
Personal Communications for Windows, Version 12.0

CM Mouse Support User’s Guide and
Reference

IBM

Personal Communications for Windows, Version 12.0

CM Mouse Support User’s Guide and
Reference

IBM

Note
Before using this information and the product it supports, be sure to read the general information under Appendix D,
“Notices,” on page 143.

Seventh Edition (April 2016)

This edition applies to Version 12.0 of IBM Personal Communications for Windows (program number: 5639–I70) and
to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1991, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About This Book. xi
How To Use This Book xi

Icons xi
Where to Find More Information xi

Personal Communications Library xi

Chapter 1. Installing CM Mouse 1

Chapter 2. Starting CM Mouse 3

Chapter 3. Configuring CM Mouse . . . 5

Chapter 4. Using CM Mouse 7
Writing CM Mouse Scripts. 7
Using Pop-up Menus 8

Pop-up System Menus 9
Using the Keyboard with Pop-up Menus . . . 10

The CM Mouse Control Panel 11
The Host System Menu 14
Clipboard Functions 15
CM Mouse Screen Map Facility. 16

Displaying the Screen Map 16
Using the Screen Map 17

Chapter 5. CM Mouse BDF Script Files 21
Button Definition File General Syntax 22
Button Definition File Structure. 23

The Primary BDF Script 23
Default Button Definitions for SCREEN
Statements. 25

Button Definition File Statements 25
AREA Statement. 25
BUTTON Statement 26
DEFINE/ENDDEFINE Statements 27
DOIF/ENDIF Statements 28
DRAG Statement 29
DROP Statement. 30
INCLUDE Statement 30
MAP Statement 31
SCREEN Statement 33
SET Statement 36

Chapter 6. CM Mouse Menu Files . . . 37
BAR 37
COLORS 38
DOIF/ENDIF. 39
LINE 40
PLACE 42
SET 42

TITLE 42

Chapter 7. Button Definitions 45
Control and Substitution Word Table 45
The Basics of a Button Definition 45
CM Mouse Control Words 46

{beep} 46
{clip cut} {clip cut textonly} 46
{clip copy} {clip copy textonly} 46
{clip copyappend} 47
{clip from <r1> <c1> <r2> <c2>} 47
{clip to <r> <c>} 47
{clip paste} 47
{clip place} 48
{clip cancel} 48
{clip clear} 48
{clip undo} 48
{clip unmark} 48
{dde <function> <parameters>} 48
{editmmm} 49
{hostwait n} 49
{if <condition> {then}script1{else}script2} . . . 50
{lock on} {lock off} 51
{mmenu} 52
{mrowcol x y} 52
{null} 52
{pause n} 52
{pfkey} 52
{pfkey first} 53
{pfkey last} 53
{pfkeyrev} {pfkeyrev first} {pfkeyrev last} . . . 53
{printscreen LPTx} 53
{printscreen Fname} {printscreen Fname
APPEND} 53
{quit} 53
{rowcol x y} 54
{seek} 54
{unseek} 54
{search FOR 'string' AT r1 c1 r2 c2 WAIT n NOT
ASIS NOQUIT} 54
{seekelse} 55
{seekcol x} 55
{seekrow x} 56
{set Name Value} 56
{switchto <session>|*|next|prev } 56
{sys <cmd> <parms>} 56
{win <session>|*|prev|next MIN| MAX|
RESTORE| HIDE| SHOW| ACTIVATE|
DEACTIVATE} 57
{xfer ..} 58
{?<text>} 58
{map} 59
{sysmenu} 59

CM Mouse Substitution Words 60
&{break} 60

© Copyright IBM Corp. 1991, 2019 iii

&{chars r c l} or {&chars r c l} 60
&{editor} 60
&{env VarName} 61
&{hcol} or {&hcol} 61
&{hrow} or {&hrow} 61
&{hour} &{min} &{sec}. 61
&{month} &{day} &{year}. 61
&{math 'val1' +|-|/|* 'val2'} 61
&{mmm} 61
&{mrow} or {&mrow} 61
&{mcol} or {&mcol} 61
&{num} or {&num} 62
&{num first} or {&num first}. 62
&{num last} or {&num last} 62
&{num at <row> <col>} or {&num at <row>
<col>} 62
&{popup <menuname>} or {&popup
<menuname>} 62
&{rows} 64
&{cols} 64
&{sid} or {&sid} 64
&{srow} &{scol} or {&srow} {&scol} 64
&{str <function> <parms>} 64
&{var Name} or {&var Name} 65
&{word delimit|include '<chars>'} or {&word} . 66
&{word first} or {&word first} 66
&{word last} or {&word last} 66
&{word at <row> <col>} or {&word at <row>
<col>} 67
&{?<Qtext>|<Atext>} or {&?<Qtext>|<Atext>} 67
&{rexx PgmSource} or {&rexx PgmSource} . . . 69
Presubstitutions and Runtime Substitutions. . . 70

CM Mouse Host Control Words 71

Chapter 8. CM Mouse/REXX Interface 73
Typical Uses for the REXX Interface 73
Inline and External REXX Programs 74
Syntax 75
CM Mouse Substitutions in REXX Programs . . . 77
Debugging REXX Programs 78
REXX External Functions 79

CmmSearch 79
CmmGetScreen 80
CmmInfo 80
CmmExec 81
CmmConnect 82
CmmPopup 83
CmmPrompt 83
CmmGet 84
CmmPut 84

Chapter 9. Drag/Drop Features 87
OS/2 versus Windows Drag/Drop 87
How CM Mouse Drag/Drop Works 87
DRAG Statements 88
DROP Statements 89
The XFER Keyword 89
Automatic Name Mapping 92

Chapter 10. CM Mouse Variables . . . 95
Setting the Value of a Variable 95

Setting the Value of a Variable in a Button
Definition 95
Setting the Value of a Variable in a BDF or MMM
File 96

Variable Substitutions (Using the Value of a
Variable) 97
Rules of Variables 97
Predefined System Variables 98
Debugging Hints 98

Chapter 11. CM Mouse Utility Programs 99
The CM Mouse Menu Editor 99

Menu Title 100
Menu Item Text 100
Menu Item Script 100
Menu Item Color 100
Delete Menu Item 100
Insert Menu Item 101
Default Menu Colors 101
Default Bounce Bar Position 101
Menu Placement 101
Set Variable Values 101
Exit and Save Menu 101
Exit Without Saving 101

The CM Mouse Button Simulator. 101
PM Button Simulator 102
Command-Line Button Simulator. 102

Chapter 12. Button Usage Standards 103
Left Button Usage 103
Right Button Usage 103
Left+Right Button Usage 104
Right+Left Button Usage 104
Middle Button Usage 104

Chapter 13. Sample Button Definitions
and Menus 105
Host Application Examples 106

PROFS/OfficeVision Examples 106
RDRLIST Example. 116
ISPF Example 117
Text Editors 118

Chapter 14. Tips and Techniques . . . 121
Nesting Pop-up Menus 121
Synchronizing Input with the Host 121
Screen Size Independence 122
Cursor Positioning 124
Performance Tips 127
Common Problems 128

Chapter 15. Cross-Platform
Compatibility 129

Chapter 16. CM Mouse Limitations 131
String Lengths 131
Program Limitations 131

iv CM Mouse Support User’s Guide and Reference

Miscellaneous Limitations 132

Appendix A. CM Mouse Keyword
Reference 133

Appendix B. BDF File Syntax
Diagrams 139

Appendix C. MMM File Syntax
Diagrams 141

Appendix D. Notices 143
Trademarks 144

Index 145

Contents v

vi CM Mouse Support User’s Guide and Reference

Figures

1. Configuration Dialog. 5
2. Sample Pop-up Menu 9
3. Pop-up System Menu 9
4. CM Mouse Control Panel 11
5. Options Menu 12
6. Pop-up Menu Colors Panel 13
7. Host System Menu (OS/2 and Windows) 15
8. Selecting the Screen Map Option 16
9. Selecting a Host Session 17

10. Screen Map Windows 17
11. Map Trace Window 19

12. Map Buttons Window 20
13. General Structure of a Button Definition File 23
14. CM Mouse Menu Editor 100
15. Sample OfficeVision Main Menu 107
16. Sample Hot Spot Definition 108
17. Sample Hot Spot Expansion. 109
18. Sample OV Calendar Screen 114
19. Sample VM RDRLIST Application Menu 116
20. Sample ISPF Main Menu 118
21. Sample Host RDRLIST Screen 123

© Copyright IBM Corp. 1991, 2019 vii

viii CM Mouse Support User’s Guide and Reference

Tables

1. CM Mouse Start-Up Variables 98
2. Cross-Platform Compatibility 129
3. Alternate CM Mouse String Lengths 131

4. Program Limitations 131
5. CM Mouse Keyword Reference 133

© Copyright IBM Corp. 1991, 2019 ix

x CM Mouse Support User’s Guide and Reference

About This Book

This book is for users of IBM® Personal Communications for Windows, Version 12.0.

How To Use This Book
In this book, Windows refers to Windows Server 2003, Windows XP, Windows Vista,
Windows 7 and Windows Server 2008. When information applies to specific
operating systems, this will be indicated in the text.

Icons
Throughout this document the following symbols are used to denote sections that
are applicable to only a single environment:

for OS/2 only.

for Windows XP and later Windows versions.

Where to Find More Information
Refer to the IBM Glossary of Computing Terms at http://
www.networking.ibm.com/netdoc.htm for definitions of technical terms used
throughout this book.

Personal Communications Library
The Personal Communications library includes the following publications:
v Installation Guide
v Quick Beginnings
v Emulator User's Reference
v Administrator's Guide and Reference
v Emulator Programming
v Client/Server Communications Programming
v System Management Programming
v CM Mouse Support User's Guide and Reference (this book)
v Host Access Class Library
v Configuration File Reference

In addition to the printed books, there are HTML documents provided with
Personal Communications:

© Copyright IBM Corp. 1991, 2019 xi

Host Access Class Library for Java
This HTML document describes how to write an ActiveX/OLE
2.0–compliant application to use Personal Communications as an
embedded object.

Following is a list of related publications:
v Personal Communications Version 4.3 for OS/2 Quick Beginnings, GC31–8795
v Personal Communications Version 4.3 for OS/2 Reference, SC31–8796

xii CM Mouse Support User’s Guide and Reference

Chapter 1. Installing CM Mouse

CM Mouse is a program that provides intelligent and programmable mouse
support for 3270 and 5250 emulation sessions. It allows users of host applications
to point-and-click (instead of "hunt-and-peck") to perform host functions.
Depending upon how scripts are written for a host session, it is possible for CM
Mouse users to point-and-click to send a PF keystroke or a complex set of
keystrokes (up to 4000 characters long) to the host.

CM Mouse can be used to divide screens into areas called hot spots, and different
tasks and functions can be performed by pointing and clicking on the hot spots.
Hot spots are not fixed function or fixed placement, but change dynamically as
you move through a host application to give true context-sensitive function to each
host application screen. All of this is controlled through an easy-to-use scripting
language. Many sample scripts are provided for popular host applications such as
IBM OfficeVision (VM, MVS, iSeries, eServer™ i5, and System i5®).

CM Mouse pop-up menus give you instant access to lists of options and functions
with a simple point-and-click. Pop-up menus can simplify command selection,
choose options, and automate repetitive tasks. The CM Mouse pop-up menu editor
gives a WYSIWYG (What You See Is What You Get) view of a pop-up menu and
allows you to quickly and easily customize the menus to your own purposes, or to
create new menus.

Note: The menu editor is available only on OS/2 systems.

The CM Mouse scripting language is powerful enough to automate complex host
interactions, yet simple enough for even novice users. For the advanced user,
integration with the OS/2 REXX language gives even more flexibility and
programming power. REXX programs can be seamlessly imbedded directly into
CM Mouse scripts.

CM Mouse actually consists of a family of programs. The programs are
functionally similar, and a user familiar with CM Mouse in one environment can
easily move to another. Except as noted in Chapter 15, “Cross-Platform
Compatibility,” on page 129, script files written in one environment can be used in
another without modification.

© Copyright IBM Corp. 1991, 2019 1

2 CM Mouse Support User’s Guide and Reference

Chapter 2. Starting CM Mouse

This chapter describes the procedures for starting CM Mouse.

Click the CM Mouse icon in the CM Mouse folder. When CM Mouse initialization
is complete, the A session is maximized and becomes the active window. (To
override with the CM Mouse configuration dialog, see Chapter 3, “Configuring CM
Mouse,” on page 5).

If you want to start CM Mouse automatically when your system is started, place a
shadow of the CM Mouse program icon in the OS/2 Startup folder.

The emulator program does not have to be running when CM Mouse is started. If
the emulator is not available, CM Mouse displays a dialog message and waits up
to 5 minutes. If the emulator sessions are still not available after 5 minutes, CM
Mouse stops waiting: you will need to click Reset → Host Connections from the
CM Mouse control panel after the emulation sessions are started.

Click the CM Mouse icon in the CM Mouse folder. When CM Mouse initialization
is complete, the A session is maximized and becomes the active window. (To
override with the CM Mouse configuration dialog, see Chapter 3, “Configuring CM
Mouse,” on page 5).

The emulator program does not have to be running when CM Mouse is started. If
the emulator is not available, CM Mouse displays a dialog message and waits up
to 5 minutes. If the emulator sessions are still not available after 5 minutes, CM
Mouse stops waiting: you will need to click Reset → Host Connections from the
CM Mouse control panel after the emulation sessions are started.

© Copyright IBM Corp. 1991, 2019 3

4 CM Mouse Support User’s Guide and Reference

Chapter 3. Configuring CM Mouse

You can configure CM Mouse by doing one of the following:
v Click the Configure button on the CM Mouse installation dialog
v Run the CM Mouse Configuration Utility program from the desktop
v Select the Setup → Configuration from the CM Mouse Control Panel

CM Mouse must be configured before it is run the first time. If CM Mouse has not
been configured when it is started, it automatically displays the configuration
dialog.

The CM Mouse configuration dialog tells CM Mouse some information it needs to
properly startup and initialize. In particular you must tell CM Mouse where to
find script files, which of the supported emulators you will use, what host sessions
you want to use with CM Mouse, and several other startup options.

The CM Mouse configuration dialog appears similar to the following:

A description of each item on the dialog follows:

Emulator
Select from the pull-down list the emulator you will use with CM Mouse.
Only those emulators listed are supported by CM Mouse.

BDF/MMM Directories
In the three numbered fields, enter the directories where CM Mouse is to
find script and pop-up menu files (.BDF and .MMM). The directories are
searched in order from 1 to 3 when CM Mouse needs to locate a file. The
Primary BDF field defines the name of the primary BDF script file (see
Chapter 5, “CM Mouse BDF Script Files,” on page 21).

Marking Sensitivity
These values define how far you must drag the mouse with the left button

Figure 1. Configuration Dialog

© Copyright IBM Corp. 1991, 2019 5

pressed before CM Mouse will recognize a clipboard marking operation.
Some hardware devices (such as light pens which emulate a mouse)
produce a large “skid” on the screen surface which appears as a left-button
drag. Increasing these values can prevent such skids from being incorrectly
interpreted as drag operations. The values are specified in screen pixels.

Text Editor
This field is used to specify what workstation text editor you want to use
when editing script or pop-up menu files. Both the file name and extension
should be specified. The editor is invoked with the file name as a single
parameter.

Use Sessions
These buttons allow you to restrict CM Mouse to specific host sessions.
When the All button is clicked (the default), CM Mouse automatically
connects to all available host sessions.

Include allows you to list in the Sessions field a specific list of sessions for
CM Mouse to use. The list should be the short session IDs without any
separation (for example, ACD causes CM Mouse to use only sessions A, C,
and D). If the sessions specified are not available when CM Mouse starts, it
will wait for them to become available.

Exclude allows you to list in the Sessions field a specific list of sessions
not to be used by CM Mouse. CM Mouse will use all the sessions available
except those listed. The list should be the short session IDs without any
separation (for example, "AD" would cause CM Mouse to use all sessions
except A and D).

Startup Options
These options allow you to control what happens when CM Mouse is first
started.

The Quiet startup option will cause CM Mouse to skip the usual startup
logo dialog.

The Maximize session allows you to automatically maximize a particular
host session when CM Mouse starts. Enter in the supplied field the single
short session ID of the session to be maximized. If this option is not
selected (unchecked), no host session is maximized when CM Mouse starts.

6 CM Mouse Support User’s Guide and Reference

Chapter 4. Using CM Mouse

How you use CM Mouse depends a great deal on how you customize it and the
scripts that you use. There are some general techniques and approaches that may
prove helpful, however. Once CM Mouse has been started, you use the mouse
pointer to point at some part of a host screen and press a button. Depending on
how the scripts are written for that particular host screen, CM Mouse does one or
more of the following:
v Sends simple PF keystroke to the host (just as if you had pressed the PF key on

your keyboard)
v Sends complex set of keystrokes up to 4000 characters long to the host (those

keystrokes might include commands, PF keys, ENTER, or PA keys)
v Shows a pop-up a menu on top of your host session from which you can select

options or commands

Although any mouse button can be configured to perform any host interaction,
guidelines have been established to standardize the use of the mouse buttons.
These standards ensure that the mouse buttons are configured in a consistent way
for all host applications. For example, the right button is generally used to backup
or cancel the current menu. See Chapter 12, “Button Usage Standards,” on page
103 for additional information.

Writing CM Mouse Scripts
The following information lists the three steps you need to follow in order to
customize CM Mouse by modifying or writing CM Mouse scripts. Chapter 13,
“Sample Button Definitions and Menus,” on page 105 shows a step-by-step process
for writing CM Mouse scripts using a real host screen as a sample.

Step 1 The first step is to make CM Mouse recognize the host screens in which
you are interested. This is done in a CM Mouse Button Definition File
(BDF). In a BDF you specify what it is about the host screen that makes it
unique from all the other host screens you might use. This is usually done
by keying on some small portion of text on the screen that does not change
and that is unique to that screen. For example, most host applications
display some sort of title line at the top of the screen. This can be used to
make CM Mouse recognize that particular host screen and be able to
distinguish it from all other host screens.

The syntax and format of BDFs are described in Chapter 5, “CM Mouse
BDF Script Files,” on page 21.

Step 2 The second step to writing a CM Mouse script is defining the keystrokes
that are to be sent to the host when a button is pressed on a particular host
screen. For example, you might want the right button to cause the VM
FILELIST screen to scroll down and the left button to scroll up. This part
of the script is also specified in the BDF. (Note that the actions of the
buttons should be defined according to the standards outlined in
Chapter 12, “Button Usage Standards,” on page 103.)

A BDF can do more complex things than defining screens and buttons.
Host screens can be divided into areas (hot-spots) each of which has its
own set of button definitions. For example, in the VM FILELIST screen,
you might want the right and left buttons to scroll as in the previous

© Copyright IBM Corp. 1991, 2019 7

example, but if the mouse is pointing at a PF key description at the bottom
of the screen, you might want that PF key sent to the host. This would
allow you to point-and-shoot at PF keys on the bottom of the screen while
maintaining the scrolling functions elsewhere on the screen.

Step 3 The third step to CM Mouse script writing is designing pop-up menus.
Pop-up menus are invoked by specifying a special keyword in a button
definition file. Using the FILELIST example described in Step 2, the left
button could be defined to display a pop-up menu rather than scroll the
screen. To write a pop-up file you define a menu in a CM Mouse Menu File
(MMM file). An MMM file consists of a title and lines of text. The text
appears on the pop-up menu exactly as you specify it in the MMM file.
With each line of text you specify what keys are to be sent to the host
when that line of the pop-up is selected with the bounce bar cursor.

The syntax and format of pop-up menu files (MMMs) are described in
Chapter 6, “CM Mouse Menu Files,” on page 37.

Note: OS/2 users can create or modify pop-up menus using the CM
Mouse Menu Editor without learning the syntax and format of
.MMM menu files. See “The CM Mouse Menu Editor” on page 99.

Writing CM Mouse scripts is made even easier with the large number of sample
BDF and MMM files provided in the package. Sample scripts have been supplied
for several popular VM applications including OfficeVision, RDRLIST, FILELIST,
and others. The best way to learn how to write CM Mouse scripts is to try the
samples, and then look at the files to see how they are done. More detailed
information on the format of BDF and MMM files is given in Chapter 5, “CM
Mouse BDF Script Files,” on page 21 and Chapter 6, “CM Mouse Menu Files,” on
page 37. A number of sample BDF and MMM files are explained in detail in
Chapter 13, “Sample Button Definitions and Menus,” on page 105.

Using Pop-up Menus
CM Mouse pop-up menus appear in a window on the screen similar to those
shown in Figure 2 on page 9. There is a title area at the top, and any number of
selection items in the main body of the menu. To cancel a pop-up menu (dismiss
the menu without selecting any items at all), position the mouse cursor anywhere
in the menu and press the right button.

To move the pop-up, you can point to the title bar, press the left button, and drag
the window to a new location. (Pop-up windows can only be moved under OS/2
and Windows; DOS pop-up menus cannot be moved.)

8 CM Mouse Support User’s Guide and Reference

Pop-up System Menus
CM Mouse pop-up menus contain a system-menu icon in the upper left corner.
When this icon is selected, a pull-down menu appears with several options that are
useful with pop-up menus (see Figure 3).

Following are the pop-up system menu options:

Edit this menu
When this option is selected, the file containing the current pop-up menu
definition is copied to the first directory in the BDF/MMM path and the
editor is invoked on that file. If there is only one directory in the path, or if
the file already exists in the first directory, no copy is performed and the
editor is simply invoked on the file. The particular text editor used is the
editor specified in the CM Mouse configuration dialog.

Note: OS/2 users can use the CM Mouse Menu Editor or a text editor
when editing menu files. To choose between the menu editor and a
text editor, use the Setup → Options menu on the CM Mouse control
panel.

The copy function of this option is useful when there is a large set of
pop-up menu files and you want to change only a few of them. By using
two directories in the BDF/MMM path (the first to keep only the files you
change, the second containing the complete set), you can easily change

Figure 2. Sample Pop-up Menu

Figure 3. Pop-up System Menu

Chapter 4. Using CM Mouse 9

only the pop-up menus you are interested in without modifying any of the
original files. This is particularly useful when a set of pop-up menu files
resides on a remote file server, and you want to customize some of them
for your own use. If you were to edit the files on the file server, everyone
using the server would be affected by your changes. By first copying the
files to your own disk, you can make the changes you want without
affecting anyone else and without having to copy all the files.

A typical scenario would have a large set of pop-up menu files on a
remote file server for all users to access. Each user's BDF/MMM path
would be set in the configuration dialog (Chapter 3, “Configuring CM
Mouse,” on page 5) to values like:

D:\MY\CMMOUSE
S:\PROD\CMMOUSE

The D:\MY\CMMOUSE directory is initially empty and is on a local fixed
disk. The S:\PROD\CMMOUSE directory contains a complete set of MMM
(pop-up menu) files and exists on a remote file server to which you might
have read-only access. If you are satisfied with the pop-up menus provided
and do nothing to change them, then the configuration will remain this
way. However, if you wanted to change a particular pop-up menu, you
would display the menu and pick the Edit this menu option. The file
would be copied from the file server to your local disk, and the editor
would be invoked. You could then change the pop-up menu and save it.
The next time you display that menu, it is taken from your local disk and
has the changes you made. If you edit the file again, the copy operation
will not be done and the editor will simply be invoked on your local
version of the file. In this way, you can continue to refine the pop-up menu
by selecting the Edit this menu option.

Show menu name
When this option is selected, the actual file name from which the menu
was retrieved is shown. This can be used to determine which of several
directories in the BDF/MMM path list was used to find the file.

Delete menu
When this option is selected, the current pop-up menu file is deleted (after
a confirmation dialog). This option can be used to delete a local copy of a
pop-up menu after the Edit this menu option has been used.

Move When this option is selected, the pop-up menu can be moved. This is the
same as pointing to the title bar, pressing a button, and dragging the
window.

Close When this option is selected, the pop-up menu is canceled. This is identical
to clicking the right mouse button.

Using the Keyboard with Pop-up Menus

You can use the keyboard for any functions that can be done with the mouse. The
keyboard functions are:

10 CM Mouse Support User’s Guide and Reference

ENTER or SPACE-BAR
These keys are used to select the currently highlighted menu item. This is
equivalent to pointing to the item with the mouse and pressing the left
button.

ESC, PF3 or PF12
These keys cancel the pop-up menu. This is equivalent to using the right
mouse button.

UP-ARROW
The up-arrow key moves the bounce bar up one line on the menu.

DOWN-ARROW
The down-arrow key moves the bounce bar down one line on the menu.

The CM Mouse Control Panel
CM Mouse has a control panel to control various aspects of operation such as the
color of pop-up menus.

To display the control panel, double-click on the CM Mouse icon, or select the icon
and pick the Restore option from the menu. A window similar to that appears in
Figure 4.

The control panel shows the current status of CM Mouse. The box labeled
Emulator shows the emulator for which CM Mouse has been configured. The box
labeled Sessions shows the emulator sessions to which CM Mouse is currently
connected.

The Disable CM Mouse check box can be used to disable CM Mouse on all host
sessions without closing the CM Mouse program. When CM Mouse is disabled, all
mouse clicks on host sessions are handled by the native emulator; CM Mouse will
not process any mouse clicks on any host sessions. This feature can be useful for
special situations in which you need to use some mouse-related feature of the
emulation program.

The following describes the function of each item on the menu bar at the top of the
CM Mouse control panel.

Figure 4. CM Mouse Control Panel

Chapter 4. Using CM Mouse 11

Setup → Configuration
This option displays the CM Mouse Configuration menu (see Chapter 3,
“Configuring CM Mouse,” on page 5).

Setup → Options
This option displays the CM Mouse Option menu (see Figure 5). Each
option may be toggled on or off by clicking on the check box. The options
are:
v Double-Click Support: This option allows double click mouse actions to

be recognized on the host screen. Enabling this option will slow down
response to single clicks.

v Busy Mouse Pointer: This check box enables the busy pointer that CM
Mouse uses when it is busy processing a button click. When this feature
is enabled, CM Mouse will change the pointer shape to a small mouse
while it is processing a button click. This is a visual indicator to the user
that CM Mouse is busy. When this feature is disabled, CM Mouse does
not change the pointer shape when busy.

v Mouse Warp: This check box enables the mouse warping function of CM
Mouse. When mouse warp is enabled (the box is checked), CM Mouse
automatically positions the mouse pointer on the first line of pop-up
menus. When a pop-up menu item is selected or the pop-up is canceled,
the mouse pointer is returned to its original location. This effect of
moving the mouse pointer is referred to as mouse warping. Some people
like this function because it reduces the number of mouse movements
required to select items on pop-up menus. Others prefer to disable this
function and maintain a strict relationship between the position of the
mouse on the table and the mouse pointer on the screen.

v Use Menu Editor: (OS/2 only) This check box enables the automatic use
of the CM Mouse Menu Editor when selecting the Edit this menu...
option of a pop-up menu. If this option is disabled, a text editor is used
to edit pop-up menus.

v Auto Mouse Bypass: When this option is enabled, CM Mouse
automatically passes mouse events to the emulator whenever the mouse
cursor is anything other than the standard arrow. This feature allows
certain emulator mouse functions to be used even when CM Mouse is
active (for example, if the emulator changes the pointer to a cross-hair
during GDDM graphics functions then CM Mouse can automatically
pass mouse events to the emulator to be processed as GDDM pointer
operations).

Figure 5. Options Menu

12 CM Mouse Support User’s Guide and Reference

When this option is disabled CM Mouse always captures mouse events
on the host emulator window (and thus these events are not processed
in the usual way by the emulator).

Setup → Pop-up Menu Colors
When this action is selected, the pop-up colors panel is displayed
(Figure 6).

Use the colors set on this panel for pop-up menus that do not specify a
specific color scheme. These are the default pop-up menu colors. You can
set colors for four different parts of pop-up menus (foreground and
background colors for each of the bounce bar and menu item fields).

To set a specific color, click the appropriate buttons at the top of the menu,
and then click one of the color buttons. A sample of the menu colors is
shown so that you can immediately see the effects of your color choices.

To use the color scheme you have set up, click the Apply button. The next
time you pop up a menu that does not have a color scheme specified in
the menu file, the new colors are used. To cancel the changes you made,
click the Cancel button. To set up the default CM Mouse colors, click the
Default button. Your color choices are saved when you stop CM Mouse.

Reset → Scripts
When this option is selected, all current screen and button definitions
(scripts) are discarded and the primary BDF script file is reread. If the
primary BDF file contains any INCLUDE statements, the included BDF
files are also read. Since CM Mouse normally only reads scripts during
initialization, this option must be used whenever a BDF file is modified.

Reset → Host connections
When this option is selected, CM Mouse will briefly connect to each host
session, thereby rediscovering any new sessions started since CM Mouse
was initialized. The list of active sessions shown on the control panel is
updated. This option must be selected whenever you start a new host
session.

Figure 6. Pop-up Menu Colors Panel

Chapter 4. Using CM Mouse 13

Session → Screen Map

This option starts the CM Mouse Screen Map feature (see
“CM Mouse Screen Map Facility” on page 16).

Session → Info

This option shows various technical information about a
specific host session. This information is generally used for debugging and
problem reporting.

Help → Online book

This option displays CM Mouse User’s Guide.

Help → About
This option displays version and copyright notices.

The Host System Menu
CM Mouse supports a host system menu. CM Mouse automatically intercepts
mouse clicks on the system icon of the host window (the small square in the upper
left corner of the window). Instead of pulling down the standard emulator window
function list, a special CM Mouse pop-up menu is invoked instead (see Figure 7 on
page 15).

You can customize this menu in the same way as any other CM Mouse pop-up
menu. A default menu is provided in the package and contains the most
commonly used emulator functions (CMMOUSE.MMM). Note that this menu is
completely independent of the current host application; the same menu is always
invoked when the system icon is selected. This allows you to place commonly
used utility functions on the menu and have them always available no matter what
host application is being used. For example, the emulator clipboard functions are
provided as well as several other commonly used functions. You can modify this
menu to suit your own needs.

14 CM Mouse Support User’s Guide and Reference

If you need to access the actual emulator system menu you can do so by selecting
the Host System Menu option. This displays the standard host emulator system
menu.

Clipboard Functions
All of the clipboard (cut and paste) operations that are normally provided by the
host emulator are available when you use CM Mouse.

These functions operate as they normally would, except for marking text in a 3270
host window. To mark text in a 3270 window you must press the left mouse button
(as usual) and drag the mouse pointer a short distance before the operation
actually starts. For example, to mark a block of text to cut or copy, press and hold
the left mouse button and move the mouse a short distance. You will notice that an
expanding rectangle appears after the mouse has moved a short distance. The
origin of the rectangle is the position of the mouse when you first pressed the
button. When the rectangle encloses the text you want to cut or copy, release the
button and the rectangle snaps to the nearest text boundaries. The text can now be
cut or copied to the system clipboard by selecting the appropriate emulator
options.

To copy text, do the following:
1. Position the mouse pointer at the starting character.
2. Press and hold the Ctrl key.
3. Press and hold the left mouse button and drag the mouse until the desired

lines are hilighted.
4. Release the left mouse button.
5. Release the Ctrl key.

To paste text to the host session:
1. Press and hold the Ctrl key.
2. Click the middle mouse button.

Figure 7. Host System Menu (OS/2 and Windows)

Chapter 4. Using CM Mouse 15

3. Release the Ctrl key.

CM Mouse Screen Map Facility

Before you can effectively use CM Mouse on your host application, you need to
understand how CM Mouse has been customized for that specific application. The
CM Mouse Screen Map facility is designed to help you discover how to use CM
Mouse on a particular host application. It will show you where you can click on
the host screen, and what the different mouse buttons do.

The idea behind the Screen Map is to identify what will happen when you click on
various areas of a specific host screen. If hot spots have been defined to CM Mouse
for that screen, they are displayed as blocks of color. Each hot spot is shown in a
different color so that it can easily be seen. If you click in a block of color (hot
spot), the Screen Map shows you what each mouse button will do in that area.

Displaying the Screen Map

To display the Screen Map for a specific host screen, first enter the appropriate
host commands to display the screen you want. Now locate the CM Mouse icon on
the desktop and click on it. A pop-up menu appears:

Select the Screen Map option and a menu is shown listing the currently active host
sessions:

Figure 8. Selecting the Screen Map Option

16 CM Mouse Support User’s Guide and Reference

Select the host session which contains the screen you want and then click on the
OK button. Two windows are displayed (see Figure 10). The first is the Screen Map
main window. It contains a duplicate image of the host screen and an action bar
with several items on it. The second window is the Map Buttons window. It
contains a three-column list of data and several buttons. You will use these two
windows to learn how CM Mouse was customized for the specific host screen
being shown.

Using the Screen Map

Figure 9. Selecting a Host Session

Figure 10. Screen Map Windows

Chapter 4. Using CM Mouse 17

The main screen map window shows a duplicate image of the host screen with the
text written in white, and the background in black. Different hot spots
(mouse-sensitive) areas of the screen are indicated with different background
colors. Each block of color indicates a single hot spot. Hot spots may span several
rows and columns and are usually rectangular in shape. There may be any number
of different hot spots shown (or none) depending on how CM Mouse has been
customized for the particular host screen being shown.

The Map Buttons window shows a multicolumn list containing one line for each
host button (including button chords and double-click buttons). Each line of the list
shows the button type (first column), a description of what the button does
(second column), and the actual host keystrokes associated with the button (third
column).

To learn how CM Mouse is configured for the host screen being displayed, position
the mouse cursor over one of the hot spots and press the left mouse button. The
Map Buttons window is updated to show what the mouse buttons will do in that
specific area (hot spot). A color bar at the bottom of the Map Buttons window will
change to match the color of the hot spot you selected.

