
Communications Server for Windows, Version 6.4
Personal Communications for Windows, Version 13.0

Client/Server Communications
Programming

SC31-8479-12

IBM

Communications Server for Windows, Version 6.4
Personal Communications for Windows, Version 13.0

Client/Server Communications
Programming

SC31-8479-12

IBM

Note
Before using this information and the product it supports, read the general information in Appendix G, “Notices,” on page
369.

Twelfth Edition (November 2017)

This level applies to Version 6.4 of IBM Communications Server for Windows, Version 13.0 of IBM Personal
Communications for Windows (program number: 5639-I70), and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright IBM Corporation 1994, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About This Book. xi
Who Should Read This Book xii
How to Use This Book xii

Icons xiii
Number Conventions xiii

Double-Byte Character Set Support xiv
Where to Find More Information xiv

Part 1. APPC API 1

Chapter 1. Introducing APPC. 3
SNA Communications Support 3
SNA LU Type 6.2 Support 4

Chapter 2. Fundamental APPC Concepts 5
What Is a Transaction Program? 5

APPC Transaction Programs 5
CPI Communications Transaction Programs . . . 6
Client Transaction Programs 6
Server Transaction Programs 6

What Is a Logical Unit?. 7
LU Types 7
Dependent and Independent LUs 7
What Is an LU Name? 7

What Is a Session? 8
What Is a Conversation? 8

Relationships among Sessions, Conversations,
and LUs 10

Conversation Types 11
Mapped Conversations 11
Basic Conversations 12

Examples of APPC Operations 12
Types of APPC Conversations 13

One-Way Conversation 13
Confirmed-Delivery Conversation 13
Inquiry Conversation 14
Database Update Conversation 14

Conversations That Have Errors 15
Summary 15

Chapter 3. Using the Attach Manager 17
Differentiating between an Application and a
Transaction Program 18
Transaction Program Definitions 19
Identifying the Transaction Program Name on Both
Machines 19
Defining Conversation Attributes 20

Synchronization Level 20
Conversation Type and Style 21
Conversation Styles. 21

Conversation Security for an Incoming Allocation
Request. 22
Conversation Security for an Outgoing Allocation
Request. 22
Using the Attach Manager on Personal
Communications 22

Starting the Attach Manager 23
Starting Programs with the Attach Manager . . 23

Matching Incoming Allocation Requests with
RECEIVE_ALLOCATE Verbs 24

Nonqueued Programs 24
Queued Programs 24

Using the Attach Manager on Communications
Server SNA API Clients 26

Defining Transaction Programs for SNA API
Clients 27
Starting the SNA API Client Attach Manager . . 27

Chapter 4. Writing a Transaction
Program 29
Application Protocols 29
Available Program LU 6.2 Services 29
Choosing a Conversation Type 32

Consistency of Conversation Type 32
Sending Data 32
Receiving Data 33
Reporting Errors and Abnormal Termination . . 34
Sending an Error Log Data Record 34
Abnormally Terminating because of a Timeout . 34

Requesting Confirmation 34
Choosing between Half-Duplex and Full-Duplex
Conversations 35
Choosing a Transaction Program Name 35
Using the Security Features 35

Partner LU Verification (Session-Level Security) 35
End-User Verification (Conversation-Level
Security) 36

Converting between EBCDIC and ASCII. 36

Chapter 5. Implementing APPC
Transaction Programs 37
Writing Transaction Programs 37

Option Sets Supported. 37
Full-Duplex VCBs 38

Queue-Level Nonblocking 39
Default Local LU 41

Chapter 6. Implementing CPI-C
Programs 43
Writing CPIC Programs 43
CPI-C Versions 43

CPI-C Conformance Class Support 44
CPI-C Functions 46

Specifying Service TP Names 48

© Copyright IBM Corp. 1994, 2016 iii

Additional Options for Setting Local_LU 49

Chapter 7. APPC Entry Points 51
APPC 52
WinAsyncAPPC() 53
WinAsyncAPPCEx() 55
WinAPPCCancelAsyncRequest() 57
WinAPPCCancelBlockingCall() 58
WinAPPCCleanup() 59
WinAPPCIsBlocking() 60
WinAPPCStartup() 61
WinAPPCSetBlockingHook(). 62
WinAPPCUnhookBlockingHook() 63
GetAppcConfig() 64
GetAppcReturnCode() 65

Chapter 8. APPC Verbs 67
Verb Control Blocks 67

Common Fields 67
APPC API Support 68

Verbs Supported. 68
GET_TP_PROPERTIES. 69
GET_TYPE 71
RECEIVE_ALLOCATE. 73
SET_TP_PROPERTIES 76
TP_ENDED 79
TP_STARTED. 81
[MC_]ALLOCATE 83
CANCEL_CONVERSATION. 89
[MC_]CONFIRM 91
[MC_]CONFIRMED 95
[MC_]DEALLOCATE 97
[MC_]FLUSH 102
[MC_]GET_ATTRIBUTES 104
[MC_]PREPARE_TO_RECEIVE 107
[MC_]RECEIVE_AND_POST 110
[MC]RECEIVE_AND_WAIT 115
[MC_]RECEIVE_EXPEDITED_DATA 120
[MC_]RECEIVE_IMMEDIATE 124
[MC_]REQUEST_TO_SEND 129
[MC_]SEND_CONVERSATION 131
[MC_]SEND_DATA 136
[MC_]SEND_ERROR 140
[MC_]SEND_EXPEDITED_DATA 144
[MC_]TEST_RTS 147
[MC_]TEST_RTS_AND_POST 149

Part 2. LUA API 151

Chapter 9. Fundamental Concepts of
the IBM Conventional LU Application . 153
Understanding LUA and SNA. 153
Connection Capabilities 153
LUA Application Programs 153
LUA Verbs 154
LUs, Local LUs, and Partner LUs 154
System Services Control Point (SSCP) 154
SNA Layers 154

Data Link Control Layer. 155

Path Control Layer 155
Transmission Control Layer 155
Data Flow Control Layer 155
Presentation Services Layer. 155

Using SNA Sessions 156
Prerequisites to an SNA Session 156
Starting Sessions 156
Transferring Data on an LU-LU Session . . . 157
Stopping Sessions 157
Disconnecting the Host Link 158

Message Numbers 158
Restarting and Resynchronizing a Session 159
Using Protocols to Control Requests and Responses 159

Using the Pacing Protocol 159
Using the Half-Duplex Contention/Flip-Flop
Protocol 160
Using the Bracket Protocol 160
Using the Data-Chaining Protocol 161

Data Exchange Control Methods 161
Flow Protocols 161
Response Modes 162
LUA Correlation Tables 162
Exception Response Requests (RQEs) 162

Session Profiles 163
TS Profiles 163
FM Profiles 164

Using RUI LUA Verbs 164
Verb Summary 164

RUI Sessions 165
Issuing RUI Verbs 165

Asynchronous Verb Completion 166
Sample LUA Communication Sequence. . . . 166
BIND Checking. 168
Negative Responses and SNA Sense Codes . . 168
Pacing. 169
Segmentation 169
Courtesy Acknowledgments 169
Purging Data to End of Chain 170

Configuration 170
LUA LU Pool (Optional). 170
SNA API Client Considerations 171

Chapter 10. Features of the RUI LUA
Verbs 173
Handling Exception Requests 173

Changing the Verb Record 173
Handling Bracket Bid Reject 174

Minimizing LAN Traffic 174
Reducing RUI_BID Usage 174

Dealing with Suspensions 174
Canceling RUI_INIT 175
Canceling RUI_WRITE 175
Canceling RUI_READ 175

Compressing Data 175
Rules for Negotiating Data Compression Per
Session 175

Recovering from Session Failure 176

iv Client/Server Communications Programming

Chapter 11. Implementing LUA
Programs 179
Writing LUA Programs 179
Calling LUA Services 179

Understanding Verb Record Contents 180
Multiple Processes. 180
Multiple Threads 180
LUA Verb Postings 180
Converting to EBCDIC from ASCII 181

Chapter 12. RUI LUA Entry Points . . 183
RUI() 184
WinRUI 185
WinRUICleanup() 186
WinRUIGetLastInitStatus() 187
WinRUIStartup() 189
GetLuaReturnCode() 190

Chapter 13. RUI Verbs. 191
LUA Verb Control Block Format 191

Common Verb Header 191
RUI_BID Data Structure 195

RUI_BID 196
RUI_INIT. 201
RUI_PURGE. 205
RUI_READ 208
RUI_TERM 214
RUI_WRITE 217

Chapter 14. SLI Entry Points 223
SLI() 224
WinSLI() 225
WinSLICleanup() 226
WinSLIStartup() 227

Chapter 15. SLI Verbs 229
SLI_BID 230
SLI_CLOSE 235
SLI_OPEN 238
SLI_PURGE 244
SLI_RECEIVE 246
SLI_SEND 251
SLI_BIND_ROUTINE 255
SLI_STSN_ROUTINE 257
SLI_SDT_ROUTINE 259

Part 3. Common Services API . . . 261

Chapter 16. Common Services Entry
Points 263
Writing Common Services Programs. 263
ACSSVC() 264
WinCSV() 265
WinCSVCleanup() 266
WinAsyncCSV() 267
WinCSVStartup() 268
GetCsvReturnCode() 269

Chapter 17. Common Services Verbs
(CSV) 271
GET_CP_CONVERT_TABLE 272
CONVERT 276
TrnsDt. 279

Part 4. EHNAPPC API 283

Chapter 18. EHNAPPC Application
Program Interface 285
Writing EHNAPPC Programs 285
EHNAPPC Routines 285

EHNAPPC_Allocate 285
EHNAPPC_Confirm 286
EHNAPPC_Confirmed 287
EHNAPPC_Deallocate 287
EHNAPPC_ExtendedAllocate 288
EHNAPPC_Flush 289
EHNAPPC_GetAttributes 289
EHNAPPC_GetCapabilities 290
EHNAPPC_GetDefaultSystem 290
EHNAPPC_IsRouterLoaded 291
EHNAPPC_PrepareToReceive 291
EHNAPPC_QueryConfiguredSystems 292
EHNAPPC_QueryConvState 292
EHNAPPC_QueryFullSystems. 293
EHNAPPC_QueryUserid 293
EHNAPPC_QuerySystems 293
EHNAPPC_ReceiveAndWait 294
EHNAPPC_ReceiveImmediate. 295
EHNAPPC_RemoteProgramStart 296
EHNAPPC_RqsToSend 296
EHNAPPC_SendData 297
EHNAPPC_SendError 297
EHNAPPC_StartHostProgram 298

EHNAPPC Structures 299
AS400_SYS 299
appcrtrcap_hdr 299
appcrtrcap_mult 299
appcrtrcap_query 300

Return Codes for the EHNAPPC API 300
Running 16-Bit EHNAPPC Programs 302

Chapter 19. Data Transform Windows
Application Program Interface 303
Data Transform Windows API Routines 303

EHNDT_ANSIToEBCDIC 303
EHNDT_ASCIIToEBCDIC 304
EHNDT_EBCDICToANSI 305
EHNDT_EBCDICToASCII 305

Part 5. Java Programming
Interfaces 307

Chapter 20. Introduction to the Host
Access Class Library for Java 309
What Is HACL? 309
HACL Concepts 310

Contents v

Sessions 310
Container Objects 310
List Objects 310
Events. 310
Error Handling 311
Addressing (Rows, Columns, Positions) . . . 311

Installing HACL on the Communications Server for
Windows Server 312
Installing HACL on the Communications Server
32–Bit Windows Client 312

Setting the Classpath 313
HACL Codepage Converters 313

HACL Samples 313

Chapter 21. Using CPIC-C for Java 315
What is CPI-C for Java? 315
Installing CPI-C for Java (Communications Server) 315
CPI-C for Java Samples 316

Client Sample 316
Server Sample 318

Part 6. Appendixes 321

Appendix A. APPC Common Return
Codes 323

Appendix B. LUA Verb Return Codes 327
Primary Return Codes 327
Secondary Return Codes 328

Appendix C. APPC Conversation State
Transitions 345

Appendix D. Communications Server
Service Location Protocol 351
Discovery and Load Balancing APIs 351

Structure 351
Scenarios 352
DA-Discovery Timeout 358
SA Multicast Timeout. 358

Administrator Help information 358
Scope 358
How Is Scope Used? 358
Load Balancing Weight Factor 359

Appendix E. Service Templates. . . . 361
Commserver Service Template. 361
Commserver Service Registration Message . . . 361
Dependent LU Service Template 361
Dependent LU Service Registration Message . . . 362
TN3270 Service Template 362
TN3270 Service Registration Message 363
TN5250 Service Template 364
TN5250 Service Registration Message 365
LU 6.2 Service Template 366
LU 6.2 Service Registration Message. 366

Appendix F. DLL Version Information 367
32–Bit Windows DLLs 367

Appendix G. Notices 369
Trademarks 370

Index 373

vi Client/Server Communications Programming

Figures

1. Personal Communications or Communications
Server APPC Implementation 3

2. A Session between Two LUs 8
3. Parts of a Conversation 9
4. A Conversation between Two Transaction

Programs. 9

5. Parallel Sessions between LUs 10
6. Relationships between Programs and LUs 11
7. Attach Manager Function in APPC. 18

© Copyright IBM Corp. 1994, 2016 vii

viii Client/Server Communications Programming

Tables

1. LU 6.2 Operations 12
2. Actions in One-Way Conversation 13
3. Actions in Confirmed-Delivery Conversation 13
4. Actions in Inquiry Conversation 14
5. Actions in Database Update Conversation 14
6. Inquiry Conversation with Error 15
7. Verb Processing and Transaction Program

Name Configuration 26
8. Header Files and Libraries for APPC 37
9. Header Files and Libraries for CPIC 43

10. Personal Communications Client Support of
CPI-C Functions 47

11. Clearing of RQEs 163
12. TS Profile Characteristics. 163
13. FM Profile Characteristics 164
14. RUI Verb Conditions 166
15. Header Files and Libraries for RUI APIs 179
16. Header Files and Libraries for SLI APIs 179
17. Parameter Settings Based on Message Type 253
18. Header Files and Libraries for Operating

Systems 263
19. TrnsDT Code Page Conversion Support —

China 279
20. TrnsDT Code Page Conversion Support —

Japan 279
21. TrnsDT Code Page Conversion Support —

Korea 279

22. TrnsDT Code Page Conversion Support —
Taiwan. 279

23. Header Files and Libraries for Operating
Systems 285

24. Return Codes 300
25. Events for HACL 310
26. APPC Half-Duplex Conversation State

Transitions 345
27. APPC Full-Duplex Conversation State

Transitions 347
28. Service Type/Port Information 353
29. CM_CSLIST_GETII Primitive 355
30. CM_CSLIST_GETII Primitive 355
31. Flags values (from cmi.h) 356
32. AgentType values (from csobjtyp.h) 356
33. FilterList_t (if Flags = CMCsListFlag_LBPool) 356
34. FilterList_t (if Flags = zero | Flags =

CMCsListFlag_LBFilters) 356
35. Filter_t 357
36. FilterType values (from cmi.h) 357
37. CM_CSLIST_GETII_ACK Primitive 357
38. Server Information structure in

CM_CSLIST_GETII_ACK Primitive 357
39. Valid dev_types for LU Pool Names 362

© Copyright IBM Corp. 1994, 2016 ix

x Client/Server Communications Programming

About This Book

This book is for users of client and server applications provided by IBM®

Communications Server for Windows and IBM Personal Communications for
Windows. Client APIs are provided for Windows 7, Windows 8/8.1, Windows 10,
Windows Server 2008, or Windows Server 2012 (hereafter termed Win32 client
APIs).

IBM Communications Server for Windows is a communications services platform.
This platform provides a wide range of services for workstations that communicate
with host computers and with other workstations. Communications Server users
can choose from among a variety of remote connectivity options.

IBM Personal Communications for Windows is a full-function emulator. In
addition to host terminal emulation, it provides these useful features:
v File transfer
v Dynamic configuration
v An easy-to-use graphical interface
v APIs for SNA-based client applications
v An API allowing TCP/IP-based applications to communicate over an SNA-based

network

In most instances, developing programs for Personal Communications and
Communications Server and their clients is very similar in that they each support
many of the same verbs. However, there are some differences. These differences are
denoted in this book with special icons; see “Icons” on page xiii for specific details.
Throughout this book, Personal Communications and Communications Server
program names are used when information applies to both. When only the
Personal Communications program or only the Communications Server program
applies, then the specific program name is used.

This book is divided into the following parts.
v Part 1, “APPC API,” describes how to develop programs that use the Personal

Communications and Communications Server advanced program-to-program
communications (APPC) interface. APPC refers to an implementation of Systems
Network Architecture (SNA) for logical unit (LU) type 6.2. Throughout this
book, unless otherwise noted, APPC represents the Personal Communications
and Communications Server implementation of APPC.
APPC provides a distributed transaction processing capability in which two or
more programs cooperate to carry out some processing function. This capability
involves communication between the programs so they can share resources, such
as processor cycles, databases, work queues, and physical interfaces such as
keyboards and displays.

v Part 2, “LUA API,” describes how to develop programs that use the IBM
conventional logical unit application (LUA) interface (in this book LUA also
refers to request unit interface {RUI}), which gives access to SNA LU types 0, 1,
2, and 3.

v Part 3, “Common Services API,” includes the verbs that make up the Common
Services API.

© Copyright IBM Corp. 1994, 2016 xi

|
|
|
|
|

v Part 4, “EHNAPPC API,” includes the functions, structures, and return codes for
the Enhanced APPC Interface.

v Part 5. Java™ Programming Interfaces, describes the IBM Host Access Class
Library (HACL) for Java as it relates to 3270 and 5250 applications.

In this book, Windows refers to Windows 7, Windows 8/8.1, Windows 10, Windows
Server 2008, or Windows Server 2012. Throughout this book, workstation refers to
all supported personal computers. When only one model or architecture of the
personal computer is referred to, only that type is specified.

Who Should Read This Book
This book is intended for programmers and developers who are writing either
APPC or LUA applications.

This book assumes the reader is familiar with SNA Transaction Programmer's
Reference Manual for LU Type 6.2.

How to Use This Book
v Chapter 1, “Introducing APPC,” describes advanced program-to-program

communications (APPC).
v Chapter 2, “Fundamental APPC Concepts,” describes APPC transaction

programs.
v Chapter 3, “Using the Attach Manager,” describes how to use the attach

manager.
v Chapter 4, “Writing a Transaction Program,” describes how to write a transaction

program.
v Chapter 5, “Implementing APPC Transaction Programs,” describes the APPC

extensions.
v Chapter 6, “Implementing CPI-C Programs,” describes CPI-C programs.
v Chapter 7, “APPC Entry Points,” describes the procedure entry points for the

APPC API.
v Chapter 8, “APPC Verbs,” describes the syntax of each APPC verb. A copy of the

structure that holds the information for each verb is included and each entry is
described, followed by a list of possible return codes.

v Chapter 9, “Fundamental Concepts of the IBM Conventional LU Application,”
describes the fundamental LUA programming concepts in this book.

v Chapter 10, “Features of the RUI LUA Verbs,” describes the features of LUA
verbs.

v Chapter 11, “Implementing LUA Programs,” describes some of the aspects of
writing LUA application programs.

v Chapter 12, “RUI LUA Entry Points,” describes procedure entry points for LUA.
v Chapter 13, “RUI Verbs,” describes details for each LUA verb.
v Chapter 14, “SLI Entry Points,” describes the procedure entry points for SLI.
v Chapter 15, “SLI Verbs,” describes details for each SLI verb.
v Chapter 16, “Common Services Entry Points,” describes procedure entry points.
v Chapter 17, “Common Services Verbs (CSV),” describes common services verbs.
v Chapter 18, “EHNAPPC Application Program Interface,” describes the

EHNAPPC API.

xii Client/Server Communications Programming

|
|
|
|

v Chapter 19, “Data Transform Windows Application Program Interface,” describes
data transform Windows APIs.

v Chapter 20, “Introduction to the Host Access Class Library for Java,” describes
the Host Access Class Library for Java and its relationship to both 3270 and 5250
using Java classes.

v Chapter 21, “Using CPIC-C for Java,” describes the CPI-C for Java API.
v Appendix A, “APPC Common Return Codes,” contains descriptions of the

common return codes.
v Appendix B, “LUA Verb Return Codes,” contains descriptions of the LUA

common return codes.
v Appendix C, “APPC Conversation State Transitions,” describes the conversation

states in which each APPC verb can be issued, and the state change that occurs
on completion of the verb.

v Appendix D, “Communications Server Service Location Protocol,” describes how
the application program developer can now locate services and load balance
among services using the TCP/IP protocol.

v Appendix E, “Service Templates,” describes details of commserver service types.
v Appendix F, “DLL Version Information,” contains 32-bit Windows DLL version

information.

Icons
This book uses icons in the text to help you find different types of information.

This icon represents information that applies to basic APPC verbs. See
Chapter 8, “APPC Verbs” for more information on basic verbs.

This icon represents information that applies to mapped APPC verbs. See
Chapter 8, “APPC Verbs” for more information on mapped verbs.

This icon represents a note, important information that can affect the
operation of Personal Communicationsor Communications Server, or the
completion of a task.

This icon appears when the information applies only to the Personal
Communications program.

This icon appears when the information applies only to the
Communications Server program.

Number Conventions

Binary numbers Represented as BX'xxxx xxxx' or BX'x' except in certain
instances where they are represented with text (“A value of
binary xxxx xxxx is...”).

Bit positions Start with 0 at the rightmost position (least significant bit).

About This Book xiii

Decimal numbers Decimal numbers over 4 digits are represented in metric style.
A space is used rather than a comma to separate groups of 3
digits. For example, the number sixteen thousand, one hundred
forty-seven is written 16 147.

Hexadecimal numbers Represented in text as hex xxxx or X'xxxx' (“The address of the
adjacent node is hex 5D, which is specified as X'5d'”)

Double-Byte Character Set Support
Personal Communications and Communications Server support double-byte
character sets (DBCS), in which each character is represented by 2 bytes.
Languages such as Japanese, Chinese, and Korean, which contain more symbols
than can be represented by 256 code points, require double-byte character sets.
Because each character requires 2 bytes, the typing, displaying, and printing of
DBCS characters require hardware and programs that support DBCS.

Where information applies specifically to DBCS, it is noted in this information unit.

ASCII refers to PC single-byte code in this book. ASCII should be considered as
JISCII in Japan.

Where to Find More Information

For more information, refer to Quick Beginnings, which contains a
complete description of both the Communications Server library and
related publications.

To view a specific book after Communications Server has been installed,
use the following path from your desktop:

1. Programs

2. IBM Communications Server

3. Documentation

4. Choose from the list of books

The Communications Server books are in Portable Document Format
(PDF), which is viewable with the Adobe Acrobat Reader. If you do not
have a copy of this program on your machine, you can install it from
the Documentation list.

The Communications Server home page on the Internet has general
product information as well as service information about APARs and
fixes. To get the home page, using an Internet browser such as IBM
Web Explorer, go to the following URL:

http://www.ibm.com/software/network/commserver

xiv Client/Server Communications Programming

For more information, refer to Quick Beginnings, which contains a
complete description of both the Personal Communications library and
related publications.

The Personal Communications books are included in the Installation
Image (DVD-ROM) in portable document format (pdf). The books can
be accessed directly from the publications directory of the Personal
Communications Installation Image or from the Launchpad welcome
panel.

To view the Personal Communications documentation using
Launchpad, select View Documentation from the main panel of the
Launchpad. When you click a document link, Adobe Reader will launch
for viewing the books. If Adobe Reader is not detected on your system,
you have the option to install it at this time. After installation of Adobe
Reader is complete, a window opens displaying the books available on
the Installation Image.

Notes:

1. You can copy the books from the Installation Image to a local or
network drive to view at a later time.

2. Quick Beginnings in HTML format is installed during installation of
Personal Communications.

The Personal Communications home page on the Internet has general
product information as well as service information about APARs and
fixes. To get the home page, using an Internet browser such as IBM
Web Explorer, go to the following URL:

http://www.ibm.com/software/network/pcomm/

The complete IBM Dictionary of Computing is available on the World
Wide Web at http://www.ibm.com/networking/nsg/nsgmain.htm.

About This Book xv

xvi Client/Server Communications Programming

Part 1. APPC API

© Copyright IBM Corp. 1994, 2016 1

2 Client/Server Communications Programming

Chapter 1. Introducing APPC

Personal Communications and Communications Server provide Advanced
Peer-to-Peer Networking (APPN) end-node support for workstations, enabling
them to communicate more flexibly with other systems in the network.

Personal Communications and Communications Server provide advanced
program-to-program communications (APPC) to support communications between
distributed processing programs, called transaction programs (TPs). APPN extends
this capability to a networking environment. The transaction programs can be
located at any node in the network that provides APPC.

Personal Communications and Communications Server improve APPC throughput
in local area network (LAN) environments and supports APPC over various
protocols such as: IBM Token-Ring Network, Synchronous Data Link Control
(SDLC), and Ethernet.

Note: Included in the chapters of Part 1 of this book is information on the APPC
API provided by the following systems:
v Communications Server running on Windows
v SNA API clients for Windows that are delivered with Communications

Server
v Personal Communications for Windows

When there are differences between the support provided by these systems,
it is noted.

Figure 1 illustrates the functional structure of an implementation of APPC for
either Personal Communications or Communications Server.

SNA Communications Support
Personal Communications and Communications Server support Systems Network
Architecture (SNA) type 2.1 nodes (including SNA type 2.0 and SNA type 2.1
support for logical units [LUs] other than SNA LU 6.2). This support lets you write
programs to communicate with many other IBM SNA products.

LAN X.25

PU 2.1/2.0

LU 6.2

SDLC •• •

Figure 1. Personal Communications or Communications Server APPC Implementation

© Copyright IBM Corp. 1994, 2016 3

You can write programs without knowing the details of the underlying network.
All you need to know is the name of the partner LU; you do not need to know its
location. SNA determines the partner LU location and the best path for routing
data. A change to the underlying network, the addition of a new adapter, or the
relocation of a machine, does not affect APPC programs. A program might,
however, need to establish link connections over switched SDLC connections.

When Personal Communications or Communications Server starts, it establishes
local LU and logical link definitions, which are stored in a configuration file. The
system management application programming interface (API) provides functions
that control configuration definition and adapter and link activation. Refer to
System Management Programming for information about these functions. Users can
use the configuration and node operations functions while runs. Refer to Quick
Beginnings and System Management Programming for more information about
configuration and node operations.

SNA LU Type 6.2 Support
LU 6.2 is an architecture for program-to-program communications. Personal
Communications and Communications Server support all base LU 6.2 functions.
Some of the optional SNA LU 6.2 functions are:
v Basic and mapped conversations
v Half-duplex or full-duplex conversation styles
v Synchronization level of confirm
v Security support at session and conversation levels
v Multiple LUs
v Parallel sessions, including the ability to use a remote system to change the

number of sessions

4 Client/Server Communications Programming

Chapter 2. Fundamental APPC Concepts

This chapter describes the APPC API supported by Personal Communications. Its
purpose is to provide:
v A brief overview of the structure of the APPC API
v Reference information about the specific syntax of the verbs that flow across the

interface

What Is a Transaction Program?
A transaction program is a block of code, or part of an application program, that
uses APPC communications functions. Application programs use these functions to
communicate with application programs on other systems that support APPC. A
transaction program has a 64-byte name (tp_name).

Your transaction program can obtain LU 6.2 services through either of the
following APIs:
v APPC—Advanced Program-to-Program Communication allows transaction

programs to exchange information across an IBM SNA network using the syntax
and verbs defined by IBM for using an LU 6.2 session.

v CPI-C—Common Programming Interface for Communications (CPI-C) allows
transaction programs to exchange information across an IBM SNA network
using the syntax, defined by IBM in the Common Programming Interface
component of the SAA, for using an LU 6.2 session. Because this API is
implemented for many platforms, CPI-C applications can be easily ported.

Transaction programs issue APPC verbs to invoke APPC functions. See Chapter 5,
“Implementing APPC Transaction Programs,” on page 37, for details about how
transaction programs issue APPC verbs. Transaction programs can issue CPI
Communications calls to invoke CPI Communications functions. The CPI
Communications calls let application programs take advantage of the consistency
that SAA provides. See “CPI Communications Transaction Programs” on page 6 for
information about the CPI Communications calls.

Programs do not need to be written to the same LU 6.2 API in order to
communicate with each other. In particular, a transaction program written to the
APPC API can communicate with a transaction program written to CPI-C.

APPC Transaction Programs
An APPC transaction program is not an application; it is a section of an
application. A single application can contain many transaction programs. Every
transaction program has a unique 8-byte identification number (tp_id).

APPC supplies verbs that start and stop transaction programs within applications.
APPC also supplies a full set of conversation verbs that you can use to implement
the function of your transaction program.

A transaction program issues a request to APPC, in the form of a verb, to perform
some action for an application program. A verb is a formatted request that a
transaction program issues and APPC executes. A program uses APPC verb

© Copyright IBM Corp. 1994, 2016 5

sequences to communicate with another program. Two programs that communicate
with each other can be located at different systems or on the same system.

When a transaction program exchanges data with another transaction program,
they are called partner transaction programs.

CPI Communications Transaction Programs
A CPI Communications transaction program is similar to an APPC transaction
program; both types of transaction programs use APPC support. Rather than
issuing verbs, however, a CPI Communications transaction program invokes each
CPI Communications function with a call to the function that passes the
appropriate parameters on the call.

Most CPI Communications calls correspond to APPC verbs. For example, the calls
that allocate outbound conversations and accept (receive) conversations, and the
calls that send and receive data on the conversation, provide functions that are
similar to those of the corresponding APPC verbs. The exceptions are the calls that
initialize a conversation before allocating the conversation and the calls that set
and extract individual conversation characteristics.

Refer to CPI Communications Reference for details about the support that
Communications Server provides for CPI Communications programs.

Client Transaction Programs
Typically, a program begins a conversation because it requires a service from
another program. This program is called a client transaction program. The client
transaction program requests the conversation through the LU 6.2 API.

Often the client transaction program is started by a human user; however, the
client transaction program could actually be a server transaction program
responding to another program's request. In any conversation, the client
transaction program is always running before the conversation begins. The client
transaction program startup and termination are not directly related to the
conversation. The client transaction program initiates the conversation, and it can
continue to run after the conversation is over.

Server Transaction Programs
The server transaction program delivers the service that is requested by the client
transaction program.

The server transaction program can run continuously, waiting for clients to begin
conversations with it. But frequently, the server transaction program handles a
single transaction, and is started by the APPC API to handle one specific
conversation. The server transaction program begins execution when a
conversation is requested, and it terminates when the conversation is finished.

An important feature of the LU 6.2 architecture is that it can start server
transaction programs when client transaction programs request them. You can
design your server programs according to this model and arrange for them to be
started on demand.

6 Client/Server Communications Programming

What Is a Logical Unit?
Every transaction program gains access to an SNA network through a logical unit
(LU). An LU is SNA software that accepts verbs from your programs and acts on
those verbs. A transaction program issues APPC verbs to its LU. These verbs cause
commands and data to flow across the network to a partner LU. An LU also acts
as an intermediary between the transaction programs and the network to manage
the exchange of data between transaction programs. A single LU can provide
services for multiple transaction programs. Multiple LUs can be active
simultaneously.

LU Types
Personal Communications and Communications Server support LU types 0, 1, 2, 3,
and 6.2. LU types 0, 1, 2, and 3 support communication between host application
programs and different kinds of devices, such as terminals and printers. Refer to
Part 2, “LUA API,” for details on writing these programs.

LU 6.2 supports communication between two programs located at type 5 subarea
nodes, type 2.1 peripheral nodes, or both, and between programs and devices.
APPC is an implementation of the LU 6.2 architecture, which is described in this
part of the book.

Communication occurs only between LUs of the same LU type. For example, an
LU 2 communicates with another LU 2; it does not communicate with an LU 3.

Dependent and Independent LUs
A dependent LU depends on a system services control point (SSCP) to activate a
session. A dependent LU needs an active SSCP-LU session, which the dependent
LU uses to start an LU-LU session with an LU in a subarea node. A dependent LU
can have only one session at a time with the subarea LU. For communications with
a transaction program at a subarea node, each dependent LU can have only one
conversation at a time, and each dependent LU can support communications for
only one transaction program at a time.

An independent LU does not depend on an SSCP to activate a session. An
independent LU supports multiple concurrent sessions with other LUs in a subarea
node, so you can have multiple conversations and support multiple transaction
programs for communications with subarea transaction programs. LUs between
peripheral nodes also use this support.

The distinction between a dependent LU and an independent LU is meaningful
only when discussing a session between an LU in a peripheral node and an LU in
a subarea node. Otherwise, dependent and independent LUs both support multiple
concurrent sessions and conversations when communicating between type 2.1
peripheral nodes (for example, between two workstations). Personal
Communications or Communications Server LUs can support a single session with
a dependent LU or multiple sessions with an independent LU.

What Is an LU Name?
An LU is a point of access to the Systems Network Architecture (SNA) network.
An LU has a name and other characteristics that are configured (formally recorded)
throughout the SNA network. Sometimes this configuration is static, done by the
network administrator and recorded in configuration files. Sometimes the
configuration is dynamic, prepared by programs from file or user input.

Chapter 2. Fundamental APPC Concepts 7

To open a conversation, a client transaction program must specify both the name of
the server transaction program and the name of the LU where the server
transaction program can be reached. Sometimes these names are embedded in the
client transaction program. In other cases, the names are stored externally to the
client transaction program or are specified dynamically.

What Is a Session?
Before transaction programs can communicate with each other, their LUs must be
connected in a mutual relationship called a session. A session connects two LUs, so
it is called an LU-LU session. Figure 2 illustrates this communication relationship.
Multiple concurrent sessions between the same two LUs are called parallel LU-LU
sessions.

Sessions act as conduits that manage the movement of data between a pair of LUs
in an SNA network. Specifically, sessions deal with things such as the quantity of
data transmitted, data security, network routing, and traffic congestion.

Sessions are maintained by their LUs. Normally, your transaction programs do not
deal with session characteristics. You define session characteristics when you:
v Configure your system
v Use the management verbs

What Is a Conversation?
The communication between transaction programs is called a conversation.
Conversations occur across LU-LU sessions. A conversation starts when a
transaction program issues an APPC verb or CPI Communications call that
allocates a conversation. The conversation style associated with the conversation
indicates the style of data transfer to be used, two-way alternate or two-way
simultaneous.

A conversation that specifies a two-way alternate style of data transfer is also
known as a half-duplex conversation. A conversation that specifies a two-way
simultaneous style of data transfer is referred to as a full-duplex conversation.

When a full-duplex conversation is allocated to a session, a send-receive
relationship is established between the transaction programs connected to the
conversation, and a two-way alternate data transfer occurs where information is
transferred in both directions, one direction at a time. Like a telephone
conversation, one transaction program calls the other, and they “converse”, one
transaction program talking at a time, until a transaction program ends the
conversation. One transaction program issues verbs to send data, and the other
transaction program issues verbs to receive data. When it finishes sending data, the

Figure 2. A Session between Two LUs

8 Client/Server Communications Programming

sending transaction program can transfer send control of the conversation to the
receiving transaction program. One transaction program decides when to end the
conversation and informs the other when it has ended.

When a duplex conversation is allocated to a session, both transaction programs
connected to the conversation are started in send-and-receive state, and a two-way
simultaneous data transfer occurs where information is transferred in both
directions at the same time. Both transaction programs can issue verbs to send and
receive data simultaneously with no transfer of send control required. The
conversation ends when both transaction programs indicate they are ready to stop
sending data, and each transaction program has received the data sent by the
partner. If an error condition occurs, one transaction program can decide to end
both sides of the conversation abruptly.

Figure 3 shows a conversation after it has been set up.

Conversations can exchange control information and data. The transaction program
should select the conversation style best-suited for its application.

Figure 4 shows a conversation between two transaction programs as it occurs over
a session.

A session can support only one conversation at a time, but one session can support
many conversations in sequence. Because multiple conversations can reuse
sessions, a session is a long-lived connection compared to a conversation.

When a program allocates a conversation and all applicable sessions are in use, the
LU puts the incoming Attach (allocation request) on a queue. It completes the
allocation when a session becomes available. See Chapter 3, “Using the Attach
Manager,” on page 17 for more information about Attach Manager.

TP2

LU5LU1

TP1

ConversationSession

LU6.2 API services

Transaction Program (TP)

Logical Unit (LU)

Figure 3. Parts of a Conversation

Figure 4. A Conversation between Two Transaction Programs

Chapter 2. Fundamental APPC Concepts 9

Two LUs can also establish parallel sessions with each other to support multiple
concurrent conversations.

Figure 5 shows three parallel sessions between two LUs; each session carries a
conversation.

An APPC conversation is a half-duplex conversation. At any instant, only one of the
two partner transaction programs has the right to send data. That transaction
program is insend state. The other transaction program has the responsibility to
receive data. It is said to be in receive state. At specified times, the transaction
programs exchange these duties. When the conversation is first set up, the client
transaction is in send state and the server program is in receive state.

Relationships among Sessions, Conversations, and LUs
A connection between LUs is called a session. This connection can pass through
intermediate network nodes. However, LU 6.2 programs do not need to account
for the details of the connection. It makes no difference to the client transaction
program whether the server transaction program is in the same room or thousands
of miles away. The LU 6.2 API is responsible for starting and ending sessions
between LUs of type 6.2.

Though a session can carry only one conversation at a time, it can be reused for
another conversation when the first one is finished. The LU 6.2 software
determines whether to terminate a session when the conversation ends, or to keep
the session open and reuse it.

Some LUs can handle multiple, parallel sessions. Each session is independent.
Some possible relationships among machines, LUs, sessions, and transaction
programs are illustrated in Figure 6 on page 11.

Figure 5. Parallel Sessions between LUs

10 Client/Server Communications Programming

Figure 6 depicts two parallel sessions between LUA1 in System A and LUB1 in
System B. One session carries a conversation between client TPC1 and server TPS1.
The other session is not in use for a conversation at this time.

In System C, LUC1 also supports two parallel sessions. Both are in use by client
TPC3, which is carrying on a conversation with server TPS2 in System A. TPC3
also has a conversation in progress with TPC4 in System D. This figure illustrates
that a transaction program is not limited to a single conversation. The figure also
shows that a program can be both a client and a server. A possible scenario for the
conversations could be that program TPC4 started program TPC3 in order to
request a service. To deliver that service, TPC3 requested a service from TPS2.

Conversation Types
Personal Communications and Communications Server LU 6.2 supports two types
of conversations, mapped and basic, and therefore provides a separate set of verbs
for each. The conversation type you use depends on whether you need full access
to the SNA general data stream (GDS) as provided by basic conversations. The GDS
defines what is known as a GDS variable. A GDS variable consists of one or more
logical records. Each logical record begins with a logical length (LL) field that
specifies the overall length of the logical record (data). The first logical record of a
GDS variable also includes, immediately after the logical length field, an
identification (ID) field that specifies the type of GDS variable.

Mapped Conversations
Use mapped conversations for transaction programs that are the final users of the
data exchanged. A mapped conversation enables advanced program-to-program
communication in an easy-to-use record-level manner. Because a transaction
program using mapped conversations does not require GDS headers to describe
the data, the program does not have to build or interpret these headers. When the
transaction program uses mapped conversations, Personal Communications LU 6.2
builds and interprets GDS variables.

In a mapped conversation, the programs exchange records in whatever format you
design.

LUA1

LUA2

System A

TPC1

TPS2

TPC4

LUD2

System D

LUB1

System B

TPS1

LUC1

System C

TPC3

Figure 6. Relationships between Programs and LUs

Chapter 2. Fundamental APPC Concepts 11

v Each send operation takes a record of a specified length from 0 bytes to 65,535
bytes. Personal Communications and Communications Server formats the record
into a single GDS variable.

v A receive operation returns all or part of one sent record (GDS variable without
header fields), depending on how much buffer space the program allocates. The
return code indicates when the final part of a record sent by the partner
program has been received.

The APPC API takes full responsibility for the following tasks:
v Blocking and buffering multiple records
v Formatting data as SNA GDS variables
v Buffering at the receiving program
v Deblocking and delivery to the Receive operation

Basic Conversations
In a basic conversation, transaction programs exchange logical records from 0 to
32,765 bytes in length.
v Each send operation takes a buffer containing from 0 to 65,535 bytes of logical

records. The buffer can contain one or more logical records and parts of records.
Logical records can be broken across send calls.

v A receive operation can be used to accept either a single logical record or a
buffer filled with one or more logical records and parts of records.

Examples of APPC Operations
Table 1 describes possible LU 6.2 operations in abstract terms.

Table 1. LU 6.2 Operations

Operation What the Operation Does

Send Sends a block of data to the other program.

Receive If currently in send state, transmits any buffered output data
and enters receive state. Waits for data to arrive and receives it.

Await confirmation Transmits any buffered output data. Waits until the partner
program confirms that it has received and processed all data.

Confirm Sends the partner program confirmation that all data has been
received and processed.

Error If in receive state, purges any buffered input data and enters
send state. If currently in send state, purges any buffered
output data. Causes the partner program's current operation to
end with a special return code.

Close If currently in send state, transmits any buffered output data.
Ends the conversation.

Both LU 6.2 APIs offer these services (and others), and both offer services that
allow you to combine two or more of these basic operations to improve
performance. The following sections use these terms when discussing the types of
conversations to avoid contrasting the details of each API. For example, the term
Send used in Table 1 can represent the APPC verbs SEND_DATA, or
MC_SEND_DATA, or the CPI-C function CMSEND.

12 Client/Server Communications Programming

Types of APPC Conversations
This section discusses the types of APPC conversations.
v One-way
v Confirmed-delivery
v Inquiry
v Database update

One-Way Conversation
In the one-way conversation, the simplest type of conversation, the client
transaction program passes some data to the server and the server notes it, as
summarized in Table 2.

Table 2. Actions in One-Way Conversation

Client Actions Server Actions

Send one or more records.

Close. Receive and process the records.

Close.

This minimal sort of conversation is used with data whose delivery is not critical;
for example, to periodically update a status display, to record usage levels, or log a
condition.

Confirmed-Delivery Conversation
In the next simplest type of conversation, the confirmed-delivery conversation, the
client transaction program sends a record and the server confirms its receipt, as
summarized in Table 3.

Table 3. Actions in Confirmed-Delivery Conversation

Client Actions Server Actions

Send one or more records.

Await confirmation.

Receive and process the records.

Confirm the records.

Close. Close.

This type of conversation can be used in a credit-authorization system (the client
sends an account number and purchase amount, and the server's confirmation
authorizes the sale) among its other uses. For example, the client transaction
program could send a database record of any kind, and the server could confirm
that the database had been updated. Because there is no upper limit on how much
data the client can send, this type of conversation could be used to send an entire
file of data in batch mode. In this type of conversation the client transaction
program receives only the confirmation; it needs no other data returned to it.

The difference between a Confirm operation and a Send is that Confirm transmits
only the shortest possible SNA message, the positive response that all data has
been received and processed.

Chapter 2. Fundamental APPC Concepts 13

Inquiry Conversation
In an inquiry conversation, the client sends one request for information and the
server generates one response, as summarized in Table 4. (Both the inquiry and the
response can comprise any number of logical records.) This type of conversation
appears in many kinds of data processing applications.

Table 4. Actions in Inquiry Conversation

Client Actions Server Actions

Send one or more records.

Receive.

Receive and process the records.

Send a response consisting of one or more
records.

Continue to Receive until all response data
has arrived.

Close.

Close.

When you design transactions to this model, the server transaction programs are
very simple. Each handles one instance of one type of query and then terminates.
The client transaction program requests a conversation with the server transaction
program that can answer the desired type of query. The LU 6.2 API services locate
and start a copy of that server transaction program.

Database Update Conversation
In the database update conversation, the client transaction program requests a copy
of data, modifies it, and returns it to be stored. The server transaction program
locks the data for the client's use until the update is complete. Table 5 summarizes
client and server actions.

Table 5. Actions in Database Update Conversation

Client Actions Server Actions

Send a request for data (a record key).

Receive.

Receive the key value.

Fetch the record and lock it.

Send a copy of the record.

Receive.

Process the received record.

Send the updated record.

Await confirmation.

Update the database with the received
record.

Confirm the update.

Close. Close.

Refer to Table 1 on page 12 to clarify this process. When the client transaction
program first issues Receive, three things occur:
v LU 6.2 send buffer is flushed of any remaining logical records sent by the client.

14 Client/Server Communications Programming

v The client transaction program, that began in send state, switches to receive
state. The right to send passes to the server transaction program.

v The client transaction program waits until data arrives. (Nonblocking receive
operations are available also.)

Similarly, the second Receive issued by the server flushes its buffer and transfers
the right to send back to the client transaction program.

Conversations That Have Errors
Conversation errors are inevitable, and your transaction program must be prepared
to detect and respond to them. A transaction program uses the Report (Error)
operation, described in Table 1 on page 12, to signal the discovery of an error.
Table 6 summarizes an inquiry conversation in which the server finds a logical
error in the inquiry.

Table 6. Inquiry Conversation with Error

Client Actions Server Actions

Send one or more records.

Receive.

Receive and process some of the inquiry
records. Find a mistake.

Report (Error).

Send diagnostic error message.

Return code to Receive indicates Report
(Error) by partner.

Close.

Receive diagnostic message, display to user

Close

The main purpose of the Report (Error) operation is to purge all data in transaction
program API buffers that was neither sent nor received. The Report (Error)
operation also gives the right to send to the transaction program which discovered
the error, so that the transaction program can transmit diagnostic data to its
partner. Your transaction program must specify the contents of the diagnostic
message and the operations that follow.

Summary
Two transaction programs use LU 6.2 to exchange data in a conversation. One, the
client transaction program, is typically started by a user. The other, the server
transaction program, can be started automatically to render a service to the client.
A transaction program uses one of two APIs: APPC, or CPI-C, which have different
styles and similar, but not identical, sets of services.

The conversation takes place over a session between two LUs. An LU represents a
point at which a transaction program can access the SNA network. A session
represents the connection between two LUs, without regard to their location or the
distance between them.

Chapter 2. Fundamental APPC Concepts 15

16 Client/Server Communications Programming

Chapter 3. Using the Attach Manager

An important LU 6.2 feature is the ability of a program in one node to start
corresponding programs in other nodes. The attach manager handles incoming
requests to start programs.

This chapter considers programs in your (local) workstation that start at the
request of partner programs. The local program is referred to as remotely started.
Workstation users and administrators want to control which programs can be
remotely started for security and resource control. Users at remote nodes should
not start programs that destroy data or use the local workstation's memory at
critical times. The attach manager acts as a gate keeper, handling incoming
requests to start programs on the local workstation.

The attach manager takes its name from an SNA message, called an Attach, that
flows between a pair of LUs. An Attach flows when a program that uses the
partner LU initiates a conversation. The LU 6.2 component in the local workstation
passes any Attach it receives to its attach manager for handling. A received Attach
is called an incoming allocation request or incoming Attach. In this chapter, the phrase
incoming allocation request means that the SNA Attach is generated by a partner LU.

The attach manager does the following things:
v Enables remote nodes to start applications in the local workstation. Multiple

instances of a program can be started in series (queued) or in parallel
(nonqueued).

v Passes parameters to remotely started programs.
v Starts programs in Windows or in the background.
v Uses security guidelines to verify incoming allocation requests.
v Forwards the incoming allocation request to the client workstations.
v Checks the conversation type (that is, basic or mapped) and synchronization

level of incoming allocation requests.
v For server programs, specifies timeout values for holding incoming allocation

requests and locally issued APPC RECEIVE_ALLOCATE verbs or CPI
Communications Accept_Conversation or Accept_Incoming (CMACCP,
CMACCI) calls.

Figure 7 on page 18 illustrates the attach manager function.

© Copyright IBM Corp. 1994, 2016 17

In a communicating pair of transaction programs, only the node that receives
allocation requests needs the attach manager. The attach manager manages three
kinds of input:
v Incoming allocation requests (Attaches) from partner transaction programs
v APPC RECEIVE_ALLOCATE verbs or CPI Communications CMACCP and

CMACCI calls from local programs
v Configuration definitions for transaction programs, user IDs, and passwords

The TP name is a key piece of information in an incoming allocation request. The
attach manager uses the transaction program name to decide which program to
start in the local workstation. Programmers and administrators at both nodes need
to agree on each transaction program name. A program that issues an allocation
request supplies a transaction program name as a parameter to the APPC
[MC_]ALLOCATE or [MC_]SEND_CONVERSATION verb.

When an Attach is received, the transaction program name in the Attach is
matched against transaction program names from the transaction definitions. If a
match is found, the executable name from that definition is started or routed to a
client workstation. If a match is not found, then the name of the executable is
assumed to be the same as that which is specified in the Attach appended with
.EXE.

Differentiating between an Application and a Transaction Program
The term transaction program has a special meaning in APPC. A transaction
program is not an application; it is a section of an application.

A transaction program starts either when an application successfully issues an
APPC RECEIVE_ALLOCATE or TP_STARTED verb. Both of these methods
identify the transaction program as a new transaction program that APPC needs to
know about. APPC reserves a group of memory blocks for the transaction program
and creates a unique transaction program identifier, tp_id, which it returns to the
calling program.

When an application issues a TP_ENDED verb, APPC clears its buffers for that
transaction program and marks the tp_id as not valid. When an application
terminates, APPC ends any active transaction programs associated with that
process.

Figure 7. Attach Manager Function in APPC

18 Client/Server Communications Programming

When the attach manager receives an allocation request and ensures it is valid, and
if a RECEIVE_ALLOCATE is not pending, it starts the application that
corresponds to the incoming transaction program name. Notice that it starts a
program, not a transaction program. Generally, the application then issues a verb
that establishes it as a transaction program. Given mutual consent between the
sending node and the local workstation, you can configure the attach manager to
start any application in the local workstation.

A transaction program must be established before a conversation can be allocated.
An application must supply a tp_id on all conversation verbs that it issues while it
is a part of that transaction program. Many conversations can use a single tp_id
concurrently (such as in multiple threads) or sequentially (where one conversation
follows another). When a transaction program ends, APPC deallocates any active
conversations.

Transaction Program Definitions
Personal Communications and Communications Server configuration uses two
naming levels to identify the remotely started program:
v The 64-character name of the local program known by the partner transaction

program (tp_name)
v The file specification of the local program to be started (filespec)

Using two names enables flexible reconfiguration that can increase the portability
of your APPC programs among workstations.

TP name
The name that a partner transaction program sends in the allocation
request to the attach manager in the local workstation.

The partner transaction program and the local program must both know
the transaction program name. The transaction program name is a supplied
parameter for RECEIVE_ALLOCATE verbs in programs on local LUs.
Partner transaction programs supply a transaction program name with
APPC [MC_]ALLOCATE or [MC_]SEND_CONVERSATION verbs.

Path name
The transaction program file specification (path name) names the program
to start locally. The transaction program file specification contains the
executable file's drive, path, file name, and extension.

Multiple transaction program definitions can specify the same transaction
program file specification. The attach manager must determine whether to
run one or multiple instances of a program, so a given transaction program
file specification must be configured as either queued or nonqueued in all
definitions that name it. For example, if a definition that specifies
MYTP.EXE is configured as “queued—attach manager started”, MYTP.EXE
cannot be configured as nonqueued in another transaction program
definition. However, the transaction program filespec is case sensitive.

Identifying the Transaction Program Name on Both Machines
If the program identified by the attach manager cannot be started, the attach
manager rejects the allocation request; the program that issued an allocation
request is notified that the attach manager could not start the program.

Users or administrators define transaction programs during Personal
Communications configuration to build the list of defined transaction program

Chapter 3. Using the Attach Manager 19

names. Each unique transaction program name to be accepted from a partner
requires a transaction program definition in the local (accepting) workstation
unless you are willing to accept the default. The transaction program definition
contains information about the transaction program. Similarly, during
configuration, a list of security information (allowable passwords and user IDs) is
built from the LU 6.2 conversation security information. Refer to Quick Beginnings
configuration information. Following is a description of the configuration data that
must be specified to define a transaction program.

Defining Conversation Attributes
The conversation parameters sync_level, conv_type, and security_rqd do not
directly influence how the attach manager starts a program. However, the attach
manager uses the parameters to determine whether to reject an incoming allocation
request before queuing it, or checking for corresponding RECEIVE_ALLOCATE
verbs.

Synchronization Level
Specify whether your transaction program will support the verbs and parameters
for confirmation processing when you define sync_level. These APPC verbs are
[MC_]CONFIRM and [MC_]CONFIRMED. Certain parameters on the
[MC_]ALLOCATE, [MC_]SEND_CONVERSATION,
[MC_]PREPARE_TO_RECEIVE, and [MC_]DEALLOCATE are for confirmation
processing. For Common Programming Interface Communications (CPIC) users,
sync_level can be set by the Set_Sync_Level (CMSSL) call.

Incoming allocation requests contain a field that indicates whether a partner
transaction program issues verbs or parameters for confirmation processing. The
attach manager checks the field on the incoming allocation request against the
configured value in its list of transaction program definitions. If the values do not
match, attach manager rejects the incoming allocation request. The possible
configuration choices are:

NONE
The transaction program does not issue any verb that relates to
confirmation processing, in any of its conversations.

CONFIRM
The transaction program can perform confirmation processing on its
conversations. The transaction program can issue verbs and recognize
returned values that relate to confirmation. If the transaction program
contains any of the verbs for confirmation processing, define
sync_level(CONFIRM) to guarantee a compatible session.

EITHER
The transaction program can participate in conversations with partners that
do or do not specify confirmation processing. Do not pick EITHER if the
transaction program being configured requires confirmation processing.

AP_SYNCPT_REQUIRED
The transaction program supports a synchronization level of Sync-point.

AP_SYNCPT_NEGOTIABLE
The transaction program supports a synchronization level of None,
Confirm or Sync-point.

20 Client/Server Communications Programming

Conversation Type and Style
The conv_type parameter is used to determine both the conversation type and
conversation style of the program to be started. The conversation type attribute
determines whether the program to be started supports basic or mapped records
when it sends and receives data. The conversation style attribute determines
whether the program to be started supports half-duplex conversations. The attach
manager checks whether a transaction program uses basic or mapped verbs and if
it uses half-duplex or full-duplex.

The conversation types are:

BASIC
The transaction program issues only basic conversation verbs for its
conversations.

MAPPED
The transaction program issues only mapped conversation verbs for its
conversations.

EITHER
The transaction program issues either basic or mapped conversation verbs
for a conversation, depending on what arrives on the incoming allocation
request.

The conversation styles are:

HALF The transaction program supports half-duplex conversations only.

FULL The transaction program supports full-duplex conversations only.

EITHER
The transaction program supports either full or half duplex conversations.

Conversation Styles
The conversation style associated with the conversation indicates the style of data
transfer to be used, two-way alternate or two-way simultaneous. A conversation
that specifies a two-way alternate style of data transfer is also known as a
half-duplex conversation. A conversation that specifies a two-way simultaneous style
of data transfer is referred to as a full-duplex conversation.

When a full-duplex conversation is allocated to a session, a send-receive
relationship is established between the transaction programs connected to the
conversation, and a two-way alternate data transfer occurs where information is
transferred in both directions, one direction at a time. Like a telephone
conversation, one transaction program calls the other, and they “converse”, one
transaction program talking at a time, until a transaction program ends the
conversation. One transaction program issues verbs to send data, and the other
transaction program issues verbs to receive data. When it finishes sending data, the
sending transaction program can transfer send control of the conversation to the
receiving transaction program. One transaction program decides when to end the
conversation and informs the other when it has ended.

On a half-duplex conversation, only one of the two partner transaction programs
has the right to send data at a time. That transaction program is in send state. The
other transaction program has the responsibility to receive data. It is said to be in
receive state. At specified times, the transaction programs exchange these duties.
When the conversation is first set up, the client transaction is in send state and the
server program is in receive state.

Chapter 3. Using the Attach Manager 21

When a duplex conversation is allocated to a session, both transaction programs
connected to the conversation are started in send-and-receive state, and a two-way
simultaneous data transfer occurs where information is transferred in both
directions at the same time. Both transaction programs can issue verbs to send and
receive data simultaneously with no transfer of send control required. The
conversation ends when both transaction programs indicate they are ready to stop
sending data, and each transaction program has received the data sent by the
partner. If an error condition occurs, one transaction program can decide to end
both sides of the conversation abruptly.

Conversation Security for an Incoming Allocation Request
A transaction program definition can specify that incoming allocation requests
must supply a password and user ID. The password and user ID are optional
parameters on the [MC_]ALLOCATE and [MC_]SEND_CONVERSATION verbs
or the CPIC calls Set_Conversation_Security_UserID (CMSCSU) and
Set_Conversation_Security_PassWord (CMSCSP). If a local transaction program
definition specifies conversation security, the attach manager validates the
password and user ID of incoming allocation requests. The attach manager rejects
the allocation request if a user ID and password are not present, or if they do not
match a valid combination of passwords and user IDs.

The attach manager checks the validity of any incoming allocation requests that
arrive with a password and user ID, even if the transaction program definition
specifies that conversation security is not required. The allocation request is
rejected if the password and user ID do not match a valid combination in the list.
Thus, if a password or user ID arrives in an allocation request, it is never ignored.

Conversation Security for an Outgoing Allocation Request
A remotely started transaction program (one started by another transaction
program) can validate a user ID and password before it allocates a conversation to
a third transaction program. In such a case, the security(SAME) parameter in the
[MC_]ALLOCATE and [MC_]SEND_CONVERSATION verbs can indicate that
the conversation security is already verified. The second Attach automatically gets
the user ID from the first Attach, that started the first conversation.

APPC can obtain the current user ID and send it, with an indicator that the user
ID was validated. In the Attach for a locally started transaction program that uses
the security(SAME) parameter in either the [MC_]ALLOCATE or the
[MC_]SEND_CONVERSATION verb, the partner must be able to accept the
already validated indication.

Refer to System Management Programming for more information about using the
user ID and password.

Using the Attach Manager on Personal Communications
The following sections describe how to start programs located on either the
Personal Communications or Communications Server machine.

22 Client/Server Communications Programming

Starting the Attach Manager
Users can start and stop the attach manager while the SNA node is active. Each
time the attach manager starts, it begins to process incoming Attaches. When the
attach manager stops, it purges any queued Attaches. Refer to System Management
Programming for the applicable verbs.

The attach manager needs to be started only in nodes that run remotely started
transaction programs. The attach manager does not need to be started in a node if
all transaction programs in the node initiate conversations (that is, they all issue
APPC [MC_]ALLOCATE or [MC_]SEND_CONVERSATION verbs). Personal
Communications and Communications Server node operations facility enables
authorized users to start or stop the attach manager at any time. Authorized
programs issue the Enable Attach Manager and Disable Attach Manager node
operations verbs to start or stop the attach manager.

Starting Programs with the Attach Manager
When the attach manager starts a program on a workstation, it uses the load_type
field in the defined transaction program list to decide how to run the program. A
remotely started program can be configured to start in one of the following ways:

Console
An application that displays a window or runs as a full DOS application.

Background
The program starts in a background (detached) process. A background
process should not issue any input or output calls to the keyboard, the
mouse, or the display. If your program is completely debugged and
requires no interactive user input, this option provides the fastest
performance.

If the attach manager cannot start the program (for example, Personal
Communications and Communications Server cannot provide sufficient memory),
the attach manager rejects the incoming allocation request.

If a transaction program issues a RECEIVE_ALLOCATE call and specifies a
transaction program name that has not previously been defined, the system
performs an implicit definition of the transaction program and assigns default
values to the parameters.

The defaults used are:

Attach timeout = 0 (no timeout is applied)

Receive Allocate timeout = 0 (no timeout is applied)

Attach Manager dynamically
loaded

= Yes (the transaction program can
be loaded by the attach
manager)

These defaults mean that if you issue a call to RECEIVE_ALLOCATE as
previously described, it will not complete until an attempt is made to attach to the
named transaction program, or you can cancel the call.

Chapter 3. Using the Attach Manager 23

Matching Incoming Allocation Requests with RECEIVE_ALLOCATE
Verbs

A remotely started program in a local workstation normally issues an APPC
RECEIVE_ALLOCATE verb to start both a transaction program and a
conversation. The APPC RECEIVE_ALLOCATE verb specifies the same transaction
program name that the remote transaction program specified in its APPC
[MC_]ALLOCATE or [MC_]SEND_CONVERSATION verb. APPC passes the
RECEIVE_ALLOCATE verb to the attach manager for processing. When the attach
manager sees a RECEIVE_ALLOCATE verb that matches a received Attach (and
the attach manager performs several cross-checks), it signals APPC that a
conversation can begin. At this point, the attach manager ends its involvement in
the conversation.

During transaction program configuration, you have two choices for handling
multiple incoming allocation requests for the same program. You can run multiple
instances of the same program concurrently in the local workstation (nonqueued
operation), or you can run one instance of the same program at a time (queued
operation). These values are configured in the queued and dynamic load
parameters, that have the following options:
v Nonqueued—attach manager started
v Queued—attach manager started
v Operator started

Nonqueued Programs
When a program is configured as nonqueued, each incoming allocation request
causes the attach manager to load and execute another instance of the program
associated with the incoming transaction program name.

The attach manager holds valid incoming allocation requests indefinitely, waiting
for a matching RECEIVE_ALLOCATE verb from the program it started. If that
program fails to issue a RECEIVE_ALLOCATE verb (for example, it loops in the
code that precedes the RECEIVE_ALLOCATE verb), the attach manager holds the
allocation request until the process terminates.

Queued Programs
Queued programs can start in one of two ways:

Attach manager started
The program is started by the attach manager.

Operator started
The program is to be started by another program in the workstation or by
an operator.

The attach manager maintains two queues for each queued transaction program
name in the defined transaction program list. One queue is for incoming allocation
requests; the other is for RECEIVE_ALLOCATE verbs. For example, when an
incoming allocation request arrives, the attach manager starts the corresponding
local program or sends a message to the operator. The node holds the incoming
allocation request until the program that the attach manager started issues a
matching RECEIVE_ALLOCATE verb or until a timeout occurs. The node uses the
value configured for the incoming_alloc_timeout parameter to determine when
time-outs occur. Other allocation requests can arrive for that transaction program

24 Client/Server Communications Programming

or for another transaction program. The other programs wait in their respective
queues until a matching RECEIVE_ALLOCATE verb is issued, or until they time
out.

Local programs can issue RECEIVE_ALLOCATE verbs before any matching
allocation request arrives. The attach manager holds the RECEIVE_ALLOCATE
verb on its respective queue and waits for an allocation request to arrive from a
partner LU. Each queue has a timeout value; the rcv_alloc_timeout parameter
specifies how long a RECEIVE_ALLOCATE verb can wait on a queue before the
verb times out. The attach manager returns queued RECEIVE_ALLOCATE verbs
to the associated programs with an ALLOCATE_NOT_PENDING return code. The
timeout value for RECEIVE_ALLOCATE verbs can be 0 to enable programs to
check whether any allocation requests are queued, and, if not, to continue other
processing.

The RECEIVE_ALLOCATE verb can be issued as a nonblocking verb. This enables
the transaction program to service multiple conversations from a single thread in a
single process.

When RECEIVE_ALLOCATE is issued as a nonblocking verb, the attach manager
returns control to the transaction program immediately; the transaction program
need not remain in a wait state while waiting for the matching incoming allocation
request to arrive. Instead, the transaction program can perform other work, and
choose when to wait for the matching incoming allocation request.

The transaction program can queue multiple nonblocking RECEIVE_ALLOCATE
verbs for different conversations. The maximum number of verbs that can be
queued is limited only by resource constraints. A nonblocking
RECEIVE_ALLOCATE verb will remain on the attach manager’s
RECEIVE_ALLOCATE verb queue until either the matching allocation request
arrives or the verb times out, that is, the rcv_alloc_timeout value has been reached.

The attach manager saves the information that identifies the transaction program
when a queued program issues a valid RECEIVE_ALLOCATE verb call for a
transaction program. When the queued program ends, the attach manager
examines the queue of allocation requests for that transaction program. If the
queue is not empty, the attach manager starts a new instance of the program, or
sends a message that directs the operator to start the program.

You should configure the maximum size of the incoming allocation request queue
for each transaction program. Resource constraints limit the number of queued
RECEIVE_ALLOCATE verbs.

The following two cases summarize queued operations:

Case 1:
One or more incoming allocation requests arrive before a
RECEIVE_ALLOCATE verb or CPI Communications CMACCP call is
issued for a given transaction program. The attach manager queues the
incoming allocation requests (for a time specified by a configured timeout
value) until a RECEIVE_ALLOCATE verb is issued. The first incoming
allocation request satisfies the RECEIVE_ALLOCATE verb.

Case 2:
A RECEIVE_ALLOCATE verb is issued before an incoming allocation
request arrives for a given transaction program. The attach manager
queues the RECEIVE_ALLOCATE verb (for a time specified by a

Chapter 3. Using the Attach Manager 25

configured timeout value) until an incoming allocation request arrives. In
certain cases, more than one RECEIVE_ALLOCATE verb might be issued
and queued before an incoming allocation request arrives. Each new
incoming allocation request satisfies the next RECEIVE_ALLOCATE verb
in the queue.

Table 7 on page 26 provides a summary of the verbs and incoming allocation
requests associated with queued and dynamic load parameter values.

Table 7. Verb Processing and Transaction Program Name Configuration

Verb Processing

Transaction Program Operation

Nonqueued—attach
manager started Operator started

Queued—attach manager
started

Incoming allocation request
with pending
RECEIVE_ALLOCATE
verb.

Cannot occur; no queue of
pending
RECEIVE_ALLOCATE
verbs.

OK RECEIVE_ALLOCATE
verb.

OK RECEIVE_ALLOCATE
verb.

Incoming allocation request
without pending
RECEIVE_ALLOCATE
verb.

Load and execute another
program instance.

Hold incoming allocation
request.

Wait for
RECEIVE_ALLOCATE
verb.

Put incoming allocation
request on queue unless
queue is full.

Wait for
RECEIVE_ALLOCATE
verb or for allotted time to
expire.

If program is not started,
load and execute it.

Put incoming allocation
request on queue unless
queue is full.

Wait for
RECEIVE_ALLOCATE
verb or for allotted time to
expire.

RECEIVE_ALLOCATE
verb with incoming
allocation request pending.

OK RECEIVE_ALLOCATE
verb.

OK RECEIVE_ALLOCATE
verb.

OK RECEIVE_ALLOCATE
verb.

RECEIVE_ALLOCATE
verb with no pending
incoming allocation request.

Cannot occur; pending
allocation requests for
nonqueued operations
cannot run out of time.

Hold
RECEIVE_ALLOCATE
verb.

Wait for incoming
allocation request or for
allotted time to expire.

Hold
RECEIVE_ALLOCATE
verb.

Wait for incoming
allocation request or for the
allotted time to expire.

Transaction program
operation ends.

Nothing happens. Nothing happens. If there is a pending
allocation request, reload
the program; otherwise,
reload on the next
incoming allocation request.

Using the Attach Manager on Communications Server SNA API Clients

This is only available on the Communications Server SNA API
clients.

The following sections describe how to start programs that are located on
Communications Server SNA API client machines.

26 Client/Server Communications Programming

Defining Transaction Programs for SNA API Clients
The SNA API Client Attach Manager only supports operator started or nonqueued
attach manager started programs.

Transaction programs located at client machines require transaction program
definitions on both Communications Server and client machines in order to be
remotely started. Following is the transaction program information required on the
server:
v Transaction program name
v Conversation type
v Conversation style
v Synchronization level
v Whether or not conversation security is required

Communications Server will verify this information when the incoming allocate
arrives. In addition, the local LU that receives the incoming allocation request must
be enabled to route the request to the client machine.

The client attach manager must have a transaction program defined so that it
knows how to start the requested program. Following is the transaction program
information required on the client:
v Transaction program name
v The local LU that receives the incoming allocation request
v The path name of the program
v Any parameters that need to be passed to the transaction program

Once these definitions are complete and the client attach manager is started,
incoming allocates for transaction programs located on client machines will be
routed to the client for processing.

The default local LU alias for each user can be assigned using the appropriate
configuration utility, either INI configuration or LDAP.

Attach manager started programs can also choose to use a default local LU alias
rather than specify one directly. When the local_LU_alias field is left blank in the
attach manager record, the attach manager uses the configured default local LU
alias when processing incoming conversation requests.

Starting the SNA API Client Attach Manager
Users can start and stop the client attach manager while the SNA node is active.

The client attach manager needs to be started only in clients that run remotely
started transaction programs. The attach manager does not need to be started in a
node if all transaction programs in the node initiate conversations (that is, they all
issue APPC [MC_]ALLOCATE or [MC_]SEND_CONVERSATION verbs).

To start the client attach manager, click the attach manager icon located in
Communications Server for SNA client folder. This will connect the attach manager
to the configured Communications Server and send the list of transaction
definitions that have been defined for that client.

Chapter 3. Using the Attach Manager 27

The Attach Manager Panel displays the list of configured transaction programs and
the name of the configured Communications Server. To stop the attach manager,
select Quit.

Notes:

1. If you have the Windows taskbar active, please note the attach manager icon
(Attach Manager indicator) in the right corner next to the clock. A double
left-click displays the Attach Manager Panel; a single right-click hides the
Attach Manager Panel to reduce clutter from the screen. When the Attach
Manager is stopped, the indicator icon disappears.

2. You can also start the attach manager from an MS-DOS prompt with one of the
following command line options to control whether the Attach Manager Panel
is displayed, and whether the Attach Manager indicator is displayed:
v The -i option causes the attach manager to start without the Attach Manager

Panel being displayed.
v The -h option causes the attach manager to start without the Attach Manager

Panel being displayed. The indicator is not provided, so only use this option
when your connectivity is good and you want to prevent others from using
the Attach Manager Panel.

v The -q option causes the Attach Manager to exit. This option is most useful
when the Attach Manager is started with the -h option.

28 Client/Server Communications Programming

Chapter 4. Writing a Transaction Program

This chapter describes issues to consider when planning and writing transaction
programs to APPC. When developing a transaction program, you must choose
between certain design alternatives. The following list describes the design issues
to consider:
v Choosing either basic or mapped conversations
v Choosing either half-duplex or full-duplex conversations
v Deciding whether to start conversations with or without confirmation
v Using the security features
v Providing for conversion of ASCII names and data (if necessary)

The first part of this chapter provides background information on the application
protocols, conversation states, Personal Communications support tasks, and data
formats. The rest of this chapter describes specific requirements for developing a
transaction program.

Note: Throughout this chapter, LU 6.2 refers to both Personal Communications
and Communications Server.

Application Protocols
The LU 6.2 enables program-to-program communication. The design of your
program depends on the protocols that you define and the communication that
your program must accomplish.

In addition to any rules that you define for your program, LU 6.2 defines rules
that your program must follow when using a conversation. To enforce these rules,
LU 6.2 manages the state of your conversation and allows your program to
perform certain operations only when the conversation is in the correct state. For
example:
v Your program cannot send data unless it has permission to send.
v Your program cannot receive data unless the partner program has permission to

send.
v Your program cannot use a conversation after it has been deallocated.

For more information, see the conversation state tables in Appendix C, “APPC
Conversation State Transitions,” on page 345 or refer to Common Programming
Interface Communications CPI-C Reference Version 2.0 (SC26–4399) for a complete list
of states and permissible operations.

Available Program LU 6.2 Services
This section describes the LU 6.2 services that your transaction program can use to
communicate with another transaction program.

Allocate a Conversation

Requests the local LU to start a conversation with a partner transaction program in
a partner LU.

© Copyright IBM Corp. 1994, 2016 29

Corresponding APPC verbs: ALLOCATE, and MC_ALLOCATE,
SEND_CONVERSATION, and MC_SEND_CONVERSATION.

Corresponding CPI-C call: CMALLC.

Send Data

Sends data to the partner program.

Corresponding APPC verbs: SEND_DATA and MC_SEND_DATA.

Corresponding CPI-C call: CMSEND.

Force Data in the Internal Buffers to Be Sent

Forces the LU to send to the partner program all data it is holding in an internal
buffer.

Note: You do not normally have to use this service to cause the LU to send the
data. The LU automatically sends the data it stores in an internal buffer
when the buffer is full or when it determines that your program has
finished sending.

Corresponding APPC verbs: FLUSH and MC_FLUSH.

Corresponding CPI-C call: CMFLUS.

Receive Data

Receives data from the partner program.

Corresponding APPC verbs: RECEIVE_AND_WAIT, RECEIVE_IMMEDIATE,
MC_RECEIVE_AND_WAIT, and MC_RECEIVE_IMMEDIATE.

Corresponding CPI-C call: CMRCV.

Send Expedited Data

Sends expedited data to the partner program.

Corresponding APPC verbs: SEND_EXPEDITED_DATA and
MC_SEND_EXPEDITED_DATA.

Corresponding CPI-C call: CMSNDX.

