordinates.

Trim Rectangle Y1 N The top-left corner Y position of
the trim rectangle in character
coordinates.

Trim Rectangle X2 N The lower-right corner X
position of the trim rectangle in
character coordinates.

Trim Rectangle Y2 N The lower-right corner Y
position of the trim rectangle in
character coordinates.

Session Presentation
Space Status

N The current status of the
presentation space. The
following values are possible:

0: The presentation space
is unlocked.

4: The presentation space
is busy.

5: The presentation space
is locked.

Session Window
Handle

XXXX Window handle of the session.

Notes:

1. The status of each field is updated each time the status is requested.
2. A new field might be added in a future version of Personal Communications.

Get System Configuration

3270 5250 VT

Yes Yes Yes

376 Emulator Programming

The Get System Configuration function returns the level of Personal
Communications support and other system-related values. Most of this information
is for use by a service coordinator when a customer calls the IBM Support Center
after receiving a system error.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aSYSCON));

where:

cfFormat Identifies the DDE format for the data item requested. The value used is
CF_TEXT.

aSYSCON Identifies system configuration as the data item requested.

Personal Communications Response
Personal Communications either returns the system configuration data item in a
DDE DATA message, or responds with one of these ACK messages containing
status information:
v WM_DDE_DATA(hData, aSYSCON)
v WM_DDE_ACK(wStatus, aSYSCON)

If Personal Communications cannot return the system configuration, a DDE ACK
message will be returned with an error code in the low-order byte of the wStatus
word:
WM_DDE_ACK(wStatus, aSYSCON)

Return Code Explanation

9 A system error occurred.

Format of System Configuration information
Personal Communications returns the system configuration as text in CF_TEXT
format. The following fields are returned with the following possible values:

Fields Returned values Description

Version N The version of Personal
Communications

Level NN The level of Personal
Communications

Reserved XXXXXX Reserved

Reserved XXXX Reserved

Monitor Type MONO, CGA, EGA, VGA, XGA Type of the monitor

Country Code NNNN Country code used with 3270 or
5250

Get System Formats

3270 5250 VT

Yes Yes Yes

Appendix E. DDE Functions in a 16-Bit Environment 377

The Get System Formats function returns the list of Windows clipboard formats
supported by Personal Communications. The client application sends the following
message to retrieve the format list supported by Personal Communications:
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aFORMATS));

where:

cfFormat Identifies the DDE format for the data item requested. The value used is
CF_TEXT.

aFORMATS Identifies formats as the data item requested.

Personal Communications Response
Personal Communications returns the list of supported Windows clipboard formats
in CF_TEXT format in a DDE DATA message.
WM_DDE_DATA(hData, aFORMATS)

The following Windows Clipboard formats are supported by Personal
Communications:
v CF_TEXT

v CF_DSPTEXT

If Personal Communications cannot return the formats data item, a DDE ACK
message is returned with an error code in the low-order byte of the wStatus word:
WM_DDE_ACK(wStatus, aFORMATS)

Return Code Explanation

9 A system error occurred.

Get System Status

3270 5250 VT

Yes Yes Yes

The Get System Status function returns the status of each 3270 or 5250
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aSTATUS));

where:

cfFormat Identifies the DDE format for the data item requested. The value used is
CF_TEXT.

aSTATUS Identifies status as the data item requested.

Personal Communications Response
Personal Communications returns the status data item in CF_TEXT format in a
DDE DATA message:
WM_DDE_DATA(hData, aSTATUS)

378 Emulator Programming

For each opened session, Personal Communications returns a line of status
information. Each line contains a series of fields with the following range of
values:

Fields Range of values Description

Session ID A, B, ..., Z The short ID of the session.

Host Type 370, 400 The host system currently
supported by Personal
Communications.

Emulation Type 3270, 5250 The emulation type supported
by Personal Communications.

Session Status Closed, Invisible, Normal,
Minimized, Maximized

The current status of the
session's window.

If Personal Communications cannot return the status data item, a DDE ACK
message is returned with an error code in the low-order byte of the wStatus word:
WM_DDE_ACK(wStatus, aSTATUS)

Return Code Explanation

9 A system error occurred.

Get System SysItems

3270 5250 VT

Yes Yes Yes

Personal Communications supports the DDE system topic so that a client
application can connect to the system topic and retrieve information about
Personal Communications and the status of the sessions that Personal
Communications is managing.

The Get System SysItems function returns the list of data items available in the
Personal Communications system topic. The client application sends the following
message to get the system topic data items:
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aSYSITEMS));

where:

cfFormat Identifies the DDE format for the data item requested. The value used is
CF_TEXT.

aSYSITEMS Identifies SysItems as the data item requested.

Personal Communications Response
Personal Communications returns the list of system topic data items in CF_TEXT
format in a DDE DATA message.
WM_DDE_DATA(hData, aSYSITEMS)

The following data items are supported by Personal Communications:

Appendix E. DDE Functions in a 16-Bit Environment 379

v SysItems
v Topics
v Status
v Formats
v SysCon

If Personal Communications cannot return the system data items, a DDE ACK
message is returned with an error code in the low-order byte of the wStatus word:
WM_DDE_ACK(wStatus, aSYSITEMS)

Return Code Explanation

9 A system error occurred.

Get System Topics

3270 5250 VT

Yes Yes Yes

The Get System Topics function returns the list of active DDE topics currently
supported by Personal Communications. The client application sends the following
message to the system topic to retrieve the list of topics that are currently active:
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aTOPICS));

where:

cfFormat Identifies the DDE format for the data item requested. The value used is
CF_TEXT.

aTOPICS Identifies topics as the data item requested.

Personal Communications Response
Personal Communications returns the list of DDE topics in CF_TEXT format in a
DDE DATA message.
WM_DDE_DATA(hData, aTOPICS)

The following topics are supported by Personal Communications:
v System – System Topic
v SessionA – Session A Topic

...
v SessionZ – Session Z Topic

Note: The actual number of session topics supported depends on the number of
sessions currently opened. The client program should always query the
topics data item of the system topic to obtain the list of sessions currently
opened.

If Personal Communications cannot return the list of topics, a DDE ACK message
is returned with an error code in the low-order byte of the wStatus word:
WM_DDE_ACK(wStatus, aTOPICS)

380 Emulator Programming

Return Code Explanation

9 A system error occurred.

Get Trim Rectangle

3270 5250 VT

Yes Yes Yes

The Get Trim Rectangle function returns to the client the area of the presentation
space that is within the current trim rectangle. The client sends the following
message to receive the trim rectangle.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aTRIMRECT));

where:

cfFormat Identifies the format for the trim rectangle. This is CF_TEXT.
aTRIMRECT Identifies trim rectangle as the data item requested.

Personal Communications Response
Personal Communications either returns trim rectangle in a DDE data message, or
responds with one of these ACK messages:
v WM_DDE_DATA(hData, aTRIMRECT)
v WM_DDE_ACK(wStatus, aTRIMRECT)

If Personal Communications cannot return the trim rectangle, one of the following
status codes is returned in the low-order byte of the wStatus word:

Return Code Explanation

6 The specified format is not valid.

9 A system error occurred.

Initiate Session Conversation

3270 5250 VT

Yes Yes Yes

The Initiate Session Conversation function connects a client application to an
available session of Personal Communications. Once a session conversation has
been established, the session is reserved for exclusive use by the client until the
conversation is terminated.

The client application sends the following message to initiate a DDE conversation
with a session:
SendMessage(-1,

WM_DDE_INITIATE,
hClientWnd,
MAKELONG(aIBM327032, aSessionN));

Appendix E. DDE Functions in a 16-Bit Environment 381

where:

aIBM327032 Identifies the application atom. The string used to create atom aIBM3270 is
IBM3270. In the PC400, the application atom is aIBM5250 and the string
IBM5250 is used to create it.

aSessionN Identifies the topic atom. The string used to create atom aSessionN is either
NULL or Session appended with the session ID A, B, ..., Z.

Personal Communications Response
If a specific topic is selected and Personal Communications can support a
conversation with the client application, Personal Communications acknowledges
the INITIATE transaction with:
WM_DDE_ACK(aIBM327032, aSessionN)

If a topic is not selected (aSessionN = NULL), Personal Communications responds
by acknowledging all topics that are currently available:
WM_DDE_ACK(aIBM327032, aSystem)
WM_DDE_ACK(aIBM327032, aSessionA)...
WM_DDE_ACK(aIBM327032, aSessionZ)

The client application selects the conversation it wishes to communicate with from
the returned list of topics and terminates all other unwanted conversations.

Initiate Structured Field Conversation

3270 5250 VT

Yes Yes Yes

The Initiate Structured Field Conversation function connects a client application
and a host application. This allows the applications to send data to each other and
to receive data from each other.

The client sends the following command to initiate a structured field conversation:
SendMessage(-1,

WM_DDE_INITIATE,
hClientWnd,
MAKELONG(aIBM3270, aLUN_xxxx));

where:

aIBM3270 Identifies the application atom.
aLUN_xxxx Identifies the topic atom. The string used to create atom aLUN_xxxx is LU

appended with the session ID A, B, ..., Z, appended with an underscore (_),
and appended with the user-defined string of any length.

PC/3270 Response
If PC/3270 can support a structured field conversation with the client application,
it returns an acknowledgment message with the following parameter:
WM_DDE_ACK(aIBM3270, aLUN_xxxx)

382 Emulator Programming

Initiate System Conversation

3270 5250 VT

Yes Yes Yes

The Initiate System Conversation function connects a client application to the
system conversation. Only one client can be connected to the system conversation
at a given time. The client sends the following command to initiate a system
conversation:
SendMessage(-1,

WM_DDE_INITIATE,
hClientWnd,
MAKELONG(aIBM327032, aSystem));

where:

aIBM327032 Identifies the application atom.
aSystem Identifies the topic atom.

Personal Communications Response
If Personal Communications can support a system topic conversation with the
client application, it returns an acknowledgment message with the following
parameters:
WM_DDE_ACK(aIBM327032, aSystem)

Put Data to Presentation Space

3270 5250 VT

Yes Yes Yes

The Put Data to Presentation Space function sends an ASCIIZ data string to be
written into the host presentation space at the location specified by the calling
parameter. The client sends the following message to the session to send the string.
PostMessage(hServerWnd,

WM_DDE_POKE,
hClientWnd,
MAKELONG(hData, aEPS));

where:

Appendix E. DDE Functions in a 16-Bit Environment 383

hData Identifies a handle to a Windows global memory object that contains the
string to be sent to the session. The global memory object contains the
following structure:

typedef struct tagPutString
{
unsigned unused:13; // ** unused **
unsigned fRelease:1; // Session frees memory
unsigned freserved:2; // ** reserved **
int cfFormat; // Always CF_DSPTEXT
unsigned uPSStart; // PS Position
unsigned uEOFflag; // EOF effective switch
char szStringData[1]; // String Data
} PUTSTRING, FAR *lpPUTSTRING;

These values are valid at the uEOFflag field:

WC_EFFECTEOF 0 // The string is truncated at EOF.
WC_UNEFFECTEOF 1 // The string is not truncated at EOF.

aEPS Identifies the presentation space atom as the item.

Personal Communications Response
Personal Communications receives the string data and sends them to the
presentation space, and returns a positive ACK message.

If the presentation space does not accept the string data, Personal Communications
returns a negative ACK message containing one of the following status codes in
the low-order byte of the wStatus word:
WM_DDE_ACK(wStatus, aEPS)

Return Code Explanation

1 PS position is not valid.

2 Length is not valid.

3 The value of EOF flag is not valid.

5 Input to the target PS was inhibited.

6 The specified format is not valid.

7 The string was truncated (successful putting).

9 A system error occurred.

Search for String

3270 5250 VT

Yes Yes Yes

This function allows a client application to examine the presentation space for a
specified string in a specified area.

Note: The client must set the start PS position, search direction, a string to be
searched, and EOF flag by using the Set Presentation Space Service
Condition function before using this function.

The client sends the following message to search for the string.

384 Emulator Programming

PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aSTRING));

where:

cfFormat Identifies the format for the search information. This is CF_DSPTEXT.
aSTRING Identifies the search data item.

Personal Communications Response
Personal Communications returns the start position of the string in a DDE data
message if the string was found in the specified area:
v WM_DDE_DATA(hData, aSTRING)
v WM_DDE_ACK(wStatus, aSTRING)

If Personal Communications cannot return the start position of the string, one of
the following status codes is returned in the low-order byte of the wStatus word:

Return Code Explanation

1 PS position is not valid or the string is too long.

2 The string cannot be found.

6 The specified format is not valid.

9 A system error occurred.

Structure of the Search Information
Personal Communications returns the Search information in the following
structure:
typedef struct tagSEARCH
{
unsigned unused:12; // *** unused ***
unsigned fResponse:1; // TRUE = DDE_REQUEST response
unsigned fRelease:1; // TRUE = Client frees this data
unsigned reserved:1; // *** reserved ***
unsigned fAckReq:1; // TRUE = Client returns DDE_ACK
int cfFormat; // Format of Search data CF_DSPTEXT
unsigned uFieldStart; // String start offset
} SEARCH, far *lpSEARCH;

Send Keystrokes

3270 5250 VT

Yes Yes Yes

The Send Keystrokes function sends keystrokes to the connected session. The
client sends the following message to the session to send keystrokes.
PostMessage(hServerWnd,

WM_DDE_POKE,
hClientWnd,
MAKELONG(hData, aKEYS));

where:

Appendix E. DDE Functions in a 16-Bit Environment 385

hData Identifies a handle to a Windows global memory object that contains the
keystrokes to be sent to the session. The global memory object contains the
following structure:

typedef struct tagKeystrokes
{
unsigned unused:13; // ** unused **
unsigned fRelease:1; // Session frees memory
unsigned freserved:2; // ** reserved **
int cfFormat; // Always CF_DSPTEXT
unsigned uTextType; // Type of keystrokes
unsigned uRetryCount; // Retry count 1 .. 16
unsigned char szKeyData[1]; // Keystrokes
} KEYSTROKES, FAR *lpKEYSTROKES;

The following key text types are supported:

WC_PURETEXT 0 // Pure text, no AID, or included HLLAPI
// commands

WC_HLLAPITEXT 1 // Text, including HLLAPI tokens

Note: If the keystrokes are pure text then specifying WC_PURETEXT will
transfer the keystrokes to the host in the fastest possible manner. If
WC_HLLAPITEXT is specified then the keystroke data can contain HLLAPI
commands interspersed with the text.

aKEYS Identifies keystrokes as the item.

Personal Communications Response
Personal Communications receives the keystrokes and sends them to the
presentation space. If the presentation space does not accept the keystrokes, a reset
is sent to the presentation space and the keystrokes are sent again. This procedure
continues until the presentation space accepts the keystrokes or the retry count is
reached. If Personal Communications cannot send the keystrokes to the host,
Personal Communications returns a negative ACK message containing one of the
following status codes in the low-order byte of the wStatus word. Otherwise,
Personal Communications returns a positive ACK message signalling the
keystrokes have been sent.
WM_DDE_ACK(wStatus, aKEYS)

Return Code Explanation

1 Retry count is not valid.

2 Type of key strokes is not valid.

6 The specified format is not valid.

9 A system error occurred.

Session Execute Macro

3270 5250 VT

Yes Yes Yes

You can issue commands and macros with the DDE_EXECUTE function. The
DDE_EXECUTE function passes command strings to Personal Communications.
The command strings must conform to DDE specifications. Refer to Microsoft
Windows Software Development Kit Guide to Programming for more information about
the DDE command syntax.