For example, in Figure 10 on page 17 the left button was clicked with the pointer
in the calendar display area. The Map Buttons window shows what each mouse
button does in that area; the left button will display a calendar entry for the day
under the mouse pointer, the right button will exit OfficeVision, and the
double-click buttons will display the second OfficeVision main menu. The center
column of the Map Buttons window contains a brief text description of the
function the button performs. The rightmost column shows the actual keystroke
sequence used to implement that function. Most users can ignore the rightmost
column; it is of interest only if you are creating button definition script files to
customize CM Mouse.

By pointing to different places on the host screen image in the main Screen Map
window and then clicking the left button, you can discover what functions are
assigned to the mouse buttons.

To remove all the Screen Map windows, click on the Close menu bar item. Each of
the remaining menu bar options is described in the following sections.

Options → Button Window
This option hides/shows the Map Button window.

Options → Trace Window
This option hides/shows the Map Trace window. This window is of
primary interest to those developing or debugging CM Mouse scripts. See
“Map Trace Window” on page 19.

Options → Tracking Mode
When enabled, Tracking Mode automatically causes the Map Buttons and
Map Trace windows to be updated as the mouse pointer is moved around
the main Screen Map window. This means that the comments in the Map
Buttons window are automatically updated without having to click in each
area identified by a block of color.

Options → Auto Update
When enabled, Auto Update causes the contents of the map windows to be
updated automatically whenever the host screen changes. Note that the
map windows are updated only when CM Mouse recognizes a new (and

18 CM Mouse Support User’s Guide and Reference

different) host screen as determined by the SCREEN statements in the CM
Mouse script files. The map windows are not updated for insignificant host
screen changes.

Options → Primary Window on Top
All the map-related windows will resurface on top of all other windows
when you click on any one of them (they come to the top as a group). This
option controls which of the map windows are on top of the others when
the map windows are resurfaced by clicking on one of them. When this
option is enabled, the main screen map window will always overlay the
Map Buttons and Map Trace windows. When disabled, the main screen
map will always be behind the other map windows.

Options → Fonts
This option displays the standard OS/2 font selection dialog. This dialog
may be used to select a different font for the main map window. Note that
only fixed-pitch fonts are available for selection (no proportional fonts).

Refresh
This option can be used to cause an immediate update of all the map
windows from the current host screen data. When the Options → Auto
Update option is enabled this is usually not required.

Session
This option can be used to change the session to be mapped.

Close This option closes all the map windows.

Map Trace Window
If you are creating or customizing CM Mouse button definitions, the Map Trace
window displays technical information about the current host screen that you will
find very useful. The Map Trace window is enabled and disabled with the Options
→ Trace Window menu option on the main map window. A typical Map Trace
window is shown in Figure 11.

The Map Trace window contains three main sections:
v At the top is the name of the BDF file containing the currently matched SCREEN

statement (if there is one). If the name extends off the right edge of the window,
select the text with the mouse and use the cursor movement keys to scroll the
text right and left. Immediately following the file name is a match/nomatch
message. If a SCREEN statement is matched, the line number of the matching

Figure 11. Map Trace Window

Chapter 4. Using CM Mouse 19

SCREEN statement in the BDF file is shown. Also shown is the actual matching
SCREEN statements. If the SCREEN statement included AND-SCREEN or
OR-SCREEN statements, they will all be shown in the list box.

v The middle section contains information about the currently matched AREA
statement (if any). The first line is a match/nomatch message. If there is an
AREA match, the line number of the AREA statement in the BDF file is shown
along with the actual AREA statement and a color block which matches the
color of the area in the main Screen Map window.

v The bottom section of the window shows information about the current mouse
position in the Screen Map main window. The mouse row and column position
is shown in absolute terms (the first column of numbers), and relative to the end
of the screen (the second column). This information can be used when building
BDF files to easily determine the correct parameters for SCREEN and AREA
statements.
This section also contains an Edit Script button which, when selected, invokes
the editor on the file named at the top of the window. If the BDF file is not in
the first directory in the BDF/MMM path you will be given the option of
copying the file to that directory.

As with the Map Buttons window, this will only be updated when the left button
is clicked in the Screen Map main window unless tracking mode is enabled. When
tracking mode is enabled, the Map Trace window updates automatically as the
mouse is moved in the Screen Map main window.

Customizing the Map Buttons Window
The Map Buttons window (see Figure 12) can be customized to show the
information that is of most interest to you. You can rearrange the order of the
buttons shown in the multicolumn list, and you can move the divider bars
between the columns to display more information in one column or another.

To reorder the list use the right mouse button to drag and drop the rows into the
order you want. You can move entries until the list shows the buttons of most
interest to you at the top.

Figure 12. Map Buttons Window

20 CM Mouse Support User’s Guide and Reference

Chapter 5. CM Mouse BDF Script Files

A CM Mouse Button Definition File (BDF) script is a plain-text file that resides on
the workstation or file server. It is read by CM Mouse when CM Mouse is
initialized and when the Reset → Scripts control panel option is used. There may
be any number of BDF script files on the workstation. CM Mouse can be set up to
read all of them or only those needed for specific host applications. BDF scripts
can be modified or created with any workstation text editor.

One special BDF script file is known as the primary script file (by default named
CMMOUSE.BDF). All other script files are loaded through INCLUDE statements in
the primary BDF script. Scripts loaded through INCLUDE statements can
themselves load more scripts. The primary BDF file usually consists of only default
button definitions and INCLUDE statements (in general, one INCLUDE statement
for each host application).

A BDF script for a specific host application contains information CM Mouse needs
to properly interpret mouse clicks on the screens of that application. In particular,
the script tells CM Mouse:
v How to recognize different screens of the application

Screen recognition is one of the most power aspects of CM Mouse. By
recognizing specific screens, CM Mouse can be truly context-sensitive; hot spots
can be different on each host screen and mouse clicks can be tied to specific
areas of specific screens.
Screen recognition is accomplished through the use of SCREEN statements in an
application’s BDF script file.

v Where the hot spots are on each screen
Hot spots define particular areas of the host screen that have unique purposes.
For example, a hot spot might be defined over a PF key list so that clicking
anywhere in that list causes the appropriate PF key to be sent to the host. This
concept of hot spots is quite different from the static ‘hot spot’ many emulators
support which assigns fixed functions to the mouse buttons based on text which
appears under the cursor.
Hot spot areas are defined in an application BDF script file with the AREA
statements.

v What to do when the user clicks in a particular hot spot on a particular screen
Once screens have been recognized and hot spots established for each screen,
BUTTON statements define what sequence of actions is to be performed if the
user clicks a particular button in a particular hot spot. The sequence of actions
may include sending keystrokes to the host, reading data from the host screen,
or running workstation programs.

The SCREEN, AREA, and BUTTON statements are the key parts of the BDF script
files. The syntax and format of each BDF script statement is described in detail in
the following sections.

See Chapter 13, “Sample Button Definitions and Menus,” on page 105, for a
step-by-step example of building a button definition file for a sample host
application.

© Copyright IBM Corp. 1991, 2019 21

Button Definition File General Syntax
All statements in a BDF script file must conform to the following general syntax
rules:
v Any line that starts with an asterisk (*) in column 1 is taken to be a comment

and is ignored. Blank lines are also ignored. Comment lines cannot be continued
with the line continuation character (that is, they are not continued even if they
end with +).

v Whenever a statement contains a double-quoted (") string, the closing quote is
optional if the string is not followed by a comment. It is required if the string is
to contain trailing blanks or a comment. Comments which follow quoted strings
may not themselves contain a double quote character. If the string itself is to
contain a double quote, the closing quote is required and a comment is not
allowed to follow.

v All non-comment lines must begin with one of the following statement-type
keywords:
AND-SCREEN
AREA
BUTTON
DEFINE
ENDDEFINE
DOIF
ENDIF
DRAG
DROP
INCLUDE
MAP
OR-SCREEN
SCREEN
SET

Each statement type is explained in detail later in this chapter.
v Statements can be in any combination of upper and lower case characters. Note,

however, that double-quoted strings are used exactly as they appear.
v Statements can start in any column, and parameters can be separated by any

number of blanks. (Note however that comments must have an asterisk in the
first position).

v No single line can be more than 4000 characters long, and no statement can
exceed 4000 characters after continuation.

v Statements can be continued from one line to the next, as long as they do not
exceed a total length of 4000 characters. To continue a statement, the line must
end in a + (plus) character. A line ending in this character is continued to the
next line. All leading blanks on the next line are removed before the lines are
concatenated. This allows continued lines to be indented for readability if
desired. For example:

* ++++++ This is a comment, and is not continued ++++++++
BUTTON LEFT “This is a button definition +

string which is quite long.”
BUTTON RIGHT “This is +

very +
very +
very +
redundant.”

22 CM Mouse Support User’s Guide and Reference

Button Definition File Structure
The general form of a CM Mouse BDF script file is shown in Figure 13.

The indentation shown in Figure 13 is not required, but is useful for easily viewing
the relationship between BUTTON, AREA, and SCREEN statements.

In general, each unique screen of the host application has one SCREEN statement
in the script file. Following the SCREEN statement is a list of default buttons for
that screen (this defines the actions to be taken if the user clicks outside all hot
spots). Following the default BUTTONs are AREA statements. Each AREA defines
a single rectangular hot spot of the host screen. The BUTTON statements following
an AREA statement define the actions to be taken when the user clicks a particular
button in that specific AREA (hot spot).

An AREA is terminated by the next AREA or SCREEN statement. A SCREEN is
terminated by the next SCREEN statement.

The Primary BDF Script
The primary BDF script file is the first script file read by CM Mouse. The default
name for this file is CMMOUSE.BDF (see Chapter 3, “Configuring CM Mouse,” on
page 5). It is unique in several ways:
v It is the first and only script file read directly by CM Mouse. Other script files

are loaded by INCLUDE statements in the primary BDF script. CM Mouse does
not search the disk for all script files; script files must be explicitly named in an
INCLUDE statement of the primary BDF. Script files are loaded and processed in
the order of their INCLUDE statements.

v The primary BDF script file usually contains only INCLUDE statements for
application-specific scripts. By convention it does not contain any SCREEN or

SCREEN <a> (recognize screen <a>)

BUTTON ... (default buttons for screen <a>)
BUTTON ...
...

AREA <1> (define hotspot <1> on screen <a>)

BUTTON ... (define buttons for hotspot <1>)
BUTTON ...
...

AREA <2> (define hotspot <2> on screen <a>)

BUTTON ... (define buttons for hotspot <2>)
BUTTON ...
...

SCREEN (recognize screen)

BUTTON ... (default buttons for screen)
...

AREA <3> (define hotspot <3> on screen)

BUTTON ... (define buttons for hotspot <3>)
BUTTON ...
...

Figure 13. General Structure of a Button Definition File

Chapter 5. CM Mouse BDF Script Files 23

AREA statements. Thus the primary BDF file acts only as a list of application
scripts to be loaded and does not itself define any host screens or hot spots.
Note that this is by convention only; technically the primary BDF is processed
like any other BDF and may contain any valid BDF statement.

v The primary BDF script file may have BUTTON statements before the first
INCLUDE statement. These BUTTON definitions are referred to as the global
default buttons. These BUTTON statements define the actions to be taken when
the host screen is not recognized by any of the application scripts. (The current
host screen does not match any SCREEN statement in any application BDF
script). They are also used if the screen is recognized but has no BUTTON
statement for the selected button.
The global default buttons are usually defined to be some harmless action like
{beep} which tells the user that the current host screen is not recognized by CM
Mouse. Global default button definitions may only be specified in the primary
BDF file and must appear before the first INCLUDE or SCREEN statement.

The simplest CM Mouse script configuration file might have no INCLUDE or
SCREEN statements at all, only a set of global default buttons. For example, if you
wanted to simply define the left button to act as a light-pen selection and the right
button to be PF3 on all host screens, then the primary BDF file could simply
consists of the following two lines:

BUTTON LEFT "{seek}[crsel]"
BUTTON RIGHT "[pf3]"

Any button not explicitly defined has no function. (The syntax of the BUTTON
statement is described in “BUTTON Statement” on page 26.)

The global default buttons are also used when a SCREEN is matched but has no
BUTTON definition for the button that was pressed. For example, given the
following primary BDF script:

BUTTON LEFT "[pf1]"
BUTTON RIGHT "[pf2]"
SCREEN ...

BUTTON LEFT "[pf3]"

If the SCREEN is matched successfully, then the left button produces [pf3] and the
right button produces [pf2]. If the screen is not matched, then the left button
produces [pf1] and the right button still produces [pf2].

24 CM Mouse Support User’s Guide and Reference

Note: Global button definitions should be used with care. It is usually not possible
to define a set of global definitions which are useful on all host applications.
If you run a host application for which no BDF has been written, the global
default buttons are used. If those button definitions make assumptions about
how the host application works, those assumptions could be wrong in some
cases.

For example, suppose the right button is defined in the global defaults to be
[pf3] since most applications use that key to exit the menu. This will not
work on host applications which use PF12 to exit the menu. If you press the
right button on such an application (expecting to exit the menu), the PF3
key may have an undesirable effect.

It is best to define the default buttons as {beep} or some other harmless
function to prevent unexpected results on undefined host screens.

Default Button Definitions for SCREEN Statements
Each SCREEN statement defines certain characteristics that CM Mouse will look
for in host screens. If those characteristics match the current host screen, then the
BUTTON statements within that SCREEN definition are used. If a particular
BUTTON is not defined within a SCREEN definition, then the global default
button definition is used. SCREEN definitions are matched with the host in
sequential order (from top to bottom), and the first match found is used. If no
SCREEN definition matches the current host screen, the global default button
definitions are used.

Each SCREEN definition can contain any number of AREA definitions. An AREA
defines a rectangular subarea (hot-spot) of the host screen. If the mouse cursor lies
within the AREA rectangle when a mouse button is pressed, the BUTTON
definitions immediately following the AREA statement are used. Note that a given
AREA definition is used only if its SCREEN was successfully matched. Within a
SCREEN definition, AREA definitions are examined in sequential (top down) order.
AREA rectangles may overlap, and the first AREA found containing the mouse
cursor position is used. If the mouse cursor does not lie within any AREA defined
for the SCREEN, the SCREEN button defaults are used. If a particular button is not
defined by an AREA, the SCREEN default button definition is used; if there is no
SCREEN default button definition, the global default definition is used.

The CM Mouse button definition file defines a hierarchy of SCREENs and AREAs
(as illustrated by the indentation in Figure 13 on page 23). The file can contain any
number of SCREEN definitions, and each SCREEN definition can contain any
number of AREA definitions. This provides the capability to perform almost any
interaction with a host application based on the position of the mouse cursor when
a button is pressed.

Button Definition File Statements
The following sections describe the statements that can appear in a CM Mouse
Button Definition File (BDF) script.

AREA Statement
The AREA statement is used by CM Mouse to subdivide a particular SCREEN into
rectangular areas (hot spots). Any number of AREAs (or none) can be defined
within a single SCREEN definition. If the mouse cursor does not lie within any

Chapter 5. CM Mouse BDF Script Files 25

AREA of a SCREEN definition, the SCREEN default button definitions are used. If
it does lie within an AREA, then the BUTTON definitions immediately following
the AREA statement are used.

The rectangular AREA can be defined in terms of absolute row and column
numbers, or it may be defined relative to the size of the host screen. This allows
AREAs to be defined relative to the end of the screen and still work on different
sized host sessions (such as 24x80, or 32x80).

The format of the AREA statement is:

►► AREA StartRow StartColumn EndRow EndColumn
Comment

►◄

StartRow and StartColumn specify the location of the upper-left corner of the
rectangular area (row 1 column 1 is the upper left corner of the screen), and
EndRow and EndColumn specify the lower right corner of the area. Any of the
values can be specified as zero or negative to be offset from the end of the screen.
For example, a row number of 0 is the last line of the screen, -1 is the second to
last, and so on. A column of 0 is the last column of the screen, -1 is the second to
last, and so on. The starting row must be less than the ending row, and the starting
column must be less than the ending column. (CM Mouse does not check this. If
one of the ending values is less than the starting value, then a null area is defined,
and it will never be used.)

Example:
AREA 2 1 2 65 -- Command area of ISPF editor

The preceding AREA would define the second line of the screen, from columns 1
through 65. Another example:

AREA -1 1 0 0 -- Two PFkey lines at bottom of screen

This AREA contains the last two lines of the screen. Note that this will always be
the last two lines, regardless of the size of the host screen (for instance, 24x80, or
32x132).

BUTTON Statement
This statement is used to identify what keystrokes (or special functions) are to be
associated with a particular button. The format of the statement is:

►► BUTTON LEFT
RIGHT
MIDDLE
LEFT+RIGHT
LEFT+MIDDLE
RIGHT+LEFT
RIGHT+MIDDLE
MIDDLE+LEFT
MIDDLE+RIGHT
DBLLEFT
DBLRIGHT
DBLMIDDLE

" ButtonDefinition "
Comment

►◄

The LEFT, RIGHT, or MIDDLE parameters define the operation of that button
when clicked (pressed and released) without any other buttons. The LEFT+RIGHT
button defines the operation of first pressing and holding the left button and,

26 CM Mouse Support User’s Guide and Reference

while it is down, pressing and releasing the right button. (This is referred to as a
button chord.) In general, the button named first is the button to be pressed and
held while the second button is pressed and released. For a two-button mouse, the
button names using MIDDLE cannot be used. (They can be defined, but will never
be used.) The DBLLEFT, DBLRIGHT, and DBLMIDDLE buttons define the
double-click operation of the buttons.

If you are using a three-button mouse, then up to 12 different button combinations
can be used (3-way button clicks are not recognized by CM Mouse; therefore, you
cannot define LEFT+RIGHT+MIDDLE). For a two-button mouse, 6 different button
combinations can be used.

CM Mouse depends on the OS/2 Presentation Manager (PM) to get mouse
information, so the Presentation Manager must be set up to recognize all three
buttons of a three-button mouse.

ButtonDefinition is the sequence of keystrokes to be sent to the host when the
named button is pressed. It can consist of simple characters (which are typed onto
the host screen at the current host cursor location exactly as given), host PF keys,
almost any keyboard key, or special CM Mouse control keywords. All of these are
described in Chapter 7, “Button Definitions,” on page 45. Note that the quoting
rule as described in “Button Definition File General Syntax” on page 22 applies to
the ButtonDefinition string.

The comment should be a brief (one line) description of what the button does.

Example 1:
BUTTON LEFT "abc def[enter]" ...and this is a comment

This would define a single click of the left button as the keystrokes abc def
followed by the Enter key.

Example 2:
BUTTON RIGHT "&{popup mymenu}"

This would define a single click of the right button as the CM Mouse substitution
word popup which causes a menu to be displayed on the host screen. (See
Chapter 7, “Button Definitions,” on page 45, for details on CM Mouse substitution
and control words.)

DEFINE/ENDDEFINE Statements
This pair of statements is used to define large blocks of text which are not subject
to the CM Mouse statement length limitations. Text inside of a DEFINE block is
not limited to the maximum CM Mouse statement length and does not require CM
Mouse line continuation characters.

The syntax of the DEFINE statement is:

Chapter 5. CM Mouse BDF Script Files 27

►► DEFINE NAMEMAP
MapType

►◄

►► ENDDEFINE ►◄

Currently the only supported DEFINE type is a NAMEMAP table. See Chapter 9,
“Drag/Drop Features,” on page 87 for a description of NAMEMAP tables.

DOIF/ENDIF Statements
These statements allow blocks of script to be excluded from processing based on a
specified condition. The excluded script is not read or processed in any way. The
statement format is:

►► DOIF 'string1' =
==
!=
!==
<
>
<=
>=
=#
!=#

'string2' ►◄

►► ENDIF ►◄

Any BDF statements between the DOIF and ENDIF statements are skipped if the
expression is false. Skipped statements are not processed in any way and are not
evaluated for syntax errors. If the expression is true, the statements between the
DOIF and ENDIF are read and processed normally.

The comparison operators are the same as those allowed in the {if...} keyword (see
{if <condition> {then}script1{else}script2} on page 50). The strings can be formed by
any presubstitution CM Mouse keywords, literal strings, or both. Runtime
substitutions are not allowed.

Note: The DOIF conditions are evaluated when the BDF file is read (usually when
CM Mouse is first started). In general they are evaluated before any
connection is made to a host session. Thus the DOIF statement must not
contain any CM Mouse substitution requiring information from or about
any host session. For example, it must not use any of the following
keywords:

&{chars} &{word} &{num} &{hrow} &{hcol} &{mrow} &{mcol} &{popup}
&{sid} &{srow} &{scol} &{?...}

The DOIF/ENDIF statements can be nested.

Example:
DOIF ’&{var SYSTEM_ENV}’ = ’DOS’
...stuff only for DOS...

ENDIF

28 CM Mouse Support User’s Guide and Reference

DOIF ’&{var SYSTEM_ENV}’ != ’DOS’
...stuff for non-DOS environments...

ENDIF

In general the DOIF/ENDIF statements can be used to make a script usable on any
platform, even if it uses platform-specific features. For example, the REXX
functions are available only on OS/2, so a script could be written as follows:

DOIF ’&{var SYSTEM_ENV}’ = ’OS2’
button left "&{rexx...}"

ENDIF
DOIF ’&{var SYSTEM_ENV}’ != ’OS2’
button left "{?Not supported.}"

ENDIF

DRAG Statement
This statement is used to associate a script sequence (keystrokes and functions)
with a drag from the host screen to the OS/2 Workplace Shell or the Windows CM
Mouse Drag/Drop file list window. The syntax of this statement is:

►► DRAG FILE
PRINT
DISCARD

" ButtonDefinition "
Comment

►◄

Like the BUTTON statement, the DRAG statement is used within SCREENs and
AREAs to give drag functionality to specific parts of specific host screens. If a
particular area of a host screen has no DRAG statement associated with it (no
DRAG statement in the AREA or SCREEN) then the user is not allowed to begin a
drag from that position.

When the user drags from the host screen and drops on a WPS object or the
Drag/Drop file list, the associated DRAG script is executed. The type of object that
was dropped on determines which DRAG statement (FILE/PRINT/DISCARD) is
used. If the user drops on the WPS desktop, in a WPS folder or on the file list
window of the Drag/Drop application, the DRAG FILE statement is used. If the
user drops on a WPS printer object the DRAG PRINT statement is used. (The
DRAG PRINT statement is not currently supported on Windows and is ignored). If
the user drops on a WPS shredder object or the shredder of the Drag/Drop
application, the DRAG DISCARD statement is used.

It is not necessary to support all types of drags in a given screen area. If a screen
area does not have a particular type of DRAG statement associated with it, then
drops on those types of objects is not allowed. For example consider the BDF file:

SCREEN 1 1 exact * "File List"
BUTTON RIGHT "[pf3]"
AREA 2 1 -1 12 ------- List of files
BUTTON LEFT "{seek}edit[enter]"
DRAG FILE "{xfer ...}"
DRAG DISCARD "{seek}delete[enter]"

In this sample, a drag started on a file name is allowed to drop on the WPS
desktop, any WPS folder, and the system shredder (or in Windows, the Drag/Drop
file list and the Drag/Drop shredder icon). Drop is not allowed on a printer.

Note that what happens after a user drops is determined by the script which
follows the appropriate DRAG statement. CM Mouse does not automatically assign
any function to drag operations; the script author must determine the meaning of a

Chapter 5. CM Mouse BDF Script Files 29

drop on any particular type of object. In the example above, a drop on a shredder
has the effect of sending a DELETE command to the host.

See Chapter 9, “Drag/Drop Features,” on page 87 for a complete discussion of the
DRAG/DROP functions and keywords.

DROP Statement
This statement is used to associate a script sequence (keystrokes and functions)
with the drop of a OS/2 Workplace Shell object (or Windows Drag/Drop
application object) on a particular place in the host screen. The syntax of this
statement is:

►► DROP FILE " ButtonDefinition "
Comment

►◄

Like the BUTTON statement, the DROP statement is used within SCREENs and
AREAs to give drop functionality to specific parts of specific host screens. If a
particular area of a host screen has no DROP statement associated with it (no
DROP statement in the AREA or SCREEN) then the user is not allowed to drop an
object in that position.

Currently CM Mouse supports only the dropping of FILE objects.

When the user drags a file from the WPS or Drag/Drop file list and drops on the
host screen, the associated DROP script is executed. A drop is only allowed on the
host screen where a DROP statement is associated.

For example consider the BDF file:
SCREEN 1 1 exact * "File List"
BUTTON RIGHT "[pf3]"
AREA 2 1 4 80 ------- Command area
BUTTON LEFT "&{popup cmds}"
DROP FILE "{xfer ...}"

In this sample a file object may (only) be dropped on lines 2, 3, and 4 of the host
screen between columns 1 and 80. If a file object is dropped in that area the DROP
FILE script will be executed.

Note that what happens after a user drops a file is determined by the script which
follows the DROP FILE statement. CM Mouse does not automatically assign any
function to drop operations; the script author must determine the meaning of a
dropped file on the host screen.

See Chapter 9, “Drag/Drop Features,” on page 87 for a complete discussion of the
DRAG/DROP functions and keywords.

INCLUDE Statement
An INCLUDE statement can appear anywhere in a button definition file. The
format is:

►► INCLUDE FileName
RelativePath\ Comment

►◄

The optional RelativePath name should not include a drive letter or file name
extension. The BDF/MMM path specified in the CM Mouse configuration is used
to locate the named script file (see Chapter 3, “Configuring CM Mouse,” on page 5

30 CM Mouse Support User’s Guide and Reference

5). If the configuration specifies multiple BDF/MMM directories they are searched
in order for the file name specified. The file name extension should not be
specified (it will always be .BDF).

The file is included into the button definition file at the point of the INCLUDE
statement. It is processed exactly as if the lines of the file appeared in place of the
INCLUDE statement. An included file may itself contain INCLUDE statements, but
such nesting is limited to four levels.

This statement is often used in the primary BDF script to load the scripts for each
specific host application. This statement can also be used to break up large button
definition files into logical sections.

Example:
INCLUDE filelist -- Button defs for FILELIST

This would include the file FILELIST.BDF into the current button definition file.
Each directory specified in the BDF/MMM configuration list would be searched
until the file was found.

MAP Statement
A MAP statement can appear anywhere in a button definition, but usually appears
only once at the top of the script file. The syntax of the MAP statement is:

►► MAP OFF
CHORD TO DCLICK
DCLICK TO CHORD

Comment
►◄

The default for all BDF files is OFF. Each BDF file which is to have a mapping
must explicitly have a MAP statement before the first BUTTON statement.

The purpose of the MAP statement is to simplify the writing of BDF files which
support the interchangeable use of button chords and double-clicks. Some users
tend to prefer the chord style of button pressing, and some prefer to use
double-clicks. It is best to construct a BDF such that the user can choose which
style to use and still have access to all the assigned button functions.

To do this manually would require duplicate BUTTON statements for the chord
and double-click definitions:

BUTTON LEFT+RIGHT "[pf7]" Scroll down
BUTTON DBLLEFT "[pf7]" Scroll down
BUTTON RIGHT+LEFT "[pf8]" Scroll up
BUTTON DBLRIGHT "[pf8]" Scroll up

The above sample defines two sets of buttons for scrolling; the left/right chord
combinations, and the left/right double-click buttons. Writing a script in this
manner would allow either chords or double-clicks to be used to perform the same
functions.

Writing an extensive script with duplicate definitions like that above can be
tedious and error prone because each button function has to be defined twice (once
for a chord, and once for a double-click). CM Mouse provides a means for the BDF
to be written with just one set of definitions and have them automatically mapped
into the other set. You can write either chord definitions or double-click definitions,
and with an appropriate MAP statement CM Mouse will automatically map one to
the other.

Chapter 5. CM Mouse BDF Script Files 31

By not using a MAP statement, a script can be written to take full advantage of
both chords and double-clicks to provide the maximum mouse function.

The MAP statement is used to specify the mapping to be used for the BDF file in
which the MAP statement appears. MAP statements take effect only within the
physical BDF file in which they appear — they are not inherited by INCLUDE
files.

Each of the mapping options is described in the following sections.

MAP CHORD TO DCLICK
When this mapping is in effect, each BUTTON statement specifying a chord will
also automatically define the associated double-click BUTTON. For example, the
following:

MAP OFF
...
BUTTON LEFT+RIGHT "x1"
BUTTON DBLLEFT "x1"

is exactly equivalent to:
MAP CHORD TO DCLICK
...
BUTTON LEFT+RIGHT "x1"

When this mapping is in effect, defining a chorded button is equivalent to defining
the chord button and the associated double-click button. The associations are:

LEFT+RIGHT --→ DBLLEFT
RIGHT+LEFT --→ DBLRIGHT
MIDDLE+LEFT --→ DBLMIDDLE

This mapping can be used to make double-clicking usable on BDFs written for a
prior release of CM Mouse which did not support double-click buttons. The
existing BDFs can be used without having to manually recode the BDFs to include
the BUTTON DBLxxxx statements. Using the MAP CHORD TO DCLICK statement
will automatically assign the same functions to the double-click buttons as are
assigned to the chord buttons.

This automatic mapping can be overridden by explicitly defining the function of a
double-click button. For example:

MAP CHORD TO DCLICK
...
BUTTON LEFT+RIGHT "[pf4]"
BUTTON DBLLEFT "[pf7]"

Normally the MAP statement would cause the DBLLEFT button to be assigned the
same function as LEFT+RIGHT. However, since an explicit definition is given for
DBLLEFT, that value (“[pf7]”) is used instead. Note that the BUTTON DBLLEFT
statement must appear after the BUTTON LEFT+RIGHT statement in order to
override the mapping.

MAP DCLICK TO CHORD
When this mapping is in effect, each BUTTON statement which specifies a
double-click will also automatically define the associated chord BUTTON. For
example, the following:

32 CM Mouse Support User’s Guide and Reference

MAP OFF
...
BUTTON DBLLEFT "x1"
BUTTON LEFT+RIGHT "x1"

is exactly equivalent to:
MAP DCLICK TO CHORD
...
BUTTON DBLLEFT "x1"

This allows a BDF to be written just in terms of double-click buttons, and still be
used with button chords. When this mapping is in effect, defining a double-click
button is equivalent to defining the double-click button and the associated chord
button. The associations are:

DBLLEFT --→ LEFT+RIGHT
DBLRIGHT --→ RIGHT+LEFT
DBLMIDDLE --→ MIDDLE+LEFT

This automatic mapping can be overridden by explicitly defining the function of a
chord button. For example:

MAP DCLICK TO CHORD
...
BUTTON DBLLEFT "[pf7]"
BUTTON LEFT+RIGHT "[pf4]"

Normally the MAP statement would cause the LEFT+RIGHT button to be assigned
the same function as DBLLEFT. However, since an explicit definition is given for
LEFT+RIGHT, that value (“[pf4]”) is used instead. Note that the BUTTON
LEFT+RIGHT statement must appear after the BUTTON DBLLEFT statement in
order to override the mapping.

MAP OFF
This is used to disable button mapping. Any button statements which appear after
this MAP statement will define only the button explicitly named.

SCREEN Statement
The SCREEN statement is used by CM Mouse to identify particular host screens.
This is done in two ways. First, the screen must appear on the specified host
session (a, b, c...), and, secondly, it must contain a specified string of characters in a
particular location. Techniques are provided to specify any host session (the screen
is recognized no matter which session it appears on), and the character string can
be defined as follows:
v In a specific row/column location
v Anywhere on a particular line
v Anywhere on the screen

The location can also be specified relative to the size of the host screen, so that
SCREEN definitions will work even on different sizes of host screens (24x80, 32x80,
and so on).

The format of the SCREEN statement is:

Chapter 5. CM Mouse BDF Script Files 33

►► SCREEN Row Column EXACT
LINE
SCREEN

A
B
C
...
3270
5250
*

" FindString "
Comment

►◄

Row and Column specify the starting row and column of the string search (the
upper left corner of the screen is row 1 column 1). These values may be specified
as zero or negative values to indicate an offset from the end of the screen (Row=0
is the last line of the screen, Row=-1 is the second from the last. Column=0 is the
last column of the screen, -1 is the second from the last).

Following the row and column is the search mode which indicates how the string is
to be searched for on the host screen. There are three allowed values:

EXACT
The string must appear at the exact row and column.

LINE The string may appear anywhere after the specified row and column, on
the same line.

SCREEN
The string may appear anywhere after the specified row and column, to
the end of the screen.

After the search mode is the session parameter which indicates the host session on
which the SCREEN is recognized. This parameter allows the matching to be
restricted to certain host sessions. The session to be matched may be specified as:

Session Parameter Match

A, B, C, ... Match only on session (single character
session ID)

* Match on any host session

3270 Match on any 3270 host session

5250 Match on any 5250 host session

The session is usually coded as * so that the screen is recognized no matter which
host session it appears on. The screen matching should only be restricted to a
particular session when it is known that the screen of interest will only appear on
that session.

For users who have both 3270 and 5250 hosts, restricting SCREEN matches to a
specific type of host can help improve CM Mouse performance.

AND-SCREEN Definition Statement
Any number of AND-SCREEN statements can follow a SCREEN statement. They
are used to further qualify the match requirements of the SCREEN. The SCREEN

34 CM Mouse Support User’s Guide and Reference

conditions must match, and all the AND-SCREEN conditions must match for the
host screen to be recognized. For example, consider the following script:

SCREEN 1 1 exact * "TITLE"
AND-SCREEN 2 1 exact * "SUB-TITLE"
AND-SCREEN 3 1 exact * "===>"
BUTTON LEFT...
...

This screen is recognized only if TITLE appears in the upper left corner of the
screen and the second line starts with SUB-TITLE, and the third line starts with the
characters “===>”. If all those conditions are met, the AREAs and BUTTONs
following the SCREEN statements are used. Otherwise, the search for a screen
match continues with the next SCREEN statement in the script.

This can be useful to help distinguish host screens which are similar but need to be
processed differently.

Consider another example:
SCREEN 1 1 exact * "Main Title"
AND-SCREEN 2 1 exact * "Submenu 1"
BUTTON LEFT ...

SCREEN 1 1 exact * "Main Title"
AND-SCREEN 2 1 exact * "Submenu 2"
BUTTON LEFT ...