Receive Expedited Data

Receives expedited data to the partner program.

Corresponding APPC verbs: RECEIVE_EXPEDITED_DATA and
MC_RECEIVE_EXPEDITED_DATA.

Corresponding CPI-C call: CMRCVX.

Request Permission to Send

30 Client/Server Communications Programming

Requests from the partner program permission to send data.

Corresponding APPC verbs: REQUEST_TO_SEND and MC_REQUEST_TO_SEND.

Corresponding CPI-C call: CMRTS.

Grant Permission to Send

Gives the partner program permission to send data.

Corresponding APPC verbs: PREPARE_TO_RECEIVE and
MC_PREPARE_TO_RECEIVE.

Corresponding CPI-C call: CMPTR.

Request Confirmation

Requests the partner program to confirm that all data has been received and
processed successfully.

Corresponding APPC verbs: CONFIRM and MC_CONFIRM.

Corresponding CPI-C call: CMCFM.

Accept or Reject Confirmation

Sends a reply to a confirmation request.

Corresponding APPC verbs: CONFIRMED, MC_CONFIRMED, SEND_ERROR, and
MC_SEND_ERROR.

Corresponding CPI-C calls CMCFMD and CMSERR.

Request to Be Posted When Information Is Available

Requests that the LU post an event when the conversation has information
available to be received.

Corresponding APPC verb: RECEIVE_AND_POST.

Report an Error

Reports that an error has occurred.

Corresponding verbs: SEND_ERROR and MC_SEND_ERROR.

Corresponding CPI-C call: CMSERR.

Obtain Conversation Attributes

Obtains the attributes of a conversation. These attributes include
v Name of the local LU
v Name of the partner LU
v Name of the session's transmission service mode
v Type of confirmation protocols supported by the conversation
v Type of conversation

Chapter 4. Writing a Transaction Program 31

Corresponding verbs: GET_ATTRIBUTES, MC_GET_ATTRIBUTES, and GET_TYPE.

Deallocate a Conversation

Ends a conversation with the partner program.

Corresponding verbs: DEALLOCATE and MC_DEALLOCATE.

Cancel a Conversation

Cancels a conversation between a local LU and a partner LU on a specific
transaction program.

Corresponding verbs: CANCEL_CONVERSATION.

Corresponding CPI-C call: CMCANC.

Choosing a Conversation Type
This section discusses issues you should consider when choosing between basic
and mapped conversations.

Consistency of Conversation Type
The conversation type you use, designated by the ALLOCATE verb, must be
consistent for the entire conversation. You cannot use basic conversation verbs for
some requests and mapped conversation verbs for other requests. LU 6.2 rejects
the verbs if you change from one type of verb to another within a conversation. A
remotely initiated transaction program can issue the GET_TYPE verb to determine
the conversation type.

A program can issue only basic conversation verbs for a basic conversation. A
program using a mapped conversation can issue either basic or mapped verbs. It
must, however, issue verbs of only one format, either basic or mapped.

You can provide your own mapped conversation support using only basic
conversation verbs for a conversation designated as mapped. If you choose to
provide your own mapped conversation support, your program must conform to
the mapped conversation formats and protocols.

See the SNA Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2
and the Systems Network Architecture LU 6.2 Reference: Peer Protocols for more
information on mapped conversation formats and protocols.

Sending Data
Use a basic conversation when you need to optimize your program's performance
by sending the data from a buffer that contains more than one logical record or a
partial logical record. Basic conversations can improve your program's execution
efficiency by enabling your program to send several logical records with one
request.

To use the basic conversation, your program must provide a 2-byte logical length
field (LL field) at the beginning of every logical record where
v The last 15 bits of the LL field contain a binary value equal to the length of the

logical record, including the 2-byte length field. The 15-bit limit restricts the
value to a maximum of 32,767 (32,765 bytes of user data plus the 2-byte length

32 Client/Server Communications Programming

field). If you use a value larger than 32,767, LU 6.2 cannot detect the error and
uses the last 15 bits of the LL field anyway.
The smallest value possible is 2 (the LL field followed by no data). If you use a
value that is less than 2, LU 6.2 indicates an error.

v LU 6.2 ignores the first bit of the LL field. This bit is a concatenation indicator.
If the concatenation indicator is set, the transaction program must append the
data from the following logical record to the data received up to that point. This
concatenation process should continue until the transaction program receives a
record in which the concatenation indicator is not set. This definition allows you
to use higher level records (GDS variables) that are longer than 32,767 bytes.

v You must manage the reversal of byte values in your PC.
The PC stores all numeric 16- or 32-bit values with the low-order (least
significant) byte stored in the lower numbered address. Therefore, if a
transaction program computes the length of a logical message and stores that
value as the LL field, the 2 bytes appear in memory with the low-order byte
first, and your PC will send the bytes in this order (incorrectly) over the
communication line.
The transaction program is responsible for putting all transaction-level data,
including LL fields, in the correct order (high-order byte first).

Use a mapped conversation if you do not need to send partial logical records or
more than one logical record. When you send data with the mapped conversation
verbs, LU 6.2 assumes that the buffer contains exactly one complete higher level
record (GDS variable). The mapped conversation support automatically provides
length fields in the correct byte-reversed order and uses concatenated logical
records as needed.

Receiving Data
Use a basic conversation when you need to receive more than one logical record in
one buffer. This option can improve your program's execution efficiency by
enabling it to receive several logical records with one request (the BUFFER option).

When you use this basic conversation feature, LU 6.2 places the logical records in
your buffer with the 2-byte LL fields intact. The bytes are reversed from normal
IBM-compatible PC order.

Your program must examine the returned fields of the verb to determine if it has
received a complete logical record and, if so, where the next logical record begins.
LU 6.2 provides the rest of an incomplete logical record after a subsequent request
to receive data.

If you want to receive one higher/user level record with a single request, use a
mapped conversation. As you receive data with the mapped conversation verbs,
LU 6.2 ends the receive operation when your program receives a complete
higher/user level record or when your buffer is full. LU 6.2 supplies a return code
when it fills your buffer before your program has received a complete logical
record.

Your program can receive the rest of the higher/user level record by issuing a
subsequent request to receive data. The LU 6.2 mapped conversation support
removes any length fields and automatically concatenates logical records as
necessary.

Chapter 4. Writing a Transaction Program 33

Reporting Errors and Abnormal Termination
Use a basic conversation for the following reasons:
v To distinguish between errors detected by your program and errors detected by

an application that is using your program
v To distinguish between an abnormal termination caused by your program and

one caused by an application using your program

When reporting an error or when abnormally terminating a conversation with an
LU service program, the basic conversation verbs enable you to indicate which
program detected the error. When the partner LU reports the error to the partner
program with a return code, the value of the return code indicates where LU 6.2
detected the error.

If you do not need to distinguish between errors detected by your program and
errors detected by other applications, use a mapped conversation. The mapped
conversation verbs assume that your program detected the error.

Sending an Error Log Data Record
Use a basic conversation to send a log record when you detect an error or
abnormally terminate a conversation. The basic conversation verbs enable you to
specify an error log GDS variable when you report an error or abnormally
terminate a conversation. LU 6.2 sends this log record to the local log and to the
partner LU to be recorded in that log. This feature is useful when your program
detects a critical or unrecoverable error and you want the program to record the
event to help determine the problem.

If you send an error log GDS variable, the format of the record must conform to
the formats defined by SNA. See the IBM Systems Network Architecture Formats for
more information on the error log GDS variable format.

Use a mapped conversation if you do not need to send a log record when you
detect an error or abnormally terminate a conversation. The mapped conversation
verbs assume that your program does not need to record error data in the log to
help determine the problem.

Abnormally Terminating because of a Timeout
To indicate that your program has abnormally terminated the conversation because
of a timeout, use a basic conversation. When abnormally terminating your
conversation, the basic conversation verbs enable you to indicate that your
program is abnormally terminating the conversation because the partner program
has not done the necessary processing in the time allowed. When LU 6.2 reports
the error to the partner transaction program, the return code value indicates that a
timeout caused the abnormal termination.

If you do not need to report the cause of an abnormal termination, use a mapped
conversation. The mapped conversation verbs assume that your program requested
the abnormal termination because of a critical or unrecoverable error.

Requesting Confirmation
Requesting confirmation is an efficient way to determine that the partner program
has received all the data sent so far. If you plan to request confirmation during the
conversation, the allocation transaction must indicate this fact when you request
the allocation of the conversation.

34 Client/Server Communications Programming

If you use conversation verbs that do not request confirmation, you should not
request the allocation of a conversation supporting confirmation services.

You can write a transaction program to participate in conversations that use
confirmation requests and in conversations that do not use confirmation requests.

Choosing between Half-Duplex and Full-Duplex Conversations
On a half-duplex conversation, only one program has the right to send data at a
time. The right to send data must be transferred to the partner program when the
program has finished sending and is ready to receive data. On a full-duplex
conversation, both programs have the right to send data at the same time and can
therefore send and receive data simultaneously. For example, the inquiry and
database update types of conversation are naturally half-duplex.

Use a half-duplex conversation if the data that your program receives next
depends on the partner program's processing of the data your program is currently
sending. For example, the inquiry and database update types of conversations are
naturally half-duplex.

Use a half-duplex conversation if your program uses confirmation services.
Confirmation is not supported on full-duplex conversations.

Use a full- duplex if the data that your program sends is independent of the data
that the partner program sends. For example, an industrial process control
program that continuously sends information from sensory devices (for example,
temperature, pressure, concentration level) and simultaneously receives and
processes operational instructions from a manager program, should use a
full-duplex conversation.

You can write a transaction program to participate in conversations that use
confirmation requests and in conversations that do not use confirmation requests.

Choosing a Transaction Program Name
When you name a transaction program, choose a name that has a first character
with an EBCDIC code greater than an EBCDIC blank (X'40'). Transaction program
names containing first characters with EBCDIC codes less than X'40' are reserved
for service transaction programs. Transaction program names can include up to 64
characters.

Using the Security Features
LU 6.2 provides one of two types of security functions: partner LU verification and
end-user verification.Partner LU verification is a session-level security protocol that
takes place at the time the session is activated. End-user verification is a
conversation-level security protocol that takes place at the time a conversation is
started.

Partner LU Verification (Session-Level Security)
Partner LU verification is performed by an exchange of security information
between the two LUs. This exchange is called session-level security. This level of
security is generally required when the communications network is not physically
secure. The local LU and the remote LU each provide a password, and LU 6.2

Chapter 4. Writing a Transaction Program 35

performs encryption for password verification.It is recommended, but not required,
that each LU pair have a unique password.

End-User Verification (Conversation-Level Security)
End-user verification is used to enable the requested application subsystem to
verify the identity of the requester before providing access to the requested
transaction program and its resources. The security information exchanged can
include a user ID and a password. The user IDs provided by conversation-level
security can also be used for auditing and accounting purposes.

In conversation-level security, the requesting transaction program provides the
security information on the ALLOCATE verb, and the remote application
subsystem performs the verification. If the requesting transaction program has not
supplied the correct user ID and password, the remote application subsystem
rejects the request.

An intermediate transaction program (one started by another transaction program)
that requires conversation-level security can be used to access an additional
transaction program that requires conversation-level security. In this case, an
already-verified indicator is set in the allocation request for the additional
transaction program. The user ID saved from the first request, which initiated the
intermediate transaction program, is automatically supplied in the second request.

Converting between EBCDIC and ASCII
LU 6.2 assumes that the interface between it and the transaction program (or the
application subsystem) uses EBCDIC characters where specified by the verb. These
values include the transaction program name, the partner LU name supplied on
ALLOCATE, the mode name, the user ID, and the user password. If your program
stores the incoming names in ASCII, it must be prepared to perform conversions
between ASCII and EBCDIC.

Whether a transaction program needs to translate data depends on a private
agreement between the partner transaction programs. If your program is
communicating with a node that normally uses EBCDIC, you should convert data
to EBCDIC as appropriate.

As a convenience, LU 6.2 provides the CONVERT verb, which converts ASCII
codes to EBCDIC or EBCDIC codes to ASCII. For more information, see
“CONVERT” on page 276.

36 Client/Server Communications Programming

Chapter 5. Implementing APPC Transaction Programs

This chapter describes the implementation of APPC Transaction Programs using
the dynamic link library (DLL) file provided.

The implementation of APPC is designed to be binary compatible with Microsoft
SNA Server on Windows machines, and similar to the implementation of the APPC
interface of OS/2 Communication Manager/2 Version 1.0.

Writing Transaction Programs
A dynamic link library (DLL) file is provided that handles APPC verbs.

The DLL is reentrant; multiple application processes and threads can call the DLL
concurrently.

APPC verbs have a straightforward language interface. Your program fills in fields
in a block of memory called a verb control block (VCB). Then it calls the APPC DLL
and passes a pointer to the verb control block. When its operation is complete,
APPC returns, having used and then modified the fields in the VCB. Your program
can then read the returned parameters from the verb control block.

Table 8 shows source module usage of supplied header files and libraries needed
to compile and link APPC programs. Some of the header files may include other
required header files.

Table 8. Header Files and Libraries for APPC

Operating
System Header File Library DLL Name

WIN32 WINAPPC.H WAPPC32.LIB WAPPC32.DLL

Option Sets Supported
Personal Communications and Communications Server support the following
APPC option sets. Refer to SNA Transaction Programmer's Reference for LU type 6.2
for a fuller description of each option set.

101 Flush the LU send buffer.

102 Get attributes.

103 Post on receipt with test for posting (through the RECEIVE_AND_POST
verb).

104 Post on receipt with wait (through the RECEIVE_AND_POST verb).

105 Prepare to receive.

106 Receive immediate.

109 Get transaction program name and instance identifier.

110 Get conversation type.

112 Full-duplex conversation and expedited data.

113 Nonblocking support.

© Copyright IBM Corp. 1994, 2016 37

201 Queued allocation of a contention-winner session.

203 Immediate allocation of a session.

204 Conversations between programs located at the same LU.

205 Queued allocation or when session is free.

211 Session level LU-LU verification.

212 User ID verification.

213 Program-supplied user ID and password.

214 User ID authorization.

241 Send PIP data.

242 Receive PIP data.

243 Accounting.

244 Long locks.

245 Test for request-to-send received.

247 User control data.

251 Extract translation and conversation correlator.

290 Logging of data in a system log.

291 Mapped conversation LU services component.

401 Reliable one-way brackets.

501 CHANGE_SESSION_LIMIT verb.

502 ACTIVATE_SESSION verb.

504 DEACTIVATE_SESSION verb.

505 LU-definition verb.

601 MIN_CONWINNERS_TARGET parameter.

602 RESPONSIBLE(TARGET) parameter.

603 DRAIN_TARGET(NO) parameter.

604 FORCE parameter.

605 LU-LU session limit.

606 Locally known LU names.

607 Uninterpreted LU names.

610 Maximum RU size bounds.

612 Contention winner automatic activation limit.

613 Local maximum (LU, mode) session limit.

616 CPSVCMG mode name support.

Full-Duplex VCBs
To identify definitions for the format 1 VCB that are needed for full-duplex
conversations and to send and receive expedited data, the transaction program
must define a compiler constant called WINAPPC_FORMAT_1 before including
the WINAPPC.H header file. This can be achieved in C language as follows:

38 Client/Server Communications Programming

#define WINAPPC_FORMAT_1
#include <winappc.h>

If this constant is not defined, only the format zero versions of the VCBs will be
accessible from the application.

Queue-Level Nonblocking
Personal Communications and Communications Server APPC API support
queue-level nonblocking. This support is provided through the APPC entry point.

Nonblocking operation enables control to be returned to the application if
processing of a verb cannot be completed immediately, so that the application can
continue other processing until it is notified that the outstanding verb has
completed. Queue-level nonblocking means that the application can issue
nonblocking verbs for different queues and have the verbs processed
simultaneously by Personal Communications. The application can also issue a
succession of nonblocking verbs for a given queue without waiting for any of the
verbs to complete.

Personal Communications and Communications Server maintain six queues for
nonblocking verbs:
v An allocate queue (one for each active transaction program)
v A send/receive queue (one per conversation, half-duplex only)
v A send queue (one per full-duplex conversation)
v A receive queue (one per full-duplex conversation)
v A send-expedited queue (one per conversation)
v A receive-expedited queue (one per conversation)

All six queue types can hold an unlimited number of verbs. Nonblocking verbs are
queued if another (blocking or nonblocking) verb is being processed by either the
Personal Communicationsor Communications Server program. Verbs in an allocate
queue are processed concurrently, whereas verbs in the other queues are processed
one at a time, in the order in which they are received by either program.

The application notifies Personal Communications or Communications Server that
it wants a verb to be processed in nonblocking mode by setting a flag in the opext
field, AP_NON_BLOCKING. The application can supply an event handle with
any nonblocking verb that is used to notify the application of asynchronous verb
completion. This handle is passed to Personal Communications in the
SECONDARY_RC field. If no handle is specified, the application is notified that
the verb has completed when the next verb on that queue specifies that a handle
completes.

It is guaranteed that all preceding verbs with no handle are complete when the
event is signaled after completion of a verb on the same queue that does not
specify a handle.

When a nonblocking verb returns the flag
AP_OPERATION_INCOMPLETE_FLAG, it is set in the opext field.

The APPC verbs that can be issued in nonblocking mode on the allocate queue are:
(MC_)ALLOCATE
(MC_)SEND_CONVERSATION

Chapter 5. Implementing APPC Transaction Programs 39

The APPC verbs that can be issued in nonblocking mode on the send/receive
queue are:

(MC_)CONFIRM
(MC_)CONFIRMED
(MC_)DEALLOCATE
(MC_)FLUSH
(MC_)PREPARE_TO_RECEIVE
(MC_)RECEIVE_AND_WAIT
(MC_)RECEIVE_IMMEDIATE
(MC_)SEND_DATA
(MC_)SEND_ERROR

The APPC verbs that can be issued in nonblocking mode on the send queue (for
full-duplex conversations) are:

(MC_)DEALLOCATE
(MC_)FLUSH
(MC_)SEND_DATA
(MC_)SEND_ERROR

The APPC verbs that can be issued in nonblocking mode on the receive queue (for
full-duplex conversations) are:

(MC_)RECEIVE_AND_WAIT
(MC_)RECEIVE_IMMEDIATE

The APPC verb that can be issued in nonblocking mode on the receive-expedited
queue (for full-duplex conversations) is:

(MC_)RECEIVE_EXPEDITED_DATA

The APPC verbs that can be issued in nonblocking mode on the send-expedited
queue are:

(MC_)REQUEST_TO_SEND
(MC_)SEND_EXPEDITED_DATA

The following APPC verbs are always processed asynchronously but are not
associated with any queue:

(MC_)RECEIVE_AND_POST
(MC_)TEST_RTS_AND_POST

Personal Communications and Communications Server APPC verbs that cannot be
issued in nonblocking mode (and are processed in blocking mode if the application
sets the nonblocking flag) are:

(MC_)GET_ATTRIBUTES
GET_TP_PROPERTIES
GET_TYPE
RECEIVE_ALLOCATE
TEST_RTS
TP_ENDED
TP_STARTED
CNOS

An application cannot issue verbs in nonblocking mode for the send/receive queue
or the send-expedited queue until an ALLOCATE or RECEIVE_ALLOCATE verb
has returned successfully (Personal Communications returns
AP_PARAMETER_CHECK, and AP_BAD_CONV_ID). The
CANCEL_CONVERSATION cannot be issued until the conversation identifier is
returned in an ALLOCATE or RECEIVE_ALLOCATE verb.

40 Client/Server Communications Programming

A nonblocking verb issued for the send/receive queue or the send-expedited
queue, with another (blocking or nonblocking) verb currently outstanding on the
same queue, is added to that queue, and is only processed when the outstanding
verb has completed.

A blocking verb issued when any other verb (for the same conversation) is
outstanding, is rejected by Personal Communications (with primary_rc
AP_TP_BUSY). Note that RECEIVE_AND_POST is treated as a blocking verb in
this respect, but TEST_RTS_AND_POST can be issued with other verbs
outstanding on the same conversation (and is not placed in any of the nonblocking
verb queues). A blocking verb issued when there are no verbs on the same queue
is processed as normal even though there may be verbs on other queues. Note that
TEST_RTS, GET_ATTRIBUTES, GET_STATE and GET_TYPE are not associated
with a queue and may be executed at any time and will never return
AP_TP_BUSY.

Default Local LU
Personal Communications and Communications Server support default local LUs
for both dependent and independent LU 6.2. The default LU is used when the
TP_STARTED verb (see “TP_STARTED” on page 81) is issued with a blank
lu_alias field. For independent LU 6.2, the default LU is the control point LU.
Personal Communications also allows the specification of a default local LU to be
used instead of the control point LU. For dependent LU 6.2, a local LU pool is
used. Refer to System Management Programming for details on the
DEFINE_LOCAL_LU verb. Personal Communications choose an LU from the
default pool, or use the control point LU, as follows:
v If LUs have been configured as members of the default local LU pool, Personal

Communications choose an LU from the pool that is not in use. If all the LUs in
the pool are in use, the TP_STARTED verb fails.

v If no LUs have been configured as members of the default local LU pool,
Personal Communications use the control point LU.

v For Personal Communications, a default Local LU can be specified. Refer to
Configuration File Reference for details.

The following information only applies to Communications Server
Windows SNA API clients.

The default local LU alias for each user can be assigned using the appropriate
configuration utility, either INI configuration or LDAP.

APPC programs can choose to use a default local LU alias rather than specify one
directly. When an APPC program issues a TP_START verb with the local LU alias
field set to binary zeroes, the APPC API uses the configured default local LU alias.

Chapter 5. Implementing APPC Transaction Programs 41

42 Client/Server Communications Programming

Chapter 6. Implementing CPI-C Programs

This chapter documents the details of the Personal Communications support for
the CPI-C interface. It covers these main areas:
v Techniques for compiling and linking CPI-C programs
v Methods of preparing and executing CPI-C programs
v Features of the CPI-C versions supported by Personal Communications

The Personal Communications implementation of CPIC is designed to be binary
compatible with Microsoft SNA Server on Windows machines, and similar to the
implementation of the CPIC interface of OS/2 Communication Manager/2.

Note: Included in this chapter is information on the CPIC API provided by the
following systems:
v Communications Server running on Windows
v SNA Win32 API clients platforms that are delivered with the

Communications Server product
v Personal Communications for Windows

When there are differences between the support provided by these systems,
it is noted.

Writing CPIC Programs
Personal Communications provide a dynamic link library (DLL) file that handles
CPIC calls.

The DLL is reentrant; multiple application processes and threads can call the DLL
concurrently.

Table 9 shows source module usage of supplied header files and libraries needed
to compile and link CPIC programs. Some of the header files may include other
required header files.

Table 9. Header Files and Libraries for CPIC

Operating System Header File Library DLL Name

WIN32 WINCPIC.H WCPIC32.LIB WCPIC32.DLL

CPI-C Versions
The CPI-C interface has gone through several version changes and extensions. You
should be aware of these versions for two reasons:
v If you are maintaining or porting an existing program, you need to know which

function calls are portable and which you might need to change if you change
versions.

v If you are writing a new program, you need to be aware when you are writing
code that is dependent on a particular version.

© Copyright IBM Corp. 1994, 2016 43

CPI-C Conformance Class Support
The following CPI-C 2.1 conformance classes are supported as defined by the IBM
document Common Programming Interface Communications CPI-C Reference Version
2.1 (SC26-4399-08).

For details on which classes are not supported by Communications Server clients,
see the notepad icon throughout this chapter.

This icon denotes important information.

The conversation conformance class allows programs to start and end half-duplex
conversations.

Starter Set calls:
CMACCP

Accept_Conversation
CMALLC

Allocate
CMDEAL

Deallocate
CMINIT

Initialize_Conversation
CMRCV

Receive
CMSEND

Send_Data
Advanced Function Calls:
CMCFM

Confirm
CMCFMD

Confirmed
CMECS

Extract_Conversation_State
CMECT

Extract_Conversation_Type
CMEMBS

Extract_Maximum_Buffer_Size
CMEMN

Extract_Mode_Name
CMESL

Extract_Sync_Level
CMFLUS

Flush
CMPTR

Prepare_To_Receive
CMRTS

Request_To_Send
CMSERR

Send_Error
CMSCT

Set_Conversation_Type
CMSDT

Set_Deallocate_Type

44 Client/Server Communications Programming

CMSF Set_Fill
CMSLD

Set_Log_Data
CMSMN

Set_Mode_Name
CMSPTR

Set_Prepare_To_Receive_Type
CMSRT

Set_Receive_Type
CMSRC

Set_Return_Control
CMSST

Set_Send_Type
CMSSL

Set_Sync_Level
Required sync_level values:
CM_NONE or CM_CONFIRM

CMSTPN
Set_TP_Name

CMTRTS
Test_Request_To_Send_Received

LU 6.2 conformance class allows a program to use LU 6.2 specific services:
CMEPLN

Extract_Partner_LU_Name
CMSED

Set_Error_Direction
CMSPLN

Set_Partner_LU_Name

The conversation-level non-blocking conformance class allows a program to
regain control if a call cannot complete immediately.
CMCANC

Cancel_Conversation
CMSPM

Set_Processing_Mode
CMWAIT

Wait_For_Conversation

The server conformance class allows a program to register multiple transaction
program names with CPI-C, to accept multiple incoming conversations, and to
manage contexts for different clients.
CMACCI

Accept_Incoming
CMECTX

Extract_Conversation_Context
CMETPN

Extract_TP_Name
CMRLTP

Release_Local_TP_Name
CMINIC

Initialize_For_Incoming
CMSLTP

Specify_Local_TP_Name

Chapter 6. Implementing CPI-C Programs 45

The data conversion conformance class routine allows a program to call local
routines to change the encoding of a character string from the local encoding to
EBCDIC, or vice versa.
CMCNVI

Convert_Incoming
CMCNVO

Convert_Outgoing

The security conformance class allows a program to establish conversations that
use access security information in side information or set directly by the program.
CMESUI

Extract_Security_User_ID
CMSCSP

Set_Conversation_Security_Password
CMSCST

Set_Conversation_Security_Type
Required conversation_security_type values:
CM_SECURITY_NONE
CM_SECURITY_PROGRAM
CM_SECURITY_PROGRAM_STRONG
CM_SECURITY_SAME

CMSCSU
Set_Conversation_Security_User_ID

Queue-Level Non-Blocking for regain of control if a call cannot complete.
CMCANC

Cancel_Conversation
CMSQPM

Set_Queue_Processing_Mode
CMWCMP

Wait_For_Completion

Callback Function for regaining control if a call cannot complete.
CMCANC

Cancel_Conversation
CMSQCF

Set_Queue_Callback_Function

Secondary Information allows you to extract secondary error return information.
CMESI

Extract_Secondary_Information

The following Conformance Classes are not supported.
OSI TP services
Recoverable Transactions (for resource recovery interface)
Unchained Transactions (for recoverable transactions)
Distributed Security (user security services of distributed security server)
Directory (user designated information stored in a distributed directory)

CPI-C Functions
All the CPI-C functions supported by Personal Communications are listed in
Table 10 on page 47. Use this table for reference when you are maintaining an old
program or when you are writing a new program that must remain compatible
with some existing system.

46 Client/Server Communications Programming

Note: When writing a CPI-C application for the MS Windows SNA API client,
specify the local transaction program via the Specify_Local_TP-Name
(cmsltp) call before accepting an incoming conversation via the
Accept_Conversation (cmaccp) call.

Table 10. Personal Communications Client Support of CPI-C Functions

Function Long Name
Win32
Clients

cmaccp Accept_Conversation x
cmacci Accept_Incoming x
cmallc Allocate x
cmcanc Cancel_Conversation x
cmcfm Confirm x
cmcfmd Confirmed x
cmcnvi Convert_Incoming x
cmcnvo Convert_Outgoing x
cmdeal Deallocate x
xcmdsi Delete_CPIC_Side_Information x
cmectx Extract_Conversation_Context x
xcecst Extract_Conversation_Security_Type x
cmecst Extract_Conversation_Security_Type x
cmecs Extract_Conversation_State x
cmect Extract_Conversation_Type x
xcmesi Extract_CPIC_Side_Information x
cmembs Extract_Maximum_Buffer_Size x
cmemn Extract_Mode_Name x
cmepln Extract_Partner_LU_Name x
cmesi Extract_Secondary_Information x
cmesui Extract_Security_User_ID x
cmecsu Extract_Security_User_ID x
xcecsu Extract_Security_User_ID x
cmesrm Extract_Send_Receive_Mode x
cmesl Extract_Sync_Level x
xceti Extract_TP_ID x
cmetpn Extract_TP_Name x
cmflus Flush x
cminit Initialize_Conversation x
xcinct Initialize_Conversation_For_TP x
cminic Initialize_For_Incoming x
cmptr Prepare_To_Receive x
cmrcv Receive x
cmrcvx Receive_Expedited x
cmrltp Release_Local_TP_Name x
cmrts Request_To_Send x
cmsend Send_Data x
cmsndx Send_Expedited x
cmserr Send_Error x
cmscsp Set_Conversation_Security_Password x
xcscsp Set_Conversation_Security_Password x
cmscst Set_Conversation_Security_Type x
xcscst Set_Conversation_Security_Type x
cmscsu Set_Conversation_Security_User_ID x
xcscsu Set_Conversation_Security_User_ID x
cmsct Set_Conversation_Type x
xcmssi Set_CPIC_Side_Information x

Chapter 6. Implementing CPI-C Programs 47

Table 10. Personal Communications Client Support of CPI-C Functions (continued)

Function Long Name
Win32
Clients

cmsdt Set_Deallocate_Type x
cmsed Set_Error_Direction x
cmsf Set_Fill x
cmsld Set_Log_Data x
cmsmn Set_Mode_Name x
cmspln Set_Partner_LU_Name x
cmsptr Set_Prepare_To_Receive_Type x
cmspm Set_Processing_Mode x
cmsqcf Set_Queue_Callback_Function x
cmsqpm Set-Queue_Processing_Mode x
cmsrt Set_Receive_Type x
cmsrc Set_Return_Control x
cmssrm Set_Send_Receive_Mode x
cmsst Set_Send_Type x
cmssl Set_Sync_Level x
cmstpn Set_TP_Name x
cmsltp Specify_Local_TP_Name x
xchwnd* Specify_Windows_Handle x
xcstp Start_TP x
cmtrts Test_Request_To_Send_Received x
cmwcmp Wait_For_Completion x
cmwait Wait_For_Conversation x
xcendt End_TP x
WinCPICCleanup* x
WinCPICIsBlocking* -
WinCPICSetBlockingHook* -
WinCPICStartup* x
WinCPICUnhookBlockingHook* -

* indicates: WOSA function for Microsoft Windows
x indicates: Supported function
- indicates: Unsupported function

Specifying Service TP Names

This function is only supported for Communications Server SNA
API clients.

You must use special conventions when specifying a service transaction program
name with the CMSTPN and CMSLTP functions. Usually, you specify standard TPs
with the CPI-C functions. Service transaction programs are specialized transaction
programs that provide common network and system services to other programs or
users. Examples of service transaction programs include scheduler programs,
directory services, and spoolers.

The conventions for specifying a service transaction program name with the
CMSTPN and CMSL transaction program functions are

48 Client/Server Communications Programming

v Specify the name with from two to five bytes of ASCII characters.
v Specify the first byte of the name, for example, 0x23, with two bytes of ASCII

characters.
– Split the first byte of the name into two nibbles, for example, 2 and 3, and

specify them in the low- order nibble of each ASCII byte.
– Set the high-order nibble of each ASCII byte to 1, which indicates that you are

specifying a service TP name. Continuing with the example, the first two
bytes specified are 0x12 and 0x13.

v Specify the remaining zero to three bytes of the name as ASCII characters. For
example, 007.

Therefore, specify a service transaction program name of 0x23 007, as 0x12 0x13
007.

Additional Options for Setting Local_LU
CPI-C applications rely on the DEFAULT_LOCAL_LU for use with TP_STARTED.
Unless set otherwise, this is always the LOCAL_LU which matches the LOCAL_CP
CP_NAME. This is not always what is desired.

Any defined LOCAL_LU can be used in place of the DEFAULT_LOCAL_LU by
specifying the LOCAL_LU_ALIAS name of a defined LOCAL_LU in the CPI-C
Side Information definition. The LOCAL_LU and CPI-C Side Information
configuration's LOCAL_LU_ALIAS names must match exactly. They are
case-sensitive and length-sensitive.

Personal Communications also supports the use of the system environment
APPCLLU which may be used to refer to any defined LOCAL_LU. The value for
APPCLLU must match the LOCAL_LU_ALIAS exactly. It is case-sensitive and
length-sensitive (blanks are also counted in the length). CPI-C functions use this
value for any Operator_Started TP.

Chapter 6. Implementing CPI-C Programs 49

50 Client/Server Communications Programming

Chapter 7. APPC Entry Points

The following sections describe the procedure entry points for APPC.

Note: Included in the chapters of Part 1 of this book is information on the APPC
API provided by the following systems:
v Communications Server running on Windows
v SNA API clients for Win32 platforms that are delivered with the

Communications Server product
v Personal Communications for Windows

When there are differences between the support provided by these systems,
it is noted.

© Copyright IBM Corp. 1994, 2016 51

APPC

You can use this as a synchronous entry point for all of the APPC verbs.
Alternatively, you can use this entry point to issue nonblocking verbs by putting
an event handle in the secondary return code field and setting the queue-level
nonblocking flag in the opext field (AP_NON_BLOCKING).

Syntax
void WINAPI APPC(long)

Input is a pointer to a verb control block.

Returned Values
Examine the primary return code and secondary return code for any errors.

Usage Notes

See also: “WinAsyncAPPCEx()” on page 55.

APPC

52 Client/Server Communications Programming

WinAsyncAPPC()

This is an asynchronous entry point for all of the APPC verbs. An application uses
this entry point if it chooses to be notified of completion through a Windows
message. Personal Communications and Communications Server provide this entry
point for compatibility with existing applications.

Syntax
HANDLE WINAPI WinAsyncAPPC(HWND hWnd,long vcb)

Parameters

hwnd Window handle to receive completion message.

vcb Pointer to verb control block.

Returned Values
The return value specifies whether the asynchronous request completed
successfully. If the request was successful, the actual return value is a handle. If the
function was not successful, Personal Communications returns a 0.

Usage Notes
APPC verbs that can block are as follows:
v [MC_]ALLOCATE

v CANCEL_CONVERSATION

v [MC_]CONFIRM

v [MC_]CONFIRMED

v [MC_]DEALLOCATE

v [MC_]FLUSH

v [MC_]PREPARE_TO_RECEIVE

v RECEIVE_ALLOCATE

v [MC_]RECEIVE_AND_WAIT

v [MC_]RECEIVE_EXPEDITED_DATA

v [MC_]REQUEST_TO_SEND

v [MC_]SEND_CONVERSATION

v [MC_]SEND DATA

v [MC_]SEND_ERROR

v [MC_]SEND_EXPEDITED_DATA

v TP_ENDED

v TP_STARTED

The WinAsyncAPPC entry point permits the verb to be canceled, but does not
support queue-level nonblocking. The APPC entry point supports queue-level
nonblocking, but does not permit the application to cancel the verb.

This entry point does not support queue-level nonblocking. If the queue-level
nonblocking flag AP_NON_BLOCKING is specified on the asynchronous interface,
Personal Communications ignores it. When using the asynchronous entry point, an
application can have only one outstanding function in progress on a conversation
at a time. An attempt to initiate a second function results in the error code
AP_CONV_BUSY. If an application needs to be notified of asynchronous

WinAsyncAPPC()

Chapter 7. APPC Entry Points 53

completion through an event handle, it can use either the WinAsyncAPPCEx or
APPC entry point. The exceptions to the previous paragraph are
RECEIVE_AND_POST and RECEIVE_AND_WAIT. To enable full use to be made
of the asynchronous support, Personal Communications alters asynchronously
issued RECEIVE_AND_WAIT verbs to act like the RECEIVE_AND_POST verb.
Specifically, while an asynchronous RECEIVE_AND_POST or
RECEIVE_AND_WAIT is outstanding, an application can issue the following
verbs on the same conversation:
v REQUEST_TO_SEND

v CANCEL_CONVERSATION

v GET_TYPE

v GET_ATTRIBUTES

v TEST_RTS

v DEALLOCATE (AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER)
v SEND_ERROR

v TP_ENDED

This enables an application, such as a server, to use an asynchronous
RECEIVE_AND_WAIT to receive data. While the RECEIVE_AND_POST or
RECEIVE_AND_WAIT is outstanding, the application can still use SEND_ERROR
and REQUEST_TO_SEND.

When the asynchronous operation is complete, the application's window hWnd
receives the message returned by RegisterWindowMessage with
“WinAsyncAPPC” as the input string. The wParam argument contains the
asynchronous task handle returned by the original function call. The IParam
argument contains the original VCB pointer and can be used to determine the final
return code.

WinAPPCCancelAsyncRequest permits an application to cancel any asynchronous
APPC action, but terminates the related conversation or transaction program as
appropriate. Any outstanding operations return with AP_CANCELLED as the
return code.

If the function returns successfully, Personal Communications posts a
WinAsyncAPPC() message to the application when the operation completes or the
conversation is canceled.

See also:
“WinAsyncAPPCEx()” on page 55.
“WinAPPCCancelAsyncRequest()” on page 57.

WinAsyncAPPC()

54 Client/Server Communications Programming

WinAsyncAPPCEx()

This is an asynchronous entry point for all of the APPC verbs. Use this call to
enable multiple sessions to be handled on the same thread.

Use this entry point if you want the application to be notified of completion
through an event and your application requires the ability to cancel outstanding
verbs; otherwise, use the APPC queue-level nonblocking entry point.

Syntax
HANDLE WINAPI WinAsyncAPPCEx(HANDLE handle,long vcb);

Parameters

handle
Handle of the event that the application will wait on.

vcb Pointer to verb control block.

Returned Values
The return value specifies whether the asynchronous request was successful. If the
function was successful, the actual return value is a handle. If the function was not
successful, Personal Communications returns a 0.

Usage Notes
This verb is intended for use with WaitForMultipleObjects in the Win32 API.

APPC verbs that can block are as follows:
v [MC_]ALLOCATE

v CANCEL_CONVERSATION

v [MC_]CONFIRM

v [MC_]CONFIRMED

v [MC_]DEALLOCATE

v [MC_]FLUSH

v [MC_]PREPARE_TO_RECEIVE

v RECEIVE_ALLOCATE

v [MC_]RECEIVE_AND_WAIT

v [MC_]REQUEST_TO_SEND

v [MC_]SEND_CONVERSATION

v [MC_]SEND_DATA

v [MC_]SEND_ERROR

v TP_ENDED

v TP_STARTED

This entry point does not support queue-level nonblocking. If the queue-level
nonblocking flag AP_NON_BLOCKING is specified on the asynchronous interface,
Personal Communications ignores it. When using the asynchronous entry point, an
application can have only one outstanding function in progress on a conversation
at a time. An attempt to initiate a second function results in the error code
AP_CONV_BUSY.

WinAsyncAPPCEx()

Chapter 7. APPC Entry Points 55

The WinAsyncAPPCEx entry point permits the verb to be canceled, but does not
support queue-level nonblocking. The APPC entry point supports queue-level
nonblocking, but does not permit the application to cancel the verb. The exceptions
to the previous paragraph are RECEIVE_AND_POST and RECEIVE_AND_WAIT.
To enable full use to be made of the asynchronous support, Personal
Communications alters asynchronously issued RECEIVE_AND_WAIT verbs to act
like the RECEIVE_AND_POST verb. Specifically, while an asynchronous
RECEIVE_AND_POST or RECEIVE_AND_WAIT is outstanding, an application
can issue the following verbs on the same conversation:
v REQUEST_TO_SEND

v CANCEL_CONVERSATION

v GET_TYPE

v GET_ATTRIBUTES

v TEST_RTS

v DEALLOCATE (AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER)
v SEND_ERROR

v TP_ENDED

This enables an application, and in particular, a server application, to use an
asynchronous RECEIVE_AND_WAIT to receive data. While the
RECEIVE_AND_POST or RECEIVE_AND_WAIT is outstanding, the application
can still use SEND_ERROR and REQUEST_TO_SEND.

When the asynchronous operation is complete, Personal Communications notifies
the application by the signaling of the event. When the application receives the
signal, it examines the primary return code and secondary return code for any
error conditions.

See also:
“WinAsyncAPPC()” on page 53.
“WinAPPCCancelAsyncRequest()” on page 57.
“APPC” on page 52.

WinAsyncAPPCEx()

56 Client/Server Communications Programming

WinAPPCCancelAsyncRequest()

This function cancels an outstanding WinAsyncAPPC-based request.

Syntax
int WINAPI WinAPPCCancelAsyncRequest(HANDLE handle);

Parameters

handle
Supplied parameter; specifies the handle of the request to be canceled.

Returned Values
The return value specifies whether the asynchronous request was canceled. If the
value is 0, Personal Communications canceled the request. Otherwise, the value is
one of the following error codes:

WAPPCINVALID
The specified asynchronous task ID was not valid.

WAPPCALREADY
The asynchronous routine to be canceled has already completed.

Usage Notes
An application program can cancel an asynchronous task that was previously
issued with one of the WinAsyncAPPC functions prior to completion, by issuing
the WinAPPCCancelAsyncRequest() call, and specifying the asynchronous event
as returned by the initial function in the handle.

If the outstanding verb relates to a conversation (for example, SEND_DATA or
RECEIVE_AND_WAIT), Personal Communications purges the verb and
deactivates the session. If the verb relates to a transaction program (for example,
RECEIVE_ALLOCATE or TP_STARTED), Personal Communications ends the
transaction program. In both cases, although Personal Communications deactivates
conversations and sessions as cleanly as possible, it does not flush send buffers or
waiting-for-confirmations or other pending actions. This call is synchronous. After
the previously described processing is complete, Personal Communications posts a
completion message for the canceled verb.

If an attempt to cancel an existing asynchronous WinAsyncAPPC routine fails with
an error code of WAPPCALREADY, the original routine has already completed.
Either the application has dealt with the resulting notification, or the application
has not dealt with the completion notification. It is not possible to cancel an
asynchronous verb issued through the APPC queue-level nonblocking entry point.

See also: “WinAsyncAPPC()” on page 53.

WinAPPCCancelAsyncRequest()

Chapter 7. APPC Entry Points 57

WinAPPCCancelBlockingCall()

This function cancels any outstanding blocking operation for its thread. If Personal
Communications cancels an outstanding blocked call, it generates an error code of
AP_CANCELLED. Use this call only from within a blocking hook function.
Personal Communications and Communications Server provides this function for
backward compatibility with existing applications.

Syntax
Int WINAPI WINAPPCCancelBlockingCall(void);

Returned Values
The return value specifies whether the cancellation request was successful. If the
value is 0, Personal Communications canceled the request. Otherwise, the value is
the following error code:

WAPPCINVALID
There is no outstanding blocking call.

Usage Notes
If the outstanding verb relates to a conversation (for example, SEND_DATA or
RECEIVE_AND_WAIT), Personal Communications purges the verb and
deactivates the session. If the verb relates to a transaction program (for example,
RECEIVE_ALLOCATE or TP_STARTED), Personal Communications ends the
transaction program. In both cases, although Personal Communications deactivates
conversations and sessions as cleanly as possible, it does not flush send buffers or
waiting-for-confirmations or other pending actions. This call is synchronous. After
the previously described processing is complete, the function is finished.

A multithreaded application can have multiple blocking operations outstanding,
but only one per thread. To distinguish between multiple outstanding calls,
WinAPPCCancelBlockingCall() cancels the outstanding operation on the current,
or calling, application thread if one exists; otherwise, it fails. APPC suspends the
calling application thread while an operation is outstanding. As a result, the thread
on which the blocking operation was initiated does not regain control (and
therefore, is not be able to issue a call to WinAPPCCancelBlockingCall()) unless
the application has previously registered a blocking hook for the thread by using
WinAPPCSetBlockingHook.

This is not supported for Win32 SNA API clients.

WinAPPCCancelBlockingCall()

58 Client/Server Communications Programming

WinAPPCCleanup()

This function terminates and deregisters an application from the APPC API.

Syntax
BOOL WINAPI WinAPPCCleanup(void);

Returned Values
The return value specifies whether the deregistration was successful. If the value is
not 0, Personal Communications have successfully deregistered the application. If
Personal Communications have not deregistered the application, it returns a value
of 0.

Usage Notes
Use WinAPPCCleanup() to deregister Personal Communications application from
the APPC API.

Personal Communications and Communications Server terminates conversations
that are still active and ends transaction programs. This function is equivalent to
issuing TP_ENDED(HARD) on all transaction programs owned by the application.

See also: “WinAPPCStartup()” on page 61.

WinAPPCCleanup()

Chapter 7. APPC Entry Points 59

WinAPPCIsBlocking()

This function determines if a thread is executing while waiting for a previous
blocking call to finish. Personal Communications and Communications Server
provides this function for backward compatibility with existing applications.

Syntax
BOOL WlNAPI WinAPPCIsBlocking(void);

Returned Values
The return value specifies the outcome of the function. If the value is not 0, an
outstanding blocking call is awaiting completion. A value of 0 means there is no
outstanding blocking call.

Usage Notes
Personal Communications and Communications Server DLL prohibits more than
one blocking call per thread; it returns AP_THREAD_BLOCKING if this occurs. A
thread that is executing a blocking call is not reentered unless a blocking hook
function has been set. In this case, WinAPPClsBlocking returns true only from
within a blocking hook function.

See also:
“WinAPPCCancelBlockingCall()” on page 58.
“WinAPPCSetBlockingHook()” on page 62.
“WinAPPCUnhookBlockingHook()” on page 63.

This is not supported for Win32 SNA API clients.

WinAPPCIsBlocking()

60 Client/Server Communications Programming

WinAPPCStartup()

This function enables an application to specify the version of Personal
Communications required and to retrieve version information from Personal
Communications. This call is not required.

Syntax
int WINAPI WinAPPCStartup(WORD wVersionRequired,

LPWAPPCDATA wappcdata);

Parameters

wVersionRequired
Specifies the version of Personal Communications support required. The
high-order byte specifies the minor version (revision) number; the
low-order byte specifies the major version number.

wappcdata
Returns the version of APPC API and a description of API implementation.

Returned Values
The return value specifies whether Personal Communications successfully
registered the application and whether it can support the specified version number.
If the value is 0, Personal Communications supports the specified version and it
successfully registers the application. Otherwise, one of the following values is
returned:

WAPPCSYSNOTREADY
The underlying network subsystem is not ready for network
communication.

WAPPCVERNOTSUPPORTED
This particular Personal Communicationsor Communications Server
implementation does not support the version of Personal
Communicationsor Communications Server support requested.

WAPPCINVALID
Personal Communications and Communications Server could not
determine the specified version.

Usage Notes
WinAPPCStartup() is intended to help with compatibility of future releases of the
API. This DLL supports Version 1.0.

See also: “WinAPPCCleanup()” on page 59.

WinAPPCStartup()

Chapter 7. APPC Entry Points 61

WinAPPCSetBlockingHook()

This function enables an APPC implementation of the APPC API to block APPC
function calls.

Personal Communications and Communications Server provides this function for
compatibility with existing applications.

Syntax
FARPROC WINAPI WinAPPCSetBlockingHook(FARPROC IpBlockFunc);

Parameters

IpBlockFunc
Specifies the procedure instance address of the blocking function to be
installed.

Returned Values
The return value points to the procedure instance of the previously installed
blocking function. The application or library that calls the SetBlockingHook
function should save this return value so that it can be restored if needed. (If
nesting is not important, the application can simply discard the value returned by
WinAPPCSetBlockingHook() and eventually use WinAPPCUnhookBlockingHook
to restore the default mechanism.)

Usage Notes
A blocking function returns FALSE if it receives a WM_QUIT message so that
Personal Communications can return control to the application to process the
message and terminate gracefully. Otherwise, the function returns TRUE.

No default blocking hook is implemented. If an application does not set a blocking
hook, the application thread waits indefinitely for the blocking call to return.

If the blocking hook function does not return TRUE, returns the blocking verb to
the application with the primary return code AP_CANCELLED.

This function is implemented by thread. It provides for a particular thread to
replace the blocking mechanism without affecting other threads.

See also:
“WinAPPCCancelBlockingCall()” on page 58.
“WinAPPCIsBlocking()” on page 60.
“WinAPPCUnhookBlockingHook()” on page 63.

This is not supported for Win32 SNA API clients.

WinAPPCSetBlockingHook()

62 Client/Server Communications Programming

WinAPPCUnhookBlockingHook()

This function removes any previous blocking hook that has been installed.

Personal Communications and Communications Server provides this function for
backward compatibility with existing applications.

Syntax
BOOL WINAPI WinAPPCUnhookBlockingHook (void);

Returned Values
The return value specifies the outcome of the function. It is not 0 if Personal
Communications successfully reinstalled the default mechanism. The value is 0 if
Personal Communications did not reinstall the default mechanism.

Usage Notes
After the function is called, this application thread waits indefinitely for all future
blocking calls to complete.

See also: “WinAPPCSetBlockingHook()” on page 62.

This is not supported for Win32 SNA API clients.

WinAPPCUnhookBlockingHook()

Chapter 7. APPC Entry Points 63

GetAppcConfig()
This function is not implemented. However, an entry point is provided for
backward compatibility. If a valid set of parameters is specified, Personal
Communications returns APPC_CFG_SUCESS_NO_DEFAULT_REMOTE and puts
a NULL terminator in the first byte of the RemLu buffer.

In many cases this call is not necessary because Personal Communications are
APPN capable nodes. The partner LU name can be specified on ALLOCATE and a
search for the LU will be initiated. However, applications can use the Node
Operator Facility (NOF) interface to retrieve this information. For information on
using the NOF interface, refer to System Management Programming.

GetAppcConfig()

64 Client/Server Communications Programming

GetAppcReturnCode()

This function converts the primary and secondary return codes in the VCB to a
printable string. It provides a standard set of error strings for use by APPC
applications.

Syntax
int WINAPI GetAppcReturnCode (struct appc_hdr *vcb,

UINT buffer_length,
unsigned char *buffer_addr);

Parameters

vcb Supplied parameter; specifies the address of the verb control block.

buffer_length
Supplied parameter; specifies the length of the buffer pointed to by
buffer_addr. The recommended length is 256.

buffer_addr
Supplied/returned parameter; specifies the address of the buffer that will
hold the formatted, null-terminated string. Length of the string in the
specified buffer.

Returned Values
0x20000001

The parameters are not valid; the function could not read from the
specified verb control block or could not write to the specified buffer.

0x20000002
The specified buffer is too small.

Usage Notes
The descriptive error string returned in buffer_addr does not terminate with a new
line character (\n).

GetAppcReturnCode()

Chapter 7. APPC Entry Points 65

GetAppcReturnCode()

66 Client/Server Communications Programming

Chapter 8. APPC Verbs

This chapter documents the syntax of each verb passed across the APPC API, and
describes the parameters passed in and returned for each verb.

This chapter also provides reference information for the APPC basic and mapped
conversation verbs that are provided for APPC duplex and half-duplex
conversations. As you read through this chapter, you will discover that the basic
and mapped verbs are very similar and that is why they have been combined into
one chapter. However, there are some differences. Those differences are denoted as
follows:

This symbol appears when information applies only to a basic
verb.

This symbol appears when information applies only to a mapped
verb.

When the conversation verb can be basic or mapped, it is denoted as follows:
[MC_]VERBNAME

Note: Included in chapters of Part 1 of this book is information on the APPC API
provided by the following systems:
v Communications Server running on Windows
v SNA API clients for Win32 platforms that are delivered with

Communications Server
v Personal Communications for Windows

When there are differences between the support provided by these systems,
it is noted.

Verb Control Blocks
This section contains a general description of the fields and indications for each
verb.

Common Fields
Each VCB has a number of common fields, as follows:

opcode
Verb operation code: an identifying field containing the name of the verb.

format
Identifies the format of the VCB. The value that this field must be set to in
order to specify the current version of the VCB is documented individually
under each verb.

© Copyright IBM Corp. 1994, 2016 67

primary_rc
Primary return code. Possible values for each verb are listed in the
following sections.

secondary_rc
Secondary return code. This supplements the information provided by the
primary return code. Possible values for each verb are listed in the
following sections. Some VCBs also contain the following fields.

opext Verb extension code. This supplements the information provided by the
verb operation code. If the verb signal is to be processed in nonblocking
mode, the flag AP_NON_BLOCKING must be set. In the signals described
below these common fields are included, but not explained individually.

TP Identifiers
An 8-byte transaction program identifier is assigned to each active
transaction program. This identifier is assigned by Personal
Communications.

The transaction program identifier is used to route TP_ENDED verbs and
as a correlator on conversation verbs.

The verb control blocks for each signal are described in the following section.

APPC API Support

Verbs Supported
Personal Communications supports the following verbs at the APPC API.

Type Independent Verbs

GET_TP_PROPERTIES
GET_TYPE
RECEIVE_ALLOCATE
SET_TP_PROPERTIES
TP_ENDED
TP_STARTED

Conversation Verbs

[MC_]ALLOCATE
[MC_]CONFIRM
[MC_]CONFIRMED
[MC_]DEALLOCATE
[MC_]FLUSH
[MC_]GET_ATTRIBUTES
[MC_]PREPARE_TO_RECEIVE
[MC_]RECEIVE_AND_POST
[MC_]RECEIVE_AND_WAIT
[MC_]RECEIVE_EXPEDITED_DATA
[MC_]RECEIVE_IMMEDIATE
[MC_]REQUEST_TO_SEND
[MC_]SEND_CONVERSATION
[MC_]SEND_DATA
[MC_]SEND_ERROR
[MC_]SEND_EXPEDITED_DATA
[MC_]TEST_RTS
[MC_]TEST_RTS_AND_POST

68 Client/Server Communications Programming

GET_TP_PROPERTIES

GET_TP_PROPERTIES returns attributes associated with the transaction program.

VCB Structure
typedef struct get_tp_properties
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned char reserv2[2] /* verb format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned char tp_name[64]; /* TP name */
unsigned char lu_alias[8]; /* LU alias */
luw_id_overlay luw_id; /* LUW identifier */
unsigned char fqlu_name[17]; /* fully qualified LU name */
unsigned char reserv3[10]; /* reserved */
unsigned char user_id[10]; /* user id */
} GET_TP_PROPERTIES;
typedef struct luw_id_overlay
{
unsigned char fqlu_name_len; /* fully qualified LU name length */
unsigned char fqlu_name[17]; /* fully qualified LU name */
unsigned char instance[6]; /* instance number */
unsigned char sequence[2]; /* sequence number */
} LUW_ID_OVERLAY;

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode
AP_GET_TP_PROPERTIES

tp_id Identifier for the local transaction program. The value of this parameter
was returned by the TP_STARTED verb in the invoking transaction
program or by RECEIVE_ALLOCATE in the invoked transaction program.

opext AP_BASIC_CONVERSATION

format
Identifies the format of the VCB. Set this field to one to specify the version
of the VCB listed above.

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameters:

primary_rc
AP_OK

tp_name
Name of the local transaction program, that is, the transaction program
issuing this verb. Personal Communications does not check the character
set of this field.

GET_TP_PROPERTIES

Chapter 8. APPC Verbs 69

lu_alias
Alias of the local LU associated with the transaction program. This is an
8-byte string in a locally displayable character set. All 8 bytes are
significant and must be set.

The luw_id field is a Logical Unit of Work identifier associated with unprotected
conversations (conversations with sync_level of AP_NONE or
AP_CONFIRM_SYNC_LEVEL). The luw_id_overlay contains the following
parameters:

luw_id_overlay.fqlu_name_len
Length of fully qualified LU name associated with Logical Unit of Work.

luw_id_overlay.fqlu_name
Fully qualified LU name associated with Logical Unit of Work. This name
is up to 17 bytes long and is right-padded with EBCDIC blanks. It is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8 bytes with no
embedded blanks. If the network ID is not present, then omit the dot.) If
the name length is less than 17 bytes, instance and sequence immediately
follow the name (note that this means the fields of the LUW_ID_OVERLAY
structure cannot be used to access either instance or sequence).

luw_id_overlay.instance
Logical unit of work instance number. This is a binary string of length 6
bytes.

luw_id_overlay.sequence
Logical unit of work sequence number. This is a binary string of length 2
bytes.

If luw_id_overlay.fqlu_name_len is less than 17, luw_id_overlay is right padded
with EDCDIC blanks (after instance and sequence).

fqlu_name
Fully qualified name of the local LU associated with the transaction
program. This name is 17 bytes long and is right-padded with EBCDIC
blanks. It is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a maximum length
of 8 bytes with no embedded blanks. If the network ID is not present, then
omit the dot.)

user_id
User ID of the initiator of the transaction. This is a 10-byte type-AE
EBCDIC character string, padded to the right with EBCDIC spaces.

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_TP_ID

The conditions generating the following possible primary return codes
(primary_rc) are described in Appendix A, “APPC Common Return Codes,” on
page 323.

AP_TP_BUSY
AP_UNEXPECTED_SYSTEM_ERROR

GET_TP_PROPERTIES

70 Client/Server Communications Programming

GET_TYPE

The GET_TYPE verb returns the conversation type (basic or mapped) of a
particular conversation.

VCB Structure
typedef struct get_type
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char conv_type; /* conversation type */
unsigned char conv_style; /* conversation style */
} GET_TYPE;

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode
AP_GET_TYPE

opext AP_BASIC_CONVERSATION

format
Identifies the format of the VCB. Set this field to one to specify the version
of the VCB listed above.

tp_id Identifier for the local transaction program. The value of this parameter
was returned by the TP_STARTED verb in the invoking transaction
program or by RECEIVE_ALLOCATE in the invoked transaction program.

conv_id
Conversation identifier. The value of this parameter was returned by the
ALLOCATE verb in the invoking transaction program or by
RECEIVE_ALLOCATE in the invoked transaction program.

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameters:

primary_rc
AP_OK

conv_type
Conversation type of the conversation identified by conv_id.

AP_BASIC_CONVERSATION
AP_MAPPED_CONVERSATION

conv_style
Conversation style of the conversation identified by conv_id. This field
requires the format 1 version of the VCB. See “Full-Duplex VCBs” on page
38 for more details on accessing format 1 VCBs.

GET_TYPE

Chapter 8. APPC Verbs 71

AP_HALF_DUPLEX
AP_FULL_DUPLEX

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_TP_ID

AP_BAD_CONV_ID

The conditions generating the following possible primary return codes
(primary_rc) are described in Appendix A, “APPC Common Return Codes,” on
page 323.

AP_TP_BUSY
AP_UNEXPECTED_SYSTEM_ERROR

GET_TYPE

72 Client/Server Communications Programming

RECEIVE_ALLOCATE

The RECEIVE_ALLOCATE verb requests information needed to establish a new
transaction program for a conversation with a partner transaction program that has
issued an ALLOCATE or MC_ALLOCATE verb.

VCB Structure
typedef struct receive_allocate
{
unsigned shor opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned shor primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_name[64]; /* TP name */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char sync_level; /* sync Level */
unsigned char conv_type; /* conversation type */
unsigned char user_id[10]; /* user ID */
unsigned char lu_alias[8]; /* LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char mode_name[8]; /* mode name */
unsigned char reserv3[2]; /* reserved */
unsigned long conv_group_id; /* conversation group ID */
unsigned char fqplu_name[17]; /* fully qualified partner LU name */
unsigned char pip_incoming; /* received PIP data */
unsigned char conversation_style; /* conversation style */
unsigned char reserv4[3]; /* reserved */
unsigned char password[10]; /* security password */
unsigned char reserv5[2]; /* reserved */
unsigned char dload_id[8]; /* user ID */
} RECEIVE_ALLOCATE;

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode
AP_RECEIVE_ALLOCATE

opext AP_BASIC_CONVERSATION

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

tp_name
Name of the transaction program. Personal Communications does not
check the character set of this field.

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameters:

primary_rc
AP_OK

tp_id Identifier for the local transaction program. This value is assigned by

RECEIVE_ALLOCATE

Chapter 8. APPC Verbs 73

Personal Communications to the transaction program. The transaction
program passes this identifier to Personal Communications on all
subsequent APPC verbs.

conv_id
Conversation identifier. This value identifies the conversation established
between the two transaction programs.

sync_level
Synchronization level of the conversation.

AP_CONFIRM_SYNC_LEVEL

AP_NONE

conv_type
Conversation type of the conversation identified by conv_id.

AP_BASIC_CONVERSATION
AP_MAPPED_CONVERSATION

user_id
User ID supplied by the partner transaction program. This is a 10-byte
type-AE EBCDIC character string, padded to the right with EBCDIC
spaces.

lu_alias
Alias by which the local LU is known. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and must be set.

plu_alias
Alias by which the partner LU is known to the local transaction program.
This is an 8-byte string in a locally displayable character set. All 8 bytes are
significant and must be set.

mode_name
Name of a set of networking characteristics defined during configuration.
This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

conv_group_id
Conversation group identifier for the session being used by this
conversation.

fqplu_name
Fully qualified LU name for the partner LU. This name is 17 bytes long
and is right-padded with EBCDIC blanks. It is composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot. (Each name can
have a maximum length of 8 bytes with no embedded blanks. If the
network ID is not present, omit the dot.)

pip_incoming
Specifies whether the partner transaction program-supplied Program
Initialization Parameters (PIP) on the [MC_]ALLOCATE request. Set to
AP_YES or AP_NO. If AP_YES, the PIP data will be received on the first
[MC_]RECEIVE_* verb issued on this conversation.

conversation_style
Conversation style of the conversation identified by conv_id.

AP_HALF_DUPLEX
AP_FULL_DUPLEX

RECEIVE_ALLOCATE

74 Client/Server Communications Programming

password
Password associated with user_id. This is a 10-byte type-AE EBCDIC
character string, padded to the right with EBCDIC spaces. This is required
if Security=Program (AP_PGM or AP_PGM_STRONG); otherwise, it is
optional.

dload_id
This field can only be set if the format field is set to 1. If the
RECEIVE_ALLOCATE is issued in response to a
DYNAMIC_LOAD_INDICATION, then this field can be used to correlate
the two signals in the following ways.

The RECEIVE_ALLOCATE will only be correlated with the
DYNAMIC_LOAD_INDICATION if the dload_id is set to one of the
following:
v All zeros
v The dload_id field on the DYNAMIC_LOAD_INDICATION.

Note: This parameter is not supported on the SNA API clients.

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_UNDEFINED_TP_NAME

The conditions generating the following possible primary return codes
(primary_rc) are described in Appendix A, “APPC Common Return Codes,” on
page 323.

AP_UNEXPECTED_SYSTEM_ERROR

RECEIVE_ALLOCATE

Chapter 8. APPC Verbs 75

SET_TP_PROPERTIES

SET_TP_PROPERTIES sets attributes associated with the TP.

VCB Structure
typedef struct set_tp_properties
{

unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned char set_prot_id; /* set protected LUW identifier */
unsigned char new_prot_id; /* new protected LUW identifier */
unsigned char prot_id[26]; /* protected LUW identifier */
unsigned char set_unprot_id; /* set unprotected LUW identifier */
unsigned char new_unprot_id; /* new unprotected LUW identifier */
unsigned char unprot_id[26]; /* unprotected LUW identifier */
unsigned char set_user_id; /* */
unsigned char set_password; /* */
unsigned char user_id[10]; /* */
unsigned char new_password[10];/* */

} SET_TP_PROPERTIES;

Supplied Parameters
The TP supplies the following parameters to Personal Communications:

opcode
AP_SET_TP_PROPERTIES

tp_id Identifier for the local TP. The value of this parameter was returned by the
TP_STARTED verb in the invoking TP or by RECEIVE_ALLOCATE in the
invoked TP.

opext AP_BASIC_CONVERSATION

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

set_prot_id
Specifies whether the protected Logical Unit of Work identifier should be
set.

AP_YES
AP_NO

new_prot_id
Specifies whether Personal Communications should generate a new
protected Logical Unit of Work identifier. Otherwise, prot_id is used to set
the protected LUW identifier. Reserved if set_prot_id is set to AP_NO.

AP_YES
AP_NO

The prot_id structure specifies the new protected LUW identifier if
set_prot_id is set to AP_YES and new_prot_id is set to AP_NO. Otherwise
this structure is reserved.

set_unprot_id
Specifies whether the unprotected Logical Unit of Work identifier should
be set.

SET_TP_PROPERTIES

76 Client/Server Communications Programming

AP_YES
AP_NO

new_unprot_id
Specifies whether Personal Communications should generate a new
unprotected Logical Unit of Work identifier. Otherwise, unprot_id is used
to set the protected LUW identifier. Reserved if set_unprot_id is set to
AP_NO.

AP_YES
AP_NO

The unprot_id structure specifies the new unprotected LUW identifier if
set_unprot_id is set to AP_YES and new_unprot_id is set to AP_NO.
Otherwise this structure is reserved.

set_user_id
Specifies whether the user_id field should be set.

AP_YES
AP_NO

set_password
Specifies whether the new_password field should be set.

AP_YES
AP_NO

user_id
If set_user_id is set to AP_YES, it specifies the new user id. Otherwise this
field is reserved.

new_password
If set_password is set to AP_YES, it specifies the new password. Otherwise
this field is reserved.

Note: If an ALLOCATE or SEND_CONVERSATION specifies a security
type of NAP_SAME, but does not specify a user ID and password
specified on a previous SET_TP_PROPERTIES verb (if any) are used. If the
ALLOCATE or SEND_CONVERSATION do carry a user ID and password,
then these are always used in preference to any which may have been
specified on the SET_TP_PROPERTIES verb.

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameters:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_TP_ID

The conditions generating the following possible primary return codes
(primary_rc) and indented secondary return codes (secondary_rc) are described in
Appendix A, “APPC Common Return Codes,” on page 323.

AP_TP_BUSY

SET_TP_PROPERTIES

Chapter 8. APPC Verbs 77

AP_UNEXPECTED_SYSTEM_ERROR

SET_TP_PROPERTIES

78 Client/Server Communications Programming

TP_ENDED

The TP_ENDED verb notifies Personal Communications that a specified
transaction program has ended.

VCB Structure
typedef struct tp_ended
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned char type; /* type of TP ended */
} TP_ENDED;

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode
AP_TP_ENDED

opext AP_BASIC_CONVERSATION

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

tp_id Identifier for the local transaction program. The value of this parameter
was returned by the TP_STARTED verb for an invoking transaction
program, or by the RECEIVE_ALLOCATE verb for an invoked transaction
program.

type Type of TP_ENDED.

AP_HARD
AP_SOFT
AP_ABEND
AP_CANCEL

If type is AP_ABEND, Personal Communications does not reply to the TP_ENDED
signal.

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameter:

primary_rc
AP_OK

Returned Parameters
If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

TP_ENDED

Chapter 8. APPC Verbs 79

secondary_rc
AP_BAD_TP_ID

AP_BAD_TYPE

The conditions generating the following possible primary return codes
(primary_rc) are described in Appendix A, “APPC Common Return Codes,” on
page 323.

AP_TP_BUSY
AP_UNEXPECTED_SYSTEM_ERROR

TP_ENDED

80 Client/Server Communications Programming

TP_STARTED

The TP_STARTED verb notifies Personal Communications that a program has
requested resources for a transaction program initiated as a result of a local
command, rather than an incoming allocation request.

VCB Structure
typedef struct tp_started
{
unsigned short opcode; /* verb operation */
unsigned char opext; /* verb extension */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_alias[8]; /* LU alias */
unsigned char tp_id[8]; /* TP identifier */
unsigned char tp_name[64]; /* TP name */
} TP_STARTED;

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode
AP_TP_STARTED

opext AP_BASIC_CONVERSATION

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

lu_alias
Alias by which the local LU is known. If it is set to zero, Communications
Server uses the control point LU. This is an 8-byte string in a locally
displayable character set. For Personal Communications, use the default
local LU, if specified, otherwise use the control point LU. This is an 8–byte
string in a locally displayable character set. All 8 bytes are significant and
must be set. A blank lu_alias field is accepted. In this case
Communications Server uses the control point LU and Personal
Communications uses the default local LU, if specified, otherwise Personal
Communications uses the control point LU.

The following information only applies on the
Communications Server Win32 SNA API clients.

The default local LU alias for each user can be assigned using the
appropriate configuration utility, either INI configuration or LDAP.

APPC programs can choose to use a default local LU alias rather than
specify one directly. When an APPC program issues a TP_START verb
with the local_LU_alias field set to binary zeroes, the APPC API uses the
configured default local LU alias.

TP_STARTED

Chapter 8. APPC Verbs 81

tp_name
Name of the transaction program. Personal Communications does not
check the character set of this field.

Returned Parameters
If the verb was executed successfully, Personal Communications returns the
following parameters:

primary_rc
AP_OK

tp_id Identifier for the local transaction program. This value is assigned by
Personal Communications to the transaction program. The transaction
program passes this identifier to Personal Communications on all
subsequent APPC verbs.

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_NAME

AP_INVALID_ENABLE_POOL

The conditions generating the following possible primary return code (primary_rc)
are described in Appendix A, “APPC Common Return Codes,” on page 323.

AP_UNEXPECTED_SYSTEM_ERROR

TP_STARTED

82 Client/Server Communications Programming

[MC_]ALLOCATE

The [MC_]ALLOCATE verb is issued by the invoking transaction program. This
verb allocates a session between the local LU and the partner LU and then (in
conjunction with the RECEIVE_ALLOCATE verb) establishes a conversation
between the invoking transaction program and the invoked transaction program.

The ALLOCATE verb can establish either a basic or mapped conversation. Using
the ALLOCATE verb to establish a mapped conversation enables the transaction
program to use basic conversation verbs to communicate with a mapped
conversation partner transaction program.

Personal Communications generates a conversation identifier (conv_id) when this
verb executes successfully. This identifier is a parameter that is required for all
other APPC conversation verbs.

VCB Structure
typedef struct allocate
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char conv_type; /* conversation type */
unsigned char sync_level; /* sync level */
unsigned char reserv3[2]; /* reserved */
unsigned char rtn_ctl; /* return control */
unsigned char conversation_style; /* conversation style */
unsigned long conv_group_id; /* conversation group identifier */
unsigned long sense_data; /* sense data */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char mode_name[8]; /* mode name */
unsigned char tp_name[64]; /* partner TP name */
unsigned char security; /* security level */
unsigned char reserv5[11]; /* reserved */
unsigned char pwd[10]; /* security password */
unsigned char user_id[10]; /* security user_id */
unsigned short pip_dlen; /* PIP data length */
unsigned char *pip_dptr; /* pointer to PIP data */
unsigned char reserv5a; /* reserved */
unsigned char fqplu_name[17]; /* fully qualified partner LU */

/* name */
unsigned char reserv6[8]; /* reserved */
} ALLOCATE;

typedef struct mc_allocate
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char reserv3; /* reserved */
unsigned char sync_level; /* sync level */
unsigned char reserv4[2]; /* reserved */
unsigned char rtn_ctl; /* return control */
unsigned char conversation_style; /* conversation style */
unsigned long conv_group_id; /* conversation group identifier */

[MC_]ALLOCATE

Chapter 8. APPC Verbs 83

unsigned long sense_data; /* sense data */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char mode_name[8]; /* mode name */
unsigned char tp_name[64]; /* partner TP name */
unsigned char security; /* security level */
unsigned char reserv6[11]; /* reserved */
unsigned char pwd[10]; /* security password */
unsigned char user_id[10]; /* security user_id */
unsigned short pip_dlen; /* PIP data length */
unsigned char *pip_dptr; /* pointer to PIP data */
unsigned char reserv6a; /* reserved */
unsigned char fqplu_name[17]; /* fully qualified partner LU */

/* name */
unsigned char reserv7[8]; /* reserved */
} MC_ALLOCATE;

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode

AP_B_ALLOCATE

AP_M_ALLOCATE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For
nonblocking operation, this flag can be ORed together with
AP_NON_BLOCKING.

tp_id Identifier for the local transaction program.

The value of this parameter was returned by the TP_STARTED verb for an
invoking transaction program, or by the RECEIVE_ALLOCATE verb for
an invoked transaction program.

conv_type

Type of conversation to allocate.

AP_BASIC_CONVERSATION
AP_MAPPED_CONVERSATION

If the ALLOCATE verb establishes a mapped conversation, the local
transaction program must issue basic-conversation verbs and provide its
own mapping layer to convert data records to logical records and logical
records to data records. The partner transaction program can issue
basic-conversation verbs and provide the mapping layer, or it can use
mapped-conversation verbs (if the implementation of APPC that the
partner transaction program is using supports mapped-conversation verbs).
For further information, refer to IBM Systems Network Architecture: LU 6.2
Reference: Peer Protocols.

sync_level
Synchronization level of the conversation.