386 Emulator Programming

The client sends the following command to issue a DDE_EXECUTE function.
PostMessage (hServerWnd,

WM_DDE_EXECUTE,
hClientWnd,
MAKELONG(NULL, hCommands));

where:

hCommands
Identifies a handle to a Windows global memory object containing
Personal Communications commands. For a list of commands you can
issue, see “Issuing Commands with the Session Execute Macro Function.”

Personal Communications Response
If Personal Communications can process the command string, Personal
Communications returns an ACK message containing positive status information to
the client. If Personal Communications cannot perform the command string,
Personal Communications returns an ACK message containing this error code in
the low-order word of the wStatus word:

Return Code Explanation

9 A system error occurred.

Issuing Commands with the Session Execute Macro Function
You can issue the following commands with the Session Execute Macro function:
v WINDOW
v KEYBOARD
v SEND
v RECEIVE
v SENDKEY
v WAIT

Use a separate DDE_EXECUTE message for each command.

Note:

v Enclose values that contain nonalphanumeric characters or blanks in double
quotation marks ("value value").

v To include a double quotation mark within a string, type it twice (for example,
this is a double quotation mark:"").

v The maximum length for any command is 255 characters.

WINDOW Command
[WINDOW(action[, "name"])]

Performs window actions, where:
action = HIDE|RESTORE|MAXIMIZE|MINIMIZE|

SHOW|CNGNAME
name = LT name or Switch List Entry name

Appendix E. DDE Functions in a 16-Bit Environment 387

Note: name should be specified when CNGNAME is specified at action. If name is a
NULL string, the default caption will be displayed.

KEYBOARD Command
[KEYBOARD(action)]

Enables or disables the session keyboard, including the mouse, where:

action= LOCK|UNLOCK

SEND Command
[SEND("pcfilename","hostfilename","options")]

Sends files to the host, where:
pcfilename = [path]filename[.ext]
hostfilename =

For VM system:
filename filetype[filemode]

For MVS system:
[’]filename[(membername)][’]

For CICS system:
For OS/400 system:

library name filename member name

options includes any combination of the following file transfer options: MVS, VM,
CICS, QUIET, OS/400, and emulation-specific transfer options, separated by
spaces.

Refer to Administrator's Reference for more information about the transfer options.

RECEIVE Command
[RECEIVE("pcfilename","hostfilename","options")]

Receives files from the host, where:
pcfilename = [path]filename[.ext]
hostfilename =

For VM system:
filename filetype[filemode]

For MVS system:
[’]filename[(membername)][’]

For CICS system:
For OS/400 system:

library name filename member name

options includes any combination of the following file transfer options: MVS, VM,
CICS, QUIET, OS/400, and emulation-specific transfer options, separated by
spaces.

Refer to Administrator's Reference for more information about the transfer options.

SENDKEY Command
[SENDKEY(token,token)]

Sends keystrokes to Personal Communications, where:
token = text string|command|macro macroname

Note:

v Text strings are enclosed in double quotation marks.

388 Emulator Programming

v Macros are prefixed with “macro”.
v The argument string for SENDKEY must be 255 characters or less.
v The following commands are supported.

Table 51. SENDKEY Command List

Command Name Token PC/3270 PC400

Alternate Cursor alt cursor Yes Yes

Alternate Viewing
Mode

alt view Yes Yes

Attention sys attn Yes Yes

Backspace backspace Yes Yes

Back Tab backtab Yes Yes

Backtab Word backtab word Yes Yes

Character Advance character
advance

No Yes

Character Backspace backspace valid No Yes

Clear Screen clear Yes Yes

Clicker click Yes Yes

Color Blue blue Yes No

Color Field Inherit field color Yes No

Color Green green Yes No

Color Pink pink Yes No

Color Red red Yes No

Color Turquoise turquoise Yes No

Color White white Yes No

Color Yellow yellow Yes No

Cursor Blink cursor blink Yes Yes

Cursor Down down Yes Yes

Cursor Left left Yes Yes

Cursor Right right Yes Yes

Cursor Select cursor select Yes Yes

Cursor Up up Yes Yes

Delete Character delete char Yes Yes

Delete Word delete word Yes Yes

Device Cancel device cancel Yes Yes

Dup Field dup Yes Yes

Edit Clear edit-clear Yes Yes

Edit Copy edit-copy Yes Yes

Edit Cut edit-cut Yes Yes

Edit Paste edit-paste Yes Yes

Edit Undo edit-undo Yes Yes

End Field end field Yes Yes

Enter enter Yes Yes

Appendix E. DDE Functions in a 16-Bit Environment 389

Table 51. SENDKEY Command List (continued)

Command Name Token PC/3270 PC400

Erase EOF erase eof Yes Yes

Erase Field erase field Yes No

Erase Input erase input Yes Yes

Fast Cursor Down fast down Yes Yes

Fast Cursor Left fast left Yes Yes

Fast Cursor Right fast right Yes Yes

Fast Cursor Up fast up Yes Yes

Field Exit field exit No Yes

Field Mark field mark Yes Yes

Field + field + No Yes

Field − field - No Yes

Graphic Cursor +cr Yes No

Help help Yes Yes

Highlighting Field
Inherit

field hilight Yes No

Highlighting Reverse reverse Yes No

Highlighting
Underscore

underscore Yes No

Home home Yes Yes

Host Print host print Yes No

Input input Yes Yes

Input nondisplay input nd Yes Yes

Insert Toggle insert Yes Yes

Lower case to lower Yes No

Mark Down mark down Yes Yes

Mark Left mark left Yes Yes

Mark Right mark right Yes Yes

Mark Up mark up Yes Yes

Move Mark Down move down Yes Yes

Move Mark Left move left Yes Yes

Move Mark Right move right Yes Yes

Move Mark Up move up Yes Yes

New Line newline Yes Yes

Next Page page down No Yes

Pause 1 second pause Yes Yes

Previous Page page up No Yes

Print Screen local copy Yes Yes

Program Attention Key
1

pa1 Yes No

Program Attention Key
2

pa2 Yes No

390 Emulator Programming

Table 51. SENDKEY Command List (continued)

Command Name Token PC/3270 PC400

Program Attention Key
3

pa3 Yes No

Program Function Key
1 ...
Program Function Key
24

pf1...
pf24

Yes...
X

Yes...
X

Quit quit Yes Yes

Reset reset Yes Yes

Response Time Monitor rtm Yes No

Roll Down roll down No Yes

Roll Up roll up No Yes

Rubout rubout Yes Yes

Rule rule Yes Yes

SO/SI Display so si Yes Yes

SO/SI Generate so si generate No Yes

System Request sys req Yes Yes

Tab Field tab field Yes Yes

Tab Word tab word Yes Yes

Test test request No Yes

Unmark unmark Yes Yes

Upper case to upper Yes No

Upper/Lower Change to other Yes No

Wait for bind wait app Yes Yes

Wait for System wait sys Yes Yes

Wait transition wait trn Yes Yes

Wait while input inh. wait inp inh Yes Yes

Window Relocation 1...
Window Relocation 8

view 1...
view 8

Yes...
X

Yes...
X

Examples:

1. To logon
[SENDKEY("Logon")]

2. To get reader list
[SENDKEY("RDRL", enter)]

WAIT Command
[WAIT("[time out][wait condition]")]

Waits until the timeout expires or the wait condition the client specified occurs. For
this command, the client has to set at least one option, where:

Appendix E. DDE Functions in a 16-Bit Environment 391

time out (optional)
If the client sets a time out value in the command statements, the
following units are available in the wait statement.
v msec
v millisecond
v milliseconds
v sec
v second
v seconds
v minute
v minutes
v hour
v hours

wait condition (optional)
For the wait condition option, the client can select the following options:

while cursor at (cursor row, cursor column)
While the cursor is at (cursor row, cursor column), it keeps
waiting.

while “string”
While the “string” is somewhere on the screen, it keeps waiting.

while “string” at (cursor row, cursor column)
While the “string” is at (cursor row, cursor column) on the screen,
it keeps waiting.

until cursor at (cursor row, cursor column)
Until the cursor moves to (cursor row, cursor column), it keeps
waiting.

until “string”
Until the “string” is displayed somewhere on the screen, it keeps
waiting.

until “string” at (cursor row, cursor column)
Until the “string” is displayed at (cursor row, cursor column), it
keeps waiting.

Examples:

1. To wait 10 seconds
[WAIT("10 seconds")]

2. To wait while "ABCDEF" is displayed at (2,9) on the screen
[WAIT("while ""ABCDEF"" at (2,9)")]

3. To wait until "ABCDEF" is displayed at (2,9) on the screen, or after 8 seconds
[WAIT("8 seconds until ""ABCDEF"" at (2,9)")]

Set Cursor Position

3270 5250 VT

Yes Yes Yes

The Set Cursor Position function allows the client application to set the cursor
position in the session window.

392 Emulator Programming

PostMessage(hServerWnd,
WM_DDE_POKE,
hClientWnd,
MAKELONG(hData, aSETCURSOR));

where:

hData Identifies a handle to a Windows global memory object that contains the
cursor positioning information in the following structure:

typedef struct tagSETCURSOR
{
unsigned unused:13; // ** unused **
unsigned fRelease:1; // TRUE = Session frees memory
unsigned freserved:2; // ** reserved **
int cfFormat; // Always CF_DSPTEXT
unsigned uSetCursorType; // Cursor Set Type
unsigned uSetCursor1; // Cursor Row or PS Offset
unsigned uSetCursor2; // Cursor Col
} SETCURSOR, FAR *lpSETCURSOR;

Personal Communications supports two ways to set the cursor position:

v PS Offset (uSetCursorType = 0)

v Row/Column number (uSetCursorType = 1)

The application specifies which method by setting the uSetCursorType
field to the appropriate value, followed by setting the two other fields
uSetCursor1 and uSetCursor2 to their appropriate values as follows:

v uSetCursorType = 0 offset

– uSetCursor1: 0 ... (PSsize – 1)

v uSetCursorType = 1 row/col

– uSetCursor1: 0 ... (PSrows – 1)

– uSetCursor2: 0 ... (PScols – 1)
aSETCURSOR Identifies cursor position as the item.

Personal Communications Response
Personal Communications receives the cursor information and moves the cursor to
the specified position in the PS. If the cursor is positioned successfully, Personal
Communicationsreturns a positive ACK message to the client application.
Otherwise, a negative ACK message is returned with one of the following error
codes in the low-order byte of the wStatus word.
WM_DDE_ACK(wStatus, aSETCURSOR)

Return Code Explanation

1 Cursor set type is not valid. Must be 0 or 1.

2 Cursor PS offset is not valid. Must be 0 ... (PSsize – 1).

3 Cursor row value is not valid. Must be 0 ... (PSrows – 1).

4 Cursor column value is not valid. Must be 0 ... (PScols – 1).

6 The specified format is not valid.

9 A system error occurred.

Appendix E. DDE Functions in a 16-Bit Environment 393

Set Mouse Intercept Condition

3270 5250 VT

Yes Yes Yes

This function specifies the mouse input to be intercepted. The client sends the
following command to set the mouse event to be intercepted.
PostMessage(hServerWnd,

WM_DDE_POKE,
hClientWnd,
MAKELONG(hData, aMOUSE));

where:

hData Identifies a handle to a Windows global memory object that specifies the
condition of intercepting the mouse input, CF_TEXT or CF_DSPTEXT.

aMOUSE Identifies Mouse atom as the item.

If the format is CF_TEXT, the client program sends the condition in the following
structure:
typedef struct tagSETMOUSE_CF_TEXT
{
unsigned unused:12, //
unsigned fRelease:1, //
unsigned fReserved:3; //
int cfFormat; // Always CF_TEXT
unsigned char Condition[1] //
} SETMOUSE_CF_TEXT, FAR *lpSETMOUSE_CF_TEXT;

The following table shows the parameters' values:

Parameter Name Meaning Value

Condition Condition of
intercepting the
mouse input

A string terminated with \0, consists of the
constants defined as follows in any order:

L Enable intercepting the left button

l Disable intercepting the left button

R Enable intercepting the right button

r Disable intercepting the right button

M Enable intercepting the middle button

m Disable intercepting the middle button

S Enable intercepting a single click

s Disable intercepting a single click

D Enable intercepting a double click

d Disable intercepting a double click

T Retrieve the pointed string

t Do not retrieve the pointed string

If the format is CF_DSPTEXT, the client program sends the condition in the
following structure:

394 Emulator Programming

typedef struct tagSETMOUSE_CF_DSPTEXT
{
unsigned unused:12, //
unsigned fRelease:1, //
unsigned fReserved:3; //
int cfFormat; // Always CF_DSPTEXT
BOOL bLeftButton; //
BOOL bRightButton; //
BOOL bMiddleButton; //
BOOL bSingleClick; //
BOOL bDoubleClick; //
BOOL bRetrieveString; //
} SETMOUSE_CF_DSPTEXT, FAR *lpSETMOUSE_CF_DSPTEXT;

The following table shows the values in the parameters:

Parameter Name Meaning Value

bLeftButton Enable or disable interception of
the left mouse button True Enable intercepting the

left button

False Disable intercepting the
left button

bRightButton Enable or disable interception of
the right mouse button True Enable intercepting the

right button

False Disable intercepting the
right button

bMiddleButton Enable or disable interception of
the middle mouse button True Enable intercepting the

middle button

False Disable intercepting the
middle button

bSingleClick Enable or disable interception of
the single click True Enable intercepting the

single click

False Disable intercepting the
single click

bDoubleClick Enable or disable interception of
the double click True Enable intercepting the

double click

False Disable intercepting the
double click

bRetrieveString Retrieve or do not retrieve the
pointed string True Retrieve the pointed string

False Do not retrieve the
pointed string

Personal Communications Response
When receiving the Set Mouse Intercept Condition request, Personal
Communicationsreturns an ACK message if it can set the intercept condition to the
specified status. Otherwise, a negative ACK message is returned to the client with
one of the following return codes in the low-order byte of the wStatus field:
WM_DDE_ACK(wStatus, aMOUSE)

Return Code Explanation

2 A character in Condition parameter is not valid.

Appendix E. DDE Functions in a 16-Bit Environment 395

Return Code Explanation

6 The specified format is not valid.

9 A system error occurred.

Set Presentation Space Service Condition

3270 5250 VT

Yes Yes Yes

The Set Presentation Space Service Condition function sets the condition for
using the following functions:
v Get Partial Presentation Space

v Find Field

v Search for String

The client application sets the condition by calling this function such as:
v Start PS position
v PS length
v EOF flag
v Search direction
v ASCIIZ string

The client must specify the Set Presentation Space Service Condition function
before invoking the functions listed above. The conditions set by this function
remain in effect until the next Set Presentation Space Service Condition function
is called. The client sends the following message to set the condition:
PostMessage(hServerWnd,

WM_DDE_POKE,
hClientWnd,
MAKELONG(hData, aEPSCOND));

where:

hData Identifies a handle to a Windows global memory object containing:

typedef struct tagPSSERVCOND
{
unsigned unused:13, //
unsigned fRelease:1, //
unsigned fReserved:2; //
int cfFormat; // Always CF_DSPTEXT
unsigned uPSStart; // PS Position
unsigned uPSLength; // Length of PS
unsigned uSearchDir; // Direction for search
unsigned uEOFflag; // EOF effective switch
char szTargetString[1]; // Target String
} PSSERVCOND, FAR *lpPSSERVCOND;

The following values are valid at the uSearchDir field:

WC_SRCHFRWD 0 // Search forward.
WC_SRCHBKWD 1 // Search backward.

