
Db2 12 for z/OS

Troubleshooting for Db2
Last updated: 2024-03-12

IBM

Notes

Before using this information and the product it supports, be sure to read the general information under
"Notices" at the end of this information.

2024-03-12 edition

This edition applies to Db2® 12 for z/OS® (product number 5650-DB2), Db2 12 for z/OS Value Unit Edition (product
number 5770-AF3), and to any subsequent releases until otherwise indicated in new editions. Make sure you are using
the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.
© Copyright International Business Machines Corporation 1983, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this information.. ix
Who should read this information..x
Db2 Utilities Suite for z/OS...x
Terminology and citations.. x
Accessibility features for Db2 for z/OS... xi
How to send comments...xi
How to read syntax diagrams...xii

Chapter 1. Introduction to troubleshooting for Db2...1

Chapter 2. Searching the IBM Support site for known problems and solutions......... 3
Building a keyword string...3

Db2 format (free format).. 4
Structured database format...6
Component identifier keyword...10
Release level keyword..12
Type-of-failure keywords... 12
Dependency keywords... 49

Techniques for varying the search...50
Getting fixes... 51

Chapter 3. Recovering from different Db2 for z/OS problems................................ 53
Recovering from IRLM failure.. 53
Recovering from z/OS or power failure... 53
Recovering from disk failure..54
Recovering from application errors... 56

Backing out incorrect application changes (with a quiesce point)... 56
Backing out incorrect application changes (without a quiesce point)..57

Recovering from IMS-related failures .. 57
Recovering from IMS control region failure .. 58
Recovering from IMS indoubt units of recovery.. 58
Recovering from IMS application failure... 60
Recovering from a Db2 failure in an IMS environment..61

Recovering from CICS-related failure .. 61
Recovering from CICS application failures.. 62
Recovering Db2 when CICS is not operational ... 62
Recovering Db2 when the CICS attachment facility cannot connect to Db2 63
Recovering CICS indoubt units of recovery... 64
Recovering from CICS attachment facility failure .. 66

Recovering from a QMF query failure..66
Recovering from subsystem termination ... 67
Recovering from temporary resource failure ... 68
Recovering from active log failures .. 69

Recovering from being out of space in active logs ... 69
Recovering from a write I/O error on an active log data set ...70
Recovering from a loss of dual active logging ...71
Recovering from I/O errors while reading the active log ..72

Recovering from archive log failures .. 73
Recovering from allocation problems with the archive log .. 73
Recovering from write I/O errors during archive log offload ..74

 iii

Recovering from read I/O errors on an archive data set during recovery ..75
Recovering from insufficient disk space for offload processing .. 75

Recovering from BSDS failures..76
Recovering from an I/O error on the BSDS ... 76
Recovering from an error that occurs while opening the BSDS ... 77
Recovering from unequal timestamps on BSDSs ... 77
Recovering the BSDS from a backup copy...78

Recovering from BSDS or log failures during restart.. 80
Recovering from failure during log initialization or current status rebuild... 83
Recovering from a failure during forward log recovery... 93
Recovering from a failure during backward log recovery..98
Recovering from a failure during a log RBA read request... 100
Recovering from unresolvable BSDS or log data set problem during restart...................................101
Recovering from a failure resulting from total or excessive loss of log data....................................103
Resolving inconsistencies resulting from a conditional restart.. 107

Recovering from Db2 database failure ...112
Recovering a Db2 subsystem to a prior point in time...113
Recovering the catalog and directory to a point in time before a CATMAINT or a function level

upgrade in a data sharing environment... 114
Recovering the catalog and directory to a point in time before a CATMAINT or a function level

upgrade in a non-data sharing environment... 115
Recovering from a down-level page set problem .. 116
Recovering from a problem with invalid LOBs.. 118
Recovering from table space I/O errors ...118
Recovering from Db2 catalog or directory I/O errors .. 119
Recovering from integrated catalog facility failure ..120

Recovering VSAM volume data sets that are out of space or destroyed.. 121
Recovering from out-of-disk-space or extent limit problems ..122

Recovering from referential constraint violation ... 125
Recovering from distributed data facility failure ..126

Recovering from conversation failure ...126
Recovering from communications database failure... 127
Recovering from database access thread failure ... 128
Recovering from VTAM failure ...129
Recovering from VTAM ACB OPEN problems.. 129
Recovering from TCP/IP failure ...130
Recovering from remote logical unit failure ... 130
Recovering from an indefinite wait condition..131
Recovering database access threads after security failure ... 132

Performing remote-site disaster recovery ... 132
Recovering from a disaster by using system-level backups... 133
Restoring data from image copies and archive logs... 133
Recovering from disasters by using a tracker site...147
Using data mirroring for disaster recovery.. 156

Scenarios for resolving problems with indoubt threads...161
Scenario: Recovering from communication failure .. 163
Scenario: Making a heuristic decision about whether to commit or abort an indoubt thread.........164
Scenario: Recovering from an IMS outage that results in an IMS cold start.................................... 166
Scenario: Recovering from a Db2 outage at a requester that results in a Db2 cold start................167
Scenario: What happens when the wrong Db2 subsystem is cold started...................................... 170
Scenario: Correcting damage from an incorrect heuristic decision about an indoubt thread......... 172

Troubleshooting Db2 stored procedure problems... 173
Identifying Db2 data inconsistency problems..173

Data inconsistency symptoms and actions... 174

Chapter 4. Diagnostic aids for single systems and data sharing........................... 179
Printing and analyzing dumps... 179

iv

Printing dumps... 180
Format dumps by using IPCS options... 180
Format dumps by using the DSNWDMP statement.. 181
Analyze Db2 storage by using the SM options.. 191
SVC dumps... 194
Redacting buffer pool data in SVC dumps for data privacy...221
Suppression of SVC dumps by using z/OS DAE...221
When SVC dumps are not produced..222
SYSUDUMP dumps...222
SYS1.LOGREC...224

Printing and analyzing global traces... 236
Global trace facility.. 237
Starting the global trace...238
Displaying global trace activity.. 241
Modifying global trace activity... 241
Stopping global trace activity.. 241
Using global trace output...242
Call attachment facility traces... 250
IMS attachment facility traces and IMS log record...252
Resource Recovery Services attachment facility traces... 259
TSO attachment facility traces...261
IRLM - Db2 activity trace... 266
Diagnosing EDM pool space problems using traces... 272
z/OS traces... 273

Writing Db2 log buffers to IFI..273
Db2 stand-alone log services: change log inventory and print log map.. 273
Diagnostic information in Db2 catalog tables...274
SQLDA extension for binary XML data...275
Db2 utilities for troubleshooting... 276
Db2 commands for troubleshooting... 278
Program call linkages.. 279
TSO attachment facility diagnostic aids..280

SPUFI diagnostic panels.. 280
ABEND subcommand of the DSN command processor..281

SYS1 service aids...282
SYS1.DUMPXX.. 282
SYS1.LOGREC...282
Output from the MODIFY command..282

Data sharing problem diagnosis..283
Hangs in a data sharing environment.. 283
Timeouts and deadlocks in a data sharing environment.. 284
IRLM delays in a data sharing environment.. 284
Inconsistent data in a data sharing environment..285

Query parallelism problem diagnosis... 286
Determine if a query problem is related to parallelism.. 286
Types of parallelism problems...287
Diagnose parallelism problems by using traces..288

Chapter 5. Diagnostic aids for distributed data... 291
Diagnosing distributed data facility (DDF) failures... 291

Distributed SQL application flow for VTAM connections.. 291
Distributed SQL application flow for TCP/IP connections.. 292
DDF error messages...292
TCP/IP startup problems... 295
Db2 hangs during distributed processing..296
Problem determination procedures.. 297

Diagnostic tools for DDF and VTAM...305

 v

VTAM traces..305
Storage Management Services (buffer use) trace...313

Exception condition diagnostic procedures..314
DRDA exception condition diagnostic procedures..314
DRDA exception event notification.. 314
DRDA summary.. 316
DDIS IFCID 0191 trace record structure...322
DDIS IFCID 0191 common diagnostic procedures...323
IFCID 0191 trace record common diagnostic procedures... 328
Distributed two-phase commit error conditions...329

Chapter 6. Data management...333
Resolving inconsistencies manually..333

Analyzing 00C9010X or 00C902XX abends..333
Analyzing 00C90102 abends...336
Running REPAIR... 340

Inconsistency resolution with RECOVER TABLESPACE and RECOVER INDEX...................................... 341
RECOVER preparation.. 341
Running RECOVER TABLESPACE and REBUILD INDEX.. 342

Diagnosing DBD inconsistencies... 342
Using REPAIR DBD... 342
Finding a DBD in a dump..343
Analyzing a DBD... 347
Resolve the inconsistent DBD..358

Chapter 7. Trace messages and codes.. 359
Db2 trace codes...359

Loading EID descriptions into a table..359
Retrieving EID descriptions... 360

TSO attachment facility trace messages.. 361
Call attachment facility trace messages... 450
SPUFI trace messages...455

Chapter 8. Collecting diagnostic data... 465
Setting up the z/OS environment to collect diagnostic data.. 465

Maximizing the size of the z/OS system trace table..466
Increasing the size of the master trace table..466
Increasing the storage capacity for an SVC dump.. 467
Ensuring that dump data sets are available and automatically updated... 467
Setting up a customized Db2 SVC dump... 468
Setting up Db2 SLIP traps for a data sharing environment...469

Preserving standard diagnostic documentation...469
Preserving the z/OS console (SYSLOG)... 470
Preserving LOGREC data..470
Preserving the JES job logs for key Db2 address spaces..471
Retention of Db2 dump data sets..471
Retention of Db2 logs...471
Requesting Db2 SVC dumps.. 472
Requesting data sharing environment Db2 SLIP traps... 472
Collecting service SQL documentation..473

Collecting data for specific types of Db2 problems..474
Collecting data for general performance problems.. 475
Collecting data for access path performance problems... 476
Collecting data for data access problems... 477
Collecting data for incorrect output from an SQL statement..477
Collecting data when an abend occurs for an SQL query... 478
Collecting data for stored procedure problems.. 478

vi

Collecting data for authorization problems...479
Collecting data for CCSID problems.. 479
Collecting data for corruption and inconsistency problems... 481
Collecting data for IBM Db2 Analytics Accelerator for z/OS problems.. 481
Collecting data for application programming problems... 482
Collecting data for operational problems..484
Collecting data for distributed data facility problems...487
Collecting data for Db2 utility problems..489
Collecting data for IRLM problems.. 492
Collecting data for a Db2 hang...495
Collecting data for SQL data definition language statement errors... 496
Collecting data for RDS problems..496
Collecting data for a cached dynamic statement that blocks another statement with reason

code 00E70081.. 497

Chapter 9. Preparing data sets with program objects for transfer to IBM Support 501

Chapter 10. Contacting IBM Support about Db2 problems...................................503
Sending diagnostic data to IBM Support.. 503
Receiving information from IBM Support... 504

Information resources for Db2 for z/OS and related products..............................507

Notices..509
Programming interface information..510
Trademarks.. 510
Terms and conditions for product documentation... 511
Privacy policy considerations.. 511

Glossary.. 513

Index.. 515

 vii

viii

About this information

This information provides a variety of information that can help you when you have problems associated
with the Db2 12 for z/OS product. IBM® Support personnel might ask you to refer to this information when
they help you with a specific problem.

Throughout this information, "Db2" means "Db2 12 for z/OS". References to other Db2 products use
complete names or specific abbreviations.

Important: To find the most up to date content for Db2 12 for z/OS, always use IBM Documentation
or download the latest PDF file from PDF format manuals for Db2 12 for z/OS (Db2 for z/OS in IBM
Documentation).

Most documentation topics for Db2 12 for z/OS assume that the highest available function level is
activated and that your applications are running with the highest available application compatibility level,
with the following exceptions:

• The following documentation sections describe the Db2 12 migration process and how to activate new
capabilities in function levels:

– Migrating to Db2 12 (Db2 Installation and Migration)
– What's new in Db2 12 (Db2 for z/OS What's New?)
– Adopting new capabilities in Db2 12 continuous delivery (Db2 for z/OS What's New?)

• FL 501 A label like this one usually marks documentation changed for function level 500 or higher,
with a link to the description of the function level that introduces the change in Db2 12. For more
information, see How Db2 function levels are documented (Db2 for z/OS What's New?).

The availability of new function depends on the type of enhancement, the activated function level, and
the application compatibility levels of applications. In the initial Db2 12 release, most new capabilities are
enabled only after the activation of function level 500 or higher.
Virtual storage enhancements

Virtual storage enhancements become available at the activation of the function level that introduces
them or higher. Activation of function level 100 introduces all virtual storage enhancements in
the initial Db2 12 release. That is, activation of function level 500 introduces no virtual storage
enhancements.

Subsystem parameters
New subsystem parameter settings are in effect only when the function level that introduced them or
a higher function level is activated. Many subsystem parameter changes in the initial Db2 12 release
take effect in function level 500. For more information about subsystem parameter changes in Db2
12, see Subsystem parameter changes in Db2 12 (Db2 for z/OS What's New?).

Optimization enhancements
Optimization enhancements become available after the activation of the function level that introduces
them or higher, and full prepare of the SQL statements. When a full prepare occurs depends on the
statement type:

• For static SQL statements, after bind or rebind of the package
• For non-stabilized dynamic SQL statements, immediately, unless the statement is in the dynamic

statement cache
• For stabilized dynamic SQL statements, after invalidation, free, or changed application compatibility

level

Activation of function level 100 introduces all optimization enhancements in the initial Db2 12
release. That is, function level 500 introduces no optimization enhancements.

SQL capabilities
New SQL capabilities become available after the activation of the function level that introduces them
or higher, for applications that run at the equivalent application compatibility level or higher. New SQL

© Copyright IBM Corp. 1983, 2024 ix

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/home/src/tpc/db2z_12_prodhome.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_migrdb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_wnew.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_managenewcapability.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m501.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_aboutflinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_subsysparmchanges.html

capabilities in the initial Db2 12 release become available in function level 500 for applications that
run at the equivalent application compatibility level or higher. You can continue to run SQL statements
compatibly with lower function levels, or previous Db2 releases, including Db2 11 and DB2® 10. For
details, see Application compatibility levels in Db2 (Db2 Application programming and SQL)

Who should read this information
This information is primarily intended for people who are responsible for diagnosing problems in a Db2 for
z/OS environment.

Db2 Utilities Suite for z/OS
Important: Db2 Utilities Suite for z/OS is available as an optional product. You must separately order
and purchase a license to such utilities, and discussion of those utility functions in this publication is not
intended to otherwise imply that you have a license to them.

Db2 12 utilities can use the DFSORT program regardless of whether you purchased a license for DFSORT
on your system. For more information about DFSORT, see https://www.ibm.com/support/pages/dfsort.

Db2 utilities can use IBM Db2 Sort for z/OS as an alternative to DFSORT for utility SORT and MERGE
functions. Use of Db2 Sort for z/OS requires the purchase of a Db2 Sort for z/OS license. For more
information about Db2 Sort for z/OS, see Db2 Sort for z/OS documentation.

Related concepts
Db2 utilities packaging (Db2 Utilities)

Terminology and citations
When referring to a Db2 product other than Db2 for z/OS, this information uses the product's full name to
avoid ambiguity.

The following terms are used as indicated:

Db2
Represents either the Db2 licensed program or a particular Db2 subsystem.

IBM rebranded DB2 to Db2, and Db2 for z/OS is the new name of the offering that was previously
known as "DB2 for z/OS". For more information, see Revised naming for IBM Db2 family products on
IBM z/OS platform. As a result, you might sometimes still see references to the original names, such
as "DB2 for z/OS" and "DB2", in different IBM web pages and documents. If the PID, Entitlement
Entity, version, modification, and release information match, assume that they refer to the same
product.

IBM OMEGAMON® for Db2 Performance Expert on z/OS
Refers to any of the following products:

• IBM IBM OMEGAMON for Db2 Performance Expert on z/OS
• IBM Db2 Performance Monitor on z/OS
• IBM Db2 Performance Expert for Multiplatforms and Workgroups
• IBM Db2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS®
Represents CICS Transaction Server for z/OS.

IMS
Represents the IMS Database Manager or IMS Transaction Manager.

x About this information

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applicationcompatibility.html
https://www.ibm.com/support/pages/dfsort
https://www.ibm.com/docs/en/db2-sort-for-zos
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utlpackaging.html
https://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/899/ENUSLP18-0047/index.html
https://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/899/ENUSLP18-0047/index.html

MVS™
Represents the MVS element of the z/OS operating system, which is equivalent to the Base Control
Program (BCP) component of the z/OS operating system.

RACF®
Represents the functions that are provided by the RACF component of the z/OS Security Server.

Accessibility features for Db2 for z/OS
Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in z/OS products, including Db2 for z/OS. These
features support:

• Keyboard-only operation.
• Interfaces that are commonly used by screen readers and screen magnifiers.
• Customization of display attributes such as color, contrast, and font size

Tip: IBM Documentation (which includes information for Db2 for z/OS) and its related publications are
accessibility-enabled for the IBM Home Page Reader. You can operate all features using the keyboard
instead of the mouse.

Keyboard navigation
For information about navigating the Db2 for z/OS ISPF panels using TSO/E or ISPF, refer to the z/OS
TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS ISPF User's Guide. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information

IBM and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information about the commitment
that IBM has to accessibility.

How to send your comments about Db2 for z/OS documentation
Your feedback helps IBM to provide quality documentation.

Send any comments about Db2 for z/OS and related product documentation by email to
db2zinfo@us.ibm.com.

To help us respond to your comment, include the following information in your email:

• The product name and version
• The address (URL) of the page, for comments about online documentation
• The book name and publication date, for comments about PDF manuals
• The topic or section title
• The specific text that you are commenting about and your comment

Related concepts
About Db2 12 for z/OS product documentation (Db2 for z/OS in IBM Documentation)
Related reference
PDF format manuals for Db2 12 for z/OS (Db2 for z/OS in IBM Documentation)

About this information xi

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/home/src/tpc/db2z_12_prodhome.html
http://www.ibm.com/able
mailto:db2zinfo@us.ibm.com
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/cmn/db2z_cmn_aboutinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html

How to read syntax diagrams
Certain conventions apply to the syntax diagrams that are used in IBM documentation.

Apply the following rules when reading the syntax diagrams that are used in Db2 for z/OS documentation:

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The ►►─── symbol indicates the beginning of a statement.

The ───► symbol indicates that the statement syntax is continued on the next line.

The ►─── symbol indicates that a statement is continued from the previous line.

The ───►◄ symbol indicates the end of a statement.
• Required items appear on the horizontal line (the main path).

required_item

• Optional items appear below the main path.
required_item

optional_item

If an optional item appears above the main path, that item has no effect on the execution of the
statement and is used only for readability.

required_item

optional_item

• If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

required_item required_choice1

required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.

required_item

optional_choice1

optional_choice2

If one of the items is the default, it appears above the main path and the remaining choices are shown
below.

required_item

default_choice

optional_choice

optional_choice

• An arrow returning to the left, above the main line, indicates an item that can be repeated.

required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

xii About this information

required_item

,

repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.
• Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the

main syntax diagram, but the contents of the fragment should be read as if they are on the main path of
the diagram.

required_item fragment-name

fragment-name
required_item

optional_name

• For some references in syntax diagrams, you must follow any rules described in the description for that
diagram, and also rules that are described in other syntax diagrams. For example:

– For expression, you must also follow the rules described in Expressions (Db2 SQL).
– For references to fullselect, you must also follow the rules described in fullselect (Db2 SQL).
– For references to search-condition, you must also follow the rules described in Search conditions

(Db2 SQL).
• With the exception of XPath keywords, keywords appear in uppercase (for example, FROM). Keywords

must be spelled exactly as shown.
• XPath keywords are defined as lowercase names, and must be spelled exactly as shown.
• Variables appear in all lowercase letters (for example, column-name). They represent user-supplied

names or values.
• If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must

enter them as part of the syntax.

Related concepts
Commands in Db2 (Db2 Commands)
Db2 online utilities (Db2 Utilities)
Db2 stand-alone utilities (Db2 Utilities)

About this information xiii

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_expressionsintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_fullselect.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_searchconditionssql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_searchconditionssql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_aboutcommands.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_onlineutilities.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_standaloneutilities.html

xiv Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Chapter 1. Introduction to troubleshooting for Db2

Troubleshooting is a systematic approach to solving a problem. The goal of troubleshooting is to
determine why something does not work as expected and how to resolve the problem.

The first step in the troubleshooting process is to describe the problem completely. Problem descriptions
help you and the IBM technical-support representative know where to start to find the cause of the
problem. This step includes asking yourself basic questions:

• What are the symptoms of the problem?
• Where does the problem occur?
• When does the problem occur?
• Under which conditions does the problem occur?
• Can the problem be reproduced?

The answers to these questions typically lead to a good description of the problem, which can then lead
you a problem resolution.

What are the symptoms of the problem?
When starting to describe a problem, the most obvious question is "What is the problem?" This question
might seem straightforward; however, you can break it down into several more-focused questions that
create a more descriptive picture of the problem. These questions can include:

• Who, or what, is reporting the problem?
• What are the error codes and messages?
• How does the system fail? For example, is it a loop, hang, crash, performance degradation, or incorrect

result?

Where does the problem occur?
Determining where the problem originates is not always easy, but it is one of the most important steps in
resolving a problem. Many layers of technology can exist between the reporting and failing components.
Networks, disks, and drivers are only a few of the components to consider when you are investigating
problems.

The following questions help you to focus on where the problem occurs to isolate the problem layer:

• Is the problem specific to one platform or operating system, or is it common across multiple platforms
or operating systems?

• Is the current environment and configuration supported?

If one layer reports the problem, the problem does not necessarily originate in that layer. Part of
identifying where a problem originates is understanding the environment in which it exists. Take some
time to completely describe the problem environment, including the operating system and version, all
corresponding software and versions, and hardware information. Confirm that you are running within an
environment that is a supported configuration; many problems can be traced back to incompatible levels
of software that are not intended to run together or have not been fully tested together.

When does the problem occur?
Develop a detailed timeline of events leading up to a failure, especially for those cases that are one-time
occurrences. You can most easily develop a timeline by working backward: Start at the time an error
was reported (as precisely as possible, even down to the millisecond), and work backward through the
available logs and information. Sometimes, you need to look only as far as the first suspicious event that
you find in a diagnostic log.

© Copyright IBM Corp. 1983, 2024 1

To develop a detailed timeline of events, answer these questions:

• Does the problem happen only at a certain time of day or night?
• How often does the problem happen?
• What sequence of events leads up to the time that the problem is reported?
• Does the problem happen after an environment change, such as upgrading or installing software or

hardware?

Responding to these types of questions can give you a frame of reference in which to investigate the
problem.

Under which conditions does the problem occur?
Knowing which systems and applications are running at the time that a problem occurs is an important
part of troubleshooting. These questions about your environment can help you to identify the root cause
of the problem:

• Does the problem always occur when the same task is being performed?
• Does a certain sequence of events need to occur for the problem to surface?
• Do any other applications fail at the same time?

Answering these types of questions can help you explain the environment in which the problem occurs
and correlate any dependencies. Remember that just because multiple problems might have occurred
around the same time, the problems are not necessarily related.

Can the problem be reproduced?
From a troubleshooting standpoint, the ideal problem is one that can be reproduced. Typically, when
a problem can be reproduced you have a larger set of tools or procedures at your disposal to help
you investigate. Consequently, problems that you can reproduce are often easier to debug and solve.
However, problems that you can reproduce can have a disadvantage: If the problem is of significant
business impact, you do not want it to recur. If possible, re-create the problem in a test or development
environment, which typically offers you more flexibility and control during your investigation.

• Can the problem be re-created on a test system?
• Are multiple users or applications encountering the same type of problem?
• Can the problem be re-created by running a single command, a set of commands, or a particular

application?

2 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Chapter 2. Searching the IBM Support site for known
problems and solutions

Searching the IBM Support site is most effective if you include all the appropriate keywords in your
search.

Procedure
To search the IBM Support site:
1. Search the IBM Support website by using the keywords that you developed. Otherwise, contact IBM

Support.

Do not use both the CSECT keyword and the load module modifier keyword at the same time for the
first search.

2. Compare each matching PTF or APAR closing description with the current failure symptoms.

• If you find an appropriate PTF or APAR, apply the correction.
• If you do not find an appropriate PTF or APAR, vary the search argument.
• If you still cannot find a similar problem, prepare for an APAR.

Related concepts
Load module modifier keyword
Use this keyword if the search was unsuccessful when you used the CSECT keyword or the search yielded
too many possible matches when you used the CSECT keyword.

Building a keyword string
You can systematically select keywords to describe a failure in Db2 for z/OS (Db2) or internal resource
lock manager (IRLM). Keywords are predefined words or abbreviations that identify aspects of a program
failure.

A string of keywords can be used to pinpoint a similar known problem in the IBM Support website. If the
search is successful, a similar problem description and, usually, a fix exists. If the search is unsuccessful,
use these keywords when you communicate with IBM Support for more assistance or when you are
documenting a possible APAR (Authorized Program Analysis Report).

The keywords are in two distinct formats: Db2 format (or free format) and structured database format.

Getting started
Before you build a keyword string, thoroughly check the application programs, JCL, and data set
definitions for user errors.

The first keyword specifies a component identification number for Db2 or internal resource lock manager.
A search of the IBM Support site with this keyword alone would detect all reported problems for that
component (Db2 or internal resource lock manager). Each added keyword makes the search argument
more specific and reduces the number of problem descriptions.

Sometimes, a similar problem can be found by using an incomplete set of keywords. To some extent,
then, each keyword after the first is optional. If too many matches occur, keywords can be added to
narrow the search.

When you communicate with IBM Support, identify the program failure with these keywords:

• Component identification keyword
• Release level keyword
• Type-of-failure keywords, including:

© Copyright IBM Corp. 1983, 2024 3

http://www.ibm.com/support/home
http://www.ibm.com/support/home

– CSECT keyword (required for certain failure types)
– Modifier keywords (optional).

• Dependency keyword

These keywords can be specified either in the Db2 format or in the "structured database" (SDB) format.
For both formats, the choice of keywords depends on the type of failure that occurred.

Building a keyword string in Db2
Procedure:

1. Locate the three-digit release identifier in the title area of the formatted dump. It follows
COMP=XYR00. For example:

COMP=XYR00.121.SSSC-SSI CALL

The highlighted digits signify:
12

Version
1

Release level
2. Build a keyword similar to Rxxx, replacing xxx with the version, release, and modification level

numbers. Add this information to the component identifier keyword and turn to “Type-of-failure
keywords” on page 12.

 5740XYR00 R121 (free format)
 PIDS/5740XYR00 LVLS/121 (structured format)

Db2 format (free format)
You can build a keyword string by using Db2 format (free format).

To begin selecting keywords:

1. Follow the procedures in “Component identifier keyword” on page 10 and “Release level keyword”
on page 12. Do this task for all failures.

2. Follow one of the type-of-failure keyword procedures. If uncertain about which to use, see Figure 3 on
page 13. This chart describes procedures to follow based on common symptoms.

3. Identify the area of the failure by using CSECT and modifier keywords when appropriate. The
procedures refer you to these steps as needed.

4. Follow Chapter 2, “Searching the IBM Support site for known problems and solutions,” on page 3 to
learn how to search with your set of keywords. Do this task for all failures.

5. If the search is unsuccessful, contact IBM Support as described in Contacting IBM Support about Db2
problems (Troubleshooting problems in Db2)

The following flowchart helps you determine which Db2 keywords to use and the procedures for selecting
them.

4 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_contactsupportaboutdb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_contactsupportaboutdb2.html

Start

Release Level Keyword Procedure

Type of
Failure

ComponentID Keyword Procedure

Abnormal
Termination Wait or Loop Message Performance Documentation Incorrect Output

ABENDx
Keyword
Procedure

WAIT OR LOOP
Keyword
Procedure

MSGx
Keyword
Procedure

PERFM
Keyword
Procedure

DOC
Keyword
Procedure

INCORR OUT
Keyword
Procedure

CSECT
Keyword
Procedure

CSECT
InMSG

No

Yes

NoCSECT
Found

CSECT
Keyword
Procedure

Yes

Load Module
ModifierKey-
wordProcedure

Code
InMSG

No
INCORR OUT
Modifier
Keyword
Procedure

No
NoLoad Module

Found

Message
Modifier
Keyword
Procedure

Function
=SQL

YesYes

VRA Data
Modifier
Keyword
Procedure

Recovery
Routine
Modifier
Keyword
Procedure

SQLCODE
Modifier
Keyword
Procedure

Search ArgumentProcedure

Match
No APAR

Preparation
Procedure

Apply the
correction

Yes

End

Figure 1. High-level flowchart of various sets of keywords

Chapter 2. Searching the IBM Support site for known problems and solutions 5

Structured database format
Use the structured database (SDB) format if your installation has a tool for performing structured
searches.

Structured symptoms are also called RETAIN symptoms and "failure keywords". The structured
symptoms consist of a prefix keyword, which identifies the type of symptom, followed by a slash (/)
and the data portion of the symptom.

• The prefix keyword has one to eight characters.
• All characters must be alphanumeric, or one of the following characters: "#" "@" "$".
• At least one character of data is required.
• The maximum length, including the prefix, is 15 characters.

For example, the following is a structured search symptom for a message identifier of IEC0201:

 MS/IEC0201

The examples in the following sections show both the free format and the structured alternatives. The
most commonly used structured search symptoms follow.

Prefix keyword
Meaning

AB
Abend code

FLDS
Field or control block name that is involved with the problem

LVLS
Level of the base system or licensed program

MS
Message ID

OPCS
Operation code (opcode) for software, such as an assembler opcode

PCSS
Program command or other software statement, such as JCL, a parameter, or a data set name

PIDS
Program ID for a component that is involved in the problem

PRCS
Program return code, generated by software, including reason codes and condition codes

PTFS
Program temporary fix (PTF) for software that is associated with a problem

PUBS
Publication ID associated with a problem

RECS
Record that is associated with a problem

REGS
Register for a software program that is associated with a problem. The value can be the register/PSW
difference (rrddd), which the STATUS FAILEDATA subcommand of IPCS provides for abends. The
difference (ddd) is a hexadecimal offset from a probable base register or branch register (rr)

RIDS
Routine ID, such as the name of a CSECT or subroutine. If the RIDS/value has no suffix, the value is a
CSECT name. The following suffixes are supported:

#L: for a load module
#R: for a recovery routine

6 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

VALU
Value in a field or register. One of the following qualifiers is required as the first character of the value:

B: for a bit value'
C: for a character value'
H: for a hexadecimal value'

WS
Wait state code that is issued by the system or device-issued wait code. One of the following qualifiers
is required as the first character of the value:

D: for disabled wait (system that is disabled for I/O or external interrupts)
E: for enabled wait

A complete list of prefix keywords follows. It provides a symptom-to-keyword cross-reference to aid in
selecting SDB keywords.

Symptom Prefix Keyword

abend AB/

access methods RIDS/

address ADRS/

APARs PTFS/

assembler macros RIDS/

assembler messages MS/

clist RIDS/

commands PCSS/

compiler messages MS/

completion codes PRCS/

component PIDS/

condition codes PRCS/

control block FLDS/

control block offset ADRS/

control register REGS/

CSECTs RIDS/

data set name PCSS/

dependent component PIDS/

device error code PRCS/

diagnose command PCSS/

disabled wait (coded) WS/

displacements ADRS/

displays DEVS/

documents PUBS/

DSECTs FLDS/

enabled wait (coded) WS/

Chapter 2. Searching the IBM Support site for known problems and solutions 7

Symptom Prefix Keyword

error code PRCS/

EXECs RIDS/

feedback code PRCS/

field FLDS/

field value VALU/

file mode PCSS/

file name PCSS/

file type PCSS/

flag FLDS/

floating-point regs REGS/

fullscreen mode PCSS/

function keys PCSS/

general-purpose regs REGS/

hangs WS/

hung user/task WS/

I/O op codes OPCS/

incorrect output INCORROUT“1” on page 10

JCL cards PCSS/

JCL parameters PCSS/

job step codes PRCS/

keys PCSS/

labels, code FLDS/

language statements PCSS/

level LVLS/

library names PCSS/

line command PCSS/

loops LOOP“1” on page 10

low core address ADRS/

machine checks SIG/

macro as a routine RIDS/

macro as a statement PCSS/

maintenance levels PTFS/

message MS/

module RIDS/

offsets ADRS/

8 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Symptom Prefix Keyword

opcode OPCS/

operator commands PCSS/

operator keys PCSS/

operator messages MS/

options PCSS/

overlay OVS/

PA key PCSS/

panel RIDS/

parameters PCSS/

performance PERFM“1” on page 10

PF key PCSS/

procedure names PCSS/

process names PCSS/

profile options PCSS/

program checks AB/

program id RIDS/

program keys PCSS/

program statement PCSS/

PSW FLDS/

PTFs, PE or otherwise PTFS/

publications PUBS/

PUT level PTFS/

reason codes PRCS/

register value VALU/

registers REGS/

release level LVLS/

replies to messages PCSS/

replies to prompts PCSS/

request codes OPCS/

responses to msgs PCSS/

responses to prompts PCSS/

return codes PRCS/

routines RIDS/

service level PTFS/

special characters PCSS/

Chapter 2. Searching the IBM Support site for known problems and solutions 9

Symptom Prefix Keyword

SRLs PUBS/

statements PCSS/

status codes PRCS/

step codes PRCS/

structure word FLDS/

subroutines RIDS/

SVC OPCS/

SYSGEN parameters PCSS/

system check PRCS/

tables FLDS/

terminal keys PCSS/

value VALU/

variable FLDS/

waits (coded) WS/

waits (uncoded) WAIT“1” on page 10

Note:

1. No prefix keyword. Use the failure keyword that is shown for searches.

Component identifier keyword
The component identifier is the first keyword in the search argument.

You use the component identifier keyword to identify the Db2 and related subcomponents when you
search for APARs (Authorized Program Analysis Reports) and PTFs (Program Temporary Fixes) on the IBM
Support website.

The component identifier keyword is derived from a four-digit number (5740) and a five-digit identifier.
This information describes how to determine the nine-digit component identifier keyword for the failure.

The following component identifiers are for Db2 and its subcomponents:
5740XYR00

Db2
569516401

IRLM
5740IX100

CICS attachment
5740IY100

IMS attachment
5740XYR01

Subsystem initialization subcomponent

Try to locate the component identifier by following the steps under “Locating the component identifier by
using the SVC dump” on page 11.

If a dump title is not available, follow “Locating the component identifier by using the SYS1.LOGREC
entry” on page 11 or “Locating the component identifier by using the first page of an SVC dump” on page
12.

10 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

http://www.ibm.com/support/home
http://www.ibm.com/support/home

Locating the component identifier by using the SVC dump
One way to locate the component identifier is by using the SVC dump title.

Procedure
To locate the component identifier by using the SVC dump title:
1. Locate the C= label in the dump title, and the first five characters that follow that label.
2. Append those five characters to 5740 and use this string as the first keyword. Then, turn to “Release

level keyword” on page 12.

 5740XYR00 (free format)
 PIDS/5740XYR00 (structured format)

Example

1. No Distributed Data Processing:
For threads with no remote activity:

ssid,ABND=compltn-reason,U=authid,
C=compid.release.comp-function,M=module,
LOC=loadmod.csect+csect_offset

2. Distributed Data Processing:
For allied thread with remote activity
(requesting location threads):

ssid,ABND=compltn-reason,U=authid,
C=compid.release.comp-function,
DISTRBUTED, LOC=loadmod.csect+csect_offset

For database access threads
(responding location threads):

ssid,ABND=compltn-reason,U=authid,
C=compid.release,
LOCN=16_char_loc_name,
LOC=loadmod.csect+csect_offset

Figure 2. Sample SVC dump titles

Locating the component identifier by using the SYS1.LOGREC entry
One way to locate the component identifier is by using the SYS1.LOGREC entry.

Procedure
To locate the component identifier by using the SYS1.LOGREC entry:
1. Locate the SYS1.LOGREC entry that is related to the error by comparing the date, time, program name,

and ERRORID string in the dump with the information in the SYS1.LOGREC entry.
2. Locate the COMP ID INVOLVED column at the top of the first page and the five characters beside it.
3. Append those five characters to 5740 and turn to “Release level keyword” on page 12.

 5740XYR00 (free format)
 PIDS/5740XYR00 (structured format)

Chapter 2. Searching the IBM Support site for known problems and solutions 11

Locating the component identifier by using the first page of an SVC dump
One way to locate the component identifier is by using the first page of an SVC dump.

Procedure
To locate the component identifier by using the first page of an SVC dump:
1. Locate the Symptom String heading toward the middle of the first page and the nine characters that

follow the PIDS/ label.

For an example, see Figure 33 on page 195.
2. Use those characters as the first keyword and turn to “Release level keyword” on page 12.

 5740XYR00 (free format)
 PIDS/5740XYR00 (structured format)

Release level keyword
The release level keyword narrows the symptom search to a specific release level.

Using this keyword is optional, but recommended, when you search the IBM Support website. It is
required, however, when you submit an APAR.

Type-of-failure keywords
A type-of-failure keyword describes an external symptom of a program failure.

The following table displays the various types of failures. Use this table to find the name and page number
of the procedure that best matches the problem.

Table 1. Types of Db2 failures

Problem Procedure

Abend of the subsystem or task. “ABENDx keyword” on page 14

Unexpected program suspension. “WAIT/LOOP keywords” on page 19

Uncontrolled program that is looping (often signaled
by repeating messages or trace entries).

“WAIT/LOOP keywords” on page 19

Errors signaled by or associated with messages. “MSGx keyword” on page 33

Performance degradation. Use this option only when
other keywords are inappropriate.

“PERFM keyword” on page 35

Unexpected or missing output (not related to a
message).

“INCORROUT modifier keyword” on page 42

12 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

http://www.ibm.com/support/home

Start MSG
DSNV086E

Yes
ABENDx
Keyword
Procedure

No

SVC
Dump

Issue MVS
‘DISPLAY DUMP’
to located dump
title for this abend

Yes COMPID
=XYR00/01

Yes

No No

SYSABEND
or SYSUDUMP

Yes

No

Yes

IS Dump
From IRLM

ABENDx
Keyword
Procedure

04E
Completion

Code

No

Yes

No

Yes

No

NotDb2 or IRLM -
Refer To:MVS
DIAGNOSTIC
TECHNIQUES

One or
more Db2
ASIDs
current

ABENDx
Keyword
Procedure

Not Db2 or IRLM -
Refer To: MVS
DIAGNOSTIC
TECHNIQUES

IS Db2
Unresponsive

Yes

2

No

Yes

No

Issue MVS
‘DISPLAY ACTIVE’
to see if Db2
is Active

Is Db2
Active

WAIT/LOOP
Keyword
Procedure

Issue MVS
‘WRITELOG’ to
locate the
DSNV086E Msg

ABENDx
Keyword
Procedure

Figure 3. Determining the type of failure

Chapter 2. Searching the IBM Support site for known problems and solutions 13

2

Looping
Symptoms

Yes WAIT/LOOP 4
Keyword
Procedure

No

Message
Problem

Yes MSGx
Keyword
Procedure

No

Performance
Problem

Yes PERFM
Keyword
Procedure

No

Problem
in

Document

Yes Doc
Keyword
Procedure

No

Incorrect
Output

Yes INCORR OUT
Keyword
Procedure

No

For other
problems, call
the IBM
Support Center

End

Figure 4. Determining the type of failure continued

ABENDx keyword
Use the ABENDx keyword procedure when the subsystem or task terminates abnormally.

You can locate the abend completion code and the abend reason code, if there is one, and use the code in
a set of keywords.

Related reference
Db2 abend completion codes (X'04E' and X'04F) (Db2 Codes)

SVC dump message
When a Db2 or IRLM abend occurred, you might receive an IEA911E message from z/OS, indicating an
SVC dump occurred.

Procedure
To find the name of the failing CSECT by using the first page of an SVC dump:
1. Locate the SVC dump title for this abend by using one of these methods:

• Issue the z/OS DISPLAY DUMP command.
• The dump title is always at the top of each page of the formatted copy of an SVC dump.

2. If COMP=XYR00 or COMP=XYR01

14 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_abendcompletioncodes.html

a) Locate the three-character completion code that follows the word ABND.

• If the completion code is X'071' or X'122', the operator pressed the RESTART key or canceled the
job, probably to break a loop. Turn to “WAIT/LOOP keywords” on page 19.

• If the completion code is anything except X'04E', build a keyword similar to ABENDxxx, replacing
xxx with the completion code. Add this information to the keyword string.

 :5740XYR00 R121 ABEND0C4: (free format)
 :PIDS/5740XYR00 LVLS/121 AB/S00C4 (structured
 format)

Some abends that are notX'04E' also have reason codes. These reason codes are found in
register 15 at the time of the abend. Locate the reason code for the abend in either the 4-byte
reason code field in a dump title that is generated by Db2, in the registers at time of error in the
abstract information section of the dump, or from the value of register 15 in the error summary
display that is obtained by issuing the z/OS command DISPLAY DUMP,ERRDATA,DSN=nn. Check
the value against the description of the abend code in the z/OS system codes publication. If the
value is a valid reason code for the abend completion code, add it to the keyword string.

 ABEND058 RC0000000C (free format)
 AB/S0058 PRCS/0000000C (structured format)

After you add the completion code and the reason code, when the abend has a reason code, to
the keyword string, turn to “CSECT keyword” on page 35.

• If the completion code is X'04E', find the 4-byte reason code that follows it. For an example, see
Figure 2 on page 11.

b) Review the diagnostic information for this reason code. Follow any recommended procedures.
c) Build a keyword similar to ABEND04E RCxxxxxxxx, replacing xxxxxxxx with the reason code. Add

this information to the keyword string and turn to “CSECT keyword” on page 35.

 5740XYR00 R121 ABEND04E RC00E20015.
 (free format)
 PIDS/5740XYR00 LVLS/121 AB/S00E4
 PRCS/00E20015 (structured format)

3. If COMP is not XYR00 or XYR01.
Review the dump heading. If it reads DB2 SUBSYSTEM TERMINATION REQUESTED —
REASON=xxxxxxxx, follow the steps below. Otherwise, go to Step “4” on page 15.
a) Locate the 4-byte reason code in the message or dump heading following the word REASON.
b) Build a keyword similar to ABEND04F RCxxxxxxxx, replacing xxxxxxxx with the reason code. Add

this information to the keyword string, and turn to Chapter 2, “Searching the IBM Support site for
known problems and solutions,” on page 3.

 5740XYR00 R121 ABEND04F RC00D93001:
 (free format)
 PIDS/5740XYR00 LVLS/121 AB/S004F
 PRCS/00D93001 (structured format)

4. Scan the dump heading for IRLM (an IRLM-produced SVC dump title contains the character-string
'IRLM' only if the subsystem name of the failing IRLM is 'IRLM'). If found, follow the steps below.
Otherwise, refer to the z/OS diagnostic techniques publication to determine the failing product.
a) Print the SYS1.LOGREC entries. Refer to the z/OS diagnostic techniques publication, if necessary.
b) Locate the appropriate SYS1.LOGREC entry. It should have the same time of day and program name

as those appearing in the dump. For an example of a SYS1.LOGREC entry, see Figure 66 on page
225.

c) Locate the three-character completion code in the SYS1.LOGREC entry. To do this task, locate the
SDWACMPC field of the SDWA (system diagnostic work area). This field contains the completion
code. Figure 66 on page 225 illustrates its location.

Chapter 2. Searching the IBM Support site for known problems and solutions 15

• If the completion code is X'071' or X'122', the operator pressed the RESTART key or canceled the
job, probably to break a loop. Turn to “WAIT/LOOP keywords” on page 19.

• Otherwise, build a keyword similar to ABENDxxx, replacing xxx with the completion code. Add this
information to the keyword string, which should identify IRLM as the failing component. Turn to
“CSECT keyword” on page 35.

 569516401 AR220 ABEND52A (free format)
 PIDS/569516401 LVLS/220 AB/S052A
 (structured format)

SYSABEND or SYSUDUMP
When a Db2 or IRLM abend occurred, a SYSABEND or SYSUDUMP dump might occur.

Procedure
To locate the abend completion code and the abend reason code, if there is one, and use the code in a set
of keywords:
1. Determine whether there is also an SVC dump for this abend.

a) Issue the z/OS DISPLAY DUMP command. Refer to the z/OS system commands publication, if
necessary.

b) Verify that the SVC dump has the same date, time stamp, and program name as those in the
SYSABEND or SYSUDUMP. For information about printing the summary dump, see “Printing dumps”
on page 180.

2. If there is a corresponding SVC dump, continue with the steps below. Otherwise, go to Step “3” on
page 16.
a) Review the dump title and verify that COMP=XYR00 or COMP=XYR01. If it does not, the problem

might not be Db2. Consult the z/OS diagnostic techniques publication to determine the failing
product.

b) Locate the three-character completion code that follows the word ABND.

• If the completion code is X'071' or X'122', the operator pressed the RESTART key or canceled the
job, probably to break a loop. Turn to “WAIT/LOOP keywords” on page 19.

• If the completion code is anything except X'04E', build a keyword similar to ABENDxxx, replacing
xxx with the completion code. Add this information to the keyword string and turn to “CSECT
keyword” on page 35.

 5740XYR00 R121 ABEND0C4
 (free format)
 PIDS/5740XYR00 LVLS/121 AB/S00C4
 (structured format)

• If the completion code is X'04E', find the 4-byte reason code follows it. For an example, see “SVC
dump titles that are issued by Db2” on page 197.

c) Review the diagnostic information for this reason code, and follow any recommended procedures.
d) Build a keyword similar to ABEND04E RCxxxxxxxx, replacing xxxxxxxx with the reason code. Add

this information to the keyword string and turn to “CSECT keyword” on page 35.

 5740XYR00 R121 ABEND04E RC00E20015
 (free format)
 PIDS/5740XYR00 LVLS/121 AB/S004E
 PRCS/00E20015 (structured format)

3. If there is no corresponding SVC dump, follow the steps below.
a) Locate the three-character completion code. This information follows the words COMPLETION
CODE on the first page of the SYSABEND or SYSUDUMP. For an example, see Figure 64 on page 223.

• If the completion code is X'071' or X'122', the operator pressed the RESTART key or canceled the
job, probably to break a loop. Turn to “WAIT/LOOP keywords” on page 19.

16 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

• If the completion code is X'04E', locate the registers at time of error (identified by REGS AT
TIME OF ERROR). See “The RTM2WA summary in a SYSUDUMP” on page 223 for an example.

Locate the reason code in register 15, the last register shown. Build a keyword similar to
ABEND04E RCxxxxxxxx, replacing xxxxxxxx with the reason code. Add this keyword to the string
and turn to “CSECT keyword” on page 35 and use “Procedure using a SYS1.LOGREC entry” on
page 37.

 5740XYR00 R121 ABEND04E RC00E50063
 (free format)
 PIDS/5740XYR00 LVLS/121 AB/S004E
 PRCS/00E50063 (structured format)

• If the completion code is not X'071', X'122', or XX'04E', determine whether the problem occurred
in Db2. (SYSUDUMP and SYSABEND dumps are rarely taken for Db2 internal errors; invalid user
data is usually the cause.)

– Check the failing PSW address in the list of CDE entries for the task. If the failing address
falls within the range of a module name beginning with "DSN", the failure occurred in a Db2
attachment module.

– If the failing PSW address is outside the normal addressing range (such as zero), check the
address in register 14 at time of failure. If this address falls within the range of a module name
beginning with "DSN", the failure occurred in a Db2 attachment module or stored procedure
module.

– Compare the following items:

- The PASID value in XSB that is associated with the active RB at the time of failure
- The first four digits of the IDSQ field in the ASCB.

If they are unequal and the application was running SQL statements, the failure could have
occurred in a Db2 address space.

– Check register 15 at time of failure. If it contains a reason code of X'00F300'nn, then one of the
following situations occurred:

- The abend took place in Db2 while processing a parameter supplied by the attachment
subcomponent, and the passed parameter is in error.

- The SQLCA address is invalid, and the problem is in the application program.
- An invalid reason code or authorization ID was returned by an authorization exit routine, and

the problem is in the application program.
b) If the problem is not in Db2, check the application program. Often, there is invalid user data and,

upon retry, an SQL error code is returned.
c) If the problem appears to be in Db2, build a keyword similar to ABENDxxx, replacing xxx with the

completion code. Add this information to the keyword string and turn to “CSECT keyword” on page
35 and use “Procedure using a SYS1.LOGREC entry” on page 37.

 5740XYR00 R121 ABEND0C4
 (free format)
 PIDS/5740XYR00 LVLS/121 AB/S00C4
 (structured format)

Db2 unresponsive
When a Db2 or IRLM abend occurred, Db2 might be unresponsive, but no messages or dumps were
detected.

Procedure
To locate the abend completion code and the abend reason code, if there is one, and use the code in a set
of keywords:

Chapter 2. Searching the IBM Support site for known problems and solutions 17

1. Issue the z/OS DISPLAY ACTIVE command to see whether Db2 is active. Refer to z/OS MVS System
Commands, if necessary.

2. If Db2 is active, turn to “WAIT/LOOP keywords” on page 19.
3. Build a keyword similar to RCxxxxxxxx, replacing xxxxxxxx with the reason code. Add this keyword to

the string, and check for more diagnostic information. Next, turn to Chapter 2, “Searching the IBM
Support site for known problems and solutions,” on page 3.

 5740XYR00 R121 ABEND04F RC00D93001
 (free format)
 PIDS/5740XYR00 LVLS/121 AB/S004F
 PRCS/00D93001 (structured format)

Db2 abnormal termination message
When a Db2 or IRLM abend occurs, you might receive message DSNV086E, which indicates that DB2
abended, and includes a reason code for the abend.

Procedure
To locate the abend completion code and the abend reason code, if there is one, and use the code in a set
of keywords:
1. Issue the z/OS DISPLAY DUMP command to see whether any SVC dumps occurred near the time the

message appeared. Refer to the z/OS. system commands publication, if necessary.
2. If there were no SVC dumps for the abend, follow the substeps in this step. Otherwise, go to Step “3”

on page 18.
a) Locate the 4-byte reason code in the message.
b) Review the diagnostic information. Follow any recommended procedures.
c) Build a keyword similar to ABEND04F RCxxxxxxxx, replacing xxxxxxxx with the reason code. Add

this keyword to the string, and turn to Chapter 2, “Searching the IBM Support site for known
problems and solutions,” on page 3.

 5740XYR00 R121 ABEND04F RC00D93001
 (free format)
 PIDS/5740XYR00 LVLS/121 AB/S004F
 PRCS/00D93001 (structured format)

3. If there was only one SVC dump for the abend, follow the substeps in this step. Otherwise, go to Step
“4” on page 19.
a) Review the dump title and verify that COMP=XYR00 or COMP=XYR01. If not, the problem might not

be Db2. Use the z/OS diagnostic techniques publication to determine the failing product.
b) Locate the three-character completion code that follows the word ABND.

• If the completion code is X'071' or X'122', the operator pressed the RESTART key or canceled the
job, probably to break a loop. Turn to “WAIT/LOOP keywords” on page 19.

• If the completion code is anything exceptX'04E', build a keyword similar to ABENDxxx, replacing
xxx with the completion code. Add this information to the keyword string and turn to “CSECT
keyword” on page 35.

 5740XYR00 R121 ABEND0C4
 (free format)
 PIDS/5740XYR00 LVLS/121 AB/S00C4
 (structured format)

• If the completion code is X'04E', find the 4-byte reason code that follows it. For an example, see
“SVC dump titles that are issued by Db2” on page 197.

• Review the diagnostic information for this reason code in Db2 reason codes (Db2 Codes). Follow
any recommended procedures.

18 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag100/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag100/abstract.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_reasoncodes.html

• If the reason code is not in the ranges that are shown above, build a keyword similar to ABEND04F
RCxxxxxxxx, replacing xxxxxxxx with the reason code. Add this information to the keyword string
and turn to “CSECT keyword” on page 35.

 5740XYR00 R121 ABEND04E RC00E20015
 (free format)
 PIDS/5740XYR00 LVLS/121 AB/S004E
 PRCS/00E20015 (structured format)

4. If there were two or more SVC dumps, follow the substeps in this step. Otherwise, go to Step “5” on
page 19.
a) Read the sections in Db2 reason codes (Db2 Codes) that describe (1) the reason code appearing

in the message, and (2) any reason codes appearing in the SVC dump titles. Reason codes appear
after the completion code in the SVC dump title. For an example, see “SVC dump titles that are
issued by Db2” on page 197.

b) Compare the reason codes in the SVC dumps to determine which dump relates to the DSNV086E
message. Correlate the SYS1.LOGREC entry with console log time stamps.

c) Use that SVC dump and follow Step “3” on page 18.
5. If there were two or more different abends, follow the substeps below:

a) Determine which abend was the original cause by reviewing the time stamps in the SYS1.LOGREC
entries.

b) Follow the substeps in Step “3” on page 18.

Related reference
Db2 abend completion codes (X'04E' and X'04F) (Db2 Codes)

WAIT/LOOP keywords
The symptoms for WAIT and LOOP keywords might not be distinguishable at first.

If you are unable to complete one or more of the steps that are listed, perhaps because a command does
not function, continue with the others to gather as much information as possible.

When Db2 is "hung", waiting or looping, some z/OS diagnostic techniques can aid in analysis. Refer to
z/OS MVS Diagnosis: Tools and Service Aids for z/OS diagnosis and command syntax information. In
addition, refer to About Db2 and related commands (Db2 Commands) for the syntax of Db2 commands.
Refer to “Printing and analyzing dumps” on page 179 for information about locating Db2 control blocks
and formatting dumps. Finally, keep track of the current log and archive information.

Guidelines for good operational procedures
Good operational procedures make problem diagnosis easier and minimize the risk of damaging data.

Consider the following guidelines:

• If Db2 hangs during distributed processing, it is possible that the problem is with VTAM® or the network,
rather than Db2. For more information about procedures on diagnosing problems in a distributed
environment, see “Diagnosing distributed data facility (DDF) failures” on page 291.

• If a Db2 hangs in the data sharing environment, the steps that are listed in this section can be used to
resolve the problem. Follow the extra steps for data sharing, where indicated.

• Keep space available on the active logs. If all active log data sets are full and archiving has not been
completed, Db2 functions do not complete. Db2 cannot be stopped in this situation.

• Verify that all archive mount requests have been properly satisfied.
• Be sure that IRLM address spaces have a higher dispatching priority than any allied, Db2, or IMS

address spaces. If IRLM does not get enough CPU time, a Db2 subsystem can experience bad
performance or wait conditions.

• Whether the entire operating system seems to be affected or only Db2 and some of its users, request an
z/OS console dump. It should include:

– The common service area (CSA)

Chapter 2. Searching the IBM Support site for known problems and solutions 19

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_reasoncodes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_abendcompletioncodes.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/abstract.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_commanddescriptions.html

– The Db2 system services and database services address spaces and, for distributed processing only,
the distributed data facility address space.

If the problem occurs in the data sharing environment and involves more than one member of the
data sharing group, take dumps of these address spaces for each member of the data sharing group.

– z/OS master scheduler address space
– IRLM address space.

If the problem occurs in the data sharing environment and involves more than one member of the
data sharing group, create a dump file of this address space for each member of the data sharing
group. Always include the XESDATA keyword in the SDATA parameters when IRLM is a member of a
SYSPLEX GROUP.

– The address space of at least one involved user
– GRSTRACE (global resource serialization trace)
– Cross-system extended services (XES), if the problem occurs in the data sharing environment and

involves more than one member of the data sharing group.

To obtain a z/OS console dump:

1. If an allied address space is hung:

– Determine whether the relevant allied ASID getting CPU or if it is swapped out. If it is swapped
out:

Take a console dump of the z/OS master (ASID=0001). Order is important. The z/OS master must
be dumped first to ensure good dump data. After the z/OS master ASID=0001 is dumped, then
dump:

- Allied ASID
- DB2MSTR
- DB2DBM1
- IRLM

– If the relevant ASID is not swapped out, the z/OS master is not required, so dump only:

- Allied ASID
- DB2MSTR
- DB2DBM1
- IRLM

2. If Db2 is hung, take a console dump of:

– DB2MSTR
– DB2DBM1
– IRLM
– XES, if the problem occurs in the data sharing environment and involves more than one member of

the data sharing group.

SDATA information should include GRSQ and RGN added to the SDATA PARAMETER defaults on the
dump command.

Request the console dump as soon as it becomes evident that Db2 or a transaction is not functioning
normally.

• If you suspect that Db2 is looping, start the Db2 global trace, if it is not already active. Refer to “Printing
and analyzing global traces” on page 236 for information about the Db2 global trace facility.

• If a performance problem is suspected, consider using the Db2 performance trace to obtain
more information. Refer to Performance trace (Db2 Performance) for information about running the
performance trace and choosing the events to be traced. Refer to “Using the performance trace for
diagnosis” on page 249 for an example of using the performance trace to diagnose a WAIT problem.

20 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_performancetrace.html

• After the console dump completed, try to break the wait or loop by issuing the command

-CANCEL THREAD(token)

to cancel any "hung" or looping threads.

If the hung thread cannot be canceled, or if Db2 is hung, try the following commands, in order, until one
of them succeeds (ssnm is the Db2 subsystem name):

1. -STOP DB2 MODE(QUIESCE)
2. -STOP DB2 MODE(FORCE)
3. MODIFY irlmproc,ABEND
4. CANCEL ssnmMSTR
5. CANCEL ssnmDBM1
6. FORCE ssnmMSTR

Use the FORCE command only as a last resort. FORCE can put IRLM in an indefinite state, and you might
need to re-IPL z/OS before you can restart Db2.

If all attempts to clear the problem fail, then a re-IPL of z/OS is necessary. Taking a stand-alone dump
at this point provides little diagnostic value, because the preceding attempts to clear the problem might
delete important diagnostic information.

It is very important to take a console dump BEFORE attempting to clear the problem.
• If X'04E' or X'04F' abends that occurred before the WAIT/LOOP condition, obtain their corresponding

SVC dumps. Follow the instructions in “Printing and analyzing dumps” on page 179 and any
recommendations of IBM Support.

• It is important to save the SYS1.LOGREC entries during the abnormal condition and for at least one hour
that proceeds it. It is likewise important to save and print the console log for a similar period, preferably
back to the -START DB2 command if this is not excessively long.

Initial procedure for the WAIT/LOOP keywords
While the documentation needed for a WAIT/LOOP might appear excessive, this failure typically does not
produce any documentation specific to its occurrence. Determining its cause often requires considerable
examination.

1. Determine the scope of the problem and the users and environments that are affected.
2. If the problem occurs in a sharing environment and involves more than one member of the data

sharing group, do the following:

• Issue the command

-DISPLAY GROUP

to get information about the status of the data sharing group:

– Status of each member: ACTIVE, QUIESCED, or FAILED.
– Lock structure and SCA storage: the percentage of lock entries in use and the percentage of SCA

in use indicates whether a resource availability problem might be the reason for the hang.
• Issue the IRLM status command:

F irlmproc,STATUS

on each member of the data sharing group to determine which IRLMs are responsive. If any IRLM
does not respond, it might indicate that a wait on a lock is causing the hang.

In some cases, Db2 uses the IRLM notify service to send XCF messages between data sharing
members. The sender of the message might be waiting indefinitely for the receivers to respond.

Chapter 2. Searching the IBM Support site for known problems and solutions 21

The message from the command F irlmproc,STATUS does not indicate if a system is suspended on
a notify message. The buffer manager drain service, data definition language, and data set extend
services use IRLM notify.

If the hung user is draining a page set, the user task might be suspended waiting for the claim count
to reach zero. Issue the command:

-DISPLAY DATABASE(dbname) CLAIMERS

to determine which users across the data sharing group hold a claim on the page set. If claimers
exist, the drainer will be resumed when the claim count reaches zero, or the drainer will time out.

3. If Db2 'hangs' during distributed processing, see “Diagnosing distributed data facility (DDF) failures”
on page 291 for procedures to follow.

4. Collect information about active Db2 threads. You can do this by issuing the Db2 command -DISPLAY
THREAD TYPE(ACTIVE), or by formatting your console dump using DSNWDMP with the option DS=1.
For information about DSNWDMP, see “Format dumps by using the DSNWDMP statement” on page
181. Review the output generated and the data in the following three fields. The field labels in
-DISPLAY THREAD and DSNWDMP output are shown in parentheses.

• Status (ST or first part of Status):

For each thread, these status codes are possible:
N

The thread is in either identify or sign-on status.
ND

The thread is in either IDENTIFY or SIGNON status. The thread is not currently associated with
any TCB.

QT
The create thread request is queued. The associated allied task is in a wait state.

T
An allied, non-distributed thread has been established.

TD
An allied thread was established (plan allocated). The thread is currently not associated with
any TCB.

PT
The thread is a parallel task.

TR
The thread (an allied distributed thread) is requesting data from another database management
system.

RA
The thread (database access agent) is performing a remote access on behalf of a request from
another DBMS.

RN
A distributed thread is performing a remote access on behalf of a request from a partner
location. The thread was suspended because Db2 must first connect to the partner location.
The Db2 command DISPLAY LOCATION(*) shows conversation activity for this Db2 system
conversation (SYSCON-O) service task.

RQ
A distributed thread is performing a remote access on behalf of a request from another location.
The thread was suspended because the maximum number of active database access threads
(as described by the MAX REMOTE ACTIVE value of the DSN6SYSP macro in the Db2 startup
parameter, usually DSNZPARM) was reached. Database access agents (DBAAs) are queued until
a slot becomes available. Consider increasing the MAX REMOTE ACTIVE value.

SP
A thread is executing within a stored procedure.

22 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

SW
A thread is waiting for a stored procedure to be scheduled.

TN
An allied thread was distributed to access data at another Db2 location, but was suspended
because Db2 system conversations have not been established. The Db2 command DISPLAY
LOCATION(*) shows conversation activity for this Db2 system conversation (SYSCON-O) service
task.

QD
The thread is queued for deferred termination because the associated allied task terminated.
The allied task is placed in a WAIT state if this Db2 thread is the last (or only) one for the
address space.

D
The thread is being terminated because the associated allied task terminated. The allied task is
placed in a WAIT state if this Db2 thread is the last (or only) one for the address space.

If a QT status is reported on the connection identifier (job name for batch), you are in a WAIT for
a thread to become available. If you receive an excessive number of QT status codes, the limit
specified for Db2 subsystem parameter CTHREAD can be increased. CTHREAD corresponds to field
MAX USERS on installation panel DSNTIPE.

If after repeating the -DISPLAY THREAD command several times, different threads have the "D"
status and the ones previously having a "D" have terminated, then there is NO wait or loop. It is
simply taking a long time to terminate all threads. Since deferred termination is serialized across all
threads whose allied tasks have abended, and since abend processing must be performed, the total
length of elapsed time can be excessive.

However, if after considerable time, the same thread still has a status of "D", a wait or loop is
the probable cause. Software or hardware monitors can be used to see if one or more of the Db2
address spaces is consuming processor or I/O resources. (The user's allied task has been in a wait
state and cannot be using any processor or I/O resources.) If the processor utilization is high, then
a loop should be assumed. If processor utilization is not high and there is ongoing I/O activity to the
Db2 database and logging data sets, then wait a little longer. The allied thread is probably still in
abend processing. If the processor and I/O utilization are low, it is safe to assume that Db2 is in an
"endless" wait.

If the allied thread with the status of “D” that appears to be waiting or looping is distributed, that
is, the message, “ACCESSING DATA AT location” appears on the display thread command, attempt
to terminate the thread by issuing the ‘VTAM VARY NET, TERM' command. If this does not solve the
problem, continue with the following sections.

After confirming a wait or loop condition, take an z/OS console dump as described in the previous
section, “Guidelines for good operational procedures” on page 19. After the dump is complete,
canceling one of the Db2 address spaces is likely to clear the problem. Canceling the allied address
space of the "hung" thread or issuing -STOP DB2 has no effect.

• Db2 activity indicator (A or second part of Status):

If the activity indicator is on (if column A contains an asterisk), the thread's allied task is executing
in one of the Db2 address spaces. If the activity indicator is blank, the thread's allied task is not
executing in a Db2 address space.

• Wraparound request counter (REQ or Req):

If several -DISPLAY THREAD commands are issued and the request counter is incrementing, the
thread is not in a WAIT but may be in a LOOP.

If the counter is incrementing and the activity indicator is changing from blank to asterisk, the loop
is NOT in Db2 code, but in the application. The combined state of the activity indicator and the
REQ counter indicate that control of the task is continuously transferring between Db2 and the
application.

Chapter 2. Searching the IBM Support site for known problems and solutions 23

If the activity indicator consistently contains an asterisk and the REQ counter is not incrementing, it
is safe to assume there is a wait or loop in Db2 code.

5. Verify that the problem is not in an application process.

• If there is no asterisk in the Db2 activity indicator (column A), the thread is not active and the
problem is in the application.

• If the problem is in the application, determine where the processor cycles are being used. The z/OS
DISPLAY ACTIVE command or other tools can help accomplish this. This can help to determine if
the application is in a wait or a loop. Applications that fail to check SQL return codes properly after
each SQL call might go into a loop, making it appear that Db2 is looping.

6. Issue the Db2 command -DISPLAY DATABASE to determine if any Db2 resources are unavailable to
the transactions involved in the wait or loop.

7. If Db2 resources are restricted because of utilities, issue the Db2 -DISPLAY UTILITY command to
determine which utilities are operating.

Utilities holding exclusive use of Db2 objects during normal processing include REORG (except when
SHRLEVEL CHANGE is specified), LOAD, REBUILD, RECOVER, CHECK, MODIFY, and REPAIR.

8. Check for long-running jobs and for SPUFI users running with AUTOCOMMIT=NO. This determines if
needed resources are being held.

9. Determine if the Db2 catalog is being updated.

• The catalog can be updated through BIND, DDL, and certain utilities, including COPY, RUNSTATS,
and STOSPACE.

• Many updates can lock out other users, causing what appears to be a wait. The problem disappears
when the catalog updates are completed.

10. Check for transactions using both DL/I and SQL. These transactions can wait for extended periods if
IRLM has a large deadlock timeout specified and if a deadlock occurs over DL/I and SQL.

11. If a user is holding needed resources, wait for termination of that user, or cancel the user and request
a dump. Reassess the scope of the problem.

12. If only one user is affected, determine if any indexes have been dropped that would extend the
application's execution time.

13. If you receive no response from Db2 commands, Db2 is in a wait state. A problem can have occurred
during -STOP DB2 processing or abnormal subsystem termination.

14. Review the list below to determine the appropriate procedure to follow next, based upon the
environments that are affected. The first procedure has the largest scope.

• “If Db2 is waiting during Db2 startup” on page 24
• “If Db2 and/or z/OS are not operational” on page 25
• “If users in more than one environment cannot issue SQL statements” on page 28
• “If IMS dependent regions cannot issue SQL statements” on page 29
• “If DSN users cannot issue SQL statements” on page 30

If Db2 is waiting during Db2 startup
After the -START DB2 command is entered on the console, the system services address space is started,
then the database services address space is started, and, finally, the distributed data facility address
space is started.

The system services address space waits for a signal that the database services address space gained
control. If the wrong program name is specified in the JCL, the program runs but the database services
job step task does not gain control and the system services address space continues to wait indefinitely.

1. Cancel the system services address space from the console.
2. After Db2 is stopped, check the start procedures for the Db2 address spaces (system services,

database services, and distributed data facility) to ensure that the JCL is correct.

24 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

3. Verify that the data set names on the //STEPLIB card are correct and that the region size is correct.
Check the JES JOBLOG, if needed, for more information helpful to diagnosis.

If Db2 is waiting during distributed processing with another Db2
If Db2 hangs during distributed processing, the condition that causes the problem could be at the
requesting Db2 location, the responding Db2 location, in VTAM, in TCP/IP, or in the network.

Capture enough information from all the participants to allow for effective diagnosis of the problem. In
general, the SYSLOG, SYS1.LOGREC, and SVC dumps are needed from both the requesting and responding
locations. (VTAM documentation can also be used.)

Related concepts
Diagnosing distributed data facility (DDF) failures
It is important to understand the flow of distributed requests and the procedures that can be used for
doing problem determination for Db2 for z/OS in a distributed environment.

If Db2 and/or z/OS are not operational
If Db2 and/or z/OS are not operational, you can try using the diagnostic techniques for looping or waiting.

Looping
If Db2 or z/OS is not operational, you can try the diagnostic techniques for looping.

Procedure
1. If z/OS is operational, take a z/OS console dump as directed in “Guidelines for good operational

procedures” on page 19, before you attempt to break the loop. If z/OS is not operational, take a
stand-alone dump and IPL z/OS again.

2. Use standard z/OS diagnostic techniques to determine the location and scope of the loop. Refer to the
z/OS diagnostic techniques and debugging handbook publications.

3. If Db2 is causing the loop, try to determine the CSECT or load module involved. Turn to “CSECT
keyword” on page 35 and then to “Load module modifier keyword” on page 38.

4. Build a keyword similar to LOOP xxxxxx, replacing xxxxxx with the CSECT name. If the CSECT name is
unavailable, or if a search with this information proves unsuccessful, replace it with the load module
identifier. Add this information to the keyword string, and turn to Chapter 2, “Searching the IBM
Support site for known problems and solutions,” on page 3.

 5740XYR00 R121 LOOP DSNXCR2
 (free format)
 PIDS/5740XYR00 LVLS/121 RIDS/DSNXCRS LOOP
 (structured format)

Diagnosing a wait by using the SYSZDSN3.ERLYOLRH ENQ
If Db2 and, possibly, z/OS are unresponsive, the holding of ENQ resource SYSZDSN3.ERLYOLRH can
provide important clues about the location, but not the cause, of a wait. Normally this resource is held
for short periods of time. If a number of tasks are holding or waiting for the resource longer than a few
seconds, then the tasks should be examined.

About this task
SYSZDSN3.ERLYOLRH.ERLY_block_address is the full name of the ENQ resource. ERLY_block_address is a
32-bit binary address. If more than one Db2 subsystem is active, the ERLY_block_address value is unique
for each subsystem. Be sure to look at the correct ENQ resource name.

Procedure
To locate the resource and analyze the status of each holding task:
1. The holders of the ENQ resource can be located by the following methods:

• Various software monitor products can display the status of ENQ resources. However, if TSO or the
z/OS consoles are unresponsive, not all of them are working.

Chapter 2. Searching the IBM Support site for known problems and solutions 25

• If z/OS is unresponsive, a stand-alone dump should have been taken before you restart the system.
Find the SYSZDSN3.ERLYOLRH ENQ resource in the GRSTRACE portion of the dump. If you are
printing the dump, include the GRSTRACE verb. Locate the ENQ resources in the section that is
entitled, OUTPUT FROM GRSTRACE VERB. If you are using the dump online using IPCS, then
invoke the GRSTRACE verb directly.

• Issue the following z/OS console command, which can also be issued by way of the TSO OPER
command:

D GRS,RES=(SYSZDSN3,*)

2. If the ENQ resource is not held, skip the rest of this section. If it is held, the next step should be
to determine if a problem exists in GRS. Review any messages and accompanying return and reason
codes you receive.
If any match those codes in the following table, it indicates a possible GRS problem.

Table 2. Messages and codes for GRS problems

Message Return Code Reason Code

IDC3009I 4 Any

184 Any

IEC161 28 184

52 Any

3. In the GRSTRACE display of the SYSZDSN3.ERLYOLRH ENQ resource, an exclusive request at the top of
the list prevents any shared request from getting the resource.

• Shared holders that are higher in the list than an exclusive request must all release the resource
before the exclusive request can be satisfied.

• In Db2, a task holds this resource while it is running in the Db2 subsystem interface code. Tasks
hold the resource in SHARED mode, except for the Db2 job step tasks and a z/OS master scheduler
task, which is transmitting an End-of-Memory (EOM) condition on a Db2 address space. These tasks
request the ENQ in EXCLUSIVE mode.

4. If all of the tasks are holding the resource in SHARED mode, then one or more are waiting in some Db2
module.

• If you are viewing the ENQ resource online with a software monitor, the -DISPLAY THREAD command
might be used to determine the status of the corresponding threads. Match the ASIDs in the list
of tasks that are holding the resource with the ASIDs of the threads. For an interpretation of the
-DISPLAY THREAD fields and the actions to take, refer to “Initial procedure for the WAIT/LOOP
keywords” on page 21. Discontinue using this procedure unless the wait state cannot be cleared.

• If you are viewing the ENQ resource from a dump, it should be a stand-alone dump. It is necessary
to look at the status of each task that holds the resource. The address and module name of the wait
point must be determined for each task. Refer to “Locating the waiting CSECT” on page 27 below.

5. If any task is requesting or holding the resource in EXCLUSIVE mode, then the Db2 subsystem is in
the process of abnormal termination. Remember the jobname, ASID, and TCB address of the task. As
stated above, it is either a Db2 job step or z/OS master scheduler task.

• If the task is the first on the list, it is holding the ENQ resource. The Db2 subsystem interface code is
attempting to complete subsystem abend termination, but has been unable to do so.

• If the task is not first on the list, then it is waiting to obtain the resource in EXCLUSIVE mode, but
is unable to do so because of one or more SHARED holders. The process of Db2 subsystem abend
issues an ABEND with code X'04F' against the allied task of each thread that runs Db2 code. The
presence of SHARED holders indicates that the abend was unsuccessful on those holders.

• In any case, under this condition, Db2 cannot be recovered. If a stand-alone dump and restart the
system has not been requested, do so now.

26 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

6. Using the stand-alone dump, locate the address space and task of the EXCLUSIVE holding or waiting
task and any shared holding tasks. Determine the address and module name of the wait point for each
task.
If the dump is printed, use the z/OS TCB Summary to locate each address space and task in the dump.
If you are viewing the dump by using IPCS, use IPCS procedures to locate each.

Any shared waiting tasks that follow the EXCLUSIVE holding task need not be examined. They have not
caused the wait state.

Locating the waiting CSECT
If Db2 or z/OS are not operational, you can try locating the waiting CSECT.

Procedure
To locate the waiting CSECT:
1. Determine whether an SVRB (supervisor request block) is beneath the lowest PRB (program request

block) of a task.

• If not, check its PSW to see whether it points into DSNVSR.

If this PSW points into DSNVSR, use save area sets to determine the CSECT and offset from which
suspend was called. Refer to “If Db2 and/or z/OS are not operational” on page 25 and follow the
procedure that is given for waits.

• If so, look in the field that is labeled "W–L–I–C" in the PRB; the last byte in this field indicates the
SVC ran. The PSW points to the instruction that follows the SVC.

If the interrupt code is X'2F', the SVC was a STIMER. Db2 uses STIMER loops in several places to
wait for the occurrence of an event. The PSW in the PRB is in the CSECT in which the STIMER loop is
occurring.

2. Find the CSECT and load module names by using one of the following methods.

• Using the module entry point list (MEPL) enables positive verification of an entry point, which is
helpful in determining the offset of an instruction within a CSECT. (The MEPL can also be obtained
by specifying IFCID 186 in the IFCID() parameter of the -START TRACE command.) Refer to “Printing
and analyzing dumps” on page 179 for detailed information about MEPLs.

There are three MEPLs:

– Batch Utilities MEPL

A batch utilities MEPL is found in all SVC dumps that are issued by Db2 involving batch utility
abends. This list contains the CSECTs for the batch load module, DSNUTILB. Use the batch utilities
MEPL only when message DSNU0171 is issued or when the dump title lists DSNUTILB as the
failing load module.

– "Early Code" MEPL

If the component ID in a dump title is XYR01, an "early code" MEPL is included in the summary
dump for load module DSN3EP. The eyecatcher is EEP MEPL—LIKE FOR DSN3EP. Use this MEPL
when the failure occurred in a CSECT of load module DSN3EP; its format is the same as the other
MEPLs. Locate the failing CSECT by following the procedure that is described under “Finding the
name of the failing CSECT in the MEPL” on page 210. The ASID of load module DSN3EP is always
0000.

– "Standard" MEPL

The "standard" MEPL is included in all dumps of the Db2 address spaces. If the dump is initiated
by component 5740XYR00, that MEPL is included in the summary section of the dump. The
standard MEPL contains entries for all load modules and CSECTs in the Db2 address spaces. It
can be recognized by the "MEPL" eyecatcher or by several pages of EBCDIC CSECT or load module
names on the interpreted area of the dump at the right. Use the standard MEPL when the criteria
for using the other two MEPLs do not apply.

Chapter 2. Searching the IBM Support site for known problems and solutions 27

Refer to “The module entry point list (MEPL)” on page 207 and “The batch utilities MEPL” on page
211 for detailed information about how to find the CSECT and load module in the MEPL.

• Using the PSW

a. Locate the instruction to which the PSW points and back up to the EBCDIC eyecatcher for the
CSECT. This contains the function modification identifier (FMID), which indicates the fix level.

b. Verify that you are in the correct address space. Look at the XSB just under the PRB from which
the PSW was obtained. The PASID field indicates the ASID of the current primary address space,
from which instructions are being fetched.

3. Add WAIT xxxxxx to the keyword string, replacing xxxxxx with the CSECT name. If the CSECT name is
unavailable or if a search with this name is unsuccessful, replace it with the load module identifier. For
more information, turn to “Load module modifier keyword” on page 38. To conduct a search, turn to
Chapter 2, “Searching the IBM Support site for known problems and solutions,” on page 3.

 5740XYR00 R121 WAIT DSNXCR2
 (free format)
 PIDS/5740XYR00 LVLS/121 RIDS/DSNXCR2 WAIT
 (structured format)

If users in more than one environment cannot issue SQL statements
This situation is when users of two or three of the attachment facilities cannot complete transactions, but
Db2 is not "hung"; Db2 still responds to commands, or one attachment facility still operates normally.

Procedure
1. If the z/OS GTF trace facility is not active, issue the z/OS START GTF command with the USR and

TIME=YES options.
2. Verify that dump data sets are available.
3. Issue the z/OS DUMP command to dump the Db2 address spaces (database services, system services,

distributed data facility address space (for distributed processing only) and any user address spaces)
and the IRLM address space. Many large dumps are produced that can help to diagnose the problem if
other methods fail.

4. Determine if the problem is a WAIT or LOOP.

• Examine the trace tables: GTF, Db2, TSO, GRS, CICS, IMS attachment facility, or IMS. Be aware of
any repeating patterns, which might indicate a LOOP.

To use the GRS (global resource serialization) trace for a stand-alone dump, use the GRSTRACE
keyword when the dump is printed.

• Investigate what some users were doing before the problem occurred. If several users were doing
the same thing, such as trying to access one resource, this might indicate a WAIT.

5. Add WAIT or LOOP to the keyword string. If unsure about which is appropriate, create two strings,
one with each keyword. Turn to Chapter 2, “Searching the IBM Support site for known problems and
solutions,” on page 3.

 (free format):
 5740XYR00 R121 WAIT
 5740XYR00 R121 LOOP
 (structured format):
 PIDS/5740XYR00 LVLS/121 WAIT
 PIDS/5740XYR00 LVLS/121 LOOP

28 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

If IMS dependent regions cannot issue SQL statements
This is a situation in which users communicating to Db2 through IMS cannot complete transactions,
but Db2 is still operational, still responding to commands, or operating normally through an attachment
facility.

1. Issue the IMS /DISPLAY ACTIVE command repetitively to identify the transactions being processed by
each dependent region. Any dependent regions whose transaction codes are not changing might be
involved in a WAIT or LOOP.

2. Issue the IMS /DISPLAY TRAN xx to verify that the program/transactions are not stopped.
3. Issue the z/OS command DISPLAY ACTIVE jobname repetitively, once for each message region that

appears to be in a WAIT or LOOP.
4. Determine if the processor time remains the same. If so, the dependent region is probably in a WAIT

state. Follow the steps in “Gathering the information” on page 29.
5. Otherwise, determine if the dependent region is in a loop.

• IMS detects loops that occur within IMS dependent regions. The user specifies the timeout value
using the TRANSACTION macro PROCLIM parameter.

• If the dependent region has a long timeout, issue the IMS /DISPLAY TRAN y command. If this shows
the IMS transaction is decreasing, the region is processing messages and the application is not in an
endless loop.

• If you want you can issue the Db2 command -DISPLAY THREAD and review the "REQ" column, which
often indicates loops.

6. Issue the IMS /DISPLAY SUBSYSTEM command to determine the status of the connection to Db2.
7. Issue the IMS /TRACE SET ON SUBS OPTION LOG command to trace IMS calls to Db2 on the IMS log.
8. Issue the following IMS commands in order until one breaks the connection. If successful, skip the

next step. If not successful, go to the next step.

/STOP region reg# abdump
/STOP region reg# CANCEL
/STOP SUBSYS subsysname

If none of these commands break the connection, the IMS control region might need to be forced into
an abnormal abend. Before doing this, you must understand that all the IMS dependent regions and
not only the one that has the connection problems with Db2 are terminated, and that an emergency
restart of IMS(/ERE) has to be performed. The commands used to terminate the control region are
explained in the next step.

9. Issue the following MODIFY commands in this order until one successfully breaks the subsystem
connection. Do not confuse these with the /MODIFY command or the MODIFY utility.

F IMS,DUMPname
F IMS,STOPname
F IMS,FORCEname

name refers to the attached external subsystem name defined in the IMS external subsystem PROCLIB
member.

Gathering the information
1. If the reason for the wait or loop has not been determined, issue the IMS /STOP REGION x ABDUMP

yyyy command to terminate the specific region involved in the wait or loop. If you receive a dump, the
problem is in the application's address space and is probably the result of a user error. Analyze the
dump and correct the problem. Do not continue with this procedure.

2. If the z/OS GTF trace facility is not active, issue the z/OS START GTF command with the USR and
TIME=YES options.

3. Verify that dump data sets are available.

Chapter 2. Searching the IBM Support site for known problems and solutions 29

4. Use the z/OS DUMP command to dump the Db2 address spaces (database services, system services,
the distributed data facility address space for distributed processing only, and any user address
spaces) and the IRLM address space. This generates many very large dumps, which can help to
diagnose the problem if other methods fail.

5. Terminate the dependent region and produce a SYSABEND or SYSUDUMP. Be aware that doing so can
cause the IMS control to ABEND, with an ABENDU113, or cause Db2 to ABEND. With a dump data set
available, issue the IMS /STOP REGION x CANCEL command.

6. Print the entries in the SYS1.LOGREC data set for the estimated time that the loop or wait began. For
more information on printing SYS1.LOGREC entries, refer to “SYS1.LOGREC” on page 224.

7. Analyze the TOD (time of day) information in SYS1.LOGREC to determine if any failures occurred
around the time the wait or loop occurred. Find entries related to the Db2 or dependent region
address spaces.

8. Determine if users are doing something in the IMS attachment facility that might prevent them from
accessing Db2. This might indicate a wait or loop in another component or in the attachment facility.

9. Determine if control is in IMS or in Db2. Review the information in the SYSABEND dump, IMS
attachment facility trace table, and Db2 trace table. The trace tables are described in “Printing and
analyzing global traces” on page 236.

10. If control is in IMS, refer to IMS diagnosis information. Otherwise, keep the SYS1.LOGREC entries, the
GTF trace, and the dumps you obtained in Step 4.

11. Add WAIT or LOOP to the keyword string. If unsure about which is appropriate, create two strings,
one with each keyword. Turn to Chapter 2, “Searching the IBM Support site for known problems and
solutions,” on page 3.

 (free format):
 5740XYR00 R121 WAIT
 5740XYR00 R121 LOOP
 (structured format):
 PIDS/5740XYR00 LVLS/121 WAIT
 PIDS/5740XYR00 LVLS/121 LOOP

If DSN users cannot issue SQL statements
This is a situation in which users communicating with Db2 through the DSN command processor cannot
complete transactions, but Db2 is still operational (still responding to commands, or operating normally
through other attachments).

1. If you are a SPUFI user, determine if the SQL statement just issued, and for which you received no
response, is one that can take longer than usual to execute.

For example, a statement that updates 80,000 records undoubtedly takes longer than one that
updates one record.

2. Verify that the application programs are checking SQL return codes properly.

A return code of +100 is received when work completes successfully.
3. If the problem is in a batch environment, refer to “In a batch environment” on page 32. If the

problem is in a foreground environment, continue below with “In a foreground environment” on page
30.

The TSO attachment facility provides several different tracing mechanisms, only one of which, the
DSN trace stream, is mentioned here. For information about other tracing mechanisms, refer to “TSO
attachment facility traces” on page 261.

In a foreground environment
1. Try to terminate the current DSN session. Enter 'END' or Enter 'END' press the ATTENTION key twice.
2. If the z/OS GTF trace facility is not active, issue the z/OS START GTF command with the USR and

TIME=YES options.
3. Issue the Db2 command -START TRACE(GLOBAL) DEST(GTF).

30 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/ims/15.2.0?topic=diagnosis-collecting-ims-diagnostic-information

4. Allocate a DSNTRACE data set to collect a copy of the DSN trace messages that are going to appear
on your terminal.

5. Restart the DSN session using the DSN command DSN SYSTEM(subsystem-name) TEST(255), where
subsystem-name is the site-defined name of the subsystem.

6. Review the DSN trace messages produced. Find any trace messages containing

BEFORE . . . =============
AFTER . . . =============

These indicate control is being passed between the application and Db2. For an example, see the
following figure.

7. If the last trace stream message contains BEFORE with no corresponding AFTER message following,
the problem is in Db2. Follow the steps below:

a. Verify that dump data sets are available.
b. Issue the z/OS DUMP command to dump the Db2 address spaces and the address space of the

affected TSO user. This generates very large dumps, which can help to diagnose the problem if
other methods fail.

8. If the last trace message does not contain BEFORE, the problem is in the application or the DSN
command processor. Follow the steps below:

a. Verify that the application program is not in error. If necessary, have the operator cancel the TSO
users involved in the problem. Request dumps for each user whose DSN session is canceled.

b. If you see an unending series of messages similar to those shown below, the application program
is in a loop. Verify that it is checking the SQL return codes properly.