[MC_]ALLOCATE

84 Client/Server Communications Programming

AP_CONFIRM_SYNC_LEVEL
AP_NONE

rtn_ctl Specifies when the local LU acting on a session request from the local
transaction program is to return control to the local transaction program.

AP_IMMEDIATE
AP_WHEN_SESSION_ALLOCATED
AP_WHEN_SESSION_FREE
AP_WHEN_CONV_GROUP_ALLOC
AP_WHEN_CONWINNER_ALLOC
AP_WHEN_CONLOSER_ALLOC

conversation_style
Conversation style of the conversation identified by conv_id

AP_HALF_DUPLEX
AP_FULL_DUPLEX

conv_group_id
Conversation group identifier for the session to be allocated. This
parameter is only supplied if rtn_ctl is set to
AP_WHEN_CONV_GROUP_ALLOC.

plu_alias
Alias by which the partner LU is known to the local transaction program.
This is an 8-byte string in a locally displayable character set. All 8 bytes are
significant and must be set. This name must match the name of a partner
LU established during configuration. If this field is set to all zeros,
Personal Communications uses the fqplu_name field to specify the
required partner LU.

The following information only applies to Communications
Server Win32 SNA API clients.

The default partner LU alias for each user can be assigned using the
appropriate configuration utility, either INI configuration or LDAP.

APPC programs can choose to use a default partner LU alias rather than
specify one directly. When an APPC program issues an ALLOCATE verb
with the partner_LU_alias field and the fully_qualified_partner_LU field
set to binary zeroes, the APPC API uses the configured default partner LU
alias.

mode_name
Name of a set of networking characteristics usually defined during
configuration. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces.

tp_name
Name of the invoked transaction program. Personal Communications does
not check the character set of this field. The value of tp_name specified by
the ALLOCATE verb in the invoking transaction program must match the
value of tp_name specified by the RECEIVE_ALLOCATE verb in the
invoked transaction program.

[MC_]ALLOCATE

Chapter 8. APPC Verbs 85

security
Specifies the information the partner LU requires in order to validate
access to the invoked transaction program.

AP_NONE

The invoked transaction program uses no conversation security.

AP_PGM

The invoked transaction program uses conversation security, which
requires a user ID and password.

AP_SAME

The invoked transaction program uses conversation security and is
configured to accept an already-verified indicator. The user ID will be sent
with an already-verified indicator, informing the invoked transaction
program that no password is required.

AP_PGM_STRONG

Same as AP_PGM, but the ALLOCATE will only succeed if the session to
the partner LU supports password substitution.

Note: If the [MC_]ALLOCATE specifies a security type of AP_SAME but
does not specify a user ID and password, the user ID and password
specified on a previous SET_TP_PROPERTIES verb (if any) are used.
If the [MC_]ALLOCATE does carry a user ID and password, then
these are always used in place of any that may have been specified
on the SET_TP_PROPERTIES verb.

pwd Password associated with user_id. This is a 10-byte type-AE EBCDIC
character string, padded to the right with EBCDIC spaces. This is required
if Security=Program (AP_PGM or AP_PGM_STRONG); otherwise, it is
optional.

user_id
User ID required to access the partner transaction program. This is a
10-byte type-AE EBCDIC character string, padded to the right with
EBCDIC spaces. This is required if Security=Program (AP_PGM or
AP_PGM_STRONG); otherwise, it is optional.

pip_dlen
Length of the program initialization parameters (PIP) to be passed to the
partner transaction program. Range: 0–32767

pip_dptr
Address of buffer containing PIP data. Use this parameter only if pip_dlen
is greater than zero.

fqplu_name
Fully qualified LU name for the partner LU. This name is 17 bytes long
and is right-padded with EBCDIC blanks. It is composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot. (Each name can
have a maximum length of 8 bytes with no embedded blanks. If the
network ID is not present, then omit the dot.) This field is only significant
if the plu_alias field is set to all zeros.

[MC_]ALLOCATE

86 Client/Server Communications Programming

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameters:

primary_rc
AP_OK

conv_id
Conversation identifier. This value identifies the conversation established
between the two transaction programs.

conv_group_id
Conversation group identifier of the session allocated to the conversation.

If the verb is nonblocking and has not completed, Personal Communications
returns the following parameters:

primary_rc
AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the rtn_ctl parameter was set to AP_IMMEDIATE, and no session is available
immediately, Personal Communications returns the following parameter:

primary_rc
AP_UNSUCCESSFUL

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_BAD_CONV_TYPE
AP_BAD_DUPLEX_TYPE
AP_BAD_RETURN_CONTROL
AP_BAD_SECURITY
AP_BAD_SYNC_LEVEL
AP_CONFIRM_INVALID_FOR_FDX

AP_NO_USE_OF_SNASVCMG_CPSVCMG
AP_BAD_TP_ID
AP_PIP_LEN_INCORRECT
AP_UNKNOWN_PARTNER_MODE

sense_data
Provides additional information on the reason the [MC_]ALLOCATE
failed.

The conditions generating the following possible primary return codes
(primary_rc) and indented secondary return codes (secondary_rc) are described in
Appendix A, “APPC Common Return Codes,” on page 323.

AP_ALLOCATION_ERROR
AP_ALLOCATION_FAILURE_NO_RETRY
AP_ALLOCATION_FAILURE_RETRY
AP_FDX_NOT_SUPPORTED_BY_LU

[MC_]ALLOCATE

Chapter 8. APPC Verbs 87

AP_SEC_REQUESTED_NOT_SUPPORTED

AP_TP_BUSY
AP_UNSUCCESSFUL
AP_UNEXPECTED_SYSTEM_ERROR
AP_CANCELLED

If the primary_rc is set to AP_ALLOCATION_ERROR, the sense_data field carries
more information on the failure.

[MC_]ALLOCATE

88 Client/Server Communications Programming

CANCEL_CONVERSATION

The CANCEL_CONVERSATION verb is a control verb that will cancel a
connection between a local LU and partner LU using a specific transaction
program (tp_id) and a conversation (conv_id).

VCB Structure
The definition of the VCB structure for the CANCEL_CONVERSATION verb is as
follows:
typedef struct cancel_conversation
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
} CANCEL_CONVERSATION;

Supplied Parameters
The transaction program supplies the following parameters to Communication
Server:

opcode

AP_CANCEL_CONVERSATION

opext AP_BASIC_CONVERSATION

format
Identifies the format of the VCB. Set this field to one to specify the version
of the VCB listed above.

tp_id Identifier for the local transaction program. The value of this parameter
was returned by the TP_STARTED verb in the invoking transaction
program.

conv_id
Conversation identifier. The value of this parameter was returned by the
ALLOCATE verb in the invoking transaction program.

Returned Parameters
If the verb executes successfully, Communication Server returns the following
parameters:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, Communication Server
returns the following parameters;

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_CONV_ID

AP_BAD_TP_ID

CANCEL_CONVERSATION

Chapter 8. APPC Verbs 89

CANCEL_CONVERSATION

90 Client/Server Communications Programming

[MC_]CONFIRM

The CONFIRM verb sends the contents of the local LUs send buffer and a
confirmation request to the partner transaction program. In response to the
CONFIRM verb, the partner transaction program normally issues the
CONFIRMED verb to confirm that it has received the data without error. (If the
partner transaction program encounters an error, it issues the SEND_ERROR verb
or abnormally deallocates the conversation.)

The transaction program can issue the CONFIRM verb only if the conversation's
synchronization level, established by the ALLOCATE verb, is
AP_CONFIRM_SYNC_LEVEL.

VCB Structure
typedef struct confirm
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char rts_rcvd; /* request to send received */
#ifdef WINAPPC_FORMAT_1
unsigned char expd_data_rcvd; /* expedited data received */
#endif
} CONFIRM;

typedef struct mc_confirm
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char rts_rcvd; /* request to send received */
#ifdef WINAPPC_FORMAT_1
unsigned char expd_data_rcvd; /* expedited data received */
#endif
} MC_CONFIRM;

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode

AP_B_CONFIRM

AP_M_CONFIRM

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For
nonblocking operation, this flag can be ORed together with
AP_NON_BLOCKING.

[MC_]CONFIRM

Chapter 8. APPC Verbs 91

format
Identifies the format of the VCB. Set this field to one to specify the version
of the VCB listed above.

tp_id Identifier for the local transaction program. The value of this parameter
was returned by the TP_STARTED verb in the invoking transaction
program or by RECEIVE_ALLOCATE in the invoked transaction program.

conv_id
Conversation identifier. The value of this parameter was returned by the
ALLOCATE verb in the invoking transaction program or by
RECEIVE_ALLOCATE in the invoked transaction program.

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameters:

primary_rc
AP_OK

rts_rcvd
Request-to-send-received indicator.

AP_YES
AP_NO

expd_data_rcvd
Expedited-data-received indicator. This indication continues to be set to
AP_YES until a RECEIVE_EXPEDITED_DATA is issued.

AP_YES
AP_NO

This field requires the format 1 version of the VCB. See “Full-Duplex
VCBs” on page 38 for more details on accessing format 1 VCBs.

If the verb is nonblocking and has not completed, Personal Communications
returns the following parameters;

primary_rc
AP_OPERATION_INCOMPLETE

opext If the verb is nonblocking and has not completed, Personal
Communications returns the following parameters:

AP_OPERATION_INCOMPLETE_FLAG

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_CONV_ID

AP_BAD_TP_ID
AP_CONFIRM_INVALID_FOR_FDX
AP_CONFIRM_ON_SYNC_LEVEL_NONE

[MC_]CONFIRM

92 Client/Server Communications Programming

If the conversation is in the wrong state when the transaction program issues this
verb, Personal Communications returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_CONFIRM_BAD_STATE

AP_CONFIRM_NOT_LL_BDY

The conditions generating the following possible primary return codes
(primary_rc) and indented secondary return codes (secondary_rc) are described in
Appendix A, “APPC Common Return Codes,” on page 323.

AP_ALLOCATION_ERROR
AP_SECURITY_NOT_VALID
AP_TRANS_PGM_NOT_AVAIL_RETRY
AP_TRANS_PGM_NOT_AVAIL_NO_RETRY
AP_TP_NAME_NOT_RECOGNIZED
AP_PIP_NOT_ALLOWED
AP_PIP_NOT_SPECIFIED_CORRECTLY
AP_CONVERSATION_TYPE_MISMATCH
AP_SYNC_LEVEL_NOT_SUPPORTED

AP_CONV_FAILURE_NO_RETRY
AP_CONV_FAILURE_RETRY

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_TIMER

AP_PROG_ERROR_PURGING

AP_SVC_ERROR_PURGING

AP_CONVERSATION_TYPE_MIXED

AP_UNEXPECTED_SYSTEM_ERROR

AP_TP_BUSY
AP_CANCELLED

Note: For performance reasons, the SNA API client can return a successful return
code on the [MC_]SEND_DATA verb without forwarding it to the server.
When a subsequent [MC_]CONFIRM verb is issued, the
[MC_]SEND_DATA is forwarded to the server for processing. If there is a

[MC_]CONFIRM

Chapter 8. APPC Verbs 93

[MC_]SEND_DATA error return code, it is returned on the
[MC_]CONFIRM verb. See “[MC_]SEND_DATA” on page 136 for a list of
error return codes.

[MC_]CONFIRM

94 Client/Server Communications Programming

[MC_]CONFIRMED

The CONFIRMED verb replies to a confirmation request from the partner
transaction program. It informs the partner transaction program that the local
transaction program has not detected an error in the received data.

Because the transaction program issuing the confirmation request waits for a
confirmation, the CONFIRMED verb synchronizes the processing of the two
transaction programs.

VCB Structure
typedef struct confirmed
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
} CONFIRMED;

typedef struct mc_confirmed
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
} MC_CONFIRMED;

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode

AP_B_CONFIRMED

AP_M_CONFIRMED

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For
nonblocking operation, this flag can be ORed together with
AP_NON_BLOCKING.

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

tp_id Identifier for the local transaction program. The value of this parameter
was returned by the TP_STARTED verb in the invoking transaction
program or by RECEIVE_ALLOCATE in the invoked transaction program.

conv_id
Conversation identifier. The value of this parameter was returned by the
ALLOCATE verb in the invoking transaction processor or by
RECEIVE_ALLOCATE in the invoked transaction processor.

[MC_]CONFIRMED

Chapter 8. APPC Verbs 95

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameter:

primary_rc
AP_OK

If the verb is nonblocking and has not completed, Personal Communications
returns the following parameters:

primary_rc
AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_CONV_ID

AP_BAD_TP_ID
AP_CONFIRMED_INVALID_FOR_FDX

If the conversation is in the wrong state when the transaction processor issues this
verb, Personal Communications returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_CONFIRMED_BAD_STATE

The conditions generating the following possible primary return codes
(primary_rc) are described in Appendix A, “APPC Common Return Codes,” on
page 323.

AP_TP_BUSY
AP_UNEXPECTED_SYSTEM_ERROR
AP_CONVERSATION_TYPE_MIXED

[MC_]CONFIRMED

96 Client/Server Communications Programming

[MC_]DEALLOCATE

The DEALLOCATE verb deallocates a conversation between two transaction
programs. Before deallocating the conversation, this verb performs the equivalent
of one of the following verbs:
v The FLUSH verb, which sends the contents of the local LU's send buffer to the

partner LU (and transaction processor).
v The CONFIRM verb, which sends the contents of the local LU's send buffer and

a confirmation request to the partner transaction programs.

After this verb has successfully executed, the conversation ID is no longer valid.

For half-duplex conversation:
v Deallocates the specified conversation from the transaction program, it can

include the function of the FLUSH or CONFIRM verb.

For full-duplex conversation
v DEALLOCATE with TYPE(FLUSH) closes the local program's send queue. Both

the local and remote programs must close their send queues independently
therefore, two DEALLOCATE TYPE(FLUSH) verbs are required to end the
conversation. Notification that the partner has closed its send queue is given to
the receive queue in the form of a DEALLOCATE_NORMAL return code.

v DEALLOCATE with TYPE(ABEND) is an abrupt termination that will close
both sides of the conversation simultaneously. This notification is returned to the
remote program's send queue as an ERROR_INDICATION return code, and to
remote program's receive queue as a DEALLOCATE_ABEND return code.

VCB Structure
typedef struct deallocate
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
#ifdef WINAPPC_FORMAT_1
unsigned char expd_data_rcvd; /* expedited data received */
unsigned char reserv3; /* reserved */
#endif
unsigned char dealloc_type; /* deallocate type */
unsigned short log_dlen; /* log data length */
unsigned char *log_dptr; /* pointer to log data */
} DEALLOCATE;

typedef struct mc_deallocate
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
#ifdef WINAPPC_FORMAT_1
unsigned char expd_data_rcvd; /* expedited data received */
unsigned char reserv3; /* reserved */
#endif

[MC_]DEALLOCATE

Chapter 8. APPC Verbs 97

unsigned char dealloc_type; /* deallocate type */
unsigned char reserv4[2]; /* reserved */
unsigned char reserv5[4]; /* reserved */
} MC_DEALLOCATE;

Supplied Parameters
The transaction programs supplies the following parameters to Personal
Communications:

opcode

AP_B_DEALLOCATE

AP_M_DEALLOCATE

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For
nonblocking operation, this flag can be ORed together with
AP_NON_BLOCKING.

On full-duplex conversations, this flag must be ORed together with

AP_FULL_DUPLEX_CONVERSATION.

format
Identifies the format of the VCB. Set this field to one to specify the version
of the VCB listed above.

tp_id Identifier for the local transaction program. The value of this parameter
was returned by the TP_STARTED verb in the invoking transaction
processor or by RECEIVE_ALLOCATE in the invoked transaction
program.

conv_id
Conversation identifier. The value of this parameter was returned by the
ALLOCATE verb in the invoking transaction program or by
RECEIVE_ALLOCATE in the invoked transaction program.

dealloc_type
Specifies how to perform the deallocation.

AP_ABEND

AP_ABEND_PROG
AP_ABEND_SVC
AP_ABEND_TIMER
AP_FLUSH
AP_SYNC_LEVEL

The following values apply to basic only.
AP_TP_NOT_AVAIL_NO_RETRY
AP_TP_NOT_AVAIL_RETRY
AP_TPN_NOT_RECOGNIZED
AP_PIP_DATA_NOT_ALLOWED
AP_PIP_DATA_INCORRECT
AP_RESOURCE_FAILURE_NO_RETRY
AP_CONV_TYPE_MISMATCH
AP_SYNC_LVL_NOT_SUPPORTED

[MC_]DEALLOCATE

98 Client/Server Communications Programming

AP_SECURITY_PARAMS_INVALID

log_dlen

Number of bytes of data to be sent to the error log file.

Range: 0–32767

The application can append data to the end of the VCB, in which case this
field will be greater than zero and log_dptr must be set to NULL. (A
length of zero indicates that there is no error log data.)

log_dptr

Address of data buffer containing error information. The application can
append data to the end of the VCB, in which case log_dptr must be set to
NULL.

This data is sent to the local error log and to the partner LU. The
transaction processor must format the error data as a General Data Stream
(GDS) error log variable. For further information, refer to IBM Systems
Network Architecture: LU 6.2 Reference: Peer Protocols.

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameter:

primary_rc
AP_OK

expd_data_rcvd
Expedited-data-received indicator. This indication continues to be set to
AP_YES until a RECEIVE_EXPEDITED_DATA is issued.

This field requires the format 1 version of the VCB. See “Full-Duplex
VCBs” on page 38 for more details on accessing format 1 VCBs.

AP_YES
AP_NO

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_CONV_ID
AP_BAD_TP_ID
AP_DEALLOC_BAD_TYPE

AP_DEALLOC_LOG_LL_WRONG

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters (for mapped only):

[MC_]DEALLOCATE

Chapter 8. APPC Verbs 99

primary_rc
AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the conversation is in the wrong state when the transaction processor issues this
verb, Personal Communications returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_DEALLOC_CONFIRM_BAD_STATE
AP_DEALLOC_FLUSH_BAD_STATE

AP_DEALLOC_NOT_LL_BDY

The conditions generating the following possible primary return codes
(primary_rc) and indented secondary return codes (secondary_rc) are described in
Appendix A, “APPC Common Return Codes,” on page 323.

AP_ALLOCATION_ERROR
AP_SECURITY_NOT_VALID
AP_TRANS_PGM_NOT_AVAIL_RETRY
AP_TRANS_PGM_NOT_AVAIL_NO_RTRY
AP_TP_NAME_NOT_RECOGNIZED
AP_PIP_NOT_ALLOWED
AP_PIP_NOT_SPECIFIED_CORRECTLY
AP_CONVERSATION_TYPE_MISMATCH
AP_SYNC_LEVEL_NOT_SUPPORTED
AP_CONV_FAILURE_NO_RETRY
AP_CONV_FAILURE_RETRY

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER
AP_PROG_ERROR_PURGING

AP_SVC_ERROR_PURGING

AP_TP_BUSY
AP_CONVERSATION_TYPE_MIXED
AP_DUPLEX_TYPE_MIXED
AP_UNEXPECTED_SYSTEM_ERROR
AP_CANCELLED
AP_ERROR_INDICATION

AP_ALLOCATION_ERROR_PENDING
AP_DEALLOC_ABEND_PROG_PENDING
AP_DEALLOC_ABEND_SVC_PENDING
AP_DEALLOC_ABEND_TIMER_PENDING
AP_UNKNOWN_ERROR_TYPE_PENDING

[MC_]DEALLOCATE

100 Client/Server Communications Programming

Note: For performance reasons, the SNA API client can return a successful return
code on the [MC_]SEND_DATA verb without forwarding it to the server.
When a subsequent [MC_]DEALLOCATE verb is issued, the
[MC_]SEND_DATA is forwarded to the server for processing. If there is a
[MC_]SEND_DATA error return code, it is returned on the
[MC_]DEALLOCATE verb. See “[MC_]SEND_DATA” on page 136 for a list
of error return codes.

[MC_]DEALLOCATE

Chapter 8. APPC Verbs 101

[MC_]FLUSH

The FLUSH verb sends the contents of the local LU's send buffer to the partner LU
(and transaction program). If the send buffer is empty, no action takes place.

VCB Structure
typedef struct flush
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
} FLUSH;

typedef struct mc_flush
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
} MC_FLUSH;

Supplied Parameters
The transaction processor supplies the following parameters to Personal
Communications:

opcode

AP_B_FLUSH

AP_M_FLUSH

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For
nonblocking operation, this flag can be ORed together with
AP_NON_BLOCKING.

On full-duplex conversation, this flag must be ORed together with
AP_FULL_DUPLEX_CONVERSATION.

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

tp_id Identifier for the local transaction program. The value of this parameter
was returned by the TP_STARTED verb in the invoking transaction
program or by RECEIVE_ALLOCATE in the invoked transaction program.

conv_id
Conversation identifier. The value of this parameter was returned by the
ALLOCATE verb in the invoking transaction program or by
RECEIVE_ALLOCATE in the invoked transaction program.

[MC_]FLUSH

102 Client/Server Communications Programming

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameter:

primary_rc
AP_OK

If the verb is nonblocking and has not completed, Personal Communications
returns the following parameters:

primary_rc
AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_CONV_ID

AP_BAD_TP_ID

If the conversation is in the wrong state when the transaction program issues this
verb, Personal Communications returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_FLUSH_NOT_SEND_STATE

The conditions generating the following possible primary return codes
(primary_rc) and indented secondary return codes (secondary_rc) are described in
Appendix A, “APPC Common Return Codes,” on page 323.

AP_TP_BUSY
AP_CONVERSATION_TYPE_MIXED
AP_DUPLEX_TYPE_MIXED
AP_UNEXPECTED_SYSTEM_ERROR
AP_ERROR_INDICATION

AP_ALLOCATION_ERROR_PENDING
AP_DEALLOC_ABEND_PROG_PENDING
AP_DEALLOC_ABEND_SVC_PENDING
AP_DEALLOC_ABEND_TIMER_PENDING
AP_UNKNOWN_ERROR_TYPE_PENDING

Note: For performance reasons, the SNA API client can return a successful return
code on the [MC_]SEND_DATA verb without forwarding it to the server.
When a subsequent [MC_]FLUSH verb is issued, the [MC_]SEND_DATA is
forwarded to the server for processing. If there is a [MC_]SEND_DATA
error return code, it is returned on the [MC_]FLUSH verb. See
“[MC_]SEND_DATA” on page 136 for a list of error return codes.

[MC_]FLUSH

Chapter 8. APPC Verbs 103

[MC_]GET_ATTRIBUTES

The GET_ATTRIBUTES verb returns the attributes of the conversation.

VCB Structure
typedef struct get_attributes
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* verb format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char reserv3; /* reserved */
unsigned char sync_level; /* sync_level */
unsigned char mode_name[8]; /* mode name */
unsigned char net_name[8]; /* network name of local LU */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char plu_un_name[8];

/* partner LU uninterpreted name */
unsigned char reserv4[2]; /* reserved */
unsigned char fqplu_name[17];

/* fully qualified partner LU */
/* name */

unsigned char reserv5; /* reserved */
unsigned char user_id[10]; /* user identifier */
unsigned long conv_group_id; /* conversation group identifier */
unsigned char conv_corr_len; /* conversation correlator */

/* length */
unsigned char conv_corr[8]; /* conversation correlator */
unsigned char reserv6[13]; /* reserved */
} GET_ATTRIBUTES;

typedef struct mc_get_attributes
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* verb format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char reserv3; /* reserved */
unsigned char sync_level; /* sync_level */
unsigned char mode_name[8]; /* mode name */
unsigned char net_name[8]; /* network name of local LU */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char plu_un_name[8]; /* partner LU uninterpreted name */
unsigned char reserv4[2]; /* reserved */
unsigned char fqplu_name[17]; /* fully qualified partner LU */

/* name */
unsigned char reserv5; /* reserved */
unsigned char user_id[10]; /* user identifier */
unsigned long conv_group_id; /* conversation group identifier */
unsigned char conv_corr_len; /* conversation correlator */

/* length */
unsigned char conv_corr[8]; /* conversation correlator */
unsigned char reserv6[13]; /* reserved */
} MC_GET_ATTRIBUTES;

[MC_]GET_ATTRIBUTES

104 Client/Server Communications Programming

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode

AP_B_GET_ATTRIBUTES

AP_M_GET_ATTRIBUTES

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION.

On full-duplex conversations, this flag must be ORed together with
AP_FULL_DUPLEX_CONVERSATION.

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

tp_id Identifier for the local transaction program

The value of this parameter was returned by the TP_STARTED verb in the
invoking transaction program or by RECEIVE_ALLOCATE in the invoked
transaction program.

conv_id
Conversation identifier.

The value of this parameter was returned by the ALLOCATE verb in the
invoking transaction program or by RECEIVE_ALLOCATE in the invoked
transaction program.

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameters:

primary_rc
AP_OK

sync_level
Synchronization level of the conversation.

AP_CONFIRM_SYNC_LEVEL
AP_NONE

mode_name
Name of the set of networking characteristics associated with the session
allocated to the conversation. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with EBCDIC
spaces.

net_name
Name of the network containing the local LU. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

lu_name
Name of the local LU. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.

[MC_]GET_ATTRIBUTES

Chapter 8. APPC Verbs 105

lu_alias
Alias by which the local LU is known to the local transaction program.
This is an 8-byte string in a locally displayable character set. All 8 bytes are
significant and must be set.

plu_alias
Alias by which the partner LU is known to the local transaction program.
This is an 8-byte string in a locally displayable character set. All 8 bytes are
significant and must be set.

plu_un_name
Uninterpreted name of partner LU, that is, the name of the partner LU as
defined at the system services control point (SSCP). This is an 8-byte
type-A EBCDIC character string.

fqplu_name
Fully qualified name of the partner LU. This name is 17 bytes long and is
right-padded with EBCDIC blanks. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded blanks. If the network ID is
not present, then omit the dot.)

user_id
User ID sent by the invoking transaction program through the ALLOCATE
verb to access the invoked transaction program (if applicable). This is a
10-byte type-AE EBCDIC character string, padded to the right with
EBCDIC spaces.

conv_group_id
The conversation group identifier of the session allocated to the
conversation.

conv_corr_len
Always set to 0.

Range: 0–8

conv_corr
Always set to 0.

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_CONV_ID

AP_BAD_TP_ID

The conditions generating the following possible primary return codes
(primary_rc) and indented secondary return codes (secondary_rc) are described in
Appendix A, “APPC Common Return Codes,” on page 323.

AP_TP_BUSY
AP_CONVERSATION_TYPE_MIXED
AP_DUPLEX_TYPE_MIXED
AP_UNEXPECTED_SYSTEM_ERROR

[MC_]GET_ATTRIBUTES

106 Client/Server Communications Programming

[MC_]PREPARE_TO_RECEIVE

The PREPARE_TO_RECEIVE verb changes the state of the conversation for the
local transaction program from SEND or SEND_PENDING to RECEIVE.

Before changing the conversation state, this verb performs the equivalent of one of
the following verbs:
v The FLUSH verb, which sends the contents of the local LU's send buffer to the

partner LU (and transaction program).
v The CONFIRM verb, which send the contents of the local LU's send buffer and

a confirmation request to the partner transaction program.

After this verb has successfully executed, the local transaction program can receive
data.

VCB Structure
typedef struct prepare_to_receive
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char ptr_type; /* prepare to receive type */
unsigned char locks; /* prepare to receive locks */
} PREPARE_TO_RECEIVE;

typedef struct mc_prepare_to_receive
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char ptr_type; /* prepare to receive type */
unsigned char locks; /* prepare to receive locks */
} MC_PREPARE_TO_RECEIVE;

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode

AP_B_PREPARE_TO_RECEIVE

AP_M_PREPARE_TO_RECEIVE

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For
nonblocking operation, this flag can be ORed together with
AP_NON_BLOCKING.

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

[MC_]PREPARE_TO_RECEIVE

Chapter 8. APPC Verbs 107

tp_id Identifier for the local transaction program. The value of this parameter
was returned by the TP_STARTED verb in the invoking transaction
program or by RECEIVE_ALLOCATE in the invoked transaction program.

conv_id
Conversation identifier.

The value of this parameter was returned by the ALLOCATE verb in the
invoking transaction program or by RECEIVE_ALLOCATE in the invoked
transaction program.

ptr_type
Specifies how to perform the state change.

AP_FLUSH
AP_SYNC_LEVEL
AP_P_TO_R_CONFIRM

locks Specifies when Personal Communications is to return control to the local
transaction processor.

AP_LONG
AP_SHORT

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameter:

primary_rc
AP_OK

If the verb is nonblocking and has not completed, Personal Communications
returns the following parameters;

primary_rc
AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_CONV_ID

AP_BAD_TP_ID
AP_P_TO_R_INVALID_FOR_FDX
AP_P_TO_R_INVALID_TYPE

If the conversation is in the wrong state when the transaction processor issues this
verb, Personal Communications returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc

AP_TO_R_NOT_LL_BDY

[MC_]PREPARE_TO_RECEIVE

108 Client/Server Communications Programming

AP_P_TO_R_NOT_SEND_STATE

The conditions generating the following possible primary return codes
(primary_rc) and indented secondary return codes (secondary_rc) are described in
Appendix A, “APPC Common Return Codes,” on page 323.

AP_ALLOCATION_ERROR
AP_SECURITY_NOT_VALID
AP_TRANS_PGM_NOT_AVAIL_RETRY
AP_TRANS_PGM_NOT_AVAIL_NO_RTRY
AP_TP_NAME_NOT_RECOGNIZED
AP_PIP_NOT_ALLOWED
AP_PIP_NOT_SPECIFIED_CORRECTLY
AP_CONVERSATION_TYPE_MISMATCH
AP_SYNC_LEVEL_NOT_SUPPORTED
AP_CONV_FAILURE_NO_RETRY

 AP_CONV_FAILURE_RETRY

 AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

AP_PROG_ERROR_PURGING

AP_SVC_ERROR_PURGING
AP_TP_BUSY

 AP_CONVERSATION_TYPE_MIXED
 AP_UNEXPECTED_SYSTEM_ERROR
 AP_CANCELLED

Note: For performance reasons, the SNA API client can return a successful return
code on the [MC_]SEND_DATA verb without forwarding it to the server.
When a subsequent [MC_]PREPARE_TO_RECEIVE verb is issued, the
[MC_]SEND_DATA is forwarded to the server for processing. If there is a
[MC_]SEND_DATA error return code, it is returned on the
[MC_]PREPARE_TO_RECEIVE verb. See “[MC_]SEND_DATA” on page 136
for a list of error return codes.

[MC_]PREPARE_TO_RECEIVE

Chapter 8. APPC Verbs 109

[MC_]RECEIVE_AND_POST

The RECEIVE_AND_POST verb receives application data and status information
asynchronously. This enables the transaction program to proceed with processing
while data is still arriving at the local LU. This verb can only be issued through the
APPC entry point.

VCB Structure
typedef struct receive_and_post
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned short what_rcvd; /* what received */
unsigned char rtn_status; /* return status with data */
unsigned char fill; /* data fill */
unsigned char rts_rcvd; /* request to send received */
unsigned char expd_data_rcvd; /* expedited data received */
unsigned short max_len; /* maximum length of received */

/* data */
unsigned short dlen; /* actual length of received */

/* data */
unsigned char *dptr; /* pointer to data buffer */
unsigned long *sema; /* post handle for verb */
unsigned char reserv5; /* reserved */
} RECEIVE_AND_POST;

typedef struct mc_receive_and_post
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned short what_rcvd; /* what received */
unsigned char rtn_status; /* return status with data */
unsigned char reserv4; /* reserved */
unsigned char rts_rcvd; /* request to send received */
unsigned char expd_data_rcvd; /* expedited data received */
unsigned short max_len; /* maximum length of received */

/* data */
unsigned short dlen; /* actual length of received */

/* data */
unsigned char *dptr; /* pointer to data buffer */
unsigned long *sema; /* post handle for verb */
unsigned char reserv6; /* reserved */
} MC_RECEIVE_AND_POST;

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode

AP_B_RECEIVE_AND_POST

[MC_]RECEIVE_AND_POST

110 Client/Server Communications Programming

AP_M_RECEIVE_AND_POST

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION.

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

tp_id Identifier for the local transaction program. The value of this parameter
was returned by the TP_STARTED verb in the invoking transaction
program or by RECEIVE_ALLOCATE in the invoked transaction program.

conv_id
Conversation identifier.

The value of this parameter was returned by the ALLOCATE verb in the
invoking transaction program or by RECEIVE_ALLOCATE in the invoked
transaction program.

rtn_status
Indicates whether status information and data can be returned on the same
verb.

AP_YES
AP_NO

fill

Indicates the manner in which the local transaction program receives data.
AP_BUFFER
AP_LL

max_len
Maximum number of bytes of data the local transaction program can
receive.

Range: 0–65535

This value must not exceed the length of the buffer to contain the received
data.

dptr Address of the buffer to contain the data received by the local LU. The
application can append data to the end of the VCB in which case dptr
must be set to NULL.

sema Handle of the event that the application will wait on. This verb is intended
for use with WaitForMultipleObjects in the Win32 API.

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameters:

primary_rc
AP_OK

AP_DEALLOC_NORMAL

what_rcvd
Status information received with the incoming data. If rtn_status is set to
AP_NO, this field always contains a value from the following list:

[MC_]RECEIVE_AND_POST

Chapter 8. APPC Verbs 111

AP_NONE
AP_CONFIRM_DEALLOCATE
AP_CONFIRM_SEND
AP_CONFIRM_WHAT_RECEIVED

AP_DATA
AP_DATA_COMPLETE
AP_DATA_INCOMPLETE
AP_SEND

AP_USER_CONTROL_DATA_COMPLETE

AP_USER_CONTROL_DATA_INCMP

AP_PS_HEADER_COMPLETE

AP_PS_HEADER_INCOMPLETE

AP_DATA_CONFIRM
AP_DATA_COMPLETE_CONFIRM
AP_DATA_CONFIRM_DEALLOCATE
AP_DATA_COMPLETE_CONFIRM_DEALL
AP_DATA_CONFIRM_SEND
AP_DATA_COMPLETE_CONFIRM_SEND
AP_DATA_SEND
AP_DATA_COMPLETE_SEND

If rtn_status is set to AP_YES, this field can contain any value from either
the previous list or the following list.

The following parameters are for mapped only:
AP_UC_DATA_COMPLETE_CONFIRM
AP_UC_DATA_COMPLETE_CNFM_DEALL
AP_UC_DATA_COMPLETE_CNFM_SEND
AP_UC_DATA_COMPLETE_SEND
AP_PS_HDR_COMPLETE_CONFIRM
AP_PS_HDR_COMPLETE_CNFM_DEALL
AP_PS_HDR_COMPLETE_CNFM_SEND
AP_PS_HDR_COMPLETE_SEND

rts_rcvd
Request-to-send-received indicator.

AP_YES
AP_NO

expd_data_rcvd
Expedited-data-received indicator. This indication continues to be set to
AP_YES until a RECEIVE_EXPEDITED_DATA is issued.

AP_YES
AP_NO

This format field requires the format 1 version of the VCB. See
“Full-Duplex VCBs” on page 38 for more details on accessing format 1
VCBs.

dlen Number of bytes of data received (the data is stored in the buffer specified

[MC_]RECEIVE_AND_POST

112 Client/Server Communications Programming

by the dptr parameter). A length of zero indicates that no data was
received. This parameter is only used if the what_rcvd parameter indicates
that data was received.

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_CONV_ID

AP_BAD_RETURN_STATUS_WITH_DATA
 AP_BAD_TP_ID

 AP_RCV_AND_POST_BAD_FILL

If the conversation is in the wrong state when the transaction program issues this
verb, Personal Communications returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_RCV_AND_POST_BAD_STATE

AP_RCV_AND_POST_NOT_LL_BDY

If the verb did not execute because it was canceled by another verb issued by the
transaction program, Personal Communications returns the following parameter:

primary_rc
AP_CANCELLED

The conditions generating the following possible primary return codes
(primary_rc) and indented secondary return codes (secondary_rc) are described in
Appendix A, “APPC Common Return Codes,” on page 323.

AP_ALLOCATION_ERROR
AP_SECURITY_NOT_VALID
AP_TRANS_PGM_NOT_AVAIL_RETRY
AP_TRANS_PGM_NOT_AVAIL_NO_RTRY
AP_TP_NAME_NOT_RECOGNIZED
AP_PIP_NOT_ALLOWED
AP_PIP_NOT_SPECIFIED_CORRECTLY
AP_CONVERSATION_TYPE_MISMATCH
AP_SYNC_LEVEL_NOT_SUPPORTED
AP_CONV_FAILURE_NO_RETRY
AP_CONV_FAILURE_RETRY

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

[MC_]RECEIVE_AND_POST

Chapter 8. APPC Verbs 113

AP_DEALLOC_NORMAL
AP_PROG_ERROR_NO_TRUNC

 AP_PROG_ERROR_PURGING

AP_PROG_ERROR_TRUNC

AP_SVC_ERROR_NO_TRUNC

AP_SVC_ERROR_PURGING
AP_SVC_ERROR_TRUNC
AP_TP_BUSY

 AP_CONVERSATION_TYPE_MIXED
 AP_UNEXPECTED_SYSTEM_ERROR
 AP_CANCELLED

Note: For performance reasons, the SNA API client can return a successful return
code on the [MC_]SEND_DATA verb without forwarding it to the server.
When a subsequent [MC_]RECEIVE_AND_POST verb is issued, the
[MC_]SEND_DATA is forwarded to the server for processing. If there is a
[MC_]SEND_DATA error return code, it is returned on the
[MC_]RECEIVE_AND_POST verb. See “[MC_]SEND_DATA” on page 136
for a list of error return codes.

[MC_]RECEIVE_AND_POST

114 Client/Server Communications Programming

[MC]RECEIVE_AND_WAIT

The RECEIVE_AND_WAIT verb receives any data that is currently available from
the partner transaction program. If no data is currently available, the local
transaction program waits for data to arrive.

For half-duplex conversations:
The program can issue this verb when the conversation is in send state. In
this case, the LU flushes its send buffer, sending all buffered information
and the SEND indication to the remote program. This changes the
conversation to receive state. The LU then waits for information to arrive.
The remote program can send data to the local program after it receives
the SEND indication.

For full-duplex conversations:
If the send buffer contains the conversation allocation request, it will be
flushed; otherwise, this verb will not cause the LU to flush its send buffer.
If it is important that the data remaining in the send buffer be transmitted
before receiving data, the local program should issue a FLUSH before
issuing this verb.

VCB Structure
typedef struct receive_and_wait
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned short what_rcvd; /* what received */
unsigned char rtn_status; /* return status with data */
unsigned char fill; /* data fill */
unsigned char rts_rcvd; /* request to send received */
unsigned char expd_data_rcvd; /* expedited data received */
unsigned short max_len; /* maximum length of received */

/* data */
unsigned short dlen; /* actual length of received */

/* data */
unsigned char *dptr; /* pointer to data buffer */
unsigned char reserv5[5]; /* reserved */
} RECEIVE_AND_WAIT;

typedef struct mc_receive_and_wait
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned short what_rcvd; /* what received */
unsigned char rtn_status; /* return status with data */
unsigned char reserv4; /* reserved */
unsigned char rts_rcvd; /* request to send received */
unsigned char expd_data_rcvd; /* expedited data received */
unsigned short max_len; /* maximum length of received */

/* data */
unsigned short dlen; /* actual length of received */

[MC_]RECEIVE_AND_WAIT

Chapter 8. APPC Verbs 115

/* data */
unsigned char *dptr; /* pointer to data buffer */
unsigned char reserv6[5]; /* reserved */
} MC_RECEIVE_AND_WAIT;

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode

AP_B_RECEIVE_AND_WAIT

AP_M_RECEIVE_AND_WAIT

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For
nonblocking operation, this flag can be ORed together with
AP_NON_BLOCKING.

On full-duplex conversations, this flag must be ORed together with
AP_FULL_DUPLEX_CONVERSATION.

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

tp_id Identifier for the local transaction program.

The value of this parameter was returned by the TP_STARTED verb in the
invoking transaction program or by RECEIVE_ALLOCATE in the invoked
transaction program.

conv_id
Conversation identifier.

The value of this parameter was returned by the ALLOCATE verb in the
invoking transaction program or by RECEIVE_ALLOCATE in the invoked
transaction program.

rtn_status
Indicates whether status information and data can be returned on the same
verb.

AP_YES
AP_NO

fill

Indicates the manner in which the local transaction program receives data.
AP_BUFFER
AP_LL

max_len
Maximum number of bytes of data the local transaction program can
receive.

Range: 0–65535

This value must not exceed the length of the buffer to contain the received
data.

[MC_]RECEIVE_AND_WAIT

116 Client/Server Communications Programming

dptr Address of the buffer to contain the data received by the local LU. The
application can append data to the end of the VCB, in which case dptr
must be set to NULL.

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameters:

primary_rc
AP_OK

AP_DEALLOC_NORMAL

what_rcvd
Status information received with the incoming data. If rtn_status is set to
AP_NO, this field always contains a value from the following list:

AP_NONE
AP_CONFIRM_DEALLOCATE
AP_CONFIRM_SEND
AP_CONFIRM_WHAT_RECEIVED

AP_DATA
AP_DATA_COMPLETE
AP_DATA_INCOMPLETE
AP_SEND

AP_USER_CONTROL_DATA_COMPLETE

AP_USER_CONTROL_DATA_INCMP

AP_PS_HEADER_COMPLETE

AP_PS_HEADER_INCOMPLETE

AP_DATA_CONFIRM
AP_DATA_COMPLETE_CONFIRM

AP_DATA_CONFIRM_DEALLOCATE
AP_DATA_COMPLETE_CONFIRM_DEALL

AP_DATA_CONFIRM_SEND
AP_DATA_COMPLETE_CONFIRM_SEND

AP_DATA_SEND
AP_DATA_COMPLETE_SEND

If rtn_status is set to AP_YES, this field can contain any value from either
the previous list or the following list.

The following parameters apply to mapped only:
AP_UC_DATA_COMPLETE_CONFIRM
AP_UC_DATA_COMPLETE_CNFM_DEALL
AP_UC_DATA_COMPLETE_CNFM_SEND
AP_UC_DATA_COMPLETE_SEND

[MC_]RECEIVE_AND_WAIT

Chapter 8. APPC Verbs 117

AP_PS_HDR_COMPLETE_CONFIRM
AP_PS_HDR_COMPLETE_CNFM_DEALL
AP_PS_HDR_COMPLETE_CNFM_SEND
AP_PS_HDR_COMPLETE_SEND

rts_rcvd
Request-to-send-received indicator.

AP_YES
AP_NO

This format of the following verb is the format 1 version of the VCB. See
“Full-Duplex VCBs” on page 38 for more details on accessing format 1
VCBs.

expd_data_rcvd
Expedited-data-received indicator. This indication continues to be set to
AP_YES until a RECEIVE_EXPEDITED_DATA is issued.

AP_YES
AP_NO

dlen This parameter is only used if the what_rcvd parameter indicates that data
was received. Number of bytes of data received (the data is stored in the
buffer specified by the dptr parameter). A length of zero indicates that no
data was received.

If the verb is nonblocking and has not completed, Personal Communications
returns the following parameters;

primary_rc
AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_CONV_ID

AP_BAD_RETURN_STATUS_WITH_DATA
AP_BAD_TP_ID

AP_RCV_AND_WAIT_BAD_FILL

If the conversation is in the wrong state when the transaction program issues this
verb, Personal Communications returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_RCV_AND_WAIT_BAD_STATE

AP_RCV_AND_WAIT_NOT_LL_BDY

The conditions generating the following possible primary return codes
(primary_rc) and indented secondary return codes (secondary_rc) are described in
Appendix A, “APPC Common Return Codes,” on page 323.

[MC_]RECEIVE_AND_WAIT

118 Client/Server Communications Programming

AP_ALLOCATION_ERROR
AP_SECURITY_NOT_VALID
AP_TRANS_PGM_NOT_AVAIL_RETRY
AP_TRANS_PGM_NOT_AVAIL_NO_RTRY
AP_TP_NAME_NOT_RECOGNIZED
AP_PIP_NOT_ALLOWED
AP_PIP_NOT_SPECIFIED_CORRECTLY
AP_CONVERSATION_TYPE_MISMATCH
AP_SYNC_LEVEL_NOT_SUPPORTED
AP_CONV_FAILURE_NO_RETRY
AP_CONV_FAILURE_RETRY

AP_DEALLOC_ABEND
AP_DEALLOC_NORMAL
AP_PROG_ERROR_NO_TRUNC
AP_PROG_ERROR_PURGING
AP_TP_BUSY
AP_CONVERSATION_TYPE_MIXED
AP_DUPLEX_TYPE_MIXED
AP_UNEXPECTED_SYSTEM_ERROR
AP_CANCELLED

The following parameters apply to basic only:

AP_DEALLOC_ABEND_PROG
AP_DEALLOC_ABEND_SVC
AP_DEALLOC_ABEND_TIMER
AP_PROG_ERROR_TRUNCL
AP_SVC_ERROR_NO_TRUNC
AP_SVC_ERROR_PURGING
AP_SVC_ERROR_TRUNC

Note: For performance reasons, the SNA API client can return a successful return
code on the [MC_]SEND_DATA verb without forwarding it to the server.
When a subsequent [MC_]RECEIVE_AND_WAIT verb is issued, the
[MC_]SEND_DATA is forwarded to the server for processing. If there is a
[MC_]SEND_DATA error return code, it is returned on the
[MC_]RECEIVE_AND_WAIT verb. See “[MC_]SEND_DATA” on page 136
for a list of error return codes.

[MC_]RECEIVE_AND_WAIT

Chapter 8. APPC Verbs 119

[MC_]RECEIVE_EXPEDITED_DATA

The [MC_]RECEIVE_EXPEDITED_DATA verb receives any expedited data that is
currently available from the partner TP. If expedited data is currently available, the
local transaction program receives it without waiting; otherwise, the behavior is
governed by the rtn_ctl field.

VCB Structure
typedef struct receive_expedited_data
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char return_control; /* when to return control */
unsigned char reserv1[3]; /* reserved */
unsigned char rts_rcvd; /* request to send received */
unsigned char expd_data_rcvd; /* expedited data received */
unsigned short max_len; /* maximum length of received */

/* data */
unsigned short dlen; /* actual length of received */

/* data */
unsigned char *dptr; /* pointer to data buffer */
} RECEIVE_EXPEDITED_DATA

typedef struct mc_receive_expedited_data
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char return_control; /* when to return control */
unsigned char reserv1[3]; /* reserved */
unsigned char rts_rcvd; /* request to send received */
unsigned char expd_data_rcvd; /* expedited data received */
unsigned short max_len; /* maximum length of received */

/* data */
unsigned short dlen; /* actual length of received */

/* data */
unsigned char *dptr; /* pointer to data buffer */
} MC_RECEIVE_EXPEDITED_DATA

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode

AP_B_RECEIVE_EXPEDITED_DATA

AP_M_RECEIVE_EXPEDITED_DATA

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For
nonblocking operation, this flag can be ORed together with
AP_NON_BLOCKING.

[MC_]RECEIVE_EXPEDITED_DATA

120 Client/Server Communications Programming

On full-duplex conversations, this flag must be ORed together with
AP_FULL_DUPLEX_CONVERSATION.

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

tp_id Identifier for the local transaction program.

The value of this parameter was returned by the TP_STARTED verb in the
invoking transaction program or by RECEIVE_ALLOCATE in the invoked
transaction program.

conv_id
Conversation identifier.

The value of this parameter was returned by the ALLOCATE verb in the
invoking transaction program or by RECEIVE_ALLOCATE in the invoked
transaction program.

return_control
Specifies when to return control to the transaction program.

AP_WHEN_EXPD_RECEIVED
AP_IMMEDIATE

max_len
Maximum number of bytes of data the local transaction program can
receive.

Range: 0–86

This value must not exceed the length of the buffer to contain the received
data.

dptr Address of the buffer to contain the data received by the local LU. The
application can append data to the end of the VCB, in which case dptr
must be set to NULL.

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameters:

primary_rc
AP_OK

rts_rcvd
Request-to-send-received indicator.

AP_YES
AP_NO

expd_data_rcvd
Expedited-data-received indicator. This indication continues to be set to
AP_YES until a RECEIVE_EXPEDITED_DATA is issued.

AP_YES
AP_NO

dlen Number of bytes of data received (the data is stored in the buffer specified
by the dptr parameter). A length of zero indicates that no data was
received. Note that any data received is unformatted. No 2-byte length
field (LL) is present.

[MC_]RECEIVE_EXPEDITED_DATA

Chapter 8. APPC Verbs 121

If the verb is nonblocking and has not completed, Personal Communications
returns the following parameters:

primary_rc

AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the verb does not execute because the remote LU does not support expedited
data, Personal Communications returns the following parameter:

primary_rc
AP_EXPD_NOT_SUPPORTED_BY_LU

If no data is immediately available from the partner transaction program and the
rtn_ctl flag is AP_IMMEDIATE, Personal Communications returns the following
parameter:

primary_rc
AP_UNSUCCESSFUL

If the data buffer provided by the transaction program is not large enough to
contain all of the expedited data available at the LU, no data is returned and
Personal Communications returns the following parameters:

primary_rc
AP_BUFFER_TOO_SMALL

dlen Number of bytes expedited data that the LU has available to receive.

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_CONV_ID

AP_BAD_TP_ID
AP_EXPD_BAD_RETURN_CONTROL
AP_RCV_EXPD_INVALID_LENGTH

If the conversation is in the wrong state when the transaction program issues this
verb, Personal Communications returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_EXPD_DATA_BAD_CONV_STATE

The conditions generating the following possible primary return codes
(primary_rc) and indented secondary return codes (secondary_rc) are described in
Appendix A, “APPC Common Return Codes,” on page 323.

AP_ALLOCATION_ERROR
AP_SECURITY_NOT_VALID
AP_TRANS_PGM_NOT_AVAIL_RETRY
AP_TRANS_PGM_NOT_AVAIL_NO_RTRY

[MC_]RECEIVE_EXPEDITED_DATA

122 Client/Server Communications Programming

AP_TP_NAME_NOT_RECOGNIZED
AP_PIP_NOT_ALLOWED
AP_PIP_NOT_SPECIFIED_CORRECTLY
AP_CONVERSATION_TYPE_MISMATCH
AP_SYNC_LEVEL_NOT_SUPPORTED

AP_CONV_FAILURE_NO_RETRY
AP_CONV_FAILURE_RETRY
AP_DEALLOC_ABEND_PROG
AP_DEALLOC_ABEND_SVC
AP_DEALLOC_ABEND_TIMER
AP_DEALLOC_NORMAL
AP_TP_BUSY
AP_CONVERSATION_TYPE_MIXED
AP_DUPLEX_TYPE_MIXED
AP_UNEXPECTED_SYSTEM_ERROR
AP_CANCELLED

AP_ERROR_INDICATION

[MC_]RECEIVE_EXPEDITED_DATA

Chapter 8. APPC Verbs 123

[MC_]RECEIVE_IMMEDIATE

The [MC_]RECEIVE_IMMEDIATE verb receives any data or status information
that is currently available from the partner transaction program. If none is
currently available, the local transaction program returns immediately and does
not wait.

VCB Structure
typedef struct receive_immediate
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned short what_rcvd; /* what received */
unsigned char rtn_status; /* return status with data */
unsigned char fill; /* data fill */
unsigned char rts_rcvd; /* request to send received */
unsigned char expd_data_rcvd; /* expedited data received */
unsigned short max_len; /* maximum length of received */

/* data */
unsigned short dlen; /* actual length of received */

/* data */
unsigned char *dptr; /* pointer to data buffer */
unsigned char reserv5[5]; /* reserved */
} RECEIVE_IMMEDIATE;

typedef struct mc_receive_immediate
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned short what_rcvd; /* what received */
unsigned char rtn_status; /* return status with data */
unsigned char reserv4; /* reserved */
unsigned char rts_rcvd; /* request to send received */
unsigned char expd_data_rcvd; /* expedited data received */
unsigned short max_len; /* maximum length of received */

/* data */
unsigned short dlen; /* actual length of received */

/* data */
unsigned char *dptr; /* pointer to data buffer */
unsigned char reserv6[5]; /* reserved */
} MC_RECEIVE_IMMEDIATE;

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode

AP_B_RECEIVE_IMMEDIATE

AP_M_RECEIVE_IMMEDIATE

[MC_]RECEIVE_IMMEDIATE

124 Client/Server Communications Programming

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For
nonblocking operation, this flag can be ORed together with
AP_NON_BLOCKING.

On full-duplex conversations, this flag must be ORed together with
AP_FULL_DUPLEX_CONVERSATION.

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

tp_id Identifier for the local transaction program.

The value of this parameter was returned by the TP_STARTED verb in the
invoking transaction program or by RECEIVE_ALLOCATE in the invoked
transaction program.

conv_id
Conversation identifier.

The value of this parameter was returned by the [MC_]ALLOCATE verb
in the invoking transaction program or by RECEIVE_ALLOCATE in the
invoked transaction program.

rtn_status
Indicates whether status information and data can be returned on the same
verb.

AP_YES
AP_NO

fill

Indicates the manner in which the local transaction program receives data.
AP_BUFFER
AP_LL

max_len
Maximum number of bytes of data the local transaction program can
receive.

Range: 0–65535

This value must not exceed the length of the buffer to contain the received
data.

dptr Address of the buffer to contain the data received by the local LU. The
application can append data to the end of the VCB, in which case dptr
must be set to NULL.

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameters:

primary_rc
AP_OK

AP_DEALLOC_NORMAL

[MC_]RECEIVE_IMMEDIATE

Chapter 8. APPC Verbs 125

what_rcvd
Status information received with the incoming data. If rtn_status is set to
AP_NO, this field always contains a value from the following list:

AP_NONE
AP_CONFIRM_DEALLOCATE
AP_CONFIRM_SEND
AP_CONFIRM_WHAT_RECEIVED
AP_DATA
AP_DATA_COMPLETE
AP_DATA_INCOMPLETE

AP_SEND

AP_USER_CONTROL_DATA_COMPLETE

AP_USER_CONTROL_DATA_INCMP

AP_PS_HEADER_COMPLETE

AP_PS_HEADER_INCOMPLETE

AP_DATA_CONFIRM
AP_DATA_COMPLETE_CONFIRM
AP_DATA_CONFIRM_DEALLOCATE
AP_DATA_COMPLETE_CONFIRM_DEALL
AP_DATA_CONFIRM_SEND
AP_DATA_COMPLETE_CONFIRM_SEND

AP_DATA_SEND

If rtn_status is set to AP_YES, this field can contain any value from either
the previous list or the following list.

The following parameters apply to mapped only:
AP_DATA_COMPLETE_SEND
AP_UC_DATA_COMPLETE_CONFIRM
AP_UC_DATA_COMPLETE_CNFM_DEALL
AP_UC_DATA_COMPLETE_CNFM_SEND
AP_UC_DATA_COMPLETE_SEND
AP_PS_HDR_COMPLETE_CONFIRM
AP_PS_HDR_COMPLETE_CNFM_DEALL
AP_PS_HDR_COMPLETE_CNFM_SEND
AP_PS_HDR_COMPLETE_SEND

expd_data_rcvd
Expedited-data-received indicator.

AP_YES
AP_NO

rts_rcvd
Request-to-send-received indicator.

AP_YES
AP_NO

dlen This parameter is only used if the what_rcvd parameter indicates that data

[MC_]RECEIVE_IMMEDIATE

126 Client/Server Communications Programming

was received. Number of bytes of data received (the data is stored in the
buffer specified by the dptr parameter). A length of zero indicates that no
data was received.

If the verb is nonblocking and has not completed, Personal Communications
returns the following parameter.

primary_rc
AP_OPERATION_INCOMPLETE

opext AP_BASIC_CONVERSION or AP_MAPPED_CONVERSATION ORed
together with

AP_NON_BLOCKING ORed together with
AP_OPERATION_INCOMPLETE_FLAG

If no data is immediately available from the partner transaction program, Personal
Communications returns the following parameter.

primary_rc
AP_UNSUCCESSFUL

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_CONV_ID

AP_BAD_RETURN_STATUS_WITH_DATA
 AP_BAD_TP_ID

 AP_RCV_IMMD_BAD_FILL

If the conversation is in the wrong state when the transaction program issues this
verb, Personal Communications returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_RCV_IMMD_BAD_STATE

The conditions generating the following possible primary return codes
(primary_rc) and indented secondary return codes (secondary_rc) are described in
Appendix A, “APPC Common Return Codes,” on page 323.

AP_ALLOCATION_ERROR
AP_SECURITY_NOT_VALID
AP_TRANS_PGM_NOT_AVAIL_RETRY
AP_TRANS_PGM_NOT_AVAIL_NO_RTRY
AP_TP_NAME_NOT_RECOGNIZED
AP_PIP_NOT_ALLOWED
AP_PIP_NOT_SPECIFIED_CORRECTLY
AP_CONVERSATION_TYPE_MISMATCH
AP_SYNC_LEVEL_NOT_SUPPORTED

[MC_]RECEIVE_IMMEDIATE

Chapter 8. APPC Verbs 127

AP_CONV_FAILURE_NO_RETRY
AP_CONV_FAILURE_RETRY

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG
AP_DEALLOC_ABEND_SVC
AP_DEALLOC_ABEND_SVC
AP_DEALLOC_ABEND_SVC
AP_DEALLOC_ABEND_SVC
AP_DEALLOC_ABEND_SVC
AP_DEALLOC_ABEND_TIMER
AP_DEALLOC_NORMAL
AP_PROG_ERROR_NO_TRUNC
AP_PROG_ERROR_PURGING

AP_PROG_ERROR_TRUNC

AP_SVC_ERROR_NO_TRUNC

AP_SVC_ERROR_PURGING

AP_SVC_ERROR_TRUNC

AP_TP_BUSY
AP_CONVERSATION_TYPE_MIXED
AP_UNEXPECTED_SYSTEM_ERROR
AP_DUPLEX_TYPE_MIXED
AP_CANCELLED

Note: For performance reasons, the SNA API client can return a successful return
code on the [MC_]SEND_DATA verb without forwarding it to the server.
When a subsequent [MC_]RECEIVE_IMMEDIATE verb is issued, the
[MC_]SEND_DATA is forwarded to the server for processing. If there is a
[MC_]SEND_DATA error return code, it is returned on the
[MC_]RECEIVE_IMMEDIATE verb. See “[MC_]SEND_DATA” on page 136
for a list of error return codes.

[MC_]RECEIVE_IMMEDIATE

128 Client/Server Communications Programming

[MC_]REQUEST_TO_SEND

The [MC_]REQUEST_TO_SEND verb notifies the partner transaction program
that the local transaction program wants to send data.

VCB Structure
typedef struct request_to_send
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
} REQUEST_TO_SEND;

typedef struct mc_request_to_send
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
} MC_REQUEST_TO_SEND;

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode

AP_B_REQUEST_TO_SEND

AP_M_REQUEST_TO_SEND

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For
nonblocking operation, this flag can be ORed together with
AP_NON_BLOCKING.

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

tp_id Identifier for the local transaction program.

The value of this parameter was returned by the TP_STARTED verb in the
invoking transaction program or by RECEIVE_ALLOCATE in the invoked
transaction program.

conv_id
Conversation identifier.

The value of this parameter was returned by the [MC_]ALLOCATE verb
in the invoking transaction program or by RECEIVE_ALLOCATE in the
invoked transaction program.

[MC_]REQUEST_TO_SEND

Chapter 8. APPC Verbs 129

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameter:

primary_rc
AP_OK

If the verb is nonblocking and has not completed, Personal Communications
returns the following parameters:

primary_rc
AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If [MC_]REQUEST_TO_SEND is issued in nonblocking mode (see “Queue-Level
Nonblocking” on page 39), and the conversation ends while processing a verb on
the send/receive queue, Personal Communications returns the following
parameter:

primary_rc
AP_CONVERSATION_ENDED

The application should not issue any more verbs for this conversation.

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_CONV_ID

AP_BAD_TP_ID
AP_R_T_S_INVALID_FOR_FDX

If the conversation is in the wrong state when the transaction program issues this
verb, Personal Communications returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_R_T_S_BAD_STATE

The conditions generating the following possible primary return codes
(primary_rc) are described in Appendix A, “APPC Common Return Codes,” on
page 323.

AP_TP_BUSY
AP_CONVERSATION_TYPE_MIXED
AP_UNEXPECTED_SYSTEM_ERROR
AP_CANCELLED

[MC_]REQUEST_TO_SEND

130 Client/Server Communications Programming

[MC_]SEND_CONVERSATION

The [MC_]SEND_CONVERSATION verb allocates a conversation to a session
between the local LU and partner LU (causing a transaction program on the
partner LU to start), sends a single data record on this conversation, then
deallocates the conversation without waiting for confirmation. It is equivalent to an
[MC_]ALLOCATE, [MC_]SEND_DATA, [MC_]DEALLOCATE (FLUSH) sequence
of verbs (commonly termed a single one-way bracket).

VCB Structure
typedef struct send_conversation
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned char reserv3[8]; /* reserved */
unsigned char rtn_ctl; /* return control */
unsigned char reserv4; /* reserved */
unsigned long conv_group_id; /* conversation group identifier */
unsigned long sense_data; /* sense data */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char mode_name[8]; /* mode name */
unsigned char tp_name[64]; /* TP name */
unsigned char security; /* security */
unsigned char reserv5[11]; /* reserved */
unsigned char pwd[10]; /* security password */
unsigned char user_id[10]; /* security user_id */
unsigned short pip_dlen; /* PIP data length */
unsigned char *pip_dptr; /* pointer to PIP data */
unsigned char reserv5a; /* reserved */
unsigned char fqplu_name[17]; /* fully qualified partner LU */

/* name */
unsigned char reserv6[8]; /* reserved */
unsigned short dlen; /* data length */
unsigned char *dptr; /* pointer to data buffer */
} SEND_CONVERSATION;

typedef struct mc_send_conversation
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned char reserv3[8]; /* reserved */
unsigned char rtn_ctl; /* return control */
unsigned char reserv4; /* reserved */
unsigned long conv_group_id; /* conversation group identifier */
unsigned long sense_data; /* sense data */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char mode_name[8]; /* mode name */
unsigned char tp_name[64]; /* TP name */
unsigned char security; /* security */
unsigned char reserv6[11]; /* reserved */
unsigned char pwd[10]; /* security password */
unsigned char user_id[10]; /* security user_id */
unsigned short pip_dlen; /* PIP data length */
unsigned char *pip_dptr; /* pointer to PIP data */
unsigned char reserv6a; /* reserved */
unsigned char fqplu_name[17]; /* fully qualified partner LU */

[MC_]SEND_CONVERSATION

Chapter 8. APPC Verbs 131

/* name */
unsigned char reserv7[8]; /* reserved */
unsigned short dlen; /* data length */
unsigned char *dptr; /* pointer to data buffer */
} MC_SEND_CONVERSATION;

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode

AP_B_SEND_CONVERSATION

AP_M_SEND_CONVERSATION

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For
nonblocking operation, this flag can be ORed together with
AP_NON_BLOCKING.

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

tp_id Identifier for the local transaction program.

The value of this parameter was returned by the TP_STARTED verb for an
invoking transaction program, or by the RECEIVE_ALLOCATE verb for
an invoked transaction program.

rtn_ctl Specifies when the local LU acting on a session request from the local
transaction processor is to return control to the local transaction program.

AP_IMMEDIATE
AP_WHEN_SESSION_ALLOCATED
AP_WHEN_SESSION_FREE
AP_WHEN_CONV_GROUP_ALLOC
AP_WHEN_CONWINNER_ALLOC
AP_WHEN_CONLOSER_ALLOC

conv_group_id
The conversation group identifier for the session to be allocated. This
parameter is only supplied if rtn_ctl is set to
AP_WHEN_CONV_GROUP_ALLOC.

plu_alias
Alias by which the partner LU is known to the local transaction program.
This is an 8-byte string in a locally displayable character set. All 8 bytes are
significant and must be set. This name must match the name of a partner
LU established during configuration.

If this field is set to all zeros, Personal Communications uses the
fqplu_name field to specify the required partner LU.

mode_name
Name of a set of networking characteristics defined during configuration.
This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

tp_name
Name of the invoked transaction program. Personal Communications does

[MC_]SEND_CONVERSATION

132 Client/Server Communications Programming

not check the character set of this field. The value of tp_name specified by
the ALLOCATE verb in the invoking transaction program must match the
value of tp_name specified by the RECEIVE_ALLOCATE verb in the
invoked transaction program.

security
Specifies the information the partner LU requires in order to validate
access to the invoked transaction program.

AP_NONE
AP_PGM
AP_SAME
AP_PGM_STRONG

pwd Password associated with user_id. This is a 10-byte type-AE EBCDIC
character string, padded to the right with EBCDIC spaces. This is required
if Security=Program (AP_PGM or AP_PGM_STRONG); otherwise, it is
optional.

user_id
User ID required to access the partner transaction program. This is a
10-byte type-AE EBCDIC character string, padded to the right with
EBCDIC spaces. This is required if Security=Program (AP_PGM or
AP_PGM_STRONG); otherwise, it is optional.

pip_dlen
Length of the program initialization parameters (PIP) to be passed to the
partner transaction program.

Range: 0–32767

pip_dptr
Address of buffer containing PIP data. Use this parameter only if pip_dlen
is greater than zero.

fqplu_name
The fully qualified LU name for the partner LU. This name is 17 bytes long
and is right-padded with EBCDIC blanks. It is composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot. (Each name can
have a maximum length of 8 bytes with no embedded blanks. If the
network ID is not present, then omit the dot.) This field is only significant
if the plu_alias field is set to all zeros.

dlen Number of bytes of data to send.

Range: 0–65535

dptr Address of the buffer containing the data to send. The application can
append data to the end of the VCB, in which case dptr must be set to
NULL.

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameters:

primary_rc
AP_OK

conv_group_id
The conversation group identifier of the session allocated to the
conversation.

[MC_]SEND_CONVERSATION

Chapter 8. APPC Verbs 133

If the verb is nonblocking and has not completed, Personal Communications
returns the following parameter:

primary_rc
AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the rtn_ctl parameter was set to AP_IMMEDIATE, and no session is available
immediately, Personal Communications returns the following parameters:

primary_rc
AP_UNSUCCESSFUL

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_BAD_TP_ID

AP_BAD_LL

AP_BAD_RETURN_CONTROL
AP_BAD_SECURITY
AP_PIP_LEN_INCORRECT

AP_NO_USE_OF_SNASVCMG

AP_UNKNOWN_PARTNER_MODE

The conditions generating the following possible primary return codes
(primary_rc) and indented secondary return codes (secondary_rc) are described in
Appendix A, “APPC Common Return Codes,” on page 323.

AP_UNSUCCESSFUL

AP_ALLOCATION_ERROR
AP_ALLOCATION_FAILURE_NO_RETRY
AP_ALLOCATION_FAILURE_RETRY

AP_SEC_REQUESTED_NOT_SUPPORTED

AP_TP_BUSY

AP_CONVERSATION_TYPE_MIXED

AP_UNEXPECTED_SYSTEM_ERROR
AP_CANCELLED

[MC_]SEND_CONVERSATION

134 Client/Server Communications Programming

If the primary_rc is set to AP_ALLOCATION_ERROR, the sense_data field carries
more information on the failure.

[MC_]SEND_CONVERSATION

Chapter 8. APPC Verbs 135

[MC_]SEND_DATA

The [MC_]SEND_DATA verb puts data in the local LU's send buffer for
transmission to the partner transaction program.

VCB Structure
typedef struct send_data
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char rts_rcvd; /* request to send received */
unsigned char expd_data_rcvd; /* expedited data received */
unsigned short dlen; /* data length */
unsigned char *dptr; /* pointer to data */
unsigned char type; /* send data type */
unsigned char reserv4; /* reserved */
} SEND_DATA;

typedef struct mc_send_data
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char rts_rcvd; /* request to send received */
#ifdef WINAPPC_FORMAT_1
unsigned char expd_data_rcvd; /* expedited data received */
#else
unsigned char data_type; /* data type received */
#endif
unsigned short dlen; /* data length */
unsigned char *dptr; /* pointer to data */
unsigned char type; /* send data type */
#ifdef WINAPPC_FORMAT_1
unsigned char data_type; /* data type received */
#else
unsigned char reserv4; /* reserved */
#endif
} MC_SEND_DATA;

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode

AP_B_SEND_DATA

AP_M_SEND_DATA

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For
nonblocking operation, this flag can be ORed together with
AP_NON_BLOCKING.

[MC_]SEND_DATA

136 Client/Server Communications Programming

On full-duplex conversations, this flag must be ORed together with
AP_FULL_DUPLEX_CONVERSATION.

format
Format of the VCB. Set this to one to get the format listed above.

tp_id Identifier for the local transaction program.

The value of this parameter was returned by the TP_STARTED verb in the
invoking transaction program or by RECEIVE_ALLOCATE in the invoked
transaction program.

conv_id
Conversation identifier.

The value of this parameter was returned by the [MC_]ALLOCATE verb
in the invoking transaction program or by RECEIVE_ALLOCATE in the
invoked transaction program.

dlen Number of bytes of data to be put in the local LU's send buffer.

Range: 0–65535

dptr Address of the buffer containing the data to be put in the local LU's send
buffer. The application can append data to the end of the VCB, in which
case dptr must be set to NULL.

type Specifies whether to perform the function of another verb in addition to
SEND_DATA.

AP_NONE
AP_SEND_DATA_CONFIRM
AP_SEND_DATA_FLUSH
AP_SEND_DATA_P_TO_R_FLUSH
AP_SEND_DATA_P_TO_R_SYNC_LEVEL
AP_SEND_DATA_P_TO_R_CONFIRM
AP_SEND_DATA_DEALLOC_FLUSH
AP_SEND_DATA_DEALLOC_SYNC_LEVE
AP_SEND_DATA_DEALLOC_CONFIRM
AP_SEND_DATA_DEALLOC_ABEND

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameters:

Note: For performance reasons, the SNA API client can return a successful return
code on the [MC_]SEND_DATA verb without forwarding it to the server.
When a subsequent [MC_]SEND_DATA verb is issued, the
[MC_]SEND_DATA is forwarded to the server for processing.

If there is a SEND_DATA error return code, it is returned on the subsequent
verb.

primary_rc
AP_OK

rts_rcvd
Request-to-send-received indicator.

AP_YES
AP_NO

[MC_]SEND_DATA

Chapter 8. APPC Verbs 137

expd_data_rcvd
Expedited-data-received indicator. This indication continues to be set to
AP_YES until a RECEIVE_EXPEDITED_DATA is issued.

AP_YES
AP_NO

If the verb does not execute due to a parameter error, Personal Communications
returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

opext AP_OPERATION_INCOMPLETE_FLAG

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_CONV_ID
AP_BAD_TP_ID

AP_BAD_LL

AP_SEND_DATA_INVALID_TYPE
AP_SEND_DATA_CONFIRM_SYNC_NONE
AP_SEND_TYPE_INVALID_FOR_FDX

If the conversation is in the wrong state when the transaction program issues this
verb, Personal Communications returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_SEND_DATA_NOT_SEND_STATE

AP_SEND_DATA_NOT_LL_BDY

The conditions generating the following possible primary return codes
(primary_rc) and indented secondary return codes (secondary_rc) are described in
Appendix A, “APPC Common Return Codes,” on page 323.

AP_ALLOCATION_ERROR
AP_SECURITY_NOT_VALID
AP_TRANS_PGM_NOT_AVAIL_RETRY
AP_TRANS_PGM_NOT_AVAIL_NO_RETRY
AP_TP_NAME_NOT_RECOGNIZED
AP_PIP_NOT_ALLOWED
AP_PIP_NOT_SPECIFIED_CORRECTLY
AP_CONVERSATION_TYPE_MISMATCH
AP_SYNC_LEVEL_NOT_SUPPORTED

AP_CONV_FAILURE_NO_RETRY
AP_CONV_FAILURE_RETRY

[MC_]SEND_DATA

138 Client/Server Communications Programming

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

AP_PROG_ERROR_PURGING

AP_SVC_ERROR_PURGING

AP_TP_BUSY
AP_CONVERSATION_TYPE_MIXED

AP_DUPLEX_TYPE_MIXED

AP_UNEXPECTED_SYSTEM_ERROR
AP_CANCELLED
AP_ERROR_INDICATION

AP_ALLOCATION_ERROR_PENDING
AP_DEALLOC_ABEND_PROG_PENDING
AP_DEALLOC_ABEND_SVC_PENDING
AP_DEALLOC_ABEND_TIMER_PENDING
AP_UNKNOWN_ERROR_TYPE_PENDING

[MC_]SEND_DATA

Chapter 8. APPC Verbs 139

[MC_]SEND_ERROR

The [MC_]SEND_ERROR verb notifies the partner transaction program that the
local transaction program has encountered an application-level error.