The following values are valid at the uEOFflag field:

WC_UNEFFECTEOF 0 // The string is not truncated at EOF.
WC_EFFECTEOF 1 // The string is truncated at EOF.

396 Emulator Programming

aEPSCOND Identifies the item for the Set Presentation Space Service Condition
function.

Personal Communications Response
If Personal Communications can perform the Set Presentation Space Service
Condition function, then Personal Communications returns an ACK message:
WM_DDE_ACK(wStatus, aEPSCOND)

If Personal Communications cannot perform the Set Presentation Space Service
Condition function, then Personal Communications returns a negative ACK
message containing one of the following return codes in the low-order byte of
wStatus:

Return Code Explanation

1 PS position is not valid.

2 Length is not valid.

3 The value of EOF flag is not valid.

4 The value of Search Direction is not valid.

6 The specified format is not valid.

9 A system error occurred.

Set Session Advise Condition

3270 5250 VT

Yes Yes Yes

This function sets the condition for the DDE_ADVISE of the Start Session Advise
function. The client can specify a search string and a region of the screen. When
the advise condition is met, the server notifies the client of the condition according
to the options specified by the Start Session Advise function.

Note: The client must specify the Set Session Advise Condition function before
invoking Start Session Advise. If the advise condition is set after the Start
Session Advise function is started, the advise condition will be ignored and
the client will receive a negative ACK message. See “Start Session Advise”
on page 406 for more information about starting the advise.

The client sends the following message to set the advise condition.
PostMessage(hServerWnd,

WM_DDE_POKE,
hClientWnd,
MAKELONG(hData, aPSCOND));

where:

Appendix E. DDE Functions in a 16-Bit Environment 397

hData Identifies a handle to a Windows global memory object containing:

typedef struct tagSEARCHDATA
{
unsigned unused:13, //
unsigned fRelease:1, //
unsigned fReserved:2; //
int cfFormat; // Always CF_DSPTEXT
WORD uPSStart; // PS Position of string
WORD uPSLength // Length of String
BOOL bCaseSensitive; // Case Sensitive TRUE=YES
char SearchString[1]; // Search String
} SEARCHDATA, FAR *lpSEARCHDATA;

aPSCOND Identifies the item for the Set Session Advise Condition function.

Personal Communications Response
If Personal Communications can perform the Set Session Advise Condition
function, Personal Communications returns this ACK message:
WM_DDE_ACK(wStatus, aPSCOND)

If Personal Communications cannot perform the Set Session Advise Condition
function, then Personal Communications returns an negative ACK message
containing one of the following return codes in the low-order byte of wStatus:

Return Code Explanation

1 Advise is already active.

2 Advise condition is already active.

3 PS position is not valid.

4 String length is not valid.

6 The specified format is not valid.

9 A system error occurred.

Set Structured Field Service Condition

3270 5250 VT

Yes Yes Yes

The Set Structured Field Service Condition function passes the Query Reply data
provided by the client application.

Note: The client must call the Set Structured Field Service Condition function
before invoking the Start Read SF function or the Write SF function.

The client sends the following message to set the condition.
PostMessage(hServerWnd,

WM_DDE_POKE,
hClientWnd,
MAKELONG(hData, aSFCOND));

where:

398 Emulator Programming

hData Identifies a handle to a Windows global memory object containing:

typedef struct tagSFSERVCOND
{
unsigned unused:12, //
unsigned fRelease:1, //
unsigned fReserved:3; //
int cfFormat; // Always CF_DSPTEXT
WORD uBufferSize; // Buffer size of Read SF
WORD uQRLength; // Length of Query Reply data
char szQueryReply[1]; // Query Reply data
} SFSERVCOND, FAR *lpSFSERVCOND;

aSFCOND Identifies the item for the Set Structured Field Service Condition
function.

PC/3270 Response
PC/3270 checks the Query Reply ID and Type (not DOID) and the length. If they
are valid, then PC/3270 returns an ACK message:
WM_DDE_ACK(wStatus, aSFCOND)

If PC/3270 cannot perform the Set Structured Field Service Condition function,
then PC/3270 returns a negative ACK message containing one of the following
return codes in the low-order byte of wStatus:

Return Code Explanation

1 PS SF ID is not valid.

2 Length is not valid.

3 One DDM base type is already connected to this session.

4 Structured Field Service Condition is already set.

6 The specified format is not valid.

9 A system error occurred.

Start Close Intercept

3270 5250 VT

Yes Yes Yes

The Start Close Intercept function allows a client application to intercept close
requests generated when a user selects the close option from the emulator session
window. This function intercepts the close request and discards it until the Stop
Close Intercept function is requested. After using this function, the client receives
DATA messages notifying it that close requests occurred (CLOSE).

The client sends the following command to begin a session advise.
PostMessage(hServerWnd,

WM_DDE_ADVISE,
hClientWnd,
MAKELONG(hOptions, aCLOSE));

where:

Appendix E. DDE Functions in a 16-Bit Environment 399

hOptions Is a handle to a Windows global memory object, with the following
structure:

typedef struct tagOPTIONS
{
unsigned reserved:14; // *** reserved ***
unsigned fDeferUpd:1; // Send notification only
unsigned fAckReq:1; // Client will ACK all notices
WORD cfFormat; // Clipboard format to use
} OPTIONS, FAR *lpOPTIONS;

If the value of fDeferUpd is 1, DDE Data messages will be sent to the
client application with the hData set to NULL. The client must then
issue a DDE REQUEST to request the data item.

If the value of fAckReq is 1, the server does not notify the client of
further close requests until the server receives an ACK message from the
client in response to any previous notification.

The cfFormat field specifies the format to send the close request. (Must
be CF_DSPTEXT.)

aCLOSE Identified close intercept as the item.

Personal Communications Response
Personal Communications receives the Start Close Intercept and returns an ACK
message if it can start the intercept. Otherwise a negative ACK message is returned
to the client with one of the following return codes in the low-order byte of the
wStatus field:
WM_DDE_ACK(wStatus, aCLOSE)

Return Code Explanation

1 Close Intercept is already working.

6 The specified format is not valid.

9 A system error occurred.

Once the intercept starts, the client receives DATA messages notifying it that the
close request is intercepted:
WM_DDE_DATA(hData, aCLOSE)

where:

hData Identifies a handle to a Windows global memory object containing:

typedef struct tagCLOSEREQ
}
unsigned unused:12, // *** unused ***
unsigned fResponse:1, // TRUE = DD_REQUEST response
unsigned fRelease:1, // TRUE = Client releases memory
unsigned reserved:1, // *** reserved ***
unsigned fAckReq:1, // TRUE = DDE_ACK is required
int cfFormat; // Always CF_DSPTEXT
WORD uCloseReqCount; // Counter of the Close Requests
} CLOSEREQ, FAR *lpCLOSEREQ;

The DATA messages continue until a Stop Close Intercept message is sent to
Personal Communications.

400 Emulator Programming

Start Keystroke Intercept

3270 5250 VT

Yes Yes Yes

The Start Keystroke Intercept function allows a client application to filter any
keystrokes sent to a session by a terminal operator. After a call to this function,
keystrokes are intercepted, and the client receives them (KEYS).

The client sends the following command to begin intercept.
PostMessage(hServerWnd,

WM_DDE_ADVISE,
hClientWnd,
MAKELONG(hOptions, aKEYS));

where:

hOptions Is a handle to a Windows global memory object, with the following
structure:

typedef struct tagOPTIONS
}
unsigned reserved:14; // Reserved
unsigned fDeferUpd:1; // Send notification only
unsigned fAckReq:1; // Client will ACK all notices
WORD cfFormat; // Clipboard format to use
} OPTIONS, FAR *lpOPTIONS;

If the value of fDeferUpd is 1, DDE Data messages are sent to the client
application with the hData set to NULL. The client then issues a DDE
REQUEST to request the data item.

If the value of fAckReq is 1, the server does not notify the client of
further keystrokes until the server receives an ACK message from the
client in response to any previous keystrokes notification.

The cfFormat field specifies the format to send the keystrokes when the
keystroke is sent by a terminal operator. (Must be CF_DSPTEXT.)

aKEYS Identified keystrokes as the item.

Personal Communications Response
Personal Communications receives the Start Keystroke Intercept and returns an
ACK message if it can start the intercept. Otherwise a negative ACK message is
returned to the client with one of the following return codes in the low-order byte
of the wStatus field:
WM_DDE_ACK(wStatus, aKEYS)

Return Code Explanation

1 Keystroke Intercept is already started.

6 The specified format is not valid.

9 A system error occurred.

Once the intercept has started, the client receives DATA messages notifying it that
the keystroke is intercepted:
WM_DDE_DATA(hData, aKEYS)

Appendix E. DDE Functions in a 16-Bit Environment 401

The DATA messages continue until a Stop Keystroke Intercept message is sent to
Personal Communications. The format of the data item will be the same format as
if the client requested the data item via a DDE_REQUEST.

Start Mouse Input Intercept

3270 5250 VT

Yes Yes Yes

The Start Mouse Input Intercept function allows a client application to intercept
mouse input when a terminal operator press the mouse button on emulator session
window. After calling this function, the client receives DATA messages that include
the PS position where mouse input occurred.

The client sends the following command to begin to intercept the mouse input.
PostMessage(hServerWnd,

WM_DDE_ADVISE,
hClientWnd,
MAKELONG(hOptions, aMOUSE));

where:

hOptions Is a handle to a Windows global memory object, with the following
structure:

typedef struct tagOPTIONS
{
unsigned reserved:14; // Reserved
unsigned fDeferUpd:1; // Send notification only
unsigned fAckReq:1; // Client will ACK all notices
WORD cfFormat; // Clipboard format to use
} OPTIONS, FAR *lpOPTIONS;

If the value of fDeferUpd is 1, DDE Data messages will be sent to the
client application with the hData set to NULL. The client must then
issue a DDE REQUEST to request the data item.

If the value of fAckReq is 1, the server does not notify the client of
further structured field data until the server receives an ACK message
from the client in response to any previous notification.

The cfFormat field specifies the format to send the data item has been
updated.

aMOUSE Identified MOUSE as the item.

Personal Communications Response
Personal Communicationsreceives the Start Mouse Input Intercept and returns an
ACK message if it can start this function. Otherwise a negative ACK message is
returned to the client with one of the following return codes in the low-order byte
of the wStatus field:
WM_DDE_ACK(wStatus, aMOUSE)

Return Code Explanation

1 Mouse Input Intercept has been already started.

6 The specified format is not valid.

9 A system error occurred.

402 Emulator Programming

Once the Mouse Input Intercept starts, the client receives DATA messages of the
structured field:
WM_DDE_DATA(hData, aMOUSE)

where:

hData If the format is CF_TEXT, Personal Communicationsreturns the mouse input
information in the following format:

typedef struct tagMOUSE_CF_TEXT
{
unsigned unused:12, // **** Unused ****
unsigned fRespons:1, // TRUE = DDE_REQUEST response
unsigned fRelease:1, // TRUE = Client frees this data
unsigned reserved:1, // **** Reserved ****
unsigned fAckReq:1; // TRUE = Client returns DDE_ACK
int cfFormat; // CF_TEXT
unsigned char PSPos[4]; // PS position
unsigned char Tab1[1]; // TAB character
unsigned char PSRowPos[4]; // PS row position
unsigned char Tab2[1]; // TAB character
unsigned char PSColPos[4]; // PS columns position
unsigned char Tab3[1]; // TAB character
unsigned char PSSize[4]; // Size of the PS
unsigned char Tab4[1]; // TAB character
unsigned char PSRows[4]; // PS number of rows
unsigned char Tab5[1]; // TAB character
unsigned char PSCols[4]; // PS number of columns
unsigned char Tab6[1]; // TAB character
unsigned char ButtonType[1]; // Pressed button type
unsigned char Tab7[1]; // TAB character
unsigned char ClickType[1]; // Click type
unsigned char Tab8[1]; // TAB character
unsigned char ClickString[1]; // Retrieved string
} MOUSE_CF_TEXT, FAR *lpMOUSE_CF_TEXT;

The following table shows the values in the parameters:

Parameter Name Meaning Value

PSPos PS offset of the position where
mouse was clicked

0 ... (PSSize – 1)

PSRowPos Row number of the position where
mouse was clicked

0 ... (PSRows – 1)

PSColPos Column number of the position
where mouse was clicked

0 ... (PSCols – 1)

PSSize Presentation space size

PSRows Number of presentation space
rows

PSCols Number of presentation space
columns

ButtonType Type of clicked mouse button
L Left button

M Middle button

R Right button

ClickType Type of clicking
S Single click

D Double click

Appendix E. DDE Functions in a 16-Bit Environment 403

Parameter Name Meaning Value

ClickString Retrieved string to which the
mouse pointed

A character string terminated with
a ‘\0’

Tab1–8 A tab character for delimiter ‘\t’

hData If the format is CF_DSPTEXT, Personal Communicationsreturns the mouse input
information in the following format:

typedef struct tagMOUSE_CF_DSPTEXT
{
unsigned unused:12, // **** Unused ****
unsigned fRespons:1, // TRUE = DDE_REQUEST response
unsigned fRelease:1, // TRUE = client frees the storage
unsigned reserved:1, // **** Reserved ****
unsigned fAckReq:1; // TRUE = client returns DDE_ACK
int cfFormat; // CF_DSPTEXT
unsigned uPSPos; // PS position
unsigned uPSRowPos; // PS row position
unsigned uPSColPos; // PS column position
unsigned uPSSize; // Size of the presentation space
unsigned uPSRows; // PS number of rows
unsigned uPSCols; // PS number of columns
unsigned uButtonType; // Pressed button type
unsigned uClickType; // Click type
unsigned char szClickString[1]; // Retrieved string
} MOUSE_CF_DSPTEXT, FAR *lpMOUSE_CF_DSPTEXT;

The following table shows the values in the parameters:

Parameter Name Meaning Value

uPSPos PS offset of the position where
mouse was clicked

0 ... (uPSSize – 1)

uPSRowPos Row number of the position where
mouse was clicked

0 ... (uPSRows – 1)

uPSColPos Column number of the position
where mouse was clicked

0 ... (uPSCols – 1)

uPSSize Size of the presentation space

uPSRows Number of rows of the
presentation space

uPSCols Number of columns of the
presentation space

uButtonType Type of the clicked mouse button
0x0001 Left button

0x0002 Middle button

0x0003 Right button

uClickType Type of clicking
0x0001 Single click

0x0002 Double click

szClickString Retrieved string to which the
mouse pointed

A character string terminated with
a \0

The DATA messages continue until a Stop Mouse Input Intercept message is sent
to Personal Communications.

404 Emulator Programming

Start Read SF

3270 5250 VT

Yes Yes Yes

The Start Read SF function allows a client application to read structured field data
from the host application. After using this function, the client receives DATA
messages notifying it that close requests occurred.

Note: Before using this function, the client must call the Set Structured Field
Service Condition function to pass the Query Reply data to the server.

The client sends the following command to begin a Read SF.
PostMessage(hServerWnd,

WM_DDE_ADVISE,
hClientWnd,
MAKELONG(hOptions, aSF));

where:

hOptions Is a handle to a Windows global memory object, with the following
structure:

typedef struct tagOPTIONS
{
unsigned reserved:14; // Reserved
unsigned fDeferUpd:1; // Send notification only
unsigned fAckReq:1; // Client will ACK all notices
WORD cfFormat; // Clipboard format to use
} OPTIONS, FAR *lpOPTIONS;

If the value of fDeferUpd is 1, DDE Data messages will be sent to the
client application with the hData set to NULL. The client must then
issue a DDE REQUEST to request the data item.