SCREEN 1 1 exact * "Main Title"
BUTTON LEFT ...

In this example, the first SCREEN is recognized if Main Title appears in the upper
left corner, and Submenu 1 is below it. The second SCREEN is recognized if Submenu
2 is below it. If Main Title is in the upper left and neither Submenu 1 nor Submenu
2 is below it, then the third screen is recognized.

An AND-SCREEN statement always applies to the nearest previous SCREEN
statement. AND-SCREENs and OR-SCREENs cannot both be applied to the same
SCREEN statement. For example, the following is not valid:

SCREEN 1 1 exact * "My Title"
AND-SCREEN 2 1 exact * "Subtitle 1"
OR-SCREEN 2 1 exact * "Subtitle 2"

OR-SCREEN Definition Statement
Any number of OR-SCREEN statements can follow a SCREEN statement. They are
used to further qualify the match requirements of the SCREEN. The SCREEN
conditions can match, or any of the OR-SCREEN conditions can match for the host
screen to be recognized. For example, consider the following script:

SCREEN 1 1 exact * "MENU 1"
OR-SCREEN 1 1 exact * "MENU 2"
OR-SCREEN 1 1 exact * "MENU 3"
OR-SCREEN 1 1 exact * "MENU 4"
BUTTON LEFT...

This screen is recognized if MENU 1 appears in the upper left corner, or MENU 2
appears in the upper left corner, or MENU 3, or MENU 4. This is very useful for
defining the same hot spots and button definitions for a set of similar host screens.

An OR-SCREEN statement always applies to the nearest previous SCREEN
statement. OR-SCREENs and AND-SCREENs cannot both be applied to the same
SCREEN statement. For example, the following is not valid:

Chapter 5. CM Mouse BDF Script Files 35

SCREEN 1 1 exact * "My Title"
AND-SCREEN 2 1 exact * "Subtitle 1"
OR-SCREEN 2 1 exact * "Subtitle 2"

SET Statement
A SET statement can appear anywhere in a button definition file. The format is:

►► SET VariableName " VariableValue "
LITERAL Comment

►◄

The VariableValue can be formed from explicit characters and from substitutions.
(Note that only presubstitutions are allowed in SET statements, no runtime
substitutions are allowed.) If the LITERAL option is specified then no substitutions
are done and the VariableValue is used exactly as it appears.

SET statements are only processed when the BDF file in which they appear is read.
BDF files are read only during initialization and when the Reset → Reload scripts
option is selected on the Control Panel.

SET statements in BDF scripts may not contain any substitution which requires
information from or about any host session. Thus it may not contain any of the
following keywords:

&{chars} &{word} &{num} &{hrow} &{hcol} &{mrow}
&{mcol}
&{popup} &{sid} &{srow} &{scol} &{?...}

Note there is no such restriction on SET statements which appear in a menu
(.MMM) file.

SET statements have many uses. For example, they can be used to customize CM
Mouse for a particular user. For example, a BDF script might be as follows:

SET UserID "TJSMITH"
SET SystemID "VM18"
SET KeyHelp "[pf9]"
SET KeyExit "[pf12]"
SET KeyDelete "[home]erase[enter]"
...
...
BUTTON LEFT "&{var KeyHelp}"
BUTTON RIGHT "&{var KeyExit}"
...
BUTTON LEFT "sendfile abc to &{var UserID} at &{var SystemID}[enter]
...

In this example, you can customize the operation of the script simply by changing
the SET statements. For example, if you have changed the host application to exit
on PF3 instead of PF12, then you can simply change the setting of the KeyExit
variable. User names might also be SET in one place so that they can be changed
easily. This allows a BDF scripts to be customized in just one place so you do not
have to read and analyze the entire script file to change it.

See Chapter 10, “CM Mouse Variables,” on page 95 for more information on the
use of variables.

36 CM Mouse Support User’s Guide and Reference

Chapter 6. CM Mouse Menu Files

CM Mouse allows you to define your own pop-up menus and modify any of those
that are supplied as samples. These menus are invoked when an &{popup ...}
substitution word appears in a button definition (see the description of this
substitution word in “CM Mouse Substitution Words” on page 60). The file
specified is read and the menu is displayed on the host screen with a bounce bar
cursor. To select an option on the pop-up menu, move the mouse to position the
bounce bar over the item you want and press the left mouse button. To cancel the
menu without selecting anything, press the right mouse button. Each menu file
defines a single pop-up menu.

A menu file defines the appearance of a pop-up menu, including the text of each
selectable item on the menu, menu colors, and a title line. A menu file also defines
what is to be substituted when one of the items is selected. The substituted text
can contain keystrokes to be sent to the host or CM Mouse control words including
&{popup ...} to display another pop-up menu.

The format of the menu file is similar to the button definition file. Each line of the
file contains a keyword followed by one or more parameters. Blank lines and lines
with an asterisk (*) in column 1 are ignored. Lines cannot exceed 4000 characters in
length after continuation. Lines can be continued by ending them in a + (plus)
character. A line following a line ending in + is joined after removing all leading
blanks.

Each non-comment line must contain one of the following statements:
BAR
COLORS
DOIF
ENDIF
LINE
PLACE
SET
TITLE

A menu file must have one or more LINE statements. If more than one PLACE,
TITLE, COLORS, or BAR statement is found, only the last is used. Statements may
appear in the menu file in any order, but the order of LINE statements define the
order of selectable items in the menu.

Each statement type is described in the following sections.

BAR

►► BAR
InitialPosition
KEEP

►◄

This statement defines the initial item on which the bounce bar cursor appears.
This should be a number between 1 and the number of LINE statements in the
menu, or the word KEEP. If no BAR statement appears in the menu file, the
InitialPosition defaults to 1.

© Copyright IBM Corp. 1991, 2019 37

Example:
bar 3

This would cause the bounce bar to be initially positioned on the third item of the
menu.

When KEEP is specified, CM Mouse automatically remembers the position of the
bounce bar each time the pop-up menu is used. Each time the menu is displayed,
the bounce bar is repositioned to the line which was last selected. The line number
of the last selected line is saved in a CM Mouse user variable. The name of the
variable is the fully qualified name of the menu file which can be obtained with
the &{mmm} substitution keyword (see &{mmm} on page 61). The value of this
variable can be read and set like any other CM Mouse user variable (see
Chapter 10, “CM Mouse Variables,” on page 95). For example, consider the menu
file:

title "Sample"
bar keep
line "Line 1"option a
line "Line 2"option b
line "Line 3"option c{set &{mmm} 2}
line "Line 4"option d

This menu will save and restore the bounce bar position each time it is used.
However if line 3 is selected, the next time the menu is displayed the bar is
positioned on line 2 rather than 3.

COLORS

►► COLORS
(1)

BLACK
GRAY
BLUE
GREEN
CYAN
RED
MAGENTA
YELLOW
WHITE
DGRAY
DBLUE
DGREEN
DCYAN
DRED
DMAGENTA
DYELLOW

(2)

BLACK
GRAY
BLUE
GREEN
CYAN
RED
MAGENTA
YELLOW
WHITE
DGRAY
DBLUE
DGREEN
DCYAN
DRED
DMAGENTA
DYELLOW

(3)

BLACK
GRAY
BLUE
GREEN
CYAN
RED
MAGENTA
YELLOW
WHITE
DGRAY
DBLUE
DGREEN
DCYAN
DRED
DMAGENTA
DYELLOW

►

38 CM Mouse Support User’s Guide and Reference

►
(4)

BLACK
GRAY
BLUE
GREEN
CYAN
RED
MAGENTA
YELLOW
WHITE
DGRAY
DBLUE
DGREEN
DCYAN
DRED
DMAGENTA
DYELLOW

►◄

Notes:

1 Foreground menu color

2 Background menu color

3 Foreground bounce bar color

4 Background bounce bar color

This statement defines the colors to be used for the pop-up menu. If no COLORS
statement appears in the menu file, the CM Mouse default menu colors are used as
specified on the CM Mouse control panel. The first color is the menu foreground
color; the second is the menu background color; the third is the foreground bounce
bar color; the fourth color is the bounce bar background color. The menu colors
can be overridden for individual lines of the menu on the LINE statement (see
“LINE” on page 40).

Example:
colors yellow dblue black blue

DOIF/ENDIF
These statements allow lines of the menu to be excluded based on a specified
condition. The excluded lines will not appear when the menu is displayed. The
statement format is:

►► DOIF 'string1' =
==
!=
!==
<
>
<=
>=
=#
!=#

'string2' ►◄

Chapter 6. CM Mouse Menu Files 39

►► ENDIF ►◄

Any menu statements between the DOIF and ENDIF statements are skipped if the
expression is false. Skipped statements are not processed in any way and are not
evaluated for syntax errors. If the expression is true, the statements between the
DOIF and ENDIF are read and processed normally.

The comparison operators are the same as those allowed in the {if...} keyword (see
{if <condition> {then}script1{else}script2} on page 50). The strings may be formed
by any presubstitution CM Mouse keywords, literal strings, or both. Runtime
substitutions are not allowed.

Note: Unlike DOIF conditions in BDF script files, there are no limitations on the
substitutions which can be used.

The DOIF/ENDIF statements can be nested.

LINE

►► LINE
(1)

BLACK
GRAY
BLUE
GREEN
CYAN
RED
MAGENTA
YELLOW
WHITE
DGRAY
DBLUE
DGREEN
DCYAN
DRED
DMAGENTA
DYELLOW

(2)

BLACK
GRAY
BLUE
GREEN
CYAN
RED
MAGENTA
YELLOW
WHITE
DGRAY
DBLUE
DGREEN
DCYAN
DRED
DMAGENTA
DYELLOW

►

► " " "
MenuText SubstitutionText

►◄

Notes:

1 Foreground color

2 Background color

This statement defines a single selectable item in a pop-up menu list. The two
color specifications are optional, and if they are not specified, the menu colors
specified on the COLORS statement are used. If no COLORS appears in the menu
file, the CM Mouse default menu colors are used. If only one color is specified, it
overrides the foreground color, and the default background color is used.

The MenuText is the exact text that appears on the pop-up menu. It cannot contain
a double quote character. The SubstitutionText is any text that is valid in a button

40 CM Mouse Support User’s Guide and Reference

definition. If the MenuText is selected with the left button when the pop-up menu
is displayed, the SubstitutionText is substituted into the button definition which
invoked this menu.

A blank LINE statement may be used to insert a blank line in the pop-up menu. If
a LINE statement does not have to have any SubstitutionText the line is displayed
but is not selectable.

There must be at least one LINE statement in a menu file. The items appear on the
menu in the same order as they appear in the menu file.

Like any PM or X/Motif window, the pop-up menu can be moved by using the
Alt-F7 key combination and moving the mouse. This movement technique can be
used to expose portions of the menu which normally extend off the screen.

Example:
TITLE "My Menu"
LINE “Edit “{seek}ed[enter]
LINE “Browse “{seek}browse[enter]
LINE red white “Delete “{seek}delete[enter]
LINE green white “Copy to log “{seek}copy * to log[enter]
LINE “Transfer “{seek}[pf6]
LINE
LINE “Exit “[pf3]
LINE “Command list “&{popup cmdlist}

This would produce the following menu:

The third line Delete would appear in red with a white background, and the next
line would be green on a white background. All other lines would appear in the
CM Mouse default menu colors.

If the first item was selected, the host cursor would be moved to the mouse cursor
position ({seek}), and the characters ed would be typed, followed by the Enter key.
If the last item was selected, the menu cmdlist would be displayed. Note that
menus are not stacked or nested. In the preceding example, if the last item was
selected when the cmdlist menu completed (either by selecting an item or the
right button), this menu would not be redisplayed.

Chapter 6. CM Mouse Menu Files 41

PLACE

►► PLACE
Row
*

Column
*

►◄

This statement determines where the pop-up menu is placed on the host screen.
The row/column specified is the upper left corner of the pop-up menu. The upper
left corner of the screen is row 1 column 1. If either value is specified as *, the
current mouse cursor position plus 1 is used. Thus, PLACE * * causes the menu to
display one row below and one column to the right of the mouse cursor. If there is
no PLACE statement in the menu file, PLACE * * is used.

If the pop-up menu cannot fit on the screen in the location specified, it is fitted as
close as possible to the edge of the screen. If no PLACE statement is specified in
the menu file, PLACE * * is used.

Example:
place 1 *

This would cause the pop-up menu to appear starting on row 1, in the column
immediately following the mouse cursor.

SET

►► SET VariableName " VariableValue "
LITERAL Comment

►◄

A SET statement can appear anywhere in a menu file. The variable value can be
formed from explicit characters and from substitutions. (Note that only
presubstitutions are allowed in SET statements; no runtime substitutions are
allowed.) If the LITERAL option is specified then no substitutions are done and the
VariableValue is used exactly as it appears. SET statements are processed
immediately before the menu is displayed. For example:

SET CurPos "&{hcol}"

This would save the position of the host cursor at the time the pop-up menu was
invoked.

See Chapter 10, “CM Mouse Variables,” on page 95 for more information on the
use of variables.

TITLE

►► TITLE " Title "
Comment

►◄

This statement defines an optional title for the pop-up menu. If no TITLE
statement appears in the menu file, there is no title on the pop-up menu (the

42 CM Mouse Support User’s Guide and Reference

window has a blank title bar). The title text is centered at the top of the menu. The
final closing quote character is optional unless the title itself contains double quote
characters.

Example:
title “Command Options

Chapter 6. CM Mouse Menu Files 43

44 CM Mouse Support User’s Guide and Reference

Chapter 7. Button Definitions

A button definition (as defined in a BUTTON statement in the CM Mouse button
definition file) can consist of simple characters, special control words, or
substitution words. When a button definition contains characters other than control
words or substitutions, those characters appear on the host screen when the button
is pressed just as if you had typed them on the keyboard.

Characters, substitutions, and control words can be combined to perform a
complete function. Control words and characters are processed in the order in
which they appear in the definition. Substitutions are either done before the
definition is executed (a presubstitution) or at execution time (a runtime substitution)
depending on the position of the ampersand (&) symbol. There are some
restrictions on where substitutions can be done (see “CM Mouse Substitution
Words” on page 60).

Control and Substitution Word Table
The control words and substitutions which may appear in a button definition are
shown in Appendix A, “CM Mouse Keyword Reference,” on page 133. When
looking at Table 5, note that some control words are enclosed in square brackets []
and some in braces { }. The keywords in brackets represent 3270 keys; those in
braces are CM Mouse functions.

The Basics of a Button Definition
A button definition string can contain any text, CM Mouse control words, and CM
Mouse substitutions. All of these may be freely mixed in any order. Except for
performing substitutions, CM Mouse evaluates (executes) button definitions from
left to right. Thus, if a button definition contains two CM Mouse control words,
the left one is executed, and then the right one. Where plain text appears in a
button definition, it is sent to the host as simple keystrokes.

For example, consider the button definition:
[backtab]s[enter]

When this definition is executed by CM Mouse it will cause the host cursor to be
tabbed left ([backtab] control word), the character s to be typed (plain text), and
finally the Enter key to be pressed ([enter] control word).

When a button definition contains substitution keywords (those that have an
ampersand (&) inside or outside braces) the substitutions will usually be done
before the button definition is executed. For example:

[pf8]Mouse is in row &{mrow}

When CM Mouse begins executing this button definition, the first thing it will do
is substitute the &{mrow} keyword for the row number of the mouse cursor. So if
the mouse cursor was in row 5 at the time this button definition was executed,
after substitution the definition would be:

[pf8]Mouse is in row 5

© Copyright IBM Corp. 1991, 2019 45

Since there are no more substitutions in this button definition, CM Mouse begins
executing it from left to right. A PF8 keystroke is sent to the host, and then the
characters “Mouse is in row 5” are typed on the host screen. Substitutions are
discussed in more detail in “Presubstitutions and Runtime Substitutions” on page
70.

All the available CM Mouse control and substitution words are described in the
following sections. Chapter 13, “Sample Button Definitions and Menus,” on page
105 shows a number of sample button definitions that use these control words.

CM Mouse Control Words
These control words are special commands to CM Mouse to perform some actions
specifically related to the mouse. Note that they are enclosed in braces {}. Any CM
Mouse control word can contain presubstitutions or runtime substitutions as
described in “CM Mouse Substitution Words” on page 60.

The CM Mouse control words described in the following sections can be used in a
button definition.

{beep}
Causes CM Mouse to emit a short beep. It could be used to notify the user of a
dead (no function) button or of a dangerous operation such as deleting a file.

{clip cut} {clip cut textonly}
Removes any currently marked text from the host session and places it in the
system clipboard. See “Clipboard Functions” on page 15 for instructions on how to
mark an area of text to be cut or copied to the system clipboard. Executing this
control word is exactly the same as pressing the Shift-Delete key combination. This
keyword is not supported on 5250 host sessions.

In OS/2 several views of the host data are stored in the clipboard: for example, a
plain text view and a graphic (bit map) view. Using the {clip cut textonly} format
of this keyword causes all except the plain text to be removed from the clipboard.
This can be useful when pasting to some applications which take the bit map view
when you want them to paste the text. Removing the bit map view will force such
applications to use the text view.

{clip copy} {clip copy textonly}
Copies any currently marked text to the OS/2 system clipboard. See “Clipboard
Functions” on page 15 for instructions on how to mark an area of text to be cut or
copied to the system clipboard.

In OS/2 several views of the host data are stored in the clipboard: for example, a
plain text view and a graphic (bit map) view. Using the {clip copy textonly} format
of this keyword causes all except the plain text to be removed from the clipboard.
This can be useful when pasting to some applications which take the bit map view
when you want them to paste the text. Removing the bit map view will force such
applications to use the text view.

46 CM Mouse Support User’s Guide and Reference

{clip copyappend}

Appends any currently marked text to the OS/2 system clipboard. See “Clipboard
Functions” on page 15 for instructions on how to mark an area of text to be cut or
copied to the system clipboard. Not all emulators support this function.

{clip from <r1> <c1> <r2> <c2>}
Copies a specified rectangular area of the host screen to the system clipboard. <r1>
and <c1> defines the row and column number of one corner of the rectangular
area and <r2>,<c2> defines the other corner. Any of the row/column values can be
zero or negative to define an offset from the end of the screen.

The text within the rectangular area is copied to the system clipboard exactly as it
appears on the host screen including protected fields.

Note that this is done without user intervention (the user does not define the clip
area with a marking rectangle). Using this keyword with {clip to...}, a script can
automate the copy and paste of text to and from the clipboard without any user
intervention.

{clip to <r> <c>}
Copies text from the system clipboard to the host screen, starting at the row <r>
and column <c>. The row/column values can be zero or negative to define an
offset from the end of the screen.

Each line of text in the system clipboard is typed on the host screen exactly as it
appears in the clipboard. Multiple lines of text are typed on subsequent lines of the
host screen, starting in column <c>. If the end of the screen is reached, any
remaining data in the clipboard is ignored.

Note that the clipboard text is placed on the host screen exactly as if typed
manually from the keyboard. If an attempt is made to type over a protected field
the emulator may lock the keyboard or issue warning beeps (different emulators
will handle this in different ways).

Note that this is done without user intervention (the user does not define the paste
area with a marking rectangle). Using this keyword with {clip from...}, a script can
automate the copy and paste of text to and from the clipboard without any user
intervention.

{clip paste}
Copies any text currently in the system clipboard to the host session. A rectangle
appears which indicates the size of the block of text to be pasted. Place the mouse
cursor over the rectangle, press and hold the left button, and drag the rectangle to
the position desired and release the button. This keyword is not supported on 5250
host sessions.

Chapter 7. Button Definitions 47

{clip place}

Places text from the clipboard into the host session when the paste rectangle is
showing. If a paste operation is not in progress (and no paste rectangle is
showing), this keyword has the same effect as sending an Enter key to the host.
This keyword is not supported on 5250 host sessions.

{clip cancel}

Cancels a pending clipboard paste operation. This removes a paste rectangle from
the screen without affecting the host session. This does not affect the contents of
the clipboard. This keyword is not supported on 5250 host sessions.

{clip clear}
Clears the currently marked area of the host screen.

{clip undo}
Reverses the effect of the last clipboard paste operation.

{clip unmark}

Removes the marking rectangle from the screen.

{dde <function> <parameters>}

Allows execution of commands in other applications which support DDE. CM
Mouse is a DDE client only (it can run DDE commands in other applications, but
other applications cannot run CM Mouse commands).

The <function> values are:

48 CM Mouse Support User’s Guide and Reference

connect ’Name’ ’Service’
execute <command>
disconnect

Connect is used to establish a connection with a DDE server application. The
application and service names must be enclosed in single quote characters. For
many applications these values are case sensitive and must be entered exactly as
given in the application documentation. A connection must be established before
any other DDE function can be used. If the connection fails the remainder of the
script is discarded.

Execute is used to send a command string to a DDE server application. See the
application documentation for proper format of this command string.

Disconnect is used to terminate a DDE connection with a DDE server. Many
applications support only a single DDE connection at a time so it is important to
disconnect from the application after executing DDE commands.

The following example will connect to the OS/2 Excel spreadsheet and instruct the
spreadsheet application to select a set of cells, clear them, paste the current
contents of the clipboard, generate a graph, and finally activate the spreadsheet
window:
BUTTON LEFT "{dde connect ’Excel’ ’System’}+

{dde execute +
[FORMULA.GOTO("R1C2")][SELECT.END(4)][SELECT("R1C2:R[0]C[0]")][CLEAR

(1)]+
[FORMULA.GOTO("R1C2")][PASTE()]+
[SELECT.END(4)][SELECT("R1C1:R[0]C[0]")]+
[NEW(2)][GALLERY.PIE(5)][FULL(TRUE)]+
[APP.ACTIVATE()]}+

{dde disconnect}"

{editmmm}
Copies the file containing the current pop-up menu definition to the first directory
in the MMMDIR path list. When the copy is complete, the text editor is invoked
on the copied file. If the file already exists in the first directory of the path, the
copy step is skipped. This keyword is identical to selecting the Edit this menu
option on the pop-up menu system icon (see “Pop-up System Menus” on page 9).

If there is no current pop-up menu (this keyword is in a BDF file), then the most
recently displayed pop-up menu is used.

{hostwait n}
Causes CM Mouse to wait until the host has unlocked the keyboard before sending
the rest of the button definition. This can be used to prevent host overrun when
CM Mouse keystrokes are sent to the host while the host is still processing a
previous key sequence. This control word can be abbreviated {hw}. (See
“Synchronizing Input with the Host” on page 121 for more information on possible
overrun conditions.) If the keyboard is not unlocked within n seconds, processing
continues anyway.

For example:
cmd1[enter]{hw 10}[home][tab]cmd2[enter]

Chapter 7. Button Definitions 49

In this example, cmd1 would be entered, and CM Mouse would wait until the host
completed the command and the keyboard was ready for input, or for 10 seconds,
whichever occurred first. Then the host cursor would be moved, and cmd2 would
be entered.

Note: The {hostwait} keyword is rarely needed since the host emulator queues
keystrokes when the keyboard is locked. Keystrokes sent to the host before a
previous transaction has completed are sent as soon as the host completes
its processing and unlocks the keyboard. Thus, this keyword does not
normally need to be used to synchronize input with the host.

{if <condition> {then}script1{else}script2}
Allows conditional execution of scripts. If the <condition> is true then script1 is
executed. Otherwise script2 is executed. The {then} keyword is required, {else} is
optional.

The <condition> is specified as a comparison of two strings. The full syntax of this
keyword is:

►► {if 'str1' =
==
!=
!==
<
>
<=
>=
=#
!=#

►

► 'str2' {then} }
script1 {else} script2

►◄

Note the following syntax rules for this keyword:
1. The string delimiters can be any character that does not appear in the strings

themselves.
2. Both strings must use the same delimiter character.
3. Both strings must have delimiters even if they are numeric values.
4. Note that blanks that appear anywhere after the {then} keyword are considered

significant and are part of the script.
5. The {else} keyword and script2 are optional. The {then} keyword is required.

The comparison operators are as follows:

Operator Description

= Case insensitive comparison (upper and lower case are considered
equal; the strings "Abcd" and "ABCD" are equal).

== Case sensitive comparison (upper and lower case letters are not
equivalent; the strings "Abcd" and "ABCD" are not equal)

!= Case insensitive not-equal comparison

!== Case sensitive not-equal comparison

< Numeric less-than comparison. Both strings must be numeric integer
values. Any nonnumeric string (such as "A1") will be considered zero.

50 CM Mouse Support User’s Guide and Reference

Operator Description

> Numeric greater-than comparison. Both strings must be numeric integer
values. Any nonnumeric string (such as "A1") will be considered zero.

<= Numeric less-than or equal.

>= Numeric greater-then or equal.

=# Numeric equal. Note that this is different from the string equality ("=")
operator in that the strings "015" and "15" are numerically equal.

!=# Numeric not-equal.

If/then/else conditional keywords can be nested to any depth. Note that the
closing brace for the keyword appears after the {else} script. For example, the
following script would set the variable X to different values depending on the
position of the mouse pointer:

{if ’&{mcol}’ > ’60’ +
{then}{set X Huge}+
{else}{if ’&{mcol}’ > ’40’+
{then}{set X Big}+
{else}{if ’&{mcol}’ > ’20’+
{then}{set X Medium}+
{else}{if ’&{mcol}’ > ’10’+
{then}{set X Small}+
{else}{set X Tiny}+

}}}}

The following example looks for a blank character on the last line of the screen,
fourth character from the right edge. If that character is a blank, then a message is
displayed; otherwise, a command is run on the host system:

{if ’&{chars 0 -3 1}’ = ’ ’+
{then}{?You have no mail.}+
{else}openmail[enter]+

}

{lock on} {lock off}
Locks or unlocks the keyboard. If no parameter is specified, ON is assumed. When
the keyboard is locked using this keyword, user keystrokes are accepted but
deferred until the keyboard is unlocked. The [reset] keyword may be used to
discard the stored keystrokes before the keyboard is unlocked.

This keyword can be useful when a long-running button definition is executed,
and the user should be prevented from sending keystrokes to the host until the
button definition is complete. Using the [reset] keyword before unlocking the
keyboard discards any keystrokes the user may have typed during the locked
period. For example:

{lock on}[pf6]{search for ’Menu 2’
wait 20}run[enter][reset]{lock
off}

This button definition will lock the keyboard and then send the PF6 key to the
host and wait for Menu 2 to appear. When it appears, the command RUN is typed
and the Enter key is sent. Any keystrokes entered by the user are then discarded
and the keyboard is unlocked. This technique can be useful in preventing the user
from interfering with long-running automated host interactions.

Chapter 7. Button Definitions 51

If the keyboard is not unlocked by a button definition which locks it, CM Mouse
will automatically unlock the keyboard after the last keyword of the button
definition is completed.

{mmenu}
Restores the CM Mouse control panel. This is equivalent to clicking on the CM
Mouse icon and picking the Restore option. See “The CM Mouse Control Panel”
on page 11.

{mrowcol x y}
Moves the mouse cursor to row x and column y. Rows and columns are numbered
from 1, starting in the upper left corner of the screen. Either value may be
specified as zero or a negative value to indicate an offset from the end of the
screen. Zero indicates the last row or column, -1 indicates the second from the last
row or column, and so on. For example, {mrowcol -1 0} would position the mouse
cursor in the last column of the screen, one row up from the bottom. Zero and
negative values can be used to make positioning independent of the screen size.
For example, to position the cursor on the last line of the screen, {mrowcol 0 1}
could be used and it would work on any size host screen (24 lines, 32 lines, and so
on).

{null}
Has no effect and is ignored. It can be used to define an inactive mouse button.

{pause n}
Causes CM Mouse to stop execution for n milliseconds. The value n should be an
integer in the range of 0 to 65536. This can be used to insert short delays into a
long command string. This may be necessary under some host overrun situations
that can cause the host to miss some keystrokes. For example, {pause 500} would
cause CM Mouse to wait for 1/2 second.

{pfkey}
Sends a PF key or the Enter key to the host. The particular key is determined by
the text on the screen where the mouse is located. An attempt is made to locate a
PF or Enter key definition on the host screen somewhere near the mouse cursor. A
series of rules is applied in an attempt to recognize typical host PF key description
fields. The search goes as follows:
1. If the cursor is touching a number, it is taken to be the PF key number.
2. If the cursor is on an F or a PF (upper case only), the next four characters are

searched for a numeric sequence. If found, it is taken to be the PF key number.
3. If the cursor is touching the word ENTER (upper case only), the Enter key is

sent. The word ENTER must appear in capital letters and must be separated on
both sides by non-alphanumeric characters (for example, ENTER would not be
recognized in the string ENTERING).

4. Starting from the mouse cursor, a search is made to the left looking for either a
numeric value or the word ENTER. If a numeric value is found before the left
edge of the screen, it is taken to be the PF key number. If the word ENTER is
found before the left edge of the screen, it is taken to be the Enter key.

5. If none of the preceding locates a potential candidate, or if a numeric value
found is out of the range of 1 to 24, a short beep sounds.

For example, the following PF keys would be found:

52 CM Mouse Support User’s Guide and Reference

Screen text ---> PF-11 F-11 PF6 F 12 F=6 10 ENTER
Mouse cursor --> x x x x x x x x
PF key found --> 11 11 6 6 12 6 10 ENTER

Screen text ---> F6=List F7=Clear all PF8 Reset 9: List29
Mouse cursor --> x x x x x x
PF key found --> beep 6 7 7 8 beep

{pfkey first}
Uses the same algorithm as {pfkey}, except that the first non-blank character of the
line is the starting location of the search. This can be useful on some
OfficeVision-like menus that list one PF key per line but may contain other
characters on the line which can be misleading to the normal {pfkey} control. For
example, if a host screen contained the following line:

PF4 Show calendar for the last 7 days

and the mouse was positioned to the right of the 7, {pfkey} would recognize PF7,
whereas the desired key is actually PF4. Using {pfkey first} causes CM Mouse to
start searching at the first non-blank character of the line, and thus it would
successfully find PF4 in this case.

{pfkey last}
Uses the same algorithm as {pfkey first}, except that the last character of the line is
the starting location of the search.

{pfkeyrev} {pfkeyrev first} {pfkeyrev last}
Same function as the {pfkey...} keywords, except that the format of the PF keys is
reversed. Normally CM Mouse expects the PF key descriptions to be of the form:

PFx=Description

These reverse format keywords can be used when the host application displays the
descriptions on the left and the PF key number on the right:

Description=PFx

{printscreen LPTx}
Copies the current contents of the host screen to a system printer. If the LPTx
parameter is not specified, LPT1 is used. Otherwise, x should be a single numeric
digit indicating which system printer is to be used.

{printscreen Fname} {printscreen Fname APPEND}
Copies the current contents of the host screen to the file name specified. If
APPEND is specified, the screen image is appended to the end of the file,
otherwise the contents of the file are replaced.

{quit}
Terminates execution of the current script. This can be useful in an {if...} keyword
to end the script when a particular condition is met. For example the following
script will beep if the number under the mouse cursor is less than 1 or greater than
31. If it is in the range, some keystrokes are sent to the host and the script ends
without beeping:

Chapter 7. Button Definitions 53

{if ’&{word}’>’0’+
{then}{if ’&{word}’<’32’+

{then}curcal[enter]{quit}+
}+

}
{beep}

{rowcol x y}
Moves the host cursor to row x and column y. Rows and columns are numbered
from 1, starting in the upper left corner of the screen. Either value may be
specified as zero or a negative value to indicate an offset from the end of the
screen. Zero indicates the last row or column, -1 indicates the second from the last
row or column, and so on. For example, {rowcol -1 0} would position the host
cursor in the last column of the screen, one row up from the bottom. Zero and
negative values can be used to make positioning independent of the screen size.
For example, to position the cursor on the last line of the screen, {rowcol 0 1}
could be used and it would work on any size host screen (24 lines, 32 lines, and so
on).

{seek}
Moves the host cursor to the mouse cursor position (the host cursor will seek the
mouse cursor). This is commonly used when the action to be taken depends on the
host cursor position (such as when you are selecting from a list). See Chapter 13,
“Sample Button Definitions and Menus,” on page 105 for examples of how this can
be used.

{unseek}
Moves the mouse cursor to the host cursor position which is the opposite of the
{seek} control word.

{search FOR 'string' AT r1 c1 r2 c2 WAIT n NOT ASIS NOQUIT}
This searches the host screen for a specified character string. If the search fails, the
remainder of the button definition (to the right of this keyword) is discarded. If the
search is successful the remainder of the button definition is executed normally. A
successful search will also update the values of the &{srow} and &{scol}
substitution variables with the row/column of the located string as well as the
SYSTEM_SROW and SYSTEM_SCOL variables.

This keyword has a number of parameters to control the search process. The only
required keyword is FOR. All other keywords are optional and have default values
as explained below. The parameters are:

FOR 'string'
This parameter is required and defines the character string to be used in
the search. By default, the string is not case sensitive (a search for 'Abcd'
will find the string 'ABCD').

The ASIS parameter can be used to make the search case sensitive.

The string must be delimited with any single character which does not
appear in the string itself. Blanks and tabs may not be used as delimiter
characters. For example, the following are equivalent:

{search for ’Error 18C’}
{search for XError 18CX}
{search for /Error 18C/}

54 CM Mouse Support User’s Guide and Reference

AT row1 col1 row2 col2
This parameter can be used to restrict the search to a specified rectangular
area of the screen. If this parameter is not specified, the entire screen is
searched. The first row/column values specify the upper-left corner of the
search area, and the second row/column values specify the lower-right
corner. Any of the row/column values may specify zero or a negative
value to indicate an offset from the end of the screen. For example:

{search for ’abc’ at 1 1 0 0} Searches entire screen
{search for ’abc’ at 1 1 2 0} Searches first 2 lines
{search for ’abc’ at -1 1 0 0} Searches last 2 lines
{search for ’abc’ at 0 40 0 60} Searches columns 40 to 60 of last line
{search for ’abc’ at 5 70 9 80} Search columns 70-80 in rows 5-9

WAIT n
This parameter specifies a timeout value (in seconds). If specified, CM
Mouse will continuously search the host screen according to the other
search parameters. If the search is not successful within the timeout period
then the search fails. The default timeout value is zero, which causes CM
Mouse to perform the search only once (for example, if the string is not
found immediately, CM Mouse will not wait for the search string to
appear).