VCB Structure
typedef struct send_error
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char rts_rcvd; /* request to send received */
unsigned char err_type; /* error type */
unsigned char err_dir; /* error direction */
unsigned char expd_data_rcvd; /* expedited data received */
unsigned short log_dlen; /* log data length */
unsigned char *log_dptr; /* pointer to log data */
} SEND_ERROR;

typedef struct mc_send_error
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char rts_rcvd; /* request to send received */
unsigned char err_type; /* error type */
unsigned char err_dir; /* error direction */
unsigned char expd_data_rcvd; /* expedited data received */
unsigned char reserv5[2]; /* reserved */
unsigned char reserv6[4]; /* reserved */
} MC_SEND_ERROR;

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode

AP_B_SEND_ERROR

AP_M_SEND_ERROR

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For
nonblocking operation, this flag can be ORed together with
AP_NON_BLOCKING.

On full-duplex conversations, this flag must be ORed together with
AP_FULL_DUPLEX_CONVERSATION.

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

tp_id Identifier for the local transaction program.

[MC_]SEND_ERROR

140 Client/Server Communications Programming

The value of this parameter was returned by the TP_STARTED verb in the
invoking transaction program or by RECEIVE_ALLOCATE in the invoked
transaction program.

conv_id
Conversation identifier.

The value of this parameter was returned by the [MC_]ALLOCATE verb
in the invoking transaction program or by RECEIVE_ALLOCATE in the
invoked transaction program.

err_type

Indicates the type of the error being reported: application program or
service program.

AP_PROG
AP_SVC

err_dir
Indicates whether the error being reported is in the data received from the
partner transaction program, or in the data the local transaction program
was about to send.

This parameter is used only when the SEND_ERROR verb is being issued
in SEND_PENDING state.

AP_RCV_DIR_ERROR
AP_SEND_DIR_ERROR

log_dlen

Number of bytes of data to be sent to the error log file.

Range: 0–32767

The application can append data to the end of the VCB, in which case this
field will be greater than zero and log_dptr must be set to NULL. (A
length of zero indicates that there is no error log data.)

log_dptr

Address of data buffer containing error information. The application can
append data to the end of the VCB, in which case log_dptr must be set to
NULL.

This data is sent to the local error log and to the partner LU. This
parameter is used by the SEND_ERROR verb if log_dlen is greater than
zero.

The transaction program must format the error data as a General Data
Stream (GDS) error log variable. For further information, refer to IBM
Systems Network Architecture: LU 6.2 Reference: Peer Protocols.

[MC_]SEND_ERROR

Chapter 8. APPC Verbs 141

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameters:

primary_rc
AP_OK

rts_rcvd
Request-to-send-received indicator.

AP_YES
AP_NO

expd_data_rcvd
Expedited-data-received indicator. This indication continues to be set to
AP_YES until a RECEIVE_EXPEDITED_DATA is issued.

AP_YES
AP_NO

If the verb is nonblocking and has not completed, Personal Communications
returns the following parameters:

primary_rc
AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_CONV_ID
AP_BAD_ERROR_DIRECTION
AP_BAD_TP_ID

AP_SEND_ERROR_BAD_TYPE

AP_SEND_ERROR_LOG_LL_WRONG

If the conversation is in the wrong state when the transaction program issues this
verb, Personal Communications returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_SEND_ERROR_BAD_STATE

The conditions generating the following possible primary return codes
(primary_rc) and indented secondary return codes (secondary_rc) are described in
Appendix A, “APPC Common Return Codes,” on page 323.

Verb Issued in Any Permitted State
The following return codes can be generated when the [MC_]SEND_ERROR verb
is issued in any permitted state:

AP_CONV_FAILURE_NO_RETRY
AP_CONV_FAILURE_RETRY

[MC_]SEND_ERROR

142 Client/Server Communications Programming

AP_TP_BUSY
AP_CONVERSATION_TYPE_MIXED
AP_DUPLEX_TYPE_MIXED
AP_UNEXPECTED_SYSTEM_ERROR
AP_CANCELLED
AP_ERROR_INDICATION

AP_ALLOCATION_ERROR_PENDING
AP_DEALLOC_ABEND_PROG_PENDING
AP_DEALLOC_ABEND_SVC_PENDING
AP_DEALLOC_ABEND_TIMER_PENDING
AP_UNKNOWN_ERROR_TYPE_PENDING

Verb Issued in SEND State: The following return codes can be generated only if
the [MC_]SEND_ERROR verb is issued in SEND state:

AP_ALLOCATION_ERROR
AP_SECURITY_NOT_VALID
AP_TRANS_PGM_NOT_AVAIL_RETRY
AP_TRANS_PGM_NOT_AVAIL_NO_RTRY
AP_TP_NAME_NOT_RECOGNIZED
AP_PIP_NOT_ALLOWED
AP_PIP_NOT_SPECIFIED_CORRECTLY
AP_CONVERSATION_TYPE_MISMATCH
AP_SYNC_LEVEL_NOT_SUPPORTED

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER
AP_PROG_ERROR_PURGING

AP_SVC_ERROR_PURGING

Verb Issued in RECEIVE State: The following return code can be generated only
if the verb is issued in RECEIVE state:

AP_DEALLOC_NORMAL

Note: For performance reasons, the SNA API client can return a successful return
code on the [MC_]SEND_DATA verb without forwarding it to the server.
When a subsequent [MC_]SEND_ERROR verb is issued, the
[MC_]SEND_DATA is forwarded to the server for processing.

If there is a [MC_]SEND_DATA error return code, it is returned on the
[MC_]SEND_ERROR verb. See “[MC_]SEND_DATA” on page 136 for a list
of error return codes.

[MC_]SEND_ERROR

Chapter 8. APPC Verbs 143

[MC_]SEND_EXPEDITED_DATA

The [MC_]SEND_EXPEDITED_DATA verb puts data in the local LU's expedited
send buffer for transmission to the partner transaction program. This data can
arrive at the partner transaction program before non-expedited data that was sent
earlier.

VCB Structure
typedef struct send_expedited_data
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char rts_rcvd; /* request to send received */
unsigned char expd_data_rcvd; /* expedited data received */
unsigned short dlen; /* data length */
unsigned char *dptr; /* pointer to data */
unsigned char reserve4[2]; /* TP identifier */
} SEND_EXPEDITED_DATA;

typedef struct mc_send_expedited_data
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char rts_rcvd; /* request to send received */
unsigned char expd_data_rcvd; /* expedited data received */

/* transaction plan */
/* data */

unsigned short dlen; /* actual length of received */
/* data */

unsigned char *dptr; /* pointer to data buffer */
unsigned char reserv4[2]; /* reserved */
} MC_SEND_EXPEDITED_DATA

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode

AP_B_SEND_EXPEDITED_DATA

AP_M_SEND_EXPEDITED_DATA

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For
nonblocking operation, this flag can be ORed together with
AP_NON_BLOCKING.

On full-duplex conversations, this flag must be ORed together with
AP_FULL_DUPLEX_CONVERSATION.

[MC_]SEND_EXPEDITED_DATA

144 Client/Server Communications Programming

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

tp_id Identifier for the local transaction program.

The value of this parameter was returned by the TP_STARTED verb in the
invoking transaction program or by RECEIVE_ALLOCATE in the invoked
transaction program.

conv_id
Conversation identifier.

The value of this parameter was returned by the [MC_]ALLOCATE verb
in the invoking transaction program or by RECEIVE_ALLOCATE in the
invoked transaction program.

dlen Number of bytes of data to be put in the local LU's send buffer.

Range: 1–86

dptr Address of data buffer containing error information. The application can
append data to the end of the VCB, in which case dptr must be set to
NULL.

Note that the data is unformatted—no 2-byte length field (LL) is present.

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameters:

primary_rc
AP_OK

rts_rcvd
Request-to-send-received indicator.

AP_YES
AP_NO

expd_data_rcvd
Expedited-data-received indicator. This indication continues to be set to
AP_YES until a RECEIVE_EXPEDITED_DATA is issued.

AP_YES
AP_NO

If the verb is nonblocking and has not completed, Personal Communications
returns the following parameters:

primary_rc
AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the verb does not execute because the remote LU does not support expedited
data, Personal Communications returns the following parameter:

primary_rc
AP_EXPD_NOT_SUPPORTED_BY_LU

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

[MC_]SEND_EXPEDITED_DATA

Chapter 8. APPC Verbs 145

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_CONV_ID
AP_BAD_TP_ID
AP_SEND_EXPD_INVALID_LENGTH

AP_RCV_EXPD_INVALID_LENGTH

If the conversation is in the wrong state when the transaction program issues this
verb, Personal Communications returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_EXPD_DATA_BAD_CONV_STATE

The conditions generating the following possible primary return codes
(primary_rc) and indented secondary return codes (secondary_rc) are described in
Appendix A, “APPC Common Return Codes,” on page 323.

AP_ALLOCATION_ERROR
AP_SECURITY_NOT_VALID
AP_TRANS_PGM_NOT_AVAIL_RETRY
AP_TRANS_PGM_NOT_AVAIL_NO_RTRY
AP_TP_NAME_NOT_RECOGNIZED
AP_PIP_NOT_ALLOWED
AP_PIP_NOT_SPECIFIED_CORRECTLY
AP_CONVERSATION_TYPE_MISMATCH
AP_SYNC_LEVEL_NOT_SUPPORTED

AP_CONV_FAILURE_NO_RETRY
AP_CONV_FAILURE_RETRY
AP_DEALLOC_ABEND_PROG
AP_DEALLOC_ABEND_SVC
AP_DEALLOC_ABEND_TIMER
AP_TP_BUSY
AP_CONVERSATION_TYPE_MIXED
AP_DUPLEX_TYPE_MIXED
AP_UNEXPECTED_SYSTEM_ERROR
AP_CANCELLED

[MC_]SEND_EXPEDITED_DATA

146 Client/Server Communications Programming

[MC_]TEST_RTS

The [MC_]TEST_RTS verb determines whether a request-to-send notification has
been received from the partner transaction program.

VCB Structure
typedef struct test_rts
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char reserv3; /* reserved */
} TEST_RTS;

typedef struct mc_test_rts
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char reserv3; /* reserved */
} MC_TEST_RTS;

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode

AP_B_TEST_RTS

AP_M_TEST_RTS

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

tp_id Identifier for the local transaction program. The value of this parameter
was returned by the TP_STARTED verb in the invoking transaction
program or by RECEIVE_ALLOCATE in the invoked transaction program.

conv_id
Conversation identifier.

The value of this parameter was returned by the [MC_]ALLOCATE verb
in the invoking transaction program or by RECEIVE_ALLOCATE in the
invoked transaction program.

Returned Parameters
If the verb executes successfully, Personal Communications returns the following
parameter:

[MC_]TEST_RTS

Chapter 8. APPC Verbs 147

primary_rc
Indicates whether a request-to-send notification has been received from the
partner transaction program.

AP_OK
AP_UNSUCCESSFUL

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_CONV_ID

AP_BAD_TP_ID
AP_TEST_INVALID_FOR_FDX

The conditions generating the following possible primary return codes
(primary_rc) are described in Appendix A, “APPC Common Return Codes,” on
page 323.

AP_TP_BUSY
AP_CONVERSATION_TYPE_MIXED
AP_UNEXPECTED_SYSTEM_ERROR

[MC_]TEST_RTS

148 Client/Server Communications Programming

[MC_]TEST_RTS_AND_POST

The [MC_]TEST_RTS_AND_POST verb asynchronously determines whether a
request-to-send notification has been received from the partner transaction
program. A transaction program can issue a [MC_]TEST_RTS_AND_POST at any
time, even when there is another verb outstanding on the conversation.
[MC_]TEST_RTS_AND_POST returns when a request-to-send notification is
received, or when the conversation ends, or when a conversation failure is
detected.

This verb can only be issued through the APPC entry point.

VCB Structure
typedef struct test_rts_and_post
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char reserv3; /* reserved */
unsigned long sema; /* post handle for verb */
} TEST_RTS_AND_POST;

typedef struct mc_test_rts_and_post
{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned long conv_id; /* conversation identifier */
unsigned char reserv3; /* reserved */
unsigned long sema; /* post handle for verb */
} MC_TEST_RTS_AND_POST;

Supplied Parameters
The transaction program supplies the following parameters to Personal
Communications:

opcode

AP_B_TEST_RTS_AND_POST

AP_M_TEST_RTS_AND_POST

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

tp_id Identifier for the local transaction program.

The value of this parameter was returned by the TP_STARTED verb in the
invoking transaction program or by RECEIVE_ALLOCATE in the invoked
transaction program.

[MC_]TEST_RTS_AND_POST

Chapter 8. APPC Verbs 149

conv_id
Conversation identifier.

The value of this parameter was returned by the [MC_]ALLOCATE verb
in the invoking transaction program or by RECEIVE_ALLOCATE in the
invoked transaction program.

sema Handle of the event that the application will wait on. This verb is intended
for use with WaitForMultipleObjects in the Win32 API. For more
information about this function, see the programming documentation for
the Win32 API.

Returned Parameters
If the verb executes successfully (that is, a request-to-send notification is received),
Personal Communications return the following parameter:

primary_rc
AP_OK

If the verb returns because the conversation has ended or a conversation failure
has been detected, Personal Communications returns the following parameter:

primary_rc
AP_UNSUCCESSFUL

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_CONV_ID

AP_BAD_TP_ID
AP_TEST_INVALID_FOR_FDX

The conditions generating the following possible primary return codes
(primary_rc) are described in Appendix A, “APPC Common Return Codes,” on
page 323.

AP_CONVERSATION_TYPE_MIXED
AP_UNEXPECTED_SYSTEM_ERROR
AP_CANCELLED

[MC_]TEST_RTS_AND_POST

150 Client/Server Communications Programming

Part 2. LUA API

© Copyright IBM Corp. 1994, 2016 151

152 Client/Server Communications Programming

Chapter 9. Fundamental Concepts of the IBM Conventional LU
Application

This chapter describes the IBM conventional logical unit application (LUA) access
method and describes its relationship to Systems Network Architecture (SNA).

Note: Included in the chapters of Part 2 of this book is information on the LUA
API provided by the following systems:
v Communications Server running on Windows
v SNA API clients for Win32 platforms that are delivered with the

Communications Server product
v Personal Communications for Windows

When there are differences between the support provided by these systems,
it is noted.

Understanding LUA and SNA
The IBM LUA access method provides an application programming interface (API)
for secondary dependent logical units (LUs). LUA consists of system software and
interfaces that supply input/output (I/O) service routines to support
communications using LU types 0, 1, 2, and 3 SNA protocols. The RUI and SLI
interface of LUA is supported.

The Communications Server is designed to be binary compatible with Microsoft
NT SNA Server and similar to the implementation of Communications Server/2.

The services that LUA provides to application programs include only those that
support data communications; LUA does not provide any device emulation
facilities. However, LUA does provide a unique subset of presentation services
layer functions.

Communications Server must be installed and configured before an LUA
application program can run on the workstation. Refer to Quick Beginnings for
information about installing and configuring Communications Server.

Connection Capabilities
The main objective of any communications system is to connect with other
systems. The goal of SNA is to supply common protocols that give universal
connectivity. LUA communication and connectivity requirements include the
System/370 (S/370) connections.

LUA Application Programs
In this book, the term LUA application program means an application program, or a
portion of an application program, that uses LUA communications functions.
Application programs use these functions to communicate with application
programs on other systems that support LU types 0, 1, 2, or 3.

© Copyright IBM Corp. 1994, 2016 153

As a local LUA application program runs, it exchanges data with a remote host
application program. The local and remote application programs are called partner
application programs.

LUA Verbs
A verb is a formatted request that is processed by LUA. An application program
issues a verb to request that LUA take some action. LUA verbs are coded as
control blocks. Each verb control block has a precisely defined format. To use the
LUA facilities, an application program supplies verb control blocks to the LUA
API.

An LUA verb always returns immediately to its caller. If the return code is
IN_PROGRESS, the application needs to wait for completion of the verb, using the
posting method specified in the verb request. See Chapter 12, “RUI LUA Entry
Points,” on page 183 for a description of LUA verb postings.

Verb control block layouts are available in the INCLUDE directory. You can use the
verb control block layouts and sample programs to help you write LUA
application programs.

LUs, Local LUs, and Partner LUs
A logical unit (LU) manages the exchange of data between application programs.
Every LUA application program gains access to an SNA network through an LU,
which acts as an intermediary between the LUA application program and the SNA
network.

In LUA, there is a one-to-many relationship between LUA application program
processes and LUs. One LUA application program process can own multiple LUs
simultaneously, but a given LU can be owned by only one LUA application
program process simultaneously. Before a second application program process can
use an LU, the first application program must release the LU.

An LUA application program issues LUA verbs to its local LU. These verbs cause
commands and data to flow across the network to the partner LU.

Note: You need to define your local LU only once for each machine, as described
in Quick Beginnings.

System Services Control Point (SSCP)
The system services control point (SSCP) component in a host system is
responsible for starting host applications, for associating host applications with
dependent LUs, and for creating and terminating the connections between LUs.

SNA Layers
SNA is a hierarchical structure that consists of seven well-defined layers. Each
layer in the architecture performs a specific function. Understanding the layered
structure of SNA helps in understanding the various functions that LUA supplies.
The following descriptions of the five highest-level SNA layers show the
relationship between LUA and SNA.

154 Client/Server Communications Programming

Data Link Control Layer
The data link control (DLC) layer consists of the elements that provide an interface
to the hardware. The DLC elements supply support for various DLC protocols,
such as Synchronous Data Link Control (SDLC) and the IBM Token-Ring Network.
The DLC layer supplies a common link appearance to the elements in the path
control (PC) layer. The DLC layer is common to all Personal Communications LU
implementations, including LUA.

Path Control Layer
The path control (PC) layer of SNA in a peripheral node supplies basic functions,
such as routing to and from multiple half-sessions within its node. SNA permits
the PC layer to route to and from only one data link at a time. The PC layer is
common to all Personal Communications LU implementations, including LUA.

Transmission Control Layer
The transmission control (TC) layer of SNA supplies the connection-point-manager
function and the session-control function for each locally supported half-session.
The connection-point-manager function controls sequence-number checking,
pacing, and other support functions that relate to half-session data flows. The
session-control function supplies session-specific support for starting, pacing,
enciphering, deciphering, and other support functions that relate to session-related
data flows. LUA contains an implementation of the TC layer for LU types 0, 1, 2,
and 3 within Personal Communications.

Data Flow Control Layer
The data flow control (DFC) layer of SNA controls the flow of function
management data (FMD) requests and FMD responses between FMD pairs that are
in sessions and between sessions. The data flow control layer supplies various
functions, such as request/response formatting, data-chaining protocol,
request/response correlation, send- and receive-mode protocols, bracket protocol,
error-recovery protocol, stop-bracket-initiation protocol, and queued-response
protocol. LUA contains an implementation of the data flow control layer for LU
types 0, 1, 2, and 3 within Personal Communications.

Presentation Services Layer
The presentation services (PS) layer of SNA contains the function that presents the
communications data interface to the user. The presentation services layer is
defined in the architecture for all LU types except LU 0. LUA contains a unique
subset of the presentation services layer within Personal Communications. For
more information about the presentation services layer, refer to Systems Network
Architecture Concepts and Products.

The LU services functions are a part of the SNA-session message flow layers.
These functions supply support before session establishment, build session
structures, and take down session structures. LUA functions interface with
common Personal Communications and Communications Server support to define
LUs and to start and stop SNA sessions.

Chapter 9. Fundamental Concepts of the IBM Conventional LU Application 155

Using SNA Sessions
Before an LUA application program can communicate with a partner host
application program, the respective LUs must be connected in a mutual
relationship called a session. An SNA session is a logical connection that enables
two network addressable units (NAUs) to communicate with each other; an LU is
one kind of NAU. Because the session connects two LUs, it is called an LU-LU
session. LU-LU sessions enable end users to exchange data.

A session manages how data moves between a pair of LUs in an SNA network.
Therefore, sessions are concerned with such things as the quantity of data being
transmitted, data security, network routing, data loss, and traffic congestion.
Session characteristics are determined by the SNA BIND command originating
from the primary LU, when the secondary LU accepts the BIND command.

Prerequisites to an SNA Session
An LU-LU session consists of communication between a primary logical unit (PLU)
and a secondary logical unit (SLU). The SLU is implemented by the LUA
application program. Before data can be transferred between a PLU and an SLU on
an LU-LU session, the following events must occur:
1. Personal Communications and Communications Server activate the data link.
2. When the data link is ready, the system services control point (SSCP)

establishes a session between itself and a physical unit (SSCP-PU session) by
sending an Activate Physical Unit (ACTPU) command and reading a positive
response from either the Personal Communications or Communications Server
program. Then either program sends a positive response if the PU address from
the ACTPU command corresponds to the configuration information.

3. The SSCP establishes a session between itself and the logical unit (SSCP-LU
session) by sending an Activate Logical Unit (ACTLU) command and reading a
positive response from either the Personal Communications or Communications
Server program. Then either program sends a positive response if the LU
address from the ACTLU command corresponds to the configuration
information.

Starting Sessions
Either the SLU or the PLU can start an LU-LU session.

Starting an LU-LU Session from an SLU
After the SSCP-LU session is established, the SLU program can request an LU-LU
session by sending the Initiate Self (INITSELF) command to the SSCP. The SSCP
receives the INITSELF command and checks whether the named host application
program is valid. A host application program is valid if it is known and active. If
the host application program is valid, the SSCP sends a positive response to the
SLU, and the PLU starts the session. If the host application program is not valid,
the SSCP sends a negative response to the SLU, and the PLU does not start the
session.

If the SSCP sends a positive response to an INITSELF command but the session
cannot be established, the SSCP sends a Network Services Procedure Error (NSPE)
command to the SLU to stop the attempt to establish a session. The SLU can
reissue the INITSELF command after the NSPE command.

156 Client/Server Communications Programming

Starting an LU-LU Session from a PLU
The PLU program can start unsolicited LU-LU sessions. The PLU starts sessions by
generating a BIND command. A subsequent positive response establishes the
agreement to communicate. A data field that is associated with the BIND
command contains the name of the PLU application program and the session
BIND parameters. For more information about the format of this data field, refer
to Systems Network Architecture: Formats.

For nonnegotiable BINDs, the SLU returns a positive response if the parameters
are acceptable. If the parameters are unacceptable, the SLU returns a negative
response with sense data to the PLU.

The negotiable BIND command permits the SLU to return a positive response with
a minimum of 26 bytes of updated session parameters indicating compatibility
with the PLU parameters. If the PLU finds the returned parameters acceptable, it
sends a Start Data Traffic (SDT) command. If the returned parameters are
unacceptable, the PLU sends an UNBIND command that indicates unacceptable
negotiable BIND command parameters from the SLU.

Transferring Data on an LU-LU Session
After the LU-LU session is established and the SLU program responds to the SDT
command, data transfer can begin. For a data transmission operation, a message
moves from end-user storage to Personal Communications or Communications
Server storage until it is transmitted. For a data-reception operation, either
program would place a message in its own storage and then move the message
into end-user storage.

Quiesce protocols suspend the transfer of data in an LU-LU session. The PLU or
the SLU can send the following Quiesce protocol commands:
v Quiesce at End of Chain (QEC). This command requests that the receiver of this

command stop sending data after sending the last part in a data chain. A data
chain is a series of related messages. For more information about data chaining,
see “Using the Data-Chaining Protocol” on page 161.

v Quiesce Complete (QC). This command notifies a QEC command that data
transfer is suspended. When the SLU sends the QC command, either Personal
Communications or Communications Server prevents the SLU from sending any
normal-flow messages until the Release Quiesce (RELQ) command is received.

v Release Quiesce (RELQ). This command notifies the receiver that data can again
be transferred.

Stopping Sessions
When all data has been transferred and verified, the session can end. An SLU must
end one session before it can begin a different session with either the same or
another PLU.

Stopping an LU-LU Session by an SLU
An SLU can end an LU-LU session in either of two ways:
v By sending a Terminate-Self (TERMSELF) command or an UNBIND command.

Either command results in an immediate ending.
v By sending a Request Shutdown (RSHUTD) command. This command solicits

an UNBIND from the PLU.

To end a session immediately, the SLU sends the TERMSELF command to the
SSCP, which checks whether the named LUA application program is the one

Chapter 9. Fundamental Concepts of the IBM Conventional LU Application 157

participating in this session. If it is, the SSCP sends a positive, nondata response.
Depending on the host SNA version being used, the SSCP can send a CLEAR
command, which purges all messages from the LU-LU session, and can then send
an UNBIND command to end the session. Alternatively, the SLU can send an
UNBIND command to the PLU.

Stopping an LU-LU Session by a PLU
A PLU can end an LU-LU session in either of two ways:
v By sending a CLEAR command and then an UNBIND command, or an

UNBIND command only. Either method results in an immediate ending.
v By sending the Shutdown (SHUTD) command. This command results in an

orderly session termination. The SLU and PLU have a dialog that tells each to
stop sending data and that ensures that data already sent is received.

Ending the LU-LU session has no effect on the SSCP-LU session.

Stopping an SSCP-LU Session and an SSCP-PU Session
The SSCP-LU session ends when the host sends the Deactivate Logical Unit
(DACTLU) command to the SLU. When the last SSCP-LU session for Personal
Communications ends, the SSCP can end the SSCP-PU session by sending a
Deactivate Physical Unit (DACTPU) command.

Disconnecting the Host Link
When the host receives the response to the DACTPU command, it returns a
command to Personal Communications such as the Set Disconnect Response Mode
(SDRM) command when using SDLC protocol. The SSCP can also disconnect
immediately at any time by sending the same command to Personal
Communications, which ends all sessions. When sessions are ended in this manner,
all SLUs that were active earlier receive a loss-of-contact indication.

Message Numbers
All normal-flow messages that are transmitted between the SLU and the PLU
during an LU-LU session are numbered in sequence. The SLU maintains a
sequence number for normal-flow messages from the SLU to the PLU and another
sequence number for normal-flow messages from the PLU to the SLU. Each
normal-flow message gets a sequence number one greater than the sequence
number of the preceding normal-flow message. There is one pair of sequence
numbers for each session that is established between an SLU and a PLU.

For LU-LU expedited-flow messages and for all SSCP-LU and SSCP-PU messages,
unsequenced identifiers are used instead of sequence numbers.

When a session is reestablished or a CLEAR command is sent, the PLU and the
SLU set their sequence numbers to 0. The PLU can change the sequence numbers
with the Set and Test Sequence Numbers (STSN) command. This enables correct
sequence numbering when a session is recovered or restarted.

When the SLU encounters a sequence number error, it sends a negative response to
the PLU if a response was requested. When the SLU reads a response, the SLU
uses the response sequence number to correlate the response with the original
request. When the SLU writes a response, the SLU must supply the sequence
number of the original request.

158 Client/Server Communications Programming

Restarting and Resynchronizing a Session
If the PLU or the SLU encounters an unrecoverable error, such as a line failure,
you might need to resynchronize the LU-LU session after restarting it.
Resynchronizing the LU-LU session includes reprocessing recoverable messages
and (optionally) resetting the message sequence numbers. The application
programs can include routines to retransmit lost messages.

When a session is restarted and resynchronized, the PLU sends the BIND, the
STSN, and the SDT commands. When the STSN command is sent, a dialog can
occur to establish the sequence numbers that are acceptable to both the PLU and
the SLU. This dialog consists of a series of STSN messages and positive responses.

If the SLU determines that resynchronization is required, the SLU can send a
Request Recovery (RQR) command, a negative response, or an LU-Status
command (LUSTAT) with a description of the failure in the user sense bytes. If the
PLU discovers the failure or receives an RQR command from the SLU, the PLU
sends a CLEAR command to purge all LU-LU messages from the network, an
STSN command to establish new sequence numbers, and then an SDT command.

Using Protocols to Control Requests and Responses
Various protocols can control the sequencing rules for requests and responses. This
section describes some of the protocols used for managing the SNA network,
transferring data, and synchronizing the states of network components.

Using the Pacing Protocol
To avoid a message-flow rate that is too fast for Personal Communications or the
host, you can specify pacing in the BIND command. Pacing applies to the LU-LU
normal flow only. While pacing, Personal Communications permits a specified
number of messages to flow and waits for a response before permitting additional
messages to be sent. You can specify pacing on Personal Communications-to-host
flow, the host-to-Personal Communications flow, or both. Once the LU-LU session
starts, LUA handles all pacing with no participation by the application program.

Receive-Pacing Protocol
Receive-pacing protocol gives the PLU control over the number and the frequency
of messages sent from the SLU on an LU-LU session. When the SLU receives
pacing values in the BIND command, Personal Communications automatically
enforces pacing for each SLU that communicates with the host.

During a positive response to a negotiable BIND command, you can change the
pacing values to any number except 0. When the SLU sends the first message of a
sequence, Personal Communications set a bit in the request/response header (RH)
that indicates a pacing response is to be returned. If the pacing count is exhausted
before either program receives a pacing response from the PLU, neither program
can send additional data messages. If the application program issues a write
operation and no pacing response is received, Personal Communications defer the
write operation.

Send-Pacing Protocol
The SLU automatically controls the send-pacing protocol. If the pacing indicator is
set on in a message from the PLU to the SLU, the SLU issues a pacing response
when the application program reads the message. The message response can
contain the pacing indicator or, if no response is required for the received message,

Chapter 9. Fundamental Concepts of the IBM Conventional LU Application 159

the pacing response can be an isolated pacing response (IPR). The PLU can then
send another pacing window of messages.

Using the Half-Duplex Contention/Flip-Flop Protocol
The change-direction (CD) indicator is used with both of the following protocols:
v Half-duplex contention protocol, which is a normal-flow send/receive mode in

which either half-session can send normal-flow requests at the beginning of the
session or after sending or receiving the last request of a chain.

v Half-duplex flip-flop protocol, which is a normal-flow send/receive mode in
which one half-session sets the CD indicator in the response header (RH) on an
end-of-chain to enable the other half-session to begin sending.

A CD indicator tells the receiver that transmitting can begin.

For example, if the SLU initiates a transaction, the SLU begins by sending the
messages that completely describe the transaction. On the last message, the SLU
sets the CD indicator to tell the PLU that it can begin transmitting a reply. If the
PLU needs additional information to complete the transaction, it sends an inquiry
and sets the CD indicator. The dialog proceeds in this half-duplex mode until the
transaction is complete. During a half-duplex dialog, the SLU can use the SIG
command to tell the PLU to stop sending data and to change the direction of the
data flow.

Using the Bracket Protocol
Bracket protocol gives the SLU and the PLU context control of the data
transmission, indicating that a session concerns a single transaction. Bracket
protocol protects a current session from interruption by a concurrent transaction. A
bracket encompasses the duration of a transaction.

The first message in the bracket contains a begin-bracket (BB) indicator, and the
last message in the bracket contains an end-bracket (EB) indicator. A single
message can be a bracket if it contains both indicators.

For a bracket session, the BIND command specifies one LU as the first speaker,
and the other LU as the bidder. The first speaker can begin a bracket without
permission from the other LU. The bidder, however, must request and receive
permission from the first speaker to begin a bracket.

A BID command is a normal-flow request that is issued by the bidder to request
permission to begin a bracket. A positive response to a BID command indicates
that the first speaker will not begin a bracket but will wait for the bidder to begin
a bracket. A negative response to a BID command indicates that the first speaker
denies permission for the bidder to begin a bracket. The first speaker can send a
Ready-to-Receive (RTR) command when permission is granted to start a bracket.

The first speaker indicates a negative response to a BID command with one of two
response codes:

Bracket-Bid-Reject-RTR-Forthcoming
Indicates that an RTR command for that BID command will be sent later
(granting permission to start a bracket). The bidder can wait for the RTR
command or send the BID command again.

160 Client/Server Communications Programming

Bracket-Bid-Reject-No-RTR-Forthcoming
Indicates that no RTR command for that BID command will be sent later.
The bidder must send the BID command again if the bidder still wants to
begin a bracket.

Instead of sending a BID command followed by a first-in-chain FMD with a BB
indicator, the bidder can attempt to initiate a bracket by sending a first-in-chain
FMD with a BB indicator. The first speaker can grant the attempt with a positive
response or it can refuse the attempt with a negative response that indicates either
of the negative response codes. However, if the bidder stops the chain that carries
the BB indicator by sending the CANCEL command, the bracket is not initiated,
regardless of the response. The RTR command can be issued by the first speaker
either to grant permission to the bidder to begin a bracket or to find out if the
bidder wants to begin a bracket.

A positive response to an RTR command indicates that the bidder will initiate the
next bracket. If the bidder does not want to initiate a bracket, the bidder issues a
negative response with the RTR-Not-Required sense code.

Using the Data-Chaining Protocol
Data chaining is an optional protocol for transmitting a group of related messages.
To send chained messages from the SLU, the SLU sets to 1 the begin-chain (BC)
indicator for the message to indicate the first message in a chain. For all messages
between the first and the last in the chain, the SLU sets the BC and the end-chain
(EC) indicators to 0. For the last message in the chain, the EC is set to 1 again.
When the SLU receives messages, it tests the chaining indicator to determine if the
messages are chained.

The data-chaining protocol comprises three types of chains, as follows:
v No-response chain. Each request in the chain is marked no response.
v Exception-response chain. Each request in the chain is marked exception response.
v Definite-response chain. The last request in the chain is marked definite response;

all other requests in the chain are marked exception response.

When sending a message chain to the PLU, the SLU can send a CANCEL
command if the SLU or the PLU finds a message error. If the SLU sends a
CANCEL command to the PLU, the PLU discards all messages in the chain that it
has received. If the PLU sends a negative response to any element of a chain, the
SLU ends the chain normally or sends a CANCEL command.

Data Exchange Control Methods
An SNA session is conducted under rules for orderly exchange of data.

Flow Protocols
At the transport level, data is exchanged through either a half-duplex (HDX)
protocol or a full-duplex (FDX) protocol.

When a half-duplex protocol is used, data flows in only one direction at a time,
with one LU sending only and the other receiving only. In a half-duplex flip-flop
protocol, both LUs recognize which LU has the right to send and which to receive.
At specified times the partner LUs agree to change the direction so that the
receiver can send and the sender can receive.

Chapter 9. Fundamental Concepts of the IBM Conventional LU Application 161

When a full-duplex protocol is used, data can flow in either direction at any time.
Both LUs can send and receive without constraint.

Response Modes
Each SNA message is either a request or a response. Every request from one LU
elicits a matching response from the partner LU. Because the response carries the
same transmission sequence number as the request, responses and requests can be
matched by their sequence numbers.

When your application has received a request whose RH specifies a mandatory
response, your application must generate and send a response message. The
response mode rule determines when the response must be sent.

Under immediate response mode, your application must send a response to a
request before it sends any request of its own. Under delayed response mode,
however, responses can be sent at any time after a request is received.

LUA Correlation Tables
LUA keeps track of the sequence numbers of incoming and outgoing requests until
they receive responses, until the application issues a response to an incoming
request, or until the PLU responds to an outgoing request. These numbers are
recorded in Personal Communications and Communications Server areas called
correlation tables.

Under immediate response mode, only a few outstanding requests can be
generated in a session, typically one at most. Under delayed response mode, the
number can be larger.

The LUA correlation tables are managed dynamically. LUA can record any number
of responses. If a very large number of responses accumulate (probably due to a
program logic error), the server runs low on memory and Personal
Communications might shut down.

Exception Response Requests (RQEs)
In most cases, LUA can correlate requests and responses automatically, without any
help from your program. LUA observes the request and response RUs as they flow
in the session. LUA can tell when a request needs a response, and when the
response has been sent. However, there is one case in which LUA cannot tell if a
response will be sent, and your program must tell it.

Bit fields in the RH of a request specify whether a response is mandatory, not
wanted, or optional. When no response is wanted, LUA need not store the request
number in its correlation table. A mandatory response must be sent as the next
message on that flow. LUA enters the message in the correlation table, but it will
quickly be cleared because the response must come next.

The error response indicator (ERI) in the RH specifies that a response is optional,
required only if the receiving LU cannot accept or process the RU. This
optional-response RU is called an exception response request (abbreviated RQE).
LUA cannot always manage its correlation table automatically in the presence of
RQEs. Table 11 summarizes the instances in which LUA can clear a received RQE
automatically from its correlation table, and those in which LUA must wait for a
signal from the application before clearing a received RQE.

162 Client/Server Communications Programming

Table 11. Clearing of RQEs

Immediate
Response Mode Delayed Response Mode

Verbs HDX FDX HDX FDX

RUI_READ Automatic Automatic Application
response

Application
response

RUI_WRITE Automatic Application
response

Application
response

Application
response

In immediate response mode on either an HDX or FDX session, LUA can discard
the number of an RQE as soon as the application requests input (uses RUI_READ),
because, in immediate response mode, a response must be sent before another
request can be issued. Also, in immediate response mode on an HDX connection,
LUA can discard the number of an RQE as soon as the application requests output
(uses RUI_WRITE)—because the output will either be the RQE response, or no
response is going to be sent.

In all other instances, LUA cannot be sure whether a response to the RQE will be
produced. The application must format and send a positive response to an RQE,
not for the benefit of the PLU (which wants only negative responses) but to inform
LUA that the RQE was accepted and will not be generating a negative response.

LUA can then clear the RQE from its table. Because the response is a positive one
and the PLU wanted only negative ones, LUA does not transmit the application's
response on the network.

In short, simply to assist LUA, your application must treat received RQE RUs as if
they were definite-response RUs.

Session Profiles
The specific SNA protocols and conventions that can be used on a given session,
taken together, comprise the profile of the session. Two profiles, the transmission
services (TS) profile and the function management (FM) profile, can be bound to
the session. The choice of profiles is made at BIND time.

TS Profiles
Five TS profiles, numbered 1, 2, 3, 4, and 7 are defined by SNA. However, because
TS profile 1 is used only between the SSCP and the PU, only profiles 2, 3, 4, and 7
are applicable to an LUA application. They differ in the SNA commands that can
be issued, as shown in Table 12.

Table 12. TS Profile Characteristics

Profile Pacing Use CLEAR CRV RQR SDT STSN

2 Always Used Not used Not used Not used Not used

3 Always Used Optional Not used Used Not used

4 Always Used Optional Used Used Used

7 Optional Not used Optional Not used Not used Not used

Chapter 9. Fundamental Concepts of the IBM Conventional LU Application 163

FM Profiles
Eight FM profiles, numbered 0, 2, 3, 4, 6, 7, 18, and 19 are defined by SNA.
However, because profiles 0 and 6 are used only by the SSCP, and profile 19 is
used only with LU type 6.2, five profiles can be applicable to an LUA application.
Each profile differs in the SNA facilities that are restricted.

An approximate summary of the FM profiles is shown in Table 13. In the table, a
blank cell means that the SNA facility is not restricted in this profile—it can have
any use that can be specified in the BIND parameters.

The LUA RUI supports FM profiles 2, 3, 4, 7, and 18.

Table 13. FM Profile Characteristics

SNA Facility FMP 2 FMP 3 FMP 4 FMP 7 FMP 18

Request mode SLU uses delayed

Response mode SLU uses immediate Immediate Immediate Immediate Immediate

RU chains Single RU chains
only

Length-checked
compression

LU 0 only

FMH-1 session
control block (SCB)
compression

Not allowed

Data flow control
RUs allowed

None v CANCEL
v SIGNAL
v LUSTAT (SLU

only)
v CHASE
v SHUTD
v SHUTC
v RSHUTD
v BID, RTR

v CANCEL
v SIGNAL
v LUSTAT
v QEC
v QC
v RELQ
v CHASE
v SHUTD
v SHUTC
v RSHUTD
v BID, RTR

v CANCEL
v SIGNAL
v LUSTAT
v RSHUTD

v CANCEL
v SIGNAL
v LUSTAT
v CHASE
v BIS, SBI
v BID, RTR

FM Headers Not allowed

Brackets Restricted use

Flow protocol FDX

Recovery By PLU only

Using RUI LUA Verbs
An application accesses LUA through LUA verbs. Each verb supplies parameters to
LUA, which performs the desired function and returns parameters to the
application.

Verb Summary
The following is a brief summary of the seven LUA verbs that an application can
use. (For a detailed explanation of each verb, see Chapter 13, “RUI Verbs.”)

RUI_BID
Enables the application to determine when information from the host is
available to be read.

164 Client/Server Communications Programming

RUI_INIT
Sets up the LU-SSCP session for an LUA application.

RUI_PURGE
Cancels an outstanding RUI_READ verb.

RUI_READ
Receives data or status information sent from the host to the LUA
application's LU, on either the LU-SSCP session or the LU-LU session.

RUI_TERM
Ends the LU-SSCP session for an LUA application. It also brings down the
LU-LU session if it is active.

RUI_WRITE
Sends data to the host on either the LU-SSCP session or the LU-LU session.

RUI Sessions
An RUI session consists of the ownership of an LU for a period of time
determined by the application, which can include establishing a session between
an SSCP and an LU (called an SSCP-LU session). An RUI session can also include
establishing one or more non-overlapped LU-LU sessions. If the SSCP-LU session
fails because of a loss-of-contact or another reset condition, the RUI session ends.
An RUI session begins with an RUI_INIT verb and ends normally with an
RUI_TERM verb.

Issuing RUI Verbs
Table 14 on page 166 shows the valid conditions under which an RUI application
program can issue verbs to the RUI API for a given LU. The entries in the leftmost
column represent incoming verbs. The entries in the first row represent verbs that
are in progress. If an entry in the table is OK, the combination of verbs represents
a valid condition. If an entry in the table is Error, the combination of verbs
represents an incorrect condition and an error code is returned to the LUA
application program.

Chapter 9. Fundamental Concepts of the IBM Conventional LU Application 165

Table 14. RUI Verb Conditions

In-Progress Commands

Incoming

Commands

No Current
Session

RUI_INIT RUI_TERM RUI_WRITE RUI_READ RUI_PURGE RUI_BID

RUI_INIT OK Error Error Error Error Error Error

RUI_TERM Error OK Error OK OK OK OK

RUI_WRITE Error Error Error OK

(See Note 1)

OK OK OK

RUI_READ Error Error Error OK OK

(See Note 2)

OK OK

RUI_PURGE Error Error Error OK OK Error OK

RUI_BID Error Error Error OK OK OK Error

Note:

1. The RUI permits a maximum of two active RUI_WRITE verbs per session at the same time. The active
RUI_WRITE verbs must be for different session flows. Four session flows are possible:
v SSCP-LU expedited
v SSCP-LU normal
v LU-LU expedited
v LU-LU normal

2. The RUI permits a maximum of four active RUI_READ verbs per session at the same time. The active
RUI_READ verbs must be for different session flows.

Asynchronous Verb Completion
Some LUA verbs complete quickly, after some local processing (for example the
RUI_PURGE verb); however, most verbs take some time to complete because they
require messages to be sent to and received from the host application. Because of
this, LUA is implemented as an asynchronous interface; control can be returned to
the application while a verb is still in progress, so the application is free to
continue with further processing (including issuing other LUA verbs).The way that
LUA returns control to the application is by way of an event handle in the verb.

If Personal Communications's verb response signal is delayed (for example,
because it needs to wait for information from the remote node), then the stub
should return the verb asynchronously. The API does this by setting the primary
return code to LUA_IN_PROGRESS, and the lua_flag2 to LUA_ASYNC. The
application can now either perform other processing, or wait for notification from
the API that the verb has completed. When the verb completes, the application is
notified by the setting of the primary return code in the VCB to its final value, and
leaving the lua_flag2 set to LUA_ASYNC.

Sample LUA Communication Sequence
The following is an example of an LUA communication sequence. It shows the
LUA verbs used to start a session, exchange data, and end the session, and the
SNA messages sent and received. The arrows indicate the direction in which SNA
messages flow.

The following abbreviations are used:
SSCP norm

LU-SSCP session, normal flow

166 Client/Server Communications Programming

LU norm
LU-LU session, normal flow

LU exp
LU-LU session, expedited flow

+rsp Positive response to the indicated message
BC Begin chain
MC Middle of chain
EC End chain
CD Change direction indicator set
RQD Definite response required

Verb issued by
LUA application

SNA message Flow direction
Application Host

RUI_INIT (ACTLU) <-----
(ACTLU +rsp) ----->

RUI_WRITE (SSCP norm) INITSELF ----->
RUI_READ (SSCP norm) INITSELF +rsp <-----
RUI_READ (LU exp) BIND <-----
RUI_WRITE (LU exp) BIND +rsp ----->
RUI_READ (LU exp) SDT <-----
RUI_WRITE (LU exp) SDT +rsp ----->
RUI_WRITE (LU norm) data, BC ----->
RUI_WRITE (LU norm) data, MC ----->
RUI_WRITE (LU norm) data, EC, CD, RQD ----->
RUI_READ (LU norm) data +rsp <-----
RUI_READ (LU norm) data, BC <-----
RUI_READ (LU norm) data, MC <-----
RUI_READ (LU norm) data, EC, RQD <-----
RUI_WRITE (LU norm) data +rsp ----->
RUI_READ (LU exp) UNBIND <-----
RUI_WRITE (LU exp) UNBIND +rsp ----->
RUI_TERM (NOTIFY) ----->

(NOTIFY +rsp) <-----

In this example, the application performs the following steps:
1. Issues the RUI_INIT verb to establish the LU-SSCP session. (The RUI_INIT

verb does not complete until Personal Communications programs have received
an ACTLU message from the host and sent a positive response; however, these
messages are handled by each program and not exposed to the LUA
application.)

2. Sends an INITSELF message to the SSCP to request a BIND, and reads the
response.

3. Reads a BIND message from the host, and writes the response. This establishes
the LU-LU session.

4. Reads an SDT message from the host, which indicates that initialization is
complete and data transfer can begin.

5. Sends a chain of data consisting of three RUs (the last indicates that a definite
response is required), and reads the response.

6. Reads a chain of data consisting of three RUs, and writes the response.
7. Reads an UNBIND message from the host, and writes the response. This

terminates the LU-LU session.

Chapter 9. Fundamental Concepts of the IBM Conventional LU Application 167

8. Issues the RUI_TERM verb to terminate the LU-SSCP session. (Personal
Communications programs send a NOTIFY message to the host and waits for a
positive response; however, these messages are handled by each program and
are not exposed to the LUA application.)

BIND Checking
During initialization of the LU-LU session, the host sends a BIND message to the
Personal Communications LUA application that contains information such as RU
sizes to be used by the LU-LU session. Personal Communications returns this
message to the LUA application on an RUI_READ verb. It is the responsibility of
the LUA application to check that the parameters specified on the BIND are
suitable. The application has the following options:
v Accept the BIND as it is, by issuing an RUI_WRITE verb containing an OK

response to the BIND. No data needs to be sent on the response.
v Try to negotiate one or more BIND parameters (this is only permitted if the

BIND is negotiable). To do this, the application issues an RUI_WRITE verb
containing an OK response, but including the modified BIND as data.

v Reject the BIND by issuing an RUI_WRITE verb containing a negative response,
using an appropriate SNA sense code as data.

See Chapter 13, “RUI Verbs,” on page 191, for more information on the
RUI_WRITE verb.

Note: Validation of the BIND parameters, and ensuring that all messages sent are
consistent with them, is the responsibility of the LUA application. However,
the following two restrictions apply:
v Personal Communications and Communications Server reject any

RUI_WRITE verb that specifies an RU length greater than the size
specified on the BIND.

v Personal Communications and Communications Server require the BIND
to specify that the secondary LU is the contention winner, and that error
recovery is the responsibility of the contention loser.

Negative Responses and SNA Sense Codes
SNA sense codes may be returned to an LUA application in the following cases:
v When the host sends a negative response to a request from the LUA application,

this includes an SNA sense code indicating the reason for the negative response.
This is reported to the application on a subsequent RUI_READ verb, as follows:
– The primary return code is LUA_OK.
– The Request/Response Indicator, Response Type Indicator, and Sense Data

Included Indicator are all set to 1, indicating a negative response which
includes sense data.

– The data returned by the RUI_READ verb is the SNA sense code.
v When Personal Communications receive incorrect data from the host, it

generally sends a negative response to the host and does not pass the incorrect
data to the LUA application. This is reported to the application on a subsequent
RUI_READ or RUI_BID verb, as follows:
– The primary return code is LUA_NEGATIVE_RSP.
– The secondary return code is the SNA sense code sent to the host.

v In some cases, Personal Communications detect that data supplied by the host is
not valid, but cannot determine the correct sense code to send. In this case, it

168 Client/Server Communications Programming

passes the incorrect data in an Exception Request (EXR) to the LUA application
on an RUI_READ verb in the following way:
– The Request/Response Indicator is set to zero, indicating a request.
– The Sense Data Included Indicator is set to one, indicating that sense data is

included (this indicator is normally used only for a response).
– The message data is replaced by a suggested SNA sense code.
The application must then send a negative response to the message; it may use
the sense code suggested by Personal Communications, or may alter it.

v Personal Communications and Communications Server may send a sense code
to the application to indicate that data supplied by the application was not valid.
This is reported to the application on the RUI_WRITE verb that supplied the
data, as follows:
– The primary return code is LUA_UNSUCCESSFUL.
– The secondary return code is the SNA sense code.

Distinguishing SNA Sense Codes from Other Secondary Return
Codes
For a secondary return code which is not a sense code, the first two bytes of this
value are always zero. For an SNA sense code, the first two bytes are non-zero; the
first byte gives the sense code category, and the second identifies a particular sense
code within that category. (The third and fourth bytes may contain additional
information, or may be zero.)

Information on SNA Sense Codes
If you need information on a returned sense code, refer to IBM Systems Network
Architecture: Formats. The sense codes are listed in numeric order by category.

Pacing
Pacing is handled by LUA; an LUA application does not need to control pacing,
and should never set the Pacing Indicator flag.

If pacing is being used on data sent from the LUA application to the host (this is
determined by the BIND), an RUI_WRITE verb may take some time to complete.
This is because Personal Communications must wait for a pacing response from
the host before it can send more data.

If an LUA application is used to transfer large quantities of data in one direction,
either to the host or from the host (for example, a file transfer application), then
the host configuration should specify that pacing is used in that direction; this is to
ensure that the node receiving the data is not flooded with data and does not run
out of data storage.

Segmentation
Segmentation of RUs is handled by LUA. LUA always passes complete RUs to the
application, and the application should pass complete RUs to LUA.

Courtesy Acknowledgments
Personal Communications and Communications Server keep a record of requests
received from the host in order to correlate any response sent by the application
with the appropriate request.When the application sends a response, the Personal
Communications programs correlate this with the data from the original request,
and can then free the storage associated with it.

Chapter 9. Fundamental Concepts of the IBM Conventional LU Application 169

If the host specifies exception response only (a negative response may be sent, but
a positive response should not be sent), Personal Communications must still keep a
record of the request in case the application subsequently sends a negative
response. If the application does not send a response, the storage associated with
this request cannot be freed.

Because of this, Personal Communications enable the LUA application to issue a
positive response to an exception-response-only request from the host (this is
known as a courtesy acknowledgment). The response is not sent to the host, but is
used by Personal Communications to clear the storage associated with the request.

Purging Data to End of Chain
When the host sends a chain of request units to an LUA application, the
application may wait until the last RU in the chain is received before sending a
response, or it may send a negative response to an RU which is not the last in the
chain. If a negative response is sent mid-chain, Personal Communications purge all
subsequent RUs from this chain, and do not send them to the application.

When Personal Communications receive the last RU in the chain, it indicates this
to the application by setting the primary return code of an RUI_READ or
RUI_BID verb to LUA_NEGATIVE_RSP with a zero secondary return code.

Note: The host may terminate the chain by sending a message such as CANCEL
while in mid-chain. In this case, the CANCEL message is returned to the
application on an RUI_READ verb, and the LUA_NEGATIVE_RSP return
code is not used.

Configuration
Each LU used by an LUA application must be configured using Personal
Communications NOF verbs or through the SNA Node Configuration program.
(Refer to System Management Programming for more information.) In addition, the
configuration may include LUA LU pools.A pool is a group of LUs with similar
characteristics, such that an application can use any free LU from the group. This
can be used to allocate LUs on a first-come, first-served basis when there are more
applications than LUs available, or to provide a choice of LUs on different links.

LUA LU Pool (Optional)
If required, you can configure more than one LUA LU for use by the application,
and group the LUs into a pool. This means that an application can specify the pool
rather than a specific LU when attempting to start a session, and will be assigned
the first available LU from the pool.

An LUA application indicates to Personal Communications that it wants to start a
session by issuing an RUI_INIT verb with an LU name. This name must match the
name of an LUA LU or LU pool that has previously been defined in System
Management Programming. Personal Communications and Communications Server
use this name as follows:
v If the name supplied is the name of an LU that is not in a pool, a session will be

assigned using that LU if it is available (that is, if it is not already in use by an
LUA application).

v If the name supplied is the name of an LU pool, or the name of a specific LU
within the pool that is already in use, then a session will be assigned using the
first available LU in the pool (if one is available).

170 Client/Server Communications Programming

Note: This may not be the LU whose name was specified on the RUI_INIT
verb.

SNA API Client Considerations
If your LUA application resides on a client workstation, an LUA session should
also be defined on the local workstation. This LUA session name can contain
multiple communication servers and LUA definitions, thus allowing the SNA client
code to roll over to new servers when connections become unavailable.

Chapter 9. Fundamental Concepts of the IBM Conventional LU Application 171

172 Client/Server Communications Programming

Chapter 10. Features of the RUI LUA Verbs

This chapter covers the following special cases and usage tips for the LUA verbs.
v Handling exception requests—requests from LUA for your program to issue a

negative response
v Minimizing LAN traffic through program design
v Dealing with indefinite suspensions of LUA verbs
v Recovering from session failure

Handling Exception Requests
Both the RUI and SLI monitor the state of several protocols and validate the
format of RUs. When the interface detects an improper RU coming from the
primary logical unit (PLU), it must issue a negative response. LUA notifies your
application of this detected error by formatting the incoming RU as an exception
request (EXR). An EXR is delivered to your program on either a bid verb
(RUI_BID or SLI_BID) or on an input verb (RUI_READ or SLI_RECEIVE). An
EXR is indicated by the following conditions in the request header (RH):
v lua_rh.rri set to 0 (RU is a request unit)
v lua_rh.sdi set to 1 (sense data included)

This is an abnormal combination of RH bits. Sense data is normally the contents of
a response RU, not a request RU. LUA uses this abnormal combination to alert
your program to the abnormal fact that the PLU has apparently made an error. A
4-byte sense code is part of the EXR; it specifies the error detected. In addition to
the sense data, LUA returns up to three bytes of the original RU.

Changing the Verb Record
Your application must format the EXR as a negative response and send it to the
PLU using either RUI_WRITE, depending on the API in use. To convert an EXR
input to a response output, make the following changes in the verb record:
v Set lua_rh.rri to 1 to show this is a response.
v Set lua_rh.ri to 1, indicating a negative response.
v Set the appropriate data-flow flag in lua_flag1 based on the values in lua_flag2.
v Set lua_message_type to LUA_MESSAGE_TYPE_0.
v Set lua_opcode to LUA_OPCODE_RUI_WRITE, depending on the API in use.
v Set lua_data_length to 4, the length of the sense data.
v Set lua_data_ptr to the address of the sense data, whose location depends on the

verb that detected the EXR-if the verb was RUI_BID, the sense data is in the
"peek buffer" in the verb record; if the verb was RUI_READ, the sense data is in
the input buffer.

v Set lua_max_length to 0.

Your program can now use the verb record and buffer for the EXR to initiate the
RUI_WRITE to send the negative response.

© Copyright IBM Corp. 1994, 2016 173

Handling Bracket Bid Reject
In all but one case, the sense code provided by LUA in an EXR is the only
appropriate one to return to the PLU. When bracketing is in use, however, and the
PLU asks to become speaker, your application has a choice of sense codes:
v LUA can reject a BID command from the PLU. To reject the BID, LUA formats

an EXR containing the sense code LUA_BB_REJECT_NO_RTR, stating that the
bracket bid is rejected and no RTR command will be issued later. The numeric
value of this sense code is 0x00001308L (in Intel, or byte-swapped, form, as you
would code it in a C program).

v Your application can accept the BID command if it supports bracketing and can
issue an RTR command later. To notify the PLU that its BID can now be
accepted, you can change the sense code to LUA_BB_REJECT_RTR (value
0x00001408L), the sense code that states an RTR will be forthcoming. At some
later time your application must format and send an RTR message.

Minimizing LAN Traffic
If your application must run on a client workstation, you can design it to minimize
the overhead of the LAN traffic by reducing the use of bid logic.

Reducing RUI_BID Usage
The verb RUI_BID waits until a data unit is available at the server and then
completes. The completion of RUI_BID notifies your program that data is ready, on
a particular flow, and has a particular length. Your program can then allocate a
buffer and issue an RUI_READ verb for the data.

When you issue a bid verb followed by an input verb, the following four LAN
messages are generated:
v A message to initiate the RUI_BID
v A message to notify the workstation the bid is complete
v A message to initiate the RUI_READ
v A message returning data to the workstation

However, RUI_READ can do the same job in one step. If you simply initiate the
RUI_READ verb and wait for it to complete, two LAN messages are eliminated.

The only benefit of bid logic is that you find out the size of a message before you
receive it. This allows you to defer allocating a data buffer until you know how
large a buffer you need. When you use only input verbs, you must know the
maximum buffer size in advance, rather than allocating a buffer after the bid
completes.

Dealing with Suspensions
The completion of an RUI verb depends on the actions of the PLU application, the
host system, the network, and Personal Communications. If any one of these
responds slowly or fails to respond, a verb can be suspended indefinitely. When
designing your program, you can anticipate suspensions by giving the user or the
program a way of terminating suspended verbs.

174 Client/Server Communications Programming

Canceling RUI_INIT
The RUI_INIT verb suspends until the host activates the assigned LU. Normally
the host will have sent an ACTLU command before the application starts up, but it
is not required to do so. When the application starts up, the mainframe might be
down or still initializing.

If your program needs to cancel a suspended RUI_INIT, it can issue an RUI_TERM
verb.

Canceling RUI_WRITE
When pacing is in use, output can be suspended. If the host temporarily stops
reading data or fails to transmit a pacing response, RUI_WRITE can be suspended
waiting for the pacing window to open.

If your program needs to cancel a suspended RUI_WRITE, it must close the
session with RUI_TERM.

Canceling RUI_READ
An input verb is normally suspended until input arrives on the flow that the verb
specified. Your program can cancel a pending RUI_READ using RUI_PURGE.
Closing the session also cancels pending input verbs.

Compressing Data
Data compression is supported for both the RUI and SLI API interfaces. The use of
data compression is negotiated per session by the BIND and BIND response. If
compression is negotiated for use on the session, then LZ9 or run-length encoding
(RLE) compression algorithms are accepted inbound from the primary LU (PLU)
and RLE will be used for sending data to the PLU.

For both the RUI and SLI APIs, data compression can be handled by either of the
following:
v The application compresses and decompresses data
v Communications Server compresses and decompresses data with the host, but

delivers and accepts uncompressed data to and from the application.

Rules for Negotiating Data Compression Per Session
Following are rules for negotiating data compression for both RUI and SLI APIs
per session.

RUI Rules
1. To allow the RUI application to handle the compression and decompression of

data:
v The RUI application receives the BIND request that has bits 6 and 7 of Byte

25 set to indicate compression is offered or requested.
v The RUI application should return the positive BIND response with bits 6

and 7 of Byte 25 set to indicate "offered or mandated compression accepted".
2. To allow Communications Server to handle compression on behalf of the RUI

application:
v Use the Communications Server SNA Node Configuration utility to indicate

that the node supports compression by doing the following:
– Select Configure Node

Chapter 10. Features of the RUI LUA Verbs 175

– Select Advanced
– Set maximum compression level supported by node to RLE

v The RUI application receives the BIND response with bits 6 and 7 of Byte 25
set to indicate compression is offered or requested.

v The RUI application returns the positive BIND response with bits 6 and 7 of
Byte 25 set to indicate "no compression". Communications Server intercepts
and modifies the BIND response, then compresses and decompresses the
data to the host.

SLI Rules
1. To allow the SLI application to handle the compression and decompression of

data:
v The SLI application must supply a BIND Callback routine when it issues the

SLI_OPEN verb.
v When the SLI application's BIND callback routine is started, SLI receives the

BIND request that has bits 6 and 7 of Byte 25 set to indicate compression is
offered or requested.

v The SLI application should return the BIND response with bits 6 and 7 of
Byte 25 set to indicate "offered or mandated compression accepted".

2. To allow Communications Server to handle compression on behalf of SLI:
v Use the Communications Server SNA Node Configuration utility to indicate

that the node supports compression by doing the following:
– Select Configure Node
– Select Advanced
– Set maximum compression level supported by node to RLE

v If the application did not supply a BIND callback routine on the SLI_OPEN
verb, SLI will by default set the BIND response to indicate that
Communications Server will compress and decompress the data for SLI.

v If the application did supply a BIND callback routine:
– When the BIND callback routine is started, it receives the BIND request

that has bits 6 and 7 of Byte 25 set to indicate compression is offered or
requested.

– The SLI application returns the BIND response with bits 6 and 7 of Byte
25 set to indicate "no compression". Communications Server intercepts and
modifies the BIND response, and compresses and decompresses the data
to the host.

Recovering from Session Failure
There are two instances in which an LUA session has been closed due to an error:
v When an LUA verb completes with the primary return code

LUA_SESSION_FAILURE, or
v When an LUA verb, after RUI_INIT completes successfully, completes with the

primary return code LUA_STATE_CHECK and with the secondary return code
LUA_NO_RUI_SESSION.

The session can often be reconstructed. LUA will attempt recovery if your program
requests it.

When your program receives an LUA session closed due to an error, it should do
the following if it wants to recover:

176 Client/Server Communications Programming

v Avoid closing the session; the session is already closed.
v Reopen the session using the verb originally used to open the session

(RUI_INIT). If this verb completes with a nonzero primary return code, the
session cannot be restarted at this time.

v Notify the interactive user when recovery is underway, because the recovery
might take some time. The state of the user's work will depend on the design of
the PLU application.

Chapter 10. Features of the RUI LUA Verbs 177

178 Client/Server Communications Programming

Chapter 11. Implementing LUA Programs

This chapter describes some of the aspects of implementing and writing LUA
programs. It includes the following topics:
v Calling and sequencing LUA services
v Writing LUA programs
v Using the asynchronous completion and callback functions
v Compiling and linking on different platforms

The Communications Server implementation of LUA is designed to be binary
compatible with Microsoft SNA Server and similar to the implementation of the
RUI and SLI interface of OS/2 Communication Manager/2 Version 1.0.

Writing LUA Programs
The LUA contains one main DLL, for RUI verbs and for SLI verbs. An LUA
application program calls this DLL to issue verbs.

The LUA application program sets selected fields in a verb control block and calls
the RUI or SLI, passing a pointer to the verb control block. The fields in the verb
control block define the requested action to the LUA. The LUA modifies fields in
the verb control block to indicate the results of the action before the LUA returns
control to the application program. The application program can then use the
returned parameters from the verb control block in subsequent processing.

Table 15 and Table 16 show source module usage of supplied header files and
libraries needed to compile and link RUI and SLI programs.

Table 15. Header Files and Libraries for RUI APIs

Operating
System Header File Library DLL Name

WINNT WINLUA.H WINRUI32.LIB WINRUI32.DLL

Table 16. Header Files and Libraries for SLI APIs

Operating
System Header File Library DLL Name

WIN32 WINLUA.H WINSLI32.LIB WINSLI32.DLL

Note: SLI API is supported on the server and is not supported by the
Communications Server clients.

Calling LUA Services
Your program invokes LUA services by calling a designated entry point and
passing a single parameter — the address of a data structure called a verb record.
The record contains the input parameters for a particular function. LUA updates
the record with the output parameters resulting from the operation.

© Copyright IBM Corp. 1994, 2016 179

Understanding Verb Record Contents
Although structured differently, the three types of verb records all provide fields
for the following parameters:

Operation
A number specifying the particular operation to be done. Symbolic names
for operations are declared in the “_cons.h” include files.

Verb record length
The size of the verb record, which can vary from operation to operation,
and which LUA needs in order to process the record.

Session identifier
In communication and service verbs, a number to identify the session or
the name of the session.

Primary return code
A number returned by LUA to indicate general success or failure.

Secondary return code
A number returned by LUA on a failure to indicate the specific problem.

Correlator
A long integer that your application can use to relate the verb record to
other data, or to identify the verb record during an asynchronous
completion.

Post handle
The event handle to be posted when the verb completes asynchronously.

Most of these fields have the identical data type and are at the identical offset in
every verb record in which they appear. The operation code and verb-length fields
have different characteristics, however.

Multiple Processes
An LUA application program is restricted to a single process. However, a single
process can be comprised of multiple LUA application programs, each with its
own LUA LU.

Multiple Threads
A single LUA application program can use multiple threads to issue verbs. This
lets you issue multiple verbs simultaneously from a single LUA application
program. Different instances of the same LUA application program can start in
different threads, but each application program can use a different LUA LU.

Note: After an LUA application program issues a verb, it should not change any
part of the verb control block until the verb is complete. The RUI uses only
the application copy of the verb control block. See “LUA Verb Postings” for
additional information.

LUA Verb Postings
LUA verbs complete synchronously or asynchronously. Synchronous verb
completion means that when the RUI returns to the LUA application program after
a call to LUA, all processing for that verb is finished and the asynchronous posting
method is not used. Because of timing conditions, a verb can complete
asynchronously, but all processing is completed by the time LUA returns to the

180 Client/Server Communications Programming

LUA application program. Asynchronous verb completion means that LUA uses
the posting method to notify the application program when processing completes,
either successfully or unsuccessfully.

An LUA application program can be notified in one of the following ways when a
verb completes asynchronously:
v The LUA application program uses the lua_flag2_async and lua_prim_rc

parameters to determine the verb processing state.
v The application specifies an event in the lua_post_handle parameter. This is set

when the verb is complete.

Converting to EBCDIC from ASCII
Typically, all messages sent to the host are in EBCDIC, and the PLU assumes that
the messages are in EBCDIC. For example, a PLU name that appears in a BIND
should be an EBCDIC string. An LUA application program that stores strings in
ASCII should convert the strings to EBCDIC before the strings are sent in SNA
messages.

Whether an LUA application program needs to convert application data depends
on a private agreement between the partner application programs. If your LUA
application program communicates with a node that normally uses EBCDIC, you
should convert your ASCII data to EBCDIC where appropriate.

Conversion of ASCII to EBCDIC (or vice versa) can be done by the convert verbs
described in Chapter 17, “Common Services Verbs (CSV),” on page 271.

Chapter 11. Implementing LUA Programs 181

182 Client/Server Communications Programming

Chapter 12. RUI LUA Entry Points

This chapter describes the procedure entry points for LUA.

The RUI DLL defines the following procedure entry points:

Note: This chapter includes information on the LUA API provided by the
following systems:
v Communications Server running on Windows
v SNA API clients for Win32 platforms that are delivered with the

Communications Server product
v Personal Communications for Windows

When there are differences between the support provided by these systems,
it is noted.

© Copyright IBM Corp. 1994, 2016 183

RUI()

Provides event notification for all RUI verbs.

Syntax
void WINAPI RUI (LUA_VERB_RECORD* vcb);

Parameters

vcb Supplied parameter; specifies the address of the verb control block.

Returned Values
The value returned in lua_flag2.async indicates whether asynchronous notification
will occur. If the flag is set (nonzero), asynchronous notification will occur through
event signaling. If the flag is not set, the request completed synchronously.
Examine the primary return code and secondary return code for any error
conditions.

Usage Notes
The application must provide a handle to an event in the lua_post_handle parameter
of the verb control block. The event must be in the not-signaled state.

When the asynchronous operation is complete, the application is notified by the
signaling of the event. Upon signaling of the event, examine the primary return
code and secondary return code for any error conditions. See also: “WinRUI” on
page 185.

RUI()

184 Client/Server Communications Programming

WinRUI

Provides asynchronous message notification for all RUI verbs.

Syntax
int WINAPI WinRUI (HWND hWnd,LUA_VERB_RECORD* vcb);

Parameters

hWnd Window handle to receive completion message.

vcb Pointer to verb control block.

Returned Values
The function returns a value indicating whether the request was accepted by the
RUI for processing. A returned value of 0 indicates that the request was accepted
and will be processed. A value other than 0 indicates an error. Possible error codes
are as follows:

WLUAINVALIDHANDLE
The window handle provided is not valid.

The value returned in lua_flag2.async indicates whether asynchronous notification
will occur. If the flag is set (nonzero), asynchronous notification will occur through
a message posted to the application's message queue. If the flag is not set, the
request completed synchronously. Examine the primary return code and secondary
return code for any error conditions.

Usage Notes
Upon completion of the verb, the application's window hWind receives the message
returned by RegisterWindowMessage with WinRUI as the input string. The
lParam argument contains the address of the VCB being posted as complete. The
wParam argument is undefined. It is possible for the request to be accepted for
processing (the function call returns 0), but rejected later with a primary return
code and secondary return code set in the VCB. Examine the primary return code
and secondary return code for any error conditions.

If the application calls WinRUI without first initializing the session using
WinRUIStartup, an error is returned.

See also: “RUI()” on page 184.

WinRUI

Chapter 12. RUI LUA Entry Points 185

WinRUICleanup()

Terminates and deregisters an application from the RUI API.

Syntax
BOOL WINAPI WinRUICleanup (void);

Returned Values
The return value indicates success or failure of the deregistration. If the value is
not 0, the application was successfully deregistered. If the value is 0, the
application was not deregistered.

Usage Notes
Use WinRUICleanup to deregister the RUI API, for example, to free up resources
allocated to the specific application.

If WinRUICleanup is called while LUs are in session (RUI_TERM not issued), the
cleanup code issues RUI_TERM close type ABEND for the application for all open
sessions. See also: “WinRUIStartup()” on page 189.

WinRUICleanup()

186 Client/Server Communications Programming

WinRUIGetLastInitStatus()

This function provides a way for an application to determine the status of an
RUI_INIT so that the application can determine whether the RUI_INIT should be
timed out. Use this call to initiate the reporting of status, terminate the reporting of
status, or find the current status. For details, see the Usage Notes section.

Syntax
int WINAPI WinRUIGetLastInitStatus (DWORD dwSid,

HANDLE hStatusHandle,
DWORD dwNotifyType,
BOOL bClearPrevious);

Parameters

dwSid Session identifier of the session for which status will be determined. If the
value is 0, hStatusHandle is used to report status on all sessions. The lua_sid
parameter in the RUI_INIT VCB is valid as soon as the call to RUI() or
WinRUI() for the RUI_INIT returns.

hStatusHandle
A handle used for signaling the application that the status for the session
has changed. Can be a window handle, an event handle, or NULL;
dwNotifyType must be set accordingly:
v If hStatusHandle is a window handle, status is sent to the application

through a window message. The program obtains the message from
RegisterWindowMessage using the string WinRUI. The parameter
wParam contains the session status (see Return Values). Depending on
the value of dwNotifyType, lParam contains either the RUI session ID of
the session, or the value of lua_correlator from the RUI_INIT verb.

v If hStatusHandle is an event handle, when the status for the session
specified by dwSid changes, the event is put into the signaled state. The
application must then make a further call to WinRUIGetLastInitStatus()
to find out the new status. The event should not be the same as one
used for signaling completion of any RUI verb.

v If hStatusHandle is NULL, the status of the session specified by dwSid is
returned in the return code. In this case, dwSid must not be 0 unless
bClearPrevious is TRUE. If hStatusHandle is NULL, dwNotifyType is
ignored.

dwNotifyType
The type of indication required. This determines the contents of the lParam
of the window message and how WinRUIGetLastInitStatus() interprets
hStatusHandle. Permitted values are:

WLUA_NTFY_EVENT
The hStatusHandle parameter contains an event handle.

WLUA_NTFY_MSG_CORRELATOR
The hStatusHandle parameter contains a window handle and the
lParam of the returned window message should contain the LUA
correlator and RUI.

WLUA_NTFY_MSG_SID
The hStatusHandle parameter contains a window handle and the
lParam of the returned window message should contain the LUA
session identifier.

WinRUIGetLastInitStatus()

Chapter 12. RUI LUA Entry Points 187

bClearPrevious
If TRUE, status messages are no longer sent for the session identified by
dwSid. If dwSid is 0, status messages are no longer sent for any session. If
bClearPrevious is TRUE, hStatusHandle and dwNotifyType are ignored.

Usage Notes
This function is intended to be used either with a window handle or an event
handle to enable asynchronous notification of status changes, but it can also be
used on its own to find out the current status of a session.