If the value of fAckReq is 1, the server does not notify the client of
further structured field data until the server receives an ACK message
from the client in response to any previous notification.

The cfFormat field specifies the format to send the structured field data.
(It must be CF_DSPTEXT.)

aSF Identified structured field as the item.

PC/3270 Response
PC/3270 receives the Start Read SF and returns an ACK message if it can start the
Read SF. Otherwise a negative ACK message is returned to the client with one of
the following return codes in the low-order byte of the wStatus field:
WM_DDE_ACK(wStatus, aSF)

Return Code Explanation

1 Read SF is already started.

3 No prior Set Structured Field Service Condition function was called.

6 The specified format is not valid.

9 A system error occurred.

Appendix E. DDE Functions in a 16-Bit Environment 405

Once the Read SF has started, the client receives DATA messages of the structured
field:
WM_DDE_DATA(hData, aSF)

where:

hData Identifies a handle to a Windows global memory object containing:

typedef struct tagSFDATA
{
unsigned unused:12, //
unsigned fRelease:1, //
unsigned fReserved:3; //
int cfFormat; // Always CF_DSPTEXT
WORD uSFLength; // Length of SF data
char szSFData[1]; // SF data
} SFDATA, FAR *lpSFDATA;

The DATA messages continue until a Stop Read SF message is sent to PC/3270.

Start Session Advise

3270 5250 VT

Yes Yes Yes

The Start Session Advise function establishes a link between the Personal
Communications session and the client. This lets the client receive updates of the
presentation space (PS), the operator information area (OIA), or the trim rectangle
(TRIMRECT) when the data item is updated.

Note: If the client application needs conditional notification when the presentation
space is updated, set an advise condition prior to invoking the advise
function for the presentation space. See “Set Session Advise Condition” on
page 397.

The client sends the following command to begin a session advise.
PostMessage(hServerWnd,

WM_DDE_ADVISE,
hClientWnd,
MAKELONG(hOptions, aItem));

where:

406 Emulator Programming

hOptions Is a handle to a Windows global memory object. This is the structure:

typedef struct tagOPTIONS
{
unsigned reserved:14; // Reserved
unsigned fDeferUpd:1; // Send notification only
unsigned fAckReq:1; // Client will ACK all notices
WORD cfFormat; // Clipboard format to use
} OPTIONS, FAR *lpOPTIONS;

If the value of fDeferUpd is 1, DDE Data messages are sent to the client
application with the hData set to NULL. The client must then issue a
DDE REQUEST to request the data item.

If the value of fAckReq is 1, the server does not notify the client of
further changes to the data item until the server receives an ACK
message from the client in response to any previous update notification.

The cfFormat field specifies the format to send the data item when the
item has been updated.

aItem Specifies the item of information being requested; in this case, the value
can be PS, OIA, or TRIMRECT.

Personal Communications Response
Personal Communications receives the Start Session Advise and returns an ACK
message if it can start the advise. Otherwise, a negative ACK message is returned
to the client with one of the following return codes in the low-order byte of the
wStatus field:
WM_DDE_ACK(wStatus, aItem)

Return Code Explanation

1 Advise already active for data item.

6 Advise parameter not valid.

9 A system error occurred.

Once the advise has started, the client receives DATA messages notifying it that the
data item (PS, OIA, or TRIMRECT) has changed:
WM_DDE_DATA(hData, aItem)

The DATA messages continue until a Stop Session Advise message is sent to
Personal Communications. The format of the data item will be the same format as
if the client requested the data item via a DDE_REQUEST.

Stop Close Intercept

3270 5250 VT

Yes Yes Yes

The Stop Close Intercept function ends a client application's ability to intercept
close request. The client sends the following command to perform the Stop Close
Intercept function.
PostMessage(hServerWnd,

WM_DDE_UNADVISE,
hClientWnd,
MAKELONG(NULL, aCLOSE));

Appendix E. DDE Functions in a 16-Bit Environment 407

where:

aCLOSE Identified close intercept as the item.

Personal Communications Response
If Personal Communications can perform the DDE_UNADVISE, Personal
Communications returns an ACK message containing positive status information to
the client:
WM_DDE_ACK(wStatus, aCLOSE)

If Personal Communications cannot perform the DDE_UNADVISE, Personal
Communications returns an ACK message containing negative status information
and one of the following return codes in the low-order byte of the wStatus word:

Return Code Explanation

1 Advise has not started yet.

9 A system error occurred.

Stop Keystroke Intercept

3270 5250 VT

Yes Yes Yes

The Stop Keystroke Intercept function ends a client application's ability to
intercept keystrokes. The client sends the following command to perform the Stop
Keystroke Intercept function.
PostMessage(hServerWnd,

WM_DDE_UNADVISE,
hClientWnd,
MAKELONG(NULL, aKEYS));

where:

aKEYS Identified keystrokes as the item.

Personal Communications Response
If Personal Communications can perform the DDE_UNADVISE, Personal
Communications returns an ACK message containing positive status information to
the client:
WM_DDE_ACK(wStatus, aKEYS)

If Personal Communications cannot perform the DDE_UNADVISE, Personal
Communications returns an ACK message containing negative status information
and one of the following return codes in the low-order byte of the wStatus word.

Return Code Explanation

1 Advise has not started yet.

9 A system error occurred.

408 Emulator Programming

Stop Mouse Input Intercept

3270 5250 VT

Yes Yes Yes

The Stop Mouse Input Intercept function ends a client application's ability to
intercept mouse input.

The client sends the following command to perform the Stop Mouse Input
Intercept function.
PostMessage(hServerWnd,

WM_DDE_UNADVISE,
hClientWnd,
MAKELONG(NULL, aMOUSE));

where:

aMOUSE Identified mouse as the item.

Personal Communications Response
If Personal Communicationscan perform the DDE_UNADVISE, Personal
Communicationsreturns an ACK message containing positive status information to
the client:
WM_DDE_ACK(wStatus, aMOUSE)

If Personal Communicationscannot perform the DDE_UNADVISE, Personal
Communicationsreturns an ACK message containing negative status information
and one of the following return codes in the low-order byte of the wStatus word.

Return Code Explanation

1 Advise has not started yet.

9 A system error occurred.

Stop Read SF

3270 5250 VT

Yes Yes Yes

The Stop Read SF function ends a client application's ability to read structured
field data.

The client sends the following command to perform the Stop Read SF function.
PostMessage(hServerWnd,

WM_DDE_UNADVISE,
hClientWnd,
MAKELONG(NULL, aSF));

where:

aSF Identified structured field as the item.

Appendix E. DDE Functions in a 16-Bit Environment 409

PC/3270 Response
If PC/3270 can perform the DDE_UNADVISE, PC/3270 returns an ACK message
containing positive status information to the client:
WM_DDE_ACK(wStatus, aSF)

If PC/3270 cannot perform the DDE_UNADVISE, PC/3270 returns an ACK
message containing negative status information and one of the following return
codes in the low-order byte of the wStatus word.

Return Code Explanation

1 Advise has not started yet.

9 A system error occurred.

Stop Session Advise

3270 5250 VT

Yes Yes Yes

The Stop Session Advise function disconnects a link between Personal
Communications and the client. The client sends the following command to
perform the Stop Session Advise function.
PostMessage(hServerWnd,

WM_DDE_UNADVISE,
hClientWnd,
MAKELONG(NULL, aItem));

where:

aItem Specifies the item of information being requested; in this case, the value
can be PS, OIA, TRIMRECT, or NULL.

If the value of aItem is NULL, then the client has requested termination of all
active notifications for the conversation.

Personal Communications Response
If Personal Communications can perform the DDE_UNADVISE, Personal
Communications returns an ACK message containing positive status information to
the client:
WM_DDE_ACK(wStatus, aItem)

If Personal Communications cannot perform the DDE_UNADVISE, Personal
Communications returns an ACK message containing negative status information
and one of the following return codes in the low-order byte of the wStatus word.

Return Code Explanation

1 Advise has not started yet.

9 A system error occurred.

410 Emulator Programming

Terminate Session Conversation

3270 5250 VT

Yes Yes Yes

The Terminate Session Conversation function disconnects the client from the
Personal Communications session the client has previously started a conversation
with.

The client sends the following command to terminate a session conversation.
SendMessage(hServerWnd,

WM_DDE_TERMINATE,
hClientWnd,
MAKELONG(NULL, NULL));

Personal Communications Response
Personal Communications acknowledges the terminate command with a terminate
message:
WM_DDE_TERMINATE

Terminate Structured Field Conversation

3270 5250 VT

Yes Yes Yes

The Terminate Structured Field Conversation function disconnects the client from
a structured field conversation.

The client sends the following command to terminate a structured field
conversation.
SendMessage(hServerWnd,

WM_DDE_TERMINATE,
hClientWnd,
MAKELONG(NULL, NULL));

PC/3270 Response
PC/3270 acknowledges the terminate command with a terminate message:
WM_DDE_TERMINATE

Terminate System Conversation

3270 5250 VT

Yes Yes Yes

This disconnects the client from a system conversation.

The client sends the following command to terminate a system conversation.
SendMessage(hServerWnd,

WM_DDE_TERMINATE,
hClientWnd,
MAKELONG(NULL, NULL));

Appendix E. DDE Functions in a 16-Bit Environment 411

Personal Communications Response
Personal Communications acknowledges the terminate command with this
message:
WM_DDE_TERMINATE

When the user closes a Personal Communications session, any global memory
blocks that were allocated by Personal Communications will be freed by Windows.
This can cause problems for the client if the client retains any of these global
memory objects for long periods of time. If the client application needs to keep the
information in a global memory item for a long period of time, it is suggested that
the client make a copy of global memory item into a global memory item the client
application owns.

Write SF

3270 5250 VT

Yes Yes Yes

The Write SF function allows a client application to write structured field data to
the host application.

Note: The client must call the Set Structured Field Service Condition function
before invoking the Write SF function.

The client sends the following message to write structured field data.
PostMessage(hServerWnd,

WM_DDE_POKE,
hClientWnd,
MAKELONG(hData, aSF));

where:

hData Identifies a handle to a Windows global memory object containing:

typedef struct tagWRITESF
{
unsigned unused:12, //
unsigned fRelease:1, //
unsigned fReserved:3; //
int cfFormat; // Always CF_DSPTEXT
WORD uSFLength; // Length of SF data
char Work[8]; // Work area
char szSFData[1]; // SF data
} WRITESF, FAR *lpWRITESF;

aSF Identified structured field as the item.

PC/3270 Response
PC/3270 receives structured field data and sends them to the host application. If
the data transmission completes successfully, then PC/3270 returns an ACK
message:
WM_DDE_ACK(wStatus, aSF)

Otherwise PC/3270 returns an negative ACK message containing one of the
following return codes in the low-order byte of wStatus:

412 Emulator Programming

Return Code Explanation

2 Length is not valid.

6 The specified format is not valid.

9 A system error occurred.

DDE Menu Item API in a 16-Bit Environment
Personal Communications supports the addition, deletion, and changing of
attributes of a dynamic menu item to the session menu bar. A menu will then be
created for this menu item with space for up to 16 submenu items.

Personal Communications supports two kinds of DDE conversation. One is
Personal Communications, which acts as a DDE menu client application, and the
other is Personal Communications, which acts as a DDE menu server.

DDE Menu Client in a 16-Bit Environment
To add, delete, and change menu items, the following DDE conversation must take
place between the session and DDE menu server application.

The following data hierarchy details the menu map Personal Communications
expects when adding a dynamic menu item and submenu to a session menu bar:

POPUP "MyMenu"
BEGIN

MENUITEM "Send Files to Host", SEND
MENUITEM "Receive Files from Host", RECEIVE
MENUITEM SEPARATOR
MENUITEM "Convert Files", CONVERT

END

When the user selects a menu item from the new menu, Personal Communications
will send a DDE Initiate with 3270MenuN or 5250MenuN as the application and
itemN token as the topic. If an ACK is received from the DDE application,
Personal Communications will inhibit the session from accepting user input. The
menu client application can then display a dialog, and so on. When the menu
server application has completed processing of the menu item, it will send a DDE

Session Menu Server
Application

INITIATE (a3270MenuX, aMenuBar)

ACK (a3270MenuX, aMenuBar)

REQUEST (aMenuMap, CF_TEXT)

DATA (aMenuMap, hData)

TERMINATE (NULL, NULL)

TERMINATE (NULL, NULL)

Figure 8. DDE Menu Server Conversation

Appendix E. DDE Functions in a 16-Bit Environment 413

Terminate to signal Personal Communications the process is complete. Personal
Communications will then reenable the window for the user.

DDE Menu Server, 32-Bit
To add, delete, and change menu items, the Figure 9 on page 414 must take place
between the session and a DDE menu client application.

When the user selects a menu item from the new menu, Personal Communications
will send a DDE DATA with aSELECTMENU as the item. When Personal
Communications sends DDE DATA to the client application, Personal
Communications will inhibit the session from accepting user input. The menu
client application can then display a dialog, and so on. When the menu client
application has completed processing of the menu item, it will send a DDE ACK to
signal Personal Communications the process is complete. Personal
Communications will then reenable the window for the user.

Menu Client
Application

Session
INITIATE (a3270MenuSX, aIBM3270)

ACK (a3270MenuSX, aIBM3270)

REQUEST (aCREATEMENU, CF_DSPTEXT)

DATA (aCREATEMENU, CF_DSPTEXT

POKE (aCHANGEMENU, CF_DSPTEXT)

ACK (aCHANGEMENU, wStatus)

ADVISE (aSELECTMENU, CF_DSPTEXT)

ACK (aSELECTMENU, wStatus)

DATA (sSELECTMENU, CF_DSPTEXT)

ACK (aSELECTMENU, CF_DSPTEXT)

UNADVISE (aSELECTMENU, CF_DSPTEXT)

ACK (aSELECTMENU, wStatus)

TERMINATE (NULL, NULL)

TERMINATE (NULL, NULL)

•
•
•

•
•
•

Figure 9. DDE Menu Client Conversation

414 Emulator Programming

DDE Menu Functions in a 16-Bit Environment
This section describes the DDE Menu Item API functions that are available for use
with Personal Communications. PC/3270 Windows mode and PC400 provide all of
the listed functions.

Change Menu Item

3270 5250 VT

Yes Yes Yes

The Change Menu Item function appends, deletes, inserts, modifies, and removes
menu items. The client sends the following message to the session to change a
menu.
PostMessage(hServerWnd,

WM_DDE_POKE,
hClientWnd,
MAKELONG(hData, aCHANGEMENU));

where:

hData Identifies a handle to a Windows global memory object that contains the
requests for changing a menu. The global memory object contains the
following structure:

typedef struct tagChangeMenu
{
unsigned unused:13; // ** unused **
unsigned fRelease:1; // Session frees memory
unsigned freserved:2; // ** reserved **
int cfFormat; // Always CF_DSPTEXT
HANDLE hMenu; // Handle of the menu item
WORD wPosition; // The position of the menu

// item
WORD wIDNew; // The menu ID of the new

// menu item
WORD wOperation; // Specifies the operation
WORD wFlags; // Specifies the options
unsigned char szItemName[1]; // String of the item
} CHANGEMENU, FAR *lpCHANGEMENU;

The following operations are supported:

MF_APPEND // Appends a menu item to the end of a menu.
MF_CHANGE // Modifies a menu item in a menu.
MF_DELETE // Deletes a menu item from a menu, destroying

// the menu item.
MF_INSERT // Inserts a menu item into a menu.
MF_REMOVE // Removes a menu item from a menu but does not

// destroy the menu item.