 BEFORE SQL CALL ==========
 AFTER SQL CALL ==========

Chapter 2. Searching the IBM Support site for known problems and solutions 31

DSNET20I DSNECP13 CIBCORID :H443722 X'00000000' X'00000000'
DSNET20I DSNECP13 ZINDOUBT :NO X'00000000' X'00000000'
DSNET20I DSNECP13 BEFORE CREATE THREAD DB2 CALL======R6,CIBRFRB X'00187840' X'00187DA0'
DSNET20I DSNECP13 AFTER CREATE THREAD DB2 CALL======R6,CIBRFRB X'00187840' X'00187DA0'
DSNET20I DSNECP13 FOLLOWING ARE FRB FIELD CONTENTS, CIBCTFRM= X'00187DA0' X'00000000'
DSNET20I DSNECP13 FRBRAL(PTR), FRBRALE(BIN15), FRBFVLE(BIN15) X'00000000' X'00010004'
DSNET20I DSNECP13 FRBPARM(PTR), FRBPCNT(BIN15) X'00000000' X'00000000'
DSNET20I DSNECP13 FRBRC1(BIN15), FRBRC2(CHAR4) X'00000000' X'00000000'
DSNET20I DSNECP13 FRBFBACK PRT(31), FRBRHPC X'00000000' X'00000000'
DSNET20I DSNECP13 FRBQUAL(BIN15), FRBRSV1(BIN15) X'00000001' X'00000000'
DSNET20I DSNECP13 CIBPLNID :TSOAP1 X'00000000' X'00000000'
DSNET20I DSNECP13 ZINDOUBT :NO X'00000000' X'00000000'
DSNET20I DSNECP13 R6=, CIBCTRTN=X'00187840' X'E2E8D5C3'
DSNET20I DSNECP13 EXIT DSNECP13 X'00000000' X'00187DA0'
DSNET20I DSNECP28 AFTER DSNECP13, CIBCTRTN=,CIBCTFRB= X'E2E8D5C3' X'00187DA0'
DSNET20I DSNECP28 HERE COMES THE FRB <<<<<<<<<<<<<<< CIBRFRB= X'80187DA0' X'00000000'
DSNET20I DSNECP28 FRBRAL(PTR), FRBRALE(BIN15), FRBFVLE(BIN15) X'00000000' X'00030001'
DSNET20I DSNECP28 FRBPARM(PTR), FRBPCNT(BIN15) X'001AB1E0' X'000000000'
DSNET20I DSNECP28 FRBRC1(BIN15), FRBRC2(CHAR4) X'00000000' X'00000000'
DSNET20I DSNECP28 FRBFBACK: X'00000000' X'00000000'
DSNET20I DSNECP28 FRBFBACK PTR(31),FRBRHPC X'00000000' X'00000000' 840' X'00187DA0'
DSNET20I DSNECP28 FRBQUAL(BIN15), FRBRSV1(BIN15) X'00000001' X'00000000'
DSNET20I DSNECP28 EXIT DSNECP28,CIBRFRB,CIBFRMLI X'80187DA0' X'00000000'
DSNET20I DSNETRAP BEFORE SQL CALL=======================FRB,R1== X'80187DA0' X'00187870'
DSNET20I DSNETRAP AFTER SQL CALL=====================RC1,FBACK== X'00000000' X'00000000'
DSNET20I DSNETRAP BEFORE SQL CALL=======================FRB,R1== X'80187DA0' X'00187870'
DSNET20I DSNETRAP AFTER SQL CALL=====================RC1,FBACK== X'00000000' X'00000000'
DSNET20I DSNETRAP AFTER LINK GOOD, R15=, R1= X'00000000' X'0018753C' 40' X'00187DA0'
DSNET20I DSNECP18 ENTER DSNECP18, CIBTRMOP= X'E2E8D5C3' X'00000000'
DSNET20I DSNECP18 CIBTRMOP NOT BLANK, CIBTRMOP= X'E2E8D5C3' X'00000000'
DSNET20I DSNECP18 FRB FIELDS FOLLOW (CIBFRB): X'00187DA0' X'00000000'
DSNET20I DSNECP18 FRBRAL(PTR), FRBRALE(BIN15), FRBFVLE(BIN15) X'00000000' X'00010001'
DSNET20I DSNECP18 FRBPARM(PTR), FRBPCNT(BIN15) X'001873A8' X'00000000'
DSNET20I DSNECP18 FRBRC1(BIN15), FRBRC2(CHAR4) X'00000000' X'00000000'
DSNET20I DSNECP18 FRBFBACK(PTR), FRBRHPC(BIN32) X'00000000' X'00000000'
DSNET20I DSNECP18 FRBQUAL(BIN15), FRBRSV1(BIN15) X'00000001' X'00000000'
DSNET20I DSNECP18 BEFORE TERMINATE DB2 CALL===============TRMOP= X'E2E8D5C3' X'00000000'
DSNET20I DSNECP18 AFTER TERMINATE DB2 CALL====================== X'00000000' X'00000000'
DSNET20I DSNECP18 FRB FIELDS FOLLOW (CIBFRB): X'00187DA0' X'00000000'
DSNET20I DSNECP18 FRBRAL(PTR), FRBRALE(BIN15), FRBRVLE(BIN15) X'00000000' X'00010001'

Figure 5. Example of DSN trace messages
9. If the problem appears to be in the DSN command processor, add WAIT TSOATTACH or LOOP
TSOATTACH to the keyword string. If unsure about which is appropriate, build two keyword strings,
one with each keyword. Then turn to Chapter 2, “Searching the IBM Support site for known problems
and solutions,” on page 3.

 (free format):
 5740XYR00 R121 WAIT TSOATTACH
 5740XYR00 R121 LOOP TSOATTACH
 (structured format):
 PIDS/5740XYR00 LVLS/121 TSOATTACH WAIT
 PIDS/5740XYR00 LVLS/121 TSOATTACH LOOP

10. If the problem appears to be in Db2, add WAIT or LOOP to the keyword string. If unsure about which
is appropriate, build two keyword strings, one with each keyword. Then turn to Chapter 2, “Searching
the IBM Support site for known problems and solutions,” on page 3.

 (free format):
 5740XYR00 R121 WAIT
 5740XYR00 R121 LOOP
 (structured format):
 PIDS/5740XYR00 LVLS/121 WAIT
 PIDS/5740XYR00 LVLS/121 LOOP

In a batch environment
1. If the z/OS GTF trace facility is not active, issue the z/OS command START GTF with the USR and

TIME=YES options.
2. Issue the Db2 command -START TRACE(GLOBAL) DEST(GTF).
3. Request an z/OS dump of Db2 and the batch job involved in the problem.

32 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

4. Cancel the job.
5. Resubmit the job with a SYSUDUMP DD card, using the DSN command DSN SYSTEM(subsystem-

name)(TEST(255). Replace subsystem-name with the site-defined name of the subsystem.
6. Let the job run until you think the problem has occurred again. Then have the operator cancel the job

with a dump.
7. Review the trace output. In batch DSN sessions, the trace messages go to the SYSTSPRT data set.

Figure 5 on page 32 provides an example of these trace messages. Find any trace messages similar
to

BEFORE . . . =============
AFTER . . . =============

These indicate control is being passed between the application and Db2.
8. Verify that the application program is not causing a loop.

a. Submit the job two or more times and compare the amount of trace message output. Determine if
the trace messages seem to continue until the job times out or the operator cancels it.

b. If necessary, have the operator cancel the TSO users involved. Request dumps for each user
whose DSN session is canceled.

c. Check for an unending sequence of messages similar to those shown below. If this occurs, the
application program is causing the loop. Verify that it is checking the SQL return codes properly.

BEFORE SQL CALL ==========
AFTER SQL CALL ==========

9. If the problem appears to be in the DSN command processor, add WAIT TSOATTACH or LOOP
TSOATTACH to the keyword string. If unsure which is appropriate, build two keyword strings, one
with each keyword. Then turn to Chapter 2, “Searching the IBM Support site for known problems and
solutions,” on page 3.

 (free format):
 5740XYR00 R121 WAIT TSOATTACH
 5740XYR00 R121 LOOP TSOATTACH
 (structured format):
 PIDS/5740XYR00 LVLS/121 TSOATTACH WAIT
 PIDS/5740XYR00 LVLS/121 TSOATTACH LOOP

10. If the problem appears to be in Db2, add WAIT or LOOP to the keyword string. If unsure which is
appropriate, build two keyword strings, one with each keyword. Then turn to Chapter 2, “Searching
the IBM Support site for known problems and solutions,” on page 3.

 (free format):
 5740XYR00 R121 WAIT
 5740XYR00 R121 LOOP
 (structured format):
 PIDS/5740XYR00 LVLS/121 WAIT
 PIDS/5740XYR00 LVLS/121 LOOP

Related concepts
Call attachment facility traces
The call attachment facility, which enables users to connect to Db2 through TSO foreground, TSO
background, or z/OS batch, provides diagnostic trace messages intended primarily for use by IBM service
personnel.

MSGx keyword
Use this keyword if an error is associated with a Db2 or an IRLM message. If you receive more than one
message for one error, search the database using the first message issued. If unsuccessful, search the
database using the next message, then the next, and so on.

To see if other messages related to the problem have been issued, check the console sheets that
contain Db2 messages, as well as messages issued by other products. If any messages are prefixed with

Chapter 2. Searching the IBM Support site for known problems and solutions 33

"IEC", indicating it was issued by media manager services, check the SYSLOG for messages that identify
associated VSAM problems. SYSLOG can also help to diagnose user errors.

Compare the message prefix with those shown in the table below to determine the appropriate procedure
to follow.

Table 3. Message prefixes

Prefix Component Procedure

DSN Db2 Follow “Procedure for Db2 messages” on page 34 on this page

DXR IRLM Follow “Procedure for IRLM messages” on page 34

DFH CICS Consult CICS messages

DFS IMS Consult IMS messages and codes

IDC Access method
services

Consult z/OS MVS IDC messages

IKJ TSO/E Consult z/OS MVS IKJ messages

IST VTAM Consult z/OS Communications Server: SNA Messages

Procedure for Db2 messages
1. Check if the name of the CSECT issuing the message appears. This name follows the message number,

as shown in the following example.

DSNW413I s csect_name - ACCOUNTING FACILITY HAS LOST
 DATA RC=y
DSNJ202I csect_name INSUFFICIENT VIRTUAL STORAGE
 AVAILABLE TO CONTINUE WITH UTILITY.

No CSECT name appears if only one CSECT can issue this message.
2. Determine if the message contains any variables, such as return or reason codes.
3. If no CSECT name appears, build a keyword similar to MSGxxxxxxxx, replacing xxxxxxxx with the

message number. Add this to the keyword string. If the message contains any variables, turn to
“Message modifier keyword” on page 49. Otherwise, turn to Chapter 2, “Searching the IBM Support
site for known problems and solutions,” on page 3.

 (free format):
 5740XYR00 R121 MSGDSNE004E
 (structured format):
 PIDS/5740XYR00 LVLS/121 MS/DSNE004E

4. If a CSECT name does appear, build a keyword similar to MSGxxxxxxxxyyyyyyyy. Replace xxxxxxxx with
the message number, and replace yyyyyyyy with the CSECT name. Add this to the keyword string. If the
message contains any variables, turn to “Message modifier keyword” on page 49. Otherwise, turn to
Chapter 2, “Searching the IBM Support site for known problems and solutions,” on page 3.

 (free format):
 5740XYR00 R121 MSGDSNJ202I DSNJU0001
 (structured format):
 PIDS/5740XYR00 LVLS/121 MS/DSNJ2021
 RIDS/DSNJU0001

Procedure for IRLM messages
1. Determine if the message contains any variables, such as return or reason codes.
2. Build a keyword similar to MSGxxxxxxxx, replacing xxxxxxxx with the message number. Add this

to the keyword string. If the message contains variables, turn to “Message modifier keyword” on

34 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/cics-ts/5.6?topic=reference-cics-messages
https://www.ibm.com/docs/en/ims/15.2.0?topic=ims-messages-codes
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieam600/ieam6_IDC_messages.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieam900/iea3m9_IKJ_messages.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.istmnc0/abstract.htm

page 49. Otherwise, turn to Chapter 2, “Searching the IBM Support site for known problems and
solutions,” on page 3.

 (free format):
 569516401 AR220 MSGDXR124E
 (structured format):
 PIDS/569516401 LVLS/220 MS/DXR124E

PERFM keyword
Most performance problems can be resolved through system tuning and should be handled by the Db2
system administrator.

About this task
Before following this procedure, use the checklist below to verify that the performance problem cannot be
resolved through other means.

• Try to tune performance.
• Verify that the performance problem is not related to a wait or loop. Refer to “Initial procedure for the

WAIT/LOOP keywords” on page 21.
• If performance degraded after someone tuned Db2, verify that the tuning options selected were

appropriate. Most likely, the problem can be resolved by choosing other options.

Procedure
1. Record the actual performance, expected performance, and source of expected performance criteria.
2. Add PERFM to the keyword string, and turn to Chapter 2, “Searching the IBM Support site for known

problems and solutions,” on page 3.

 (free format):
 5740XYR00 R121 PERFM
 (structured format):
 PIDS/5740XYR00 LVLS/121 PERFM

INCORROUT keyword
Use this procedure when output was expected but not received or when output was different from
expected.

Procedure
Add INCORROUT to the existing keyword string, and use “INCORROUT modifier keyword” on page 42 to
specify the problem.

 (free format):
 5740XYR00 R121 INCORROUT (for DB2)
 569516401 R220 INCORROUT (for IRLM 2.2)
 (structured format):
 PIDS/5740XYR00 LVLS/121 INCORROUT
 (for DB2)

 PIDS/569516401 LVLS/220 INCORROUT
 (for IRLM 2.2)

CSECT keyword
To find the name of the failing CSECT, use the SVC dump title. If the dump title is not available, use the
SYS1.LOGREC entry or the first page of an SVC dump.

Any CSECT name that is located following these procedures should begin with:

DSN for Db2

Chapter 2. Searching the IBM Support site for known problems and solutions 35

DXR for IRLM
DSNC or DSN2 for CICS attachment
DSNM for IMS attachment
DSN3, DSNA, DSNV, or DSNZ for the subsystem initialization component, or the primary Db2
component. Some DSNA CSECTs belong to the call attachment facility.

• If the CSECT prefix is DSN3, DSNA, DSNV, or DSNZ follow the steps below.

1. Use SMP to list the CSECT. Issue the command 'LIST CDS MOD(csect-name)'. Locate the FMID from
this.

2. If the FMID is HIZ2220, use the subsystem initialization component identifier (5740XYR01) in the
keyword string. If the FMID is HDB2220, use the primary Db2 component identifier (5740XYR00).
Consult the z/OS diagnostic techniques publication to identify the failing product.

• If the prefix denotes an attachment facility, use its component identifier in the keyword string:
5740IX100 for CICS (old attachment facility), 565501800 for CICS (new attachment facility), and
5740IY100 for IMS.

If a CSECT name with a different prefix is found, the problem probably is not in Db2. Isolate the failing
product using the z/OS diagnostic techniques publication.

Other ways of finding the CSECT name are explained elsewhere in this section. For example:

• If you received a Db2-generated message and if the type-of-failure keyword is MSGx, follow the
procedures for “MSGx keyword” on page 33.

• If using SQL and access is available to an SQL Communication Area (SQLCA) for the problem, use
the procedure for “SQLCODE modifier keyword” on page 48. You have access to the SQLCA if the
application program displays it or if a dump was generated for this specific problem.

If the CSECT cannot be found, turn to “Recovery routine modifier keyword” on page 40.

Procedure using SVC dump title
To find the name of the failing CSECT using the SVC dump title:

1. Locate the second word following the label LOC=. This is the CSECT name (a number follows it).

• For an example, see “SVC dump titles that are issued by Db2” on page 197.
• If the dump title does not contain this label, follow either “Procedure using a SYS1.LOGREC entry”

on page 37 or “Procedure using first page of an SVC dump” on page 37.
2. If the reason code found when following “ABENDx keyword” on page 14 is X'00C90101', X'00C90102',

X'00C90105', or in the range of X'00C902xx', locate the four-character reason code qualifier in the
dump title. See Figure 37 on page 199.

Build a keyword similar to xxxxxxxx VRACE yyyy or xxxxxxxx ERQUAL yyyy. Replace xxxxxxxx with the
CSECT name and yyyy with the reason code qualifier. Add this to the keyword string. To find the load
module name and any appropriate VRA data, see “Modifier keyword” on page 37.

 (free format):
 5740XYR00 R121 ABEND04E RC00C90105 DSNKDLEV
 VRACE0D01
 5740XYR00 R121 ABEND04E RC00C90105 DSNKDLEV
 ERQUAL 0D01
 (structured format):
 PIDS/5740XYR00 LVLS/121 PRCS/00C90105
 RIDS/DSNKDLEV FLDS/VRACE VALU/H0D01
 PIDS/5740XYR00 LVLS/121 PRCS/00C90105
 RIDS/DSNKDLEV FLDS/ERQUAL VALU/H0D01

3. If the reason code found when following “ABENDx keyword” on page 14 begins with X'00E7', locate
the P or M sign in the dump title and the three-digit decimal reason code qualifier that follows it. For an
example, see Figure 39 on page 199.

36 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Append the qualifier to SQLERRD. Add this and the CSECT name to the keyword string. To find the load
module name and any appropriate VRA data, see “Modifier keyword” on page 37.

 (free format):
 5740XYR00 R121 ABEND04E RC00E70005 DSNXAMCT
 SQLERRD101
 (structured format):
 PIDS/5740XYR00 LVLS/121 AB/S004E
 PRCS/00E7005 RIDS/DSNXAMCT FLDS/SQLERRD101

4. If the reason code found when following “ABENDx keyword” on page 14 begins with X'00E2', the name
of the CSECT calling the failing Storage Manager CSECT is included in the VRA. Search the database
using the information in the dump title. The search can be narrowed by including the CSECT name, turn
to “VRA data modifier keyword” on page 41.

 (free format):
 5740XYR00 R121 ABEND04E RC00E2000B
 DSNSFBK
 (structured format):
 PIDS/5740XYR00 LVLS/121 AB/S004E
 PRCS/00E2000B RIDS/DSNSFBK

Procedure using a SYS1.LOGREC entry
To find the name of the failing CSECT by using a SYS1.LOGREC entry:

1. Locate the SYS1.LOGREC entry related to the error. Compare the date, time, ERRORID string, and
program name in the dump with those in the SYS1.LOGREC entry.

2. Locate the CSECT name in the SYS1.LOGREC entry. It follows the words NAME OF CSECT INVOLVED
on the top left corner of the first page. For an example, turn to “SYS1.LOGREC” on page 224.

3. Add the CSECT name to the keyword string. The component identifier must correspond to the CSECT
prefix. To determine the load module name and any appropriate VRA data, see “Modifier keyword” on
page 37.

 (free format):
 5740XYR00 R121 ABEND0C4 DSNVATRM
 (structured format):
 PIDS/5740XYR00 LVLS/121 AB/S00C4
 RIDS/DSNVATRM

Procedure using first page of an SVC dump
To find the name of the failing CSECT using the first page of an SVC dump:

1. Locate the SYMPTOM DATA column and note the name listed as the second item. This is the CSECT
name, as the EXPLANATION column indicates. For an example, see Figure 33 on page 195.

2. Add the CSECT name to the keyword string and turn to “Modifier keyword” on page 37 if you want to
narrow the search further.

 (free format):
 5740XYR00 R121 ABEND0C4 DSNVATRM
 (structured format):
 PIDS/5740XYR00 LVLS/121 AB/S00C4
 RIDS/DSNCATRM

Modifier keyword
Modifier keywords identify problems more precisely and help to narrow the search. Most of these
keywords change only certain failures.

The following table lists several modifier keywords. See the column "Conditions for Using This Keyword"
to determine which keyword to use; follow the corresponding procedure.

Chapter 2. Searching the IBM Support site for known problems and solutions 37

Table 4. Types of modifier keywords

Keyword Conditions for Using This
Keyword

Description Procedure to Follow

Load Module modifier You have a related SYS1.LOGREC
entry or SVC dump.

Identifies the name of the
load module involved.

“Load module
modifier keyword” on
page 38

RECOVERY ROUTINE
modifier

Both conditions are true:

• The load module and CSECT
names cannot be found in
the SVC dump or in the
SYS1.LOGREC entry, and

• You have an SVC dump title.

Identifies the name of the
functional recovery routine
(FRR) or the extended
specify task abnormal exit
(ESTAE) that handled the
program failure.

“Recovery routine
modifier keyword” on
page 40

VRA Data modifier You have access to a variable
recording area (VRA) for the
abend. The VRA is in the system
diagnostic work area (SDWA),
which when available is in the
SYS1.DUMP data set and the
SYS1.LOGREC data set.

Identifies information
stored in the VRA that
describes the abend.

“VRA data modifier
keyword” on page 41

SQLCODE modifiers All these conditions are true:

• The type-of-failure keyword
was INCORROUT,

• The function keyword was SQL,
• You are fairly certain the

problem was not caused by a
user error, and

• You have access to the SQL
communication area (SQLCA).

(The SQLCA can be displayed by
the application program or found
in a dump.)

Identifies the additional
information to describe the
problem, such as:

• SQLCODE (SQL return
code)

• Name of the CSECT that
issued the return code

• SQL subcode.

“SQLCODE modifier
keyword” on page 48

INCORROUT modifiers The type-of-failure keyword is
INCORROUT

Identifies various primary
and secondary modifier
keywords.

“INCORROUT modifier
keyword” on page 42

MESSAGE modifier Both conditions are true:

• The type-of-failure keyword is
MSGx, and

• The Db2-issued message you
received contains variables

Identifies additional items
of information provided
when the message is issued.

“Message modifier
keyword” on page 49

Load module modifier keyword
Use this keyword if the search was unsuccessful when you used the CSECT keyword or the search yielded
too many possible matches when you used the CSECT keyword.

If the search was unsuccessful, replace the CSECT name with the load module name and try again. If the
search yielded too many possible matches, add the load module name to the string to further narrow the
search.

38 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

All Db2 load module names begin with DSN; all IRLM load module names begin with DXR. If you follow
these instructions and find a load module name with a different prefix, the problem is probably in another
product. Refer to z/OS MVS Diagnosis: Tools and Service Aids to identify the failing product.

To locate the load module, use the SVC dump title. If the dump title is not available, use the SYS1.LOGREC
entry or the first page of an SVC dump.

Procedure using the SVC dump title
1. Locate the first word following the label LOC=. This is the load module name, and it precedes the

CSECT name.

For an example, see “SVC dump titles that are issued by Db2” on page 197.

If the dump title does not contain this word, follow either “Procedure using a SYS1.LOGREC entry” on
page 39 or “Procedure using first page of an SVC dump” on page 40 on this page.

2. Add the load module name to the keyword string, or substitute it for the CSECT name as appropriate.
If you have access to the variable recording area (VRA) for the abend, turn to “VRA data modifier
keyword” on page 41. If not, search the database again using the revised keyword string. Turn to
Chapter 2, “Searching the IBM Support site for known problems and solutions,” on page 3.

 (free format):
 5740XYR00 R121 ABEND04E RC00E50013 DSNSLD1
 DSNSVSTK
 (with load module name and then CSECT name)
 5740XYR00 R121 ABEND04E RC00E50013
 DSNSLD1
 (with load module name only)
 (structured format):
 PIDS/5740XYR00 LVLS/121 AB/S004E
 PRCS/00E50013 RIDS/DSNSLD1#L RIDS/DSNSVSTK
 (with load module name and then CSECT name)
 PIDS/5740XYR00 LVLS/121 AB/S004E
 PRCS/00E50013 RIDS/DSNSLD1#L
 (with load module name only)

Procedure using a SYS1.LOGREC entry
To find the name of the failing CSECT using the first page of an SVC dump:

1. Locate the SYS1.LOGREC entry related to the error. Compare the date, time, program name, and
ERRORID string in the dump with those in the SYS1.LOGREC entry.

2. Locate the load module name in the SYS1.LOGREC entry. It follows the words NAME OF MODULE
INVOLVED in the top left corner of the first page. For an example, turn to Figure 66 on page 225.

If UNKNOWN appears instead of the load module name, try to determine the load module by following
“Procedure using first page of an SVC dump” on page 40.

3. Add the load module name to the keyword string, or substitute it for the CSECT name as appropriate.
If you have access to the variable recording area (VRA) for the abend, turn to “VRA data modifier
keyword” on page 41. If not, search the database again using the revised keyword string. turn to
Chapter 2, “Searching the IBM Support site for known problems and solutions,” on page 3.

 (free format):
 5740XYR00 R121 ABEND04E RC00F9000C DSN9PREP
 DSN9SCNP
 (with load module name and then CSECT name)
 5740XYR00 R121 ABEND04E RC00F9000C DSN9PREP
 (with load module name only)
 (structured format):
 PIDS/5740XYR00 LVLS/121 AB/S004E RIDS/DSN9PREP#L
 RIDS/DSN9SCNP
 (with load module name and then CSECT name)
 PIDS/5740XYR00 LVLS/121 AB/S004E
 RIDS/DSN9PREP#L
 (with load module name only)

Chapter 2. Searching the IBM Support site for known problems and solutions 39

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/abstract.htm

Procedure using first page of an SVC dump
To find the name of the failing CSECT using the first page of an SVC dump:

1. Locate the column titled SYMPTOM DATA and the name listed as the first item. This is the load module,
as the EXPLANATION column indicates.

2. For an example, see Figure 33 on page 195.

If UNKNOWN appears instead of the load module name, try to determine the load module by following
“Procedure using a SYS1.LOGREC entry” on page 39. If the SYS1.LOGREC entry also has UNKNOWN for
the load module name, try to improve the search argument by turning to “Recovery routine modifier
keyword” on page 40.

3. Add the load module name to the keyword string, or substitute it for the CSECT name as appropriate.
If you have access to the variable recording area (VRA) for the abend, turn to “VRA data modifier
keyword” on page 41. If not, search the database again using the revised keyword string. Turn to
Chapter 2, “Searching the IBM Support site for known problems and solutions,” on page 3.

 (free format):
 5740XYR00 R121 ABEND04E RC00E50013 DSNSLD1
 DSNSVSTK
 (with load module name and then CSECT name)
 5740XYR00 R121 ABEND04E RC00E50013
 DSNSLD1
 (with load module name only)
 (structured format):
 PIDS/5740XYR00 LVLS/121 AB/S004E
 PRCS/00E50013 RIDS/DSNSLD1#L RIDS/DSNSVSTK
 (with load module name and then CSECT name)
 PIDS/5740XYR00 LVLS/121 AB/S004E
 PRCS/00E50013 RIDS/DSNSLD1#L
 (with load module name only)

Recovery routine modifier keyword
Include the name of the recovery routine only when an SVC dump is available and the names of the
CSECT and load module that is involved at the time of failure cannot be determined after you look in both
the SVC dump and the SYS1.LOGREC entry.

To obtain the recovery routine name, use the SVC dump title. If the dump title is not available, use the
SYS1.LOGREC entry or the first page of an SVC dump.

Procedure using the SVC dump title
1. Locate the area of the dump title containing the symbol M=. The word following this identifies the FRR

(functional recovery routine) or the ESTAE (extended specify task abnormal exit). For an example, turn
to “SVC dump titles that are issued by Db2” on page 197.

2. Add that word to the keyword string. If you have access to the variable recording area (VRA) for the
abend, turn to “VRA data modifier keyword” on page 41. If not, search the database, following the
instructions in Chapter 2, “Searching the IBM Support site for known problems and solutions,” on page
3.

 (free format):
 5740XYR00 R121 ABEND04E RC00E20015
 DSNTFRCV
 (structured format):
 PIDS/5740XYR00 LVLS/121 AB/S004E
 PRCS/00E20015 RIDS/DSNTFRCV#R

Procedure using a SYS1.LOGREC entry
1. Locate the SYS1.LOGREC entry related to the error. Compare the date, time, program name, and

ERRORID string in the dump with those in the SYS1.LOGREC entry.
2. Locate the recovery routine name in the SYS1.LOGREC entry. It follows the words RECOVERY
ROUTINE in the top left corner of the first page. For an example, see Figure 66 on page 225.

40 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

3. Add this name to the keyword string. If you have access to the variable recording area (VRA) for the
abend, turn to “VRA data modifier keyword” on page 41. If not, search the database, following the
instructions in Chapter 2, “Searching the IBM Support site for known problems and solutions,” on page
3.

 (free format):
 5740XYR00 R121 ABEND04E RC00E20015
 DSNTFRCV
 (structured format):
 PIDS/5740XYR00 LVLS/121 AB/S004E
 PRCS/00E20015 RIDS/DSNTD4FRCV#R

Procedure using first page of SVC dump
1. Locate the column titled SYMPTOM DATA and the name listed as the fourth item. This is the recovery

routine name, as the EXPLANATION column indicates. For an example, see Figure 33 on page 195.
2. Add this to the keyword string. If you have access to the variable recording area (VRA) for the

abend, turn to “VRA data modifier keyword” on page 41. If not, search the database, following the
instructions in Chapter 2, “Searching the IBM Support site for known problems and solutions,” on page
3.

 (free format):
 5740XYR00 R121 ABEND04E RC00E20015
 DSNTFRCV
 (structured format):
 PIDS/5740XYR00 LVLS/121 AB/S004E
 PRCS/00E20015 RIDS/DSNTFRCV#R

VRA data modifier keyword
Use this keyword procedure if the type of failure was ABEND and you have access to a variable recording
area (VRA), in the system diagnostic work area (SDWA) of an SVC dump or a SYS1.LOGREC entry.

About this task
Some information in the VRA is common to all Db2 subcomponents; however, a given subcomponent
can add specialized information at failure. In the examples that are shown here, the abend reason code
X'00E2000B' is listed as one of the reason codes for the storage manager subcomponent for which
significant data is stored in the VRA.

Procedure
To use the VRA data modifier keyword:
1. Determine whether the reason code received for the abend indicates that significant information is

recorded in the VRA.
2. If significant information is recorded, locate the VRA Diagnostic Information Report. See Figure 45

on page 203 for an example. It usually appears in the beginning of the formatted dump. For more
information about the VRA report and details on locating it, see “The variable recording area (VRA)” on
page 203.

3. Scan the KEY column until the key that contains the significant data is found.
4. Determine the appropriate key name that is based on the hexadecimal key value.

For example, a key of 3D for reason code X'00E2000B' indicates the key name "VRACAN". See
“SYS1.LOGREC” on page 224.

5. Build a keyword similar to xxxxxx yyyyyy. Replace xxxxxx with the VRA key name and yyyyyy
with the data that appears in the corresponding VRA DATA FIELDS column. Add this information to
the keyword string and search the database by using the CSECT name or the load module identifier
(or both, if appropriate). Turn to Chapter 2, “Searching the IBM Support site for known problems and
solutions,” on page 3.

Chapter 2. Searching the IBM Support site for known problems and solutions 41

Results
 (free format):
 5740XYR00 R121 ABEND04E RC00E2000B DSNSFBK
 VRACAN DSNVASIM (with CSECT name)
 5740XYR00 R121 ABEND04E RC00E2000B DSNSLD1
 VRACAN DSNVASIM (with load module identifier)
 5740XYR00 R121 ABEND04E RC00E2000B DSNSLD1
 DSNSFBK VRACAN DSNVASIM
 (with load module identifier and CSECT name)
 (structured format):
 PIDS/5740XYR00 LVLS/121 AB/S00E4
 PRCS/00E2000B RIDS/DSNSFBK FLDS/VRACAN
 RIDS/DSNVASIM (with CSECT name)
 PIDS/5740XYR00 LVLS/121 AB/S00E4
 PRCS/00E2000B RIDS/DSNSLD1#L FLDS/VRACAN
 RIDS/DSNVASIM (with load module identifier)
 PIDS/5740XYR00 LVLS/121 AB/S00E4
 PRCS/00E2000B RIDS/DSNSLD1#L RIDS/DSNSFBK
 FLDS/VRACAN RIDS/DSNVASIM
 (with CSECT name and load module identifier)

Related concepts
The variable recording area (VRA)
More diagnostic information for Db2 abend reason codes is placed in the variable recording area (VRA) of
the system diagnostic work area (SDWA) and is extracted and displayed in the VRA Diagnostic Information
Report. This data can be produced by common recording routines and certain Db2 subcomponents.

INCORROUT modifier keyword
Use this modifier keyword if the type-of-failure keyword is INCORROUT.

Procedure
1. Determine the primary and secondary modifier keywords for the problem.
2. If the primary modifier keyword is not SQL, add that keyword and the secondary modifier keyword to

the string. Refer to Chapter 2, “Searching the IBM Support site for known problems and solutions,” on
page 3.

 (free format):
 5740XYR00 R121 INCORROUT UTILITY
 MERGECOPY
 (structured format):
 PIDS/5740XYR00 LVLS/121 INCORROUT

3. If the primary modifier keyword is SQL, determine whether you have access to the SQLCA (structured
query language communication area).

This area is available if the application program displays the SQLCA or if a dump was issued for this
specific problem. Refer to “Finding the SQLCA” on page 215 for examples.

“The SQL communication area (SQLCA)” on page 214 describes how to locate the SQLCA in a dump.
4. If you have access to the SQLCA, add the primary and secondary modifier keywords to the string. Next,

go to “SQLCODE modifier keyword” on page 48.

 (free format):
 5740XYR00 R121 INCORROUT SQL INSERT
 (structured format):
 PIDS/5740XYR00 LVLS/121 PCSS/SQL
 PCSS/INSERT INCORROUT

5. If you do not have access to the SQLCA, add the primary and secondary modifier keywords to the
string. Next, turn to Chapter 2, “Searching the IBM Support site for known problems and solutions,” on
page 3.

42 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

What to do next
Table 5. INCORROUT modifier keywords

Primary keyword Secondary keywords Problem occurrence

CLIST While you use a CLIST

INSTALL While you use DSNTINST installation CLIST

PREP While you use DSNH program preparation CLIST

UTILITIES While you use DSNU utilities CLIST

DB2I During DB2I processing

BIND After you run BIND panel request

DB2 COMMAND After you run the DB2 COMMANDS panel request

DCLGEN After you run DCLGEN panel request

FREE After you run FREE panel request

PREP After you run Db2 PROGRAM PREPARATION panel
request

REBIND After you run REBIND panel request

SPUFI After you run SPUFI panel request

UTILITY After you run UTILITY panel request

IMSATTACH With IMS attachment facility

APPLICATION While an IMS application was processing an SQL
statement

DB2 COMMAND While you process a Db2 command by using the IMS
attachment facility

DISC During IMS attachment facility disconnect connect
processing

IRLM In IRLM

REQLOCK Error in lock processing

REQPURGE Error in PURGE processing

MIGRATION/ FALLBACK During migration to next release or fallback to
previous release

LOAD During load phase of migration

REMIGRATE During migration after a fallback

RESTORE During restore phase of fallback

UNLOAD During unload phase of migration

PRECOMPILER During precompile

ASM During assembler processing

C During C processing

COBOL During COBOL processing

FORTRAN During FORTRAN processing

PLI During PL/I processing

REXX During REXX processing

Chapter 2. Searching the IBM Support site for known problems and solutions 43

Table 5. INCORROUT modifier keywords (continued)

Primary keyword Secondary keywords Problem occurrence

RECOVERY During recovery, but not associated with the
RECOVER utility

BACKOUT At backout time

CHECKPOINT At checkpoint time

COMMIT At commit time

LOGGING During logging

RECOVER During attempt to recover indoubt threads

RESTART During restart processor

RRS ATTACH With Resource Recovery Services attachment
facility (RRSAF)

APPLICATION While an application in the RRS environment was
processing an SQL statement

DB2 COMMAND While you process a Db2 command by using RRSAF

DISC During RRSAF TERMINATE IDENTIFY processing

SERVICEAID While you run a service aid utility

DSN1COPY While you run DSN1COPY

DSN1LOGP While you run DSN1LOGP

DSN1PRNT While you run DSN1PRNT

DSN1SDMP While you run DSN1SDMP

44 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Table 5. INCORROUT modifier keywords (continued)

Primary keyword Secondary keywords Problem occurrence

SQL After you issue an SQL statement

ALLOCATE CURSOR After you issue an ALLOCATE CURSOR statement

ALTER After you issue an ALTER statement

ASSOCIATE LOCATORS After you issue an ASSOCIATE LOCATORS statement

CALL After you issue a CALL statement

CLOSE After you issue a CLOSE statement

COMMENT After you issue a COMMENT statement

COMMIT After you issue a COMMIT statement

CONNECT After you issue a CONNECT statement

CREATE After you issue a CREATE statement

DECLARE After you issue a DECLARE statement

DELETE After you issue a DELETE statement

DESCRIBE After you issue a DESCRIBE statement

DROP After you issue a DROP statement

EXECUTE After you issue an EXECUTE statement

EXPLAIN After you issue an EXPLAIN statement

FETCH After you issue a FETCH statement

FREE After you issue a FREE statement

GRANT After you issue a GRANT statement

HOLD After you issue a HOLD statement

Chapter 2. Searching the IBM Support site for known problems and solutions 45

Table 5. INCORROUT modifier keywords (continued)

Primary keyword Secondary keywords Problem occurrence

SQL continued INCLUDE After you issue an INCLUDE statement

INSERT After you issue an INSERT statement

LOCK After you issue a LOCK statement

OPEN After you issue an OPEN statement

PREPARE After you issue a PREPARE statement

RELEASE After you issue a RELEASE statement

RELEASE SAVEPOINT After you issue a RELEASE SAVEPOINT statement

RENAME After you issue a RENAME statement

REVOKE After you issue a REVOKE statement

ROLLBACK After you issue a ROLLBACK statement

ROLLBACK TO SAVEPOINT After you issue a ROLLBACK TO SAVEPOINT
statement

SAVEPOINT After you issue a SAVEPOINT statement

SELECT After you issue a SELECT statement

SELECT INTO After you issue a SELECT INTO statement

SET CONNECTION After you issue a SET CONNECTION statement

SET CURRENT
APPLICATION ENCODING
SCHEME

After you issue a SET CURRENT APPLICATION
ENCODING SCHEME statement

SET CURRENT DEGREE After you issue a SET CURRENT DEGREE statement

SET CURRENT LOCALE
LC_CTYPE

After you issue a SET CURRENT LOCALE LC_CTYPE
statement

SET CURRENT MAINTAINED
TABLE TYPES FOR
OPTIMIZATION

After you issue a SET CURRENT MAINTAINED
TABLE TYPES FOR OPTIMIZATION statement

SET CURRENT
OPTIMIZATION HINT

After you issue a SET CURRENT OPTIMIZATION
HINT statement

46 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Table 5. INCORROUT modifier keywords (continued)

Primary keyword Secondary keywords Problem occurrence

SQL continued SET CURRENT PACKAGE
PATH

After you issue a SET CURRENT PACKAGE PATH
statement

SET CURRENT PACKAGESET After you issue a SET CURRENT PACKAGESET
statement

SET CURRENT PRECISION After you issue a SET CURRENT PRECISION
statement

SET CURRENT REFRESH
AGE

After you issue a SET CURRENT REFRESH AGE
statement

SET CURRENT RULES After you issue a SET CURRENT RULES statement

SET CURRENT SQLID After you issue a SET CURRENT SQLID statement

SET host variable After you issue a SET host variable statement

SET transition variable After you issue a SET transition variable statement

UPDATE After you issue an UPDATE statement

VALUES After you issue a VALUES statement

VALUES INTO After you issue a VALUES INTO statement

WHENEVER After you issue a WHENEVER statement

STAND-ALONE While you use one of the Db2 stand-alone utilities

CHANGE LOG While you use the Change Log Inventory Utility

LOG READ While you use the Log Read utility

PRINT LOGMAP While you use the Print Log Map utility

TSOATTACH With TSO/Batch attachment facility

BIND During BIND subcommand processing

DB2 COMMAND During Db2 command processing

DCLGEN During DCLGEN subcommand processing

FREE During FREE subcommand processing

REBIND During REBIND subcommand processing

RUN While you run an application program

SPUFI While you invoke SPUFI as a panel request

TSOCOMMAND During TSO command processing

Chapter 2. Searching the IBM Support site for known problems and solutions 47

Table 5. INCORROUT modifier keywords (continued)

Primary keyword Secondary keywords Problem occurrence

UTILITY While a utility was processing

BACKUP While you run BACKUP SYSTEM utility

CHECK While you run CHECK utility

COPY While you run COPY utility

COPYTOCOPY While you run COPYTOCOPY utility

DIAGNOSE While you run DIAGNOSE utility

INDEXBUILD While you run REORG or LOAD (BUILD phase)

LOAD While you run LOAD utility

MERGECOPY While you run MERGECOPY utility

MODIFY While you run MODIFY utility

REBUILD While you run REBUILD INDEX utility

RECOVER While you run RECOVER utility

RELOAD While you run REORG utility (RELOAD phase)

REORG While you run REORG utility

REPAIR While you run REPAIR utility

REPORT While you run REPORT utility

RESTORE While you run RESTORE SYSTEM utility

RUNSTATS While you run RUNSTATS utility

QUIESCE While you run QUIESCE utility

STOSPACE While you run STOSPACE utility

UNLOAD While you run REORG (UNLOAD phase) or UNLOAD
utility

If Db2 rolls back to the wrong savepoint: or if you encounter problems when you roll back to a savepoint:

1. Collect log records for the pertinent transaction.
2. Verify that the savepoint you intended was not accidentally replaced by another savepoint of the same

name. (Savepoint log records have a record type of X'2200' and subtype X'0014'.)

If Db2 rolls back to the wrong savepoint, the data is probably incorrect. In that case, you must recover
to a prior point in time.

3. If you suspect a Db2 error, then contact the IBM Support Center and report the symptoms and supply
the pertinent log records.

SQLCODE modifier keyword
Use the SQLCODE modifier keyword when an incorrect output problem occurred in response to an SQL
statement, the SQLCODE was not issued because of a user error, and the SQLCA is available.

Procedure
To use the SQLCODE modifier keyword:
1. Locate the SQLCA.

“Finding the SQLCA” on page 215 describes how to locate the SQLCA in a dump.

48 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

An example appears in “Finding the SQLCA” on page 215.
2. Locate the three-digit decimal SQL code that follows the label SQLCODE. Find any variables in the

SQLCODE message, such as the name of an unavailable resource.
3. Find any additional relevant information that can be present. The format and contents of the SQLCA

varies from problem to problem.
Check for the following information:

• Any CSECT names that follow the label SQLERRP.
• Any meaningful 4-byte hexadecimal subcodes that follow the label SQLERRD. There are six such

subcode fields. Find only those fields whose values do not equal X'00000000' or X'FFFFFFFF'.
4. Build a keyword that is based on the relevant data that was collected. Include the SQL return code and

any pertinent CSECT names, message variables, and subcodes. The SQL return code should appear
similar to SQLCODExxx, with xxx indicating the three-digit code with the minus sign omitted. Add this
information to the keyword string and turn to Chapter 2, “Searching the IBM Support site for known
problems and solutions,” on page 3.

 (free format):
 5740XYR00 R121 INCORROUT SQL CREATE SQLCODE901
 DSNHPA RC0000C901
 (structured format):
 PIDS/5740XYR00 LVLS/121 INCORROUT
 PCSS/SQL PCSS/CREATE FLDS/SQLCODE901
 RIDS/DSNHPA PRCS/0000C901

Message modifier keyword
Use the message modifier keyword when the type-of-failure keyword is MSGx and the message you
receive contains variables.

Procedure
To use the message modifier keyword:
1. If the message contains return or reason codes, usually indicated by "RC", build a keyword similar to
RCx. Replace x with the return or reason code, and add the following information to the string. Turn to
Chapter 2, “Searching the IBM Support site for known problems and solutions,” on page 3.

 (free format):
 5740XYR00 R121 MSGDSNM002I RCE
 (structured format):
 PIDS/5740XYR00 LVLS/121 MS/DSNM002I
 PRCS/0000000E

2. If the message contains any other types of variables, append them to the keyword string. Turn to
Chapter 2, “Searching the IBM Support site for known problems and solutions,” on page 3.

 (free format):
 5740XYR00 R121 MSGDSNJ104I OPEN
 (structured format):
 PIDS/5740XYR00 LVLS/121 MS/DSNJ1041
 MS/OPEN

Dependency keywords
Program-dependent or machine-dependent symptom keywords qualify the problem description beyond
the normal set that is given so far.

For example, a failure can occur only in a CICS environment. The dependency keyword, D/CICS, when
added to the set of keywords, can help reduce the number of problem descriptions that need to be
examined.

Generally, a dependency keyword should be used only at the direction of a person from IBM Support.

Chapter 2. Searching the IBM Support site for known problems and solutions 49

Keyword
Environment

D/BATCH
Batch

D/CICS
CICS

D/IMS
IMS

D/ISPF
Interactive System Productivity Facility

D/QMF
Db2 Query Management Facility (QMF)

D/TSO
TSO

D/VTAM
VTAM

D/ZOS
z/OS

Techniques for varying the search
If you cannot find an appropriate PTF or APAR after searching the IBM Support site, you might try varying
the search argument.

Use the following guidelines to vary your search:

• If you used a complete set of keywords, and you were unable to find any problem descriptions to
examine, drop one or more of these keywords and try again:

– “Dependency keywords” on page 49
– Release level keyword
– Load Module modifier keyword
– Recovery routine modifier keyword
– SQLCODE modifier keyword
– Performance modifier keyword
– CSECT keyword

• If you tried to search with an incomplete set of keywords and found too many problem descriptions to
examine, add keywords to narrow the search. For example, for storage manager abends (which begin
with a reason code of X'00E2'), use the CSECT name that is recorded in the VRA as a means to narrow or
vary the search.

• If you tried to search with a complete set of keywords and found too many matching descriptions, and
if you received a 4-byte Db2 abend reason code, you might be able to make the set of keywords more
precise. Look up the 4-byte abend reason code in Db2 reason codes (Db2 Codes).

• If the type-of-failure keyword is WAIT, LOOP, or PERFM, and a matching problem description is not
found, try to replace whichever type-of-failure keyword that was used with one of the other two listed
here. Sometimes a problem that appears to be a performance problem might actually be a wait or loop;
likewise, a problem that seems to be a wait or a loop might actually be recorded as a performance
problem.

• If the type-of-failure keyword is MSGx and you received more than one message near the time of the
problem, replace the number of the message in the keyword with other related message numbers.

• If the type-of-failure keyword is MSGx, PERFM, or INCORROUT, and if the problem occurred
immediately after you performed an action that a Db2 publication described, then the problem can

50 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_reasoncodes.html

be recorded as a DOC type of failure. In this case, try searching with DOC as the type-of-failure keyword,
rather than with MSGx, PERFM, or INCORROUT.

Related information
IBM Support website

Getting fixes
A product fix might be available to resolve your problem.

About this task
Instructions in this topic assume that you have a PTF or APAR number. If you do not know a PTF or APAR
number that is likely to resolve your problem, see Chapter 2, “Searching the IBM Support site for known
problems and solutions,” on page 3.

Procedure
• If you have a PTF or APAR number but are unsure of whether it is applicable to your situation, search

for the number on the IBM Support website. Read the description of the fix and decide if it can resolve
your problem. If so, obtain the fix as described below.

• Obtain fixes at the IBM Shopz website by searching for the PTF or APAR number. Follow the
instructions to obtain the fix.

• Subscribe to receive weekly email notifications about fixes and other IBM Support information so that
you learn of important fixes before you experience the problems with which they are associated. See
Using the IBM My Notifications subscription service for more information.

Chapter 2. Searching the IBM Support site for known problems and solutions 51

http://www.ibm.com/support/home
http://www.ibm.com/support/home
https://www.ibm.com/software/shopzseries/ShopzSeries_public.wss?action=home
https://mediacenter.ibm.com/media/1_8nldqz8m?mhsrc=ibmsearch_a&mhq=my%20notifications

52 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Chapter 3. Recovering from different Db2 for z/OS
problems

You can troubleshoot and recover from many Db2 problems on your own by using the provided recovery
procedures.

Recovering from IRLM failure
You can recover from an IRLM failure, regardless of whether the failure results in a wait, loop, or abend.

Symptoms
The IRLM waits, loops, or abends. The following message might be issued:
DXR122E irlmnm ABEND UNDER IRLM TCB/SRB IN MODULE xxxxxxxx
ABEND CODE zzzz

Environment
If the IRLM abends, Db2 terminates. If the IRLM waits or loops, the IRLM terminates, and Db2 terminates
automatically.

Resolving the problem
Operator response:

1. Start the IRLM if you did not set it for automatic start when you installed Db2.
2. Start Db2.
3. Connect IMS to Db2, by issuing the following command, where ssid is the subsystem ID:

/START SUBSYS ssid

4. Connect CICS to Db2 by issuing the following command:

DSNC STRT

Related tasks
Connecting from CICS (Db2 Administration Guide)
Starting Db2 (Db2 Administration Guide)
Starting the IRLM (Db2 Administration Guide)

Recovering from z/OS or power failure
You can recover from a situation in which z/OS or your processor power fails.

Symptoms
No processing is occurring.

Resolving the problem
Operator response:

• If the power failure or z/OS failure has occurred:

1. IPL z/OS, and initialize the job entry subsystem (JES).
2. If you normally run VTAM with Db2, start VTAM at this point.

© Copyright IBM Corp. 1983, 2024 53

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_cicsconnect.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_startdb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_startirlm.html

3. Start the IRLM if it was not set for automatic start during Db2 installation.
4. Start Db2.
5. Use the RECOVER POSTPONED command if postponed-abort units of recovery were reported after

restarting Db2, and if the AUTO or LIGHTAUTO option of the LIMIT BACKOUT field on installation
panel DSNTIPL was not specified. If the LIGHTAUTO option is specified, postponed-abort units of
recovery are processed during the next normal Db2 restart.

6. Restart IMS or CICS.

– IMS automatically connects and resynchronizes when it is restarted.
– CICS automatically connects to Db2 if the CICS PLT contains an entry for the attachment facility

module DSNCCOM0. Alternatively, use the command DSNC STRT to connect the CICS attachment
facility to Db2.

• If you know that a power failure is imminent, issue a STOP DB2 MODE(FORCE) command to allow Db2
to stop cleanly before the power is interrupted. If Db2 is unable to stop completely before the power
failure, the situation is no worse than if Db2 were still operational.

Related concepts
Connections to the IMS control region (Db2 Administration Guide)
Related tasks
Connecting from CICS (Db2 Administration Guide)
Starting Db2 (Db2 Administration Guide)
Starting the IRLM (Db2 Administration Guide)

Recovering from disk failure
When a disk hardware failure occurs and an entire unit is lost, you can recover from this situation.

Symptoms
No I/O activity occurs for the affected disk address. Databases and tables that reside on the affected unit
are unavailable.

Resolving the problem
Operator response:

1. Assure that no incomplete I/O requests exist for the failing device. One way to do this is to force the
volume offline by issuing the following z/OS command, where xxx is the unit address:

VARY xxx,OFFLINE,FORCE

To check disk status, issue the following command:

D U,DASD,ONLINE

The following console message is displayed after you force a volume offline:

 UNIT TYPE STATUS VOLSER VOLSTATE
 4B1 3390 O-BOX XTRA02 PRIV/RSDNT

The disk unit is now available for service.

If you previously set the I/O timing interval for the device class, the I/O timing facility terminates all
requests that are incomplete at the end of the specified time interval, and you can proceed to the
next step without varying the volume offline. You can set the I/O timing interval either through the
IECIOSxx z/OS parameter library member or by issuing the following z/OS command:

SETIOS MIH,DEV=devnum,IOTIMING=mm:ss.

54 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_connecimscontrolregion.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_cicsconnect.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_startdb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_startirlm.html

2. Issue (or request that an authorized operator issue) the following Db2 command to stop all databases
and table spaces that reside on the affected volume:

-STOP DATABASE(database-name) SPACENAM(space-name)

If the disk unit must be disconnected for repair, stop all databases and table spaces on all volumes in
the disk unit.

3. Select a spare disk pack, and use ICKDSF to initialize from scratch a disk unit with a different unit
address (yyy) and the same volume serial number (VOLSER).

 // Job
 //ICKDSF EXEC PGM=ICKDSF
 //SYSPRINT DD SYSOUT=*
 //SYSIN DD *
 REVAL UNITADDRESS(yyy) VERIFY(volser)

If you initialize a 3380 or 3390 volume, use REVAL with the VERIFY parameter to ensure that
you initialize the intended volume, or to revalidate the home address of the volume and record 0.
Alternatively, use ISMF to initialize the disk unit.

4. Issue the following z/OS console command, where yyy is the new unit address:

VARY yyy,ONLINE

5. To check disk status, issue the following command:

D U,DASD,ONLINE

The following console message is displayed:

 UNIT TYPE STATUS VOLSER VOLSTATE
 7D4 3390 O XTRA02 PRIV/RSDNT

6. Delete all table spaces (VSAM linear data sets) from the ICF catalog by issuing the following access
method services command for each one of them, where y is either I or J:

DELETE catnam.DSNDBC.dbname.tsname.y0001.Annn CLUSTER NOSCRATCH

where nnn is the data set or partition number, left padded by 0 (zero).
7. For user-managed table spaces, define the VSAM cluster and data components for the new volume

by issuing the access method services DEFINE CLUSTER command with the same data set name as
in the previous step, in the following format:

catnam.DSNDBx.dbname.tsname.y0001.znnn

The y is I or J, the x is C (for VSAM clusters) or D (for VSAM data components), and znnn is the
data set or partition number, left padded by 0 (zero). For more information, see Data set naming
conventions (Db2 Administration Guide).

8. For a user-defined table space, define the new data set before an attempt to recover it. You can
recover table spaces that are defined in storage groups without prior definition.

9. Issue the following Db2 command to start all the appropriate databases and table spaces that were
previously stopped:

-START DATABASE(database-name) SPACENAM(space-name)

10. Recover the table spaces by using the Db2 RECOVER utility.

Related reference
RECOVER (Db2 Utilities)
Related information
DFSMS Access Method Services Commands
Device Support Facilities (ICKDSF) Device Support Facilities (ICKDSF) User's Guide and Reference

Chapter 3. Recovering from different Db2 for z/OS problems 55

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_datasetnamingconventions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_datasetnamingconventions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_recover.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ickug00/abstract.htm

z/OS MVS System Commands
z/OS MVS Initialization and Tuning Reference

Recovering from application errors
You can recover from a problem in which an application program placed a logically incorrect value in a
table.

Symptoms
Unexpected data is returned from an SQL SELECT statement, even though the SQLCODE that is associated
with the statement is 0.

Causes
An SQLCODE of 0 indicates that Db2 and SQL did not cause the problem, so the cause of the incorrect
data in the table is the application.

Resolving the problem
System programmer response: You might be able to use the Db2 RECOVER utility with the TOLOGPOINT
option to restore the database to a point before the error occurred. However, in many circumstances you
must manually back out the changes that were introduced by the application. Among those circumstances
are:

• Other applications changed the database after the error occurred. If you recover the table spaces that
were modified by the bad application, all subsequent changes that were made by the other applications
are lost.

• Db2 checkpoints were taken after the error occurred. In this case, you can use RECOVER TOLOGPOINT
to restore the data up to the last checkpoint before the error occurred. However, all subsequent
changes to the database are lost.

If you have a situation for which using RECOVER TOLOGPOINT is appropriate, you can use one of the
following procedures as a basis for backing out the incorrect changes that were made by the application.
The procedure that you use depends on whether you have established a quiesce point.

Backing out incorrect application changes (with a quiesce point)
If you have an established quiesce point, you can back out incorrect changes that your application made.

Procedure
To back out the incorrect changes:
1. Run the REPORT utility twice, once using the RECOVERY option and once using the TABLESPACESET

option. On each run, specify the table space that contains the inaccurate data.
If you want to recover to the last quiesce point, specify the option CURRENT when running REPORT
RECOVERY.

2. Examine the REPORT output to determine the RBA of the quiesce point.
3. Run RECOVER TOLOGPOINT with the RBA that you found, specifying the names of all related table

spaces.

Results
Recovering all related table spaces to the same quiesce point prevents violations of referential
constraints.

56 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag100/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae200/abstract.htm

Backing out incorrect application changes (without a quiesce point)
Even if you do not have an established quiesce point, you can back out incorrect changes that your
application made. Be aware, however, that if you use this procedure, you lose any updates to the database
that occurred after the last checkpoint and before the application error occurred.

Procedure
To back out the incorrect changes:
1. Run the DSN1LOGP stand-alone utility on the log scope that is available at Db2 restart, using the

SUMMARY(ONLY) option.
2. Determine the RBA of the most recent checkpoint before the first bad update occurred, from one of the

following sources:

• Message DSNR003I on the operator's console, which looks similar to this message:
DSNR003I RESTART PRIOR CHECKPOINT RBA=000007425468

The required RBA in this example is X'7425468'.

This technique works only if no checkpoints have been taken since the application introduced the
bad updates.

• Output from the print log map utility. You must know the time that the first bad update occurred.
Find the last BEGIN CHECKPOINT RBA before that time.

3. Run DSN1LOGP again, using SUMMARY(ONLY), and specify the checkpoint RBA as the value of
RBASTART.
The output lists the work in the recovery log, including information about the most recent complete
checkpoint, a summary of all processing, and an identification of the databases that are affected by
each active user.

4. Find the unit of recovery in which the error was made.
One of the messages in the output (identified as DSN1151I or DSN1162I) describes the unit of
recovery in which the error was made. To find the unit of recovery, use your knowledge of the time
that the program was run (START DATE= and TIME=), the connection ID (CONNID=), authorization ID
(AUTHID=), and plan name (PLAN=). In that message, find the starting RBA as the value of START=.

5. Run the Db2 RECOVER utility with the TOLOGPOINT option, and specify the starting RBA that you
found in the previous step.

6. Recover any related table spaces or indexes to the same point in time.

Related concepts
DSN1LOGP summary report (Db2 Administration Guide)
Related reference
DSN1LOGP (Db2 Utilities)

Recovering from IMS-related failures
When you work in a Db2-IMS environment and problems occur, you can recover from those problems.

Symptoms
Problems that occur in a Db2-IMS environment can result in a variety of symptoms:

• An IMS wait, loop, or abend is accompanied by a Db2 message that goes to the IMS console. This
symptom indicates an IMS control region failure.

• When IMS connects to Db2, Db2 detects one or more units of recovery that are indoubt.
• When IMS connects to Db2, Db2 detects that it has committed one or more units of recovery that IMS

indicates should be rolled back.

Chapter 3. Recovering from different Db2 for z/OS problems 57

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverdsn1logpsummary.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1logp.html

• Messages are issued to the IMS master terminal, to the logical terminal, or both to indicate that some
sort of IMS or Db2 abend has occurred.

Environment
Db2 can be used in an XRF (Extended Recovery Facility) recovery environment with IMS.

To resolve IMS-related problems, follow the appropriate procedure.

Related concepts
Plans for extended recovery facility toleration (Db2 Administration Guide)

Recovering from IMS control region failure
You can recover from a problem in which the IMS control region fails.

Symptoms
• IMS waits, loops, or abends.
• Db2 attempts to send the following message to the IMS master terminal during an abend:
DSNM002 IMS/TM xxxx DISCONNECTED FROM SUBSYSTEM yyyy RC=RC

This message cannot be sent if the failure prevents messages from being displayed.
• Db2 does not send any messages for this problem to the z/OS console.

Environment
• Db2 detects that IMS has failed.
• Db2 either backs out or commits work that is in process.
• Db2 saves indoubt units of recovery, which need to be resolved at reconnection time.

Resolving the problem
Operator response: Use normal IMS restart procedures, which include starting IMS by issuing the z/OS
START IMS command. The following results occur:

1. All DL/I and Db2 updates that have not been committed are backed out.
2. IMS is automatically reconnected to Db2.
3. IMS passes the recovery information for each entry to Db2 through the IMS attachment facility. (IMS

indicates whether to commit or roll back.)
4. Db2 resolves the entries according to IMS instructions.

Recovering from IMS indoubt units of recovery
When IMS connects to Db2, and Db2 has indoubt units of recovery that have not been resolved, these
units of recovery need to be resolved.

Symptoms
If Db2 has indoubt units of recovery that IMS did not resolve, the following message is issued at the IMS
master terminal, where xxxx is the subsystem identifier:
DSNM004I RESOLVE INDOUBT ENTRY(S) ARE OUTSTANDING FOR SUBSYSTEM xxxx

Causes
When this message is issued, IMS was either cold started, or it was started with an incomplete log tape.
Message DSNM004I might also be issued if Db2 or IMS abnormally terminated in response to a software
error or other subsystem failure.

58 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_extendrecoveryfacilitytoleration.html

Environment
• The connection remains active.
• IMS applications can still access Db2 databases.
• Some Db2 resources remain locked out.

If the indoubt thread is not resolved, the IMS message queues might start to back up. If the IMS queues
fill to capacity, IMS terminates. Be aware of this potential difficulty, and monitor IMS until the indoubt
units of work are fully resolved.

Resolving the problem
System programmer response:

1. Force the IMS log closed by using the /DBR FEOV command.
2. Archive the IMS log.
3. Issue the command DFSERA10 to print the records from the previous IMS log tape for the last

transaction that was processed in each dependent region. Record the PSB and the commit status from
the X'37' log that contains the recovery ID.

4. Run the DL/I batch job to back out each PSB that is involved that has not reached a commit point.
The process might be time-consuming because transactions are still being processed. This process
might also lock a number of records, which could affect the rest of the processing and the rest of the
message queues.

5. Enter the Db2 command DISPLAY THREAD (imsid) TYPE (INDOUBT).
6. Compare the NIDs (IMSID + OASN in hexadecimal) that are displayed in the DISPLAY THREAD output

with the OASNs (4 bytes decimal) as shown in the DFSERA10 output. Decide whether to commit or roll
back.

7. Use DFSERA10 to print the X'5501FE' records from the current IMS log tape. Every unit of recovery
that undergoes indoubt resolution processing is recorded; each record with an 'IDBT' code is still
indoubt. Note the correlation ID and the recovery ID, for use during the next step.

8. GUPI Enter the following Db2 command, choosing to commit or roll back, and specify the correlation
ID:

-RECOVER INDOUBT (imsid) ACTION(COMMIT|ABORT) NID (nid)

If the command is rejected because of associated network IDs, use the same command again,
substituting the recovery ID for the network ID.

GUPI

Related concepts
Duplicate IMS correlation IDs (Db2 Administration Guide)

Recovering IMS indoubt units of work that need to be rolled back
When units of recovery between IMS and Db2 are indoubt at restart time, Db2 and IMS sometimes handle
the indoubt units of recovery differently. When this situation happens, you might need to roll back the
changes.

Symptoms
The following messages are issued after a Db2 restart:

DSNM005I IMS/TM RESOLVE INDOUBT PROTOCOL PROBLEM WITH SUBSYSTEM xxxx

DFS3602I xxxx SUBSYSTEM RESOLVE-INDOUBT FAILURE,RC=yyyy

Chapter 3. Recovering from different Db2 for z/OS problems 59

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_duplicateimscorrelationids.html

Causes
The reason that these messages are issued is that indoubt units of work exist for a Db2-IMS application,
and the way that Db2 and IMS handle these units of work differs.

At restart time, Db2 attempts to resolve any units of work that are indoubt. Db2 might commit some
units and roll back others. Db2 records the actions that it takes for the indoubt units of work. At the
next connect time, Db2 verifies that the actions that it took are consistent with the IMS decisions. If the
Db2 RECOVER INDOUBT command is issued prior to an IMS attempt to reconnect, Db2 might decide
to commit the indoubt units of recovery, whereas IMS might decide to roll back the units of recovery.
This inconsistency results in the DSNM005I message being issued. Because Db2 tells IMS to retain the
inconsistent entries, the DFS3602I message is issued when the attempt to resolve the indoubt units of
recovery ends.

Environment
• The connection between Db2 and IMS remains active.
• Db2 and IMS continue processing.
• No Db2 locks are held.
• No units of work are in an incomplete state.

Resolving the problem
System programmer response: Do not use the Db2 RECOVER INDOUBT command. The problem is that
Db2 was not indoubt but should have been. Database updates have probably been committed on one side
(IMS or Db2) and rolled back on the other side.

1. Enter the IMS command /DISPLAY OASN SUBSYS DB2 to display the IMS list of units of recovery
that need to be resolved. This command generates the list of OASNs in a decimal format, not in a
hexadecimal format.

2. Issue the IMS command /CHANGE SUBSYS DB2 RESET to reset all the entries in the list. (No entries
are passed to Db2.)

3. Use DFSERA10 to print the log records that were recorded at the time of failure and during restart.
Look at the X'37', X'56', and X'5501FE' records at reconnect time. Notify IBM Support about the
problem.

4. Determine what the inconsistent unit of recovery was doing by examining the log information, and
manually make the IMS and Db2 databases consistent.

Related concepts
Duplicate IMS correlation IDs (Db2 Administration Guide)

Recovering from IMS application failure
You can recover from a situation in which an IMS application abnormally terminates in a Db2
environment.

Symptoms
The following messages are issued at the IMS master terminal and at the LTERM that entered the
transaction that is involved:
DFS555 - TRAN tttttttt ABEND (SYSIDssss);
 MSG IN PROCESS: xxxx (up to 78 bytes of data) timestamp
DFS555A - SUBSYSTEM xxxx OASN yyyyyyyyyyyyyyyy STATUS COMMIT|ABORT

Causes
The problem might be caused by a usage error in the application or by a Db2 problem.

60 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_duplicateimscorrelationids.html

Environment
• The failing unit of recovery is backed out by both DL/I and Db2.
• The connection between IMS and Db2 remains active.

Resolving the problem
Operator response:

• If you think that the problem was caused by a usage error, investigate and resolve the error.
• If you think that the problem is a Db2 problem, rather than a usage error, try to diagnose the problem

using standard diagnostic procedures. You might need to contact IBM Support if you cannot resolve the
problem yourself.

Related concepts
Techniques for debugging programs in IMS (Db2 Application programming and SQL)

Recovering from a Db2 failure in an IMS environment
When Db2 fails in a Db2-IMS environment, you can recover from this situation.

Symptoms
Db2 fails or is not running, and one of the following status situations exists:

• If you specified error option Q, the program terminates with a U3051 user abend completion code.
• If you specified error option A, the program terminates with a U3047 user abend completion code.

In either of these situations, the IMS master terminal receives IMS message DFS554, and the terminal
that is involved in the problem receives IMS message DFS555.

Resolving the problem
Operator response:

1. Restart Db2.
2. Follow the standard IMS procedures for handling application abends.

Recovering from CICS-related failure
When you work in a Db2-CICS environment and problems occur, you can recover from those problems.

Symptoms
Problems that occur in a Db2-CICS environment can result in a variety of symptoms, such as:

• Messages that indicate an abend in CICS or the CICS attachment facility
• A CICS wait or a loop
• Indoubt units of recovery between CICS and Db2

Environment
Db2 can be used in an XRF (Extended Recovery Facility) recovery environment with CICS.

Resolving the problem
To resolve CICS-related problems, follow the appropriate procedure.
Related concepts
Plans for extended recovery facility toleration (Db2 Administration Guide)

Chapter 3. Recovering from different Db2 for z/OS problems 61

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_techniquedebugims.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_extendrecoveryfacilitytoleration.html

Recovering from CICS application failures
You can recover from a CICS application abend in a Db2 environment.

Symptoms
The following message is issued at the user's terminal:
DFH2206 TRANSACTION tranid ABEND abcode BACKOUT SUCCESSFUL

In this message, tranid represents the transaction that abnormally terminated, and abcode represents the
specific abend code.

Environment
• The failing unit of recovery is backed out in both CICS and Db2.
• The connection between CICS and Db2 remains active.

Resolving the problem
Operator response: Investigate the abend by reading about the abend code.

• For an AEY9 abend, start the CICS attachment facility.
• For an ASP7 abend, determine why the CICS SYNCPOINT was unsuccessful.
• For other abends, follow appropriate diagnostic procedures.

Related concepts
CICS Transaction Server for z/OS troubleshooting and support

Recovering Db2 when CICS is not operational
You can recover Db2 from a situation in which CICS is not operational.

Symptoms
Any of the following symptoms might occur:

• CICS waits or loops.
• CICS abends, as indicated by messages or dump output.

Environment
Db2 performs each of the following actions:

• Detects the CICS failure.
• Backs out inflight work.
• Saves indoubt units of recovery that need to be resolved when CICS is reconnected.

Diagnosing the problem
If you think that CICS is in a wait or loop situation, find the origin of the wait or loop. The origin might be in
CICS, in CICS applications, or in the CICS attachment facility.

If you receive messages that indicate a CICS abend, examine the messages and dump output for more
information.

If threads are connected to Db2 when CICS terminates, Db2 issues message DSN3201I. The message
indicates that Db2 end-of-task (EOT) routines have cleaned up and disconnected any connected threads.

62 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/cics-ts/5.6?topic=mechanisms-troubleshooting-support

Resolving the problem
Operator response:

1. Correct the problem that caused CICS to terminate abnormally.
2. Do an emergency restart of CICS. The emergency restart performs each of the following actions:

• Backs out inflight transactions that changed CICS resources
• Remembers the transactions with access to Db2 that might be indoubt

3. Start the CICS attachment facility by entering the appropriate command for your release of CICS. The
CICS attachment facility performs the following actions:

• Initializes and reconnects to Db2
• Requests information from Db2 about the indoubt units of recovery and passes the information to

CICS
• Allows CICS to resolve the indoubt units of recovery

Related tasks
Connecting from CICS (Db2 Administration Guide)
Related information
Troubleshooting for CICS Db2 (CICS Db2 Guide)

Recovering Db2 when the CICS attachment facility cannot connect to Db2
You can recover Db2 when the CICS attachment facility cannot connect to Db2.

Symptoms
Any of the possible symptoms can occur:

• CICS remains operational, but the CICS attachment facility abends.
• The CICS attachment facility issues a message that indicates the reason for the connection failure, or it

requests a X'04E' dump.
• The reason code in the X'04E' dump indicates the reason for failure.
• CICS issues message DFH2206 that indicates that the CICS attachment facility has terminated

abnormally with the DSNC abend code.
• CICS application programs that try to access Db2 while the CICS attachment facility is inactive are

abnormally terminated. The code AEY9 is issued.

Environment
CICS backs out the abnormally terminated transaction and treats it like an application abend.

Resolving the problem
Operator response: Start the CICS attachment facility by entering the appropriate command for your
release of CICS. After you start the CICS attachment facility, the following events occur:

1. The CICS attachment facility initializes and reconnects to Db2.
2. The CICS attachment facility requests information about the indoubt units of recovery and passes the

information to CICS.
3. CICS resolves the indoubt units of recovery.

Chapter 3. Recovering from different Db2 for z/OS problems 63

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_cicsconnect.html
https://www.ibm.com/docs/en/cics-ts/5.6?topic=troubleshooting-db2

Recovering CICS indoubt units of recovery
When the CICS attachment facility abends, CICS and Db2 build lists of indoubt units of work, either
dynamically or during restart, depending on the failing subsystem. If any units of recovery are indoubt at
connect time, you can recover from this situation.

Symptoms
One of the following messages is sent to the user-named CICS destination that is specified for the
MSGQUEUEn(name) attribute in the RDO (resource definition online): DSN2001I, DSN2034I, DSN2035I,
or DSN2036I.

Causes
For CICS, a Db2 unit of recovery might be indoubt if the forget entry (X'FD59') of the task-related
installation exit routine is absent from the CICS system journal. The indoubt condition applies only to
the Db2 unit of recovery in this case because CICS already committed or backed out any changes to its
resources.

A Db2 unit of recovery is indoubt for Db2 if an End Phase 1 is present and the Begin Phase 2 is absent.

Environment
The following table summarizes the situations that can exist when CICS units of recovery are indoubt.

GUPI

Table 6. Situations that involve CICS abnormal indoubt units of recovery

Message ID Meaning

DSN2001I The named unit of recovery cannot be resolved by CICS because CICS was cold
started. The CICS attachment facility continues the startup process.

DSN2034I The named unit of recovery is not indoubt for Db2, but it is indoubt according to
CICS log information. The reason is probably a CICS restart with the wrong tape.
The problem might also be caused by a Db2 restart to a prior point in time.

DSN2035I The named unit of recovery is indoubt for Db2, but it is not in the CICS indoubt
list. This is probably due to an incorrect CICS restart. The CICS attachment facility
continues the startup process and provides a transaction dump. The problem might
also be caused by a Db2 restart to a prior point in time.

DSN2036I CICS indicates rollback for the named unit of recovery, but Db2 has already
committed the unit of recovery. The CICS attachment facility continues the startup
process.

GUPI

CICS retains details of indoubt units of recovery that were not resolved during connection startup. An
entry is purged when it no longer shows up on the list that is presented by Db2 or, when the entry is
present in the list, when Db2 resolves it.

Resolving the problem
System programmer response: If CICS cannot resolve one or more indoubt units of recovery, resolve
them manually by using Db2 commands. Using the steps in this procedure is rarely necessary because it
is required only where operational errors or software problems have prevented automatic resolution.

1. GUPI Obtain a list of the indoubt units of recovery from Db2 by issuing the following command:

-DISPLAY THREAD (connection-name) TYPE (INDOUBT)

64 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Messages like these are then issued:

DSNV401I - DISPLAY THREAD REPORT FOLLOWS - DSNV406I - INDOUBT THREADS - COORDINATOR
 STATUS RESET URID AUTHID
coordinator_name status yes/no urid authid
DISPLAY INDOUBT REPORT COMPLETE DSN9022I - DSNVDT '-DISPLAY THREAD' NORMAL
COMPLETION

The corr_id (correlation ID) for CICS Transaction Server for z/OS 1.2 and subsequent releases of CICS
consists of:
Bytes 1 - 4

Thread type: COMD, POOL, or ENTR
Bytes 5 - 8

Transaction ID
Bytes 9 - 12

Unique thread number

GUPI

Two threads can sometimes have the same correlation ID when the connection has been broken
several times and the indoubt units of recovery have not been resolved. In this case, use the network
ID (NID) instead of the correlation ID to uniquely identify indoubt units of recovery.

The network ID consists of the CICS connection name and a unique number that is provided by CICS at
the time that the syncpoint log entries are written. This unique number is an 8-byte store clock value
that is stored in records that are written to both the CICS system log and to the Db2 log at syncpoint
processing time. This value is referred to in CICS as the recovery token.

2. Scan the CICS log for entries that are related to a particular unit of recovery. Look for a
PREPARE record (JCRSTRID X'F959'), for the task-related installation where the recovery token field
(JCSRMTKN) equals the value that is obtained from the network-ID. The network ID is supplied by Db2
in the DISPLAY THREAD command output.

You can find the CICS task number by locating the prepare log record in the CICS log for indoubt units
of recovery. Using the CICS task number, you can locate all other entries on the log for this CICS task.

You can use the CICS journal print utility DFHJUP to scan the log.
3. Use the change log inventory utility (DSNJU003) to scan the Db2 log for entries that are related to a

particular unit of recovery. Locate the End Phase 1 record with the required network ID. Then use the
URID from this record to obtain the rest of the log records for this unit of recovery.

When scanning the Db2 log, note that the Db2 startup message DSNJ099I provides the start log RBA
for this session.

4. If needed, do indoubt resolution in Db2. GUPI To invoke Db2 to take the recovery action for an indoubt
unit of recovery, issue the Db2 RECOVER INDOUBT command, where the correlation_id is unique:

DSNC -RECOVER INDOUBT (connection-name)
 ACTION (COMMIT/ABORT)
 ID (correlation_id)

If the transaction is a pool thread, use the value of the correlation ID (corr_id) that is returned by
DISPLAY THREAD for thread#.tranid in the RECOVER INDOUBT command. In this case, the first letter
of the correlation ID is P. The transaction ID is in characters five through eight of the correlation ID.

If the transaction is assigned to a group (group is a result of using an entry thread), use
thread#.groupname instead of thread#.tranid. In this case, the first letter of the correlation ID is a
G, and the group name is in characters five through eight of the correlation ID. The groupname is the
first transaction that is listed in a group.

Chapter 3. Recovering from different Db2 for z/OS problems 65

Where the correlation ID is not unique, use the following command:

DSNC -RECOVER INDOUBT (connection-name)
 ACTION (COMMIT|ABORT)
 NID (network-id)

When two threads have the same correlation ID, use the NID keyword instead of the ID keyword. The
NID value uniquely identifies the work unit.

To recover all threads that are associated with connection-name, omit the ID option.

The command results that are in either of the following messages indicate whether the thread is
committed or rolled back:

DSNV414I - THREAD thread#.tranid COMMIT SCHEDULED
DSNV414I - THREAD thread#.tranid ABORT SCHEDULED

When you resolve indoubt units of work, note that CICS and the CICS attachment facility are not aware
of the commands to Db2 to commit or abort indoubt units of recovery because only Db2 resources are
affected. However, CICS keeps details about the indoubt threads that could not be resolved by Db2.
This information is purged either when the presented list is empty or when the list does not include a
unit of recovery that CICS remembers.

Investigate any inconsistencies that you found in the preceding steps. GUPI

Related reference
DSNJU003 (change log inventory) (Db2 Utilities)
Related information
Reading log streams using batch jobs (for example, DFHJUP) (CICS Transaction Server for z/OS)

Recovering from CICS attachment facility failure
You can recover Db2 when the CICS attachment facility abends or when a CICS attachment thread
subtask abends.

Symptoms
The symptoms depend on whether the CICS attachment facility or one of its thread subtasks terminated:

• If the main CICS attachment facility subtask abends, an abend dump is requested. The contents of the
dump indicate the cause of the abend. When the dump is issued, shutdown of the CICS attachment
facility begins.

• If a thread subtask terminates abnormally, a X'04E' dump is issued, and the CICS application abends
with a DSNC dump code. The X'04E' dump generally indicates the cause of the abend. The CICS
attachment facility remains active.

Resolving the problem
Operator response: Correct the problem that caused the abend by analyzing the CICS formatted
transaction dump or subtask SNAP dump. If the CICS attachment facility shuts down, use CICS
commands to stop the execution of any CICS-Db2 applications.

Recovering from a QMF query failure
Receipt of a -805 SQL code in a Db2 for z/OS environment that includes Db2 Query Management Facility
(QMF) might occur after you start QMF or issue a QMF command. If the Db2 subsystem was recently
migrated to a new release, you might need to rerun certain QMF installation jobs.

Symptoms
One of the following QMF messages is issued:

66 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsnju003.html
https://www.ibm.com/docs/en/cics-ts/5.6?topic=utilities-reading-log-streams-using-batch-jobs-example-dfhjup

• DSQ10202
• DSQ10205
• DSQ11205
• DSQ12105
• DSQ13005
• DSQ14152
• DSQ14153
• DSQ14154
• DSQ15805
• DSQ16805
• DSQ17805
• DSQ22889
• DSQ30805
• DSQ31805
• DSQ32029
• DSQ35805
• DSQ36805

Causes
Key QMF installation jobs were not run.

Environment
The Db2 for z/OS subsystem was migrated to a new release or migration to a new release of QMF.

Diagnosing the problem
User response:

• If your Db2 for z/OS subsystem was recently migrated to a new release, continue with "Resolving the
problem."

• If your Db2 for z/OS subsystem was not recently migrated, see other possible causes of the DSQxxxxx
messages in Troubleshooting and correcting QMF bind problems associated with a -805 SQL code.

Resolving the problem
User response: Rerun QMF installation jobs as described in Tasks to perform when you upgrade Db2 for
z/OS after you install QMF.

Recovering from subsystem termination
You can recover Db2 after Db2 or an operator-issued cancel causes the subsystem to terminate.

Symptoms
When a Db2 subsystem terminates, the specific failure is identified in one or messages. The following
messages might be issued at the z/OS console:

DSNV086E - DB2 ABNORMAL TERMINATION REASON=XXXXXXXX
DSN3104I - DSN3EC00 -TERMINATION COMPLETE
DSN3100I - DSN3EC00 - SUBSYSTEM ssnm READY FOR -START COMMAND

The following message might be issued to the IMS master terminal:

Chapter 3. Recovering from different Db2 for z/OS problems 67

http://www-01.ibm.com/support/docview.wss?uid=swg21567609
https://www.ibm.com/docs/en/SS9UMF_13.1.0/igm/igm/tpc/dsq_upgrade_db2_not_qmf.html
https://www.ibm.com/docs/en/SS9UMF_13.1.0/igm/igm/tpc/dsq_upgrade_db2_not_qmf.html

DSNM002I IMS/TM xxxx DISCONNECTED FROM SUBSYSTEM
 yyyy RC=rc

The following message might be issued to the CICS transient data error destination, which is defined in
the RDO:

DSNC2025I - THE ATTACHMENT FACILITY IS INACTIVE

Environment
• IMS and CICS continue.
• In-process IMS and CICS applications receive SQLCODE -923 (SQLSTATE '57015') when accessing Db2.

In most cases, if an IMS or CICS application program is running when a -923 SQLCODE is returned, an
abend occurs. This is because the application program generally terminates when it receives a -923
SQLCODE. To terminate, some synchronization processing occurs (such as a commit). If Db2 is not
operational when synchronization processing is attempted by an application program, the application
program abends. In-process applications can abend with an abend code X'04F'.

• IMS applications that begin to run after subsystem termination begins are handled according to the
error options.

– For option R, SQL return code -923 is sent to the application, and IMS pseudo abends.
– For option Q, the message is enqueued again, and the transaction abends.
– For option A, the message is discarded, and the transaction abends.

• CICS applications that begin to run after subsystem termination begins are handled as follows:

– If the CICS attachment facility has not terminated, the application receives a -923 SQLCODE.
– If the CICS attachment facility has terminated, the application abends (code AEY9).

Resolving the problem
Operator response:

1. Restart Db2 by issuing the command START DB2.
2. For IMS environments, re-establish the IMS connection by issuing the IMS command /START SUBSYS
DB2.

3. For CICS environments, re-establish the CICS connection by issuing the CICS attachment facility
command DSNC STRT.

Recovering from temporary resource failure
Db2 sometimes experiences a temporary problem when it accesses log data sets. In this case, you need
to recover from the situation so that processing can continue as normal.

Symptoms
Db2 issues messages for the access failure for each log data set. These messages provide information
that is needed to resolve the access error. For example:

DSNJ104I (DSNJR206 RECEIVED ERROR STATUS 00000004
 FROM DSNPCLOC FOR DSNAME=DSNC710.ARCHLOG1.A0000049

*DSNJ153E (DSNJR006 CRITICAL LOG READ ERROR
 CONNECTION-ID = TEST0001
 CORRELATION-ID = CTHDCORID001
 LUWID = V71A.SYEC1DB2.B3943707629D=10
 REASON-CODE = 00D10345

68 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Causes
Db2 might experience a problem when it attempts to allocate or open archive log data sets during the
rollback of a long-running unit of recovery. These temporary failures can be caused by:

• A temporary problem with DFHSM recall
• A temporary problem with the tape subsystem
• Uncataloged archive logs
• Archive tape mount requests being canceled

Resolving the problem
User response: You can attempt to recover from temporary failures by issuing a positive reply (Y) to the
following message:

*26 DSNJ154I (DSNJR126 REPLY Y TO RETRY LOG READ REQUEST, N TO ABEND

If the problem persists, quiesce other work in the system before replying N, which terminates Db2.

Recovering from active log failures
A variety of active log failures might occur, but you can recover from them.

Symptoms
Most active log failures are accompanied by or preceded by error messages to inform you of out-of-space
conditions, write or read I/O errors, or loss of dual active logging.

If you receive message DSNJ103I at startup time, the active log is experiencing dynamic allocation
problems. If you receive message DSNJ104I, the active log is experiencing open-close problems. In
either case, you should follow procedures in “Recovering from BSDS or log failures during restart” on page
80.

Recovering from being out of space in active logs
The available space in the active log is finite, so the active log might fill to capacity for one of several
reasons. For example, delays in offloading and excessive logging can fill the active log. You can recover
from out-of-space conditions in the active log.

Symptoms
The following warning message is issued when the last available active log data set is 5% full:

DSNJ110E - LAST COPYn ACTIVE LOG DATA SET IS nnn PERCENT FULL

The Db2 subsystem reissues the message after each additional 5% of the data set space is filled. Each
time the message is issued, the offload process is started. IFCID trace record 0330 is also issued if
statistics class 3 is active.

If the active log fills to capacity, after having switched to single logging, Db2 issues the following message,
and an offload is started.
DSNJ111E - OUT OF SPACE IN ACTIVE LOG DATA SETS

The Db2 subsystem then halts processing until an offload is completed.

Causes
The active log is out of space.

Chapter 3. Recovering from different Db2 for z/OS problems 69

Environment
An out-of-space condition on the active log has very serious consequences. Corrective action is required
before Db2 can continue processing. When the active log becomes full, the Db2 subsystem cannot do any
work that requires writing to the log until an offload is completed. Until that offload is completed, Db2
waits for an available active log data set before resuming normal Db2 processing. Normal shutdown, with
either a QUIESCE or FORCE command, is not possible because the shutdown sequence requires log space
to record system events that are related to shutdown (for example, checkpoint records).

Resolving the problem
Operator response:

1. Ensure that the offload is not waiting for a tape drive. If it is, mount a tape. Db2 then processes the
offload task.

2. If you are uncertain about what is causing the problem, enter the following command:

-ARCHIVE LOG CANCEL OFFLOAD

This command causes Db2 to restart the offload task. Issuing this command might solve the problem.
3. If issuing this command does not solve the problem, determine and resolve the cause of the

problem, and then reissue the command. If the problem cannot be resolved quickly, have the system
programmer define additional active logs until you can resolve the problem.

System programmer response: Define additional active log data sets so that Db2 can continue its normal
operation while the problem that is causing the offload failures is corrected.

1. Use the z/OS command CANCEL to stop Db2.
2. Use the access method services DEFINE command to define new active log data sets.
3. Run utility DSNJLOGF to initialize the new active log data sets.
4. Define the new active log data sets in the BSDS by using the change log inventory utility (DSNJU003).
5. Restart Db2. Offload is started automatically during startup, and restart processing occurs.

Recommendation: To minimize the number of offloads that are taken per day in your installation,
consider increasing the size of the active log data sets.

Related concepts
Making changes for active logs (Db2 Utilities)
Related reference
DSNJLOGF (preformat active log) (Db2 Utilities)
DSNJU003 (change log inventory) (Db2 Utilities)

Recovering from a write I/O error on an active log data set
You can recover from a situation in which a write error occurs on an active log data set.

Symptoms
The following message is issued:

DSNJ105I - csect-name LOG WRITE ERROR DSNAME=..., LOGRBA=...,
 ERROR STATUS= ccccffss

Causes
Although this problem can be caused by several problems, one possible cause is a CATUPDT failure.

Environment
When a write error occurs on an active log data set, the following characteristics apply:

70 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_makechangesactivelogs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsnjlogf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsnju003.html

• Db2 marks the failing Db2 log data set TRUNCATED in the BSDS.
• Db2 goes on to the next available data set.
• If dual active logging is used, Db2 truncates the other copy at the same point.
• The data in the truncated data set is offloaded later, as usual.
• The data set is not stopped; it is reused on the next cycle. However, if a DSNJ104 message indicates a

CATUPDT failure, the data set is marked STOPPED.

Resolving the problem
System programmer response: If the DSNJ104 message indicates a CATUPDT failure, use access
method services and the change log inventory utility (DSNJU003) to add a replacement data set. In this
case, you need to stop Db2. The timing of when you should take this action depends on how widespread
the problem is.

• If the additional problem is localized and does not affect your ability to recover from any other
problems, you can wait until the earliest convenient time.

• If the problem is widespread (perhaps affecting an entire set of active log data sets), stop Db2 after the
next offload.

Related reference
DSNJU003 (change log inventory) (Db2 Utilities)

Recovering from a loss of dual active logging
If you use dual active logs, which is generally recommended, and one of the active log fails, Db2 reverts to
use of a single active log. You can recover from this situation and return to dual active-log mode.

Symptoms
The following message is issued:

DSNJ004I - ACTIVE LOG COPY n INACTIVE, LOG IN SINGLE MODE,
 ENDRBA=...

Causes
This problem occurs when Db2 completes one active log data set and then finds that the subsequent copy
(COPY n) data sets have not been offloaded and are marked STOPPED.

Environment
Db2 continues in single mode until offloading completes and then returns to dual mode. If the data set is
marked STOPPED, however, intervention is required.

Resolving the problem
System programmer response:

1. Verify that offload is proceeding and is not waiting for a tape mount. You might need to run the Db2
print log map utility (DSNJU004) to determine the status of all data sets.

2. If any data sets are marked STOPPED, use IDCAMS to delete the data sets, and then re-add them by
using the Db2 change log inventory utility (DSNJU003).

Related reference
DSNJU003 (change log inventory) (Db2 Utilities)

Chapter 3. Recovering from different Db2 for z/OS problems 71

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsnju003.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsnju003.html

Recovering from I/O errors while reading the active log
You can recover from situations in which an I/O error occurs when Db2 is reading the active log.

Symptoms
The following message is issued:

DSNJ106I - LOG READ ERROR DSNAME=..., LOGRBA=...,
 ERROR STATUS=ccccffss

Environment
• If the error occurs during offload, offload tries to identify the RBA range from a second copy of the

active log.

– If no second copy of the active log exists, the data set is stopped.
– If the second copy of the active log also has an error, only the original data set that triggered the

offload is stopped. Then the archive log data set is terminated, leaving a discontinuity in the archived
log RBA range.