To use this function with a window handle, you can implement it in one of two
ways as follows:
WinRUIGetLastInitStatus(Sid,Handle,WLUA_NTFY_MSG_CORRELATOR,FALSE);

or

WinRUIGetLastInitStatus(Sid,Handle,WLUA_NTFY_MSG_SID,FALSE);

With this implementation, changes in status are reported by a window message
sent to the window handle specified. If WLUA_NTFY_MSG_CORRELATOR is
specified, the lParam field in the window message contains the lua_correlator field
for the session. If WLUA_NFTY_MSG_SID is specified, the lParam field in the
window message contains the LUA session identifier for the session.

When the function has been used with a window handle, use the following
command to cancel the reporting of status:
WinRUIGetLastInitStatus(Sid,NULL,0,TRUE);

For this implementation, note that if Sid is nonzero, status is only reported for that
session. If Sid is 0, status is reported for all sessions.

To use this function with an event handle, implement it as follows:
WinRUIGetLastInitStatus(Sid,Handle,WLUA_NOTIFY_EVENT,FALSE);

The event whose handle is given will be signaled when a change in state occurs.
Because no information is returned when an event is signaled, the following call
must be issued to find out the status:
Statu = WinRUIGetLastInitStatus(Sid,NULL,0,0,FALSE);

In this case, a Sid must be specified.

When the function has been used with an event handle, use the following
command to cancel the reporting of status:
WinRUIGetLastInitStatus(Sid,NULL,0,TRUE);

To use this function to query the current status of a session, it is not necessary to
use an event or window handle. Instead, use the following command:
Status = WinRUIGetLastInitStatus(Sid,NULL,0,0,FALSE);

Note: WinRUIGetLastInitStatus is not supported on the Communications Server
SNA API clients.

WinRUIGetLastInitStatus()

188 Client/Server Communications Programming

WinRUIStartup()

Enables an application to specify the required version of the RUI API and to
retrieve details of the API.

Syntax
int WINAPI WinRUIStartup (WORD wVersionRequired,

LPWLUADATA* luadata);

Parameters

wVersionRequired
Specifies the version of RUI API support required. The high-order byte
specifies the minor version (revision) number; the low-order byte specifies
the major version number.

luadata
Returns version of RUI implementation.

Returned Values
The return value specifies whether the application was registered successfully and
whether the RUI API can support the specified version number. If the value is 0, it
was registered successfully and the specified version can be supported. Otherwise,
the return value is one of the following values:

WLUAVERNOTSUPPORTED
The version of RUI API support requested is not provided by this
particular RUI API.

WLUAINVALID
The version requested could not be determined.

Usage Notes
This call is intended to aid in compatibility with future versions of the API. The
current version is 1.0. See also “WinRUICleanup()” on page 186.

WinRUIStartup()

Chapter 12. RUI LUA Entry Points 189

GetLuaReturnCode()

Converts the primary and secondary return codes in the VCB to a printable string.
This function provides a standard set of error strings for use by LUA applications.

Syntax
int WINAPI GetLuaReturnCode (lua_common* vcb,

UINT buffer_length,
unsigned char* buffer_addr);

Parameters

vcb Supplied parameter; specifies the address of the verb control block.

buffer_length
Supplied parameter; specifies the length (in bytes) of the buffer pointed to
by buffer_addr. The recommended length is 256.

buffer_addr
Supplied/returned parameter; specifies the address of the buffer that will
hold the formatted, null-terminated string; the length of the string in the
specified buffer.

Usage
The descriptive error string returned in buffer_addr does not terminate with a new
line character (/n).

Examples
The following example shows how to call WINRUI32.DLL. The header file for this
DLL is WINLUA.H. This example calls the RUI DLL to issue an RUI verb from a
program:

#include "WINLUA.H" /* LUA C include file for
the LUA Application. */

. . .

. . .

example()
{
LUA_VERB_RECORD VerbRecord; /* Declare VerbRecord as a verb

control block using the
TYPEDEF in WINLUA.H */

. . .

WINRUI((LUA_VERB_RECORD *) &VerbRecord); /* Call the RUI API */
. . .
}

GetLuaReturnCode()

190 Client/Server Communications Programming

Chapter 13. RUI Verbs

This chapter contains the following information:
v Details of the LUA common control block structure
v A description of each LUA verb for all LUA verbs and the LUA verb records

The following information is provided for each LUA verb:
v The purpose of the verb.
v Parameters supplied to and returned by LUA. The description of each parameter

includes information on the valid values for that parameter, and any additional
information necessary.

v Interactions with other verbs.
v Additional information describing the use of the verb.

Note: Parameters marked as reserved should always be set to zero.

LUA Verb Control Block Format
The verb control block consists of:
v lua_common, used for all verbs and described in “Common Verb Header.”
v specific, used only for the RUI_BID verb (described in “RUI_BID Data

Structure” on page 195).

The structure is defined as follows:
typedef struct lua_verb_record
{
LUA_COMMON common; /* The common verb header */
union
{
unsigned char lua_peek_data[12]; /* field specific to RUI_BID */

}
} LUA_VERB_RECORD;

Common Verb Header
The Personal Communications LUA uses a generic common verb header to transport
all incoming and outgoing data. The fields in the verb control block are defined as
follows:
typedef struct lua_common
{
unsigned short lua_verb; /* LUA_VERB_RUI */
unsigned short lua_verb_length; /* VCB length */
unsigned short lua_prim_rc; /* primary return code */
unsigned long lua_sec_rc; /* secondary return code */
unsigned short lua_opcode; /* verb opcode */
unsigned long lua_correlator; /* verb correlator */
unsigned char lua_luname[8]; /* local LU name */
unsigned short lua_extension_list_offset;

/* reserved */
unsigned short lua_cobol_offset; /* reserved */
unsigned long lua_sid; /* session ID */
unsigned short lua_max_length; /* max buffer length */
unsigned short lua_data_length; /* actual data length */
unsigned char *lua_data_ptr; /* data pointer */
unsigned long lua_post_handle; /* post handle */

© Copyright IBM Corp. 1994, 2016 191

LUA_TH lua_th; /* TH structure */
unsigned char lua_rh; /* message RH */
unsigned char lua_flag1; /* application message flag */
unsigned char lua_message_type; /* SNA message type */
unsigned char lua_flag2; /* LUA message flag */
unsigned char lua_resv56[7]; /* reserved */
unsigned char lua_encr_decr_option;/* cryptography */
} LUA_COMMON;

typedef struct lua_th
{
unsigned char flags; /* TH flags */
unsigned char reserv1; /* reserved */
unsigned char daf; /* DAF */
unsigned char oaf; /* OAF */
unsigned char snf[2]; /* SNF */
} LUA_TH;

lua_verb
Identifies this as an LUA verb: always set to LUA_VERB_RUI.

lua_verb_length
Length of the verb control block.

lua_prim_rc
Primary return code set by LUA.

lua_sec_rc
Secondary return code set by LUA.

lua_opcode
Verb operation code, which identifies the LUA verb being issued.

lua_correlator
A 4-byte correlator, which you can use to correlate this verb with other
processing in your application. LUA does not use this parameter.

lua_luname
The local LU name used by the LUA session (in ASCII). This can be an LU
name or an LU pool name; see “RUI_INIT” on page 201 for more
information.

lua_sid
The session ID of the LUA session on which this verb is issued.

lua_max_length
The length of the buffer used to receive data.

lua_data_length
The length of the data to be sent, or the actual length of data received.

lua_data_ptr
A pointer to the data to be sent, or the data buffer to receive data.

lua_post_handle
This is a 4–byte handle that is used to post the completion of asynchronous
verbs.

lua_th.flags
Specifies the flags set in the transmission header. (Refer to Systems Network
Architecture: Formats for more information.) It can be one or more of the
following values ORed together:

LUA_FID
Format identification type 2

192 Client/Server Communications Programming

LUA_MPF
Segmenting mapping field

LUA_BBIU
Begin BIU

LUA_EBIU
End BIU

LUA_ODAI
OAF-DAF assignor Indicator

LUA_EFI
Expedited Flow Indicator

lua_th.daf
DAF (Destination address field).

lua_th.oaf
OAF (Originating address field).

lua_th.snf
Sequence number field.

lua_rh Specifies the request/response header (RH) of the message sent or
received. (Refer to Systems Network Architecture: Formats for more
information.) This can be one or more of the following values ORed
together:

LUA_RRI
Request-response indicator

LUA_RH_FMD
RU category: FMI data segment

LUA_RH_NC
RU category: Network control

LUA_RH_DFC
RU category: Data flow control

LUA_RH_SC
RU category: Session control

LUA_FI
Format indicator

LUA_SDI
Sense data included indicator

LUA_BCI
Begin chain indicator

LUA_ECI
End chain indicator

LUA_DR1I
Definite Response 1 indicator

LUA_DR2I
Definite Response 2 indicator

LUA_RI
Exception response indicator (for a request), or response type
indicator (for a response)

Chapter 13. RUI Verbs 193

LUA_QRI
Queued Response indicator

LUA_PI
Pacing indicator

LUA_BBI
Begin Bracket indicator

LUA_EBI
End Bracket indicator

LUA_CDI
Change Direction indicator

LUA_CSI
Code Selection indicator

LUA_EDI
Enciphered Data indicator

LUA_PDI
Padded Data indicator

lua_flag1
Specifies flags for messages supplied by the application. (Refer to Systems
Network Architecture: Formats for more information.) The flags can be one or
more of the following values ORed together:

LUA_BID_ENABLE
Bid Enable indicator

LUA_NOWAIT
No Wait for Data flag

LUA_SSCP_EXP
SSCP expedited flow

LUA_SSCP_NORM
SSCP normal flow

LUA_LU_EXP
LU expedited flow

LUA_LU_NORM
LU normal flow

LUA_CLOSE_ABEND

LUA_RESERVE1

lua_message_type
The type of SNA message received by an RUI_READ verb (or indicated to
an RUI_BID verb). This can be one the following values:

LUA_MESSAGE_TYPE_LU_DATA
LUA_MESSAGE_TYPE_SSCP_DATA
LUA_MESSAGE_TYPE_RSP
LUA_MESSAGE_TYPE_BID
LUA_MESSAGE_TYPE_BIND
LUA_MESSAGE_TYPE_BIS
LUA_MESSAGE_TYPE_CANCEL
LUA_MESSAGE_TYPE_CHASE
LUA_MESSAGE_TYPE_CLEAR
LUA_MESSAGE_TYPE_CRV

194 Client/Server Communications Programming

LUA_MESSAGE_TYPE_LUSTAT_LU
LUA_MESSAGE_TYPE_LUSTAT_SSCP
LUA_MESSAGE_TYPE_QC
LUA_MESSAGE_TYPE_QEC
LUA_MESSAGE_TYPE_RELQ
LUA_MESSAGE_TYPE_RQR
LUA_MESSAGE_TYPE_RTR
LUA_MESSAGE_TYPE_SBI
LUA_MESSAGE_TYPE_SHUTD
LUA_MESSAGE_TYPE_SIGNAL
LUA_MESSAGE_TYPE_SDT
LUA_MESSAGE_TYPE_STSN
LUA_MESSAGE_TYPE_UNBIND

lua_flag2
Specifies flags for messages returned by LUA. (Refer to Systems Network
Architecture: Formats for more information.) The flags can be one or more of
the following values ORed together:

LUA_BID_ENABLE
Bid Enable indicator

LUA_ASYNC
Asynchronous verb completion flag

LUA_SSCP_EXP
SSCP expedited flow

LUA_SSCP_NORM
SSCP normal flow

LUA_LU_EXP
LU expedited flow

LUA_LU_NORM
LU normal flow

lua_encr_decr_option
Cryptography option.

RUI_BID Data Structure
The following parameter is specific to and only supplied on the RUI_BID verb:

lua_peek_data
Up to 12 bytes of data waiting to be read.

Chapter 13. RUI Verbs 195

RUI_BID

The RUI_BID verb is used by the application to indicate when a received message
is waiting to be read. This enables the application to determine what data, if any, is
available before issuing the RUI_READ verb. When a message is available, the
RUI_BID verb returns with details of the message flow on which it was received,
the message type, the TH and RH of the message, and up to 12 bytes of message
data. The main difference between RUI_BID and RUI_READ is that RUI_BID
enables the application to check the data without removing it from the incoming
message queue, so it can be left and accessed at a later stage. RUI_READ removes
the message from the queue, so once the application has read the data it must
process it.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_RUI

lua_verb_length
The length in bytes of the LUA verb record. Set this to

sizeof(struct LUA_COMMON) + 12.

lua_opcode
LUA_OPCODE_RUI_BID

lua_correlator
Optional. A 4-byte value, which you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

lua_luname
The name in ASCII of the local LU used by the session. This must match
the LU name of an active LUA session.

This parameter is required only if the lua_sid parameter is zero. If a
session ID is supplied in lua_sid, LUA does not use this parameter.

This parameter must be 8 bytes long; pad on the right with spaces, 0x20, if
the name is shorter than 8 characters.

lua_sid
The session ID of the session. This must match a session ID returned on a
previous RUI_INIT verb. This parameter is optional; if you do not specify
the session ID, you must specify the LU name for the session in the
lua_luname parameter.

lua_post_handle
This is a 4-byte handle that is used to post the completion of asynchronous
verbs.

Returned Parameters
The following parameter will always be returned:

lua_flag2
This is only set to LUA_ASYNC if the verb completed asynchronously.

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

RUI_BID

196 Client/Server Communications Programming

If the verb completed successfully, the following parameters are returned:

lua_prim_rc
LUA_OK

lua_sid
If the application specified the lua_luname parameter when issuing this
verb, rather than specifying the session ID, LUA supplies the session ID.

lua_max_length
The number of bytes of data in the received message.

lua_data_length
The number of bytes of data returned in the lua_peek_data parameter;
from 0 to 12.

lua_th Information from the transmission header (TH) of the received message.

lua_rh Information from the request/response header (RH) of the received
message.

lua_message_type
Message type of the received message, which will be one of the following
values:

LUA_MESSAGE_TYPE_LU_DATA
LUA_MESSAGE_TYPE_SSCP_DATA
LUA_MESSAGE_TYPE_RSP
LUA_MESSAGE_TYPE_BID
LUA_MESSAGE_TYPE_BIND
LUA_MESSAGE_TYPE_BIS
LUA_MESSAGE_TYPE_CANCEL
LUA_MESSAGE_TYPE_CHASE
LUA_MESSAGE_TYPE_CLEAR
LUA_MESSAGE_TYPE_CRV
LUA_MESSAGE_TYPE_LUSTAT_LU
LUA_MESSAGE_TYPE_LUSTAT_SSCP
LUA_MESSAGE_TYPE_QC
LUA_MESSAGE_TYPE_QEC
LUA_MESSAGE_TYPE_RELQ
LUA_MESSAGE_TYPE_RTR
LUA_MESSAGE_TYPE_SBI
LUA_MESSAGE_TYPE_SHUTD
LUA_MESSAGE_TYPE_SIGNAL
LUA_MESSAGE_TYPE_SDT
LUA_MESSAGE_TYPE_STSN
LUA_MESSAGE_TYPE_UNBIND

lua_flag2
One of the following flags will be set to indicate which message flow the
data was received on:

LUA_SSCP_EXP
SSCP expedited flow

LUA_LU_EXP
LU expedited flow

LUA_SSCP_NORM
SSCP normal flow

LUA_LU_NORM
LU normal flow

RUI_BID

Chapter 13. RUI Verbs 197

lua_peek_data
The first 12 bytes of the message data (or all of the message data if it is
shorter than 12 bytes).

The following return codes indicate that the verb did not complete successfully
because it was canceled by another verb:

lua_prim_rc
LUA_CANCELLED

lua_sec_rc
LUA_TERMINATED An RUI_TERM verb was issued while this verb was
pending.

The following return codes indicate that the verb did not complete successfully
because a supplied parameter was in error:

lua_prim_rc
LUA_PARAMETER_CHECK

lua_sec_rc
Possible values:

LUA_BID_ALREADY_ENABLED
The RUI_BID verb was rejected because a previous RUI_BID verb
was already outstanding. Only one RUI_BID can be outstanding at
a time.

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the
length of the verb record required for this verb.

The following return codes indicate that the verb was issued in a session state in
which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc
LUA_NO_RUI_SESSION

An RUI_INIT verb has not yet completed successfully for this session, or a
session outage has occurred.

The following return codes indicate that the verb record supplied was valid, but
the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

lua_sec_rc
LUA_INVALID_PROCESS

The application instance that issued this verb was not the same as the one
that issued the RUI_INIT verb for this session.

The following return code indicates that Personal Communications detected an
error in the data received from the host. Instead of passing the received message to

RUI_BID

198 Client/Server Communications Programming

the application on an RUI_READ verb, Personal Communications discards the
message (and the rest of the chain if it is in a chain), and sends a negative response
to the host. LUA informs the application on a subsequent RUI_READ or RUI_BID
verb that a negative response was sent.

lua_prim_rc
LUA_NEGATIVE_RSP

lua_sec_rc
The secondary return code contains the sense code sent to the host on the
negative response. See “SNA Layers” on page 154 for information on
interpreting the sense code values that can be returned.

A zero secondary return code indicates that, following a previous
RUI_WRITE of a negative response to a message in the middle of a chain,
Personal Communications has now received and discarded all messages
from this chain.

The following primary and secondary return codes indicate that the verb did not
complete successfully for other reasons:

lua_prim_rc
LUA_SESSION_FAILURE

The session has been brought down.

lua_sec_rc
Possible values:

LUA_LU_COMPONENT_DISCONNECTED
The LUA session has failed because of a problem with the
communications link or with the host LU.

LUA_RUI_LOGIC_ERROR
This return code indicates one of the following things:
v The host system has violated SNA protocols.
v An internal error was detected within LUA.

Attempt to reproduce the problem with tracing active, and check that the
host is sending correct data.

lua_prim_rc
LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode parameter was not valid.
The verb did not execute.

lua_prim_rc
LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred, such as resource shortage.

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

Comments
The RUI_INIT verb must complete successfully before this verb can be issued.

Only one RUI_BID can be outstanding at any one time. After the RUI_BID verb
has completed successfully, it can be reissued by setting the lua_flag1 to

RUI_BID

Chapter 13. RUI Verbs 199

LUA_BID_ENABLE on a subsequent RUI_READ verb. If the verb is to be reissued
in this way, the application program must not free or modify the storage associated
with the RUI_BID verb record.

If a message arrives from the host when an RUI_READ and an RUI_BID are both
outstanding, the RUI_READ completes and the RUI_BID is left in progress.

Usage Notes
Each message that arrives will only be bid once. Once an RUI_BID verb has
indicated that data is waiting on a particular session flow, the application should
issue the RUI_READ verb to receive the data. Any subsequent RUI_BID will not
report data arriving on that session flow until the message that was bid has been
accepted by issuing an RUI_READ verb.

In general, the lua_data_length parameter returned on this verb indicates only the
length of data in lua_peek_data, not the total length of data on the waiting
message (except when a value of less than 12 is returned). The lua_max_length
parameter returns the number of bytes in the received message. The application
should ensure that the data length on the RUI_READ verb that accepts the data is
sufficient to contain the message.

RUI_BID

200 Client/Server Communications Programming

RUI_INIT

The RUI_INIT verb establishes the SSCP-LU session for a given LUA LU.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_RUI

lua_verb_length
The length in bytes of the LUA verb record. Set this to sizeof(struct
LU_COMMON).

lua_opcode
LUA_OPCODE_RUI_INIT

lua_correlator
Optional. A 4-byte value, which you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

lua_luname
The name in ASCII of the local LU or LU pool that you want to start the
session. This must match a configured LUA LU name or LU pool name.
For applications on the Personal Communications, the name is used as
follows:

If the name is the name of an LU that is not in a pool, Personal
Communications attempts to start the session using this LU.

If the name is the name of an LU pool, or the name of an LU within a
pool, Personal Communications attempts to start the session using the first
avaliable LU from the pool. This field is an 8-byte ASCII string, padded
with trailing space (0x20) characters if necessary.

For applications on an SNA API client, the name should match a
configured LUA Session Name.

The following information only applies to Communications
Server Win32 SNA API clients.

The default LUA session name for each user can be assigned using the
appropriate configuration utility, either INI configuration or LDAP.

LUA programs, such as 3270 emulators, can choose to use a default LUA
session name rather than specify one directly. When an LUA program
issues an RUI_INIT verb with the lua_name field set to binary zeroes, or
ASCII blanks, the RUI API uses the configured default LUA session name.

lua_post_handle
This is a 4-byte handle that is used to post the completion of asynchronous
verbs.

lua_flag1
The application should set this to LUA_ASYNC_STATUS.

RUI_INIT

Chapter 13. RUI Verbs 201

lua_encr_decr_option
Session-level cryptography option. Personal Communications accepts the
following two values:

0 Session-level cryptography is not used.

128 Encryption and decryption are performed by the
application program.

Any other value will result in the return code
LUA_ENCR_DECR_LOAD_ERROR.

Returned Parameters
The following parameter will always be returned:

lua_flag2
This is only set to LUA_ASYNC if the verb completed asynchronously.

Note: RUI_INIT will always complete asynchronously, unless it returns an
error such as LUA_PARAMETER_CHECK.

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

If the verb executes successfully, LUA returns the following parameters:

lua_prim_rc
LUA_OK

lua_sid
A session ID for the new session. This can be used by subsequent verbs to
identify this session.

lua_luname
The name of the local LU used by the session. This is required if the
application specified an LU pool and needs to know which LU in the pool
has been used.

The following return codes indicate that the verb did not complete successfully
because it was canceled by another verb:

lua_prim_rc
LUA_CANCELLED

lua_sec_rc
LUA_TERMINATED

An RUI_TERM verb was issued before the RUI_INIT had completed.

The following return codes indicate that the verb did not complete successfully
because a supplied parameter was in error:

lua_prim_rc
LUA_PARAMETER_CHECK

lua_sec_rc
Possible values:

LUA_INVALID_LUNAME
The lua_luname parameter could not be found. Check that the LU

RUI_INIT

202 Client/Server Communications Programming

name or LU pool name was defined in Personal Communications
System Management Programming API.

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the
length of the verb record required for this verb.

The following return codes indicate that the verb was issued in a session state in
which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc
LUA_DUPLICATE_RUI_INIT

The lua_luname parameter specified an LU name or LU pool name that is
already in use by this application (or for which this application already has
an RUI_INIT verb in progress).

The following return codes indicate that the verb record supplied was valid, but
the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

lua_sec_rc
Possible values:

LUA_COMMAND_COUNT_ERROR
The verb specified the name of an LU pool, or the name of an LU
in a pool, but all LUs in the pool are in use.

LUA_ENCR_DECR_LOAD_ERROR
The verb specified a value for lua_encr_decr_option other than 0
or 128.

LUA_INVALID_PROCESS
The LU specified by the lua_luname parameter is in use by
another process.

LUA_LINK_NOT_STARTED
The link to the host has not been started.

The following values for lua_sec_rc are Personal Communications sense codes, and
can be returned if lua_prim_rc is LUA_UNSUCCESSFUL (these values reflect the
state of the LU):

X10020000
ACTPU has not been received. RUI_INIT will not activate the PU.

X10100000
ACTPU has not been received. RUI_INIT will activate the PU.

X10110000
ACTPU has been received. ACTLU has not been received. SSCP does not
support self-defining dependent LU (SSDLU). RUI_INIT will activate the
LU.

RUI_INIT

Chapter 13. RUI Verbs 203

X10120000
ACTPU has been received. ACTLU has not been received. SSCP does
support SSDLU. RUI_INIT will activate the LU.

The following primary and secondary return codes indicate that the verb did not
complete successfully for other reasons:

lua_prim_rc
LUA_SESSION_FAILURE

The session has been brought down.

lua_sec_rc
LUA_LU_COMPONENT_DISCONNECTED

The LUA session has failed because of a problem with the communications
link or with the host LU.

lua_prim_rc
LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode parameter was not valid.
The verb did not execute.

lua_prim_rc
LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred, such as resource shortage.

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

Comments
This verb must be the first LUA verb issued for the session. Until this verb has
completed successfully, the only other LUA verb that can be issued for this session
is RUI_TERM (which will terminate a pending RUI_INIT). All other verbs issued
on this session must identify the session using one of the following parameters
from this verb.
v The session ID is returned to the application in the lua_sid parameter.
v The LU name is supplied by the application in the lua_luname parameter.

Usage Notes
The RUI_INIT verb completes after an ACTLU is received from the host. If
necessary, the verb waits indefinitely. If an ACTLU has already been received prior
to the RUI_INIT verb, LUA sends a NOTIFY to the host to inform it that the LU is
ready for use.

Note: Neither the ACTLU nor NOTIFY is visible to the LUA application.

Once the RUI_INIT verb has completed successfully, this session uses the LU for
which the session was started. No other LUA session (from this or any other
application) can use the LU until the RUI_TERM verb is issued.

RUI_INIT

204 Client/Server Communications Programming

RUI_PURGE

The RUI_PURGE verb cancels a previous RUI_READ. An RUI_READ can wait
indefinitely if it is sent without setting lua_flag1 to LUA_NO WAIT (the
immediate return option), and no data is available on the specified flow;
RUI_PURGE forces the waiting verb to return (with the primary return code
CANCELLED).

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_RUI

lua_verb_length
The length in bytes of the LUA verb record. Set this to sizeof(struct
LUA_COMMON).

lua_opcode
LUA_OPCODE_RUI_PURGE

lua_correlator
Optional. A 4-byte value, which you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

lua_luname
The name in ASCII of the local LU used by the session. This must match
the LU name of an active LUA session.

This parameter is required only if the lua_sid parameter is zero. If a
session ID is supplied in lua_sid, LUA does not use this parameter.

This parameter must be 8 bytes long; pad on the right with spaces, 0x20, if
the name is shorter than 8 characters.

lua_sid
The session ID of the session. This must match a session ID returned on a
previous RUI_INIT verb.

This parameter is optional; if you do not specify the session ID, you must
specify the LU name for the session in the lua_luname parameter.

lua_data_ptr
A pointer to the RUI_READ LUA_VERB_RECORD that is to be purged.

lua_post_handle
This is a 4-byte handle that is used to post the completion of asynchronous
verbs.

Returned Parameters
The following parameter will always be returned:

lua_flag2
This is only set to LUA_ASYNC if the verb completed asynchronously.

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

If the verb completed successfully, the following parameters are returned:

RUI_PURGE

Chapter 13. RUI Verbs 205

lua_prim_rc
LUA_OK

lua_sid
If the application specified the lua_luname parameter when issuing this
verb, rather than specifying the session ID, LUA supplies the session ID.

The following return codes indicate that the verb did not complete successfully
because it was canceled by another verb:

lua_prim_rc
LUA_CANCELLED

lua_sec_rc
LUA_TERMINATED

An RUI_TERM verb was issued while this verb was pending.

The following return codes indicate that the verb did not complete successfully
because a supplied parameter was in error:

lua_prim_rc
LUA_PARAMETER_CHECK

lua_sec_rc
Possible values:

LUA_BAD_DATA_PTR
The lua_data_ptr parameter was set to zero.

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the
length of the verb record required for this verb.

The following return codes indicate that the verb was issued in a session state in
which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc
Possible values:

LUA_SEC_RC_OK
A previous RUI_PURGE verb is still in progress on this session.

LUA_NO_RUI_SESSION
An RUI_INIT verb has not yet completed successfully for this
session, or a session outage has occurred.

The following return codes indicate that the verb record supplied was valid, but
the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

lua_sec_rc
Possible values:

RUI_PURGE

206 Client/Server Communications Programming

LUA_INVALID_PROCESS
The application instance that issued this verb was not the same as
the one that issued the RUI_INIT verb for this session.

LUA_NO_READ_TO_PURGE
Either the lua_data_ptr parameter did not contain a pointer to an
RUI_READ LUA_VERB_RECORD or the RUI_READ verb
completed before the RUI_PURGE verb was issued.

The following primary and secondary return codes indicate that the verb did not
complete successfully for other reasons:

lua_prim_rc
LUA_SESSION_FAILURE

The session has been brought down.

lua_sec_rc
Possible values:

LUA_LU_COMPONENT_DISCONNECTED
The LUA session has failed because of a problem with the
communications link or with the host LU.

LUA_RUI_LOGIC_ERROR
This return code indicates one of the following things:
v The host system has violated SNA protocols.
v An internal error was detected within LUA.

Attempt to reproduce the problem with tracing active, and check
that the host is sending correct data.

lua_prim_rc
LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode parameter was not valid.
The verb did not execute.

lua_prim_rc
LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred, such as resource shortage.

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

Comments
This verb can only be used when an RUI_READ has been issued and is pending
completion (that is, the primary return code is IN_PROGRESS). This verb should
not be issued while another RUI_PURGE is in progress on this session.

RUI_PURGE

Chapter 13. RUI Verbs 207

RUI_READ

The RUI_READ verb receives data or status information sent from the host to the
application's LU. You can specify a particular message flow (LU normal, LU
expedited, SSCP normal, or SSCP expedited) from which to read data, or you can
specify more than one message flow. You can have multiple RUI_READ verbs
outstanding, provided that no two of them specify the same flow.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_RUI

lua_verb_length
The length in bytes of the LUA verb record. Set this to sizeof(struct
LUA_COMMON).

lua_opcode
LUA_OPCODE_RUI_READ

lua_correlator
Optional. A 4-byte value, which you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

lua_luname
The name in ASCII of the local LU used by the session. This must match
the LU name of an active LUA session.

This parameter is required only if the lua_sid parameter is zero. If a
session ID is supplied in lua_sid, LUA does not use this parameter.

This parameter must be 8 bytes long; pad on the right with spaces, 0x20, if
the name is shorter than 8 characters.

lua_sid
The session ID of the session. This must match a session ID returned on a
previous RUI_INIT verb.

This parameter is optional; if you do not specify the session ID, you must
specify the LU name for the session in the lua_luname parameter.

lua_max_length
The length of the buffer supplied to receive the data (see lua_data_ptr).

lua_data_ptr
A pointer to the buffer supplied to receive the data.

lua_post_handle
This is a 4-byte handle that is used to post the completion of asynchronous
verbs.

lua_flag1
The flags can be one or more of the following values ORed together:
v Set LUA_NOWAIT if you want the RUI_READ verb to return

immediately whether or not data is available to be read, or do not set it
if you want the verb to wait for data before returning.

v Set LUA_BID_ENABLE to reenable the most recent RUI_BID verb
(equivalent to issuing RUI_BID again with exactly the same parameters
as before), or do not set it if you do not want to reenable RUI_BID.

RUI_READ

208 Client/Server Communications Programming

Note: Reenabling the previous RUI_BID reuses the
LUA_VERB_RECORD originally allocated and does not permit
the LUA_VERB_RECORD to be freed or modified.

v Set one or more of the following flags to indicate which message flow to
read data from:

LUA_SSCP_EXP
SSCP expedited flow

LUA_LU_EXP
LU expedited flow

LUA_SSCP_NORM
SSCP normal flow

LUA_LU_NORM
LU normal flow

If more than one flag is set, the highest-priority data available will be
returned. The order of priorities (highest to lowest) is as follows:
1. SSCP expedited
2. LU expedited
3. SSCP normal
4. LU normal
The equivalent flag will be set in lua_flag2 to indicate which flow the
data was read from (see “Returned Parameters”).

Returned Parameters
The following parameters will always be returned:

lua_flag2
LUA_ASYNC is set if the verb completes asynchronously (and not set if
the verb completes synchronously).

LUA_BID_ENABLE is set if an RUI_BID was successfully reenabled (and
not set if it was not reenabled).

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

If the verb executes successfully, LUA also returns the following parameters:

lua_prim_rc
LUA_OK

The following parameters are returned if the verb completes successfully. They are
also returned if the verb returns with truncated data because the lua_data_length
parameter supplied was too small.

lua_sid
If the application specified the lua_luname parameter when issuing this
verb, rather than specifying the session ID, LUA supplies the session ID.

lua_data_length
The length of the data received. LUA places the data in the buffer specified
by lua_data_ptr.

lua_th Information from the transmission header (TH) of the received message.

lua_rh Information from the request/response header (RH) of the received
message.

RUI_READ

Chapter 13. RUI Verbs 209

lua_message_type
Message type of the received message, which will be one of the following
values:

LUA_MESSAGE_TYPE_LU_DATA
LUA_MESSAGE_TYPE_SSCP_DATA
LUA_MESSAGE_TYPE_RSP
LUA_MESSAGE_TYPE_BID
LUA_MESSAGE_TYPE_BIND
LUA_MESSAGE_TYPE_BIS
LUA_MESSAGE_TYPE_CANCEL
LUA_MESSAGE_TYPE_CHASE
LUA_MESSAGE_TYPE_CLEAR
LUA_MESSAGE_TYPE_CRV
LUA_MESSAGE_TYPE_LUSTAT_LU
LUA_MESSAGE_TYPE_LUSTAT_SSCP
LUA_MESSAGE_TYPE_QC
LUA_MESSAGE_TYPE_QEC
LUA_MESSAGE_TYPE_RELQ
LUA_MESSAGE_TYPE_RTR
LUA_MESSAGE_TYPE_SBI
LUA_MESSAGE_TYPE_SHUTD
LUA_MESSAGE_TYPE_SIGNAL
LUA_MESSAGE_TYPE_SDT
LUA_MESSAGE_TYPE_STSN
LUA_MESSAGE_TYPE_UNBIND

lua_flag2 parameters
This will be set to one of the following values, to indicate which message
flow the data was received on:

LUA_SSCP_EXP
SSCP expedited flow

LUA_LU_EXP
LU expedited flow

LUA_SSCP_NORM
SSCP normal flow

LUA_LU_NORM
LU normal flow

The following return codes indicate that the verb did not complete successfully
because it was canceled by another verb or by an internal error:

lua_prim_rc
LUA_CANCELLED

lua_sec_rc
Possible values:

LUA_PURGED
This RUI_READ verb has been canceled by an RUI_PURGE verb.

LUA_TERMINATED
An RUI_TERM verb was issued while this verb was pending.

The following return codes indicate that the verb did not complete successfully
because a supplied parameter was in error:

RUI_READ

210 Client/Server Communications Programming

lua_prim_rc
LUA_PARAMETER_CHECK

lua_sec_rc
Possible values:

LUA_BAD_DATA_PTR
The lua_data_ptr parameter contained an incorrect value.

LUA_BID_ALREADY_ENABLED
The lua_flag1 was set to LUA_BID_ENABLE to reenable an
RUI_BID verb, but the previous RUI_BID verb was still in
progress.

LUA_DUPLICATE_READ_FLOW
The flow flags on lua_flag1 specified one or more session flows for
which an RUI_READ verb was already outstanding. Only one
RUI_READ at a time can be waiting on each session flow.

LUA_INVALID_FLOW
None of the lua_flag1 flow flags was set. At least one of these flags
must be set to indicate which flow or flows to read from.

LUA_NO_PREVIOUS_BID_ENABLED
The lua_flag1 was set to LUA_BID_ENABLE, to reenable an
RUI_BID verb, but there was no previous RUI_BID verb that
could be enabled. (See “Comments” on page 213 for more
information.)

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the
length of the verb record required for this verb.

The following return codes indicate that the verb was issued in a session state in
which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc
LUA_NO_RUI_SESSION

An RUI_INIT verb has not yet completed successfully for this session, or a
session outage has occurred.

The following primary return code indicates one of the following two cases, which
can be distinguished by the secondary return code:
v Personal Communications detected an error in the data received from the host.

Instead of passing the received message to the application on an RUI_READ
verb, Personal Communications discards the message (and the rest of the chain
if it is in a chain), and sends a negative response to the host. LUA informs the
application on a subsequent RUI_READ or RUI_BID verb that a negative
response was sent.

v The LUA application previously sent a negative response to a message in the
middle of a chain. Personal Communications has purged subsequent messages
in this chain, and is now reporting to the application that all messages from the
chain have been received and purged.

RUI_READ

Chapter 13. RUI Verbs 211

lua_prim_rc
LUA_NEGATIVE_RSP

lua_sec_rc
A nonzero secondary return code contains the sense code sent to the host
on the negative response. This indicates that Personal Communications
detected an error in the host data, and sent a negative response to the host.
See “SNA Layers” on page 154 for information on interpreting the sense
code values that can be returned.

A zero secondary return code indicates that, following a previous
RUI_WRITE of a negative response to a message in the middle of a chain,
Personal Communications has now received and discarded all messages
from this chain.

The following return codes indicate that the verb record supplied was valid, but
the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

lua_sec_rc
Possible values:

LUA_DATA_TRUNCATED
The lua_data_length parameter was smaller than the actual length
of data received on the message. Only lua_data_length bytes of
data were returned to the verb; the remaining data was discarded.
Additional parameters are also returned if this secondary return
code is obtained.

LUA_NO_DATA
The lua_flag1 was set to LUA_NOWAIT to indicate immediate
return without waiting for data, and no data was currently
available on the specified session flow or flows.

LUA_INVALID_PROCESS
The application instance that issued this verb was not the same as
the one that issued the RUI_INIT verb for this session.

The following primary and secondary return codes indicate that the verb did not
complete successfully for other reasons.

lua_prim_rc
LUA_SESSION_FAILURE

The session has been brought down.

lua_sec_rc
Possible values:

LUA_LU_COMPONENT_DISCONNECTED
The LUA session has failed because of a problem with the
communications link or with the host LU.

LUA_RUI_LOGIC_ERROR
This return code indicates one of the following things:
v The host system has violated SNA protocols.
v An internal error was detected within LUA.

Try to reproduce the problem with tracing active, and check that
the host is sending correct data.

RUI_READ

212 Client/Server Communications Programming

lua_prim_rc
LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode parameter was not valid.
The verb did not execute.

lua_prim_rc
LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred, such as resource shortage.

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

Comments
The RUI_INIT verb must have completed successfully before this verb can be
issued. While an existing RUI_READ is pending, you can issue another
RUI_READ only if it specifies a different session flow or flows from pending
RUI_READs; that is, you cannot have more than one RUI_READ outstanding for
the same session flow.

The lua_flag1 can only be set to LUA_BID_ENABLE if all of the following things
are true:
v An RUI_BID has already been issued successfully and has completed.
v The storage allocated for the RUI_BID verb has not been freed or modified.
v No other RUI_BID is pending.

Usage Notes
If the data received is longer than the lua_max_length parameter, it will be
truncated; only lua_max_length bytes of data will be returned. The primary and
secondary return codes LUA_UNSUCCESSFUL and LUA_DATA_TRUNCATED
will also be returned.

Once a message has been read using the RUI_READ verb, it is removed from the
incoming message queue and cannot be accessed again.

Note: The RUI_BID verb can be used as a nondestructive read; that is, the
application can use it to check the type of data available, but the data
remains on the incoming queue and need not be used immediately.

Pacing can be used on the primary-to-secondary half-session (this is specified in
the host configuration) to protect the Personal Communications node from being
flooded with messages. If the LUA application is slow to read messages, Personal
Communications delays the sending of pacing responses to the host in order to
slow it down.

RUI_READ

Chapter 13. RUI Verbs 213

RUI_TERM

The RUI_TERM verb ends both the LU-LU session and the LU-SSCP session for a
given LUA LU.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_RUI

lua_verb_length
The length in bytes of the LUA verb record. Set this to size of (struct
LUA_COMMON).

lua_opcode
LUA_OPCODE_RUI_TERM

lua_correlator
Optional. A 4-byte value, which you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

lua_luname
The name in ASCII of the local LU used by the session. This must match
the LU name of an active LUA session (or the LU name specified on an
outstanding RUI_INIT verb).

This parameter is required only if the lua_sid parameter is zero. If a
session ID is supplied in lua_sid, LUA does not use this parameter.

This parameter must be 8 bytes long; pad on the right with spaces, 0x20, if
the name is shorter than 8 characters.

lua_sid
The session ID of the session. This must match a session ID returned on a
previous RUI_INIT verb.

This parameter is optional; if you do not specify the session ID, you must
specify the LU name for the session in the lua_luname parameter.

lua_post_handle
This is a 4-byte handle that is used to post the completion of asynchronous
verbs.

Returned Parameters
The following parameter will always be returned:

lua_flag2
This is only set to LUA_ASYNC if the verb completed asynchronously.

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

If the verb executes successfully, LUA also returns the following parameter:

lua_prim_rc
LUA_OK

RUI_TERM

214 Client/Server Communications Programming

The following return codes indicate that the verb did not complete successfully
because a supplied parameter was in error:

lua_prim_rc
LUA_PARAMETER_CHECK

lua_sec_rc
Possible values:

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the
length of the verb record required for this verb.

The following return codes indicate that the verb was issued in a session state in
which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc
LUA_NO_RUI_SESSION

An RUI_INIT verb has not yet completed successfully for this session, or a
session outage has occurred.

The following return codes indicate that the verb record supplied was valid, but
the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

lua_sec_rc
Possible values:

LUA_COMMAND_COUNT_ERROR
An RUI_TERM was already pending when the verb was issued.

LUA_INVALID_PROCESS
The application instance that issued this verb was not the same as
the one that issued the RUI_INIT verb for this session.

The following primary and secondary return codes indicate that the verb did not
complete successfully for other reasons.

lua_prim_rc
LUA_SESSION_FAILURE

The session has been brought down.

lua_sec_rc
Possible values:

LUA_LU_COMPONENT_DISCONNECTED
The LUA session has failed because of a problem with the
communications link or with the host LU.

LUA_RUI_LOGIC_ERROR
This return code indicates one of the following things:
v The host system has violated SNA protocols.

RUI_TERM

Chapter 13. RUI Verbs 215

v An internal error was detected within LUA.

Try to reproduce the problem with tracing active, and check that
the host is sending correct data.

lua_prim_rc
LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode parameter was not valid.
The verb did not execute.

lua_prim_rc
LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred, such as resource shortage.

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

Comments
This verb can be issued at any time after the RUI_INIT verb has been issued
(whether or not it has completed). If any other LUA verb is pending when
RUI_TERM is issued, no further processing on the pending verb will take place,
and it will return with a primary return code of LUA_CANCELLED.

After this verb has completed, no other LUA verb can be issued for this session.

RUI_TERM

216 Client/Server Communications Programming

RUI_WRITE

The RUI_WRITE verb sends an SNA request or response unit from the LUA
application to the host, over either the LU-LU session or the LU-SSCP session.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_RUI

lua_verb_length
The length in bytes of the LUA verb record. Set this to sizeof(struct
LUA_COMMON).

lua_opcode
LUA_OPCODE_RUI_WRITE

lua_correlator
Optional. A 4-byte value, which you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

lua_luname
The name in ASCII of the local LU used by the session. This must match
the LU name of an active LUA session.

This parameter is required only if the lua_sid parameter is zero. If a
session ID is supplied in lua_sid, LUA does not use this parameter.

This parameter must be 8 bytes long; pad on the right with spaces, 0x20, if
the name is shorter than 8 characters.

lua_sid
The session ID of the session. This must match a session ID returned on a
previous RUI_INIT verb.

This parameter is optional; if you do not specify the session ID, you must
specify the LU name for the session in the lua_luname parameter.

lua_data_length
The length of the supplied data (see lua_data_ptr). When sending data on
the LU normal flow, the maximum length is as specified in the BIND
received from the host; for all other flows the maximum length is 256
bytes.

When sending a positive response, this parameter is normally set to zero.
LUA will complete the response based on the supplied sequence number
(see lua_th.snf). In the case of a positive response to a BIND or STSN, an
extended response is permitted, so a nonzero value can be used.

When sending a negative response, set this parameter to the length of the
SNA sense code (4 bytes), which is supplied in the data buffer (see
lua_data_ptr).

lua_data_ptr
A pointer to the buffer containing the supplied data.

For a request, or a positive response that requires data, the buffer should
contain the entire RU. The length of the RU must be specified in
data_length.

RUI_WRITE

Chapter 13. RUI Verbs 217

For a negative response, the buffer should contain the SNA sense code.

lua_post_handle
This is a 4-byte handle that is used to post the completion of asynchronous
verbs.

lua_th.snf
Required only when sending a response. The sequence number of the
request to which this is the response.

lua_rh When sending a request, most of the lua_rh flags must be set to
correspond to the RH (request header) of the message to be sent. Do not
set LUA_PI and LUA_QRI; these will be set by LUA.

When sending a response, only the following two lua_rh flags are set:

LUA_RRI
Is set to indicate a response.

LUA_RI
Is not set for a positive response, or set for a negative response.

lua_flag1
Set one of the following flags to indicate which message flow the data is to
be sent on:

LUA_LU_EXP
LU expedited flow

LUA_SSCP_NORM
SSCP normal flow

LUA_LU_NORM
LU normal flow

One and only one of the flags must be set.

Note: Personal Communications does not permit applications to send data
on the SSCP expedited flow (LUA_SSCP_EXP).

Returned Parameters
The following parameter will always be returned:

lua_flag2
This is only set to LUA_ASYNC if the verb completed asynchronously.

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

If the verb executes successfully, LUA also returns the following parameters:

lua_prim_rc
LUA_OK

lua_sid
If the application specified the lua_luname parameter when issuing this
verb, rather than specifying the session ID, LUA supplies the session ID.

lua_th The completed TH of the message written, including the fields filled in by
LUA. You might need to save the value of lua_th.snf (the sequence
number) for correlation with responses from the host.

RUI_WRITE

218 Client/Server Communications Programming

lua_rh The completed RH of the message written, including the fields filled in by
LUA.

lua_flag2
This will be set to one of the following values to indicate which message
flow the data was received on:

LUA_SSCP_EXP
SSCP expedited flow

LUA_LU_EXP
LU expedited flow

LUA_SSCP_NORM
SSCP normal flow

LUA_LU_NORM
LU normal flow

The following return codes indicate that the verb did not complete successfully
because it was canceled by another verb:

lua_prim_rc
LUA_CANCELLED

lua_sec_rc
LUA_TERMINATED

The verb was canceled because an RUI_TERM
verb was issued for this
session.

The following return codes indicate that the verb did not complete successfully
because a supplied parameter was in error:

lua_prim_rc
LUA_PARAMETER_CHECK

lua_sec_rc
Possible values:

LUA_BAD_DATA_PTR
The lua_data_ptr parameter contained an incorrect value.

LUA_DUPLICATE_WRITE_FLOW
An RUI_WRITE was already outstanding for the session flow
specified on this verb (the session flow is specified by setting one
of the lua_flag1 flow flags). Only one RUI_WRITE at a time can
be outstanding on each session flow.

LUA_INVALID_FLOW
lua_flag1 was set to LUA_SSCP_EXP, indicating that the message
should be sent on the SSCP expedited flow. Personal
Communications does not permit applications to send data on this
flow.

LUA_MULTIPLE_WRITE_FLOWS
More than one of the lua_flag1 flow flags was set. One and only
one of these flags must be set to indicate which session flow the
data is to be sent on.

LUA_REQUIRED_FIELD_MISSING
This return code indicates one of the following cases:

RUI_WRITE

Chapter 13. RUI Verbs 219

v None of the lua_flag1 flow flags was set. One and only one of
these flags must be set.

v The RUI_WRITE verb was used to send a response, and the
response required more data than was supplied.

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the
length of the verb record required for this verb.

The following return codes indicate that the verb was issued in a session state in
which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc
Possible values:

LUA_MODE_INCONSISTENCY
The SNA message sent on the RUI_WRITE was not valid at this
time. This is caused by trying to send data on the LU-LU session
before the session is bound. Check the sequence of SNA messages
sent.

LUA_NO_RUI_SESSION
An RUI_INIT verb has not yet completed successfully for this
session, or a session outage has occurred.

The following return codes indicate that the verb record supplied was valid, but
the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

lua_sec_rc
Possible values:

LUA_FUNCTION_NOT_SUPPORTED
This return code indicates one of the following cases:
v lua_rh was set to LUA_FI (Format Indicator), but the first byte

of the supplied RU was not a recognized request code.
v lua_rh was set to LUA_RH_NC (RU category specified the

Network Control (NC) category); Personal Communications does
not permit applications to send requests in this category.

LUA_INVALID_PROCESS
The application instance that issued this verb was not the same as
the one that issued the RUI_INIT verb for this session.

LUA_INVALID_SESSION_PARAMETERS
The application used RUI_WRITE to send a positive response to a
BIND message received from the host. However, the Personal
Communications node cannot accept the BIND parameters as
specified, and has sent a negative response to the host. See “SNA
Layers” on page 154 for more information on the BIND profiles
accepted by Personal Communications.

RUI_WRITE

220 Client/Server Communications Programming

LUA_RSP_CORRELATION_ERROR
When using RUI_WRITE to send a response, the lua_th.snf
parameter (which indicates the sequence number of the received
message being responded to) did not contain a valid value.

LUA_RU_LENGTH_ERROR
The lua_data_length parameter contained an incorrect value. When
sending data on the LU normal flow, the maximum length is as
specified in the BIND received from the host; for all other flows
the maximum length is 256 bytes.

(any other value)
Any other secondary return code here is an SNA sense code
indicating that the supplied SNA data was not valid or could not
be sent. See “SNA Layers” on page 154 for information on
interpreting the SNA sense codes that can be returned.

The following primary and secondary return codes indicate that the verb did not
complete successfully for other reasons:

lua_prim_rc
LUA_SESSION_FAILURE

The session has been brought down.

lua_sec_rc
Possible values:

LUA_LU_COMPONENT_DISCONNECTED
The LUA session has failed because of a problem with the
communications link or with the host LU.

LUA_RUI_LOGIC_ERROR
This return code indicates one of the following things: The host
system has violated SNA protocols. An internal error was detected
within LUA.

Attempt to reproduce the problem with tracing active, and check that the
host is sending correct data.

lua_prim_rc
LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode
parameter was not valid.
The verb did not execute.

lua_prim_rc
LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred, such as resource shortage.

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

Comments
The RUI_INIT verb must be issued successfully before this verb can be issued.
While an existing RUI_WRITE is pending, you can issue a second RUI_WRITE

RUI_WRITE

Chapter 13. RUI Verbs 221

only if it specifies a different session flow from the pending RUI_WRITE; that is,
you cannot have more than one RUI_WRITE outstanding for the same session
flow.

The RUI_WRITE verb can be issued on the SSCP normal flow at any time after a
successful RUI_INIT verb. RUI_WRITE verbs on the LU expedited or LU normal
flows are permitted only after a BIND has been received, and must abide by the
protocols specified on the BIND.

Usage Notes
The successful completion of RUI_WRITE indicates that the message was queued
successfully to the data link; it does not necessarily indicate that the message was
sent successfully, or that the host accepted it. Pacing can be used on the
secondary-to-primary half-session (this is specified on the BIND) to prevent the
LUA application from sending more data than the local or remote LU can handle.
If this is the case, an RUI_WRITE on the LU normal flow can be delayed by LUA
and can take some time to complete.

Note: Personal Communications does not permit applications to send data on the
SSCP expedited flow (LUA_SSCP_EXP).

RUI_WRITE

222 Client/Server Communications Programming

Chapter 14. SLI Entry Points

This chapter describes the procedure entry points for SLI.

© Copyright IBM Corp. 1994, 2016 223

SLI()

Provides event notification for all SLI verbs.

Syntax
void WINAPI SLI (LUA_VERB_RECORD* vcb);

Parameters

vcb Supplied parameter; specifies the address of the verb control block.

Returned Values
The value returned in lua_flag2.async indicates whether asynchronous notification
will occur. If the flag is set (nonzero), asynchronous notification will occur through
event signaling. If the flag is not set, the request completed synchronously.
Examine the primary return code and secondary return code for any error
conditions.

Usage Notes
The application must provide a handle to an event in the lua_post_handle parameter
of the verb control block. The event must be in the not-signaled state.

When the asynchronous operation is complete, the application is notified by the
signaling of the event. Upon signaling of the event, examine the primary return
code and secondary return code for any error conditions. See also: “WinSLI()” on
page 225.

SLI()

224 Client/Server Communications Programming

WinSLI()

Provides asynchronous message notification for all SLI verbs.

Syntax
int WINAPI WinSLI (HWND hWnd,LUA_VERB_RECORD* vcb);

Parameters

hWnd Window handle to receive completion message.

vcb Pointer to verb control block.

Returned Values
The function returns a value indicating whether the request was accepted by the
SLI for processing. A returned value of 0 indicates that the request was accepted
and will be processed. A value other than 0 indicates an error. Possible error codes
are as follows:

WLUAINVALIDHANDLE
The window handle provided is not valid.

The value returned in lua_flag2.async indicates whether asynchronous notification
will occur. If the flag is set (nonzero), asynchronous notification will occur through
a message posted to the application's message queue. If the flag is not set, the
request completed synchronously. Examine the primary return code and secondary
return code for any error conditions.

Usage Notes
Upon completion of the verb, the application's window hWind receives the message
returned by RegisterWindowMessage with WinSLI as the input string. The
lParam argument contains the address of the VCB being posted as complete. The
wParam argument is undefined. It is possible for the request to be accepted for
processing (the function call returns 0), but rejected later with a primary return
code and secondary return code set in the VCB. Examine the primary return code
and secondary return code for any error conditions.

See also: “SLI()” on page 224.

WinSLI()

Chapter 14. SLI Entry Points 225

WinSLICleanup()

Terminates and deregisters an application from the SLI API.

Syntax
BOOL WINAPI WinSLICleanup (void);

Returned Values
The return value indicates success or failure of the deregistration. If the value is
not 0, the application was successfully deregistered. If the value is 0, the
application was not deregistered.

Usage Notes
Use WinSLICleanup to deregister the SLI API, for example, to free up resources
allocated to the specific application.

Using WinSLICleanup is not required.

WinSLICleanup()

226 Client/Server Communications Programming

WinSLIStartup()

Enables an application to specify the required version of the SLI API and to
retrieve details of the API.

Syntax
int WINAPI WinSLIStartup (WORD wVersionRequired,

LUADATA* luadata);

Parameters

wVersionRequired
Specifies the version of SLI API support required. The high-order byte
specifies the minor version (revision) number; the low-order byte specifies
the major version number.

luadata
Returns version of SLI implementation.

Returned Values
The return value specifies whether the application was registered successfully and
whether the SLI API can support the specified version number. If the value is 0, it
was registered successfully and the specified version can be supported. Otherwise,
the return value is one of the following values:

WLUAVERNOTSUPPORTED
The version of SLI API support requested is not provided by this particular
SLI API.

WLUAINVALID
The version requested could not be determined.

Usage Notes
Using WinSLIStartup is not required.

WinSLIStartup()

Chapter 14. SLI Entry Points 227

WinSLIStartup()

228 Client/Server Communications Programming

Chapter 15. SLI Verbs

This chapter contains the following information for each SLI verb:
v The purpose of the verb.
v Parameters supplied to and returned by SLI. The description of each parameter

includes information on the valid values for that parameter, and any additional
information necessary.

v Interactions with other verbs.
v Additional information describing the use of the verb.

© Copyright IBM Corp. 1994, 2016 229

SLI_BID

This verb tells an SLI application program that a message is pending to be read by
SLI_RECEIVE or that status is presented. SLI_BID is used to preview the pending
data so the application can formulate a strategy for receiving the data. When data
or status arrives for the SLI application program, SLI_BID is posted if an eligible
SLI_RECEIVE is not active. The application program issues an SLI_BID verb after
the session opens successfully (or during the SLI_OPEN if the initiation type is
primary with SSCP access) to indicate that the application program will use the bid
mechanism.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_SLI

The verb-code indicator for the LUA verbs.

lua_verb_length
The length of the verb control block. This number must equal the length
expected by the SLI for the SLI_BID verb.

lua_opcode
LUA_OPCODE_SLI_BID

The operation code for the verb.

lua_correlator
A value that links the verb with other user-supplied information. This
parameter is not used by the LUA interface.

lua_luname
The local LU name in ASCII. If the name contains fewer than 8 characters,
you must pad it with blanks. LUA examines this parameter only if lua_sid
is 0. Using the lua_luname parameter on all verbs helps make debugging
easier, especially when multiple LUs are configured.

lua_sid
The session ID returned by SLI_OPEN that identifies the session to be
used. If this parameter is 0, the lua_luname parameter is used for
identification.

lua_post_handle
This is a 4-byte handle that is used to post the completion of asynchronous
verbs.

Returned Parameters
If the verb completed successfully, the following parameters are returned:

lua_prim_rc
The primary return code, set by the verb function.

lua_sec_rc
The secondary return code, set by the verb function.

lua_data_length
The length of the peek data received.

SLI_BID

230 Client/Server Communications Programming

lua_peek_data
This parameter contains up to the first 12 bytes of RU data to be read. The
length of the data returned in this parameter is in the lua_data_length
parameter.

lua_th A 6-byte parameter that contains the SNA transmission header (TH) for the
message.

lua_rh A 3-byte parameter that contains the SNA request/response header (RH)
for the message.

lua_message_type
The type of SNA data and commands. The valid message types follow:

LUA_MESSAGE_TYPE_LU_DATA
LUA_MESSAGE_TYPE_SSCP_DATA
LUA_MESSAGE_TYPE_RSP
LUA_MESSAGE_TYPE_BID
LUA_MESSAGE_TYPE_BIND
LUA_MESSAGE_TYPE_BIS
LUA_MESSAGE_TYPE_CANCEL
LUA_MESSAGE_TYPE_CHASE
LUA_MESSAGE_TYPE_LUSTAT_LU
LUA_MESSAGE_TYPE_LUSTAT_SSCP
LUA_MESSAGE_TYPE_QC
LUA_MESSAGE_TYPE_QEC
LUA_MESSAGE_TYPE_RELQ
LUA_MESSAGE_TYPE_RTR
LUA_MESSAGE_TYPE_SBI
LUA_MESSAGE_TYPE_SIGNAL
LUA_MESSAGE_TYPE_STSN

The SLI receives and responds to the BIND and STSN requests through the
LUA interface extension routines.

LU_DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA
commands.

lua_flag2
A 1-byte flag that contains bits used as output parameters. At verb
completion, all bits that are not described by value are reserved and must
be set to 0. The flag in the high-order half-byte follows:
lua_flag2.async

A flag that indicates that this verb completes asynchronously

The low-order half-byte contains flags that describe the message session
and flow. One of the following flags is returned:
lua_flag2.sscp_exp

Specifies SSCP-expedited flow
lua_flag2.sscp_norm

Specifies SSCP-normal flow
lua_flag2.lu_exp

Specifies LU-expedited flow
lua_flag2.lu_norm

Specifies LU-normal flow

lua_prim_rc
The primary return code, set by the verb function. For details, see
Appendix B, “LUA Verb Return Codes,” on page 327.

SLI_BID

Chapter 15. SLI Verbs 231

lua_sec_rc
The secondary return code, set by the verb function. For details, see
Appendix B, “LUA Verb Return Codes,” on page 327.

Usage Notes
Only one SLI_BID can be active for each session. The application program can be
bid once for each flow if the SLI_BID is reactivated, even if the data is not read. If
the application program does not read the bid data, it is not bid again for that
specific flow.

Issuing the SLI_BID verb initially enables the bid function. After the SLI_BID verb
posts complete, the bid function is disabled. The bid function can be reenabled in
one of two ways:
v By calling the SLI again with the address of an SLI_BID verb control block.
v By issuing an SLI_RECEIVE with the lua_flag1.bid_enable parameter set to 1. If

SLI_RECEIVE with lua_flag1.bid_enable is issued, the SLI uses the address of
the last-accepted SLI_BID verb control block as the active bid.

Notes:

1. If multiple flows have data available when the SLI_BID is issued, the data
returned by the SLI_BID is from the highest priority flow that has data. From
highest to lowest, the priorities are:
v SSCP–expedited
v LU–expedited
v SSCP–normal
v LU–normal

2. If, following SLI_BID completion, the LUA application issues an SLI_RECEIVE
with multiple lua_flag1 flow flags set, the data read could be for a different
flow from the data returned by the SLI_BID. This could happen if higher
priority data arrived from the host between the time that the SLI_BID
completed and the SLI_RECEIVE was issued.
The LUA application can, however, guarantee that an SLI_RECEIVE reads the
data for which it was just bid. It does so by setting only one of the lua_flag1
flow flags in the control block for the SLI_RECEIVE verb, specifying the same
flow as that returned in the lua_flag2 field of the completed SLI_BID.
The SLI_BID completes as soon as an RU arrives. This RU could be the only
RU in a chain, or it could be the first RU in a multiple-RU chain. At SLI_BID
completion, a single element chain is the only time a complete chain is bid to
the application.
If the SLI_BID completes with the first RU of a multiple-RU chain and the
subsequent SLI_RECEIVE specifies the lua_flag1.nowait option, the
lua_flag1.nowait option is ignored. The SLI_RECEIVE verb returns in progress
and will complete asynchronously after all RUs in the chain arrive.

If status is available, the application must read it. Until the application reads the
status by issuing an SLI_BID or SLI_RECEIVE, all other operations are rejected,
except for:
v SLI_SEND verbs on the SSCP flow
v SLI_CLOSE

When the primary return code is STATUS, the only SLI_BID parameters returned
are lua_prim_rc, lua_sec_rc, and lua_sid. If SLI_BID and SLI_RECEIVE are both

SLI_BID

232 Client/Server Communications Programming

active when status becomes available, only the SLI_BID is posted with the status.
When the application program is bid for status, all information is presented and no
SLI_RECEIVE is required.

When the value of the primary return code is STATUS, the possible values for the
secondary return code are:
v READY

Indicates the SLI session is now ready for processing all additional commands.
The READY status is issued after a prior NOT_READY status was received.

v NOT_READY
Indicates that a CLEAR command or an UNBIND command with a type value
of X'02' or X'01' was received from the host. The SLI session is suspended.
– When a CLEAR arrives, the session is suspended until an SDT command is

received.
– When an SNA UNBIND type X'02' (UNBIND with BIND forthcoming)

arrives, the session is suspended until BIND, optional CRV and STSN, and
SDT commands are received. Any user extension routines must be reentrant.

– When an UNBIND type X'01' (UNBIND normal) arrives and the SLI_OPEN
verb for this session specified an lua_session_type of
LUA_SESSION_TYPE_DEDICATED, the session is suspended until BIND,
optional CRV and STSN, and SDT commands are received. User extension
routines provided to process these commands must be reentrant.
After the CLEAR, UNBIND type X'02', or UNBIND type X'01' arrives, the
application can send SSCP data before reading the NOT_READY status, and
can both send and receive SSCP data after reading the NOT_READY status.

v SESSION_END_REQUESTED
Indicates that a SHUTD command was received from the host. The host is
requesting that the SLI application end the session as soon as convenient.
When the application is ready to end the session, it should issue an SLI_OPEN.

v INIT_COMPLETE
Indicates that an RUI_INIT verb completed during SLI_OPEN processing. This
status is returned only when the SLI_OPEN lua_init_type parameter is
LUA_INIT_TYPE_PRIM_SSCP.
After this status is received, the application can send and receive data on the
SSCP-normal flow.

In addition to the return codes, additional SNA sense data can be returned if a
request unit sent by the host application has been converted into an exception
request (EXR). An EXR is indicated by having the SLI_BID complete with the
following returned verb parameters values:

Parameters

lua_prim_rc OK (X'0000')

lua_sec_rc OK (X'00000000')

lua_rh.rri bit off (request unit)

lua_rh.sdi bit on (sense data included)

Under these conditions, the request has been converted into an EXR and up to 7
bytes of information is returned in the lua_peek_data verb parameter. The format
of the information in the lua_peek_data parameter is as follows:

SLI_BID

Chapter 15. SLI Verbs 233

v Bytes 0—3 contain sense data defining the error detected. If LUA converted the
request into an EXR, the sense data is one of the following values:

Sense Data Value of byes 0 - 3

LUA_MODE_INCONSISTENCY X'08090000'

LUA_BRACKET_RACE_ERROR X'080B0000'

LUA_BB_REJECT_NO_RTR X'08130000'

LUA_RECEIVER_IN_TRANSMIT_MODE X'081B0000'

LUA_CRYPTOGRAPHY_FUNCTION_INOP X'08480000'

LUA_SYNC_EVENT_RESPONSE X'10010000'

LUA_RU_DATA_ERROR X'10020000'

LUA_RU_LENGTH_ERROR X'10020000'

LUA_INCORRECT_SEQUENCE_NUMBER X'20010000'

The information returned to bytes 4 through 6 in lua_peek_data contain up to the
first 3 bytes of the original request unit.

SLI_BID

234 Client/Server Communications Programming

SLI_CLOSE

This verb closes the SNA session. SLI_CLOSE terminates the connection with the
host application program and frees the resources that were used. The posting of
SLI_CLOSE signifies that the LU-LU and the SSCP-LU communications have
ended.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_SLI

The verb-code indicator for the LUA verbs.

lua_verb_length
The length of the verb control block. This number must equal the length
expected by the SLI for the SLI_CLOSE verb.

lua_opcode
LUA_OPCODE_SLI_CLOSE

The operation code for SLI_CLOSE.

lua_correlator
A value that an LUA application program can supply to help correlate this
verb with other information that the program supplies. This parameter is
not used by the LUA interface.

lua_luname
The local LU name in ASCII. If the name contains fewer than 8 characters,
you must pad it with blanks. LUA examines this parameter only if lua_sid
is 0. Using the lua_luname parameter on all verbs helps make debugging
easier, especially when multiple LUs are configured.

lua_sid
The session ID returned by a successfully completed SLI verb that
identifies the session to be used. If this parameter is 0, the lua_luname
parameter is used for identification.

lua_post_handle
This is a 4-byte handle that is used to post the completion of asynchronous
verbs.

lua_flag1.close_abend
Specifies whether the close is a close immediate (on) or a normal close
(off).

Returned Parameters
If the verb completed successfully, the following parameters are returned:

lua_flag2.async
A flag that indicates that this verb completes asynchronously.

lua_prim_rc
The primary return code, set by the verb function. For details, see
Appendix B, “LUA Verb Return Codes,” on page 327.

lua_sec_rc
The secondary return code, set by the verb function. For details, see
Appendix B, “LUA Verb Return Codes,” on page 327.

SLI_CLOSE

Chapter 15. SLI Verbs 235

Usage Notes
There are two types of SLI_CLOSE: close normal and close abend.
v Close Normal

The close normal is identified when the lua_flag1.close_abend parameter is set
to 0. The close sequence can be secondary initiated or primary initiated. The
close normal uses a SHUTD command for a primary initiated or primary
initiated. The close normal uses a SHUTD command for a primary initiated close
and sends an RSHUTD command for a secondary initiated close.
If the host sends an UNBIND type X'02' (UNBIND with BIND forthcoming)
during a primary or secondary initiated SLI_CLOSE normal, the session is not
closed. The SLI_CLOSE verb completes with the CANCELED primary return
code, RECEIVED_UNBIND_HOLD secondary return code. The application
program should issue an SLI_BID or SLI_RECEIVE verb to return STATUS.
If the host sends UNBIND type X'01' (normal UNBIND) during a primary or
secondary initiated SLI_CLOSE Normal and the SLI_OPEN verb for this session
specified and lua_session_type of LUA_SESSION_TYPE_DEDICATED, the
session is not closed. The SLI_CLOSE verb completes with the CANCELED
primary return code and the RECEIVED_UNBIND_NORMAL secondary return
code. The application program should issue SLI_BID or SLI_RECEIVE to return
STATUS.

v Close Abend
The close abend is identified when the lua_flag.close_abend parameter is set to
1. The CLOSE_ABEND option tells the SLI to end the session immediately.

The following SNA commands can flow during the different types of close
processing:
v SLI_CLOSE Normal

– Secondary Initiated Close
After the SLI application program issues an SLI_CLOSE verb with
lua_flag.close_abend set to 0, the SLI performs the following processing:

Writes the RSHUTD command
Reads and processes the RSHUTD command response
Reads and processes the CLEAR command (if required)
Writes the CLEAR command response (if required)
Reads and processes the UNBIND command
Writes the UNBIND command response
Stops the RUI session

– Primary Initiated Close
Reads the SHUTD command and gives the application
SESSION_END_REQUESTED status.
After the SLI application program issues SLI_CLOSE with
lua_flag.close_abend set to 0, the SLI performs the following processing:

Writes the CHASE command
Reads and processes the CHASE command response
Writes the Shutdown Complete (SHUTC) command
Reads and processes the SHUTC command response
Reads and processes the CLEAR command (if required)
Writes the CLEAR command response (if required)

SLI_CLOSE

236 Client/Server Communications Programming

Reads and processes the UNBIND command
Writes the UNBIND command response
Stops the RUI session

– SLI_CLOSE Abend
- After the SLI application program issues an SLI_CLOSE verb with

lua_flag1.close_abend set to 1, the SLI stops the RUI session.

The completion of the SLI_CLOSE verb implies that the LU-LU session is
unbound and that the SSCP was notified of no-session capability for the LU. After
the SLI_CLOSE verb completes successfully, no other SLI command can be issued
for the session except another SLI_OPEN . All pending commands are terminated
when the SLI_CLOSE verb is received.

Notes:

1. Do not use this function to close sessions that are established using the RUI.
2. Before you issue an SLI_CLOSE normal, be certain that all owed responses

have been sent to the host. The SLI automatically changes the CLOSE type to
ABEND if responses are owed.
The CLOSE type might be automatically changed to ABEND if the LUA
application program ignores data. It is good programming practice to use the
SLI_RECEIVE verb to receive all data from the host. Otherwise, the SLI might
assume that a response is owed, even if the data was an exception request, and
change the CLOSE type to ABEND.

SLI_CLOSE

Chapter 15. SLI Verbs 237

SLI_OPEN

This verb opens an SNA session for an application program that is requesting
session-level communications on the link. The session-level function issues SNA
commands on behalf of the application program to open the session. The LUA
application program is simplified because SLI functions perform multiple RUI
functions to establish the LU-LU session.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_SLI

The verb-code indicator for the LUA verbs.

lua_verb_length
The length of the verb control block. This number must equal the length
expected by the SLI for the SLI_OPEN verb.

lua_opcode
LUA_OPCODE_SLI_OPEN

lua_correlator
A value that an LUA application program can supply to help correlate this
verb with other information that the program supplies. This parameter is
not used by the Windows LUA interface.

lua_luname
The local LU name in ASCII. If the name contains fewer than 8 characters,
you must pad it with blanks.

This parameter is required by SLI_OPEN. Other verbs require this
parameter only if the lua_sid parameter is zero; however, using the
lua_luname parameter on all verbs helps make debugging easier,
especially when multiple LUs are configured.

The following information only applies to Communications
Server Win32 SNA API clients.

The default LUA session name for each user can be assigned using the
appropriate configuration utility, either INI configuration or LDAP.

LUA programs, such as 3270 emulators, can choose to use a default LUA
session name rather than specify one directly. When an LUA program
issues an SLI_OPEN verb with the lua_name field set to binary zeroes, or
ASCII blanks, the SLI API uses the configured default LUA session name.

lua_data_length
The length of the unformatted LOGON or INITSELF data being sent.

lua_data_ptr
A pointer to the data buffer of the application. Because this buffer is used
for data and SNA commands, the contents of the buffer are usually in
EBCDIC.

This data buffer contains one of the following things:

SLI_OPEN

238 Client/Server Communications Programming

v The user's SNA INITSELF request unit (RU) with all of the required
application program data filled in if the lua_init_type parameter specifies
secondary initiated with INITSELF. The INITSELF contains user
information, such as the mode name and the PLU name. For more
information, refer to Systems Network Architecture Network Product
Formats.

v The LOGON message that is sent on the SSCP-normal flow when the
lua_init_type parameter specifies secondary initiated with an
unformatted LOGON message.

v If the session is primary initiated, this buffer is not used and the
lua_data_ptr parameter must be 0.

lua_post_handle
If asynchronous notification is to be accomplished by events,
lua_post_handle contains the handle of the event to be signaled.

lua_encr_decr_option
Cryptography is not supported.

lua_init_type
Defines how the LU-LU session is initialized by the Windows LUA
interface. Valid values are:

LUA_INIT_TYPE_SEC_IS
Secondary-initiated; send the INITSELF command that is supplied
in the data buffer of the OPEN

LUA_INIT_TYPE_SEC_LOG
Secondary-initiated with an unformatted LOGON message
specified in the data buffer of the OPEN

LUA_INIT_TYPE_PRIM
Primary-initiated; wait on BIND

LUA_INIT_TYPE_PRIM_SSCP
Primary-initiated with SSCP access

lua_session_type
A value that defines how the SLI processes UNBIND type X'01', UNBIND
normal. The valid values follow:

LUA_SESSION_TYPE_NORMAL
When an UNBIND normal is received from the primary logical
unit, the SLI sends a positive response and issues RUI_TERM
which causes a NOTIFY disabled to flow to the SSCP. The
SSCP-LU flow is disabled. This is the default value for this
parameter.

LUA_SESSION_TYPE_DEDICATED
When an UNBIND normal is received from the primary logical
unit, the SLI sends a positive response and the SLI session is
suspended until a new BIND, optional CRV and STSN, and SDT
commands are received. In this case, the SLI does not issue
RUI_TERM and NOTIFY disabled does not flow to the SSCP.

LUA_SESSION_TYPE_DEDICATED is not
supported by SNA API clients.