VMCLEAR
If a VM "HOLDING" or "MORE..." state occurs on the host system while
searching for a string, a CLEAR keystroke is automatically sent to the host
to clear the hold condition. The holding condition is cleared only if a
nonzero timeout value has been specified.

NOT This parameter reverses the logical result of the search. If NOT is specified,
then a successful search will result in the remainder of the button
definition being discarded. If NOT is specified and the search fails, then
the remainder of the button definition is executed normally.

ASIS This parameter causes the search to be case sensitive. When this parameter
is used, the FOR string must be specified exactly as it is to be found on the
host screen, including upper and lower case characters.

NOQUIT
This parameter will cause the remainder of the script to be executed even
if the search fails.

The search parameters may be specified in any order. Thus the following are all
equivalent:

{search for ’abc’ at 1 1 2 0 wait 10 not}
{search not at 1 1 2 0 wait 10 for ’abc’}
{search not wait 10 for ’abc’ at 1 1 2 0}

{seekelse}
Moves the host cursor to the mouse cursor position and discards the remainder of
the definition. If the host cursor and mouse cursor are already at the same location,
the remainder of the definition is executed as usual.

{seekcol x}
Moves the host cursor to the same row as the mouse cursor, but in column x.
Columns are numbered from 1, starting at the left side of the screen. A negative or
zero value can be specified to indicate an offset from the right side of the screen.
Zero indicates the rightmost column, -1 the next column to the left, and so on.
Using zero or a negative value can make the positioning independent of the screen

Chapter 7. Button Definitions 55

width. For example, {seekcol 0} positions the cursor in the rightmost column on
any size host screen (80 columns, 132 columns and so on). This control word can
be very useful for moving the host cursor to a known position within a
multicolumn list.

For example:
{seekcol 45}[crsel]

This would move the host cursor to the same line as the mouse cursor, in column
45. A light-pen selection would then be sent to the host.

{seekrow x}
Moves the host cursor to the same column as the mouse cursor, but in row x.
Rows are numbered from 1, starting at the top of the screen. A negative or zero
value can be specified to indicate an offset from the bottom of the screen. Zero
indicates the last line, -1 the next to last line, and so on. Using zero or a negative
value can make the positioning independent of the screen size. For example,
{seekrow 0} positions the cursor in the last row on any size host screen (24 rows,
32 rows and so on).

{set Name Value}
Sets the value of a user-defined variable. The Name can be any sequence of
characters, excluding blanks. The Value is any string and can be formed by
substitutions. There must be exactly one blank between the name and the first
character of the value. Extra blanks are considered part of the value. For example:

{set MyOwnVariable The host cursor is at column &{hcol}}

This sets the variable MyOwnVariable to the string “The host cursor is at column
x”, where x is the column number of the host cursor position.

See Chapter 10, “CM Mouse Variables,” on page 95 for more examples and a
complete discussion of user-defined variables.

{switchto <session>|*|next|prev }
Connects to the specified session. The <session> specified must be the one-character
short session ID (A, B, C, etc.) or one of the following special values:
v The value * (asterisk) represents the current session to which CM Mouse is

connected.
v The value next represents the next session after the current session. Sessions are

ordered alphabetically from A to Z.
v The value prev represents the previous session to the current session. Sessions

are ordered alphabetically from A to Z.

After this keyword is executed, all CM Mouse host interactions are with the new
session. Note that this keyword only causes CM Mouse to interact with a new
session; it does not activate, maximize, or affect the emulator windows in any way.

{sys <cmd> <parms>}
Causes CM Mouse to run the command <cmd> with the parameters <parms>. CM
Mouse passes the command to the operating system to be run. The way in which
the command is run is different in each environment, so each is described
separately.

56 CM Mouse Support User’s Guide and Reference

In OS/2 the command is run as a separate asynchronous process. This means that
CM Mouse starts the command running but does not wait for it to finish. The
remainder of the script will continue executing while the command runs.

CM Mouse does not run the OS/2 command processor to execute the command.
Note the following rules for specifying the command (program) to be executed:
v The file name must have the extension specified.
v If the executable file is not in the OS/2 PATH then the fully qualified file name

must be supplied.
v If the command is an OS/2 internal command (such as DIR) then the OS/2

command processor must be explicitly executed.
v OS/2 command files (.CMD) must be executed using the OS/2 command

processor (CMD.EXE).

For example, the following would copy a file. Note that the OS/2 command
processor is used since COPY is an internal OS/2 command:

{sys cmd.exe /C copy c:\config.sys c:\config.sav}

In the following example, the OS/2 system editor is executed to edit a
CONFIG.SYS file:

{sys e.exe c:\config.sys}

In Windows the command is run as a separate Windows process. CM Mouse starts
the command running but does not wait for it to finish. The remainder of the
script will continue to execute while the command runs.

The command may be a DOS command or a Windows application program. If it is
an internal DOS command, the DOS command processor (COMMAND.COM)
must be explicitly run. For example:

{sys command.com /K dir c:\}

If the command file name is not fully qualified a search is made for the program in
(1) the current directory, (2) the Windows directory, (3) the Windows system
directory, and (4) the DOS PATH directories.

{win <session>|*|prev|next MIN| MAX| RESTORE| HIDE| SHOW|
ACTIVATE| DEACTIVATE}

Manipulates the specified session window. The <session> can be a single character
short session ID or one of the following:
v The value * (asterisk) represents the current session to which CM Mouse is

connected.

Chapter 7. Button Definitions 57

v The value next represents the next session after the current session. Sessions are
ordered alphabetically from A to Z.

v The value prev represents the previous session to the current session. Sessions
are ordered alphabetically from A to Z.

Note that this does not have to be the same session to which CM Mouse is
currently connected. Combinations of window conditions may be specified to
achieve the desired effect. For example the following would show the emulator
window (if hidden) and activate it (bring it to the top and give it focus). This
would not change the minimize/maximize/restore state of the window:

{win * show activate}

The following would maximize the next available host session:
{win next show max activate}

{xfer ..}

Transfer a file to or from the host system. The syntax of this keyword is:

►► { XFER SEND
RECV
DRAG
DROP

TYPE= VM
MVS

PC= PCFileName
*

HOST= ►

► HostFileName
* SESS= A

B
...
*

XLATE= *
XlateName

►

►
METHOD= EHLLAPI

SCREEN
QUIET= YES

NO
CLEAR= YES

NO
DEFAULT

►

►
PARMS= XferParameters

} ►◄

Each of the parameters and options are described in detail in Chapter 9,
“Drag/Drop Features,” on page 87.

{?<text>}
Causes a pop-up menu to appear containing the specified text with OK and
Cancel buttons. The user can select the OK button to confirm the action or the
Cancel button to abort it. If the user presses the Cancel button, the remainder of
the button definition (after the {?...} keyword) is discarded. If the OK button is
pressed, the remainder of the definition is executed normally.

58 CM Mouse Support User’s Guide and Reference

This keyword could be used to confirm a risky action and provide the user with
an easy way to abort it. For example, the keyword

{?WARNING: This file will be deleted!}delete[enter]

would cause the following pop-up menu to display:

If the user pressed the OK button, then the characters delete would appear on the
host screen followed by an Enter key. If the user pressed the Cancel button, the
remainder of the definition would be ignored and nothing would happen.

Note that the text can be constructed from CM Mouse substitution keywords (see
“CM Mouse Substitution Words” on page 60). For example, the following might be
used to confirm the deletion of a file on a VM FILELIST screen:

{?The file ’&{chars &{mrow} 1 20}’ will be deleted.}erase[enter]

This would substitute the first 20 characters from the line the mouse cursor was on
into the text (see “CM Mouse Substitution Words” on page 60 for information on
the &{char} and &{mrow} keywords). This example would produce a pop-up like:

This keyword should not be confused with the substitution word which has the
same form but contains a substitution symbol (&) inside or outside of the braces.

{map}

Displays the Screen Map window for the current host session. See “CM Mouse
Screen Map Facility” on page 16.

{sysmenu}
Displays the standard host emulator system menu pull-down. This pull-down is
not directly available because CM Mouse intercepts mouse clicks on the emulator’s

Chapter 7. Button Definitions 59

system menu icon (see “The Host System Menu” on page 14). When this control
word is executed, the emulator’s pull-down menu is invoked so that you can
perform special emulator operations such as changing font sizes.

CM Mouse Substitution Words
The substitution words described in the following paragraphs can be used in CM
Mouse BUTTON statements of BDF files, and LINE and TITLE statements of
MMM (menu) files. These substitution words are replaced with a value during
execution so that you can construct definitions which depend on runtime values
such as the position of the mouse or host cursors. Substitutions can be nested and
may occur in CM Mouse control words or host keystrokes.

&{break}
This substitution word substitutes a single line-break character. This can be used to
insert line breaks in lengthy inline REXX programs. Line breaks are required in
REXX programs at least every 512 characters of source code. The break must
appear where REXX allows a normal end-of-line. For example:

&{rexx +
/* REXX code */ +
xyz = ’ABC’; +
&{break} +
if x=y +
then ... +

}

This keyword is useful only in OS/2.

&{chars r c l} or {&chars r c l}
Substitutes a string of characters from the host screen starting at row r, column c,
and of a length l. All three values must be specified (or formed from substitutions).
For example, the following display on the host screen the five characters that occur
at row 2 column 1, followed by an Enter key:

&{chars 2 1 5}[enter]

The following takes five characters starting at the current position of the mouse
cursor and displays them on the host screen followed by an Enter key. Note the
use of nested substitution words:

&{chars &{mrow} &{mcol} 5}[enter]

The row and column values can be specified as zero or negative numbers to
indicate an offset from the end of the screen. For example, a row number or zero
indicates the last line of the screen, -1 is the second from last line of the screen,
and so on. This allows the position to be independent of screen size if necessary.
For example the following will take the last 5 characters from the last row of any
size host screen:

&{chars 0 -4 5}

&{editor}
Substitutes the name of the PC text editor specified with the editor= parameter (or
defaulted) when CM Mouse was started.

60 CM Mouse Support User’s Guide and Reference

&{env VarName}
Substitutes the value of the environment variable named. If the specified
environment variable does not exist, a null string is substituted.

&{hcol} or {&hcol}
Substitutes the column number of the current position of the host cursor.

&{hrow} or {&hrow}
Substitutes the row number of the current position of the host cursor.

&{hour} &{min} &{sec}
Substitutes the current time of day based on the PCs internal clock. The range of
values is: hour (00-23), min (00-59), sec (00-59). These keywords always substitute a
2-character value (leading zeros are appended to values less than 10).

&{month} &{day} &{year}
Substitutes the current month (01-12), day (01-31), and year (90) from the PCs
internal clock. These keywords always substitute a 2-character value (leading zeros
are appended to values less than 10).

&{math 'val1' +|-|/|* 'val2'}
Substitutes the results of the specified integer mathematical operation. Both values
must be enclosed in a delimiter character. The delimiter may be any character
which does not appear in the value itself. Both values must use the same delimiter.

The operators are:
+ Addition
- Subtraction
/ Division
* Multiplication

The string values must be numeric. Any nonnumeric string is taken as zero. A
division by zero produces a value of zero. Values may be any positive or negative
integer values (no decimal points) in the range (approximately) -2 billion to +2
billion.

The following example will add one to the number under the mouse cursor:
&{math /&{word}/ + /1/}

&{mmm}
Substitutes the PC file name of the current pop-up menu. If this substitution word
occurs in a BDF file (rather than a pop-up menu), the name of the most recently
used pop-up menu file is substituted. The file name includes the complete path
name.

&{mrow} or {&mrow}
Substitutes the row number of the current position of the mouse cursor.

&{mcol} or {&mcol}
Substitutes the column number of the current position of the mouse cursor.

Chapter 7. Button Definitions 61

&{num} or {&num}
Substitutes the number on the host screen that is nearby the mouse cursor position.
Nearby is determined by the following rules:
1. If the mouse cursor is currently on a numeric character, all adjoining numeric

characters to the left and right are used.
2. A search is made to the left for a numeric character. If found, it is used to find

the number as in (1).
3. A search is made to the right for a numeric character. If found, it is used to find

the number as in (1).

If no numeric characters are found on the line the result is a null string. Numerics
consist of the characters 0 through 9.

This substitution keyword can be useful for host applications that present a list of
selections and prefix the list by command numbers to be entered. This can even be
used on multicolumn lists. For example, a host screen might look like this:
Enter Command ===>

0. Erase file 1. Delete maps 3. Remove all
4. Copy 5. Rename 6. Send
7. Edit overlay 8. Undo changes 9. Load new copy

By defining a mouse button to be &{num}[enter], you can position the mouse
cursor on any command in the list and select the option by pressing that mouse
button. Note that the &{word} keyword would not be useful here because we are
interested only in the command numbers, not the words that make up the
command descriptions.

&{num first} or {&num first}
The same as &{num}, except that the search begins at the first character of the line
the mouse is on.

&{num last} or {&num last}
The same as &{num} except that the search begins at the last character of the line
the mouse is on.

&{num at <row> <col>} or {&num at <row> <col>}
The same as &{num} except that the search begins at the row and column
specified. Rows and columns are numbered from 1, starting at the upper left
corner of the screen. The row and column values can be specified as zero or
negative values to indicate an offset from the end of the screen. Zero indicates the
last row (or column), -1 the second to last, -2 the third, and so on. For example,
&{num at -1 0} would substitute a number from the second to last line of the
screen, starting at the rightmost column.

&{popup <menuname>} or {&popup <menuname>}
Causes CM Mouse to display the pop-up menu specified. The <menuname>
specified is the name of a file in the MMMDIR path (specified when CM Mouse
was started). The name may optionally include a relative path name that is
appended to each directory in the path until the file is found.

62 CM Mouse Support User’s Guide and Reference

The substituted value is the button definition string from the line the user selects
on the pop-up menu. Any presubstitutions in that button definition are done
during the execution of this keyword.

For example,
&{popup picklist}[enter]

would cause CM Mouse to read the menu file <mmmdir>\PICKLIST.MMM and
display the pop-up menu on the host screen.

For example, if the default mmmdir parameter was used, the full file name would
be C:\CMMOUSE\PICKLIST.MMM. When the user selects a line of that menu, the
button definition associated with that line is substituted. The substituted value is
then evaluated for any further substitutions and, when all substitutions are done,
the definition is executed from left to right. Suppose, for example, that the
PICKLIST.MMM file for the preceding example contained:

line “Option 1“command(start)”
line “Option 2“command(quit)”
line “Option 3“exit[enter][pf6]
line “Option 4“[home]&{chars 10 1 8}

When the preceding button definition is executed, the first thing to be done is to
evaluate the &{popup picklist& rbrc. presubstitution. This causes a four-line
pop-up menu to appear with options 1 through 4. The user can then pick any one
of the four lines.

If, for example, the user picks the first line (“Option 1”), the characters
command(start) are substituted into the original button definition. The definition
would then look like:

command(start)[enter]

Because there are no more substitutions to do, the definition is executed from left
to right, causing the characters command(start) to be typed on the host screen,
followed by an Enter key.

Suppose now that the user picked the “Option 4” line of the pop-up menu. The
substituted definition would be:

[home]&{chars 10 1 8}[enter]

The substitution in this definition would then be evaluated, causing the first 8
characters of row 10 on the host screen to be substituted in place of &{chars 10 1
8}. The definition would be executed, causing the host cursor to be placed at the
first input field, the 8-character string would be typed, and an Enter key would be
sent.

If the user cancels a pop-up menu which results from a substitution, the remainder
of the button definition is discarded. In the preceding example, if the user canceled
the pop-up menu (by clicking the right button or selecting Close from the pop-up’s
system menu), no substitution would be done, and no keystrokes would be sent to
the host. Note that in this case it is important to distinguish between a
presubstitution pop-up and a runtime substitution pop-up. If a presubstitution
pop-up is canceled, the entire button definition is discarded. If a runtime
substitution pop-up is canceled, only the definition to the right of the {&popup...}
keyword is discarded. For example, consider the following definition:

run options=&{popup options}[enter]

Chapter 7. Button Definitions 63

As written, this definition would first display the OPTIONS.MMM menu. If the
user selected a line of that menu, the button definition from that line would be
substituted and the characters run... would be typed on the host screen followed
by an Enter key. However, if the user canceled the pop-up menu, no keystrokes
would be sent to the host (not even the keystrokes to the left of the &{popup
options} keyword).

Now consider the slightly different definition:
run options={&popup options}[enter]

Note that the ampersand (&) is inside the braces, making the pop-up keyword a
runtime substitution. When this definition is executed, the first thing that happens
is the characters run options= are typed on the host screen. Then the
OPTIONS.MMM pop-up menu is displayed. If the user selects a line of the menu,
it is substituted, typed on the host screen, and the Enter key is sent. However, if
the user cancels the pop-up menu, the remainder of the definition is discarded but
the characters run options= remain on the host screen.

See Chapter 6, “CM Mouse Menu Files,” on page 37 for information on the format
of menu files.

&{rows}
Substitutes the number of rows in the host screen.

&{cols}
Substitutes the number of columns in the host screen.

&{sid} or {&sid}
Substitutes the value of the current host session ID (“A”, “B”...).

&{srow} &{scol} or {&srow} {&scol}
Substitutes the row/column number of the last successful {search} keyword
execution.

&{str <function> <parms>}
Substitutes the result of applying the specified function to strings. Strings shown
enclosed in quotes in the following table may be enclosed in any delimiter
character that does not appear in the string itself. If more than one string is used,
they must all use the same delimiter. Numeric values are not enclosed in
delimiters.

In general these functions are identical in operation to the OS/2 REXX string
functions. The supported functions and their parameters are:

Function Parameters Description

substr '<string>' start length Takes a substring of <string> starting at the
specified position. The length is optional
and if not specified, the remainder of the
string is taken. If the string is not long
enough for the length specified it will be
padded with blanks.

64 CM Mouse Support User’s Guide and Reference

Function Parameters Description

strip '<string>' L|T|B <char> Returns the <string> stripped of leading (L),
trailing (T), or both (B) characters. The
character to be stripped is the blank
character unless otherwise specified. Note
that the strip character is not enclosed in
any delimiters.

word '<string>' N <char> Returns the N’th word of <string> delimited
by the specified character. If no delimiter is
specified then blank is used. If the string
contains less than N words, a null string is
returned.

words '<string>' <char> Returns the number of words in <string>
delimited by the specified character. If no
delimiter is specified then blank is used.

right '<string>' length Returns the rightmost characters of
<string>. If the string is less than the length
specified the result is padded on the left
with blanks.

length '<string>' Returns the number of characters in
<string>.

pos '<needle>' '<haystack>' Returns the position of the <needle> string
in the <haystack> string. If the needle does
not appear anywhere in the haystack, zero
is returned.

concat '<Lstrng>' '<Rstrng>' Returns the concatenation of the <Lstring>
(on the left) and the <Rstring> (on the
right).

insert '<source>' '<target>' index Inserts the <source> string into the <target>
string starting at the specified position.

delete '<string>' start length Deletes characters from <string> starting at
position start. If no length is specified, the
remainder of the string is deleted.

upper '<string>' Converts all characters in <string> to upper
case.

Examples:
Convert to upper case and remove leading & trailing blanks

&{str upper ’&{str strip ’ partA of 1 ’ B}’} = "PARTA OF 1"

Take 2nd qualifier of an MVS dataset name:

&{str word /TMAMB65.BEGIN.CLIST/ 2 .} = "BEGIN"

Take last qualifier of an MVS dataset name:

{set dsname TMAMB65.PROJECT.JCL.JOB16}+
{&str word ’{&var dsname}’ {&str words ’{&var dsname}’ .} .} = "JOB16"

&{var Name} or {&var Name}
Substitutes the value of the variable named. Note that if the presubstitution form
of the keyword is used, the substitution is done before any part of the button

Chapter 7. Button Definitions 65

definition is executed (and thus {set...} statements in the definition for this variable
have no effect). See Chapter 10, “CM Mouse Variables,” on page 95 for a complete
discussion of variables.

&{word delimit|include '<chars>'} or {&word}
Substitutes the word on the host screen that is nearest to the mouse cursor
position. The term nearest means the following:
1. If the mouse cursor is currently on an alphanumeric character, all adjoining

alphanumeric characters to the left and right are used.
2. A search is made in both directions at once, and the first alphanumeric

character found is used to find the word as in (1).
3. If the mouse cursor lies exactly between two words, the right word is taken.

If no alphanumeric characters are found on the line the result is a null string. By
default (if neither delimit or include is specified) alphanumerics consist of upper
and lower case A-Z, 0-9, and the special characters @, $, #, -, and _.

If delimit is specified, a list of characters is given which are used to delimit the
word. All other characters are included in the word.

If include is specified, a list of characters is given which are included in the word,
and all other characters are considered delimiters. The alphanumerics A-Z and 0-9
are always included.

Both delimit and include cannot be specified.

Examples:
In the following examples assume that the mouse pointer is
positioned over the letter "A" in the string

" _ !Hello$A1 Goodbye!"

&{word} = "Hello$A1"
&{word delimit ’ ’} = "!Hello$A1"
&{word delimit ’$!’} = "A1 Goodbye"
&{word include ’$!’} = "!Hello$A1"

&{word first} or {&word first}
The same as &{word}, except that the search begins at the first character of the line
the mouse is on. This can be useful for host applications that present a list of
selections and prefix the list by names or numbers to be entered. For example, a
typical host screen might look like this:
OPTION ===> _

0 ISPF PARMS
1 BROWSE
2 EDIT
3 UTILITIES

By defining a mouse button to be &{word first}[enter], you can position the mouse
cursor anywhere on the line and select the option by pressing that mouse button.

&{word last} or {&word last}
The same as &{word} except that the search begins at the last character of the line
the mouse is on.

66 CM Mouse Support User’s Guide and Reference

&{word at <row> <col>} or {&word at <row> <col>}
The same as &{word} except that the search begins at the row and column
specified. Rows and columns are numbered from 1, starting at the upper left
corner of the screen. The row and column values can be specified as zero or
negative values to indicate an offset from the end of the screen. Zero indicates the
last row (or column), -1 the second to last, -2 the third, and so on. For example,
&{word at -1 0} would substitute a word from the second to last line of the screen
starting at the rightmost column.

&{?<Qtext>|<Atext>} or {&?<Qtext>|<Atext>}
Displays a dialog panel for the user to type in a string. The dialog panel consists of
a prompting string at the top, a text input field the user can modify, and two
buttons marked OK and Cancel. The string the user types in the input field are the
substituted value of the keyword.

Two text strings can be specified in this keyword. The first is the prompt string
displayed at the top of the dialog box. The second string is optional and, if present,
must be separated from the first string by a vertical bar character (|). The second
string is used to preset the input field.

If the second string begins with a percent sign (%), the input field will not show
the characters typed by the user. This can be useful for password prompts in
which the string should not appear on the screen.

If the second string begins with a dollar sign ($) then the string is taken to be the
name of a CM Mouse variable. The value of the named variable is used to preset
the input field. When the user clicks OK, the string the user typed in the input
field is used to update the value of the variable.

If both % and $ are specified the % must be first. For example:
&{?Enter password:|%$PwValue}

The dialog box is positioned such that the upper left corner is one row below and
one column to the right of the mouse cursor but fit to the screen edges. If the user
clicks on the OK button or presses the Enter key, this keyword is replaced by the
value of the input field of the dialog. If the user clicks on the Cancel button or
presses the Esc key, nothing is substituted and the remainder of the button
definition is discarded.

The user can type up to 255 characters into the text field.

This substitution keyword follows the semantics of presubstitution and
runtime-substitution keywords. If used as a presubstitution (the & outside the
braces), the input dialog is shown to the user before any part of the button
definition is executed. If the user presses the Cancel button, the entire definition is
discarded. If, however, this keyword is used as a runtime substitution (the & inside
the braces), then any keywords or host keystrokes to the left of this substitution
word are executed and sent to the host before the dialog is shown to the user.

Note that any part of the question or answer text of this keyword can be
constructed with other substitution keywords.

Example 1:
{seekcol 20}rename / &{?New file NAME TYPE MODE}[enter]

Chapter 7. Button Definitions 67

This example might be used on a FILELIST screen. It would first present a dialog
screen similar to the following:

Note that the dialog is shown before any part of the definition is executed. If the
user types a string and then presses Enter, the host cursor is repositioned and a
RENAME command is typed and entered.

Example 2:
{seekcol 20}rename / {&?New file NAME TYPE MODE}[enter]

This example is identical to the previous one except that a runtime substitution is
being used. In this case, the host cursor is repositioned and a partial RENAME
command is typed on the host screen before the dialog is presented. If the user
presses Enter, the RENAME command completes. However, if the user cancels the
dialog, the partial RENAME command remains on the host screen. In this case, the
previous example (with a presubstitution) is preferred since it won’t leave a partial
command on the host screen if the user chooses to cancel the operation.

Example 3:
{seekcol 20}rename / &{?New file FN FT FM|&{chars &{mrow} 1 20}}[enter]

In this example, the input field is filled in for the user with a default value. The
value is the first 20 characters of the line the mouse is on. On a FILELIST screen,
that is the file name, type, and mode. The dialog will appear similar to the
following:

The input field would already be filled in. The user can type over any part of the
input field or press Enter to accept the default value (which for this rename
operation would not make much sense).

Example 4:
ralvm18 mcmillan{search for ’password’ wait 30}&{?Enter password|%}[enter]

In this example, an input dialog is first shown like:

68 CM Mouse Support User’s Guide and Reference

As characters are typed, they are not shown on the screen. In this example, if Enter
is pressed (or OK selected), a logon sequence is initiated with the host and CM
Mouse waits 30 seconds for the string password to appear. If it appears, the value
typed on the dialog panel is entered. If password fails to appear in 30 seconds, no
further action is taken.

&{rexx PgmSource} or {&rexx PgmSource}

This substitution word will run a REXX program. The substituted value is the
EXIT value of the REXX program. The source statements for the REXX program are
specified as part of the substitution keyword. Normal CM Mouse substitution rules
apply to the PgmSource part of this keyword. If the source code contains CM
Mouse presubstitutions, then they are done before any part of the button definition
is executed. If the source contains runtime substitutions, they are done when this
keyword is evaluated but before the REXX program is run.

This substitution word allows a complete REXX-language program to be imbedded
(inline) within a CM Mouse button definition. Any series of valid REXX language
statements can be used to write a complete REXX program. The syntax of the
PgmSource part of this keyword must follow normal REXX syntax rules. In
addition, CM Mouse line continuation and quoting rules must also be followed. To
write a complete inline REXX program, the following rules must be observed:
1. If the REXX program is more than a single line, then normal CM Mouse line

continuation characters must be used.
2. There are no implied REXX statement delimiters at the end of lines. Every

REXX statement must be explicitly terminated with a semicolon.
3. If the REXX program exceeds 512 characters in length, the &{break} keyword

must be used to break the program into sections of 512 characters or less.
4. If the REXX program is to contain double-quote characters, then the entire

button definition in which the &{rexx ...} substitution appears must end in a
double-quote character.

For example, the following button definition will cause either a PF3 or PF7 to be
sent to the host depending on the position of the host cursor. In either case, the PF
key is followed by an Enter key.

button left "&{rexx if &{hrow}=1 +
then exit ’[pf3]’; +
else exit ’[pf7]’; +

}[enter]"

Chapter 7. Button Definitions 69

Notice that every line of the button definition is continued with a CM Mouse line
continuation character. Also notice that each REXX statement is explicitly
terminated with a semicolon. The CM Mouse substitution word &{hrow} is
substituted into the REXX source code before the button definition is executed.

For a complete discussion of the &{rexx ...} substitution keyword, see Chapter 8,
“CM Mouse/REXX Interface,” on page 73.

Presubstitutions and Runtime Substitutions
There are two types of substitutions, presubstitutions and runtime substitutions.
Presubstitution is valid with all CM Mouse substitution keywords, but runtime
substitution is valid only for some of them. Presubstitution is indicated by an
ampersand (&) outside of the braces, while runtime substitution is indicated by an
ampersand inside the braces.

A presubstitution is replaced with its value before any part of the button definition
is executed. A runtime substitution is replaced with its value when it is
encountered in the button definition as the definition is executed. These two types
of substitutions produce different results when something in the button definition
changes the value to be substituted before the substitution word occurs. For
example, consider the following button definition:

[right][right][right]Host cursor is at position &{hcol}

If the host cursor was in column 10 when this definition was executed, the
following string would be typed on the host screen:

Host cursor is at position 10

The host cursor position was substituted into the string before any part of the
button definition was executed, and thus the value 10 was substituted. If the
button definition was:

[right][right][right]Host cursor is at position {&hcol}

(note the ampersand is now inside the braces), the value 13 would be substituted
because the [right] keywords would move the host cursor from column 10 to 13,
and then the {&hcol} would be substituted with the position of the host cursor
(which is then 13). Thus, the following would be typed on the screen:

Host cursor is at position 13

In general, presubstitutions and runtime substitutions can be freely mixed within
the same button definition:

[right][right][right]Host was at &{hcol}, is now at {&hcol}

This would show the position of the host cursor before the definition started and
when it was completed. The only time they cannot be mixed is in a nested
substitution in which the outer substitution is a presubstitution and the inner is a
runtime substitution. For example, the following construct is not allowed and will
produce an error message when executed:

&{chars {&hrow} 1 18}

This is invalid because the outer substitution is to be done before anything is
executed, but it contains a substitution which must be done at runtime. The
following definition is valid:

{&chars &{hrow} 1 18}

70 CM Mouse Support User’s Guide and Reference

In this case, the inner substitution &{hrow} is done before any part of the definition
is executed. The {&chars} substitution is then done when it is executed and there
is no problem because the &{hrow} has already been evaluated and replaced.

As another example of the difference between presubstitution and runtime
substitution, consider a button definition which invokes some host function and
then reads data (placed there by the function) from the host screen with the
&{chars r c l} substitution word. For example, we could invoke OfficeVision, get
the current time from the OfficeVision main menu, and construct some fictitious
command using it.

office[enter]{vmwait}timewarp nextstop=&{chars 3 64 8}

The previous sequence would not work as you might expect because the
&{chars...} is substituted before any part of the definition is executed. It is evaluated
to be whatever is on the screen before the OfficeVision command is even typed on
the host screen.

By placing the substitution character inside the braces to make it a runtime
substitution, CM Mouse will evaluate the substitution when the keyword is
encountered during processing:

office[enter]{vmwait}timewarp nextstop={&chars 3 64 8}

This would enter the OFFICE command, wait until the main menu was displayed,
type the characters timewarp nextstop= on the host screen, and then read the third
row, 65th position and get an 8-character string to be typed on the screen.

Both presubstitutions and runtime substitutions are done from left to right. For
example, consider the following button definition:

&{?First name} &{?Last name}

When executed, this definition will first display an input dialog asking for First
name. When that dialog is complete, another will be displayed asking for Last
name. This would behave in the same manner if both of the preceding were
runtime substitutions.

CM Mouse Host Control Words
Host control words are instructions to the emulator program to perform some
interaction with the host or to control the emulator itself. Host control words are
enclosed in square brackets [].

Most of the host control words correspond directly to a key on the keyboard such
as [pf1], [pf2], or [clear]. A control word exists for almost every special key on the
keyboard including cursor controls, PF keys, insert and delete keys, tabs, and PA
keys. Any of the control words shown in “Control and Substitution Word Table”
on page 45 can be used within a CM Mouse button definition.

Chapter 7. Button Definitions 71

72 CM Mouse Support User’s Guide and Reference

Chapter 8. CM Mouse/REXX Interface

REXX is a general purpose programming language which is built into the OS/2
operating system. REXX has the usual structured programming instructions IF,
THEN, ELSE, DO, and so on. It is not necessary to know REXX to make effective
use of CM Mouse. However, REXX can be used to extend the capabilities of CM
Mouse. This chapter describes how to incorporate REXX programming into CM
Mouse. The syntax and structure of the REXX programming language is beyond
the scope of this book, and it is recommended that you obtain Procedures Language
2/REXX Reference which describes the REXX language in OS/2. For the purposes of
this document, it is assumed that you are familiar with the REXX language.

CM Mouse allows REXX programs to be executed in response to the user’s
pressing a mouse button (or combination of buttons) on a host emulation window.
This is achieved through the &{rexx...} substitution word (see &{rexx PgmSource}
or {&rexx PgmSource} on page 69). REXX programs executed in this way can also
execute specific CM Mouse functions through a series of REXX external functions.
This two-way communication system between CM Mouse and REXX is collectively
referred to as the CM Mouse/REXX interface.

This interface provides great flexibility in how CM Mouse responds to the user's
mouse actions. CM Mouse by itself provides a great deal of flexibility by host
screen recognition (the SCREEN statement), subdividing screens into “hot spots”
(the AREA statement), and an extensive pop-up menu and substitution capability.
However, it is sometimes necessary to perform more sophisticated functions which
require the power of a full programming language. For example, although CM
Mouse can substitute strings from the host screen (using the substitution
keywords), it does not have the capability to manipulate that string. Using just CM
Mouse keywords, it is not possible to extract substrings, fold the string to upper or
lower case, or to separate the string into words and phrases. The REXX interface
provides all these functions and many more.

Typical Uses for the REXX Interface

The great majority of button definitions can achieve the desired function without
the use of the CM Mouse/REXX interface. However, there are some specific
situations in which the interface is very useful:

String Manipulation: REXX has an extensive set of functions for manipulating
character strings. It is difficult to do extensive string manipulations with the

© Copyright IBM Corp. 1991, 2019 73

standard set of CM Mouse substitution words. Thus, if the button definition needs
to extract words and phrases from the host screen, to fold strings to upper or
lower case, or perform other advanced string functions, then the CM Mouse/REXX
interface can provide the necessary function.