– The following message is issued:

DSNJ124I - OFFLOAD OF ACTIVE LOG SUSPENDED FROM RBA xxxxxx
 TO RBA xxxxxx DUE TO I/O ERROR

– If the second copy of the active log is satisfactory, the first copy is not stopped.
• If the error occurs during recovery, Db2 provides data from specific log RBAs that are requested from

another copy or archive. If this is unsuccessful, recovery fails and the transaction cannot complete, but
no log data sets are stopped. However, the table space that is being recovered is not accessible.

Resolving the problem
System programmer response:

• If the problem occurred during offload, determine which databases are affected by the active log
problem, and take image copies of those. Then proceed with a new log data set.

• You can use the IDCAMS REPRO command to archive as much of the stopped active log data set as
possible. Then run the change log inventory utility to notify the BSDS of the new archive log and its log
RBA range. Repairing the active log does not solve the problem because offload does not go back to
unload it.

• If the active log data set has been stopped, it is not used for logging. The data set is not deallocated; it is
still used for reading.

• If the data set is not stopped, an active log data set should nevertheless be replaced if persistent errors
occur. The operator is not told explicitly whether the data set has been stopped. To determine the status
of the active log data set, run the print log map utility (DSNJU004).

• If you need to replace the data set:

1. Ensure that the data is saved.

If you have dual active logs, the data is saved on the other active log, which becomes your new data
set. Skip to step “4” on page 73.

If you are not using dual active logs, take the following steps to determine whether the data set with
the error has been offloaded:

a. Use the print log map utility (DSNJU004) to list information about the archive log data sets from
the BSDS.

b. Search the list for a data set whose RBA range includes the range of the data set with the error.

72 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

2. If the data set with the error has been offloaded (that is, if the value for high RBA offloaded in the
print log map utility output is greater than the RBA range of the data set with the error), manually
add a new archive log to the BSDS by using the change log inventory utility (DSNJU003). Use
IDCAMS to define a new log that has the same LRECL and BLKSIZE values as defined in DSNZPxxx.
You can use the access method services REPRO command to copy a data set with the error to the
new archive log. If the archive log is not cataloged, Db2 can locate it from the UNIT and VOLSER
values in the BSDS.

3. If an active log data set has been stopped, an RBA range has not been offloaded; copy from the data
set with the error to a new data set. If additional I/O errors prevent you from copying the entire data
set, a gap occurs in the log and restart might fail, although the data still exists and is not overlaid. If
this occurs, see “Recovering from BSDS or log failures during restart” on page 80.

4. Stop Db2, and use the change log inventory utility to update information in the BSDS about the data
set with the error.

a. Use DELETE to remove information about the bad data set.
b. Use NEWLOG to name the new data set as the new active log data set and to give it the RBA range

that was successfully copied.

The DELETE and NEWLOG operations can be performed by the same job step; put DELETE before
NEWLOG in the SYSIN input data set. This step clears the stopped status, and Db2 eventually
archives it.

c. Delete the data set that is in error by using access method services.
d. Redefine the data set so that you can write to it. Use the access method services DEFINE

command to define the active log data sets. If you use dual logs and have a good copy of the log,
use the REPRO command to copy the contents to the new data set that you just created. If you do
not use dual logs, initialize the new data set by using the DSNJLOGF utility.

Related reference
PRIMARY QUANTITY field (PRIQTY subsystem parameter) (Db2 Installation and Migration)
DSNJU004 (print log map) (Db2 Utilities)

Recovering from archive log failures
You can recover from situations in which archive logging fails.

Symptoms
Archive log failures can result in a variety of Db2 and z/OS messages that identify problems with archive
log data sets.

One specific symptom that might occur is message DSNJ104I, which indicates an open-close problem on
the archive log.

Recovering from allocation problems with the archive log
You can recover from situations in which allocation problems occur for the archive log.

Symptoms
The following message is issued:

DSNJ103I - csect-name LOG ALLOCATION ERROR DSNAME=dsname,
ERROR STATUS=eeeeiiii, SMS REASON CODE=ssssssss

z/OS dynamic allocation provides the ERROR STATUS information. If the allocation is for offload
processing, the following message is also issued:

DSNJ115I - OFFLOAD FAILED, COULD NOT ALLOCATE AN ARCHIVE DATA SET

Chapter 3. Recovering from different Db2 for z/OS problems 73

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_priqty.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsnju004.html

Causes
Archive log allocation problems can occur when various Db2 operations fail; for example:

• The RECOVER utility executes and requires an archive log. If neither archive log can be found or used,
recovery fails.

• The active log becomes full, and an offload is scheduled. Offload tries again the next time it is triggered.
The active log does not wrap around; therefore, if no more active logs are available, the offload fails, but
data is not lost.

• The input is needed for restart, which fails. If this is the situation that you are experiencing, see
Recovering from BSDS or log failures during restart (Db2 Administration Guide)

Resolving the problem
Operator response: Check the allocation error code for the cause of the problem, and correct it. Ensure
that drives are available, and run the recovery job again. If a DFSMSdfp ACS user-exit filter exists for an
archive log data set, be careful because this can cause the Db2 subsystem to fail on a device allocation
error when Db2 attempts to read the archive log data set.

Recovering from write I/O errors during archive log offload
You can recover from write I/O errors that occur during the offload of an archive log.

Symptoms
No specific Db2 message is issued for write I/O errors. Only a z/OS error recovery program message is
issued.

If Db2 message DSNJ128I is issued, an abend in the offload task occurred, in which case you should
follow the instructions for this message.

Environment
• Offload abandons that output data set (no entry in BSDS).
• Offload dynamically allocates a new archive and restarts offloading from the point at which it was

previously triggered. For dual archiving, the second copy waits.
• If an error occurs on the new data set, these additional actions occur:

– For dual archive mode, the following DSNJ114I message is generated, and the offload processing
changes to single mode.

DSNJ114I - ERROR ON ARCHIVE DATA SET, OFFLOAD CONTINUING
 WITH ONLY ONE ARCHIVE DATA SET BEING GENERATED

– For single mode, the offload process abandons the output data set. Another attempt to offload this
RBA range is made the next time offload is triggered.

– The active log does not wrap around; if no more active logs are available, data is not lost.

Resolving the problem
Operator response: Ensure that offload activity is allocated on a drive and control unit that are
operational.

Related information
DSNJ128I (Db2 Messages)

74 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverbsdsorlogfailureduringrestart.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnj128i.html

Recovering from read I/O errors on an archive data set during recovery
You can recover from read I/O errors that occur on an archive log during recovery.

Symptoms
No specific Db2 message is issued; only the z/OS error recovery program message is issued.

Environment
• If a second copy of the archive log exists, the second copy is allocated and used.
• If a second copy of the archive log does not exist, recovery fails.

Resolving the problem
Operator response: If you recover from tape, try recovering by using a different drive. If this approach
does not work, contact the system programmer.

System programmer response: Recover to the last image copy or to the RBA of the last quiesce point.

Related reference
RECOVER (Db2 Utilities)

Recovering from insufficient disk space for offload processing
If offload processing terminates unexpectedly when Db2 is offloading the active log data sets to disk, you
can recover from this situation.

Symptoms
Prior to the failure, z/OS issues abend message IEC030I, IEC031I, or IEC032I. Offload processing
terminates unexpectedly. Db2 issues the following message:

DSNJ128I - LOG OFFLOAD TASK FAILED FOR ACTIVE LOG nnnnn

Additional z/OS abend messages might accompany message DSNJ128I.

Causes
The following situations can cause problems with insufficient disk space during Db2 offload processing:

• The size of the archive log data set is too small to contain the data from the active log data sets during
offload processing. All secondary space allocations have been used.

• All available space on the disk volumes to which the archive data set is being written has been
exhausted.

• The primary space allocation for the archive log data set (as specified in the load module for subsystem
parameters) is too large to allocate to any available online disk device.

Environment
The archive data sets that are allocated to the offload task in which the error occurred are deallocated
and deleted. Another attempt to offload the RBA range of the active log data sets is made the next time
offload is invoked.

Resolving the problem
System programmer response: The actions that you take depend on what caused Db2 message
DSNJ128I to be issued:

• If z/OS abend message IEC030I precedes Db2 message DSNJ128I, increase the primary or secondary
allocations (or both) for the archive log data set in DSNZPxxx. Another option is to reduce the size of the

Chapter 3. Recovering from different Db2 for z/OS problems 75

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_recover.html

active log data set. Modifications to DSNZPxxx require that you stop and start Db2 for the changes to
take effect. If the data that is to be offloaded is particularly large, you can mount another online storage
volume or make one available to Db2.

• If z/OS abend message IEC032I precedes message DSNJ128I, make space available on the disk
volumes, or make another online storage volume available for Db2. After you make additional space
available, issue the Db2 command ARCHIVE LOG CANCEL OFFLOAD. Db2 then retries the offload.

• If z/OS abend message IEC032I precedes Db2 message DSNJ128I, make space available on the disk
volumes, or make available another online storage volume for Db2. If this approach is not possible,
adjust the value of PRIQTY in the DSNZPxxx module to reduce the primary allocation. If the primary
allocation is reduced, you might need to increase the size of the secondary space allocation to avoid
future abends.

Related reference
PRIMARY QUANTITY field (PRIQTY subsystem parameter) (Db2 Installation and Migration)

Recovering from BSDS failures
When the bootstrap data set (BSDS) is damaged, you need to recover that BSDS, regardless of whether
you are running Db2 in dual-BSDS or single-BSDS mode.

Symptoms
If a BSDS is damaged, Db2 issues one of the following message numbers: DSNJ126I, DSNJ100I, or
DSNJ120I.
Related concepts
Management of the bootstrap data set (Db2 Administration Guide)

Recovering from an I/O error on the BSDS
When an I/O error occurs on the only copy of the BSDS, you need to recover the BSDS before Db2 can
operate normally. If an I/O error occurs on one copy of the BSDS in a dual-BSDS mode environment, you
need to recover that copy of the BSDS before the next restart.

Symptoms
The following message is issued:

DSNJ126I - BSDS ERROR FORCED SINGLE BSDS MODE

The following messages are then issued:

DSNJ107I - READ ERROR ON BSDS
 DSNAME=... ERROR STATUS=...
DSNJ108I - WRITE ERROR ON BSDS
 DSNAME=... ERROR STATUS=...

Causes
A write I/O error occurred on a BSDS.

Environment
If Db2 is in a dual-BSDS mode and one copy of the BSDS is damaged by an I/O error, the BSDS mode
changes from dual-BSDS mode to single-BSDS mode. If Db2 is in a single-BSDS mode when the BSDS is
damaged by an I/O error, Db2 terminates until the BSDS is recovered.

Resolving the problem
System programmer response:

76 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_priqty.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_bsdsmanagement.html

1. Use access method services to rename or delete the damaged BSDS and to define a new BSDS with
the same name as the failing BSDS. You can find control statements in job DSNTIJIN.

2. Issue the Db2 command RECOVER BSDS to make a copy of the good BSDS in the newly allocated data
set and to reinstate dual-BSDS mode.

Related tasks
Recovering the BSDS from a backup copy (Db2 Administration Guide)

Recovering from an error that occurs while opening the BSDS
You need to recover the bootstrap data set (BSDS) if an error occurs when Db2 opens the BSDS.

Symptoms
The following message is issued:

DSNJ100I - ERROR OPENING BSDS n DSNAME=..., ERROR STATUS=eeii

Resolving the problem
System programmer response:

1. Use access method services to delete or rename the damaged data set, to define a replacement data
set, and to copy (with the REPRO command) the remaining BSDS to the replacement.

2. Use the START DB2 command to start the Db2 subsystem.

Related tasks
Recovering the BSDS from a backup copy (Db2 Administration Guide)

Recovering from unequal timestamps on BSDSs
When timestamps on different copies of the bootstrap data set (BSDS) differ, Db2 attempts to
resynchronize the BSDSs and restore dual BSDS mode. If this attempt succeeds,Db2 restart continues
automatically. If this attempt fails, you need to recover from the situation.

Symptoms
The following message is issued:

DSNJ120I - DUAL BSDS DATA SETS HAVE UNEQUAL TIMESTAMPS,
 BSDS1 SYSTEM=..., UTILITY=..., BSDS2 SYSTEM=..., UTILITY=...

Causes
Unequal timestamps can occur for the following reasons:

• One of the volumes that contains the BSDS has been restored. All information of the restored volume is
outdated. If the volume contains any active log data sets or Db2 data, their contents are also outdated.
The outdated volume has the lower timestamp.

• Dual BSDS mode has degraded to single BSDS mode, and you are trying to start without recovering the
bad copy of the BSDS.

• The Db2 subsystem abended after updating one copy of the BSDS, but prior to updating the second
copy.

Resolving the problem
Operator response: If Db2 restart fails, notify the system programmer.

System programmer response:

Chapter 3. Recovering from different Db2 for z/OS problems 77

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverbsdsbackupcopy.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverbsdsbackupcopy.html

If Db2 fails to automatically resynchronize the BSDS data sets:

1. Run the print log map utility (DSNJU004) on both copies of the BSDS; compare the lists to determine
which copy is accurate or current.

2. Rename the outdated data set, and define a replacement for it.
3. Copy the good data set to the replacement data set, using the REPRO command of access method

services.
4. Use the access method services REPRO command to copy the current version of the active log to the

outdated data set if all the following conditions are true:

• The problem was caused by a restored outdated BSDS volume.
• The restored volume contains active log data.
• You were using dual active logs on separate volumes.

If you were not using dual active logs, cold start the subsystem.

If the restored volume contains database data, use the RECOVER utility to recover that data after
successful restart.

Recovering the BSDS from a backup copy
In some situations, the bootstrap data set (BSDS) becomes damaged, and you need to recover the BSDS
from a backup copy.

About this task
Db2 stops and does not restart until dual-BSDS mode is restored in the following situations:

• Db2 is operating in single-BSDS mode, and the BSDS is damaged.
• Db2 is operating in dual-BSDS mode, and both BSDSs are damaged.

Procedure
To recover the BSDS from a backup copy:
1. Locate the BSDS that is associated with the most recent archive log data set.

The data set name of the most recent archive log is displayed on the z/OS console in the last
occurrence of message DSNJ003I, which indicates that offloading has successfully completed. In
preparation for the rest of this procedure, keep a log of all successful archives that are noted by that
message.

• If archive logs are on disk, the BSDS is allocated on any available disk. The BSDS name is like the
corresponding archive log data set name; change only the first letter of the last qualifier, from A to B,
as in the following example:
Archive log name

DSN.ARCHLOG1.A0000001
BSDS copy name

DSN.ARCHLOG1.B0000001
• If archive logs are on tape, the BSDS is the first data set of the first archive log volume. The BSDS is

not repeated on later volumes.
2. If the most recent archive log data set has no copy of the BSDS (presumably because an error occurred

during its offload), locate an earlier copy of the BSDS from an earlier offload.
3. Rename or delete any damaged BSDS.

• To rename a damaged BSDS, use the access method services ALTER command with the NEWNAME
option.

• To delete a damaged BSDS, use the access method services DELETE command.

78 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

For each damaged BSDS, use access method services to define a new BSDS as a replacement data set.
Job DSNTIJIN contains access method services control statements to define a new BSDS. The BSDS is
a VSAM key-sequenced data set (KSDS) that has three components: cluster, index, and data. You must
rename all components of the data set. Avoid changing the high-level qualifier.

4. Use the access method services REPRO command to copy the BSDS from the archive log to one of the
replacement BSDSs that you defined in the prior step. Do not copy any data to the second replacement
BSDS; data is placed in the second replacement BSDS in a later step in this procedure.
a) Use the print log map utility (DSNJU004) to print the contents of the replacement BSDS.

You can then review the contents of the replacement BSDS before continuing your recovery work.
b) Update the archive log data set inventory in the replacement BSDS.

Examine the print log map output, and note that the replacement BSDS does not obtain a record of
the archive log from which the BSDS was copied. If the replacement BSDS is a particularly old copy,
it is missing all archive log data sets that were created later than the BSDS backup copy. Therefore,
you need to update the BSDS inventory of the archive log data sets to reflect the current subsystem
inventory.

Use the change log inventory utility (DSNJU003) NEWLOG statement to update the replacement
BSDS, adding a record of the archive log from which the BSDS was copied. Ensure that the
CATALOG option of the NEWLOG statement is properly set to CATALOG = YES if the archive log
data set is cataloged. Also, use the NEWLOG statement to add any additional archive log data sets
that were created later than the BSDS copy.

c) Update DDF information in the replacement BSDS.
If the Db2 subsystem for your installation is part of a distributed network, the BSDS contains the
DDF control record. You must review the contents of this record in the output of the print log map
utility. If changes are required, use the change log inventory DDF statement to update the BSDS
DDF record.

d) Update the active log data set inventory in the replacement BSDS.

In unusual circumstances, your installation might have added, deleted, or renamed active log data
sets since the BSDS was copied. In this case, the replacement BSDS does not reflect the actual
number or names of the active log data sets that your installation has currently in use.

If you must delete an active log data set from the replacement BSDS log inventory, use the change
log inventory utility DELETE statement.

If you need to add an active log data set to the replacement BSDS log inventory, use the change
log inventory utility NEWLOG statement. Ensure that the RBA range is specified correctly on the
NEWLOG statement.

If you must rename an active log data set in the replacement BSDS log inventory, use the change
log inventory utility DELETE statement, followed by the NEWLOG statement. Ensure that the RBA
range is specified correctly on the NEWLOG statement.

e) Update the active log RBA ranges in the replacement BSDS.
Later, when a restart is performed, Db2 compares the RBAs of the active log data sets that are
listed in the BSDS with the RBAs that are found in the actual active log data sets. If the RBAs
do not agree, Db2 does not restart. The problem is magnified when a particularly old copy of the
BSDS is used. To resolve this problem, use the change log inventory utility to change the RBAs that
are found in the BSDS to the RBAs in the actual active log data sets. Take the appropriate action,
described below, to change RBAs in the BSDS:

• If you are not certain of the RBA range of a particular active log data set, use DSN1LOGP to print
the contents of the active log data set. Obtain the logical starting and ending RBA values for the
active log data set from the DSN1LOGP output. The STARTRBA value that you use in the change
log inventory utility must be at the beginning of a control interval. Similarly, the ENDRBA value
that you use must be at the end of a control interval. To get these values, round the starting RBA
value from the DSN1LOGP output down so that it ends in X'000'. Round the ending RBA value up
so that it ends in X'FFF'.

Chapter 3. Recovering from different Db2 for z/OS problems 79

• When the RBAs of all active log data sets are known, compare the actual RBA ranges with the
RBA ranges that are found in the BSDS (listed in the print log map utility output).

If the RBA ranges are equal for all active log data sets, you can proceed to step “4.f” on page 80
without any additional work.

If the RBA ranges are not equal, adjust the values in the BSDS to reflect the actual values. For
each active log data set for which you need to adjust the RBA range, use the change log inventory
utility DELETE statement to delete the active log data set from the inventory in the replacement
BSDS. Then use the NEWLOG statement to redefine the active log data set to the BSDS.

f) If only two active log data sets are specified in the replacement BSDS, add a new active log data set
for each copy of the active log, and define each new active log data set of the replacement BSDS log
inventory.

If only two active log data sets are specified for each copy of the active log, Db2 might have
difficulty during restart. The difficulty can arise when one of the active log data sets is full and has
not been offloaded, whereas the second active log data set is close to filling. Adding a new active
log data set for each copy of the active log can alleviate difficulties on restart in this situation.

To add a new active log data set for each copy of the active log, use the access method services
DEFINE command. The control statements to accomplish this task can be found in job DSNTIJIN.
After the active log data sets are physically defined and allocated, use the change log inventory
utility NEWLOG statement to define the new active log data sets of the replacement BSDS. You do
not need to specify the RBA ranges on the NEWLOG statement.

5. Copy the updated BSDS copy to the second new BSDS data set.

The dual bootstrap data sets are now identical.
6. Optional: Use the print log map utility (DSNJU004) to print the contents of the second replacement

BSDS at this point.
7. If you have lost your current active log data set, refer to the following topics:

• “Recovering from BSDS or log failures during restart” on page 80
• Task 4: Truncate the log at the point of error (Db2 Administration Guide), which provides information

about how to construct a conditional restart control record (CRCR).
8. Restart Db2, using the newly constructed BSDS.

Db2 determines the current RBA and what active logs need to be archived.

Related information
DFSMS Access Method Services Commands

Recovering from BSDS or log failures during restart
When the bootstrap data set (BSDS) or part of the recovery log for Db2 is damaged or lost and that
damage prevents restart, you need to recover from that situation. What you do to recover varies based on
the particular circumstances.

If the problem is discovered at restart, begin with one of the following recovery procedures:

• “Recovering from active log failures ” on page 69
• “Recovering from archive log failures ” on page 73
• Recovering from BSDS failures (Db2 Administration Guide)

If the problem persists, return to the procedures in this section.

When Db2 recovery log damage terminates restart processing, Db2 issues messages to the console to
identify the damage and issue an abend reason code. (The SVC dump title includes a more specific abend
reason code to assist in problem diagnosis.) If the explanations for the reason codes indicate that restart
failed because of some problem that is not related to a log error, contact IBM Software Support.

To minimize log problems during restart, the system requires two copies of the BSDS. Dual logging is also
recommended.

80 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recovertruncatelog.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/abstract.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverbsdsfailures.html

Basic approaches to recovery: The two basic approaches to recovery from problems with the log are:

• Restart Db2, bypassing the inaccessible portion of the log and rendering some data inconsistent. Then
recover the inconsistent objects by using the RECOVER utility, or re-create the data by using REPAIR.
Use the methods that are described following this procedure to recover the inconsistent data.

• Restore the entire Db2 subsystem to a prior point of consistency. The method requires that you have
first prepared such a point; for suggestions, see Preparing to recover to a prior point of consistency (Db2
Administration Guide). Methods of recovery are described under “Recovering from unresolvable BSDS
or log data set problem during restart” on page 101.

Bypassing the damaged log

Even if the log is damaged, and Db2 is started by circumventing the damaged portion, the log is the most
important source for determining what work was lost and what data is inconsistent.

Bypassing a damaged portion of the log generally proceeds with the following steps:

1. Db2 restart fails. A problem exists on the log, and a message identifies the location of the error. The
following abend reason codes, which appear only in the dump title, can be issued for this type of
problem. This is not an exhaustive list; other codes might occur.

00D10261
00D10262
00D10263
00D10264
00D10265
00D10266
00D10267
00D10268
00D10329
00D1032A
00D1032B
00D1032C
00E80084

The following figure illustrates the general problem:

Log ErrorLog Start Log End

RBA: X Y

Time
line

Figure 6. General problem of damaged Db2 log information
2. Db2 cannot skip over the damaged portion of the log and continue restart processing. Instead, you

restrict processing to only a part of the log that is error free. For example, the damage shown in the
preceding figure occurs in the log RBA range between X to Y. You can restrict restart to all of the
log before X; then changes later than X are not made. Alternatively, you can restrict restart to all of
the log after Y; then changes between X and Y are not made. In either case, some amount of data is
inconsistent.

3. You identify the data that is made inconsistent by your restart decision. With the SUMMARY option,
the DSN1LOGP utility scans the accessible portion of the log and identifies work that must be done at
restart, namely, the units of recovery that are to be completed and the page sets that they modified.

Because a portion of the log is inaccessible, the summary information might not be complete. In some
circumstances, your knowledge of work in progress is needed to identify potential inconsistencies.

Chapter 3. Recovering from different Db2 for z/OS problems 81

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_prepareconsistencyrecover.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_prepareconsistencyrecover.html

4. You use the CHANGE LOG INVENTORY utility to identify the portion of the log to be used at restart,
and to tell whether to bypass any phase of recovery. You can choose to do a cold start and bypass the
entire log.

5. You restart Db2. Data that is unaffected by omitted portions of the log is available for immediate
access.

6. Before you allow access to any data that is affected by the log damage, you resolve all data
inconsistencies. That process is described under “Resolving inconsistencies resulting from a
conditional restart” on page 107.

Where to start
The specific procedure depends on the phase of restart that was in control when the log problem was
detected. On completion, each phase of restart writes a message to the console. You must find the last of
those messages in the console log. The next phase after the one that is identified is the one that was in
control when the log problem was detected. Accordingly, start at:

• “Recovering from failure during log initialization or current status rebuild” on page 83
• “Recovering from a failure during forward log recovery” on page 93
• “Recovering from a failure during backward log recovery” on page 98

As an alternative, determine which, if any, of the following messages was last received and follow the
procedure for that message. Other DSN messages can also be issued.

Message ID Procedure to use

DSNJ001I “Recovering from failure during log initialization or current status rebuild” on page
83

DSNJ100I “Recovering from unresolvable BSDS or log data set problem during restart” on page
101

DSNJ107 “Recovering from unresolvable BSDS or log data set problem during restart” on page
101

DSNJ1191 “Recovering from unresolvable BSDS or log data set problem during restart” on page
101

DSNR002I None. Normal restart processing can be expected.

DSNR004I “Recovering from a failure during forward log recovery” on page 93

DSNR005I “Recovering from a failure during backward log recovery” on page 98

DSNR006I None. Normal restart processing can be expected.

Other “Recovering from failure during log initialization or current status rebuild” on page
83

Another procedure (“Recovering from a failure resulting from total or excessive loss of log data” on
page 103) provides information to use if you determine (by using “Recovering from failure during log
initialization or current status rebuild” on page 83) that an excessive amount (or all) of Db2 log
information (BSDS, active, and archive logs) has been lost.

The last procedure,“Resolving inconsistencies resulting from a conditional restart” on page 107, can be
used to resolve inconsistencies introduced while using one of the restart procedures in this information.
If you decide to use “Recovering from unresolvable BSDS or log data set problem during restart” on page
101, you do not need to use “Resolving inconsistencies resulting from a conditional restart” on page 107.

Because of the severity of the situations described, the procedures identify "Operations management
action", rather than "Operator action". Operations management might not be performing all the steps in
the procedures, but they must be involved in making the decisions about the steps to be performed.

82 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Related reference
DSN1LOGP (Db2 Utilities)

Recovering from failure during log initialization or current status rebuild
When a failure occurs during the log initialization phase or the current status rebuild phase of restart, you
need to recover from this situation.

Symptoms
An abend was issued, indicating that restart failed. In addition, either the last restart message that was
received was a DSNJ001I message that indicates a failure during current status rebuild, or none of the
following messages was issued:

• DSNJ001I
• DSNR004I
• DSNR005I

If none of the preceding messages was issued, the failure occurred during the log initialization phase of
restart.

Environment
What happens in the environment depends on whether the failure occurred during log initialization or
current status rebuild.

Failure during log initialization
Db2 terminates because a portion of the log is inaccessible, and Db2 cannot locate the end of the log
during restart.

Failure during current status rebuild
Db2 terminates because a portion of the log is inaccessible, and Db2 cannot determine the state of
the subsystem at the prior Db2 termination. Possible states include: outstanding units of recovery,
outstanding database writes, and exception database conditions.

Resolving the problem
Operations management response:

To correct the problem, choose one of the following approaches:

• Correct the problem that has made the log inaccessible, and start Db2 again. To determine if this
approach is possible, read the relevant information about the messages and codes that you received.
The explanations for the messages and codes identify the corrective action that can be taken to resolve
the problem.

• Restore the Db2 log and all data to a prior consistent point, and then start Db2. This procedure is
described in “Recovering from unresolvable BSDS or log data set problem during restart” on page 101.

• Start Db2 without completing some database changes. Using a combination of Db2 services and
your own knowledge, determine what work is likely to be lost if you truncate the log. The procedure
for determining the page sets that contain incomplete changes is described in “Restarting Db2 by
truncating the log” on page 86.

Failure during log initialization phase
When a failure occurs during the log initialization phase, certain characteristics of the situation are
evident.

The following figure illustrates the timeline of events that exist when a failure occurs during the log
initialization phase.

Chapter 3. Recovering from different Db2 for z/OS problems 83

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1logp.html

Log Start Begin URID1 Begin URID3 Log Error

Time
line

Page Set B Checkpoint RBA: X Y

Figure 7. Failure during log initialization

The portion of the log between log RBAs X and Y is inaccessible. For failures that occur during the log
initialization phase, the following activities occur:

1. Db2 allocates and opens each active log data set that is not in a stopped state.
2. Db2 reads the log until the last log record is located.
3. During this process, a problem with the log is encountered, preventing Db2 from locating the end of

the log. Db2 terminates and issues an abend reason code. Some of the abend reason codes that might
be issued include:

• 00D10261
• 00D10262
• 00D10263
• 00D10264
• 00D10265
• 00D10266
• 00D10267
• 00D10268
• 00D10329
• 00D1032A
• 00D1032B
• 00D1032C
• 00E80084

During its operations, Db2 periodically records in the BSDS the RBA of the last log record that was written.
This value is displayed in the print log map report as follows:

HIGHEST RBA WRITTEN: 00000742989E

Because this field is updated frequently in the BSDS, the "highest RBA written" can be interpreted as
an approximation of the end of the log. The field is updated in the BSDS when any one of a variety of
internal events occurs. In the absence of these internal events, the field is updated each time a complete
cycle of log buffers is written. A complete cycle of log buffers occurs when the number of log buffers that
are written equals the value of the OUTPUT BUFFER field of installation panel DSNTIPL. The value in the
BSDS is, therefore, relatively close to the end of the log.

To find the actual end of the log at restart, Db2 reads the log forward sequentially, starting at the log RBA
that approximates the end of the log and continuing until the actual end of the log is located.

Because the end of the log is inaccessible in this case, some information is lost:

• Units of recovery might have successfully committed or modified additional page sets past point X.
• Additional data might have been written, including those that are identified with writes that are pending

in the accessible portion of the log.
• New units of recovery might have been created, and these might have modified data.

Because of the log error, Db2 cannot perceive these events.

A restart of Db2 in this situation requires truncation of the log.

84 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Related tasks
Restarting Db2 by truncating the log (Db2 Administration Guide)

Description of failure during current status rebuild
When a failure occurs during current status rebuild, certain characteristics of the situation are evident.

The following figure illustrates the timeline of events that exist when a failure occurs during current status
rebuild.

Log Start Begin URID1 Begin URID3 Log Error Log End

Page Set B Checkpoint RBA: X Y

Time
line

Figure 8. Failure during current status rebuild

The portion of the log between log RBAs X and Y is inaccessible. For failures that occur during the current
status rebuild phase, the following activities occur:

1. Log initialization completes successfully.
2. Db2 locates the last checkpoint. (The BSDS contains a record of its location on the log.)
3. Db2 reads the log, beginning at the checkpoint and continuing to the end of the log.
4. Db2 reconstructs the status of the subsystem as it existed at the prior termination of Db2.
5. During this process, a problem with the log is encountered, preventing Db2 from reading all required

log information. Db2 terminates and issues an abend reason code. Some of the abend reason codes
that might be issued include:

• 00D10261
• 00D10262
• 00D10263
• 00D10264
• 00D10265
• 00D10266
• 00D10267
• 00D10268
• 00D10329
• 00D1032A
• 00D1032B
• 00D1032C
• 00E80084

Because the end of the log is inaccessible in this case, some information is lost:

• Units of recovery might have successfully committed or modified additional page sets past point X.
• Additional data might have been written, including those that are identified with writes that are pending

in the accessible portion of the log.
• New units of recovery might have been created, and these might have modified data.

Because of the log error, Db2 cannot perceive these events.

A restart of Db2 in this situation requires truncation of the log.

Related tasks
Restarting Db2 by truncating the log (Db2 Administration Guide)

Chapter 3. Recovering from different Db2 for z/OS problems 85

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverbytruncatinglog.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverbytruncatinglog.html

Restarting Db2 by truncating the log
A portion of the log is inaccessible during the log initialization or current status rebuild phases of restart.
When the log is inaccessible, Db2 cannot identify precisely what units of recovery failed to complete,
what page sets had been modified, and what page sets have writes pending. You need to gather that
information, and restart Db2.

Task 1: Find the log RBA after the inaccessible part of the log
The first task in restarting Db2 by truncating the log is to locate the log RBA after the inaccessible part of
the log.

About this task
The range of the log between RBAs X and Y is inaccessible to all Db2 processes.

Procedure
To find the RBA after the inaccessible part of the log, take the action that is associated with the message
number that you received (DSNJ007I, DSNJ012I, DSNJ103I, DSNJ104I, DSNJ106I, and DSNJ113E):
• When message DSNJ007I is issued:

The problem is that an operator canceled a request for archive mount. Reason code 00D1032B is
associated with this situation and indicates that an entire data set is inaccessible.

For example, the following message indicates that the archive log data set
DSNCAT.ARCHLOG1.A0000009 is not accessible. The operator canceled a request for archive mount,
resulting in the following message:

DSNJ007I OPERATOR CANCELED MOUNT OF ARCHIVE
 DSNCAT.ARCHLOG1.A0000009 VOLSER=5B225.

To determine the value of X, run the print log map utility (DSNJU004) to list the log inventory
information. The output of this utility provides each log data set name and its associated log RBA
range, the values of X and Y.

• When message DSNJ012I is issued:

The problem is that a log record is logically damaged. Message DSNJ012I identifies the log RBA of
the first inaccessible log record that Db2 detects. The following reason codes are associated with this
situation:

– 00D10261
– 00D10262
– 00D10263
– 00D10264
– 00D10265
– 00D10266
– 00D10267
– 00D10268
– 00D10348

For example, the following message indicates a logical error in the log record at log RBA X'7429ABA'.

DSNJ012I ERROR D10265 READING RBA 000007429ABA
 IN DATA SET DSNCAT.LOGCOPY2.DS01
 CONNECTION-ID=DSN,
 CORRELATION-ID=DSN

A given physical log record is actually a set of logical log records (the log records that are generally
spoken of) and the log control interval definition (LCID). Db2 stores logical records in blocks of physical

86 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

records to improve efficiency. When this type of an error on the log occurs during log initialization or
current status rebuild, all log records within the physical log record are inaccessible. Therefore, the
value of X is the log RBA that was reported in the message, rounded down to a 4-KB boundary. (For the
example message above, the rounded 4-KB boundary value would be X'7429000'.)

• When message DSNJ103I or DSNJ104I is issued:

For message DSNJ103I, the underlying problem depends on the reason code that is issued:

– For reason code 00D1032B, an allocation error occurred for an archive log data set.
– For reason code 00E80084, an active log data set that is named in the BSDS could not be allocated

during log initialization.

For message DSNJ104I, the underlying problem is that an open error occurred for an archive and
active log data set.

In any of these cases, the message that accompanies the abend identifies an entire data set that
is inaccessible. For example, the following DSNJ103I message indicates that the archive log data
set DSNCAT.ARCHLOG1.A0000009 is not accessible. The STATUS field identifies the code that is
associated with the reason for the data set being inaccessible.

DSNJ103I - csect-name LOG ALLOCATION ERROR
 DSNAME=DSNCAT.ARCHLOG1.A0000009,ERROR
 STATUS=04980004
 SMS REASON CODE=reasond-code

To determine the value of X, run the print log map utility (DSNJU004) to list the log inventory
information. The output of the utility provides each log data set name and its associated log RBA
range, the values of X and Y.

Verify the accuracy of the information in the print log map utility output for the active log data set
with the lowest RBA range. For this active log data set only, the information in the BSDS is potentially
inaccurate for the following reasons:

– When an active log data set is full, archiving is started. Db2 then selects another active log data set,
usually the data set with the lowest RBA. This selection is made so that units of recovery do not
need to wait for the archive operation to complete before logging can continue. However, if a data
set has not been archived, nothing beyond it has been archived, and the procedure is ended.

– When logging begins on a reusable data set, Db2 updates the BSDS with the new log RBA range for
the active log data set and marks it as "Not Reusable." The process of writing the new information
to the BSDS might be delayed by other processing. Therefore, a possible outcome is for a failure to
occur between the time that logging to a new active log data set begins and the time that the BSDS
is updated. In this case, the BSDS information is not correct.

If the data set is marked "Not Reusable," the log RBA that appears for the active log data set with the
lowest RBA range in the print log map utility output is valid. If the data set is marked "Reusable," you
can assume for the purposes of this restart that the starting log RBA (X) for this data set is one greater
than the highest log RBA that is listed in the BSDS for all other active log data sets.

• When message DSNJ106I is issued:

The problem is that an I/O error occurred while a log record was being read. The message identifies
the log RBA of the first inaccessible log record that Db2 detects. Reason code 00D10329 is associated
with this situation.

For example, the following message indicates an I/O error in the log at RBA X'7429ABA'.

DSNJ106I LOG READ ERROR DSNAME=DSNCAT.LOGCOPY2.DS01,
 LOGRBA=000007429ABA,ERROR STATUS=0108320C

A given physical log record is actually a set of logical log records (the log records that are generally
spoken of) and the log control interval definition (LCID). When this type of an error on the log occurs
during log initialization or current status rebuild, all log records within the physical log record, and
beyond it to the end of the log data set, are inaccessible. This is due to the log initialization or current

Chapter 3. Recovering from different Db2 for z/OS problems 87

status rebuild phase of restart. Therefore, the value of X is the log RBA that was reported in the
message, rounded down to a 4-KB boundary. (For the example message above, the rounded 4-KB
boundary value would be X'7429000'.)

• When message DSNJ113E is issued:

The problem is that the log RBA could not be found in the BSDS. Message DSNJ113E identifies the log
RBA of the inaccessible log record. This log RBA is not registered in the BSDS. Reason code 00D1032B
is associated with this situation.

For example, the following message indicates that the log RBA X'7429ABA' is not registered in the
BSDS:

DSNJ113E RBA 000007429ABA NOT IN ANY ACTIVE OR ARCHIVE
 LOG DATA SET. CONNECTION-ID=DSN, CORRELATION-ID=DSN

Use the print log map utility (DSNJU004) to list the contents of the BSDS.

A given physical log record is actually a set of logical log records (the log records that are generally
spoken of) and the log control interval definition (LCID). When this type of an error on the log occurs
during log initialization or current status rebuild, all log records within the physical log record are
inaccessible.

Using the print log map output, locate the RBA that is closest to, but less than, X'7429ABA' for the
value of X. If you do not find an RBA that is less than X'7429ABA', a considerable amount of log
information has been lost. If this is the case, continue with “Recovering from a failure resulting from
total or excessive loss of log data” on page 103. Otherwise, continue with the next topic.

Related concepts
Description of failure during current status rebuild (Db2 Administration Guide)
Failure during log initialization phase (Db2 Administration Guide)
Related reference
DSNJU004 (print log map) (Db2 Utilities)
Related information
DSNJ007I (Db2 Messages)
DSNJ012I (Db2 Messages)
DSNJ103I (Db2 Messages)
DSNJ104I (Db2 Messages)
DSNJ106I (Db2 Messages)
DSNJ113E (Db2 Messages)

Task 2: Identify lost work and inconsistent data
In certain recovery situations (such as when you recover by truncating the log), you need to identify what
work was lost and what data is inconsistent.

Procedure
To identify lost work and inconsistent data:
1. Obtain available information to help you determine the extent of the loss.

Db2 cannot determine what units of recovery are not completed, what database state information
is lost, or what data is inconsistent in this situation. The log contains all such information, but the
information is not available. The steps below explain what to do to obtain the information that is
available within Db2 to help you determine the extent of the loss. The steps also explain how to start
Db2 in this situation.

After restart, data is inconsistent. Results of queries and any other operations on such data vary
from incorrect results to abends. Abends that occur either identify an inconsistency in the data or
incorrectly assume the existence of a problem in the Db2 internal algorithms.

88 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recovercurrentrebuilddescription.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverloginitdescription.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsnju004.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnj007i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnj012i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnj103i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnj104i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnj106i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnj113e.html

Attention: If the inconsistent page sets are not identified and the problems in them are not
resolved after starting Db2, be aware that following this procedure and allowing access to
inconsistent data involves some risk.

a) Run the print log map utility.
The report that the utility produces includes a description of the last 100 checkpoints and provides,
for each checkpoint the following information:

• The location in the log of the checkpoint (begin and end RBA)
• The date and time of day that the checkpoint was performed

b) Locate the checkpoint on the log prior to the point of failure (X).
Do that by finding the first checkpoint with an end RBA that is less than X.

Continue with the step “2” on page 89 unless one of the following conditions exists:

• You cannot find such a checkpoint. This means that a considerable amount of log has been lost.
• You find the checkpoint, but the checkpoint is several days old, and Db2 has been operational

during the interim.

In these two cases, use one of the following procedures:

• “Recovering from a failure resulting from total or excessive loss of log data” on page 103
• “Recovering from unresolvable BSDS or log data set problem during restart” on page 101

2. Determine what work is lost and what data is inconsistent.
The portion of the log that represents activity that occurred before the failure provides information
about work that was in progress at that point. From this information, you might be able to deduce what
work was in progress within the inaccessible portion of the log. If use of Db2 was limited at the time or
if Db2 was dedicated to a small number of activities (such as batch jobs that perform database loads
or image copies), you might be able to accurately identify the page sets that were made inconsistent.
To make the identification, extract a summary of the log activity up to the point of damage in the log by
using the DSN1LOGP utility.

• Use the DSN1LOGP utility to specify the "BEGIN CHECKPOINT" RBA prior to the point of failure,
which was determined in the previous task as the RBASTART. Terminate the DSN1LOGP scan prior to
the point of failure on the log (X - 1) by using the RBAEND specification.

• Specify the last complete checkpoint. This is very important for ensuring that complete information
is obtained from DSN1LOGP.

• Specify the SUMMARY(ONLY) option to produce a summary report.

The following figure is an example of a DSN1LOGP job that obtains summary information for the
checkpoint that was described previously.

//ONE EXEC PGM=DSN1LOGP
//STEPLIB DD DSN=prefix.SDSNLOADSDSNLOAD,DISP=SHR
//SYSABEND DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSSUMRY DD SYSOUT=A
//BSDS DD DSN=DSNCAT.BSDS01,DISP=SHR
//SYSIN DD *
 RBASTART (7425468) RBAEND (7428FFF) SUMMARY (ONLY)
/*

Figure 9. Sample JCL for obtaining DSN1LOGP summary output for restart
3. Analyze the DSN1LOGP utility output.

Related reference
DSN1LOGP (Db2 Utilities)

Chapter 3. Recovering from different Db2 for z/OS problems 89

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1logp.html

DSN1LOGP summary report
The DSN1LOGP utility generates a summary report, which is placed in the SYSSUMRY file. The report
includes a summary of completed events and a restart summary. You can use the information in this
report to identify lost work and inconsistent data that needs to be resolved.

The following figure shows an excerpt from the restart summary in a sample DSN1LOGP summary report.
The report is described after the figure.

DSN1157I RESTART SUMMARY
DSN1153I DSN1LSIT CHECKPOINT MEMBER=DB2A
 STARTRBA=0000000000002BBB8CAC ENDRBA=0000000000002BBC59E8
 STARTLRSN=00CA21F58479D042C000 ENDLRSN=00CA21F58480E67E4000
 DATE=12.250 TIME=14:20:29

DSN1162I DSN1LPRT MEMBER=DB2A UR CONNID=BATCH CORRID=ARCHIVE AUTHID=SYSADM
PLAN=ARCHIVE
 START DATE=00.161 TIME=11:27:30 DISP=INFLIGHT INFO=COMPLETE
 STARTRBA=0000000000002BBC888E STARTLRSN=00CA21F5849D6B88E000 NID=*
 LUWID=DSNCAT.SYEC1DB2.CA21F58084CF.0003 COORDINATOR=*
 PARTICIPANTS=*
 DATA MODIFIED:
 DATABASE=0119=JACKDB PAGE SET=0002=JACKTS
 DATABASE=0119=JACKDB PAGE SET=0005=TESTIX

DSN1160I DATABASE WRITES PENDING:
 DATABASE=0001=DSNDB01 PAGE SET=0008=DSNDB01X START=0000000000002BB8BC60
 DATABASE=0001=DSNDB01 PAGE SET=001F=DBD01 START=0000000000002BB8BED8
 DATABASE=0006=DSNDB06 PAGE SET=006C=DSNADX01 START=0000000000002BB8EE55
 DATABASE=0006=DSNDB06 PAGE SET=0787=DSNADH02 START=0000000000002BB8E858
 DATABASE=0006=DSNDB06 PAGE SET=0076=DSNUCX01
....

Figure 10. Partial sample of DSN1LOGP summary output

The following message acts as a heading, which is followed by messages that identify the units of
recovery that have not yet completed and the page sets that they modified:

DSN1157I RESTART SUMMARY

Following the summary of outstanding units of recovery is a summary of page sets that have database
writes that are pending.

In each case (units of recovery or databases with pending writes), the earliest required log record is
identified by the START information. In this context, START information is the log RBA of the earliest log
record that is required in order to complete outstanding writes for this page set.

Those units of recovery with a START log RBA equal to, or prior to, the point Y cannot be completed at
restart. All page sets that were modified by these units of recovery are inconsistent after completion of
restart when you attempt to identify lost work and inconsistent data.

All page sets that are identified in message DSN1160I with a START log RBA value equal to, or prior to,
the point Y have database changes that cannot be written to disk. As in the previously described case, all
of these page sets are inconsistent after completion of restart when you attempt to identify lost work and
inconsistent data.

At this point, you need to identify only the page sets in preparation for restart. After restart, you need to
resolve the problems in the page sets that are inconsistent.

Because the end of the log is inaccessible, some information is lost; therefore, the information is
inaccurate. Some of the units of recovery that appear to be inflight might have successfully committed, or
they might have modified additional page sets beyond point X. Additional data might have been written,
including those page sets that are identified as having pending writes in the accessible portion of the log.
New units of recovery might have been created, and these might have modified data. Db2 cannot detect
that these events occurred.

From this and other information (such as system accounting information and console messages), you
might be able to determine what work was actually outstanding and which page sets are likely to
be inconsistent after you start Db2. This is because the record of each event contains the date and

90 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

time to help you determine how recent the information is. In addition, the information is displayed in
chronological sequence.

Task 3: Determine what status information is lost
The third task in restarting Db2 by truncating the log is to determine what status information has been
lost.

About this task
Depending on what was going on in your environment before the problem occurred, some amount of
system status information might have been lost.

Procedure
To determine what system status information is lost:
1. If you already know what system status information is lost (such as in the case in which utilities are in

progress), you do not need to do anything. Continue with the next topic.
2. If you do not already know what system status information is lost, examine all relevant messages that

provide details about the loss of status information (such as in the cases of deferred restart pending or
write error ranges).
If the messages provide adequate information about what information is lost, you do not need to do
anything more. Continue with the next step.

3. If you find that all system status information is lost, try to reconstruct this information from recent
console displays, messages, and abends that alerted you to these conditions.
These page sets contain inconsistencies that you must resolve.

Task 4: Truncate the log at the point of error
The fourth task in restarting Db2 by truncating the log is to truncate the log at the point of error.

About this task
No Db2 process, including the RECOVER utility, allows a gap in the log RBA sequence. You cannot process
up to point X, skip over points X through Y, and continue after Y.

Procedure
Create a conditional restart control record (CRCR) in the BSDS by using the change log inventory utility.
Specify the following options:
ENDRBA=endrba

The endrba value is the RBA at which Db2 begins writing new log records. If point X is X'7429000',
specify ENDRBA=7429000 on the CRESTART control statement.

At restart, Db2 discards the portion of the log beyond X'7429000' before processing the log for
completing work (such as units of recovery and database writes). Unless otherwise directed, Db2
performs normal restart processing within the scope of the log. Because log information is lost, Db2
errors might occur. For example, a unit of recovery that has actually been committed might be rolled
back. Also, some changes that were made by that unit of recovery might not be rolled back because
information about data changes is lost.

FORWARD=NO
Terminates forward-log recovery before log records are processed. This option and the BACKOUT=NO
option minimize errors that might result from normal restart processing.

BACKOUT=NO
Terminates backward-log recovery before log records are processed. This option and the
FORWARD=NO option minimize errors that might result from normal restart processing.

Chapter 3. Recovering from different Db2 for z/OS problems 91

Results
Recovering and backing out units of recovery with lost information might introduce more inconsistencies
than the incomplete units of recovery.

Example
The following example is a CRESTART control statement for the ENDRBA value of X'7429000':

CRESTART CREATE,ENDRBA=7429000,FORWARD=NO,BACKOUT=NO

Task 5: Start Db2 and resolve data inconsistencies
The final task in restarting Db2 by truncating the log is to restart Db2 and resolve inconsistencies.

Before you begin
You must have a CRESTART control statement with the correct ENDRBA value and the FORWARD and
BACKOUT options set to NO.

Procedure
To start Db2 and resolve data inconsistencies:
1. Start Db2 with the following command:

-START DB2 ACCESS (MAINT)

In response to this command, Db2 performs the following actions:

• Discards from the checkpoint queue any entries with RBAs that are beyond the ENDRBA value in the
CRCR (for example, X'7429000').

• Reconstructs the system status up to the point of log truncation.
• Performs pending database writes that the truncated log specifies and that have not already been

applied to the data. You can use the DSN1LOGP utility to identify these writes. No forward recovery
processing occurs for units of work in a FORWARD=NO conditional restart. All pending writes for
in-commit and indoubt units of recovery are applied to the data. The standard forward-log recovery
processing for the different unit of work states does not occur.

• Marks all units of recovery that have committed or are indoubt as complete on the log.
• Leaves inflight and in-abort units of recovery incomplete. Inconsistent data is left in tables that

are modified by inflight or indoubt units of recovery. When you specify a BACKOUT=NO conditional
restart, inflight and in-abort units of recovery are not backed out.

In a conditional restart that truncates the log, BACKOUT=NO minimizes Db2 errors for the following
reasons:

– Inflight units of recovery might have been committed in the portion of the log that the conditional
restart discarded. If these units of recovery are backed out (as would be normal during backward-
log recovery) Db2 might back out database changes incompletely, which introduces additional
errors.

– Data that is modified by in-abort units of recovery might have been modified again after the point
of damage on the log. For in-abort units of recovery, Db2 might have written backout processing to
disk after the point of log truncation. If these units of recovery are backed out (as would be normal
during backward-log recovery), Db2 might introduce additional data inconsistencies by backing
out units of recovery that are already partially or fully backed out.

At the end of restart, the conditional restart control record (CRCR) is marked "Deactivated" to prevent
its use on a later restart. Until the restart completes successfully, the CRCR is in effect. Until data is
consistent or page sets are stopped, start Db2 with the ACCESS (MAINT) option.

2. Resolve all data inconsistency problems.

92 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Related concepts
Phase 4: Backward log recovery (Db2 Administration Guide)
Phase 3: Forward log recovery (Db2 Administration Guide)
Related tasks
Resolving inconsistencies resulting from a conditional restart (Db2 Administration Guide)

Recovering from a failure during forward log recovery
If a failure occurs during the forward-log recovery phase of restart, operations management can recover
from this situation.

Symptoms
A Db2 abend occurred, indicating that restart had failed. In addition, the last restart message that was
received was a DSNR004I message, which indicates that log initialization completed; therefore, the
failure occurred during forward log recovery.

Environment
Db2 terminates because a portion of the log is inaccessible, and Db2 is therefore unable to guarantee the
consistency of the data after restart.

Resolving the problem
Operations management response:

To start Db2 successfully, choose one of the following approaches:

• Read the information about relevant messages and codes that you received to determine if this
approach is possible. The explanations of the messages and codes identify any corrective action that
you can take to resolve the problem. If it is possible, correct the problem that made the log inaccessible,
and start Db2 again.

• Restore the Db2 log and all data to a prior consistent point and start Db2. This procedure is described in
“Recovering from unresolvable BSDS or log data set problem during restart” on page 101.

• Start Db2 without completing some database changes. Do this only if the exact changes cannot be
identified; all that can be determined is which page sets might have incomplete changes and which
units of recovery made modifications to those page sets. The procedure for determining which page
sets contain incomplete changes and which units of recovery made the modifications is described in
“Recovering from BSDS or log failures during restart” on page 80. Other topics might help you better
understand the problem.

Forward-log recovery failure
When a failure occurs during the forward-log recovery phase of Db2 restart, certain characteristics of the
situation are evident.

The following figure illustrates the events surrounding a failure during the forward-log recovery phase of
Db2 restart.

Log
Start

Begin
URID1

Begin
URID2 Log Error

Begin
URID3

Begin
URID4

Log
End

Time
line

Page
Set A

RBA: X Y Page
Set B

Checkpoint

Figure 11. Illustration of failure during forward-log recovery

The portion of the log between log RBA X and Y is inaccessible. The log initialization and current status
rebuild phases of restart completed successfully. Restart processing was reading the log in a forward
direction, beginning at some point prior to X and continuing to the end of the log. Because of the

Chapter 3. Recovering from different Db2 for z/OS problems 93

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_restartbackwardlogrecovery.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_restartforwardlogrecovery.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverinconsistencyconditional.html

inaccessibility of log data (between points X and Y), restart processing cannot guarantee the completion
of any work that was outstanding at restart prior to point Y.

Assume that the following work was outstanding at restart:

• The unit of recovery that is identified as URID1 was in-commit.
• The unit of recovery that is identified as URID2 was inflight.
• The unit of recovery that is identified as URID3 was in-commit.
• The unit of recovery that is identified as URID4 was inflight.
• Page set A had writes that were pending prior to the error on the log, continuing to the end of the log.
• Page set B had writes that were pending after the error on the log, continuing to the end of the log.

The earliest log record for each unit of recovery is identified on the log line in Figure 11 on page 93. In
order for Db2 to complete each unit of recovery, Db2 requires access to all log records from the beginning
point for each unit of recovery to the end of the log.

The error on the log prevents Db2 from guaranteeing the completion of any outstanding work that began
prior to point Y on the log. Consequently, database changes that are made by URID1 and URID2 might not
be fully committed or backed out. Writes that were pending for page set A (from points in the log prior to
Y) are lost.

Starting Db2 by limiting restart processing
When a portion of the log is inaccessible during forward recovery, starting Db2 is possible. You need to
identify the units of recovery for which database changes cannot be fully guaranteed (either committed or
backed out). You also need to identify the page sets that these units of recovery changed.

About this task
You must determine which page sets are involved because after this procedure is used, the page sets will
contain inconsistencies that you must resolve. In addition, using this procedure results in the completion
of all database writes that are pending.

Related concepts
Write operations (Db2 Performance)

Task 1: Find the log RBA after the inaccessible part of the log
The first task in restarting Db2 by limiting restart processing is to locate the log RBA that is after the
inaccessible part of the log.

About this task
The range of the log between RBAs X and Y is inaccessible to all Db2 processes.

Procedure
To find the RBA after the inaccessible part of the log, take the action that is associated with the message
number that you received (DSNJ007I, DSNJ012I, DSNJ103I, DSNJ104I, DSNJ106I, and DSNJ113E):
• When message DSNJ007I is issued:

The problem is that an operator canceled a request for archive mount. Reason code 00D1032B is
associated with this situation and indicates that an entire data set is inaccessible.

For example, the following message indicates that the archive log data set
DSNCAT.ARCHLOG1.A0000009 is not accessible. The operator canceled a request for archive mount,
resulting in the following message:

DSNJ007I OPERATOR CANCELED MOUNT OF ARCHIVE
 DSNCAT.ARCHLOG1.A0000009 VOLSER=5B225.

94 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_bufferpoolwriteoperations.html

To determine the value of X, run the print log map utility (DSNJU004) to list the log inventory
information. The output of this utility provides each log data set name and its associated log RBA
range, the values of X and Y.

• When message DSNJ012I is issued:

The problem is that a log record is logically damaged. Message DSNJ012I identifies the log RBA of
the first inaccessible log record that Db2 detects. The following reason codes are associated with this
situation:

– 00D10261
– 00D10262
– 00D10263
– 00D10264
– 00D10265
– 00D10266
– 00D10267
– 00D10268
– 00D10348

For example, the following message indicates a logical error in the log record at log RBA X'7429ABA'.

DSNJ012I ERROR D10265 READING RBA 000007429ABA
 IN DATA SET DSNCAT.LOGCOPY2.DS01
 CONNECTION-ID=DSN,
 CORRELATION-ID=DSN

A given physical log record is actually a set of logical log records (the log records that are generally
spoken of) and the log control interval definition (LCID). Db2 stores logical records in blocks of physical
records to improve efficiency. When this type of an error on the log occurs during forward log recovery,
all log records within the physical log record are inaccessible. Therefore, the value of X is the log
RBA that was reported in the message, rounded down to a 4-KB boundary. (For the example message
above, the rounded 4-KB boundary value would be X'7429000'.)

• When message DSNJ103I or DSNJ104I is issued:

For message DSNJ103I, the underlying problem depends on the reason code that is issued:

– For reason code 00D1032B, an allocation error occurred for an archive log data set.
– For reason code 00E80084, an active log data set that is named in the BSDS could not be allocated

during log initialization.

For message DSNJ104I, the underlying problem is that an open error occurred for an archive and
active log data set.

In any of these cases, the message that accompanies the abend identifies an entire data set that
is inaccessible. For example, the following DSNJ103I message indicates that the archive log data
set DSNCAT.ARCHLOG1.A0000009 is not accessible. The STATUS field identifies the code that is
associated with the reason for the data set being inaccessible.

DSNJ103I - csect-name LOG ALLOCATION ERROR
 DSNAME=DSNCAT.ARCHLOG1.A0000009,ERROR
 STATUS=04980004
 SMS REASON CODE=reasond-code

To determine the value of X, run the print log map utility (DSNJU004) to list the log inventory
information. The output of the utility provides each log data set name and its associated log RBA
range, the values of X and Y.

• When message DSNJ106I is issued:

Chapter 3. Recovering from different Db2 for z/OS problems 95

The problem is that an I/O error occurred while a log record was being read. The message identifies
the log RBA of the first inaccessible log record that Db2 detects. Reason code 00D10329 is associated
with this situation.

For example, the following message indicates an I/O error in the log at RBA X'7429ABA'.

DSNJ106I LOG READ ERROR DSNAME=DSNCAT.LOGCOPY2.DS01,
 LOGRBA=000007429ABA,ERROR STATUS=0108320C

A given physical log record is actually a set of logical log records (the log records that are generally
spoken of) and the log control interval definition (LCID). When this type of an error on the log occurs
during forward log recovery, all log records within the physical log record, and beyond it to the end of
the log data set, are inaccessible to the forward log recovery phase of restart. This is due to the log
initialization or current status rebuild phase of restart. Therefore, the value of X is the log RBA that
was reported in the message, rounded down to a 4-KB boundary. (For the example message above, the
rounded 4-KB boundary value would be X'7429000'.)

• When message DSNJ113E is issued:

The problem is that the log RBA could not be found in the BSDS. Message DSNJ113E identifies the log
RBA of the inaccessible log record. This log RBA is not registered in the BSDS. Reason code 00D1032B
is associated with this situation.

For example, the following message indicates that the log RBA X'7429ABA' is not registered in the
BSDS:

DSNJ113E RBA 000007429ABA NOT IN ANY ACTIVE OR ARCHIVE
 LOG DATA SET. CONNECTION-ID=DSN, CORRELATION-ID=DSN

Use the print log map utility (DSNJU004) to list the contents of the BSDS.

A given physical log record is actually a set of logical log records (the log records that are generally
spoken of) and the log control interval definition (LCID). When this type of an error on the log occurs
during forward log recovery, all log records within the physical log record are inaccessible.

Using the print log map output, locate the RBA that is closest to, but less than, X'7429ABA' for the
value of X. If you do not find an RBA that is less than X'7429ABA', the value of X is zero. Locate the RBA
that is closest to, by greater than, X'7429ABA'. This is the value of Y.

Related concepts
Forward-log recovery failure (Db2 Administration Guide)
Related reference
DSNJU004 (print log map) (Db2 Utilities)
Related information
DSNJ007I (Db2 Messages)
DSNJ012I (Db2 Messages)
DSNJ103I (Db2 Messages)
DSNJ104I (Db2 Messages)
DSNJ106I (Db2 Messages)
DSNJ113E (Db2 Messages)

Task 2: Identify incomplete units of recovery and inconsistent page sets
The second task in restarting Db2 by limiting restart processing is to identify incomplete units of recovery
and inconsistent page sets.

About this task
Units of recovery that cannot be fully processed are considered incomplete units of recovery. Page sets
that will be inconsistent after completion of restart are considered inconsistent page sets.

96 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverforwardlogdescription.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsnju004.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnj007i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnj012i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnj103i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnj104i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnj106i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnj113e.html

Procedure
To identify incomplete units of recovery and inconsistent page sets:
1. Determine the location of the latest checkpoint on the log by looking at one of the following sources,

whichever is more convenient:

• The operator's console contains the following message, identifying the location of the start of the
last checkpoint on the log at log RBA X'876B355'. For example:

DSNR003I RESTART ... PRIOR CHECKPOINT
 RBA=00007425468

• The print log map utility output identifies the last checkpoint, including its BEGIN CHECKPOINT RBA
2. Obtain a report of the outstanding work that is to be completed at the next restart of Db2 by running

the DSN1LOGP utility.
When you run the DSN1LOGP utility, specify the checkpoint RBA as the STARTRBA and the
SUMMARY(ONLY) option. In order to obtain complete information, be sure to include the last complete
checkpoint from running DSN1LOGP.

3. Analyze the output of the DSN1LOGP utility.
The summary report that is placed in the SYSSUMRY file contains two sections of information: a
complete summary of completed events and a restart summary.

Related concepts
DSN1LOGP summary report (Db2 Administration Guide)
Related reference
DSN1LOGP (Db2 Utilities)

Task 3: Restrict restart processing to the part of the log after the damage
The third task in restarting Db2 by limiting restart processing is to restrict restart processing to the part of
the log that is after the damage.

Procedure
To restrict restart processing to the part of the log after the damage:
1. Create a conditional restart control record (CRCR) in the BSDS by using the change log inventory utility.
2. Identify the accessible portion of the log beyond the damage by using the STARTRBA specification,

which will be used at the next restart.
3. Specify the value Y+1 (that is, if Y is X'7429FFF', specify STARTRBA=742A000).

Restart restricts its processing to the portion of the log beginning with the specified STARTRBA and
continuing to the end of the log.
For example:

CRESTART CREATE,STARTRBA=742A000

Task 4: Start Db2 and resolve inconsistent data
The final task in restarting Db2 by limiting restart processing is to start Db2 and resolve problems with
inconsistent data.

About this task
At the end of restart, the CRCR is marked DEACTIVATED to prevent its use on a subsequent restart. Until
the restart is complete, the CRCR will be in effect. Use START DB2 ACCESS(MAINT) until data is consistent
or page sets are stopped.

Procedure
To start Db2 and resolve data inconsistencies:

Chapter 3. Recovering from different Db2 for z/OS problems 97

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverdsn1logpsummary.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1logp.html

1. Start Db2 with the following command:

-START DB2 ACCESS (MAINT)

At the end of restart, the conditional restart control record (CRCR) is marked "Deactivated" to prevent
its use on a later restart. Until the restart completes successfully, the CRCR is in effect. Until data is
consistent or page sets are stopped, start Db2 with the ACCESS (MAINT) option.

2. Resolve all data inconsistency problems.

Related tasks
Resolving inconsistencies resulting from a conditional restart (Db2 Administration Guide)

Recovering from a failure during backward log recovery
When a failure occurs during backward log recovery, Db2 terminates because it cannot access a portion of
the log that it needs. Operations management can recover from this situation.

Symptoms
An abend is issued to indicate that restart failed because of a log problem. In addition, the last restart
message that is received is a DSNR005I message, indicating that forward log recovery completed and
that the failure occurred during backward log recovery.

Environment
Because a portion of the log is inaccessible, Db2 needs to roll back some database changes during
restart.

Resolving the problem
Operations management response:

To start Db2, choose one of the following approaches:

• Read the information about relevant messages and codes that you received to determine if this
approach is possible. The explanations of the messages and codes identify any corrective action that
you can take to resolve the problem. If it is possible, correct the problem that made the log inaccessible,
and start Db2 again.

• Restore the Db2 log and all data to a prior consistent point and start Db2. This procedure is described in
“Recovering from unresolvable BSDS or log data set problem during restart” on page 101.

• Start Db2 without completing some database changes. Do this only if the exact changes cannot be
identified; all that can be determined is which page sets might have incomplete changes. The procedure
for determining which page sets contain incomplete changes is described in “Bypassing backout before
restarting” on page 99. Other related topics might help you better understand the problem.

Backward log recovery failure
If a failure occurs during the backward-log recovery phase of restart, operations management can recover
from this situation.

When a failure occurs during the backward log recovery phase, certain characteristics of the situation are
evident, as the following figure shows.

Log
Start

Begin
URID5

Begin
URID6 Log Error

Time
line

RBA: X Y Checkpoint

Begin
URID7

Log
End

Figure 12. Illustration of failure during backward log recovery

98 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverinconsistencyconditional.html

The portion of the log between log RBA X and Y is inaccessible. The restart process was reading the log
in a backward direction, beginning at the end of the log and continuing backward to the point marked by
Begin URID5 in order to back out the changes that were made by URID5, URID6, and URID7. You can
assume that Db2 determined that these units of recovery were inflight or in-abort. The portion of the
log from point Y to the end of the log has been processed. However, the portion of the log from Begin
URID5 to point Y has not been processed and cannot be processed by restart. Consequently, database
changes that were made by URID5 and URID6 might not be fully backed out. All database changes made
by URID7 have been fully backed out, but these database changes might not have been written to disk. A
subsequent restart of Db2 causes these changes to be written to disk during forward recovery.

Related concepts
Recommendations for changing the BSDS log inventory (Db2 Administration Guide)

Bypassing backout before restarting
A portion of the log becomes inaccessible when a failure occurs during backward log recovery. Operations
management can recover from this situation by starting Db2 in a certain way, and then identifying the
page sets that are inconsistent because of the incomplete units of recovery.

Procedure
To bypass backout before recovery:
1. Determine the units of recovery that cannot be backed out and the page sets that will be inconsistent

after the completion of restart.
a) Determine the location of the latest checkpoint on the log by looking at one of the following

sources, whichever is more convenient:

• The operator's console contains message DSNR003I, which identifies the location of the start of
the last checkpoint on the log at log RBA X'7425468'.

DSNR003I RESTART ... PRIOR CHECKPOINT
 RBA=00007425468

• The print log map utility output identifies the last checkpoint, including its BEGIN CHECKPOINT
RBA.

b) Obtain a report of the outstanding work that is to be completed at the next Db2 restart by running
the DSN1LOGP.
When you run DSN1LOGP, specify the checkpoint RBA as the RBASTART and the SUMMARY(ONLY)
option. Include the last complete checkpoint in the execution of DSN1LOGP in order to obtain
complete information.

Analyze the output of the DSN1LOGP utility. The summary report that is placed in the SYSSUMRY
file contains two sections of information. The heading of first section of the output is the following
message:

DSN1150I SUMMARY OF COMPLETED EVENTS

That message is followed by other messages that identify completed events, such as completed
units of recovery. That section of the output does not apply to this procedure.

The heading of the second section of the output is the following message:

DSN1157I RESTART SUMMARY

That message is followed by others that identify units of recovery that are not yet completed and
the page sets that they modified. After the summary of outstanding units of recovery is a summary
of page sets with database writes that are pending.

The restart processing that failed was able to complete all units of recovery processing within the
accessible scope of the log after point Y. Database writes for these units of recovery are completed

Chapter 3. Recovering from different Db2 for z/OS problems 99

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_changebsdsloginventory.html

during the forward recovery phase of restart on the next restart. Therefore, do not bypass the
forward recovery phase. All units of recovery that can be backed out have been backed out.

All remaining units of recovery that are to be backed out (DISP=INFLIGHT or DISP=IN-ABORT) are
bypassed on the next restart because their STARTRBA values are less than the RBA of point Y.
Therefore, all page sets that were modified by those units of recovery are inconsistent after restart.
This means that some changes to data might not be backed out. At this point, you only need to
identify the page sets in preparation for restart.

2. Use the change log inventory utility to create a conditional restart control record (CRCR) in the BSDS,
and direct restart to bypass backward recovery processing during the subsequent restart by using the
BACKOUT specification.
At restart, all units of recovery that require backout are declared complete by Db2, and log records are
generated to note the end of the unit of recovery.
The change log inventory utility control statement is:

CRESTART CREATE,BACKOUT=NO

3. Start Db2.
At the end of restart, the CRCR is marked "Deactivated" to prevent its use on a subsequent restart.
Until the restart is complete, the CRCR is in effect. Use START DB2 ACCESS(MAINT) until data is
consistent or page sets are stopped.

4. Resolve all inconsistent data problems. After the successful start of Db2, resolve all data inconsistency
problems. “Resolving inconsistencies resulting from a conditional restart” on page 107 describes how
to do this. At this time, make all other data available for use.

Related concepts
DSN1LOGP summary report (Db2 Administration Guide)

Recovering from a failure during a log RBA read request
A failure might occur during a log RBA read request. For example, because of problems with the BSDS,
the requested RBA, which contains the dropped log data set, cannot be read. You can recover from the
situation.

Symptoms
Abend code 00D1032A is issued, and message DSNJ113E is displayed:
DSNJ113E RBA log-rba NOT IN ANY ACTIVE OR ARCHIVE
 LOG DATA SET. CONNECTION-ID=aaaaaaaa, CORRELATION-ID=aaaaaaaa

Causes
The BSDS is wrapping around too frequently when log RBA read requests are submitted; when the last
archive log data sets were added to the BSDS, the maximum allowable number of log data sets in the
BSDS was exceeded. This caused the earliest data sets in the BSDS to be displaced by the new entry.
Subsequently, the requested RBA containing the dropped log data set cannot be read after the wrap
occurs.

Resolving the problem
System programmer response:

1. Stop Db2 with the STOP DB2 command, if it has not already been stopped automatically as a result of
the problem.

2. Check any other messages and reason codes that are displayed, and correct the errors that are
indicated. Locate the output from an old execution of the print log map utility, and identify the data set
that contains the missing RBA. If the data set has not been reused, run the change log inventory utility
to add this data set back into the inventory of log data sets.

100 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverdsn1logpsummary.html

3. Increase the maximum number of archive log volumes that can be recorded in the BSDS. To do this,
update the MAXARCH system parameter value as follows:

a. Start the installation CLIST.
b. On panel DSNTIPA1, select UPDATE mode.
c. On panel DSNTIPT, change any data set names that are not correct.
d. On panel DSNTIPB, select the ARCHIVE LOG DATA SET PARAMETERS option.
e. On panel DSNTIPA, increase the value of RECORDING MAX.
f. When the installation CLIST editing completes, rerun job DSNTIJUZ to recompile the system

parameters.
4. Start Db2 with the START DB2 command.

Related tasks
Updating subsystem parameter and application default values (Db2 Installation and Migration)
Related reference
RECORDING MAX field (MAXARCH subsystem parameter) (Db2 Installation and Migration)
DSNJU003 (change log inventory) (Db2 Utilities)

Recovering from unresolvable BSDS or log data set problem during restart
During a restart of Db2, serious problems with the bootstrap data set (BSDS) or log data sets might occur.
However, operations management can recover from these problems. Use of dual logging (active logs,
archive logs, and bootstrap data sets) can reduce your efforts in resolving these sorts of problems.

Symptoms
The following messages are issued:

• DSNJ100I
• DSNJ107I
• DSNJ119I

Causes
Any of the following problems might cause problems with the BSDS or log data sets during restart:

• A log data set is physically damaged.
• Both copies of a log data set are physically damaged in the case of dual logging mode.
• A log data set is lost.
• An archive log volume was reused even though it was still needed.
• A log data set contains records that are not recognized by Db2 because they are logically broken.

Environment
Db2 cannot be started until this procedure is performed.

Resolving the problem
Operations management response:

Serious cases such as this sometimes necessitate a fallback to a prior shutdown level.

• If you decide to fall back (because the amount of lost information is not excessive):

1. See Preparing to recover to a prior point of consistency (Db2 Administration Guide).
2. Follow the procedure in Falling back to a prior shutdown point (Db2 Administration Guide).

Chapter 3. Recovering from different Db2 for z/OS problems 101

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_updatezparm.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_maxarch.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsnju003.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_prepareconsistencyrecover.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverfallbacktopriorshutdown.html

If you use do a fallback, all database changes between the shutdown point and the present are lost.
However, all the data that is retained will be consistent within Db2.

• If you decide not to fall back (because too much log information has been lost), use the alternative
approach that is described in Recovering from a failure resulting from total or excessive loss of log data
(Db2 Administration Guide).

Falling back to a prior shutdown point
When a failure occurs in your environment, you might decide to fall back to a prior shutdown point.

Procedure
To fallback to a prior shutdown point:

1. Use the print log map utility on the most current copy of the BSDS.
Even if you are not able to do this, continue with the next step. (If you are unable to do this, an error
message is issued.)

2. Use the access method services IMPORT command to restore the backed-up versions of the BSDS
and active log data sets.

3. Use the print log map utility on the copy of the BSDS with which Db2 is to be restarted.
4. Determine whether any archive log data sets must be deleted.

• If you have a copy of the most current BSDS, compare it to the BSDS with which Db2 is to be
restarted. Delete and uncatalog any archive log data sets that are listed in the most current BSDS
but are not listed in the previous one. These archive log data sets are normal physical sequential
(SAM) data sets. If you are able to do this step, continue with step “5” on page 102.

• If you were not able to print a copy of the most current BSDS and the archive logs are cataloged,
use access method services LISTCAT to check for archive logs with a higher sequence number than
the last archive log that is shown in the BSDS that is being used to restart Db2.

– If no archive log data sets with a higher sequence number exist, you do not need to delete or
uncatalog any data sets, and you can continue with step “5” on page 102.

– Delete and uncatalog all archive log data sets that have a higher sequence number than the last
archive log data set in the BSDS that is being used to restart Db2. These archive log data sets are
SAM data sets. Continue with the next step.

If the archive logs are not cataloged, you do not need to uncatalog them.
5. Issue the START DB2 ACCESS(MAINT) command until data is consistent or page sets are stopped.
6. Determine what data needs to be recovered, what data needs to be dropped, what data can remain

unchanged, and what data needs to be recovered to the prior shutdown point.

• For table spaces and indexes that might have been changed after the shutdown point, use the Db2
RECOVER utility to recover these table spaces and indexes. They must be recovered in the proper
order.

• For data that has not been changed after the shutdown point (data used with RO access), you do
not need to use RECOVER or DROP.

• For table spaces that were deleted after the shutdown point, issue the DROP statement. These
table spaces will not be recovered.

• Re-create any objects that were created after the shutdown point.

You must recover all data that has potentially been modified after the shutdown point. If you do
not use the RECOVER utility to recover modified data, serious problems might can occur because of
data inconsistency.

If you try to access inconsistent data, any of the following events can occur (and the list is not
comprehensive):

• You can successfully access the correct data.

102 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recovertotalorexcessivelossoflog.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recovertotalorexcessivelossoflog.html

• You can access data without Db2 recognizing any problem, but it might not be the data that you
want (the index might be pointing to the wrong data).

• Db2 might recognize that a page is logically incorrect and, as a result, abend the subsystem with an
X'04E' abend completion code and an abend reason code of X'00C90102'.

• Db2 might notice that a page was updated after the shutdown point and, as a result, abend the
requester with an X'04E' abend completion code and an abend reason code of X'00C200C1'.

7. Analyze the CICS log and the IMS log to determine the work that must be redone (work that was
lost because of shutdown at the previous point). Inform all users (TSO users, QMF users, and batch
users for whom no transaction log tracking has been performed) about the decision to fall back to a
previous point.

8. When Db2 is started after being shut down, indoubt units of recovery might exist. This occurs if
transactions are indoubt when the STOP DB2 MODE (QUIESCE) command is issued. When Db2
is started again, these transactions will still be indoubt to Db2. IMS and CICS cannot know the
disposition of these units of recovery.

To resolve these indoubt units of recovery, use the RECOVER INDOUBT command.
9. If a table space was dropped and re-created after the shutdown point, drop and re-create it again

after Db2 is restarted. To do this, use SQL DROP and SQL CREATE statements.

Do not use the RECOVER utility to accomplish this, because it will result in the old version (which
might contain inconsistent data) that is being recovered.

10. If any table spaces and indexes were created after the shutdown point, re-create these after Db2 is
restarted.
You can accomplish this in these ways:

• For data sets that are defined in Db2 storage groups, use the CREATE TABLESPACE statement,
and specify the appropriate storage group names. Db2 automatically deletes the old data set and
redefines a new one.

• For user-defined data sets, use the access method services DELETE command to delete the old
data sets. After these data sets have been deleted, use the access method services DEFINE
command to redefine them; then use the CREATE TABLESPACE statement.

Related reference
RECOVER (Db2 Utilities)

Recovering from a failure resulting from total or excessive loss of log data
If a situation occurs that causes the entire log or an excessive amount of log data to be lost or destroyed,
operations management needs to recover from that situation.

Symptoms
This situation is generally accompanied by messages or abend reason codes that indicate that an
excessive amount of log information, or the entire log, has been lost.

Diagnosing the problem
In this situation, you need to rely on your own sources to determine what data is inconsistent as a result
of the failure; Db2 cannot provide any hints of inconsistencies. For example, you might know that Db2
was dedicated to a few processes (such as utilities) during the Db2 session, and you might be able to
identify the page sets that they modified. If you cannot identify the page sets that are inconsistent, you
must decide whether you are willing to assume the risk that is involved in restarting Db2 under those
conditions.

Resolving the problem
Operations management response:

Chapter 3. Recovering from different Db2 for z/OS problems 103

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_recover.html

If you decide that a restart is needed, restart Db2 without any log data by using the appropriate
procedure, depending on whether the log is totally or partially (but excessively) lost.

Recovering from a total loss of the log
If all system and user table spaces remain intact and you have a recent copy of the BSDS, you can recover
from a total loss of the log. Db2 can still be restarted, and data that belongs to that Db2 subsystem can
still be accessed.

Before you begin
All system and user table spaces must be intact, and you must have a recent copy of the BSDS. Other
VSAM clusters on disk, such as the system databases DSNDB01, DSNDB04, and DSNB06, and also user
databases are assumed to exist.

Procedure
To restart Db2 when the entire log is lost:
1. Define and initialize the BSDSs by recovering the BSDS from a backup copy.
2. Define the active log data sets by using the access method services DEFINE command. Run utility

DSNJLOGF to initialize the new active log data sets.
3. Prepare to restart Db2 with no log data.

Each data and index page contains the log RBA of the last log record that was applied against the page.
Safeguards within Db2 disallow a modification to a page that contains a log RBA that is higher than the
current end of the log. You have two choices:

• Determine the highest possible log RBA of the prior log. From previous console logs that were
written when Db2 was operational, locate the last DSNJ001I message. When Db2 switches to a
new active log data set, this message is written to the console, identifying the data set name and
the highest potential log RBA that can be written for that data set. Assume that this is the value
X'8BFFF'. Add one to this value (X'8C000'), and create a conditional restart control record that
specifies the following change log inventory control statement:

CRESTART CREATE,STARTRBA=8C000,ENDRBA=8C000

When Db2 starts, all phases of restart are bypassed, and logging begins at log RBA X'8C000'. If you
choose this method, you do not need to use the RESET option of the DSN1COPY utility, and you can
save a lot of time.

• Run the DSNJU003 utility, specifying the DELETE and NEWLOG options to delete and create new
logs for all active log data sets.

• Run the DSN1COPY utility, specifying the RESET option to reset the log RBA in every data and index
page. Depending on the amount of data in the subsystem, this process might take quite a long
time. Because the BSDS has been redefined and reinitialized, logging begins at log RBA 0 when Db2
starts.

If the BSDS is not reinitialized, you can force logging to begin at log RBA 0 by constructing a
conditional restart control record (CRCR) that specifies a STARTRBA and ENDRBA that are both
equal to 0, as the following command shows:

CRESTART CREATE,STARTRBA=0,ENDRBA=0

4. Start Db2. Use the START DB2 ACCESS(MAINT) command until data is consistent or page sets are
stopped.

5. After restart, resolve all inconsistent data as described in “Resolving inconsistencies resulting from a
conditional restart” on page 107.

Related tasks
Deferring restart processing (Db2 Administration Guide)

104 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_deferrestartprocessing.html

Recovering the BSDS from a backup copy (Db2 Administration Guide)
Related reference
DSNJLOGF (preformat active log) (Db2 Utilities)

Recovering from an excessive loss of active log data
When your site experiences an excessive loss of active log data, you can develop a procedure for
restarting in this situation. Do not redefine the BSDS.

About this task
You can recover from an excessive loss of active log data in one of two ways.

Recovering Db2 by creating a gap in the active log
If your site experiences an excessive loss of active log data, you can recover by creating a gap in the active
log.

Procedure
To recover by creating a gap in the active log:
1. Use the print log map utility (DSNJU004) on the copy of the BSDS with which Db2 is to be restarted.
2. Use the print log map output to obtain the data set names of all active log data sets. Use the access

method services LISTCAT command to determine which active log data sets are no longer available or
usable.

3. Use the access method services DELETE command to delete all active log data sets that are no longer
usable.

4. Use the access method services DEFINE command to define new active log data sets. Run the
DSNJLOGF utility to initialize the new active log data sets. Define one active log data set for each one
that is found to be no longer available or usable in step “2” on page 105. Use the active log data
set name that is found in the BSDS as the data set name for the access method services DEFINE
command.

5. Refer to the print log map utility (DSNJU004) output, and note whether an archive log data set exists
that contains the RBA range of the redefined active log data set.
To do this, note the starting and ending RBA values for the active log data set that was recently
redefined, and look for an archive log data set with the same starting and ending RBA values.

If no such archive log data sets exist:

a) Use the change log inventory utility (DSNJU003) DELETE statement to delete the recently redefined
active log data sets from the BSDS active log data set inventory.

b) Use the change log inventory utility (DSNJU003) NEWLOG statement to add the active log data set
to the BSDS active log data set inventory. Do not specify RBA ranges on the NEWLOG statement.

If the corresponding archive log data sets exist, two courses of action are available:

• If you want to minimize the number of potential read operations on the archive log data sets, use
the access method services REPRO command to copy the data from each archive log data set into
the corresponding active log data set. Ensure that you copy the proper RBA range into the active log
data set.

Ensure that the active log data set is large enough to hold all the data from the archive log data
set. When Db2 does an archive operation, it copies the log data from the active log data set to the
archive log data set, and then pads the archive log data set with binary zeros to fill a block. In order
for the access method services REPRO command to be able to copy all of the data from the archive
log data set to a recently defined active log data set, the new active log data set might need to be
larger than the original one.

For example, if the block size of the archive log data set is 28 KB, and the active log data set
contains 80 KB of data, Db2 copies the 80 KB and pads the archive log data set with 4 KB of nulls

Chapter 3. Recovering from different Db2 for z/OS problems 105

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverbsdsbackupcopy.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsnjlogf.html

to fill the last block. Thus, the archive log data set now contains 84 KB of data instead of 80 KB. In
order for the access method services REPRO command to complete successfully, the active log data
set must be able to hold 84 KB, rather than just 80 KB of data.

• If you are not concerned about read operations against the archive log data sets, complete the two
steps that appear in the steps “5.a” on page 105 and “5.b” on page 105 (as though the archive data
sets did not exist).

6. Choose the appropriate point for Db2 to start logging.
To do this, determine the highest possible log RBA of the prior log. From previous console logs that
were written when Db2 was operational, locate the last DSNJ001I message. When Db2 switches to a
new active log data set, this message is written to the console, identifying the data set name and the
highest potential log RBA that can be written for that data set. Assume that this is the value X'8BFFF'.
Add one to this value (X'8C000'), and create a conditional restart control record that specifies the
following change log inventory control statement:

CRESTART CREATE,STARTRBA=8C000,ENDRBA=8C000

When Db2 starts, all phases of restart are bypassed, and logging begins at log RBA X'8C000'. If you
choose this method, you do not need to use the RESET option of the DSN1COPY utility, and you can
save a lot of time.

7. To restart Db2 without using any log data, create a conditional restart control record for the change log
inventory utility (DSNJU003).

8. Start Db2. Use the START DB2 ACCESS(MAINT) command until data is consistent or page sets are
stopped.

9. After restart, resolve all inconsistent data as described in “Resolving inconsistencies resulting from a
conditional restart” on page 107.

Results
This procedure causes all phases of restart to be bypassed and logging to begin at the point in the log
RBA that you identified in step “6” on page 106 (X'8C000' in the example given in this procedure). This
procedure creates a gap in the log between the highest RBA kept in the BSDS and, in this example,
X'8C000', and that portion of the log is inaccessible.

What to do next
Because no Db2 process can tolerate a gap, including RECOVER, you need to take image copies of all data
after a cold start, even data that you know is consistent.
Related reference
DSNJU003 (change log inventory) (Db2 Utilities)

Recovering Db2 without creating a gap in the active log
You can do a cold start without creating a gap in the log. Although this approach does eliminate the gap in
the physical log record, you cannot use a cold start to resolve the logical inconsistencies.

Procedure
To recover without creating a gap in the active log:
1. Locate the last valid log record by using the DSN1LOGP utility to scan the log.

Message DSN1213I identifies the last valid log RBA.
2. Identify the last RBA that is known to be valid by examining message DSN1213I.

For example, if message DSN1213I indicates that the last valid log RBA is X'89158', round this value
up to the next 4-KB boundary, which in this example is X'8A000'.

3. Create a conditional restart control record (CRCR).
For example:

CRESTART CREATE,STARTRBA=8A000,ENDRBA=8A000

106 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsnju003.html

4. Start Db2 with the START DB2 ACCESS(MAINT) command until data is consistent or page sets are
stopped.

5. Take image copies of all data for which data modifications were recorded beyond the log RBA that
was used in the CRESTART statement (in this example, X'8A000'). If you do not know what data was
modified, take image copies of all data.

If you do not take image copies of data that has been modified beyond the log RBA that was used in
the CRESTART statement, future RECOVER utility operations might fail or result in inconsistent data.

What to do next
After restart, resolve all inconsistent data as described in “Resolving inconsistencies resulting from a
conditional restart” on page 107.

Resolving inconsistencies resulting from a conditional restart
When a conditional restart of the Db2 subsystem is done, several problems might occur. Recovery from
these problems is possible and varies based on the specific situation.

About this task
The following problems might occur after a conditional restart of Db2:

• Some amount of work is left incomplete.
• Some data is left inconsistent.
• Information about the status of objects within the Db2 subsystem is made unusable.

Inconsistencies in a distributed environment
In a distributed environment, when a Db2 subsystem restarts, Db2 indicates its restart status and the
name of its recovery log to the systems that it communicates with. The two possible conditions for restart
status are warm and cold.

A cold status is associated with a cold start, which is a process by which a Db2 subsystem restarts without
processing any log records. Db2 has no memory of previous connections with its partner. The general
process that occurs with a cold start in a distributed environment is as follows:

1. The partner (for example CICS) accepts the cold start connection and remembers the recovery log
name of the Db2 subsystem that experienced the cold start.

2. If the partner has indoubt thread resolution requirements with the cold-starting Db2 subsystem, those
requirements cannot be satisfied.

3. The partner terminates its indoubt resolution responsibility with the cold-starting Db2 subsystem.
However, as a participant, the partner has indoubt logical units of work that must be resolved
manually.

4. Because the Db2 subsystem has an incomplete record of resolution responsibilities, Db2 attempts to
reconstruct as much resynchronization information as possible.

5. Db2 displays the information that it was able to reconstruct in one or more DSNL438 or DSNL439
messages.

6. Db2 then discards the synchronization information that it was able to reconstruct and removes any
restrictive states that are maintained on the object.

Chapter 3. Recovering from different Db2 for z/OS problems 107

Resolving inconsistencies
In some problem situations, you need to determine what you must do in order to resolve any data
inconsistencies that exist.