SLI_OPEN

Chapter 15. SLI Verbs 239

lua_wait
The number of seconds (up to a maximum of 65 535) for the SLI to wait
before automatically retrying the transmission of the INITSELF or the
LOGON message after the host sends any one of these messages:
v A negative response to the INITSELF or LOGON message and the

secondary return code is one of the following values:
– RESOURCE_NOT_AVAILABLE (X'08010000')
– SESSION_LIMIT_EXCEEDED (X'08050000')
– SSCP_LU_SESS_NOT_ACTIVE (X'0857nnnn' where nnnn is X'0002')
– SESSION_SERVICE_PATH_ERROR (X'087Dnnnn' where nnnn is

X'0000')
v A Network Services Procedure Error (NSPE) message
v A NOTIFY command, which indicates a procedure error

If the value of lua_wait is 0, no retries occur. This parameter applies only
to sessions initiated by the SLU. If the PLU initiates the session, lua_wait is
ignored.

lua_extension_list_offset
Specifies the offset from the start of the verb control block to the extension
list of user-supplied DLLs. The value must be the beginning of a word
boundary. If there is no extension list, the value must be set to zero.

lua_routine_type
The type of routine of the following module and procedure name. The
valid entries follow:

lua_routine_type_bind
Bind routine

lua_routine_type_crv
Cryptography vector routine

Note: Encryption is not currently supported.

lua_routine_type_sdt
Start data traffic (SDT) routine

lua_routine_type_sdt is not supported by SNA API
clients.

lua_routine_type_stsn
Set and test sequence numbers (STSN) routine

lua_routine_type_end
Ending delimiter for list of routines.

lua_module_name
Provides the user-supplied ASCII module name. The parameter can be up
to eight characters in length, with the remaining bytes set to X'00'.

lua_procedure_name
Provides the user-supplied DLL procedure name, in ASCII. The parameter
can be up to 32 characters in length, with the remaining bytes set to X'00'.

SLI_OPEN

240 Client/Server Communications Programming

Returned Parameters
If the verb completed successfully, the following parameters are returned:

lua_flag2.async
A flag that indicates that this verb completes asynchronously.

lua_sid
The session ID that subsequent verbs use to identify the session to be used.
The value of this parameter is valid only if the primary return code is OK
or IN_PROGRESS. If the SLI_OPEN fails after having returned
IN_PROGRESS, the session ID is no longer valid.

lua_prim_rc
The primary return code, set by the verb function. For details, see
Appendix B, “LUA Verb Return Codes,” on page 327.

lua_sec_rc
The secondary return code, set by the verb function. For details, see
Appendix B, “LUA Verb Return Codes,” on page 327.

Usage Notes
The SLI can perform the following session initialization tasks:
v Start the RUI session
v Write an INITSELF or an unformatted logon message (secondary initialization

only).
v Read and process an INITSELF response or the response to the logon message

(secondary initialization only).
v Read and verify a BIND command from the host.
v Write a BIND response.
v Read and process an UNBIND type X'02' or an UNBIND type X'01' if one is sent

by the host.
v Write the UNBIND response and prepare to receive the subsequent BIND.
v Read and process the STSN command (if required).
v Write the STSN response (if required).
v Read and process the SDT command.
v Write the SDT response.
v Go to user routines to process BIND, STSN, and SDT commands when they are

specified by the application program in the SLI_OPEN verb.

The SLI_OPEN verb handles all SNA message traffic through the response to the
SDT command.

An application program issues an SLI_OPEN verb to select a particular defined
LUA LU in the lua_luname parameter. This field is an ASCII string that should be
padded with blanks.

The lua_init_type parameter tells the SLI how to establish the LU session. The
following list describes the initialization options:
v Secondary Initialization with INITSELF

Set the lua_init_type parameter to LUA_INIT_TYPE_SEC_IS for this option.
With this option, the application program must supply the INITSELF command
used in the SLI_OPEN verb because the INITSELF contains all of the
session-specific information needed by the host, such as the mode name and the

SLI_OPEN

Chapter 15. SLI Verbs 241

PLU name. The lua_data_ptr parameter gives the address of the INITSELF, and
the lua_data_length parameter gives its length.

v Secondary Initialization with an Unformatted LOGON Message
Set the lua_init_type parameter to LUA_INIT_TYPE_SEC_LOG for this option.
In secondary initialization with an unformatted LOGON message, the
lua_data_ptr parameter contains the address of the user's EBCDIC LOGON
message of the length that is specified in the lua_data_length parameter.

v Primary Initialization
Set the lua_init_type parameter to LUA_INIT_TYPE_PRIM for this option. In
primary initialization, the SLU does nothing to start the session with the host.
The SLI_OPEN remains IN_PROGRESS until the host starts the session with a
BIND command and a subsequent SDT command.

v Primary Initialization with SSCP Access
Set the lua_init_type parameter to LUA_INIT_TYPE_PRIM_SSCP for this option.
In primary initialization with SSCP access, the SLI does not send commands to
the host to start the session. Instead, the SLI allows the application program to
issue SLI_SEND and SLI_RECEIVE verbs for SSCP-normal flow data to send
INITSELF commands or LOGON messages and to receive their responses. With
this option, the application program is not limited to one INITSELF or LOGON
message as it is for the secondary initialization types. This is the only
SLI_OPEN type that allows the application program to issue SLI verbs before
the SLI_OPEN completes. After the SLI_OPEN verb is issued, the application
program can issue an SLI_BID or an SLI_RECEIVE to get INIT_COMPLETE
status. This status tells the application program that it can begin to issue the
SLI_SEND and SLI_RECEIVE verbs for SSCP-normal flow data.

The optional lu_session_type parameter tells the SLI how to process UNBIND type
X'01', UNBIND normal. This parameter takes effect after the SLI_OPEN verb
passes initial parameter checking and stays in effect until SLI_CLOSE abend is
issued or until the SLI issues RUI_TERM. The following list describes standard
UNBIND and dedicated UNBIND processing:
v Standard UNBIND Normal Processing SLI_CLOSE Normal

Set the lua_session_type parameter to LUA_SESSION_TYPE_NORMAL for this
option. This is the default value. With this option, the SLI sends a positive
response to an UNBIND Normal sent by the primary LU and issues
RUI_TERM, which causes a NOTIFY Disabled to flow to the SSCP. These
actions do the following things:
– End the LU-LU session.
– Indicate to the SSCP and the PLU that the SLU is unable to process new

BINDs. New BINDs that are received are rejected.
– Prevent data from flowing on the SSCP-LU session.

The SLI will issue RUI_TERM when it receives any UNBIND except type
X'02' (UNBIND with BIND forthcoming).

– Dedicated UNBIND Normal Processing
Set the lua_session_type parameter to LUA_SESSION_TYPE_DEDICATED for
this option. With this option, the SLI sends a positive response to an UNBIND
normal sent by the primary logical unit. However, the SLI does not issue
RUI_TERM. The status of the SSCP-LU session is not changed (enabled). The
SLI session is suspended until BIND, optional CRV and STSN, and SDT
commands are received. An SLI session that is waiting for a new BIND can be
terminated by issuing an SLI_CLOSE Abend.

SLI_OPEN

242 Client/Server Communications Programming

The SLI issues RUI_TERM when it receives any UNBIND except type X'02' or
type X'01'.
This option is useful when the primary LU is unable to send an UNBIND
with BIND forthcoming, but expects this type of behavior when UNBIND
normal is sent.

Application-Supplied BIND, SDT, or STSN Routines

v If the application program supplies BIND, SDT, or STSN routines, the DLL
module names and procedure entry points are passed in the SLI_OPEN
extension routine list. If the corresponding SNA request is received, these
routines are called during the SLI_OPEN. If no BIND routine is supplied, the
SLI does a limited amount of BIND checking and responds as needed. If an
STSN routine is not supplied and an STSN request is received, the SLI issues a
positive response to indicate that no information is available. If an SDT routine
is not supplied and an SDT request is received, the SLI issues a positive
response.

Posting

v The posting of the SLI_OPEN with OK in the lua_prim_rc parameter means that
the SLI_OPEN completed successfully and that an LU-LU data flow session was
established. After the session is opened successfully, the application program can
issue SLI_SEND, SLI_RECEIVE, SLI_PURGE, SLI_BID , or SLI_CLOSE verbs.

Session Recovery

v The SLI supplies limited session recovery for the application program. When
any SLI verb completes with SESSION_FAILURE in the lua_prim_rc parameter,
the application program must reissue the SLI_OPEN. In this situation, the
program does not have to issue an SLI_CLOSE verb before it issues a new
SLI_OPEN verb.

Terminating a Pending SLI_OPEN

v To terminate a pending SLI_OPEN, issue an SLI_CLOSE with
lua_flag1.close_abend parameter set to 1.

SLI_OPEN

Chapter 15. SLI Verbs 243

SLI_PURGE

This verb purges an outstanding SLI_RECEIVE. SLI_PURGE might be needed by
an application program that uses an SLI_RECEIVE verb with the WAIT option.
For example, if the SLI_RECEIVE verb does not complete in a specified interval of
time, the application program can issue SLI_PURGE. The application program
supplies the address of the SLI_RECEIVE verb control block in the lua_data_ptr
parameter to specify which SLI_RECEIVE to purge.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_SLI

The verb-code indicator for the LUA verbs.

lua_verb_length
The length of the verb control block. This number must equal the length
expected by the SLI for the SLI_PURGE verb.

lua_opcode
LUA_OPCODE_SLI_PURGE

The operation code for the verb.

lua_correlator
A value that an LUA application program can supply to help correlate this
verb with other information that the program supplies. This parameter is
ignored by the LUA interface.

lua_luname
The local LU name in ASCII. If the name contains fewer than 8 characters,
you must pad it with blanks. LUA examines this parameter only if lua_sid
is 0. Using the lua_luname parameter on all verbs helps make debugging
easier, especially when multiple LUs are configured.

lua_sid
The session ID, returned by SLI_OPEN, that identifies the session to be
used. If this parameter is 0, the lua_luname parameter is used for
identification.

lua_data_ptr

A pointer to the application program SLI_RECEIVE verb control block to
be purged.

lua_post_handle
If asynchronous notification is to be accomplished by events,
lua_post_handle contains the handle of the event to be signaled.

Returned Parameters
If the verb completes successfully, the following parameters are returned:

lua_flag2.async
A flag that indicates that this verb completes asynchronously.

lua_prim_rc
The primary return code, set by the verb function. For details, see
Appendix B, “LUA Verb Return Codes,” on page 327.

SLI_PURGE

244 Client/Server Communications Programming

lua_sec_rc
The secondary return code, set by the verb function. For details, see
Appendix B, “LUA Verb Return Codes,” on page 327.

Usage Notes
If SLI_RECEIVE is purged successfully, SLI_RECEIVE ends with the CANCELED
primary return code and the SLI_PURGE completes with the OK primary return
code.

SLI_PURGE

Chapter 15. SLI Verbs 245

SLI_RECEIVE

This verb transfers data or a status code to the application program. SLI_RECEIVE
also provides the current status of the session to the Windows LUA application.

An SLI_RECEIVE verb for an LU-LU session flow can only be issued on an
opened session. If the SLI_OPEN initiation type is primary with SSCP access, the
application program can issue an SLI_RECEIVE verb for SSCP-LU normal flow
data even when an SLI_OPEN verb is pending.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_SLI

The verb-code indicator for the LUA verbs.

lua_verb_length
The length of the verb control block. This number must equal the length
expected by the SLI for the SLI_RECEIVE verb.

lua_opcode
LUA_OPCODE_SLI_RECEIVE

lua_correlator
A value that an LUA application program can supply to help correlate this
verb with other information that the program supplies. This parameter is
ignored by the LUA interface.

lua_luname
The local LU name in ASCII. If the name contains fewer than 8 characters,
you must pad it with blanks. LUA examines this parameter only if lua_sid
is 0. Using the lua_luname parameter on all verbs helps make debugging
easier, especially when multiple LUs are configured.

lua_sid
The session ID returned by SLI_OPEN that identifies the session to be
used. If this parameter is 0, the lua_luname parameter is used for
identification.

lua_max_length
The length of the buffer used to receive data.

lua_data_ptr
A pointer to the buffer where the SLI places data received from the host
application. Because this buffer is used for data and SNA commands, the
contents of the buffer are usually in EBCDIC.

lua_post_handle
If asynchronous notification is to be accomplished by events,
lua_post_handle contains the handle of the vent to be signaled.

lua_flag1.bid_enable
A flag that specifies whether the LUA should reuse the SLI_BID verb
control block on behalf of the LUA application program.

lua_flag1.nowait
A flag that tells the SLI to post the SLI_RECEIVE verb with the return code
NO_DATA when there is no data to be read. If the first RU of a
multiple-RU chain arrives and the lua_flag1.nowait option has been

SLI_RECEIVE

246 Client/Server Communications Programming

selected, the lua_flag1.nowait option is ignored. The SLI_RECEIVE verb
returns IN_PROGRESS and completes asynchronously after all RUs of the
chain arrive. If chaining is allowed, the lua_flag1.nowait option should not
be used.

The lower-order half-byte of lua_flag1 contains flags that describe the message
session and flow. The flow flags describe the flow or flows on which the LUA
application program can accept a message. At least one of the following flags must
be set, but the set flags must not overlap flags that are set in another active
SLI_RECEIVE verb.

lua_flag1.sscp_exp
A flag that specifies SSCP-expedited flow.

lua_flag1.sscp_norm
A flag that specifies SSCP-normal flow.

lua_flag1.lu_exp
A flag that specifies LU-expedited flow

lua_flag1.lu_norm
A flag that specifies LU-normal flow.

Returned Parameters
If the verb completed successfully, the following parameters are returned:

lua_data_length
The length of the data being received.

lua_th A 6-byte parameter that contains the SNA transmission header (TH) for the
message.

lua_rh A 3–byte parameter that contains the SNA request/response header (RH)
for the message.

lua_message_type
The type of SNA data and commands. When the SLI application program
wants to send data, the application program must set this parameter. The
valid message types follow:

LUA_MESSAGE_TYPE_LU_DATA
LUA_MESSAGE_TYPE_SSCP_DATA
LUA_MESSAGE_TYPE_RSP
LUA_MESSAGE_TYPE_BID
LUA_MESSAGE_TYPE_BIS
LUA_MESSAGE_TYPE_CANCEL
LUA_MESSAGE_TYPE_CHASE
LUA_MESSAGE_TYPE_LUSTAT_LU
LUA_MESSAGE_TYPE_LUSTAT_SSCP
LUA_MESSAGE_TYPE_QC
LUA_MESSAGE_TYPE_QEC
LUA_MESSAGE_TYPE_RELQ
LUA_MESSAGE_TYPE_RTR
LUA_MESSAGE_TYPE_SBI
LUA_MESSAGE_TYPE_SIGNAL

LU_DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA
commands.

lua_flag2.async
A flag that specifies that this verb completes asynchronously.

SLI_RECEIVE

Chapter 15. SLI Verbs 247

lua_flag2.sscp_exp
A flat that specifies SSCP-expedited flow.

lua_flag2.sscp_norm
A flag that specifies SSCP-normal flow.

lua_flag2.lu_exp
A flag that specifies LU-expedited flow.

lua_flag2.lu_norm
A flag that specifies LU-normal flow.

lua_prim_rc
The primary return code, set by the verb function. For details, see
Appendix B, “LUA Verb Return Codes,” on page 327.

lua_sec_rc
The secondary return code, set by the verb function. For details, see
Appendix B, “LUA Verb Return Codes,” on page 327.

Usage Notes
SLI_RECEIVE receives responses, SNA commands, and request unit data from the
host. SLI_RECEIVE also provides the status of the session to the Windows LUA
application. An SLI_OPEN request must complete before SLI_RECEIVE can be
issued. However, if SLI_OPEN is issued with lua_init_type set to
LUA_INIT_TYPE_PRIM_SSCP, an SLI_RECEIVE over the SSCP normal flow may
be issued as soon as SLI_OPEN returns an IN_PROGRESS.

Data is received by the application in one of four session flows. The four session
flows, from highest to lowest priority are:
v SSCP expedited
v LU expedited
v SSCP normal
v LU normal

The data flow type that SLI_RECEIVE verb will process is specified in lua_flag1.
The application can also specify whether it wants to look at more than one type of
data flow. When multiple flow bits are set, the highest priority is received first.
When SLI_RECEIVE completes processing, lua_flag2 indicates the specific type of
flow for which data has been received by the Windows LUA application.

If SLI_BID successfully completes before SLI_RECEIVE is issued, the Windows
LUA interface can be instructed to reuse the last SLI_BID’s verb control block. To
do this, issue SLI_RECEIVE with the lua_flag1.bid_enable parameter set to 1.

When using lua_flag1.bid_enable parameter, the SLI_BID storage must not be
freed because the last SLI_BID verb’s verb control block is used. Also, when using
the lua_flag1.bid_enable parameter, the successful completion of SLI_BID will be
posted.

If SLI_RECEIVE is issued with lua_flag1.nowait when no data is available to
receive, LUA_NO_DATA will be the secondary return code set by the Windows
LUA interface.

If status is available, the application must read it. Until the application reads the
status by issuing an SLI_BID or SLI_RECEIVE, all other operations are rejected,
except for:

SLI_RECEIVE

248 Client/Server Communications Programming

v SLI_SEND verbs on the SSCP flow
v SLI_CLOSE

When the primary return code is STATUS, the only SLI_RECEIVE parameters
returned are lua_prim_rc, lua_sec_rc, and lua_sid. An active SLI_RECEIVE verb
can be posted with the STATUS return code only when there is no active SLI_BID
verb.

When the value of the primary return code is STATUS, the possible values for the
secondary return code are:
v READY

Indicates the SLI session is now ready for processing all additional commands.
The READY status is issued after a prior NOT_READY status was received.

v NOT_READY
Indicates that a CLEAR command or an UNBIND command with a type value
of X'02' or X'01' was received from the host. The SLI session is suspended.
– When a CLEAR arrives, the session is suspended until an SDT command is

received.
– When an UNBIND type X'02' (UNBIND with BIND forthcoming) arrives, the

session is suspended until BIND, optional CRV and STSN, and SDT
commands are received. Any user extension routines must be reentrant.

– When an UNBIND type X'01' (UNBIND normal) arrives and the SLI_OPEN
verb for this session specified an lua_session_type of
LUA_SESSION_TYPE_DEDICATED, the session is suspended until BIND,
optional CRV and STSN, and SDT commands are received. User extension
routines provided to process these commands must be reentrant.
After the CLEAR, UNBIND type X'02', or UNBIND type X'01' arrives, the
application can send SSCP data before reading the NOT_READY status, and
can both send and receive SSCP data after reading the NOT_READY status.

v SESSION_END_REQUESTED
Indicates that a SHUTD command was received from the host. The host is
requesting that the SLI application end the session as soon as convenient.
When the application is ready to end the session, it should issue an SLI_CLOSE
or an SLI_CLOSE Normal.

v INIT_COMPLETE
Indicates that an RUI_INIT verb completed during SLI_OPEN processing. This
status is returned only when the SLI_OPEN lua_init_type parameter is
LUA_INIT_TYPE_PRIM_SSCP.
After this status is received, the application can send and receive data on the
SSCP-normal flow.

In addition to the return codes, additional SNA sense data can be returned if a
request unit sent by the host application has been converted into an exception
request (EXR). An EXR is indicated by having the SLI_RECEIVE complete with
the following returned verb parameters values:

Parameters

lua_prim_rc OK (X'0000')

lua_sec_rc OK (X'00000000')

lua_rh.rri bit off (request unit)

lua_rh.sdi bit on (sense data included)

SLI_RECEIVE

Chapter 15. SLI Verbs 249

Under these conditions, the request has been converted into an EXR and up to 7
bytes of information is returned in the application buffer. The format of the
information in the data buffer is:
v Bytes 0—3 contain sense data defining the error detected. If LUA converted the

request into an EXR, the sense data is one of the following values:

Sense Data Value of byes 0 - 3

LUA_MODE_INCONSISTENCY X'08090000'

LUA_BRACKET_RACE_ERROR X'080B0000'

LUA_BB_REJECT_NO_RTR X'08130000'

LUA_RECEIVER_IN_TRANSMIT_MODE X'081B0000'

LUA_CRYPTOGRAPHY_FUNCTION_INOP X'08480000'

LUA_SYNC_EVENT_RESPONSE X'10010000'

LUA_RU_DATA_ERROR X'10020000'

LUA_RU_LENGTH_ERROR X'10020000'

LUA_INCORRECT_SEQUENCE_NUMBER X'20010000'

LUA_LCC_NOT_SUPPORTED X'20010000'

The information returned to bytes 4 through 6 in lua_peek_data contain up to the
first 3 bytes of the original request unit.

SLI_RECEIVE

250 Client/Server Communications Programming

SLI_SEND
This verb transfers, from the LUA application program to the communication link,
user data, an SNA command, or an SNA response. SLI_SEND for an LU-LU
session flow can only be issued on a previously opened session. If the SLI_OPEN
initiation type is primary with SSCP access and INIT_COMPLETE status is
achieved, the application program can issue SLI_SEND to transmit data on the
SSCP-LU normal flow.

An LUA application can have two active SLI_SEND verbs simultaneously for each
defined LUA LU. The two verbs can be for any two discrete flows.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_SLI

The verb-code indicator for the LUA verbs.

lua_verb_length
The length of the verb control block. This number must equal the length
expected by the SLI for the SLI_SEND verb.

lua_opcode
LUA_OPCODE_SLI_SEND

The operation code for this verb.

lua_correlator
A value that an LUA application program can supply to help correlate this
verb with other information that the program supplies. SLI ignores this
parameter.

lua_luname
The local LU name in ASCII. If the name contains fewer than 8 characters,
you must pad it with blanks. LUA examines this parameter only if lua_sid
is 0. Using the lua_luname parameter on all verbs helps make debugging
easier, especially when multiple LUs are configured.

lua_sid
The session ID returned by SLI_OPEN that identifies the session to be
used. If this parameter is 0, the lua_luname parameter is used for
identification.

lua_data_length
The length of the data being sent.

lua_data_ptr
A pointer to the application program data that is to be sent to the host
application. Because this buffer is used for data and SNA commands, the
contents of the buffer are usually in EBCDIC.

lua_post_handle
A 4-byte handle that is used to post the completion of asynchronous verbs.

lua_th.snf
The sequence number of the RU.

lua_rh A 3-byte parameter that contains the SNA request/response header (RH)
for the message.

SLI_SEND

Chapter 15. SLI Verbs 251

lua_message_type
The type of SNA data and commands. When the SLI application program
wants to send data, the application program must set this parameter. For
more information about the SNA commands, refer to Systems Network
Architecture Network Product Formats. The valid message types are as
follows:

LUA_MESSAGE_TYPE_BID
LUA_MESSAGE_TYPE_BIS
LUA_MESSAGE_TYPE_CANCEL
LUA_MESSAGE_TYPE_CHASE
LUA_MESSAGE_TYPE_LU_DATA
LUA_MESSAGE_TYPE_LUSTAT_LU
LUA_MESSAGE_TYPE_LUSTAT_SSCP
LUA_MESSAGE_TYPE_QC
LUA_MESSAGE_TYPE_QEC
LUA_MESSAGE_TYPE_RELQ
LUA_MESSAGE_TYPE_RQR
LUA_MESSAGE_TYPE_RSP
LUA_MESSAGE_TYPE_RTR
LUA_MESSAGE_TYPE_SBI
LUA_MESSAGE_TYPE_SSCP_DATA

lua_flag1.sscp_exp
Specifies SSCP-expedited flow

lua_flag1.sscp_norm
Specifies SSCP-normal flow

lua_flag1.lu_exp
Specifies LU-expedited flow

lua_flag1.lu_norm
Specifies LU-normal flow

Returned Parameters
If the verb executes successfully, LUA returns the following parameters:

lua_data_length
The length of the peek data received.

lua_th A 6-byte parameter that contains the SNA transmission header (TH) for the
message.

lua_flag2.async
A flag that indicates that this verb completes asynchronously.

lua_flag2.sscp_exp
Specifies SSCP-expedited flow.

lua_flag2.sscp_norm
Specifies SSCP-normal flow.

lua_flag2.lu_exp
Specifies LU-expedited flow.

lua_flag2.lu_norm
Specifies LU-normal flow.

lua_sequence_number
The sequence number of the first-in-chain or the only-in-chain RU for the
SLI_SEND verb. It is not byte-reversed.

SLI_SEND

252 Client/Server Communications Programming

lua_prim_rc
The primary return code, set by the verb function. For details, see
Appendix B, “LUA Verb Return Codes,” on page 327.

lua_sec_rc
The secondary return code, set by the verb function. For details, see
Appendix B, “LUA Verb Return Codes,” on page 327.

Usage Notes
SLI_SEND performs special processing based on the lua_message_type parameter,
such as setting RH and TH bits and flow flags. For example, if the application sets
the lua_message_type parameter to X'84' (CHASE), the SLI component
automatically sets the lua_rh parameter to X'4B8000'. Table 17 shows the
parameters that the application program should set if it is appropriate to do so,
given the current program state.

Table 17. Parameter Settings Based on Message Type

Value of lua_message_type parameter

SLI_SEND
parameter

LU_DATA
SSCP_DATA

RSP BID, BIS,
RTR

CHASE
QC

QEC, RELQ,
SBI, SIG

RQR LUSTAT_LU
LUSTAT_SSCP

lua_rh FI, DR1I,
DR2I, RI,
BBI, EBI,
CDI, CSI,
EDI

RI SDI, QRI SDI, QRI,
EBI, CDI

SDI 0 SDI, QRI, DR1I,
DR2I, RI, BBI,
EBI, CDI

lua_th 0 SNF 0 0 0 0 0

lua_data_ptr Required (0
if no data)

Required
(0 if no
data)

0 0 0 0 Required

lua_data_length Required Required
(0 if no
data)

0 0 0 0 Required

lua_flag1 flow
flags

0 Required
(set one)

0 0 0 0 0

An SLI_SEND verb transfers data from the location specified in the lua_data_ptr
parameter for the length specified in the lua_data_length. The SLI chains data as
needed. SLI_SEND can complete synchronously or asynchronously. When the
application program returns from the call to the SLI, the lua_flag2.async flag
indicates how the verb completes. When lua_flag2.async is set to ON, an
IN_PROGRESS primary return code indicates that the verb was received and is in
progress. A primary return code of OK indicates that the data or the command was
written to the RUI. The application program receives the sequence number of the
last chain element successfully sent using RUI_WRITE with synchronous return
from the call to the SLI. After all chain elements are written, the application
program receives the final return code and ending sequence number in the TH.
These sequence numbers will differ if, for example, the SLI is sending a chain and
has to wait for a pacing response from the host before the SLI_SEND operation
can be completed.

When the SLI sends a response, the information required on the SLI_SEND verb
depends on the type of response. For all responses, the application program must
perform the following steps:
v Set the lua_message_type parameter to LUA_MESSAGE_TYPE_RSP

SLI_SEND

Chapter 15. SLI Verbs 253

v Supply the sequence number (lua_th.snf) that corresponds to the request being
responded to

v Set the selected lua_flag1 flow flag

The rules for supplying additional parameters follow:
v For positive responses that require only the request code, the application

program must also supply the following parameters:
– lua_rh.ri set to 0
– lua_data_length set to 0

The SLI refers to the supplied sequence number to fill in the request code.
v For negative responses, the application program must also supply the following

parameters:
– lua_rh.ri set to 1
– lua_data_ptr set to the address of an SNA sense code
– lua_data_length set to the length of the SNA sense code (4 bytes).

The SLI fills in the request code following the sense data.

SLI_SEND

254 Client/Server Communications Programming

SLI_BIND_ROUTINE
This verb tells an SLI application program that an SNA BIND request arrived from
the host and allows the application program to examine the session protocols. The
SLI_BIND_ROUTINE is passed to a programmer-supplied DLL specified in the
SLI_OPEN extension list bind routine field.

Supplied Parameters
The following parameters for SLI_BIND_ROUTINE are supplied by the SLI:

lua_verb
LUA_VERB_SLI

The verb-code indicator for the LUA verbs.

lua_verb_length
The length of the verb control block.

lua_opcode
LUA_OPCODE_SLI_BIND_ROUTINE

The operation code for the routine.

lua_luname
The local LU name in ASCII.

lua_sid
The session ID returned by SLI_OPEN that identifies the session to be used.

lua_data_length
The length of the BIND RU.

lua_data_ptr
A pointer to the BIND RU. The BIND RU might contain EBCDIC characters
such as the PLU name.

lua_th
The BIND TH.

lua_rh
The BIND RH.

Returned Parameters
If the verb completes successfully, LUA returns the following parameters:

lua_prim_rc
LUA_OK

lua_data_length
The length of the BIND response being sent.

lua_prim_rc
The primary return code, set by the verb function. For details, see
Appendix B, “LUA Verb Return Codes,” on page 327.

Usage Notes
The verb control block is built in the storage that is allocated by the SLI. The
contents of the lua_th and lua_rh parameters are placed in the
SLI_BIND_ROUTINE verb control block. The lua_data_ptr parameter contains the
address of the BIND RU, and the lua_data_length parameter contains the length of
the RU.

SLI_BIND_ROUTINE

Chapter 15. SLI Verbs 255

The SLI_BIND_ROUTINE is completed when the extension routine returns with
the lua_prim_rc and the lua_data_length parameters set in the
SLI_BIND_ROUTINE verb control block. Overwrite the BIND RU with the BIND
response. A primary return code of OK indicates that the BIND was accepted. If
the routine rejects the BIND, set the primary return code to NEGATIVE_RSP and
put the negative sense code in the BIND buffer. Do not modify the lua_data_ptr
parameter.

Note: A negative response from this routine cancels the SLI_OPEN verb. The SLI
returns a primary return code of SESSION_FAILURE and a secondary return
code of NEG_RSP_FROM_BIND_ROUTINE.

SLI_BIND_ROUTINE

256 Client/Server Communications Programming

SLI_STSN_ROUTINE
This verb tells an SLI application program that an SNA STSN request arrived from
the host and allows the application program to examine the STSN RU and prepare
a response. TheSLI_STSN_ROUTINE is passed to a programmer-supplied DLL
that is specified in the SLI_OPEN extension list bind routine field.

Supplied Parameters
The following parameters for SLI_STSN_ROUTINE are supplied by the SLI:

lua_verb
LUA_VERB_SLI

The verb-code indicator for the LUA verbs.

lua_verb_length
The length of the verb control block.

lua_opcode
LUA_OPCODE_SLI_STSN_ROUTINE

The operation code for the routine.

lua_luname
The local LU name in ASCII.

lua_sid
The session ID returned by SLI_OPEN that identifies the session to be used.

lua_data_length
The length of the STSN RU.

lua_data_ptr
A pointer to the STSN RU.

lua_th
The STSN TH.

lua_rh
The STSN RH.

Returned Parameters
If the verb executes successfully, LUA returns the following parameters:

lua_prim_rc
LUA_OK

lua_data_length
The length of the STSN response being sent.

lua_prim_rc
The primary return code, set by the verb function. For details, see
Appendix B, “LUA Verb Return Codes,” on page 327.

Usage Notes
The verb control block is built in the storage that is allocated by the SLI. The
contents of the lua_th and lua_rh parameters are placed in the
SLI_STSN_ROUTINE verb control block. The lua_data_ptr parameter contains the
address of the STSN RU, and the lua_data_length parameter contains the length
of the RU.

SLI_STSN_ROUTINE

Chapter 15. SLI Verbs 257

The SLI_STSN_ROUTINE is completed when the extension routine returns with
the lua_prim_rc and the lua_data_length parameters set in the
SLI_STSN_ROUTINE verb control block. Overwrite the STSN RU with the STSN
response. A primary return code of OK indicates that the STSN was accepted. If
the routine rejects the STSN, set the primary return code to NEGATIVE_RSP and
put the negative sense code in the STSN buffer. Do not modify the lua_data_ptr
parameter.

Note: A negative response from this routine cancels the SLI_OPEN verb. The SLI
returns a primary return code of SESSION_FAILURE, and a secondary
return code of NEG_RSP_FROM_STSN_ROUTINE.

SLI_STSN_ROUTINE

258 Client/Server Communications Programming

SLI_SDT_ROUTINE
This verb tells an SLI application program that an SNA SDT request arrived from
the host and allows the application program to examine the SDT RU and prepare a
response. The SLI_SDT_ROUTINE is passed to a programmer-supplied DLL that
is specified in the SLI_OPEN extension list bind routine field.

SLI_SDT_ROUTINE is not supported by SNA API clients.

Supplied Parameters
The following parameters for SLI_SDT_ROUTINE are supplied by the SLI:

lua_verb
LUA_VERB_SLI

The verb-code indicator for the LUA verbs.

lua_verb_length
The length of the verb control block.

lua_opcode
LUA_OPCODE_SLI_SDT_ROUTINE

The operation code for the routine.

lua_luname
The local LU name in ASCII.

lua_sid
The session ID returned by SLI_OPEN that identifies the session to be used.

lua_data_length
The length of the SDT RU.

lua_data_ptr
A pointer to the SDT RU.

lua_th
The SDT TH.

lua_rh
The SDT RH.

Returned Parameters
Following is a list of the parameters for SLI_SDT_ROUTINE that the extension
routine must return:

lua_prim_rc
LUA_OK

lua_data_length
The length of the SDT response being sent.

lua_prim_rc
The primary return code, set by the verb function. For details, see
Appendix B, “LUA Verb Return Codes,” on page 327.

SLI_SDT_ROUTINE

Chapter 15. SLI Verbs 259

Usage Notes
The verb control block is built in the storage that is allocated by the SLI. The
contents of the lua_th and lua_rh parameters are placed in the
SLI_SDT_ROUTINE verb control block. The lua_data_ptr parameter contains the
address of the SDT RU, and the lua_data_length parameter contains the length of
the RU.

The SLI_SDT_ROUTINE is completed when the extension routine returns with
the lua_prim_rc and the lua_data_length parameters set in the
SLI_SDT_ROUTINE verb control block. Overwrite the SDT RU with the SDT
response. A primary return code of OK indicates that the SDT was accepted. If the
routine rejects the SDT, set the primary return code to NEGATIVE_RSP and put the
negative sense code in the STSN buffer. Do not modify the lua_data_ptr parameter.

Note: A negative response from this routine cancels the SLI_OPEN verb. The SLI
returns a primary return code of SESSION_FAILURE, and a secondary
return code of NEG_RSP_FROM_SDT_ROUTINE.

SLI_SDT_ROUTINE

260 Client/Server Communications Programming

Part 3. Common Services API

© Copyright IBM Corp. 1994, 2016 261

262 Client/Server Communications Programming

Chapter 16. Common Services Entry Points

Personal Communications and Communications Server provide a common services
programming interface. This API consists of common services verbs (CSVs) that
can be used by application programs that use Personal Communications APIs.

Any Personal Communications and Communications Server application program
can use these common services verbs to do one or more of the following things:
v Maintain a code page translation table for single byte languages

(GET_CP_CONVERT_TABLE)
v Convert an ASCII string to EBCDIC or EBCDIC to ASCII (CONVERT)
v Convert a double byte character string from one code page to another

(TRNSDT)

Note: Included in the chapters of Part 3 of this book is information on the
Common Services API provided by the following systems:
v Communications Server running on Windows
v SNA API clients for Win32 platforms that are delivered with the

Communications Server product
v Personal Communications for Windows

When there are differences between the support provided by these systems,
it is noted.

Writing Common Services Programs
The table below shows source module usage of supplied header files and libraries
needed to compile and link Common Services programs.

Table 18. Header Files and Libraries for Operating Systems

Operating
System Header File Library DLL Name

WIN32 WINCSV.H WINCSV32.LIB WINCSV32.DLL

The following sections describe the entry points for common services.

© Copyright IBM Corp. 1994, 2016 263

ACSSVC()
This is a synchronous entry point for all CSV verbs. Personal Communications and
Communications Server provide this entry point for compatibility with existing
applications.

Syntax
void ACSSVC (long)

Input is a verb control block pointer.

Returned Values
Check the primary and secondary return codes for returned values.

ACSSVC()

264 Client/Server Communications Programming

WinCSV()

This function provides a synchronous entry point for the CSV API.

Syntax
void WINAPI WinCSV(long vcb)

Parameters

vcb Pointer to verb control block.

Returned Values
No return value. The primary_rc and secondary_rc fields in the verb control block
indicate any error.

Note: See also WinAsyncCSV() on page “WinAsyncCSV()” on page 267.

WinCSV()

Chapter 16. Common Services Entry Points 265

WinCSVCleanup()

This function terminates and deregisters an application from the CSV API.

Syntax
BOOL WINAPI WinCSVCleanup(void);

Returned Values
The return value specifies whether the deregistration was successful. If the value is
not 0, Personal Communications successfully deregistered the application .
Personal Communications and Communications Server did deregister the
application if the value is 0.

Usage Notes
Use WinCSVCleanup() to deregister a CSV API application from the CSV API, for
example, to free resources allocated to the specific application.

WinCSVCleanup()

266 Client/Server Communications Programming

WinAsyncCSV()

The function provides an asynchronous entry point for TRANSFER_MS_DATA
only. If an application uses this function for any other verb, the behavior is
synchronous.

Syntax
HANDLE WlNAPI WinAsyncCSV(HWND hWnd,

long vcb);

Parameters

hWnd Window handle to receive completion message.

vcb Pointer to verb control block.

Returned Values
The return value indicates whether the verb request was successful. If the function
was successful, the actual return value is an asynchronous task handle. If the
function was not successful, Personal Communications returns a 0.

Usage Notes
Upon completion of the asynchronous operation, the application's window hWnd
receives the message returned by RegisterWindowMessage with WinAsyncCSV as
the input string. The wParam argument contains the asynchronous task handle
returned by the original function call. The IParam argument contains the original
VCB pointer and can be dereferenced to determine the final return code.

If the function returns successfully, Personal Communications posts a
WinAsyncCSV() message to the application when the operation completes or the
conversation is canceled.

WinAsyncCSV()

Chapter 16. Common Services Entry Points 267

WinCSVStartup()

This function allows an application to specify the version of the Common Services
Verbs API required and to retrieve details of the specific CSV API. This call is not
required, but if used, the WinCSVCleanup call should be used also.

Syntax
int WINAPI WinCSVStartup (WORD wVersion,

LPWCSVDATA lpData);

Parameters

wVersion
Specifies the version of CSV API support required. The high-order byte
specifies the minor version (revision) number; the low-order byte specifies
the major version number.

lpData
Contains information about the underlying CSV API DLL.

Returned Values
The return value indicates whether the CSV API successfully registered the
application and whether it can support the provided version number. If the value
returned is 0, the CSV API does support the specified version and it successfully
registered the application. Otherwise, one of the following values is returned.

WCSVVERNOTSUPPORTED
This particular CSV API does not provide the version of CSV API support
requested.

WCSVINVALID
The CSV API could not determine the requested version.

Usage Notes
WinCSVStartup() is intended to help with compatibility with future releases of the
API. The current version supported is 1.0.

The following structure describes details of the actual CSV API implementation.
typedef struct tagWCSVDATA { WORD wVersion;

char szDescription[WCSVDESCRIPTION_LEN+l];
} WCSVDATA, FAR *LPWCSVDATA;

When an application has made its last CSV API call, it calls WinCSVCleanup().

WinCSVStartup()

268 Client/Server Communications Programming

GetCsvReturnCode()

Use this entry point to convert the primary and secondary return codes in the verb
to a printable string. It returns a standard set of error strings for use by application
programs.

Syntax
int WINAPI GetCsvReturnCode (struct csv_hdr *vcb,

UINT buffer_length,
unsigned char *buffer_addr);

Parameters

vcb The address of the verb control block.

buffer_length
The length of the buffer pointed to by buffer_addr. The recommended
length is 256.

buffer_addr
The address of the buffer that will hold the formatted, null-terminated
string (length of the string in the specified buffer).

Returned Values
0x20000001

The parameters are not valid; the function could not read from the
specified verb or could not write to the specified buffer.

0X20000002
The specified buffer is too small.

Usage Notes
The descriptive error string returned in buffer_addr does not terminate with a new
line character (\n).

GetCsvReturnCode()

Chapter 16. Common Services Entry Points 269

GetCsvReturnCode()

270 Client/Server Communications Programming

Chapter 17. Common Services Verbs (CSV)

Personal Communications and Communications Server provide the following verbs
for the Common Services API:

GET_CP_CONVERT_TABLE
CONVERT
TRNSDT

© Copyright IBM Corp. 1994, 2016 271

GET_CP_CONVERT_TABLE

This verb provides a utility service that builds a conversion table from one code
page to another. This verb returns a 256-byte conversion table that applications can
use to perform table lookups on characters to convert character strings.

A program might need to perform data conversion when it communicates with a
node that expects data encoded in a different code page.
struct get_cp_convert_table

{
unsigned short opcode; /* Verb identifying operation code. */
unsigned char opext; /* Reserved. */
unsigned char reserv2; /* Reserved. */
unsigned short primary_rc; /* Primary return code from verb. */
unsigned long secondary_rc; /* Secondary (qualifying) return code. */
unsigned short source_cp; /* Source code page for conversion table */
unsigned short target_cp; /* Target code page for conversion table */
unsigned char *conv_tbl_addr; /* Address to put conversion table at */
unsigned char char_not_fnd; /* Character not found option: either */

/* substitute character or round trip */
unsigned char substitute_char; /* Substitute character to use. */
} GET_CP_CONVERT_TABLE;

source_cp
The code page number from which the replacement characters are drawn.
The number for the code page can be one of the following numbers:
v ASCII code pages (in decimal)

– 437 US IBM PC
– 737 Greece
– 813 Greece
– 819 ANSI Standard
– 850 Multilingual
– 852 Czechoslovakia/Hungary/Poland/Yugoslavia
– 855 Cyrillic
– 857 Turkey
– 858 Multilingual
– 860 Portuguese
– 861 Iceland
– 862 Hebrew
– 863 Canada-French
– 864 Arabic
– 865 Nordic
– 866 Cyrillic
– 874 Thai
– 912 Latin 2
– 915 Cyrillic
– 916 Hebrew
– 920 Turkey
– 921 Latvia, Lithuania
– 922 Estonia
– 923 ANSI Standard

GET_CP_CONVERT_TABLE

272 Client/Server Communications Programming

– 1008 Arabic
– 1089 Arabic
– 1124 Ukraine
– 1125 Ukraine
– 1127 Arabic/French
– 1129 Vietnamese
– 1131 Belarus
– 1133 Lao
– 1250 Latin 2
– 1251 Cyrillic
– 1252 Latin 1
– 1253 Greece
– 1254 Turkey
– 1255 Hebrew
– 1256 Arabic
– 1257 Baltic (Latvia, Lithuania, Estonia)
– 1258 Vietnamese

v EBCDIC code pages (in decimal)
– 037 United States/Canada-French/Netherlands/Portugal/Brazil
– 273 Germany/Austria
– 275 Brazil
– 277 Denmark/Norway
– 278 Finland/Sweden
– 280 Italy
– 284 Latin America/Spain
– 285 United Kingdom
– 297 France
– 420 Arabic
– 424 Hebrew
– 500 Belgium/Switzerland-French/Switzerland-German
– 803 Hebrew
– 870 Czechoslovakia/Hungary/Poland/Yugoslavia
– 871 Iceland
– 875 Greece
– 924 Latin 1
– 1025 Cyrillic
– 1026 Turkey
– 1047 Latin 1
– 1112 Latvia, Lithuania
– 1122 Estonia
– 1123 Ukraine
– 1130 Vietnamese
– 1132 Lao
– 1140 United States/Canada/Netherlands/Portugal/Brazil/Australia/

New Zealand

GET_CP_CONVERT_TABLE

Chapter 17. Common Services Verbs (CSV) 273

– 1141 Germany/Austria
– 1142 Denmark/Norway
– 1143 Finland/Sweden
– 1144 Italy
– 1145 Latin America/Spain
– 1146 United Kingdom
– 1147 France
– 1148 Belgium/Switzerland
– 1149 Iceland
– 1153 Bosnia/Herzegovina (Latin), Croatia, Czech Republic, Hungary,

Poland, Romania (Moldava), Slovakia, Slovenia
– 1154 Cyrillic—Bulgaria, Belarus, FYR Macedonia, Serbia, Russia
– 1155 Turkey
– 1156 Latvia, Lithuania
– 1157 Estonia
– 1158 Ukraine
– 1160 Thailand
– 1164 Vietnam

v User defined code pages
– 65280 through 65534
– When using user-defined code pages, first define the registry entry

with the user-defined path to the CPT files as follows for Personal
Communications:
HKEY_LOCAL_MACHINE/SOFTWARE/IBM/Personal
Communications /CurrentVersion/COMCPT

For Communications Server, define the registry entry with the
user-defined path to the CPT files as follows:
HKEY_LOCAL_MACHINE/SOFTWARE/IBM/Communications
Server/CurrentVersion/COMCPT

Note: Only identical characters in the source and target code pages are
guaranteed to be converted into each other. Character pairs
designated in the standards that merely resemble each other are not
usually converted into each other.

target_cp
The code page number for the target strings to be converted. The number
can be any of those shown for source_code_page.

conv_tbl_addr
The address of the buffer that is to receive the 256-byte conversion table.
This buffer must be in a read/write segment.

char_not_fnd
The action to be taken if a character in the source code page does not exist
in the target code page. Specify one of the following values:

SV_ROUND_TRIP
This option causes the values to be stored in the conversion table
so that if a conversion table is generated by reversing the source
and target code pages, the result of a conversion from source to
target code page and back again results in the original character.

GET_CP_CONVERT_TABLE

274 Client/Server Communications Programming

You must select the ROUND_TRIP option for both table
generations for this option to run.

SV_SUBSTITUTE
Store the character specified in the parameter substitute_character
in the conversion table.

substitute_char
The byte stored in the conversion table if a character in the source code
page does not exist on the target code page and if the character_not_found
parameter is set to SV_SUBSTITUTE.

The OK return code indicates that the GET_CP_CONVERT_TABLE verb ran
successfully.

The following parameter is returned when the return code is OK:

convert_table
The conversion table was built at the address specified by
CONV_table_addr.

primary_rc
SV_PARAMETER_CHECK

secondary_rc
SV_INVALID_CHAR_NOT_FOUND

SV_INVALID_DATA_SEGMENT
SV_INVALID_SOURCE_CODE_PAGE
SV_INVALID_TARGET_CODE_PAGE

GET_CP_CONVERT_TABLE

Chapter 17. Common Services Verbs (CSV) 275

CONVERT

This verb converts ASCII character strings to EBCDIC and EBCDIC character
strings to ASCII.

A program might perform data conversion when it communicates with a node that
expects EBCDIC data or when it must convert names to pass over an interface,
such as APPC, that requires EBCDIC names.

Note: The CONVERT verb is not supported by DBCS. You can use TrnsDt to
convert strings that have double-byte characters.

struct convert
{
unsigned short opcode; /* Verb identifying operation code. */
unsigned char opext; /* Reserved. */
unsigned char reserv2; /* Reserved. */
unsigned short primary_rc; /* Primary return code from verb. */
unsigned long secondary_rc; /* Secondary (qualifying) return code. */
unsigned char direction; /* Direction of conversion - ASCII to */

/* EBCDIC or vice-versa. */
unsigned char char_set; /* Character to use for the conversion */

/* A, AE, or user-defined G. */
unsigned short len; /* Length of string to be converted. */
unsigned char *source; /* Pointer to string to be converted. */
unsigned char *target; /* Address to put converted string at. */
} CONVERT;

direction
The nature of the code conversion.

SV_ASCII_TO_EBCDIC
Converts ASCII characters to EBCDIC

SV_EBCDIC_TO_ASCII
Converts EBCDIC characters to ASCII

char_set
The set of characters permitted in the source string. You can specify three
types of ASCII/EBCDIC conversion tables for use by the CONVERT verb:
SV_A, SV_AE, and SV_G. The type-A and type-AE tables are defined
within Personal Communications.

The format of a conversion table consists of 32 lines of 32 characters each.
Each line represents 16 printable hexadecimal characters followed by a
carriage return and line feed. The first 16 lines provide the information for
ASCII-to-EBCDIC conversion. The second 16 lines provide the information
for EBCDIC-to-ASCII conversion. The table must include all 32 lines.

When Personal Communications performs a conversion, it uses the
numeric equivalent of each incoming character as a 0-origin index into the
conversion table. This index specifies the table location containing the
hexadecimal value of the converted character. For example, assume the
48th position in the table contains a value of X'F0' . Personal
Communications and Communications Server converts incoming characters
with a value of 48 (X'30') to a value of 240 (X'F0').

Table A
Table A converts uppercase letters A through Z, numeric characters
0 through 9, and special characters $, #, and @. The first character
of the source string must be either an uppercase letter or one of the
three special characters; if it is not, no conversion is done, and the

CONVERT

276 Client/Server Communications Programming

INVALID_FIRST_CHARACTER secondary return code is returned.
In the ASCII-to-EBCDIC direction, lowercase ASCII characters are
converted to uppercase EBCDIC characters.

Trailing blanks (blanks at the end of the source string) are
converted to blanks in both directions. In contrast, embedded
blanks are converted to X'00'.

If any source character is converted to X'00',
CONVERSION_ERROR is returned. However, the entire conversion
is completed.

Table AE
Table AE converts alphanumeric characters (A through Z, a
through z, 0 through 9), special characters $, #, and @, and the
period (.). There are no restrictions on the first character of the
string.

Trailing blanks (blanks at the end of the source string) are
converted to blanks in either direction. In contrast, embedded
blanks are converted to X'00'.

If any source character is converted to X'00',
CONVERSION_ERROR is returned. However, the entire conversion
is completed.

Table G
You can use a G table to convert from any character to any other
character (not just from ASCII to EBCDIC or EBCDIC to ASCII).
However, you must specify ASCII_TO_EBCDIC on the CONVERT
verb to use the top half of the table and specify
EBCDIC_TO_ASCII to use the bottom half.

Personal Communications will look in the registry under
HKEY_LOCAL_MACHINE/SOFTWARE/IBM/Personal Communications /

CurrentVersion/COMTBLG

to get the full path name to the G table. Communications Server
will look in the registry under
HKEY_LOCAL_MACHINE/SOFTWARE/IBM/Communications Server/

CurrentVersion/COMTBLG

to get the full path name to the G table. For 32-bit Windows
clients, the location of the Table G path in the registry is:
HKEY_LOCAL_MACHINE/SOFTWARE/IBM/Comm.Server for NT SNA/Client/

CurrentVersion/COMTBLG

len The number of characters to be converted.

The length of the string must not extend beyond the segment size allocated
for source or target.

source The address of the character string converted.

target The address receiving the converted character string.

Note: If the application does not require preservation of the source string, it can
specify the same variable for source and target.

The OK return code indicates that the CONVERT verb ran successfully.

CONVERT

Chapter 17. Common Services Verbs (CSV) 277

The following shows the primary and secondary error return codes associated with
the CONVERT verb and the location of the return code's description.

primary_rc
SV_PARAMETER_CHECK

secondary_rc
SV_INVALID_DIRECTION

SV_TABLE_ERROR
SV_INVALID_CHARACTER_SET
SV_INVALID_FIRST_CHARACTER
SV_CONVERSION_ERROR
SV_INVALID_DATA_SEGMENT

primary_rc
SV_UNEXPECTED_DOS_ERROR

CONVERT

278 Client/Server Communications Programming

TrnsDt
This function converts the SBCS and DBCS strings from one code page to another.
Personal Communications and Communications Server provide TrnsDt in the
TRNSDT.DLL file. TransDt is available only on a DBCS session.

Syntax
TrnsDt (PASSSTRUCT *passparm);

This function converts the SBCS and DBCS strings from one code page to another.
In the following table, a check mark (U) indicates that Personal Communications
supports the conversion between the pair of code pages; a hyphen (-) indicates that
neither program supports that conversion.

Table 19. TrnsDT Code Page Conversion Support — China

Code Pages 1386 836 837 1388

1386 - U U U

836 U - - -

837 U - - -

1388 U - - -

Table 20. TrnsDT Code Page Conversion Support — Japan

Code Pages 932/943 930 931 939 290 037 1027 1390 1399

932/943 - U U U U U U U U

930 U - - - - - - - -

931 U - - - - - - - -

939 U - - - - - - - -

290 U - - - - - - - -

037 U - - - - - - - -

1027 U - - - - - - - -

1390 U - - - - - - - -

1399 U - - - - - - - -

Table 21. TrnsDT Code Page Conversion Support — Korea

Code Pages 949 833 834 933 1363 1364

949 - U U U - -

833 U - - - U -

834 U - - - - -

933 U - - - - -

1363 - U - - - U

1364 - - - - U -

Table 22. TrnsDT Code Page Conversion Support — Taiwan

Code Pages 950 037 835 937 1370 1371 1159

950 - U U U - - -

037 U - - - - - -

TrnsDt

Chapter 17. Common Services Verbs (CSV) 279

Table 22. TrnsDT Code Page Conversion Support — Taiwan (continued)

Code Pages 950 037 835 937 1370 1371 1159

835 U - - - - - -

937 U - - - - - -

1370 - - - - - U U

1371 - - - - U - -

1159 - - - - U - -

Use the header file TRNSDT.H to compile, and use the TRNSDT.LIB file from
either program's LIB subdirectory to link.
The passparm format is as follows:

WORD parm_length
Length of this structure (input)

WORD exit_code
Exit code (output)

0000H Normal end.

0001H Not supported conversion specified.

000CH
Exit_code field is not initialized to 0.

0080H The last character is the left half of a DCBS. Null character is filled
instead.

WORD in_length
Length of the source buffer (input)

LPBYTE in_addr
Source buffer address (input)

WORD out_length
Length of target buffer (input)

If the specified length is too small to return all of the converted data, the
required length is returned.

LPBYTE out_addr
Target address buffer (input)

WORD trns_id
Reserved to zero (input)

WORD in_page
Source code page (input)

WORD out_page
Target code page (input)

WORD option
Option (input/output)

Input Input options are as follows;
Bits 15–9

Reserved to zero
Bit 8 Target string has SO/SI
Bits 7–3

Reserved to zero

TrnsDt

280 Client/Server Communications Programming

Bit 2 Use non-editable SBCS table
Bit 1 Source string starts with DBCS
Bit 0 Source string has SO/SI

Output
Output options are as follows:
4 End at DBCS
0 End at non-DBCS

Notes:

1. Bit 8 and Bit 0 should be set as follows:
Conversion from PC to host Bit 8=1
Conversion from PC to host Bit 0=0
Conversion from host to PC Bit 8=0
Conversion from host to PC Bit 0=1

2. Use SYSCTBL.EXE to specify the name of the customized table that TrnsDt
uses. To convert an SBCS string, TrnsDt uses the customized table with the
Option parameter bit 2 set to FALSE. TrnsDt uses the default table if bit 2 is set
but the name of the table is not specified. To convert a DBCS string when the
name of the table is specified using SYSCTBL.EXE, TrnsDt always uses the
customized table. In this case, the Option parameter for bit 2 is not used.

3. Generally, TrnsDt requires that the host data include SO/SI control characters
as a pair. However, to convert a part of a mixed data string, the data must start
with a double-byte character without an SO control character. In this case, data
does not identify the double-byte character. Bit 1 is useful in such a case. When
you set bit 1 to 1, TrnsDt processes the start of the buffer as a double-byte
character or SO control character.

0 NO_ERROR

2 ERROR_FILE_NOT_FOUND

TrnsDt cannot find the table used for converting the specified
code.

87 ERROR_INVALID_PARAMETER

Parameter is not valid.

111 ERROR_BUFFER_OVERFLOW

The target buffer is too small.

150 ERROR_MEMORY_ALLOCATE

Memory allocation error.
Even a small buffer can handle a large data conversion successfully by using the
exit code and option parameters of TrnsDt. First, start TrnsDt using a small source
buffer and a double- or triple-sized destination buffer (for cases from PC to host),
and see how the conversion ends, based on the exit code you receive. Then
proceed accordingly.

For example, when the conversion divides a double-byte character into two parts,
or it ends incompletely between SO and SI control characters, define the buffer
pointer and its position, then perform the next call.
The following example translates the host code 0x4040 to PC code.
#include "trnsdt.h"

PASSSTRUCT passparm;

TrnsDt

Chapter 17. Common Services Verbs (CSV) 281

char bufs[20], buft[20];
int rc;

//Setup the string to be translated
bufs[0] = 0x0e;
bufs[1] = 0x40;
bufs[2] = 0x40;
bufs[3] = 0x4f;

//Setup the parameter
passaparm.parm_length = 24;
passparm.exit_code = 0;
passaparm.in_length = 4;
passaparm.in_addr = Created by ActiveSystems. 02/11/97. Entity not defined[0];
passaparm.out_length = 20;
passaparm.out_addr = Created by ActiveSystems. 02/11/97. Entity not defined[0];

passaparm.trns_id = 0;
passaparm.in_page = 930;
passaparm.out_page = 932;
passaparm.option = 1;

//Translate the string via TrnsDt
if (rc = TrnsDt(&passaparm))

printf("Error Return Code = %d\n\r", rc);
printf("Exit Code = %d\n\r", passaparm.exit_code);
exit(0);

else
.....

TrnsDt

282 Client/Server Communications Programming

Part 4. EHNAPPC API

© Copyright IBM Corp. 1994, 2016 283

284 Client/Server Communications Programming

Chapter 18. EHNAPPC Application Program Interface

This is only available on the Communications Server SNA API
clients.

The EHNAPPC Communications API provides a method to write cooperative
processing applications between personal computers and iSeries, eServer™ i5, or
System i5® systems. It insulates the programmer from low-level communications
programming and hardware connectivity types. Application programmers need to
write both the iSeries, eServer i5, or System i5 programs and the PC programs
when using this API. Almost anything that can be accessed by the host application
can be extended to the partner PC application. This API can be used for
performance-critical applications.

This chapter describes the routines, data structures, and return codes that make up
the 32-bit EHNAPPC API for the Win32 Communications Server SNA API clients.

Writing EHNAPPC Programs
The table below shows source module usage of supplied header files and libraries
needed to compile and link EHNAPPC programs.

Table 23. Header Files and Libraries for Operating Systems

Operating
System Header File Library DLL Name

WIN32 E32APPC.H E32APPC.LIB E32APPC.DLL

EHNAPPC Routines
The following discussions of each client Windows API routine describe in detail:
v Purpose
v Procedure declaration
v Parameters
v Return codes

EHNAPPC_Allocate

Purpose
This function starts a conversation with a partner transaction program.

Procedure Declaration
#include <WINDOWS.H>
include "E32APPC.H"
extern int EHNAPPC_Allocate
HWND hWnd,
unsigned nBufferLength,
ConversationType bType,
SyncLevelEnum bSynchLevel,
LPSTR lpszLocationName,
LPSTR lpszTpn,

© Copyright IBM Corp. 1994, 2016 285

int nPipLength,
LPVOID lpPipData,
LPDWORD lpdwConversation);

Parameters
hWnd identifies the current window of the application.

nBufferLength identifies the size of the buffer to be allocated by the router. It must
be at least 271. If it is less than 271, a 271–byte buffer will be allocated.

bType identifies the type of conversation to allocate. Possible values are:
EHNAPPC_BASIC (0)
EHNAPPC_MAPPED (1)

bSynchLevel identifies the synchronization level between the local and partner
programs. Possible values are:

EHNAPPC_SYNCLEVELNONE (0)
EHNAPPC_SYNCLEVELCONFIRM (1)

lpszLocationName points to a null-terminated character string that specifies the
host system name. If this pointer is set to NULL, the default system is used.

lpszTpn points to a null-terminated character string that specifies the partner
program name. If the first character is less than 0x40, then ASCII-to-EBCDIC
translation is not done.

nPipLength identifies the length of the program initialization parameters (PIP)
data. If this variable is 0, no PIP data is sent.

lpPipData points to the PIP data. The PIP data must be in GDS format, and must
be in EBCDIC.

lpdwConversation points to a doubleword variable that is used to return a handle
to be used on subsequent calls. The handle is a unique value for each conversation.

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300

EHNAPPC_Confirm

Purpose
This function requests a confirmation that all data sent so far has been received by
the partner.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern int far pascal EHNAPPC_Confirm(
HWND hWnd,
DWORD dwConversation,
LPBYTE lpRequestToSendRcvd);

Parameters
hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either
EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

EHNAPPC Routines

286 Client/Server Communications Programming

lpRequestToSendRcvd points to a variable which is used to store whether the
partner transaction program issued a REQUEST_TO_SEND verb. A value of TRUE
indicates the partner transaction program issued a REQUEST_TO_SEND verb.

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC_Confirmed

Purpose
This function sends a confirmation to a partner that has requested confirmation.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern int far pascal EHNAPPC_Confirmed(

HWND hWnd,
DWORD dwConversation);

Parameters
hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either
EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC_Deallocate

Purpose
This function deallocates an allocated conversation.

Procedure Declaration
#include "E32APPC.H"
extern int far pascal EHNAPPC_Deallocate(

HWND hWnd,
DWORD dwConversation,
DeallocateEnum bType);

Parameters
hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either
EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

bType identifies the type of deallocation the client is to perform. Possible values
are:

EHNAPPC_DEALLOCATESYNCLEVEL (0)
EHNAPPC_DEALLOCATEFLUSH (1)
EHNAPPC_DEALLOCATEABEND (2)

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC Routines

Chapter 18. EHNAPPC Application Program Interface 287

EHNAPPC_ExtendedAllocate

Purpose
This function starts a conversation with a partner transaction program and may
override the security or mode specifications.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern int EHNAPPC_ExtendedAllocate(
HWND hWnd,
unsigned nBufferLength,
ConversationType bType,
SyncLevelEnum bSynchLevel,
LPSTR lpszLocationName,
LPSTR lpszTpn,
LPSTR lpszModeName,
SecurityType bSecurityType,
LPSTR lpszUserId,
LPSTR lpszPassword,
in nPipLength,
LPVOID lpPipData,
LPDWORD lpdwConversation);

Parameters
hWnd identifies the current window of the application.

nBufferLength identifies the size of the buffer to be allocated by the router. It must
be at least 271. If it is less than 271, a 271–byte buffer will be allocated.

bType identifies the type of conversation to allocate. Possible values are:
EHNAPPC_BASIC (0)
EHNAPPC_MAPPED (1)

bSynchLevel identifies the synchronization level between the local and partner
programs. Possible values are:

EHNAPPC_SYNCLEVELNONE (0)
EHNAPPC_SYNCLEVELCONFIRM (1)

lpszLocationName points to a null-terminated character string that specifies the
host system name. If this pointer is set to NULL, the default system is used.

lpszTpn points to a null-terminated character string that specifies the partner
program name. If the first character is less than X'40', then ASCII-to-EBCDIC
translation is not done.

lpszModeName Mode names are one to eight characters long. The first character
of each part must be an uppercase alphabetic character (A–Z), or on of the special
characters (@, #, $). The remaining characters can be uppercase alphabetic
characters (A–Z), numerals (0–9), or special characters (@, #, $).

bSecurityType identifies the security type to use. Possible values are:
EHNAPPC_SECURITY_NONE (0)
EHNAPPC_SECURITY_SAME (1)
EHNAPPC_SECURITY_PGM (2)

lpszUserId points to a null-terminated character string containing the user ID. The
maximum length is 10 characters.

EHNAPPC Routines

288 Client/Server Communications Programming

lpszPassword points to a null-terminated character string containing the password.
The maximum length is 10 characters.

nPipLength identifies the length of the PIP data. If this variable is 0, no PIP data is
sent.

lpPipData points to the PIP data. The PIP data must be in GDS format, and must
be in EBCDIC.

lpdwConversation points to a doubleword variable which is used to return a
handle to be used on subsequent calls.

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC_Flush

Purpose
This function causes the client to send any data it may have in its buffers.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern int EHNAPPC_Flush(

HWND hWnd,
DWORD dwConversation);

Parameters
hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either
EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC_GetAttributes

Purpose
Returns attributes of the specified conversation, including the LU names of the
local and partner transaction programs, the level of processing synchronization,
and any user ID provided for security.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern unsigned EHNAPPC_GetAttributes(

HWND hWnd,
DWORD dwConversation,
LPBYTE lpbSyncLevel,
LPSTR lpszModeName,
LPSTR lpszLuName,
LPSTR lpszPluName,
LPSTR lpszUserId);

Parameters
hWnd identifies the current window of the application.

EHNAPPC Routines

Chapter 18. EHNAPPC Application Program Interface 289

dwConversation identifies the conversation handle returned by
EHNAPPC_Allocate or EHNAPPC_Extended Allocate.

lpbSyncLevel points to a byte variable that is used to return the synchronization
level.

lpszModeName points to a null-terminated character string that is used to return
the 8- character mode name.

lpszLuName points to a null-terminated character string that is used to return the
LU of the local trans action program.

lpszPluName points to a null-terminated character string that is used to return the
name of the partner LU.

lpszUserId points to a null-terminated character string that is used to return the
user ID that was used to establish this connection.

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC_GetCapabilities

Purpose
This function fills in a data structure indicating the capabilities of the client
currently loaded.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern unsigned EHNAPPC_GetCapabilities(

HWND hWnd,
LPSTR lpList);

Parameters
hWnd identifies the current window of the application.

lpList points to a capabilities list that is used to retrieve the capability information.
A capabilities list consists of a header followed by a variable number of capability
structures. On input, the list specifies the capabilities to be queried. On output, it
contains the capability information.

Note: For additional structure information, see “appcrtrcap_hdr” on page 299,
“appcrtrcap_mult” on page 299 and “appcrtrcap_query” on page 300.

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC_GetDefaultSystem

Purpose
This function returns the default system name that the client is connected to.

EHNAPPC Routines

290 Client/Server Communications Programming

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern unsigned pascal EHNAPPC_GetDefaultSystem(

HWND hWnd,
LPSTR lpszDefSysName);

Parameters
hWnd identifies the current window of the application.

lpszDefSysName points to a character buffer that is used to return the default
system name. The system name is stored in this buffer as a null- terminated
character string.

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC_IsRouterLoaded

Purpose
This function determines whether or not the client router is loaded in memory.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern bool EHNAPPC_IsRouterLoaded(

HWND hWnd);

Parameters
hWnd identifies the current window of the application.

Return Codes
The return code is FALSE (0) if the Communications Server SNA client router is
not loaded. Otherwise, the return value is TRUE (1).

EHNAPPC_PrepareToReceive

Purpose
This function prepares the program to receive data. Using this function followed
by EHNAPPC_ReceiveImmediate is the same as using
EHNAPPC_ReceiveAndWait.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern int EHNAPPC_PrepareToReceive(

HWND hWnd,
DWORD dwConversation);

Parameters
hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either
EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC Routines

Chapter 18. EHNAPPC Application Program Interface 291

EHNAPPC_QueryConfiguredSystems

Purpose
This function returns the names of the systems configured on the communications
server.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern unsigned EHNAPPC_QueryConfiguredSystems(

HWND hWnd,
LPINT lpSysCount,
LPSYSSTRUC lpSys);

Parameters
hWnd identifies the current window of the application.

lpSysCount points to an integer variable which is used to return the number of
systems connected.

lpSys points to an AS400_Sys structure that is used to return the names of the
systems. The default system is the first system in the structure. For a description of
the AS400_Sys structure, see “AS400_SYS” on page 299.

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC_QueryConvState

Purpose
This function returns the state of the specified conversation.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern unsigned pascal EHNAPPC_QueryConvState(

HWND hWnd,
DWORD dwConversation);

Parameters
hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either
EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

Return Codes
The return value indicates the current state of the conversation. Possible values are:

EHNAPPC_RESET_STATE (0)
EHNAPPC_SEND_STATE (1)
EHNAPPC_RECEIVE_STATE (2)
EHNAPPC_RCVD_CONF_STATE (3)
EHNAPPC_RCVD_CONF_SEND_STATE (4)
EHNAPPC_RCVD_CONF_DEALL_STATE (5)
EHNAPPC_PEND_DEALLOCATE_STATE (6)
EHNAPPC_INVALID_STATE (7)

EHNAPPC Routines

292 Client/Server Communications Programming

EHNAPPC_QueryFullSystems

Purpose
This function returns the names and network names of the systems the client is
connected to.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern unsigned EHNAPPC_QueryFullSystems(

HWND hWnd,
LPINT lpSysCount,
LPFULLSYSSTRUC lpSys);

Parameters
hWnd identifies the current window of the application.

lpSysCount points to an integer variable which is used to return the number of
systems connected.

lpSys points to an AS400_Sys structure that is used to return the names of the
systems.

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC_QueryUserid

Purpose
This function returns the user ID used to connect to the specified system.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern unsigned EHNAPPC_QueryUserId(

HWND hWnd,
LPSTR lpszLocationName,
LPSTR lpszUserId);

Parameters
hWnd identifies the current window of the application.

lpszLocationName points to a null-terminated character string containing the
system name to be queried. Specify NULL to query the user ID for the default
system. lpszUserId points to a null-terminated character string that is used to
return the user ID for the specified system.

lpszUserId points to a null-terminated character string containing the user ID for
the specified system.

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC_QuerySystems

Purpose
This function returns the names of the systems the client is connected to.

EHNAPPC Routines

Chapter 18. EHNAPPC Application Program Interface 293

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern unsigned EHNAPPC_QuerySystems(

HWND hWnd,
LPINT lpSysCount,
LPSYSSTRUC lpSys);

Parameters
hWnd identifies the current window of the application.

lpSysCount points to an integer variable which is used to return the number of
systems connected.

lpSys points to an AS400_Sys structure that is used to return the names of the
systems. The default system is the first system in the structure. For a description of
the AS400_Sys structure, see “AS400_SYS” on page 299.

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC_ReceiveAndWait

Purpose
This function waits for information to arrive on the conversation, then receives the
information.

Procedure Declaration
#include "E32APPC.H"
extern int EHNAPPC_ReceiveAndWait(

HWND hWnd,
DWORD dwConversation,
FillEnu bFill,
int nMaxLength,
LPVOID lpReceiveData,
LPBYTE lpWhatReceived,
LPBYTE lpRequestToSendRcvd,
LPWORD lpReceiveDataLength);

Parameters
hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either
EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

bFill indicates the form in which the program is to receive data. Possible values
are:

EHNAPPC_BUFFER (0) (fill the buffer)
EHNAPPC_LL (1) (receive a complete or truncated logical record)

nMaxLength indicates the largest amount of data that can be accepted.

lpReceiveData points to a buffer where the data is to be received.

lpWhatReceived indicates what has been received by the client. Possible values
are:

EHNAPPC_DATA (0)
EHNAPPC_DATACOMPLETE (1)

EHNAPPC Routines

294 Client/Server Communications Programming

EHNAPPC_DATAINCOMPLETE (2)
EHNAPPC_RECEIVEDCONFIRM (3)
EHNAPPC_RECEIVEDCONFIRMSEND (4)
EHNAPPC_RECEIVEDCONFIRMDEALLOC (5)
EHNAPPC_RECEIVEDSEND (6)

lpRequestToSendRcvd points to a variable that is used to store whether the
partner transaction program issued a REQUEST_TO_SEND verb. A value of TRUE
(1) indicates the partner transaction program issued a REQUEST_TO_SEND verb.

lpReceiveDataLength points to a variable that is used to return the amount of data
received by the client.

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC_ReceiveImmediate

Purpose
This function checks to see if something has been received. If so, the data is
returned.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern int EHNAPPC_ReceiveImmediate(

HWND hWnd,
DWORD dwConversation,
FillEnum bFill,
int nMaxLength,
LPVOID lpReceiveData,
LPBYTE lpWhatReceived,
LPBYTE lpRequestToSendRcvd,
LPWORD lpReceiveDataLength);

Parameters
hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either
EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

bFill indicates the form in which the program is to receive data. Possible values
are:

EHNAPPC_BUFFER (0) (fill the buffer)
EHNAPPC_LL (1) (receive a complete or truncated logical record)

nMaxLength indicates the largest amount of data that can be accepted.

lpReceiveData points to a buffer where the data is to be received.

lpWhatReceived identifies what has been received by the client. Possible values
are:

EHNAPPC_DATA (0)
EHNAPPC_DATACOMPLETE (1)
EHNAPPC_DATAINCOMPLETE (2)
EHNAPPC_RECEIVEDCONFIRM (3)
EHNAPPC_RECEIVEDCONFIRMSEND (4)
EHNAPPC_RECEIVEDCONFIRMDEALLOC (5)

EHNAPPC Routines

Chapter 18. EHNAPPC Application Program Interface 295

EHNAPPC_RECEIVEDSEND (6)

lpRequestToSendRcvd points to a variable which is used to store whether the
partner transaction program issued a REQUEST_TO_SEND verb. A value of TRUE
(1) indicates the partner transaction program issued a REQUEST_TO_SEND verb.

lpReceiveDataLength points to a variable that is used to return the amount of data
received by the client.