Conditional Branching: The CM Mouse button definition language has only
limited branching capabilities. A definition can be aborted under a specified
condition (if the user cancels a pop-up menu for example), but there are no general
branching keywords. The CM Mouse/REXX interface provides access to the full
power of REXX structured programming statements such as IF, THEN, ELSE, DO
WHILE, and so on.

System Interfaces: CM Mouse provides interfaces to some operating system
functions such as tasks starting with the {sys...} keyword. However, it does not
provide file services or interfaces to other applications. The CM Mouse/REXX
interface provides access to any operating system facilities supported by REXX,
including file reading and writing, system commands, and alternate command
environments using the REXX ‘address’ instruction.

When a particular function can be done with either a REXX program or CM Mouse
keywords, it is better to do that function with the keywords. CM Mouse keywords
will execute faster and take less storage than the equivalent function written in
REXX. Before writing a REXX program to perform a function, carefully examine
the set of CM Mouse keywords to see if there is a way they can perform the
desired function.

Inline and External REXX Programs

There are two basic forms that a REXX program invoked by CM Mouse can take.
The most common form is the inline form in which the REXX program statements
appear inside the &{rexx...} keyword. In this form, the source text of the REXX
program appears in the BDF along with all the other CM Mouse BDF statements
and keywords. The following is an example of an inline REXX program as part of
a BUTTON statement:

BUTTON LEFT "&{rexx +
if ’&{chars 5 1 3}’ = ’XYZ’ +

then exit ’[pf4]’; +
else exit ’[pf9]’; +

}"

In the second form, external, the REXX program resides in a separate OS/2 file. In
this case the REXX source text is separate (external) from the BDF. The REXX
program is executed with the &{rexx...} keyword as follows:

BUTTON LEFT "&{rexx exit PGMNAME(parm1,parm2,...)}"

where PGMNAME.CMD is the name of the file which contains the REXX source
code. Note that the external REXX program is executed by a single-statement inline
program which just returns the EXIT value of the external program as its own. The

74 CM Mouse Support User’s Guide and Reference

external program is located by a search of the directories listed in the OS/2 PATH
environment variable. Note that this is the PATH value in effect at the time CM
Mouse was started.

In general the first (inline) form is preferred for several reasons:
v An inline REXX program executes faster because it is stored in memory when

CM Mouse is started and does not have to be fetched from disk to be executed.
v It is easier to read a BDF when the REXX program is inline because the source

statements are right there with the rest of the button definition. This makes it
easy to determine what a complete button definition does and to change it if
necessary. If the REXX program resides in an external file then you must look at
two files to understand the whole function of the button definition.

v An inline REXX program is always available, and if the BDF in which it appears
is moved, then the REXX program (by definition) moves with it. When a REXX
program resides in an external file then you must remember to move it with the
BDF if (for example) you send the BDF to someone else to use. It is more
difficult to maintain a system of BDFs if the REXX programs reside in separate
files.

v Inline REXX programs can have CM Mouse substitutions imbedded within
them. This can make it very easy to build REXX programs which use CM Mouse
substituted values. External REXX programs cannot have imbedded CM Mouse
substitutions. (See “CM Mouse Substitutions in REXX Programs” on page 77.)
The first example shown above uses the &{chars...} substitution keyword
within the source text of the REXX program.

There are some cases when an external REXX program may be preferred:
v If the REXX program is very long or complex it may take up an inordinate

amount of space in the BDF. The BDF may be easier to read and maintain if the
REXX program is kept in a separate file.

v If the REXX program is changed often, it may be easier to keep it in an external
file because CM Mouse does not have to reread all the BDFs to pick up changes
in the REXX program.

v If the same REXX program is used in a lot of button definitions, it may be more
efficient and easier to maintain a single external file with the REXX program
than to duplicate the program wherever it is needed.

Syntax

REXX programs can only be invoked by CM Mouse through the use of the
&{rexx...} keyword. Because this is a CM Mouse substitution keyword, it follows all
the normal CM Mouse substitution rules (see “CM Mouse Substitution Words” on
page 60 and “Presubstitutions and Runtime Substitutions” on page 70). The
substituted value of the &{rexx...} keyword is the EXIT value of the REXX program.
If the REXX program does not specify an EXIT value, then a null string is
substituted. Consider the following examples:

&{rexx exit ’[pf4]’}

Chapter 8. CM Mouse/REXX Interface 75

This &{rexx...} keyword will always substitute the string ‘[pf4]’. It is not a very
useful REXX program since it would be easier to just code the string ‘[pf4]’
explicitly. A more realistic example might be:

&{rexx if &{hrow}=2 then exit ’[tab]’}

This example will substitute the string ‘[tab]’ if the host cursor is on row number 2
of the host screen; otherwise, it will substitute a null string.

External REXX programs must follow the normal REXX syntax rules. External
REXX programs cannot contain CM Mouse substitution keywords. Note, however,
that substituted values can be passed to external REXX programs when they are
invoked. For example:

&{rexx exit mypgm(’&{chars 2 1 3}’, &{mrow}, &{mcol})}

This would run the external REXX program MYPGM.CMD and would pass it three
parameters (the first 3 characters of the 2nd line of the host screen, and the row
and column position of the mouse cursor).

Inline REXX programs must also follow REXX syntax rules, and in addition, must
conform to CM Mouse button definition syntax rules. As part of a button
definition, inline REXX programs can contain CM Mouse pre- and runtime
substitutions as described in “Presubstitutions and Runtime Substitutions” on page
70. The source code in an &{rexx...} keyword is treated the same as any other CM
Mouse substitution keyword. As such, it must follow CM Mouse keyword syntax,
in particular:
v It must end in a closing brace to delimit the &{rexx...} keyword.
v It may contain any pre- or run-time CM Mouse substitutions. Note, however,

that this is a substitution keyword itself so nested substitution rules apply (for
example, a presubstitution &{rexx...} keyword cannot contain a runtime
substitution).

v It may be continued over multiple lines only by use of the CM Mouse
continuation characters + and -.

v If the program exceeds 512 characters in length, the &{break} keyword must be
used to break up the program into sections of 512 characters or less. If a
program exceeds 512 characters, the REXX error message:

REXX003: Program is unreadable

is displayed. The &{break} keyword can appear anywhere a normal REXX line
break is allowed.

Because the entire CM Mouse keyword is considered a single entity, line breaks are
not seen by the REXX interpreter. Thus there are no implied semicolons in an
inline REXX program -- you must explicitly code semicolons at the end of REXX
statements, even if they are at the end of a button definition line. For example, the
following is incorrect:

&{rexx +
a = ’abc’ +
b = ’def’ +
exit a}

This will fail to run because the two assignment statements are not separated.
After the lines are concatenated, the button definition would read:

&{rexx a = ’abc’ b = ’def’ exit a}

which is incorrect REXX syntax. This inline REXX program should be written:

76 CM Mouse Support User’s Guide and Reference

&{rexx +
a = ’abc’; +
b = ’def’; +
exit a}

A semicolon is not required after the last REXX statement. Note that each line of
the source code must end in a CM Mouse continuation character.

Because CM Mouse does not perform any semantic analysis of the REXX program,
it can misinterpret string constants within the REXX program which appear to be
CM Mouse delimiters. For example:

&{rexx +
a = ’}’; +
exit ’}

CM Mouse will interpret the brace inside the REXX program as the closing brace
of the &{rexx...} keyword. REXX programs which contain CM Mouse delimiters
must be placed in a CMD file and run as an external REXX program or must use
the REXX X2C or D2C functions to encode the delimiter.

CM Mouse Substitutions in REXX Programs

As discussed in the previous section, inline REXX programs can contain CM
Mouse substitution keywords as part of the REXX source code. Since these
substitutions appear within the &{rexx...} substitution keyword, they are treated
like any other CM Mouse nested substitution. That is, if the keyword is a
presubstitution then it is replaced with its substituted value before any part of the
button definition is executed. If the keyword is a runtime substitution then its value
is substituted when the &{rexx...} keyword is executed. Runtime substitutions
within REXX programs are all substituted prior to executing any part of the REXX
program.

Because CM Mouse does not analyze the semantics of inline REXX programs,
string constants which contain CM Mouse substitution characters may be
misinterpreted as substitutions. For example, the following REXX program
attempts to build a string which contains the characters &{mrow}:

&{rexx +
... +
mystr = ’&{mrow}[enter]’; +
... +

}

The variable MYSTR would contain a string which consists of the row number of
the mouse cursor followed by the string [enter]. Since &{mrow} appears to be a
CM Mouse substitution, CM Mouse makes the substitution before the REXX
program is executed. Now consider:

&{rexx +
... +
mystr = ’&’||’{mrow}[enter]’; +
... +

}

Chapter 8. CM Mouse/REXX Interface 77

In this example, the REXX variable MYSTR would contain the string
&{mrow}[enter]. Note that the apparent substitution is not evaluated because the &
and { were separated in the source code and thus CM Mouse does not attempt to
perform a substitution. This can be most important when building button
definition strings for execution using the CmmExec function (see “CmmExec” on
page 81).

Debugging REXX Programs

To aid in the debugging of complex REXX programs (inline or external), CM
Mouse allows REXX programs to display debug messages in a Presentation
Manager dialog box. To display a message, a REXX program can use the REXX
SAY instruction. CM Mouse takes the specified string and displays it in a simple
dialog box with an OK button. When the user selects the button (or presses Enter)
execution of the REXX program continues with the next statement. For example:

&{rexx +
myvar = ’&{chars 6 1 10}’; +
say myvar; +
myvar = myvar||’ COMMAND’; +
say myvar; +
exit ’; +

}

This program first displays a message box which contains the first 10 characters of
the 6th row of the host screen. When the user clicks on the OK button of the
dialog, another box is displayed with the same data followed by the word COMMAND.
When that dialog box is dismissed, the program exits.

Syntax errors in REXX programs are not discovered until the program is executed.
Inline programs are halted and the offending statement displayed along with a
REXX error message. External REXX programs are halted, and the REXX error
message:

REXX040: Incorrect call to routine

is displayed. To isolate the exact cause of a syntax error in an external REXX
program, the SIGNAL facility in REXX can be used. Insert the statement SIGNAL
ON SYNTAX at the start of the program, and the following at the end of the
program:

syntax:
errormsg=’REXX syntax error in line ’ sigl’:’ errortext(rc);
say errormsg;
say sourceline(sigl);
exit ’;

For example, an external REXX program might be written as follows:
/* REXX program */

signal on syntax; /* Trap syntax errors */

if xyz else do;
exit ’abc’;

78 CM Mouse Support User’s Guide and Reference

syntax: /* Execute this if syntax error */

errormsg=’REXX syntax error in line ’ sigl’:’ errortext(rc);
say errormsg;
say sourceline(sigl);
exit ’;

When the IF statement is analyzed by the REXX interpreter, a syntax error
condition is raised. This causes the code after the SYNTAX label to be executed.
The error routine will generate two error messages indicating the type and location
of the error.

Note that there is no need to trap syntax errors in inline REXX programs. CM
Mouse will automatically trap syntax errors in inline programs and display the
REXX error message and the offending source statement.

REXX External Functions

When a REXX program is executed using the CM Mouse &{rexx...} keyword, CM
Mouse makes a set of external functions available to the executing REXX program.
These functions allow the REXX program to perform a wide range of tasks related
to the host session, including popping up menus, presenting input dialogs, and
executing button definition strings.

These functions are automatically known to the REXX program; in REXX there is
no need for ADDRESS instructions to use these functions. Each of the external
REXX functions is described in the following sections. Note carefully the syntax of
each function; some functions return a value (and are used as expressions in the
REXX program), and some return no value and should be invoked using the CALL
instruction in REXX.

CmmSearch
Syntax:
Call CmmSearch ’FOR /title/ AT r1 c1 r2 c2 WAIT n NOT’;

This function allows a REXX program to easily search for a string in the host
screen without having to get the screen image through CmmScreen and searching
it line-by-line. The parameters for CmmSearch are identical to the {search} keyword
described in {search FOR 'string' AT r1 c1 r2 c2 WAIT n NOT ASIS NOQUIT} on
page 54.

If the search is successful, the following occurs:
v The REXX variable CmmRC is set to zero.
v The CM Mouse system variables SYSTEM_SROW and SYSTEM_SCOL are set to

the row and column in which the string was found.

If the search fails, the REXX variable CmmRC is set to a nonzero value.

For example, to search for the string Hello anywhere on line 6 of the host screen,
the following REXX program could be used:

Chapter 8. CM Mouse/REXX Interface 79

call CmmSearch ’for .Hello. at 6 1 6 0 wait 5’;
if CmmRC = 0

then say ’Hello was found in column ’ CmmGet(’system_scol’);
else say ’After 5 seconds, Hello was not found’;

CmmGetScreen
Syntax:

Call CmmGetScreen;

-or-

Call CmmGetScreen ’n’;

This function reads the host screen and returns it as a series of strings in the REXX
compound symbol SCREEN. Each line of the host screen reads into one component
of the stemmed variable as follows:

SCREEN.1 = Line #1 of the host screen
SCREEN.2 = Line #2 of the host screen
...
SCREEN.n = Line #n of the host screen

In addition, the SCREEN.0 component is assigned a string consisting of the
following three values separated by blanks:

Session ID (1 char)
Number of rows in host screen
Number of columns in host screen

Optionally, a line number can be supplied as a parameter in which case only the
specified line is read. For example, the following would read the entire screen and
then examine the line the mouse cursor is on to determine if it starts with the
word Ready;:

&{rexx +
Call CmmGetScreen;+
if word(screen.&{mrow},1) = ’Ready;’+
then ...+

}

The next example reads the second line of the screen, and checks to see if it
contains only the characters XYZ. Note that the screen data must be stripped of
blanks; this function always assigns strings which are the full width of the host
screen, including leading and trailing blanks. This example also extracts the session
ID, and the number of rows and columns in the host screen.

&{rexx +
Call CmmGetScreen ’2’;+
if strip(screen.2, ’B’) = ’XYZ’+
then ...+

parse var screen.0 session rows cols;+
}

Note: If a line number parameter is supplied and it is less than 1 or greater than
the number of host screen lines, a runtime error is flagged. The value
supplied cannot be zero or negative to indicate an offset from the end of the
screen.

CmmInfo
Syntax:

var = CmmInfo();

80 CM Mouse Support User’s Guide and Reference

This function returns a string containing information about the status of the
current host session. The returned string contains eight values separated by blanks.
Note that the parentheses are required after the function name. The returned string
contains:

Session ID (1 character)
Host Cursor Row
Host Cursor Column
Mouse Cursor Row
Mouse Cursor Column
Number of Host Rows
Number of Host Columns
Type of host session (3270/5250)
User Text Editor

For example:
&{rexx +

Data = CmmInfo();+
parse var Data id hrow hcol mrow mcol maxrow maxcol type editor;+
if maxrow > 24 then ...;+

}

Note that most of the information returned is available to inline REXX programs
through substitutions (for example, &{hrow}, &{hcol}, and so on).

CmmExec
Syntax:

Call CmmExec ’ButtonDefinitionString’;

This function allows a REXX program to execute a button definition string. The
string can contain any CM Mouse keywords, including pre- and runtime
substitutions and host keystrokes. The string is executed by CM Mouse just as if it
had come from a button definition file.

The REXX variable CmmRC is set to indicate the success or failure of the execution.
A button definition which is aborted by a cancelled pop-up menu, a cancelled
input dialog, a failed {search...} keyword, or by an invalid CM Mouse keyword is
considered to have failed.

The following example would send a PF6 key to the host, and then a pop-up
confirmation dialog appears with the question “Really do this thing?” The program
then checks to see how the user responded (OK or CANCEL button).

&{rexx +
Call CmmExec ’[pf6]{?Really do this thing?}’;+
if CmmRC<>0 +
then /* User cancelled */ +
else /* User confirmed */ +

}

Note that CM Mouse presubstitutions which appear in the CmmExec parameter are
substituted before the REXX program starts. This can lead to some unexpected
results:

&{rexx +
Call CmmExec ’{rowcol 5 10}’;+
Call CmmExec ’Host cursor is now in row &{hrow}’;+

}

You might expect this program to move the host cursor to row 5 column 10, then
type on the host screen Host cursor is now in row 5. However, the &{hrow}

Chapter 8. CM Mouse/REXX Interface 81

substitution is done before the REXX program is executed, so the value is whatever
row the cursor was in before the REXX program started.

You can do a presubstitution in a CmmExec call by using REXX strings to prevent
the keyword from appearing like a presubstitution:

&{rexx +
Call CmmExec ’{rowcol 5 10}’;+
Call CmmExec ’Host cursor is now in row &’||’{hrow}’;+

}

This example will display Host cursor is now in row 5 because CM Mouse does
not see any presubstitution within the &{rexx...} keyword. REXX string
concatenation has been used to hide the substitution until the REXX program is
actually executed. The same technique can be used to hide runtime substitutions if
necessary. See “CM Mouse Substitutions in REXX Programs” on page 77.

CmmConnect
Syntax:

Call CmmConnect ’c’;

This function allows a REXX program to disconnect from the current host session,
and optionally connect to another host session. A single character argument must
be supplied. The argument must be the session ID of a currently valid host session,
or the special value ‘*’. If a valid session ID is supplied, CM Mouse will disconnect
from the current session, and connect to the specified session. All host interactions
thereafter are with the new host session. If the value ‘*’ is specified, the current
host session is disconnected and no other session is connected. The session ID
parameter is not case sensitive.

The REXX variable CmmRC is set to indicate the success or failure of the connect
attempt. A nonzero value of CmmRC indicates that the specified host session could
not be connected (and the previous session, if one exists, is still connected).

This function does not cause the host session window to be activated or
maximized.

This function can be used in a REXX program which (by some means other than
CM Mouse) uses the EHLLAPI host interface. Because the EHLLAPI host interface
allows only one program to have the session open at a time, CM Mouse must be
disconnected from a host session before any other program can use the interface.
For example:

(Continuation characters "+" omitted for clarity)

&{rexx
Call CmmConnect ’*’; /* Disconnect */
...
... /* EHLLAPI interactions */
...
Call CmmConnect ’b’; /* Connect to B */
Call CmmInfo(); /* Get information on B session */
...
...
Call CmmConnect ’&{sid}’; /* Reconnect to original session */
if CmmRC<>0
then... /* Connect failed... */

}

82 CM Mouse Support User’s Guide and Reference

Note that the final CmmConnect uses the &{sid} substitution which is done before
the REXX program is executed, and thus substitutes the session which was active
at the time the REXX program started.

CmmPopup
Syntax:

var = CmmPopup(’PopupName’);

This function will cause CM Mouse to display the named pop-up menu. The
returned value is the string returned by the menu (for example, the button
definition string on the menu LINE chosen by the user). If the user cancels the
menu, then a null string is returned and the REXX variable CmmRC is set to a
nonzero value.

Note that the string returned by the menu is not executed or interpreted by CM
Mouse in any way. No substitutions are done on it. The string is returned exactly
as it appears in the menu file.

Consider the difference between:
&{rexx +

Call CmmExec ’&’||’{popup mymenu}’;+
}

and
&{rexx +

data = CmmPopup(’mymenu’);+
}

Both of these REXX programs cause the MYMENU.MMM menu to be displayed.
The first program also executes the string resulting from the menu. The second
program does not execute anything, it simply assigns the string to a REXX
variable. The second program could be modified to perform identically to the first:

&{rexx +
data = CmmPopup(’mymenu’);+
Call CmmExec(data);+

}

It is important to understand that the CmmPopup function does not cause any
keystrokes to be sent to the host; it just returns the string from the menu LINE the
user picked on the pop-up. The REXX program can then determine how to process
the string.

CmmPrompt
Syntax:

var = CmmPrompt(’Question|Answer’);

This function will cause CM Mouse to display a user-input dialog. The format of
the parameter string is the same as the &{?....} keyword (see &{?<Qtext>|<Atext>}
or {&?<Qtext>|<Atext>} on page 67). It consists of two strings separated by a
vertical bar character. The first string is the title of the dialog box, the second is
used to preassign the input field. The leading $ or % flags may be used in the
Answer string as in the &{?...} keyword.

Chapter 8. CM Mouse/REXX Interface 83

The result of the function is the character string in the input field when the user
clicks the OK button. If the user cancels the dialog, the result is a null string and
the REXX variable CmmRC is set to a nonzero value.

In the following example, the user is prompted for a PC file name. If the file does
not exist, the user is reprompted for it. When a valid name is entered, the loop
terminates with a message.

&{rexx +
Prompt=’Enter PC file name|’;+
Fname =’;+
do until (exist <> ’’);+
Fname = CmmPrompt(Prompt||Fname);+
if CmmRC<>0 then exit;+
exist = stream(fname,’c’,’query exists’);+
if exist=’’ then Prompt=’File not found - try again|’;+

end;+
say ’File’ fname ’found.’;+
}

Note that if the user cancels the input dialog, the REXX program exits without
displaying a message.

CmmGet
Syntax:

var = CmmGet(’VarName’);

This function will return the value of a CM Mouse variable (see Chapter 10, “CM
Mouse Variables,” on page 95). The parameter supplied is the name of the variable
who's value is to be returned. If the specified variable does not exist, a null string
is returned. For example, the following would display a message box with the
string MyVar = Hello There:

{set xyz Hello There}{&rexx+
myvar = CmmGet(’xyz’);+
say ’MyVar = ’xyz;+

}

Note the use of runtime substitution to delay execution of the REXX program until
after the {set...} keyword is executed.

There is no direct association between CM Mouse variables and REXX variables.
That is, CM Mouse variables are not known to REXX, and REXX variables are not
known to CM Mouse. The CmmGet and CmmPut functions can be used to read and
write CM Mouse variables from a REXX program.

CmmPut
Syntax:

Call CmmPut ’VarName’, ’VarValue’;

This function will assign a new value to a CM Mouse variable (see Chapter 10,
“CM Mouse Variables,” on page 95). This function requires two parameters; the
first is the name of the CM Mouse variable (case insensitive), and the second is the
string to be assigned to that variable.

84 CM Mouse Support User’s Guide and Reference

If the variable already exists in CM Mouse, its value is replaced. If it does not
exist, it is created. For example, the following would display two message boxes.
The first would be displayed with the message MyVar = Hello There, and the
second would show MyVar = New value.

{set xyz Hello There}{&rexx+
myvar = CmmGet(’xyz’);+
say ’MyVar = ’xyz;+
+
Call CmmPut ’xyz’, ’New value’;+
myvar = CmmGet(’xyz’);+
say ’MyVar = ’xyz;+

}

The CmmGet and CmmPut functions can be used to save information from one
REXX invocation to another. They can also be used to provide information to other
button definitions which use the &{var ...} keyword.

There is no direct association between CM Mouse variables and REXX variables.
That is, CM Mouse variables are not known to REXX, and REXX variables are not
known to CM Mouse. The CmmGet and CmmPut functions can be used to read and
write CM Mouse variables from a REXX program.

Chapter 8. CM Mouse/REXX Interface 85

86 CM Mouse Support User’s Guide and Reference

Chapter 9. Drag/Drop Features

OS/2 versus Windows Drag/Drop
The CM Mouse drag and drop features are essentially the same for OS/2 and
Windows. There are some operational differences because the OS/2 desktop
(Workplace Shell) and the Windows desktop (Program Manager) are quite different
in capability and function.

For the OS/2 environment, objects can be dragged directly from the host screen to
the WPS desktop, file folders, shredders, or printers. File objects on the desktop or
in folders may be dragged directly to the host screen for uploading.

For the Windows environment, the CM Mouse Drag/Drop application window
provides the desktop drag/drop point. This program must be running to provide
CM Mouse drag/drop file transfer or shredding. The Drag/Drop application
provides a means to navigate the disks and directories of the file system and
display lists of files. This file list can be the source of a drag to the host screen by
selecting the file(s) to be uploaded and dragging them with the right mouse button
to the host window. Host objects may be dropped on the file list to download files
to the selected disk and directory. The Drag/Drop application also provides a
shredder on which host objects may be dropped. (As a convenience, files may also
be dragged from the file list to the shredder to delete them).

CM Mouse also supports files dragged from the Windows File Manager program to
the host screen. However, host object may not be dropped on the File Manager.
Thus only file uploading is supported via the File Manager, not downloading,
deleting, or printing.

How CM Mouse Drag/Drop Works
The CM Mouse drag/drop features allow CM Mouse scripts to enable and control
the drag of host objects to the OS/2 Workplace Shell and the Windows CM Mouse
Drag/Drop application window. It also enables the drop of file objects on the host.
Like other CM Mouse functions, the drag/drop features are based on a context
sensitive understanding of the host screens. Only drag/drop functions which make
sense in the context of the host applications are allowed.

The basis for CM Mouse drag/drop functions are the BDF DRAG and DROP
statements. These statements determine where dragging and dropping are allowed
(what host screens, and what areas of what host screens). In the same way that
BUTTON statements define the action to occur when a button is clicked in a
particular area of a host screen, the DRAG/DROP statements define the actions to
occur when a drag or drop occurs in a particular area of a host screen.

DRAG and DROP statements may occur anywhere in a BDF that the BUTTON
statement is allowed. The position of the DRAG/DROP statements within
SCREENs and AREAs determine what type of drag/drop functions are supported
on a specific host application screen. For example, consider the following BDF
fragment:
Line Statement
---- ---
1 SCREEN 1 1 exact * "File List"

© Copyright IBM Corp. 1991, 2019 87

2 DROP FILE "{xfer drop ...}"
3 AREA 1 1 2 80
4 DRAG FILE "{xfer drag ... method=screen ...}"
5 AREA 3 1 23 80
6 DRAG FILE "{xfer drag ...}"
7 DRAG DISCARD "{seek}erase[enter]"

When this particular application screen is displayed, the following drag/drop
functions are defined:
v The user may drop a file from the PC to any part of the host screen. This is

allowed because of the DROP FILE statement in line 2 which applies to the
entire screen. When the user drops a file anywhere on the screen the script
defined in line 2 is executed.

v The user may drag from anywhere in the first two lines of the host screen to any
WPS folder, the OS/2 desktop, or the Windows Drag/Drop file list. This is
enabled by line 4 of the script. When the user drops on the PC the script in line
4 is executed. In this case a screen capture is written to the target file.

v The user may drag from anywhere in the 3rd through 23rd lines of the screen to
any WPS folder, desktop, or shredder object. This is enabled by lines 6 and 7. If
the user drops on a folder or the WPS desktop then the script in line 6 is
executed. If the user drops on a shredder then the script in line 7 is executed.

v The user cannot drag from the first two lines to a shredder object because there
is no DRAG DISCARD statement associated with that area of the host screen. If
the user begins a drag in this area, the do-not-drop symbol is displayed when
the drag icon is moved over the shredder.

v The user cannot begin a drag operation in line 24 of the host screen because
there is no DRAG statement for this area.

v The user cannot drag from any part of the host screen to a WPS printer object
because there is no DRAG PRINT statement associated with any part of this
screen.

DRAG Statements
A DRAG statement indicates the area of the screen in which the user may originate
a drag operation. There are three possible forms of the DRAG statement:

DRAG FILE "script"
DRAG PRINT "script"
DRAG DISCARD "script"

The first parameter of the DRAG statement defines what type of object may be the
target of the drag. The FILE type indicates that the drag which originates in this
area may drop on a WPS folder, the OS/2 desktop, or the Windows Drag/Drop
file list. The PRINT type indicates that the user may drop on an WPS printer
object.

Note: DRAG PRINT statements are ignored in Windows. The DISCARD type
indicates the user may drop on a shredder object.

If an area of the screen has more than one DRAG statement associated with it, then
the user may drop on any of the DRAG types for which there is a DRAG
statement. For example, if an area has a DRAG PRINT statement and a DRAG
DISCARD statement, then the user may drag to a printer or a shredder. However
they would not be able to drop on a folder or the WPS desktop (since there is no
DRAG FILE statement).

88 CM Mouse Support User’s Guide and Reference

When the drop occurs, the script associated with the DRAG statement is executed.
The script may contain any CM Mouse keyword or function and is executed just
like BUTTON statement scripts, with the following exception:

Note: A DRAG FILE statement must contain the CM Mouse file transfer keyword:
{xfer drag ...}

DRAG must be the first parameter of the transfer keyword. The transfer
keyword HOST and PC parameters must not contain any CM Mouse
keyword which would cause interaction with the user. For example, the
following is invalid:

DRAG FILE "{xfer drag host=’&{chars 5 6 12}’ pc=’&{?Enter PC file name}’}

Prompting keywords may be used elsewhere in the script.

DROP Statements
A DROP statement indicates that the area of the screen in which the user may drop
an object. The form of the DROP statement is:

DROP FILE "script"

The first parameter of the DROP statement defines what type of object may be
dropped on the host screen. Currently CM Mouse supports only the dropping of
FILE objects.

When the drop occurs on the host screen, the script associated with the DROP
statement is executed. The script may contain any CM Mouse keyword or function
and is executed just like BUTTON statement scripts.

If there is no DROP associated with a particular area of the host screen then the
do-not-drop symbol is displayed if a file is dragged over that area.

The XFER Keyword
The file transfer keyword may be used in DRAG/DROP scripts or in any script to
initiate a file transfer. Execution of the script stops until the file transfer is
completed, and then resumes with the next keyword in the script. The system
variable SYSTEM_XRC contains 0 (zero) if the transfer was successful, or nonzero
if it failed.

There are four basic forms of the XFER keyword depending on the context in
which it is used:

{xfer DRAG ...}
{xfer DROP ...}
{xfer SEND ...}
{xfer RECV ...}

The DRAG/DROP forms must be used when the XFER keyword is used in a
DRAG/DROP BDF statement. The SEND/RECV forms are used when the XFER
keyword is used in a CM Mouse menu or BUTTON script.

Each form has different requirements and rules concerning the specification of the
host and PC file names which are to be used in the transfer. Also some parameters
are valid only when used in particular forms. The full XFER keyword syntax is as
follows:

Chapter 9. Drag/Drop Features 89

►► { XFER SEND
RECV
DRAG
DROP

TYPE= VM
MVS

PC= PCFileName
*

HOST= ►

► HostFileName
* SESS= A

B
...
*

XLATE= *
XlateName

►

►
METHOD= EHLLAPI

SCREEN
QUIET= YES

NO
CLEAR= YES

NO
DEFAULT

►

►
PARMS= XferParameters

} ►◄

The parameters have the following meanings:

SEND Transfers the specified PC file to the host. The PC file name must be fully
qualified with drive, path, and name. The host file name may be explicitly
given or * may be used for automatic name mapping (see “Automatic
Name Mapping” on page 92). The METHOD option is not allowed
(SCREEN based transfer to the host is not supported).

RECV Transfers the specified host file to the PC. The host file name must be
given. The PC file name may be fully qualified with a drive, path, and
name, or the * may be used in place of the name for automatic name
mapping (see “Automatic Name Mapping” on page 92).

DRAG
Transfers the specified host file to the PC as part of a DRAG FILE
statement. This form may not be used except as part of a DRAG FILE
statement in a BDF. The host file name must be specified (possibly by
substitution of data from the host screen). The PC file name must be either
a simple file name (no drive or path), or an * for automatic name mapping.
The drive and path of the file is determined by where the drop occurred in
the OS/2 WPS (or the current drive/directory shown in the Windows
Drag/Drop program).

DROP Transfers the specified PC file to the host as part of a DROP FILE
statement. This form may not be used except as part of a DROP FILE
statement in a BDF. The host file name may be explicitly given or * can be
used for automatic name mapping. The PC file name must be * and no
other value is allowed. The actual file name is determined by the source of
the drag operation.

TYPE Specify the type of host for the file transfer. The only supported values are
VM and MVS. This parameter is required.

PC Specify the name of the PC file for the transfer. The name must be
enclosed in a single delimiter character which does not occur in the file
name itself. See the SEND/RECV/DRAG/DROP descriptions for the
format of this parameter. This parameter is required.

HOST Specify the name of the host file for the transfer. The name must be
enclosed in a single delimiter character which does not occur in the file

90 CM Mouse Support User’s Guide and Reference

name itself. See the SEND/RECV/DRAG/DROP descriptions for the
format of this parameter. This parameter is required.

SESS Specify the session on which the file transfer is to take place. A value of *
will use the current session. If not specified, * is used.

METHOD
Specify the method to be used for the data transfer. Currently the only
supported values are EHLLAPI and SCREEN:

EHLLAPI
A file-to-file data transfer is done using the normal emulator file
transfer facilities. This is the default.

SCREEN
A screen-to-file data transfer is done. This value is valid only for
RECV and DRAG type transfers. The host screen image is captured
and written to the PC file. The host file name parameter is used to
define what (rectangular) portion of the host screen is to be
captured. The format is:

HOST=’startrow startcol endrow endcol’

The ending row/columns can be specified as zero or negative to
indicate offsets from the edges of the screen. Currently
SEND/DROP type transfers with a SCREEN method are not
supported.

XLATE
Specify the symbolic name of a file translation type. A translation type is a
shorthand way of defining what file transfer parameters are used (binary,
ascii, etc). Translation types are defined using CM Mouse SET statements
in a BDF script. Translation types are SET statements of the form:

SET XFER-<method>-<SEND┘RECV>-<type>-<XlateName>
"<file transfer parameters>"

Where:
v <method> is the method= value in the {xfer} keyword (currently only

the EHLLAPI method is supported).
v <type> is VM for VM hosts, MVSSEQ for MVS sequential datasets, or

MVSPDS for MVS partitioned datasets.
v <XlateName> is the symbolic name of this translation type.
v <file xfer parms> are the standard command-line parameters for file

transfer (such as "ASCII CRLF").

For example, the following would define the translation type "text" for files
sent to VM:

SET xfer-ehllapi-send-vm-text "ASCII CRLF"

Then any {xfer ... xlate=text} would use the file transfer parameters ASCII
CRLF.

If * is used, the translation type is taken from the automatic name mapping
table (the transfer type will depend on the source file type). See
“Automatic Name Mapping” on page 92.