Procedure
To resolve inconsistencies:
1. Determine the scope of any inconsistencies that are introduced by the situation.

a) If the situation is either a cold start that is beyond the current end of the log or a conditional restart
that skips backout or forward log recovery, use the DSN1LOGP utility to determine what units of
work have not been backed out and which objects are involved.
For a cold start that is beyond the end of the log, you can also use DSN1LOGP to help identify any
restrictive object states that have been lost.

b) If a conditional restart truncates the log in a non-data sharing environment, recover all data and
indexes to the new current point in time, and rebuild the data and indexes as needed.
You need to recover or rebuild (or both recover and rebuild) the data and indexes because data
and index updates might exist without being reflected in the Db2 log. When this situation occurs, a
variety of inconsistency errors might occur, including Db2 abends with reason code 00C200C1.

2. Decide what approach to take to resolve inconsistencies by reading related topics about the
approaches:

• Recovery to a prior point of consistency
• Restoration of a table space
• Use of the REPAIR utility on the data

The first two approaches are less complex than, and therefore preferred over, the third approach.
3. If one or more of the following conditions are applicable, take image copies of all Db2 table spaces:

• You did a cold start.
• You did a conditional restart that altered or truncated the log.
• The log is damaged.
• Part of the log is no longer accessible.

When a portion of the Db2 recovery log becomes inaccessible, all Db2 recovery processes
have difficulty operating successfully, including restart, RECOVER, and deferred restart processing.
Conditional restart allows circumvention of the problem during the restart process. To ensure that
RECOVER does not attempt to access the inaccessible portions of the log, secure a copy (either full
or incremental) that does not require such access. A failure occurs any time a Db2 process (such as
the RECOVER utility) attempts to access an inaccessible portion of the log. You cannot be sure which
Db2 processes must use that portion of the recovery log. Therefore, you need to assume that all data
recovery activity requires that portion of the log.

A cold start might cause down-level page set errors, which you can find out about in different ways:

• Message DSNB232I is sometimes displayed during Db2 restart, once for each down-level page set
that Db2 detects. After you restart Db2, check the console log for down-level page set messages.

– If a small number of those messages exist, run DSN1COPY with the RESET option to correct the
errors to the data before you take image copies of the affected data sets.

– If a large number of those messages exist, the actual problem is not that page sets are down-level
but that the conditional restart inadvertently caused a high volume of DSNB232I messages. In
this case, temporarily turn off down-level detection by turning off the DLDFREQ ZPARM.

In either case, continue with step “4” on page 109.
• If you run the COPY utility with the SHRLEVEL REFERENCE option to make image copies, the COPY

utility sometimes issues message DSNB232I about down-level page sets that Db2 does not detect

108 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

during restart. If any of those messages were issued when you are making image copies, correct the
errors, and continue making image copies of the affected data sets.

• If you use some other method to make image copies, you will find out about down-level page set
errors during normal operation. In this case, you need to correct the errors by using the information
in “Recovering from a down-level page set problem ” on page 116.

4. For any Db2 (catalog and directory) system table spaces that are inconsistent, recover them in the
proper order. You might need to recover to a prior point in time, prior to the conditional restart.

5. For any objects that you suspect might be inconsistent, resolve the database inconsistencies before
proceeding.

• First, resolve inconsistencies in Db2 system databases DSNDB01 and DSNDB06. Catalog and
directory inconsistencies need to be resolved before inconsistencies in other databases because
the subsystem databases describe all other databases, and access to other databases requires
information from DSNDB01 and DSNDB06.

• If you determine that the existing inconsistencies involve indexes only (not data), use the REBUILD
INDEX utility to rebuild the affected indexes. Alternatively, you can use the RECOVER utility to
recover the index if rebuilding the indexes is not possible.

• For a table space that cannot be recovered (and is thus inconsistent), determine the importance of
the data and whether it can be reloaded. If the data is not critical or can be reloaded, drop the table
after you restart Db2, and reload the data rather than trying to resolve the inconsistencies.

Related concepts
Recovery of data to a prior point in time (Db2 Administration Guide)
Related tasks
Recovering catalog and directory objects (Db2 Utilities)
Related reference
LEVELID UPDATE FREQ field (DLDFREQ subsystem parameter) (Db2 Installation and Migration)
DSN1COPY (Db2 Utilities)
RECOVER (Db2 Utilities)

Restoring the table space
You can restore the table space by reloading data into it or by re-creating the table space, which requires
advance planning. Either of these methods is easier than using REPAIR.

About this task
Reloading the table space is the preferred approach, when it is possible, because reloading is easier
and requires less advance planning than re-creating a table space. Re-creating a table space involves
dropping and then re-creating the table space and associated tables, indexes, authorities, and views,
which are implicitly dropped when the table space is dropped. Therefore, re-creating the objects means
that you need to plan ahead so that you will be prepared to re-establish indexes, views, authorizations,
and the data content itself.

Restriction:

You cannot drop Db2 system tables, such as the catalog and directory. For these system tables, follow
one of these procedures instead of this one:

• Recovery of data to a prior point in time (Db2 Administration Guide)
• “Using the REPAIR utility on inconsistent data” on page 110

Procedure
To restore the table space:
1. Decide whether you can reload the table space or must drop and re-create it.

Chapter 3. Recovering from different Db2 for z/OS problems 109

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_recovertopriopoint.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_recovercatalogdirectoryobjects.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_dldfreq.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1copy.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_recover.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_recovertopriopoint.html

• If you can reload the table space, run the appropriate LOAD utility jobs to do so; specify the
REPLACE option. After you load the content of the table space, skip to step “6” on page 110.

• If you cannot reload the table space, continue with step “2” on page 110.
2. Issue an SQL DROP TABLESPACE statement for the table space that is suspected of being involved in

the problem.
3. Re-create the table space, tables, indexes, synonyms, and views by using SQL CREATE statements.
4. Grant access to these objects the same way that access was granted prior to the time of the error.
5. Reconstruct the data in the tables.
6. Run the RUNSTATS utility on the data.
7. Use the COPY utility to acquire a full image copy of all data.
8. Use the REBIND command on all plans that use the tables or views that are involved in this activity.

Related concepts
Recovery of data to a prior point in time (Db2 Administration Guide)
Related tasks
Using the REPAIR utility on inconsistent data (Db2 Administration Guide)
Related reference
LOAD (Db2 Utilities)
COPY (Db2 Utilities)

Using the REPAIR utility on inconsistent data
You can resolve inconsistencies with the REPAIR utility. However, using REPAIR is not recommended
unless the inconsistency is limited to a small number of data or index pages.

About this task
Db2 does not provide a mechanism to automatically inform users about data that is physically
inconsistent or damaged. When you use SQL to access data that is physically damaged, Db2 issues
messages to indicate that data is not available due to a physical inconsistency.

However, Db2 includes several utilities that can help you identify data that is physically inconsistent
before you try to access it. These utilities are:

• CHECK DATA
• CHECK INDEX
• CHECK LOB
• COPY with the CHECKPAGE option
• DSN1COPY with the CHECK option

Attention: If you decide to use this method to resolve data inconsistencies, use extreme care.
Use of the REPAIR utility to correct inconsistencies requires in-depth knowledge of Db2 data
structures. Incorrect use of the REPAIR utility can cause further corruption and loss of data. Read
this topic carefully because it contains information that is important to the successful resolution of
the inconsistencies.

Recommendation: Avoid using this procedure if you are experiencing extensive data inconsistency
because it is more time-consuming and complex (and therefore prone to error) than recovering to a
point in time or re-creating the table spaces. If possible, use those alternative procedures instead.

Restrictions:

• Although the DSN1LOGP utility can identify page sets that contain inconsistencies, this utility cannot
identify the specific data modifications that are involved in the inconsistencies within a given page set.

• Any pages that are on the logical page list (perhaps caused by this restart) cannot be accessed by using
the REPAIR utility.

110 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_recovertopriopoint.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverrepairconditionalrestart.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_load.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_copy.html

Procedure
To use the REPAIR utility to resolve the inconsistency:
1. Issue the following command to start Db2 and allow access to data:

START DATABASE (dbase) SPACENAM (space) ACCESS(FORCE)

In this command, space identifies the table space that is involved.
2. If any system data is inconsistent, use the REPAIR utility to resolve those inconsistencies.

Db2 system data (such as data that is in the catalog and directory) exists in interrelated tables and
table spaces. Data in Db2 system databases cannot be modified with SQL, so use of the REPAIR utility
is necessary to resolve the inconsistencies that are identified.

3. Determine if you have any structural violations in data pages.
Db2 stores data in data pages. The structure of data in a data page must conform to a set of rules
for Db2 to be able to process the data accurately. Using a conditional restart process does not cause
violations to this set of rules; but, if violations existed prior to conditional restart, they continue to exist
after conditional restart.

4. Use the DSN1COPY utility with the CHECK option to identify any violations that you detected in the
previous step, and then resolve the problems, possibly by recovering or rebuilding the object or by
dropping and re-creating it.

5. Examine the various types of pointers that Db2 uses to access data (indexes and hashes), and identify
inconsistencies that need to be manually corrected.

Hash pointers exist in the Db2 directory database. Db2 uses these pointers to access data. During a
conditional restart, data pages might be modified without update of the corresponding pointers. When
this occurs, one of the following actions might occur:

• If a pointer addresses data that is nonexistent or incorrect, Db2 abends the request. If SQL is used to
access the data, a message that identifies the condition, and the page in question is issued.

• If data exists but no pointer addresses it, that data is virtually invisible to all functions that attempt
to access it by using the damaged hash pointer. The data might, however, be visible and accessible
by some functions, such as SQL functions that use another pointer that was not damaged. This
situation can result in inconsistencies.

If a row that contains a varying-length field is updated, it can increase in size. If the page in which the
row is stored does not contain enough available space to store the additional data, the row is placed
in another data page, and a pointer to the new data page is stored in the original data page. After a
conditional restart, one of the following conditions might exist.

• The row of data exists, but the pointer to that row does not exist. In this case, the row is invisible,
and the data cannot be accessed.

• The pointer to the row exists, but the row itself no longer exists. Db2 abends the requester when any
operation (for instance, a SELECT) attempts to access the data. If termination occurs, one or more
messages are issued to identify the condition and the page that contains the pointer.

6. Use the REPAIR utility to resolve any inconsistencies that you detected in the previous step.
7. Reset the log RBA in every data and index page set that are to be corrected with this procedure by

using the DSN1COPY RESET option.
This step is necessary for the following reason. If the log was truncated, changing data by using the
REPAIR utility can cause problems. Each data and index page contains the log RBA of the last recovery
log record that was applied against the page. Db2 does not allow modification of a page that contains a
log RBA that is higher than the current end of the log.

8. When all known inconsistencies have been resolved, take full image copies of all modified table
spaces, in order to use the RECOVER utility to recover from any future problems.
This last step is imperative.

Related concepts
Recovery of data to a prior point in time (Db2 Administration Guide)

Chapter 3. Recovering from different Db2 for z/OS problems 111

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_recovertopriopoint.html

Related tasks
Restoring the table space (Db2 Administration Guide)
Related reference
REPAIR (Db2 Utilities)

Recovering from Db2 database failure
If a Db2 failure occurs because of an allocation or open problem, you can recover from this situation.

Symptoms
The symptoms vary based on whether the failure was an allocation or an open problem:

Allocation problem
The following message indicates an allocation problem:

DSNB207I - DYNAMIC ALLOCATION OF DATA SET FAILED.
 REASON=rrrr DSNAME=dsn

The rrrr is a z/OS dynamic allocation reason code.
Open problem

The following messages indicate an open problem:

IEC161I rc[(sfi)] - ccc, iii, sss, ddn,
 ddd, ser, xxx, dsn, cat

DSNB204I - OPEN OF DATA SET FAILED. DSNAME = dsn

In the IEC161I message:
rc

Is a return code.
sfi

Is subfunction information, which is displayed only with certain return codes.
ccc

Is a function code.
iii

Is a job name.
sss

Is a step name.
ddn

Is a DD name.
ddd

Is a device number (if the error is related to a specific device).
ser

Is a volume serial number (if the error is related to a specific volume).
xxx

Is a VSAM cluster name.
dsn

Is a data set name.
cat

Is a catalog name.

Environment
When this type of problem occurs:

• The table space is automatically stopped.

112 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverrestoretablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_repair.html

• Programs receive a -904 SQLCODE (SQLSTATE '57011').
• If the problem occurs during restart, the table space is marked for deferred restart, and restart

continues. The changes are applied later when the table space is started.

Resolving the problem
Operator response:

1. Check reason code, and correct problems.
2. Ensure that drives are available for allocation.
3. Enter the command START DATABASE.

Related reference
MVS Authorized Assembler Services Guide

Recovering a Db2 subsystem to a prior point in time
You can recover a Db2 subsystem and data sharing group to a prior point in time by using the BACKUP
SYSTEM and RESTORE SYSTEM utilities.

About this task
In this recovery procedure, you create and populate a table that contains data that is both valid and
invalid. You need to restore your Db2 subsystem to a point in time before the invalid data was inserted
into the table, but after the point in time when the valid data was inserted. Also, you create an additional
table space and table that Db2 will re-create during the log-apply phase of the restore process.

Procedure
To insert data into a table, determine the point in time that you want to recover to, and then recover the
Db2 subsystem to a prior point in time:

1. Issue the START DB2 command to start Db2 and all quiesced members of the data sharing group.
Quiesced members are ones that you removed from the data sharing group either temporarily or
permanently. Quiesced members remain dormant until you restart them.

2. Issue SQL statements to create a database, a table space, and two tables with one index for each
table.

3. Issue the BACKUP SYSTEM DATA ONLY utility control statement to create a backup copy of only the
database copy pool for a Db2 subsystem or data sharing group.

4. Issue an SQL statement to first insert rows into one of the tables, and then update some of the rows.
5. Use the LOAD utility with the LOG NO attribute to load the second table.
6. Issue SQL statements to create an additional table space, table, and index in an existing database.

Db2 will re-create the additional table space and table during the log-apply phase of the restore
process.

7. Issue the SET LOG SUSPEND command or the SET LOG RESUME command to obtain a log truncation
point, logpoint1, which is the point you want to recover to.
For a non-data sharing group, use the RBA value. For a data sharing group, use the lowest log record
sequence number (LRSN) from the active members.

The following example shows sample output for the SET LOG SUSPEND command:

14.21.49 -db2aset log suspend
14.21.49 STC00059 DSN9022I -DB2A DSNJC001 '-SET LOG' NORMAL COMPLETION
14.21.50 STC00059 *DSNJ372I -DB2A DSNJC09A UPDATE ACTIVITY HAS BEEN
SUSPENDED FOR DB2A AT RBA 00000000000028B5588C, LRSN
00CA2981028F3D000000, PRIOR CHECKPOINT RBA 00000000000028B52667

Chapter 3. Recovering from different Db2 for z/OS problems 113

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieaa800/abstract.htm

8. Issue an SQL statement to first insert rows into one of the tables and then to update and delete some
rows.

9. Issue the STOP DB2 command to stop Db2 and all active members of the data sharing group.
10. Run the DSNJU003 change log inventory utility to create a SYSPITR CRCR record (CRESTART

CREATE SYSPITR=logpoint1).
The log truncation point is the value that you obtained from issuing either the SET LOG SUSPEND
command, or the SET LOG RESUME command.

11. For a data sharing group, delete all of the coupling facility structures.
12. Issue the START DB2 command to restart Db2 and all members of the data sharing group.
13. Run the RESTORE SYSTEM utility.

For a data sharing group, this utility can be run only on one member. If the utility stops and you must
restart it, you can restart the utility only on the member on which it was initially run.

14. After the RESTORE SYSTEM utility completes successfully, issue the STOP DB2 command to stop
Db2 and all active members of the data sharing group.
The Db2 subsystem resets to RECOVER-pending status.

15. Issue the START DB2 command to restart Db2 and all members of the data sharing group.
16. Issue the DISPLAY command to identify the utilities that are active and the objects that are

restricted.
For example:

-DIS UTIL(*)

-DIS DB(DSNDB01) SP(*)

-DIS DB(DSNDB06) SP(*) LIMIT(*)

-DIS DB(DSNDB06) SP(*) LIMIT(*)RESTRICT

17. Stop all of the active utilities that you identified in the previous step.
18. Recover any objects that are in RECOVER-pending status or REBUILD-pending status from the table

that you created in step “6” on page 113.

Recovering the catalog and directory to a point in time before
a CATMAINT or a function level upgrade in a data sharing
environment

If you are in a data sharing environment, and you need to recover the catalog and directory to a point in
time before CATMAINT was run or a function level upgrade was performed, you need to follow a special
procedure.

Procedure
1. Create image copies of the Db2 catalog and directory.
2. Determine the point in time to which you need to recover, which is called xxxxxxxx in this procedure.
3. Run the following DIAGNOSE utility control statement to clear the catalog and function level

information from an internal control structure:

DIAGNOSE TYPE(0) REPAIR SET DBID(8) PSID(0000) RESET

Important: This control statement should be issued only as part of this procedure. DBID(8) identifies
an internal control structure for system database information. It is not a Db2 catalog database or any
physical database provided by Db2.

114 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

4. Stop all members of the data sharing group, and issue the following SETXCF FORCE command to
delete the coupling facility structures for the data sharing group:

SETXCF FORCE,STRUCTURE,STRNAME=XXXX_SCA(sca-structure-name)

5. If xxxxxxxx is prior to execution of the CATMAINT utility or activation of a function level, restore
the BSDS from the most recent archived copy of the BSDS after LRSN xxxxxxxx, and before the
CATMAINT or function level activation occurred. If that is not possible, take these actions:

• Restore the most recent BSDS prior to xxxxxxxx.
• Run DSNJU003 to update the archive log and active log information to include logs up to xxxxxxxx.

6. Create a conditional restart control record (CRCR) with an ENDLRSN value of xxxxxxxx.
7. For one member of the data sharing group, set the DEFER and ALL subsystem parameters, and start

Db2 on that member with ACCESS(MAINT).
8. Recover the catalog and directory table spaces without the TOLOGPOINT option in the RECOVER

utility control statements. Rebuild the catalog and directory indexes with the REBUILD INDEX utility.
This step recovers the catalog and directory table spaces to the log truncation point of xxxxxxxx.

9. Recover all user objects.
This step keeps the definitions of user objects synchronized with the information on those objects in
the catalog or directory after CATMAINT was run or a function level upgrade was performed.

10. Stop Db2 on the data sharing member on which you previously started Db2.
11. Set the RESTART subsystem parameter, and start Db2 without the ACCESS(MAINT) option on the

data sharing member on which you stopped Db2 in the previous step.
12. Start Db2 on the other members of the data sharing group.

Related tasks
Installation step 23: Back up the Db2 directory and catalog: DSNTIJIC (Db2 Installation and Migration)
Related reference
DSNJU003 (change log inventory) (Db2 Utilities)
RESTART OR DEFER field (RESTART subsystem parameter) (Db2 Installation and Migration)
START NAMES field (ALL subsystem parameter) (Db2 Installation and Migration)
-STOP DB2 (Db2) (Db2 Commands)
-START DB2 (Db2) (Db2 Commands)

Recovering the catalog and directory to a point in time before
a CATMAINT or a function level upgrade in a non-data sharing
environment

If you are in a non-data sharing environment, and you need to recover the catalog and directory to a point
in time before CATMAINT was run or a function level upgrade was performed, you need to follow a special
procedure.

Procedure
1. Create image copies of the Db2 catalog and directory.
2. Determine the point in time to which you need to recover, which is called xxxxxxxx in this procedure.
3. Run the following DIAGNOSE utility control statement to clear the catalog and function level

information from an internal control structure:

DIAGNOSE TYPE(0) REPAIR SET DBID(8) PSID(0000) RESET

Important: This control statement should be issued only as part of this procedure. DBID(8) identifies
an internal control structure for system database information. It is not a Db2 catalog database or any
physical database provided by Db2.

Chapter 3. Recovering from different Db2 for z/OS problems 115

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntijic.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsnju003.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_restart.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_all.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_stopdb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_startdb2.html

4. Stop Db2.
5. If xxxxxxxx is prior to execution of the CATMAINT utility or activation of a function level, restore the

BSDS from the most recent archived copy of the BSDS after RBA xxxxxxxx, and before the CATMAINT
or function level activation occurred. If that is not possible, take these actions:

• Restore the most recent BSDS prior to xxxxxxxx.
• Run DSNJU003 to update the archive log and active log information to include logs up to xxxxxxxx.

6. Create a conditional restart control record (CRCR) with an ENDRBA value of xxxxxxxx.
7. Set the DEFER and ALL subsystem parameters, and start Db2 with the ACCESS(MAINT) option.
8. Recover the catalog and directory table spaces without the TOLOGPOINT option in the RECOVER

utility control statements. Rebuild the catalog and directory indexes with the REBUILD INDEX utility.
This step recovers the catalog and directory table spaces to the log truncation point of xxxxxxxx.

9. Recover all user objects.
This step keeps the definitions of user objects synchronized with the information on those objects in
the catalog or directory after CATMAINT was run or a function level upgrade was performed.

10. Stop Db2.
11. Set the RESTART subsystem parameter, and start Db2 without the ACCESS(MAINT) option.

Related tasks
Installation step 23: Back up the Db2 directory and catalog: DSNTIJIC (Db2 Installation and Migration)
Related reference
DSNJU003 (change log inventory) (Db2 Utilities)
RESTART OR DEFER field (RESTART subsystem parameter) (Db2 Installation and Migration)
START NAMES field (ALL subsystem parameter) (Db2 Installation and Migration)
-STOP DB2 (Db2) (Db2 Commands)
-START DB2 (Db2) (Db2 Commands)

Recovering from a down-level page set problem
When using a stand-alone utility or a non-Db2 utility, you might inadvertently replace a Db2 page set with
an incorrect or outdated copy. This type of copy is called down-level. Using a down-level page set can
cause complex problems; therefore, you need to recover from this situation.

Symptoms
The following message is issued:

DSNB232I csect-name - UNEXPECTED DATA SET LEVEL ID ENCOUNTERED

The message also contains the level ID of the data set, the level ID that Db2 expects, and the name of the
data set.

Causes
A down-level page set can be caused by:

• A Db2 data set is inadvertently replaced by an incorrect or outdated copy. Usually this happens in
conjunction with use of a stand-alone or non-Db2 utility, such as DSN1COPY or DFSMShsm.

• A cold start of Db2 occurs.
• A VSAM high-used RBA of a table space becomes corrupted.

Db2 associates a level ID with every page set or partition. Most operations detect a down-level ID, and
return an error condition, when the page set or partition is first opened for mainline or restart processing.
The exceptions are the following operations, which do not use the level ID data:

• LOAD REPLACE

116 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntijic.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsnju003.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_restart.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_all.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_stopdb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_startdb2.html

• RECOVER
• REBUILD INDEX
• DSN1COPY
• DSN1PRNT

Environment
• If the error was reported during mainline processing, Db2 sends a "resource unavailable" SQLCODE and

a reason code to the application to explain the error.
• If the error was detected while a utility was processing, the utility generates a return code 8.

Diagnosing the problem
Determine whether the message was issued during restart or at some other time during normal operation.
This information is important for determining what steps to take below

Resolving the problem
System programmer response: The actions that you need to do to recover depend on when the message
was issued:

• If the message was issued during restart, take one of the following actions:

– Replace the data set with one that is at the proper level, by using DSN1COPY, DFSMShsm, or some
equivalent method. To check the level ID of the new data set, run the stand-alone utility DSN1PRNT
on it, with the options PRINT(0) (to print only the header page) and FORMAT. The formatted print
output identifies the level ID.

– Recover the data set to the current time, or to a prior time, by using the RECOVER utility.
– Replace the contents of the data set, by using LOAD REPLACE.

• If the message was issued during normal operation (not during restart):

1. Take one of the actions that are listed for situations when the message was issued during restart.
2. Accept the down-level data set by changing its level ID. You can use the REPAIR utility with the

LEVELID statement. (You cannot use the LEVELID option in the same job step with any other REPAIR
utility control statement.)

Attention: If you accept a down-level data set or disable down-level detection, your data
might be inconsistent.

Related system programmer actions:

Consider taking the following actions, which might help you minimize or deal with down-level page set
problems in the future:

• To control how often the level ID of a page set or partition is updated, specify a value between 0 and
32767 on the LEVELID UPDATE FREQ field of panel DSNTIPL.

• To disable down-level detection, specify 0 in the LEVELID UPDATE FREQ field of panel DSNTIPL.
• To control how often level ID updates are taken, specify a value between 1 and 32767.

Related reference
LEVELID UPDATE FREQ field (DLDFREQ subsystem parameter) (Db2 Installation and Migration)
DSN1COPY (Db2 Utilities)
DSN1PRNT (Db2 Utilities)
LOAD (Db2 Utilities)
RECOVER (Db2 Utilities)
REPAIR (Db2 Utilities)

Chapter 3. Recovering from different Db2 for z/OS problems 117

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_dldfreq.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1copy.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1prnt.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_load.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_recover.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_repair.html

Recovering from a problem with invalid LOBs
If a LOB table space is defined with LOG NO and you need to recover that table space, you can recover the
LOB data to the point at which you made your last image copy of the table space.

About this task
Unless your LOBs are fairly small, specifying LOG NO for LOB objects is recommended for the
best performance. However, to maximize recoverability, specifying LOG YES is recommended. The
performance cost of logging exceeds the benefits that you can receive from logging such large amounts
of data. If no changes are made to LOB data, the logging cost is not an issue. However, you should make
image copies of the LOB table space to prepare for failures. The frequency with which you make image
copies is based on how often you update LOB data.

Procedure
To recover LOB data from a LOB table space that is defined with LOG NO:
1. Run the RECOVER utility as you do for other table spaces:

RECOVER TABLESPACE dbname.lobts

If changes were made after the image copy, Db2 puts the table space in auxiliary warning status,
which indicates that some of your LOBs are invalid. Applications that try to retrieve the values of those
LOBs receive SQLCODE -904. Applications can still access other LOBs in the LOB table space.

2. Get a report of the invalid LOBs by running CHECK LOB on the LOB table space:

CHECK LOB TABLESPACE dbname.lobts

Db2 generates the following messages:

LOB WITH ROWID = 'xxxxxxx' VERSION = n IS INVALID

3. GUPI Fix the invalid LOBs, by updating the LOBs or setting them to the null value.
For example, suppose that you determine from the CHECK LOB utility that the row of the
EMP_PHOTO_RESUME table with ROWID X'C1BDC4652940D40A81C201AA0A28' has an invalid value
for column RESUME. If host variable hvlob contains the correct value for RESUME, you can use this
statement to correct the value:

UPDATE DSN8C10. EMP_PHOTO_RESUME
 SET RESUME = :hvlob
 WHERE EMP_ROWID = ROWID(X'C1BDC4652940D40A81C201AA0A28');

GUPI

Recovering from table space I/O errors
You can recover a table space after I/O errors have occurred and caused the table space to fail.

Symptoms
The following message is issued, where dddddddd is a table space name:

DSNU086I DSNUCDA1 READ I/O ERRORS ON SPACE=dddddddd.
 DATA SET NUMBER=nnn.
 I/O ERROR PAGE RANGE=aaaaaa, bbbbbb.

Any table spaces that are identified in DSNU086I messages must be recovered. Follow the steps later in
this topic.

118 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Environment
Db2 remains active.

Resolving the problem
Operator response:

1. Fix the error range:

a. Use the command STOP DATABASE to stop the failing table space.
b. Use the command START DATABASE ACCESS (UT) to start the table space for utility-only

access.
c. Start a RECOVER utility step to recover the error range by using the following statement:

DB2 RECOVER (dddddddd) ERROR RANGE

If you receive message DSNU086I again to indicate that the error range recovery cannot be
performed, continue with step “2” on page 119.

d. Issue the command START DATABASE to start the table space for RO or RW access, whichever
is appropriate. If the table space is recovered, you do not need to continue with the following
procedure.

2. If error range recovery fails because of a hardware problem:

a. Use the command STOP DATABASE to stop the table space or table space partition that contains
the error range. As a result of this command, all in-storage data buffers that are associated with the
data set are externalized to ensure data consistency during the subsequent steps.

b. Use the INSPECT function of the IBM Device Support Facility, ICKDSF, to check for track defects
and to assign alternate tracks as necessary. Determine the physical location of the defects by
analyzing the output of messages DSNB224I, DSNU086I, and IOS000I. These messages are
displayed on the system operator's console at the time that the error range was created. If
damaged storage media is suspected, request assistance from IBM Hardware Support before
proceeding.

c. Use the command START DATABASE to start the table space with ACCESS(UT) or ACCESS(RW).
d. Run the RECOVER utility with the ERROR RANGE option. Specify an error range that, from image

copies, locates, allocates, and applies the pages within the tracks that are affected by the error
ranges.

Related information
Device Support Facilities (ICKDSF) Device Support Facilities (ICKDSF) User's Guide and Reference

Recovering from Db2 catalog or directory I/O errors
When the Db2 catalog or directory fails because of I/O errors, you need to recover from this situation so
that processing can return to normal.

Symptoms
The following message is issued, where dddddddd is the name of the table space from the catalog or
directory that failed (for example, SYSIBM.SYSCOPY):

DSNU086I DSNUCDA1 READ I/O ERRORS ON SPACE=dddddddd.
 DATA SET NUMBER=NNN.
 I/O ERROR PAGE RANGE=aaaaaa, bbbbbb

This message can indicate either read or write errors. You might also receive a DSNB224I or DSNB225I
message, which indicates an input or output error for the catalog or directory.

Chapter 3. Recovering from different Db2 for z/OS problems 119

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ickug00/abstract.htm

Environment
Db2 remains active.

If the Db2 directory or any catalog table is damaged, only user IDs with the RECOVERDB privilege
in DSNDB06, or an authority that includes that privilege, can perform the recovery. Furthermore, until
the recovery takes place, only those IDs can do anything with the subsystem. If an ID without proper
authorization attempts to recover the catalog or directory, message DSNU060I is displayed. If the
authorization tables are unavailable, message DSNT500I is displayed to indicate that the resource is
unavailable.

Resolving the problem
Operator response: Recover each table space in the failing Db2 catalog or directory. If multiple table
spaces need to be recovered, recover them in the recommended order as defined in the information about
the RECOVER utility.

1. Stop the failing table spaces.
2. Determine the name of the data set that failed by using one of the following methods:

• Check prefix.SDSNSAMP (DSNTIJIN), which contains the JCL for installing Db2. Find the fully
qualified name of the data set that failed by searching for the name of the table space that failed (the
one that is identified in the message as SPACE=dddddddd).

• Construct the data set name by performing one of the following actions:

– If the table space is in the Db2 catalog, the data set name format is:

DSNC111.DSNDBC.DSNDB06.dddddddd.I0001.A001

The dddddddd is the name of the table space that failed.
– If the table space is in the Db2 directory, the data set name format is:

DSNC111.DSNDBC.DSNDB01.dddddddd.I0001.A001

The dddddddd is the name of the table space that failed.

If you do not use the default (IBM-supplied) formats, the formats for data set names might be
different.

3. Use the access method services DELETE command to delete the data set, specifying the fully qualified
data set name.

4. After the data set is deleted, use the access method services DEFINE command with the REUSE
parameter to redefine the same data set, again specifying the same fully qualified data set name. Use
the JCL for installing Db2 to determine the appropriate parameters.

5. Issue the command START DATABASE ACCESS(UT), naming the table space that is involved.
6. Use the RECOVER utility to recover the table space that failed.
7. Issue the command START DATABASE, specifying the table space name and RO or RW access,

whichever is appropriate.

Related tasks
Recovering catalog and directory objects (Db2 Utilities)

Recovering from integrated catalog facility failure
Sometimes VSAM volume data sets might be out of space or destroyed. Also, you might experience
problems with other VSAM data sets being out of space or unable to be extended any further.

Symptoms
The symptoms for integrated catalog facility problems vary according to the underlying problems.

120 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_recovercatalogdirectoryobjects.html

Recovering VSAM volume data sets that are out of space or destroyed
If the VSAM volume data set (VVDS) is out of space or destroyed, you can recover from the situation. You
can recover by using Db2 commands, Db2 utilities, and access method services.

Symptoms
Db2 sends the following message to the master console:
DSNP012I - DSNPSCT0 - ERROR IN VSAM CATALOG LOCATE FUNCTION
 FOR data_set_name
 CTLGRC=50
 CTLGRSN=zzzzRRRR
 CONNECTION-ID=xxxxxxxx,
 CORRELATION-ID=yyyyyyyyyyyy
 LUW-ID=logical-unit-of-work-id=token

VSAM might also issue the following message:
IDC3009I VSAM CATALOG RETURN CODE IS 50, REASON CODE IS
 IGGOCLaa - yy

In this VSAM message, yy is 28, 30, or 32 for an out-of-space condition. Any other values for yy indicate a
damaged VVDS.

Environment
Your program is terminated abnormally, and one or more messages are issued.

Resolving the problem
Operator response: Begin by determining whether the VSAM volume data set is out of space or has
been destroyed. Then follow these steps:

1. Determine the names of all table spaces that reside on the same volume as the VVDS. To determine
the table space names, look at the VTOC entries list for that volume, which indicates the names of all
the data sets on that volume.

2. Use the Db2 COPY utility to take image copies of all table spaces of the volume. Taking image copies
minimizes reliance on the Db2 recovery log and can speed up the processing of the Db2 RECOVER
utility (to be mentioned in a subsequent step).

If you cannot use the COPY utility, continue with this procedure. Be aware that processing time
increases because more information must be obtained from the Db2 recovery log.

3. Use the command STOP DATABASE for all the table spaces that reside on the volume, or use the
command STOP DB2 to stop the entire Db2 subsystem if an unusually large number or critical set of
table spaces are involved.

4. If possible, use access method services to export all non-Db2 data sets that resides on that volume.
5. Use access method services to recover all non-Db2 data sets that resides on that volume.
6. Use access method services DELETE and DEFINE commands to delete and redefine the data sets

for all user-defined table spaces and Db2-defined data sets when the physical data set has been
destroyed. Db2 automatically deletes and redefines all other STOGROUP-defined table spaces.

You do not need to delete and redefine table spaces that are STOGROUP-defined because Db2 takes
care of them automatically.

7. Issue the Db2 START DATABASE command to restart all the table spaces that were stopped in step
“3” on page 121. If the entire Db2 subsystem was stopped, issue the START DB2 command.

8. Use the Db2 RECOVER utility to recover any table spaces and indexes.

Related tasks
Backing up and recovering your data (Db2 Administration Guide)
Related information
DFSMS Access Method Services Commands

Chapter 3. Recovering from different Db2 for z/OS problems 121

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_backupandrecover.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/abstract.htm

DFSMS Managing Catalogs
DSNP012I (Db2 Messages)

Recovering from out-of-disk-space or extent limit problems
When a volume on which a data set is stored has insufficient space, or when the data set reaches its
maximum size or its maximum number of VSAM extents, you can recover from this situation.

Symptoms
The symptoms vary based on the specific situation. The following messages and codes might be issued:

• DSNP007I
• DSNP001I
• -904 SQL return code (SQLSTATE '57011')

Environment
For a demand request failure during restart, the object that is supported by the data set (an index space
or a table space) is stopped with deferred restart pending. Otherwise, the state of the object remains
unchanged.

Diagnosing the problem
Read the following descriptions of possible problems, and determine which problem you are
experiencing.

• Extend request failures: When an insert or update requires additional space, but the space is not
available in the current table space or index space, Db2 issues the following message:

DSNP007I - DSNPmmmm - EXTEND FAILED FOR
 data-set-name. RC=rrrrrrrr
 CONNECTION-ID=xxxxxxxx,
 CORRELATION-ID=yyyyyyyyyyyy
 LUWID-ID=logical-unit-of-work-id=token

• Look-ahead warning: A look-ahead warning occurs when enough space is available for a few inserts or
updates, but the index space or table space is almost full. On an insert or update at the end of a page
set, Db2 determines whether the data set has enough available space. Db2 uses the following values in
this space calculation:

– The primary space quantity from the integrated catalog facility (ICF) catalog
– The secondary space quantity from the ICF catalog
– The allocation unit size

If enough space does not exist, Db2 tries to extend the data set. If the extend request fails, Db2 issues
the following message:

DSNP001I - DSNPmmmm - data-set-name IS WITHIN
 nK BYTES OF AVAILABLE SPACE.
 RC=rrrrrrrr
 CONNECTION-ID=xxxxxxxx,
 CORRELATION-ID=yyyyyyyyyyyy
 LUWID-ID=logical-unit-of-work-id=token

Resolving the problem
What you need to do depends on your particular circumstances.

• In most cases, if the data set has not reached its maximum size, you can enlarge it. For the maximum
sizes of data sets, see Limits in Db2 for z/OS (Db2 SQL).

• If the data set has reached its maximum size, you need to follow the appropriate procedure, depending
on the situation you face.

122 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idac100/abstract.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnp012i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_limits.html

Extending a data set
If a user-defined data set reaches the maximum number of VSAM extents, you can extend the data set by
adding volumes.

Procedure
To extend a user-defined data set:
1. If possible, delete unneeded data on the current volume.
2. If deleting data from the volume does not solve the problem, add volumes to the data set in one of the

following ways:

• If the data set is defined in a Db2 storage group, add more volumes to the storage group by using the
SQL ALTER STOGROUP statement.

• If the data set is not defined in a Db2 storage group, add volumes to the data set by using the access
method services ALTER ADDVOLUMES command.

Enlarging a fully extended user-managed data set
If a user-managed data set reaches the maximum number of VSAM extents, you can enlarge the data set.

Procedure
To enlarge a user-managed data set:
1. To allow for recovery in case of failure during this procedure, ensure that you have a recent full image

copy of your table spaces and indexes.
Use the DSNUM option to identify the data set for table spaces or partitioning indexes.

2. Issue the command STOP DATABASE SPACENAM for the last data set of the supported object.
3. Delete the last data set by using access method services.
4. Redefine the data set, and enlarge it as necessary.

The object must be a user-defined linear data set. The limit is 32 data sets if the underlying table
space is not defined as LARGE or with a DSSIZE parameter, and the limit is 4096 for objects with
greater than 254 parts. For a nonpartitioned index on a table space that is defined as LARGE or with a
DSSIZE parameter, the maximum is MIN(4096, 232 / (index piece size/index page size)).

5. Issue the command START DATABASE ACCESS (UT) to start the object for utility-only access.
6. To recover the data set that was redefined, use the RECOVER utility on the table space or index, and

identify the data set by the DSNUM option (specify this DSNUM option for table spaces or partitioning
indexes only).

The RECOVER utility enables you to specify a single data set number for a table space. Therefore, you
need to redefine and recover only the last data set (the one that needs extension). This approach can
be better than using the REORG utility if the table space is very large and contains multiple data sets,
and if the extension must be done quickly.

If you do not copy your indexes, use the REBUILD INDEX utility.
7. Issue the command START DATABASE to start the object for either RO or RW access, whichever is

appropriate.

Related reference
-START DATABASE (Db2) (Db2 Commands)
-STOP DATABASE (Db2) (Db2 Commands)
RECOVER (Db2 Utilities)
REBUILD INDEX (Db2 Utilities)

Chapter 3. Recovering from different Db2 for z/OS problems 123

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_startdatabase.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_stopdatabase.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_recover.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_rebuildindex.html

Enlarging a fully extended Db2-managed data set
If a Db2-managed data set reaches the maximum number of VSAM extents, you can enlarge the data set.

Procedure
To enlarge a Db2-managed data set:
1. Use the SQL statement ALTER TABLESPACE or ALTER INDEX with a USING clause.

(You do not need to stop the table space before you use ALTER TABLESPACE.) You can give new values
of PRIQTY and SECQTY in either the same or a new Db2 storage group.

2. Use one of the following procedures.
No movement of data occurs until this step is completed.

• For indexes: If you have taken full image copies of the index, run the RECOVER INDEX utility.
Otherwise, run the REBUILD INDEX utility.

• For table spaces other than LOB table spaces: Run one of the following utilities on the table space:
REORG, RECOVER, or LOAD REPLACE.

• For LOB table spaces that are defined with LOG YES: Run the RECOVER utility on the table space.
• For LOB table spaces that are defined with LOG NO:

a. Start the table space in read-only (RO) mode to ensure that no updates are made during this
process.

b. Make an image copy of the table space.
c. Run the RECOVER utility on the table space.
d. Start the table space in read-write (RW) mode.

Adding a data set
If a user-defined simple data set reaches its maximum size, you can use access method services to define
another data set.

Procedure
To add another data set:
1. Use access method services to define another data set.

The name of the new data set must follow the naming sequence of the existing data sets that support
the object. The last four characters of each name are a relative data set number: If the last name ends
with A001, the next name must end with A002, and so on. Also, be sure to add either the character "I"
or the character "J" to the name of the data set.
If the object is defined in a Db2 storage group, Db2 automatically tries to create an additional data
set. If that fails, access method services messages are sent to an operator to indicate the cause of the
problem.

2. If necessary, correct the problem (identified in the access method services messages) to obtain
additional space.

Redefining a partition (index-based partitioning)
Sometimes each partition in a partitioned object is restricted to a single data set. If the data set reaches
its maximum size, you need to redefine the partitions. Redefining a partition in an index-based partitioning
environment is different than in a table-based partitioning environment.

Procedure
To redefine the partitions in an index-based partitioning environment:

124 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

1. Use the ALTER INDEX ALTER PARTITION statement to alter the key range values of the partitioning
index.

2. Use the REORG utility with inline statistics on the partitions that are affected by the change in key
range.

3. Use the RUNSTATS utility on the nonpartitioned indexes.
4. Rebind the dependent packages and plans.

Redefining a partition (table-based partitioning)
Sometimes each partition in a partitioned object is restricted to a single data set. If the data set reaches
its maximum size, you need to redefine the partitions. Redefining a partition in a table-based partitioning
environment is different than in an index-based partitioning environment.

Procedure
To redefine the partitions in a table-based partitioning environment:
1. Use the SQL statement ALTER TABLE ALTER PARTITION to alter the partition boundaries.
2. Use the REORG utility with inline statistics on the partitions that are affected by the change in partition

boundaries.
3. Use the RUNSTATS utility on the indexes.
4. Rebind the dependent packages and plans.

Enlarging a fully extended data set for the work file database
If you have an out-of-disk-space or extent limit problem with the work file database (DSNDB07), you need
to add space to the data set.

Procedure
Add space to the Db2 storage group, choosing one of the following approaches:

• Use SQL to create more table spaces in database DSNDB07.
• Execute these steps:

a. Use the command STOP DATABASE(DSNDB07) to ensure that no users are accessing the
database.

b. Use SQL to alter the storage group, adding volumes as necessary.
c. Use the command START DATABASE(DSNDB07) to allow access to the database.

Recovering from referential constraint violation
When a referential constraint is violated, the table space is available for some actions, but you cannot run
certain utilities or use SQL to update the data in the table space until you recover from this situation.

Symptoms
One of the following messages is issued at the end of utility processing, depending on whether the table
space is partitioned:

DSNU561I csect-name - TABLESPACE=tablespace-name PARTITION=partnum
 IS IN CHECK PENDING
DSNU563I csect-name - TABLESPACE=tablespace-name IS IN CHECK PENDING

Causes
Db2 detected one or more referential constraint violations.

Chapter 3. Recovering from different Db2 for z/OS problems 125

Environment
The table space is still generally available. However, it is not available to the COPY, REORG, and QUIESCE
utilities, or to SQL select, insert, delete, or update operations that involve tables in the table space.

Resolving the problem
Operator response:

1. Use the START DATABASE ACCESS (UT) command to start the table space for utility-only access.
2. Run the CHECK DATA utility on the table space. Consider these recommendations:

• If you do not believe that violations exist, specify DELETE NO. If violations do not exist, specifying
DELETE NO resets the CHECK-pending status; however, if violations do exist, the status is not reset.

• If you believe that violations exist, specify the DELETE YES option and an appropriate exception
table. Specifying DELETE YES results in deletion of all rows that are in violation, copies them to an
exception table, and resets the CHECK-pending status.

• If the CHECK-pending status was set during execution of the LOAD utility, specify the SCOPE
PENDING option. This checks only those rows that are added to the table space by LOAD, rather
than every row in the table space.

3. Correct the rows in the exception table, if necessary, and use the SQL INSERT statement to insert them
into the original table.

4. Issue the command START DATABASE to start the table space for RO or RW access, whichever
is appropriate. The table space is no longer in CHECK-pending status and is available for use. If
you use the ACCESS (FORCE) option of this command, the CHECK-pending status is reset. However,
using ACCESS (FORCE) is not recommended because it does not correct the underlying violations of
referential constraints.

Related reference
CHECK DATA (Db2 Utilities)

Recovering from distributed data facility failure
You can recover from various problems that occur for the distributed data facility (DDF).

Symptoms
The symptoms for DDF failures vary based on the precise problems. The symptoms include messages,
SQL return codes, and apparent wait states.

Recovering from conversation failure
A VTAM APPC or TCP/IP conversation might fail during or after allocation. The conversation is not
available for use until you recover from the situation.

Symptoms
VTAM or TCP/IP returns a resource-unavailable condition along with the appropriate diagnostic reason
code and message. A DSNL500 or DSNL511 (conversation failed) message is sent to the console for the
first failure to a location for a specific logical unit (LU) mode or TCP/IP address. All other threads that
detect a failure from that LU mode or IP address are suppressed until communications to the LU that uses
that mode are successful.

Db2 returns messages DSNL501I and DSNL502I. Message DSNL501I usually means that the other
subsystem is not operational. When the error is detected, it is reported by a console message, and the
application receives an SQL return code.

If you use application-directed access or DRDA as the database protocols, SQLCODE -30080 is returned
to the application. The SQLCA contains the VTAM diagnostic information, which contains only the

126 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_checkdata.html

RCPRI and RCSEC codes. For SNA communications errors, SQLCODE -30080 is returned. For TCP/IP
connections, SQLCODE -30081 is returned.

Environment
The application can choose to request rollback or commit, both of which deallocate all but the first
conversation between the allied thread and the remote database access thread. A commit or rollback
message is sent over this remaining conversation.

Errors during the deallocation process of the conversation are reported through messages, but they do
not stop the commit or rollback processing. If the conversation that is used for the commit or rollback
message fails, the error is reported. If the error occurred during a commit process and if the remote
database access was read-only, the commit process continues. Otherwise the commit process is rolled
back.

Diagnosing the problem
System programmer response: Review the VTAM or TCP/IP return codes, and possibly discuss the
problem with a communications expert. Many VTAM or TCP/IP errors, besides the error of an inactive
remote LU or TCP/IP errors, require a person who has a knowledge of VTAM or TCP/IP and the network
configuration to diagnose them.

Resolving the problem
Operator response: Correct the cause of the unavailable-resource condition by taking the action that is
required by the diagnostic messages that are displayed on the console.

Related concepts
SQL codes (Db2 Codes)
Related information
z/OS Communications Server: SNA Messages

Recovering from communications database failure
You need to recover the communications database (CDB) when a failure occurs during an attempt to
access the CDB.

Symptoms
A DSNL700I message, which indicates that a resource-unavailable condition exists, is sent to the console.
Other messages that describe the cause of the failure are also sent to the console.

Environment
If the distributed data facility (DDF) has already started when an individual CDB table becomes
unavailable, DDF does not terminate. Depending on the severity of the failure, threads are affected as
follows:

• The threads receive a -904 SQL return code (SQLSTATE '57011') with resource type 1004 (CDB).
• The threads continue using VTAM default values.

The only threads that receive a -904 SQL return code are those that access locations that have not had
any prior threads. Db2 and DDF remain operational.

Resolving the problem
Operator response:

1. Examine the messages to determine the source of the error.
2. Correct the error, and then stop and restart DDF.

Chapter 3. Recovering from different Db2 for z/OS problems 127

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_sqlcodes.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.istmnc0/abstract.htm

Recovering from a problem with a communications database that is
incorrectly defined
You need to recover from a situation in which the communications database (CDB) is not correctly
defined. This problem occurs when distributed data facility (DDF) is started and the Db2 catalog is
accessed to verify the CDB definitions.

Symptoms
A DSNL701I, DSNL702I, DSNL703I, DSNL704I, or DSNL705I message is issued to identify the problem.
Other messages that describe the cause of the failure are also sent to the console.

Environment
DDF fails to start. Db2 continues to run.

Resolving the problem
Operator response:

1. Examine the messages to determine the source of the error.
2. Correct the error, and then restart DDF.

Recovering from database access thread failure
When a database access thread is deallocated, a conversation failure occurs, and you need to recover
from this situation.

Symptoms
In the event of a failure of a database access thread, the Db2 server terminates the database access
thread only if a unit of recovery exists. The server deallocates the database access thread and then
deallocates the conversation with an abnormal indication (a negative SQL code), which is subsequently
returned to the requesting application. The returned SQL code depends on the type of remote access:

• DRDA access

For a database access thread or non-Db2 server, a DDM error message is sent to the requesting site,
and the conversation is deallocated normally. The SQL error status code is a -30020 with a resource
type 1232 (agent permanent error received from the server).

Environment
Normal Db2 error recovery mechanisms apply, with the following exceptions:

• Errors that are encountered in the functional recovery routine are automatically converted to rollback
situations. The allied thread experiences conversation failures.

• Errors that occur during commit, rollback, and deallocate within the DDF function do not normally cause
Db2 to abend. Conversations are deallocated, and the database access thread is terminated. The allied
thread experiences conversation failures.

Diagnosing the problem
System programmer response: Collect all diagnostic information that is related to the failure at the
serving site. For a Db2 database access thread (DBAT), a dump is produced at the server.

Resolving the problem
Operator response: Communicate with the operator at the other site to take the appropriate corrective
action, regarding the messages that are displayed at both the requesting and responding sites. Ensure

128 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

that you and operators at the other sites gather the appropriate diagnostic information and give it to the
programmer for diagnosis.

Recovering from VTAM failure
When VTAM terminates or fails, you need to recover from the situation.

Symptoms
VTAM messages and Db2 messages are issued to indicate that distributed data facility (DDF) is
terminating and to explain why.

Causes

Environment
DDF terminates. An abnormal VTAM failure or termination causes DDF to issue a STOP DDF
MODE(FORCE) command. The VTAM commands Z NET,QUICK and Z NET,CANCEL cause an abnormal
VTAM termination. A Z NET,HALT causes a STOP DDF MODE(QUIESCE) to be issued by DDF.

Resolving the problem
Operator response: Correct the condition that is described in the messages that are received at the
console, and restart VTAM and DDF.

Recovering from VTAM ACB OPEN problems
The Db2 distributed data facility (DDF) might terminate after startup due to a VTAM ACB OPEN failure. You
can diagnose the situation to determine how to resolve the problem.

Symptoms
Db2 messages, such as DSNL013I and DSNL004I, are issued to indicate the problem.
DSNL013I

Contains the error field value that is returned from the VTAM ACB OPEN. For information about
possible values, see OPEN macroinstruction error fields(z/OS Communications Server: IP and SNA
Codes).

DSNL004I
Normally specifies a fully qualified LU name, network-name.luname. The absence of the network-name
indicates a problem.

Resolving the problem
1. Determine whether VTAM is up:

• If VTAM is not up, start VTAM, and then start DDF.
• If VTAM did not start completely before DDF was started, start VTAM, and then start DDF.

If neither of these situations exists, continue with the next step.
2. If VTAM is up, determine the reason for the problem. One possible reason that the VTAM ACB OPEN

failed is that one of the following problems exists for the LU name that was defined to Db2 through the
Db2 change log inventory (DSNJU003) utility DDF statement:

• The LU name is not defined to VTAM.
• The LU name is defined, but the LU did not start automatically during VTAM startup.
• The LU name that is displayed in the DSNL004I message is not valid. In this case, stop Db2, run a

DSNJU003 utility job, and restart Db2.

To diagnose the problem within VTAM:

Chapter 3. Recovering from different Db2 for z/OS problems 129

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cs3cod0/acbopen.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cs3cod0/acbopen.htm

a. Issue the following command: DISPLAY NET,ID=luname,SCOPE=ALL, where luname is
displayed in message DSNL004I, and examine the output of the DISPLAY command.

• If the output suggests that the LU name does not exist, display each APPL node by issuing
the DISPLAY APPLS command. For command details, see DISPLAY APPLS command (z/OS
Communications Server: SNA Operation).

• If you do not find an active APPL node that contains the LU name or a model LU name (a wildcard
LU name) that Db2 can use, take one of the following actions:

– If no active APPL node exists and no APPL major node definition exists in any library that is
referenced by the VTAM started procedure VTAMLST DD specification, define an APPL node to
VTAM, start it, and then start DDF.

– If no active APPL node exists, but an APPL major node definition exists in a library that is
referenced by the VTAM started procedure VTAMLST DD specification, start the major node,
and then start DDF. The cause of this situation is that the major node was not automatically
started during VTAM startup.

b. Work with your VTAM administrator to ensure that the required APPL node or APPL major node
is started automatically during VTAM startup in the future. For more information, see The APPL
statement (Db2 Installation and Migration).

3. If the previous steps do not resolve the problem, examine the reason code from the DSNL013I
message. If the reason code is X'24', the PRTCT value in the APPL definition does not match
the password value that was defined to Db2 in the DSNJU003 DDF statement. If the password
specification to Db2 is missing or incorrect, with Db2 stopped, run a DSNJU003 utility job, specifying a
DDF statement with the correct password, and restart Db2.

4. If none of the previous steps resolves the issue, contact your VTAM administrator for additional help in
resolving the problem.

Recovering from TCP/IP failure
When TCP/IP terminates or fails, you need to recover from this situation.

Symptoms
TCP/IP messages and Db2 messages are issued to indicate that TCP/IP is unavailable.

Environment
Distributed data facility (DDF) periodically attempts to reconnect to TCP/IP. If the TCP/IP listener fails,
DDF automatically tries to re-establish the TCP/IP listener for the DRDA SQL port or the resync port every
three minutes. TCP/IP connections cannot be established until the TCP/IP listener is re-established.

Resolving the problem
Operator response:

1. Examine the messages that are received at the console to determine the cause of the problem.
2. Correct the condition.
3. Restart TCP/IP. You do not need to restart DDF after a TCP/IP failure.

Recovering from remote logical unit failure
When a series of conversation or change number of sessions (CNOS) failures occur from a remote logical
unit (LU), you need to recover from this situation.

Symptoms
Message DSNL501I is issued when a CNOS request to a remote LU fails. The CNOS request is the first
attempt to connect to the remote site and must be negotiated before any conversations can be allocated.

130 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.istopr0/dap.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.istopr0/dap.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_applstmt.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_applstmt.html

Consequently, if the remote LU is not active, message DSNL501I is displayed to indicate that the CNOS
request cannot be negotiated. Message DSNL500I is issued only once for all the SQL conversations that
fail as a result of a remote LU failure.

Message DSNL502I is issued for system conversations that are active to the remote LU at the time of the
failure. This message contains the VTAM diagnostic information about the cause of the failure.

Environment
Any application communications with a failed LU receives a message to indicate a resource-unavailable
condition. Any attempt to establish communication with such an LU fails.

Resolving the problem
System programmer response: Communicate with the other involved sites regarding the unavailable-
resource condition, and request that appropriate corrective action be taken. If a DSNL502 message is
received, activate the remote LU, or ask another operator to do so.

Recovering from an indefinite wait condition
If a distributed thread is hung, an application might be in an indefinite wait condition. For example, an
allied thread might wait indefinitely for a response from a remote server location. Another example is a
database access thread that waits for a new request from the remote requester location.

Symptoms
An application is in an indefinitely long wait condition. This can cause other Db2 threads to fail due
to resources that are held by the waiting thread. Db2 sends an error message to the console, and the
application program receives an SQL return code.

Environment
Db2 does not respond.

Diagnosing the problem
Operator response: To check for very long waits, look to see if the conversation timestamp is changing
from the last time it was used. If it is changing, the conversation thread is not hung, but it is taking more
time for a long query. Also, look for conversation state changes, and determine what they mean.

Resolving the problem
Operator response:

1. Use the DISPLAY THREAD command with the LOCATION and DETAIL options to identify the LUWID
and the session allocation for the waiting thread.

2. Use the CANCEL DDF THREAD command to cancel the waiting thread.
3. If the CANCEL DDF THREAD command fails to break the wait (because the thread is not suspended in

Db2), try using VTAM commands such as VARY TERM,SID=xxx or use the TCP/IP DROP command. For
instructions on how to use the VTAM commands and TCP/IP commands, see -CANCEL THREAD (Db2)
(Db2 Commands).

Related tasks
Canceling threads (Db2 Administration Guide)

Chapter 3. Recovering from different Db2 for z/OS problems 131

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_cancelthread.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_cancelthread.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_cancelthreads.html

Recovering database access threads after security failure
During database access thread allocation, the remote site might not have the proper security to access
Db2 through distributed data facility (DDF). When this happens, you can recover from the situation.

Symptoms
Message DSNL500I is issued at the requester for VTAM conversations (if it is a Db2 subsystem) with
return codes RTNCD=0, FDBK2=B, RCPRI=4, and RCSEC=5. These return codes indicate that a security
violation has occurred. The server has deallocated the conversation because the user is not allowed to
access the server. For conversations that use DRDA access, LU 6.2 communications protocols present
specific reasons for why the user access failed, and these reasons are communicated to the application.
If the server is a Db2 database access thread, message DSNL030I is issued to describe what caused the
user to be denied access into Db2 through DDF. No message is issued for TCP/IP connections.

If the server is a Db2 subsystem, message DSNL030I is issued. Otherwise, the system programmer needs
to refer to the documentation of the server. If the application uses DRDA access, SQLCODE –30082 is
returned.

Causes
This problem is caused by a remote user who attempts to access Db2 through DDF without the necessary
security authority.

Resolving the problem
Operator response:

1. Read about the Db2 code 00D3103D.
2. Take the appropriate action:

• If the security failure involves a Db2 database access thread, provide the DSNL030I message to the
system programmer.

• If the security failure does not involve a Db2 server, work with the operator or programmer at the
server to get diagnostic information that is needed by the system programmer.

Related information
00D3103D (Db2 Codes)

Performing remote-site disaster recovery
When your local system experiences damage or disruption that prevents recovery from that site, you can
recover by using a remote site that you have set up for this purpose.

Symptoms
The specific symptoms of a disaster that affects your local system hardware vary, but when this happens,
the affected Db2 subsystem is not operational.

Causes
Your local system hardware has suffered physical damage.

Resolving the problem
System programmer response: Coordinate the activities that are detailed in “Restoring data from image
copies and archive logs” on page 133.

Operator response: At the remote-site, the disaster-recovery procedures differ from other recovery
procedures because you cannot use the hardware at your local Db2 site to recover data. Instead, you use
hardware at a remote site to recover after a disaster by using one of a variety of methods.

132 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/00d3103d.html

Recovering from a disaster by using system-level backups
If you have recent system-level backups, you can use those backups along with one of several utilities to
recover after a disaster.

Procedure
For a remote site recovery procedure where tape volumes that contain system data are sent from
the production site, specify the dump class that is available at the remote site by using the following
installation options on installation panel DSNTIP6:

• Either RESTORE FROM DUMP or RECOVER FROM DUMP
• DUMP CLASS NAME

Restoring data from image copies and archive logs
Follow the appropriate procedure for restoring from image copies and archive logs, depending on whether
you are in a data sharing environment. Both procedures assume that all logs, copies, and reports are
available at the recovery site.
Related information
DFSMS Access Method Services Commands

Restoring data in a non-data sharing environment
If you are in a non-data sharing environment, you might need to recover from a disaster by restoring
data from image copies and logs. The procedure that you follow assumes that all logs, image copies, and
reports are available at the recovery site.

Procedure
To recover from a disaster in a non-data sharing environment by using image copies and archive logs:

1. If an integrated catalog facility catalog does not already exist, run job DSNTIJCA to create a user
catalog.

2. Use the access method services IMPORT command to import the integrated catalog facility catalog.
3. Restore Db2 libraries.

Some examples of libraries that you might need to restore include:

• Db2 SMP/E libraries
• User program libraries
• User DBRM libraries
• Db2 CLIST libraries
• Db2 libraries that contain customized installation jobs
• JCL for creating user-defined table spaces

4. Use IDCAMS DELETE NOSCRATCH to delete all catalog and user objects.
(Because step “2” on page 133 imports a user ICF catalog, the catalog reflects data sets that do not
exist on disk.)

5. Obtain a copy of installation job DSNTIJIN, which creates Db2 VSAM and non-VSAM data sets.
Change the volume serial numbers in the job to volume serial numbers that exist at the recovery site.
Comment out the steps that create Db2 non-VSAM data sets, if these data sets already exist. Run
DSNTIJIN. However, do not run DSNTIJID.

6. Recover the BSDS:
a) Use the access method services REPRO command to restore the contents of one BSDS data set

(allocated in step “5” on page 133).

Chapter 3. Recovering from different Db2 for z/OS problems 133

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/abstract.htm

You can find the most recent BSDS image in the last file (archive log with the highest number) on
the latest archive log tape.

b) Determine the RBA range for this archive log by using the print log map utility (DSNJU004) to list
the current BSDS contents. Find the most recent archive log in the BSDS listing, and add 1 to its
ENDRBA value. Use this as the STARTRBA. Find the active log in the BSDS listing that starts with
this RBA, and use its ENDRBA as the ENDRBA.

c) Delete the oldest archive log from the BSDS.
d) Register this latest archive log tape data set in the archive log inventory of the BSDS that you just

restored by using the change log inventory utility (DSNJU003).
This step is necessary because the BSDS image on an archive log tape does not reflect the archive
log data set that resides on that tape. After these archive logs are registered, use the print log map
utility (DSNJU004) to list the contents of the BSDS.

e) Adjust the active logs in the BSDS by using the change log inventory utility (DSNJU003), as
necessary:

i) To delete all active logs in the BSDS, use the DELETE option of DSNJU003. Use the BSDS listing
that is produced in step “6.d” on page 134 to determine the active log data set names.

ii) To add the active log data sets to the BSDS, use the NEWLOG statement of DSNJU003. Do not
specify a STARTRBA or ENDRBA in the NEWLOG statement. This specification indicates to Db2
that the new active logs are empty.

f) If you are using the Db2 distributed data facility, update the LOCATION and the LUNAME values in
the BSDS by running the change log inventory utility with the DDF statement.

g) List the new BSDS contents by using the print log map utility (DSNJU004). Ensure that the BSDS
correctly reflects the active and archive log data set inventories.
In particular, ensure that:

• All active logs show a status of NEW and REUSABLE.
• The archive log inventory is complete and correct (for example, the start and end RBAs are

correct).
h) If you are using dual BSDSs, make a copy of the newly restored BSDS data set to the second BSDS

data set.
7. Optional: Restore archive logs to disk.

Archive logs are typically stored on tape, but restoring them to disk might speed later steps. If you
elect this option, and the archive log data sets are not cataloged in the primary integrated catalog
facility catalog, use the change log inventory utility to update the BSDS. If the archive logs are listed
as cataloged in the BSDS, Db2 allocates them by using the integrated catalog and not the unit or
VOLSER that is specified in the BSDS. If you are using dual BSDSs, remember to update both copies.

8. Use the DSN1LOGP utility to determine which transactions were in process at the end of the last
archive log. Use the following job control language where yyyyyyyyyyyy is the STARTRBA of the last
complete checkpoint within the RBA range on the last archive log from the previous print log map:

 //SAMP EXEC PGM=DSN1LOGP
 //SYSPRINT DD SYSOUT=*
 //SYSSUMRY DD SYSOUT=*
 //ARCHIVE DD DSN=last-archive, DISP=(OLD,KEEP),UNIT=TAPE,
 LABEL=(2,SL),VOL=SER=volser1
 (NOTE FILE 1 is BSDS COPY
 //SYSIN DD *
 STARTRBA(yyyyyyyyyyyy) SUMMARY(ONLY)
 /*

DSN1LOGP generates a report.
9. Examine the DSN1LOGP output, and identify any utilities that were executing at the end of the last

archive log. Determine the appropriate recovery action to take on each table space that is involved in
a utility job.
If DSN1LOGP output showed that utilities are inflight (PLAN=DSNUTIL), examine SYSUTILX to
identify the utility status and determine the appropriate recovery approach.

134 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

10. Modify DSNZPxxx parameters:
a) Run the DSNTINST CLIST in UPDATE mode.

For more information, see Generating tailored Db2 12 installation, migration, or function level
activation jobs (Db2 Installation and Migration)

b) To defer processing of all databases, select DATABASES TO START AUTOMATICALLY from panel
DSNTIPB.
Panel DSNTIPS opens. On panel DSNTIPS, type DEFER in the first field and ALL in the second
field; then press Enter.
You are returned to panel DSNTIPB.

c) To specify where you are recovering, select OPERATOR FUNCTIONS from panel DSNTIPB.
Panel DSNTIPO opens. From panel DSNTIPO, type RECOVERYSITE in the SITE TYPE field. Press
Enter to continue.

d) To prevent format conversions during Disaster Recovery, select SQL OBJECT DEFAULTS PANEL 1
from panel DSNTIPB.
Panel DSNTIP7 opens. From panel DSNTIP7, set the UTILITY_OBJECT_CONVERSION value to
NONE. Press Enter to continue. Format conversions complicate the recovery process and can lead
to failures. Reset this parameter to its original value after the Disaster Recovery completes.

e) Optional: Specify which archive log to use by selecting OPERATOR FUNCTIONS from panel
DSNTIPB.
Panel DSNTIPO opens. From panel DSNTIPO, type YES in the READ COPY2 ARCHIVE field if you
are using dual archive logging and want to use the second copy of the archive logs. Press Enter to
continue.

f) Reassemble DSNZPxxx by using job DSNTIJUZ (produced by the CLIST started in the first step of
this procedure).

At this point, you have the log, but the table spaces have not been recovered. With DEFER ALL,
Db2 assumes that the table spaces are unavailable but does the necessary processing to the log.
This step also handles the units of recovery that are in process.

11. Create a conditional restart control record by using the change log inventory utility with one of the
following forms of the CRESTART statement:

• CRESTART CREATE,ENDRBA=nnnnnnnnn000

The nnnnnnnnn000 equals a value that is one more than the ENDRBA of the latest archive log.

• CRESTART CREATE,ENDTIME=nnnnnnnnnnnn

The nnnnnnnnnnnn is the end time of the log record. Log records with a timestamp later than
nnnnnnnnnnnn are truncated.

12. Enter the command START DB2 ACCESS(MAINT).

You must enter this command, because real-time statistics are active and enabled; otherwise, errors
or abends could occur during Db2 restart processing and recovery processing (for example, GRECP
recovery, LPL recovery, or the RECOVER utility).

Even though Db2 marks all table spaces for deferred restart, log records are written so that in-abort
and inflight units of recovery are backed out. In-commit units of recovery are completed, but no
additional log records are written at restart to cause this. This happens when the original redo log
records are applied by the RECOVER utility.

At the primary site, Db2 probably committed or aborted the inflight units of recovery, but you have no
way of knowing.

During restart, Db2 accesses two table spaces that result in DSNT501I, DSNT500I, and DSNL700I
resource unavailable messages, regardless of DEFER status. The messages are normal and expected,
and you can ignore them.

Chapter 3. Recovering from different Db2 for z/OS problems 135

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_tailorjobsclist.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_tailorjobsclist.html

The following return codes can accompany the message. Other codes are also possible.
00C90081

This return code is issued for activity against the object that occurs during restart as a result of a
unit of recovery or pending writes. In this case, the status that is shown as a result of DISPLAY is
STOP,DEFER.

00C90094
Because the table space is currently only a defined VSAM data set, it is in a state that Db2 does
not expect.

00C90095
Db2 cannot access the page, because the table space or index space has not been recovered yet.

00C900A9
An attempt was made to allocate a deferred resource.

13. Resolve the indoubt units of recovery.
The RECOVER utility, which you run in a subsequent step, fails on any table space that has indoubt
units of recovery. Because of this, you must resolve them first. Determine the proper action to take
(commit or abort) for each unit of recovery. To resolve indoubt units of recovery, see Resolving
indoubt units of recovery (Db2 Administration Guide). From an installation SYSADM authorization ID,
enter the RECOVER INDOUBT command for all affected transactions.

14. Recover the catalog and directory.
The RECOVER function includes: RECOVER TABLESPACE, RECOVER INDEX, or REBUILD INDEX. If you
have an image copy of an index, use RECOVER INDEX. If you do not have an image copy of an index,
use REBUILD INDEX to reconstruct the index from the recovered table space.
a) Recover DSNDB01.SYSUTILX.

This must be a separate job step.
b) Recover all indexes on SYSUTILX.

This must be a separate job step.
c) Determine whether a utility was running at the time the latest archive log was created by entering

the DISPLAY UTILITY(*) command, and record the name and current phase of any utility that
is running.
(You cannot restart a utility at the recovery site that was interrupted at the disaster site. You must
use the TERM UTILITY command to terminate it. Use the TERM UTILITY command on a utility
that is operating on any object except DSNDB01.SYSUTILX.)

d) Run the DIAGNOSE utility with the DISPLAY SYSUTIL option.
The output consists of information about each active utility, including the table space name (in
most cases). This is the only way to correlate the object name with the utility. Message DSNU866I
gives information about the utility, and DSNU867I gives the database and table space name in
USUDBNAM and USUSPNAM, respectively.

e) Use the TERM UTILITY command to terminate any utilities that are in progress on catalog or
directory table spaces.

f) Recover the rest of the catalog and directory objects, starting with DBD01, in the order shown in
the description of the RECOVER utility.

15. Define and initialize the work file database:
a) Define temporary work files. Use installation job DSNTIJTM as a model.
b) Issue the command START DATABASE(work-file-database) to start the work file database.

16. Use any method that you want to verify the integrity of the Db2 catalog and directory.
Use the catalog queries in member DSNTESQ of data set DSN1210.SDSNSAMP after the work file
database is defined and initialized.

17. If you use data definition control support, recover the objects in the data definition control support
database.

18. If you use the resource limit facility, recover the objects in the resource limit control facility database.

136 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_resolveindoubtunits.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_resolveindoubtunits.html

19. Modify DSNZPxxx to restart all databases:
a) Run the DSNTINST CLIST in UPDATE mode.

b) From panel DSNTIPB, select DATABASES TO START AUTOMATICALLY.
Panel DSNTIPS opens. Type RESTART in the first field and ALL in the second field, and press
Enter.
You are returned to DSNTIPB.

c) Reassemble DSNZPxxx by using job DSNTIJUZ (produced by the CLIST started in step “3” on page
133).

20. Stop Db2.
21. Start Db2.
22. Make a full image copy of the catalog and directory.
23. Recover user table spaces and index spaces.

If utilities were running on any table spaces or index spaces, see “What to do about utilities that were
in progress at time of failure” on page 145. You cannot restart a utility at the recovery site that was
interrupted at the disaster site. Use the TERM UTILITY command to terminate any utilities that are
running against user table spaces or index spaces.
a) To determine which, if any, of your table spaces or index spaces are user-managed, perform the

following queries for table spaces and index spaces.

• Table spaces:

SELECT * FROM SYSIBM.SYSTABLEPART WHERE STORTYPE='E';

• Index spaces:

SELECT * FROM SYSIBM.SYSINDEXPART WHERE STORTYPE='E';

To allocate user-managed table spaces or index spaces, use the access method services DEFINE
CLUSTER command. To find the correct IPREFIX for the DEFINE CLUSTER command, perform the
following queries for table spaces and index spaces.

• Table spaces:

SELECT DBNAME, TSNAME, PARTITION, IPREFIX FROM SYSIBM.SYSTABLEPART
WHERE DBNAME=dbname AND TSNAME=tsname
ORDER BY PARTITION;

• Index spaces:

SELECT IXNAME, PARTITION, IPREFIX FROM SYSIBM.SYSINDEXPART
WHERE IXCREATOR=ixcreator AND IXNAME=ixname
ORDER BY PARTITION;

Now you can perform the DEFINE CLUSTER command with the correct IPREFIX (I or J) in the
data set name:

catname.DSNDBx.dbname.psname.y0001.znnn

The y can be either I or J, x is C (for VSAM clusters) or D (for VSAM data components), and spname
is either the table space or index space name.

b) If your user table spaces or index spaces are STOGROUP-defined, and if the volume serial
numbers at the recovery site are different from those at the local site, use the SQL statement
ALTER STOGROUP to change them in the Db2 catalog.

c) Recover all user table spaces and index spaces from the appropriate image copies.
If you do not copy your indexes, use the REBUILD INDEX utility to reconstruct the indexes.

d) Start all user table spaces and index spaces for read-write processing by issuing the command
START DATABASE with the ACCESS(RW) option.

Chapter 3. Recovering from different Db2 for z/OS problems 137

e) Resolve any remaining CHECK-pending states that would prevent COPY execution.
f) Run queries for which the results are known.

24. Make full image copies of all table spaces and indexes with the COPY YES attribute.
25. Finally, compensate for work that was lost since the last archive was created by rerunning online

transactions and batch jobs.

What to do next
Determine what to do about any utilities that were in progress at the time of failure.
Related concepts
Preparations for disaster recovery (Db2 Administration Guide)
What to do about utilities that were in progress at time of failure (Db2 Administration Guide)
Related tasks
Defining your own user-managed data sets (Db2 Administration Guide)
Migration step 1: Actions to complete before migration (Db2 Installation and Migration)
Recovering catalog and directory objects (Db2 Utilities)
Related reference
DSN1LOGP (Db2 Utilities)

Restoring data in a data sharing environment
If you are in a data sharing environment, you might need to recover from a disaster by restoring data from
image copies and logs. The procedure that you follow assumes that all logs, image copies, and reports are
available at the recovery site.

About this task
Additional recovery procedures for data sharing environments are also available.

Procedure
To recover from a disaster by using image copies and archive logs:

1. If you have information in your coupling facility from practice startups, remove old information from
the coupling facility.
If you do not have old information in your coupling facility, continue with the step “2” on page 138.
a) Enter the following z/OS command to display the structures for this data sharing group:

D XCF,STRUCTURE,STRNAME=grpname*

b) For group buffer pools, enter the following command to force off the connection of those
structures:

SETXCF FORCE,CONNECTION,STRNAME=strname,CONNAME=ALL

Connections for the SCA are not held at termination; therefore you do not need to force off any
SCA connections.

c) Delete all the Db2 coupling facility structures that have a STATUS of ALLOCATED by using the
following command for each structure:

SETXCF FORCE,STRUCTURE,STRNAME=strname

This step is necessary to remove old information that exists in the coupling facility from your
practice startup when you installed the group.

2. If an integrated catalog facility catalog does not already exist, run job DSNTIJCA to create a user
catalog.

3. Use the access method services IMPORT command to import the integrated catalog facility catalog.

138 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_disasterrecoveryprep.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverutilitiesinprogressatfailure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_definedatasets.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_acts2perfbeforemigr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_recovercatalogdirectoryobjects.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1logp.html

4. Restore Db2 libraries.
Some examples of libraries that you might need to restore include:

• Db2 SMP/E libraries
• User program libraries
• User DBRM libraries
• Db2 CLIST libraries
• Db2 libraries that contain customized installation jobs
• JCL for creating user-defined table spaces

5. Use IDCAMS DELETE NOSCRATCH to delete all catalog and user objects.
(Because step “3” on page 138 imports a user ICF catalog, the catalog reflects data sets that do not
exist on disk.)

6. Obtain a copy of the installation job DSNTIJIN, which creates Db2 VSAM and non-VSAM data sets, for
the first data sharing member. Change the volume serial numbers in the job to volume serial numbers
that exist at the recovery site. Comment out the steps that create Db2 non-VSAM data sets, if these
data sets already exist. Run DSNTIJIN on the first data sharing member.
However, do not run DSNTIJID.

For subsequent members of the data sharing group, run the DSNTIJIN that defines the BSDS and
logs.

7. Recover the BSDS by following these steps for each member in the data sharing group:
a) Use the access method services REPRO command to restore the contents of one BSDS data set

(allocated in step “6” on page 139) on each member.
You can find the most recent BSDS image in the last file (archive log with the highest number) on
the latest archive log tape.

b) Determine the RBA and LRSN ranges for this archive log by using the print log map utility
(DSNJU004) to list the current BSDS contents. Find the most recent archive log in the BSDS listing,
and add 1 to its ENDRBA value. Use this as the STARTRBA. Find the active log in the BSDS listing
that starts with this RBA, and use its ENDRBA as the ENDRBA. Use the STARTLRSN and ENDLRSN
of this active log data set as the LRSN range (STARTLRSN and ENDLRSN) for this archive log.

c) Delete the oldest archive log from the BSDS.
d) Register this latest archive log tape data set in the archive log inventory of the BSDS that you just

restored by using the change log inventory utility (DSNJU003).
This step is necessary because the BSDS image on an archive log tape does not reflect the archive
log data set that resides on that tape.

Running DSNJU003 is critical for data sharing groups. Include the group buffer pool checkpoint
information that is stored in the BSDS from the most recent archive log.

After these archive logs are registered, use the print log map utility (DSNJU004) with the GROUP
option to list the contents of all BSDSs. You receive output that includes the start and end LRSN
and RBA values for the latest active log data sets (shown as NOTREUSABLE). If you did not save
the values from the DSNJ003I message, you can get those values by running DSNJU004, which
creates output as shown below

The following sample DSNJU004 output shows the (partial) information for the archive log
member DB1G.

ACTIVE LOG COPY 1 DATA SETS
START RBA/LRSN/TIME END RBA/LRSN/TIME DATE/LTIME DATA SET INFORMATION
---------------------- ---------------------- ---------- --------------------
0000000007A5C5360000 0000000007A5DB31FFFF 2005.034 DSN=DSNT3LOG.DT31.LOGCOPY1.DS01
00CAC6509C994A000000 00CAC650C5EDD8000000 20:22 PASSWORD=(NULL) STATUS=REUSABLE
2013.015 14:41:16.4 2013.015 14:41:59.7
0000000007A5DB320000 0000000007A5F12DFFFF 2007.051 DSN=DSNT3LOG.DT31.LOGCOPY1.DS04
00CAC650C5EDD8000000 00CAC650EA3857000000 13:27 PASSWORD=(NULL) STATUS=REUSABLE
2013.015 14:41:59.7 2013.015 14:42:37.7

Chapter 3. Recovering from different Db2 for z/OS problems 139

The following sample DSNJU004 output shows the (partial) information for the archive log
member DB2G.

ACTIVE LOG COPY 1 DATA SETS
 START RBA/LRSN/TIME END RBA/LRSN/TIME DATE LTIME DATA SET INFORMATION
 -------------------- -------------------- -------- ----- --------------------

 EMPTY DATA SET 1996.361 14:14 DSN=DSNDB0G.DB2G.LOGCOPY1.DS03
 000000000000 000000000000 STATUS=NEW, REUSABLE
 0000.000 00:00:00.0 0000.000 00:00:00.0
 000000000000 0000000D6FFF 1996.361 14:14 DSN=DSNDB0G.DB2G.LOGCOPY1.DS01
 ADFA00BB70FB AE3C45276DD7 STATUS=TRUNCATED, NOTREUSABLE
 1996.361 22:30:51.4 1997.048 15:28:23.7
 0000000D7000 00000045AFFF 1996.361 14:14 DSN=DSNDB0G.DB2G.LOGCOPY1.DS02
 AE3C45276DD8 STATUS=NOTREUSABLE
 1997.048 15:28:23.7

e) Adjust the active logs in the BSDS by using the change log inventory utility (DSNJU003), as
necessary:

i) To delete all active logs in the BSDS, use the DELETE option of DSNJU003. Use the BSDS listing
that is produced in step “7.d” on page 139 to determine the active log data set names.

ii) To add the active log data sets to the BSDS, use the NEWLOG statement of DSNJU003. Do not
specify a STARTRBA or ENDRBA in the NEWLOG statement. This specification indicates to Db2
that the new active logs are empty.

f) If you are using the Db2 distributed data facility, update the LOCATION and the LUNAME values in
the BSDS by running the change log inventory utility with the DDF statement.

g) List the new BSDS contents by using the print log map utility (DSNJU004). Ensure that the BSDS
correctly reflects the active and archive log data set inventories.
In particular, ensure that:

• All active logs show a status of NEW and REUSABLE.
• The archive log inventory is complete and correct (for example, the start and end RBAs are

correct).
h) If you are using dual BSDSs, make a copy of the newly restored BSDS data set to the second BSDS

data set.
8. Optional: Restore archive logs to disk for each member.

Archive logs are typically stored on tape, but restoring them to disk might speed later steps. If you
elect this option, and the archive log data sets are not cataloged in the primary integrated catalog
facility catalog, use the change log inventory utility to update the BSDS. If the archive logs are listed
as cataloged in the BSDS, Db2 allocates them by using the integrated catalog and not the unit or
VOLSER that is specified in the BSDS. If you are using dual BSDSs, remember to update both copies.

9. Use the DSN1LOGP utility to determine, for each member of the data sharing group, which
transactions were in process at the end of the last archive log. Use the following job control language
where yyyyyyyyyyyy is the STARTRBA of the last complete checkpoint within the RBA range on the
last archive log from the previous print log map:

 //SAMP EXEC PGM=DSN1LOGP
 //SYSPRINT DD SYSOUT=*
 //SYSSUMRY DD SYSOUT=*
 //ARCHIVE DD DSN=last-archive, DISP=(OLD,KEEP),UNIT=TAPE,
 LABEL=(2,SL),VOL=SER=volser1
 (NOTE FILE 1 is BSDS COPY
 //SYSIN DD *
 STARTRBA(yyyyyyyyyyyy) SUMMARY(ONLY)
 /*

DSN1LOGP generates a report.
10. Examine the DSN1LOGP output for each data sharing member, and identify any utilities that were

executing at the end of the last archive log. Determine the appropriate recovery action to take on
each table space that is involved in a utility job.

140 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

If DSN1LOGP output showed that utilities are inflight (PLAN=DSNUTIL), examine SYSUTILX to
identify the utility status and determine the appropriate recovery approach.

11. Modify DSNZPxxx parameters for each member of the data sharing group:
a) Run the DSNTINST CLIST in UPDATE mode.
b) To defer processing of all databases, select DATABASES TO START AUTOMATICALLY from panel

DSNTIPB.
Panel DSNTIPS opens. On panel DSNTIPS, type DEFER in the first field and ALL in the second
field; then press Enter.
You are returned to panel DSNTIPB.

c) To specify where you are recovering, select OPERATOR FUNCTIONS from panel DSNTIPB.
Panel DSNTIPO opens. From panel DSNTIPO, type RECOVERYSITE in the SITE TYPE field. Press
Enter to continue.

d) Optional: Specify which archive log to use by selecting OPERATOR FUNCTIONS from panel
DSNTIPB.
Panel DSNTIPO opens. From panel DSNTIPO, type YES in the READ ARCHIVE COPY2 field if you
are using dual archive logging and want to use the second copy of the archive logs. Press Enter to
continue.

e) Reassemble DSNZPxxx by using job DSNTIJUZ (produced by the CLIST started in the first step of
this procedure).

At this point, you have the log, but the table spaces have not been recovered. With DEFER ALL,
Db2 assumes that the table spaces are unavailable but does the necessary processing to the log.
This step also handles the units of recovery that are in process.

12. Create a conditional restart control record for each data sharing member by using the change log
inventory utility with one of the following forms of the CRESTART statement:

• CRESTART CREATE,ENDLRSN=nnnnnnnnnnnn

The nnnnnnnnnnnn is the LRSN of the last log record that is to be used during restart.

• CRESTART CREATE,ENDTIME=nnnnnnnnnnnn

The nnnnnnnnnnnn is the end time of the log record. Log records with a timestamp later than
nnnnnnnnnnnn are truncated.

Use the same LRSN or system time-of-day clock timestamp value for all members in a data sharing
group. Determine the ENDLRSN value by using one of the following methods:

• Use the DSN1LOGP summary utility. In the "Summary of Completed Events" section, find the
lowest LRSN value that is listed in the DSN1213I message for the data sharing group. Use this value
for the ENDLRSN in the CRESTART statement.

• Use the print log map utility (DSNJU004) to list the BSDS contents. Find the ENDLRSN of the
last log record that is available for each active member of the data sharing group. Subtract 1
from the lowest ENDLRSN in the data sharing group. Use this value for the ENDLRSN in the
CRESTART statement. (In the sample output that is shown in step “7.d” on page 139, the value is
AE3C45273A77 - 1, which is AE3C45273A76.)

• If only the console logs are available, use the archive offload message (DSNJ003I) to obtain
the ENDLRSN. Compare the ending LRSN values for the archive logs of all members. Subtract
1 from the lowest LRSN in the data sharing group. Use this value for the ENDLRSN in the
CRESTART statement. (In the sample output that is shown in step “7.d” on page 139, the value
is AE3C45273A77 - 1, which is AE3C45273A76.)

Db2 discards any log information in the bootstrap data set and the active logs with an RBA greater
than or equal to nnnnnnnnn000 or an LRSN greater than nnnnnnnnnnnn as listed in the preceding
CRESTART statements.

Chapter 3. Recovering from different Db2 for z/OS problems 141

Use the print log map utility to verify that the conditional restart control record that you created in the
previous step is active.

13. Enter the command START DB2 ACCESS(MAINT).

You must enter this command, because real-time statistics are active and enabled; otherwise, errors
or abends could occur during Db2 restart processing and recovery processing (for example, GRECP
recovery, LPL recovery, or the RECOVER utility).

If a discrepancy exists among the print log map reports as to the number of members in the group,
which would be an unlikely occurrence, record the one that shows the highest number of members.
Start this Db2 subsystem first using ACCESS(MAINT). Db2 prompts you to start each additional Db2
subsystem in the group.

After all additional members are successfully restarted, and if you are going to run single-system
data sharing at the recovery site, stop all except one of the Db2 subsystems by using the STOP DB2
command with MODE(QUIESCE).

If you planned to use the light mode when starting the Db2 group, add the LIGHT parameter to the
START command. Start the members that run in LIGHT(NO) mode first, followed by the light mode
members.

Even though Db2 marks all table spaces for deferred restart, log records are written so that in-abort
and inflight units of recovery are backed out. In-commit units of recovery are completed, but no
additional log records are written at restart to cause this. This happens when the original redo log
records are applied by the RECOVER utility.

At the primary site, Db2 probably committed or canceled the inflight units of recovery, but you have
no way of knowing.

During restart, Db2 accesses two table spaces that result in DSNT501I, DSNT500I, and DSNL700I
resource unavailable messages, regardless of DEFER status. The messages are normal and expected,
and you can ignore them.

The following return codes can accompany the message. Other codes are also possible.
00C90081

This return code is issued for activity against the object that occurs during restart as a result of a
unit of recovery or pending writes. In this case, the status that is shown as a result of DISPLAY is
STOP,DEFER.

00C90094
Because the table space is currently only a defined VSAM data set, it is in a state that Db2 does
not expect.

00C900A9
An attempt was made to allocate a deferred resource.

14. Resolve the indoubt units of recovery.
The RECOVER utility, which you run in a subsequent step, fails on any table space that has indoubt
units of recovery. Because of this, you must resolve them first. Determine the proper action to take
(commit or abort) for each unit of recovery. To resolve indoubt units of recovery, see Resolving
indoubt units of recovery (Db2 Administration Guide). From an installation SYSADM authorization ID,
enter the RECOVER INDOUBT command for all affected transactions.

15. Recover the catalog and directory.
The RECOVER function includes: RECOVER TABLESPACE, RECOVER INDEX, or REBUILD INDEX. If you
have an image copy of an index, use RECOVER INDEX. If you do not have an image copy of an index,
use REBUILD INDEX to reconstruct the index from the recovered table space.
a) Recover DSNDB01.SYSUTILX.

This must be a separate job step.
b) Recover all indexes on SYSUTILX.

This must be a separate job step.