If the MF_APPEND is specified in the wOperation field, the following fields must
be filled:

hMenu Identifies the menu to be appended. To append a new item to a pop-up
menu, specify the handle that is returned from Personal
Communications when Create Menu Item function is executed. To
append a new item to a top-level menu bar, specify NULL.

wIDNew Specifies the command ID of the new menu item. If a new item is added
to the top-level menu bar, the handle of the menu item returned from
Personal Communications when Create Menu Item function is executed.

Appendix E. DDE Functions in a 16-Bit Environment 415

wFlags The following options can be set:

MF_CHECKED // Places a check mark next to
// the item.

MF_DISABLED // Disables the menu item so
// that it cannot be selected,
// but does not gray it.

MF_ENABLED // Enables the menu item so that
// it can be selected and
// restores from its grayed
// state.

MF_GRAYED // Disables the menu item so
// that it cannot be selected,
// and grays it.

MF_MENUBARBREAK // Same as MF_MENUBREAK except
// that for pop-up menus,
// separates the new column from
// the old column with a
// vertical line.

MF_MENUBREAK // Places the item on a new line
// for menu bar items.
// For pop-up menus, places the
// item in a new column, with
// no dividing line between the
// columns.

MF_SEPARATOR // Draws a horizontal dividing
// line. Can only be used in a
// pop-up menu. This line cannot
// be grayed, disabled, or
// highlighted. The wIDNew and
// szItemName fields are
// ignored.

MF_UNCHECKED // Does not place a check mark
// next to the item (default).

szItemName Specifies the content of the new menu item. Contains a null-terminated
character string.

If the MF_CHANGE is specified in the wOperation field, fill these fields:

hMenu Identifies the menu to be changed. To change an item of a pop-up
menu, specify the handle that is returned from Personal
Communications when Create Menu Item function is executed. To
change an item to a top-level menu bar, specify NULL.

nPosition Specifies the menu item to be changed. The interpretation of the
wPosition parameter depends on the setting of the wFlags parameter.

MF_BYPOSITION
Specifies the position of the existing menu item. The first item
in the menu is at position zero.

MF_BYCOMMAND
Specifies the command ID of the existing menu item.

wIDNew Specifies the command ID of the menu item. If an item of the top-level
menu bar is changed, the handle of the menu item returned from
Personal Communications when Create Menu Item function is executed.

416 Emulator Programming

wFlags The following options can be set:

MF_BYCOMMAND // Specifies that the nPosition
// parameter gives the menu
// item control ID number.
// This is the default if
// neither MF_BYCOMMAND nor
// MF_BYPOSITION is set.

MF_BYPOSITION // Specifies that the nPosition
// parameter gives the position
// of the menu item to be
// changed rather than an ID
// number.

MF_CHECKED // Places a check mark next to
// the item.

MF_DISABLED // Disables the menu item so
// that it cannot be selected,
// but does not gray it.

MF_ENABLED // Enables the menu item so
// that it can be selected and
// restores from its grayed
// state.

MF_GRAYED // Disables the menu item so
// that it cannot be selected,
// and grays it.

MF_MENUBARBREAK // Same as MF_MENUBREAK except
// that for pop-up menus,
// separates the new column
// from the old column with a
// vertical line.

MF_MENUBREAK // Places the item on a new
// line for menu bar items.
// For pop-up menus, places the
// item in a new column, with
// no dividing line between
// the columns.

MF_SEPARATOR // Draws a horizontal dividing
// line. Can only be used in
// a pop-up menu. This line
// cannot be grayed, disabled,
// or highlighted. The wIDNew
// and szItemName fields are
// ignored.

MF_UNCHECKED // Does not place a check mark
// next to the item (default).

szItemName Specifies the content of the menu item. Contains a null-terminated
character string.

If the MF_DELETE is specified in the wOperation field, fill these fields:

hMenu Identifies the menu to be deleted. To delete an item from a pop-up
menu, specify the handle that is returned from Personal
Communications when Create Menu Item function is executed. To
delete an item from a top-level menu bar, specify NULL.

nPosition Specifies the menu item to be deleted. The interpretation of the
nPosition parameter depends on the setting of the wFlags parameter.

MF_BYPOSITION
Specifies the position of the existing menu item. The first item
in the menu is at position zero.

MF_BYCOMMAND
Specifies the command ID of the existing menu item.

Appendix E. DDE Functions in a 16-Bit Environment 417

wFlags The following options can be set:

MF_BYCOMMAND // Specifies that the nPosition
// parameter gives the menu
// item control ID number.
// This is the default if
// neither MF_BYCOMMAND nor
// MF_BYPOSITION is set.

MF_BYPOSITION // Specifies that the nPosition
// parameter gives the position
// of the menu item to be
// deleted rather than an ID
// number.

If the MF_INSERT is specified in the wOperation field, the following fields must
be filled:

hMenu Identifies the menu to be inserted. To insert an item to a pop-up menu,
specify the handle that is returned from Personal Communications when
Create Menu Item function is executed. To change an item to a top-level
menu bar, specify NULL.

nPosition Specifies the menu item before the new menu item is to be inserted. The
interpretation of the nPosition parameter depends on the setting of the
wFlags parameter.

MF_BYPOSITION
Specifies the position of the existing menu item. The first item
in the menu is at position zero.

MF_BYCOMMAND
Specifies the command ID of the existing menu item.

wIDNew Specifies the command ID of the menu item or, if an item of the
top-level menu bar is changed, the handle of the menu item returned
from Personal Communications when Create Menu Item function is
executed.

418 Emulator Programming

wFlags The following options can be set:

MF_BYCOMMAND // Specifies that the nPosition
// parameter gives the menu
// item control ID number. This
// is the default if neither
// MF_BYCOMMAND nor MF_BYPOSITION
// is set.

MF_BYPOSITION // Specifies that the nPosition
// parameter gives the position
// of the menu item to be
// changed rather than an ID
// number.

MF_CHECKED // Places a check mark next to
// the item.

MF_DISABLED // Disables the menu item so
// that it cannot be selected,
// but does not gray it.

MF_ENABLED // Enables the menu item so
// that it can be selected and
// restores from its grayed
// state.

MF_GRAYED // Disables the menu item so
// that it cannot be selected,
// and grays it.

MF_MENUBARBREAK // Same as MF_MENUBREAK except
// that for pop-up menus,
// separates the new column
// from the old column with a
// vertical line.

MF_MENUBREAK // Places the item on a new
// line for menu bar items.
// For pop-up menus, places the
// item in a new column, with
// no dividing line between the
// columns.

MF_SEPARATOR // Draws a horizontal dividing
// line. Can only be used in
// a pop-up menu. This line
// cannot be grayed, disabled,
// or highlighted. The wIDNew
// and szItemName fields are
// ignored.

MF_UNCHECKED // Does not place a check mark
// next to the item (default).

szItemName Specifies the content of the menu item. Contains a null-terminated
character string.

If the MF_REMOVE is specified in the wOperation field, the following fields must
be filled:

hMenu Identifies the menu to be removed. To remove an item from a pop-up
menu, specify the handle that is returned from Personal
Communications when Create Menu Item function is executed. To
remove an item from a top-level menu bar, specify NULL.

nPosition Specifies the menu item to be removed. The interpretation of the
nPosition parameter depends upon the setting of the wFlags parameter.

MF_BYPOSITION
Specifies the position of the existing menu item. The first item
in the menu is at position zero.

MF_BYCOMMAND
Specifies the command ID of the existing menu item.

Appendix E. DDE Functions in a 16-Bit Environment 419

wFlags The following options can be set:

MF_BYCOMMAND // Specifies that the nPosition
// parameter gives the menu
// item control ID number.
// This is the default if
// neither MF_BYCOMMAND nor
// MF_BYPOSITION is set.

MF_BYPOSITION // Specifies that the nPosition
// parameter gives the
// position of the menu item to
// be removed rather than an ID
// number.

Personal Communications Response
Personal Communications receives the requests to change a menu and processes
them. If the requests cannot be accepted, Personal Communications returns a
negative ACK message containing one of the following status codes in the
low-order byte of the wStatus word. Otherwise, Personal Communications returns
a positive ack message signalling that the keystrokes have been sent.
WM_DDE_ACK(wStatus, aCHANGEMENU)

Return code Explanation

1 The specified parameters are not valid.

6 The specified format is not valid.

9 A system error occurred.

Create Menu Item

3270 5250 VT

Yes Yes Yes

The Create Menu Item function requests Personal Communications to add a menu
item to the menu bar. A pop-up menu will be created at the same time, but it is
initially empty and can be filled with menu items by using this function. The
string of the new menu item that will be added to a top-level menu bar, is also
specified by using the change menu item function.

The client sends the following message to create a menu item.
PostMessage(hServerWnd,

WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aCREATEMENU));

where:

cfFormat Identifies the format for the ID of the new menu item. The valid value is
CF_DSPTEXT.

aCREATEMENU Identifies the create menu item.

Personal Communications Response
Personal Communications returns the handle of the newly created menu item in a
dde data message if the Personal Communications can create a menu item.
WM_DDE_DATA(hData, aCREATEMENU)

420 Emulator Programming

or
WM_DDE_ACK(wStatus, aCREATEMENU)

where:

hData Identifies a handle to a windows global memory object that contains the
handle of the menu item. The global memory object contains the
following structure:

typedef struct tagcreatemenu
}
unsigned unused:12, // *** unused ***
unsigned fresponse:1, // true = dd_request response
unsigned frelease:1, // true = client releases memory
unsigned reserved:1, // *** reserved ***
unsigned fackreq:1, // true = dde_ack is required
int cfformat; // always cf_dsptext
handle hmemuitem; // handle of the menu item
} CREATEMENU, FAR *lpCREATEMENU;

If Personal Communications cannot create a menu item, one of the following status
codes are returned in the low-order byte of the wStatus word:

Return Code Explanation

6 The specified format is not valid.

9 A system error occurred.

Initiate Menu Conversation

3270 5250 VT

Yes Yes Yes

The Initiate Menu Conversation function connects a client application to an
available session of Personal Communications. Once a menu conversation is
established, the session menu is reserved exclusively for the client until the
conversation is terminated.

The client application sends the following message to initiate a DDE conversation
with a menu:
SendMessage(-1,

WM_DDE_INITIATE,
hClientWnd,
MAKELONG(aIBM327032, SN));

where:

aIBM327032 Identifies the application atom. The string used to create atom aIBM3270
is IBM3270 In the PC400, the application atom is aIBM5250 and the
string IBM5250 is used to create it.

SN Identifies the topic atom. The string used to create atom a3270MenuSN
is 3270MenuS appended with the session ID A, B, ..., Z. In the PC400,
the topic atom is a5250MenuSN and the string 5250MenuS appended
with the session ID A, B, ..., Z. is used to create it.

Appendix E. DDE Functions in a 16-Bit Environment 421

Personal Communications Response
If Personal Communications can support a conversation with the client application,
Personal Communications acknowledges the INITIATE transaction with:
WM_DDE_ACK(aIBM327032, SN)

Start Menu Advise

3270 5250 VT

Yes Yes Yes

The Start Menu Advise function allows a client application to process a user
defined routine when the menu item that is added by the client application, is
selected. After using this function, the client receives DATA messages indicating
which menu item is selected.

The client sends the following command to begin a menu advise.
PostMessage(hServerWnd,

WM_DDE_ADVISE,
hClientWnd,
MAKELONG(hOptions, aSELECTMENU));

where:

hOptions Is a handle to a Windows global memory object, with the following
structure:

typedef struct tagOPTIONS
{
unsigned reserved:14; // Reserved
unsigned fDeferUpd:1; // Send notification only

// (Must be 0)
unsigned fAckReq:1; // Client will ACK all notices

// (Must be 1)
WORD cfFormat; // Always CF_DSPTEXT
} OPTIONS, FAR *lpOPTIONS;

aSELECTMENU Identified a menu advise as the item.

Personal Communications Response
Personal Communications receives the Start Menu Advise and returns an ACK
message if it can start the function.
WM_DDE_ACK(wStatus, aSELECTMENU)

Otherwise, a negative ACK message will be returned to the client with one of the
following return codes in the low-order byte of the wStatus field.

Return Code Explanation

1 Menu Advise has been already started.

6 The specified format is not valid.

9 A system error occurred.

Once the menu item (added to the client application) is selected, the client receives
DATA messages notifying it which menu item is selected:
WM_DDE_DATA(hData, aSELECTMENU)

422 Emulator Programming

where:

hData Identifies a handle to a Windows global memory object containing:

typedef struct tagSELECTMENU
{
unsigned Unused:12, // *** unused ***
unsigned fResponse:1, // TRUE = DD_REQUEST response
unsigned fRelease:1, // TRUE = Client releases memory
unsigned reserved:1, // *** reserved ***
unsigned fAckReq:1, // TRUE = DDE_ACK is required
int cfFormat; // Always CF_DSPTEXT
WORD uIDSelected; // Command ID of the

// selected menu item
} SELECTMENU, FAR *lpSELECTMENU;

The DATA messages continue until a Stop Menu Advise message is sent to
Personal Communications.

Stop Menu Advise

3270 5250 VT

Yes Yes Yes

The Stop Menu Advise function ends a client application's ability to process a
user-defined routine when the menu item added by the client application is
selected. The client sends the following command to perform the Stop Menu
Advise function.
PostMessage(hServerWnd,

WM_DDE_UNADVISE,
hClientWnd,
MAKELONG(NULL, aSELECTMENU));

where:

aSELECTMENU Identifies a menu advise as the item.

Personal Communications Response
If Personal Communications can perform the DDE_UNADVISE, Personal
Communications returns an ACK message containing positive status information to
the client:
WM_DDE_ACK(wStatus, aCLOSE)

If Personal Communications cannot perform the DDE_UNADVISE, Personal
Communications returns an ACK message containing negative status information
and one of the following return codes in the low-order byte of the wStatus word:

Return Code Explanation

1 Advise has not started yet.

9 A system error occurred.

Appendix E. DDE Functions in a 16-Bit Environment 423

Terminate Menu Conversation

3270 5250 VT

Yes Yes Yes

The Terminate Menu Conversation function disconnects the client from the
Personal Communications session with which a conversation had been previously
started.

The client sends the following command to terminate a session conversation:
SendMessage(hServerWnd,

WM_DDE_TERMINATE,
hClientWnd,
MAKELONG(NULL, NULL));

Personal Communications Response
Personal Communications acknowledges the terminate command with this
message:
WM_DDE_TERMINATE

Summary of DDE Functions in a 16-Bit Environment
Table 52 lists the DDE functions that can be used with Personal Communications.
The table lists the name of the DDE function, the command the client sends to
Personal Communications, and the values that can be used for the variables in the
client command.