QUIET
If YES is specified, no progress or status window is displayed during the
file transfer. If NO is specified, a progress window is displayed. Only the
first character is required. The default is Y.

Chapter 9. Drag/Drop Features 91

CLEAR
If YES is specified, a 3270 CLEAR key is sent to the host before the file
transfer command. If NO is specified, no CLEAR key is sent. DEFAULT
may be used to default this option (defaults to YES for VM, NO for MVS).
Only the first character is required. The default value is D.

PARMS
If this parameter is specified, its value is used for the file transfer
parameters, overriding any parameters set by the XLATE value. The value
must be enclosed in a single delimiter character which does not occur
within the value itself.

Automatic Name Mapping
When the target file name of a file transfer contains an *, CM Mouse uses automatic
name mapping to generate the target file name. It is also used to determine the
translation type when xlate=* is specified in the file transfer keyword (XFER).

Automatic name mapping makes it possible to map names between PC and host
file systems based on the type of file being transferred. Name mapping is based on
the source file type where type is defined as follows:

VM: The file type
MVS: The last qualifier
PC: The file extension

Name mapping tables are defined to CM Mouse through the use of DEFINE
statements in a BDF script file. A name mapping table takes the form:

DEFINE NAMEMAP <SEND┘RECV>-<VM┘MVS>
<SourceType> <TargetType> <XferType>
<SourceType> <TargetType> <XferType>
<SourceType> <TargetType> <XferType>
<SourceType> <TargetType> <XferType>

ENDDEFINE

Thus there are currently a maximum of four name mapping tables, two each for
VM and MVS. Each table is a list of mappings from a source file type to a target
file type, and the symbolic name of the transfer type to be used.

The <SourceType> parameter can use a single * for a wildcard matching character.
The <TargetType> parameter can use = to substitute the source type. It may also
specify a delete string enclosed in square brackets. If after any substitutions the
target contains the delete string, it is deleted from the target. <XferType> is a
symbolic transfer type as described in {xfer ..} on page 58.

When a target file name contains an * or XLATE=* is used in the XFER keyword,
the appropriate name mapping table is searched from top to bottom. The first
<SourceType> that matches the source file type is used to generate the target file
name and translation type. The last <SourceType> in the list must be * to act as a
default if the file does not match any other source type above it.

For example, the following would be a name mapping table for receiving files from
the Host to the PC:

define namemap send-vm
bin bin binary (keep "BIN" filetype)
*bin =[bin] binary (if ends in BIN, use source filetype without BIN)
script scr text (map SCRIPT to .SCR)
module mod binary (map MODULE to .MOD)

92 CM Mouse Support User’s Guide and Reference

list38* l38 binary (any LIST38xx file maps to .L38)
notebook nbk text
* = binary (all others use VM filetype truncated to 3 chars)

enddefine

The sample script file XFERDEFS.BDF shows a more extensive example of name
mapping tables.

Chapter 9. Drag/Drop Features 93

94 CM Mouse Support User’s Guide and Reference

Chapter 10. CM Mouse Variables

CM Mouse allows button definitions and BDF/MMM files to set and use the value
of variables. A variable is a string of characters that can be changed by certain CM
Mouse keywords. Variables have two parts: a name, which is a way to refer to the
variable, and a value, which is a string of characters. Variables do not have to be
predefined or declared as in traditional programming languages.

A variable name can be any length and can contain any nonblank characters.
Variable names are not case sensitive, so the variable name VARname refers to the
same variable as varName. You can type variable names in any way that is most
readable to you.

Setting the Value of a Variable
There are two ways to set the value of a variable. You can either use the {set...}
keyword in a button definition or assign a value with a SET statement in a BDF or
MMM file. The following sections describe these two techniques.

Setting the Value of a Variable in a Button Definition
The value of a variable can be set by the {set...} keyword in a button definition (see
“CM Mouse Control Words” on page 46). The keyword format is:

{set User-Variable-Name Value}

The value starts with the first nonblank character after the name and continues to
the closing brace. It can contain any characters and can be formed by explicit
characters or substitutions. For example:

{set UserName J. Smith}

This would set the value of the variable UserName to the string J. Smith. The value
can be substituted by using a CM Mouse substitution keyword:

{set ColNum &{hcol}}

This would set the variable named ColNum to the column number of the host
cursor. If the host cursor was in the 10th column of the screen at the time this
keyword was executed, then the value of ColNum would become the character
string 10. Another example:

{set Host-Location The cursor is at &{hrow},&{hcol}}

This would set the variable Host-Location to the string The cursor is at x,y where x
and y are the row and column numbers of the host cursor.

{set Filename &{?Enter file name}}

This example would display an input dialog, prompting the user to enter a file
name. Whatever the user typed in the input field would become the value of the
variable Filename.

{set Filename &{?Enter file name|&{var Filename}}}

This example is the same as the previous one, except that the default string
displayed in the input field is the current value of the Filename variable. This
allows you to build input prompts that remember the last value the user entered.

© Copyright IBM Corp. 1991, 2019 95

Setting the Value of a Variable in a BDF or MMM File
A variable can also be assigned a value during BDF reading (initialization) and
during MMM reading (invoking a pop-up). To understand how this works, it is
important to know when and how CM Mouse reads BDF (button definition) and
MMM (menu) files. BDF files are read only once, during CM Mouse initialization.
MMM files are read each time they are displayed. BDF files can be reread by
selecting the Reread BDF files from the action bar of the CM Mouse control panel.

The value of a variable can be set in a BDF or MMM file by using the SET
statement. The format is:

SET Var-Name “Value”

The variable value can be formed from explicit characters and from substitutions.
(Note that only presubstitutions are allowed in SET statements, no runtime
substitutions are allowed.) SET statements are only processed when the BDF or
MMM file in which they appear is read. Consideration should be given to when
SET statements are processed when using substitutions. For example, BDF files are
read only during initialization, so it would not make much sense to do a
substitution involving the cursor position, such as the following:

SET CurPos “&{hcol}”

In a BDF file, this would save the position of the host cursor at the time CM
Mouse was started (or the last time the BDFs were reread). That is generally not
very useful. It may be quite useful, however, to have such a statement in an MMM
file, since the MMM file is read and processed whenever the pop-up is invoked
with the &{popup...} substitution word.

Since a SET statement can contain substitutions, it is possible to cause an input
dialog to be presented during BDF or MMM reading. For example, suppose the
following SET statement appears in a BDF:

SET OV-ID “&{?Enter your OfficeVision User ID}”

This would prompt the user for an ID when CM Mouse is started and whenever
the BDFs are reread. The variable OV-ID could then be used in a number of ways in
BDF definitions and MMM files, for example:

TITLE “Mail for &{var OV-ID}”
LINE “Read my mail”...
LINE “Exit mail”...

This menu file uses the variable in the title to get a pop-up menu like the
following:

By placing a SET statement in an MMM file, the user can be prompted with an
input dialog immediately before a pop-up menu is shown. The value of that input
field can then be used in the menu or the menu’s substitution text. Statements in
BDF and MMM files are processed sequentially from top to bottom. SET
statements should appear in an MMM file before the first usage of the variable
being set. For example, the following would not work as expected:

96 CM Mouse Support User’s Guide and Reference

title “&{var MyTitle}”
set MyTitle “&{?A title, please}”
line...
line...

The user would be prompted for a title before the pop-up appears, but the value
typed in would not appear in the title area of the pop-up because the substitution
was done before the value of the variable was SET. This should be written as
follows:

set MyTitle &“{?A title, please}”
title “&{var MyTitle}”
line...
line...

Variable Substitutions (Using the Value of a Variable)
The value of a variable can be used anywhere any other CM Mouse substitution
keyword is valid. Like other substitutions, a variable can be presubstituted, or
runtime substituted. The format for variable substitution is:

&{var Var-Name} -- Presubstitution
{&var Var-Name} -- Runtime substitution

The semantics are the same as other substitutions; a presubstitution is done before
any part of the button definition is executed and a runtime substitution is done as
the definition is executed from left to right. For example, consider a definition such
as:

{set MyFile &{?Enter file to delete}}delete &{var MyFile}

This would not work as expected. To understand why not, consider the order of
evaluation. First, all presubstitutions are done (from left to right), so the Enter
file prompt is presented, and the value given by the user is substituted into the
{set...} keyword. Then the &{var...} presubstitution is done, but note that the {set...}
keyword has not been executed yet, so the value substituted is whatever the value
was previously. Finally, execution starts with the {set...} keyword, and the value
supplied by the user is assigned to MyFile. The delete command is typed on the
host but with the old value of MyFile. The correct coding of this is:

{set MyFile &{?Enter file to delete}}delete {&var MyFile}

Note the ampersand (&) is inside the braces of the variable substitution. This
delays the substitution until after the {set...} has been executed and delete has
been typed on the host screen. It would also be proper for the prompt to be a
runtime substitution:

{set MyFile {&?Enter file to delete}}delete {&var MyFile}

Note the ampersand (&) inside the braces of the file name input prompt. This
would behave exactly as the previous example.

Rules of Variables
Variables and their values persist for as long as CM Mouse is executing. There is
no way to delete a variable, although it can be assigned a null value. A variable
may be used in a substitution before it has been assigned a value. Such a usage
will substitute a null string. Thus, in effect, there is no distinction between a null
variable value and a variable that has never been assigned a value. This allows a
variable to be used to hold the default value of an input dialog without having to
explicitly preassign it:

Chapter 10. CM Mouse Variables 97

{set Target &{?Enter target name|&{var Target}}}

This example would prompt for the target name, using the target name that was
last entered as the default value. The first time this is executed, the &{var...}
substitutes a null because Target is not assigned any value yet. The next time,
&{var...} will substitute the value the user entered the previous time this definition
was executed.

Predefined System Variables
The following variables are automatically set when CM Mouse is started:

Table 1. CM Mouse Start-Up Variables

Variable Name Value Description

SYSTEM_ENV OS2, WIN, DOS,
UNIX

Indicates the operating environment.

SYSTEM_SROW Numeric Row number of last successful {search}
function

SYSTEM_SCOL Numeric Column number of last successful
{search} function

SYSTEM_EMTYPE ES, CM, PP, PC, P2,
P3

The emulator for which CM Mouse is
configured:

ES Extended Services
CM Communications Manager/2
PC Personal Communications
PP Advantis Passport
P2 Personal Communications

V2 (Win)
P3 Personal Communications

V3+ (Win)

SYSTEM_XRC Numeric Return code from last file transfer
({xfer...} keyword).

SYSTEM_HOSTFILE Host File Name Host file name used in last file transfer
after any name mapping was applied.

SYSTEM_PCFILE PC File Name PC file name used in last file transfer
after any name mapping was applied.

SYSTEM_TMPDIR PC Directory Path Path of temp directory used for some
drag/drop file transfer operations.

Debugging Hints
CM Mouse has no facilities for directly displaying or modifying user variables. You
can easily construct such a facility for your own variables, however, with a pop-up
menu like:

title “My Variables”
line “MyVar1=’&{var MyVar1}’“{set MyVar1 &{?New value|&{var MyVar1}}}”
line “MyVar2=’&{var MyVar2}’“{set MyVar2 &{?New value|&{var MyVar2}}}”
line “MyVar3=’&{var MyVar3}’“{set MyVar3 &{?New value|&{var MyVar3}}}”
line “MyVar4=’&{var MyVar4}’“{set MyVar4 &{?New value|&{var MyVar4}}}”

Make this pop-up selectable from the system pop-up CMMOUSE.MMM, and you
have a simple display/modify system for your variables. When the menu is
displayed, you can see the current values of the variables. Selecting one will
display a dialog to change the value with the current value as the default.

98 CM Mouse Support User’s Guide and Reference

Chapter 11. CM Mouse Utility Programs

This chapter describes two utility programs for CM Mouse:
v “The CM Mouse Menu Editor”
v “The CM Mouse Button Simulator” on page 101

The CM Mouse Menu Editor

The CM Mouse Menu Editor provides an easy-to-use WYSIWYG (What You See Is
What You Get) editor for CM Mouse pop-up menu files. It displays the menu
exactly as it appears when used by CM Mouse. You can add new items to the
menu, delete items, and rearrange them. Using the menu editor, you can create
and modify CM Mouse pop-up menu files without knowing anything about the
textual file format described in Chapter 6, “CM Mouse Menu Files,” on page 37.

The menu editor can run as a standalone application from the OS/2 desktop, or
you can invoke it from a pop-up menu’s system menu (see “Pop-up System
Menus” on page 9). You can also locate any CM Mouse menu file through desktop
folders or the OS/2 drives icon and double-click on it. The menu editor appears
similar to that shown in Figure 14 on page 100.

Note: The ability to double-click a menu file to open the menu editor requires that
the Install desktop objects option be selected during CM Mouse
installation. An OS/2 Workplace Shell association is established between
*.MMM files and the CM Mouse menu editor program.

The menu editor shows a representation of the menu nearly identical to how it
looks when actually used. There are a few things which are not represented exactly
as they will appear:
v The menu is shown with scroll bars on the right and bottom sides. The actual

menu is sized tall enough for the number of lines it has, and wide enough for
the longest line of text. The actual menu does not have scroll bars. The scroll
bars are used in the menu editor to keep the representation at a fixed size
during editing.

v The menu is shown with the correct basic colors. However, if colors are specified
for an individual line of the menu (with the Color button), that line will not
appear in the specified color.

Anywhere in the menu editor that a list has the text Drag 'n Drop near the lower
right corner, that list can be reordered by using the right mouse button to drag a
list item and drop it elsewhere in the list. When you begin dragging a list item the
pointer shape changes to a thick left arrow. When you release the right button the
item is moved to the nearest boundary between two items. Moving the mouse
above or below the list while dragging will scroll the list up or down.

© Copyright IBM Corp. 1991, 2019 99

Menu Title
To change the title of the pop-up menu simply type the desired text in the Title
field of the main menu editor window. The text shown above the menu will
change as you type each character.

Menu Item Text
To change the text displayed for a line of the menu, select the line with the left
mouse button. The input field under Current Menu Item is filled with the current
text. You can modify the field and the menu is updated as you type each character.

Menu Item Script
To change the CM Mouse script associated with a menu item, you can either
double-click the menu item, or select the item and then click the Host Script
button. The Host Script Editor dialog is displayed. This dialog allows you to add,
delete, and reorder CM Mouse keywords in a script.

Menu Item Color
To change the color of a single line of the menu, select the line and then click the
Color button. A dialog with 16 color buttons allows you to specify the foreground
and background colors for the menu item. Note that the menu displayed in the
editor will not show the item colors, but they will appear correctly when the menu
is used by CM Mouse.

Delete Menu Item
To delete a line of the menu, select the item and then press the Delete button.

Figure 14. CM Mouse Menu Editor

100 CM Mouse Support User’s Guide and Reference

Insert Menu Item
To insert a new line of the menu, select the Insert button. You can choose to insert
the new line before or after the currently selected menu line.

Default Menu Colors
To change the basic menu color scheme, select Options → Colors from the menu
bar. You can choose new colors for the menu foreground, background, and
bounce-bar. When you select Apply on the color dialog, the menu display is
updated with the new color scheme.

Default Bounce Bar Position
To change the default position of the bounce bar (the initial position it has when
the menu is first displayed), select Options → Bar Position from the menu bar. If
no bar position is specified, the default of 1 is used.

Menu Placement
To change the position of the menu relative to the host screen, select Options →
Menu Placement from the menu bar. If no placement is specified, the menu is
placed one row below, an one column to the right of the mouse pointer.

Set Variable Values
To set the value of CM Mouse variables in this menu, select Options → Set
Variables from the menu bar. A list of all the variables for this menu is displayed.
You can edit the name or value of a variable, add a new variable, delete a variable,
or change the order in which they are set.

Exit and Save Menu
To save the changes to the menu and exit the menu exit, press the Exit button.

Exit Without Saving
To exit the menu editor without saving changes to the menu, select File→Quit from
the menu bar. If the menu has been changed, you are prompted to confirm before
the changes are discarded.

The CM Mouse Button Simulator

In some situations it is desirable to run a CM Mouse script without the user
clicking on the host screen. For example, you may want to initiate some host
interaction from a REXX program, batch file, or desktop object.

Two utility programs provide the ability to simulate a CM Mouse button click on
the current host screen. The simulated click is processed just as if the user had
done the click with the mouse.

Chapter 11. CM Mouse Utility Programs 101

PM Button Simulator
CMMSIM.EXE is a PM program which will cause a simulated CM Mouse click on
a specified host session. If run with no parameters, a dialog is presented on which
you can select the host session, the row/column the click should occur in, and the
button to be simulated (left, right, left+right, etc). This mode is useful for
debugging.

If passed a set of four parameters, this program runs the simulated CM Mouse
button with no user interaction, and then terminates. The parameters are:

Session Row Column Button

The parameter values are defined as:

Session
The session ID on which to simulate a click (A, B, C, ...).

Row/Column
Integer values greater than zero which indicate where the simulated click
is to occur in the host screen.

Button
A CM Mouse button name such at that used in the BDF BUTTON
statements (for example, LEFT, RIGHT, LEFT+RIGHT, DBLLEFT, ..).

Using this utility, you could create a desktop program object which would cause
some specific CM Mouse functions to be run.

Command-Line Button Simulator
CMMSIMC.EXE is a command-line version of the same button simulator described
in the previous section. It can be run from the command line or from a REXX
program. This program takes the same four parameters as the PM button
simulator.

In addition, you can specify a fifth optional parameter, WAIT. If WAIT is specified,
the program suspends itself until CM Mouse is running, has read the script files,
and is connected to the host sessions. This can be useful when the simulator is run
at the same time CM Mouse is started.

102 CM Mouse Support User’s Guide and Reference

Chapter 12. Button Usage Standards

One of the greatest benefits of using CM Mouse to drive host applications is the
consistency it can provide. Many host applications are quite inconsistent in their
operation. For example, some host applications use PF3 to cancel a menu and some
use PF12. This inconsistency results in keystroke errors and lost productivity. CM
Mouse can make inconsistent host applications look and feel similar. With CM
Mouse, you do not have to remember whether CANCEL is PF3 or PF12, you just
press the right mouse button.

The advantage that CM Mouse provides is lost, however, if the mouse buttons are
customized differently for every host application. For example, suppose CM Mouse
were customized so that in OfficeVision the right button cancelled the current
menu, but in FILELIST the right button deleted a file. This inconsistency could
cause you to inadvertently delete files in FILELIST when you wanted to cancel the
FILELIST menu.

It is very important then for the BDF writer to customize CM Mouse in a
consistent way. Guidelines for customizing CM Mouse have been developed. The
standards for each button are described in the following sections. The sample
customization files provided with the package adhere to these standards. It may
not always be possible to follow the standards exactly, depending on the nature of
the host application, but they should be used whenever possible.

Left Button Usage
The left mouse button is used to select the item or area under the mouse cursor in
a context-sensitive way. To select might mean to execute a PF key, execute a
command, display a pop-up option list, or display a pop-up command menu. In
any case, it is used to initiate an action toward getting some task done on the host.
The left button is used to point-and-shoot at options or commands on the host
screen. It is used to navigate layered menu systems and initiate commands. Its
actions are usually dependent on where the mouse cursor is located on the host
screen.

Right Button Usage
The right mouse button is used to cancel the current host menu or back up one
menu level. On most OfficeVision/VM screens, the PF12 key performs this
function. For other applications, the PF3 key is often used.

On some host application screens, it may not be clear what the user intends with
the right button. For example, on the OfficeVision/VM SEND NOTE screen, PF12
cancels the note. If the user presses the right button does that mean they intended
to cancel the note, or does it mean they have completed the note and want to send
it? In cases where the right button could easily have more than one meaning, the
BDF writer may choose to display a pop-up menu to clarify the users intentions.
For instance, the right button may display a pop-up menu with two options on it,
Cancel Note and Send Note.

The function of the right button is usually not dependent on the position of the
mouse cursor.

© Copyright IBM Corp. 1991, 2019 103

Left+Right Button Usage
For host menus which allow vertical scrolling, this button combination is used to
scroll in the downward direction. When the host application allows it, the scrolling
should be in pages or half pages. This combination is also used to scroll forward
through multi-page menu systems.

If the host menu does not support scrolling, this button combination can be used
for some other special purpose.

Right+Left Button Usage
For host menus which allow vertical scrolling, this button combination is used to
scroll in the upward direction. When the host application allows it, the scrolling
should be in pages or half pages. This combination is also used to scroll backward
through multiple-page menus.

If the host menu does not support scrolling, this button combination can be used
for some other special purpose.

Middle Button Usage
This button can be used for special purposes, or it can be left to the user to define.
The BDF writer should not assume the user has a mouse with three buttons.

104 CM Mouse Support User’s Guide and Reference

Chapter 13. Sample Button Definitions and Menus

The following examples give you some idea of what can be done with BDF and
MMM files. A number of sample menu files are included in the CM Mouse
package, including some similar to those in this chapter. The CM Mouse package
contains sample BDF and MMM files for several popular host applications
including PROFS/OfficeVision, RDRLIST, FILELIST, and others. You can change
the samples to suit your own taste and preferred style of interacting with the host.
You may want to program the mouse for your own host applications, depending
on what host applications you use most, your own style of interacting with host
applications, and what types of functions you do most often.

The sample button definition files in the CM Mouse package consist of files that
are similar to those shown on the next several pages. Definition files for other VM,
MVS, iSeries, eServer i5, and System i5 applications are also included in the sample
set. Choose those files that are useful to you, and modify them to fit your own
environment and needs. As you create or modify button definition files, consider
using the button usage standards as outlined in Chapter 12, “Button Usage
Standards,” on page 103. Adhering to these standards will ensure that your button
definitions are easily used by anyone familiar with CM Mouse.

In general, the more screens a particular host application has, the more statements
are required in the button definition file for it. Usually there is a single SCREEN
statement for each application menu, and there may be a number of AREAs within
each SCREEN. If there are a large number of application menus, there are a large
number of SCREEN (and possibly AREA) statements. It is suggested that you
make a separate button definition file for each host application and simply include
the files in a single master file. This makes it easier to add new definitions for new
host applications.

If an application will use a number of pop-up menu (MMM) files, then it is
recommended that you use a subdirectory to group the files conveniently in one
place. The sample set of definitions uses separate subdirectories for
OfficeVision/VM, for CALLUP, and other applications. This makes it easier to
manage the files for a specific application, and prevents MMM file name conflicts
with other applications.

For example, suppose you are creating BDF and MMM files for a host application
called MYAPP.
1. Create a new directory under the main CMMOUSE directory:

mkdir c:\cmmouse\myapp

2. Create the button definition file C:\CMMOUSE\MYAPP\MYAPP.BDF. This file
will contain all the SCREEN, AREA, and BUTTON statements for the
application.

3. Add the following statement to the C:\CMMOUSE\CMMOUSE.BDF file:
INCLUDE MYAPP\MYAPP

This tells CM Mouse to load the BDF file MYAPP.BDF from the subdirectory
MYAPP.

© Copyright IBM Corp. 1991, 2019 105

4. Now create all your .MMM (pop-up menu) files in the MYAPP subdirectory.
Note that the &{popup...} keyword must explicitly name the subdirectory of the
menu file. For example, MYAPP.BDF might have a statement like:

BUTTON LEFT "&{popup myapp\mainmenu}"

By prefixing the pop-up menu name with a relative path name, CM Mouse
knows to fetch the menu file from the MYAPP subdirectory.

By putting all the files related to your application into a subdirectory, you can
avoid accidentally using the same pop-up menu file name as some other
application. Using the example above, if there were two applications which used a
pop-up menu named MAINMENU they would both refer to the same physical file.
By putting the pop-up menu files for each application in separate subdirectories
they can each have their own MAINMENU.MMM files without any conflict.

The SCREEN and AREA statements, along with menus, provide great flexibility in
how the mouse will interact with a particular host screen. Use your imagination
and knowledge of your own particular work habits to envision how you might like
the mouse to interact with a host menu. In particular, look for things that you do
often, and see how the mouse and pop-up menus can help you do them faster.

You can use the guidelines described in Chapter 12, “Button Usage Standards,” on
page 103 to get an idea of how the mouse might interact with the host. As a
general rule, users of a host application are most efficient if they can use the
mouse for every function they want to perform. Every time they have to return to
the keyboard to perform a function, time is lost moving from the mouse to the
keyboard and looking for the right keyboard keys. Try to set up CM Mouse so that
the mouse can be used for everything and the user does not have to touch the
keyboard except for text input (such as typing the text of a document).

Host Application Examples
This section illustrates menu file and button definition examples for host
applications. The following applications are described:
v PROFS/OfficeVision
v VM RDRLIST
v ISPF
v Text Editors

The first example is explained in a step-by-step fashion as a button definition file is
constructed. These are just a few examples to help you understand the basics of
writing a button definition. It is suggested that you examine the sample files
supplied with CM Mouse to see how they are constructed and to see more
complex examples of button definitions.

PROFS/OfficeVision Examples
If you use PROFS/OfficeVision frequently, you might set up your mouse buttons
and pop-up menus to make it faster and easier to use. Assume that the
OfficeVision (OV) main menu appears something like that shown in Figure 15 on
page 107 (your local OV installation may be somewhat different):

106 CM Mouse Support User’s Guide and Reference

Note that OV displays a unique screen identifier in the upper right corner of most
menus. You can use this to distinguish the different OV screens. (If the screens did
not have that field, you could use the menu titles.) Now, assume you want to use
the left button to pick things, the right button to back up one menu, and the
combination buttons to do scrolling (on those menus that allow it). This is
consistent with the guidelines described in Chapter 12, “Button Usage Standards,”
on page 103. Using a consistent set of conventions like this makes it easier to use
the mouse in different applications.

To construct a button definition file for the main OV menu:
1. Write a SCREEN statement which will recognize the main menu.

The menu can be recognized easily by the screen identifier in the upper right
corner (A00). The SCREEN statement to recognize this menu would be:

SCREEN 1 76 exact * " A00" -- OfficeVision main menu

This statement tells CM Mouse to look at row 1 column 76 for a string which
consists of the characters A00 with two leading blanks. The leading blanks are
included in the search because CM Mouse might find another host menu that
has (for example) XYA00 in the upper right corner. By including the leading
blanks you can be sure that this menu is in fact, the OV main menu.

2. Add the default button definitions for this screen to the button definition file.
For now, just put in a comment as a place holder. This step will be completed
in Step 4 on page 108.

SCREEN 1 76 exact * " A00" -- OfficeVision main menu
*
* Default buttons will go here...
*

3. Define the hot spots for this screen.
What areas of the screen should have special meaning if the user points and
clicks on them? For example, the user might want to point-and-shoot at the list
of PF keys along the left side of the screen. To allow the user to do this, define
a hot spot (or AREA in CM Mouse terminology) that covers the PF keys.
Looking at the host screen, the PF key list starts on line 3 and goes though line

OfficeVision/VM - Southeast Region A00
Press one of the following PF keys.
PF1 Process Calendars Time: 4:07 PM
PF2 Open The Mail MENU 1
PF3 Work With Documents 1994 DECEMBER 1994
PF4 Process Notes and Messages S M T W T F S
PF5 On-Line Bulletin Board 1 2 3
PF6 On-Line Telephone Directory 4 5 6 7 8 9 10
PF7 Access Information Library 11 12 13 14 15 16 17
PF8 On-Line Forms and Ordering Tools 18 19 20 21 22 23 24

25 26 27 28 29 30 31
PF10 Access Filelist Day of Year: 349
PF11 View Main Menu Number 2

5684-084 (C) Copyright IBM Corp. 1983, 1992 PF9 Help PF12 End
~~HELP: (919) 543-4357 TL/441 ~ TRY ’ICE TIPS’ ~ QUESTIONS: Type ’ASKCPS’~~

===>
Mail Waiting

Figure 15. Sample OfficeVision Main Menu

Chapter 13. Sample Button Definitions and Menus 107

13. The “PF...” text starts in column 3 and ends in column 5. (You can easily get
the row and column numbers by using the Screen Map Map Trace window; see
“Map Trace Window” on page 19.)
You could define the hot spot to cover just exactly the area of row 3 column 2
to row 13 column 5. However, you should allow the user some margin when
pointing at something. For example, you could allow the user to miss by a
character or two on either side of the PF key text. So, define a hot spot that
goes from row 3 column 1 to row 13 column 6:

SCREEN 1 76 exact * " A00" -- OfficeVision main menu
*
* Default buttons will go here...
*
AREA 3 1 13 6 ---- PF keys

Figure 16 shows the hot spot you defined in Step 3:

4. Tell CM Mouse what buttons are defined in the hot spot.
According to our button conventions, the left button is used to point-and-shoot.
You want to define the left button in the hot spot in such a way that when
users click on a PF key, the PF key they click on is sent to the host as a
keystroke. The {pfkey} keyword (see {pfkey} on page 52) performs this function.
a. Write a BUTTON statement to define the action of the left button in the hot

spot:
SCREEN 1 76 exact * " A00" -- OfficeVision main menu
*
* Default buttons will go here...
*
AREA 3 1 13 6
BUTTON LEFT "{pfkey}" Execute PF key

(The text after the second double-quote character is a comment; it is not
part of the actual button definition.)

b. You could allow users to point-and-shoot not only at the PFx text itself, but
at the descriptive text that follows. For example, they could point-and-shoot
at Open The Mail. To allow this, you have to make the hot spot larger.

OfficeVision/VM - Southeast Region A00
┌åååå┐s one of the following PF keys.

PF1 Process Calendars Time: 4:07 PM
PF2 Open The Mail MENU 1
PF3 Work With Documents 1994 DECEMBER 1994
PF4 Process Notes and Messages S M T W T F S
PF5 On-Line Bulletin Board 1 2 3
PF6 On-Line Telephone Directory 4 5 6 7 8 9 10
PF7 Access Information Library 11 12 13 14 15 16 17
PF8 On-Line Forms and Ordering Tools 18 19 20 21 22 23 24

25 26 27 28 29 30 31
PF10 Access Filelist Day of Year: 349
PF11 View Main Menu Number 2

└åååå┘ 5684-084 (C) Copyright IBM Corp. 1983, 1992 PF9 Help PF12 End
~~HELP: (919) 543-4357 TL/441 ~ TRY ’ICE TIPS’ ~ QUESTIONS: Type ’ASKCPS’~~

===>
Mail Waiting

Figure 16. Sample Hot Spot Definition

108 CM Mouse Support User’s Guide and Reference

Expand it to run from row 3 column 1 to row 13 column 40. Figure 17
covers all the PF keys and their descriptions:

The button definition needs to change slightly to accommodate this. The
{pfkey} keyword looks for a PF key number under or near the mouse
cursor. However, you are now allowing the user to point a number of
characters to the right of the PF key number. By adding the first parameter
to the {pfkey} keyword, you can tell CM Mouse to look not under the
mouse cursor, but to the beginning of the line for the PF key number. The
button definition now reads:

SCREEN 1 76 exact * " A00" -- OfficeVision main menu
*
* Default buttons will go here...
*
AREA 3 1 13 40
BUTTON LEFT "{pfkey first}" Execute PF keys

The blank line between PF8 and PF10 on the menu is included in the hot
spot, but it contains no PF key description. You can include that line in the
hot spot, because if CM Mouse does not find a PF key number at the
beginning of the line the user clicked on, a short beep is sounded and CM
Mouse will not send any keystroke to the host (see the description of the
{pfkey} keyword in {pfkey} on page 52).

c. There are two other PF keys on the main menu the user may want to point
at. PF9 and PF12 appear under the calendar on the right side of the screen.
Define another hot spot (AREA) for those PF keys. They are on line 14 from
column 57 to 76. Again, define some margin for error in the area so the user
can click a bit to the left or right of the PF keys:

SCREEN 1 76 exact * " A00" -- OfficeVision main menu
*
* Default buttons will go here...
*
AREA 3 1 13 40
BUTTON LEFT "{pfkey first}" Execute PF keys
AREA 14 55 14 80
BUTTON LEFT "{pfkey}" Execute PF keys

OfficeVision/VM - Southeast Region A00
┌åååååååååååååååååååååååååååååååååååååå┐

PF1 Process Calendars Time: 4:07 PM
PF2 Open The Mail MENU 1
PF3 Work With Documents 1994 DECEMBER 1994
PF4 Process Notes and Messages S M T W T F S
PF5 On-Line Bulletin Board 1 2 3
PF6 On-Line Telephone Directory 4 5 6 7 8 9 10
PF7 Access Information Library 11 12 13 14 15 16 17
PF8 On-Line Forms and Ordering Tools 18 19 20 21 22 23 24

25 26 27 28 29 30 31
PF10 Access Filelist Day of Year: 349
PF11 View Main Menu Number 2

└åååååååååååååååååååååååååååååååååååååå┘1983, 1992 PF9 Help PF12 End
~~HELP: (919) 543-4357 TL/441 ~ TRY ’ICE TIPS’ ~ QUESTIONS: Type ’ASKCPS’~~

===>
Mail Waiting

Figure 17. Sample Hot Spot Expansion

Chapter 13. Sample Button Definitions and Menus 109

With this button definition, the user can point at any PF key, or any PF key
description on the OV main menu and click the left button to execute that
PF key function.