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC_RemoteProgramStart

Purpose
This function allows Windows applications to start a program on a remote iSeries,
eServer i5, or System i5.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern word EHNAPPC_RemoteProgramStart(

HWND hWnd,
LPSTR lpszHostSystemName,
LPSTR lpszHostProgramName,
LPSTR lpszHostLibraryName,
char FAR *lpchPipData,
WORD wPipDataLength);

Parameters
hWnd identifies the current window of the application.

lpszHostSystemName points to a null-terminated character string that contains the
name of the remote system. The maximum length of this string is 8 characters. If
this pointer is null, the default system name is used.

lpszHostProgramName points to a null-terminated character string that contains
the name of the host program to be started.

lpszHostLibraryName points to a null-terminated character string that contains the
library path of the host program. If this pointer is null, the library list of the user is
searched.

lpchPipData points to the program initialization parameter (PIP) data area for the
host program. If this pointer is null, no PIP data is sent.

wPipDataLength contains the length of the PIP data.

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC_RqsToSend

Purpose
This function requests that the partner give up control of the conversation. The
client places the conversation in send state when the local transaction program

EHNAPPC Routines

296 Client/Server Communications Programming

subsequently receives EHNAPPC_RECEIVEDSEND (6) in the lpWhatReceived
parameter of a Receive verb from the partner transaction program.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern int EHNAPPC_RqsToSend(

HWND hWnd,
DWORD dwConversation);

Parameters
hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either
EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC_SendData

Purpose
This function sends data to the partner transaction program.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern int EHNAPPC_SendData(

HWND hWnd,
DWORD dwConversation,
int nSendDataLength,
LPVOID lpSendDataBuffer,
LPBYTE lpRequestToSendRcvd);

Parameters
hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either
EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

nSendDataLength identifies the length of the data in the send buffer.

lpSendDataBuffer identifies the address of the send buffer.

lpRequestToSendRcvd points to a variable that is used to store whether the
partner transaction program issued a REQUEST_TO_SEND verb. A value of TRUE
indicates the partner trans action program issued a REQUEST_TO_SEND verb.

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC_SendError

Purpose
This function indicates to the partner transaction program that some error has been
found. After using this function, the local program is in receive state.

EHNAPPC Routines

Chapter 18. EHNAPPC Application Program Interface 297

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern int EHNAPPC_SendError(

HWND hWnd,
DWORD dwConversation,
LPBYTE lpRequestToSendRcvd);

Parameters
hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either
EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

lpRequestToSendRcvd points to a variable that is used to store whether the
partner transaction program issued a REQUEST_TO_SEND verb. A value of TRUE
indicates the partner trans action program issued a REQUEST_TO_SEND verb.

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC_StartHostProgram

Purpose
This function allows Windows applications to start a program on a remote iSeries,
eServer i5, or System i5, leaving the conversation active allowing the application to
confirm the host program is running. The application will have to use the
EHNAPPC_Deallocate function to end the conversation.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern word EHNAPPC_StartHostProgram(

HWND hWnd,
LPSTR lpszHostSystemName,
LPSTR lpszHostProgramName,
LPSTR lpszHostLibraryName,
char FAR *lpchPipData,
WORD wPipDataLength);

Parameters
hWnd identifies the current window of the application.

lpszHostSystemName points to a null-terminated character string that contains the
name of the remote system. The maximum length of this string is 8 characters. If
this pointer is null, the default system name is used.

lpszHostProgramName points to a null-terminated character string that contains
the name of the host program to be started.

lpszHostLibraryName points to a null-terminated character string that contains the
library path of the host program. If this pointer is null, the library list of the user is
searched.

lpchPipData points to the program initialization parameter (PIP) data area for the
host program. If this pointer is null, no PIP data is sent.

wPipDataLength contains the length of the PIP data.

EHNAPPC Routines

298 Client/Server Communications Programming

Return Codes
For return codes, see “Return Codes for the EHNAPPC API” on page 300.

EHNAPPC Structures

AS400_SYS

Purpose
This structure is used to store the names of the systems the client is connected to.

Procedure Declaration
struct AS400_sys

(
unsigned char EHNAPPC_SysName¢EHNAPPC_MAX_SYSTEMS|

¢EHNAPPC_SYSNAME_SYSNAME_LENGTH|;
);

Parameters
EHNAPPC_SysName is used to store the name of a connected system. System
names are returned as null-terminated strings. The first system returned in the
array is the default system (EHNAPPC_MAX_SYSTEMS = 32 and
EHNAPPC_SYSNAME_SYSNAME_LENGTH = 10).

appcrtrcap_hdr

Purpose
This is the structure of the client capability list header.

Procedure Declaration
struct appcrtrcap_hdr

(
unsigned char rc;
unsigned char opcode;
unsigned int length;
);

Parameters
rc is used to store the overall return code of the capabilities request.

opcode signals the get capabilities request. Its value must be
EHNAPPC_OC_CAPABILITIES (0x17).

length identifies the length of the entire capabilities list. The length includes the
size of the header plus the size of each capability structure.

appcrtrcap_mult

Purpose
This is the capability structure used to determine the optimal communications
buffer multiplier.

Procedure Declaration
struct appcrtrcap_mult

(
unsigned int length;

EHNAPPC Routines

Chapter 18. EHNAPPC Application Program Interface 299

unsigned char identifier;
unsigned char rc;
unsigned int data;
);

Parameters
length identifies the length of this capability structure.

identifier signals the optimal communications buffer multiplier. Its value must be
EHNAPPC_CAP_OPTIMAL_COM_SIZE (X'02').

rc is used to store the return code of this capability request.

data is used to return the optimal communications buffer multiplier.

appcrtrcap_query

Purpose
This is the capability structure used to query if the client supports the specified
capability.

Procedure Declaration
struct appcrtrcap_query

(
unsigned int length;
unsigned char identifier;
unsigned char rc;
unsigned char data;
);

Parameters
length identifies the length of this capabilities structure.

identifier identifies the function to be queried. Possible values are:
EHNAPPC_CAP_QUERY_CONV_STATE (3)
EHNAPPC_CAP_EXT_ALLOCATE (4)

rc is used to store the return code of this capability request.

data is used to return whether or not the specified function is supported.

Return Codes for the EHNAPPC API
Functions in the client Windows API use the following return code constants
defined in E32APPC.H.

Table 24. Return Codes

Return Code Hex Value Description

EHNAPPC_OK 0 Command completed successfully

ENHAPPC_DEALLOCNORMAL 1 Deallocation normal.

ENHAPPC_PROGRAMMERNOTRUNCATION 2 Program error; no truncation.

ENHAPPC_PROGRAMMERTRUNCATION 3 Program error; truncation.

ENHAPPC_PROGRAMMERPURGING 4 Program error; purging.

ENHAPPC_RESOURCEFAILURETRY 5 Resource failure retry.

ENHAPPC_RESOURCEFAILURENORETRY 6 Resource failure no retry.

EHNAPPC Structures

300 Client/Server Communications Programming

Table 24. Return Codes (continued)

Return Code Hex Value Description

ENHAPPC_UNSUCCESSFUL 7 Unsuccessful.

ENHAPPC_APPCBUSY 8 APPC busy.

ENHAPPC_PARMCHKINVALIDVERB 14 Parameter check; incorrect verb.

ENHAPPC_PARMCHKINVALIDCONVERID 15 Parameter check; incorrect
conversation ID.

ENHAPPC_PARMCHKBUFFERCROSSEG 16 Parameter check; buffer crossed
segment.

ENHAPPC_PARMCHKTPNAMELENGTH 17 Parameter check; transaction program
name length.

ENHAPPC_PARMCHKINVCONVERTYPE 18 Parameter check; incorrect
conversation type.

ENHAPPC_PARMCHKBADSYNCLVLALLOC 19 Parameter check; bad synchronization
level allocate.

ENHAPPC_PARMCHKBADRETURNCNTRL 1A Parameter check; bad return control.

ENHAPPC_ ENHAPPC_PARMCHKPIPTOOLONG 1B Parameter check: PIP data too long.

ENHAPPC_PARMCHKBADPARTNERNAME 1C Parameter check; bad partner name.

ENHAPPC_PARMCHKCONFNOTALLOWED 1D Parameter check; confirm not allowed.

ENHAPPC_PARMCHKBADDEALLOCTYPE 1E Parameter check; bad deallocation
type.

ENHAPPC_PARMCHKPREPTORCVTYPE 1F Parameter check; prepare to receive
type.

ENHAPPC_PARMCHKBADFILLTYPE 20 Parameter check; bad fill type.

ENHAPPC_PARMCHKRECMAXLEN 21 Parameter check; receive maximum
length.

ENHAPPC_PARMCHKUNKNOWNSECTYPE 22 Parameter check; reserved field not
zero.

ENHAPPC_PARMCHKRESFLDNOTZERO 23 Parameter check; reserved field not
zero.

ENHAPPC_STATECHKNOTINCONFSTAT 28 State check; not in confirmed state.

ENHAPPC_STATECHKNOTINRECEIVE 29 State check; not in receive.

ENAHAPPC_STATECHKREQSNDBADSTATN 2A State check; request to send bad state.

ENHAPPC_STATECHKSNDINBADSTATE 2B State check; send in bad state.

ENHAPPC_STATECHKSNDERRBADSTAT 2C State check; send error bad state.

ENHAPPC_ALLOCERRNORETRY 32 Allocation error; no retry.

ENHAPPC_ALLOCERRRETRY 33 Allocation error; retry.

ENHAPPC_ALLOCERROGMNOTAVAILNR 34 Allocation error; program not
available no retry.

ENHAPPC_ALLOCERRTPNNOTRECOG 35 Allocation error; transaction program
name not recognized.

ENHAPPC_ALLOCERRPGMNOTAVAILR 36 Allocation error; program no available
retry.

ENHAPPC_ALLOCERRSECNOTVALID 37 Allocation error; security not valid.

ENHAPPC_ALLOCERRCONVTYP 38 Allocation error; conversation type
mismatch.

Return Codes for the EHNAPPC API

Chapter 18. EHNAPPC Application Program Interface 301

Table 24. Return Codes (continued)

Return Code Hex Value Description

ENHAPPC_ALLOCERRPIPNOTALLOWED 39 Allocation error; PIP data not allowed.

ENHAPPC_ALLOCERRPIPNOTCORRECT 3A Allocation error; PIP data not correct.

ENHAPPC_ALLOCERRSYNCHLEVEL 3B Allocation error; synchronization level
not supported.

ENHAPPC_DEALLOCABENDPROGRAM 46 Deallocation abend program.

ENHAPPC_INSUFFICIENTMEMORY 47 Insufficient memory.

ENHAPPC_MEMORYALLOCERROR 47 Memory allocation error.

ENHAPPC_MEMORYALLCERROR 48 Memory allocation error.

ENHAPPC_TOOMANYCONVERSATIONS 4A Too many conversations.

ENHAPPC_CONVTABLEFULL 4B Conversion table full.

ENHAPPC_CLIENTNOTINSTALLED 4C Client not installed

ENHAPPC_CLIENTWRONGLEVEL 4C Client at wrong level.

ENHAPPC_PCSWINNOTLOADED 4D PSWIN not loaded.

ENHAPPC_PCSWINOUTOFMEMORY 4E PCSWIN out of memory.

ENHAPPC_INVALIDUSERIDLEN 4F Incorrect user ID length.

ENHAPPC_INVALIDPASSWORDLEN 50 Incorrect password length.

ENHAPPC_INVALIDUNAME 51 Incorrect LU length.

ENHAPPC_UNDEFINED 63 Undefined.

Running 16-Bit EHNAPPC Programs
Communications Server SNA API Win32 clients provide the capability of running
your existing 16-bit EHNAPPC programs on Windows. To do so, start the program
EHNAPPCD from your Communications Server SNA API client subdirectory
before you start any of your 16-bit EHNAPPC applications. This program provides
the necessary chunking to the 32-bit E32APPC.DLL.

Return Codes for the EHNAPPC API

302 Client/Server Communications Programming

Chapter 19. Data Transform Windows Application Program
Interface

This is only available on the Communications Server SNA API
clients.

The data transform API provides the capability to convert data between the iSeries,
eServer i5, or System i5 format and the PC format. Translation may be needed
when sending and receiving data to and from the iSeries, eServer i5, or System i5.
The data transform API supports conversion of text and numerous numeric
formats.

This chapter describes the individual routines and return codes that make up the
data transform API.

Data Transform Windows API Routines
The following discussions of each data transform API routine describe in detail:
v Purpose
v Procedure declaration
v Parameters
v Return codes

EHNDT_ANSIToEBCDIC

Purpose
This function translates a string from the Windows ANSI code page to EBCDIC.
The router must be loaded so that this routine can access the ASCII-to-EBCDIC
translation table.

If the target string is not large enough to contain the translated string, the
translation stops at the end of the target string. If the target string is larger than
required, it is filled with blanks to the end of the string.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern unsigned int EHNDT_ANSIToEBCDIC(

HWND hWnd,
LPSTR lpsSource,
LPSTR lpsTarget,
unsigned in wSource,
LPWORD lpwTarget);

Parameters
hWnd identifies the current window of the application.

lpsSource points to the source (ANSI) string to convert.

lpsTarget points to the target (translated) string.

© Copyright IBM Corp. 1994, 2016 303

wSource identifies the length of the source string in bytes.

lpwTarget points to a word variable containing the size of the target buffer. This
variable will be updated with the total number of translated characters in the
target buffer.

Return Codes
If the function is successful, EHNDT_SUCCESS (X'0000') is returned. If the router is
not loaded, EHNDT_A2E_TABLE_NOT_FOUND (X'FFFC') is returned. If an error
occurs while attempting to allocate a temporary buffer, EHNDT_MEMALLOC
(X'FFFF') is returned. If incorrect data is found during translation, the return code
is the location of the first untranslated character plus one.

EHNDT_ASCIIToEBCDIC

Purpose
This function translates a string from ASCII to EBCDIC. The router must be loaded
so that this routine can access the ASCII-to-EBCDIC translation table. If the target
string is not large enough to contain the translated string, the translation stops at
the end of the target string. If the target string is larger than required, it is blank
filled to the end of the string.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern unsigned int EHNDT_ASCIIToEBCDIC(

HWND hWnd,
LPSTR lpsTarget,
LPSTR lpsSource,
unsigned in wSource,
LPWORD lpwTarget);

Parameters
hWnd identifies the current window of the application.

lpsTarget points to the target (translated) string.

lpsSource points to the source (ASCII) string to convert.

wSource identifies the length of the source string in bytes.

lpwTarget points to a word variable containing the size of the target buffer. This
variable will be updated with the total number of translated characters in the
target buffer.

Return Codes
If the function is successful, EHNDT_SUCCESS (X'0000') is returned. If the router is
not loaded, EHNDT_A2E_TABLE_NOT_FOUND (X'FFFC') is returned.

If incorrect data is found during translation, the return code is the location of the
first untranslated character plus one.

Data Transform Windows API Routines

304 Client/Server Communications Programming

EHNDT_EBCDICToANSI

Purpose
This function converts a string from EBCDIC to the Windows ANSI code page. The
router must be loaded so that this routine can access the ASCII-to-EBCDIC
translation table.

If the target string is not large enough to contain the translated string, the
translation stops at the end of the target string. If the target string is larger than
required, it is blank filled to the end of the string.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern unsigned int EHNDT_EBCDICToANSI(
HWND hWnd,
LPSTR lpsTarget,
LPSTR lpsSource,
unsigned int wSource,
LPWORD lpwTarget); :

Parameters
hWnd identifies the current window of the application.

lpsTarget points to the target (translated) string

lpsSource points to the source (EBCDIC) string to convert.

wSource identifies the length of the source string in bytes

lpwTarget points to a word variable containing the size of the target buffer. This
variable will be updated with the total number of translated characters in the
target buffer.

Return Codes
If the function is successful, EHNDT_SUCCESS ('0000') is returned. If the router is
not loaded, EHNDT_E2A_TABLE_.NOT_FOUND ('FFFC') is returned. If incorrect
data is found during translation, the return code is the location of the first
untranslated character plus one.

EHNDT_EBCDICToASCII

Purpose
This function converts a string from EBCDIC to ASCII. The router must be loaded
so that this routine can access the ASCII-to-EBCDIC translation table.

If the target string is not large enough to contain the translated string, the
translation stops at the end of the target string. If the target string is larger than
required, it is blank filled to the end of the string.

Procedure Declaration
#include <WINDOWS.H>
#include "E32APPC.H"
extern unsigned int EHNDT_EBCDICToASCII(

HWND hWnd,

Data Transform Windows API Routines

Chapter 19. Data Transform Windows Application Program Interface 305

LPSTR lpsTarget,
LPSTR lpsSource,
unsigned int wSource,
LPWORD lpwTarget);

Parameters

hWnd identifies the current window of the application.

lpsTarget points to the target (translated) string.

lpsSource points to the source (EBCDIC) string to convert.

wSource identifies the length of the source string in bytes.

lpwTarget points to a word variable containing the size of the target buffer. This
variable will be updated with the total number of translated characters in the
target buffer.

Return Codes
If the function is successful, EHNDT_SUCCESS ('0000') is returned. If the router is
not loaded, EHNDT_.E2A_TABLE_NOT_FOUND ('FFFC') is returned. If incorrect
data is found during translation, the return code is the location of the first
untranslated character plus one.

Data Transform Windows API Routines

306 Client/Server Communications Programming

Part 5. Java Programming Interfaces

© Copyright IBM Corp. 1994, 2016 307

308 Client/Server Communications Programming

Chapter 20. Introduction to the Host Access Class Library for
Java

This chapter describes the IBM Host Access Class Library (HACL) for Java as it
relates to 3270 and 5250 applications, including:
v A brief overview of the structure of HACL for Java
v What is installed for HACL
v What samples are available and how they work

What Is HACL?
The HACL for Java is a set of classes and methods that allow application
programmers to access host applications at the 3270 and 5250 data stream levels
easily and quickly. HACL implements the core host access function in a complete
class model that is independent of any graphical display and only requires a
Java-enabled browser or comparable Java environment to operate.

The class library represents a complete object-oriented abstraction of a host
connection, including:
v Reading and writing the host presentation space (screen)
v Enumerating the fields in the presentation space
v Reading the operator information area (OIA) for status information
v Transferring files
v Performing asynchronous notification of significant events

Application programmers can write Java applets that manipulate data from the
data stream presentation space (such as 3270 and 5250) without requiring applets
to reside on these machines. The presentation space represents an imaginary
terminal screen that contains both data and associated attributes presented by host
applications. After an interaction is complete, the applet can switch to other tasks
or simply close the session. The transaction can be completed without ever
showing host screens.

HACL Java applets can:
v Open a session to the host
v Wait for incoming host data
v Get specific strings from the imaginary screen
v Get associated attributes of the strings
v Set new string values
v Send data stream function keys back to the host
v Wait for the next host session

HACL is a significant improvement over client-specific, screen scraping application
programming interfaces like EHLLAPI in several ways, such as:
v HACL is platform independent
v HACL operates directly on the data stream rather than on the interpreted

emulator screen. This eliminates the overhead of interpreting and displaying the
datastream in a visual window.

© Copyright IBM Corp. 1994, 2016 309

v HACL does not require emulator software running on the local workstation,
reducing dependencies on platform-specific screen formats and keyboard
layouts.

v HACL is downloadable and executable on client workstations using standard
Web and Java technology. This provides significant maintenance and resource
savings.

HACL Concepts
The following sections describe several essential concepts of the HACL.
Understanding these concepts will aid you in making effective use of the library.

Sessions
In the context of the HACL, a session object (ECLSession) encapsulates the
connection to the host and the characteristics of that connection. A session object
also serves as a container for the other session-specific objects: ECLPS (presentation
space), ECLOIA (operator information area), and ECLXfer (file transfer).

A session object has no associated graphical user interface (GUI). In other words,
creating an instance of ECLSession does not cause an emulator screen to display.

Container Objects
Several of the HACL classes act as containers of other objects. The ECLSession
object contains an instance of the ECLPS, ECLOIA, and ECLXfer objects.
Containers provide methods to return a pointer to the contained object. The
ECLSession object has a GetOIA method, which returns a pointer to an OIA object.
Contained objects are not implemented as public members of the container's class
but, rather, are accessed only through HACL methods.

List Objects
Several HACL classes provide list iteration capabilities. For example, the
ECLConnList class manages the list of connections. HACL list classes are not
asynchronously updated to reflect changes in the list content. The application must
explicitly call the Refresh method to update the contents of a list. This allows an
application to iterate a list without concern that the list may change during the
iteration.

Events
The HACL provides the capability of asynchronous notification of certain events.
An application can choose to be notified when specific events occur. For example,
the application can be notified when the status of a connection to a host changes.
Currently the HACL supports notification for the following events:

Table 25. Events for HACL

Events Interface Used to Capture Events

Communications connect and disconnect ECLLCommNotify

Presentation space updates ECLPSNotify

Operator Information Area (OIA) updates ECLOIANotify

Event notification is defined by the respective HACL Notify interfaces. A separate
interface exists for each event type. To be notified of an event, the application must
define and create an object which implements the interface for the event type

310 Client/Server Communications Programming

requiring notification. That object must then be registered by calling the
appropriate HACL registration function. Once an application object is registered,
its NotifyEvent method is called whenever an event occurs.

Note: The application's NotifyEvent method is called asynchronously on a separate
thread of execution. Therefore, the NotifyEvent method should be entered
again. Appropriate locking or synchronization should be used if application
resources are accessed.

Error Handling
In general, the HACL indicates errors to the application by the throwing ECLErr
objects. To catch errors, the application should enclose calls to the HACL objects in
a try/catch block such as:
try {

int pos = ps.ConvertRowColToPos(row, col);

//...possibly more references to HACL objects...

} catch (ECLErr err) {
System.out.println("ECL Error! " + err.GetMsgText());

}

When an HACL error is detected, the application can call methods of the ECLErr
object to determine the exact cause of the error. The ECLErr object can also be
called to construct a complete language-sensitive error message.

Addressing (Rows, Columns, Positions)
The HACL provides two ways of addressing points (character positions) in the
host presentation space. The application can address characters by row/column
numbers, or by a single linear position value. Presentation space addressing is
always 1-based (not zero-based) irrespective of the addressing scheme.

The row and column addressing scheme is useful for applications that relate
directly to the physical screen presentation of the host data. The rectangular
coordinate system (with row 1, column 1 in the upper left corner) is a natural way
to address points on the screen. The linear positional addressing method (with
position 1 in the upper left corner, progressing from left to right, top to bottom) is
useful for applications that view the entire presentation space as a single array of
data elements or for applications ported from the EHLLAPI interface.

In general, the different addressing schemes are chosen by calling different
signatures for the same methods. For example, to move the host cursor to a given
screen coordinate, the application can call the ECLPS::SetCursorPos method in one
of two signatures:
ps.SetCusorPos(81);
ps.SetCursorPos(2, 1);

These statements have the same effect if the host screen is configured for 80
columns per row. This example also points out a subtle difference in the
addressing schemes. The linear position method can yield unexpected results if the
application makes assumptions about the number of characters per row of the
presentation space. For example, the first line of code in the example would put
the cursor at column 81 of row 1 in a presentation space configured for 132
columns. The second line of code would put the cursor at row 2, column 1
irrespective of the presentation space configuration.

Chapter 20. Introduction to the Host Access Class Library for Java 311

Installing HACL on the Communications Server for Windows Server

This is only available for Communications Server Win32 SNA API
clients.

After you have inserted the Communications Server for Windows CD-ROM and
followed the steps in the interface, you will be prompted to click on Setup to begin
the installation of the InstallShield® Wizard. Once installed, the wizard will guide
you through the rest of the installation procedures. Upon completion of the
installation of the wizard, a Welcome to IBM Communications Server window
appears. Click on Next to continue. The next series of panels will prompt you to
choose the setup type, the drive and directory where you want to install
Communications Server, the FTP directory for anonymous access for IBM Files
On-Demand, and the drive and directory where you want to install the HACL
class files.

This install provides the ability to access HACL Java class files from an applet
residing on the server, or to access HACL Java class files from a Java Application
residing on the server, HACL codepage converters, the documentation for HACL,
and sample Java applets and Java applications. (You do not need to install HACL
on the server in order to run as a Java application on the client.)

The following describes the HACL parts and their definitions:
\IBMCS\SDK\JAVA\HACL\EN\DOC*.* The on—line, HTML format,

HACL documentation. The documentation
is formatted to be accessed by a
web-browser. It is recommended that you
start at the file called
"ECLReference.html".

\IBMCS\SDK\JAVA\HACL\TOOLKIT\HACL\SAMPLES*.* Sample programs.

\IBMCS\SDK\JAVA\HACL\TOOLKIT\JARS\habeans.jar This file is used to
run HACL Java applets and
applications from the server.

\IBMCS\jre*.* Java Runtime Environment that is
compatible with the HACL files
installed on the server.

Installing HACL on the Communications Server 32–Bit Windows Client

This is only available for Communications Server Win32 SNA API
clients.

If the HACL is installed on the client via the Typical or Custom client install
option, habeans.jar is installed along with a Java Runtime Environment (JRE) in the
CSNT client directory (for example, CSNTAPI). This enables a HACL Java
application to access the HACL Java classes located in the habeans.jar file. HACL is
not a complete application by itself. A Java application must be written which uses
the HACL Java classes to perform a desired set of functions. The client install of

312 Client/Server Communications Programming

HACL provides the level of functionality needed to run user-written HACL Java
applications. No additional HACL code needs to be installed on the server.

Due to size constraints, the habeans.jar file contains only the English codepage.
Other codepage converter classes can be obtained from the jar file, habeansnlv.jar,
installed on the server. Complete HACL documentation, sample Java applets and
Java applications, and the ability to run Java applets with HACL, can also be
installed on the server.

Setting the Classpath
When running a Java application or Java applet, set the environment variable
classpath equal to the full pathname of the location of the Java classes needed to
run the application or applet. For instance, if an HACL Java application is written
and copied into the SNA API client subdirectory (for example, C:\CSNTAPI), then:
v The classpath should be set to:

C:\CSNTAPI;C:\CSNTAPI\habeans.jar

v The command line should be:

set classpath=C:\CSNTAPI;C:\CSNTAPI\habeans.jar

If you are using the Java Runtime Environment (JRE), then the classpath
environment variable is not used, but the path to the Java classes can be specified
with the cp option when the JRE is invoked.

HACL Codepage Converters
HACL codepage converters support multiple languages. Due to size constraints,
the habeans.jar file contains only the English codepage. Other codepage converter
classes can be obtained from the file, habeansnlv.jar, installed on the server.
Habeansnlv.jar is a full replacement for habeans.jar and includes the converters for
other country code pages. These files can be copied to the machine running the
Java application. Be careful to preserve the Classpath (com\ibm...) where the files
are located.

In order to reduce the size of an HACL application or applet, you should copy
only those converter class files needed by the application or applet. Information on
implementing the codepage converter classes is described in the HACL
documentation.

HACL Samples
Sample programs and documentation are found in the IBMCS\SDK\JAVA\
HACL\TOOLKIT\HACL\SAMPLES subdirectory.

Chapter 20. Introduction to the Host Access Class Library for Java 313

314 Client/Server Communications Programming

Chapter 21. Using CPIC-C for Java

This chapter describes the Common Programming Interface for Communications
(CPI-C) for Java API and its usage, including the following:
v A brief overview of CPI-C for Java
v What is installed for CPI-C for Java
v What samples are available and how they work

Note: Personal Communications does not install support for CPIC-C for Java. The
toolkit is provided on the Installation Image (DVD-ROM).

What is CPI-C for Java?
CPI-C for Java is a programming toolkit that allows developers to use the
Common Programming Interface for Communications (CPI-C) API in the Java
language. CPI-C is an open API for SNA LU 6.2. Refer to Common Programming
Interface Communications CPI-C Reference (SC26-4399), available on the IBM
Communications Server Version 6.4 CD-ROM in PDF and HTML formats, for more
details on the CPI-C API.

A primary goal of the toolkit is to ease the transition from traditional C to Java.
Because of this, the toolkit calls look quite similar to those used in C. CPI-C for
Java is provided as a layer above the native CPI-C API and this native code must
be installed in order for CPI-C to work.

The toolkit provides programmer reference documentation for every class, method,
and variable in the toolkit. The documentation is in HTML format, and provides
cross-references for ease of use.

This programming toolkit also provides a set of Java classes with objects to hold
CPI-C parameters as well as a CPIC class, which defines methods that map to the
CPI-C functions in C. You can run the sample application (JPing.class) included in
the toolkit, as well as write your own.

The CPI-C for Java binding allows a Java application to use an SNA network and
to use CPI-C as a networking API. These Java applications can connect to partners
that are:
v New CPI-C for Java applications
v New or existing non-Java CPI-C applications
v New or existing APPC applications

Installing CPI-C for Java (Communications Server)
For Communications Server, the following items are installed with the CPI-C for
Java toolkit. Personal Communications provides the toolkit on the installation CD,
but it is not installed automatically.
v CPICJAVA.JAR contains the Java classes used when writing CPI-C for Java

programs. This JAR file should be included in the user's CLASSPATH
environment variable or should be specified explicitly when invoking a CPI-C
for Java application. The file is installed on the user's workstation along with the
other API client files. The JAR file also contains JPing.class, a sample application.

© Copyright IBM Corp. 1994, 2016 315

v CPICJAVA.DLL is a platform-specific DLL which contains the linkage between
the CPI-C for Java classes and the native LU 6.2 support installed on the user's
workstation. This file is installed on the workstation along with the other API
client DLLs.

v Jcpic001.htm is the root of the programmer's reference documentation that shows
each CPI-C for Java class, method, and variable. It is installed in the
Communications Server IBMCS\SDK\JAVA\CPIC\DOC subdirectory at the
same time that Host Access Class Library (HACL) for Java is installed. This
documentation is used to develop custom applications.

v CPICJAVA.HTM is a brief introduction to the toolkit and sample application.
This HTML-formatted file is installed on the user's workstation along with the
other API client files.

v JPing.java is the source file for the JPing.class sample application. The comments
in this file give hints and tips on programming with the toolkit. The JPing.java
file is installed in the subdirectory when the ECL for Java is installed.

CPI-C for Java Samples
The following sections describe the client and server samples for CPI-C for Java.

Client Sample
The sample included in the toolkit performs the same function as the APING client
utility. It sends data to a server process that echoes the data back to the APING
utility. The sample client has been compiled and placed into the CPICJAVA.JAR
file. The source file (JPing.java) is installed in the IBMCS\SDK\JAVA\CPIC\
SAMPLES subdirectory when the ECL for Java is installed.

The API is supplied as a Java package called COM.ibm.eNetwork.cpic. The first
line of code in the following sample is required in order to access the classes
supplied with the toolkit. The CPIC class is the main interface to the native CPI-C
code. The CPIC class contains many constants defined in CPI-C, such as, the
length of a conversation ID, along with methods that are passed through to the
native CPI-C calls.

You need only declare one CPIC object per class. Java will load the dynamic link
library (DLL) containing the native methods (CPICJAVA.DLL) when the CPIC
object is instantiated.

The following sample describes the CPI-C pipeline; it does not replicate the
information in the JPing.java source file.

Note: The following sample includes code interleaved with commentary.
/*---
* Pipeline transaction, client side.
---/
import COM.ibm.eNetwork.cpic.*;
public class Pipe extends Object {

public static void main(String args[]) {

// Make a CPIC object
CPIC cpic_obj = new CPIC();

Each type of parameter has its own class, and each of these classes has associated
constants defined as class variables. For example, the CPICReturnCode class has
the success return code, CM_OK, defined.

316 Client/Server Communications Programming

There are two major reasons for having a class for each type of parameter. Because
Java passes all parameters by value, there is no way to return data in simple types,
such as integer. If we pass an object as a parameter to a method, the method can
set a variable in that object, thus returning data to the caller. Secondly, the use of
objects encapsulates constants within the objects that understand those constants.
This is a standard information-hiding technique.

// Return Code
CPICReturnCode cpic_return_code =

new CPICReturnCode(CPICReturnCode.CM_OK);

// Request to send received?
CPICControlInformationReceived rts_received =

new CPICControlInformationReceived(
CPICControlInformationReceived.CM_NO_CONTROL_INFO_RECEIVED);

The CPI-C send function expects a C-language buffer, that is, allocated space of no
specific type. Unlike C, Java has no facility to allocate untyped memory. Other than
primitives, everything in Java is an object. Whatever the program sends must be
converted from its object type into a C-style array of bytes.

Java provides methods that facilitate these conversions. For example, Java can
convert a string into a Java array of bytes. While an array of bytes is an object in
Java, Java allows you to extract the data from an array of bytes with a native
method.
// String to Send
String sendThis = "Test of the PipeLine Transaction";

// Length of String to send
CPICLength send_length = new CPICLength(sendThis.length());

// Convert String to send to a Java array of bytes
byte[] stringBytes = new byte[send_length.intValue()];
sendThis.getBytes(0,send_length.intValue(),stringBytes,0);

Like buffer processing, the CPI-C native calls expect symbolic destination names to
be C-strings, not Java Strings. The toolkit automatically converts them from Java
strings to C-strings as necessary. In general, automatic conversion is possible when
the toolkit expects a specific Java type.

The conversation ID is a Java array of bytes which is converted automatically by
the toolkit to a C array consisting of a simple block of bytes.

// this hardcoded sym_dest_name must
// be 8 chars long & blank padded
String sym_dest_name = "PIPE ";

// Space to hold a conversation ID
// (which is just a bunch of bytes)
byte[] conversation_ID = new byte[CPIC.CM_CID_SIZE];

The program starts making CPI-C calls which are very similar to those used in C.
However, the method calls are prefixed with the name of the CPI-C object, and the
parameters are not prefixed by the pass-by-reference (&) symbol.

//
// Initialize CPI-C
//
cpic_obj.cminit(/* Initialize_Conversation */

conversation_ID, /* O: returned conversation ID */
sym_dest_name, /* I: symbolic destination name */
cpic_return_code); /* O: return code from this call */

Chapter 21. Using CPIC-C for Java 317

//
// ALLOCATE
//
cpic_obj.cmallc(/* Allocate Conversation */

conversation_ID, /* I: conversation ID */
cpic_return_code); /* O: return code from this call */

//
// SEND
//
cpic_obj.cmsend(/* Send_Data */

conversation_ID, /* I: conversation ID */
stringBytes, /* I: send this buffer */
send_length, /* I: length to send */
rts_received, /* O: was RTS received? */
cpic_return_code); /* O: return code from this call */

//
// DEALLOCATE
//
cpic_obj.cmdeal(/* Deallocate */

conversation_ID, /* I: conversation ID */
cpic_return_code); /* O: return code from this call */

} // end main method
} // end the class

Server Sample
The server initializes itself, accepts a conversation, receives data, and prints
diagnostic information. As in the client, we instantiate classes to hold the CPI-C
parameters, many of which have only an integer as instance data. By using objects,
we can mimic call by reference. We also allocate a byte array to hold the received
data.

Note: The following sample includes code interleaved with commentary.
/*---
* Pipeline transaction, server side.
---/
import COM.ibm.eNetwork.cpic.*;
import Java.io.IOException;

public class PipeServer extends Object {
public static void main(String args[]) {

CPIC cpic_obj = new CPIC();

// Space to hold the received data
byte[] data_buffer;
data_buffer = new byte[101];

CPICLength requested_length = new CPICLength(101);
CPICDataReceivedType data_received =

new CPICDataReceivedType(0);
CPICLength received_length = new CPICLength(0);
CPICStatusReceived status_received =

new CPICStatusReceived(0);
CPICControlInformationReceived rts_received =

new CPICControlInformationReceived(0);
CPICReturnCode cpic_return_code =

new CPICReturnCode(0);

// Space to hold a conversation ID -- a bunch of bytes
// The first line declares conversation_ID to be a reference to
// a byte array object. The second line creates such an object,

318 Client/Server Communications Programming

// and assigns the reference to the byte array object.
byte[] conversation_ID;
conversation_ID = new byte[cpic_obj.CM_CID_SIZE];

The CPI-C receive call (cmrcv) returns a Java array of bytes while the pipe
transaction expects a string. The programmer can translate the array of bytes into a
string by using the string class-constructor that takes an array of bytes as an
argument.

//
// ACCEPT
//
cpic_obj.cmaccp(/* Accept_Conversation */

conversation_ID, /* O: returned conversation ID */
cpic_return_code); /* O: return code */

//
// RECEIVE
//
cpic_obj.cmrcv(/* Receive */

conversation_ID, /* I: conversation ID */
data_buffer, /* I: where to put received data */
requested_length, /* I: maximum length to receive */
data_received, /* O: data complete or not? */
received_length, /* O: length of received data */
status_received, /* O: has status changed? */
rts_received, /* O: was RTS received? */
cpic_return_code); /* O: return code from this call */

//
// Do some return code processing
//
System.out.println(" Data from Receive:");
System.out.println(" cpic_return_code = " +

cpic_return_code.intValue());
System.out.println(" cpic_data_received = " +

data_received.intValue());
System.out.println(" cpic_received_length = " +

received_length.intValue());
System.out.println(" cpic_rts_received = " +

rts_received.intValue());
System.out.println(" cpic_status_received = " +

status_received.intValue());
// Create a Java String from the array of bytes that you received
// and print it out.
String receivedString = new String(data_buffer,0);
System.out.println(

" Recevied string = "
+ receivedString);

//
// BLOCK so that the Server Window doesn’t disappear
//
try{

System.out.println("Press any key to continue");
System.in.read();

}
catch

(IOException e){ e.printStackTrace(); }
}

}

Chapter 21. Using CPIC-C for Java 319

320 Client/Server Communications Programming

Part 6. Appendixes

© Copyright IBM Corp. 1994, 2016 321

322 Client/Server Communications Programming

Appendix A. APPC Common Return Codes

This appendix describes the primary (and, if applicable, secondary) return codes
that are common to several APPC verbs.

Verb-specific return codes are described in the documentation for the individual
verbs.

AP_ALLOCATION_ERROR
Personal Communications and Communications Server has failed to
allocate a conversation. The conversation state is set to RESET. This code
can be returned through a verb issued after ALLOCATE or
MC_ALLOCATE. The associated secondary return codes are as follows:

AP_ALLOCATION_FAILURE_NO_RETRY
The conversation cannot be allocated because of a permanent condition,
such as a configuration error or session protocol error. To determine the
error, the system administrator should examine the error log file. Do not
attempt to retry the allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY
The conversation could not be allocated because of a temporary condition,
such as a link failure. The reason for the failure is logged in the system
error log. Retry the allocation, preferably after a timeout to permit the
condition to clear.

AP_CANCELLED
The verb returned because the conversation was canceled (the transaction
program issued a CANCEL_CONVERSATION verb).

AP_CONV_FAILURE_NO_RETRY
The conversation was terminated because of a permanent condition, such
as a session protocol error. The system administrator should examine the
system error log to determine the cause of the error. Do not retry the
conversation until the error has been corrected.

AP_CONV_FAILURE_RETRY
The conversation was terminated because of a temporary error. Restart the
transaction program to see if the problem occurs again. If it does, the
system administrator should examine the error log to determine the cause
of the error.

AP_CONVERSATION_TYPE_MISMATCH
The requested transaction program cannot support conversations of the
type (basic or mapped) specified in the allocation request. This indicates a
mismatch between the local and partner transaction programs.

AP_CONVERSATION_TYPE_MIXED
The transaction program has attempted to mix conversation verbs for
different conversation types on the same conversation. For example, the
transaction program issued an MC_ALLOCATE verb followed by a
CONFIRM verb.

AP_DEALLOC_ABEND
The conversation has been deallocated for one of the following reasons.
v The partner transaction program has issued the MC_DEALLOCATE

verb with dealloc_type set to AP_ABEND.

© Copyright IBM Corp. 1994, 2016 323

v The partner transaction program has ended abnormally, causing the
partner LU to send an MC_DEALLOCATE request.

AP_DEALLOC_ABEND_PROG
The conversation has been deallocated for one of the following reasons.
v The partner transaction program has issued the DEALLOCATE verb

with dealloc_type set to AP_ABEND_PROG.
v The partner transaction program has ended abnormally, causing the

partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC
The conversation has been deallocated because the partner transaction
program issued the DEALLOCATE verb with dealloc_type set to
AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER
The conversation has been deallocated because the partner transaction
program has issued the DEALLOCATE verb with dealloc_type set to
AP_ABEND_TIMER.

AP_DEALLOC_NORMAL
This return code does not indicate an error. The partner transaction
program issued the DEALLOCATE or MC_DEALLOCATE verb with
dealloc_type set to one of the following values.
v AP_FLUSH
v AP_SYNC_LEVEL with the synchronization level of the conversation

specified as AP_NONE

AP_DUPLEX_TYPE_MIXED
The transaction program has attempted to issue a conversation verb with a
different conversation duplex_type. For example, the transaction program
issued a half-duplex MC_FLUSH verb (without
AP_FULL_DUPLEX_CONVERSATION set in opext) on a full-duplex
conversation.

AP_ERROR_INDICATION
This return code is used on full-duplex conversations only. A send queue
operation has failed because the partner transaction program has
terminated the conversation. If the conversation state is send-only, the
conversation has now ended. If the conversation state is send-receive or
receive-only, the conversation will end when the appropriate return code is
returned to a receive queue verb. The associated secondary return codes
are:

AP_ALLOCATION_ERROR_PENDING
The remote LU rejected the allocation request.

AP_DEALLOC_ABEND_PROG_PENDING
The conversation has been deallocated for one of the following
reasons:
v The partner transaction program has issued the DEALLOCATE

verb with dealloc_type set to AP_ABEND_PROG.
v The partner transaction program has ended abnormally causing

the partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC_PENDING
The conversation has been deallocated because the partner
transaction program issued the DEALLOCATE verb with
dealloc_type set to AP_ABEND_SVC.

324 Client/Server Communications Programming

AP_DEALLOC_ABEND_TIMER_PENDING
The conversation has been deallocated because the partner
transaction program issued the DEALLOCATE verb with
dealloc_type set to AP_ABEND_TIMER.

AP_UNKNOWN_ERROR_TYPE_PENDING
The conversation has been deallocated by the partner transaction
program, but the local LU does not recognize the reason.

AP_OPERATION_INCOMPLETE
The transaction program issued a nonblocking verb that started processing,
but did not complete. When verb processing completes, the final return
code will be set and the stub will notify the transaction program.

AP_PIP_NOT_ALLOWED
The requested transaction program cannot receive program initialization
parameters (PIP). This indicates a mismatch between the local and partner
transaction programs.

AP_PIP_NOT_SPECIFIED_CORRECTLY
The requested transaction program can receive program initialization
parameters (PIP), but detected an error in the supplied PIP. This indicates a
mismatch between the local and partner transaction programs.

AP_PROG_ERROR_NO_TRUNC
The partner transaction program has issued one of the following verbs
while the conversation was in SEND state.
v SEND_ERROR with err_type set to AP_PROG
v MC_SEND_ERROR

Data was not truncated.

AP_PROG_ERROR_PURGING
The partner transaction program issued one of the following verbs while in
RECEIVE, PENDING_POST, CONFIRM, CONFIRM_SEND, or
CONFIRM_DEALLOCATE state.
v SEND_ERROR with err_type set to AP_PROG.
v MC_SEND_ERROR

Data sent, but not yet received, is purged.

AP_PROG_ERROR_TRUNC
In SEND state, after sending an incomplete logical record, the partner
transaction program issued a SEND_ERROR verb with err_type set to
AP_PROG. The local transaction program might have received the first
part of the logical record through a RECEIVE verb.

AP_SEC_REQUESTED_NOT_SUPPORTED
The local LU is unable to allocate a conversation because the session with
the partner LU does not support Password Substitution. The security type
requested on the ALLOCATE or SEND_CONVERSATION is
AP_PGM_STRONG, that requires Password Substitution support.

AP_SECURITY_NOT_VALID
The user ID or password specified in the allocation request was not
accepted by the partner LU.

AP_SVC_ERROR_NO_TRUNC
While in SEND state, the partner transaction program (or partner LU)
issued a SEND_ERROR verb with err_type set to AP_SVC. Data was not
truncated.

Appendix A. APPC Common Return Codes 325

AP_SVC_ERROR_PURGING
The partner transaction program (or partner LU) issued a SEND_ERROR
verb with err_type set to AP_SVC while in RECEIVE, PENDING_POST,
CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state. Data
sent to the partner transaction program might have been purged.

AP_SVC_ERROR_TRUNC
In SEND state, after sending an incomplete logical record, the partner
transaction program (or partner LU) issued a SEND_ERROR verb. The
local transaction program might have received the first part of the logical
record.

AP_SYNC_LEVEL_NOT_SUPPORTED
The requested transaction program cannot support conversations with the
sync_level (AP_NONE, AP_CONFIRM_SYNC_LEVEL or AP_SYNCPT)
specified in the allocation request. This indicates a mismatch between the
local and partner transaction programs.

AP_TP_BUSY
The local transaction program has issued a blocking verb to Personal
Communications while Personal Communications was processing another
verb for the same conversation.

AP_TP_NAME_NOT_RECOGNIZED
The transaction program name specified in the allocation request is not
recognized by the partner LU.

AP_TRANS_PGM_NOT_AVAIL_NO_RTRY
The remote LU rejected the allocation request because it was unable to
start the requested partner transaction program. The requested transaction
program (TP) is not available because of a permanent or semi-permanent
condition. The reason for the error might be logged on the remote node.
The condition will not clear itself without operator intervention. The
transaction program should not retry the conversation until the error
condition has been cleared.

AP_TRANS_PGM_NOT_AVAIL_RETRY
The remote LU rejected the allocation request because it was unable to
start the requested partner transaction program. The requested transaction
program (TP) is not available because of a transient condition, such as a
timeout. The reason for the error might be logged on the remote node. The
condition might clear itself without operator intervention. The transaction
program should retry the conversation, preferably after a timeout to permit
the condition to clear.

AP_UNEXPECTED_SYSTEM_ERROR
Personal Communications and Communications Server has encountered an
unexpected system error, and cannot complete the verb. Usually these
errors arise from a shortage of system resources (for example, memory),
and are usually transient. Check the system log for more details.

326 Client/Server Communications Programming

Appendix B. LUA Verb Return Codes

This appendix describes the primary (and, if applicable, secondary) return codes
that are common to several SLI verbs.

Verb-specific return codes are described in the documentation for the individual
verbs.

Primary Return Codes
The following section contains the LUA primary return codes:

LUA_OK
The LUA verb completed successfully.

LUA_PARAMETER_CHECK
The LUA feature detected an incorrect parameter.

LUA_STATE_CHECK
The session was in an incorrect state for the verb that was issued.

LUA_SESSION_FAILURE

The session has been brought down. The specific reason is identified in the
secondary return code.

LUA_UNSUCCESSFUL
This verb did not successfully complete.

LUA_NEGATIVE_RESPONSE
One of the following conditions occurred:
v The end-of-chain arrived for a chain that was negatively responded to

by the LUA application program. The secondary return code is not set.
v LUA detected an error in a message from the primary LU and sent a

negative response. This error is returned when the end-of-chain is
received from the primary LU. The secondary return code contains the
sense data that was sent with the negative response.

LUA_CANCELED
The verb was canceled because of reasons specified in the secondary return
code.

LUA_IN_PROGRESS

This synchronous code is returned when an asynchronous command is
received and has not completed.

LUA_STATUS
The SLI has status information for the application in the secondary return
code.

LUA_COMM_SUBSYSTEM_ABENDED

Communications Server abnormally ended.

LUA_COMM_SUBSYSTEM_NOT_LOADED

Communications Server was not loaded.

LUA_INVALID_VERB_SEGMENT

© Copyright IBM Corp. 1994, 2016 327

LUA could not process the verb because the entire verb control block is not
contained in the data segment. The address of the end of the verb control
block is beyond the end of the segment.

LUA_UNEXPECTED_DOS_ERROR

An unexpected system error occurs after Communications Server issues a
system call, the verb is posted with the primary return code
UNEXPECTED_DOS_ERROR. The secondary return code contains the
unexpected system error.

LUA_STACK_TOO_SMALL

The LUA application stack is too small for LUA to process the request.

LUA_INVALID_VERB

LUA does not recognize the verb code or the verb operation code (or both)
in the verb control block it received.

Secondary Return Codes
The following section contains the LUA secondary return codes:

LUA_SEC_OK
Additional information is available for the primary return code associated
with this secondary return code.

LUA_INVALID_LUNAME
The verb specified an invalid lua_name.

LUA_BAD_SESSION_ID
The verb control block specified an incorrect value for the lua_sid
parameter.

LUA_DATA_TRUNCATED
The buffer length (as specified in lua_max_length) was not long enough
for the data received, so the data was truncated.

LUA_BAD_DATA_PTR
The command requires data to be supplied or returned, but the
lua_data_ptr parameter either contains an invalid pointer or does not point
to a read/write segment.

LUA_DATA_SEG_LENGTH_ERROR
One of the following conditions occurred:
v The data segment supplied on an RUI_READ or SLI_RECEIVE verb is

shorter than the length given in the lua_max_length parameter.
v The data segment was supplied on an RUI_WRITE or SLI_SEND verb

is shorter than the length given in the lua_data_length parameter.
v The data segment supplied on an RUI_READ, RUI_WRITE,

SLI_RECEIVE, or SLI_SEND verb is not a read/write data segment.

LUA_RESERVED_FIELD_NOT_ZERO
The command that was just issued has a reserved parameter that is not
zero.

LUA_INVALID_POST_HANDLE
A valid semaphore was not specified in the LUA verb control block. When
an LUA verb does not complete synchronously, a semaphore is needed to
signal the completion of the verb.

328 Client/Server Communications Programming

LUA_PURGED
An RUI_READ or an SLI_RECEIVE verb was canceled because an
RUI_PURGE or an SLI_PURGE was issued.

LUA_BID_VERB_SEG_ERROR
The buffer with the SLI_BID verb control block was released before the
SLI_RECEIVE with lua_flag1.bid_enable set to 1 was issued.

LUA_NO_PREVIOUS_BID_ENABLED
An RUI_BID or SLI_BID verb was not issued before an RUI_READ or
SLI_RECEIVE verb with lua_flag1.bid_enable was issued.

LUA_NO_DATA
An RUI_READ or SLI_RECEIVE verb was issued with the NO_WAIT
parameter and there was no data available to read.

LUA_BID_ALREADY_ENABLED
An RUI_BID or SLI_BID verb was active when an RUI_READ or
SLI_RECEIVE verb with lua_flag1.bid_enable was issued.

LUA_VERB_RECORD_SPANS_SEGMENTS
The LUA verb control block contains a length parameter that, when added
to the offset of the segment, goes past the end of the segment.

LUA_INVALID_FLOW
An LUA verb was issued with the lua_flag1 flow flags set in error. Check
that the correct number of lua_flag1 flow flags were set as follows:
v For RUI_READ or SLI_RECEIVE, at least one
v For RUI_WRITE, only one
v For SLI_SEND, only one lua_flag1 flow flag must be set when sending

an SNA response.

LUA_NOT_ACTIVE
An application program issued an LUA verb at a time that LUA was not
active within Communications Server.

LUA_VERB_LENGTH_INVALID
A verb was issued with an incorrect lua_verb_length parameter. The
length specified is not equal to the length that LUA expected.

LUA_REQUIRED_FIELD_MISSING
The issued RUI_WRITE verb either did not include a data pointer (if the
data count was not zero) or it did not include an lua_flag1flow flag.

LUA_READY
The SLI session is now ready to process additional commands. This status
is issued after a prior NOT_READY status was received, or after a
SLI_CLOSE verb completed with the primary return code CANCELED
and secondary return code RECEIVE_UNBIND_HOLD or
RECEIVED_UNBIND_NORMAL.

LUA_NOT_READY
The SLI session is temporarily suspended for either of the following
reasons:
v A CLEAR command was received. The SLI session resumes when an

SDT command is received.
v An UNBIND command was received. The session is suspended until

BIND, optional STSN and SDT commands are received. Any user
extension routines that were supplied by the original SLI_OPEN verb

Appendix B. LUA Verb Return Codes 329

are called again; therefore, these routines must be reentrant. After the
SLI processes the SDT command, the SLI session resumes. Two types of
UNBIND commands are:
– UNBIND type X'02', which means that a new BIND is coming
– UNBIND type X'01', which means that the application specified an

lua_session_type of LUA_SESSION_TYPE_DEDICATED in the
SLI_OPEN verb that started this session.

LUA_INIT_COMPLETE
When the LUA interface initializes the session while SLI_OPEN is
processing, this status is returned on SLI_RECEIVE or SLI_BID verbs for
LUA applications that issue SLI_OPEN with the
LUA_INIT_TYPE_PRIM_SSCP parameter.

LUA_SESSION_END_REQUESTED
SLI received a SHUTD command from the host, indicating the host is
ready to shut down the session.

LUA_NO_SLI_SESSION
A command was issued when a session was not open, or a session is being
taken down because of an SLI_CLOSE verb or session failure. An
SLI_RECEIVE or SLI_SEND verb issued during the processing of an
SLI_OPEN verb returns this code when:
v The SLI_OPEN lua_init_type parameter is not set to

LUA_INIT_TYPE_PRIM_SSCP. An SLI_BID verb also returns this code
under these circumstances.

v The SLI_RECEIVE or SLI_SEND lua_flag1 parameter does not specify
lua_flag1.sscp_norm.

The SLI component is in SLI_OPEN processing after an UNBIND type
X'02' command or UNBIND type X'01'
(LUA_SESSION_TYPE_DEDICATED) is received and until the SDT
command is processed. UNBIND type X'02' indicates that a new BIND is
coming.

LUA_SESSION_ALREADY_OPEN
An SLI_OPEN verb was issued for an LU name that already has a session
open.

LUA_INVALID_OPEN_INIT_TYPE
An SLI_OPEN verb contained an incorrect value in the lua_init_type
parameter.

LUA_INVALID_OPEN_DATA
An SLI_OPEN verb was issued with the lua_init_type parameter set for
secondary initialization with INITSELF (LUA_INIT_TYPE_SEC_IS), and the
data buffer does not contain a valid INITSELF command.

LUA_UNEXPECTED_SNA_SEQUENCE
During SLI_OPEN processing, an unexpected command or data was
received from the host.

LUA_NEG_RSP_FROM_BIND_ROUTINE
The user-provided SLI_BIND routine generated a negative response to the
BIND. The SLI_OPEN verb ends unsuccessfully.

LUA_NEG_RSP_FROM_CRV_ROUTINE
The user-provided SLI_BIND routine generated a negative response to the
BIND. The SLI_OPEN verb ends unsuccessfully.

330 Client/Server Communications Programming

LUA_NEG_RSP_FROM_STSN_ROUTINE
The user-supplied SLI STSN routine responded negatively to the STSN.
SLI_OPEN ended unsuccessfully.

LUA_CRV_ROUTINE_REQUIRED
The user did not provide an SLI CRV routine, but a CRV was received
from the host. The SLI issues a negative response to the CRV, and the
SLI_OPEN verb ends unsuccessfully at this time.

LUA_NEG_RSP_FROM_SDT_ROUTINE
The user-provided SLI SDT routine generated a negative response to an
SDT. This condition causes the SLI_OPEN verb to end.

LUA_INVALID_OPEN_ROUTINE_TYPE
In the SLI_OPEN extension routine list, the lua_open_routine_type
parameter is not valid.

LUA_MAX_NUMBER_OF_SENDS
The application program issued more than two SLI_SEND verbs before
one completed.

LUA_SEND_ON_FLOW_PENDING
The application issued an SLI_SEND verb for an SNA flow
(SSCP-expedited, SSCP-normal, LU-expedited, LU-normal) that already has
an SLI_SEND verb outstanding.

LUA_INVALID_MESSAGE_TYPE
The SLI does not recognize the lua_message_type parameter.

LUA_RECEIVE_ON_FLOW_PENDING
The SLI application issued an SLI_RECEIVE verb for an SNA flow that
already has an SLI_RECEIVE verb outstanding.

LUA_DATA_LENGTH_ERROR
An SLI_OPEN command was issued that requires user data that the
application program did not supply. Data is required for a
secondary-initiated SLI_OPEN verb, and 4 bytes of status is required when
the application issues an SLI_SEND verb for an LUSTAT command.

LUA_CLOSE_PENDING
One of the following has occurred:
v A CLOSE_NORMAL was issued while a CLOSE_NORMAL or a

CLOSE_ABEND was pending.
v A CLOSE_ABEND was issued while another CLOSE_ABEND was

pending. The only valid reason to issue another CLOSE_ABEND is
when a CLOSE_NORMAL is pending.

LUA_NEGATIVE_RSP_CHASE
During SLI_CLOSE processing, the SLI received a negative response to a
CHASE command from the host. The session is stopped as requested by
the SLI_CLOSE.

LUA_NEGATIVE_RSP_SHUTC
During SLI_CLOSE processing, the SLI received a negative response to a
SHUTC command from the host. The session is stopped as requested by
the SLI_CLOSE.

LUA_NEGATIVE_RSP_SHUTD
During SLI_CLOSE processing, the SLI received a negative response to a
SHUTD command from the host. The session is stopped as requested by
the SLI_CLOSE.

Appendix B. LUA Verb Return Codes 331

LUA_NO_RECEIVE_TO_PURGE
An SLI_PURGE verb was issued when no SLI_RECEIVE verb was
outstanding. Two possible causes are as follows:
v The address contained in the lua_data_ptr parameter did not point to

the outstanding SLI_RECEIVE verb that was to be purged.
v The SLI_RECEIVE verb might have completed while the SLI_PURGE

verb was being processed. This is not an error condition. Code the
application program to handle this situation.

LUA_CANCEL_COMMAND_RECEIVED
While processing an SLI_RECEIVE verb, the host sent a CANCEL
command to cancel the chain of data being received.

LUA_RUI_WRITE_FAILURE
An RUI_WRITE verb posted with an unexpected error to the SLI.

LUA_INVALID_SESSION_TYPE
An SLI_OPEN verb contained a value that is not valid in the
lua_session_type.

LUA_SLI_BID_PENDING
An SLI verb was issued while a previously-issued SLI_BID is active. Only
one SLI_BID can be active at a time.

LUA_PURGE_PENDING
An SLI_PURGE verb was issued while a previously-issued SLI_PURGE is
active. Only one SLI_PURGE can be active at a time.

LUA_PROCEDURE_ERROR
An NSPE or NOTIFY message was received, indicating a host procedure
error occurred. The SLI_OPEN is posted with this return code (unless the
SLI_OPEN verb retry option is used). With lua_wait set to a nonzero
value, the INITSELF or LOGON message is retried until the host procedure
is available or the application issues an SLI_CLOSE.

LUA_INVALID_SLI_ENCR_OPTION
The lua_encr_decr_option parameter was set to 128 in the SLI_OPEN
verb. The SLI does not support 128 for the encryption or decryption
processing option.

LUA_RECEIVED_UNBIND
The SLI received an UNBIND command from the primary LU while there
was an active SLI session. The SLI session is stopped.

LUA_RECEIVED_UNBIND_HOLD
During primary- or secondary-initiated SLI_CLOSE normal processing, SLI
received an UNBIND type X'02'. Type X'02' means that a new BIND is
forthcoming. The session is suspended until BIND, optional CRV and
STSN, and SDT commands are received. Any user extension routines that
were supplied by the original SLI_OPEN verb are called again; these
routines must be reentrant. After the SLI processes the SDT command, the
SLI session resumes.

LUA_RECEIVED_UNBIND_NORMAL
During primary- or secondary-initiated SLI_CLOSE normal processing for
a session started with an SLI_OPEN verb that specified an
lua_session_type of LUA_SESSION_TYPE_DEDICATED, SLI received an
UNBIND type X'01'. The session is suspended until BIND, optional STSN
and SDT commands are received. Any user extension routines that were

332 Client/Server Communications Programming

supplied by the original SLI_OPEN verb are called again; these routines
must be reentrant. After the SLI processes the SDT command, the SLI
session resumes.

LUA_SLI_LOGIC_ERROR
The SLI detected an internal logic error.

LUA_TERMINATED

A verb that was pending when an SLI_CLOSE or RUI_TERM verb was
issued has been canceled.

LUA_NO_RUI_SESSION
An RUI verb was issued for a session that has not been initialized (with
RUI_INIT) or a verb other than RUI_TERM was issued while an
RUI_INIT verb for the session was in progress.

This return code can occur when a session outage occurs while no active
RUI verbs are outstanding. The next verb issued gets this return code. The
application program handles this return code as it would a
SESSION_FAILURE.

LUA_DUPLICATE_RUI_INIT
The application program issued an RUI_INIT verb for a session that is
already initialized or has an RUI_INIT verb in progress.

LUA_INVALID_PROCESS
An RUI verb was issued for a session that is already owned by another
process.

LUA_API_MODE_CHANGE
A non-SLI request was issued to the RUI on a session that was established
by the SLI.

LUA_COMMAND_COUNT_ERROR
The maximum number of issued RUI_READ or RUI_WRITE verbs was
exceeded, or an RUI_BID or RUI_TERM verb was issued while a
previously issued RUI_BID or RUI_TERM verb was still in progress.

LUA_NO_READ_TO_PURGE
An RUI_PURGE verb was issued when no RUI_READ verb was
outstanding. Two possible causes follow:
v The address contained in the lua_data_ptr parameter does not point to

the outstanding RUI_READ verb to be purged.
v The RUI_READ verb completed while the RUI_PURGE verb was being

processed. This is not an error condition. Code the application program
to handle this situation.

LUA_MULTPLE_WRITE_FLOWS
More than one flow flag was turned on in the FLAG1 issued to an
RUI_WRITE verb.

LUA_DUPLICATE_READ_FLOW
The application program issued an RUI_READ for a flow that already has
an RUI_READ pending.

LUA_DUPLICATE_WRITE_FLOW
The RUI_WRITE verb that was issued contained a FLAG1 flow flag that
showed a session flow for a previous RUI_WRITE verb that had not
completed.

Appendix B. LUA Verb Return Codes 333

LUA_LINK_NOT_STARTED
LUA could not start the data link during session initialization.

LUA_INVALID_ADAPTER
The DLC adapter configuration is incorrect or the configuration file has
been damaged.

LUA_ENCR_DECR_LOAD_ERROR
An unexpected error was received while attempting to load the
user-provided encryption or decryption dynamic link library.

LUA_ENCR_DECR_PROC_ERROR
An unexpected error was received while attempting to get the procedure
address within the user-provided encryption or decryption dynamic link
library.

LUA_LINK_NOT_STARTED_RETRY
An RUI_INIT or SLI_OPEN verb failed because the link could not be
activated. This return code implies that something is wrong at the partner
location or with the connection between the two machines.

LUA_NEG_NOTIFY_RSP
An RUI_INIT was issued that caused a notify request to be sent to the
SSCP to indicate the SLU can now be part of a session. The SSCP
responded negatively to this notify request. The intended half-session
component understood the supported request, but did not process it.

LUA_RUI_LOGIC_ERROR
An RUI internal logic error occurred.

LUA_LU_INOPERATIVE
A severe error occurred while the SLI was attempting to stop the session.
This LU is unavailable for any LUA requests until an ACTLU is received
from the host.

LUA_RESOURCE_NOT_AVAILABLE
The LU, PU, link station, or link specified in an RU is not available. The
SLI_OPEN verb cannot can be posted with this return code unless the
SLI_OPEN retry option is used. With lua_wait set to a nonzero value, the
INITSELF or LOGON message is retried until the host procedure is
available or the application issues an SLI_CLOSE verb.

LUA_SESSION_LIMIT_EXCEEDED
The requested session cannot be activated because one of the network
addressable units (NAUs) is at its session limit, such as the LU-LU session
limit or the LU mode session limit. This sense code applies to the
ACTCDRM, the INIT, the BID, and the CINIT requests.

The SLI_OPEN verb can be posted with this return code unless the
SLI_OPEN verb retry option is used. With lua_wait set to a nonzero value,
the INITSELF or LOGON message is retried until the host procedure is
available or the application issues an SLI_CLOSE verb.

LUA_SLU_SESSION_LIMIT_EXCEEDED
If accepted, the request would cause the SLU session limit to be exceeded.

LUA_MODE_INCONSISTENCY
The present status does not permit the function to be performed. The
intended half-session component understood the supported request, but
did not process it. This code can also appear as a sense code in an EXR.

334 Client/Server Communications Programming

LUA_INSUFFICIENT_RESOURCES
Due to a temporary lack of resources, the receiver cannot act on the
request. The intended half-session component understood the supported
request, but did not process it.

LUA_RECEIVER_IN_TRANSMIT_MODE
A race condition exists. A normal-flow request was received while the
half-duplex contention state was not-receive, or while resources (such as
buffers) necessary for handling normal-flow data were unavailable.

This code can also appear as a sense code in an exception request.

LUA_LU_COMPONENT_DISCONNECTED
An LU component is not available because of power-off or some other
disconnecting condition.

LUA_NEGOTIABLE_BIND_ERROR
A negotiable BIND was received. The SLI does not allow a negotiable
BIND unless there is a user-supplied SLI_BIND routine provided through
the SLI_OPEN verb.

LUA_BIND_FM_PROFILE_ERROR
An unsupported FM profile was detected on the BIND. The SLI supports
FM profiles 3 and 4 only.

LUA_BIND_TS_PROFILE_ERROR
An unsupported TS profile was detected on the BIND. The SLI supports
TS profiles 3 and 4 only.

LUA_BIND_LU_TYPE_ERROR
An unsupported LU type was detected. LUA supports LU 0, LU 1, LU 2
and LU 3 only.

LUA_SSCP_LU_SESSION_NOT_ACTIVE
The SSCP-LU session required for processing a request is not active. For
example, in processing an INITSELF request, the SSCP did not have an
active session with the target LU named in the INITSELF.

Bytes 2 and 3 contain sense-code-specific information. The following
settings are allowed:

0000 No specific code applies.

0001 The SSCP-SLU session is being reactivated.

0002 The SSCP-PLU session is inactive. The SLI_OPEN verb can be
posted with this return code unless the SLI_OPEN retry option is
used. With lua_wait set to a nonzero value, the INITSELF or
LOGON message is retried until the host procedure is available or
the application issues an SLI_CLOSE verb.

0003 The SSCP-SLU session is inactive.

0004 The SSCP-SLU session is being reactivated.

LUA_REC_CORR_TABLE_FULL
The session receive correlation table for the flow requested reached its
capacity.

LUA_SEND_CORR_TABLE_FULL
The send correlation table for the flow requested reached its capacity.

Appendix B. LUA Verb Return Codes 335

LUA_SESSION_SERVICES_PATH_ERROR
A session services request cannot be rerouted along a path of SSCP-SSCP
sessions. This capability is required, for example, to set up a cross-network
LU-LU session.

Bytes 2 and 3 contain sense-code-specific information. The following
settings are allowed:

0000 No specific code applies. The SLI_OPEN cannot be posted with
this return code unless the SLI_OPEN retry option is used. With
lua_wait set to a nonzero value, the INITSELF or LOGON message
is retried until the host procedure is available or the application
issues an SLI_CLOSE.

0001 An SSCP tried unsuccessfully to reroute a session services request
to its destination through one or more adjacent SSCPs. This value
is sent by a gateway SSCP when it has exhausted trial-and-error
rerouting.

SSCP rerouting failed completely. An SSCP tried unsuccessfully to
a particular SSCP. For example, this code is associated with specific
SSCPs when information about a rerouting failure is displayed in
the node that was trying to reroute.

0002

An SSCP is unable to reroute a session services request because a
necessary routing table is not available; that is, no adjacent SSCP
table corresponds to the rerouting key in the resource identifier
control vector.

0003

This SSCP has no predefinition for an LU, but an adjacent SSCP
does not support dynamic definition in partner SSCPs. As a result,
this SSCP cannot both dynamically define the LU and reroute to
that adjacent SSCP.

0005

Retired

0006

Retired

0008

The adjacent SSCP does not support the requested CDINIT
function (for example, notification of resource availability or XRF).

000A

An SSCP is unable to reroute a session services request because the
request was routed through the same SSCP twice.

000B

The DLU specified in the CDINIT is unknown to the receiving
SSCP, and the receiving SSCP cannot reroute the CDINIT.

LUA_RU_LENGTH_ERROR
The requested RU was too long or too short. The RU was delivered to the
intended half-session component, but it could not be interpreted or
processed. This condition represents a mismatch of half-session capabilities.

336 Client/Server Communications Programming

This code can also appear as a sense code in an EXR.

LUA_FUNCTION_NOT_SUPPORTED
The function that was requested is not supported by LUA. The function
may have been specified by a formatted request code, a parameter in an
RU, or a control character.

Bytes 2 and 3 that follow the sense code are not used for user-defined data.
These bytes contain sense-code-specific information. The following setting
is allowed:

0000 The requested function is not supported by LUA.

The RU was delivered to the intended half-session component, but it could
not be interpreted or processed. This condition represents a mismatch of
half-session capabilities.

LUA_HDX_BRACKET_STATE_ERROR
A protocol machine determined that the current request could not be sent
under the existing state error.

LUA_RESPONSE_ALREADY_SENT
A protocol machine determined that the current request could not be sent
because a response for the chain had already been sent.

LUA_EXR_SENSE_INCORRECT
The application issued a negative response for a previously received
exception request. The sense code in the response was not acceptable.

If the sense code in the exception request is X'0813000', the sense code in
the negative response can be either X'08130000' or X'08140000'. In all other
cases, the sense code in the negative response must be the same as the
sense code in the exception request.

LUA_RESPONSE_OUT_OF_ORDER
A protocol machine determined that the current response was not issued to
the oldest request.

LUA_CHASE_RESPONSE_REQUIRED
A protocol machine determined that the current request is being attempted
with an older CHASE request outstanding.

LUA_CATEGORY_NOT_SUPPORTED
A DFC, SC, NC, or FMD request was received by a half-session not
supporting any requests in that category, a network services (NS) request
byte 0 was not set to a defined value, or byte 1 was not set to an NS
category by the receiver.

LUA_CHAINING_ERROR
An error occurred in the sequence of the chain indicator settings, such as
first, middle, first. A request header or a request unit that is not allowed
for the receiver's current session control or data flow control state was
detected. This error prevents delivery of the request to the intended
half-session component.

LUA_BRACKET
The sender did not enforce bracket rules for the session. A request header
or request unit that is not allowed for the receiver's current session control
or data flow control state was detected. This error prevents delivery of the
request to the intended half-session component.

LUA_DIRECTION
A normal-flow request was received while the half-duplex flip-flop state

Appendix B. LUA Verb Return Codes 337

was NOT_RECEIVE. A request header or request unit that is not allowed
for the receiver's current session control or data flow control state was
detected. This error prevents delivery of the request to the intended
half-session component.

LUA_DATA_TRAFFIC_RESET
An FMD or normal-flow DFC request was received by a half-session
whose session activation state was active, but whose data traffic state was
not active. A request header or a request unit that is not allowed for the
receiver's current session control or data flow control state was detected.
This error prevents delivery of the request to the intended half-session
component.

LUA_DATA_TRAFFIC_QUIESCED
An FMD or a DFC request, received from a half-session that sent a QC
command or a SHUTC command, has not responded to a RELQ command.
A response header or request unit that is not allowed for the receiver's
current session control or data flow control state was detected. This error
prevents delivery of the request to the intended half-session component.

LUA_DATA_TRAFFIC_NOT_RESET
A session control request was received while the data traffic state was not
reset. A request header or request unit that is not allowed for the receiver's
current session control or data flow control state was detected. This error
prevents delivery of the request to the intended half-session component.

LUA_NO_BEGIN_BRACKET
A BID or an FMD request that specified BBI=BB was received after the
receiver had previously sent a positive response to a BIS command. A
request header or request unit that is not allowed for the receiver's current
session control or data flow control state was detected. This error prevents
delivery of the request to the intended half-session component.

LUA_SC_PROTOCOL_VIOLATION
An SC protocol was violated. A request allowed only after a successful
exchange of an SC request and its associated positive response was
received before a successful exchange occurred. Byte 4 of the sense data
contains the request code. There is no user data associated with this sense
code. A request header or request unit that is not allowed for the receiver's
current session control or data flow control state was detected. This error
prevents delivery of the request to the intended half-session component.

LUA_IMMEDIATE_REQ_MODE_ERROR
The immediate request mode protocol was violated by the request. An RH
or RU that is not allowed for the receiver's current session control or data
flow control state was detected. This error prevents delivery of the request
to the intended half-session component.

LUA_QUEUED_RESPONSE_ERROR
The Queued Response protocol was violated by a request; for example,
QRI=¬ QR when an outstanding request has QRI=QR. An RH or an RU
that is not allowed for the receiver's current session control or data flow
control state was detected. This error prevents delivery of the request to
the intended half-session component.

LUA_ERP_SYNC_EVENT_ERROR
The ERP synchronous event protocol was violated. An RH or an RU that is
not allowed for the receiver's current session control or data flow control
state was detected. This error prevents delivery of the request to the
intended half-session component.