Table 52. Summary of DDE Functions in a 16-Bit Environment

Function name Client command

Change Menu Item PostMessage(hServerWnd,
WM_DDE_POKE,
hClientWnd,
MAKELONG(hData, aCHANGEMENU));

hData = Handle to a global memory object

Create Menu Item PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat,
aCREATEMENU));

cfFormat = CF_DSPTEXT

Find Field PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aFIELD));

cfFormat = CF_DSPTEXT

Get Keystrokes PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aKEYS));

cfFormat = CF_DSPTEXT

424 Emulator Programming

Table 52. Summary of DDE Functions in a 16-Bit Environment (continued)

Function name Client command

Get Mouse Input PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aMOUSE));

cfFormat = CF_TEXT │ CF_DSPTEXT

Get Number of Close
Requests

PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aCLOSE));

cfFormat = CF_DSPTEXT

Get Operator Information
Area

PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aOIA));

cfFormat = CF_DSPTEXT

Get Partial Presentation Space PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aEPS));

cfFormat = CF_TEXT │ CF_DSPTEXT

Get Presentation Space PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aPS));

cfFormat = CF_TEXT │ CF_DSPTEXT

Get Session Status PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aSSTAT));

cfFormat = CF_TEXT

Get System Configuration PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aSYSCON));

cfFormat = CF_TEXT

Get System Formats PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aFORMATS));

cfFormat = CF_TEXT

Get System Status PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aSTATUS));

cfFormat = CF_TEXT

Get System SysItems PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aSYSITEMS));

cfFormat = CF_TEXT

Appendix E. DDE Functions in a 16-Bit Environment 425

Table 52. Summary of DDE Functions in a 16-Bit Environment (continued)

Function name Client command

Get System Topics PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aTOPICS));

cfFormat = CF_TEXT

Get Trim Rectangle PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aTRIMRECT));

cfFormat = CF_TEXT

Initiate Menu Conversation PostMessage(hServerWnd,
WM_DDE_INITIATE,
hClientWnd,
MAKELONG(aIBM327032, SN));

N = a session letter A through Z

Initiate Session Conversation SendMessage(-1,
WM_DDE_INITIATE,
hClientWnd,
MAKELONG(aIBM327032, aSessionN));

N = a session letter A through Z.

Initiate Structured Field
Conversation

SendMessage(-1,
WM_DDE_INITIATE,
hClientWnd,
MAKELONG(aIBM327032, aLUN_xxxx)

N = a session letter A through Z. xxxx = a user defined
string.

Initiate System Conversation SendMessage(-1,
WM_DDE_INITIATE,
hClientWnd,
MAKELONG(aIBM327032, aSystem));

Put Data to Presentation
Space

PostMessage(hServerWnd,
WM_DDE_POKE,
hClientWnd,
MAKELONG(hData, aEPS));

hData = Handle to a global memory object

Search for String PostMessage(hServerWnd,
WM_DDE_REQUEST,
hClientWnd,
MAKELONG(cfFormat, aSTRING));

cfFormat = CF_DSPTEXT

Send Keystrokes PostMessage(hServerWnd,
WM_DDE_POKE,
hClientWnd,
MAKELONG(hData, aKEYS));

hData = Handle to a global memory object

Session Execute Macro PostMessage(hServerWnd,
WM_DDE_EXECUTE,
hClientWnd,
MAKELONG(NULL, hCommands));

hCommands = Handle to a global memory object

426 Emulator Programming

Table 52. Summary of DDE Functions in a 16-Bit Environment (continued)

Function name Client command

Set Cursor Position PostMessage(hServerWnd,
WM_DDE_POKE,
hClientWnd,
MAKELONG(hData, aSETCURSOR));

hData = Handle to a global memory object

Set Mouse Intercept
Condition

PostMessage(hServerWnd,
WM_DDE_POKE,
hClientWnd,
MAKELONG(hData, aMOUSE));

hData = Handle to a global memory object

Set Presentation Space Service
Condition

PostMessage(hServerWnd,
WM_DDE_POKE,
hClientWnd,
MAKELONG(hData, aEPSCOND));

hData = Handle to a global memory object

Set Session Advise Condition PostMessage(hServerWnd,
WM_DDE_POKE,
hClientWnd,
MAKELONG(hData, aPSCOND));

hData = Handle to a global memory object

Set Structured Field Service
Condition

PostMessage(hServerWnd,
WM_DDE_POKE,
hClientWnd,
MAKELONG(hData, aSFCOND));

hData = Handle to a global memory object

Start Close Intercept SendMessage(hServerWnd,
WM_DDE_ADVISE,
hClientWnd,
MAKELONG(hOptions, aCLOSE));

hOptions = Handle to a global memory object

Start Keystroke Intercept SendMessage(hServerWnd,
WM_DDE_ADVISE,
hClientWnd,
MAKELONG(hOptions, aKEYS));

hOptions = Handle to a global memory object

Start Menu Advise PostMessage(hServerWnd,
WM_DDE_ADVISE,
hClientWnd,
MAKELONG(hOptions, aSELECTMENU));

hOptions = Handle to a global memory object

Start Mouse Input Intercept PostMessage(hServerWnd,
WM_DDE_ADVISE,
hClientWnd,
MAKELONG(hOptions, aMOUSE));

hOptions = Handle to a global memory object

Start Read SF PostMessage(hServerWnd,
WM_DDE_ADVISE,
hClientWnd,
MAKELONG(hOptions, aSF));

hOptions = Handle to a global memory object

Appendix E. DDE Functions in a 16-Bit Environment 427

Table 52. Summary of DDE Functions in a 16-Bit Environment (continued)

Function name Client command

Start Session Advise PostMessage(hServerWnd,
WM_DDE_ADVISE,
hClientWnd,
MAKELONG(hOptions, aItem));

hOptions = Handle to a global memory object aItem = OIA
│ PS │ TRIMRECT

Stop Close Intercept PostMessage(hServerWnd,
WM_DDE_UNADVISE,
hClientWnd,
MAKELONG(NULL, aCLOSE));

Stop Keystroke Intercept PostMessage(hServerWnd,
WM_DDE_UNADVISE,
hClientWnd,
MAKELONG(NULL, aKEYS));

Start Mouse Input Intercept PostMessage(hServerWnd,
WM_DDE_ADVISE,
hClientWnd,
MAKELONG(hOptions, aMOUSE));

hOptions = Handle to a global memory object

Stop Menu Advise PostMessage(hServerWnd,
WM_DDE_UNADVISE,
hClientWnd,
MAKELONG(NULL, aSELECTMENU));

Stop Read SF PostMessage(hServerWnd,
WM_DDE_UNADVISE,
hClientWnd,
MAKELONG(NULL, aSF));

Stop Session Advise PostMessage(hServerWnd,
WM_DDE_UNADVISE,
hClientWnd,
MAKELONG(NULL, aItem));

aItem = OIA │ PS │ TRIMRECT │ NULL

Terminate Session
Conversation

SendMessage(hServerWnd,
WM_DDE_TERMINATE,
hClientWnd,
MAKELONG(NULL, NULL));

Terminate Menu
Conversation

SendMessage(hServerWnd,
WM_DDE_TERMINATE,
hClientWnd,
MAKELONG(NULL, NULL));

Terminate Structured Field
Conversation

SendMessage(hServerWnd,
WM_DDE_TERMINATE,
hClientWnd,
MAKELONG(NULL, NULL));

Terminate System
Conversation

SendMessage(hServerWnd,
WM_DDE_TERMINATE,
hClientWnd,
MAKELONG(NULL, NULL));

Write SF PostMessage(hServerWnd,
WM_DDE_POKE,
hClientWnd,
MAKELONG(hData, aSF));

hData = Handle to a global memory object

428 Emulator Programming

Appendix F. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM documentation or non-IBM Web
sites are provided for convenience only and do not in any manner serve as an
endorsement of those documents or Web sites. The materials for those documents
or Web sites are not part of the materials for this IBM product and use of those
documents or Web sites is at your own risk.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1989, 2016 429

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Department T01
Building 062
P.O. Box 12195
RTP, NC 27709-2195
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement
or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States,
or other countries, or both:

CICS
eServer
i5/OS
IBM
IBM Global Network
iSeries
MVS

OS/2
OS/400
Presentation Manager
PS/2
System i5
VisualAge
zSeries

Microsoft, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

430 Emulator Programming

Java, JavaBeans, and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix F. Notices 431

432 Emulator Programming

Index

Numerics
01, Connect Presentation Space 36
02, Disconnect Presentation Space 82
03, Send Key 91, 135, 163, 170
04, Wait 169
05, Copy Presentation Space 57
06, Search Presentation Space 129, 170
07, Query Cursor Location 107
08, Copy Presentation Space to String 64
09, Set Session Parameters 147
10, Query Sessions 112
101, Connect Window Services 37

Connect Window Services (101) 37
102, Disconnect Window Service 82
103, Query Window Coordinates 115
104, Window Status 170
105, Change Switch List LT Name 33
106, Change PS Window Name 32
11, Reserve 123
110, Start Playing Macro 165
12, Release 123, 124
13, Copy OIA 48
14, Query Field Attribute 107
15, Copy String to Presentation Space 76
16/32 bit considerations 21
18, Pause 100, 168
20, Query System 113
21, Reset System 124, 147
22, Query Session Status 40, 110
23, Start Host Notification 100, 109, 160
24, Query Host Update 101, 109, 168
25, Stop Host Notification 168
30, Search Field 125, 170
31, Find Field Position 42, 86
32-bit presentation space IDs 11
32, Find Field Length 42, 85
3270 terminal emulation 326
33, Copy String to Field 72
34, Copy Field to String 40
40, Set Cursor 146
41, Start Close Intercept 156
42, Query Close Intercept 104
43, Stop Close Intercept 166
45, Query Additional Field Attribute 103
50, Start Keystroke Intercept 163
51, Get Key 89, 102, 163
52, Post Intercept Status 102, 163
53, Stop Keystroke Intercept 168
61, Lock PMSVC API 99
90, Send File 133
91, Receive File 121
99, Convert Position or Convert RowCol 38

A
Allocate Communications Buffer (123) 30
applications

error codes 353
using SRPI 328

ASCII Mnemonics
general 17
get key (51) function 19
send key (3) function 19

Asynchronous Functions, WinHLLAPI 179
ATTRB 149
attribute bytes 40, 57, 64, 72, 77, 149
automation 24
AUTORESET 151

B
beep 102
BLANK 152
Blocking Routines 187
buffer size 329

C
C language

init _ send _ req _ parms 330
interface 329
record definition 330
requesters 329
send _ request 330
syntax 329

call (input) parameters
general 28

call/return 324
calls, prerequisite 28
Cancel File Transfer (92) 31
Change Menu Item 275, 415
Change PS Window Name (106) 32
Change Switch List LT Name (105) 33
character, escape 18, 90, 136, 150
characters, ASCII 18
Code Conversion 218
communication services functions

Receive File (91) 121
Send File (90) 133

Communications Manager
applications 328

compiling and linking 9, 10
Connect for Structured Fields (120) 34
Connect Presentation Space (1)

functions where not required 36
general 36
interaction with disconnect 12

Connect Window Services (101) 37
Convert Position or Convert RowCol (99) 38
Copy Field to String (34) 24, 40
copy functions

Copy Field to String (34) 40
Copy OIA (13) 48
Copy Presentation Space (5) 57
Copy Presentation Space to String (8) 64
Copy String to Field (33) 72
Copy String to Presentation Space (15) 76

Copy OIA (13) 22, 48
Copy Presentation Space (5) 57

© Copyright IBM Corp. 1989, 2016 433

Copy Presentation Space to String (8) 23, 64
Copy String to Field (33) 24, 72
Copy String to Presentation Space (15) 76
CPRB (Connectivity Programming Request Block)

storage 329
create menu item 281, 420
critical sections 2
cursor movement 23

D
data structures 7
DDE data items

LU Topic 216
Session Topic 216
System Topic 216

DDE data items in a 16-bit environment 361
DDE data items, 16-bit

LU Topic 362
Session Topic 362
System Topic 362

DDE Functions with a DDE Client Application
DDE Functions for Session Conversation 298
DDE Functions for Session Conversation (Hot Link) 307
DDE Functions for System Conversation 295
Personal Communications DDE Interface 291, 295
Visual Basic Sample Program 311

DDE functions, 16–bit environment 361
Find Field 364
function list 362
Get Keystrokes 365
Get Mouse Input 366
Get Number of Close Requests 369
Get Operator Information Area 370
Get Partial Presentation Space 371
Get Presentation Space 373
Get Session Status 375
Get System Configuration 376
naming conventions for parameters 363
Set Cursor Position 392
Set Mouse Intercept Condition 394
Set Presentation Space Service Condition 396
Set Session Advise Condition 397
Set Structured Field Service Condition 398
Start Close Intercept 399
Start Keystroke Intercept 401
Start Mouse Input Intercept 402
Start Read SF 405
Start Session Advise 406
Stop Close Intercept 407
Stop Keystroke Intercept 408
Stop Mouse Input Intercept 409
Stop Read SF 409
Stop Session Advise 410
summary of DDE functions in a 16-bit environment 424
Terminate Session Conversation 411
Terminate Structured Field Conversation 411
Terminate System Conversation 411
Write SF 412

DDE functions, 32–bit environment 215
Code Conversion 218
DDE data items, Windows 32-bit

general 215
LU Topic 216
Session Topic 216
System Topic 216

Find Field 220

DDE functions, 32–bit environment (continued)
function list 217
Get Keystrokes 222
Get Mouse Input 223
Get Number of Close Requests 226
Get Operator Information Area 227
Get Partial Presentation Space 228
Get Presentation Space 230
Get Session Status 232
Get System Configuration 234
Get System Formats 235
Get System Status 236
Get System SysItems 237
Get System Topics 238
Get Trim Rectangle 238
Initiate Session Conversation 239
Initiate Structured Field Conversation 240
Initiate System Conversation 240
naming conventions for parameters 218
Put Data to Presentation Space 241
Search for String 242
Send Keystrokes 243
Session Execute Macro 244
Set Cursor Position 251
Set Mouse Intercept Condition 253
Set Presentation Space Service Condition 255
Set Session Advise Condition 257
Set Structured Field Service Condition 258
Start Close Intercept 259
Start Keystroke Intercept 260
Start Mouse Input Intercept 261
Start Read SF 264
Start Session Advise 266
Stop Close Intercept 267
Stop Keystroke Intercept 268
Stop Mouse Input Intercept 268
Stop Read SF 269
Stop Session Advise 270
Terminate Session Conversation 270
Terminate Structured Field Conversation 271
Terminate System Conversation 271
Write SF 272

DDE menu functions, 16–bit environment 413
Change Menu Item 415
create menu item 420
Initiate Menu Conversation 421
list 415
Start Menu Advise 422
Stop Menu Advise 423
Terminate Menu Conversation 424

DDE menu functions, 32–bit environment 272
Change Menu Item 275
create menu item 281
Initiate Menu Conversation 282
list 274
Start Menu Advise 282
Stop Menu Advise 284
Terminate Menu Conversation 284

debugging 19
default, values 328
device services functions

Get Key (51) 89
Post Intercept Status (52) 102
Release (12) 123
Reserve (11) 123
Start Keystroke Intercept (50) 163
Stop Keystroke Intercept (53) 168

434 Emulator Programming

directory, default
Receive File 123

Disconnect from Structured Fields (121) 80
Disconnect Presentation Space (2)

general 82
interaction with connect 12

Disconnect Window Service (102) 82
dynamic link method 10

E
EAB 152
Edit keys

intercepting 83
EditKey Intercept 83
EHLLAPI

functions 27
summary 28

EHLLAPI call format 6
EHLLAPI Overviews

IBM Enhanced EHLLAPI vs. IBM Standard EHLLAPI 6
IBM Standard EHLLAPI 5
WinHLLAPI 5
WinHLLAPI vs. IBM Standard EHLLAPI 5

EHLLAPI programming overview 5
EHLLAPI return codes 8
EOT 149
error handling 353
ESC 150
escape character 18, 90, 136, 150
exception code values 358
exception object values 358

F
field-formatted PS 42, 125
field-related functions

Copy Field to String (34) 40
Copy String to Field (33) 72
Find Field Length (32) 85
Find Field Position (31) 86
Query Additional Field Attribute (45) 103
Query Field Attribute (14) 107
Search Field (30) 125

fields, host
input protected 135
numeric only 135

file transfer 24
file transfer functions

Receive File (91) 121
Send File (90) 133

Find Field 220, 364
Find Field Length (32) 42, 85
Find Field Position (31) 42, 86
flow, requester and server 326
FPAUSE 149
Free Communications Buffer (124) 88
function calls

call (input) parameters 28
notes on using the function 28
page layout conventions 27
prerequisite calls 28
return (output) parameters 28
use of 27