5. To let the user point at other things on the OV main menu, add some more hot
spots.
a. Notice that in the lower right corner is a Mail Waiting indicator. It would be

nice if the user could click on that indicator to read the mail. Also notice
that PF2 is the function key you need to send to the host to open the mail.
You could define a hot spot for that Mail Waiting indicator as follows:

SCREEN 1 76 exact * " A00" -- OfficeVision main menu
*
* Default buttons will go here...
*
AREA 3 1 13 40

BUTTON LEFT "{pfkey first}" Execute PF keys
AREA 14 55 14 80

BUTTON LEFT "{pfkey}" Execute PF keys
AREA 24 67 24 80

BUTTON LEFT "[pf2]" Open the mail

If the user clicks with the left button on row 24 between columns 67 and 80,
then CM Mouse will send a PF2 keystroke to the host. But what happens if
the user is running with a 32-line display screen instead of 24? The Mail
Waiting indicator will appear on line 32 (the last line of the display); not on
line 24. As written above, this button definition file would fail to work as
expected on a 32-line host screen (or any host screen that was not 24 lines
long).
Because you cannot know ahead of time what size screen the user will be
running on, you must write AREA statements that are independent of
screen size. You can define an AREA either in terms of absolute row and
column numbers as you have been doing in this example, or in terms of an
offset from the last line of the screen. For example, in the case of the OV
Mail Waiting indicator, you want a hot spot which is on the last line of the
screen, no matter what line number that happens to be (24, 32, or something
else). You can write such an AREA statement by replacing the ROW
numbers with an offset number. An offset number is either zero or a
negative number. Zero indicates the last row of the screen. The value –1
indicates one line above the last line of the screen (the second line from the
bottom). A value of –2 is the third line from the last, and so on. Using this
offset technique, you can rewrite the button definition file as:

SCREEN 1 76 exact * " A00" -- OfficeVision main menu
*
* Default buttons will go here...
*
AREA 3 1 13 40

BUTTON LEFT "{pfkey first}" Execute PF keys
AREA 14 55 14 80

BUTTON LEFT "{pfkey}" Execute PF keys
AREA 0 67 0 80

BUTTON LEFT "[pf2]" Open the mail

Notice that the last AREA statement now indicates a hot spot which is
between columns 67 and 80 of the last line of the screen. This hot spot will
always be on the last line of the screen, no matter what size host screen is
being used.
Similarly, you can make the AREA statement independent of the screen
width. As written, the host spot is always between columns 67 and 80.
What happens if the user is running a host session which is 132 columns

110 CM Mouse Support User’s Guide and Reference

wide? OV will always place the Mail Waiting indicator in columns 67 to 80
regardless of the width of the screen so the AREA statement will still work
in that case. If OV expanded to use the full width of the screen, you could
write the AREA statement to be independent of the width as follows:

SCREEN 1 76 exact * " A00" -- OfficeVision main menu
*
* Default buttons will go here...
*
AREA 3 1 13 40

BUTTON LEFT "{pfkey first}" Execute PF keys
AREA 14 55 14 80

BUTTON LEFT "{pfkey}" Execute PF keys
AREA 0 -14 0 0

BUTTON LEFT "[pf2]" Open the mail

The last AREA statement now defines a hot spot which is on the last line of
the screen, between the 14th column from the end of the screen to the last
column of the screen.
Notice that you did not change the other two AREA statements. This is
because the PF keys will always appear in the same row/column position
no matter what screen size is used. It is safe to use absolute row and
column numbers in those AREA statements.

b. Add one more hot spot to the screen. Allow the user to point at the
calendar display to invoke the OV scheduling functions. The OV schedule
can be accessed by using the PF1 key, or by entering a command on the
command line at the bottom of the screen. This example uses the second
method. The calendar display on the OV main menu spans from row 5
column 50 to row 13 column 80 (including a bit of margin on both sides).
Add another AREA and BUTTON statement to the file:

SCREEN 1 76 exact * " A00" -- OfficeVision main menu
*
* Default buttons will go here...
*
AREA 3 1 13 40

BUTTON LEFT "{pfkey first}" Execute PF keys
AREA 14 55 14 80

BUTTON LEFT "{pfkey}" Execute PF keys
AREA 0 -14 0 0

BUTTON LEFT "[pf2]" Open the mail
AREA 5 50 13 80

BUTTON LEFT "[home]appointm[enter]" Calendar functions

When the user clicks with the left button anywhere on the calendar, the
host cursor is positioned at the first input field ([home] keyword), the
characters appointm are typed on the host screen, and finally an Enter key is
sent to the host.

6. Define a default button definition for the left mouse button.
Now that you have defined the hot spots for this menu, consider what happens
if the user clicks the left button outside all of them? For example, what
happens if the user clicks with the left button somewhere in row 2 of the
screen? You have not defined any hot spot in that position. This is where the
default button definitions come into play. You left a space for them in the
button definition file; they appear after the SCREEN statement and before the
first AREA statement.
Suppose that if the user clicks the left button outside all the hot spots a pop-up
menu is displayed. Define the name of the menu; the contents will be defined
later. The following creates a pop-up a menu named OVMAIN:

Chapter 13. Sample Button Definitions and Menus 111

SCREEN 1 76 exact * " A00" -- OfficeVision main menu
*
BUTTON LEFT "&{popup ovmain}" Pop-up OV main menu
*
AREA 3 1 13 40
BUTTON LEFT "{pfkey first}" Execute PF keys

AREA 14 55 14 80
BUTTON LEFT "{pfkey}" Execute PF keys

AREA 0 -14 0 0
BUTTON LEFT "[pf2]" Open the mail

AREA 5 50 13 80
BUTTON LEFT "[home]appointm[enter]" Calendar functions

You have now defined a default left button; if the user clicks the left button
outside the hot spots, the menu OVMAIN will pop up. With this button
definition, no matter where on the OV main menu the user clicks the left
button, CM Mouse will perform some function.

7. Define a default button definition for the right mouse button.
Tell CM Mouse what to do if the user clicks the right button. The right button
should be used to backup or exit the current menu. In the case of the OV main
menu, that means that the right button should execute a PF12 key to exit OV.
The button standards also indicate that the right button should have the same
effect no matter where the mouse is pointing at the time it is pressed. That is,
there is not a specific spot on the host screen the user must point to in order to
use the right button. You can easily get the desired effect by adding a BUTTON
statement to tell CM Mouse the default function of the right button:

SCREEN 1 76 exact * " A00" -- OfficeVision main menu
*
BUTTON RIGHT "[pf12]" Exit OfficeVision
BUTTON LEFT "&{popup ovmain}" Pop-up OV main menu
*
AREA 3 1 13 40
BUTTON LEFT "{pfkey first}" Execute PF keys

AREA 14 55 14 80
BUTTON LEFT "{pfkey}" Execute PF keys

AREA 0 -14 0 0
BUTTON LEFT "[pf2]" Open the mail

AREA 5 50 13 80
BUTTON LEFT "[home]appointm[enter]" Calendar functions

a. Notice that you add the BUTTON RIGHT statement before the first AREA
statement; thus, it is a default button for this screen. If the user clicks the
right button outside of all the hot spots on this screen, then a PF12
keystroke is sent to the host. Now what happens if the user clicks the right
button in one of the hot spots? Because the hot spots do not define a
function for the right button (there is no BUTTON RIGHT statement after
any of the AREA statements) then CM Mouse uses the default right button
for the screen. Therefore, no matter where the mouse pointer is on the host
screen, the right button will send a PF12 keystroke to the host.
You can add the combination chord buttons to the definition just as you did
for the right button. If the user presses any chord combination on this
screen, you want to scroll to the second OV main menu screen (using PF11):

SCREEN 1 76 exact * " A00" -- OfficeVision main menu
*
BUTTON LEFT+RIGHT "[pf11]" Main menu #2
BUTTON RIGHT+LEFT "[pf11]" Main menu #2
BUTTON RIGHT "[pf12]" Exit OfficeVision
BUTTON LEFT "&{popup ovmain}" Pop-up OV main menu
*
AREA 3 1 13 40

BUTTON LEFT "{pfkey first}" Execute PF keys

112 CM Mouse Support User’s Guide and Reference

AREA 14 55 14 80
BUTTON LEFT "{pfkey}" Execute PF keys

AREA 0 -14 0 0
BUTTON LEFT "[pf2]" Open the mail

AREA 5 50 13 80
BUTTON LEFT "[home]appointm[enter]" Calendar functions

You added two BUTTON statements to the list of default buttons for this
screen. They both have the same function of sending a PF11 keystroke to
the host.

b. Now let’s look at the pop-up menu you are going to use for the default left
button. The file name is OVMAIN.MMM, and it could be written as
follows:

TITLE "OV Main Menu"
BAR KEEP
LINE "Open the mail "[pf2]"
LINE "Calendar "[pf1]"
LINE "This week’s schedule"[pf1][pf2]"
LINE "This months schedule"[pf1][pf6]"
LINE
LINE "FILELIST Utility "[home]filelist[enter]"
LINE "Spell check a file "[home]proof &{?File name}[enter]"
LINE
LINE "Edit this list"{editmmm}"

This menu duplicates some of the functions available with the
point-and-shoot method. It also provides some shortcuts to often-used
functions like looking at a week-long schedule. By selecting the last line of
the menu the user can add or delete functions from this menu to customize
it.

You have now completed the OV main menu. You have written (1) a button
definition file defining the screen and hot spots and (2) a pop-up menu.

Calendar Screen Example
Now let’s move on to the OV calendar screen. You will use the same ideas of
building a SCREEN statement, and then defining the hot spots to make it easier to
use the scheduling functions. The same button conventions can be used. The OV
calendar screen looks something like Figure 18:

Chapter 13. Sample Button Definitions and Menus 113

The following example defines the default screen buttons in a similar fashion to
the main menu example in Figure 18. Here, however, there is an AREA definition
that allows you to use the calendar displayed on the screen to do scheduling. If the
mouse cursor is pointing to any day within the calendar part of the display, the
left button takes you directly to work with that day’s schedule. If you select the
Month title above the calendar, a pop-up menu allows you to select another month
and the calendar changes to that month. If you select the year field, a pop-up
menu allows you to select another year. If the cursor is not in any of those fields,
the left button simply causes a beep.
1. Define the SCREEN statement to recognize this menu and the default buttons.

The SCREEN statement would follow the last AREA statement of the main
menu example.

SCREEN 1 76 exact * " W00" -- OV Calendar menu
BUTTON LEFT "{beep}" No function
BUTTON RIGHT "[pf12]" Exit calendar menu
BUTTON LEFT+RIGHT "[pf10]" 2nd calendar menu
BUTTON RIGHT+LEFT "[pf11]" 2nd calendar menu

2. Build the hot spots and define the function of the left button in each one of
them.
a. Start with the month title. If the user clicks on the month name shown

above the calendar, display a pop-up menu of months and allow them to
pick another month from the list. That new month will then be entered in
the Calendar date input field to cause OV to change the calendar display.

AREA 8 58 8 72
BUTTON LEFT "[home][newline]&{popup

w00month}[enter]"Pick months

Note that this assumes a US-style date format with the month as the first
two characters of the date field. The W00MONTH.MMM pop-up menu
would just provide the 2-character month number:

TITLE "Months"

LINE "January "01"

PROCESS CALENDARS W00

Calendar for: M. A. McMillan

Calendar date: 12/15/94
------------------ Time: 4:12 PM

Press one of the following PF keys. 1994 DECEMBER 1994
S M T W T F S

PF1 Work with the day’s schedule 1 2 3
PF2 View 7 days of the calendar 4 5 6 7 8 9 10

-- 11 12 13 14 15 16 17
PF3 View the conference room schedules 18 19 20 21 22 23 24
PF4 Work with the next day’s schedule 25 26 27 28 29 30 31
PF5 Work with the previous day’s schedule Day of Year: 349
PF6 View the month
PF7 Schedule a meeting
PF8 Print 7 days of the calendar

--
PF10 View calendar main menu number 2

PF9 Help PF12 Return

Figure 18. Sample OV Calendar Screen

114 CM Mouse Support User’s Guide and Reference

LINE "February"02"
LINE "March "03"
...
LINE "December"12"

b. Add a similar function for the year. The hot spot area is defined as:
AREA 8 54 8 71

BUTTON LEFT "[home][newline][right][right][right][right][right][right]+
&{popup w00year}[enter]"Pick year

This will pop up the W00YEAR.MMM menu and enter the number selected
in the 7th character position of the date field. The W00YEAR menu would
be:

TITLE "Year"

LINE "1991"91"
LINE "1992"92"
LINE "1993"93"

Now if the user clicks in the actual calendar display, CM Mouse goes
directly to the schedule for that day. This is done by picking up the word
under the mouse cursor (see description of the &{word} keyword in &{word
delimit|include '<chars>'} or {&word} on page 66) and entering it in the
date field, followed by a PF key:

AREA 10 51 14 80 ------------ Calendar area on right side of screen
BUTTON LEFT "[home][newline][right][right][right]+

[insert]&{word}[delete][delete][insert][pf1]"

3. Finally, add two more AREAs to allow the user to click on the PF keys along
the left side of the screen, and for the PF keys at the bottom of the screen. The
complete button definition file (including the OV main menu) is:

SCREEN 1 76 exact * " A00" ************* OfficeVision main menu **********
*
BUTTON LEFT+RIGHT "[pf11]" Main menu #2
BUTTON RIGHT+LEFT "[pf11]" Main menu #2
BUTTON RIGHT "[pf12]" Exit OfficeVision
BUTTON LEFT "&{popup ovmain}" Popup OV main menu
*
AREA 3 1 13 40

BUTTON LEFT "{pfkey first}" Execute PF keys
AREA 14 55 14 80

BUTTON LEFT "{pfkey}" Execute PF keys
AREA 0 -14 0 0

BUTTON LEFT "[pf2]" Open the mail
AREA 5 50 13 80

BUTTON LEFT "[home]appointm[enter]" Calendar functions

SCREEN 1 76 exact * " W00" ******************* OV Calendar menu ************
BUTTON LEFT "{beep}" No function
BUTTON RIGHT "[pf12]" Exit calendar menu
BUTTON LEFT+RIGHT "[pf10]" 2nd calendar menu
BUTTON RIGHT+LEFT "[pf10]" 2nd calendar menu

AREA 8 58 8 72
BUTTON LEFT "[home][newline]&{popup

w00month}[enter]"Pick months
AREA 8 54 8 71

BUTTON LEFT "[home][newline][right][right][right][right][right][right]+
&{popup w00year}[enter]"Pick year

AREA 10 51 14 80
BUTTON LEFT "[home][newline][right][right][right]+

[insert]&{word}[delete][delete][insert][pf1]"
AREA 10 1 20 50

BUTTON LEFT "{pfkey first}"Execute PF key
AREA 0 1 0 80

BUTTON LEFT "{pfkey}"Execute PF key

Chapter 13. Sample Button Definitions and Menus 115

RDRLIST Example
Figure 19 is a simplified version of the RDRLIST sample files that are supplied
with CM Mouse. RDRLIST provides a good example of a list processing type of
host application in which a list of items is displayed against which commands can
be entered.

The VM RDRLIST application menu appears similar to the following screen, but
note that many installations and users tailor the display to their own tastes.

In this example, different column ranges are used in the list for different functions.
For example, if the mouse cursor is in the Cmd field (columns 1 to 5), then use the
left button to pop up a list of commands that can be executed against the file the
mouse cursor is next to. If the cursor is immediately next to the file name (column
6), then a repeat marker is put in the command field. If the mouse cursor is in the
Filename or Filetype columns, the file is PEEKed. The idea here is that the user
should be able to just point at a file and click the left button to perform some
default action (the most commonly used action). This saves users the trouble of
popping up a menu of commands when they most often do the same action on
each file in the list. In the Hold field (columns 49 to 52), the left button is used to
DISCARD the file. In any other column, the left button is used to move the host
cursor to the beginning of that line, and the mouse can be used on one of the PF
keys at the bottom of the screen. This provides, in effect, the ability to pick a file
and then pick the command (PF key) to run on it. This is for example purposes
only; you may choose to define the buttons or AREAs differently according to your
own tastes and needs. In the command-line area at the bottom of the screen, a
command menu appears.

The sample RDRLIST configuration supplied with CM Mouse defines the columns
somewhat differently, and allows the user to easily tailor the file to accommodate
customized PF keys.

As in the OfficeVision example, the RIGHT key exits RDRLIST, and the
combination keys are used for scrolling. The button definition for RDRLIST to

MCMILLAN RDRLIST A0 V 164 Trunc=164 Size=71 Line=1 Col=1 Alt=0
Cmd Filename Filetype Class User at Node Hold Records Date Time

BUZP RALVM17 PUN A BUZ HSTVM17 NONE 56 12/05 09:40:22
MDQSERV Note PUN A MDQSVR HSTVM17 NONE 56 12/05 14:41:48
GLEDDEN RALVM12 PUN A GLEDDEN HSTVM12 NONE 84 12/05 16:27:24
BONN NOTE PUN A BONN HSTVM1 NONE 22 12/05 17:45:06
SCHAF NOTE PUN A SCHAF HSTVM12 NONE 19 12/05 18:21:09
SCHAF NOTE PUN A SCHAF HSTVM12 NONE 9 12/05 18:22:20
MANHARP HSTVM19 PUN A MANHARP HSTVM19 NONE 17 12/06 08:58:44
94340 SWP0026 PUN A ZW310 HSTVM10 NONE 60 12/06 10:10:25
XR06200 AVAIL PUN B TOWTRUCK HSTVM17 NONE 169 12/06 11:40:49
DOC211 ZIPBIN PUN B TOWTRUCK HSTVM17 NONE 1172 12/06 11:40:50
CASANNA MSNVM1 PUN A CASANNA HSTVM1 NONE 60 12/06 14:58:16
94340 TG30444 PUN A INFORMU HSTVM02 NONE 146 12/06 15:09:33
Acknowl edgment PUN A JL17598 HSTVM4 NONE 2 12/06 20:59:26
IBMPC DONE PUN B IBMPC HSTVMV NONE 6 12/07 07:53:38
IBMPC DONE PUN B IBMPC HSTVMV NONE 6 12/07 07:57:13
Acknowl edgment PUN A GERSTLE HSTVMK NONE 2 12/07 08:49:43
IBMPC DONE PUN B IBMPC HSTVMV NONE 6 12/07 09:18:15

1= Help 2= Refresh 3= Quit 4= Sort(type) 5= Sort(date) 6= Sort(user)
7= Backward 8= Forward 9= Receive 10= 11= Peek 12= Cursor

====>
X E D I T 1 File

Figure 19. Sample VM RDRLIST Application Menu

116 CM Mouse Support User’s Guide and Reference

perform the functions outlined earlier is shown in the example. Note the use of
offset (negative) values for AREAs whose boundaries change depending on screen
size.
screen 1 10 exact * " RDRLIST " -- VM RDRLIST screen
button left "{beep}" No function
button right "[pf3]" Exit RDRLIST
button left+right "[pf8]"Scroll down
button right+left "[pf7]"Scroll up

area 3 1 -5 5 ***************************** Command columns
button left "&{popup rdrfiles}"Popup command list

area 3 6 -5 6 ***************************** Adjacent column
button left "{seek}[backtab]="Repeat marker

area 3 49 -5 52 *************************** Hold field
button left "{seek}[pf6]"Discard file

area 3 1 -5 80 **************************** Anywhere else in file area
button left "{seek}[backtab]"Move cursor

area -4 1 -3 80 *************************** PF key list area
button left "{pfkey}"Execute PF key

area -2 1 0 0 ***************************** Command area
button left "&{popup rdrcmds}"Popup VM commands

The menu file RDRFILES.MMM might look like:
title " RDRLIST File Disposition "
line "Look at the file "{seek}[pf2]
line "Remove from the reader "{seek}[pf6]
line "Put on my A-disk/notebook"{seek}[pf10]
line "Run repeated commands "{seek}[pf10]
line "Put in XXYY notebook "{seek}receive / (notebook xxyy[enter]
line "Put in another notebook "{seek}receive / (notebook [eraseeof]
line "Incomplete RECEIVE cmd "{seek}receive / [eraseeof]
line
line "Other RDRLIST commands "&{popup rdrcmds}"

The RDRCMDS.MMM menu file might look like:
title " RDRLIST Commands "
line "Rebuld the list"[pf11]
line "Sort by type "[pf4]
line "Sort by date "[pf5]
line "Quit RDRLIST "[pf3]
line
line "File disposition"&{popup rdrfiles}

As with the OV examples, this is just a sample of what types of things can be
done. You would probably want to customize the menu files to do the things that
you do most often. You might also want to change how the buttons are defined in
various areas of the screen.

ISPF Example
The ISPF main menu is similar to the following screen:

Chapter 13. Sample Button Definitions and Menus 117

A simple button definition file definition would work well for this screen:
screen 1 26 exact * "ISPF/PDF PRIMARY OPTION PANEL"
button left "&{popup ispfcmds}
button right "[pf3]
area 4 1 19 80 ---------------- List of options
button left "{word first}[enter]

area 21 1 21 40 --------------- END message
button left "=x[enter]"

Note that in this case the definition uses the title as the key to recognizing the
screen. Like the OfficeVision samples given earlier, a number of additional
SCREEN definitions would be required to use the mouse throughout the whole
ISPF system. The preceding is a sample for the main menu only. The
ISPFCMDS.MMM file might be used to take you directly to the ISPF panels that
you use most often, such as:

title "My ISPF Options"
line "Browse my net log"1[enter][newline][newline][newline]+

[newline][newline]mcmillan netlog[enter]
line "List files"3.4[enter][newline][newline]+

[newline][newlinw]* * A[enter]"
line
line "Exit ISPF"=x[enter]

Text Editors
CM Mouse can be useful for host text editing in several ways:
v It is much easier to move the mouse cursor quickly across the screen,

particularly in diagonal directions, than to use the keyboard arrow keys. If one
of the mouse buttons is set to {seek}, pressing that button moves the host cursor
to the mouse cursor position.

v Mouse buttons can be programmed to perform some common editing keystrokes
such as scrolling, inserting lines, and deleting lines.

v Mouse buttons can be programmed to do very specific and complex editing
functions. This is particularly useful when you want to perform an editing
function at various places in the file, but you cannot use a global change
command (perhaps you do not want to change all occurrences or you cannot
adequately specify the correct locations). The CM Mouse/REXX interface can be

---------------------- ISPF/PDF PRIMARY OPTION PANEL ------------------------
OPTION ===>

USERID - MCMILLAN
0 ISPF PARMS - Specify terminal and user parameters TIME - 10:25
1 BROWSE - Display source data or output listings TERMINAL - 3278
2 EDIT - Create or change source data PF KEYS - 12
3 UTILITIES - Perform utility functions
4 FOREGROUND - Invoke language processors in foreground
5 BATCH - Submit to batch for language processing
6 COMMAND - Enter CMS command or EXEC
7 DIALOG TEST - Perform dialog testing
8 LM UTILITIES- Perform library management utility functions
9 IBM PRODUCTS- Additional IBM program development products

10 SCLM - Software Configuration and Library Manager
C CHANGES - Display summary of changes for this release
T TUTORIAL - Display information about ISPF/PDF
X EXIT - Terminate using console, log, and list defaults

Enter END command to terminate ISPF.

Figure 20. Sample ISPF Main Menu

118 CM Mouse Support User’s Guide and Reference

useful in this case. For example, suppose you wanted to change certain words in
the file to upper case. You might not want to change all occurrences of a word,
but just some. You could define a mouse button which when you pointed to a
word and clicked, that word would convert to upper case:

button left "{seek}[wordleft]{&rexx +
xword = ’{&word at {&hrow} {&hcol}}’;+
xword = translate(xword);+
exit xword;}"

By defining other buttons as scroll keys, you can move quickly through a file
making changes only where desired.

v Pop-up menus can be used to select or change various editing options.
v The Cut and Paste functions can be useful for copying portions of text from one

place to another. This is useful for moving rectangular portions of text (as
opposed to whole lines) since most host text editors are not well suited to such
operations.

Chapter 13. Sample Button Definitions and Menus 119

120 CM Mouse Support User’s Guide and Reference

Chapter 14. Tips and Techniques

Nesting Pop-up Menus
CM Mouse does not really support nested pop-up menus, but because one pop-up
can invoke another with the &{popup ...} substitution word, you can create a
similar effect by including items on the menus that invoke other menus. For
example, if you have a very long list of options, you can break them into three lists
and code them as follows:

The first menu (“menu1of3.mmm”) might look like this:
title " List (1 of 3) "
line "Item # 1"...
line "Item # 2"...
...
line "Item # 15"...
line " <<< more >>>"&{popup menu2of3}

The second (“menu2of3.mmm”):
title " List (2 of 3) "
line " <<< more >>>"&{popup menu1of3}
line "Item 16"...
line "Item 17"...
...
line "Item 25"...
line " <<< more >>>"&{popup menu3of3}

The third (“menu3of3.mmm”):
title " List (3 of 3) "
line " <<< more >>>"&{popup menu2of3}
line "Item 26"...
line "Item 27"...
...
line "Item 37"...

These lists could be made circular by having the first item of the first list invoke
menu 3 and the last item of menu 3 invoke menu 1. These lists are not really
nested; pressing the right button to exit a menu does not cause a return to the
previous menu. The user must explicitly select the next menu to be shown.

Synchronizing Input with the Host
In some cases, a series of keystrokes being sent to the host will overrun it;
keystrokes are lost because they are sent to the host before the host is ready to
receive them. In normal circumstances, if the host is not ready to receive keyboard
input, the keyboard is locked and keystrokes are queued until the host is ready. In
some cases, however, the keyboard may be unlocked for a period of time before
the host application is actually ready to receive input.

One example of an overrun condition occurs when an application is started from
VM/CMS. The CMS command is read and processing begins, but before the
application displays the first menu, the keyboard is unlocked and CMS continues
to solicit input. Keystrokes and PF keys entered at that time can be lost to the

© Copyright IBM Corp. 1991, 2019 121

application or can be executed later from the CMS command stack. Other
applications (notably ISPF on MVS) can also unlock the keyboard at inappropriate
times, causing keystroke overrun.

For instance, if a button definition is to invoke OfficeVision and go directly to the
CALENDAR function from CMS mode, the following sequence will not work:

"office[enter][pf1]"

After the [enter] key is processed (and before the OV main menu is displayed), the
PF1 key is stacked by CMS. It is executed as a CMS PF key command when
OfficeVision terminates.

In such a case, several approaches are possible. A CM Mouse {pause xx} control
word can be imbedded in the command string as follows:

"office[enter][pause 2000][pf1]"

This has the obvious deficiency that it assumes OV will take less than 2 seconds to
put up the main menu. Slow system response can cause this technique to fail. It
also introduces a 2-second delay in processing the request, even if the system
response time is good. The {vmwait} control word was specifically designed to
eliminate this problem on VM. The preceding example works much better as:

"office[enter]{vmwait 10}[pf1]"

This technique does not introduce any additional delay if the host responds
quickly, and does not fail until the host does not respond for more than 10
seconds.

Another way to handle this situation is to use the {search...} control word to stop
execution until the menu appears on the host screen. CM Mouse waits for a
defined period of time for the given string to appear anywhere on the screen. Note
that the amount of time CM Mouse waits can be specified as part of the {search...}
keyword.

For example, to invoke OV from the CMS command mode and go directly to the
calendar function, the following button definition could be used:

"office[enter]{search for ’OfficeVision’ at 1 1 1 80 wait 10}[pf1]"

This will enter the command office and wait up to 10 seconds for the characters
OfficeVision to appear anywhere in line 1 of the host screen. If the characters
appear within 10 seconds, a PF1 key is sent to the host which invokes the calendar
function on the main menu. If the characters do not appear within 10 seconds, the
[pf1] keyword is discarded.

In general, the {search...} keyword can be used to synchronize the sending of
keystrokes to the host.

Screen Size Independence
The emulation programs support the emulation of several different models of 3270
display terminals. Therefore several different configurations of screen sizes are
supported, such as 24 lines by 80 columns, 32 lines by 80 columns, 28 lines by 132
columns, and so on. CM Mouse button definition files must be carefully written to
work correctly on all sizes of host screens.

122 CM Mouse Support User’s Guide and Reference

Consider the following host screen:

To allow the user to click on the PF keys as shown on the screen, you could write
the following BDF fragment:

AREA 20 1 21 80
BUTTON LEFT "{pfkey}"

Suppose, however, that the user was running this host application with a screen
size of 32 lines by 80 columns. In this case, the application would display the PF
keys on lines 28 and 29. The above AREA statement would incorrectly create a hot
spot on lines 20 and 21. The problem comes from the specification of the row and
column coordinates of the AREA as absolute coordinates. That is, the coordinates
are in terms of the upper-left corner of the screen and remain in the same position
no matter what screen size is used.

To avoid this problem of being dependent on screen size, CM Mouse allows you to
specify an AREA in relative coordinates. Relative coordinates are specified as offsets
from the last row of the screen (no matter what row number it happens to be). A
relative coordinate is a negative or zero value. A value of zero is the last row of the
screen, -1 is the row immediately above it, -2 is the row above -1, and so on. Thus
the above BDF fragment could be written:

AREA -4 1 -3 80
BUTTON LEFT "{pfkey}"

This tells CM Mouse to define a hot spot which starts at the 5th row up from the
bottom of the screen, column 1, and goes to the 4th row up from the bottom,
column 80. Note that -4 specifies the 5th row from the bottom because the bottom
row is zero. The above AREA statement will correctly define the hot spot no matter
how many rows are in the host screen.

In much the same way that row numbers can be specified as relative values,
column numbers can be specified as zero and negative numbers. In the example
above, if the user was using a host screen of 28 rows by 132 columns the hot spot
would only cover the first 80 columns of the screen. To be completely correct, the
above fragment should be written:

MCMILLAN RDRLIST A0 V 164 Trunc=164 Size=71 Line=1 Col=1 Alt=0
Cmd Filename Filetype Class User at Node Hold Records Date Time

BUZP RALVM17 PUN A BUZ HSTVM17 NONE 56 12/05 09:40:22
MDQSERV Note PUN A MDQSVR HSTVM17 NONE 56 12/05 14:41:48
GLEDDEN RALVM12 PUN A GLEDDEN HSTVM12 NONE 84 12/05 16:27:24
BONN NOTE PUN A BONN HSTVM1 NONE 22 12/05 17:45:06
SCHAF NOTE PUN A SCHAF HSTVM12 NONE 19 12/05 18:21:09
SCHAF NOTE PUN A SCHAF HSTVM12 NONE 9 12/05 18:22:20
MANHARP HSTVM19 PUN A MANHARP HSTVM19 NONE 17 12/06 08:58:44
94340 SWP0026 PUN A ZW310 HSTVM10 NONE 60 12/06 10:10:25
XR06200 AVAIL PUN B TOWTRUCK HSTVM17 NONE 169 12/06 11:40:49
DOC211 ZIPBIN PUN B TOWTRUCK HSTVM17 NONE 1172 12/06 11:40:50
CASANNA MSNVM1 PUN A CASANNA HSTVM1 NONE 60 12/06 14:58:16
94340 TG30444 PUN A INFORMU HSTVM02 NONE 146 12/06 15:09:33
Acknowl edgment PUN A JL17598 HSTVM4 NONE 2 12/06 20:59:26
IBMPC DONE PUN B IBMPC HSTVMV NONE 6 12/07 07:53:38
IBMPC DONE PUN B IBMPC HSTVMV NONE 6 12/07 07:57:13
Acknowl edgment PUN A GERSTLE HSTVMK NONE 2 12/07 08:49:43
IBMPC DONE PUN B IBMPC HSTVMV NONE 6 12/07 09:18:15

1= Help 2= Refresh 3= Quit 4= Sort(type) 5= Sort(date) 6= Sort(user)
7= Backward 8= Forward 9= Receive 10= 11= Peek 12= Cursor

====>
X E D I T 1 File

Figure 21. Sample Host RDRLIST Screen

Chapter 14. Tips and Techniques 123

AREA -4 1 -3 0
BUTTON LEFT "{pfkey}"

This would define a hot spot which covers the 4th and 5th row from the bottom of
the screen, from the left edge to the right edge. This AREA statement is correct for
any size host screen.

It is important to consider different screen sizes when defining hot spots. Consider
different screen sizes both in length and width and write AREA statements using
relative coordinates when appropriate.

Cursor Positioning
To make button definitions that are tolerant of changes to the host screen layout, it
is useful to define cursor positions in the most general way possible. When the
host cursor needs to be positioned at a particular input field of the screen, it is best
to use the various field-tab keys to place the cursor rather than position the cursor
at a specific row and column. For example, consider the host screen:
If you wanted to write a button definition which would (for example) type the

current date into the date field, you could write:
BUTTON LEFT "{rowcol 4 16}&{month}/&{day}/&{year}"

This would position the host cursor at row 4 column 16 and then type the current
month, day, and year. What happens, however, if small changes are made to the
host application? For example, suppose the above host application screen was
modified to add two additional title lines:

WORK WITH THE SCHEDULE W01

Calendar for: M. A. McMillan
Date: 12/15/94 Thursday
Type any changes to the schedule below.

BEGIN END DESCRIPTION
7:00AM NOON Vacation
1:30PM 2:30PM Meeting with Mike P.

PF3 Cancel changes PF4 Next day PF5 Previous day Screen 1 of 1
PF9 Help PF10 Next Screen PF11 Previous Screen PF12 Return

124 CM Mouse Support User’s Guide and Reference

Now the button definition does not work because the input field has moved from
line 4 to line 6. A better button definition would be:

BUTTON LEFT "[home][tab]&{month}/&{day}/&{year}"

This would position the host cursor to the first input field of the screen (no matter
what line it was on), then skip to the next input field and type the current date.
This button definition continues to work even with the modified host screen as
long as the date field is the second input field. The button definition is more
tolerant of host screen changes than the first example.

It is not possible to write button definitions which tolerate any arbitrary change to
the host screen. For example, if the host screen above were modified to have the
date field first followed by the name field, our button definition would not work
correctly. However, by writing button definitions with as much tolerance as
possible, button definitions can continue to work even if minor changes are made
to the host screens.

Another example of good cursor positioning technique can be shown with the
following host screen:

WORK WITH THE SCHEDULE W01
OFFICEVISON/VM

HSTVM17

Calendar for: M. A. McMillan
Date: 12/15/94 Thursday
Type any changes to the schedule below.

BEGIN END DESCRIPTION
7:00AM NOON Vacation
1:30PM 2:30PM Meeting with Mike P.