142 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_resolveindoubtunits.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_resolveindoubtunits.html

c) Determine whether a utility was running at the time the latest archive log was created by entering
the DISPLAY UTILITY(*) command, and record the name and current phase of any utility that
is running.
(You cannot restart a utility at the recovery site that was interrupted at the disaster site. To
terminate a utility at the recovery site that was interrupted at the disaster site, you must use the
TERM UTILITY command.)

d) Run the DIAGNOSE utility with the DISPLAY SYSUTIL option.
The output consists of information about each active utility, including the table space name (in
most cases). This is the only way to correlate the object name with the utility. Message DSNU866I
gives information about the utility, and DSNU867I gives the database and table space name in
USUDBNAM and USUSPNAM, respectively.

e) Use the TERM UTILITY command to terminate any utilities that are in progress on catalog or
directory table spaces.

f) Recover the rest of the catalog and directory objects, starting with DBD01, in the order shown in
the description of the RECOVER utility.

16. Define and initialize the work file database
a) Define temporary work files. Use installation job DSNTIJTM as a model.
b) Issue the command START DATABASE(work-file-database) to start the work file database.

17. Use any method that you want to verify the integrity of the Db2 catalog and directory.
Use the catalog queries in member DSNTESQ of data set DSN1210.SDSNSAMP after the work file
database is defined and initialized.

18. If you use data definition control support, recover the objects in the data definition control support
database.

19. If you use the resource limit facility, recover the objects in the resource limit control facility database.
20. Modify DSNZPxxx to restart all databases on each member of the data sharing group:

a) Run the DSNTINST CLIST in UPDATE mode.
For more information, see Generating tailored Db2 12 installation, migration, or function level
activation jobs (Db2 Installation and Migration).

b) From panel DSNTIPB, select DATABASES TO START AUTOMATICALLY.
Panel DSNTIPS opens. Type RESTART in the first field and ALL in the second field, and press
Enter.
You are returned to DSNTIPB.

c) Reassemble DSNZPxxx by using job DSNTIJUZ (produced by the CLIST started in step “4” on page
139).

21. Stop Db2.
22. Start Db2.
23. Make a full image copy of the catalog and directory.
24. Recover user table spaces and index spaces.

If utilities were running on any table spaces or index spaces, see “What to do about utilities that were
in progress at time of failure” on page 145. You cannot restart a utility at the recovery site that was
interrupted at the disaster site. Use the TERM UTILITY command to terminate any utilities that are
running against user table spaces or index spaces.
a) To determine which, if any, of your table spaces or index spaces are user-managed, perform the

following queries for table spaces and index spaces.

• Table spaces:

SELECT * FROM SYSIBM.SYSTABLEPART WHERE STORTYPE='E';

• Index spaces:

Chapter 3. Recovering from different Db2 for z/OS problems 143

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_tailorjobsclist.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_tailorjobsclist.html

SELECT * FROM SYSIBM.SYSINDEXPART WHERE STORTYPE='E';

To allocate user-managed table spaces or index spaces, use the access method services DEFINE
CLUSTER command. To find the correct IPREFIX for the DEFINE CLUSTER command, perform the
following queries for table spaces and index spaces.

• Table spaces:

SELECT DBNAME, TSNAME, PARTITION, IPREFIX FROM SYSIBM.SYSTABLEPART
WHERE DBNAME=dbname AND TSNAME=tsname
ORDER BY PARTITION;

• Index spaces:

SELECT IXNAME, PARTITION, IPREFIX FROM SYSIBM.SYSINDEXPART
WHERE IXCREATOR=ixcreator AND IXNAME=ixname
ORDER BY PARTITION;

Now you can perform the DEFINE CLUSTER command with the correct IPREFIX (I or J) in the
data set name:

catname.DSNDBx.dbname.psname.y0001.znnn

The y can be either I or J, x is C (for VSAM clusters) or D (for VSAM data components), and spname
is either the table space or index space name.

b) If your user table spaces or index spaces are STOGROUP-defined, and if the volume serial
numbers at the recovery site are different from those at the local site, use the SQL statement
ALTER STOGROUP to change them in the Db2 catalog.

c) Recover all user table spaces and index spaces from the appropriate image copies.
If you do not copy your indexes, use the REBUILD INDEX utility to reconstruct the indexes.

d) Start all user table spaces and index spaces for read-write processing by issuing the command
START DATABASE with the ACCESS(RW) option.

e) Resolve any remaining CHECK-pending states that would prevent COPY execution.
f) Run queries for which the results are known.

25. Make full image copies of all table spaces and indexes with the COPY YES attribute.
26. Finally, compensate for work that was lost since the last archive was created by rerunning online

transactions and batch jobs.

What to do next
Determine what to do about any utilities that were in progress at the time of failure.
Related concepts
Preparations for disaster recovery (Db2 Administration Guide)
What to do about utilities that were in progress at time of failure (Db2 Administration Guide)
Recovering data in data sharing (Db2 Data Sharing Planning and Administration)
Related tasks
Migration step 1: Actions to complete before migration (Db2 Installation and Migration)
Recovering catalog and directory objects (Db2 Utilities)
Related reference
DSN1LOGP (Db2 Utilities)

144 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_disasterrecoveryprep.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverutilitiesinprogressatfailure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/dshare/src/tpc/db2z_recoveringdatads.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_acts2perfbeforemigr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_recovercatalogdirectoryobjects.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1logp.html

What to do about utilities that were in progress at time of failure
After you restore data from image copies and archives, you might need to take some additional steps. For
example, you need to determine what to do about any utilities that were in progress at the time of the
failure.

You might need to take additional steps if any utility jobs were running after the last time that the log was
offloaded before the disaster.

After restarting Db2, only certain utilities need to be terminated with the TERM UTILITY command.

Allowing the RECOVER utility to reset pending states is preferable. However, you might occasionally need
to use the REPAIR utility to reset them. Do not start the table space with ACCESS(FORCE) because FORCE
resets any page set exception conditions described in "Database page set controls."

For the following utility jobs, perform the indicated actions:

CHECK DATA
Terminate the utility, and run it again after recovery is complete.

COPY
After you enter the TERM UTILITY command, Db2 places a record in the SYSCOPY catalog table to
indicate that the COPY utility job was terminated. This makes it necessary for you to make a full image
copy. When you copy your environment at the completion of the disaster recovery scenario, you fulfill
that requirement.

LOAD
Find the options that you specified in the following table, and perform the specified actions. For the
SORTKEYS option, you must specify a value that is greater than zero for integer. If you specify zero for
integer, the SORTKEYS option does not apply.

Table 7. Actions to take when a LOAD utility job is interrupted

LOAD options specified What to do

LOG YES If the RELOAD phase completed, recover to the current time.
Recover the indexes.

If the RELOAD phase did not complete, recover to a prior point in
time. The SYSCOPY record that is inserted at the beginning of the
RELOAD phase contains the RBA or LRSN.

LOG NO and copy-spec If the RELOAD phase completed, the table space is complete after
you recover it to the current time. Recover the indexes.

If the RELOAD phase did not complete, recover the table space to a
prior point in time. Recover the indexes.

LOG NO, copy-spec, and
SORTKEYS integer

If the BUILD or SORTBLD phase completed, recover to the current
time, and recover the indexes.

If the BUILD or SORTBLD phase did not complete, recover to a
prior point in time. Recover the indexes.

LOG NO Recover the table space to a prior point in time. You can use the
TOCOPY option of the RECOVER utility to do this.

To avoid extra loss of data in a future disaster situation, run the QUIESCE utility on table spaces before
invoking the LOAD utility. This enables you to recover a table space by using the TOLOGPOINT option
instead of TOCOPY.

REORG
For a user table space, find the options that you specified in the following table, and perform the
specified actions.

Chapter 3. Recovering from different Db2 for z/OS problems 145

Recommendation: Make full image copies of the catalog and directory before you run REORG on
them.

Table 8. Actions to take when the REORG utility is interrupted

REORG options specified What to do

LOG YES If the RELOAD phase completed, recover to the current time.
Recover the indexes.

If the RELOAD phase did not complete, recover to the current
time to restore the table space to the point before the REORG job
began. Recover the indexes.

LOG NO If the build or SORTBLD phase completed, recover to the current
time, and recover the indexes.

If the build or SORTBLD phase did not complete, recover to the
current time to restore the table space to the point before the
REORG job began. Recover the indexes.

SHRLEVEL CHANGE or
SHRLEVEL REFERENCE

If the SWITCH phase completed, terminate the utility. Recover the
table space to the current time. Recover the indexes.

If the SWITCH phase did not complete, recover the table space to
the current time. Recover the indexes.

For a catalog or directory table space, the instructions are somewhat different. For those table spaces
that were using online REORG, find the options that you specified in the preceding table, and perform
the specified actions.

If you have no image copies from immediately before REORG failed, use this procedure:

1. From your DISPLAY UTILITY command and DIAGNOSE utility output, determine what phase the
REORG job was in and which table space it was reorganizing when the disaster occurred.

2. Run the RECOVER utility on the catalog and directory in the correct order. Recover all table spaces
to the current time, except the table space that was being reorganized at the time of the disaster.
If the RELOAD phase of the REORG job on that table space had not completed when the disaster
occurred, recover the table space to the current time. Because REORG does not generate any log
records prior to the RELOAD phase for catalog and directory objects, a recovery to the current time
restores the data to the state that it was in before the REORG job. If the RELOAD phase completed,
perform the following actions:

a. Run the DSN1LOGP utility against the archive log data sets from the disaster site.
b. Find the begin-UR log record for the REORG job that failed in the DSN1LOGP output.
c. Run the RECOVER utility with the TOLOGPOINT option on the table space that was being

reorganized. Use the URID of the begin-UR record as the TOLOGPOINT value.
3. Recover or rebuild all indexes.

If you have image copies from immediately before the REORG job failed, run the RECOVER utility with
the TOCOPY option to recover the catalog and directory, in the correct order.

Related tasks
Recovering catalog and directory objects (Db2 Utilities)

146 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_recovercatalogdirectoryobjects.html

Recovering from disasters by using a tracker site
You can use a tracker site for disaster recovery. A Db2 tracker site is a separate Db2 subsystem or data
sharing group that exists solely to keep shadow copies of the data at your primary site.

About this task
Using a tracker site for disaster recovery is somewhat similar to other methods.

Recommendation: Test and document a disaster procedure that is customized for your location.

From the primary site, you transfer the BSDS and the archive logs, and that tracker site runs periodic
LOGONLY recoveries to keep the shadow data up-to-date. If a disaster occurs at the primary site, the
tracker site becomes the takeover site. Because the tracker site has been shadowing the activity on the
primary site, you do not need to constantly ship image copies; the takeover time for the tracker site might
be faster because Db2 recovery does not need to use image copies.

Characteristics of a tracker site
A tracker site is a separate Db2 subsystem or data sharing group that exists solely for the purpose of
keeping shadow copies of the data at your primary site.

Because the tracker site must use only the primary site logs for recovery, you must not update the catalog
and directory or the data at the tracker site. The Db2 subsystem at the tracker site disallows updates.

• The following SQL statements are not allowed at a tracker site:

– GRANT or REVOKE
– DROP, ALTER, or CREATE
– UPDATE, INSERT, or DELETE

Dynamic read-only SELECT statements are allowed, but not recommended. At the end of each tracker
site recovery cycle, databases might contain uncommitted data, and indexes might be inconsistent with
the data at the tracker site.

• The only online utilities that are allowed are REPORT, DIAGNOSE, RECOVER, REBUILD, and RESTORE
SYSTEM LOGONLY. Recovery to a prior point in time is not allowed.

• BIND is not allowed.
• TERM UTIL is not allowed for LOAD, REORG, REPAIR, and COPY.
• The START DATABASE command is not allowed when LPL or GRECP status exists for the object of the

command. Use of the START DATABASE command is not necessary to clear LPL or GRECP conditions
because you are going to be running RECOVER jobs that clear the conditions.

• The START DATABASE command with ACCESS(FORCE) is not allowed.
• Down-level detection is disabled.
• Log archiving is disabled.
• Real-time statistics are disabled.

Setting up a tracker site
For disaster recovery purposes, you might want to set up a tracker site. To set up a tracker site, you create
a mirror image of your primary Db2 subsystem, and then ensure that the tracker site is synchronized with
the primary site.

Procedure
To set up the tracker site:
1. Create a mirror image of your primary Db2 subsystem or data sharing group.

This process is described in steps 1 through 4 of the normal disaster recovery procedure, which
includes creating catalogs and restoring Db2 libraries.

Chapter 3. Recovering from different Db2 for z/OS problems 147

2. Modify the subsystem parameters as follows:

• Set the TRKRSITE subsystem parameter to YES.
• Optionally, set the SITETYP parameter to RECOVERYSITE if the full image copies that this site is to

receive are created as remote site copies.
3. Use the access method services DEFINE CLUSTER command to allocate data sets for all user-

managed table spaces that you plan to send over from the primary site.
4. Optional: Allocate data sets for user-managed indexes that you want to rebuild during recovery cycles.

The main reason that you rebuild indexes during recovery cycles is for running efficient queries on the
tracker site. If you do not require indexes, you do not need to rebuild them for recovery cycles. For
nonpartitioning indexes on very large tables, you can include indexes for LOGONLY recovery during the
recovery cycle, which can reduce the amount of time that it takes to bring up the disaster site. Be sure
that you define data sets with the proper prefix (either I or J) for both indexes and table spaces.

5. Send full image copies of all Db2 data at the primary site to the tracker site. Optionally, you can use the
BACKUP SYSTEM utility with the DATA ONLY option and send copies of the database copy pool to the
tracker site.
If you send copies that the BACKUP SYSTEM utility creates, this step completes the tracker site setup
procedure.

6. If you did not use the BACKUP SYSTEM utility in the prior, tailor installation job DSNTIJIN to create
Db2 catalog data sets.

What to do next
Important: Do not attempt to start the tracker site when you are setting it up. You must follow the
procedure described in “Establishing a recovery cycle by using RESTORE SYSTEM LOGONLY” on page
149.

Related reference
BACKUP SYSTEM (Db2 Utilities)

Migrating a tracker site to Db2 12 or changing the Db2 12 catalog level or
function level of the tracker site
When you migrate a Db2 11 production subsystem or data sharing group that has a tracker site to Db2
12, or change the Db2 12 catalog level or function level, you need to follow a special procedure to do the
same operations to the tracker site.

Before you begin
You need to migrate the tracker site or change the catalog level or function level of the tracker site after
you perform any of the following operations on the production site:

• Migrate from Db2 11 new-function mode to Db2 12 function level V12R1M100
• Activate a higher function level
• Change the Db2 catalog level by running job DSNTIJTC
• Revert from a higher function level to a lower function level (function-level*)

You do not need to perform fallback of the tracker site after you perform fallback of a production site from
Db2 12 function level V12R1M100 to Db2 11 new-function mode, unless the fallback process restores
the catalog and directory to a point in time prior to the migration to Db2 12.

Procedure
To migrate the tracker site to Db2 12, or change the catalog level or function level in Db2 12, follow one of
the following procedures:

148 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_backupsystem.html

• If you use RESTORE SYSTEM for recovery cycles, follow the procedure in Establishing a recovery cycle
by using RESTORE SYSTEM LOGONLY (Db2 Administration Guide).

• If you use the RECOVER utility for recovery cycles, follow these steps.
a) If the tracker site is a data sharing group, issue the z/OS SETXCF FORCE command to delete the

shared communications area (SCA) structure.
b) Restore the BSDS and active logs using copies of the production site's BSDS and active logs.
c) Create a conditional restart control record (CRCR) in the BSDS by using the change log inventory

utility.
d) Start Db2 on the tracker site. The subsystem parameter module for starting Db2 needs to include

TRKRSITE=YES.
e) Restore the DSNDB01.SYSUTILX table space, and recover the DSNDB01.DBD01, and

DSNDB01.SYSDBDXA table spaces. Rebuild the associated indexes after recovering each table
space.

For DSNDB01.DBD01 or DSNDB01.SYSDBDXA, if you took full image copies of the table spaces
after you migrated the production system to Db2 12, or changed the catalog level or function level
in Db2 12, run RECOVER without the LOGONLY option. If you did not take full image copies, run
RECOVER with the LOGONLY option.

f) Stop Db2.
g) Perform steps “1” on page 149, “2” on page 149, and “3” on page 149 again.
h) Start Db2 on the tracker site with the TRKRSITE=YES option again, to cause Db2 to read the new

database descriptor information from the DSNDB01.DBD01 table space.
i) Recover all remaining catalog and directory table spaces, and rebuild their indexes.

Related tasks
Recovering catalog and directory objects (Db2 Utilities)
Establishing a recovery cycle by using RESTORE SYSTEM LOGONLY (Db2 Administration Guide)
Related reference
z/OS SETXCF FORCE command (MVS System Commands)
DSNJU003 (change log inventory) (Db2 Utilities)
TRACKER SITE field (TRKRSITE subsystem parameter) (Db2 Installation and Migration)

Establishing a recovery cycle by using RESTORE SYSTEM LOGONLY
Each time that you restore the logs and the BSDS from the primary site at your tracker site, you establish
a new recovery cycle. One way to establish a recovery cycle is to use the RESTORE SYSTEM utility with the
LOGONLY option.

Before you begin
Full image copies of all the data at the primary site must be available at the tracker site.

About this task
Using the LOGONLY option of the RESTORE SYSTEM utility enables you to periodically apply the active log,
archive logs, and the BSDS from the primary site at the tracker site.

Procedure
To establish a recovery cycle at your tracker site by using the RESTORE SYSTEM utility:

1. While your primary site continues its usual workload, send a copy of the primary site active log,
archive logs, and BSDS to the tracker site.
Send full image copies for the following objects:

Chapter 3. Recovering from different Db2 for z/OS problems 149

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recovercyclerestoresystemlog.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recovercyclerestoresystemlog.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_recovercatalogdirectoryobjects.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recovercyclerestoresystemlog.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag100/sgforce.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsnju003.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_trkrsite.html

• Table spaces or partitions that are reorganized, loaded, or repaired with the LOG NO option after the
latest recovery cycle

• Objects that, after the latest recovery cycle, have been recovered to a point in time

Recommendation: If you are taking incremental image copies, run the MERGECOPY utility at the
primary site before sending the copy to the tracker site.

2. At the tracker site, restore the BSDS that was received from the primary site by following these steps:
a) Locate the BSDS in the latest archive log that is now at the tracker site.
b) Register this archive log in the archive log inventory of the new BSDS by using the change log

inventory utility (DSNJU003).
c) Register the primary site active log in the new BSDS by using the change log inventory utility

(DSNJU003).
3. Use the change log inventory utility (DSNJU003) with the following CRESTART control statement:

CRESTART CREATE,ENDRBA=nnnnnnnnn000, FORWARD=NO,BACKOUT=NO

In this control statement, nnnnnnnnn equals the RBA at which the latest archive log record ends +1.
Do not specify the RBA at which the archive log begins because you cannot cold start or skip logs in
tracker mode.
Data sharing

If you are recovering a data sharing group, you must use the following CRESTART control
statement on all members of the data sharing group. The ENDLRSN value must be the same
for all members.

CRESTART CREATE,ENDLRSN=nnnnnnnnnnnn,FORWARD=NO,BACKOUT=NO

In this control statement, nnnnnnnnnnnn is the lowest LRSN of all the members that are to be
read during restart. Specify one of the following values for the ENDLRSN:

• If you receive the ENDLRSN from the output of the print log map utility (DSNJU004) or from
the console logs using message DSNJ003I, you must use ENDLRSN -1 as the input to the
conditional restart.

• If you receive the ENDLRSN from the output of the DSN1LOGP utility (message DSN1213I), you
can use the displayed value.

The ENDLRSN or ENDRBA value indicates the end log point for data recovery and for truncating the
archive log. With ENDLRSN, the missing log records between the lowest and highest ENDLRSN values
for all the members are applied during the next recovery cycle.

4. If the tracker site is a data sharing group, delete all Db2 coupling facility structures before restarting
the tracker members.

5. If you used the DSN1COPY utility to create a copy of SYSUTILX during the last tracker cycle, restore
this copy with DSN1COPY.
Data sharing

For data sharing, restart every member of the data sharing group.
6. At the tracker site, stop and start Db2 to begin a tracker site recovery cycle.
7. At the tracker site, run the RESTORE SYSTEM utility with the LOGONLY option to apply the logs (both

archive and active) to the data at the tracker site.
8. If the RESTORE SYSTEM utility issues a return code of 4, use the DSN1COPY utility to make a copy

of SYSUTILX and of indexes that are associated with SYSUTILX before you recover or rebuild those
objects.
DSN1COPY issues a return code of 4 if application of the log results in one or more Db2 objects being
marked as RECP or RBDP.

9. Stop and start Db2 at the tracker site.
10. Issue the DISPLAY DATABASE RESTRICT command to display objects that are marked RECP,

RBDP, or LPL and to identify which objects are in a utility progress state (such as UTUT or UTRO). Run

150 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

the RECOVER or REBUILD INDEX utility on these objects, or record which objects are in an exception
state so that you can recover them at a later time.
The exception states of these objects are not retained in the next recovery cycle.

11. After all recovery activity complete at the tracker site, shut down the Db2 tracker site.
12. Optional: Stop and start the Db2 tracker site several times before completing a recovery cycle.

Related concepts
Media failures during LOGONLY recovery (Db2 Administration Guide)
Related tasks
Establishing a recovery cycle by using the RECOVER utility (Db2 Administration Guide)
Restoring data from image copies and archive logs (Db2 Administration Guide)

Establishing a recovery cycle by using the RECOVER utility
Each time that you restore the logs and the BSDS from the primary site at your tracker site, you establish a
new recovery cycle. One way to establish a recovery cycle is to use the RECOVER utility.

Procedure
To establish a recovery cycle by using the RECOVER utility:

1. While your primary site continues its usual workload, send a copy of the primary site active log,
archive logs, and BSDS to the tracker site.
Send full image copies for the following objects:

• Table spaces or partitions that are reorganized, loaded, or repaired with the LOG NO option after the
latest recovery cycle.

• Objects that, after the latest recovery cycle, have been recovered to a point in time.
• SYSUTILX. Send a full image copy to DSNDB01.SYSUTILX for normal (full image copy and log)

recoveries. For LOGONLY recoveries, create a copy of DSNDB01.SYSUTILX by using the DSN1COPY
utility.

Db2 does not write SYSLGRNX entries for DSNDB01.SYSUTILX, which can lead to long recovery
times at the tracker site. In addition, SYSUTILX and its indexes are updated during the tracker cycle
when you run your recoveries. Because SYSUTILX must remain consistent with the SYSUTILX at the
primary site, discard the tracker cycle updates before the next tracker cycle.

Recommendation: If you are taking incremental image copies, run the MERGECOPY utility at the
primary site before sending the copy to the tracker site.

2. At the tracker site, restore the BSDS that was received from the primary site by using one of the
following methods:

• Locate the BSDS in the latest archive log that is now at the tracker site.
• Register this archive log in the archive log inventory of the new BSDS by using the change log

inventory utility (DSNJU003).
• Register the primary site active log in the new BSDS by using the change log inventory utility

(DSNJU003).
3. Use the change log inventory utility (DSNJU003) with the following CRESTART control statement:

CRESTART CREATE,ENDRBA=nnnnnnnnn000, FORWARD=NO,BACKOUT=NO

In this control statement, nnnnnnnnn000 equals the value of the ENDRBA of the latest archive log
plus 1. Do not specify STARTRBA because you cannot cold start or skip logs in a tracker system.

Data sharing
If you are recovering a data sharing group, you must use the following CRESTART control
statement on all members of the data sharing group. The ENDLRSN value must be the same
for all members.

Chapter 3. Recovering from different Db2 for z/OS problems 151

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recovermediafailurelogrecovery.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recovercyclerecoverutility.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverdisasterrestoreimagecopy.html

CRESTART CREATE,ENDLRSN=nnnnnnnnnnnn,FORWARD=NO,BACKOUT=NO

In this control statement, nnnnnnnnnnnn is the lowest ENDLRSN of all the members that are to
be read during restart. Specify one of the following values for the ENDLRSN:

• If you receive the ENDLRSN from the output of the print log map utility (DSNJU004) or from
message DSNJ003I at the console logs use ENDLRSN -1 as the input to the conditional restart.

• If you receive the ENDLRSN from the output of the DSN1LOGP utility (DSN1213I message), use
the displayed value.

The ENDLRSN or ENDRBA value indicates the end log point for data recovery and for truncating the
archive log. With ENDLRSN, the missing log records between the lowest and highest ENDLRSN values
for all the members are applied during the next recovery cycle.

4. If the tracker site is a data sharing group, delete all Db2 coupling facility structures before restarting
the tracker members.

5. At the tracker site, restart Db2 to begin a tracker site recovery cycle.
Data sharing

For data sharing, restart every member of the data sharing group.
6. At the tracker site, submit RECOVER utility jobs to recover database objects. Run the RECOVER utility

with the LOGONLY option on all database objects that do not require recovery from an image copy.

You must recover database objects as the following procedure specifies:

a) Restore the full image copy or DSN1COPY of SYSUTILX.

If you are doing a LOGONLY recovery on SYSUTILX from a previous DSN1COPY backup, make
another DSN1COPY copy of that table space after the LOGONLY recovery is complete and before
recovering any other catalog or directory objects.

After you recover SYSUTILX and either recover or rebuild its indexes, and before you recover other
system and user table spaces, determine what utilities were running at the primary site.

b) Recover the catalog and directory in the correct order, as described in Recovering catalog and
directory objects (Db2 Utilities).

Important: For the first recovery cycle after job DSNTIJCV converts the catalog and directory to
the extended RBA or LRSN format (or if the catalog and directory are converted back to basic
format), stop and start all Db2 members after the indexes for DSNDB01.SYSDBDXA are rebuilt.
Then continue recovering the rest of the catalog and directory in the correct order.

If you have user-defined catalog indexes, rebuilding them is optional until the tracker Db2 site
becomes the takeover Db2 site. (You might want to rebuild them sooner if you require them for
catalog query performance.) However, if you are recovering user-defined catalog indexes, do the
recovery in this step.

Exception: If you have any user-defined, STOGROUP-managed indexes on the Db2 catalog and
directory, you must rebuild IBM-defined indexes by name.

c) If needed, recover other system data such as the data definition control support table spaces and
the resource limit facility table spaces.

d) Recover user data and, optionally, rebuild your indexes.

You do not need to rebuild indexes unless you intend to run dynamic queries on the data at the
tracker site.

For a tracker site, Db2 stores the conditional restart ENDRBA or ENDLRSN in the page set after each
recovery completes successfully. By storing the log truncation value in the page set, Db2 ensures that
it does not skip any log records between recovery cycles.

7. Issue the DISPLAY UTILITY(*) command for a list of currently running utilities.
8. Run the DIAGNOSE utility with the DISPLAY SYSUTIL statement to determine the names of the object

on which the utilities are running.
Installation SYSOPR authority is required.

152 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_recovercatalogdirectoryobjects.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_recovercatalogdirectoryobjects.html

9. Perform the following actions for objects at the tracker site on which utilities are pending.
Restrictions apply to these objects because Db2 prevents you from using the TERM UTILITY
command to remove pending statuses at a tracker site.

• If a LOAD, REORG, REPAIR, or COPY utility job is in progress on any catalog or directory object at
the primary site, shut down Db2 subsystem. You cannot continue recovering by using the list of
catalog and directory objects. Therefore, you cannot recover any user data. At the next recovery
cycle, send a full image copy of the object from the primary site. At the tracker site, use the
RECOVER utility to restore the object.

• If a LOAD, REORG, REPAIR, or COPY utility job is in progress on any user data, at the next recovery
cycle, send a full image copy of the object from the primary site. At the tracker site, use the
RECOVER utility to restore the object.

• If an object is in the restart-pending state, use LOGONLY recovery to recover the object when that
object is no longer in a restart-pending state.
Data sharing

If read/write shared data (GPB-dependent data) is in the advisory recovery pending state, the
tracker Db2 site performs recovery processing. Because the tracker Db2 site always performs a
conditional restart, the postponed indoubt units of recovery are not recognized after the tracker
Db2 site restarts.

10. After all recovery has completed at the tracker site, shut down the tracker Db2 site.
This is the end of the tracker site recovery cycle.

11. Optional: Stop and start the tracker Db2 site several times before completing a recovery cycle.

Related concepts
Media failures during LOGONLY recovery (Db2 Administration Guide)
Related tasks
Establishing a recovery cycle by using RESTORE SYSTEM LOGONLY (Db2 Administration Guide)
Restoring data from image copies and archive logs (Db2 Administration Guide)

Media failures during LOGONLY recovery
If an I/O error occurs during a LOGONLY recovery, you can recover the object by using the image copies
and logs after you correct the media failure.

If an entire volume is corrupted and you are using Db2 storage groups, you cannot use the ALTER
STOGROUP statement to remove the corrupted volume and add another. (This is possible, however, for
a non-tracker system.) Instead, you must remove the corrupted volume and re-initialize another volume
with the same volume serial number before you invoke the RECOVER utility for all table spaces and
indexes on that volume.

Maintaining a tracker site
If you want to have a tracker site for possible disaster recovery needs, you need to maintain it so that it
can operate as required.

Procedure
To maintain a tracker site:
1. Keep the tracker site and primary site at the same maintenance level to avoid unexpected problems.
2. Between recovery cycles, apply maintenance as you normally do, by stopping and restarting the Db2

subsystem or a Db2 data sharing member.
3. If a tracker site fails, restart it as you normally do.
4. Save your complete tracker site prior to testing a takeover site.

This step is necessary because bringing up a tracker site as the takeover site destroys the tracker site
environment. After testing the takeover site, you can restore the tracker site and resume the recovery
cycles.

Chapter 3. Recovering from different Db2 for z/OS problems 153

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recovermediafailurelogrecovery.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recovercyclerestoresystemlog.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverdisasterrestoreimagecopy.html

Results
When restarting a data sharing group, the first member that starts during a recovery cycle puts the
ENDLRSN value in the shared communications area (SCA) of the coupling facility. If an SCA failure occurs
during a recovery cycle, you must go through the recovery cycle again, using the same ENDLRSN value for
your conditional restart.

Making the tracker site be the takeover site
If a disaster occurs at the primary site, the tracker site must become the takeover site.

Before you begin
Save your complete tracker site prior to testing a takeover site.

Procedure
To make the tracker site be the takeover site:
1. Restart the takeover site.
2. Apply log data or image copies that were en route when the disaster occurred.
3. Follow the appropriate procedure for making the tracker site a takeover site, depending on whether

you use RESTORE SYSTEM LOGONLY or the RECOVER utility in your tracker site recovery cycles.

Related tasks
Maintaining a tracker site (Db2 Administration Guide)

Recovering at a tracker site that uses the RESTORE SYSTEM utility
One way that you can make the tracker site be the takeover site is by using the RESTORE SYSTEM utility
with the LOGONLY option in the recovery cycles at the tracker site.

Procedure
To make the tracker site be the takeover site by using the RESTORE SYSTEM utility with the LOGONLY
option:
1. If log data for a recovery cycle is en route or is available but has not yet been used in a recovery

cycle, perform the procedure in “Establishing a recovery cycle by using RESTORE SYSTEM LOGONLY”
on page 149.

2. Ensure that the TRKSITE NO subsystem parameter is specified.
3. For scenarios other than data sharing, continue with step “4” on page 154.

Data sharing
If this is a data sharing system, delete the coupling facility structures.

4. Start Db2 at the same RBA or ENDLRSN that you used in the most recent tracker site recovery
cycle. Specify FORWARD=YES and BACKOUT=YES in the CRESTART statement; this takes care of
uncommitted work.

5. Restart the objects that are in GRECP or LPL status by issuing the START DATABASE(*)
SPACENAM(*) command.

6. If you used the DSN1COPY utility to create a copy of SYSUTILX in the last recovery cycle, use
DSN1COPY to restore that copy.

7. Terminate any in-progress utilities by using the following procedure:
a) Enter the DISPLAY UTILITY(*) command .
b) Run the DIAGNOSE utility with DISPLAY SYSUTIL to get the names of objects on which utilities are

being run.
c) Terminate in-progress utilities in the correct order by using the TERM UTILITY(*) command.

154 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recovermaintaintrackersite.html

8. Rebuild indexes, including IBM and user-defined indexes on the Db2 catalog and user-defined indexes
on table spaces.

Related tasks
Restoring data from image copies and archive logs (Db2 Administration Guide)
Recovering at a tracker site that uses the RECOVER utility (Db2 Administration Guide)

Recovering at a tracker site that uses the RECOVER utility
One way that you can make the tracker site be the takeover site is by using the RECOVER utility in the
recovery cycles at your tracker site.

Procedure
To make the tracker site be the takeover site by using the RECOVER utility:
1. Restore the BSDS, and register the archive log from the last archive log that you received from the

primary site.
2. For environments that do not use data sharing, continue with step “3” on page 155.

Data sharing
If this is a data sharing system, delete the coupling facility structures.

3. Ensure that the DEFER ALL and TRKSITE NO subsystem parameters are specified.
4. Take the appropriate action, which depends on whether you received more logs from the primary site.

If this is a non-data-sharing Db2 subsystem, the log truncation point varies depending on whether you
have received more logs from the primary site since the last recovery cycle:

• If you did not receive more logs from the primary site:

Start Db2 using the same ENDRBA that you used on the last tracker cycle. Specify FORWARD=YES
and BACKOUT=YES; this takes care of uncommitted work. If you have fully recovered the objects
during the previous cycle, they are current except for any objects that had outstanding units of
recovery during restart. Because the previous cycle specified NO for both FORWARD and BACKOUT
and you have now specified YES, affected data sets are placed in the LPL. Restart the objects that
are in LPL status by using the following command:

START DATABASE(*) SPACENAM(*)

After you issue the command, all table spaces and indexes that were previously recovered are now
current. Remember to rebuild any indexes that were not recovered during the previous tracker cycle,
including user-defined indexes on the Db2 catalog.

• If you received more logs from the primary site:

Start Db2 using the truncated RBA nnnnnnnnn000, which equals the value of the ENDRBA of the
latest archive log plus 1. Specify FORWARD=YES and BACKOUT=YES. Run your recoveries as you did
during recovery cycles.

Data sharing
You must restart every member of the data sharing group; use the following CRESTART statement:

 CRESTART CREATE,ENDLRSN=nnnnnnnnnnnn,FORWARD=YES,BACKOUT=YES

In this statement, nnnnnnnnnnnn is the LRSN of the last log record that is to be used during
restart. Specify one of the following values for the ENDLRSN:

• If you receive the ENDLRSN from the output of the print log map utility (DSNJU004) or from
message DSNJ003I at the console logs use ENDLRSN -1 as the input to the conditional restart.

• If you receive the ENDLRSN from the output of the DSN1LOGP utility (DSN1213I message), use
the displayed value.

Chapter 3. Recovering from different Db2 for z/OS problems 155

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverdisasterrestoreimagecopy.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recovertrackersiterecoverutility.html

The ENDLRSN or ENDRBA value indicates the end log point for data recovery and for truncating
the archive log. With ENDLRSN, the missing log records between the lowest and highest ENDLRSN
values for all the members are applied during the next recovery cycle.

The takeover Db2 sites must specify conditional restart with a common ENDLRSN value to allow all
remote members to logically truncate the logs at a consistent point.

5. As described for a tracker recovery cycle, recover SYSUTILX from an image copy from the primary site,
or from a previous DSN1COPY copy that was taken at the tracker site.

6. Terminate any in-progress utilities by using the following procedure:
a) Enter the command DISPLAY UTILITY(*).
b) Run the DIAGNOSE utility with DISPLAY SYSUTIL to get the names of objects on which utilities are

being run.
c) Terminate in-progress utilities by using the command TERM UTILITY(*).

7. Continue with your recoveries either with the LOGONLY option or with image copies. Remember to
rebuild indexes, including IBM and user-defined indexes on the Db2 catalog and user-defined indexes
on table spaces.

Related tasks
Restoring data from image copies and archive logs (Db2 Administration Guide)
Recovering at a tracker site that uses the RESTORE SYSTEM utility (Db2 Administration Guide)

Using data mirroring for disaster recovery
Data mirroring is the automatic replication of current data from your primary site to a secondary site. To
recover after a disaster, you can use this secondary site for your recovery site without the need to restore
Db2 image copies. You also do not need to apply Db2 logs to bring Db2 data to the current point in time.

About this task
The procedures for data mirroring are intended for environments that mirror an entire Db2 subsystem
or data sharing group, which includes the catalog, directory, user data, BSDS, and active logs. You must
mirror all volumes in such a way that they terminate at exactly the same point. You can achieve this final
condition by using consistency groups.

Follow the appropriate procedure for recovering from a disaster by using data mirroring.

Role of data mirroring in recovery from a rolling disaster
In a real disaster, your local site gradually and intermittently fails for a duration of several seconds. This
kind of Db2 failure is known as a rolling disaster. You can recover from a rolling disaster by using data
mirroring.

To use data mirroring for disaster recovery, you must mirror data from your local site with a method that
does not reproduce a rolling disaster at your recovery site. To recover a Db2 subsystem and data with data
integrity, you must use volumes that end at a consistent point in time for each Db2 subsystem or data
sharing group. Mirroring a rolling disaster causes volumes at your recovery site to end over a span of time
rather than at one single point.

The following figure shows how a rolling disaster can cause data to become inconsistent between two
subsystems.

156 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverdisasterrestoreimagecopy.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recovertrackersiterestoresystem.html

Primary Secondary

Disk fails
at 12:03

Log
Device

1. 12:00 log update

2. 12:01 update
 database

3. 12:02 mark log
 complete connection

is severed

Disk fails
at 12:00

Database
Device

Database
Device

Log
Device

Figure 13. Data inconsistency caused by a rolling disaster

Example

In a rolling disaster, the following events at the primary site cause data inconsistency at your recovery
site. This data inconsistency example follows the same scenario that the preceding figure depicts.

1. Some time prior to 12:00: A table space is updated in the buffer pool.
2. 12:00 The log record is written to disk on logical storage subsystem 1.
3. 12:01: Logical storage subsystem 2 fails.
4. 12:02: The update to the table space is externalized to logical storage subsystem 2 but is not written

because subsystem 2 failed.
5. 12:03: The log record that indicates that the table space update was made is written to disk on logical

storage subsystem 1.
6. 12:03: Logical storage subsystem 1 fails.

Because the logical storage subsystems do not fail at the same point in time, they contain inconsistent
data. In this scenario, the log indicates that the update is applied to the table space, but the update is not
applied to the data volume that holds this table space.

Important: Any disaster recovery solution that uses data mirroring must guarantee that all volumes at the
recovery site contain data for the same point in time.

Role of consistency groups in recovery
Generally a consistency group is a collection of volumes that contain consistent, related data. Consistency
groups play an important role in Db2 recovery.

A consistency group, which is a collection of related data, can span logical storage subsystems and disk
subsystems. For Db2 specifically, a consistency group contains an entire Db2 subsystem or an entire Db2
data sharing group.

The following Db2 elements comprise a consistency group:

• Catalog tables
• Directory tables
• BSDS
• Logs
• All user data
• ICF catalogs

Chapter 3. Recovering from different Db2 for z/OS problems 157

Additionally, all objects within a consistency group must represent the same point in time in at least one
of the following situations:

• At the time of a backup
• After a normal Db2 restart

You can use the following methods to create consistency groups:

• XRC I/O timestamping and system data mover
• FlashCopy® consistency groups
• GDPSfreeze policies
• The Db2 SET LOG SUSPEND command

When a rolling disaster strikes your primary site, consistency groups guarantee that all volumes at the
recovery site contain data for the same point in time. In a data mirroring environment, you must perform
both of the following actions for each consistency group that you maintain:

• Mirror data to the secondary volumes in the same sequence that Db2 writes data to the primary
volumes.

In many processing situations, Db2 must complete one write operation before it begins another write
operation on a different disk group or a different storage server. A write operation that depends on a
previous write operation is called a dependent write. Do not mirror a dependent write if you have not
mirrored the write operation on which the dependent write depends. If you mirror data out of sequence,
your recovery site will contain inconsistent data that you cannot use for disaster recovery.

• Temporarily suspend and queue write operations to create a group point of consistency when an error
occurs between any pair of primary and secondary volumes.

When an error occurs that prevents the update of a secondary volume in a single-volume pair, this error
might mark the beginning of a rolling disaster. To prevent your secondary site from mirroring a rolling
disaster, you must suspend and queue data mirroring by taking the following steps after a write error
between any pairs:

1. Suspend and queue all write operations in the volume pair that experiences a write error.
2. Invoke automation that temporarily suspends and queues data mirroring to all your secondary

volumes.
3. Save data at the secondary site at a point of consistency.
4. If a rolling disaster does not strike your primary site, resume normal data mirroring after some

amount of time that you define. If a rolling disaster does strike your primary site, follow the recovery
procedure in Recovering in a data mirroring environment (Db2 Administration Guide).

Recovering in a data mirroring environment
In a data mirroring environment, you can recover data at your secondary site from a disaster at your
primary site.

About this task
This procedure applies to all Db2 data mirroring scenarios except those that use Extended Remote Copy
(XRC). This general procedure is valid only if you have established and maintained consistency groups
before the disaster struck the primary site. If you use data mirroring to recover, you must recover your
entire Db2 subsystem or data sharing group with data mirroring.

You do not need to restore Db2 image copies or apply Db2 logs to bring Db2 data to the current point in
time when you use data mirroring. However, you might need image copies at the recovery site if the LOAD,
UNLOAD, or RECOVER utility was active at the time of the disaster.

Procedure
To recover at the secondary site after a disaster:

158 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverdatamirroringenvironment.html

1. At your recovery site, IPL all z/OS images that correspond to the z/OS images that you lost at your
primary site.

2. In a data sharing environment, you must remove old information from the coupling facility.

a. Enter the following z/OS command to display the structures for this data sharing group:

D XCF,STRUCTURE,STRNAME=grpname*

b. For group buffer pools and the lock structure, enter the following command to force off the
connections in those structures:

SETXCF FORCE,CONNECTION,STRNAME=strname,CONNAME=ALL

c. Delete all the Db2 coupling facility structures by using the following command for each structure:

SETXCF FORCE,STRUCTURE,STRNAME=strname

3. If you are using the distributed data facility, set LOCATION and LUNAME in the BSDS to values that
are specific to your new primary site.
To set LOCATION and LUNAME, run the stand-alone change log inventory utility (DSNJU003) with the
following control statement:

DDF LOCATION=locname, LUNAME=luname

4. In a data sharing environment, start all Db2 members by using local DSNZPARM data sets and
perform a normal restart.

For data sharing groups, Db2 performs group restart. Shared data sets are set to GRECP (group buffer
pool RECOVER-pending) status, and pages are added to the LPL (logical page list).

5. Display all data sets with GRECP or LPL status by issuing the following Db2 command:

-DISPLAY DATABASE(*) SPACENAM(*) RESTRICT(GRECP, LPL) LIMIT(*)

Record the output that this command generates.

In a data sharing environment, for objects that are in GRECP status, Db2 automatically recovers the
objects during restart. Message DSNI049I is issued when the recovery for all objects that are in
GRECP status is complete. A message is issued for each member, even if the member did not perform
GRECP recovery.

6. Use the following Db2 command to display all utilities that the failure interrupted:

-DISPLAY UTILITY(*)

If utilities are pending, record the output from this command, and continue to the next step. You
cannot restart utilities at a recovery site. You will terminate these utilities in step “8” on page 160. If
no utilities are pending, continue to step number “9” on page 160.

7. Use the DIAGNOSE utility to access the SYSUTIL directory table.
You cannot access this directory table by using normal SQL statements (as you can with most other
directory tables). You can access SYSUTIL only by using the DIAGNOSE utility, which is normally
intended to be used under the direction of IBM Software Support.

Use the following control statement to run the DIAGNOSE utility job:

DIAGNOSE DISPLAY SYSUTIL

To stop the utility, issue this control statement:

END DIAGNOSE

Examine the output. Record the phase in which each pending utility was interrupted, and record the
object on which each utility was operating.

Chapter 3. Recovering from different Db2 for z/OS problems 159

8. Terminate all pending utilities with the following command:

-TERM UTILITY(*)

9. Issue the DISPLAY DATABASE command to detect pages that are in the LPL or data sets that are
in GRECP status. Then issue START DATABASE on each database for which you need to resolve the
GRECP or LPL status.
For example:

-DISPLAY DATABASE(*) SPACENAM(*) RESTRICT(LPL,GRECP, STOP) LIMIT(*)
START DATABASE(database-name) SPACENAM(*)

10. For each object that the LOAD utility places in a restrictive status, take one of the following actions:

• If the object was a target of a LOAD utility control statement that specified SHRLEVEL CHANGE,
restart the LOAD utility on this object at your convenience. This object contains valid data.

• If the object was a target of a LOAD utility control statement that specified SHRLEVEL NONE and
the LOAD job was interrupted before the RELOAD phase, rebuild the indexes on this object.

• If the object was a target of a LOAD utility control statement that specified SHRLEVEL NONE and
the LOAD job was interrupted during or after the RELOAD phase, recover this object to a point in
time that is before this utility ran.

• Otherwise, recover the object to a point in time that is before the LOAD job ran.
11. For each object that the REORG utility places in a restrictive status, take one of the following actions:

• When the object was a target of a REORG utility control statement that specified SHERLEVEL
NONE:

– If the REORG job was interrupted before the RELOAD phase, no further action is required. This
object contains valid data, and the indexes on this object are valid.

– If the REORG job was interrupted during the RELOAD phase, recover this object to a point in
time that is before this utility ran.

– If the REORG job was interrupted after the RELOAD phase, rebuild the indexes on the object.
• When the object was a target of a REORG utility control statement that does not specify SHRLEVEL

NONE:

– If the REORG job was interrupted before the SWITCH phase, no further action is required. This
object contains valid data, and the indexes on this object are valid.

– If the REORG job was interrupted during the SWITCH phase, no further action is required. This
object contains valid data, and the indexes on this object are valid.

– If the REORG job was interrupted after the SWITCH phase, you might need to rebuild non-
partitioned secondary indexes.

Managing DFSMShsm default settings when using the BACKUP SYSTEM,
RESTORE SYSTEM, and RECOVER utilities
In some data mirroring situations, you might need to set or override the DFSMShsm default settings for
the BACKUP SYSTEM, RESTORE SYSTEM, and RECOVER utilities.

About this task
For example, consider that the source volumes in the SMS storage groups for your database or log copy
pools are mirrored, or that the target volumes in the SMS backup storage groups for your copy pools
are mirrored. You can use IBM Remote Pair FlashCopy (Preserve Mirror) for Peer-to-Peer Remote Copy
(PPRC). Also, you can allow FlashCopy to PPRC primary volumes. However, you might need to set or
override the DFSMShsm default settings for the BACKUP SYSTEM, RESTORE SYSTEM, and RECOVER
utilities.

160 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Procedure
Issue the DFSMShsm FRBACKUP PREPARE command.

• To set the DFSMShsm defaults for the BACKUP SYSTEM utility, the RESTORE SYSTEM utility, and the
RECOVER utility, issue the following command:

FRBACKUP CP cp-name PREPARE ALLOWPPRCP (FRBACKUP (x) FRRECOV (x))

• To override the DFSMShsm defaults for the RESTORE SYSTEM utility or the RECOVER utility, specify the
FLASHCOPY_PPRCP utility option or issue the following command:

FRBACKUP CP cp-name PREPARE ALLOWPPRCP (FRRECOV (x))

Related concepts
Considerations for using the BACKUP SYSTEM utility and DFSMShsm (Db2 Administration Guide)
Related reference
FRBACKUP command: Requesting a fast replication backup or dump version DFSMShsm Storage
Administration Reference
Syntax and options of the RECOVER control statement (Db2 Utilities)
Syntax and options of the RESTORE SYSTEM control statement (Db2 Utilities)

Recovering with Extended Remote Copy
One method that ensures that data volumes remain consistent at your recovery site involves Extended
Remote Copy (XRC). In XRC remote mirroring, the DFSMS Advanced Copy services function automatically
replicates current data from your primary site to a secondary site and establishes consistency groups.

Before you begin
This procedure assumes that you are familiar with basic use of XRC.

Procedure
To recover at an XRC secondary site after a disaster:
1. Issue the TSO command XEND XRC to end the XRC session.
2. Issue the TSO command XRECOVER XRC. This command changes your secondary site to your primary

site and applies the XRC journals to recover data that was in transit when your primary site failed.
3. Complete the procedure in Recovering in a data mirroring environment (Db2 Administration Guide).

Related information
Extended Remote Copy (DFSMS Advanced Copy Services)

Scenarios for resolving problems with indoubt threads
Indoubt threads can cause a variety of problems, but you can recover from these problems.

The recovery scenarios for indoubt threads are based on a sample environment, which this topic
describes. System programmer, operator, and database administrator actions are indicated for the
examples as appropriate. In these descriptions, the term "administrator" refers to the database
administrator (DBA) if not otherwise specified.

Configuration
The configuration includes four systems at three geographic locations: Seattle (SEA), San Jose (SJ)
and Los Angeles (LA). The system descriptions are as follows.

• Db2 subsystem at Seattle, Location name = IBMSEADB20001, Network name = IBM.SEADB21
• Db2 subsystem at San Jose, Location name = IBMSJ0DB20001, Network name = IBM.SJDB21
• Db2 subsystem at Los Angeles, Location name = IBMLA0DB20001, Network name = IBM.LADB21

Chapter 3. Recovering from different Db2 for z/OS problems 161

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_dfsmshsmwithbackupsystem.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.arcf000/frb1.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.arcf000/frb1.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_recoversyntax.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_restoresystemsyntax.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverdatamirroringenvironment.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.antg000/ant3r16.htm

• IMS subsystem at Seattle, Connection name = SEAIMS01

Applications
The following IMS and TSO applications run at Seattle and access both local and remote data.

• IMS application, IMSAPP01, at Seattle, accesses local data and remote data by DRDA access at
San Jose, which accesses remote data on behalf of Seattle by Db2 private protocol access at Los
Angeles.

• TSO application, TSOAPP01, at Seattle, accesses data by DRDA access at San Jose and at Los
Angeles.

Threads
The following threads are described and keyed to Figure 14 on page 162. Database access threads
(DBAT) access data on behalf of a thread (either allied or DBAT) at a remote requester.

• Allied IMS thread A at Seattle accesses data at San Jose by DRDA access.

– DBAT at San Jose accesses data for Seattle by DRDA access 1 and requests data at Los Angeles
by Db2 private protocol access 2.

– DBAT at Los Angeles accesses data for San Jose by Db2 private protocol access 2.
• Allied TSO thread B at Seattle accesses local data and remote data at San Jose and Los Angeles, by

DRDA access.

– DBAT at San Jose accesses data for Seattle by DRDA access 3.
– DBAT at Los Angeles accesses data for Seattle by DRDA access 4.

Db2 at SJ
IBMSJ0DB20001

Db2 at SEA
IBMSEADB20001

DBAT
CONNID=SEAINS01
CORRID=xyz
PLAN=IMSAPP01
LUWID=15, TOKEN=8

1

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16,TOKEN=6

3

IMS

TSO

Allied Thread
CONNID=SEAIMS01
CORRID=xyz
PLAN=IMSAPP01
NID=A5
LUWID=15, TOKEN=1

A

Allied Thread
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16, TOKEN=2

B

Db2 at LA
IBMLA0DB20001

4

2DBAT
CONNID=SERVER
CORRID=xyz
PLAN=IMSAPP01
LUWID=15, TOKEN=4

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16, TOKEN=5

Figure 14. Resolution of indoubt threads

The results of issuing the DISPLAY THREAD TYPE(ACTIVE) command to display the status of
threads at all Db2 locations are summarized in the boxes of the preceding figure. The logical unit of
work IDs (LUWIDs) have been shortened for readability, as follows:

• LUWID=15 is IBM.SEADB21.15A86A876789.0010.

162 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

• LUWID=16 is IBM.SEADB21.16B57B954427.0003.

For the purposes of procedures that are based on this configuration, assume that both applications
have updated data at all Db2 locations. In the following problem scenarios, the error occurs after the
coordinator has recorded the commit decision, but before the affected participants have recorded the
commit decision. These participants are therefore indoubt.

Read one or more of the scenarios to learn how best to handle problems with indoubt threads in your own
environment.

Scenario: Recovering from communication failure
A communication failure can cause an indoubt thread.

Symptoms
A communication failure occurred between Seattle (SEA) and Los Angeles (LA) after the database access
thread (DBAT) at LA completed phase 1 of commit processing. At SEA, the TSO thread, LUWID=16 and
TOKEN=2 B, cannot complete the commit with the DBAT at LA4.

At SEA, NetView® alert A006 is generated, and message DSNL406 is displayed, indicating that an indoubt
thread at LA because of a communication failure. At LA, alert A006 is generated, and message DSNL405
is displayed, to indicate that a thread is in an indoubt state because of a communication failure with SEA.

Causes
A communication failure caused the indoubt thread.

Environment
The following figure illustrates the environment for this scenario.

Db2 at SJ
IBMSJ0DB20001

Db2 at SEA
IBMSEADB20001

DBAT
CONNID=SEAINS01
CORRID=xyz
PLAN=IMSAPP01
LUWID=15, TOKEN=8

1

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16,TOKEN=6

3

IMS

TSO

Allied Thread
CONNID=SEAIMS01
CORRID=xyz
PLAN=IMSAPP01
NID=A5
LUWID=15, TOKEN=1

A

Allied Thread
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16, TOKEN=2

B

Db2 at LA
IBMLA0DB20001

4

2DBAT
CONNID=SERVER
CORRID=xyz
PLAN=IMSAPP01
LUWID=15, TOKEN=4

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16, TOKEN=5

Figure 15. Resolution of indoubt threads

Chapter 3. Recovering from different Db2 for z/OS problems 163

At SEA, an IFCID 209 trace record is written. After the alert is generated and the message is displayed,
the thread completes the commit, which includes the DBAT at SJ 3. Concurrently, the thread is added to
the list of threads for which the SEA Db2 subsystem has an indoubt resolution responsibility. The thread
shows up in a DISPLAY THREAD report for indoubt threads. The thread also shows up in a DISPLAY
THREAD report for active threads until the application terminates.

The TSO application is informed that the commit succeeded. If the application continues and processes
another SQL request, it is rejected with an SQL code to indicate that it must roll back before any more SQL
requests can be processed. This is to ensure that the application does not proceed with an assumption
based on data that is retrieved from LA, or with the expectation that cursor positioning at LA is still intact.

At LA, an IFCID 209 trace record is written. After the alert is generated and the message displayed, the
DBAT 4 is placed in the indoubt state. All locks remain held until resolution occurs. The thread shows up
in a DISPLAY THREAD report for indoubt threads.

The Db2 subsystems, at both SEA and LA, periodically attempt to reconnect and automatically resolve
the indoubt thread. If the communication failure affects only the session that is being used by the TSO
application, and other sessions are available, automatic resolution occurs in a relatively short time. At this
time, message DSNL407 is displayed by both Db2 subsystems.

Resolving the problem
Operator response: If message DSNL407 or DSNL415 for the thread that is identified in message
DSNL405 is not issued in a reasonable period of time, contact the system programmer. A communication
failure is making database resources unavailable.

System programmer response: Determine and correct the cause of the communication failure. When the
problem is corrected, automatic resolution of the indoubt thread occurs within a short time. If the failure
cannot be corrected for a long time, call the database administrator. The database administrator might
want to make a heuristic decision to release the database resources that are held for the indoubt thread.

Scenario: Making a heuristic decision about whether to commit or abort an
indoubt thread

An organization might need to make a heuristic decision about whether to commit or abort an indoubt
thread.

Symptoms
In this scenario, an indoubt thread at Los Angeles (LA) holds database resources that are needed by other
applications. The organization makes a heuristic decision about whether to commit or abort an indoubt
thread.

Many symptoms are possible, including:

• Message DSNL405 to indicate a thread in the indoubt state
• A DISPLAY THREAD report of active threads showing a larger-than-normal number of threads
• A DISPLAY THREAD report of indoubt threads continuing to show the same thread
• A DISPLAY DATABASE LOCKS report that shows a large number of threads that are waiting for the

locks that are held by the indoubt thread
• Some threads terminating due to timeout
• IMS and CICS transactions not completing

Environment
The following figure illustrates the environment for this scenario.

164 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Db2 at SJ
IBMSJ0DB20001

Db2 at SEA
IBMSEADB20001

DBAT
CONNID=SEAINS01
CORRID=xyz
PLAN=IMSAPP01
LUWID=15, TOKEN=8

1

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16,TOKEN=6

3

IMS

TSO

Allied Thread
CONNID=SEAIMS01
CORRID=xyz
PLAN=IMSAPP01
NID=A5
LUWID=15, TOKEN=1

A

Allied Thread
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16, TOKEN=2

B

Db2 at LA
IBMLA0DB20001

4

2DBAT
CONNID=SERVER
CORRID=xyz
PLAN=IMSAPP01
LUWID=15, TOKEN=4

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16, TOKEN=5

Figure 16. Resolution of indoubt threads

Resolving the problem
Database administrator response: Determine whether to commit or abort the indoubt thread. First,
determine the name of the commit coordinator for the indoubt thread. This name matches the location
name of the Db2 subsystem at SEA, and it is included in the Db2 indoubt thread DISPLAY THREAD report
at LA. Then, have an authorized person at SEA perform one of the following actions:

• If the coordinator Db2 subsystem is active, or if it can be started, request a DISPLAY THREAD report
for indoubt threads, specifying the LUWID of the thread. (Remember that the token that is used at LA is
different than the token that is used at SEA). If no report entry exists for the LUWID, the proper action is
to abort. If a report entry for the LUWID exists, it shows the proper action to take.

• If the coordinator Db2 subsystem is not active and cannot be started, and if statistics class 4 was active
when Db2 was active, search the SEA SMF data for an IFCID 209 event entry that contains the indoubt
LUWID. This entry indicates whether the commit decision was commit or abort.

• If statistics class 4 is not available, run the DSN1LOGP utility, and request a summary report. The
volume of log data that is to be searched can be restricted if you can determine the approximate SEA
log RBA value that was in effect at the time of the communication failure. A DSN1LOGP entry in the
summary report for the indoubt LUWID indicates whether the decision was commit or abort.

After determining the correct action to take, issue the RECOVER INDOUBT command at the LA Db2
subsystem, specifying the LUWID and the correct action.

System action:

Issuing the RECOVER INDOUBT command at LA results in committing or aborting the indoubt thread.
Locks are released. The thread does not disappear from the indoubt thread display until resolution with
SEA is completed. The RECOVER INDOUBT report shows that the thread is either committed or aborted
by heuristic decision. An IFCID 203 trace record is written, recording the heuristic action.

Chapter 3. Recovering from different Db2 for z/OS problems 165

Scenario: Recovering from an IMS outage that results in an IMS cold start
An IMS outage can result in an IMS cold start. An organization that experiences this situation can recover.

Symptoms
When IMS is cold started and later reconnects with the SEA Db2 subsystem, IMS is not able to resolve the
indoubt thread with Db2. Message DSNM004I is displayed at the IMS master terminal.

Environment
The following figure illustrates the environment for this scenario.

Db2 at SJ
IBMSJ0DB20001

Db2 at SEA
IBMSEADB20001

DBAT
CONNID=SEAINS01
CORRID=xyz
PLAN=IMSAPP01
LUWID=15, TOKEN=8

1

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16,TOKEN=6

3

IMS

TSO

Allied Thread
CONNID=SEAIMS01
CORRID=xyz
PLAN=IMSAPP01
NID=A5
LUWID=15, TOKEN=1

A

Allied Thread
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16, TOKEN=2

B

Db2 at LA
IBMLA0DB20001

4

2DBAT
CONNID=SERVER
CORRID=xyz
PLAN=IMSAPP01
LUWID=15, TOKEN=4

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16, TOKEN=5

Figure 17. Resolution of indoubt threads

The abnormal termination of IMS has left one allied thread A at the SEA Db2 subsystem indoubt. This is
the thread whose LUWID=15. Because the SEA Db2 subsystem still has effective communication with the
Db2 subsystem at SJ, the LUWID=15 DBAT 1 at this subsystem is waiting for the SEA Db2 to communicate
the final decision and is not aware that IMS has failed. Also, the LUWID=15 DBAT at LA 2, which is
connected to SJ, is also waiting for SJ to communicate the final decision. This cannot be done until SEA
communicates the decision to SJ.

• The connection remains active.
• IMS applications can still access Db2 databases.
• Some Db2 resources remain locked out.

If the indoubt thread is not resolved, the IMS message queues can start to back up. If the IMS queues fill
to capacity, IMS terminates. Therefore, users must be aware of this potential difficulty and must monitor
IMS until the indoubt units of work are fully resolved.

166 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Resolving the problem
System programmer response: Issue the RECOVER INDOUBT command to resolve the indoubt thread at
the SEA Db2 subsystem. This completes the two-phase commit process with the Db2 subsystems at SJ
and LA, and the unit of work either commits or aborts.

1. Force the IMS log closed by using the /DBR FEOV command, and then archive the IMS log. Use the
command DFSERA10 to print the records from the previous IMS log tape for the last transaction that
was processed in each dependent region. Record the PSB and the commit status from the X'37' log
that contains the recovery ID.

2. Run the DL/I batch job to back out each PSB that is involved and that has not reached a commit point.
The process might take some time because transactions are still being processed. The process might
also lock up a number of records, which could affect the rest of the processing and the rest of the
message queues.

3. Enter the Db2 command DISPLAY THREAD (imsid) TYPE (INDOUBT).
4. Compare the NIDs (IMSID + OASN in hexadecimal) that is displayed in the DISPLAY THREAD

messages with the OASNs (4 bytes decimal) as shown in the DFSERA10 output. Decide whether to
commit or roll back.

5. Use DFSERA10 to print the X'5501FE' records from the current IMS log tape. Every unit of recovery
that undergoes indoubt resolution processing is recorded; each record with an 'IDBT' code is still
indoubt. Note the correlation ID and the recovery ID, for use during the next step.

6. Enter the following Db2 command, choosing to commit or roll back, and specify the correlation ID:

-RECOVER INDOUBT (imsid) ACTION(COMMIT|ABORT) NID (nid)

If the command is rejected because network IDs are associated, use the same command again,
substituting the recovery ID for the network ID.

Related concepts
Duplicate IMS correlation IDs (Db2 Administration Guide)

Scenario: Recovering from a Db2 outage at a requester that results in a Db2
cold start

When an outage at a Db2 requester results in a cold start, the organization that has this situation can
recover.

Symptoms
The Db2 subsystem at SEA is started with a conditional restart record in the BSDS to indicate a cold start:

• When the IMS subsystem reconnects, it attempts to resolve the indoubt thread that is identified in IMS
as NID=A5. IMS has a resource recovery element (RRE) for this thread. The SEA Db2 subsystem informs
IMS that it has no knowledge of this thread. IMS does not delete the RRE, and the RRE can be displayed
by using the IMS DISPLAY OASN command. The SEA Db2 subsystem also:

– Generates message DSN3005 for each IMS RRE for which Db2 has no knowledge
– Generates an IFCID 234 trace event

• When the Db2 subsystems at SJ and LA reconnect with SEA, each detects that the SEA Db2 subsystem
has cold started. Both the SJ Db2 and the LA Db2 subsystem:

– Display message DSNL411
– Generate alert A001
– Generate an IFCID 204 trace event

• A DISPLAY THREAD report of indoubt threads at both the SJ and LA Db2 subsystems shows the
indoubt threads and indicates that the coordinator has cold started.

Chapter 3. Recovering from different Db2 for z/OS problems 167

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_duplicateimscorrelationids.html

Causes
An abnormal termination of the SEA Db2 subsystem caused the outage.

Environment
The following figure illustrates the environment for this scenario.

Db2 at SJ
IBMSJ0DB20001

Db2 at SEA
IBMSEADB20001

DBAT
CONNID=SEAINS01
CORRID=xyz
PLAN=IMSAPP01
LUWID=15, TOKEN=8

1

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16,TOKEN=6

3

IMS

TSO

Allied Thread
CONNID=SEAIMS01
CORRID=xyz
PLAN=IMSAPP01
NID=A5
LUWID=15, TOKEN=1

A

Allied Thread
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16, TOKEN=2

B

Db2 at LA
IBMLA0DB20001

4

2DBAT
CONNID=SERVER
CORRID=xyz
PLAN=IMSAPP01
LUWID=15, TOKEN=4

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16, TOKEN=5

Figure 18. Resolution of indoubt threads

The abnormal termination of the SEA Db2 subsystem has left the two DBATs at SJ 1, 3, and the
LUWID=16 DBAT at LA 4 indoubt. The LUWID=15 DBAT at LA 2, connected to SJ, is waiting for the
SJ Db2 subsystem to communicate the final decision.

The IMS subsystem at SEA is operational and has the responsibility of resolving indoubt units with the
SEA Db2 subsystem.

The Db2 subsystems at both SJ and LA accept the cold start connection from SEA. Processing continues,
waiting for the heuristic decision to resolve the indoubt threads.

Resolving the problem
Database administrator response:

At this point:

• Neither the SJ nor the LA administrator know if the SEA coordinator was a participant of another
coordinator. In this scenario, the SEA Db2 subsystem originated LUWID=16. However, the SEA Db2
subsystem was a participant for LUWID=15, which was being coordinated by IMS.

• The administrator at LA also does not know is the fact that SEA distributed the LUWID=16 thread to SJ,
where it is also indoubt. Likewise, the administrator at SJ does not know that LA has an indoubt thread
for the LUWID=16 thread. Both SJ and LA need to make the same heuristic decision. The administrators
at SJ and LA also need to determine the originator of the two-phase commit.

168 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

• The recovery log of the originator indicates whether the decision was commit or abort. The originator
might have more accessible functions to determine the decision. Even though the SEA Db2 subsystem
cold started, you might be able to determine the decision from its recovery log. Alternatively, if the
failure occurred before the decision was recorded, you might be able to determine the name of the
coordinator, if the SEA Db2 subsystem was a participant. You can obtain a summary report of the SEA
Db2 recovery log by running the DSN1LOGP utility.

• The LUWID contains the name of the logical unit (LU) where the distributed logical unit of work
originated. This logical unit is most likely in the system that originated the two-phase commit.

• If an application is distributed, any distributed piece of the application can initiate the two-phase
commit. In this type of application, the originator of two-phase commit can be at a different system than
the site that is identified by the LUWID.

• The administrator must determine if the LU name that is contained in the LUWID is the same as the LU
name of the SEA Db2 subsystem. If this is not the case (it is the case in this example), the SEA Db2
subsystem is a participant in the logical unit of work, and it is being coordinated by a remote system.
The DBA must communicate with that system and request that facilities of that system be used to
determine if the logical unit of work is to be committed or aborted.

• If the LUWID contains the LU name of the SEA Db2 subsystem, the logical unit of work originated at SEA
and can be an IMS, CICS, TSO, or batch allied thread of the SEA Db2 subsystem. The DISPLAY THREAD
report for indoubt threads at a Db2 participant includes message DSNV458 if the coordinator is remote.
This line provides external information that is provided by the coordinator to assist in identifying the
thread. A Db2 coordinator provides the following identifier:

connection-name.correlation-id

where connection-name is:

– SERVER: the thread represents a remote application to the Db2 coordinator and uses DRDA access.
– BATCH: the thread represents a local batch application to the Db2 coordinator.

• Anything else represents an IMS or CICS connection name. The thread represents a local application,
and the commit coordinator is the IMS or CICS system by using this connection name.

• In this example, the administrator at SJ sees that both indoubt threads have an LUWID with the LU
name that match the SEA Db2 subsystem LU name, and furthermore, that one thread (LUWID=15) is an
IMS thread and the other thread (LUWID=16) is a batch thread. The LA administrator sees that the LA
indoubt thread (LUWID=16) originates at the SEA Db2 subsystem and is a batch thread.

• The originator of a Db2 batch thread is Db2. To determine the commit or abort decision for the
LUWID=16 indoubt threads, the SEA Db2 recovery log must be analyzed, if possible. Run the DSN1LOGP
utility against the SEA Db2 recovery log, and look for the LUWID=16 entry. Three possibilities exist:

1. No entry is found. That portion of the Db2 recovery log is not available.
2. An entry is found but incomplete.
3. An entry is found, and the status is committed or aborted.

• In the third case, the heuristic decision at SJ and LA for indoubt thread LUWID=16 is indicated by the
status that is indicated in the SEA Db2 recovery log. In the other two cases, the recovery procedure
that is used when cold starting Db2 is important. If recovery was to a previous point in time, the correct
action is to abort. If recovery included repairing the SEA Db2 database, the SEA administrator might
know what decision to make.

• The recovery logs at SJ and LA can help determine what activity took place. If the administrator
determines that updates were performed at SJ, LA, or both (but not SEA), and if both SJ and LA make
the same heuristic action, data inconsistency probably exists. If updates were also performed at SEA,
the administrator can look at the SEA data to determine what action to take. In any case, both SJ and LA
should make the same decision.

• For the indoubt thread with LUWID=15 (the IMS coordinator), several alternative paths to recovery are
available. The SEA Db2 subsystem has been restarted. When it reconnects with IMS, message DSN3005
is issued for each thread that IMS is trying to resolve with Db2. The message indicates that Db2 has no
knowledge of the thread that is identified by the IMS-assigned NID. The outcome for the thread, either

Chapter 3. Recovering from different Db2 for z/OS problems 169

commit or abort, is included in the message. Trace event IFCID=234 is also written to statistics class 4,
which contains the same information.

• If only one such message exists, or if one such entry is in statistics class 4, the decision for indoubt
thread LUWID=15 is known and can be communicated to the administrator at SJ. If multiple such
messages exist, or if multiple such trace events exist, the administrator must match the IMS NID with
the network LUWID. Again, the administrator should use DSN1LOGP to analyze the SEA Db2 recovery log
if possible. Now four possibilities exist:

1. No entry is found. That portion of the Db2 recovery log was not available.
2. An entry is found but is incomplete because of lost recovery log data.
3. An entry is found, and the status is indoubt.
4. An entry is found, and the status is committed or aborted.

• In the fourth case, the heuristic decision at SJ for the indoubt thread LUWID=15 is determined by the
status that is indicated in the SEA Db2 recovery log. If an entry is found and its status is indoubt,
DSN1LOGP also reports the IMS NID value. The NID is the unique identifier for the logical unit of work
in IMS and CICS. Knowing the NID enables correlation to the DSN3005 message, or to the 234 trace
event, either of which provides the correct decision.

• If an incomplete entry is found, the NID might have been reported by DSN1LOGP. If it was reported, use
it as previously discussed.

• Determine if any of the following conditions exists:

– No NID is found.
– The SEA Db2 subsystem has not been started.
– Reconnecting to IMS has not occurred.

If any of these conditions exists, the administrator must use the correlation-id that is used by IMS
to correlate the IMS logical unit of work to the Db2 thread in a search of the IMS recovery log. The
SEA Db2 site provided this value to the SJ Db2 subsystem when distributing the thread to SJ. The SJ
Db2 site displays this value in the report that is generated by the DISPLAY THREAD TYPE(INDOUBT)
command.

• For IMS, the correlation-id is:

pst#.psbname

• In CICS, the correlation-id consists of four parts:

Byte 1 - Connection type - G=Group, P=Pool
Byte 2 - Thread type - T=transaction, G=Group, C=Command
Bytes 3-4 - Thread number
Bytes 5—8 - Transaction-id

Related concepts
Scenario: What happens when the wrong Db2 subsystem is cold started (Db2 Administration Guide)

Scenario: What happens when the wrong Db2 subsystem is cold started
When one Db2 subsystem, instead of another Db2 subsystem, is cold started, threads are left indoubt. An
organization that faces this situation can recover.

The following figure illustrates the environment for this scenario.

170 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverserveroutagecoldstart.html

Db2 at SJ
IBMSJ0DB20001

Db2 at SEA
IBMSEADB20001

DBAT
CONNID=SEAINS01
CORRID=xyz
PLAN=IMSAPP01
LUWID=15, TOKEN=8

1

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16,TOKEN=6

3

IMS

TSO

Allied Thread
CONNID=SEAIMS01
CORRID=xyz
PLAN=IMSAPP01
NID=A5
LUWID=15, TOKEN=1

A

Allied Thread
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16, TOKEN=2

B

Db2 at LA
IBMLA0DB20001

4

2DBAT
CONNID=SERVER
CORRID=xyz
PLAN=IMSAPP01
LUWID=15, TOKEN=4

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16, TOKEN=5

Figure 19. Resolution of indoubt threads

If the Db2 subsystem at SJ is cold started instead of the Db2 at SEA, the LA Db2 subsystem has the
LUWID=15 2 thread indoubt. The administrator can see that this thread did not originate at SJ, but that
it did originate at SEA. To determine the commit or abort action, the LA administrator requests that
DISPLAY THREAD TYPE(INDOUBT) be issued at the SEA Db2 subsystem, specifying LUWID=15. IMS
does not have any indoubt status for this thread because it completes the two-phase commit process
with the SEA Db2 subsystem.

The Db2 subsystem at SEA tells the application that the commit succeeded.

When a participant cold starts, a Db2 coordinator continues to include in the display of information about
indoubt threads all committed threads where the cold starting participant was believed to be indoubt.
These entries must be explicitly purged by issuing the RESET INDOUBT command. If a participant has an
indoubt thread that cannot be resolved because of coordinator cold start, the administrator can request a
display of indoubt threads at the Db2 coordinator to determine the correct action.

Related information
Scenario: Recovering from communication failure (Db2 Administration Guide)
Scenario: Recovering from a Db2 outage at a requester that results in a Db2 cold start (Db2
Administration Guide)

Chapter 3. Recovering from different Db2 for z/OS problems 171

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recovercommunicationsfailure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverdb2requesteroutagecoldstart.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverdb2requesteroutagecoldstart.html

Scenario: Correcting damage from an incorrect heuristic decision about an
indoubt thread

If an incorrect heuristic decision is made regarding an indoubt thread, an organization can recover from
this incorrect decision.

Symptoms
When the Db2 subsystem at SEA reconnects with the Db2 at LA, indoubt resolution occurs for LUWID=16.
Both systems detect heuristic damage, and both generate alert A004; each writes an IFCID 207 trace
record. Message DSNL400 is displayed at LA, and message DSNL403 is displayed at SEA.

Causes
This scenario is based on the conditions described in “Scenario: Recovering from communication failure ”
on page 163.

The LA administrator is called to make an heuristic decision and decides to abort the indoubt thread with
LUWID=16. The decision is made without communicating with SEA to determine the proper action. The
thread at LA is aborted, whereas the threads at SEA and SJ are committed. Processing continues at all
systems. The Db2 subsystem at SEA has indoubt resolution responsibility with LA for LUWID=16.

Environment
The following figure illustrates the environment for this scenario.

Db2 at SJ
IBMSJ0DB20001

Db2 at SEA
IBMSEADB20001

DBAT
CONNID=SEAINS01
CORRID=xyz
PLAN=IMSAPP01
LUWID=15, TOKEN=8

1

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16,TOKEN=6

3

IMS

TSO

Allied Thread
CONNID=SEAIMS01
CORRID=xyz
PLAN=IMSAPP01
NID=A5
LUWID=15, TOKEN=1

A

Allied Thread
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16, TOKEN=2

B

Db2 at LA
IBMLA0DB20001

4

2DBAT
CONNID=SERVER
CORRID=xyz
PLAN=IMSAPP01
LUWID=15, TOKEN=4

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSO APP01
LUWID=16, TOKEN=5

Figure 20. Resolution of indoubt threads

In this scenario, processing continues. Indoubt thread resolution responsibilities have been fulfilled, and
the thread completes at both SJ and LA.

172 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Resolving the problem
Database administrator response: Correct the damage. This is not an easy task. Since the time of the
heuristic action, the data at LA might have been read or written by many applications. Correcting the
damage can involve reversing the effects of these applications, also. The available tools are:

• DSN1LOGP utility, which generates a summary report that identifies the table spaces that were
modified by the LUWID=16 thread.

• The statistics trace class 4, which contains an IFCID 207 entry. This entry identifies the recovery log
RBA for the LUWID=16 thread.

Notify IBM Support about the problem.

Troubleshooting Db2 stored procedure problems
If you encounter problems setting up, calling, or running stored procedures, several troubleshooting
techniques and tools are available in Db2 and z/OS.

Procedure
To troubleshoot Db2 stored procedures, perform one or more of the following actions:
• For general information about the available debugging tools and techniques, see Debugging stored

procedures (Db2 Application programming and SQL).
• See Db2 for z/OS Stored Procedures: Through the CALL and Beyond (IBM Redbooks) if you are

troubleshooting one of the following problems:

– For problems with implementing RRS, see "RRS error samples."
– For problems with calling a particular stored procedure, you might not have the required

authorizations. See "Privileges to execute a stored procedure called statically."
– For troubleshootingJava™ stored procedures, see "Common problems."
– For invoking programs that receive SQLCODE -430, see "Classical debugging of stored procedures."

Identifying Db2 data inconsistency problems
Data inconsistency problems occur for various reasons, including internal Db2 problems, I/O errors, or
system problems.

About this task
Data inconsistency problems can occur as a result of referential integrity constraint violations. Referential
integrity describes the condition where all references to data in pages are valid. Db2 provides referential
integrity by enforcing referential constraints on the data. Referential integrity constraint violations do not
cause abends because Db2 does not depend on referential constraints to operate. Referential constraint
violations do, however, cause incorrect results in processing.

Data inconsistency problems fall into one or more of the following categories:

• Unavailable data
• Internal inconsistency
• Inconsistent page
• Inconsistent page set.

These conditions can exist singly or in combination. They are evidenced by various symptoms, and can be
identified by a number of messages and codes. Discovering an inconsistency in user or Db2 system data
can be difficult, depending upon the complexity of the problem.

Chapter 3. Recovering from different Db2 for z/OS problems 173

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_debugsp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_debugsp.html
http://www.redbooks.ibm.com/abstracts/sg247604.html

Procedure
To identify Db2 data inconsistency problems:
1. Identify the database dbname and table space tsname that contain the inconsistent data.
2. Enter -START DATABASE(dbname) ACCESS(RO) to limit access to the data before an attempt is made

to resolve the inconsistency.
This action prevents subsequent updates to the inconsistent data from compounding the problem.

Inhibiting updates to the inconsistent data is particularly important if the Db2 catalog or
directory is involved in the problem. If catalog or directory problems are suspected, issue -START
DATABASE(DSNDB06) ACCESS(RO) to inhibit DDL, GRANT, REVOKE, and BIND activities.

3. Determine how to resolve the problem by following the guidelines in “Data inconsistency symptoms
and actions” on page 174 or the detailed procedures in “Inconsistency resolution with RECOVER
TABLESPACE and RECOVER INDEX” on page 341 or “Resolving inconsistencies manually” on page
333.

4. Enter -START DATABASE(dbname) SPACENAM(tsname) ACCESS(UT) to allow utility processing.
5. Invoke either RECOVER or REPAIR (depending on what the information in Table 9 on page 174

suggests).
6. Determine whether the damage is corrected.
7. After the data is made consistent, issue -START DATABASE(db) SPACENAM(ts) ACCESS(RW) to

restore full access to the data.

Related concepts
Data sharing problem diagnosis
Problem diagnosis in the data sharing environment is similar to diagnosing problems that occur in a single
Db2 subsystem. The key difference is that the actions required to identify and resolve problems must be
applied to more than one Db2 subsystem.
Referential constraints (Introduction to Db2 for z/OS)

Data inconsistency symptoms and actions
There are common symptoms of each type of data inconsistency problem, and general recommendations
to resolve these conditions.

Table 9. Types of data inconsistency

Problem Symptoms Indicated By Possible Causes Suggested Actions

Unavailable
data

Table or index
space is marked
STOP or LPL

RESOURCE
UNAVAILABLE
condition
indicated

Messages DSNT500I
or DSNT501I

Type codes 300
(page), 301 (index
subpage), 302 (table
space page), or 303
(index page)

Abend reason code
00C9009F

SQL return code -904

DM is unable to
open a required VSAM
data set during restart
processing.

Attempt to insert or
update record with
foreign key when index
that enforces the
primary key of the
parent table is dropped.

Start database that
contains the table or index
space to apply all log
records that were deferred
at Db2 restart.

Run RECOVER
TABLESPACE on the table
space, or RECOVER INDEX
or REBUILD INDEX on the
index.

Resolve problem manually
if it is a data inconsistency
problem.

Create an index that
enforces the primary key,
or drop the relationship.

174 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_integrity.html

Table 9. Types of data inconsistency (continued)

Problem Symptoms Indicated By Possible Causes Suggested Actions

Internal
inconsistenc
y

Table or index
space is marked
STOP

Many error
messages or
abends identifying
the same set of
pages

Messages DSNI013I
or DSNI014I

Abend reason
codes 00C90101,
00C90107,
00C90108, or
00C90109

Damaged recovery
log is used during
Db2 restart processing
(00C90101 issued).

Unavailable data in
pages (usually not an
inconsistency problem).

Refer to “Type-of-failure
keywords” on page 12.

Start the database that
contains the table or index
space to apply all log
records that were deferred
at Db2 restart.

Run RECOVER
TABLESPACE on the table
space, or RECOVER INDEX
or REBUILD INDEX on the
index.

Resolve problem manually
if it is a data inconsistency
problem.

Inconsistent
page

Table or index
space is marked
STOPPED

INCONSISTENT
DATA or
INDEX condition
indicated

Messages DSNI011I
or DSNI012I

Abend reason
codes 00C90105 or
00C90102

DM tries to recover
a page that contains
inconsistent data by
using the recovery log,
but is unsuccessful.

Run DSN1COPY with
CHECK option to obtain
more information.

Run RECOVER
TABLESPACE on the table
space, or RECOVER INDEX
or REBUILD INDEX on the
index.

Resolve manually.

Activate global trace
to obtain more
information. (See
“Special considerations
for suspected page
inconsistencies” on page
177.)

Inconsistent
page set

Table or index
space is marked
STOPPED.

SQL statement
is processing
more rows or
fewer rows than
specified in the
statement.

Messages DSNT500I
or DSNT501I.

Type codes 200
(table space) or 201
(index space).

Abend reason
codes 00C902xx or
00C9011x (DBDs).

Link or hash chain is
damaged.

Extra or missing index
entry.

Inconsistencies
between two or more
items of data.

Inconsistencies in DBD.

Issue -DISPLAY
DATABASE(*) RESTRICT to
display STOPPED table or
index spaces.

Run CHECK utility on index
space to verify validity of
indexes.

Run RECOVER
TABLESPACE on the table
space, or RECOVER INDEX
or REBUILD INDEX on the
index.

Chapter 3. Recovering from different Db2 for z/OS problems 175

Table 9. Types of data inconsistency (continued)

Problem Symptoms Indicated By Possible Causes Suggested Actions

Inconsistent
page set

In a segmented
table space,
results differ
between index
scan and table
scan or total
number of rows
is less than
expected.

For segmented
table space
inconsistencies,
abend reason
codes 00C90218 or
00C90219.

A non-empty segment
in a segmented table
space is not on
any segment chain; a
deallocated segment is
on a segment chain;
an allocated segment is
on the wrong segment
chain.

For segmented table space
errors, analyze SDUMP and
run DSN1PRNT or REPAIR
with DUMP option to print
pages that are covered by
inconsistent segment; run
REPAIR or reorganize table
space by way of REORG.

Inconsistent
page set

CHECK PENDING
state indicated.

CHECK PENDING
indicated by DISPLAY
DATABASE command
with table space or
RESTRICT specified.

CHECK PENDING
set by CHECK,
LOAD or RECOVER
utilities, or ALTER
statement. Indicates
that associated page
set can contain records
that violate referential
or check constraints.

For indexes, indicates
one of the following
cases:

• The index and its
table space were
recovered to a
previous point in time
that is not a quiesce
point.

• The index and its
table space were
recovered with the
TOCOPY option, but
not in the same
RECOVER statement.

• The index and its
table space were
recovered with the
TOCOPY option and
in the same RECOVER
statement, but the
image copies were
not taken with
the same COPY
statement.

Does not apply to
databases.

To reset CHECK PENDING
on a table, rectify
the violations and place
deleted records into
“exception” tables, run
CHECK DATA utility with
the DELETE YES option,
DROP TABLE to alleviate
the problem and LOAD
REPLACE to replace
the data that adheres
to referential or check
constraints or recover all
members of table space
that is set to 'quiesce'
point. To reset CHECK
PENDING on an index, run
CHECK INDEX.

176 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Table 9. Types of data inconsistency (continued)

Problem Symptoms Indicated By Possible Causes Suggested Actions

Inconsistent
page set

RECOVER
PENDING state
indicated.

LOAD or REORG
does not complete
normally.

RECOVER PENDING
indicated by DISPLAY
DATABASE command
with table space,
index space, or
RESTRICT specified.

RECOVER PENDING
set by utilities when
data found to be
inconsistent. Abnormal
utility termination
leaves the table
space in RECOVER
PENDING. Indicates
that associated page
set can contain
inconsistent data,
apart from referential
constraint violations.

Use REPAIR utility
to manually turn
off CHECK PENDING,
and -START ACCESS
(FORCE) to restart table
space. This approach is
not recommended.

To reset RECOVER
PENDING, run RECOVER,
the LOAD REPLACE, or
REPAIR utilities.

Inconsistent
page set

INCONSISTENT
DATA or INDEX
condition that
is indicated by
messages.

SQL return code
-904.

Internal Db2 problems,
I/O errors, system
problems.

Resolve manually.

Inconsistent
page set

Table space or
index space is not
at the latest level.

SQL return code
-904. Reason code
00C2010D or
00C20110. Message
DSNB232I.

Data set is restored to a
level that is inconsistent
with other data sets or
with the Db2 log.

VSAM high-used RBA
value is corrupted.

Restore pageset or
partition to correct level; or
restore down-level pageset
or partition to currency,
run RECOVER, or RECOVER
LOGONLY; or accept down-
level, run REPAIR LEVELID;
or replace contents, run
LOAD REPLACE; or restore
to prior point in time, run
RECOVER.

Special considerations for suspected page inconsistencies
During SQL processing of, for example, an INSERT, UPDATE, or DELETE statement, Db2 makes data
consistency checks to verify that the processing did not produce any inconsistent data.

The number of checks that Db2 makes depends on whether the global trace is active. If the global trace
is not active, only a subset of the data inconsistency checks is made. If the global trace is active, all the
checks are made.

During normal operation, the subset of checks is sufficient. If you suspect data inconsistency problems
are the result of an inconsistent page, activating the global trace is yet another method that can be used
to help verify whether there is inconsistent data.

During utility operations, and operations, such as RESTART, that apply log records to a page, Db2
performs all the data inconsistency checks, whether the global trace is activated.

Chapter 3. Recovering from different Db2 for z/OS problems 177

Related reference
Printing and analyzing global traces
A trace must be active on the Db2 subsystem that you want to trace. For data sharing, the trace
commands have member or group scope.

178 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Chapter 4. Diagnostic aids for single systems and
data sharing

Use dumps, traces, error messages, SYS1 service aids, and -DISPLAY command output to diagnose
problems that involve a single Db2 subsystem or a data sharing group.

One of the most useful diagnostic aids that Db2 provides is the SVC memory dump title. For most
problems, this title provides enough information to build a keyword string.

For some problems, one or more memory dumps, SYS1.LOGREC entries, and trace tables might need to
be reviewed.

For some failures, log records might be needed from before and at the time of failure. Always keep the
Db2 archive log data sets until it is certain that no problems occurred for which they might be needed.

Printing and analyzing dumps
You might need to print and analyze a memory dump to help to diagnose a problem.

Types of Db2 for z/OS dumps
The following table gives the data set, output type, printing information, and cause of each Db2 dump
type.