G
Get Key (51) 17, 89, 102, 163
Get Keystrokes 222, 365
Get Mouse Input 223, 366
Get Number of Close Requests 226, 369
Get Operator Information Area 227, 370
Get Partial Presentation Space 228, 371
Get Presentation Space 230, 373
Get Request Completion (125) 94
Get Session Status 232, 375
Get System Configuration 234, 376
Get System Formats 235, 377
Get System Status 236, 378
Get System SysItems 237, 379
Get System Topics 238, 380
Get Trim Rectangle 238, 381

H
Hindi, code page 1137

Convert Position of Convert RowCol (99) 40
Copy Field to String (34) 47
Copy Presentation Space (5) 63
Copy Presentation Space to String (8) 71
Copy String to Field (33) 75
Copy String to Presentation Space (15) 79
Get Key (51) 93
Search Field (30) 128
Search Presentation Space (6) 132
Send Key (3) 145
Set Cursor (40) 147
Set Session Parameters (9) 155

host
computer router 325
computer server 325

host automation scenarios 22
host fields

input protected 135
numeric only 135

host-connected presentation space 12

I
IBM Support Center 114
init _ send _ req _ parms

C language 330
Initialization/Termination Functions 186
Initiate Menu Conversation 282, 421
Initiate Session Conversation 239, 381
Initiate Structured Field Conversation 240, 382
Initiate System Conversation 240, 383
input protected fields 135
introduction to EHLLAPI programming 5
introduction to Emulator APIs

Dynamic Data Exchange (DDE) 1
Emulator High Level Language API (EHLLAPI) 1
Personal Communications Session API (PCSAPI) 1
Server-Requestor Programming Interface (SRPI) 1

invoking SEND _ REQUEST 329
IPAUSE 149

J
Japanese, code page 1390/1399

Copy Field to String (34) 46

Index 435

Japanese, code page 1390/1399 (continued)
Copy Presentation Space (5) 62
Copy Presentation Space to String (8) 70
Copy String to Field (33) 74
Copy String to Presentation Space (15) 78
Get Key (51) 91
Search Field (30) 127
Search Presentation Space (6) 131
Send Key (3) 145
Set Session Parameters (9) 155

K
keyboard enhancement 25
keyboard mnemonics

general 17
tables 137

keyboard, session 17
keystroke filtering 25
keystroke interception, Get Key (51) 89

L
language interface

C language 329
languages 6
Linking

description 9
Dynamic Link Method 10
Static Link Method 10

Lock Presentation Space API (60) 97
Lock Window Services API (61) 99
locking presentation space 16
LWAIT 151, 170

M
memory allocation 8
mnemonics

ASCII 18
for Send Key 17
keyboard, tables 137
shift key 17

Multithreading 11

N
NOATTRB 149
NOBLANK 152
NOEAB 152
NOQUIET 150
NORESET 151
NOXLATE 152
NULLATTRB 149
numeric only fields 135
NWAIT 151, 170

O
OIA 48, 170
Operator Information Area

See “OIA.” 48
operator services functions

Pause (18) 100
Query Host Update (24) 109

operator services functions (continued)
Query Session Status (22) 110
Query Sessions (10) 112
Query System (20) 113
Reset System (21) 124
Send Key (3) 135
Set Session Parameters (9) 147
Start Host Notification (23) 160
Stop Host Notification (25) 168
Wait (4) 169

options 155

P
parameters

call 28
returned 328
SEND _ REQUEST 326
supplied 326

path, default
Receive File 123
Send File 135

Pause (18) 23, 100, 168
PCSAPI

general 191
how to use 191
pcsConnectSession 191
pcsDisconnectSession 192
pcsGetPageSettings 199
pcsGetPrinterSettings 205
pcsQueryConnectionInfo 193
pcsQueryEmulatorStatus 194
pcsQuerySessionList 194
pcsQueryWorkstationProfile 196
pcsRestorePageDefaults 201
pcsSetLinkTimeout 197
pcsSetPageSettings 202
pcsSetPrinterSettings 210
pcsStartSession 197
pcsStopSession 198

pcsDisconnectSession 192
pcsQueryConnectionInfo 193
pcsQueryEmulatorStatus 194
pcsQuerySessionList 194
pcsQueryWorkstationProfile 196
pcsStartSession 197
pcsStopSession 198
performance considerations 329
Post Intercept Status (52) 26, 102, 163
prerequisite calls, general 28
presentation services functions

Connect Presentation Space (1) 36
Copy Field to String (34) 40
Copy OIA (13) 48
Copy Presentation Space (5) 57
Copy Presentation Space to String (8) 64
Copy String to Field (33) 72
Copy String to Presentation Space (15) 76
Disconnect Presentation Space (2) 82
Find Field Length (32) 85
Find Field Position (31) 86
Get Request Completion (125) 94
Lock Presentation space API (60) 97
Query Additional Field Attribute (45) 103
Query Cursor Location (7) 107
Query Field Attribute (14) 107
Search Field (30) 125

436 Emulator Programming

presentation services functions (continued)
Search Presentation Space (6) 129
Set Cursor (40) 146

presentation space
character table 49
cursor movement 23
Enhanced 32-bit interface 11
field-formatted 40, 42, 72, 85, 86, 125
host-connected 12
how specified 12
identifier

blank specifier 13
function 12
how processed 12
letter specifier 13
null specifier 13
processing for functions not requiring connect 13
processing for functions requiring connect 13

OIA 48
types 11

presentation space names
declaring 12
maximum number of 12
valid names 12

presentation spaces 11
programming interface, server-requester 324
PSID handling

functions not requiring connect 13
functions requiring connect 13

Put Data to Presentation Space 241, 383

Q
Query Additional Field Attribute (45) 103
Query Close Intercept (42) 104
Query Communication Event (81) 106
Query Communications Buffer Size (122) 104
Query Cursor Location (7) 107
Query Field Attribute (14) 107
Query Host Update (24) 101, 109, 160, 168
Query Reply Data Structures Supported by EHLLAPI

Architecture Query Reply 344
Cooperative Processing Requester Query Reply 342
general 335
IBM Auxiliary Device Query Reply

Direct Access Self-Defining Parameter 339
general 338
PCLK Protocol Controls Self-Defining Parameter 340

OEM Auxiliary Device Query Reply
Direct Access Self-Defining Parameter 341
general 340
PCLK Protocol Controls Self-Defining Parameter 341

Product-Defined Query Reply
Direct Access Self-Defining Parameter 343, 345
general 342
Optional Parameters 342

The DDM Query Reply
Base DDM Query Reply Formats 336
DDM Application Name Self-Defining Parameter 336
general 335
PCLK protocol controls Self-Defining Parameter 336

Query Session Status (22) 40, 110
Query Sessions (10) 112
Query System (20) 113
Query Window Coordinates (103) 115
QUIET 150

R
Read Structured Fields (126) 116
Receive File (91)

default path for target file 123
general 24, 121, 150

RECEIVE.EXE location 121
relationship requester server 325
Release (12) 24, 123, 124
requester

C language 329
server flow, and 326
server relationship 325

Reserve (11) 24, 123
Reset System (21) 123, 124, 147
return (output) parameters, general 28
return codes 353
router, SRPI 325, 326

S
sample program, a simple EHLLAPI 19
sample programs 3
Search Field (30) 125, 170
Search for String 242, 384
search functions 22

Search Field (30) 125
Search Presentation Space (6) 129

Search Presentation Space (6) 23, 129, 170
SEND _ REQUEST

invoking 329
parameters

returned 328
supplied 326

processing errors 353
routing 325

send _ request function
C language 330

Send File (90)
default path for target file 135
general 24, 133, 150
SEND.EXE location 133

Send Key (3) 17, 91, 135, 163, 170
Send Keystrokes 243, 385
sending keystrokes 23

mnemonics 17
Send Key (3) 135

server
name 328
return codes 359

server-requester programming interface 324
service 114
Session Execute Macro 244, 386
session keyboard 17
Set Cursor (40) 146
Set Cursor Position 251, 392
Set Mouse Intercept Condition 253, 394
Set Presentation Space Service Condition 255, 396
Set Session Advise Condition 257, 397
Set Session Parameters (9)

general 136, 147
List of affected functions 147
string specification 148
Valid Input 148, 155

Set Structured Field Service Condition 258, 398
shift key mnemonics 17
size of presentation spaces 11

Index 437

source code syntax 21
specifying strings 77
SRCHALL 149
SRCHBKWD 149
SRCHFROM 149
SRCHFRWD 149
stack size 2
Start Close Intercept 259, 399
Start Close Intercept (41) 156
Start Communication Notification (80) 158
Start Host Notification (23) 100, 109, 150, 160, 168
Start Keystroke Intercept 260, 401
Start Keystroke Intercept (50) 163
Start Menu Advise 282, 422
Start Mouse Input Intercept 261, 402
Start Playing Macro (110) 165
Start Read SF 264, 405
Start Session Advise 266, 406
static link method 10
Stop Close Intercept 267, 407
Stop Close Intercept (43) 166
Stop Communication Notification (82) 167
Stop Host Notification (25) 168
Stop Keystroke Intercept 268, 408
Stop Keystroke Intercept (53) 168
Stop Keystroke Intercept (53), you can call the 26
Stop Menu Advise 284, 423
Stop Mouse Input Intercept 268, 409
Stop Read SF 269, 409
Stop Session Advise 270, 410
STREOT 149
string interception, Get Key (51) 89
string specification

session options 148
STRLEN 149
syntax, C language 329

T
Terminate Menu Conversation 284, 424
Terminate Session Conversation 270, 411
Terminate Structured Field Conversation 271, 411
Terminate System Conversation 271, 411
TIMEOUT 150
trademarks 430
transport layer errors 353
TWAIT 151, 170
types of presentation spaces 11

U
UERCPRB, C language 330
Unicode

Hindi, code page 1137
Convert Position of Convert RowCol (99) 40
Copy Field to String (34) 47
Copy Presentation Space (5) 63
Copy Presentation Space to String (8) 71
Copy String to Field (33) 75
Copy String to Presentation Space (15) 79
Get Key (51) 93
Search Field (30) 128
Search Presentation Space (6) 132
Send Key (3) 145
Set Cursor (40) 147
Set Session Parameters (9) 155

Unicode (continued)
Japanese, code page 1390/1399

Copy Field to String (34) 46
Copy Presentation Space (5) 62
Copy Presentation Space to String (8) 70
Copy String to Field (33) 74
Copy String to Presentation Space (15) 78
Get Key (51) 91
Search Field (30) 127
Search Presentation Space (6) 131
Send Key (3) 145
Set Session Parameters (9) 155

using API header files 2

W
Wait (4) 22, 136, 169
window services functions

Change PS Window Name (106) 32
Change Switch List LT Name (105) 33
Lock Window Services API (61) 99

Window Status (104) 170
WinHLLAPI Extension Functions

Asynchronous Functions
general 179
WinHLLAPIAsync 179
WinHLLAPICancelAsyncRequest 185

Blocking Routines
general 187
WinHLLAPICancelBlockingCall 188
WinHLLAPIIsBlocking 187
WinHLLAPISetBlockingHook 187
WinHLLAPIUnhookBlockingHook 188

general 186
Initialization/Termination Functions

general 186
WinHLLAPI Cleanup 187
WinHLLAPI Startup 186

Summary 179
Write SF 272, 412
Write Structured Fields (127) 173

X
XLATE 152

438 Emulator Programming

����

Product Number: 5639-I70

Printed in USA

SC31-8478-11

	Contents
	Figures
	Tables
	About This Book
	Who Should Read This Book
	Where To Find More Information
	Support Options
	Subscribing to Support News
	Support Assistant

	Notation

	Chapter 1. Introduction to Emulator APIs
	Using API Header Files
	Critical Sections
	Stack Size
	Running 16-bit Windows EHLLAPI programs
	Windows x64 Platform Support
	Sample Programs
	Displaying Arabic data in the VBHLLAPI sample program

	Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming
	EHLLAPI Overviews
	IBM Standard EHLLAPI
	WinHLLAPI
	WinHLLAPI and IBM Standard EHLLAPI
	IBM Enhanced EHLLAPI and IBM Standard EHLLAPI

	Languages
	EHLLAPI Call Format
	Data Structures
	Memory Allocation
	EHLLAPI Return Codes
	Compiling and Linking
	Static Link Method
	Dynamic Link Method
	Multithreading

	Presentation Spaces
	IBM Enhanced 32-Bit Interface Presentation Space IDs
	Types of Presentation Spaces
	Size of Presentation Spaces
	Presentation Space IDs
	Host-Connected Presentation Space
	Presentation Space ID Handling
	PSID Handling for Functions Requiring Connect
	PSID Handling for Functions Not Requiring Connect

	Sharing EHLLAPI Presentation Space between Processes
	SUPER_WRITE
	WRITE_SUPER
	WRITE_WRITE
	WRITE_READ
	WRITE_NONE
	READ_WRITE
	Locking Presentation Space

	Using mouse actions to select, copy, and paste text in the Presentation Space
	ASCII Mnemonics
	General
	Get Key (51) Function
	Send Key (3) Function

	Debugging
	A Simple EHLLAPI Sample Program
	Standard and Enhanced Interface Considerations
	Host Automation Scenarios
	Scenario 1. A Search Function
	Scenario 2. Sending Keystrokes
	Scenario 3. Distributed Processing
	Scenario 4. File Transfer
	Scenario 5. Automation
	Scenario 6. Keystroke Filtering
	Scenario 7. Keyboard Enhancement

	Chapter 3. EHLLAPI Functions
	Unicode Support for Code Pages 1390/1399 and 1137
	Page Layout Conventions
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Summary of EHLLAPI Functions
	Allocate Communications Buffer (123)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Cancel File Transfer (92)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Change PS Window Name (106)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Change Switch List LT Name (105)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Connect for Structured Fields (120)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Connect Presentation Space (1)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Connect Window Services (101)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Convert Position or Convert RowCol (99)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function
	1137 Code Page Support

	Copy Field to String (34)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function
	1390/1399 Code Page Support
	1137 Code Page Support

	Copy OIA (13)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function
	Format of the Returned OIA Data String

	Copy Presentation Space (5)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function
	1390/1399 Code Page Support
	1137 Code Page Support

	Copy Presentation Space to String (8)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function
	1390/1399 Code Page Support
	1137 Code Page Support

	Copy String to Field (33)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function
	1390/1399 Code Page Support
	1137 Code Page Support

	Copy String to Presentation Space (15)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function
	1390/1399 Code Page Support
	1137 Code Page Support

	Disconnect from Structured Fields (121)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	Notes on Using This Function

	Disconnect Presentation Space (2)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Disconnect Window Service (102)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	Notes on Using This Function

	EditKey Intercept
	Prerequisites

	Find Field Length (32)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Find Field Position (31)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Free Communications Buffer (124)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	Notes on Using This Function

	Get Key (51)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	16-Bit Interface
	32-Bit Interface
	Notes on Using This Function
	1390/1399 Code Page Support
	1137 Code Page Support

	Get Request Completion (125)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	Notes on Using This Function

	Lock Presentation Space API (60)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	Notes on Using This Function

	Lock Window Services API (61)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	Notes on Using This Function