PF3 Cancel changes PF4 Next day PF5 Previous day Screen 1 of 1
PF9 Help PF10 Next Screen PF11 Previous Screen PF12 Return

Chapter 14. Tips and Techniques 125

Note that the command line is at the bottom of the screen. To position the host
cursor on the command line, you could write:

BUTTON LEFT "{rowcol -1 7}mycmd[enter]"

This would work on any size host screen since the cursor position is given in
relative coordinates. However, this function can be better written:

BUTTON LEFT "[home][backtab]mycmd[enter]"

This would position the cursor at the last input field of the screen and will work
even if the command line is moved up or down a row or two. The
“[home][backtab]” technique should be used anytime the host cursor needs to be
positioned at the last input field of the screen.

As another example of cursor positioning techniques, consider:

MCMILLAN RDRLIST A0 V 164 Trunc=164 Size=71 Line=1 Col=1 Alt=0
Cmd Filename Filetype Class User at Node Hold Records Date Time

BUZP RALVM17 PUN A BUZ HSTVM17 NONE 56 12/05 09:40:22
MDQSERV Note PUN A MDQSVR HSTVM17 NONE 56 12/05 14:41:48
GLEDDEN RALVM12 PUN A GLEDDEN HSTVM12 NONE 84 12/05 16:27:24
BONN NOTE PUN A BONN HSTVM1 NONE 22 12/05 17:45:06
SCHAF NOTE PUN A SCHAF HSTVM12 NONE 19 12/05 18:21:09
SCHAF NOTE PUN A SCHAF HSTVM12 NONE 9 12/05 18:22:20
MANHARP HSTVM19 PUN A MANHARP HSTVM19 NONE 17 12/06 08:58:44
94340 SWP0026 PUN A ZW310 HSTVM10 NONE 60 12/06 10:10:25
XR06200 AVAIL PUN B TOWTRUCK HSTVM17 NONE 169 12/06 11:40:49
DOC211 ZIPBIN PUN B TOWTRUCK HSTVM17 NONE 1172 12/06 11:40:50
CASANNA MSNVM1 PUN A CASANNA HSTVM1 NONE 60 12/06 14:58:16
94340 TG30444 PUN A INFORMU HSTVM02 NONE 146 12/06 15:09:33
Acknowl edgment PUN A JL17598 HSTVM4 NONE 2 12/06 20:59:26
IBMPC DONE PUN B IBMPC HSTVMV NONE 6 12/07 07:53:38
IBMPC DONE PUN B IBMPC HSTVMV NONE 6 12/07 07:57:13
Acknowl edgment PUN A GERSTLE HSTVMK NONE 2 12/07 08:49:43
IBMPC DONE PUN B IBMPC HSTVMV NONE 6 12/07 09:18:15

1= Help 2= Refresh 3= Quit 4= Sort(type) 5= Sort(date) 6= Sort(user)
7= Backward 8= Forward 9= Receive 10= 11= Peek 12= Cursor

====>
X E D I T 1 File

126 CM Mouse Support User’s Guide and Reference

Suppose that we define a hotspot that covers the BEGIN column of input fields.
When the user clicks in that field, the string 8:00AM is entered in the BEGIN
column, and 9:00AM is entered in the END column:

AREA 10 3 -2 10
BUTTON LEFT "{seekcol 3}8:00am[tab]9:00am"

Notice that the cursor is moved to the third column of the row of the mouse cursor
because that is where the input field starts. However, if the host application is
changed slightly so that (for example) the input field started in column 5, then this
button definition would no longer work. This definition could be better written:

AREA 10 3 -2 10
BUTTON LEFT "{seekcol 1}[tab]8:00am[tab]9:00am"

Written this way, the host cursor is first moved to column 1 and then tabbed to the
first input field of the line. This button definition would work no matter in which
column the first input field started.

Performance Tips
CM Mouse performance can potentially be degraded by having a very large
number of SCREEN statements in the button definition files, particularly for slower
PC hardware. Each time a mouse button is pressed, CM Mouse must scan all of
the SCREEN definitions to find a match. Depending on how the SCREEN
definitions are written, this can involve a fairly large amount of processing (each
definition must be checked against the current host screen). On slower systems
(such as ATs), SCREENs appearing later in the BDF sequence may take noticeably
longer to recognize.

Following are some tips for optimizing CM Mouse performance:
v Place the button definitions for the most frequently used applications first in the

button definition file. SCREENs are searched for a match in order of appearance
in the button definition file. The first SCREENs in the file are found more
quickly than those at the end of the file if the file contains a large number of
SCREENs. Note that INCLUDEd files are treated as if they are part of the file
which includes them.

WORK WITH THE SCHEDULE W01
OFFICEVISON/VM

HSTVM17

Calendar for: M. A. McMillan
Date: 12/15/94 Thursday
Type any changes to the schedule below.

BEGIN END DESCRIPTION
7:00AM NOON Vacation
1:30PM 2:30PM Meeting with Mike P.

PF3 Cancel changes PF4 Next day PF5 Previous day Screen 1 of 1
PF9 Help PF10 Next Screen PF11 Previous Screen PF12 Return

Chapter 14. Tips and Techniques 127

v Whenever possible, code SCREEN statements for a specific host session (a, b,
c...) or for a specific session type (5250/3270). The first check CM Mouse makes
is to see if the SCREEN definition is for the current host session. If the session is
coded as “*”, then more checking must be done to see if the definition matches.

v Whenever possible, specify an EXACT or LINE search instead of a SCREEN
search. EXACT and LINE searches take the same amount of time, but a SCREEN
search can take significantly longer.

v As with SCREENs, place AREA definitions within a SCREEN in the order of
most frequent use, if possible. (Note that when AREAs overlap, changing the
order can affect how they work.)

Common Problems
Following are some common problems that you may encounter when installing
and using CM Mouse.
v Screens do not appear to be recognized (for example, the left button generates a

“beep,” and pop-up menus do not appear).
There are a number of possible causes for this:
– Be sure the button definition file (BDF) which contains the SCREEN statement

is being read when CM Mouse starts up. Be sure your main BDF file (usually
c:\cmmouse\cmmouse.bdf) has the proper INCLUDE statements and that
they are not commented out.

– Use the Screen Map (Map Trace window) to determine if the wrong SCREEN
or AREA is being used.

– Be sure the SCREEN statement you are trying to use is exactly correct,
including the host session ID. The safest way to code SCREEN statements is
to use a session ID of *.

v After you stop and restart a host session, screens are not recognized.
You must click the Reset Host button on the CM Mouse control panel after
stopping or starting any host session.

v Changing a button definition file (BDF) does not appear to have any effect on
the program.
You must click the Read BDFs button on the CM Mouse control panel after
changing any BDF files. CM Mouse reads BDF files only when it is first
initialized and when the Read BDFs button is clicked.

128 CM Mouse Support User’s Guide and Reference

Chapter 15. Cross-Platform Compatibility

This section describes areas of incompatibility or differences between CM Mouse
running in the various environments.

By using only button definition keywords which are supported in all
environments, BDF and MMM files can be moved from one environment to the
other without modification.

CM Mouse has been designed so that button definition and pop-up menu files can
be written which can be moved from one environment to another and used
without modification. In general, the OS/2 version of CM Mouse supports the
most CM Mouse statements and keywords. The Windows version supports a
subset of the OS/2 functions (and a few keywords unique to Windows). If
compatibility between environments is important, then limiting the use of CM
Mouse statements and keywords to those supported in the environments of
interest will make the button definition and pop-up menu files portable between
those environments. The keyword table in Appendix A, “CM Mouse Keyword
Reference,” on page 133 indicates which keywords are supported in which
environments.

Wherever it is reasonable to do so, statements or keywords which are not
supported in a particular environment are simply ignored, but cause no error.
Where it could cause incorrect operation, unsupported statements or keywords
cause an error (for example, attempting to run a REXX keyword in the Windows
version of CM Mouse causes an error). This allows flexibility in moving button
definition and menu files between environments, even if all the features they use
may not be supported.

Table 2 summarizes the major areas of compatibility.

Table 2. Cross-Platform Compatibility

Function OS/2 Windows

Basic host keystrokes [PF1] [enter] etc. U U

Basic CM Mouse keywords and substitutions U U

Print screen to printer or file U U

CM Mouse control panel for customizing U U

Customizable system menu (CMMOUSE.MMM) U U

Clipboard functions and keywords U U

Window manipulation keyword {win...} U U

Double-click button support U U

REXX language interface U

Screen Map facility U

Trace facility U

5250 terminal support U U

© Copyright IBM Corp. 1991, 2019 129

130 CM Mouse Support User’s Guide and Reference

Chapter 16. CM Mouse Limitations

This chapter describes some of the limitations of CM Mouse. Other limitations may
exist which are not documented here.

String Lengths
Strings in CM Mouse are limited to 4000 characters in length (255 for DOS). This
limit includes the maximum length of a BDF or MMM statement after line
continuation. Button definition strings cannot exceed this limit before, during, or
after substitutions.

Table 3. Alternate CM Mouse String Lengths

String
Max Length (OS2,
WIN)

Input line (after continuation) 4000

CM Mouse variable name 4000

CM Mouse variable value 4000

Button definition string 4000

File names (including full path qualifier) 255

Pop-up menu title 250

Pop-up menu text (length of 'text' part of LINE statement) 250

Program Limitations
Table 4 lists some other program limitations.

Table 4. Program Limitations

Description Limit (OS/2) Limit (Windows)

Maximum number of lines in a single
BDF file

None 32,000

Maximum number of INCLUDE
statements in all BDF files

None 32,000

Maximum number of lines in all BDF
files

None None

Maximum nesting level of BDF
INCLUDE files

4 4

Maximum number of SCREEN
statements

None 32,000

Maximum number of AREA
statements

None 32,000

Maximum number of BUTTON
statements

None None

Maximum number of concurrent host
sessions

26 26

Maximum width (columns) on a host
session

255 255

© Copyright IBM Corp. 1991, 2019 131

Table 4. Program Limitations (continued)

Description Limit (OS/2) Limit (Windows)

Maximum length (rows) on a host
session

None None

Miscellaneous Limitations

v CM Mouse does not support the long file names of the OS/2 high performance
file system (HPFS). CM Mouse will run on HPFS file systems, but it is unable to
read files that do not conform to the 8.3 naming convention.

v CM Mouse does minimal checking on numeric values in button definitions. In
general, if a numeric value contains a nonnumeric character, the error is flagged.
It is assumed, however, that numeric values are within reasonable ranges
(approximately -32000 to +32000).

v CM Mouse does not check that an AREA definition is valid (for example, the
starting row/column is less than the ending row/column). If an AREA is
defined which has a starting row or column greater than the ending row or
column, a null AREA is defined, and the definition is never used since the
mouse always fails the test of being within the AREA.

132 CM Mouse Support User’s Guide and Reference

Appendix A. CM Mouse Keyword Reference

Note: Keywords noted with a check mark in the Runtime column can use
presubstitution with the syntax shown, or runtime substitution with the
ampersand (&) inside the braces. See “Presubstitutions and Runtime
Substitutions” on page 70 for more information.

Table 5. CM Mouse Keyword Reference

Keyword Description Runtime Note Environments

{beep} Sound short beep - All

{clip cut} {clip cut
textonly}

CUT marked data from
host to clipboard

- All

{clip copy} {clip copy
textonly}

COPY marked data
from host to clipboard

- All

{clip copyappend} Append marked data to
clipboard

- OS/2

{clip from <r1> <c1> <r2>
<c2>}

Copy specified area of
host screen to clipboard

- All

{clip paste} Begin a PASTE
clipboard operation

- All

{clip to <r> <c>} Copy clipboard text to
specified area of host
screen

- All

{clip place} Place a pending
clipboard paste
operation

- OS/2

{clip cancel} Cancel a pending
clipboard paste
operation

- OS/2

{clip clear} Clear data in the
marking box

- All

{clip undo} Undo a clipboard paste
operation

- All

{clip unmark} Remove marking box - WIN

{dde <function>
<parameters>}

DDE Commands - OS/2

{editmmm} Copy menu file and edit
it

- All

{hostwait n} Wait xxx seconds for
keyboard unlock

- All

{if <condition>
{then}script1{else}script2}

Conditional script
execution

- All

{lock on} {lock off} Lock or unlock the
keyboard

- All

{map} Display screen map for
current session

- OS/2

{mmenu} Show CM Mouse
control panel

- All

© Copyright IBM Corp. 1991, 2019 133

Table 5. CM Mouse Keyword Reference (continued)

Keyword Description Runtime Note Environments

{mrowcol x y} Move mouse cursor to
row x, column y

- All

{null} Do nothing - All

{pause n} Pause (wait) for n
milliseconds

- All

{pfkey} Send PFkey/ENTER left
of mouse cursor

- All

{pfkey first} Send first
PFkey/ENTER on the
line

- All

{pfkey last} Send last PFkey/ENTER
on the line

- All

{pfkeyrev} {pfkeyrev first}
{pfkeyrev last}

Reverse format of
{pfkey}

- All

{pfkeyrev} {pfkeyrev first}
{pfkeyrev last}

Reverse format of
{pfkey first}

- All

{pfkeyrev} {pfkeyrev first}
{pfkeyrev last}

Reverse format of
{pfkey last}

- All

{printscreen LPTx} Print the host screen a
PC printer

- All

{printscreen Fname}
{printscreen Fname
APPEND}

Copy or append the
host screen to a PC file

- All

{quit} Terminate script
execution

- All

{rowcol x y} Move host cursor to
row x, column y

- All

{seek} Move host cursor to
mouse cursor position

- All

{unseek} Move mouse cursor to
host cursor position

- All

{search FOR 'string' AT r1
c1 r2 c2 WAIT n NOT
ASIS NOQUIT}

Search host screen for a
string

- All

{seekelse} Move host cursor,
optionally abort

- All

{seekcol x} Move host cursor to
mouse row, column x

- All

{seekrow x} Move host cursor to
mouse column, row x

- All

{set Name Value} Set the value of a CM
Mouse variable

- All

{switchto
<session>|*|next|prev }

Switch to another host
session

- All

{sys <cmd> <parms>} Run a system command - All

{sysmenu} Pull-down emulator
system menu

- All

134 CM Mouse Support User’s Guide and Reference

Table 5. CM Mouse Keyword Reference (continued)

Keyword Description Runtime Note Environments

{win
<session>|*|prev|next
MIN| MAX| RESTORE|
HIDE| SHOW|
ACTIVATE|
DEACTIVATE}

Manipulate specified
emulator window

- All

{xfer ..} Transfer file - All

{?<text>} Pop-up <text> to
confirm or abort

- All

&{break} Substitute a line break
character (hex '0d')

- All

&{chars r c l} or {&chars r
c l}

Chars at row=r, col=c
for length=l

U All

&{editor} Name of editor
(editor=)

- All

&{env VarName} Value of environment
variable VarName

- All

&{hcol} or {&hcol} Current col of host
cursor

U All

&{hrow} or {&hrow} Current row of host
cursor

U All

&{hour} &{min} &{sec} Current time values
(24-hour clock)

- All

&{month} &{day} &{year} Current date values - All

&{math 'val1' +|-|/|*
'val2'}

Perform mathematical
operation

- All

&{mmm} Name of current pop-up
menu file

- All

&{mcol} or {&mcol} Current col of mouse
cursor

U All

&{mrow} or {&mrow} Current row of mouse
cursor

U All

&{num} or {&num} Numeric string nearest
to mouse cursor

U All

&{num first} or {&num
first}

First numeric string on
the line

U All

&{num last} or {&num
last}

Last numeric string on
the line

U All

&{num at <row> <col>} or
{&num at <row> <col>}

Numeric string nearest
row/column specified

U All

&{popup <menuname>}
or {&popup
<menuname>}

Display a pop-up menu,
substitute selected line

U All

&{sid} or {&sid} Current host session ID
(A,B,C...)

- All

&{rows} Rows in host screen - All

&{cols} Columns in host screen - All

Appendix A. CM Mouse Keyword Reference 135

Table 5. CM Mouse Keyword Reference (continued)

Keyword Description Runtime Note Environments

&{srow} &{scol} or
{&srow} {&scol}

Row of last successful
{search...}

U All

&{srow} &{scol} or
{&srow} {&scol}

Column of last
successful {search...}

U All

&{str <function>
<parms>}

Perform string functions U All

&{var Name} or {&var
Name}

Value of a CM Mouse
variable

U All

&{word delimit|include
'<chars>'} or {&word}

Alphanumeric word
nearest to mouse cursor

U All

&{word first} or {&word
first}

First word on the line of
the mouse cursor

U All

&{word last} or {&word
last}

Last word on the line of
the mouse cursor

U All

&{word at <row> <col>}
or {&word at <row>
<col>}

Word nearest to the row
and column specified

U All

&{?<Qtext>|<Atext>} or
{&?<Qtext>|<Atext>}

Prompt user for input
using dialog

U All

&{rexx PgmSource} or
{&rexx PgmSource}

Run a REXX program
and substitute EXIT
value

U OS/2

[enter] 3270/5250 ENTER key - All

[pf1]-[pf24] [pf01]-[pf09] 3270/5250 Program
Function keys

- All

[newline] [tab] [backtab] 3270/5250 cursor
movement keys

- All

[home] [up] [down] [right]
[left]

3270/5250 cursor
movement keys

- All

[fastright] [fastleft] 3270/5250 cursor
movement keys

- All

[pa1] [pa2] [pa3] [attn] 3270 Program Attention
keys

- All

[eraseeof] [delete] [insert] Misc 3270 keys - All

[backspace] [clear] [crsel] Misc 3270 keys - All

[reset] [sysreq] Misc 3270 keys - All

[test] 3270 TEST key - All

[fieldmark] [altcsr] Misc 3270 keys - All

[erinp] Misc 3270 keys - All

[fldext] [hex] Misc 5250 keys - OS/2

[worddel] Delete word at host
cursor

- All

[wordright] [wordleft] Move host cursor 1
word right/left

- All

[eof] Move host cursor to end
of field

- All

136 CM Mouse Support User’s Guide and Reference

Table 5. CM Mouse Keyword Reference (continued)

Keyword Description Runtime Note Environments

[pageup] [pagedn] 5250 scroll keys - OS/2

[help] 5250 help key - OS/2

Appendix A. CM Mouse Keyword Reference 137

138 CM Mouse Support User’s Guide and Reference

Appendix B. BDF File Syntax Diagrams
►► SCREEN Row Column EXACT

LINE
SCREEN

A
B
C
...
3270
5250
*

" FindString "
Comment

►◄

►► AND-SCREEN Row Column EXACT
LINE
SCREEN

A
B
C
...
3270
5250
*

►

► " FindString "
Comment

►◄

►► OR-SCREEN Row Column EXACT
LINE
SCREEN

A
B
C
...
3270
5250
*

►

► " FindString "
Comment

►◄

►► AREA StartRow StartColumn EndRow EndColumn
Comment

►◄

►► BUTTON LEFT
RIGHT
MIDDLE
LEFT+RIGHT
LEFT+MIDDLE
RIGHT+LEFT
RIGHT+MIDDLE
MIDDLE+LEFT
MIDDLE+RIGHT
DBLLEFT
DBLRIGHT
DBLMIDDLE

" ButtonDefinition "
Comment

►◄

© Copyright IBM Corp. 1991, 2019 139

►► DRAG FILE
PRINT
DISCARD

" ButtonDefinition "
Comment

►◄

►► DROP FILE " ButtonDefinition "
Comment

►◄

►► SET VariableName " VariableValue "
LITERAL Comment

►◄

►► INCLUDE FileName
RelativePath\ Comment

►◄

►► DOIF 'string1' =
==
!=
!==
<
>
<=
>=
=#
!=#

'string2' ►◄

►► ENDIF ►◄

►► DEFINE NAMEMAP
MapType

►◄

►► ENDDEFINE ►◄

►► MAP OFF
CHORD TO DCLICK
DCLICK TO CHORD

Comment
►◄

►► *
Comment

►◄

140 CM Mouse Support User’s Guide and Reference

Appendix C. MMM File Syntax Diagrams
►► TITLE " Title "

Comment
►◄

►► COLORS
(1)

BLACK
GRAY
BLUE
GREEN
CYAN
RED
MAGENTA
YELLOW
WHITE
DGRAY
DBLUE
DGREEN
DCYAN
DRED
DMAGENTA
DYELLOW

(2)

BLACK
GRAY
BLUE
GREEN
CYAN
RED
MAGENTA
YELLOW
WHITE
DGRAY
DBLUE
DGREEN
DCYAN
DRED
DMAGENTA
DYELLOW

(3)

BLACK
GRAY
BLUE
GREEN
CYAN
RED
MAGENTA
YELLOW
WHITE
DGRAY
DBLUE
DGREEN
DCYAN
DRED
DMAGENTA
DYELLOW

►

►
(4)

BLACK
GRAY
BLUE
GREEN
CYAN
RED
MAGENTA
YELLOW
WHITE
DGRAY
DBLUE
DGREEN
DCYAN
DRED
DMAGENTA
DYELLOW

►◄

Notes:

1 Foreground menu color

2 Background menu color

3 Foreground bounce bar color

4 Background bounce bar color

►► PLACE
Row
*

Column
*

►◄

© Copyright IBM Corp. 1991, 2019 141

►► BAR
InitialPosition
KEEP

►◄

►► LINE
(1)

BLACK
GRAY
BLUE
GREEN
CYAN
RED
MAGENTA
YELLOW
WHITE
DGRAY
DBLUE
DGREEN
DCYAN
DRED
DMAGENTA
DYELLOW

(2)

BLACK
GRAY
BLUE
GREEN
CYAN
RED
MAGENTA
YELLOW
WHITE
DGRAY
DBLUE
DGREEN
DCYAN
DRED
DMAGENTA
DYELLOW

►

► " " "
MenuText SubstitutionText

►◄

Notes:

1 Foreground color

2 Background color

►► SET VariableName " VariableValue "
LITERAL Comment

►◄

►► DOIF 'string1' =
==
!=
!==
<
>
<=
>=
=#
!=#

'string2' ►◄

►► ENDIF ►◄

►► *
Comment

►◄

142 CM Mouse Support User’s Guide and Reference

Appendix D. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
INFORMATION AS IS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or program(s) described in this information
at any time without notice.

Any references in this information to non-IBM documentation or non-IBM Web
sites are provided for convenience only and do not in any manner serve as an
endorsement of those documents or Web sites. The materials for those documents
or Web sites are not part of the materials for this IBM product and use of those
documents or Web sites is at your own risk.

Licensees of this program who wish to have information about it for the purpose
of enabling:(i) the exchange of information between independently created

© Copyright IBM Corp. 1991, 2019 143

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Department T01
Building 062
P.O. Box 12195
Research Triangle Park, NC 27709-2195

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries, or both:

GDDM
eServer i5
IBM
iSeries
OfficeVision
OfficeVision/VM
OS/2
Presentation Manager
System i5
Workplace Shell

Microsoft, Windows, and the Windows logo are registered trademarks of the
Microsoft Corporation in the United States, other countries, or both.

Java, JavaBeans, and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Notices

144 CM Mouse Support User’s Guide and Reference

Index

A
AND-SCREEN definition statement 34
AREA definition statement 25

B
BAR statement, menu file 37
BDF file syntax diagrams 139
button definition files

definition statements
AREA statement 25
BUTTON statement 26
DEFINE statement 27
DOIF statement 28
DRAG statement 29
DROP statement 30
ENDDEFINE statement 27
ENDIF statement 28
INCLUDE statement 30
MAP statement 31
SCREEN statement 25
SET statement 36

overview 28
structure 23
syntax rules 21

BUTTON definition statement 26
button usage standards

left button 103
left+right button 104
middle button 104
right button 103
right+left button 104

C
CM Mouse

button definitions 45
common problems 128
control panel 11
control words 46
customizing 7
Drag/Drop Features 87
host control words 71
introduction 1
limitations 131, 132
menu files 37
REXX interface 73
Screen Map facility 16
starting 3
substitution words 60
tips and techniques 121
using 7
variables 95

CmmConnect 82
CmmExec 81
CmmGet 84
CmmGetScreen 80
CmmInfo 80
CmmPopup 83
CmmPrompt 83

CmmPut 84
CmmSearch 79
COLORS statement, menu file 38
common program problems 128
control panel 11
control word table 133
control words, PF key rules and examples 52
cursor positioning 124
customizing CM Mouse 7

D
debugging hints 98
debugging REXX programs 78
DEFINE statement 27
DEFINE/ENDDEFINE statements 27
displaying the Screen Map 16
DOIF statement, menu file, ENDIF 39
DRAG statement 29
DROP statement 30

E
ENDDEFINE statement 27
ENDIF statement, menu file 39
external functions, REXX 79

F
functions, REXX external 79

H
host application examples

ISPF 117
PROFS/OfficeVision

calendar screen example 113
main menu example 106

RDRLIST 116
Text Editors 118

host control words 71
host system menu 14

I
INCLUDE statement 30
inline and external REXX programs 74
input prompt dialog examples 67
ISPF example 117

K
keyboard functions on pop-up menus 10
keyword reference 133

© Copyright IBM Corp. 1991, 2019 145

L
left button, using 103
left+right button, using 104
licensing agreement 144
limitations 132
LINE statement, menu file 40

M
MAP statement

MAP CHORD TO DCLICK 32
MAP DCLICK TO CHORD 32
MAP OFF 33
overview 31

menu file statements
BAR 37
COLORS 38
DOIF 39
LINE 40
PLACE 42
SET 42
TITLE 42

menu files 37
middle button, using 104
MMM file syntax diagrams 141

N
nesting pop-up menus 121

O
OR-SCREEN definition statement 35

P
performance tips 127
Personal Communications library xi
PF key rules and examples 52
PLACE statement, menu file 42
pop-up menu definition examples 62
pop-up menu keyboard functions 10
pop-up system menu options 9
predefined system variables 98
presubstitution words 70
PROFS/OfficeVision examples 106
program limitations of CM Mouse 131

R
RDRLIST example 116
REXX interface

CM Mouse substitutions in 77
debugging programs 78
external functions

CmmConnect 82
CmmExec 81
CmmGet 84
CmmGetScreen 80
CmmInfo 80
CmmPopup 83
CmmPrompt 83
CmmPut 84
CmmSearch 79

REXX interface (continued)
external functions (continued)

description 79
inline and external programs 74
overview 73
syntax 75
uses 73

right button, using 103
right+left button, using 104
rules of variables 97
runtime substitution words 70

S
screen definition statement 25
Screen Map facility

displaying 16
overview 16
using 17

screen size independence 122
SET statement

BDF file 36
menu file 42

setting button definitions
control word table 45, 133
control words 46
host control words 71
presubstitution words 70
runtime substitution words 70
substitution words 60

setting the value of a variable
in a BDF or MMM file 96
in a button definition 95

string length limitations 131
structure, BDF file 23
substitution words

descriptions 60, 70
in REXX programs 77
input prompt dialog examples 67
pop-up menu definition examples 62

synchronizing input with the host 121
syntax

BDF file
diagrams 139
statements 21

MMM file
diagrams 141
statements 37

REXX program 75
system variables 98

T
Text Editors, examples 118
tips and techniques

common problems 128
cursor positioning 124
nesting pop-up menus 121
performance tips 127
screen size independence 122
synchronizing input with the host 121

TITLE statement, menu file 42

146 CM Mouse Support User’s Guide and Reference

U
using CM Mouse

control panel 11
control panel setup 11
customizing procedures 7
host system menu 14
pop-up menus 8
pop-up system menu options 9

using control words 46
using pop-up menus 8
using REXX interface 73

V
value settings

value of a variable in a BDF or MMM file 96
value of a variable in a button definition 95

variables
names 95
substitutions 97

Index 147

148 CM Mouse Support User’s Guide and Reference

IBM®

Product Number: 5639–I70

Printed in USA

	Contents
	Figures
	Tables
	About This Book
	How To Use This Book
	Icons

	Where to Find More Information
	Personal Communications Library

	Chapter 1. Installing CM Mouse
	Chapter 2. Starting CM Mouse
	Chapter 3. Configuring CM Mouse
	Chapter 4. Using CM Mouse
	Writing CM Mouse Scripts
	Using Pop-up Menus
	Pop-up System Menus
	Using the Keyboard with Pop-up Menus

	The CM Mouse Control Panel
	The Host System Menu
	Clipboard Functions
	CM Mouse Screen Map Facility
	Displaying the Screen Map
	Using the Screen Map
	Map Trace Window
	Customizing the Map Buttons Window

	Chapter 5. CM Mouse BDF Script Files
	Button Definition File General Syntax
	Button Definition File Structure
	The Primary BDF Script
	Default Button Definitions for SCREEN Statements

	Button Definition File Statements
	AREA Statement
	BUTTON Statement
	DEFINE/ENDDEFINE Statements
	DOIF/ENDIF Statements
	DRAG Statement
	DROP Statement
	INCLUDE Statement
	MAP Statement
	MAP CHORD TO DCLICK
	MAP DCLICK TO CHORD
	MAP OFF

	SCREEN Statement
	AND-SCREEN Definition Statement
	OR-SCREEN Definition Statement

	SET Statement

	Chapter 6. CM Mouse Menu Files
	BAR
	COLORS
	DOIF/ENDIF
	LINE
	PLACE
	SET
	TITLE

	Chapter 7. Button Definitions
	Control and Substitution Word Table
	The Basics of a Button Definition
	CM Mouse Control Words
	{beep}
	{clip cut} {clip cut textonly}
	{clip copy} {clip copy textonly}
	{clip copyappend}
	{clip from <r1> <c1> <r2> <c2>}
	{clip to <r> <c>}
	{clip paste}
	{clip place}
	{clip cancel}
	{clip clear}
	{clip undo}
	{clip unmark}
	{dde <function> <parameters>}
	{editmmm}
	{hostwait n}
	{if <condition> {then}script1{else}script2}
	{lock on} {lock off}
	{mmenu}
	{mrowcol x y}
	{null}
	{pause n}
	{pfkey}
	{pfkey first}
	{pfkey last}
	{pfkeyrev} {pfkeyrev first} {pfkeyrev last}
	{printscreen LPTx}
	{printscreen Fname} {printscreen Fname APPEND}
	{quit}
	{rowcol x y}
	{seek}
	{unseek}
	{search FOR 'string' AT r1 c1 r2 c2 WAIT n NOT ASIS NOQUIT}
	{seekelse}
	{seekcol x}
	{seekrow x}
	{set Name Value}
	{switchto <session>|*|next|prev }
	{sys <cmd> <parms>}
	{win <session>|*|prev|next MIN| MAX| RESTORE| HIDE| SHOW| ACTIVATE| DEACTIVATE}
	{xfer ..}
	{?<text>}
	{map}
	{sysmenu}

	CM Mouse Substitution Words
	&{break}
	&{chars r c l} or {&chars r c l}
	&{editor}
	&{env VarName}
	&{hcol} or {&hcol}
	&{hrow} or {&hrow}
	&{hour} &{min} &{sec}
	&{month} &{day} &{year}
	&{math 'val1' +|-|/|* 'val2'}
	&{mmm}
	&{mrow} or {&mrow}
	&{mcol} or {&mcol}
	&{num} or {&num}
	&{num first} or {&num first}
	&{num last} or {&num last}
	&{num at <row> <col>} or {&num at <row> <col>}
	&{popup <menuname>} or {&popup <menuname>}
	&{rows}
	&{cols}
	&{sid} or {&sid}
	&{srow} &{scol} or {&srow} {&scol}
	&{str <function> <parms>}
	&{var Name} or {&var Name}
	&{word delimit|include '<chars>'} or {&word}
	&{word first} or {&word first}
	&{word last} or {&word last}
	&{word at <row> <col>} or {&word at <row> <col>}
	&{?<Qtext>|<Atext>} or {&?<Qtext>|<Atext>}
	&{rexx PgmSource} or {&rexx PgmSource}
	Presubstitutions and Runtime Substitutions

	CM Mouse Host Control Words

	Chapter 8. CM Mouse/REXX Interface
	Typical Uses for the REXX Interface
	Inline and External REXX Programs
	Syntax
	CM Mouse Substitutions in REXX Programs
	Debugging REXX Programs
	REXX External Functions
	CmmSearch
	CmmGetScreen
	CmmInfo
	CmmExec
	CmmConnect
	CmmPopup
	CmmPrompt
	CmmGet
	CmmPut

	Chapter 9. Drag/Drop Features
	OS/2 versus Windows Drag/Drop
	How CM Mouse Drag/Drop Works
	DRAG Statements
	DROP Statements
	The XFER Keyword
	Automatic Name Mapping

	Chapter 10. CM Mouse Variables
	Setting the Value of a Variable
	Setting the Value of a Variable in a Button Definition
	Setting the Value of a Variable in a BDF or MMM File

	Variable Substitutions (Using the Value of a Variable)
	Rules of Variables
	Predefined System Variables
	Debugging Hints

	Chapter 11. CM Mouse Utility Programs
	The CM Mouse Menu Editor
	Menu Title
	Menu Item Text
	Menu Item Script
	Menu Item Color
	Delete Menu Item
	Insert Menu Item
	Default Menu Colors
	Default Bounce Bar Position
	Menu Placement
	Set Variable Values
	Exit and Save Menu
	Exit Without Saving

	The CM Mouse Button Simulator
	PM Button Simulator
	Command-Line Button Simulator

	Chapter 12. Button Usage Standards
	Left Button Usage
	Right Button Usage
	Left+Right Button Usage
	Right+Left Button Usage
	Middle Button Usage

	Chapter 13. Sample Button Definitions and Menus
	Host Application Examples
	PROFS/OfficeVision Examples
	Calendar Screen Example

	RDRLIST Example
	ISPF Example
	Text Editors

	Chapter 14. Tips and Techniques
	Nesting Pop-up Menus
	Synchronizing Input with the Host
	Screen Size Independence
	Cursor Positioning
	Performance Tips
	Common Problems

	Chapter 15. Cross-Platform Compatibility
	Chapter 16. CM Mouse Limitations
	String Lengths
	Program Limitations
	Miscellaneous Limitations

	Appendix A. CM Mouse Keyword Reference
	Appendix B. BDF File Syntax Diagrams
	Appendix C. MMM File Syntax Diagrams
	Appendix D. Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