Table 10. Types of Db2 dumps

Dump type Data set Output type Printed by Caused by

Dynamic
(z/OS
console)

SYS1.DUMPxx Machine
readable

IPCS in conjunction with a
Db2 verb exit

Operator entering z/OS
'DUMP' command

SNAP Dynamic
allocation of
SNAP data set
for SYSOUT

Formatted Normally SYSOUT=A An abend of a Db2
application

Stand-alone Defined by
installation (tape
or disk)

Machine
readable

IPCS in conjunction with a
Db2 verb exit

Operator IPL of the stand-
alone dump program

SVC SYS1.DUMPxx Machine
readable

IPCS in conjunction with a
Db2 verb exit

z/OS or Db2 functional
recovery routine detecting
error

SYSABEND Defined by JCL
(SYSOUT=A)

Formatted Normally SYSOUT=A An abend condition (and only
taken if there is a SYSABEND
DD statement for the step)

SYSUDUMP Defined by JCL
(SYSOUT=A)

Formatted Normally SYSOUT=A An abend condition (and only
taken if there is a SYSUDUMP
DD statement for the step)

Related concepts
Printing dumps

© Copyright IBM Corp. 1983, 2024 179

Db2 supports IPCS under z/OS. It is recommended to use IPCS for versatility to print dumps.

Printing dumps
Db2 supports IPCS under z/OS. It is recommended to use IPCS for versatility to print dumps.

The Db2 dump formatter routine, DSNWDPRD, is invoked by IPCS with:

DB2 VERBEXIT DSNWDMP

The following sample contains JCL for printing and formatting a dump through IPCS. These JCL
samples illustrate the appropriate parameters for formatting SVC, stand-alone, and dynamic dumps.
The DSNWDMP control statement that is shown in the examples causes the Db2 dump formatter
(DSNWDPRD) to be invoked and defines the Db2 control block structures to be formatted.

The JCL included here contains only the DD statements that are recommended for Db2. Your site might
choose to include other DD statements as well.

Figure 21. Sample JCL for printing dumps through IPCS in the z/OS environment

 //PRDMP00 JOB 1,'PRINT SYS1.DUMP00'
 //**
 //* IPCS INVOCATION AS 'VERB EXIT' *
 //**
 //DB2DMP EXEC PGM=IKJEFT01,REGION=5120K
 //SYSTSPRT DD SYSOUT=*
 //SYSABEND DD SYSOUT=*
 //IPCSPRNT DD SYSOUT=*
 //IPCSDDIR DD DSN=dump.directry-name,DISP=OLD
 //DUMP00 DD DSN=SYS1.DUMP00,DISP=SHR
 //SYSTSIN DD *
 IPCS NOPARM TASKLIB('DB2 Load Library')
 SETDEF PRINT TERMINAL DDNAME(DUMP00) NOCONFIRM
 VERBEXIT DAEDATA
 STATUS SYSTEM CPU REGS
 VERBEXIT CPUDATA
 VERBEXIT CVTMAP VERBEXIT LOGDATA
 VERBEXIT TRACE
 VERBEXIT GRSTRACE
 SUMMARY JOBSUMMARY FORMAT ALL
 VERBEXIT SUMDUMP
 VERBEXIT DSNWDMP 'TT,ALL'
 //*
 //* For printing stand-alone and dynamic dumps,
 //* the DSNWDMP statement should also include
 //* SUBSYS=DB2_subsystem_name, for example:
 //* VERBEXIT DSNWDMP 'TT,ALL,SUMDUMP=NO,
 //* SUBSYS=DB2_subsystem_name'
 //*
 CLOSE ALL
 END
The DSNWDMP statement can be changed to print SVC, stand-alone, or
dynamic dumps.

Format dumps by using IPCS options
There are a number of ways to format sections of a dump. One option is to use IPCS options.

You can specify IPCS options to select portions of the dump to print:

• To request the TCB summary section, use the FORMAT statement.
• To indicate the type of data to be formatted from the dump, use the IPCS VERB keywords.
• To ensure that the dump contains formatted SYS1.LOGREC records, use the LOGDATA option.

180 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Format dumps by using the DSNWDMP statement
You can use the DSNWDMP statement to specify the dump records to be used as input, and causes the
Db2 dump formatter (DSNWDPRD) to be invoked, which formats the specified Db2 control blocks.

Format the Db2 control blocks in a dump by changing the parameters on the DSNWDMP control
statement. The format of this control statement and the options that can be specified are shown in
the following diagram.

DSNWDMP

SUMDUMP=YES

,SUBSYS=  nnnn

,SUMDUMP=NO ,SUBSYS=  nnnn , TT

TT=1

TT=2

TT=3

,AA ,SA= asid ,LG ,ALL

, ds-options

sm-options

st-options

dm-options

bm-options

sh-options

db-options

et-options

di-options

disys-options

rs-options

sp-options

sq-options

lo-options

rm-options

ds-options:

DS=1

DS=2

DS=3

DS=4

, LM=1

LM=2

LM=3

,TOKEN=  xxxxxxxx

sm-options:

Chapter 4. Diagnostic aids for single systems and data sharing 181

SM=1

SM=2

SM=3

SM=4

SM=5

SM=6

,SMSA=  asid ,PHB= phb-addr

st-options:

ST=1

ST=2

ST=3

dm-options:

DM=1

DM=2 ,CT= xxxxxxxx

bm-options:

BM=1

BM=2

BM=3

,BBIP=  vvvv ,DBID=  yyyy
,OBID=  zzzz

sh-options:

SH=1

SH=2

SH=3

SH=4

SH=5

db-options:

182 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

DB=1

,DBID=  yyyy

DB=2

,DBID=  yyyy

DB=3

,DBID=  yyyy

DB=4 ,DBID=  yyyy ,OBID=  zzzz

DB=5 ,DBID=  yyyy ,OBID=  zzzz

,CT= xxxxxxxx

et-options:

ET=1

ET=2

di-options:

DI=1

DI=2

,TOKEN=  xxxxxxxx

disys-options:

DISYS=1

rs-options:

RS=1

RS=2

sp-options:

SP=1

SP=2

SP=3

sq-options:

SQ=1

SQ=2

SQ=3

lo-options:

Chapter 4. Diagnostic aids for single systems and data sharing 183

LO=1

LO=2

LO=3

LO=4

LO=5

LO=6

LO=7

LO=8

rm-options:

RM=1

RM=2

RM=3

RM=4

Separate multiple operands by commas, not blanks. A blank that follows any operand in the control
statement terminates the operand list, and any subsequent operands are ignored. The following table
lists and explains each of the various keywords that can be specified in the Db2 control statement for
formatting dumps.

Table 11. Keywords to format SVC dumps that are issued by Db2

Keyword Explanation

SUBSYS= nnnn Specifies the site-defined Db2 subsystem name (nnnn). Range is one to four
characters.

Optional if SUMDUMP=YES; required if SUMDUMP=NO.

Refer to SUMDUMP Information for more information.

TT Formats the Db2 global trace table.

• If TT is specified without a suboption, format the global trace table.
• If TT=1, display summary lines.
• If TT=2, display the TT=1 information, as well as data items.
• If TT=3, and DS is also specified, filter information by EB.

AA Formats significant Db2 control blocks in all active address spaces for the
subsystem.

SA Formats significant Db2 control blocks that are associated with a single
address space. The control statement must designate the ASID in
hexadecimal (up to four digits). Apostrophes and leading zeros can be
included or omitted (as in DE, 00DE, or '00DE').

LG Formats a long form of the significant Db2 global control block structures.
Includes all resource manager-specific global information as well as the
system-wide global control blocks.

184 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Table 11. Keywords to format SVC dumps that are issued by Db2 (continued)

Keyword Explanation

ALL Formats all significant Db2 control blocks. Includes the trace table, control
blocks in global storage, and control blocks in all active address spaces for
the subsystem.

Equivalent to specifying TT, AA, and LG.

SUMDUMP Specifies the part of the dump data set to be used as input to the dump
formatter.

• If SUMDUMP=YES, the input dump data is to be obtained from the
summary portion of the dump data set.

• If SUMDUMP=NO, the input dump data is to be obtained from the non-
summary portion of the dump data set.

The DSNWDPRD dump formatter always tries to format the same control
blocks and data structures, regardless of whether input dump data is
obtained from the summary or non-summary portion of the dump data set.

DS Specifies the level of detail about agents to report.

• If DS=1, display information about only those agents at thread level that
are on the allied agent chain are reported.

• If DS=2, display information about all agents on the allied agent chain are
reported.

• If DS=3, display information about the system agent chains, plus all
agents on the allied chain are reported. The system agent chains are
needed to obtain details of parallel tasks and DDF tasks.

• If DS=4, in addition to the information for DS=3, the LUWID (Logical Unit
of Work ID), XID (Global Transaction ID), user and accounting information
to be displayed for each agent.

LM Specifies information about IRLM to report.

• If LM=1, report TRWA statistics.
• If LM=2, if the agent is waiting for an IRLM request, report the status of

the last request.
• If LM=3, list the held locks for every agent.

SM Specifies information about Storage Manager to report.

• If SM=1, display the PHB chains from the GPVT. This information gives an
idea of global storage usage.

• If SM=2, in addition to the information for SM=1, display the SHB chains
from each PHB.

• If SM=3, display the information for SM=2 for every address space that is
connected to Db2.

• If SM=4, in addition to the information for SM=3, display statistics on the
amounts of allocated and free storage in the variable pools.

• If SM=5, in addition to the information for SM=4, display a sample
of allocated elements and attempt to determine the module that
GETMAINed the storage.

• If SM=6, in addition to the information for SM=5, display free elements.

Chapter 4. Diagnostic aids for single systems and data sharing 185

Table 11. Keywords to format SVC dumps that are issued by Db2 (continued)

Keyword Explanation

PHB Specifies a PHB address. If SM is specified, the storage manager
information is displayed only for the PHB with this address.

ST Specifies information about stack storage.

• If ST=1, display the PSW, registers from the SDWA, and save area trace
the abending task, except for a console dump. If the DS option is also
specified, display the high-level SKB and stack storage usage.

• If ST=2, in addition to the information for ST=1, display a formatted save
area trace for each stack. The DS option must also be specified.

• If ST=3, and the DS option is also specified, in addition to the information
for ST=2, display a formatted display of stack storage.

SMSA Specifies storage information for only the requested ASID and for global
storage.

DM Specifies the Data Manager information to report:

• If DM=1, format agent DMTR and LKTR traces.
• If DM=2, in addition to the information for DM=1, display parent lock and

claim and drain information for agent.

BM Specifies Buffer Manager information to report:

• If BM=1, format agent BBTR trace.
• If BM=2, in addition to the information for BM=1, display agent BBRA

information.
• If BM=3, format all PBs and PB0. To restrict the amount of information

that is reported, you can filter by buffer pool, DBID, or OBID.

SH Specifies data sharing information to report:

• If SH=1, format agent BBTR trace.
• If SH=2, in addition to the information for SH=1, display agent BBRA

information.
• If SH=3, in addition to the information for SH=2, display agent BBRA

information.
• If SH=4, in addition to the information for SH=3, display agent BBRA

information.
• If SH=5, in addition to the information for SH=4, display agent BBRA

information.

186 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Table 11. Keywords to format SVC dumps that are issued by Db2 (continued)

Keyword Explanation

DB Specifies database descriptor information to report:

• If DB=1, list the DBDs that are in memory. If DBID is also specified, list
information only for that DBID.

• If DB=2, in addition to the information for DB=1, display DBD section
information.

• If DB=3, in addition to the information for DB=2, display OBD information.
• If DB=4, format information for the specified DBID and OBID. The DBID

and OBID parameters are required.
• If DB=5, in addition to the information for DB=4, display trigger and

referential constraint information. The DBID and OBID parameters are
required.

CT Specifies the CT address for a specific agent. Use this parameter with the
DM or DB option to narrow the output to a single agent.

ET Specifies information about exception states:

• If ET=1, list exception states.
• If ET=2, in addition to the information for ET=1, list LPL, GRECP, and

WEPR information.

DI Specifies information about DDF threads to report:

• If DI=1, DDF DTM (Distributed Transaction Manager) related information
for the thread.

• If DI=2, in addition to the information for DI=1, DDF DC (Data
Communications) related information for the thread.

DISYS Specifies information about DDF system to report:

• If DISYS=1, general DDF system-related information.

TOKEN Specifies the TOKEN value for a specific thread to be displayed. Use this
option with the DI option and the DS=3 or DS=4 option. A warning message
is displayed if the TOKEN value is invalid or no threads are associated with
the specified TOKEN.

RS Specifies the Relational Data Services information to report:

• If RS=1, display SQL statement and high-level Relational Data Services
information.

• If RS=2, in addition to the information for RS=1, display more
detailed information, including plan and package information and SQLCA
information.

SP Specifies the stored procedure information to report:

• If SP=1, display stored procedure header information.
• If SP=2, display run time information about WLM stored procedures.
• If SP=3, display detailed information about the stored procedures,

including trace information.

Chapter 4. Diagnostic aids for single systems and data sharing 187

Table 11. Keywords to format SVC dumps that are issued by Db2 (continued)

Keyword Explanation

SQ Specifies the status information to report on Db2 internal service tasks in
the system services address space (ssnmMSTR), database services address
space (ssnmDBM1), and DDF address space (ssnmDIST):

• If SQ=1, display the current status of all service tasks.
• If SQ=2, in addition to the SQ=1 information, display a list of waiters on

the service task queue.
• If SQ=3, in addition to the SQ=2 information, display latch information.

LO Specifies the log manager information to format and report:

• If LO=1, display BSDS information.
• If LO=2, in addition to the LO=1 information, display active log data set

information and active log pairs.
• If LO=3, in addition to the LO=2 information, display archive log

information.
• If LO=4, in addition to the LO=3 information, display archive log reader

information.
• If LO=5, in addition to the LO=4 information, display log buffer

information.
• If LO=6, display physical log record information.
• If LO=7, display logical log record information.
• If LO=8, display help information.

RM Specifies the resource manager vector table (RMVT) and resource manager
function table (RMFT) information to format and report:

• If RM=1, display RMVT information.
• If RM=2, display RMFT information.
• If RM=3, in addition to the RM=2 information, display RMFT information in

compressed format.
• If RM=4, in addition to the RM=2 information, display RMFT information in

full format.

Use the following keyword default values:

• If the SUBSYS keyword is specified with SUMDUMP=YES, the SUBSYS keyword is used only if no
summary records are found in the dump data set. In this case, the SUBSYS keyword is used to locate
significant Db2 control blocks within the non-summary portion of the dump data set.

• If none of the following operands are specified on a DSNWDMP control card, the default is ALL.

AA SA LG

• For each set of the following operands, the first operand overrides the operands that follow it when all
operands are used in the same control statement. This behavior is because the first operand generates
formatted data that includes the formatted data that would be generated by the operands that follow it.

ALL TT
ALL LG
ALL AA SA

For example, ALL overrides LG if both operands are specified.
• If the DS option is not specified, the output does not contain formatted agent information.

188 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

SUMDUMP information
Because the formatted control blocks consist of both "volatile" and "static" data, input dump data
selection should be based on the state of the control blocks at a time that is as close as possible to
the time of the error.

SUMDUMP=YES
For SVC dumps, the default is to use summary data records as input to the dump formatter because
the summary dump records contain "volatile" data that was captured at a time close to the time of the
error. Specifying YES ensures that relevant Db2 diagnostic information is sent.

SUMDUMP=NO
Because non-summary data is obtained asynchronously to the current system activity when the dump
is generated, "volatile" data might have been altered or lost by the time it was placed into the dump
data set.

Use this option if errors occur when you gather dump data or formatting the summary portion of the
dump data set. Appropriate error messages are issued in these circumstances. In addition, use this
option to format stand-alone or dynamic (z/OS console) dumps.

DS information
Use the DS option to help diagnose hangs and waits. The DS option gives you a snapshot of the activity in
Db2 at the time the dump was taken.

The output that was generated when you specify the DS=1 option looks like the following.

 1 2 3 4
ACE: 0A85FD28 Status: T Req: 010B Allied Chain
 5 6 7 8 9
Authid: FRNT Plan: FRNMFRNT Corrid: GT00FRNT Corrname: PLACQA09 Token: 000004C0
EB Primary(Asid) Home(Asid) EBSPAWND TCB/SRB -Status-- R14
0A85FD98 ISCICQ09(007D) ISCICQ09(007D) 00000000 007ABD90 Running 8BA6D1FA
Jobname #T2QMBB ASID(0032)
 1 2 3 4
ACE: 0D5C7990 Status: T Req: 0005 Allied Chain
CT: 67290030 Sh/Lg: 67248840 140K Vlong: 67248BD0 56K
 5 6 7 8 9
Authid: SOFPROD Plan: DSNREXX Corrid: #T2QMBB Corrname: DB2CALL Token: 0001389C
EB Primary(Asid) Home(Asid) EBSPAWND TCB/SRB -Status-- R14
 10 11 12 13 14 15 16 17
0D5C7A20 #T2QMBB (0032) #T2QMBB (0032) 00000000 007BF788 Running 8F869734 01/20/2004 15:27:02.850291

Figure 22. Sample output from DSNWDMP with DS=1 option

Figure
Label

Description

 1 Address of the agent's ACE.

 2 Status of the thread. This value is the same as the ST and A fields in output from the command
-DISPLAY THREAD.

 3 Request count. This value is the same as the REQ field in output from the command -DISPLAY
THREAD.

 4 The chain that the ACE is on. Possible values are System Chain, Allied Chain, or Stored Proc.

 5 Authorization ID associated with a signed-on connection. This value is blank if no sign-on took
place.

 6 Plan name for the agent. This value is the same as the PLAN field in output from the command
-DISPLAY THREAD.

 7 Correlation ID for the agent. This value is the same as the ID field in output from the command
-DISPLAY THREAD.

 8 Correlation name for the agent.

 9 Token that is associated with the thread. This value is the same as the TOKEN field in output from
the command -DISPLAY THREAD.

 10 Address of the execution block.

Chapter 4. Diagnostic aids for single systems and data sharing 189

Figure
Label

Description

 11 ASID of the primary address space.

 12 ASID of the home address space.

 13 Address of a spawned execution block, if there is one.

 14 The TCB address, if this is a TCB. This value is zero if this is an SRB.

 15 Whether the agent was suspended by Db2 at the time of the abend.

 16 Value in Register 14 the last time that suspend was requested. This value is valid only if the agent is
suspended.

 17 Timestamp when the suspend occurred.

Run DSNWDMP with option DS=1 or DS=2 to view allied threads in Db2. Option DS=2 generates
information about all allied threads, while DS=1 generates only active threads.

The following output is from DSNWDMP with option DS=2 after a Db2 hang at shutdown. The details of
the first ACE show that a CICS thread was active at the time of the shutdown, which is the reason for the
hang.

ACE: 0A85FD28 Status: T Req: 010B Allied Chain
Authid: FRNT Plan: FRNMFRNT Corrid: GT00FRNT Corrname: PLACQA09 Token: 000004C0
EB Primary(Asid) Home(Asid) EBSPAWND TCB/SRB -Status-- R14
0A85FD98 ISCICQ09(007D) ISCICQ09(007D) 00000000 007ABD90 Running 8BA6D1FA
ACE: 0A040318 Status: N Req: 0003 Allied Chain
Authid: ISCICQ09 Plan: Corrid: Corrname: PLACQA09 Token: 00000000
EB Primary(Asid) Home(Asid) EBSPAWND TCB/SRB -Status-- R14
0A040388 ISCICQ09(007D) ISCICQ09(007D) 00000000 007A53C8 Running 00000000

Figure 23. Output from DSNWDMP with DS=2 option after Db2 hangs at shutdown

Output from DS=3 shows both allied agents and system agents. Option DS=3 is helpful for diagnosing
problems in such areas as CPU parallelism and the distributed data facility, where the tasks are related to
allied work but appear on the system ACE chain.

The following output shows DSNWDMP with option DS=3 after a hang in a parallel task.

ACE: 04FA2D28 Status: PT* Req: 0000 System Chain
Authid: USRT001 Plan: MYPLAN Corrid: RUN01 Corrname: BATCH Token: 00000000
EB Primary(Asid) Home(Asid) EBSPAWND TCB/SRB -Status-- R14
04FA2D98 V42ADBM1(0067) V42ADBM1(0067) 80000000 00000000 Running 8BA6D1FA
ACE: 04FA2BB8 Status: PT* Req: 0000 System Chain
Authid: USRT001 Plan: MYPLAN Corrid: RUN01 Corrname: BATCH Token: 00000000
EB Primary(Asid) Home(Asid) EBSPAWND TCB/SRB -Status-- R14
04FA2C28 V42ADBM1(0067) V42ADBM1(0067) 80000000 00000000 Running 8BA6D1FA
ACE: 04FA2A48 Status: PT* Req: 0000 System Chain
Authid: USRT001 Plan: MYPLAN Corrid: RUN01 Corrname: BATCH Token: 00000000
EB Primary(Asid) Home(Asid) EBSPAWND TCB/SRB -Status-- R14
04FA2AB8 V42ADBM1(0067) V42ADBM1(0067) 80000000 00000000 Running 8BA6D1FA

Figure 24. Output from DSNWDMP with DS=3 for a hang involving CPU parallelism

LM information
Use the LM option to diagnose locking problems. The following output was obtained by running
DSNWDMP with options DS=1 and LM=3 to display information about held locks for an agent at thread
level:

190 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

 ACE: 05419548 Status: T * Req: 0004 Allied Chain
 Short: 7F298820
 Authid: USRT001 Plan: TSTA85 Corrid: GT00XA85 Corrname: CICS41 Token: 00000003
 EB Primary(Asid) Home(Asid) EBSPAWND TCB/SRB -Status-- R14
 054195D8 VC1ADBM1(0067) CICS41F (001C) 00000000 005A9388 Suspended 85539590
 IRLM statistics for ACE: 05419548
 Suspend count - latch conflict: 0
 Suspend count - other conflict: 0
 Lock request count: 2
 Unlock request count: 1
 Query request count: 0
 Change request count: 0
 Other IRLM requests count: 0
 P-Lock Lock requests: 0
 P-Lock Change requests: 0
 P-Lock Unlock requests: 0
 Lock requests sent to XES : 0
 Change requests sent to XES : 0
 Unlock requests sent to XES : 0
 Suspends due to IRLM Global contention : 0
 Suspends due to XES Global contention : 0
 Suspends due to false contention : 0
 Requests denied due to retained lock : 0
 Notify messages sent : 0
 WU requested a LOCK at 03/21/1997 20:00:47.736272 for resource 0C0000020004001700000000 at state 3
 with modify interest.
 This is a local resource that is held on this subsystem.
 This request is incompatible with a lock on this subsystem and the current states of this resource are:
 The local resultant held state is 8
 The local modify held state is 8
 Resource 0C0000020001005F00000000 is held in state 02 and was granted at 03/21/1997 20:00:47.620534.
 Resource 0C000004E3E2E3C1F8F54040 is held in state 04 and was granted at 03/21/1997 20:00:45.712241.
 Work unit 0067009505419548 holds 00000002 resource locks.

Figure 25. Output from DSNWDMP with DS=1 and LM=3 for held lock information

Analyze Db2 storage by using the SM options
The Db2 dump formatter provides a way to analyze the usage of Db2 storage with the Storage Manager
(SM) options. Each level of the SM option provides more detailed information than the previous level.

Table 11 on page 184 summarizes the information generated for each value of SM and for SMSA.

All storage manager reports show information about local storage, global storage (z/OS CSA/ECSA), and
EDM pool statistics.

To obtain the simplest local storage report, run the DSNWDMP statement with SM=1. The local storage
report is divided into two sections: one for fixed storage and one for variable storage. Fixed storage is
storage that has a predetermined length, and each element has the same length.

The following example shows a local storage report that is generated for the following DSNWDMP
statement:

DSNWDMP 'SUBSYS=VC1A,SM=1'

==Storage (Local) VARIABLE POOLS
 PHB Subpool name F/V CL SP
 --- ------------ --- -- --
 1 2 3 4 5 6
 7E9CB630 ADMF AGL 31 .pA. Var 136K 12 229
 66D109C0 ADMF AGL 31 .\.. Var 0K 12 229
 50C22EC0 ADMF AGL VL .Z.. Var 28K 12 229
 589B7D90 ADMF AGL VL Var 180K 12 229
 7E9BF7F0 ADMF AGL VL '... Var 56K 12 229
 7E983AB0 ADMF AGL VL '.!. Var 28K 12 229
 7E97CB20 ADMF AGL 31 'm.. Var 992K 12 229
 7E968C60 ADMF AGL 31 '.N. Var 1204K 12 229

Figure 26. Local storage report for DSNWDMP with SM=1 option

Figure
Label

Description

 1 Pool header block address

 2 Pool name

 3 Fixed (fix) or variable (var) storage

 4 Size of pool

 5 Db2 storage class

 6 z/OS subpool

Chapter 4. Diagnostic aids for single systems and data sharing 191

When you specify SM=1, DSNWDMP also generates storage statistics. The following shows an example of
a storage statistics report.

 Storage statistics

 QSSTGPLF Get Fixed length pool in dataspace 149 QSSTGPLV Variable pool getmains 1081508
 QSSTFPLF Free Fixed length pool in dataspace 72 QSSTFPLV Variable pool freemains 1076402
 QSSTFREF Fixed pools 6 QSSTFREV Variable pools 570252
 QSSTEXPF Fixed pool extensions 5153 QSSTEXPV Variable pool extensions 924971
 QSSTCONF Fixed contracted blocks 748 QSSTCONV Variable contracted blocks 333901
 QSSTGETM Getmains(GETM) 190487 QSSTFREM Freemains (GETM) 188142
 QSSTRCNZ Non RC=0 Getmains 0 QSSTCRIT Short on storage 10812
 QSSTCONT Contractions initiated 11238 QSSTABND Abends due to insufficient storage 51

Figure 27. Storage statistics report for DSNWDMP with SM=1 option

To obtain a local storage report with SHB control blocks, run the DSNWDMP statement with SM=2. In a
fixed storage pool, the storage always follows the SHB, so only the SHB address is listed in the report.
Each block of variable storage has a varying length. With variable storage, the SHB is not in the same
place as the storage, so the address of the storage is listed after the address of the SHB.

The following shows an example of a local storage report that is generated for the following DSNWDMP
statement:

DSNWDMP 'SUBSYS=VC1A,SM=2,SMSA=2D'

==Storage (Local) VARIABLE POOLS
 PHB Subpool name F/V CL SP
 --- ------------ --- -- --
 7E9CB630 ADMF AGL 31 .pA. Var 136K 12 229
 SHB: 65BC2D88 52A32000 136K
 66D109C0 ADMF AGL 31 .\.. Var 0K 12 229
 50C22EC0 ADMF AGL VL .Z.. Var 28K 12 229
 1 2 3

 SHB: 50CB8B08 2CA5A000 16K
 SHB: 50CB8AB8 5089F000 8K
 SHB: 50CB8A18 50A3A000 4K

Figure 28. Local storage report for DSNWDMP with SM=2 option

Figure
Label

Description

 1 SHB address

 2 Address of storage that SHB relates to

 3 Length of storage

Within a storage pool, the sum of the segment (SHB) lengths should always equal the length that is
described by the pool header block (PHB). In the previous example, the PHB length, 32 KB, is equal to the
sum of the SHB lengths: 12 KB+8 KB+8 KB+4 KB.

Use SM=4 and SM=5 to check for fragmentation within blocks and storage use within individual variable
storage pool blocks. The report includes the total length of allocated and free elements for each segment
of storage and the total for the storage pool. The total for the storage pool appears after the last SHB for
the pool.

The following shows an example of a local storage report that is generated for the following DSNWDMP
statement:

DSNWDMP 'SUBSYS=VC1A,SM=4,SMSA=2D'

192 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Jobname VC1ADBM1 ASID(002D)
==Storage (Local) FIXED POOLS
 PHB Subpool name F/V CL SP
 --- ------------ --- -- --
 7F7594B8 EDM FIXED LENGTH POOL Fix 4K 12 229
 SHB: 7F2DE000 4K
 7F759518 EDM FIXED LENGTH POOL Fix 4K 12 229
 SHB: 7F0AF000 4K
 7F759810 RDS STPM LOCAL POOL Fix 0K 12 229
 7F75B290 SHBS FOR LOCAL V-POOLS Fix 4K 12 229
 SHB: 7F705000 4K
==Storage (Local) VARIABLE POOLS
 PHB Subpool name F/V CL SP
 --- ------------ --- -- --
 7F2C4510 ADMF AGENT LOCAL POOL Var 32K 12 229
 SHB: 7F705AD8 7EF50000 12K Free: 00000578 1K Alloc: 00002A48 10K
 SHB: 7F705AB8 7EF53000 8K Free: 00001FD0 7K Alloc: 00000000 0K
 SHB: 7F7059D8 7EF6B000 8K Free: 000003E0 0K Alloc: 00001BD0 6K
 SHB: 7F7059B8 7EF80000 4K Free: 00000160 0K Alloc: 00000E20 3K
 Total: Free: 00002A88 10K Alloc: 00005438 21K

Figure 29. Local storage report for DSNWDMP with SM=4 option

Use SM=5 to display the first 16 bytes, with their hexadecimal equivalents, of each allocated element. For
the module that made a request to Db2 storage manager for storage, DSNWDMP attempts to display the
following extra information:

• The owner token for the storage
• The CSECT and offset within the CSECT of the storage allocation request
• The maintenance level of the module

It is not always possible to determine the CSECT name. Therefore, this name might be incorrect or absent
in some cases.

The following shows an example of a local storage report that is generated for the following DSNWDMP
statement:

DSNWDMP 'SUBSYS=VC1A,SM=5,SMSA=2D'

==Storage (Local) VARIABLE POOLS
 PHB Subpool name F/V CL SP
 --- ------------ --- -- --
 7E9CB630 ADMF AGL 31 .pA. Var 136K 12 229
 1 2 3
 52A53F88: 00000060 20B20058 D7C3C220 00000000 00000000 PCB......... 00000000 DSNB1REL +0D25 12.28
 SHB: 65BC2D88 52A32000 136K Free: 00021F60 135K Alloc: 00000060 0K
 Total: Free: 00021F60 135K Alloc: 00000060 0K
 66D109C0 ADMF AGL 31 .\.. Var 0K 12 229
 50C22EC0 ADMF AGL VL .Z.. Var 28K 12 229
 2CA5A080: 00000048 201C003C E2E3C1C3 00000000 00000000 STAC........ 2FE99C30 DSNIALLI +2387 15.28
 2CA5A0D8: 00000038 001C0030 C9D8E4C5 00000000 2FE99C30 IQUE.....Z.. 2FE99C30 DSNIALLI +1A33 15.28
 2CA5A120: 00003EC8 20FE3EC0 C4D4E3D9 2CA5A160 2CA5B860 ...{DMTR.v~-.v.- 2FE99C30 DSNIALLI +174D 15.28

Figure 30. Local storage report for DSNWDMP with SM=5 option

Figure
Label

Description

 1 Owner token for the storage

 2 CSECT and offset of the storage allocation request

 3 Maintenance level

You can specify DS options with SM options to display storage information by thread. This information
includes the short, long and vlong pool addresses. These addresses are addresses of storage pools within
the database services address space (ssnmDBM1).

The following shows an example of a storage report that is generated for the following DSNWDMP
statement:

DSNWDMP 'SUBSYS=VC1A,DS=1,SM=5,SMSA=2D'

This example shows that a CICS thread signed on as user USRT001, running plan TSTA85, on correlation
ID PT01XA85 is using ADMF local pool 7F2C4510. The thread uses 32 KB of storage, of which 21 KB is
currently allocated.

Chapter 4. Diagnostic aids for single systems and data sharing 193

Jobname CICS41F ASID(0021)
 ACE: 0624C008 Status: T Req: 0003 Allied Chain
 CT: 7F2E5030 Short: 7F2C43C0 Long: 7F2C43C0 Vlong: 7F2C4350
 Authid: USRT001 Plan: TSTA85 Corrid: PT03XA85 Corrname: CICS41 Token: 00000028
 EB Primary(Asid) Home(Asid) EBSPAWND TCB/SRB -Status-- R14
 0624C098 CICS41F (0021) CICS41F (0021) 00000000 006A67D0 Running 00000000
 ACE: 0624BE38 Status: T Req: 0003 Allied Chain
 CT: 7F2E3030 Short: 7F2C44A0 Long: 7F2C44A0 Vlong: 7F2C4430
 Authid: USRT001 Plan: TSTA85 Corrid: PT02XA85 Corrname: CICS41 Token: 00000027
 EB Primary(Asid) Home(Asid) EBSPAWND TCB/SRB -Status-- R14
 0624BEC8 CICS41F (0021) CICS41F (0021) 00000000 006A6A60 Running 00000000
 ACE: 0624BC78 Status: T Req: 0004 Allied Chain
 CT: 7F2E1030 Short: 7F2C4580 Long: 7F2C4580 Vlong: 7F2C4510
 Authid: USRT001 Plan: TSTA85 Corrid: PT01XA85 Corrname: CICS41 Token: 00000026
 EB Primary(Asid) Home(Asid) EBSPAWND TCB/SRB -Status-- R14
 0624BD08 CICS41F (0021) CICS41F (0021) 00000000 006A6CF0 Running 861EF578

Figure 31. Storage by thread report for DSNWDMP with DS=1 and SM=5 option

For all storage reports, DSNWDMP displays EDM pool statistics. Those statistics are the same ones that
you obtain through Db2 statistics trace reports. The following shows an example report.

==EDM statistics

 Fails due to POOL full: 0
 Pages in EDM POOL: 225
 REQ for CT sections: 28
 Load CT sections from DASD: 3
 Pages used for CT: 8
 Free pages in free chain: 194
 Pages used for DBDs: 18
 Pages used for SKCT: 3
 Requests for DBD: 24
 Loads of DBDS from DASD: 3
 Requests for PT sections: 6
 Loads of PT sections from DASD: 2
 Pages used for PT: 0
 Pages used for SKPT: 2
 Inserts for dynamic cache: 0
 Requests for dynamic cache: 0
 Pages used for dynamic cache: 0

Figure 32. EDM pool statistics report for DSNWDMP with SM option

SVC dumps
For all abends, Db2 recovery routines request SVC dumps. SVC dumps that are issued by Db2 are the
primary source of diagnostic information for Db2 problems.

When you review these dumps, keep in mind the following information:

• These dumps reflect the multiple address space environment in which Db2 was operating at the time of
the failure.

• When Db2 requests the capture of pertinent Db2 storage areas as summary dump data (SUMLSTA),
z/OS suspends Db2 and copies these areas into the z/OS dump services address space. This action
preserves the status of these areas at time of error during subsequent Db2 recovery processing.

Processing of the z/OS dump services address space and capturing of more non-summary storage areas
that are specified by Db2 are performed asynchronously to Db2 recovery processing once z/OS resumes
Db2.

• The non-summary portion of the dump consists of the primary, secondary, and home address spaces.
• The dumps can be formatted or unformatted (this information refers to both). In most instances, use

formatted dumps.
• z/OS provides two indexes in formatted dumps ("Print Dump Index" and "SUMDUMP Dump Index"),

which help to locate particular storage areas.

Related concepts
Program call linkages

194 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Db2 uses z/OS program calls as one form of program invocation.
Related reference
Dump indexes
The Print Dump Index and the SUMDUMP Dump Index in z/OS dumps make it much easier to find specific
items and address ranges.

General contents of an SVC dump
When Db2 requests SVC dumps, it specifies several parameters to z/OS SDUMP services. For SDATA
parameters, Db2 specifies SQA, ALLPSA, LSQA, and SUMDUMP. This action causes z/OS to collect such
information as the selected common service area subpool, from which the global trace table is obtained,
and the system queue area subpool.

Db2 also specifies address lists through the ASIDLST and SUMLSTA parameters, causing z/OS to include
the system services address space (ssnmMSTR), database services address space (ssnmDBM1), allied
address space of the failing allied task, and other pertinent diagnostic information.

Finally, Db2 specifies the BRANCH=YES and SUSPEND=YES parameters. Several areas are included as a
result, such as the z/OS trace table and the home ASCB (address space control block).

For dumps requested by Db2 functional recovery routines (FRR and ESTAE), the SDWA (system diagnostic
work area) is also included. The SDWA is described in:

• “The system diagnostic work area (SDWA)” on page 202
• “SYS1.LOGREC” on page 224.

Part of the SDWA includes the variable recording area (VRA). Db2 formats this area in the VRA Diagnostic
Information Report. Each entry within the VRA is recorded during functional recovery processing to
provide more diagnostic information that is related to the initial abend reason code.

For dumps requested by Db2 ESTAE routines, the RTM2WA is also included.

For details on the SDUMP parameters, see the z/OS system macros and facilities publications. For more
information about SVC dumps, see the general set of the z/OS diagnostic techniques and debugging
handbook publications.

Figure 33. First pages of an SVC dump that is issued by Db2

ERRORID FOR THIS DUMP = SEQ00013 CPU00 ASID0007 TIME13.11.29.2
ACTIVE CPU'S AT TIME OF DUMP
 ADDR VERS. SERIAL MODEL
 0000 FF 120762 3084
 ****** DUMP ANALYSIS AND ELIMINATION (DAE) ******
THIS DUMP WAS NOT SUPPRESSED BECAUSE
DAE WAS NOT CHECKING FOR PREVIOUS OCCURRENCES.
CRITERIA FOR USE AS A UNIQUE DUMP IDENTIFIER BY DAE:
 MINIMUM NUMBER OF SYMPTOMS: 08 FOUND: 10
 MINIMUM TOTAL STRING LENGTH: 025 FOUND: 147
 SYMPTOMS REQUIRED TO BE PRESENT:
 MOD/CSECT/
 SYMPTOMS THAT ARE TO BE USED IF AVAILABLE, BUT ARE NOT REQUIRED:
 PIDS/ AB/S AB/U REXN/ FI/ REGS/ HRC1/ SUB1/
MVS SYMPTOM STRING:
MOD/DSNSLD1 CSECT/DSNSFBK PIDS/5740XYR00 AB/S004E REXN/DSNYEATE
FI/8910000C0A0D5980C5774770 REGS/0E0BE REGS/0946A HRC1/00E2000B
SUB1/IPC##DSNYAGCS
RETAIN SEARCH ARGUMENT:
RIDS/DSNSLD1#L RIDS/DSNSFBK PIDS/5740XYR00 AB/S004E RIDS/DSNYEATE#R
VALU/HC5774770 REGS/0E0BE REGS/0946A PRCS/00E2000B VALU/CDSNYAGCS
SYMPTOMS PRESENT FOR USE AS A UNIQUE DUMP IDENTIFIER BY DAE:
 RETAIN
MVS KEY KEY SYMPTOM DATA EXPLANATION
------- ------ ------------ -----------
MOD/ RIDS/ DSNSLD1 LOAD MODULE NAME
CSECT/ RIDS/ DSNSFBK ASSEMBLY MODULE CSECT NAME
PIDS/ PIDS/ 5740XYR00 PRODUCT/COMPONENT IDENTIFIER
AB/S AB/S S004E ABEND-CODE SYSTEM
REXN/ RIDS/ DSNYEATE RECOVERY ROUTINE CSECT NAME
FI/ VALU/H 8910000C0A0D5980C5774770 FAILING INSTRUCTION AREA
REGS/ REGS/ 0E0BE REG/PSW DIFFERENCE

Chapter 4. Diagnostic aids for single systems and data sharing 195

REGS/ REGS/ 0946A REG/PSW DIFFERENCE
HRC1/ PRCS/ 00E2000B REASON CODE
SUB1/ VALU/C IPC##DSNYAGCS COMPONENT SUBFUNCTION

⋮

⋮
ADDITIONAL SYMPTOM DATA NOT USED BY DAE TO IDENTIFY THIS DUMP:
 RETAIN
MVS KEY KEY SYMPTOM DATA EXPLANATION
------- ------ ------------ -----------
VARC/ PRCS/ 00E2000B ABEND REASON CODE
VCBA/ ADRS/ 01C31500 CONTROL BLOCK ADDRESS
VAID/ VALU/H 0010 CALLERS ASID
VAID/ VALU/H 000F CALLERS ASID
VAID/ VALU/H 0007 CALLERS ASID
VCAN/ RIDS/ AE##DSNVASIM03#10#8621#23#####
 MODULE NAME OF CALLER
VIMO/ ADRS/ FFFF048881C95F8016B00007 OFFSET IN ASSEMBLY MODULE
CID1/ VALU/C XYR00 COMPONENT IDENTIFIER
AMD1/ VALU/C 02#06#87 MODULE ASSEMBLY DATE
VRS1/ VALU/C 11#40 VERSION-PRODUCT/PTF IDENTIFIER
CDB1/ VALU/C 5740 BASE COMPONENT IDENTIFIER
ASID1/ VALU/H 0007 TASK RELATED ASID
ORCC1/ PRCS/ 04E000 ORIGINAL COMPLETION CODE
atsign.202/ VALU/C SSID/DS GRP NAME DEVELOPER ASSIGNED SYMPTOM KEY
atsign.204/ VALU/C SSUR DEVELOPER ASSIGNED SYMPTOM KEY
atsign.219/ VALU/C ###W#N## DEVELOPER ASSIGNED SYMPTOM KEY

⋮

Related concepts
The variable recording area (VRA)
More diagnostic information for Db2 abend reason codes is placed in the variable recording area (VRA) of
the system diagnostic work area (SDWA) and is extracted and displayed in the VRA Diagnostic Information
Report. This data can be produced by common recording routines and certain Db2 subcomponents.
The recovery termination manager work area (RTM2WA)
The RTM2WA is a z/OS work area that is requested by Db2 ESTAE routines. z/OS formats and includes this
block when a summary dump is printed or when a formatted address space dump is requested.

Contents of an SVC dump unique to Db2
SVC dumps contain extra information specific to Db2 in the summary portion of the dump.

Summary portion of the dump
The information that Db2 passes to the z/OS SDUMP service aid through the SUMLSTA parameter causes
z/OS to capture volatile areas at failure before other system activity can change their contents.

• Table of Contents at the beginning of dumps that are formatted through IPCS
• SUMDUMP Dump Index (located by a reference in Print Dump Index)

Related concepts
The module entry point list (MEPL)
The Db2 module entry point list (MEPL) is found in all SVC dumps that are issued by Db2. It identifies
the names of the load modules and CSECTs that are loaded into the subsystem at startup and remain in
storage for the life of the subsystem.
The SQL communication area (SQLCA)
The SQL communication area is one of the most important blocks. It contains information about the
status of one SQL statement. For diagnostic purposes, up to 4 KB of the SQL statement are included in
both the formatted and unformatted sections of SVC dumps.
Related tasks
Finding the SQL statement

196 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Up to 4 KB of the SQL statement are included in the sections of the SVC dump that pertain to SQL
problems. To find the SQL statement in the formatted section of the SVC dump, skim through the pages
for the statement on the right. It is displayed in the space block, which contains the "SPA" eye-catcher.
Related reference
Dump indexes
The Print Dump Index and the SUMDUMP Dump Index in z/OS dumps make it much easier to find specific
items and address ranges.

SVC dump titles that are issued by Db2
The dump title at the beginning of an SVC dump that is issued by Db2 includes the abend completion and
reason codes, the failing load module and CSECT names, and the release identifier.

The formats of SVC dump titles vary slightly, depending on the type of error. The following pages first
illustrate and describe the dump title format for most abend reason codes. Then, variations are illustrated
and described.

SVC dumps can be displayed with two messages: DSNW050I and DSNW051I. DSNW050I indicates no
SDWA was available; DSNW051I indicates an error occurred during dump processing, which might render
the dump inaccurate or incomplete.

Common dump titles for abends
Format for threads with no remote activity

The following sample illustrates the SVC dump title format for threads with no remote activity. Each
field in the title is described after the figure.

 ssid,ABND=compltn-reason,U=authid,
 C=compid.release.comp-function,
 M=module, LOC=loadmod.csect+csect_offset

Figure 34. Sample SVC dump title for threads with no remote activity

ssid
The four character subsystem name.

compltn
The three character abend completion code (often X'04E' or X'04F'). In structured database
format, the completion code is preceded by "AB/S".

reason
The 4-byte hexadecimal reason code (such as X'00E20015'). In structured database format, the
reason code is preceded by "PRCS".

authid
The primary authorization ID of the user (such as 'SYSOPR'). No structured database keyword
equivalent is displayed in the dump.

compid
The last five characters of the component identification keyword, explained in “Component
identifier keyword” on page 10. The value XYR00 uniquely identifies Db2. XYR01 also identifies
Db2, but refers to the subsystem initialization, or ERLY, code in particular. In structured database
format, the component identifier is preceded by "PIDS/".

release
A three-digit code that indicates the version, release, and modification level of Db2. In structured
database format, the release identifier has no equivalent field.

comp
Often is an acronym for the subcomponent in control at the time of the abend (such as 'BMC'). This
field is internally defined and varies depending on the circumstances under which the dump was
generated. No structured database keyword equivalents is displayed in the dump.

Chapter 4. Diagnostic aids for single systems and data sharing 197

function
Often is the name of a function, macro, or routine in control at the time of abend (such as
'DSNB1CMS'). This field is internally defined and varies depending on the circumstances under
which the dump was generated. No structured database keyword equivalents is displayed in the
dump.

module
The name of the FRR or ESTAE recovery routine (such as 'DSNTFRCV'). In structured database
format, this information is preceded by "RIDS/".

loadmod
The name of the load module in control at the time of the abend (such as 'DSNSLD1'). In
structured database format, the load module name is preceded by "RIDS/".

csect
The name of the CSECT in control at the time of abend (such as 'DSNSVSTK'). In structured
database format, the CSECT name is preceded by "RIDS/".

csect_offset
Usually is the offset within the failing CSECT at time of abend (such as '001CE'). This data is
sometimes replaced by an abend reason code qualifier. In structured database format, the CSECT
offset has no equivalent field.

Format for Allied Threads with Remote Activity
The following sample illustrates the SVC dump title format for allied threads with remote activity
(requesting location threads). The fields that are specific to this title format are described after the
figure.

 ssid,ABND=compltn-reason,U=authid,
 C=compid.release.comp-function,
 DISTRBUTED,LOC=loadmod.csect+csect_offset

Figure 35. Sample SVC dump title for allied threads with remote activity

DISTRBUTED
A flag that indicates that the thread had a remote connection. (SDWA VRA fields contain further
information.)

Format for database access threads
The following sample illustrates the SVC dump title format for database access threads (responding
location threads). The fields that are specific to this title format are described after the figure.

 ssid,ABND=compltn-reason,U=authid,
 C=compid.release,LOCN=16_char_loc_name,
 LOCN=16_char_loc_name,
 LOC=loadmod.csect+csect_offset

Figure 36. Sample SVC dump title for database access threads

LOCN
The Db2 location name of the remote system.

Related information
DSNW050I (Db2 Messages)
DSNW051I (Db2 Messages)

Dump title variations
The SVC dump title can appear in alternative formats.

Data manager variation
Certain data manager (DM) reason codes replace the CSECT offset with a reason code qualifier, as shown
in the following figure.

198 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnw050i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnw051i.html

 ssid,ABND=compltn-00C9xxxx,U=authid,
 C=compid.release.comp-function,
 M=module, LOC=loadmod.csect:qualifier

Figure 37. Dump title with data manager reason code qualifier

The X'00C9' reason code prefix that follows the "-ABND" label indicates a data manager abend. The
qualifier following the CSECT name is a four-digit hexadecimal reason code qualifier, often a trace code
(such as '0D01'). A colon precedes it. No structured database keyword equivalent is displayed in the
dump.

Distributed title variations
In distributed data facility modules that contain several occurrences of the same reason code, an ABNDID
replaces the CSECT offset in the SVC dump title as shown in the following figure.

 ssid,ABND=compltn-00D3xxxx,U=authid,
 C=compid.release.comp-function,
 DISTRBUTED,LOC=loadmod.csect:abndid

Figure 38. Dump title with distributed data facility reason code ABNDID

The X'00D3' reason code prefix that follows the "sABND" label indicates a distributed data facility abend.
The ABNDID following the CSECT name uniquely identifies the abend from more than one occurrence
of the same reason code in the failing module. A colon precedes it. No structured database keyword
equivalent is displayed in the dump.

Relational data system variation
All relational data system (RDS) reason codes replace the CSECT offset with an abend reason code
qualifier, which is shown in the following figure.

 ssid,ABND=compltn-00E7xxxx,U=authid,
 C=compid.release.comp-function,
 M=module,LOC=loadmod.csect:sign_qualifier

Figure 39. Dump title with relational data system reason code qualifier

The X'00E7' reason code prefix that follows the "-ABND" indicates an RDS abend. A subset of this reason
code prefix, X'00E72' indicates an error in the SORT component. The sign that follows the CSECT name
is a one-character field that indicates plus or minus (P or M). The qualifier is a three-digit decimal reason
code qualifier (such as 101). No structured database keyword equivalents are displayed in the dump.

Variation with PSW and ASID
Some dump titles replace the load module name, CSECT name, and CSECT offset (or abend reason code
qualifier) with the PSW and ASID (address space identifier). The following figure illustrates this format.

 ssid,ABND=compltn-reason,U=authid,
 C=compid.release.comp-function,
 M=module,PSW=psw_contents,A=address_spaceid

Figure 40. Dump title with PSW and ASID

psw_contents
Contains the PSW at time of error (such as X'077C100000729F9C'). No structured database keyword
equivalent is displayed in the dump.

address_spaceid
Identifies the address space in control at time of abend (such as X'0011'). In structured database
format, this item is preceded by "VALU/H".

Chapter 4. Diagnostic aids for single systems and data sharing 199

Error qualifier
An error qualifier exists to provide more information about what was going on.

The error qualifier can be found in the LOC keyword of the SVC dump title or in the field of the CT named
CTERQUAL. The first digit of this error qualifier identifies the Db2 resource manager that detected the
problem. The following lists possible values for this error qualifier:

Code
Resource Manager that is involved at time of abend

X'1xxx'
Internal Resource Lock Manager (IRLM)

An error return code was returned by the IRLM on a lock request by the data manager (DM). This
situation usually does not indicate an inconsistency problem. An example of an X'1xxx' error qualifier
is a situation that occurs when IRLM runs out of virtual storage that it uses to hold locks.

X'2xxx'
Buffer Manager (BM)

An error return code was returned by the BM on a BM request by the DM. This result might indicate
inconsistent data. An example is a situation in which a RID contains a page number that is in error,
causing the BM to detect an error when it attempts to access the page with the invalid number.

X'3xxx'
Recovery Log Manager (RLM)

An error return code was returned by RLM on a log write request by the DM. This result usually does
not indicate an inconsistency problem. An example is a situation in which the RLM attempts to write a
log record whose length is greater than 32 KB; this error is a DM internal error.

X'5xxx'
Data Manager (DM)

When the DM returns an error qualifier, it detected some kind of internal inconsistency. In most
cases, these situations do not involve inconsistent data, but rather, inconsistent internal parameters
or control blocks. For a list of error qualifiers that are associated with DSN1COPY misuse, see ABEND
codes associated with DSN1COPY misuse (Db2 Codes).

X'0Cxx'
Data Manager (DM)

This error qualifier from the DM indicates that data inconsistency was detected. Check DSNWEIDS in
SDSNSAMP for descriptions of the error.

The low-order three digits of these error qualifiers represent a unique sequence number that identifies
the place within the CSECT where the abend was issued. This information can be helpful to IBM Support if
they get involved in resolving the inconsistency problem.

SVC dump titles that are issued by IRLM
IRLM issues SVC dump titles.

The following sample illustrates the format of an SVC dump title that is issued by IRLM.

DXR7 ESTAE ENTERED. ABEND U2025 MODULE DXRRL732+0162
APAR BASE 95/135 23:

Figure 41. Sample SVC dump title that is issued by IRLM

200 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_abendcodesdsn1copy.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_abendcodesdsn1copy.html

Dump indexes
The Print Dump Index and the SUMDUMP Dump Index in z/OS dumps make it much easier to find specific
items and address ranges.

In SVC dumps formatted through IPCS by using the IPCS TOC DD statement, the Print Dump Index is
displayed at the beginning of the SVC dump as a Table of Contents.

Output from DAEDATA verb............................... 2
STATUS SUBCOMMAND OUTPUT................................ 3
 MVS/XA Diagnostic Worksheet......................... 4
Output from LOGDATA verb...............................16
Output from TRACE verb...............................24
Output from GRSTRACE verb...............................33
SUMMARY FORMAT Report...................................47
GLOBAL SCHEDULED SERVICES (SRB).........................47
 ADDR SPACE 0001 CONTROL BLOCKS......................48
 LOCAL SCHEDULED SERVICES (SRB)..................48
 CROSS MEMORY INFORMATION........................49
 TASK CONTROL BLOCK (TCB)........................55
 LOAD LIST...................................56
 JOB PACK QUEUE (JPQ)........................56
 ADDR SPACE 0002 CONTROL BLOCKS......................57
 LOCAL SCHEDULED SERVICES (SRB)..................57
 CROSS MEMORY INFORMATION........................57
 ADDR SPACE 0003 CONTROL BLOCKS......................63
 LOCAL SCHEDULED SERVICES (SRB)..................63
 CROSS MEMORY INFORMATION........................63
 ADDR SPACE 0004 CONTROL BLOCKS......................69
 LOCAL SCHEDULED SERVICES (SRB)..................69
 CROSS MEMORY INFORMATION........................69
 .
 .
 .
 ADDRESS SPACE 0017 CONTROL BLOCKS...................198
 LOCAL SCHEDULED SERVICES (SRB)..................199
 CROSS MEMORY INFORMATION........................199
 TASK CONTROL BLOCKS (TCB).......................211
 REQUEST BLOCK (RB)..........................211
 EXTENDED STATUS BLOCK.......................212
 LOAD LIST...................................212
 JOB PACK QUEUE (JPQ)........................212
 TASK INPUT/OUTPUT TABLE (TIOT)..............212
 TASK CONTROL BLOCKS (TCB).......................213
 REQUEST BLOCK (RB)..........................213
 EXTENDED STATUS BLOCK.......................214
 LOAD LIST...................................214
 JOB PACK QUEUE (JPQ)........................214
 .
 .
 .
 TCB SUMMARY...385
SYSTEM SUMMARY..387
 ACTIVE CPU LIST SUMMARY.............................387
 SUMMARY JOBSUMMARY Report...........................387
 SCHEDULED SERVICES (SRB) SUMMARY....................387
 ADDRESS SPACE 0001 CONTROL BLOCKS...................387
 .
 .
 ADDRESS SPACE 0065 CONTROL BLOCKS...................387
 PROBLEM LIST SUMMARY................................403
Output form SUMDUMP verb...............................404
SUMDUMP INDEX...725
Output from DSNWDMP verb...............................731

Figure 42. Sample print dump index (generated as table of contents through IPCS)

The SUMDUMP Dump Index cites the page numbers of given addresses. This information can be helpful
when you follow pointers to locate various Db2 control blocks. A sample SUMDUMP Dump Index is shown
in the following sample.

Chapter 4. Diagnostic aids for single systems and data sharing 201

 SUMDUMP DUMP INDEX

DATA AREA PAGE NUMBER
--------- -----------
SDWA .. 00000006
PSA/PCCA/ICCA ... 00000006
ASCB .. 00000011
TCB ... 00000011
INT HANDLER SA .. 00000011
SUSPEND REGS SA 00000014
SUMLIST/SUMLISTA... - 00AE0000 --- ASID FFFF........... 00000014
SUMLIST/SUMLISTA... - 00B2E000 --- ASID FFFF........... 00000014
SUMLIST/SUMLISTA... - 00B2E2C4 --- ASID FFFF........... 00000017
SUMLIST/SUMLISTA... - 00B2E2C8 --- ASID FFFF........... 00000017
SUMLIST/SUMLISTA... - 00B2EA5C --- ASID FFFF........... 00000017
SUMLIST/SUMLISTA... - 00B2EB34 --- ASID FFFF........... 00000017
SUMLIST/SUMLISTA... - 00B2EC0C --- ASID FFFF........... 00000018
SUMLIST/SUMLISTA... - 00B32000 --- ASID FFFF........... 00000018
SUMLIST/SUMLISTA... - 00B4BED8 --- ASID FFFF........... 00000018
SUMLIST/SUMLISTA... - 00B4BF40 --- ASID FFFF........... 00000018
SUMLIST/SUMLISTA... - 00B4BF98 --- ASID FFFF........... 00000019
SUMLIST/SUMLISTA... - 00B78198 --- ASID FFFF........... 00000019
SUMLIST/SUMLISTA... - 01A75000 --- ASID FFFF........... 00000019
SUMLIST/SUMLISTA... - 01A76000 --- ASID FFFF........... 00000021
SUMLIST/SUMLISTA... - 01A77000 --- ASID FFFF........... 00000023
SUMLIST/SUMLISTA... - 01A78000 --- ASID FFFF........... 00000025
SUMLIST/SUMLISTA... - 01A79000 --- ASID FFFF........... 00000028
SUMLIST/SUMLISTA... - 01A7A000 --- ASID FFFF........... 00000030
SUMLIST/SUMLISTA... - 01A7B000 --- ASID FFFF........... 00000033
SUMLIST/SUMLISTA... - 01A7C000 --- ASID FFFF........... 00000033
SUMLIST/SUMLISTA... - 01A7DA40 --- ASID FFFF........... 00000034
SUMLIST/SUMLISTA... - 01A7DC40 --- ASID FFFF........... 00000034
SUMLIST/SUMLISTA... - 01A7F0E8 --- ASID FFFF........... 00000035
SUMLIST/SUMLISTA... - 01A7F170 --- ASID FFFF........... 00000035
SUMLIST/SUMLISTA... - 01A7F1C8 --- ASID FFFF........... 00000035
SUMLIST/SUMLISTA... - 01A7F230 --- ASID FFFF........... 00000035

Figure 43. Sample SUMDUMP Dump Index

To locate this index, review the Print Dump Index or Table of Contents, and look for "SUMDUMP Index".
The SUMDUMP index can be used to quickly locate addresses in the unformatted sections of the SVC
dump.

The system diagnostic work area (SDWA)
Each SVC dump that is requested by a Db2 functional recovery routine usually contains an SDWA with
information about the status of the subsystem at the time of the error. Typically, the SDWA is a starting
point for diagnosis.

Finding the SDWA
Use the SUMDUMP Dump Index to locate the SDWA. For more information about the contents of the
SDWA:

• “SYS1.LOGREC” on page 224
• Using the SDWA (MVS Programming Authorized Assembler Services Reference)

Using the SDWA during the secondary error recovery processing
The z/OS SDUMP macro uses the SDWA at time of invocation to gather the storage areas around the
registers (SDWAGRSV) and PSW (SDWAEC1) at the time of error to include in the dump data set. If
secondary errors occur during Db2 dump processing, the SDWA used during SDUMP processing would
therefore reflect the registers and PSW of the secondary error; the original SDWA error information would
be lost.

To avoid losing the original error information and to retain as much secondary error information as
possible, Db2 saves selected fields from both the original and secondary SDWA in the DMPW data area.
Before you start SDUMP, Db2 dump services then uses fields from the original SDWA to overlay the
corresponding fields (restored) in the secondary SDWA.

202 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieaa800/sdwause.htm

The following list describes in greater detail the services that are performed when errors occur during
dump processing.

• These fields from both the original and secondary SDWA are saved in the DMPW data area:

FIELD LENGTH FUNCTION
Eyecatcher 4 'OERR' and 'SERR'
SDWAFLGS 4 SDWA flags (saved only)
SDWAABCC 4 Completion code (restored)
SDWAGRSV 64 Registers at error (restored)
SDWAEC1 8 Ext/CTL PSW (restored)
SDWAAAEC1 8 EC mode data (restored)
SDWACOMU 8 SDWA communication (restored)

Figure 44. DMPW data area
• The DMPW fields from the SDWA reflecting the original error 'OERR' are used to overlay the same fields

in the secondary SDWA 'SERR'. The summary storage areas that are provided by SDUMP around the
registers and PSW at the time of the error now reflect the original error.

• Both the original and secondary SDWA error fields are kept in the DMPW for later examination during
problem analysis.

• This error message is inserted into the header portion of the DMPW to show that a secondary error
occurred.

The variable recording area (VRA)
More diagnostic information for Db2 abend reason codes is placed in the variable recording area (VRA) of
the system diagnostic work area (SDWA) and is extracted and displayed in the VRA Diagnostic Information
Report. This data can be produced by common recording routines and certain Db2 subcomponents.

VRA entries begin at offset X'190' in the SDWA. Each entry within the VRA is recorded during functional
recovery processing to provide more diagnostic information that is related to the initial abend reason code
(SDWACRC).

Finding the VRA diagnostic information report
The VRA Diagnostic Information Report is displayed at the front of the section that is formatted by Db2 of
the SVC dump and can be identified by its message number, DSNW053I. The Print Dump Index cites the
location of the formatted dump under the entry "Output from DSNWDMP Verb".

The report cites the VRA hexadecimal key codes, the length of the VRA data, and the data itself. The
following figure shows an example of the report.

 DSNW053I - VRA DIAGNOSTIC INFORMATION REPORT
 SDWARA: (00FFA082) SDWA: ADDR=007BCB40 OFFSET=0190
KEY: LEN: VRA DATA FIELDS:
 06 04 00E2000B *.S.. *
 14 04 01C31500 *.C.. *
 C9 04 00000000 *.... *
 CA 04/16 E2E2E4D9 *SSID/DS GRP NAME *
 3A 02 0010 *.. *
 3A 02 000F *.. *
 3A 02 0007 *.. *
 CB 08 00000000 00000000 *........ *
 CC 0C E2E2E4D9 40404040 40404040 *SSUR *
 DB 08 9C716CA6 9AD5CE90 *.....N.. *
 7C 0C FFFF0488 81C95F80 16B00007 *.....I...... *
 3D 20 81C5BFD0 C4E2D5E5 C1E2C9D4 F0F361F1 F061F8F6 F2F14BF2 F3404040 00080000 *.E..DSNVASIM03/10/8621.23 ... *
 06 04 00000000 *.... *
 53 00 * *
 52 02 0008 *.. *
 DSNW056I - VRA DIAGNOSTIC INFORMATION REPORT COMPLETE

Figure 45. Sample VRA diagnostic information report

Related reference
SYS1.LOGREC
The SYS1.LOGREC data set records various errors that different components of the operating system
encounter.
Related information
DSNW053I (Db2 Messages)

Chapter 4. Diagnostic aids for single systems and data sharing 203

https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnw053i.html

The recovery termination manager work area (RTM2WA)
The RTM2WA is a z/OS work area that is requested by Db2 ESTAE routines. z/OS formats and includes this
block when a summary dump is printed or when a formatted address space dump is requested.

The RTM2WA block contains the most recent information about the failing task at the time the dump
was produced. Use this information to relate the problem in a dump to a specific SYS1.LOGREC entry
by comparing the completion code, PSW, and abend reason code (if present) in register 15. This
control block is used by the RTM to control processing of abends. It includes registers, the PSW, the
abend completion code, and other useful information about the status of the subsystem at the time of
the failure. The RTM2WA maps a description of the errors and control flags for the functions of task
termination or storage termination within the RTM (recovery termination manager).

Finding the RTM2WA
Multiple RTM2WAs are listed in order, beginning with the most recent failure. To find the unformatted
RTM2WA control block or the RTM2WA summary (near its unformatted source), follow these steps:

1. Locate the TCB summary.

The Print Dump Index or Table of Contents contains an entry and page number for "Task Control Block
Summary".

2. Find the TCB involved in the failure, looking for a TCB with a nonzero completion code.

Scan the second column of the TCB summary, looking for a nonzero CMP value. Notice the address of
the TCB (in the first column) and the page number on which the TCB is located (in the last column).
This TCB was involved in the failure.

3. Locate the RTM2WA "eye-catcher" in this TCB. This is the unformatted RTM2WA control block.

From the beginning of the TCB, turn forward a few pages. The eye-catcher is in the left margin.

If you have access to a tool that allows you to examine dumps in machine-readable form, then search for
RECORD ID = X'0039' to find the unformatted RTM2WA control block.

In most error situations, a summary of the most important information in the RTM2WA block is formatted
and can be found near the unformatted RTM2WA control block in the dump.

The following figures show the formatted and unformatted versions of the RTM2WA.

+1C COMPLETION CODE 0004E000
+8C ABENDING PROGRAM NAME N/A
+94 ABENDING PROGRAM ADDR 00000000
+3C REGS AT TIME OF ERROR 00000000 0004E000 001957A0 005A1DDC 009B5CE0 005A1C2C 009B8C78 005A9BA8 (0-7)
+5C 0099F550 0025B15A 005A1F58 4025AF24 005A1F58 4025B168 00C90001 (8-F)
+7C EC PSW AT TIME OF ERROR 0025B176 0002000D 0024F5A0
+DC SDWACOMP 00000000
+E8 RETURN CODE FROM RECOVERY ROUTINE-00,CONTINUE WITH TERMINATION-IMPLIES PERCOLATION
+E0 RETRY ADDR RETURNED FROM RECOVERY EXIT 009BE2A0
+E4 00000000
+C CVT ADDR 00035768
+38 RTCT ADDR 00FDAE78
+C8 SCB ADDR 005FC7D0
+D4 SDWA ADDR 001477B8
+14 SVRB ADDR 005FD158
+16C PREV RTM2WA FOR THE TASK 00000000
+170 PREV RTM2WA FOR RECURSION 00000000
+B8 ASID OF ERROR IF CROSS MEMORY ABTERM 0000
+36C ERROR ASID 000E
+37C CURRENT TRACE ENTRY FOR SAVED TRACE TABLE 00000000
+380 FIRST TRACE ENTRY FOR SAVED TRACE TABLE 00000000
+384 LAST TRACE ENTRY FOR SAVED TRACE TABLE 00000000

Figure 46. Sample formatted RTM2WA summary (RTM1)

204 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

-RTM2WA---------------------------------AT LOCATION 005BF9A0

+0 D9E3D4F2 005BF9A0 FF0004D4 00035768 005CAEA8 005FD158 00FC85F0 0004E000
+20 80808001 005FC7E8 80000000 00000000 005CAEA8 005FD158 00FDAE78
-EED TYPE1 REGS AND PSW
+3C 00000000 0004E000 001957A0 005A1DDC 009B5CE0 005A1C2C 009B8C78 005A9BA8
+5C 00000010 0099F550 0025B15A 005A1F58 4025AF24 005A1F58 4025B168 00C90001
+7C 077C2000 0025B176 0002000D 0024F5A0

+8C 005FD040 00000000 00000000
-EED TYPE 3 MACHINE CHECK
+98 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

+B4 04041041 00001000 00000000 005CA058 00000000 005FC7D0 005ED820 00000000
+D4 001477B8 FA000418 00000000 009BE2A0 00000000 00000000 FF74000D 6025B176
+F4 FF8500DF A07DF74A 00000000
-SNPPARMS
+100 00000000 00000000 00000000 00000000 005BFD84

Figure 47. Sample unformatted RTM2WA control block (RTM2)

Related concepts
The task control block (TCB) summary
When included in a dump, the TCB summary identifies the address spaces and their associated tasks.

The failing execution block (EB)
It is recommended that you use the save area trace report to find the failing EB and associated agent EBs.

The failing execution block (EB) can help in locating the cursor table (CT), stack storage, and other
pertinent information. Knowing the address of the failing EB can also help you interpret the Db2 trace
table.

SDWA

X’30’

.

.
Register 6

VRA Diagnostic
Information Report Failing EB

Key 14 Column

VRA

.

.
VRACBA 1404xxxxxxxx

Figure 48. Finding the failing EB

If you are not able to use the save area trace report to find the failing EB, use Figure 48 on page 205 to
locate the address of the failing EB:

• SDWA field at offset X'30', which contains register 6.
• Key 14 column of the "VRA Diagnostic Information Report", which appears at the front of the formatted

section of the SVC dump.
• VRACBA field (Key 14) in the variable recording area (VRA) of the SDWA. VRA entries begin at offset

X'190' in the SDWA.
• SUMLSTA range in the unformatted section of the SVC dump.

Related concepts
Using global trace output

Chapter 4. Diagnostic aids for single systems and data sharing 205

Trace output is based on the parameters specified for the -START TRACE(GLOBAL) command. Each record
identifies one or more significant Db2 events.
The system diagnostic work area (SDWA)
Each SVC dump that is requested by a Db2 functional recovery routine usually contains an SDWA with
information about the status of the subsystem at the time of the error. Typically, the SDWA is a starting
point for diagnosis.
The variable recording area (VRA)
More diagnostic information for Db2 abend reason codes is placed in the variable recording area (VRA) of
the system diagnostic work area (SDWA) and is extracted and displayed in the VRA Diagnostic Information
Report. This data can be produced by common recording routines and certain Db2 subcomponents.

The save area trace report
The save area trace report is displayed in the first few pages of the formatted section of an SVC
dump, immediately following the VRA diagnostic information report. This report is identified by the string
==Save Area trace.

The following sample shows a save area trace report.

The information in this report includes the register contents, module invocation sequence, and execution
environments that lead up to the point of error. The save areas for the current failing agent execution
block (EB) and all associated agent EBs are traced from the point of error and are displayed in order of
invocation.

The address and content of each save area is displayed and identified by the name of the invoking
module, as follows:

Save Area: module_name service_level_identifier
 WD1 ... HSA ... LSA ...
 RET ... EPA ... R0 ...
 R1 ... R2 ... R3 ...
 R4 ... R5 ... R6 ...
 R7 ... R8 ... R9 ...
 R10 ... R11 ... R12 ...

The module_name identifies the module responsible for obtaining the save area as reflected in the
module entry point list (MEPL) at the time of error. The service_level_identifier is also obtained from the
corresponding MEPL entry, and consists of the compilation date and the PTF number, which reflects
the latest maintenance applied. As a first step in diagnosing errors, be sure that the PTF number is
up-to-date. If no maintenance has been applied against this module, this field defaults to the function
modification identifier (FMID). The SA identifies the address and contents of each word of the save area
and is displayed by using the same format and register abbreviation conventions as defined by z/OS SNAP.
All save area data references reflect the primary address space at time of execution.

The report displays the current execution environment each time the current agent EB changed during
processing. This information consists of the address of the associated EB, the z/OS job name that is
associated with the home address space, the home address space identifier (HASID), the primary address
space identifier (PASID), the agent EB z/OS execution mode (task control mode (TCB), or service request
mode (SRB)).

The report also displays the contents of the register save area chains for the current failing agent EB, and
all suspended agent EBs at time or error. The name of the control block from which the registers for the
current agent EB were obtained is displayed, along with the current execution status of the agent EB at
time of error. The control block and registers might be displayed twice; once to list the registers at the
time the agent was suspended, and once to list the registers in the save area at the last time they were
saved.

206 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

All register data references refer to the primary address space (PASID) associated with the currently
active EB. Each time the primary address space changes during execution, the following information is
displayed:

CHANGE of ADDRESS SPACE, NEW PASID=pasid

The save area trace can be terminated when a control block or data page is not found in the dump.

==Save Area trace

 Note: Save Area may be broken at 00000000_7EDDC390, starting format right after this point
 Save Area: DSNXERST 12/06/02 14.31 + 013C EPA: DSNXLDBD 05/12/03 16.15 + 0000
 00000000_7EDDCA50 WD1 00000000_7EDDCE14 HSA 00000000_7EDDC390 LSA 00000000_7EDDCBD8
 RET 00000000_0830D5C4 EPA 00000000_083E7FD8 R0 00000000_7EDDCB94
 R1 00000000_7EDDCB78 R2 00000000_060B2448 R3 00000000_7F4CD730
 R4 00000000_060B28F0 R5 00000000_060B28F0 R6 00000000_060B8620
 R7 00000000_00000140 R8 00000000_00000000 R9 00000000_00000000
 R10 00000000_076130FE R11 00000000_076120FF R12 00000000_0830D488

 Extension: EB 00000000_060B8620 CT 00000000_7F4CD730 MSIB 00000000_00000000 00000
 00000000_00000000 00000000_00000000 00000000_00000000

 Service: 7EDDC5A0 7EDDCD78 00000000 06066FB0 | =.E.=.........?. |
 Save Area: DSNXLDBD 05/12/03 16.15 + 0146 EPA: DSNWVCOL 03/19/03 15.27 + 0000
 Note: This save area may be residual
 00000000_7EDDCBD8 WD1 00000000_00000000 HSA 00000000_7EDDCA50 LSA 00000000_7EDDD8B0
 RET 00000000_883E811E EPA 00000000_067484B8 R0 00000000_7EDDD568
 R1 00000000_7EDDCE59 R2 00000000_060B2448 R3 00000000_083E800C
 R4 00000000_060B28F0 R5 00000000_060B28F0 R6 00000000_060B8620
 R7 00000000_00000162 R8 00000000_00000000 R9 00000000_00000000
 R10 00000000_076130FE R11 00000000_076120FF R12 00000000_083E99F8

 Extension: EB 00000000_060B8620 CT 00000000_7F4CD730 MSIB 00000000_00000000 00000
 00000000_00000000 00000000_00000000 00000000_00000000

 Service: 00000000 0000000C 00000000 7EDDD248 |=.K. |

Figure 49. Save area trace report

The module entry point list (MEPL)
The Db2 module entry point list (MEPL) is found in all SVC dumps that are issued by Db2. It identifies
the names of the load modules and CSECTs that are loaded into the subsystem at startup and remain in
storage for the life of the subsystem.

With the DISPLAY parameter of the DIAGNOSE utility you can, without forcing an SVC dump, dump either
the Db2 MEPL or the DSNUTILB MEPL to SYSPRINT.

Contents of the MEPL
Header

One 32-byte entry per MEPL, containing:

• 2-byte hexadecimal control block identifier (X'00BA')
• 2 bytes of reserved space
• 4-byte EBCDIC control block identifier and "eye-catcher" (MEPL)
• 2-byte value for the total number of load module entries in the control block
• 2-byte value for the total number of entries (both load module and CSECT) in the control block
• 4-byte value for the length of the control block
• 16 bytes of reserved space

Load Module
One 32-byte entry for each load module in the MEPL, containing:

• 8-byte load module name
• 4-byte load module that starts address (if the high-order bit is 1, the load module runs in 31 bit

addressing mode under z/OS)
• 4-byte load module ending address
• 2-byte load module storage residency indicated by one of the following items:

– Address space identifier (ASID) if the load module is stored in local (private) storage
– Zero (0000) if the load module is stored in global (common system area)

• 2-byte value for the total number of CSECT entries in the load module
• 4-byte program call (PC) linkage index (LX) value that is used to start a CSECT in this load module or

zero (00000000) if PC is not used
• 8 bytes of reserved space

CSECT
One 32-byte entry for each CSECT in a load module in the MEPL, containing:

Chapter 4. Diagnostic aids for single systems and data sharing 207

• 4-byte CSECT entry point address
• 8-byte CSECT name
• 8-byte CSECT assembly date
• 8-byte number of last APAR applied to this CSECT
• 1-byte program call (PC) entry table index (EX) value that is used to start this entry point or zero (00)

if PC is not used
• 1-byte initialization entry point list (IEPL) flag bits:

X'80': Entry point that is started by PC linkage
X'40': PC with space switch (dual address space) permitted
X'20': Entry point that is started from application process environment
X'10': Entry point that is started by CALL linkage
X'08': Primary CSECT entry point
X'04': Reserved (unused)
X'02': Reserved (unused)
X'01': Reserved (unused)

• 2 bytes of reserved storage

Related reference
DIAGNOSE (Db2 Utilities)

Finding the MEPL in the SVC dump
The MEPL can be found in a formatted section of the SVC dump or in an unformatted section of the SVC
dump.

About this task
To locate the MEPL in the formatted section of the SVC dump, scan each page, looking for the "MEPL"
label at right or left. A formatted MEPL is located near the beginning of the section of the dump that is
formatted by Db2.

Procedure
To locate the MEPL in the unformatted section of the SVC dump:
1. Referring to the following example, locate the EBHASCE (at offset X'24') or the EBPASCE field (at offset

X'28') in the failing EB. Both fields contain the address of the ASCE (address space control element).
2. Locate the ASCESCOM field (at offset X'0C') in the ASCE. This field contains the address of the SCOM

(subsystem communications block).
3. Locate the SCOMMEPL field (at offset X'94') in the SCOM. This field contains the address of the MEPL.

Example
Failing EB ASCE SCOM ASCEMEPL

EBHASCE

EBPASCE

EBHASCE

ASCECOM SCOMMEPL

EBPASCE
24
28

Hexadecimal Offsets
C 94ASCESCOM SCOMMEPL

..

..

..

....

..

....

Figure 50. Finding the MEPL in the unformatted section of an SVC dump

Related concepts
The failing execution block (EB)

208 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_diagnose.html

It is recommended that you use the save area trace report to find the failing EB and associated agent EBs.

Finding the MEPL in the IFCID trace
IFCID 186 is intended to be used only under the direction of IBM Service personnel.

Procedure
Specify IFCID 186 in the IFCID() parameter of the -START TRACE command.
The -START TRACE command writes the MEPL to a series of IFCID 186 records. Each record contains a
4096-byte section of the MEPL, except for the last. The number of records is equal to (Length of MEPL /
4096) + 1.

The following fields in IFCID 186 contain important information:
QW0186SC

The number that indicates which section of the MEPL is in this record.
QW0186TS

The total number of IFCID 186 records that are required to display the complete MEPL.
QW0186LN

The length of the MEPL data in field QW0186MP + 2 for this field. This number is 4098, unless this
number is the last record. The length of the last record is (Length of MEPL - (4096 * (QW0186TS - 1)))
+ 2.

If the DEST() parameter is not specified for the -START TRACE command, IFCID 186 is written to the
default destination for the type of trace specified. For example, if a performance trace is specified, IFCID
186 is written to the general trace facility (GTF). For accounting, statistics, and audit traces, the default
destination is the system management facility (SMF).

What to do next
For more information about IFCID 186, refer to prefix.SDSNIVPD(DSNWMSGS).

Finding the name of the failing load module in a MEPL
The name of a failing load module can be found in a MEPL.

Procedure
To find the name of the failing load module in a MEPL:
1. Locate the MEPL in the dump.
2. Locate the appropriate PSW and use the address in its second fullword as an index into the list.

Use the PSW and ASID listed in the PRINT DUMP ABSTRACT INFORMATION section, which is located
just before the system diagnostic work area (SDWA). Refer to the data listed under INFORMATION AT
TIME OF ERROR.

3. Review the beginning and ending addresses for each load module; the beginning address is the third
word, and the ending address is the fourth word of each entry.

4. If the address in the PSW falls between the beginning and ending addresses of a particular load
module, that can be the failing load module.

In the following example, assume that the address in the PSW at failure is 005A144A. Looking in the
MEPL, you find that load module DSNVGEPL begins at 005A0A20 and ends at 005AB000. Because
005A144A falls between 005A0A20 and 005AB000, the name of the load module that contains the
failing CSECT is DSNVGEPL.

09A0 00145830 C4E2D5E5 C4D9D940 F0F661F0 F/ 000 *.DSNVDRR.
09C0 C4E2D5E5 C7C5D7D3 005A0A20 005AB000/ 00000 *.DSNVGEPL
09E0 005A0A20 C4E2D5E5 C1E2C9D4 F0F661F/0080000 *.DSNVASIM
0A00 005A1268 C4E2D5E5 E3D9E3C8 F0F66/ 00080000 *.DSNVTRTH
0A20 005A1748 C4E2D5E5 C5E4E2F1 F0F/40 00080000 *.DSNVEUS1

Figure 51. Finding the name of the failing load module in a MEPL

Chapter 4. Diagnostic aids for single systems and data sharing 209

5. Verify that the suspected load module was involved in the failure.

Review the ASID field in the MEPL. This field is the first halfword immediately following the ending
address of the load module.

The load module is the one that was involved in the failure if one of these conditions is true:

• ASID field = 0000
• ASID field = xxxx, where xxxx is the ASID identified in the dump as primary and is the ASID of system

services or database services.

For example, if the primary address space identifier (the identifier that follows the "eye-catcher"
PASID in the beginning of the dump) is 0012, the ASID field of the MEPL for the load module that is
involved in the failure must either be 0000 or 0012.

6. If the suspected load module was not involved in the failure, continue searching the MEPL until a load
module is found that contains the address in the PSW and whose ASID is equal to 0000 or to the ASID
of the dump.

If the failure is not a loop, the name of the failing load module should begin with DSN. If it begins
with anything else, the problem might be in another product. Use the z/OS diagnostic techniques
publication for help in diagnosing the failure.

7. If the search is unsuccessful, the name of the load module that is involved cannot be determined from
the MEPL.

Example

MEPL (00014) ADDR=7F71A000 ASID=0010 VVV=00 FROM: SCOM (0006) OFFSET
 0000 00BA0000 D4C5D7D3 00850594 0000B2A0 00000000 00000000 00000
 0020 C4E2D5E8 C1E2C3D7 81D008C8 81D04000 00100004 00000000 00000
 0040 81D00950 C4E2D5E8 C1E2E3D7 F0F361F1 F061F8F6 F1F84BF1 F3404
 0060 81D010A8 C4E2D5E8 C1E2E3D9 F0F361F1 F061F8F6 F1F84BF1 F4404
 0080 81D00950 C4E2D5E8 C5C3E3C5 F0F361F1 F061F8F6 F1F84BF2 F0404
 00A0 81D02AE0 C4E2D5E8 C1E2C3D7 F0F261F1 F061F8F7 F1F64BF0 F5404
 00C0 C4E2D5E8 C1C7C3E2 81CB7340 81CBA000 00000001 00000000 00000
 00E0 81CB9638 C4E2D5E8 C1C7C3E2 F0F361F1 F061F8F6 F2F24BF4 F6404
 0100 C4E2D5E8 C1D3D3C9 81CB7340 81CB9000 00000003 00000000 00000
 0120 81CB73C8 C4E2D5E8 C5C1E3C5 F0F161F1 F961F8F7 F1F14BF4 F2404
 0140 81CB73C8 C4E2D5E8 C5C1E3F2 F0F361F1 F061F8F6 F1F84BF1 F7404
 0160 81CB8500 C4E2D5E8 C1D3D3C9 F0F161F1 F961F8F7 F1F84BF3 F7404
⋮

Figure 52. Sample MEPL (module entry point list)

Finding the name of the failing CSECT in the MEPL
Use this procedure only if the name of the load module that failed in the MEPL was found. If it is not, the
CSECT name cannot be located either.

Procedure
To find the name of the failing CSECT in the MEPL:
1. Locate the list of CSECTs that are contained in the load module. This list follows the load module in the

dump.
2. Locate the CSECT entry point address that is closest to the address in the PSW. This CSECT is the

failing CSECT.

The first word of each CSECT entry contains its entry point address. Scan the column that contains the
CSECT entry point addresses to find the appropriate one.

Assume the address that is shown in the PSW is 005A144A. This falls within the range of load
module DSNVGEPL, whose entry point address is 005A0A20 and whose ending address is 005AB000.
To determine the CSECT name, scan the first column for the entry point addresses of the CSECTs
contained within that load module. The second CSECT in the load module DSNVGEPL has the last entry
point address less than the address in the PSW. The CSECT name is DSNVTRTH.

210 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

The batch utilities MEPL
A batch utilities module entry point list (MEPL) is found in dumps that involve batch utility abends.

The following figure shows a sample batch utilities MEPL. This list contains the CSECTs for the batch load
module, DSNUTILB. The list can help locate the starting address of a CSECT within DSNUTILB and can
match the maintenance level between CSECTs in DSNUTILA and DSNUTILB load modules. The DISPLAY
parameter of the DIAGNOSE utility is used, without forcing an SVC dump, to dump the DSNUTILB MEPL to
SYSPRINT.

Contents of the batch utilities MEPL
Header

One 32-byte entry, containing:

2-byte hexadecimal control block identifier (X'20B9')

2-byte value for the length of the control block

4-byte EBCDIC control block identifier and "eye-catcher" (BEPL)

2-byte value for the total number of entries in the control block

22 bytes of reserved space

CSECT
One 32-byte entry for each CSECT, containing:

4-byte CSECT entry point address

8-byte CSECT name

8-byte CSECT assembly date

8-byte CSECT maintenance level

4 bytes of reserved space

 00005980 20B90160 C2C5D7D3 000AD4C5 D7D360D3 C9D2C540 C6D6D940 C4E2D5E4 E3C9D3C2 *....BEPL..MEPL.LIKE FOR DSNUTILB*
 000059A0 0000F3A0 C4E2D5E4 C4C9C1C7 F1F161F1 F161F8F6 F2F14BF1 F2404040 00000000 *..3.DSNUDIAG11.11.8621.12 *
 000059C0 00018288 C4E2D5E4 C7C1C2D5 F1F161F1 F161F8F6 F2F14BF1 F8404040 00000000 *....DSNUGABN11.11.8621.18 *
 000059E0 00018418 C4E2D5E4 C7C2C1C3 F1F161F1 F161F8F6 F2F14BF2 F0404040 00000000 *....DSNUGBAC11.11.8621.20 *
 00005A00 000195A0 C4E2D5E4 C7C2D7D3 F1F061F2 F361F8F6 F1F14BF3 F8404040 000273EC *....DSNUGBPL10.23.8611.38 *
 00005A20 0001C868 C4E2D5E4 C7C7C4D7 F1F161F1 F161F8F6 F2F14BF2 F3404040 00000000 *..H.DSNUGGDP11.11.8621.23 *
 00005A40 0001CF50 C4E2D5E4 C7D4E2C7 F1F161F1 F161F8F6 F2F14BF2 F5404040 00000000 *....DSNUGMSG11.11.8621.25 *
 00005A60 0002AB30 C4E2D5E4 C7E3D9C3 F1F161F1 F161F8F6 F2F24BF3 F4404040 00000000 *....DSNUGTRC11.11.8621.34 *
 00005A80 0002B020 C4E2D5E4 C7E4E3C3 F1F161F1 F161F8F6 F2F14BF3 F6404040 00005510 *....DSNUGUTC11.11.8621.36 *
 00005AA0 0002D138 C4E2D5E4 D4E2C7E3 F1F161F0 F561F8F6 F1F94BF4 F6404040 00000000 *..J.DSNUMSGT11.05.8619.46 *
 00005AC0 00036808 C4E2D5E4 E3E2E2C2 F1F161F1 F161F8F6 F2F14BF5 F8404040 00005D58 *....DSNUTSSB11.11.8621.58 *
⋮

Figure 53. Sample batch utilities MEPL

Related concepts
SVC dump titles that are issued by Db2
The dump title at the beginning of an SVC dump that is issued by Db2 includes the abend completion and
reason codes, the failing load module and CSECT names, and the release identifier.
Related reference
DIAGNOSE (Db2 Utilities)

Finding the batch utilities MEPL
A batch utilities module entry point list (MEPL) is found in dumps that involve batch utility abends.

About this task
To locate this control block in a formatted section of the dump, scan each page, looking for the "BEPL"
eye-catcher at right or left.

Procedure
To locate the batch utilities MEPL in the unformatted section of an SVC dump:
1. Review the messages or load module name that is associated with the abend to determine whether

execution stopped in batch memory or database services memory.

Chapter 4. Diagnostic aids for single systems and data sharing 211

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_diagnose.html

• Message DSNU016I and load module DSNUTILB indicate that execution that is stopped in batch
memory.

• Message DSNU017I and load module DSNUTILA indicate that execution that is stopped in database
services memory.

The name of the failing load module is published in the dump title.
2. Determine whether the execution stopped in batch memory or database services memory.

• If execution stopped in batch memory:

a. Referring to the following figure, locate register 6 at offset X'30' in the SDWA. This location
contains the address of the UJB (utilities job block).

b. Locate the UJBBEPL field at offset X'1C0'. This field contains the address of the batch utilities
MEPL.