338 Client/Server Communications Programming

LUA_RSP_BEFORE_SENDING_REQ
An attempt was made in half-duplex (flip-flop or contention) send/receive
mode to send a normal-flow request when a response to a previously
received request has not yet been sent. An RH or an RU that is not allowed
for the receiver's current session control or data flow control state was
detected. This error prevents delivery of the request to the intended
half-session component.

LUA_RSP_CORRELATION_ERROR
A response was received that cannot be correlated with a previously sent
request, or a response was sent that cannot be correlated with a previously
received request.

LUA_RSP_PROTOCOL_ERROR
A response was received from the primary half-session that violated the
response protocol, such as:
v A positive response (+RSP) was received for an RQE chain.
v Two responses were received for one chain.

LUA_INVALID_SC_OR_NC_RH
The RH of a session control (SC) or network control (NC) request was not
valid. For example, an SC RH with the pacing request indicator set to 1 is
not valid. The value of a parameter or combination of parameters in the
RH violates the architectural rules or previously selected LOGON options.
These errors prevent delivery of the request to the intended half-session
component and are independent of the current states of the session. These
errors might result from the sender's failure to enforce session RU.

LUA_BB_NOT_ALLOWED
The begin bracket indicator (BB) was specified incorrectly; for example,
BBI=BB with BCI=¬BC. The value of a parameter or combination of
parameters in the RH violates the architectural rules or previously selected
LOGON options. These errors prevent delivery of the request to the
intended half-session component and are independent of the current states
of the session. These errors might result from the failure of the sender to
enforce session rules.

LUA_EB_NOT_ALLOWED
The end bracket indicator (EB) was specified incorrectly; for example, by
EBI=EB with BCI=¬BC, or by the primary half-session when only the
secondary can send an EB, or by the secondary half-session when only the
primary can send an EB. The value of a parameter or combination of
parameters in the RH violates the architectural rules or previously selected
LOGON options. These errors prevent delivery of the request to the
intended half-session component and are independent of the current states
of the session. These errors might result from the failure of the sender to
enforce session rules.

LUA_EXCEPTION_RSP_NOT_ALLOWED
An exception response was requested when it was not permitted. The
value of a parameter or combination of parameters in the RH violates the
architectural rules or previously selected LOGON options. These errors
prevent delivery of the request to the intended half-session component and
are independent of the current states of the session. These errors might
result from the failure of the sender to enforce session rules.

LUA_DEFINITE_RSP_NOT_ALLOWED
A definite response was requested when it was not permitted. The value of
a parameter or combination of parameters in the RH violates the

Appendix B. LUA Verb Return Codes 339

architectural rules or previously selected LOGON options. These errors
prevent delivery of the request to the intended half-session component and
are independent of the current states of the session. These errors might
result from the failure of the sender to enforce session rules.

LUA_PACING_NOT_SUPPORTED
The pacing indicator was set on a request, but the receiving half-session or
the boundary function half-session does not support pacing for this
session. The value of a parameter or combination of parameters in the RH
violates the architectural rules or previously selected LOGON options.
These errors prevent delivery of the request to the intended half-session
component and are independent of the current states of the session. These
errors might result from the failure of the sender to enforce session rules.

LUA_CD_NOT_ALLOWED
The change-direction indicator (CD) was specified incorrectly; for example,
CDI=CD with ECI=¬EC or CDI=CD with EBI=EB. The value of a
parameter or combination of parameters in the RH violates the
architectural rules or previously selected LOGON options. These errors
prevent delivery of the request to the intended half-session component and
are independent of the current states of the session. These errors might
result from the failure of the sender to enforce session rules.

LUA_NO_RESPONSE_NOT_ALLOWED
No-response was specified on a request when it was not permitted.
No-response is used only on EXR. The value of a parameter or
combination of parameters in the RH violates the architectural rules or
previously selected LOGON options. These errors prevent delivery of the
request to the intended half-session component and are independent of the
current states of the session. These errors might result from the failure of
the sender to enforce session rules.

LUA_CHAINING_NOT_SUPPORTED
The chaining indicators (BCI and ECI) were specified incorrectly; for
example, chaining bits other than BCI=BC and ECI=EC were indicated, but
multiple-request chains are not supported for the session or for the
category specified in the request header. The value of a parameter or
combination of parameters in the RH violates the architectural rules or
previously selected LOGON options. These errors prevent the delivery of
the request to the intended half-session component and are independent of
the current states of the session. These errors might result from the failure
of the sender to enforce session rules.

LUA_BRACKETS_NOT_SUPPORTED
The bracket indicators (BBI and EBI) were specified incorrectly; for
example, a bracket indicator was set (BBI=BB or EBI=EB), but brackets are
not used for the session. The value of a parameter or combination of
parameters in the RH violates the architectural rules or previously selected
LOGON options. These errors prevent delivery of the request to the
intended half-session component and are independent of the current states
of the session. These errors might result from the failure of the sender to
enforce session rules.

LUA_CD_NOT_SUPPORTED
The change-direction indicator was set, but is not supported. The value of
a parameter or combination of parameters in the RH violates the
architectural rules or previously selected LOGON options. These errors
prevent delivery of the request to the intended half-session component and

340 Client/Server Communications Programming

are independent of the current states of the session. These errors might
result from the failure of the sender to enforce session rules.

LUA_INCORRECT_USE_OF_FI
The format indicator (FI) was specified incorrectly; for example, the FI was
set with BCI=¬BC or the FI was not set on a DFC request. The value of a
parameter or combination of parameters in the RH violates the
architectural rules or previously selected LOGON options. These errors
prevent delivery of the request to the intended half-session component and
are independent of the current states of the session. These errors might
result from the failure of the sender to enforce session rules.

LUA_ALTERNATE_CODE_NOT_SUPPORTED
The code selection indicator (CSI) was set when it was not supported for
the session. The value of a parameter or combination of parameters in the
RH violates the architectural rules or previously selected LOGON options.
These errors prevent delivery of the request to the intended half-session
component and are independent of the current states of the session. These
errors might result from the failure of the sender to enforce session rules.

LUA_INCORRECT_RU_CATEGORY
The RU category indicator was specified incorrectly; for example, an
expedited-flow request or a response was specified with the RU category
indicator = FMD. The value of a parameter or combination of parameters
in the RH violates the architectural rules or previously selected LOGON
options. These errors prevent delivery of the request to the intended
half-session component and are independent of the current states of the
session. These errors might result from the failure of the sender to enforce
session rules.

LUA_INCORRECT_REQUEST_CODE
The request code on a response does not match the request code on its
corresponding request. The value of a parameter or combination of
parameters in the RH violates the architectural rules or previously selected
LOGON options. These errors prevent delivery of the request to the
intended half-session component and are independent of the current states
of the session. These errors might result from the failure of the sender to
enforce session rules.

LUA_INCORRECT_SPEC_OF_SDI_RTI
The sense-data-included indicator (SDI) and the response-type indicator
(RTI) were not specified correctly on a response. The proper value pairs are
(SDI=SD, RTI=negative) and (SDI=¬SD, RTI=positive). The value of a
parameter or combination of parameters in the RH violates the
architectural rules or previously selected LOGON options. These errors
prevent delivery of the request to the intended half-session component and
are independent of the current states of the session. These errors might
result from the failure of the sender to enforce session rules.

LUA_INCORRECT_DR1I_DR2I_ERI
The definite response 1 indicator (DR1I), the definite response 2 indicator
(DR2I), and the exception response indicator (ERI) were specified
incorrectly. For example, a CANCEL request was not specified with
DR1I=DR1, DR2I=¬DR2, and ERI=¬ER. The value of a parameter or
combination of parameters in the RH violates the architectural rules or
previously selected LOGON options. These errors prevent delivery of the
request to the intended half-session component and are independent of the
current states of the session. These errors might result from the failure of
the sender to enforce session rules.

Appendix B. LUA Verb Return Codes 341

LUA_INCORRECT_USE_OF_QRI
The queued response indicator (QRI) was specified incorrectly; for
example, QRI=QR on an expedited-flow request. The value of a parameter
or combination of parameters in the RH violates the architectural rules or
previously selected LOGON options. These errors prevent delivery of the
request to the intended half-session component and are independent of the
current states of the session. These errors might result from the failure of
the sender to enforce session rules.

LUA_INCORRECT_USE_OF_EDI
The enciphered data indicator (EDI) was specified incorrectly; for example
EDI=ED on a DFC request. The value of a parameter or combination of
parameters in the RH violates the architectural rules or previously selected
LOGON options. These errors prevent delivery of the request to the
intended half-session component and are independent of the current states
of the session. These errors might result from the failure of the sender to
enforce session rules.

LUA_INCORRECT_USE_OF_PDI
The padded data indicator (PDI) was specified incorrectly, such as PDI=PD
on a DFC request. The value of a parameter or combination of parameters
in the RH violates the architectural rules or previously selected LOGON
options. These errors prevent delivery of the request to the intended
half-session component and are independent of the current states of the
session. These errors might result from the failure of the sender to enforce
session rules.

LUA_NAU_INOPERATIVE
The NAU is unable to process requests or responses. For example, the
NAU was disrupted by an abnormal end. The request could not be
delivered to the intended receiver, because of a path outage, an incorrect
sequence of activation requests, or one of the listed path information unit
(PIU) errors. A path error that is received while the session is active
generally indicates that the path to the session partner is lost.

LUA_NO_SESSION
No half-session is active in the receiving end node for the indicated
origin-destination pair or no boundary function half-session component is
active for the origin-destination pair in a node that provides the boundary
function. A session activation request is needed. The request could not be
delivered to the intended receiver because of a path outage or an incorrect
sequence of activation requests. A path error that is received while the
session is active generally indicates that the path to the session partner is
lost.

LUA_BRACKET_RACE_ERROR
A loss of contention within the bracket protocol occurred. When bracket
initiation or bracket termination by both NAUs occurs, contention is lost.
The intended half-session component understood the supported request,
but did not process it.

LUA_BB_REJECT_NO_RTR
A BID or a begin-bracket indicator was received while the first speaker
was in the in-bracket state or while the first speaker was in the
between-brackets state. The first speaker denied permission. No RTR
command will be sent. The intended half-session component understood
the supported request, but did not process it.

342 Client/Server Communications Programming

LUA_CRYPTOGRAPHY_INOPERATIVE
The receiver of a request was not able to decipher the request because of a
malfunction in its cryptography facility. The intended half-session
component understood the supported request, but did not process it.

LUA_SYNC_EVENT_RESPONSE
A negative response to a synchronizing request was received. The intended
half-session component understood the supported request, but did not
process it.

LUA_RU_DATA_ERROR
Data in the request RU is not acceptable to the receiving FMDS component.
For example, a character code is not in the set that is supported, a
formatted data parameter is not acceptable to presentation services, or a
required name in the request has been omitted. The RU was delivered to
the intended half-session component, but it could not be interpreted or
processed. This condition represents a mismatch of half-session capabilities.

LUA_INCORRECT_SEQUENCE_NUMBER
The sequence number that was received on a normal-flow request was not
greater than the last sequence number. A sequence number error or an RH
or RU that is not allowed for this receiver's current session control or data
flow control state was detected. This error prevents the delivery of the
request to the intended half-session component.

Appendix B. LUA Verb Return Codes 343

344 Client/Server Communications Programming

Appendix C. APPC Conversation State Transitions

The following tables show the conversation states in which each APPC verb can be
issued, and the state change that occurs on completion of the verb. In some cases,
the state change depends on the primary_rc parameter returned to the verb; where
this applies, the applicable primary_rc values are listed in the Return codes
column.

Where no return codes are shown, the state changes are the same for all return
codes (except as described in Notes 2 and 3 following the table).

The possible conversation states are shown as column headings. Against each verb,
the following information is given under each heading to indicate the results of
issuing the verb in this state:
v X indicates that the verb cannot be issued in this state.
v The following markers indicate the state of the conversation after the verb has

completed:
– Send
– Send Pending
– Receive
– Confirm
– Confirm Send
– Confirm Deallocate
– Pending PoSt
– ReseT

v / indicates that it is not applicable to consider the previous state. This applies to
the [MC_]ALLOCATE and RECEIVE_ALLOCATE verbs; these verbs always
start a new conversation as though they were in Reset state, with no effect on
the conversation (if any) in which they were issued.

v A blank entry indicates that the return code shown cannot occur in this state.

For information on full-duplex conversation state transitions, see Table 27 on page
347.

Table 26. APPC Half-Duplex Conversation State Transitions

Verb Return Codes T S SP R C CS CD PS

[MC_]ALLOCATE

AP_OK S / / / / / / /

(other) T

CANCEL_CONVERSATION X T T T T T T T

[MC_]CONFIRM X

AP_OK S S X X X X X

AP_ERROR R R

[MC_]CONFIRMED X X X X R S T X

[MC_]DEALLOCATE (Abend) X T T T T T T T

[MC_]DEALLOCATE (Other)

© Copyright IBM Corp. 1994, 2016 345

Table 26. APPC Half-Duplex Conversation State Transitions (continued)

Verb Return Codes T S SP R C CS CD PS

AP_ERROR X R R X X X X X

(other) T T

[MC_]FLUSH X S S X X X X X

[MC_]GET_ATTRIBUTES X S SP R C CS CD P

GET_STATE X S SP R C CS CD P

GET_TYPE X S SP R C CS CD P

[MC_]PREPARE_TO_ RECEIVE X R R X X X X X

RECEIVE_ALLOCATE R

AP_OK T / / / / / / /

(other)

[MC_]RECEIVE_AND_POST

(Note 4)

X P P P X X X X

[MC_]RECEIVE_AND_WAIT X Note 5 Note 5 Note 5 X X X X

[MC_]RECEIVE_IMMEDIATE X X X Note 5 X X X X

[MC_]REQUEST_TO_SEND X X X R C X X P

[MC_]SEND_DATA X

AP_OK S S X X X X X

AP_ERROR R

[MC_]SEND_ERROR X

AP_OK S S S S S S S

AP_ERROR R

[MC_]TEST_RTS X S S R C C C P

Notes:

1. In the Return codes column of the table, the abbreviation AP_ERROR is used
for the following return codes:

AP_PROG_ERROR_TRUNC
AP_PROG_ERROR_NO_TRUNC
AP_PROG_ERROR_PURGING
AP_SVC_ERROR_TRUNC
AP_SVC_ERROR_NO_TRUNC
AP_SVC_ERROR_PURGING.

2. The conversation will always enter Reset state if any of the following return
codes are received:

AP_ALLOCATION_ERROR
AP_COMM_SUBSYSTEM_ABENDED
AP_COMM_SUBSYSTEM_NOT_LOADED
AP_CONV_FAILURE_RETRY
AP_CONV_FAILURE_NO_RETRY
AP_DEALLOC_ABEND
AP_DEALLOC_ABEND_PROG
AP_DEALLOC_ABEND_SVC
AP_DEALLOC_ABEND_TIMER
AP_DEALLOC_NORMAL

346 Client/Server Communications Programming

3. The following non-OK return codes do not cause any state change. The
conversation always remains in the state in which the verb was issued:

AP_CONVERSATION_TYPE_MIXED
AP_PARAMETER_CHECK
AP_STATE_CHECK
AP_TP_BUSY
AP_UNEXPECTED_SYSTEM_ERROR
AP_UNSUCCESSFUL

4. After [MC_]RECEIVE_AND_POST has been issued and received the initial
primary_rc of AP_OK, the conversation changes to Pending Post state. Once
the supplied callback routine has been called to indicate that the verb has
completed, the new conversation state depends on the primary_rc and
what_rcvd parameters as in Note 5.

5. The state change after one of the RECEIVE verbs depends on both the
primary_rc and what_rcvd parameters.
If the primary_rc parameter is AP_PROG_ERROR*, AP_SVC_ERROR*, or
([MC_]RECEIVE_IMMEDIATE only) AP_UNSUCCESSFUL, the new state is
RECEIVE.
If the primary_rc parameter is AP_DEALLOC*, the new state is RESET.
If the primary_rc parameter is AP_OK, the new state depends on the value of
the what_rcvd parameter:

Receive state
AP_DATA, AP_DATA_COMPLETE, AP_DATA_INCOMPLETE

Send state
AP_SEND

Send Pending state
AP_DATA_SEND, AP_DATA_COMPLETE_SEND

Confirm state
AP_CONFIRM_WHAT_RECEIVED, AP_DATA_CONFIRM,
AP_DATA_COMPLETE_CONFIRM

Confirm Send state
AP_CONFIRM_SEND, AP_DATA_CONFIRM_SEND,
AP_DATA_COMPLETE_CONFIRM_SEND

Confirm Deallocate state
AP_CONFIRM_DEALLOCATE, AP_DATA_CONFIRM_DEALLOCATE,
AP_DATA_COMPLETE_CONFIRM_DEALL

For information on half-duplex conversation state transitions, see Table 26 on page
345.

Table 27. APPC Full-Duplex Conversation State Transitions

Verb Return Codes T SR S R

[MC_]ALLOCATE

AP_OK SR / / /

(other) T

CANCEL_CONVERSATION X T T T

[MC_]DEALLOCATE (Abend) X T T T

[MC_]DEALLOCATE (Flush) X R T X

[MC_]FLUSH X SR S X

Appendix C. APPC Conversation State Transitions 347

Table 27. APPC Full-Duplex Conversation State Transitions (continued)

Verb Return Codes T SR S R

[MC_]GET_ATTRIBUTES X SR S R

GET_STATE X SR S R

GET_TYPE X SR S R

RECEIVE_ALLOCATE

AP_OK SR / / /

(other) T

[MC_]RECEIVE_AND WAIT

AP_OK X SR X R

AP_ERROR X SR X R

AP_DEALLOC_NORMAL X S X T

RECEIVE_EXPEDITED_DATA X SR S R

[MC_]RECEIVE_ IMMEDIATE

AP_OK X SR X R

AP_ERROR X SR X R

AP_DEALLOC_NORMAL X S X T

[MC_]SEND_DATA

AP_OK X SR S X

AP_ERROR_INDICATION X SR T X

[MC_]SEND_ERROR

AP_OK X SR S X

AP_ERROR_INDICATION X SR T X

Notes:

1. In the Return codes column of the table, the abbreviation AP_ERROR is used
for the following return codes:

AP_PROG_ERROR_TRUNC
AP_PROG_ERROR_NO_TRUNC
AP_SVC_ERROR_TRUNC
AP_SVC_ERROR_NO_TRUNC

2. The conversation will always enter Reset state if any of the following return
codes are received:

AP_ALLOCATION_ERROR
AP_COMM_SUBSYSTEM_ABENDED
AP_COMM_SUBSYSTEM_NOT_LOADED
AP_CONV_FAILURE_RETRY
AP_CONV_FAILURE_NO_RETRY
AP_DEALLOC_ABEND
AP_DEALLOC_ABEND_PROG
AP_DEALLOC_ABEND_SVC
AP_DEALLOC_ABEND_TIMER

3. The following non-OK return codes do not cause any state change. The
conversation always remains in the state in which the verb was issued:

AP_CONVERSATION_TYPE_MIXED
AP_PARAMETER_CHECK
AP_STATE_CHECK

348 Client/Server Communications Programming

AP_TP_BUSY
AP_UNEXPECTED_SYSTEM_ERROR
AP_UNSUCCESSFUL

Appendix C. APPC Conversation State Transitions 349

350 Client/Server Communications Programming

Appendix D. Communications Server Service Location
Protocol

Discovery and Load Balancing APIs
An IBM Communications Server for Windows application program developer can
locate services and load balance among those services using the TCP/IP protocol.
There are three basic methods that an application program can take advantage of
this new function:

Method 1:
Communications Server SNA APIs (LUx (RUI/SLI), APPC, CPIC). Using
the APIs will get the support basically for free if an existing application is
already written to an SNA API. With this method, no new code must be
written to take advantage of the location/load balancing functions. The
only constraint with this method is that API code expects the client's
configuration data to reside in an INI file, or LDAP Communications
Server for Windows.

Method 2:
Service Location Protocol (SLP) User Agent (UA) API. An SLP UA DLL is
packaged with the product which provides support for Communications
Server service location and load-balancing over TCP/IP connections. This
method provides the greatest flexibility for the application developer in
terms of how to do the service location/load-balancing, where to obtain
client configuration, and how to present these functions to the end user.

Method 3:
Using a combination of UA (for location) and the QEL/MU
CM_CSLIST_GETII primitive for load-balancing (for 3270 and LU 6.2
applications only). This method is a hybrid of the first two in that it
reduces the amount of code needed to be written to only the location
function and gives maximum flexibility in terms of client configuration.

IBM recommends using the API client for location and load-balancing. If the
application developer is unable to do so or desires to support Telnet, method 2 is
provided. If support for QEL/MU is already provided then method 3 may be used.
Since the first method is really nothing new from the application developer's
perspective, the following discussion applies to the last two methods.

Structure
The UA API is a general-purpose C language API modeled after the one presented
in the "An API for Service Location" Internet draft (dated 3/25/97). The following
characteristics apply to the service registrations:
v All registrations are made in US English.
v The character set is US-ASCII.

The API is packaged as the IBMSLP.DLL on Windows. Header files are provided in
this SDK that define relevant structures, constants, and function prototypes. The
DLL is installed when the API client is installed and can also be found on the
product CD-ROM with the SLP SDK files at \CSNT\SDK\SLP\BINARY\
IBMSLP.DLL.

© Copyright IBM Corp. 1994, 2016 351

Scenarios
In each scenario, the application program using the user agent API is called the
app. References to the end user (person using the app) are shortened to user.

Method 2: UA API to locate the least-loaded (or low-loaded)
service.
1. The application issues SL_Open to open a session with SLP.
2. If a scope is not configured or is not otherwise made available to the app, the

application issues an SL_GetAttrs API call for the desired service type with an
attribute tag filter of 'SCOPE' to obtain valid, reachable scopes. Supplying a
service name of one of the administrated Communications Server services on
this API call will ensure that you will be returned only scopes that apply to the
supplied service type.

3. The application then issues SL_GetService specifying the desired service, one of
the obtained scope names, and the query string indicating which service
attributes are required. For illustration purposes the service attributes specified
in this example query would be LUPOOL, and LOAD. The Service reply will
contain either an indication the no matching services were located, or a list of
URLs that can provide the service, while satisfying the query string
requirements.

4. The application analyzes the returned list:
5. If no URLs are returned, the application either modifies and reissues the

original SL_GetService request illustrated in step 3 with a new LOAD criterion
range, or informs the end user that the service is not currently available.

6. If a single URL is returned, the analysis is done.
7. If a list of URLs is returned:
v Option 1 - "least load" location

a. The application issues SL_GetAttrs for each URL returned in the Service
Reply. It specifies the LOAD attribute in the select clause on each call.
The LOAD value is returned in the Get Attributes reply.

b. The application selects the URL with the lowest LOAD value.
c. The application connects to the server represented by the selected URL

and begins its SNA session.
d. The application issues SL_Close to close the SLP session.

v Option 2 - "low load" selection

a. Randomly select a URL from the returned list.
b. The application connects to the server represented by the selected URL

and begins its SNA session.
c. The application issues SL_Close to close the SLP session.

Note that there are two options presented for load-balancing among a large
number of servers. The key difference between the two options is this: option 1
guarantees that the least-loaded server is selected, but it generates more LAN
traffic than option 2. Option 2 guarantees only that a "low-loaded" server is
selected, but there is less potential line traffic on the LAN during the selection
process than option 1.

Retries: In many cases, connection retries by the application are necessary to
effect the maximum availability of resources for the user. One condition that
necessitates a connection retry by the application is when the application attempts
to connect to a URL returned on SL_GetService and then establish an SNA session
but no LU is available. This condition is possible due to the loose coupling

352 Client/Server Communications Programming

between what services are registered via SLP and what services are actually
available on the registering server. If the application fails to connect to a selected
service, it should retry to another returned service (for example, the next,
least-loaded server). If no more services are available, the application can either
retry from the initial SL_GetService or report the condition to the end-user.

URL Formats: The URLs advertised by Communications Server consist of two
parts: the dotted-decimal IP address and a port number.

A URL is an ASCII string with the following format:
<IP address>:<port number>

The IP address is the default IP address for the server. The port number depends
on the service type being advertised:

Table 28. Service Type/Port Information

Service type Port

commserver well-known CommExec listening

port 1366

cs3270 well-known CommExec listening

port 1366

csappc well-known CommExec listening

port 1366

tn3270 Telnet port as obtained from ETC/SERVICES
file on server or configured to the Telnet
server

Ports
Communications Server currently supports multiple ports. Support for secure
encrypted Telnet sessions will also be provided, which will require a different port
number than the default port number, for the secure session. The emulator should
be able to use the port numbers that are returned from a SLP service discovery.
More information about the service types can be found in the TEMPLATE.HTM
file.

Example 1: An application provides 3270 emulation over Telnet. It needs to
connect to any LU available in its configured LU Pool of ACCOUNTS, and it needs
to connect through the lightest loaded server. No scopes are configured in the
network. The mainframe host supports dynamic device types so the application
does not need to specify a device type.

The application begins by issuing the following predicate for the SL_GetService
request to locate a server (in all examples '\t' is the TAB character):
tn3270//LUPOOL==ACCOUNTS*/

At this point, a list of three URLs (similar to these) is returned (the port number 23
is the standard port for Telnet connection requests):
service:tn3270://9.37.51.254:23
service:tn3270://9.37.51.260:23

service:tn3270://9.37.51.256:23

Appendix D. Communications Server Service Location Protocol 353

Being designed to perform least-load location, the application issues a series of
SL_GetAttrs calls directed to each URL to obtain the load measurement of each
server. It specifies a select clause similar to the one below to receive only load
information:
URL = service:tn3270://9.37.51.254:23
Attribute filter = LOAD

v The attribute LOAD is returned along with its value "5"
v The application issues a second SL_GetAttrs for the second URL and its load is

returned, "2"
v And finally the third server, which returns a load of "10"

Since the load for the second server is lower, the application selects 9.37.52.260:23
as its connection target. The application tries to connect through 9.37.51.260, but
the connection fails since no LUs are available. It then tries to connect through
9.37.51.254 (the next least-loaded server) and this time, it succeeds.

Example 2: Another application provides TN3270 emulation. It needs to locate a
lightly-loaded server providing this service. The client's configuration is obtained
from either an INI file or NDS: it's scope is ENGINEERING, and it needs to find
an LU type 2 model 2 from the LU Pool SMITH_1.

The application begins by issuing an SL_GetAttrs call with the service type of
TN3270: and an attribute tag filter of 'SCOPE'. This returns a list of scope values
that the servers supporting TN3270 have been administrated for. For illustrative
purposes, assume that the scope value of 'ENGINEERING' is returned on the
SL_GetAttrs call. Next the application builds the following predicate for the
SL_GetService request to locate a server within this scope, that satisfies its initial
LU device type, and load requirements (in all examples '\t' is the TAB character):
tn3270/ENGINEERING/LUPOOL==SMITH_1\t3270002,LOAD <= 10/

The application is designed to locate in load increments of 10, so if the initial
SL_GetService request returns an empty list, the application re-issues the
SL_GetService specifying the service again plus the new load attribute.
tn3270/ENGINEERING/LUPOOL==SMITH_1\t3270002,LOAD <= 20/

At this point, a list of two URLs (similar to these) is returned (the port number 23
is the standard port for Telnet connection requests) :
service:tn3270://9.37.51.254:23
service:tn3270://9.37.51.260:23

The application does not care that the absolute least-loaded server be selected as
long as its load is below 20%. Therefore, it selects one of the two returned URLs at
random:
URL = service:tn3270://9.37.51.260:23

The application selects 9.37.52.260:23 as its connection target, and the connection is
successful.

Method 3: UA for service location and CM_CSLIST_GETII for
load-balancing
The CM_CSLIST_GETII primitive is provided for QEL/MU emulators. The
primitive is extended to allow multiple filters to be supplied by the application.
The header file cmi.h contains structures and definitions for this method and is
included in this SDK. To use this method, the following procedure applies:
1. The application issues SL_Open to open a session with SLP.

354 Client/Server Communications Programming

2. If a scope is not configured or is not otherwise made available to the app, the
application issues an SL_GetAttrs API call for the 'cs3270' service type with an
attribute tag filter of 'SCOPE' to obtain valid, reachable scopes. This API returns
a list of scopes that correspond to service URLs of Communications Server that
can respond to the IP-version CM_CSLIST_GETII primitive.

3. The application issues SL_GetService specifying the 'cs3270' service only, and a
valid scope. The Service reply contains a list of URLs of servers to which the
application can connect that can handle the CM_CSLIST_GETII primitive.

4. The application connects to the server represented by any selected URL in the
list.

5. The application issues SL_Close to close the SLP session.
6. The application builds a CM_CSLIST_GETII primitive to retrieve a

load-balanced list of servers. In it, the AgentType field is set to the desired
service, and the filter specification contains the scope and the LU Pool name (if
applicable).

7. A CM_CSLIST_GETII_ACK is returned containing a list of server TCP/IP
addresses in load-balanced order (least-loaded to highest).

8. The application selects the first server in the list and connects to it.
9. The application tries to establish an SNA session with the server. If

unsuccessful, it repeats the previous step with the next server in the returned
list (and so on) until it succeeds or the list is exhausted.

Table 29. CM_CSLIST_GETII Primitive

Field name

Field
offset
(hex)

Field
length
(dec) Type Content and Use

PrimType x00 4 long int CM_CSLIST_GETII as in cmi.h.

UserParm x04 4 long int Any value you want returned in
the reply.

Reserved x08 4 long int zero

ServiceType x0c 4 long int 0x12B (for load balancing
support)

ProdVersion x10 4 long int -1 (indicates "don't care")

NWVersion x14 4 long int -1 (indicates "don't care")

Flags x18 4 long int See Table 31 on page 356.

AgentType x0c 4 long int See Table 32 on page 356.

FilterList x1c * FilterList_t See Table 33 on page 356 or
Table 34 on page 356 (value
depends on setting of flags).

Table 30. CM_CSLIST_GETII Primitive

Constant Value Meaning

zero 0 Need an unordered list. No
filters are specified.
(Provided for backwards
compatibility.)

CMCsListFlags_LBPool 1 Need load-balanced list
specifying a load-balanced
pool name. (Value provided
for backwards compatibility.)

Appendix D. Communications Server Service Location Protocol 355

Table 30. CM_CSLIST_GETII Primitive (continued)

Constant Value Meaning

CMCsListFlags_LBAgent 2 Need load-balanced list.
AgentType is used for
load-balancing.

CMCsListFlags_LBFilter 3 Need load-balanced list. A
variable-length list of filters
follows.

Table 31. Flags values (from cmi.h)

Constant Value Meaning

CSA_3270 0x126 Need an SNA Gateway agent
for LU Types 1/2/3

CSA_SAA 0x12B Need an SNA Gateway agent
for LU Type 6.2

Table 32. AgentType values (from csobjtyp.h)

Field name

Field
offset
(hex)

Field
length
(dec) Type Content and Use

FilterNameLen x00 4 long int Length of following
load-balancing group (Pool)
name.

FilterName x04 * ASCII Load-balancing group (Pool)
name.

Table 33. FilterList_t (if Flags = CMCsListFlag_LBPool)

Field name

Field
offset
(hex)

Field
length
(dec) Type Content and Use

FilterCount x00 4 long int Number of filter list name
structures that follow (0, if Flags
= zero).

FilterList x04 * Filter_t A list of filter list name
structures. Each structure has
variable length.

Table 34. FilterList_t (if Flags = zero | Flags = CMCsListFlag_LBFilters)

Field name

Field
offset
(hex)

Field
length
(dec) Type Content and Use

FilterLength x00 4 long int Length of structure (plus this
length field).

FilterType x04 4 long int See Table 36 on page 357.

FilterName x08 * ASCII The filter name value.

356 Client/Server Communications Programming

Table 35. Filter_t

Constant Meaning

CMCsListFilter_LBPool A Load-balancing Pool name. Only one pool
may be specified per list. This filter is valid
only for AgentType CSA_3270.

CMCsListFilter_Scope An SLP Scope name. Only one scope may be
specified. If no scope is specified, then all
unscoped services are assumed.

Table 36. FilterType values (from cmi.h)

Field name

Field
offset
(hex)

Field
length
(dec) Type Content and Use

PrimType x00 4 long int CM_CSLIST_GETII_ACK as in cmi.h.

UserParm x04 4 long int As passed in on CM_CSLIST_GETII.

Reserved x08 4 long int zero

ServiceType x0c 4 long int As passed in on CM_CSLIST_GETII.

Flags x10 4 long int As passed in on CM_CSLIST_GETII.

ServiceCount x14 4 long int Number of following server entries.

Table 37. CM_CSLIST_GETII_ACK Primitive

Field name

Field
offset
(hex)

Field
length
(dec) Type Content and Use

ProdVersion x00 4 long int Version of product.

Platform x04 4 long int CMCsListPlatform_IWSAA

CSNameLen x08 4 long int Length of following server name.

CSName * * long int Name of server (null-terminated).

CSAddrLen * 4 long int Length of following IP address.

CSAddress * * ASCII The IP address of the server in the
form: dotted-decimal-IP-address:port.

NameLen * 4 long int Length of following agent name.

AgentName * * * Name of agent on server
(null-terminated).

Table 38. Server Information structure in CM_CSLIST_GETII_ACK Primitive

Field name

Field
offset
(hex)

Field
length
(dec) Type Content and Use

PrimType x00 4 long int CM_CSLIST_GETII_ERR as in cmi.h.

UserParm x04 4 long int As passed in on CM_CSLIST_GETII.

Reserved x08 4 long int zero

Errno x0c 4 long int Error number

Appendix D. Communications Server Service Location Protocol 357

Configuration Considerations

Scope: There are two choices for how to obtain the scope value for client requests
for services.

Discovery
The scope value can be discovered using the SL_GetAttrs API (by issuing an
unscoped attribute request for a service type with an attribute filter of "SCOPE").
This API returns a list of scopes for services currently active in the network. The
list can be displayed for user selection.

Configuration
The scope value can be obtained by configuration on the client.

DA-Discovery Timeout
The DA-Discovery timeout value, a parameter on the SLP_Open API, is used to
control how long the SLP API must wait to discover Directory Agents (DAs) in the
network. The discovery request is a multicast, and the amount of time required to
gather all DA responses might vary depending on many factors. If there are no
DAs in the network, this timeout value can be set to zero to indicate that no DA
discovery is to be done. The timeout is expressed in milliseconds.

SA Multicast Timeout
The SA Multicast timeout value. A parameter on the SL_Open API is used to
control how long the SLP API must wait to discover services, attributes, or service
types in a network without at least one DA that supports the scope of the request.
In this situation, these requests are multicast and the SLP API waits the timeout
value to gather the multiple responses that are returned. The timeout is expressed
in milliseconds.

Administrator Help information

Scope
Scope is a parameter used to control and manage access by clients to servers in a
network. It is the same as the Service Location Protocol scope. The control scope
provides is necessary for two reasons:
v As your network, the number of clients, and the number of servers grow, it

becomes necessary to partition access to those servers by the growing number of
clients in order to reduce overall traffic on the network.

v It allows administrators to organize users and servers in to administrative
groups

The meaning of the values of scope are defined by the administrator of the
network. These values can represent any entity. Commonly, they fall along either
departmental, geographical, or organizational lines.

How Is Scope Used?
Each Communications Server server is assigned to a scope or scopes through their
respective configuration tools. Clients using these servers must be configured to
connect to servers within a single specific scope or unscoped servers. Different
scopes can be assigned for the configurable services: 3270 and APPC.

358 Client/Server Communications Programming

How Does Scope Relate to SLP?
Communications Server scope relates directly to SLP scope. Therefore, SLP Service
Agents and Directory Agents need to reside in the network that support these
configured scopes. If you plan to allow clients to locate services based on scopes,
keep in mind how scope relates to the network as a whole. If there are unscoped
services in a network where scopes are also used, then these services are eligible to
satisfy any scoped requests, which can potentially put a burden on those service
agents and directory agents that support the unscoped services. For this reason, we
recommend that every reachable server either have scope configured, or no server
has scope configured. If directory agents are to be used in the site network (for
upward scaling), then they should be configured to handle the same scopes as are
configured for the servers. In addition, if unscoped services are to be used in
networks with directory agents, at least one unscoped directory agent should be
set up.

Note: If the SNA API Client is configured to connect to unscoped servers, only
unscoped servers will reply.

Load Balancing Weight Factor
The load balancing weight factor gives the administrator the ability to modify or
weight the load balancing measurement for each communications server. The factor
can be different for each server. A load measurement is an integral number
between 0 and 100 and is meant to approximate the percentage load on the server
(100 being the highest). The weight factor gives the administrator an element in
this calculation.

The reason this factor is useful is that in some cases there are other factors that
might have an effect on server load that are not taken into account by the
Communications Server algorithm. For example, if a communications server is not
dedicated to only SNA gateway traffic.

The weight factor allows the administrator to bias the load measurement on that
server away from selecting the server or towards selecting the server.

Appendix D. Communications Server Service Location Protocol 359

360 Client/Server Communications Programming

Appendix E. Service Templates

Commserver Service Template
The following attributes are given in service template.
v Release = <version/release>

This is the version and release level of the commserver advertising services. Its
format is vv.rr.mm where "vv" is the major version number, "rr" is the minor
version number, and "mm" is the modification level. All numbers are padded on
the left with zeroes to two characters. Example: version 6, release 0, mod level 0
is "06.00.00"

v Platform = <platform>

This is the network operating system platform underlying the advertising
service. The defined values are:

NT Server uses the Microsoft NT operating system

OS2 Server uses the OS2 operating system

AIX® Server uses the AIX operating system
v Protocol = <protocol>

Protocols supported by the server providing this service. The defined values are:

IP Server supports client connections over IP (TCP/IP or UDP/IP)

IPX Server supports client connections over IPX (SPX/IPX)
v Server name = <server name>

This is the name of the server that was configured during installation. This value
has meaning only for the IW platform.

Commserver Service Registration Message
URL:service:commserver://<addr-spec>:<port-number>

Attributes:
[(SCOPE=<string>),]
(RELEASE=06.00.00),

(PLATFORM=NT),

(PROTOCOL=IP),

(SERVERNAME=<string>)

Dependent LU Service Template
The commserver Dependent LU service provides 3270 gateway access to an SNA
network via server specific API's and protocols. The attributes reflect the types of
3270 devices, LU Pools, and load information available on the server.
v Load = <server_load>:

This is the load balancing quantity to use in determining the least loaded
commserver to attach to for the service. The range of valid values is an integral
0 to 100 with 0 indicating the lowest possible load and 100 the highest.

v LU Pool = <pool_name>,

© Copyright IBM Corp. 1994, 2016 361

<pool_name>/t<dev-type>,
<pool_name>/t<dev_type>, ...
<pool_name>/t<dev-type>

This identifies the LU pool names of LU pools available for use on this service
with the associated device types supported in each pool. Each value is a record
where the first token is the pool name of the pool and the second token is a
device type supported in that pool. A pool name without a device type indicates
that LUs of unknown type are included in the pool. Records associated with a
given pool name are repeated for each supported device type. A given pool is
included in a registration request if any PU profile that contributes at least one
LU to the pool is active on the server. The valid values for dev_types are as
follows:

Table 39. Valid dev_types for LU Pool Names

dev_type Meaning

3270002 Lu Type 2 Model 2

3270003 Lu Type 2 Model 3

3270004 Lu Type 2 Model 4

3270005 Lu Type 2 Model 5

3270DSC Printer LU

A given device type is included in the registration request if any LU configured as
the type is contained in an active PU profile on the server.

Dependent LU Service Registration Message
URL: service:cs3270://<addr-spec>:<port-number>

Attributes:
[(SCOPE=<string>),]
(RELEASE=06.00.00),

(PLATFORM=NT),

(PROTOCOL=IP),

(SERVERNAME=<string>),

(LOAD=<integer 0 to 100>),

[(LUPOOL=pool-name0/tANY,

pool-name1/tdevice_type1,

pool-name2/tdevice-type2, ...

pool-namen/tdevice-typen)]

TN3270 Service Template
The TN3270 service provides 3270 gateway access to an SNA network via the
TN3270 protocol. The attributes reflect the types of 3270 devices, LU Pools, and
load information available on the server. LU Pool and Load attributes are the same
as for service type cs3270.
v BIND, DATA, RESPONSES, SCS, SYSREQ

362 Client/Server Communications Programming

These keyword attributes describe the TN3270e functions supported by this
service. They are present in the service advertisement if the functions they
describe are available.

BIND The server supports the SNA bind image function

DATA The non-SNA 3270 data stream is supported by server

RESPONSES The server supports SNA response mode

SCS The server supports SNA 3270 SCS data stream

SYSREQ The SYSREQ keyboard key is supported on server
v Security = <security>

This field will contain the security technique supported by the server. The
defined values are:

NONE This server has no explicit security technique

SSLV3 This server supports Secure Socket Layer Version 3 standard
v Ciphersuites = <CipherSpec>,

<CipherSpec>, ...
<CipherSpec>

Identifies the cipher specifications supported by this server. The defined values
are:
– NULL_NULL

– NULL_MD5

– NULL_SHA

– RC4_MD5_EXPORT

– RC4_MD5_US

– RC4_SHA_US

– RC2_MD5_EXPORT

– DES_SHA_EXPORT

– TRIPLE_DES_SHA_US

v RFC1576, RFC1646, RFC1647

The RFC numbers that document features supported by the service. Current
RFC's for TN3270 include 1576, 1646, and 1647.

TN3270 Service Registration Message
URL: service:tn3270://<addr-spec>:<port-number>

Attributes:
[(SCOPE=<string>),]
(RELEASE=06.00.00),

(PLATFORM=NT),

(PROTOCOL=IP),

(SERVERNAME=<string>),

(LOAD=<integer 0 to 100>),

[(LUPOOL=pool-name(0)/tANY,

pool-name1/tdevice_type1,

Appendix E. Service Templates 363

pool-name2/tdevice-type2, ...

pool-namen/tdevice-typen)]

BIND,

DATA,

RESPONSES,

SCS,

SYSREQ,

(SECURITY=NONE),

(SECURITY=<security>),

(CIPHERSUITES=<Spec1,Spec2,...Specn>),

RFC1576,

RFC1646,

RFC1647

TN5250 Service Template
The TN5250 service provides 5250 gateway access to an SNA network using the
TN5250 protocol. The attributes reflect the accessible iSeries, eServer i5, or System
i5 services and load information available on the server.
v Release = <release>

This is the Version and Release of the advertising commserver.
v Protocol = <protocol>

One or more protocols supported by the server providing this service. The
defined value is:

IP Server supports connections over IP (TCP/IP or UDP/IP)
v Platform = <platform>

This is the network operating system platform underlying the advertised service.
The defined values are:

NT Server uses the Microsoft NT Operating system
v Server Name = <server name>

This is the name of the server that was configured during installation.
v AS400 Name = <host name>

This is the name of the iSeries, eServer i5, or System i5 host to which this service
registration applies.

v Load = <INTEGER>

This is the load balancing quantity to use in determining the least loaded
communications server. The range of valid values is an integer 0 to 100.

v Security = <security>

This field will contain the security technique supported by the server. The actual
values are as follows:

NONE This server has no explicit security technique

SSLV3 This server supports Secure Socket Layer Version 3 standard

364 Client/Server Communications Programming

v Ciphersuites = <CipherSpec>,

<CipherSpec>, ...
<CipherSpec>

Identifies the cipher specifications supported by this server. The defined values
are:
– NULL_NULL

– NULL_MD5

– NULL_SHA

– RC4_MD5_EXPORT

– RC4_MD5_US

– RC4_SHA_US

– RC2_MD5_EXPORT

– DES_SHA_EXPORT

– TRIPLE_DES_SHA_US

v Function = <function>

This field will contain the TN5250 functions supported by the server. There are
no functions defined at the current time.

v RFC1205

The RFC numbers that document features supported by the service. Current
RFC's for TN5250 include 1205.

TN5250 Service Registration Message
URL: service:tn5250://<addr-spec>:<port-number>

Attributes:
(SCOPE=<string>),

(PROTOCOL=<string>),

(RELEASE=<string>),

(PLATFORM=<string>),

(LOAD=<integer 0 to 100>),

(SECURITY=NONE),

(SECURITY=<security>),

(CIPHERSUITES=<Spec1,Spec2,...Specn>),

(FUNCTIONS=NONE),

(RFC1205),

(SERVERNAME=<string>),

(AS400NAME=<string>),

Appendix E. Service Templates 365

LU 6.2 Service Template
The csappc service type provides SNA APPC access. Configured local LU
definitions are registered with this service.
LLU = <llu1>,<llu2>,...,<llun>

Specifies the valid local LUs as configured on the commserver.

LU 6.2 Service Registration Message
URL: service:csappc://<addr-spec>:<port-number>

Attributes:
[(SCOPE=<string>),]

(RELEASE=06.00.00),

(PLATFORM=NT),

(PROTOCOL=IP),

(SERVERNAME=<string>),

(LOAD=<integer 0 to 100>)

[,(LLU=<llu1>,<llu2>,...,<llun>)]

366 Client/Server Communications Programming

Appendix F. DLL Version Information

32–Bit Windows DLLs
The following 32–bit Windows DLLs include information that you can use to
determine the version of the DLL:
v E32APPC.DLL
v WAPPC32.DLL
v WCPIC32.DLL
v WINCSV32.DLL
v WINMS32.DLL
v WINNOF32.DLL
v WINRUI32.DLL
v WINSLI32.DLL

The available keys are:
v CompanyName
v LegalCopyright
v LegalTrademarks
v ProductName
v ProductVersion
v FileDescription
v InternalName
v FileVersion

Note: All keys are a part of the "\StringFileInfo\040904E4\" version block, and are
not translated.

You can retrieve the information by using a program, or by using Windows
Explorer as follows:
1. Select the DLL with the right mouse button
2. Select Properties from the pop-up menu
3. Select the Version tab.

Using this information, you can write code to determine whether a DLL came from
IBM or another company (CompanyName), and whether the DLL is for the SNA
API Client or the server (ProductName). You can determine which version of the
DLL is installed (FileVersion), and which version of the product is installed
(ProductVersion).

The following sample C function determines if the named DLL was produced by
IBM:
//
// Function returns TRUE if and only if given pathname is a versioned IBM DLL
//
#include <winver.h>
#define CMPNY_KEY "\\StringFileInfo\\040904E4\\CompanyName"

BOOL bDllFromIBM(char *pcDllPathname)

© Copyright IBM Corp. 1994, 2016 367

{
DWORD dwBufSize = 0, dwTemp = 0, dwReturnBytes = 0;
LPVOID pReturnBuffer = NULL;
VOID *pVInfoBuffer = NULL;
BOOL bRC = FALSE;

// verify parameters aren’t null
if (!pcDllPathname || !*pcDllPathname)

return FALSE;

// get size of Version Info
dwBufSize = GetFileVersionInfoSize(pcDllPathname, &dwTemp);

// no version info implies bad parameters or not versioned IBM DLL
if (!dwBufSize)

return FALSE;

// allocate a buffer for the version information (+50 for safety)
pVInfoBuffer = malloc(dwBufSize + 50);

// malloc failure
if (!pVInfoBuffer)

return FALSE;

// get version buffer filled
bRC = GetFileVersionInfo(pcDllName,dwTemp,dwBufSize,pVInfoBuffer);

// call failed
if (!bRC)

return FALSE;

// get the company name
bRC = VerQueryValue(pVInfoBuffer, TEXT(CMPNY_KEY), ReturnBuffer, ReturnBytes);

// not found or empty
if (!bRC || !dwReturnBytes)

return FALSE;

// value should begin with "IBM"
if (strncmp(pReturnBuffer, "IBM", strlen("IBM")) == 0)

return TRUE;

return FALSE;
}

368 Client/Server Communications Programming

Appendix G. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this information
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Department TL3B/062
P.O. Box 12195

© Copyright IBM Corp. 1994, 2016 369

Research Triangle Park, NC 27709-2195
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copy notice as follows:

(c) (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. (c) Copyright IBM Corp. enter the year or years.
All rights reserved.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States, and/or other countries.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United
States and other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

370 Client/Server Communications Programming

Microsoft, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix G. Notices 371

372 Client/Server Communications Programming

Index

A
abnormal termination, reporting 34
ACSSVC 264
ACTLU 167
ACTLU message 175
ALLOCATE 83
AP_ALLOCATION_ERROR 323
AP_ALLOCATION_FAILURE_NO_RETRY 323
AP_ALLOCATION_FAILURE_RETRY 323
AP_CONV_FAILURE_NO_RETRY 323
AP_CONV_FAILURE_RETRY 323
AP_CONVERSATION_TYPE_MISMATCH 325
AP_CONVERSATION_TYPE_MIXED 323
AP_DEALLOC_ABEND 323
AP_DEALLOC_ABEND_PROGRAM 324
AP_DEALLOC_ABEND_SVC 324
AP_DEALLOC_ABEND_TIMER 324
AP_DEALLOC_NORMAL 324
AP_PIP_NOT_ALLOWED 326
AP_PIP_NOT_SPECIFIED_CORRECTLY 325
AP_PROG_ERROR_PURGING 325
AP_PROG_ERROR_TRUNC 325
AP_SECURITY_NOT_VALID 323
AP_SVC_ERROR_NO_TRUNC 325
AP_SVC_ERROR_PURGING 325
AP_SVC_ERROR_TRUNC 326
AP_SYNC_LEVEL_NOT_SUPPORTED 323
AP_TP_BUSY 326
AP_TP_NAME_NOT_RECOGNIZED 326
AP_TRANS_PGM_NOT_AVAIL_NO_RTRY 326
AP_TRANS_PGM_NOT_AVAIL_RETRY 325
AP_UNEXPECTED_SYSTEM_ERROR 326
APPC API support

default local LU pool 41
option sets supported 37
queue-level nonblocking 39
verbs supported 68

APPC entry points
APPC() 52
GetAppcConfig() 64
GetAppcReturnCode() 65
WinAPPCCancelAsyncRequest() 57
WinAPPCCancelBlockingCall() 58
WinAPPCCleanup() 59
WinAPPCIsBlocking() 60
WinAPPCSetBlockingHook() 62
WinAPPCStartup() 61
WinAPPCUnhookBlockingHook() 63
WinAsyncAPPC() 53
WinAsyncAPPCEx() 55

APPC() 52
application subsystem

converting 36
supporting passwords 36
translating 36

asynchronous verb completion 166
attach manager

description 17
identifying transition program name 19
matching incoming allocation requests

nonqueued programs 24

attach manager (continued)
matching incoming allocation requests (continued)

queued programs 24
starting programs 23

B
basic conversation 11, 12
basic conversation verb control blocks

ALLOCATE 83
CONFIRM 89, 91
CONFIRMED 95
DEALLOCATE 97
FLUSH 102
GET_ATTRIBUTES 104
PREPARE_TO_RECEIVE 107
RECEIVE_AND_POST 110
RECEIVE_AND_WAIT 115
RECEIVE_IMMEDIATE 124
REQUEST_TO_SEND 129
SEND_CONVERSATION 131
SEND_DATA 136
SEND_ERROR 140
TEST_RTS 147
TEST_RTS_AND_POST 149

BID message 174
BIND message, specifies TS, FM profiles 163
BIND, negotiating parameters 168
bracketing, bid reject in EXR 174

C
CANCEL 170
canceling verbs 174
CMSLTP function, and service TP name 48
CMSTPN function, and service TP name 48
common data structure 191
common return codes

AP_ALLOCATION_ERROR 323
AP_ALLOCATION_FAILURE_NO_RETRY 323
AP_ALLOCATION_FAILURE_RETRY 323
AP_CONV_FAILURE_NO_RETRY 323
AP_CONV_FAILURE_RETRY 323
AP_CONVERSATION_TYPE_MISMATCH 325
AP_CONVERSATION_TYPE_MIXED 323
AP_DEALLOC_ABEND 323
AP_DEALLOC_ABEND_PROG 324
AP_DEALLOC_ABEND_SVC 324
AP_DEALLOC_ABEND_TIMER 324
AP_DEALLOC_NORMAL 324
AP_PIP_NOT_ALLOWED 326
AP_PIP_NOT_SPECIFIED_CORRECTLY 325
AP_PROG_ERROR_PURGING 325
AP_PROG_ERROR_TRUNC 325
AP_SECURITY_NOT_VALID 323
AP_SVC_ERROR_NO_TRUNC 325
AP_SVC_ERROR_PURGING 325
AP_SVC_ERROR_TRUNC 326
AP_SYNC_LEVEL_NOT_SUPPORTED 323
AP_TP_BUSY 326

© Copyright IBM Corp. 1994, 2016 373

common return codes (continued)
AP_TP_NAME_NOT_RECOGNIZED 326
AP_TRANS_PGM_NOT_AVAIL_NO_RTRY 326
AP_TRANS_PGM_NOT_AVAIL_RETRY 325
AP_UNEXPECTED_SYSTEM_ERROR 326

common services entry points
ACSSVC 264
GetCsvReturnCode 269
TrnsDt 279
WinCSV 265
WinCSVAsyncCSV 267
WinCSVCleanup 266
WinCSVStartup 268

common services verbs
CONVERT 276
GET_CP_CONVERT_TABLE 272

Communications Server LU 6.2
security features 35
services available to transaction programs 29, 32

configuration information 170
CONFIRM 89, 91
confirmation, requesting 34
CONFIRMED 95
conversation

defining attributes 20, 21
security for incoming allocation requests 22
security for outgoing allocation requests 22

Conversation
carried by session 10
choosing a type 32
confirmed delivery type 13
database update type 14
errors in 15
half-duplex 10
inquiry type 14
keeping type consistent 32
mapped 11
one-way type 13
receiving data 33
sending data 32, 33

conversation state transitions
non-OK return codes 347
pending post state 347
reset state 346
state change after RECEIVE verbs

primary_rc parameters 347
what_rcvd parameters 347

use of AP_ERROR 346
conversation states, of transaction programs 29
CONVERT 276
correlation of RQEs 162
correlation table 162
correlator 180
courtesy acknowledgment 169
CPI-C

function summary 46
versions of 43, 48

D
data

receiving 33
sending 32

DEALLOCATE 97
default local LU pool 41

E
end-user verification 35
Entry Points, SLI 223
error handling 15
errors

reporting 34
sending log records 34

exception response 162

F
flow protocols 161
FLUSH 102
FM

See function management profiles supported
function management profiles supported 164

G
GDS 11
general data stream 11
GET_ATTRIBUTES 104
GET_CP_CONVERT_TABLE 272
GET_TP_PROPERTIES 69
GET_TYPE 71
GetAppcConfig() 64
GetAppcReturnCode() 65

I
INITSELF 167
introduction 5

L
LL field 11
logical length 11
LU

configuring 7
dependent 7
description of 7
independent 7
multiple sessions 10
name 7
types 7

LU 6.2
abstract operations 12
error handling 15
manages sessions 10

LU pools 170
LU-SSCP session

establishing 167
LUA

application programs 153
architecture 163
compatibility 153
connection capabilities 153
FM profiles supported 164
LUs, local and partner 154
restarting and resynchronizing 159
RUI sessions 165
sample LUA communication sequence 166
SNA layers 154
TS profiles supported 163
understanding 153

374 Client/Server Communications Programming

LUA (continued)
using SNA sessions

disconnecting 158
prerequisites 156
starting 156
stopping 157
transferring data on an LU-LU session 157

verbs
asynchronous verb completion 166
summary 154, 164
using RUI LUA 164

M
mapped conversation 11, 12
mapped conversation verb control blocks

MC_ALLOCATE 83
MC_CONFIRM 89, 91
MC_CONFIRMED 95
MC_DEALLOCATE 97
MC_FLUSH 102
MC_GET_ATTRIBUTES 104
MC_PREPARE_TO_RECEIVE 107
MC_RECEIVE_AND_POST 110
MC_RECEIVE_AND_WAIT 115
MC_RECEIVE_EXPEDITED_DATA 120
MC_RECEIVE_IMMEDIATE 124
MC_REQUEST_TO_SEND 129
MC_SEND_CONVERSATION 131
MC_SEND_DATA 136
MC_SEND_ERROR 140
MC_SEND_EXPEDITED_DATA 144
MC_TEST_RTS 147
MC_TEST_RTS_AND_POST 149

minimizing LAN traffic 174

N
negative response, from EXR verb 173
NOTIFY 168

O
options sets supported by Personal Communications 37

P
pacing

causes output suspension 175
general 169

partner LU verification 35
post handle 180
primary return code 180
protocols

bracket 160
data-chaining 161
half-duplex contention flip/flop 160
pacing 159

purging 170

Q
queue-level nonblocking support

explanation of 39
three types of queues 39

R
receive state 10
recovering session failure 176
reserved parameters 191
response mode 162
return code, primary 180
return code, secondary 180
RTR message 174
RUI

supports all FM profiles 163
supports all TS profiles 164

RUI verbs
common verb header 191
LUA verb control format 191

RUI_BID
error return codes 198
general 196
successful execution 197

RUI_BID data structure 195
RUI_BID verb, reducing use of 174
RUI_INIT

error return codes 202
general 201
successful execution 202

RUI_INIT verb
canceling 175
ends after SSCP-LU session set up 176

RUI_PURGE
error return codes 206
general 205
successful execution 205

RUI_PURGE verb, cancels RUI_READ 175
RUI_READ

error return codes 210
general 208
successful execution 209
truncated data 209

RUI_READ verb, canceling 175
RUI_TERM

general 214
successful execution 214

RUI_TERM verb
cancels RUI_INIT 175
cancels RUI_WRITE 175

RUI_WRITE
error return codes 219
general 217
successful execution 218

RUI_WRITE verb, canceling 175

S
sample LUA communication sequence 166
SDT 167
secondary return code 180
security protocols

conversation level 36
end-user verification 35
partner LU verification 35
session level 35

segmentation 169
send state 10
sense code

sense code 173
sense code for BID 174
sense code, in EXR 173

Index 375

service TP, specifying name 48
session

carries one conversation 10
failure recovery 176
general 8
reusable 10
session identifier 180

SLI Entry Points 223
SLI_BID

general 230
successful execution 230

SLI_BIND_ROUTINE
general 255
successful execution 255

SLI_CLOSE
general 235
successful execution 235

SLI_OPEN
general 238
successful execution 241

SLI_PURGE
general 244
successful execution 244

SLI_RECEIVE
general 246
successful execution 247

SLI_SDT_ROUTINE 259
SLI_SEND

general 251
successful execution 252

SLI_STSN_ROUTINE 257
SNA

communication support 3
general data stream 11
LU type 6.2 support 4

SNA messages, relationship to LUA verbs 166
SNA sense codes 168
specific data structure 191
suspensions, dealing with 174

T
termination, abnormal, reporting 34
TP

server started on demand 6
service 48

transaction program
choosing a name 35
compared to an application 18
conversation states 29
CPI Communications 6
default local LU pool 41
definitions 20
description of 5
developing 29, 36
queue-level nonblocking 39
supported option sets 37
writing 37

transmission services, profiles supported 163
TrnsDt 279
type independent verb control blocks

GET_TP_PROPERTIES 69
GET_TYPE 71
RECEIVE_ALLOCATE 73
SET_TP_PROPERTIES 76
TP_ENDED 79
TP_STARTED 81

U
UNBIND 167

V
verb

canceling 174
specifying conversation type 32

verb control block
structure 191

verb control blocks, common fields 67
verb record, contents 180
verb signals

basic conversation verb control blocks
ALLOCATE 83
CONFIRM 89, 91
CONFIRMED 95
DEALLOCATE 97
FLUSH 102
GET_ATTRIBUTES 104
PREPARE_TO_RECEIVE 107
RECEIVE_AND_POST 110
RECEIVE_AND_WAIT 115
RECEIVE_EXPEDITED_DATA 120
RECEIVE_IMMEDIATE 124
REQUEST_TO_SEND 129
SEND_CONVERSATION 131
SEND_DATA 136
SEND_ERROR 140
SEND_EXPEDITED_DATA 144
TEST_RTS 147
TEST_RTS_AND_POST 149

mapped conversation verb control blocks
MC_ALLOCATE 83
MC_CONFIRMED 95
MC_DEALLOCATE 97
MC_FLUSH 102
MC_GET_ATTRIBUTES 104
MC_PREPARE_TO_RECEIVE 107
MC_RECEIVE_AND_POST 110
MC_RECEIVE_AND_WAIT 115
MC_RECEIVE_EXPEDITED_DATA 120
MC_RECEIVE_IMMEDIATE 124
MC_REQUEST_TO_SEND 129
MC_SEND_CONVERSATION 131
MC_SEND_DATA 136
MC_SEND_ERROR 140
MC_SEND_EXPEDITED_DATA 144
MC_TEST_RTS 147
MC_TEST_RTS_AND_POST 149

verb control blocks, common fields 67
verbs supported at the APPC API

mapped conversation verbs 68
type independent verbs 68

W
WinAPPCCancelAsynRequest() 57
WinAPPCCancelBlockingCall() 58
WinAPPCCleanup() 59
WinAPPCIsBlocking() 60
WinAPPCSetBlockingHook() 62
WinAPPCStartup() 61
WinAPPCUnhookBlockingHook() 63
WinAsyncAPPC() 53
WinAsyncAPPCEx() 55

376 Client/Server Communications Programming

WinAsyncCSV 267
WinCSV 265
WinCSVCleanup 266
WinCSVStartup 268
writing LUA APPC program

calling dynamic link libraries 179
procedure entry points 183

Index 377

378 Client/Server Communications Programming

IBM®

Product Number: 5639-I70

Printed in USA

SC31-8479-12

	Contents
	Figures
	Tables
	About This Book
	Who Should Read This Book
	How to Use This Book
	Icons
	Number Conventions

	Double-Byte Character Set Support
	Where to Find More Information

	Part 1. APPC API
	Chapter 1. Introducing APPC
	SNA Communications Support
	SNA LU Type 6.2 Support

	Chapter 2. Fundamental APPC Concepts
	What Is a Transaction Program?
	APPC Transaction Programs
	CPI Communications Transaction Programs
	Client Transaction Programs
	Server Transaction Programs

	What Is a Logical Unit?
	LU Types
	Dependent and Independent LUs
	What Is an LU Name?

	What Is a Session?
	What Is a Conversation?
	Relationships among Sessions, Conversations, and LUs

	Conversation Types
	Mapped Conversations
	Basic Conversations

	Examples of APPC Operations
	Types of APPC Conversations
	One-Way Conversation
	Confirmed-Delivery Conversation
	Inquiry Conversation
	Database Update Conversation

	Conversations That Have Errors
	Summary

	Chapter 3. Using the Attach Manager
	Differentiating between an Application and a Transaction Program
	Transaction Program Definitions
	Identifying the Transaction Program Name on Both Machines
	Defining Conversation Attributes
	Synchronization Level
	Conversation Type and Style
	Conversation Styles

	Conversation Security for an Incoming Allocation Request
	Conversation Security for an Outgoing Allocation Request
	Using the Attach Manager on Personal Communications
	Starting the Attach Manager
	Starting Programs with the Attach Manager

	Matching Incoming Allocation Requests with RECEIVE_ALLOCATE Verbs
	Nonqueued Programs
	Queued Programs

	Using the Attach Manager on Communications Server SNA API Clients
	Defining Transaction Programs for SNA API Clients
	Starting the SNA API Client Attach Manager

	Chapter 4. Writing a Transaction Program
	Application Protocols
	Available Program LU 6.2 Services
	Choosing a Conversation Type
	Consistency of Conversation Type
	Sending Data
	Receiving Data
	Reporting Errors and Abnormal Termination
	Sending an Error Log Data Record
	Abnormally Terminating because of a Timeout

	Requesting Confirmation
	Choosing between Half-Duplex and Full-Duplex Conversations
	Choosing a Transaction Program Name
	Using the Security Features
	Partner LU Verification (Session-Level Security)
	End-User Verification (Conversation-Level Security)

	Converting between EBCDIC and ASCII

	Chapter 5. Implementing APPC Transaction Programs
	Writing Transaction Programs
	Option Sets Supported

	Full-Duplex VCBs
	Queue-Level Nonblocking

	Default Local LU

	Chapter 6. Implementing CPI-C Programs
	Writing CPIC Programs
	CPI-C Versions
	CPI-C Conformance Class Support
	CPI-C Functions

	Specifying Service TP Names
	Additional Options for Setting Local_LU

	Chapter 7. APPC Entry Points
	APPC
	WinAsyncAPPC()
	WinAsyncAPPCEx()
	WinAPPCCancelAsyncRequest()
	WinAPPCCancelBlockingCall()
	WinAPPCCleanup()
	WinAPPCIsBlocking()
	WinAPPCStartup()
	WinAPPCSetBlockingHook()
	WinAPPCUnhookBlockingHook()
	GetAppcConfig()
	GetAppcReturnCode()

	Chapter 8. APPC Verbs
	Verb Control Blocks
	Common Fields

	APPC API Support
	Verbs Supported

	GET_TP_PROPERTIES
	GET_TYPE
	RECEIVE_ALLOCATE
	SET_TP_PROPERTIES
	TP_ENDED
	TP_STARTED
	[MC_]ALLOCATE
	CANCEL_CONVERSATION
	[MC_]CONFIRM
	[MC_]CONFIRMED
	[MC_]DEALLOCATE
	[MC_]FLUSH
	[MC_]GET_ATTRIBUTES
	[MC_]PREPARE_TO_RECEIVE
	[MC_]RECEIVE_AND_POST
	[MC]RECEIVE_AND_WAIT
	[MC_]RECEIVE_EXPEDITED_DATA
	[MC_]RECEIVE_IMMEDIATE
	[MC_]REQUEST_TO_SEND
	[MC_]SEND_CONVERSATION
	[MC_]SEND_DATA
	[MC_]SEND_ERROR
	[MC_]SEND_EXPEDITED_DATA
	[MC_]TEST_RTS
	[MC_]TEST_RTS_AND_POST

	Part 2. LUA API
	Chapter 9. Fundamental Concepts of the IBM Conventional LU Application
	Understanding LUA and SNA
	Connection Capabilities
	LUA Application Programs
	LUA Verbs
	LUs, Local LUs, and Partner LUs
	System Services Control Point (SSCP)
	SNA Layers
	Data Link Control Layer
	Path Control Layer
	Transmission Control Layer
	Data Flow Control Layer
	Presentation Services Layer

	Using SNA Sessions
	Prerequisites to an SNA Session
	Starting Sessions
	Starting an LU-LU Session from an SLU
	Starting an LU-LU Session from a PLU

	Transferring Data on an LU-LU Session
	Stopping Sessions
	Stopping an LU-LU Session by an SLU
	Stopping an LU-LU Session by a PLU
	Stopping an SSCP-LU Session and an SSCP-PU Session

	Disconnecting the Host Link

	Message Numbers
	Restarting and Resynchronizing a Session
	Using Protocols to Control Requests and Responses
	Using the Pacing Protocol
	Receive-Pacing Protocol
	Send-Pacing Protocol

	Using the Half-Duplex Contention/Flip-Flop Protocol
	Using the Bracket Protocol
	Using the Data-Chaining Protocol

	Data Exchange Control Methods
	Flow Protocols
	Response Modes
	LUA Correlation Tables
	Exception Response Requests (RQEs)

	Session Profiles
	TS Profiles
	FM Profiles

	Using RUI LUA Verbs
	Verb Summary

	RUI Sessions
	Issuing RUI Verbs
	Asynchronous Verb Completion
	Sample LUA Communication Sequence
	BIND Checking
	Negative Responses and SNA Sense Codes
	Distinguishing SNA Sense Codes from Other Secondary Return Codes
	Information on SNA Sense Codes

	Pacing
	Segmentation
	Courtesy Acknowledgments
	Purging Data to End of Chain

	Configuration
	LUA LU Pool (Optional)
	SNA API Client Considerations

	Chapter 10. Features of the RUI LUA Verbs
	Handling Exception Requests
	Changing the Verb Record
	Handling Bracket Bid Reject

	Minimizing LAN Traffic
	Reducing RUI_BID Usage

	Dealing with Suspensions
	Canceling RUI_INIT
	Canceling RUI_WRITE
	Canceling RUI_READ

	Compressing Data
	Rules for Negotiating Data Compression Per Session
	RUI Rules
	SLI Rules

	Recovering from Session Failure

	Chapter 11. Implementing LUA Programs
	Writing LUA Programs
	Calling LUA Services
	Understanding Verb Record Contents
	Multiple Processes
	Multiple Threads
	LUA Verb Postings
	Converting to EBCDIC from ASCII

	Chapter 12. RUI LUA Entry Points
	RUI()
	WinRUI
	WinRUICleanup()
	WinRUIGetLastInitStatus()
	WinRUIStartup()
	GetLuaReturnCode()

	Chapter 13. RUI Verbs
	LUA Verb Control Block Format
	Common Verb Header
	RUI_BID Data Structure

	RUI_BID
	RUI_INIT
	RUI_PURGE
	RUI_READ
	RUI_TERM
	RUI_WRITE

	Chapter 14. SLI Entry Points
	SLI()
	WinSLI()
	WinSLICleanup()
	WinSLIStartup()

	Chapter 15. SLI Verbs
	SLI_BID
	SLI_CLOSE
	SLI_OPEN
	SLI_PURGE
	SLI_RECEIVE
	SLI_SEND
	SLI_BIND_ROUTINE
	SLI_STSN_ROUTINE
	SLI_SDT_ROUTINE

	Part 3. Common Services API
	Chapter 16. Common Services Entry Points
	Writing Common Services Programs
	ACSSVC()
	WinCSV()
	WinCSVCleanup()
	WinAsyncCSV()
	WinCSVStartup()
	GetCsvReturnCode()

	Chapter 17. Common Services Verbs (CSV)
	GET_CP_CONVERT_TABLE
	CONVERT
	TrnsDt

	Part 4. EHNAPPC API
	Chapter 18. EHNAPPC Application Program Interface
	Writing EHNAPPC Programs
	EHNAPPC Routines
	EHNAPPC_Allocate
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_Confirm
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_Confirmed
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_Deallocate
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_ExtendedAllocate
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_Flush
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_GetAttributes
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_GetCapabilities
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_GetDefaultSystem
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_IsRouterLoaded
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_PrepareToReceive
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_QueryConfiguredSystems
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_QueryConvState
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_QueryFullSystems
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_QueryUserid
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_QuerySystems
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_ReceiveAndWait
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_ReceiveImmediate
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_RemoteProgramStart
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_RqsToSend
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_SendData
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_SendError
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_StartHostProgram
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC Structures
	AS400_SYS
	Purpose
	Procedure Declaration
	Parameters

	appcrtrcap_hdr
	Purpose
	Procedure Declaration
	Parameters

	appcrtrcap_mult
	Purpose
	Procedure Declaration
	Parameters

	appcrtrcap_query
	Purpose
	Procedure Declaration
	Parameters

	Return Codes for the EHNAPPC API
	Running 16-Bit EHNAPPC Programs

	Chapter 19. Data Transform Windows Application Program Interface
	Data Transform Windows API Routines
	EHNDT_ANSIToEBCDIC
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNDT_ASCIIToEBCDIC
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNDT_EBCDICToANSI
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNDT_EBCDICToASCII
	Purpose
	Return Codes

	Part 5. Java Programming Interfaces
	Chapter 20. Introduction to the Host Access Class Library for Java
	What Is HACL?
	HACL Concepts
	Sessions
	Container Objects
	List Objects
	Events
	Error Handling
	Addressing (Rows, Columns, Positions)

	Installing HACL on the Communications Server for Windows Server
	Installing HACL on the Communications Server 32–Bit Windows Client
	Setting the Classpath
	HACL Codepage Converters

	HACL Samples

	Chapter 21. Using CPIC-C for Java
	What is CPI-C for Java?
	Installing CPI-C for Java (Communications Server)
	CPI-C for Java Samples
	Client Sample
	Server Sample

	Part 6. Appendixes
	Appendix A. APPC Common Return Codes
	Appendix B. LUA Verb Return Codes
	Primary Return Codes
	Secondary Return Codes

	Appendix C. APPC Conversation State Transitions
	Appendix D. Communications Server Service Location Protocol
	Discovery and Load Balancing APIs
	Structure
	Scenarios
	Method 2: UA API to locate the least-loaded (or low-loaded) service.
	Ports
	Method 3: UA for service location and CM_CSLIST_GETII for load-balancing
	Configuration Considerations
	Discovery
	Configuration

	DA-Discovery Timeout
	SA Multicast Timeout

	Administrator Help information
	Scope
	How Is Scope Used?
	How Does Scope Relate to SLP?

	Load Balancing Weight Factor

	Appendix E. Service Templates
	Commserver Service Template
	Commserver Service Registration Message
	Dependent LU Service Template
	Dependent LU Service Registration Message
	TN3270 Service Template
	TN3270 Service Registration Message
	TN5250 Service Template
	TN5250 Service Registration Message
	LU 6.2 Service Template
	LU 6.2 Service Registration Message

	Appendix F. DLL Version Information
	32–Bit Windows DLLs

	Appendix G. Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