	Pause (18)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Post Intercept Status (52)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Query Additional Field Attribute (45)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Query Close Intercept (42)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Query Communications Buffer Size (122)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Query Communication Event (81)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Query Cursor Location (7)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Query Field Attribute (14)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Query Host Update (24)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Query Session Status (22)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Query Sessions (10)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Query System (20)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Return Code
	Notes on Using This Function

	Query Window Coordinates (103)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Read Structured Fields (126)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Receive File (91)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Release (12)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Reserve (11)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Reset System (21)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using this Function

	Search Field (30)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function
	1390/1399 Code Page Support
	1137 Code Page Support

	Search Presentation Space (6)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function
	1390/1399 Code Page Support
	1137 Code Page Support

	Send File (90)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Send Key (3)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function
	Keyboard Mnemonics
	1390/1399 Code Page Support
	1137 Code Page Support

	Set Cursor (40)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function
	1137 Code Page Support

	Set Session Parameters (9)
	Prerequisite Calls
	Call Parameters
	Session Options
	Return Parameters
	1390/1399 and 1137 Code Page Support

	Start Close Intercept (41)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Start Communication Notification (80)
	Prerequisite Calls
	Call Parameters
	Data String
	Return Parameters
	Notes on using this Function

	Start Host Notification (23)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Start Keystroke Intercept (50)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Start Playing Macro (110)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Stop Close Intercept (43)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Stop Communication Notification (82)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Stop Host Notification (25)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Stop Keystroke Intercept (53)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Wait (4)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Window Status (104)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Write Structured Fields (127)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Chapter 4. WinHLLAPI Extension Functions
	Summary of WinHLLAPI Functions
	WinHLLAPI Asynchronous Functions
	WinHLLAPIAsync
	Wait (4)
	Start Host Notification (23)
	Start Close Intercept (41)
	Start Keystroke Intercept (50)
	Send File (90)
	Receive File (91)

	WinHLLAPICancelAsyncRequest
	Syntax
	Parameters
	Returns

	Initialization and Termination Functions
	WinHLLAPI Startup
	Syntax
	Parameters
	Returns

	WinHLLAPI Cleanup
	Syntax
	Returns

	Blocking Routines
	WinHLLAPIIsBlocking
	Syntax
	Returns
	Remarks

	WinHLLAPISetBlockingHook
	Syntax
	Parameters
	Description
	Returns

	WinHLLAPIUnhookBlockingHook
	Syntax
	Returns

	WinHLLAPICancelBlockingCall
	Syntax
	Returns

	Chapter 5. PCSAPI Functions
	How to Use PCSAPI
	Page Layout Conventions
	Function Type
	Parameter Type and Description
	Return Code

	pcsConnectSession
	Function Type
	Parameter Type and Description
	Return Code

	pcsDisconnectSession
	Function Type
	Parameter Type and Description
	Return Code

	pcsQueryConnectionInfo
	Function Type
	Parameter Type and Description
	Return Code
	ConnectionInfo
	Example

	pcsQueryEmulatorStatus
	Function Type
	Parameter Type and Description
	Return Code

	pcsQuerySessionList
	Function Type
	Parameter Type and Description
	Return Parameters
	Example

	pcsQueryWorkstationProfile
	Function Type
	Parameter Type and Description
	Return Code

	pcsSetLinkTimeout
	Function Prototype
	Parameter Type and Description
	Return Code

	pcsStartSession
	Function Type
	Parameter Type and Description
	Return Code

	pcsStopSession
	Function Type
	Parameter Type and Description
	Return Code

	Page Setup Functions
	Restrictions
	pcsGetPageSettings
	Function Type
	Parameter Type and Description
	Return Code
	Example

	pcsRestorePageDefaults
	Function Type
	Parameter Type and Description
	Return Code
	Example

	pcsSetPageSettings
	Function Type
	Parameter Type and Description
	Return Code
	Example

	Printer Setup Functions
	Restrictions
	pcsGetPrinterSettings
	Function Type
	Parameter Type and Description
	Flags for the pErrorInfo member of the PRINTINFO structure
	Return Code
	Example

	pcsSetPrinterSettings
	Function Type
	Parameter Type and Description
	Flags for the pErrorInfo member of the PRINTINFO structure
	Return Code
	Example

	Chapter 6. DDE Functions in a 32–bit Environment
	Personal Communications DDE Data Items
	Using System Topic Data Items
	Using Session Topic Data Items
	Using LU Topic Data Items (3270 Only)

	DDE Functions
	Naming Conventions for Parameters

	Code Conversion
	Conversion Types
	Personal Communications Response

	Find Field
	CF_DSPTEXT
	CF_TEXT
	Personal Communications Response
	Structure of the Field Information

	Get Keystrokes
	Personal Communications Response
	Structure of the Keystroke Information

	Get Mouse Input
	Personal Communications Response
	Structure of the Mouse Input Information

	Get Number of Close Requests
	Personal Communications Response
	Structure of the Number of the Close Requests Information

	Get Operator Information Area
	Personal Communications Response
	Structure of the Operator Information Area

	Get Partial Presentation Space
	Personal Communications Response
	Structure of the Presentation Space

	Get Presentation Space
	Personal Communications Response
	Structure of the Presentation Space

	Get Session Status
	Personal Communications Response
	Format of Status Information

	Get System Configuration
	Personal Communications Response
	Format of System Configuration Information

	Get System Formats
	Personal Communications Response

	Get System Status
	Personal Communications Response

	Get System SysItems
	Personal Communications Response

	Get System Topics
	Personal Communications Response

	Get Trim Rectangle
	Personal Communications Response

	Initiate Session Conversation
	Personal Communications Response

	Initiate Structured Field Conversation
	PC/3270 Response

	Initiate System Conversation
	Personal Communications Response

	Put Data to Presentation Space
	Personal Communications Response

	Search for String
	Personal Communications Response
	Structure of the Search Information

	Send Keystrokes
	Personal Communications Response

	Session Execute Macro
	Personal Communications Response
	Issuing Commands with the Session Execute Macro Function
	WINDOW Command
	KEYBOARD Command
	SEND Command
	RECEIVE Command
	SENDKEY Command
	WAIT Command

	Set Cursor Position
	Personal Communications Response

	Set Mouse Intercept Condition
	Personal Communications Response

	Set Presentation Space Service Condition
	Personal Communications Response

	Set Session Advise Condition
	Personal Communications Response

	Set Structured Field Service Condition
	PC/3270 Response

	Start Close Intercept
	Personal Communications Response

	Start Keystroke Intercept
	Personal Communications Response

	Start Mouse Input Intercept
	Personal Communications Response

	Start Read SF
	PC/3270 Response

	Start Session Advise
	Personal Communications Response

	Stop Close Intercept
	Personal Communications Response

	Stop Keystroke Intercept
	Personal Communications Response

	Stop Mouse Input Intercept
	Personal Communications Response

	Stop Read SF
	PC/3270 response

	Stop Session Advise
	Personal Communications Response

	Terminate Session Conversation
	Personal Communications Response

	Terminate Structured Field Conversation
	PC/3270 Response

	Terminate System Conversation
	Personal Communications Response

	Write SF
	PC/3270 Response

	DDE Menu Item API in a Windows 32-Bit Environment
	DDE Menu Client
	DDE Menu Server

	DDE Menu Functions
	Change Menu Item
	Personal Communications Response

	Create Menu Item
	Personal Communications Response

	Initiate Menu Conversation
	Personal Communications Response

	Start Menu Advise
	Personal Communications Response

	Stop Menu Advise
	Personal Communications Response

	Terminate Menu Conversation
	Personal Communications Response

	Summary of DDE Functions in a Windows 32-Bit Environment

	Chapter 7. Using DDE Functions with a DDE Client Application
	Using the Personal Communications DDE Interface
	System Conversation
	Starting the DDE System Conversation with Personal Communications
	Requesting System Information
	Terminating the DDE System Conversation with Personal Communications

	Session Conversation
	Starting the DDE Session Conversation
	Requesting Data
	Sending Data to the Emulator Window (Poke)
	Executing Commands
	Terminating the DDE Session Conversation

	Session Conversation (Hot Link)
	Starting the DDE Session Conversation (Hot Link)
	Starting the Hot Link with the Session Window
	Stopping the Hot Link with the Session Window
	Terminating the DDE Session Conversation

	Personal Communications DDE Interface
	DDE Functions for System Conversation
	Get System Configuration
	Personal Communications Response

	Get System Formats
	Personal Communications Response

	Get System Status
	Personal Communications Response

	Get System SysItems
	Personal Communications Response

	Get System Topics
	Personal Communications Response

	Initiate System Conversation
	Terminate System Conversation

	DDE Functions for Session Conversation
	Find Field
	Personal Communications Response

	Get Operator Information Area
	Personal Communications Response

	Get Partial Presentation Space
	Personal Communications Response

	Get Presentation Space
	Personal Communications Response

	Get Session Status
	Personal Communications Response

	Get Trim Rectangle
	Trim Rectangle Word by Word
	Autocopy
	Personal Communications Response

	Initiate Session Conversation
	Personal Communications Response

	Put Data to Presentation Space
	Personal Communications Response

	Search for String
	Personal Communications Response

	Session Execute Macro
	Personal Communications Response

	Set Cursor Position
	Personal Communications Response

	Terminate Session Conversation

	DDE Functions for Session Conversation (Hot Link)
	Initiate Session Conversation
	Start Close Intercept
	Personal Communications Response

	Start Keystroke Intercept
	Personal Communications Response

	Start Session Advise
	Personal Communications Response

	Stop Close Intercept
	Personal Communications Response

	Stop Keystroke Intercept
	Personal Communications Response

	Stop Session Advise
	Personal Communications Response

	Terminate Session Conversation

	Visual Basic Sample Program

	Chapter 8. Server-Requester Programming Interface (SRPI) Support
	How to Use SRPI
	SRPI Compatibility
	Using the Server-Requester Programming Interface
	SEND_REQUEST Parameters
	Supplied Parameters
	Returned Parameters

	How PC/3270 Applications Use SRPI
	Invoking SEND_REQUEST
	Performance Considerations
	Handling the Interrupt (Ctrl+Break) Key
	C Requesters
	C send_request Function
	SRPI Record Definition
	SRPI Return Codes

	Chapter 9. Troubleshooting for Emulator programming
	Partial EHLLAPI input on Personal Communications host screen
	IBM Personal Communications VBHLLAPI sample does not run in FDCC Windows Vista

	Appendix A. Query Reply Data Structures Supported by EHLLAPI
	The DDM Query Reply
	DDM Application Name Self-Defining Parameter
	PCLK Protocol Controls Self-Defining Parameter
	Base DDM Query Reply Formats

	The IBM Auxiliary Device Query Reply
	Optional Parameters
	Direct Access Self-Defining Parameter
	PCLK Protocol Controls Self-Defining Parameter

	The OEM Auxiliary Device Query Reply
	Direct Access Self-Defining Parameter
	PCLK Protocol Controls Self-Defining Parameter

	The Cooperative Processing Requester Query Reply
	The Product-Defined Query Reply
	Optional Parameters
	Direct Access Self-Defining Parameter

	The Document Interchange Architecture Query Reply

	Appendix B. Differences from Communication Manager/2 EHLLAPI
	Set Session Parameter (9)
	Set Options
	Return Parameters
	EAB Option

	Copy OIA (13)
	Copy String to PS (15)
	Storage Manager (17)
	Copy String to Field (33)
	Get Key (51)
	Window Status (104)
	Query Sessions (10)
	Connect for Structured Fields (120)
	Allocate Communications Buffer (123)
	ASCII Mnemonics
	Get Request Completion (125)

	Appendix C. DOS-Mode EHLLAPI for Windows
	Installation

	Appendix D. SRPI Return Codes
	Error Handling
	Transport Layer Errors
	Application Errors
	SEND_REQUEST Processing Errors

	Types of SRPI Return Codes
	Type 0 Return Code Definitions
	Type 1 Return Code Definitions
	Type 2 Return Code Definitions
	Type 3 Return Code Definitions

	Class Definitions for Type 2 and Type 3
	Exception Code Values for Type 2 and Type 3
	Exception Object Values for Type 2 and Type 3
	Server Return Codes

	Appendix E. DDE Functions in a 16-Bit Environment
	Personal Communications DDE Data Items in a 16-Bit Environment
	Using System Topic Data Items
	Using Session Topic Data Items
	Using LU Topic Data Items (PC/3270 Only)

	DDE Functions in a 16-Bit Environment
	Naming Conventions for Parameters
	Find Field
	Personal Communications Response
	Structure of the Field Information

	Get Keystrokes
	Personal Communications Response
	Structure of the Keystroke Information

	Get Mouse Input
	Personal Communications Response
	Structure of the Mouse Input Information

	Get Number of Close Requests
	Personal Communications Response
	Structure of the Number of the Close Requests Information

	Get Operator Information Area
	Personal Communications Response
	Structure of the Operator Information Area

	Get Partial Presentation Space
	Personal Communications Response
	Structure of the Presentation Space

	Get Presentation Space
	Personal Communications Response
	Structure of the Presentation Space

	Get Session Status
	Personal Communications Response
	Format of Status Information

	Get System Configuration
	Personal Communications Response
	Format of System Configuration information

	Get System Formats
	Personal Communications Response

	Get System Status
	Personal Communications Response

	Get System SysItems
	Personal Communications Response

	Get System Topics
	Personal Communications Response

	Get Trim Rectangle
	Personal Communications Response

	Initiate Session Conversation
	Personal Communications Response

	Initiate Structured Field Conversation
	PC/3270 Response

	Initiate System Conversation
	Personal Communications Response

	Put Data to Presentation Space
	Personal Communications Response

	Search for String
	Personal Communications Response
	Structure of the Search Information

	Send Keystrokes
	Personal Communications Response

	Session Execute Macro
	Personal Communications Response
	Issuing Commands with the Session Execute Macro Function
	WINDOW Command
	KEYBOARD Command
	SEND Command
	RECEIVE Command
	SENDKEY Command
	WAIT Command

	Set Cursor Position
	Personal Communications Response

	Set Mouse Intercept Condition
	Personal Communications Response

	Set Presentation Space Service Condition
	Personal Communications Response

	Set Session Advise Condition
	Personal Communications Response

	Set Structured Field Service Condition
	PC/3270 Response

	Start Close Intercept
	Personal Communications Response

	Start Keystroke Intercept
	Personal Communications Response

	Start Mouse Input Intercept
	Personal Communications Response

	Start Read SF
	PC/3270 Response

	Start Session Advise
	Personal Communications Response

	Stop Close Intercept
	Personal Communications Response

	Stop Keystroke Intercept
	Personal Communications Response

	Stop Mouse Input Intercept
	Personal Communications Response

	Stop Read SF
	PC/3270 Response

	Stop Session Advise
	Personal Communications Response

	Terminate Session Conversation
	Personal Communications Response

	Terminate Structured Field Conversation
	PC/3270 Response

	Terminate System Conversation
	Personal Communications Response

	Write SF
	PC/3270 Response

	DDE Menu Item API in a 16-Bit Environment
	DDE Menu Client in a 16-Bit Environment
	DDE Menu Server, 32-Bit

	DDE Menu Functions in a 16-Bit Environment
	Change Menu Item
	Personal Communications Response

	Create Menu Item
	Personal Communications Response

	Initiate Menu Conversation
	Personal Communications Response

	Start Menu Advise
	Personal Communications Response

	Stop Menu Advise
	Personal Communications Response

	Terminate Menu Conversation
	Personal Communications Response

	Summary of DDE Functions in a 16-Bit Environment

	Appendix F. Notices
	Trademarks

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X