SDWA UJB

Batch
Utilities
MEPL

X’30’ Register 6 UJBBEPL

Hexadecimal Offset
UJBBEPL 1C0

Figure 54. Finding the batch utilities MEPL (batch memory failures)
• If execution stopped in database services memory:

a. Referring to the following figure, locate the CTUTP field at offset X'38' in the CT (cursor table).
CTUTP contains the address of the UCA (utility block).

b. Locate the UCAUJB field at offset X'24' in the UCA. This field contains the address of the UJB
(utility job block) in batch memory.

c. Locate the UJBBEPL field at offset X'1C0' in the UJB. This field contains the address of the batch
utilities MEPL.

212 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

SDWA CT UCA

X’34’ UCAUJB

Database Service Memory

Batch Memory

Batch
Utilities
MEPLUJB

UJBBEPL

Register 7 CTUTP

UJBBEPL1C0
Hexadecimal Offsets

CTUTP 38 UCAUJB 24

Figure 55. Finding the batch utilities MEPL (database service memory failures)

Related concepts
The cursor table (CT)
The cursor table (CT) is one of the most important blocks. It contains information about an application
plan and the access that is being made through it to databases.

The cursor table (CT)
The cursor table (CT) is one of the most important blocks. It contains information about an application
plan and the access that is being made through it to databases.

The procedures listed here cite methods for locating the CT in both the unformatted and the formatted
sections of the dump.

Finding the CT in the unformatted section of the SVC dump
You might need to find the CT in an unformatted section of the SVC dump.

Procedure
To find the CT in the unformatted section of the SVC dump:
1. Locate register 13 at offset X'4C' from the beginning of the SDWA and examine the data at offset X'F8'

from the address in register 13. If the 2 bytes at that address contain the characters, CT, you have
found the CT.

Chapter 4. Diagnostic aids for single systems and data sharing 213

X’4C’ Register 13

X’F8’ CT

SDWA

Figure 56. Finding the CT in the unformatted section of an SVC dump

2. Find the SUMLSTA range that contains the CT address.
3. Within this area, locate the beginning of the CT. The CT eye-catcher is displayed at the right.

Related concepts
The system diagnostic work area (SDWA)
Each SVC dump that is requested by a Db2 functional recovery routine usually contains an SDWA with
information about the status of the subsystem at the time of the error. Typically, the SDWA is a starting
point for diagnosis.

Finding the CT in the formatted section of the SVC dump
You might need to find the CT in a formatted section of the SVC dump.

Procedure
To find the CT in the formatted section of the SVC dump, choose one of the following approaches:
• Skim through the dump, looking for the "CT" eye-catcher on either the right or left side.
• Use a more precise method.

a) Determine the address of the failing execution block (EB).
b) Locate the EB in the formatted area of the dump. This EB is associated with other blocks related to

the same agent by an z/OS-assigned control block number.
c) Use the z/OS control block number to find the associated agent control element (ACE). The ACECT

field of the associated ACE contains the address of the cursor table.

Related concepts
The failing execution block (EB)
It is recommended that you use the save area trace report to find the failing EB and associated agent EBs.

The SQL communication area (SQLCA)
The SQL communication area is one of the most important blocks. It contains information about the
status of one SQL statement. For diagnostic purposes, up to 4 KB of the SQL statement are included in
both the formatted and unformatted sections of SVC dumps.

The SQLCA also contains the SQLSTATE, which is a five character return code for the outcome of the
most recent execution of an SQL statement. The range of values is '00000' through '65535'. SQLSTATE
provides application programs with common codes for common error conditions (the values of SQLSTATE
are product-specific only if the error or warning is product-specific). Furthermore, SQLSTATE is designed
so that application programs can test for specific errors or classes of errors. The coding scheme is the
same for all database managers and is consistent with the proposed ISO/ANSI SQL92 standard.

Related reference
SQLSTATE (Db2 SQL)
Description of SQLCA fields (Db2 SQL)

214 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sqlstate.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_descriptionofsqlcafields.html

Finding the SQLCA
The SQLCA is especially valuable for diagnosing abends with a completion code of X'04E' and an abend
reason code that begins with X'00E7'.

About this task
When abends occur, the SQLERRP field contains the name of the CSECT for the code that issued the
abend. The SQLERRD1 field contains an internal "subcode" that uniquely identifies the location within the
CSECT where the error was detected. The SQLERRM field contains an optional error description.

Procedure
To find the SQLCA:
1. Locate the CTRDSP field at offset X'30' in the CT. This field contains the address of the RDA (relational

data area).

If this field contains a fullword of zero, there is no SQLCA associated with this dump. Do not continue
with this procedure.

2. Find the RDASQLCA field at offset X'158' in the RDA. This field contains the address of the SQLCA. At
that address, the "SQLCA" eye-catcher is displayed.

Results
CT RDA

(non-zero)
CTRDSP

.

SQLCA

.

.

..

RDASQLCA

Figure 57. Finding the SQLCA

The SQLCA is especially valuable for abends with a completion code of X'04E' and an abend reason code
that begins with X'00E7' (for example, 00E70005).

Sample SQLCA control blocks

The following figure shows a portion of an SQLCA in the formatted section of an SVC dump.

SQLC (00675) ADDR=7F6446A0 ASID=0016 VVV=00 FROM: RDA (00673) OFFSET=0008
 0000 E2D8D3C3 C1404040 00000088 00000000 00004040 40404040 40404040 40404040 *SQLCA *
 0020 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 0040 TO 005F SAME AS ABOVE
 0060 00000000 00000000 00000000 FFFFFFFF 00000000 00000000 40404040 40404040 *....................... *
 0080 00000000 00000000 *....... *

Figure 58. Sample SQLCA control block (formatted)

The following figure shows this portion of the SQLCA as it is displayed in the unformatted section of the
SVC dump. Notice the eye-catcher, SQLCA.

7F6446A0 E2D8D3C3 C1404040 00000088 00000000 00004040 40404040 40404040 40404040
7F6446C0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
******** LINES FROM 7F6446E0 TO 7F644700 ARE THE SAME AS THE ABOVE LINE
7F644700 00000000 00000000 00000000 FFFFFFFF 00000000 00000000 40404040 40404040
7F644720 00000000 00000000 00280400 001EC4E2 D5E3C5D7 F2F2137E A1681D9C 3E200001

Figure 59. Sample SQLCA control block (unformatted)

Related concepts
The cursor table (CT)

Chapter 4. Diagnostic aids for single systems and data sharing 215

The cursor table (CT) is one of the most important blocks. It contains information about an application
plan and the access that is being made through it to databases.
Related reference
Description of SQLCA fields (Db2 SQL)

Finding the SQL statement
Up to 4 KB of the SQL statement are included in the sections of the SVC dump that pertain to SQL
problems. To find the SQL statement in the formatted section of the SVC dump, skim through the pages
for the statement on the right. It is displayed in the space block, which contains the "SPA" eye-catcher.

About this task
There are occasions when Db2 might not load the current space block (SPA). In this case, RDASPPT1
points to the previously run SQL statement. This situation causes the RDASPPT1 to point to the previously
run SQL statement.

Procedure
To locate the SQL statement in the unformatted section of the SVC dump:
1. Locate the CTRDSP field at offset X'1C0' in the CT. This field contains the address of the RDA

(relational data area).
2. Locate the RDASPPT1 field at offset X'108' in the RDA. This field contains the address of the SPA

(space block). The SPA begins with a header section, followed by several space block entries.
3. Locate the SPASQLTX field at offset X'88' in the header section of the SPA. This field is a pointer to the

SQL statement within the first space block entry.
4. You can scan the right of the dump to locate the SQL statement. Otherwise, use the contents of

SPASQLTX to pinpoint a 2-byte length field, which precedes the SQL statement.

Example
CT RDA SPA

.

.

.

.

..

CTRDSP
(non-zero) RDASPPT1

SPA Header

SPASQLTX

SPA Entry

SQL
Statement

SPA Entry

Hexadecimal Offsets
CTRDS P 1C0 RDASPPT1 10C SPASQLTX 44

Figure 60. Finding the SQL statement

Related concepts
The cursor table (CT)
The cursor table (CT) is one of the most important blocks. It contains information about an application
plan and the access that is being made through it to databases.
Related reference
SQLSTATE (Db2 SQL)

216 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_descriptionofsqlcafields.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sqlstate.html

The global trace table
The Db2 trace table contains entries for significant Db2 activities and is useful for diagnosing WAIT or
LOOP problems.

The formatted Db2 trace table usually appears at the end of the formatted section of an SVC dump. An
unformatted table also appears in the unformatted section of the dump.

Related concepts
Using global trace output
Trace output is based on the parameters specified for the -START TRACE(GLOBAL) command. Each record
identifies one or more significant Db2 events.

Formatted global trace table
Global trace data sent to the resident trace table usually appears at the end of the formatted section of an
SVC dump that is issued by Db2.

To format the resident trace table, the DSNWDMP control card parameters must be either TT or ALL. The
following figure illustrates a sample formatted trace table.

===Global trace
 EB 060B8620 RET 0052-8787240A DSNIDRCT 15.46 +01B2 EID 0E-0792 FUNC 00 ASID 0052 05/30/2003 06:59:58.152746
 DATA 00000000_7EFC39A0 00000000_00000001
 EB 060B8620 RET 0052-8784798E DSNIDBRP 15.46 +013E EID 0E-05CC FUNC 00 ASID 0052 05/30/2003 06:59:58.152747
 DATA 00000000_00000000
 EB 060B8620 RET 0052-866D4F28 DSNSVBK 15.22 +19E8 EID 06-001C FUNC 4C ASID 0052 05/30/2003 06:59:58.152750
 DATA 00000000_0000008C 00000000_C4C2D9D7 00000000_7F4DA928 00000000_00000000
 00000000_00000000 00000000_7F42EC90
 EB 060B8620 RET 0052-87847DF0 DSNIDBRP 15.46 +05A0 EID 0E-05CD FUNC 00 ASID 0052 05/30/2003 06:59:58.152752
 DATA 00000000_00000000
 EB 060B8620 RET 0052-8784798E DSNIDBRP 15.46 +013E EID 0E-05CC FUNC 00 ASID 0052 05/30/2003 06:59:58.152753
 DATA 00000000_00000000

Figure 61. Example of a formatted global trace table

Related reference
Format dumps by using the DSNWDMP statement
You can use the DSNWDMP statement to specify the dump records to be used as input, and causes the
Db2 dump formatter (DSNWDPRD) to be invoked, which formats the specified Db2 control blocks.

Finding the unformatted global trace table
Global trace data sent to the resident trace table is always included in the non-summary dump data set of
SVC dumps that are issued by Db2.

About this task
The following information describes how to locate this unformatted table by using control blocks that are
published in the unformatted summary dump section.

Chapter 4. Diagnostic aids for single systems and data sharing 217

.

Failing EB RMVT RMFT TAB

EBRMVT

Header

17th
RMVTRMFT

RMFTRUSE TABTABLE

.

.

..

.

.

.

.

.
.
.

..

Unformatted trace table

Hexadecimal offsets
EBRMVT 20 RMFTRUSE C TABTABLE C

X’60’

Figure 62. Finding the unformatted trace table

Procedure
To find the unformatted global trace table:
1. Locate the EBRMVT field at offset X'20' in the failing EB. This field contains the address of the RMVT.

The failing EB's address is at offset X'30' in the SDWA and is listed under Key 14 of the VRA Diagnostic
Information Report.

2. Find the address of the RMFT (resource manager function table) at offset X'60' in the RMVT. The 17th
RMVTRMFT element in the RMVT is at this offset.

3. Locate the RMFTRUSE field at offset X'0C' in the RMFT. This field contains the address of the trace
anchor block (TAB). If the high-order bit of this word is on, then the trace is active.

4. Locate the TAB and these fields
TABTABLE

At offset X'0C' in the TAB and contains the address of the beginning of the trace table.
TABOTTOM

At offset X'14' in the TAB and contains the address of the end of the trace table.
TABSLOT

At offset X'18' in the TAB contains the address of the oldest (next available) entry in the trace
table. This address changes as the table wraps.

Results
Table 12. Global trace table header format

Length in bytes Trace table header field descriptions

12 Eye-catcher 'TRACE TABLE'

1 Reserved

8 Command prefix

1 Reserved

4 Db2 subsystem name

2 Db2 system services ASID

218 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Table 12. Global trace table header format (continued)

Length in bytes Trace table header field descriptions

4 Address of the Db2 TAB control block

4 Address of the Db2 RMFT control block for trace

4 Address of the Db2 SCOM control block

Related concepts
The failing execution block (EB)
It is recommended that you use the save area trace report to find the failing EB and associated agent EBs.

The task control block (TCB) summary
When included in a dump, the TCB summary identifies the address spaces and their associated tasks.

By looking at the column that contains the completion codes (CMP) for each task, those columns with
abends can easily be found because they have nonzero completion codes. A nonzero completion code
might represent a problem from which Db2 has recovered.

Finding the TCB summary
The Table of Contents cites the location of the TCB summary under its entry on "Task Control Block
Summary".

Stack storage blocks (SKBs)
SKBs consist of a fixed area that contains pointers to more storage segments.

The first 2 bytes of the fixed portion of all SKBs contain X'00AD'. In addition to the fixed portion, all SKBs
contain a variable portion that is used differently by each Db2 resource manager. The contents of the
variable area are not documented externally.

Finding the stack storage blocks
You might need to locate all stack storage blocks (SKBs) that are associated with the failing agent in any
SVC dump that is issued by Db2, including the SKBs that are associated with all synchronously-created
execution blocks (EBs) related to the failing agent.

About this task
Use this information at the request of IBM Support staff when you analyze the unformatted section of an
SVC dump. Stack storage usually appears toward the end of the formatted section of the dump.

The following figure displays how to locate the stack storage for the failing agent.

Chapter 4. Diagnostic aids for single systems and data sharing 219

Register 6

Failing
Agent
Active EB

Failing
Agent
Previous EB

Failing
Agent
Primary EB

EBCHA

EBSKB

EBCHA

EBSKB

EBCHA=0

EBSKB

Primary
SKB

Stack
segment (SKB)

Stack
segment (SKB)

SKBNEXTS SKBNEXTS SKBNEXTS=0

SKBOSKB

SKBNEXTS SKBNEXTS=0

SKBOSKB=0

SKBNEXTS

Primary
SKB

Figure 63. Locating stack storage for the failing agent

Procedure
To find the stack storage blocks:
1. Locate the EBSKB field in the failing EB. This field points to the primary SKB for that EB.
2. Determine the address space in which this primary SKB resides.

• Use the EBPASCE field in the EB to obtain the address of the ASCE.
• Find the address space in the ASCEASID field of the ASCE. This address space is the address space

of the SKB.

In the SKB, two fields contain important addresses:

SKBNEXTS
This field contains the address of the next SKB within this stack. Multiple SKBs can be associated
with this primary SKB. Each of these stack segments is considered part of this primary SKB.

When SKBNEXTS equals zero, all of the stack segments for that primary SKB are located.

SKBOSKB
This field contains the address of the previous primary SKB, which was in a previous address space
(identified in the field named SKBPASCE). To determine which address space the previous primary
SKB was in, see the SKBPASCE field in this SKB; this field points to the ASCE. The field in the ASCE
named ASCEASID identifies the address space that contains the SKB.

Although this SKB is a different primary SKB than the one pointed to directly by the EB, it is still
associated with that EB.

There can be a chain of primary SKBs associated with one EB. For each primary SKB in that chain,
there can be a chain of stack segments (SKBs). When SKBOSKB equals zero, the end of the chain of
primary SKBs associated with that EB is located.

3. After you locate all the stack storage for the failing EB, locate the stack storage for all other EBs related
to the failing agent.

Review the EBCHA field in the failing EB. This field contains the address of another related EB (and
likewise, that EB's EBCHA field points to another related EB). These other EBs also have chains of
primary SKBs (and possibly of stack segments), as did the failing EB. When you locate an EB whose
EBCHA field equals zero, all of the stack storage for all the EBs related to the failing agent is located.

220 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Results
If the primary address space of an associated EB was not included in the SVC dump, the SKBs for that EB
are not found in the dump.

Related concepts
The failing execution block (EB)
It is recommended that you use the save area trace report to find the failing EB and associated agent EBs.

Redacting buffer pool data in SVC dumps for data privacy
Db2 marks buffer pool data in SVC dumps as sensitive=yes for data privacy, and you can redact the
data before sending the dump to IBM Support.

Before you begin
The dump must be captured on a IBM z15® or later processor.

About this task
Enterprises have requirements to prevent customer personal or other sensitive information from being
exposed to those who have no need to see the data. In the course of data processing, various types of
system and application errors can require you to send diagnostic data to IBM Support or other program
vendors, for analysis and problem resolution. Among the types of diagnostic data usually collected for
Db2 for z/OS, buffer pool data in dumps has the greatest exposure to containing sensitive data along with
the system and or application data.

Procedure
To redact buffer pool data in SVC dumps for data privacy, complete the following steps:
1. Use the sample job SYS1.SAMPLIB(BLSJDPFD) to redact the buffer pool data.
2. Retain the original dump until the conclusion of all problem analysis, in case IBM Support requests

specific information from the redacted data.

What to do next
To obtain a report about the pages which were marked as sensitive in a redacted dump, use
‘SYS1.SBLSCLI0(BLSXREDR)’ , provide an input dump dataset name, and optionally specify a filtering
ASID.

Related information
Data Privacy for Diagnostics (DPfD) (MVS Diagnosis: Tools and Service Aids)
OA57633: IN SUPPORT OF OA57570

Suppression of SVC dumps by using z/OS DAE
SVC dumps that duplicate previous dumps can be suppressed.

One of the requirements for z/OS dump analysis and elimination (DAE) is that a new data set is defined.

To support DAE, Db2 defines two variable recording area (VRA) keys:

KEY VRADAE (X'53') - no data is associated with this key
KEY VRAMINSC (X'52') DATA (X'08')

Db2 provides the following data for the minimum symptom string in the system diagnostic work area
(SDWA):

LOAD MODULE NAME
CSECT NAME

Chapter 4. Diagnostic aids for single systems and data sharing 221

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/dpfd.htm
http://www.ibm.com/support/docview.wss?uid=isg1OA57633

ABEND CODE
RECOVERY ROUTINE NAME
FAILING INST AREA
REG/PSW DIFFERENCE
REASON CODE
COMPONENT IDENTIFIER
COMPONENT SUBFUNCTION

Dumps are considered duplicates for purposes of duplicate dump suppression if 8 (the X'08' from the
VRAMINSC key) of the nine symptoms are the same.

Related concepts
Dump suppression (MVS Diagnosis: Tools and Service Aids)

When SVC dumps are not produced
Occasionally, an SVC dump is not produced. Generally, dumps are suppressed for space, time, or security
violations.

The following list summarizes other reasons why SVC dumps might not be produced:

• No empty dump data sets were available.
• The z/OS serviceability level indication processing (SLIP) commands suppressed the abends.

The z/OS initialization and tuning publication lists the defaults of these commands; however, sites can
change them. More information can be found in the z/OS conversion notebook. Finally, refer to the z/OS
diagnostic techniques publication for information about tailoring dumps with SLIP commands.

• One of the following abend reason codes was issued. These reason codes do not require a dump to
determine the cause of abend.

00C90080 00C90096 00D10100 00E2002B
00D99003 00E3000C 00E30085 00E30089
00E30093 00E30301 00E30302 00E50013
00E50070 00E7000C

• Db2 subsystem percolation occurred (SDWACOMU=DSN2).
• A dump was already provided (SDWAEAS=ON).
• The abend was '04F', '222', '33E', 'B37', 'D37' 'E37', or 'x13' (where x is any hexadecimal digit).
• The abend was '13E', and one or more of the following conditions was true:

– Home address space of the failing agent (EB) was not in allied memory.
– Termination of the execution unit TCB did not result from the z/OS CANCEL W/DUMP command.
– Prior dumps were generated for the terminating TCB.
– The Db2 dump work area (DMPW) is in use by another dump request:

VRA KEY VRARRK22 X'DE') DATA ('NODMPW')

SYSUDUMP dumps
Db2 SYSUDUMP dumps provide information useful for debugging application programs.

The following figure shows a sample SYSUDUMP dump.

222 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/dumsup.htm

JOB H443722 STEP TSOUSER TIME 102958 DATE 87152 ID = 000 CPUID = 632202333081

COMPLETION CODE SYSTEM = 04E

PSW AT ENTRY TO ABEND 078D1000 000433FC ILC 2 INTC 000D

PSW LOAD MODULE = DSNECP10 ADDRESS = 000433FC OFFSET = 0000A7F4

 ASCB: 00F56400
 +0000 ASCB..... ASCB FWDP..... 00F60180 BWDP..... 00F47800 CMSF..... 019D5A30 SVRB..... 008FE9E0
 +0014 SYNC..... 00000D6F IOSP..... 00000000 TNEW..... 008D18F0 CPUS..... 00000001 ASID..... 0066
 +0026 R026..... 0000 LL5...... 00 HLHI..... 01 DPHI..... 00 DP....... 9D
 +002C TRQP..... 80F5D381 LDA...... 7FF154E8 RSMF..... 00 R035..... 0000 TRQI..... 42
 +0038 CSCB..... 00F4D048 TSB...... 00B61938 EJST..... 00000001 8C257E00
 +0048 EWST..... 9CCDE747 76A09480 JSTL..... 000141A4 ECB...... 808FEF78 UBET..... 9CCDE740
 +005C TLCH..... 00000000 DUMP..... 008FE520 AFFN..... FFFF RCTF..... 00 FLG1..... 00
 +0068 TMCH..... 00000000 ASXB..... 008FF118 SWCT..... 032E DSP1..... 00 FLG2..... 00
 +0074 RSV...... 0000 SRBS..... 0000 R078..... 00000000 RCTP..... 008FF338 LOCK..... 00000000
⋮
 +0084 LSQH..... 00000000 QECB..... 00000000 MECB..... 40000000 OUCB..... 01947E90 OUXB..... 01988CB0
 +0098 FMCT..... 008B LEVL..... 02 R09B..... 00 XMPQ..... 00000000 IQEA..... 00000000
 +00A4 RTMC..... 00000000 MCC...... 00000000 JBNI..... 00000000 JBNS..... 00F4D050 SRQ1..... 00
 +00B5 SRQ2..... 00 SRQ3..... 00 SRQ4..... 00 VGTT..... 00000000 PCTT..... 02035078
 +00C0 SSRB..... 0000 SMCT..... 00 SRBM..... 07 SWTL..... 0000283B
 +00C8 SRBT..... 00000000 261ADA00 LSMQ..... 00000000 LSPL..... 00000000 TCBS..... 00000001
 +00DC TCBL..... 00000000 WPRB..... 008FFA88 NDP...... 9D TNDP..... FF NTSG..... FF
 +00E7 IODP..... 9D LOCI..... 00000000 CMLH..... 00000000 CMLC..... 00000000 SSO1..... 000000
 +00F7 SSO4..... 00 ASTE..... 00F7F660 LTOV..... 7FFFD000 ATOV..... 7FFFE610 ETC...... 0000
 +0106 ETCN..... 0000 LXR...... 0000 AXR...... 0000 STKH..... 008FFA98 GQEL..... 038E0CF0
 +0114 LQEL..... 02120A50 GSYN..... 00000000 XTCB..... 008CC608 CS1...... 00 R121..... 000000
 +0124 GXL...... 00000000 EATT..... 00000000 97024600 INTS..... 9CCDE6A0 4572EE60
 +0138 LL1...... 00 LL2...... 00 LL3...... 00 LL4...... 00 RCMS..... 00000000
 +0140 IOSC..... 000001A5 PKML..... 0080 XCNT..... 01F4 NSQA..... 00000000 ASM...... 0195B860
 +0150 ASSB..... 01946600 TCME..... 00000000 R158..... 00000000 00000000 00000000 00000000
 +0168 CREQ..... 0000002F RSME..... 0195B840 AVM1..... 00 AVM2..... 00 AGEN..... 0000
 +0174 ARC...... 00000000 RSMA..... 0195B750 DCTI..... 00005735 TAXT..... 00000000 00000000
 +0188 SAXT..... 00000000 00000000 TCPT..... 00000001 9070B600
 +0198 SCPT..... 00000000 261ADA00

 ASSB: 01946600
 +0000 ASSB..... ASSB VAFN..... 00000000 EVST..... 00000000 00000000
 +0010 VFAT..... 00000000 00000000 RSV...... 0000 XMCC..... 0000 XMCT.....00000000
 +0020 VSC...... 00000000 NVSC..... 0000004C ASRR..... 00000000 R02C..... 00000000 00000000 00000000
 +0038 00000000 00000000

*** ADDRESS SPACE SWITCH EVENT MASK OFF (ASTESSEM = 0) ***

 TCB: 008D18F0
 +0000 RBP...... 008FE7D8 PIE...... 00000000 DEB...... 008B1530 TIO...... 008D4000 CMP......8004E000
 +0014 TRN...... 40000000 MSS...... 7FFF7418 PKF...... 80 FLGS..... 01000000 00
 +0022 LMP...... FF DSP...... FE LLS...... 008D1A88 JLB...... 00011F18 JPQ......00000000
 +0030 GPRO-3... 00001000 008A4000 00000000 00000000
 +0040 GPR4-7... 00FDC730 008A50C8 00000002 80E73F04
 +0050 GPR8-11.. 81CC4360 008A6754 008A67B4 00000008

Figure 64. Sample of the first page of a SYSUDUMP

Related reference
SYSABEND, SYSMDUMP, and SYSUDUMP DD Statements (MVS JCL Reference)

The RTM2WA summary in a SYSUDUMP
The recovery termination manager work area (RTM2WA) summary usually appears in the first few pages
of a SYSUDUMP.

The following sample shows the RTM2WA summary.

 RTM2WA SUMMARY

COMPLETION CODE 8004E000
ABENDING PROGRAM NAME DSNECP10
ABENDING PROGRAM ADDR 0003F4C0
REGS AT TIME OF ERROR 80000000 8004E000 000264F4 00031C74 00006FE8 00008BF4 000368B0 00036AD0
(0-7)
 00000000 000264F4 00031B98 600430AC 000440AB 00031B98 700433E0 00C50101
(8-F)
EC PSW AT TIME OF ERROR 078D1000 000433FC 0002000D 00000000
SOWACOMP 00000000
RETURN CODE FROM RECOVERY ROUTINE-10,CONTINUE WITH TERMINATION-PREVENT FURTHER STAI/ESTAI PROCESSING
RETRY ADDR RETURNED FROM RECOVERY EXIT 80000010
RB ADDR FOR RETRY 00000000
CVT ADDR 00FDC730
RTCT ADDR 00F71310
SCB 00000000
SDWA ADDR 00000000
SVRB ADDR 008FE8F0
PREV RTM2WA FOR THE TASK 00000000
PREV RTM2WA FOR RECURSION 00000000
ASID OF ERROR IF CROSS MEMORY ABTERM 0000
ERROR ASID 0066

Figure 65. Sample RTM2WA summary from a SYSUDUMP

Chapter 4. Diagnostic aids for single systems and data sharing 223

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieab600/dddump.htm

SYS1.LOGREC
The SYS1.LOGREC data set records various errors that different components of the operating system
encounter.

Db2 recovery routines write information in the SDWA (system diagnostic work area) to the SYS1.LOGREC
data set when retry is attempted, or when percolation to the next recovery routine occurs. Because two
or more retries or percolations can occur for a single error, more than one SYS1.LOGREC entry can be
recorded.

In distributed data processing, threads are assigned a logical unit of work identifier. This identifier is used
to correlate errors across many instances of Db2 for the same global transaction. The logical unit of work
identifier is included in the SYS1.LOGREC error recording entries.

The SYS1.LOGREC entries that are recorded near the time of abend can provide valuable historical
information about the events that lead up to the abend.

Certain abends that occur as a result of errors in SQL statements are handled by Db2 recovery routines:

• An error in decimal arithmetic
• Overflow
• Underflow

The value of the SUPPRESS SOFT ERRORS field of installation panel DSNTIPM determines whether those
errors are displayed in SYS1.LOGREC. The associated system parameter is SUPERRS. The default value is
YES, which means that the abends are recorded in SYS1.LOGREC. If you do not want those abends to be
recorded in SYS1.LOGREC, you can change the value to NO.

Finding the applicable SYS1.LOGREC information
To obtain a SYS1.LOGREC listing:

1. Use the IFCEREP1 service aid, described in the z/OS diagnostic techniques publication, to format
records in the SYS1.LOGREC data set.

2. Specify the LOGDATA keyword when you print a formatted dump. Only records available in
storage when the dump was requested are included. Each formatted record follows the heading
*****LOGDATA*****.

Each SVC dump that is issued by Db2 contains one unformatted SDWA describing the subsystem status at
the time of the error.

Correlate formatted SYS1.LOGREC records in a dump with the unformatted SDWA in the same dump by
comparing the following information:

• Subsystem name. For data sharing, the data sharing group name and member name.
• ASID (address space identifier).
• Subcomponent involved (look at the fourth character in load module and CSECT names).
• Timestamp.

To find a formatted SYS1.LOGREC entry that corresponds to an SVC dump that is
issued by Db2
1. Compare the ERRORID of the dump with the ERRORID of the formatted SYS1.LOGREC record. These

values, which appear on the first pages of the dump and of the formatted SYS1.LOGREC record, should
be the same.

2. Compare the time stamp of the dump and formatted SYS1.LOGREC record. These should also be about
the same.

224 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Interpreting SYS1.LOGREC Information
A formatted SYS1.LOGREC entry is fairly self-explanatory.

• The first page of a formatted SYS1.LOGREC entry
• The second page of a SYS1.LOGREC entry, which includes the unformatted SDWA, from which data is

obtained and formatted.

The z/OS diagnostic techniques publication also includes information about formatted SYS1.LOGREC
entries.

The unformatted section of a SYS1.LOGREC entry contains the SDWA at the time of the failure.

• The first part of the SDWA, which is standard for all components, is formatted in the SYS1.LOGREC
record. Refer to the z/OS diagnostic techniques publication for information about the standard part of
the SDWA.)

• The entire SDWA including the VRA is in the unformatted area of the SYS1.LOGREC record, following the
standard section. (VRA entries begin at X'190' in the unformatted SDWA.)

The following figure shows the first two pages of a SYS1.LOGREC entry.

Figure 66. Sample formatted SYS1.LOGREC record (pages one and two)

TYPE: SOFTWARE RECORD REPORT: SOFTWARE EDIT REPORT DAY.YEAR
 (SVC 13) REPORT DATE: 036.93
SCP: VS 2 REL 4 ERROR DATE: 028.93
 MODEL: 9021 HH MM SS.TH
 SERIAL: 125784 TIME: 11:05:49.50
JOBNAME: T032478
ERRORID: SEQ=00611 CPU=0041 ASID=002D TIME=11:05:37.5
SEARCH ARGUMENT ABSTRACT
 PIDS/5740XYR00 RIDS/DSNIDM#L RIDS/DSNIMOST AB/S004E PRCS/00C90101 REGS/0C6EE
 RIDS/DSNTFRCV#R
 SYMPTOM DESCRIPTION
 ------- -----------
 PIDS/5740XYR00 PROGRAM ID: 5740XYR00
 RIDS/DSNIDM#L LOAD MODULE NAME: DSNIDM
 RIDS/DSNIMOST CSECT NAME: DSNIMOST
 AB/S004E SYSTEM ABEND CODE: 004E
 PRCS/00C90101 ABEND REASON CODE: 00C90101
 REGS/0C6EE REGISTER/PSW DIFFERENCE FOR R0C: 6EE
 RIDS/DSNTFRCV#R RECOVERY ROUTINE CSECT NAME: DSNTFRCV
OTHER SERVICEABILITY INFORMATION
 DATE ASSEMBLED: 12/15/92
 MODULE LEVEL: 15.49
 SUBFUNCTION: DMC DSNISRTW
SERVICEABILITY INFORMATION NOT PROVIDED BY THE RECOVERY ROUTINE
 RECOVERY ROUTINE LABEL
TIME OF ERROR INFORMATION
 PSW: 077C0000 835D41B2 INSTRUCTION LENGTH: 02 INTERRUPT CODE: 000D
 FAILING INSTRUCTION TEXT: 00000000 00000000 00000000
 REGISTERS 0-7
 GR: 02EDB878 0004E000 7EFCD3C0 7EFCD040 7EFCD6D8 7F12E94B 02EDB878 7F3E4030
 AR: 831B2716 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 REGISTERS 8-15
 GR: 7EFCCEF8 836822E4 00000000 7F16E5E0 835D3AC4 7F16E5E0 7F16E654 00C90101
 AR: 00000000 00000000 00000000 00000000 00000000 00000000 8325EDD4 02EDB878
 HOME ASID: 002D PRIMARY ASID: 00CD SECONDARY ASID: 00CD
 PKM: FFFF AX: 0035 EAX: 0000
 RTM WAS ENTERED BECAUSE AN SVC WAS ISSUED IN AN IMPROPER MODE.
 THE ERROR OCCURRED WHILE AN ENABLED RB WAS IN CONTROL.
 NO LOCKS WERE HELD.
 NO SUPER BITS WERE SET.
RECOVERY ENVIRONMENT
 RECOVERY ROUTINE TYPE: FUNCTIONAL RECOVERY ROUTINE (FRR)
 PSW AT ENTRY TO FRR: 070C0000 831C22A8
 FRR PARAMETER AREA ON ENTRY TO FRR:
 +00 7F16C71C C1C4D4C6 02EDB878 00000000 00000000 00000000

RECOVERY ROUTINE ACTION
 THE RECOVERY ROUTINE REQUESTED THAT TERMINATION PROCESSING CONTINUE.
 THE REQUESTED SVC DUMP WAS SUCCESSFULLY STARTED.
 NO LOCKS WERE REQUESTED TO BE FREED.
HEXADECIMAL DUMP

Chapter 4. Diagnostic aids for single systems and data sharing 225

 HEADER
 +000 40831820 00000000 0093028F 11054950 | C.......L..... |
 +010 45125784 90210000 |...D.... |
 JOBNAME
 +000 E3F0F3F2 F4F7F840 |T032478 |
 SDWA BASE
 +000 00000C60 0404E000 00000000 00000000 |...-..\.........|
 +010 00000000 00000000 02EDB878 0004E000 |..........8...\.|
 +020 7EFCD3C0 7EFCD040 7EFCD6D8 7F12E94B |=.L{=.} =.OQ".Z.|
 .
 .
 .
 +180 00000000 C4E2D5F1 00000000 0006180F |....DSN1........|
 +190 00FFA0D6 |...O |
 VARIABLE RECORDING AREA (SDWAVRA)
 +000 KEY: 06 LENGTH: 04
 +002 00C90101 |.I.. |
 +006 KEY: 14 LENGTH: 04
 +008 02EDB878 |..8. |
 +00C KEY: C9 LENGTH: 04
 +00E 00000000 |.... |
 +012 KEY: CA LENGTH: 04
 +014 C4E2D540 |DSN |
 +018 KEY: 3A LENGTH: 02
 +01A 0039 |.. |
 +01C KEY: 3A LENGTH: 02
 +01E 00CD |.. |
 +020 KEY: 3A LENGTH: 02
 +022 002D |.. |
 +024 KEY: CB LENGTH: 08
 +026 C4C2F2C3 C1D3D340 |DB2CALL |
 +02E KEY: CC LENGTH: 0C
 +030 E3F0F3F2 F4F7F840 40404040 |T032478 |
 +03C KEY: DF LENGTH: 01
 +03E C1 |A |
 +03F KEY: DB LENGTH: 08
 +041 A6F6003C 62557F11 |W6....". |
 +049 KEY: 7C LENGTH: 0C
 +04B FFFF070A 835D3AA8 0CA800CD |....C).Y.Y.. |
 +057 KEY: 06 LENGTH: 04
 +059 00000000 |.... |

 +05D KEY: 53 LENGTH: 00
 +05F KEY: 52 LENGTH: 02
 +061 0008 |.. |
 +063 KEY: CD LENGTH: 05
 +065 C9D4D6E2 E3 |IMOST |
 +06A KEY: CE LENGTH: 02
 +06C 5007 | . |
 +06E KEY: CF LENGTH: 04
 +070 00000004 |.... |
 +074 KEY: D0 LENGTH: 04
 +076 00000000 |.... |
 +07A KEY: D1 LENGTH: 04
 +07C 00000000 |.... |
 +080 KEY: D2 LENGTH: 04
 +082 00000000 |.... |
 +086 KEY: D3 LENGTH: 08
 +088 C4E2D540 40404040 |DSN |
 +090 KEY: D4 LENGTH: 04
 +092 00000000 |.... |
 +096 KEY: D5 LENGTH: 04
 +098 00000000 |.... |
 +09C KEY: D6 LENGTH: 04
 +09E 00000000 |.... |
 +0A2 KEY: D7 LENGTH: 2C
 +0A4 00000000 00000000 00000000 00000000 |................|
 +0B4 00000000 00000000 00000000 00000000 |................|
 +0C4 00000000 00000000 00000000 |............ |
 +0D0 KEY: D8 LENGTH: 04
 +0D2 00000000 |.... |

 SDWA FIRST RECORDABLE EXTENSION (SDWARC1)
 +000 E7E8D9F0 F0C4D4C3 4040C4E2 D5C9E2D9 |XYR00DMC DSNISR|
 +010 E3E64040 40404040 40404040 F1F261F1 |TW 12/1|
 +020 F561F9F2 F1F54BF4 F9404040 00C90101 |5/9215.49 .I..|
⋮
 +180 00000000 00000000 00000000 00000000 |................|
 +190 00000000 00000000 00000000 00000000 |................|
 +1A0 00000000 7F7070B0 00000000 00000000 |...."..0........|

226 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

 SDWA SECOND RECORDABLE EXTENSION (SDWARC2)
 +000 00000000 00000000 00000000 00000000 |................|
 SDWA THIRD RECORDABLE EXTENSION (SDWARC3)
 +000 00000000 00000000 00000000 00000000 |................|
 +010 00000000 00000000 00000000 00000000 |................|
 ERRORID
 +000 02630041 002D0006 180F |.......... |

The second page of the SYS1.LOGREC entry includes the unformatted system diagnostic work area
(SDWA). The formatted data on the first page is taken from this unformatted SDWA.

Two following fields are significant in the unformatted section of the SDWA:
SDWACMPC

The three-character completion code for the abend.
SDWAVRA

The beginning of the variable recording area (VRA). Selected Db2 recovery routines update the VRA
with diagnostic information that concerns the abend. Dumps printed through IPCS format the VRA
portion of the SDWA as shown in the example. The VRA is also formatted in the VRA diagnostic
information report.

Related concepts
The system diagnostic work area (SDWA)
Each SVC dump that is requested by a Db2 functional recovery routine usually contains an SDWA with
information about the status of the subsystem at the time of the error. Typically, the SDWA is a starting
point for diagnosis.
The variable recording area (VRA)
More diagnostic information for Db2 abend reason codes is placed in the variable recording area (VRA) of
the system diagnostic work area (SDWA) and is extracted and displayed in the VRA Diagnostic Information
Report. This data can be produced by common recording routines and certain Db2 subcomponents.

Common VRA recording routines
Three common VRA recording routines exist: DSNWSDWA, DSNTFRCV, and DSN9SCN9. DSNWSDWA
records significant information for all Db2 abends, regardless of the subcomponent involved. DSNTFRCV
and DSN9SCN9 record significant information for only certain subcomponents.

The following tables identify the following information:

The VRA key names that identify the VRA data
The hexadecimal value of the VRA keys
The length of the data that the VRA keys identify
The information that the VRA keys identify.

The DSNWSDWA table also identifies if "DSN1" or "DSN2" is recorded in the SDWACOMU field of the
SDWA. This information indicates whether percolation occurred and can help you interpret SYS1.LOGREC
entries.

VRA data that is recorded by DSNWSDWA represents data that is stored on the first invocation of
DSNWSDWA. If DSNWSDWA is invoked again because of an error that is percolated by the z/OS recovery
termination manager (RTM), DSNWSDWA stores only the VRARC, VRACBA, VRARRK1, and VRARRK2
fields. The remaining fields, which do not change during RTM percolation, are not stored.

During Db2 recovery processing, the DSNWSDWA routine tries to gather information about the failing
CSECT from the PSW address at the time of error (SDWAEC1) and the module entry point list (MEPL). This
information is recorded in the VRA under the VRAIMO key and is then used to do the following tasks:

• Provide the failing load module, CSECT, and offset in the dump title that is associated with the SVC
dump.

• Provide a summary storage entry for the failing CSECT to ensure that the entire failing CSECT is included
in the SVC dump.

Chapter 4. Diagnostic aids for single systems and data sharing 227

Table 13. VRA data recorded by DSNWSDWA

VRAKEY key
name

VRAKEY hex
value

VRALEN data
length

VRADAT data contents
and format

Recorded in

DSN1 DSN2 04F

VRARC 06 4 bytes Abend reason code (first
VRARC occurrence)

Yes Yes Yes

4 bytes DSNWSDWA return
code (second VRARC
occurrence)

VRACBA 14 4 bytes EB address Yes Yes

VRARRK1 C9 4 bytes EB latch hierarchy mask Yes Yes Yes

VRARRK2 CA 4 bytes Subsystem name (non-
sharing Db2)

Yes

16 bytes Db2 data sharing group
name (8 characters)
and member name (8
characters)

VRAAID 3A 2 bytes Binary ASID of DSCF Yes

2 bytes Binary ASID of ADMF Yes

2 bytes Binary ASID of
DDF address space
(ssnmDIST) (if DDF is
active)

Yes

2 bytes Binary ASID of Home
address space

Yes

VRARRK3 CB 8 bytes Connection-ID of home
address space

Yes

VRARRK4 CC 12 bytes Thread correlation token Yes

VRARRK19 DB 8 bytes Store clock (STCK) time
of error

Yes

VRARRK21 DD 36 bytes Additional thread
information of the form:

Yes Yes Yes

4 bytes EBICE14: R14 (caller) of
execution unit switch1

4 bytes EBSUS14: R14 (caller) of
suspend1

4 bytes EBRES6: R6 (EB) of EB
initiating resume

4 bytes EBRES14: R14 (caller) of
EB initiating resume1

4 bytes EBCAN6: R6 (EB) of EB
initiating cancel

4 bytes EBCAN14: R14 (caller)
of EB cancel request1

228 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Table 13. VRA data recorded by DSNWSDWA (continued)

VRAKEY key
name

VRAKEY hex
value

VRALEN data
length

VRADAT data contents
and format

Recorded in

DSN1 DSN2 04F

4 bytes EBOCAN14: R14 (caller)
of original cancel
request1

4 bytes EBSPAWND: Spawned
EB

4 bytes EBSC14: R14 (caller) of
suspend when cancel is
honored

VRARRK23 DF 2 bytes Thread type:

• 'S' Db2 system thread
• 'A' allied thread (no

distributed activity)
• 'D' database access

thread
• 'R' allied thread with

remote activity

Yes

VRAIMO 7C 16 bytes Failing CSECT
information

Yes

2 bytes Possible values:

• X'FFFF'=CSECT data
obtained

• X'0000'=CSECT not in
MEPL

2 bytes ASID of failing CSECT

4 bytes Failing instruction offset

4 bytes Failing CSECT starting
address

4 bytes CSECT length

VRADAE 53 0 bytes Indicate use of DAE Yes

VRAMINSC 52 2 bytes DAE Symptom string
count

Yes

Note:

1. A dump, or the Diagnose Display MEPL utility output is required to coordinate R14
addresses to specific Db2 CSECTs and offsets. A dump, or display MEPL output must
be obtained for the same instance of Db2.

Chapter 4. Diagnostic aids for single systems and data sharing 229

Table 14. VRA data recorded by DSNLFRCV. The Db2 distributed database facility uses this routine.

VRAKEY key
name

VRAKEY
hex value

VRALEN
data length

VRADAT data contents and format

VRARRK20 DC 2 bytes Internal failure identifier for DDF

VRARRK24 E0 16 bytes Location name of the requesting location for this transaction (zero if
this location is the requesting location)

VRARRK25 E1 24 bytes Logical unit of work identifier (LUWID) of the agent

VRARRK26 E2 34 bytes Distributed requester information:

8 bytes Requester product identifier.pppvvrrm where:

The product identifier (PRDID) value is an 8-byte character value in
pppvvrrm format, where: ppp is a 3-letter product code; vv is the
version;rr is the release; and m is the modification level. In Db2 12 for
z/OS, the modification level indicates a range of function levels:

DSN12015 for V12R1M500 or higher.
DSN12010 for V12R1M100.

For more information, see Product identifier (PRDID) values in Db2
for z/OS (Db2 Administration Guide).

8 bytes Requester LU name or internal form of the IP address

16 bytes Requester location name

2 bytes Reserved

VRARRK27 E3 17 bytes Abend recovery retry routine identification information:

4 bytes Retry routine address

4 bytes Component ID of retry routine

1 bytes Not used, always blank

8 bytes Function ID of retry routine

Table 15. VRA data recorded by DSNTFRCV. The Db2 database services subcomponents and the distributed
data facility use this routine.

VRAKEY key
name

VRAKEY
hex value

VRALEN
data length

VRADAT data contents and format

VRARRK5 CD 5 bytes The name of the data manager (DM) subcomponent CSECT
(CTERPROC) that detected the error

VRARRK6 CE 2 bytes An internal qualifier (CTERQUAL) of the data manager (DM)
subcomponent

VRARRK7 CF 4 bytes A data manager (DM) subcomponent return code (CTDMRETC)

VRARRK8 D0 4 bytes A reason code (CTSIRCOD) from the data manager (DM)
subcomponent

VRARRK9 D1 4 bytes A return code from the last function that data manager (DM)
subcomponent called (CTRMRC)

VRARRK10 D2 4 bytes An SQL code (SQLCODE) from the relational data system (RDS)
subcomponent

230 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_prdidvalues.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_prdidvalues.html

Table 15. VRA data recorded by DSNTFRCV. The Db2 database services subcomponents and the distributed
data facility use this routine. (continued)

VRAKEY key
name

VRAKEY
hex value

VRALEN
data length

VRADAT data contents and format

VRARRK11 D3 8 bytes An SQL error procedure name (SQLERRP) from the relational data
system (RDS) subcomponent

VRARRK12 D4 4 bytes An internal code (SQLERRD1) returned by an SQL error procedure of
the relational data system (RDS) subcomponent

VRARRK13 D5 Variable A "resource unavailable" reason code (CTRURESN). If a reason code
is available, length is 4 bytes. Otherwise, length is 0.

VRARRK14 D6 Variable A "resource unavailable" resource type (CTRUTYPE). If a reason code
is available, length is 4 bytes. Otherwise, length is 0.

VRARRK15 D7 Variable A "resource unavailable" resource name (CTRUNAME). If a resource
name is available, length is 1 - 44 bytes. Otherwise, length is 0.

VRARRK16 D8 4 bytes A reason code (CTUNERMR) from the resource manager (RM)

VRARRK20 DC 2 bytes Internal failure identifier for DDF

VRARRK27 E3 17 bytes Abend recovery retry routine identification information:

4 bytes Retry routine address

4 bytes Component ID of retry routine

1 bytes Not used, always blank

8 bytes Function ID of retry routine

VRARRK33 E9 12 bytes P-lock negotiation information

1 byte: p-lock held state
1 byte: p-lock cache state
1 byte: p-lock requested state
1 byte: unused
8 bytes: p-lock owning work unit

Table 16. VRA data recorded by DSN9SCN9. Db2 system service subcomponents use this routine. These
subcomponents include the message generator, recovery log manager, general command processor, and, in
some cases, instrumentation facility.

VRAKEY key
name

VRAKEY
hex value

VRALEN
data length

VRADAT data contents and format

VRACBM 11 8 bytes The name of the DSECT for DDT (DSNDDDT)

VRACB 12 Variable The recordable portion of the diagnostic data table (DDT) control
block that contains information such as the name of the module that
invoked the recovery routine.

VRARC 06 4 bytes The abend reason code

Chapter 4. Diagnostic aids for single systems and data sharing 231

Table 17. VRA data recorded by DSNWDSDM

VRAKEY key
name

VRAKEY
hex value

VRALEN
data length

VRADAT data contents and format

VRARRK5 CD 5 bytes The name of the data manager (DM) subcomponent CSECT
(CTERPROC) that detected the error

VRARRK6 CE 2 bytes An internal qualifier (CTERQUAL) of the data manager (DM)
subcomponent

VRARRK11 D3 8 bytes An SQL error procedure name (SQLERRP) from the relational data
system (RDS) subcomponent

VRARRK12 D4 4 bytes An internal code

VRARRK20 DC 24 bytes Internal failure identifier for DDF

VRARRK22 DE 6 bytes A dump work area was not obtained. (NODMPW)

VRAIMO 7C 12 bytes Failing CSECT information

2 bytes X'FFFF'=CSECT data obtained

X'0000'=CSECT not in MEPL

2 bytes Failing instruction offset

4 bytes Failing CSECT starting address

2 bytes CSECT length

2 bytes ASID of failing CSECT

Individual VRA recording subcomponents
Nine Db2 subcomponents provide additional VRA data: agent services manager, buffer manager, IMS
attachment facility, initialization procedure, instrumentation facility, recovery log manager, recovery
manager, subsystem support, and storage manager.

Unlike the common VRA recording routines, these subcomponents use different VRA keys for different
abend reason codes. The following tables identify the VRA data that is provided by these individual Db2
subcomponents. For each of these subcomponents, the tables identify:

• The abend reason codes for which VRA data is produced
• The VRA key names for each abend reason code
• The hexadecimal value of the VRA key

Table 18. Agent services manager. The agent services manager supplies VRA data for the following
abend reason codes.

Code Key names Hex values

00E50013 VRAHEX, VRARRP 38, 10

00E50014 VRARRK18 DA

00E50015

00E50031 VRAHEX 38

00E50032

00E50044

00E50050 VRARRK18 DA

232 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Table 18. Agent services manager. The agent services manager supplies VRA data for the following
abend reason codes. (continued)

Code Key names Hex values

00E50051

00E50052

00E50059

00E50070 VRARRP 10

00E50071

00E50072

00E50079 VRARRK16, VRARRK17, VRARRK18 D8, D9, DA

00E50500 VRARC, VRARRP 06, 10

00E50501

00E50701 VRARRP, VRARRK16, VRARRK17 10, D8, D9

00E50705 VRARRP 10

00E50707

Table 19. Buffer manager. The buffer manager supplies VRA data for the following abend reason codes:

Code Key name Hex value

00C200D0 VRARRP 10

00C200D1

00C200D5

00C200D6

00C202A5 VRARRK30, VRAKK31, VRAKK32 E6, E7, E8

00C202AA VRARRK30 E6

00C202AB VRARRK30 E6

00C202AC VRARRK13, VRARRK14, VRARRK15,
VRARRK33

D5, D6 D7, E9

00C202AE VRARRK30 E6

00C202AF VRARRK13, VRARRK14, VRARRK15,
VRARRK33

D5, D6 D7, E9

00C202B0 VRARRK13, VRARRK14, VRARRK15,
VRARRK33

D5, D6 D7, E9

00C202B1 VRARRK30 E6

00C202D0 VRARRP 10

Table 20. The IMS attach subcomponent VRA data. The IMS attach subcomponent supplies VRA data for
the following abend reason code.

Code Key names Hex values

00D40008 VRARC, VRAFP 06, 23

Chapter 4. Diagnostic aids for single systems and data sharing 233

Table 21. Initialization procedure. The initialization procedure subcomponent supplies VRA data 'E8' for
all abend reason codes.

Code Key name Hex value

All E8 abend reason codes VRARRP 10

Table 22. Instrumentation facility. The instrumentation facility supplies VRA data for the following abend
reason codes.

Code Key names Hex values

Trace super VRAPLI, VRAPL 20, 21

00E60887 VRARC, VRAFP 06, 23

00E60888

00E60889

Table 23. Recovery log manager. The recovery log manager supplies VRA data for the following abend
reason codes.

Code Key names Hex values

00D10250 VRARC, VRARRP 06, 10

00D10251

00D10252

Table 24. Recovery manager. The recovery manager supplies VRA data for the following abend reason
codes.

Code Key name Hex value

00D93011 VRAHEX 38

00D93012

00D94011

00D9AAAA

00D9BBBB

00D9CCCC

00D9EEEE

Table 25. Storage manager. The storage manager records the 32-byte MEPL entry of the calling module at
abend. If the storage manager is unable to identify the invoking module, a VRACAN VRA entry is created with
the following data: CALLER OF SMC UNKNOWN. The storage manager supplies VRA data for the following
abend reason codes.

Code Key name Hex value

00E20001 VRACAN 3D

00E20002

00E20003

00E20004

00E20005

234 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Table 25. Storage manager. The storage manager records the 32-byte MEPL entry of the calling module at
abend. If the storage manager is unable to identify the invoking module, a VRACAN VRA entry is created with
the following data: CALLER OF SMC UNKNOWN. The storage manager supplies VRA data for the following
abend reason codes. (continued)

Code Key name Hex value

00E20006

00E20009

00E2000B

00E2000C

00E2000D

00E2000E

00E2000F

00E2001B

00E2001F

00E20022

00E20027 (only for DSNSVBK
or DSNSFBK modules)

00E20029

Subsystem support
The subsystem support subcomponent supplies the VRA data for all abend reason codes.

Table 26. Identify recovery. The Identify ESTAE recovery routine DSN3IDES generates the following VRADATA
entries. The last entry, key VRAIMO, is generated only if the abend occurred within the Identify authorization
exit.

VRAKEY key
name

VRAKEY
hex value

VRALEN
data length

VRADAT data contents and format

VRFPI 22 8 bytes Constant 'IDESTRAK'

VRAFP 23 24 bytes 32-bit recovery tracking flag 32-bit integer AGNT block unique
identifier AGNT block address AIDL block address Initial primary
authorization ID

Table 27. Sign-on recovery. The sign-on ESTAE recovery routine DSN3SIES generates the following VRADATA
entries.

VRAKEY key
name

VRAKEY
hex value

VRALEN
data length

VRADAT data contents and format

VRFPI 22 8 bytes Constant 'SIESTRAK'

VRAFP 23 20 bytes Primary authorization ID (CCBUSER) AGNT block address Identify-
level CCB block address Signon-level CCB block address

Chapter 4. Diagnostic aids for single systems and data sharing 235

Table 28. VRA data recorded by DSN3AUFR. Authorization Services Functional Recovery. VRAIMO is included if
the error was in an exit routine.

VRAKEY key
name

VRAKEY
hex value

VRALEN
data length

VRADAT data contents and format

VRFPI 22 8 bytes AUFRTRAK

VRAFP 23 12 bytes Primary Auth Id (8 bytes)
Address of CCB (4 bytes)

VRAIMO 7C 10 bytes Load module (4 bytes)
Entry point (4 bytes)
Offset of failing instruction (2 bytes)

Printing and analyzing global traces
A trace must be active on the Db2 subsystem that you want to trace. For data sharing, the trace
commands have member or group scope.

You can activate a trace at all members of a data sharing group by issuing the START TRACE command
with the SCOPE(GROUP) parameter on one member of the data sharing group. Db2 routes the command
to each member of the data sharing group. The trace output goes to the destination that is specified on
the DEST parameter.

Table 29. Keywords for use with the Db2 global trace

Keyword Valid with
commands

Default Other
parameters

Comments and restrictions

TRACE START None Type of trace This keyword must be specified. A
parameter does not need to be specified for
the TRACE keyword if other keywords and
their parameters provide sufficient detail to
stop or display trace activity.

DISPLAY

MODIFY None

STOP None

CLASS START Class number None

DISPLAY

MODIFY

STOP

DEST START Established by
trace type

GTF, RES, SMF
SRV, or OPn

SRV is reserved for IBM service personnel.

DISPLAY

STOP

PLAN START * From 1 to 8 valid
PLAN names

If several PLANs are specified, only one
AUTHID and TNO can be specified. If
several values are specified, only one
LOCATION value can be specified.

DISPLAY *

STOP *

AUTHID START * From 1 to 8 valid
AUTHIDs

If several AUTHIDs are specified, you only
one PLAN and TNO can be specified.
If several values are specified, only one
LOCATION value can be specified.

DISPLAY *

STOP *

236 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Table 29. Keywords for use with the Db2 global trace (continued)

Keyword Valid with
commands

Default Other
parameters

Comments and restrictions

RMID START * From 1 to 8
RMIDs

None.

DISPLAY *

STOP *

TNO DISPLAY * From 1 to 8 valid
trace numbers

If several TNOs are specified, only one
PLAN and AUTHID can be specified. TNO is
required with MODIFY If several values are
specified, only one LOCATION value can be
specified.

MODIFY *

STOP *

IFCID START Set by trace
type

IFCID number When a trace type is specified, all IFCIDs
specified by the trace type, classes and the
IFCID are started.MODIFY

COMMENT START Blanks Any character
string

The comment is displayed within the stop or
start trace record that is sent to SMF, GTF,
or SRV.DISPLAY

MODIFY

STOP

TDATA START Established by
trace type

COR, CPU, or TRA The product section of a trace record can
contain several headers.

LOCATION START * From 1 to 8 valid
location names

If several LOCATIONs are specified, only
one PLAN, AUTHID, and TNO can be
specified.DISPLAY *

STOP *

Related reference
-START TRACE (Db2) (Db2 Commands)
-MODIFY TRACE (Db2) (Db2 Commands)
-DISPLAY TRACE (Db2) (Db2 Commands)
-STOP TRACE (Db2) (Db2 Commands)

Global trace facility
The Db2 global trace is used to obtain information about program flow, the entries to and exits from
Db2 functions and modules, to help resolve problems. The global trace is intended to be used under the
direction of IBM support personnel.

This information explains the different destinations to which global trace records can be sent, how to
start, change, display, and stop the Db2 global trace, how to locate the trace tables, and how the trace
records in the trace tables are formatted.

To use this command, you must have one of the following authorities:

• SYSADM or SYSOPR authority
• Authority to issue start/stop trace commands (trace authority)
• Authority to issue the display trace command (display authority)

Chapter 4. Diagnostic aids for single systems and data sharing 237

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_starttrace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_modifytrace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displaytrace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_stoptrace.html

The following commands control the global trace:

• -START TRACE(GLOBAL)
• -DISPLAY TRACE(GLOBAL)
• -MODIFY TRACE(GLOBAL)
• -STOP TRACE(GLOBAL)

Related concepts
Accounting trace (Db2 Performance)
Performance trace (Db2 Performance)
Statistics trace (Db2 Performance)
Monitor trace (Db2 Performance)
Audit trace (Db2 Performance)
Related reference
Printing and analyzing global traces
A trace must be active on the Db2 subsystem that you want to trace. For data sharing, the trace
commands have member or group scope.

Starting the global trace
The Db2 global trace can be started automatically at startup (by parameters that are specified during the
installation action or migration process) or with the -START TRACE(GLOBAL) command.

The global trace provides data related to the major functional and exceptional events that are taking place
within Db2. When a trace is started, Db2 assigns it a trace number (TNO) from 1 to 32. This number mask
is displayed in the standard trace record header externalized to SMF or GTF.

Specify "GLOBAL" when starting a trace to distinguish the Db2 global trace from other trace types, as
displayed in the following example:

-START TRACE(GLOBAL)

When you install or migrate Db2, start a collection of global serviceability data. The events recorded by
a Db2 global trace are identified by event identifiers (EIDs). EIDs appear in the global trace records that
Db2 externalizes.

Specifying trace options
Some trace options have specific values for a global trace. Those options are described below.
For information on specifying the keywords for other trace options, see -START TRACE (Db2) (Db2
Commands).

Specifying a class
The CLASS keyword specifies a particular class or type of trace events for global trace.

• Class 1. Reserved for major functions and exceptions
• Class 2. Utility tracing and reserved for medium functions
• Class 3. All other module entries/exits
• Class 4. Reserved
• Class 5. Reserved
• Class 6. Reserved for installation use with IFI
• Class 7. For distributed events

238 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_accountingtrace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_performancetrace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_statisticstrace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_monitortrace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_setaudittrace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_starttrace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_starttrace.html

• Class 8. For tracing SQL statements for distributed events at the requesting and responding locations.
• Class 9. For tracing DDF diagnostics information.
• Class 10. For tracing detailed database services address space (ssnmDBM1) storage usage information.

The default on the global trace command is to start trace classes 1, 2, and 3. "CLASS" normally should not
be specified for global trace.

Important: Global trace classes 1, 2, and especially 3 can significantly degrade system performance
and can produce an enormous amount of data if externalized to GTF or SMF.

If class 7 is specified, the following events are traced:

• VTAM exits to Db2
• All VTAM calls/returns
• Buffer sent/received
• Conversation allocation request queued in Db2.

If class 8 is specified the following events are traced:

• Requesting location SQL statements before modification
• Both requesting and responding location SQL statements after modification.

Specifying a destination
The DEST keyword specifies the location to which global trace data is sent.

Destinations include:

RES—Resident trace table
GTF—Generalized Trace Facility
OPn—Destination for trace output
SMF—System Management Facility
SRV—Serviceability Routine.

The default destination for a global trace is the resident trace table (RES), which is located above the
line in the extended common service area (ECSA). Subsystem parameter TRACTBL determines if the RES
exists and its size. Global trace data can also be sent to GTF, SMF, or OPn (where n is a value from 1 to
8 that corresponds to a specific destination). SMF is not recommended. SRV is reserved for IBM service
personnel.

When specifying a location with the DEST keyword, use the appropriate abbreviation. For example, specify
DEST(GTF) — not DEST(generalized trace facility):

-START TRACE(GLOBAL) DEST(GTF)

Trace data can be sent to more than one destination. This example sends data to both RES and GTF:

-START TRACE(GLOBAL) DEST(GTF,RES)

Specifying a resource manager
The RMID keyword limits the trace to the activity of a particular Db2 resource manager. Up to 8 resource
managers can be specified. The default is an asterisk (*), which invokes the trace for any resource
manager.

The following table identifies the RMIDs for a global trace.

Chapter 4. Diagnostic aids for single systems and data sharing 239

Table 30. Resource manager identifiers (RMIDs)

RMID Dec(Hex) Resource Manager

1(01) Initialization procedures

2(02) Agent services management

3(03) Recovery management

4(04) Recovery log management

6(06) Storage management

7(07) Subsystem support for allied memories

8(08) Subsystem support for SSI functions

9(09) Reserved

10(0A) Buffer management

11(0B) Reserved

12(0C) System parameter management

13(0D) Precompiler

14(0E) Data management

15(0F) Reserved

16(10) Instrumentation commands, trace, and dump services

17(11) LOB management

18(12) Data space management

19(13) Data Space management, AMS subcomponent

20(14) Service controller

21(15) Database utilities

22(16) Relational database support

23(17) General command processing

24(18) Message generator

25(19) Distributed Relational Data System Manager

26(1A) Instrumentation accounting and statistics

27(1B) Distributed Communications Resource Manager

28(1C) Distributed Transaction Manager (DDF address space (ssnmDIST))

29(1D) Distributed Data Interchange Services

30(1E) Distributed Transaction Manager (DSCF address space)

31(1F) Group Manager

Unlike the PLAN and AUTHID keywords, more than one trace does not start if more than one RMID is
specified. This example invokes a single trace for 5 resource managers:

-START TRACE(GLOBAL) RMID(1,7,14,18,24)

240 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Related reference
-START TRACE (Db2) (Db2 Commands)

Displaying global trace activity
The -DISPLAY TRACE command displays information about the traces that were started, including the
options in effect.

In a data sharing group, you can enter the DISPLAY TRACE command on each subsystem that you want to
monitor, or you can enter the command with the SCOPE(GROUP) option on one subsystem to cause Db2
to issue the command on all members of the data sharing group. The command output from all members
goes to the console from which the -DISPLAY TRACE command was issued.

Because other traces can be started and stopped while you view -DISPLAY TRACE output, the information
presented by the -DISPLAY TRACE command might change immediately after the display is complete.

Each -DISPLAY TRACE option, except TNO, limits the effect of the command to active traces that were
started using the same option, either explicitly or by default, with exactly the same parameter values.

For example, the following command lists only the active traces that were started using the options
GLOBAL and CLASS(1,2); it does not list, for example, any trace started using CLASS(1).

-DISPLAY TRACE (GLOBAL) CLASS (1,2)

Information about a particular trace can be displayed by specifying its trace number. For example, the
following command displays the second trace that you invoked.

-DISPLAY TRACE TNO(2)

When a trace number is specified, you do not need to specify any other keywords or parameters. The
trace number provides a sufficient level of detail for Db2 to stop or display trace activity.

Related reference
-DISPLAY TRACE (Db2) (Db2 Commands)

Modifying global trace activity
The -MODIFY TRACE command changes the trace events (IFCIDs) being traced for any active trace. The
-MODIFY TRACE command actually stops the existing trace and then starts the specified trace.

For example, the following command modifies trace number 1 to collect only data from IFCIDs 106 and
131 (utility trace data and system parameters in effect at trace invocation). Any other data that was being
collected is stopped.

-MODIFY TRACE(GLOBAL) CLASS(3) IFCID(106,131)
TNO(1) COMMENT('SYS PARMS AND UTILITY TRACE')

If several traces are active, specify enough qualifying information to isolate the trace you want to change.

Stopping global trace activity
The -STOP TRACE command terminates trace activity.

Chapter 4. Diagnostic aids for single systems and data sharing 241

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_starttrace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displaytrace.html

In a data sharing group, you can stop the trace only on one subsystem, or, if the trace was started with
SCOPE(GROUP), you can stop the trace for the entire group by issuing the -STOP TRACE command with
the SCOPE(GROUP) option.

Stopping a trace might not require specifying all the keywords specified when starting the trace. Just
provide sufficient detail to stop the trace.

The command -STOP TRACE is invalid. To stop all active traces, issue the following command:

-STOP TRACE(*)

You might, for example, have started a trace with the following command:

-START TRACE(GLOBAL) DEST(GTF) RMID(10,12,24)

This command contains several keywords that limit the trace. Assuming this is the only global trace
active, you can issue this command to stop it:

-STOP TRACE(GLOBAL)

If several global traces were active and you wanted to stop only one of them, you need to provide more
details in the -STOP TRACE command. For instance, assume three traces are started as follows:

-START TRACE(GLOBAL) DEST(GTF) RMID(10,12,24)
-START TRACE(GLOBAL) RMID(10,12,24)
-START TRACE(GLOBAL) AUTHID(SYSADM1)

To stop the first of these three traces without disturbing the other two, you can enter:

-STOP TRACE(GLOBAL) DEST(GTF)

Because only the first trace sends data to GTF, specifying the trace destination provides sufficient detail.

The trace number (TNO) can also be used to stop trace activity. For instance, you might have previously
started two traces with the following commands:

-START TRACE(GLOBAL) DEST(GTF)
-START TRACE(GLOBAL) AUTHID(USER1)

If output from -START TRACE or -DISPLAY TRACE commands indicate that the traces that were started
were assigned trace numbers 1 and 2, respectively, then the first trace can be stopped by entering:

-STOP TRACE(GLOBAL) TNO(1)

When a trace number is specified, you do not need to specify any other keywords or parameters. The
trace number provides a sufficient level of detail for Db2 to stop or display trace activity.

Using global trace output
Trace output is based on the parameters specified for the -START TRACE(GLOBAL) command. Each record
identifies one or more significant Db2 events.

Interpreting trace record formats
The destination of global trace records (specified with the DEST keyword of the -START TRACE command)
affects their contents and, therefore, their interpretation. Data sent to the resident trace table (RES)
contains only addresses and contents of registers. Data sent to GTF (Generalized Trace Facility) and SMF
(System Management Facility) also may contain control blocks and storage areas.

SMF and GTF trace entries do not appear in Db2 formatted SVC dumps, but resident tables do appear if
the appropriate keywords are specified. The following topics describe how to format, locate, and interpret

242 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

global trace data sent to the resident trace table. The process of locating and interpreting the resident
trace table in the unformatted portion of the non-summary dump data set is described later in this book.

Related concepts
Interpreting the formatted global trace table
The formatted Db2 trace tables are printed in time sequence from the oldest to the most current. To begin
an analysis, review the most current entries (these appear at the end). Continue analyzing the information
by scanning backward.

When to use the Db2 trace table
Global trace data sent to the resident trace table usually appears at the end of the formatted section of a
Db2-issued SVC dump.

You might need to use the Db2 global trace table when you suspect a WAIT or LOOP problem.

The Db2 trace table can be used to look for trace entries that relate to the CSECT that failed. If you notice,
for example, that the trace table shows control entering but not leaving the CSECT that abended, then you
know the location of the problem.

If you look at the trace entries just before entry into the failing CSECT and analyze the data items in these
trace entries, you might be able to learn more about the problem. (For example, if one of the data items
is a field that contains the values of input to the CSECT, then you might be able to detect bad input; this
would show that the caller of the abending CSECT is the cause of the abend.)

Related concepts
The global trace table
The Db2 trace table contains entries for significant Db2 activities and is useful for diagnosing WAIT or
LOOP problems.
Building a keyword string
You can systematically select keywords to describe a failure in Db2 for z/OS (Db2) or internal resource
lock manager (IRLM). Keywords are predefined words or abbreviations that identify aspects of a program
failure.
Type-of-failure keywords
A type-of-failure keyword describes an external symptom of a program failure.
Related tasks
Searching the IBM Support site for known problems and solutions
Searching the IBM Support site is most effective if you include all the appropriate keywords in your
search.

Interpreting the formatted global trace table
The formatted Db2 trace tables are printed in time sequence from the oldest to the most current. To begin
an analysis, review the most current entries (these appear at the end). Continue analyzing the information
by scanning backward.

The following fields are the most significant fields in each trace entry:

RMID
The resource manager ID that made the trace entry.

Event number
The event number unique to the resource manager.

Refer to Figure 61 on page 217 and follow these guidelines for interpreting that trace table:

1. Determine the address of the failing EB (execution block). This helps pinpoint some of the significant
trace entries to examine.

The address of the failing EB is listed under Key 14 of the VRA Diagnostic Information Report (at
the beginning of the formatted dump) and at offset X'30' in the SDWA (system diagnostic work area).
“Printing and analyzing dumps” on page 179 provides more information.

Chapter 4. Diagnostic aids for single systems and data sharing 243

For the trace table shown in the example, the failing EB is at X'01E30480'. (The SDWA and VRA
Diagnostic Information Report are not shown.)

2. Turn to the end of the formatted trace table. The last entry is most current, but might not always
correspond to the failing EB.

3. Scanning backwards through the table, locate the most recent entry for the failing EB.

In the example, the last entry is the most recent entry corresponding to the failing EB. The EID (event
identifier) indicates this entry is for the agent services manager (RMID = X'02'), event number X'0001'.
The EID trace code tables show this involves an entry in the SUSPEND execution unit, and that the
address of the resource options block (ROB) is recorded (to the right of the DATA column). There is
no corresponding exit from SUSPEND (because this is the most recent entry and also the end of the
table).

4. You can continue to scan backwards through the trace table, interpreting the entries for the failing EB
as needed.

Interpreting the unformatted global trace table
The formatted trace table contains information copied from the unformatted resident trace table, which is
always included in the non-summary section of the dump data set.

A resident trace table contains fixed-length, 64-byte records. A given Db2 event is recorded in a single
record if there are no more than five event-data items; otherwise, they are recorded in two adjacent
records. The first record, which might be the only record, contains a "long" header and up to five event-
data items. The second record, if there is one, contains a "short" header and any remaining data items (up
to a maximum of six items in the second record). The short header of the second record contains only the
time-of-day stamp, which matches the time-of-day stamp in the first record. The second doubleword is
X'FFFFFFFF00000000', and the six doublewords contain the data items.

The contents of the first and second record are shown in the following tables.

Table 31. Unformatted Db2 trace record content for first record

Decimal
offset

Hex offset Length
(decimal)

Field Description

0 0 8 Time of Day. The TOD clock. This field is zero if the TOD clock value
is not available. In a formatted trace table, this field follows the "eye-
catcher" TOD.

8 8 0.5 Number of event-data items in the record or record pair. This field
does not appear in the formatted trace table.

8.5 8.5 0.5 Indicator of the type of event. (Possible values are shown below.)

9 9 1 RMID. One-byte ID of the reporting resource manager. In a formatted
trace table, this field follows the "eye-catcher" EID.

10 A 2 Two-byte event number, unique for the specific resource manager.
When combined with the RMID, this number makes a unique trace
event identifier.

12 C 1 Internal function code. In a formatted trace table, this field follows
the "eye-catcher" FUNC.

13 D 1.5 Twelve-bit primary ASID (the address space containing the data). In
a formatted trace table, this field follows the "eye-catcher" ASID. Any
data addresses in the item list point to objects in this address space.

14.5 E.5 1.5 Twelve-bit ASID of the caller of the CSECT that invoked the
trace facility. In a formatted trace table, this field follows the "eye-
catcher"RET.

244 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Table 31. Unformatted Db2 trace record content for first record (continued)

Decimal
offset

Hex offset Length
(decimal)

Field Description

16 10 4 Four-byte return address of the caller (from register 14).

20 14 4 Four-byte address of the EB control block that was current at the
time of the event. In a formatted trace table, this field follows the
"eye-catcher" EB.

24 18 varies A series of up to five 8-byte data items (such as addresses or values)
associated with the event. The total number of items in the record,
or record pair, is given in the second field of the trace record (offset
X'08'). In a formatted trace table, this field follows the "eye-catcher"
DATA.

Table 32. Unformatted Db2 trace record content for second record

Decimal
offset

Hex offset Length
(decimal)

Field description

0 0 8 Time of Day. The 8-byte TOD clock. This field is zero if the TOD clock
value is not available. In a formatted trace table, this field does not
appear.

8 8 4 Doubleword of X'FFFFFFFF00000000'

16 18 varies A series of up to six 8-byte data items (such as addresses or values)
associated with the event. The total number of items in the record, or
record pair, is given in the second field of the first record.

Table 33. Db2 trace tag values and meanings

TAG value
(hex)

Tag Name In Formatted
Trace Table

Definition

00 blank Used when none of the other predefined codes in this table is
applicable

01 RMENTRY Resource manager functional entry point, invoked via RMRQ

02 RMEXIT Resource manager functional exit point

03 RAENTRY Resource Application request functional entry point, invoked via
RARQ

04 RAEXIT Resource Application request functional exit point

05 BKNBCST Begin notification sequence

06 ENDBCST End notification sequence

07 Reserved Reserved

08 Reserved Reserved

09 CALLENTRY Resource manager functional entry point, invoked via CALL

0A CALLEXIT Resource manager functional exit point

F0 Not applicable in Db2-
issued trace tables

Start trace control record, valid for GTF destination only

F1 Not applicable in Db2-
issued trace tables

Stop trace control record, valid for GTF destination only

Chapter 4. Diagnostic aids for single systems and data sharing 245

Distributed data facility global trace
The distributed data facility contains a serviceability trace.

All distributed allied agents and database access agents have an associated DDF trace table with the
following characteristics:

• The trace table is fixed-length.
• Each trace table contains many 128-byte event entries.
• When a DDF agent block (DPSB) is allocated for an allied or database agent, the table is created and

initialized.
• The trace table wraps when it becomes full.

Trace events can be added as needed to service the distributed data facility.

Correlating the Db2 trace with the z/OS trace
To associate entries in the Db2 trace table with entries in the z/OS trace table, compare time of day for
both entries.

As Table 31 on page 244 indicates, the time-of-day field in the Db2 trace entry is obtained from bytes 3 to
6 of the same clock from which z/OS obtains the time of day for its trace entries.

Interpreting GTF and SMF global trace records
Db2 global trace data written to GTF has a GTF ID of X'0FB9' and an FID of X'00'. Records longer than the
256-byte limit of GTF are spanned by Db2.

Db2 global trace data is written to SMF as a SMF type 102 record. The following list shows the general
format of these trace records:

1. Each record begins with a standard SMF or GTF writer header.
2. Each record next contains a self-defining section.

The self-defining section always begins at the end of the writer header. It contains pointers used to
find the sections of the record that contain the actual trace data. The self-defining section identifies:

• The offset to the resource manager data
• The length of one unique area
• The number of times the unique area repeats.

3. The first self-defining area contains a product section.

The product section has a standard Db2 header and identifies the record and RMID. The trace header
section, present for all global trace records, contains the event ID (EID).

4. Each record contains a section for resource manager data.

Global trace classes
IFCIDs (instrumentation facility component identifiers), RMIDs (resource manager IDs), and event
descriptions can help you interpret global trace data sent to SMF or GTF.

The following tables can help you interpret global trace data sent to SMF or GTF. Each table lists IFCIDs ,
RMIDs, and event descriptions. Nine classes are defined for global trace, one of which (class 4) is
reserved by IBM for serviceability, and one (class 6) is user-defined.

Class 1 : reserved for major functions
IFCID RMID Event

0106 26 System parameters in effect at trace invocation

246 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Class 2 : reserved for medium functions
IFCID RMID Event

0106 26 System parameters in effect at trace invocation

Class 3 : entry and exit trace
IFCID RMID Event

0000 Actual RMID Module entry exit trace

0038 04 Log buffer write

0046 02 Begin exec unit switch

0047 02 Begin new SRB

0048 02 End new SRB

0049 02 Begin new TCB

0050 02 End new TCB

0051 02 Shared latch resume (serviceability-only information)

0052 02 Shared latch wait (serviceability only information)

0056 02 Exclusive latch wait (Serviceability only information)

0057 02 Exclusive latch resume (serviceability-only information)

0068 07 Begin ABEND

0069 07 End ABEND

0070 07 Begin COMMIT phase 2

0071 07 End COMMIT phase 2

0072 07 Begin CREATE THREAD

0073 07 End CREATE THREAD

0074 07 Begin TERMINATE THREAD

0075 07 End TERMINATE THREAD

0076 07 Begin end-of-memory request

0077 07 End end-of-memory request

0080 07 Begin establish exit

0081 07 End establish exit

0082 07 Begin identify

0083 07 End identify

0084 07 Begin prepare to COMMIT

0085 07 End prepare to COMMIT

0086 07 Begin sign-on

0087 07 End sign-on

0088 07 Begin sync

Chapter 4. Diagnostic aids for single systems and data sharing 247

IFCID RMID Event

0089 07 End sync

0093 02 Entry to suspend

0094 02 Exit from suspend

0106 26 System parameters in effect at trace invocation

0114 04 Archive I/O begin

0115 04 Archive I/O end DASD

0116 04 Archive I/O end tape

0117 04 Begin read archive

0174 03 Begins archive log mode (QUIESCE) command processing

0175 03 Ends archive log mode (QUIESCE) command processing

0252 10 Begins GBP request

0260 10 End GBP request

0265 31 Begin SCA request

0266 31 End SCA request

0267 31 Begin CF rebuild request

0268 31 End CF rebuild request

0364 01 New address space being created or terminated

Class 4 : reserved by IBM for serviceability
IFCID RMID Event

0106 26 System parameters in effect at trace invocation

Class 5 : work file and SQL parsing global trace
IFCID RMID Event

0190 22 Overflow condition during hybrid join

0249 14 Monitor DBD invalidations

Class 7 : distributed data facility global trace
IFCID RMID Event

0164 27 Distributed transaction

0165 27 VTAM macro calls/returns

Class 8 : distributed data facility global trace
IFCID RMID Event

0168 22 Distributed SQL statements

248 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Class 9 : DRDA distributed data facility global trace
IFCID RMID Event

0180 27 VTAM buffer list entries that are sent or received

0181 29 DDM level 6B object generation

0182 29 FDOCA objects

Class 10 : DBM1 storage usage global trace
IFCID RMID Event

0217 20 Detailed information about DBM1 storage usage

Using the statistics trace for distributed diagnosis
The statistics class 4 can be used to diagnose Distributed Relational Database Architecture™ (DRDA) and
distributed two-phase commit exception conditions.

For DRDA, the statistics class 4 trace writes the following records:

1. IFCID 0191

This record is written by DDIS when DDIS identifies a DRDA exception condition, or on behalf of either
DTM or DRDS when those managers identify a DRDA exception condition.

2. IFCID 0192

This record is written by DCRM it identifies a DRDA exception condition.
3. IFCID 0193

This record is written by DTM when it identifies a DRDA exception condition.
4. IFCID 0194

This record is written by DCRM when it identifies a DRDA exception condition.
5. IFCID 0195

This record is written by DRDS when it identifies a DRDA exception condition.

The statistics class 4 trace writes these records for the distributed two-phase commit process: IFCIDs
0203 - 0210 and 0234 - 0238.

Related concepts
Exception condition diagnostic procedures
Several exception condition diagnostic procedures are available.
Distributed two-phase commit error conditions
Db2 support of distributed two-phase commit provides the detection of a number of events that can have
a negative impact on data availability or that indicate or can lead to data inconsistency.

Using the performance trace for diagnosis
While the performance trace is primarily a tuning aid, it can sometimes be useful for diagnosis because
degraded performance can also indicate a Db2 problem, one for which you would specify the PERFM
keyword in building a keyword string to describe the problem.

You can use the performance trace to determine whether degraded performance represents such a
problem or the need for subsystem tuning. Often degraded performance is a symptom of a WAIT or LOOP
problem, and the performance trace can help you make this determination. In addition, performance
trace classes 6 and 7 can help you detect locking problems.

Related concepts
Performance trace (Db2 Performance)

Chapter 4. Diagnostic aids for single systems and data sharing 249

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_performancetrace.html

Trace field descriptions
You can find descriptions of trace records in the IFCID flat file (DSNWMSGS).

The DSNWMSGS file is available in the following locations:

• The most current version of DSNWMSGS is available only for clients who have Db2 12 for z/OS
licenses. The information is in a PDF file. To locate this information, see Db2 12 for z/OS IFCID flat
file (DSNWMSGS).

• An older version of DSNWMSGS is available in the prefix.SDSNIVPD(DSNWMSGS) data set. You can use
the TSO or ISPF browse function to look at the field descriptions in prefix.SDSNIVPD(DSNWMSGS), even
when Db2 is down. If you prefer to look at the descriptions in printed form, you can use ISPF to print a
listing of the data set.

Some of the field descriptions in the DSNWMSGS file are marked with "S"; that indicates that those fields
are to be used only for diagnosis, modification, and tuning.

Attention: Do not use diagnosis, modification, and tuning information as a programming interface.

You can load the DSNWMSGS file into a user-defined Db2 table. This approach has the advantage of
providing you with access to the IFCID field descriptions through SQL SELECT statements in whatever
order or format you choose. You can also use the power of SQL to tailor the information to meet the needs
at your site before you print it. Because of the wide variation from customer to customer in how Db2
trace data is analyzed, you might find this method most convenient. DSNWMSGS contains sample SQL
statements for creating a user-defined Db2 table and retrieving information from it, as well as LOAD utility
control statements for populating the table.

Related concepts
Types of Db2 traces (Db2 Performance)
Related tasks
Controlling traces (Db2 Administration Guide)
Related reference
-START TRACE (Db2) (Db2 Commands)

Call attachment facility traces
The call attachment facility, which enables users to connect to Db2 through TSO foreground, TSO
background, or z/OS batch, provides diagnostic trace messages intended primarily for use by IBM service
personnel.

The following topics describe and give an example of the call attachment facility trace stream.

Related reference
Call attachment facility trace messages
An application programmer that uses the call attachment facility (CAF) to write an application that
attaches to Db2 can choose whether the messages are displayed or not. They display if the DSNTRACE
ddname is allocated during CAF execution.

Producing trace messages
Call attachment facility trace messages are always included in the call attachment facility's trace table in
SYSABEND or SYSUDUMP dumps. However, these trace messages can also be sent to a TSO terminal or to
SYSOUT.

Procedure
Before starting an application, allocate ddname DSNTRACE.
DSNTRACE can be allocated to a TSO terminal or to SYSOUT. In TSO foreground, issue FREE
DD(DSNTRACE) to send SYSOUT data to the printer.

250 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/support/pages/node/6575133
https://www.ibm.com/support/pages/node/6575133
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_tracetypes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_controltraces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_starttrace.html

Do not allocate DSNTRACE to a data set unless the application only connects to Db2 from a single task.
The call attach DSNTRACE does not function in a multi-tasking environment because the call attachment
facility does not serialize access to the trace data set. Writing trace records (SVC6F, DECIMAL SVC111) to
the same JES2 SYSOUT data set results in ABEND378.

Related tasks
Activating the DSN trace stream (Troubleshooting problems in Db2)

Finding the trace table
SYSABEND or SYSUDUMP dumps of the call attachment facility address space publish a wrap-around
trace table that includes trace messages, if the DSNTRACE data set was allocated at the time of the
abend.

About this task
Each message is preceded by the eye-catcher >>>>. followed by accumulative number indicating the
relative sequence in which the trace message was produced. Use this number to determine the most
recent events if the trace table has wrapped.

Procedure
To find the trace table:
1. Locate register 6 at time of error. This contains the address of the call attachment facility control block

(CAB).
Locate the "RTM2WA SUMMARY" section in the first few pages of the dump. Register 6 is published
near the heading that reads "REGS AT TIME OF ERROR".

2. Find the beginning of the CAB. The eye-catcher CAB appears at right.
3. Scan down about 1,000 bytes into the CAB. The trace table appears nearby, preceded by the eye-

catcher TRACE TABLE >>>>.

Interpreting trace messages
One class of messages is particularly significant because it helps identify where an error occurred (in Db2
or in an application address space, such as the call attachment facility).

This class of messages contains a line of equal signs and indicates events that occurred before and after
calls to the Db2 program request handler. These messages occur in BEFORE/AFTER pairs:

BEFORE some event =====================
AFTER some event =====================

After the BEFORE message is written, control passes from the call attachment facility to Db2. After the
AFTER message is written, control has returned from Db2. If an abend occurs just after a DSNA810I
BEFORE message is written, the problem probably is in Db2. Otherwise, the problem is probably in the call
attachment facility or an application.

The following figure illustrates a stream of trace messages.

DSNA800I DSNACA00 TCB=008F28E8 ENTERED DSNACA00 ACTION=CONNECT R1=000082A0 CABPTR=00014360 CABFLAG1=0B CABFLAG2=00
DSNA805I DSNACA00 TCB=008F28E8 CONNECT REQUEST SSID=AAAA TECBP=0000740C SECBP=00007408 RIBW=00007420
DSNA826I DSNACA00 TCB=008F28E8 BEFORE VALIDITY CHECKING THE START-UP ECB AT ADDRESS 00007408
DSNA827I DSNACA00 TCB=008F28E8 AFTER VALIDITY CHECKING THE START-UP ECB WHICH CONTAINS 00000000
DSNA826I DSNACA00 TCB=008F28E8 BEFORE VALIDITY CHECKING THE TERMINATE ECB AT ADDRESS 0000740C
DSNA827I DSNACA00 TCB=008F28E8 AFTER VALIDITY CHECKING THE TERMINATE ECB WHICH CONTAINS 00000000
DSNA825I DSNACA70 TCB=008F28E8 CABSSID=AAAA CABREL=310 CABDECPP=00000000
DSNA813I DSNACA70 TCB=008F28E8 FRBP=000144F8 RAL=00000000 RALE=0001 FVLE=0002 PARM=00000000 PCNT=0000
DSNA814I DSNACA70 TCB=008F28E8 RC1=0000 RC2=00000000 FBACK=00000000 RHPC=00000000 QUAL=0001 RSV1=00
DSNA810I DSNACA70 TCB=008F28E8 BEFORE IDENTIFY ==============================
DSNA811I DSNACA70 TCB=008F28E8 AFTER IDENTIFY ==============================
DSNA813I DSNACA70 TCB=008F28E8 FRBP=000144F8 RAL=00000000 RALE=0001 FVLE=0002 PARM=000058F8 PCNT=0006
DSNA814I DSNACA70 TCB=008F28E8 RC1=0000 RC2=00000000 FBACK=008DBF90 RHPC=00000E05 QUAL=0001 RSV1=00
DSNA828I DSNACA70 TCB=008F28E8 RIB ADDRESS=00BFF220 RIBPTR ADDR=00007420
DSNA813I DSNACA70 TCB=008F28E8 FRBP=000144F8 RAL=00000000 RALE=0001 FVLE=000B PARM=00000000 PCNT=0000
DSNA814I DSNACA70 TCB=008F28E8 RC1=0000 RC2=00000000 FBACK=008DBF90 RHPC=00000E05 QUAL=0001 RSV1=00
DSNA810I DSNACA70 TCB=008F28E8 BEFORE ESTABLISH EXIT ========================
DSNA811I DSNACA70 TCB=008F28E8 AFTER ESTABLISH EXIT ========================
DSNA813I DSNACA70 TCB=008F28E8 FRBP=000144F8 RAL=00000000 RALE=0001 FVLE=000B PARM=000058F8 PCNT=0001
DSNA814I DSNACA70 TCB=008F28E8 RC1=0000 RC2=00000000 FBACK=008DBF90 RHPC=00000E05 QUAL=0001 RSV1=00
DSNA801I DSNACA00 TCB=008F28E8 LEAVE DSNACA00 CABFLAG1=CF CABFLAG2=00 CABPTR=00014360
DSNA800I DSNACA00 TCB=008F28E8 ENTERED DSNACA00 ACTION=OPEN R1=000082A0 CABPTR=00014360 CABFLAG1=CF CABFLAG2=00
DSNA208E DSNACA00 TCB=008F28E8 CANNOT HAVE 2 SSIDS (AAAA AND BBBB) FROM 1 TCB
DSNA807I DSNACA00 TCB=008F28E8 OPEN REQUEST SSID=BBBB PLAN=PLANNAME
DSNA801I DSNACA00 TCB=008F28E8 LEAVE DSNACA00 CABFLAG1=CF CABFLAG2=00 CABPTR=00014360

Figure 67. Sample call attachment facility trace stream

Chapter 4. Diagnostic aids for single systems and data sharing 251

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_trbshootactivatedsntracestream.html

Each of the four wall messages shown is either preceded by or followed by a dump of the FRB (this is
dummy data). Further, message DSNA208E shows that the user committed an error: the user specified
two different SSIDs on the CONNECT and OPEN calls. CAF user error messages begin with DSNA2... .

If a Db2 abend occurred during establish exit, then no trace messages appear after the second BEFORE
message (DSNA810I ... BEFORE ESTABLISH EXIT =========).

Related reference
Call attachment facility trace messages
An application programmer that uses the call attachment facility (CAF) to write an application that
attaches to Db2 can choose whether the messages are displayed or not. They display if the DSNTRACE
ddname is allocated during CAF execution.

IMS attachment facility traces and IMS log record
It is important to determine whether a problem is in the application program, IMS, the IMS attachment
facility, or Db2.

The IMS attachment facility maintains two trace tables in storage. For many problems involving the IMS
attachment facility, these two tables can be found in:

• An IMS attachment facility '5501' log record, or
• The WAL or WAU control blocks in a dump

IMS log entries
The IMS log contains entries (with an identifier of ‘5501FF') that are written by the IMS attachment
facility.

The entries are written whenever one of the following unexpected error situations occurs:

Request is denied because of prohibited circumstance.
Request is denied because of an invalid sequence of requests.
Request is denied because of a parameter error.

When these records are written to the IMS log, they contain connection information and a 20-entry
wraparound trace table called WALTAREA. (This same trace area is also in the WAL and WAU.)

The connection information in each of these records includes:

Time and date stamp
IMSID
Db2 subsystem ID
PST number
PSB name
Application program name scheduled
Plan name
Authorization ID
Recovery token
Call type
Region information.

The IMS log also contains entries (with identifiers of ‘5501FE') that the IMS attachment facility writes
whenever a unit of recovery is processed during resolve indoubt processing. Each of these records
includes:

A time and date stamp
Db2 subsystem ID
FRB return code
FRB reason code
Recovery token status

252 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Recovery token
Resource name
Correlation token.

IMS attachment facility X'5501FF00' log record
The IMS attachment facility writes the X'5501FF00' log record when unexpected error conditions occur
between Db2 and the IMS attachment facility.

The format of the X'5501FF00' log record is shown in the following figure.

 **** SNAP LOG RECORD X'5501FF00' START
 LOC NAME SIZE DESCRIPTION
 000 WALSFF IMS LOG RECORD
 - 5501FF FOR DB2
 000 WALSFFLN FIXED(16) LENGTH OF THE RECORD
 002 WALSFFZZ FIXED(16) RESERVED
 004 WALSFFID FIXED(32) RECORD CODE X'5501FF00'
 008 WALSFFDT CHAR(4) DATE
 00C WALSFFTM CHAR(4) TIME
 010 WALIMSCN CONNECTION NAME TO DB2
 010 WALIMSID CHAR(8) IMSID OR VTAM ID
 (CONNECTION NAME)
 018 WALSSID CHAR(4) DB2 SUBSYSTEM ID
 01C WALDISP CORRELATION ID
 01C WALPSTD CHAR(4) PST DISPLAY TOKEN
 020 WALPSBN CHAR(8) PSB EBCDIC VALUE
 028 WALAPN CHAR(8) APPLICATION PROGRAM NAME
 030 WALRESN CHAR(8) RESOURCE NAME (PLAN)
 038 WALAID CHAR(8) AUTHORIZATION ID
 040 WALWF FIXED(32) CREATE THREAD WEIGHT
 044 WALRCT RECOVERY TOKEN FOR ATTACH.
 044 WALNID1 NETWORK ID-VTAM NODE NAME
 OR BATCH CONNECTION NAME
 044 WAL1SI CHAR(4) OR IMS SUBSYSTEM ID
 048 WAL1SN CHAR(4) IMS SUBSYSTEM ID CONTINUED
 04C WALNID2 NETWORK ID - UNIQUE NUMBER
 EITHER IMS OR BATCH SUPPLIED
 04C WALNID2A FIXED(32) IMS SCHEDULE NUMBER (ONLINE)
 050 WALNID2B FIXED(32) IMS COUNTERS (ONLINE)
 054 WALCTYPE CHAR(4) CALL TYPE INDICATOR
 058 WALSCHF SCHEDULING FLAGS
 058 WALRECF CHAR(1) U=UPDATES, N=NO UPDATES
 059 WALMODF CHAR(1) MODE S=SINGLE,M=MULTIPLE.
 05A WALREGT BIT(8) REGION TYPE
 05B WALREGO CHAR(1) DEFAULT REGION SSM VALUE
 05C WALTEYE CHAR(4) EYE CATCHER ID OF TRC7
 060 WALTAREA CHAR(640) TRACE AREA
 2E0 * FIXED(15) RESERVED
 2E2 WALERL FIXED(15) ERROR LENGTH
 2E4 WALERN * ERROR VALUE - CREATE THREAD
 **** SNAP LOG RECORD X'5501FF00' END

Figure 68. Format of X'5501FF00' log record

The format and content of each trace record in the WALTAREA trace is described in “Contents of the IMS
attachment facility trace table” on page 255.

IMS attachment facility X'5501FE00' log record
The IMS attachment facility writes the X'5501FE00' log record any time resolve indoubt processing
occurs between Db2 and the IMS attachment facility.

The format of the X'5501FE00' log record is shown in the following figure.

Chapter 4. Diagnostic aids for single systems and data sharing 253

 **** SNAP LOG RECORD X'5501FE00' BEGINNING
 LOC NAME SIZE DESCRIPTION
 000 WALSFE INDOUBT SNAP LOG RECORD
 000 WALSFELN FIXED(16) LENGTH OF THE RECORD
 002 WALSFEZZ FIXED(16) RESERVED
 004 WALSFEID FIXED(32) ID X'5501FE00'
 008 WALSFEDT FIXED(32) INDICATES DATE.
 00C WALSFETM FIXED(32) INDICATES TIME.
 010 WALSFESI CHAR(4) DB2 SUBSYSTEM NAME
 014 WALSFER1 CHAR(2) RETURN CODE FROM DB2
 016 WALSFECT FIXED(15) COUNTS INDOUBT PROCESSED.
 A COUNT OF THE NUMBER OF
 TIMES RESOLVE INDOUBT
 PROCESS HAS BEEN CALLED WITH
 L (LAST) SPECIFIED. ALSO
 USED AS A FLAG VALUE TO
 DETERMINE THE FIRST TIME VS
 THE OTHER
 018 WALSFER2 CHAR(4) REASON CODE FROM DB2
 01C WALRIP CHAR RESOLVE INDOUBT PARM AREA
 01C RIURRQST CHAR(4) RECOVERY RESOLUTION REQUEST
 'SHOW' - REQUEST UR
 INFO
 'IDBT' - STORED ON
 GOOD SHOW
 'COMM' - REQUEST UR
 COMMIT
 'ABRT' - REQUEST UR
 ABEND
 ' ' - ANYTHING
 ELSE
 - ERROR
 020 RIURCRID CHAR(12) THREAD LEVEL CORRELATION_ID -
 PROVIDED AS FEEDBACK
 ON 'SHOW'
 02C RIURNID CHAR(16) UR LEVEL NETWORK_ID -
 PROVIDED AS FEEDBACK
 ON SHOW AND USED TO
 IDENTIFY URS ON
 COMM/ABRT
 02C RIURNIDC CHAR(8)
 034 RIURNIDB BIT(64)
 03C RIURRESN CHAR(8) RESOURCE NAME PROVIDED AS
 FEEDBACK ON 'SHOW'
 044 RIURTOKN BIN(16) TOKEN FOR SHOW-NEXT-NID
 046 RIURICNT BIN(16) NUMBER OF INDOUBTS FOR
 CONNECTION
 048 RIURCONN CHAR(8) CONNECTION NAME
 PROVIDED AS FEEDBACK
 ON SHOW AND USED TO
 IDENTITY URS
 ON COMM/ABRT
 ***** SNAP LOG RECORD X'5501FE00' END

Figure 69. Format of X'5501FE00' log record

IMS attachment facility trace diagnosis guidelines
Several steps can be taken to use the IMS attachment facility trace to help diagnose problems.

1. To determine if the problem occurred in the application program, see if the address in the PSW at the
time of error falls within the address range of the application program.

2. Try to determine the cause of failure by reviewing abend completion code at the beginning of the
dump.

• If the abend completion code indicates a user abend, then try to find an explanation for that user
abend completion code in the IMS messages and codes publication.

• If the abend completion code is a system X'04E' or X'04F', locate the Db2 abend reason code value
in register 15 and look up the reason code value in Db2 reason codes (Db2 Codes).

3. Locate the application program's last (most recent) save area.
4. Determine the last event the application program performed before the failure.

254 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_reasoncodes.html

5. If the last event was a SQL call, locate the highest sequence number in the IMS attachment facility
trace table. (The entry with the highest sequence number is the most recent.) Look at the WALTAREA
trace area first to find the connection status.

6. Analyze that entry to see at what control status point the call is, by using the information in Table 35
on page 257.

7. If the trace entry is complete (control status points A and E are nonblank), then analyze the WAU trace.
8. Looking at these trace tables should help in identifying where the problem occurred (that is, if it

occurred in Db2, in the IMS attachment facility, or in IMS), and it should help identify the events that
were occurring at the time of the failure (for example, a trace identifier of TRMT indicates that a thread
has been terminated).

9. The Db2-DL/I batch support is packaged as part of the Db2 IMS attachment facility. Follow the
procedures in “Type-of-failure keywords” on page 12 when reporting problems with the Db2-DL/I
batch support. Abends produced by the Db2-DL/I batch support are either SYSABEND or SYSUDUMP
dumps. A SYS1.LOGREC entry is normally not produced.

Contents of the IMS attachment facility trace table
When an application program makes a call to Db2 (via an SQL request), resources can be allocated (plan
ID) and the call can be processed.

The IMS attachment facility traces events, called control status points, such as resources being allocated,
in the WALTAREA; the normal application call path is traced in the WAU trace table.

The following sections describe the format and contents of individual trace entries and indicate when
individual fields within a trace entry are updated.

Sequence of IMS Trace Activities
The control status points are keys into the following table.
Control status point A

When IMS invokes the IMS attachment facility, the 32-byte trace entry is blanked out and replaced by
an exit ID and unique ascending sequence number.

Control status point B
Just before the IMS attachment facility calls Db2, the call function fields are updated.

Control status point C
When Db2 returns control to the IMS attachment facility, the status fields are updated.

Control status point D
If the attachment facility calls one or more subroutines, the subroutine information is traced after the
subroutine completes.

Control status point E
The return code is updated when the IMS attachment facility returns control to IMS.

Table 34. Format of IMS attachment facility trace entry

Value and length
Trace ID

Sequence
number

Call
function Call Status Subroutines RC

Filled in at CSP A A B C D E

Length in bytes 4 2 6 6 12 2

Notes:

The control status points (CSP) of A, B, C, D, and E are defined as follows:

Trace identification, sequence number at CSP A: Each entry in the trace table begins with an "eye-
catcher" to help identify the various trace identification field values in the trace table.

Trace identification:

Chapter 4. Diagnostic aids for single systems and data sharing 255

• For the WAL trace, the trace identification field can be set to these events:
ABRT

Abort continue (rollback) a unit of recovery.
CMD0

Process a Db2 command.
COMC

Commit continue (phase 2) a unit of recovery.
CTHD

Create a thread to Db2.
ECHO

Determine if Db2 is operational.
ID00

Identify: Initialize a connection from the IMS application to Db2.
INIT

Initialize the IMS attachment facility work areas.
PREP

Prepare to commit (phase 1) a unit of recovery.
RI00

Resolve indoubt work units between IMS and Db2.
SIGN

Sign on a new user to Db2.
SOFF

Sign off a user to Db2.
SUBT

Handle subsystem termination of Db2 or IMS.
TRMI

Terminate Identify: Terminate the connection to Db2.
TRMT

Terminate the thread between Db2 and IMS.
• For the WAU trace, the trace identification field can be set to these events:

NORC
Normal call to process a SQL request.

SNO0
System not operational to handle exceptional conditions.

Sequence number:

The sequence number following the trace identifier reflects the order in which the trace entry was
recorded in relation to the other trace entries. This sequence number can then be used to determine the
correct sequence of events when the trace table wraps.

Call function at CSP B
Indicates that a request to Db2 has been made. This code is used internally; note only whether the
value is blank or nonblank.

Call status at CSP C
Indicates that the request to Db2 has been completed and that control has returned to the IMS
attachment facility. This Db2 return code and reason code is returned to the IMS Attach from Db2 for
upon completion of the event.

Subroutine at CSP D
Called identification (traced after call to routine). This information is generally not applicable to
diagnosing problems.

256 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Return code at CSP E
The IMS attachment facility return code from the exit.

The character string "TRCx" precedes the first trace entry in each of the trace tables (WAL and WAU).
Refer to The following table for information about the combinations of field values in a trace entry and
about what these might indicate.

Table 35. IMS attachment facility trace control status points

Control Status Points

RemarksA B C D E

n b b n/a b The call has entered the IMS attachment facility.

n n b n/a b The call is in Db2.

n n n n/a b The call has returned from Db2 and is in the IMS
attachment facility or in a subroutine.

n n/a n/a n/a n • The call has returned to IMS,
• The call is in IMS and never made it to the IMS

attachment facility, or
• The entry is a residual trace entry.

Notes:
n

Represents nonblank fields.
b

Represents blank fields (that is, X'40').
n/a

indicates that this field contains information that is not applicable.

Locating the IMS attachment facility trace tables in a dump
The WAL and DSNMWAU load modules belong to the region controller task. To be certain these trace
tables are included in the dump, stop the region with a dump.

The formats for the WAL and the DSNMWAU trace tables are the same except for two ID fields. The
DSNMWAU data is primarily about applications. The format of the information in the WAL load module
includes connection information, the 20-entry trace table (WALTAREA), and a work area used when
problems occur due to unavailable resources. For details, see Table 34 on page 255. The trace table is
always active.

The IMS attachment facility load modules containing these trace areas are:
WAL

The trace table in the IMS control region and in the IMS dependent region that indicates the control
status of the connection between IMS and Db2.

DSNMWAU
The trace table exists in the dependent region that indicates the application call status.

To find these trace tables in a dump, refer to Table 35 on page 257 and Figure 71 on page 259 and follow
the steps below:

1. Locate the CDE for the IMS message region involved in the problem.
2. Find the names WAL and DSNMWAU in the list of load modules and the WAL and DSNMWAU

addresses.

Chapter 4. Diagnostic aids for single systems and data sharing 257

IMS attachment facility messages
When the attachment between Db2 and IMS is run in an IMS online environment, the attach messages are
issued to the master terminal operator (MTO) and diagnostic information is issued to the IMS log.

In the batch environment, the Db2 IMS attach messages and IMS attach diagnostic information are issued
to the DDOTV02 output data set.

IMS attachment facility message format
The IMS attachment facility writes messages when the attach package connects to or disconnects from
Db2, and when any resolve indoubt problems occur.

The format of the attach messages is shown in the following figure.

 LOC NAME SIZE DESCRIPTION
 000 FIXED(15) LENGTH OF THE RECORD
 002 FIXED(15) RESERVED
 004 CHAR(*) ACTUAL MESSAGE TEXT

Figure 70. IMS attachment facility message format

When abends occur
Abends can occur during Db2 command request processing or during Db2 non-command-related
requests.

Abends during Db2 command request processing
An attachment facility CSECT in the IMS control region establishes an ESTAE routine when it processes
a Db2 command request. If an abend occurs during the processing request, the ESTAE routine writes
an entry to the SYS1.LOGREC data set. This entry includes information in all of the standard fields of a
SYS1.LOGREC entry (described in the z/OS diagnostic techniques publication In addition, information is
recorded in the variable recording area (VRA), which includes:

• Db2 abend reason code from the IMS attachment facility
• Active trace entry of the IMS attachment facility
• The command module autodata area.

Abends during Db2 non-command-related requests
If an abend occurs when Db2 is not processing command requests, the IMS attachment facility does not
establish a recovery environment; therefore, any abends that occur are handled by IMS.

258 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

CDE
 676F78 NCDE 00000000 RBP 00676AD0 NM DFSRRC00 EPA 000F5E78 XL/MJ 006AC918 USE 000100FB ATTR 3B20000
 676070 NCDE 006760A0 RBP 0069C980 NM DFSRRC40 EPA 000F95B6 XL/MJ 00676060 USE 000200FB ATTR 3B20000
 676F58 NCDE 00676070 RBP 00676920 NM DFSPCC20 EPA 000F50F0 XL/MJ 0069C6C0 USE 000200FB ATTR 3B20000
 676F58 NCDE 00676070 RBP 00676920 NM DFSPCC20 EPA 000F50F0 XL/MJ 0069C6C0 USE 000200FB ATTR 3B20000
 6768A0 NCDE 00676030 RBP 00676818 NM FAFI5022 EPA 000FED16 XL/MJ 00676000 USE 000100EB ATTR 0B20000
 FD7880 NCDE 00FD7730 RBP 00000000 NM IGG019DK EPA 00F88000 XL/MJ 00FD78A0 USE 00010000 ATTR B022000
 66F860 NCDE 006763F8 RBP 00000000 NM DFSFSWA0 EPA 000F6390 XL/MJ 006768C0 USE 000100FB ATTR 0320000
 6763F8 NCDE 0066FE10 RBP 00000000 NM DSNMAPNX EPA 00A4AE68 XL/MJ 006763E8 USE 000100F1 ATTR 03A2000
 66FE10 NCDE 0066F720 RBP 00000000 NM DSNMWAU EPA 000F6C10 XL/MJ 0066FE30 USE 000100FB ATTR 0222000
 66F720 NCDE 0066F760 RBP 00000000 NM DSNMBSRH EPA 00670100 XL/MJ 0066F710 USE 000100E6 ATTR 31A2000
 66F760 NCDE 0066F7A0 RBP 00000000 NM DSNMERRO EPA 0066BD30 XL/MJ 0066F750 USE 000100E6 ATTR 31A2000
 66F7A0 NCDE 0066F7D0 RBP 00000000 NM DSN31D00 EPA 0066C298 XL/MJ 0066F790 USE 000100E6 ATTR 39A2000
 66F7D0 NCDE 00676228 RBP 00000000 NM DSNAPRH EPA 00670318 XL/MJ 00676208 USE 000100E6 ATTR 31A2000
 676228 NCDE 00676278 RBP 00000000 NM WAL EPA 0066C5000 XL/MJ 00676248 USE 000100E6 ATTR 02A2000
 676278 NCDE 006762B8 RBP 00000000 NM DSNMSBO0 EPA 0066CB80 XL/MJ 00676268 USE 000100E6 ATTR 31A2000
 6762B8 NCDE 006762F8 RBP 00000000 NM DSNMDR10 EPA 0066D280 XL/MJ 006762A8 USE 000100E6 ATTR 31A2000
 6762F8 NCDE 00676338 RBP 00000000 NM DSNMDR00 EPA 0066D938 XL/MJ 006762E8 USE 000100E6 ATTR 31A2000
 676338 NCDE 00676378 RBP 00000000 NM DSNMID00 EPA 0066E108 XL/MJ 00676328 USE 000100E6 ATTR 31A2000
 676378 NCDE 006763A8 RBP 00000000 NM DSNMINIT EPA 0066EAF8 XL/MJ 00676368 USE 000100E6 ATTR 31A2000
 6763A8 NCDE 006768A0 RBP 00000000 NM DFSEEVT EPA 00679048 XL/MJ 006763C8 USE 000100E6 ATTR 02A2000
 FD7730 NCDE 00FD7760 RBP 00000000 NM IGG019DJ EPA 00B28118 XL/MJ 00FD7750 USE 00030000 ATTR B022000
 676030 NCDE 00676F58 RBP 00000000 NM DFSECP20 EPA 000F90C8 XL/MJ 00676020 USE 000100FB ATTR 3320000
 6760A0 NCDE 0069C3A0 RBP 00000000 NM DIRCA001 EPA 000F9748 XL/MJ 006760C0 USE 000100FB ATTR 0222000
 69C3A0 NCDE 006760E0 RBP 00000000 NM DIRCL001 EPA 00674000 XL/MJ 0069C070 USE 000100E6 ATTR 02A2000
 6760E0 NCDE 00676120 RBP 00000000 NM WALESSTR EPA 00675310 XL/MJ 00676100 USE 000100E6 ATTR 02A2000
 676120 NCDE 0069C000 RBP 00000000 NM EVTPSSTR EPA 00679190 XL/MJ 00676140 USE 000100E6 ATTR 02A2000
 69C000 NCDE 0069C040 RBP 00000000 NM WALEDSN EPA 00675988 XL/MJ 0069C020 USE 000100E6 ATTR 02A2000
 69C040 NCDE 0069C0C0 RBP 00000000 NM EVTPDSN EPA 00679928 XL/MJ 0069C060 USE 000100E6 ATTR 02A2000
 69C0C0 NCDE 0069C090 RBP 00000000 NM DFSSRB EPA 000F8D80 XL/MJ 00676FA0 USE 000100FC ATTR 3122000
 69C090 NCDE 0069C160 RBP 00000000 NM DFSLESE EPA 00679839 XL/MJ 0069C0B0 USE 000100E6 ATTR 02A2000
 69C360 NCDE 00676FC0 RBP 00000000 NM ESIESDCB EPA 006798A8 XL/MJ 0069C380 USE 000100E6 ATTR 02A2000
 676FC0 NCDE 0069C690 RBP 00000000 NM DFDDPD10 EPA 00679968 XL/MJ 00676FE0 USE 000100E6 ATTR 02A2000
 69C690 NCDE 0069C940 RBP 00000000 NM DFSVC000 EPA 000F6869 XL/MJ 0069C680 USE 000100FB ATTR 0320000
 69C940 NCDE 00676F78 RBP 00000000 NM DFSPRPX0 EPA 000F6898 XL/MJ 0069C930 USE 000100FB ATTR 1320000
LPA/JPA MODULE WAL
66C500 000205C0 E6C1D340 0066C298 00670318 00000000 0066BD30 00000000 00670100 *....WAL ..B.....................*
66C520 000F6C10 03480000 5501FF00 00000000 00000000 E2E8E2F3 40404040 E2E2E3D9 *....................SYS3 SSTR*
66C540 F0F0F0F1 C4C6D2C6 F0F0F0F6 C6C1C6C9 F5F0F2F2 C6C1C6C9 F5F0F2F2 C4C6D2C6 *0001DFKF0006FAFI5022FAFI5022DFKF*
66C560 F0F0F0F6 00000004 E2E8E2F3 40404040 0000000C 00000001 E2D8D340 E4D404D9 *0006....SYS3 SQL UM.R*
66C580 E3D9C3F7 C9D5C9E3 00014040 40404040 40404040 40404040 40404040 40404040 *TRC7INIT.. *
66C5A0 40400000 C9C4F0F0 00020001 00020001 00000000 00004040 40404040 40404040 * ..ID00.............. *
66C5C0 40400000 E2C9C7D5 00030001 00030001 00000000 00004040 40404040 40404040 * ..SIGN.............. *
66C5E0 40400000 C3E3C8C4 00040001 00040001 00000000 0000C2C8 00044040 40404040 * ..CTHD..............BH.. *
66C600 40400000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
66C620 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 LINES 66C640-66C840 SAME AS ABOVE
66C860 00000000 00000000 00000000 C6D9C2F7 C6D9C240 00010004 0066C9FC 00060000 *............FRB7FRBI.....*
66C880 00000000 00000000 00000805 00010000 00000000 00000000 00000000 00000000 *................................*
66C8A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
66C8C0 00000000 00000000 00000000 00000000 00000000 00000000 0000001C 0066C584 *..............................E.*
66C8E0 0066C604 0066C7E4 00000004 00500000 5501FE00 00000000 00000000 E2E2E3D9 *..F...GU....................SSTR*
66C900 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 LINE 66C920 SAME AS ABOVE
66C940 00000000 00000000 00000000 C3000000 00000000 00000000 00000000 00000000 *............C...................*
66C960 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 LINE 66C980 SAME AS ABOVE
66C9A0 00000000 00000000 E2C1E2F7 00000000 00000000 006758BC 00000000 5066D42C *........SAS7..................M.*
66C9C0 00670318 00000001 0066C9F8 0066C564 0066C500 0066CB70 00679190 00A15A58 *..........18..E...E...H.........*
66C9E0 00A15A74 0067538C 00A15050 0066D857 0066C9F8 4066D292 0066C870 0066C554 *..............Q...18 .K...H...E.*
66CA00 0066CA18 0066C540 0066D857 0066C808 8066C564 0000001C E8C5E2F0 40FOFOF1 *......E ..Q...H...E.....YES0 001*
66CA20 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

Figure 71. Sample IMS attachment facility trace

Resource Recovery Services attachment facility traces
The Resource Recovery Services attachment facility (RRSAF), which enables users to connect to Db2
using Resource Recovery Services (RRS), provides diagnostic trace messages intended primarily for use
by IBM service personnel.

Starting the RRSAF trace
If the RRSAF trace is started, messages are included in the RRSAF's trace table in SYSABEND or
SYSUDUMP dumps.

Procedure
Allocate a data set with DD name DSNRRSAF before you start an RRSAF application.
For example, if you use a batch job to start an application, include a DD statement like the following:

//DSNRRSAF DD DUMMY

After you start the trace, you cannot turn it off. Because the trace can degrade performance, you should
start it only when you need to diagnose a problem.

Chapter 4. Diagnostic aids for single systems and data sharing 259

Finding the trace table
SYSABEND or SYSUDUMP dumps of the application address space include a wrap-around trace table with
a maximum of 20 trace messages.

Procedure
To find the trace table:
1. Search the dump for the eye-catcher RRB.
2. Look past this eye-catcher for the characters RRSAF TRACE>>>>. Examine the eight bytes that

immediately precede those characters. The first four bytes contain the number of entries in the trace
table. The second four bytes contain the index of the last entry written.

Interpreting trace messages
Use the RRSAF trace messages to help diagnose a problem.

Each entry in the trace table has the format shown in the following table.

Table 36. Description of an RRSAF trace record

Bytes Contents of Field

1-4 Abbreviation for the RRSAF function performed:

• 'SQL ' - SQL operation
• 'IFCA' - IFC API call
• 'IFCX' - IFC Translate call
• 'IDEN' - IDENTIFY
• 'CTHD' - CREATE THREAD
• 'TTHD' - TERMINATE THREAD
• 'TIDY' - TERMINATE IDENTIFY
• 'SIGN' - SIGNON
• 'ASIN' - AUTH SIGNON
• 'XLAT' - TRANSLATE
• 'S_ID' - SPAS_ID
• 'S_IN' - SPAS_INIT_SP
• 'S_TM' - SPAS_TERM_SP
• 'S_SV' - SPAS_SERV_SP
• 'S_DS' - SPAS_DISC
• 'ASSO' - ASSOCIATE THREAD
• 'DSSO' - DISSOCIATE THREAD

5-8 If the function is 'SQL ', the SQLCODE. Otherwise, the RRSAF return code.

9-12 RRSAF reason code.

13 Value of flag RRBFLAG1 after function completes

14 Value of flag RRBFLAG1 before function starts

15 Value of flag RRBFLAG2 after function completes

16 Value of flag RRBFLAG2 before function starts

All functions that begin with SPAS are functions that Db2 performs for stored procedures running in a
WLM-established address space.

260 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

RRSAF writes one entry before it runs a function and another entry after it runs the function.

After the before entry is written, control passes from RRSAF to Db2. After the after entry is written,
control has returned from Db2. If an abend occurs just after a before message is written, the problem is
probably in Db2. Otherwise, the problem is probably in RRSAF or the application.

The following figure shows an example of RRSAF trace output in a dump.

 1 2 3
43301D20 43301BB0 43300CAE 43301BB8 00000000 C3300C08 0000000D 0000000C D9D9E2C1 *................C...........RRSA*
 4 5 6 7
43301D40 C640E3D9 C1C3C540 6E6E6E6E C9C4C5D5 00000000 00000000 CB000100 E2C9C7D5 *F TRACE >>>>IDEN............SIGN*
43301D60 00000000 00000000 CFCB0101 C3E3C8C4 00000000 00000000 EFCF0101 E2D8D340 *............CTHD............SQL *
43301D80 00000000 00000000 FFFF0101 E2D8D340 00000000 00000000 FFFF0101 E2D8D340 *............SQLSQL *
43301DA0 00000000 00000000 FFFF0101 E2D8D340 00000000 00000000 FFFF0101 E2D8D340 *............SQLSQL *
43301DC0 00000000 00000000 FFFF0101 E2D8D340 00000000 00000000 FFFF0101 E2D8D340 *............SQLSQL *
43301DE0 00000000 00000000 FFFF0101 E2D8D340 00000000 00000000 FFFF0101 E2D8D340 *............SQLSQL *
 8
43301E00 00000000 00000000 FFFF0101 E2D8D340 00000000 00000000 FFFF0101 00000000 *............SQL*

Figure 72. Sample RRSAF trace stream

Figure Label Description

 1 Number of entries in the trace table

 2 Index of the last entry in the trace table

 3 Eye-catcher RRSAF TRACE >>>>

 4 Beginning of the first trace record, which records an RRSAF IDENTIFY function

 5 Return code for the IDENTIFY function

 6 Reason code for the IDENTIFY function

 7 RRSAF flags

 8 Beginning of the last trace record, which records an SQL statement

TSO attachment facility traces
The TSO attachment facility provides three tracing mechanisms, DSN trace streaming, CLIST tracing, and
SPUFI trace streaming.

SPUFI diagnostic panels and the ABEND subcommand of the DSN command processor are other available
diagnostic aids. These tools are helpful for gathering pertinent information about the processing that
occurs in the TSO attachment facility; much of that information is helpful to IBM Support in resolving
problems that occur.

The Db2 TSO attachment facility tracing maintenance system is intended for use either by IBM personnel
or by a customer working with IBM Support.

Related tasks
ABEND subcommand of the DSN command processor
The TSO attachment facility provides an ABEND subcommand that enables users to request and obtain a
dump.
SPUFI diagnostic panels

Chapter 4. Diagnostic aids for single systems and data sharing 261

When activated, SPUFI diagnostic panels appear on the terminal as SPUFI is run. These panels display
significant variable names and their assigned values (if any). These panels can be examined to verify that
the information is correct.

Activating the DSN trace stream
The DSN trace stream consists of trace messages; each represents a specific function that has been or is
about to be performed. View these messages on the screen or specify that they be collected in a data set,
or both. These messages are especially valuable in diagnosing possible WAITs and LOOPs.

About this task
The DSN trace stream can be activated through explicit DSN commands or through DB2I.

Procedure
To activate the DSN trace stream, choose one of the following approaches:
• Activate the DSN trace stream using explicit DSN commands.

a) Start the DSN session with the TEST parameter, on the DSN command, set to a number that is
greater than 100. Entering a number greater than 100 results in the tracing of all the CSECTs.

Use the following command:

DSN SYSTEM(subsystem_name) TEST(255)

where subsystem_name is the site-defined name of the subsystem.

A DSN session begins when DSN is entered from the TSO environment. To turn on the DSN trace
stream during a DSN session, re-enter the DSN subcommand shown above within the current DSN
session.

b) When the DSN trace is activated, all trace messages are routed through the TSO message issuer
routine (IKJEFF02) to the TSO SYSTSPRT DD statement. Optionally, the DSN trace information can
be duplicated by allocating a separate data set with a DD name of DSNTRACE. The DSNTRACE
data set can then be used to maintain a separate log for offline reference and diagnosis that
contains only the trace messages produced by the DSN command. The DSNTRACE data set should
be allocated prior to DSN invocation as a sequential data set, with RECFM=F, and LRECL=132.

c) Review the DSN trace messages that appear on the terminal or in the data set that has collected the
trace stream.

The text contained in these DSN trace messages often provides clues about the problem. For
diagnosing problems, special messages clearly show control passing from DSN to Db2 and back.
They can help to determine whether a problem is in Db2, DSN, or an application program.

Specifically, the trace messages that contain a line of equal signs indicate when control is being
passed between the application and Db2. The series of equal signs can be thought of as a "wall"
between DSN and Db2 that indicates in which area a given trace event occurs. Each of these trace
messages begins with one of the following lines:

BEFORE some event =============
AFTER that event =============

Whenever a BEFORE message is displayed, this indicates that control has been passed to
Db2. Whenever an AFTER message is displayed, this indicates that control has returned to the
application program.

d) Refer to the notes about the DSN trace stream for additional information.
• Activate the DSN trace stream using DB2I.

a) Invoke the DB2I primary menu (DSNEPRI).
b) Select OPTION 0, which is not shown on the menu.
c) Press ENTER to pass the panel that introduces the Db2 TSO MAINTENANCE SYSTEM.

262 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

The next panel provides choices between several TSO attachment facility tracing mechanisms.
d) Enter a value greater than 100 in the TRACE DSN field. Press ENTER to return to the DB2I primary

menu.
e) Run the application, and the DSN trace messages display.

Example

DSNET20I DSNECP13 CIBCORID :H443722 X'00000000' X'00000000'
DSNET20I DSNECP13 ZINDOUBT :NO X'00000000' X'00000000'
DSNET20I DSNECP13 BEFORE CREATE THREAD DB2 CALL======R6,CIBRFRB X'00187840' X'00187DA0'
DSNET20I DSNECP13 AFTER CREATE THREAD DB2 CALL======R6,CIBRFRB X'00187840' X'00187DA0'
DSNET20I DSNECP13 FOLLOWING ARE FRB FIELD CONTENTS, CIBCTFRM= X'00187DA0' X'00000000'
DSNET20I DSNECP13 FRBRAL(PTR), FRBRALE(BIN15), FRBFVLE(BIN15) X'00000000' X'00010004'
DSNET20I DSNECP13 FRBPARM(PTR), FRBPCNT(BIN15) X'00000000' X'00000000'
DSNET20I DSNECP13 FRBRC1(BIN15), FRBRC2(CHAR4) X'00000000' X'00000000'
DSNET20I DSNECP13 FRBFBACK PRT(31), FRBRHPC X'00000000' X'00000000'
DSNET20I DSNECP13 FRBQUAL(BIN15), FRBRSV1(BIN15) X'00000001' X'00000000'
DSNET20I DSNECP13 CIBPLNID :TSOAP1 X'00000000' X'00000000'
DSNET20I DSNECP13 ZINDOUBT :NO X'00000000' X'00000000'
DSNET20I DSNECP13 R6=, CIBCTRTN=X'00187840' X'E2E8D5C3'
DSNET20I DSNECP13 EXIT DSNECP13 X'00000000' X'00187DA0'
DSNET20I DSNECP28 AFTER DSNECP13, CIBCTRTN=,CIBCTFRB= X'E2E8D5C3' X'00187DA0'
DSNET20I DSNECP28 HERE COMES THE FRB <<<<<<<<<<<<<<< CIBRFRB= X'80187DA0' X'00000000'
DSNET20I DSNECP28 FRBRAL(PTR), FRBRALE(BIN15), FRBFVLE(BIN15) X'00000000' X'00030001'
DSNET20I DSNECP28 FRBPARM(PTR), FRBPCNT(BIN15) X'001AB1E0' X'000000000'
DSNET20I DSNECP28 FRBRC1(BIN15), FRBRC2(CHAR4) X'00000000' X'00000000'
DSNET20I DSNECP28 FRBFBACK: X'00000000' X'00000000'
DSNET20I DSNECP28 FRBFBACK PTR(31),FRBRHPC X'00000000' X'00000000' 840' X'00187DA0'
DSNET20I DSNECP28 FRBQUAL(BIN15), FRBRSV1(BIN15) X'00000001' X'00000000'
DSNET20I DSNECP28 EXIT DSNECP28,CIBRFRB,CIBFRMLI X'80187DA0' X'00000000'
DSNET20I DSNETRAP BEFORE SQL CALL=======================FRB,R1== X'80187DA0' X'00187870'
DSNET20I DSNETRAP AFTER SQL CALL=====================RC1,FBACK== X'00000000' X'00000000'
DSNET20I DSNETRAP BEFORE SQL CALL=======================FRB,R1== X'80187DA0' X'00187870'
DSNET20I DSNETRAP AFTER SQL CALL=====================RC1,FBACK== X'00000000' X'00000000'
DSNET20I DSNETRAP AFTER LINK GOOD, R15=, R1= X'00000000' X'0018753C' 40' X'00187DA0'
DSNET20I DSNECP18 ENTER DSNECP18, CIBTRMOP= X'E2E8D5C3' X'00000000'
DSNET20I DSNECP18 CIBTRMOP NOT BLANK, CIBTRMOP= X'E2E8D5C3' X'00000000'
DSNET20I DSNECP18 FRB FIELDS FOLLOW (CIBFRB): X'00187DA0' X'00000000'
DSNET20I DSNECP18 FRBRAL(PTR), FRBRALE(BIN15), FRBFVLE(BIN15) X'00000000' X'00010001'
DSNET20I DSNECP18 FRBPARM(PTR), FRBPCNT(BIN15) X'001873A8' X'00000000'
DSNET20I DSNECP18 FRBRC1(BIN15), FRBRC2(CHAR4) X'00000000' X'00000000'
DSNET20I DSNECP18 FRBFBACK(PTR), FRBRHPC(BIN32) X'00000000' X'00000000'
DSNET20I DSNECP18 FRBQUAL(BIN15), FRBRSV1(BIN15) X'00000001' X'00000000'
DSNET20I DSNECP18 BEFORE TERMINATE DB2 CALL===============TRMOP= X'E2E8D5C3' X'00000000'
DSNET20I DSNECP18 AFTER TERMINATE DB2 CALL====================== X'00000000' X'00000000'
DSNET20I DSNECP18 FRB FIELDS FOLLOW (CIBFRB): X'00187DA0' X'00000000'
DSNET20I DSNECP18 FRBRAL(PTR), FRBRALE(BIN15), FRBRVLE(BIN15) X'00000000' X'00010001'

Figure 73. Sample TSO attachment facility DSN trace messages

Related concepts
WAIT/LOOP keywords
The symptoms for WAIT and LOOP keywords might not be distinguishable at first.
Related reference
TSO attachment facility trace messages
Some TSO trace messages have the same message number. They are listed in order of the CSECTs that
issue them.

Activating the CLIST trace facility
The CLIST trace facility writes a stream of messages to the terminal while DB2I executes. To use this
facility, familiarity with TSO CLISTs is recommended.

Procedure
To activate the CLIST trace facility:
1. Invoke the DB2I primary menu (DSNEPRI).
2. Select OPTION 0, which is not shown on the menu.

Chapter 4. Diagnostic aids for single systems and data sharing 263

3. Press ENTER to pass by the panel that introduces the Db2 TSO MAINTENANCE SYSTEM. The next
panel provides choices between several TSO attachment facility tracing mechanisms.

4. Specify SYMLIST on the TRACE CLISTS option. This traces the most events.

The options on the TRACE CLISTS line are the same as those that can be specified on the CLIST
CONTROL statement.

• Selecting LIST is equivalent to specifying CONTROL LIST; it traces TSO commands in the CLISTs.
• Selecting CONLIST is equivalent to specifying CONTROL LIST CONLIST; it traces TSO commands in

the CLISTs and each CLIST statement before variable substitution occurs.
• Selecting SYMLIST is equivalent to specifying CONTROL LIST CONLIST SYMLIST; it traces TSO

commands in the CLISTs, each CLIST statement before variable substitution occurs, and each CLIST
statement after variable substitution occurs.

5. Run the application, and the CLIST trace messages display.

Results
If the CLIST tracing indicates a call to the DSN command processor that seems to have caused an error,
then run the job again with DSN tracing set to a value greater than 100. Receiving messages from both the
DSN and CLIST trace streams help IBM Support resolve the problem.

Trace messages must be viewed online; they cannot be sent to a data set.

Activating the SPUFI trace facility
The SPUFI trace stream consists of trace messages sent to the ISPF LOG. Also appearing in the ISPF LOG
are messages from the ISPF trace facility.

Procedure
To activate the SPUFI trace facility:
1. Invoke the DB2I primary menu (DSNEPRI).
2. Select OPTION 0, which is not shown on the menu.
3. Press ENTER to pass by the panel that introduces the Db2 TSO MAINTENANCE SYSTEM. The next

panel displays several TSO attachment facility tracing mechanisms.
4. Enter YES by the TRACE SPUFI option. The trace messages issued during the execution of SQL

statements (in an input file) are written to the ISPF LOG.
5. Use the ISPF browse LOG option to review the SPUFI trace messages.

For more information about the ISPF browse LOG option and other ISPF commands, refer to the z/OS
ISPF program reference publication.

6. To save the LOG, specify the KEEP option on the ISPF panel displayed when the session is terminated.

The SPUFI trace messages provide a high-level view of the processing events. This list describes
significant factors to be aware of while reviewing the ISPF LOG and the SPUFI trace messages it
contains.

• At the beginning of the ISPF LOG is the following message:

START OF ISPF LOG - - - - - SESSION # nnn --------

where nnn is the number of the session.
• Each subsequent message relates to some significant aspect of the processing involved in that

session.
• The entries in the left column indicate the time (in minutes and seconds) that each corresponding

trace message was issued.
• To the right of the time of the message is the message identifier itself; each SPUFI trace message

begins with DSNE.

264 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

• To the right of the message identifier for most of the SPUFI messages is the name of the CSECT that
issued the trace message; the names of each of these CSECTs are in the format:

DSNESMxx

where xx are numbers between 0 and 99 that uniquely identify the CSECT.
• The right column of the ISPF LOG describes what was happening when the message was issued.
• If processing completes normally, the end of the ISPF LOG shows this final ISPF message:

END OF ISPF LOG - - - - - - SESSION # nnn --------

where nnn is the number of the session.
• If an abend occurs during the session, the SPUFI trace messages are interrupted, and one or more

TSO or ISPF error messages are printed at the bottom of the ISPF LOG. These error messages
indicate the abend completion code and other pertinent information.

Example

16:13 - DSNE454I DSNESM30 LEAVE YSTUFBUF WITH RBUFU NOW = 64
16:13 - DSNE420I DSNESM30 LOOPTOP
16:13 - DSNE445I DSNESM30 TYPE IS INTEGER OR SMALL INTEGER
16:13 - DSNE446I DSNESM30 BEFORE CONVERSION
16:13 - DSNE447I DSNESM30 AFTER CONVERSION
16:13 - DSNE449I DSNESM30 NO TRUNCATION OCCURRED
16:13 - DSNE454I DSNESM30 LEAVE YSTUFBUF WITH RBUFU NOW = 70
16:13 - DSNE454I DSNESM30 LEAVE YSTUFBUF WITH RBUFU NOW = 72
16:13 - DSNE420I DSNESM30 LOOPTOP
16:14 - DSNE445I DSNESM30 TYPE IS INTEGER OR SMALL INTEGER
16:14 - DSNE446I DSNESM30 BEFORE CONVERSION
16:14 - DSNE447I DSNESM30 AFTER CONVERSION
16:14 - DSNE449I DSNESM30 NO TRUNCATION OCCURRED
16:14 - DSNE454I DSNESM30 LEAVE YSTUFBUF WITH RBUFU NOW = 80
16:14 - DSNE599I DSNESM22 - BEGIN EXECUTION
16:14 - DSNE812I DSNESM22 ABOUT TO WRITE A LINE OF OUTPUT
16:14 - DSNE812I DSNESM22 ABOUT TO WRITE A LINE OF OUTPUT
16:14 - DSNE581I DSNESM22 - END EXECUTION 0
16:14 - DSNE404I DSNESM30 EXITED
16:14 - DSNE820I DSNESM68 - BEGIN EXECUTION
 - SQL REQUEST = FETCH
16:14 - DSNE821I DSNESM68 - END EXECUTION -
 - SQLCODE = 00000000
16:14 - DSNE403I DSNESM30 ENTERED
16:14 - DSNE409I DSNESM30 BEFORE MAIN LOOP
16:14 - DSNE420I DSNESM30 LOOPTOP
16:14 - DSNE453I DSNESM30 TYPE IS CHAR, VARCHAR, or LVARCHAR
16:14 - DSNE449I DSNESM30 NO TRUNCATION OCCURRED
16:14 - DSNE454I DSNESM30 LEAVE YSTUFBUF WITH RBUFU NOW = 8
16:14 - DSNE454I DSNESM30 LEAVE YSTUFBUF WITH RBUFU NOW = 20
16:14 - DSNE420I DSNESM30 LOOPTOP
16:14 - DSNE425I DSNESM30 TYPE IS CHARACTER
16:14 - DSNE449I DSNESM30 NO TRUNCATION OCCURRED
16:14 - DSNE454I DSNESM30 LEAVE YSTUFBUF WITH RBUFU NOW = 28
16:14 - DSNE454I DSNESM30 LEAVE YSTUFBUF WITH RBUFU NOW = 30
16:14 - DSNE420I DSNESM30 LOOPTOP
16:14 - DSNE420I DSNESM30 LOOPTOP
16:14 - DSNE425I DSNESM30 TYPE IS CHARACTER
16:14 - DSNE449I DSNESM30 NO TRUNCATION REQUIRED
16:14 - DSNE454I DSNESM30 LEAVE YSTUFBUF WITH RBUFU NOW = 31
16:14 - DSNE454I DSNESM30 LEAVE YSTUFBUF WITH RBUFU NOW = 36

Figure 74. Sample TSO attachment facility SPUFI trace messages

Related reference
TSO attachment facility trace messages

Chapter 4. Diagnostic aids for single systems and data sharing 265

Some TSO trace messages have the same message number. They are listed in order of the CSECTs that
issue them.

IRLM - Db2 activity trace
IRLM uses the z/OS component trace (CTRACE) to trace the flow of activity between IRLM and Db2.

IPCS CTRACE format, merge, and locate routines can be used to process buffer data, but the IPCS VERBX
IRLM command provides more detailed output and is the preferred method. IRLM traces the following
functions:
SLM

All calls to and from the system lock manager are traced.
XCF

All calls to and from the cross system coupling facility are traced.
XIT

Asynchronous interactions with the system lock manager are traced.
DBM

All calls to and from the DBMs are traced.
INT

IRLM traces member and group status events.
EXP

IRLM traces all exception events that occur during execution.

The XIT, EXP, and INT traces start automatically when you start the IRLM startup procedure.

The TRACE=YES parameter of the IRLM startup procedure lets you capture trace data to wraparound
buffers at IRLM startup time. When you specify TRACE=YES, IRLM starts all traces.

You can use the z/OS TRACE CT command to start or stop specific traces and to specify whether the trace
data wraps in the trace data sets. You cannot stop the EXP and INT traces using the TRACE CT command.
This z/OS command requires that load module DXRRL183 be place in the linklib.

IRLM traces are vital in resolving many of the problems in IRLM and Db2 that are related to lock
requests. You should always activate these traces in a test or development environment. It is strongly
recommended that you activate these traces in a production environment. To activate IRLM traces,
specify TRACE=YES in the IRLM address space (IRLMPROC) startup procedure. The traces are written to
internal wrap-around buffers.

Initially, IRLM allows 10 64 KB buffers for each trace type. The buffer storage is taken from ECSA, and
the buffers are allocated as needed. You can change the number of buffers for each trace type using a
command of this form:

MODIFY irlmproc,SET,TRACE=nnn

Related reference
START irlmproc (z/OS IRLM) (Db2 Commands)
MODIFY irlmproc,SET (z/OS IRLM) (Db2 Commands)
TRACE CT (z/OS IRLM) (Db2 Commands)

Formatting the IRLM trace
Formatting the IRLM internal CTRACE entries is best accomplished with the IRLM dump formatter.

About this task
To format the IRLM trace, use one of the following syntaxes:

• verbx IRLM 'SU=nnnn, TR=xxx'

266 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_startirlmproc.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_modifyirlmprocset.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_tracect.html

• IRLM 'SU=nnnn, TR=xxx, TY=DE'

where nnnn = irlmnm, and xxx = trace type (SLM, XCF, XIT, DBM, INT, or EXP)

IRLM trace buffers can be formatted using IPCS. The IRLM trace formatting load module DXRRL184 and
the buffer find routine load module DXRRL186 must be available to use IPCS.

The following IPCS subcommands can be used to format IRLM trace buffers:

SETD DA(dataset name)
Set the trace data set to the default.

CTRACE QUERY
Query the trace components and their associated subtraces that are identified to CTRACE.

CTRACE COMP(irlm) SUB((sub))zzz
Format the trace buffers where irlm is the IRLM subsystem name for the CTRACE component and sub
is one of the IRLM subtraces (SLM, XCF, DBM, INT, EXP, XIT).

zzz should be short or full depending on how much data is formatted. Short is the default.

CTRACE content
The IPCS VERBX IRLM command displays an IRLM DUMP format of the CTRACEs.

Procedure
1. For single 132 character line output, use the following command:

VERBX IRLM 'SU=nnnn,TR=DBM'

032A 100-01: START A REQUEST 0204 00 0000 B46F40E681462606
 07D3D6C3D2F0F1 TKN: 0586D0C4

Figure 75. VERBX – 132 character line output
2. For DETAIL output, in addition to the 132 character summary line output, use the following command:

VERBX IRLM 'SU=nnnn,TR=DBM,TY=DE'

 Trace Header
 +0000 010E0010 00000002 B46F40E6 81462606 |.........? Wa...
 +0010 C4E7D9D9 D3F1F0F0 60F0F17A 40E2E3C1 |DXRRL100-01: STA
 +0020 D9E340C1 40D9C5D8 E4C5E2E3 40404040 |RT A REQUEST
 Element type = RLPL Length = 00C8 Address = 0583DA20
057B43AA +0000 00000000 00005A50 00000000 80000000 |......!&........
 +0048 +0010 00000000 00000000 00000000 00000000 |................
 +0058 +0020 80BC9000 0581C048 001B0001 058D4910 |.....a{.........
 +0068 +0030 00000000 001B0001 00000000 00000000 |................
 +0078 +0040 00000000 00000000 D3D6C3D2 07D3D6C3 |........LOCK.LOC
 +0088 +0050 D2F0F100 00000000 00000000 00000000 |K01.............
 +0098 +0060 00000000 00000000 00000000 80000000 |................
 +00A8 +0070 00000000 00000000 0000A248 00000000 |..........s.....
 +00B8 +0080 02040000 12000000 00000000 00000000 |................
 +00C8 +0090 00000000 00000000 00000000 00000000 |................
 +00D8 +00A0 00000000 00000000 00000000 00000000 |................
 +00E8 +00B0 00000000 00000000 00000000 00000000 |................
 +00F8 +00C0 00000000 00000000 |........|
 Element type = RLPL PT Length = 0004 Address = 0583D8C8
057B447A +0000 058D4994 |...m|

Figure 76. VERBX – DETAIL output

Example

The DBM is the request from the DBMS to IRLM. The SLM traces are the entries made when IRLM
forwards those lock requests to the SLM.

Chapter 4. Diagnostic aids for single systems and data sharing 267

032A 100-01: START A REQUEST 0204 00 0000 B46F40E681462606
 07D3D6C3D2F0F1 TKN: 0586D0C4
 Trace Header
 +0000 010E0010 00000002 B46F40E6 81462606 |.........? Wa...
 +0010 C4E7D9D9 D3F1F0F0 60F0F17A 40E2E3C1 |DXRRL100-01: STA
 +0020 D9E340C1 40D9C5D8 E4C5E2E3 40404040 |RT A REQUEST
 Element type = RLPL Length = 00C8 Address = 0583DA20
057B43AA +0000 00000000 00005A50 00000000 80000000 |......!&........
 +0048 +0010 00000000 00000000 00000000 00000000 |................
 +0058 +0020 80BC9000 0581C048 001B0001 058D4910 |.....a{.........
 +0068 +0030 00000000 001B0001 00000000 00000000 |................
 +0078 +0040 00000000 00000000 D3D6C3D2 07D3D6C3 |........LOCK.LOC
 +0088 +0050 D2F0F100 00000000 00000000 00000000 |K01.............
 +0098 +0060 00000000 00000000 00000000 80000000 |................
 +00A8 +0070 00000000 00000000 0000A248 00000000 |..........s.....
 +00B8 +0080 02040000 12000000 00000000 00000000 |................
 +00C8 +0090 00000000 00000000 00000000 00000000 |................
 +00D8 +00A0 00000000 00000000 00000000 00000000 |................
 +00E8 +00B0 00000000 00000000 00000000 00000000 |................
 +00F8 +00C0 00000000 00000000 |........|
 Element type = RLPL PT Length = 0004 Address = 0583D8C8
057B447A +0000 058D4994 |...m|

Figure 77. IRLM DUMP format of a CTRACE record

The following CTRACE sample shows two types of traces for a lock request.

268 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

 COMPONENT TRACE FULL FORMAT
 COMP(IRLE) SUBNAME((DBM))
 **** 02/10/94
 MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
 -------- -------- --------------- -----------
 DBM 00000002 18:42:05.816178 RLPL format
 +0000 ID....... DXRRL100-01: START A REQUEST
 +0020 TLA1..... 000100C8 07166220
 +0028 RLPL..... 00000000 06545768 00000000 80000000 00000000
 +003C 00000000 006B12C8 008FBBC0 0090B000 00906048
 +0050 00316545 06545060 00000000 00316545 06545060
 +0064 00000000 00000000 00000000 0423AD20 09000058
 +0078 C8806D01 D7000000 00000000 00000000 00000000
 +008C 00000000 00000000 80000000 00000000 00000000
 +00A0 006B12C8 008FBBC0 02060000 8A000000 00000000
 +00B4 00000000 006B5BE4 00000000 00000000 00000000
 +00C8 00000000 00000000 00000000 00000000 00000000
 +00DC 00000000 00000000 00000000 00000000 00000000
 DBM 00000002 18:42:05.816406 RLPL format
 +0000 ID....... DXRRL100-02: REQUEST COMPLETED
 +0020 TLA1..... 000100C8 07166220
 +0028 RLPL..... 00000000 06545768 00000000 80000000 00000000
 +003C 00000000 006B12C8 008FBBC0 0090B000 00906048
 +0050 00316545 06545060 00000000 00316545 06545060
 +0064 00000000 00000000 00000000 0423AD20 09000058
 +0078 C8806D01 D7000000 00000000 00000000 00000000
 +008C 00000000 00000000 80000000 00000003 00000000
 +00A0 006B12C8 008FBBC0 02060000 8A000000 00000000
 +00B4 00000000 006B5BE4 00000000 00000000 00000000
 +00C8 00000000 00000000 00000000 0067027C A743B4E5
 +00DC 09010080 00000000 00080000 00000000 00000000
 COMPONENT TRACE FULL FORMAT
 COMP(IRLE) SUBNAME((SLM))
 **** 02/10/94
 MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
 -------- -------- --------------- -----------
 SLM 00000010 18:42:05.816193 RNA, RTE and UDB format
 +0000 ID....... DXRRL120-01: IXLLOCK OBTAIN
 +0020 TLA1..... 00060020 00670238
 +0028 RNA...... 09000058 C8806D01 D7000000 00000000 00000000
 +003C 00000000 00000000 00000000
 +0048 TLA2..... 000C0040 07166418
 +0050 RTE...... 0423AD20 09000058 C8806D01 D7000000 00000000
 +0064 00000000 00000000 00000000 00000000 00000008
 +0078 C9D4E2C5 40404040 0423AD20 00000000 00000000
 +008C 00000000
 +0090 TLA3..... 000B0040 071663D8
 +0098 UDB...... C9D4E2C5 40404040 00000000 00000000 00080000
 +00AC 00000000 00000000 00000000 00000000 40000000
 +00C0 08000000 00000000 A8D1A743 B4D7B281 A8D1A743
 +00D4 B4D7B281
 SLM 00000020 18:42:05.816397 RNA and reason code
 +0000 ID....... DXRRL120-03: IXLLOCK RETURN
 +0020 TLA1..... 00060020 00670238
 +0028 RNA...... 09000058 C8806D01 D7000000 00000000 00000000
 +003C 00000000 00000000 00000000
 +0048 TLA2..... 00060004 0716637C
 +0050 REAS..... 00000000

Figure 78. Sample of a CTRACE record

Finding the locks that belong to an agent
To diagnose lock contention problems between agents within Db2, it may be necessary to find and
analyze all locks for a particular agent. To find these locks, only the RLPL records are needed.

To become oriented, find the lock request for the request's skeleton cursor table (CT) lock. The RLPL for
this lock request contains the plan name in the resource name field. The resource name field begins at
offset X'48' from the beginning of the RLPL and consists of a four-byte hash field, followed by a one-byte
length field, followed by the 31-byte resource name field that contains the plan name. Therefore, you
should find the plan name at offset X'4D' from the beginning of the RLPL. To find this lock request, scan
the RLPL records looking for the plan name.

Within this lock request, the following items are used in finding the locks for a particular agent:

1. The two-byte work unit number (RLPWUN) at offset X'2A'.

Chapter 4. Diagnostic aids for single systems and data sharing 269

2. The four-byte work unit ID address at offset X'2C'. This is the ACE or EB address.
3. The two-byte owning work unit number (RLPOWN) at offset X'36'.
4. The four-byte owning work unit address (RLPOWNID) at offset X'38'. This is an ACE address.

For a given work number (RLPWUN) span and the work unit ID address in the owning work unit (RLPOWU)
remains the same.

For a given request, the work number, work unit ID address, and owning work unit address can change,
depending on the overall processing involved for the request.

Within a work number span, the last associated RLPL is an UNLOCK request to release all locks held. This
RLPL can be identified by:

• A four-byte token field (RLPLTOKN) at offset X'44' of all zeros.
• A 36-byte resource name field at offset X'48' of all zeros.
• A one-byte function field (RLPLFUNC) at offset X'80' that contains X'03', UNLOCK.
• A one-byte duration field (RLPLDURA) duration field in byte X'82' with a value equal to or higher than

the duration of any prior lock requests.
• A corresponding "owning work unit address" (RLPOWNID) at offset X'38'.

After finding the RLPL for the plan request, find the work unit number and the owning work unit address.
It might now be necessary to go backwards in the CTRACE to find the first occurrence of the work
number/RLPOWU combination. If the preceding trace entries are to be ignored, then scan forward using
the work number and RLPOWU. The last entry in the CTRACE for this combination should be an UNLOCK
request to release all locks.

Usually, entries follow this request, but they have a different work number/RLPOWU combination. Repeat
the process for these combinations.

RLIPL (request identify parameter list)
RLPL records can be used to diagnose lock contention problems between agents within Db2.

Bytes 8-12
The identify return code

Bytes 64-68
The requesting work unit ID

Bytes 72-76
IRLM subsystem name

Bytes 76-84
Db2 subsystem name

Bytes 132-140
Returned User Token

Byte 143
The reason code

Byte 144
Subsystem return code

RLQD (query parameter list)
The RLQD begins with four bytes of global information, starting at offset X'00'. The remainder of the RLQD
consists of alternate headers and data items. Each header contains a code that describes the type and
length of the data item that follows. Each header is four bytes long and the data items are variable in
length.

The following shows the content of the headers and the four types of data items. The last header in the
RLQD always contains X'80' in the second byte to indicate that the following data item is the last one in
the RLQD.

GLOBAL INFORMATION

270 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Bytes 1-4
Global information

HEADER INFORMATION
Byte 1

Type of data Item

X'01' Work unit summary data
X'02' Resource data
X'03' Lock data for held resource
X'04' Lock data for suspended request

Byte 2
Last data item

X'80' Last data item in the RLQD

Bytes 3 and 4
Length of data item DATA ITEM X'01': WORK UNIT SUMMARY DATA:

Bytes 1-8
Owning work unit ID

Bytes 9 and 10
Number of resources locked

Bytes 11 and 12
Number of suspended requests DATA ITEM X'02': RESOURCE DATA

Byte 1
Global scope flag X'80'

Bytes 5-40
Resource name DATA ITEM X'03': LOCK DATA FOR HELD RESOURCE

Bytes 1-4
RLB pointer

Bytes 5-13
Work unit ID

Bytes 13-29
State counters—8 halfword counters

Byte 29
Lock duration

Byte 30
Flags

X'80' Held lock is count by state
X'40' Held lock is resultant state

Byte 31
Current state DATA ITEM X'04': LOCK DATA FOR SUSPENDED RESOURCE:

Bytes 1-4
RLB pointer

Bytes 5-12
Work unit ID

Byte 13
The function that was requested. The functions are the same as in Word 1 Byte 2-Request Function
(FC)

Byte 14
Lock duration

Chapter 4. Diagnostic aids for single systems and data sharing 271

Byte 15
Flags

X'80' Suspended lock is count by state
X'40' Suspended lock is resultant state

IRLM SVC dump support
The IRLM uses SVC dump support to record errors or to dump its system status when an error occurs.

This SVC dump supports:

• Provides a machine-readable dump that can be submitted with an APAR.
• Ensures that dumps are issued for failures that occur within the IRLM address space, for failures that

occur while executing IRLM code, or for failures that occur in Db2 IRLM exits that are coded within a
Db2 address space.

• Allows a dump to be issued at any time; that is, a dump can be issued even when neither Db2 nor the
IRLM abends.

• Offers the performance advantage of offline dump formatting.
• Includes support for the MODIFY irlmproc,DIAG command, which controls when certain types of

IRLM diagnostic dumps are taken.

Related reference
MODIFY irlmproc,DIAG (z/OS IRLM) (Db2 Commands)

Diagnosing EDM pool space problems using traces
You can use IFCID 0133 and IFCID 0134 to diagnose and collect diagnostic information about EDM pool
space problems.

Procedure

1. Use an IFCID 0133 trace if you are getting abnormal terminations like the following one:

ABNDND0E5 RC0C90101 DSNGEDLC:5009

A trace for IFCID 0133 helps IBM Software Support diagnose similar problems in the future.
To use the IFCID 0133 trace, issue the following command before an abend occurs:

-START TRACE (PERFM) CLASS(30) IFCID(133)

If you want to turn off the trace, you must stop it explicitly.
2. Use an IFCID 0134 trace if you are getting EDM pool full conditions. After you start this trace, Db2

generates a dump the first time an EDM Pool Full condition is detected.
Db2 turns off this trace after the first abend dump is taken.

To start the trace for IFCID 0134, issue the following command:

-START TRACE (PERFM) CLASS(30) IFCID(134)

Results
After Db2 is refreshed, both traces will be inactive.

272 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_modifyirlmprocdiag.html

z/OS traces
z/OS traces, which are common to all products operating as formal subsystems of z/OS, are available for
use with Db2. For information on using and interpreting this trace facility, refer to the z/OS diagnostic
publications.

Writing Db2 log buffers to IFI
For diagnostic purposes, you might want to look at the contents of the Db2 log buffers as they are written
to the active log.

For example, you might want to capture log records from the log buffers during the time a job experiences
repeatable failures. You might want to interactively capture a copy of the log buffers which are written to
the active log, such that the copies of the log CIs can be transported or placed in a remote or local data
set.

To begin writing Db2 log buffers to IFI, an application can issue the following Db2 command via the IFI
COMMAND interface:

 -START TRACE(P) CLASS(30) IFCID(126) DEST(OPX)

Where:

• P signifies to start a Db2 performance trace. Any of the Db2 trace types can be used (accounting,
statistics, performance, audit, monitor, global).

• CLASS(30) is a user-defined trace class (31 and 32 are also user-defined classes).
• IFCID(126) activates Db2 log buffer recording.
• DEST(OPX) starts the trace to the next available internal Db2 online performance (OP) buffer. The size

of this OP buffer can be explicitly controlled by the BUFSIZE keyword of START TRACE. Valid sizes range
from 256 KB to 16M, and the size must be evenly divisible by 4.

When the START TRACE command takes effect, from that point forward, until Db2 terminates, Db2
recovery log manager (RLM) begins writing 4 KB log buffer VSAM control intervals (CIs) to the OP buffer
as well as to the active log. As part of the IFI COMMAND invocation, the application specifies an ECB to
be posted and a threshold to which the OP buffer is filled when the application is posted to obtain the
contents of the buffer. The IFI READA request is issued to obtain OP buffer contents.

Reading specific log records: IFCID 129 or IFCID 306 can be used with an IFI READS request to return a
specific range of log records from the active log into the return area the program has initialized. Enter the
following command in the IFI program:

CALL DSNWLI(READS,ifca,return_area,ifcid_area,qual_area)

IFCID 129 or IFCID 306 must appear in the IFCID area.

Related concepts
Programming for the instrumentation facility interface (IFI) (Db2 Performance)
Related reference
-START TRACE (Db2) (Db2 Commands)

Db2 stand-alone log services: change log inventory and print log
map

Db2 provides two offline (batch) utilities to assist with the management of the active logs, the archive
logs, and the bootstrap data set (BSDS).

Chapter 4. Diagnostic aids for single systems and data sharing 273

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_program4ifi.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_starttrace.html

The change log inventory (DSNJU003) enables you to change the contents of the bootstrap data set
(BSDS). The change log inventory utility is usually run with Db2 stopped because if it is run when Db2 is
active, inconsistencies can result. Use -STOP DB2 MODE(QUIESCE) to stop the Db2 subsystem, then run
the utility, and after that restart Db2 with the -START DB2 command.

The print log map (DSNJU004) utility enables you to print the contents of the bootstrap data set (BSDS).
For Db2 data sharing, DSNJU004 prints BSDS information about each Db2 subsystem in the data sharing
group. The print log map utility can run when Db2 is active or inactive. If it is run when Db2 is active, the
user's JCL and the Db2 started task must both specify DISP=SHR for the BSDS data sets.

Related reference
DSNJU003 (change log inventory) (Db2 Utilities)
DSNJU004 (print log map) (Db2 Utilities)

Diagnostic information in Db2 catalog tables
The Db2 catalog tables contain descriptive information about the data stored in Db2 databases.

These tables are updated by SQL statements. The catalog tables are useful diagnostic aids for the
following problems:

Authorization problems
If authorization problems occur, a message is issued. Look at the following catalog tables:

SYSIBM.SYSCOLAUTH
SYSIBM.SYSTABAUTH
SYSIBM.SYSDBAUTH
SYSIBM.SYSRESAUTH
SYSIBM.SYSPACKAUTH
SYSIBM.SYSPLANAUTH
SYSIBM.SYSUSERAUTH

Select the catalog table that corresponds to the format of the GRANT statement. This catalog table
includes information about who has authority and who can grant it.

Index problems
If you receive a message from a utility (message identifier DSNUxxxx) saying the index is incorrect
for a given table space, look first at the SYSIBM.SYSINDEXES table, which identifies the table
and database. After the table name is known, look at the SYSIBM.SYSTABLES catalog table, which
identifies the table space.

Catalog consistency
The sample library, SDSNSAMP, contains sample queries in member DSNTESQ that can be used to
check for consistency between catalog tables.

RECOVER utility failure
If the RECOVER utility fails, either a message is issued or an abend occurs. You can use the
REPORT utility to view recovery information that the RECOVER utility uses or you can review the
SYSIBM.SYSCOPY catalog table. Try to determine which data sets and volumes of image copies were
required by RECOVER.

Performance problems following RUNSTATS processing
If performance problems occur after running the RUNSTATS utility, check the data in the
SYSIBM.SYSPLAN and SYSIBM.SYSPACKAGE catalog tables to confirm that any plans and packages
associated with the table space on which the utility was run are rebound. The table spaces referred
to by the plans are recorded in SYSIBM.SYSPLANDEP. The tables referred to by the packages are
recorded in SYSIBM.SYSPACKDEP.

Performance problems following creation of a new index
If performance problems occur after a new index is created, check the data in the SYSIBM.SYSPLAN
and SYSIBM.SYSPACKAGE tables to make sure that any plans and packages that use the table
on which the index was created are rebound. The tables referred to by the plans are recorded in
SYSIBM.SYSPLANDEP. The tables referred to by the packages are recorded in SYSIBM.SYSPACKDEP.

274 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsnju003.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsnju004.html

Shortage of EDM pool space
If you receive a message saying that there is insufficient EDM pool space, check the SYSIBM.SYSPLAN
and SYSIBM.SYSPACKAGE catalog tables. Determine how many plans and associated packages are to
be running concurrently and/or the total number of plans and packages accessed during the lifetime
of Db2.

Check the KEEPDYNAMIC field in SYSIBM.SYSPLAN and SYSIBM.SYSPACKAGE to determine whether
plans and packages use the dynamic statement cache. Dynamic statement caching uses the EDM
pool, so using the cache without increasing the size of the EDM pool can lead to storage shortages.
Using a data space for cached dynamic statements can help alleviate storage shortages.

Conversion error during LOAD utility processing or during INSERT or UPDATE processing
If a conversion error during LOAD processing occurs, a message is issued. Check the
SYSIBM.SYSCOLUMNS catalog table to ensure that fields and columns being loaded are compatible.
You can also determine the cases in which nulls are permitted.

DASD problems
Check the SPACE column in the SYSIBM.SYSSTOGROUP, SYSIBM.SYSTABLESPACE, and
SYSIBM.SYSINDEXES catalog tables. The SPACE column is correct and current only if STOSPACE
utility was run. Furthermore, the SPACE column is only applicable to table spaces and indexes using
STOGROUPS, and is not applicable to user-defined data sets.

Related tasks
Calculating EDM pool sizes (Db2 Installation and Migration)

SQLDA extension for binary XML data
Although there is no embedded SQL support for binary XML host variables, it is possible to set up an
SQLDA to indicate that XML data is XML binary data.

For OPEN, EXECUTE, FETCH, and CALL statements, the application program sets the fields in the SQLDA
to provide Db2 with information about input or output host variables in the application program.

To describe a binary XML host variable, the SQLDA has the following format and content:

• A binary XML host variable that is not a file reference variable requires an SQLDA with two sets of
SQLVARs.

• In a base SQLVAR, the SQLTYPE field is set to BLOB (404/405) and the SQLLEN field is set to 0
• The SQLNAME field of the base SQLVAR is set as follows: The length of SQLNAME is 8. The first four

bytes of the data portion of SQLNAME are X'00000000'. The fifth byte is a flag field that indicates the
type of host variable. The values of this field are as follows:

– X'01'- XML variables (XML AS BLOB, XML AS CLOB, XML AS DBCLOB)
– X'03'- binary XML variables

There is no change to the sixth to eighth of the SQLNAME field of the base SQLVAR

• In an extended SQLVAR, the SQLLONGLEN field is set to the length attribute of a binary XML variable.

To describe a binary XML file, the file reference variable only requires an SQLDA with one set of SQLVARs.
The SQLTYPE field of a base SQLVAR is set to BLOB_FILE (916/917). The SQLNAME field of base SQLVAR
is set to the same value as that of a binary XML variable.

There is no change to the output SQLDA for DESCRIBE and PREPARE INTO statements.

The binary XML bits on the host variables of all other data types are ignored.

Chapter 4. Diagnostic aids for single systems and data sharing 275

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_calcedmpoolsize.html

Db2 utilities for troubleshooting
The Db2 utilities (UT) subcomponent provides a number of utilities helpful for diagnosing various Db2
problems.
CHECK DATA

CHECK DATA performs the following functions:

• Reports information about each referential constraint violation it detects and offers options to copy
invalid rows to other tables and to delete invalid rows

• For tables that contain LOB columns, checks for consistency between the base table space and the
LOB table space

• For tables that contain XML columns, checks for consistency between the base table space and the
XML table space

• For tables that contain XML columns, checks XML data integrity and validates against XML schemas
for conformance.

For more information, see CHECK DATA (Db2 Utilities).

CHECK LOB
CHECK LOB checks large object (LOB) table spaces for structural defects and invalid LOBs. For more
information see CHECK LOB (Db2 Utilities).

CHECK INDEX
CHECK INDEX allows one or more indexes to be checked simultaneously and issues warning
messages when it finds an inconsistency. For more information, see CHECK INDEX (Db2 Utilities).

COPY
The COPY utility makes full or incremental copies to sequential data sets, including full imaged copies
of index spaces. It produces as many as four copies of the image into four different data sets: two for
the local site and two for the recovery site. Incremental copies contain only pages that have changed
since the prior copy function; full copies contain the entire table space. For more information, see
COPY (Db2 Utilities).

DIAGNOSE
The DIAGNOSE utility enables Db2 service representatives to diagnose problems with utilities. Up to
32 activities can be monitored through the TYPE parameter. These activities are defined as needed by
the service staff. The DIAGNOSE can also be used for the following activities:

• Obtaining dumps for any utility abend, overriding any considerations that might suppress such a
dump

• Send OBD and SYSUTIL information to SYSPRINT for review (DISPLAY option)
• Dumping both the Db2 MEPL and the application space (DSNUTILB) MEPL to SYSPRINT without

forcing an SVC dump (DISPLAY MEPL option)
• Dumping an entry for a database in SYSIBM.SYSDATABASE to SYSPRINT (DISPLAY option)
• Forcing Db2 to abend after a specific Db2 message is specified or when a module trace ID is

encountered (ABEND option with the MESSAGE or TRACEID option)

For more information, see DIAGNOSE (Db2 Utilities).

DSN1COMP
DSN1COMP is a stand-alone utility that estimates space savings to be achieved by Db2 data
compression in data sets. The utility runs on data sets that contain uncompressed data and do not
contain index spaces.

The DETAIL and SHOWTREE parameters are provided for use by IBM support centers to examine
dictionary structures:

• the DETAIL option provides performance related information
• the SHOWTREE option prints the formatted dictionary tree to the SYSPRINT output data set

For more information , see DSN1COMP (Db2 Utilities).

276 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_checkdata.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_checklob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_checkindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_copy.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_diagnose.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1comp.html

DSN1COPY
The DSN1COPY stand-alone utility is used for copying VSAM and sequential data sets, performing
validity checking on data, index and dictionary pages, and translating object identifiers (OBIDs) to
help in moving data sets between different systems. It also prints hexadecimal dumps of data sets
and databases.

DSN1COPY also reports if generic clustering is lost in certain catalog table spaces. Contact IBM
Support if this occurs. For more information see DSN1COPY (Db2 Utilities).

DSN1LOGP
The DSN1LOGP stand-alone utility reads the recovery log and formats its contents for display. For
data sharing, DSN1LOGP prints log records merged from the logs of more than one Db2 subsystem.
Either a summary or a detailed report can be requested. For more information see DSN1LOGP (Db2
Utilities).

DSN1PRNT
DSN1PRNT stand-alone is used for printing hexadecimal dumps of table spaces, index spaces, image
copy data sets, and sequential data sets, and formats the pages of these data sets. For more
information see DSN1PRNT (Db2 Utilities).

DSN1SDMP
The purpose of the DSN1SDMP utility, intended to be used under the direction of IBM Support, is
to take dumps and write trace records for diagnostic purposes in a simple and timely manner. The
DSN1SDMP utility consists of two features:

• It can select on any data within a trace record and, if the selection passes, can optionally cause
a dump. This function captures the first-failure data much closer to the time of error than was
possible before.

• It can also write Db2 trace records to an z/OS data set, rather than to z/OS SMF or GTF data sets.
This allows trace data to be used more quickly for diagnostic purposes.

For more information, see DSN1SDMP (Db2 Utilities).

MERGE COPY
The MERGECOPY utility can either merge several incremental copies to form a combined incremental
copy or merge one or more incremental copies with a full copy to form a combined full copy.
MERGECOPY can produce up to four image copies. For more information, see MERGECOPY (Db2
Utilities).

QUEISCE
The QUIESCE utility establishes a point of consistency, a quiesce point, for a table space.

The point of consistency is recorded as the current log RBA in the SYSIBM.SYSCOPY catalog table and
can be used by RECOVER TORBA or TOLOGPOINT. TOLOGPOINT can accept an RBA or LRSN. In a data
sharing group, the QUIESCE utility quiesces an object for the entire group and records a LRSN that can
be used by RECOVER TOLOGPOINT.

For more information, see QUIESCE (Db2 Utilities).

RECOVER
The RECOVER utility recovers entire table spaces and/or index spaces, a data set within a table space
or a partition of an index space, or a range of pages within a table space or index space.

To recover a table space, RECOVER looks at the ZPARM to determine if the current system is at the
local site or the recovery site and recovers from copies of data registered on the current system.

If you specify the LOCALSITE parameter, only local site image copies are used (even if the site is the
recovery site). If you specify the RECOVERYSITE parameter, only recovery site image copies are used
(even if the site is the local site).

For more information, see RECOVER (Db2 Utilities).

REBUILD INDEX
The REBUILD INDEX utility rebuilds one or more indexes within a table space, all indexes within
a table space, or one or more logical or physical partitions of a partitioning index. To rebuild an

Chapter 4. Diagnostic aids for single systems and data sharing 277

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1copy.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1logp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1logp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1prnt.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1sdmp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_mergecopy.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_mergecopy.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_quiesce.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_recover.html

index, REBUILD INDEX deletes the erroneous index and builds a new index from the table. For more
information , see REBUILD INDEX (Db2 Utilities).

REPAIR
The REPAIR utility is helpful for the diagnosis and repair of inconsistent data. Use the REPAIR utility
with extreme caution; incorrect use of REPAIR can cause the loss of data integrity. The REPAIR utility
functions useful for diagnosing and repairing problems are: LOCATE, VERIFY, REPLACE, DUMP, SET,
and REPAIR DBD. For more information, see REPAIR (Db2 Utilities).

REPORT
The REPORT utility can help to determine the recovery history of a table space. It reports the following
information:

• The SYSIBM.SYSCOPY catalog table recovery records (REPORT can print all the SYSCOPY records in
the local system, the recovery system, or both.)

• Log ranges from the SYSIBM.SYSLGRNX directory table.
• Log data sets from the bootstrap data set (BSDS)
• Names of all table spaces in a table space set.

For more information, see REPORT (Db2 Utilities).

Related concepts
Basic information about Db2 utilities (Db2 Utilities)
Db2 utilities (Introduction to Db2 for z/OS)

Db2 commands for troubleshooting
You can use commands to perform the tasks that are required to control and maintain your Db2
subsystem.

DISPLAY DATABASE LRSN command for troubleshooting
The Db2 command DISPLAY DATABASE with the LRSN keyword displays the commit LRSN and the read
LRSN for a particular page set or partition.

The read LRSN is the LRSN at which read interest is acquired on a page set or partition. The commit LRSN
is the LRSN of the oldest write claim on a page set or partition. This information can be used to diagnose
performance issues that are related to over-locking or inefficient space reuse.

LRSN
Specifies that the Db2 database manager displays the commit LRSN and the read LRSN for a
particular page set or partition. The LRSN keyword cannot be used with keywords other than
DATABASE, SPACENAM, or PART.

The LRSN values are displayed as local timestamps, in this format:

mm/dd/yyyy hh:mm:ss

The parts of the displayed timestamp are the numeric values for the month, day, year, hour, minute,
and second.

Depending on where the page set is accessed, the commit LRSN and read LRSN might not be available
from the data sharing member that issues the command. When the commit LRSN or read LRSN is not
available, N/A is displayed in the output.

The following example command displays the commit LRSN and the read LRSN for partition 1 of all table
spaces whose names begin with TSNAME, in all databases whose names begin with DBNAME.

-DISPLAY DATABASE(DBNAME*) SPACENAM(TSNAME*) PART(1) LRSN

278 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_rebuildindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_repair.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_report.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_introutilities.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_controlwithutilities.html

The output looks similar to this output:

DSNT360I -DB2A ***********************************
DSNT361I -DB2A * DISPLAY DATABASE SUMMARY
* GLOBAL
DSNT360I -DB2A ***********************************
DSNT362I -DB2A DATABASE = DBNAME1 STATUS = RW
DBD LENGTH = 383600
DSNT397I -DB2A
NAME TYPE PART LRSN TIMESTAMP
-------- ---- ----- --------------------------- ---------------------
TSNAME1 TS 1 COMMIT 00CD534D63D8BA000000 6/18/2016 15:23:49
 READ 00CD535930B89F000000 6/18/2016 16:16:37
******* DISPLAY OF DATABASE DBNAME1 ENDED **********************
DSN9022I -DB2A DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

DISPLAY THREAD SERVICE command for troubleshooting

The DISPLAY THREAD(*) SERVICE command helps to identify and rectify some CPU stalls. The following
options are available:

SERVICE(WAIT)
Displays threads that are in a long-term suspend. If a thread is suspended on a latch, the command
displays latch details, and Db2 attempts to boost the holder to relieve the latch contention. If the
thread is suspended on a lock, the command displays lock detail information.

SERVICE(STG)
Displays the information for SERVICE(WAIT), with an additional message that outlines the agent local
storage consumption for each thread displayed.

For more information, see -DISPLAY THREAD (Db2) (Db2 Commands).

Related concepts
Commands for controlling Db2 and related facilities (Introduction to Db2 for z/OS)
Related information
About Db2 and related commands (Db2 Commands)

Program call linkages
Db2 uses z/OS program calls as one form of program invocation.

Db2 defines program call linkage to z/OS with one of these program call (PC) instructions:
PC-ss

Permits an address "space switch"
PC-cp

Retains an address space as "current primary" and does not cause a space switch

The z/OS architecture defines three addressable address spaces—primary, secondary and home. If
a space switch occurs (because of the PC-ss instruction mentioned above), one address space is
considered primary and another is considered secondary. If a space switch does not occur (because a
PC-cp instruction is used), the primary and secondary address spaces are the same (that is, one address
space is considered both primary and secondary).

The home address space is always present, and contains the dispatchable unit of work before any
program calls are issued. If a space switch does not occur, then the home address space is also both the
primary and secondary address space. If a program call with a space switch is issued by the dispatchable
unit (using PC-ss), the primary space becomes the secondary address space and the "switched to"
address space becomes the primary address space. If the dispatchable unit issues another PC with a

Chapter 4. Diagnostic aids for single systems and data sharing 279

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displaythread.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_controlwithcommands.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_commanddescriptions.html

space switch, the previous primary becomes the secondary and the "switched to" address space becomes
the new primary address space

Db2 uses PC-cp to get into supervisor state and key 7. Both PC-cp and PC-ss are used to enter 31-bit
addressing mode (AMODE). In addition, PC-ss defines a new primary address space.

Each resource manager defines its PC linkage relationships using either (1) the RMVT and RMFT control
blocks for RMRQ calls from one resource manager to another or (2) the RAL and FVL control blocks for
RARQ calls to resource managers from an application.

TSO attachment facility diagnostic aids
The TSO attachment facility provides two diagnostic aids, SPUFI diagnostic panels and ABEND
subcommand of the DSN command processor.

“TSO attachment facility traces” on page 261 describes three other TSO attachment facility tools: DSN
trace stream, CLIST trace, and SPUFI trace stream.

SPUFI diagnostic panels
When activated, SPUFI diagnostic panels appear on the terminal as SPUFI is run. These panels display
significant variable names and their assigned values (if any). These panels can be examined to verify that
the information is correct.

About this task
Using this option of the TSO maintenance system to change program variables can disrupt normal SPUFI
operation.

Procedure
To use the SPUFI diagnostic panels:
1. Display the DB2I primary menu (DSNEPRI).
2. Select OPTION 0, which is not shown on the menu.
3. Press Enter to pass by the panel that introduces the Db2 TSO MAINTENANCE SYSTEM. The next panel

offers choices between several TSO attachment facility tracing mechanisms.
4. Select the DISPLAY SPUFI option (option 4). Specify any options that you want, such as the SPUFI

CSECTs to trace.
5. With the SPUFI diagnostic panels activated, return to the DB2I primary menu and select the SPUFI

option.
6. On the SPUFI panel, enter the parameters required to execute an SQL statement. At that time, the

first diagnostic panel is displayed. A sample of a SPUFI panel (with some of the variables assigned) is
shown in the following figure.

7. Optional: Complete the following steps:

• Change the display or trace options identified at top.
• Print a screen image by pressing the PF key that was defined for that purpose (the ISPF print key).
• Change the displayed panel by altering the last two characters in the field identifying the currently

displayed panel. Then, press Enter.

For example, if the panel name is DSNEXP00, change 00 to some other valid number (20, 21, 30, 55,
56, 70, 80). To execute from the point at which you left off, press Enter.

280 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Results
DSNEXP55 SPUFI INTERNAL VARIABLE DISPLAY
===>
DSNE599I DSNESM55 - BEGIN EXECUTION
CHANGE DISPLAY OR TRACE OPTIONS BELOW:
 1 TRACE SPUFI ===> YES YES STARTS/CONTINUES TRACE
 2 DISPLAY SPUFI ===> 123 0 0 ENTER 0 TO 99 OR OVER 100
 3 DISPLAY PANEL ===> DSNEXP55 ENTER SPUFI PANEL NAME
INTERNAL VARIABLES FROM DSNDSEB CONTROL BLOCK:
10 PREFIX ===> H443722 40 ILRCL ===> 80 70 ACTION ===> 4
11 LIB ===> DSN 41 IVOL ===> 71 ACODE ===> 1
12 TYPE ===> PLS 42 ORCFM ===> FB 72 RCODE ===> 0
13 MEMB ===> SPUFIIN 43 XXXXX ===> 73 FLAGS ===> 000000F4
14 OTHER ===>
15 OUTPU ===> SEQ.DS
16 ISTAT ===> C0 46 OSTAT ===> 00 76 OCLAS ===> SYSDA
17 IMEMB ===> SPUFIIN 47 OMEMB ===> 77 PGW ===> 0
18 IDSN ===> H443722.DSN.PLS 78 OLRCL 999
19 ODSN ===> 70 OBSIZ 999
20 MODID ===> DSNESM55 80 MSGID ===>
21 DAIRF1 ===> ...
22 DAIRF2 ===> ...
 ..

Figure 79. Sample SPUFI diagnostic panel

ABEND subcommand of the DSN command processor
The TSO attachment facility provides an ABEND subcommand that enables users to request and obtain a
dump.

About this task
Use this subcommand when a problem is suspected (such as incorrect output) with another DSN
subcommand, and the problem does not cause an abend and a dump to be generated.

Important: The ABEND subcommand is used for diagnostic purposes only, and is intended to be used
only under the direction of IBM Support. Use it only when diagnosing a problem with DSN or Db2.

Procedure
To use this subcommand:
1. Allocate a SYSUDUMP data set.
2. Reissue the DSN subcommand you suspect is involved in the problem.
3. After receiving the DSN prompt, type ABEND.
4. After TSO issues a message saying that DSN has ended, press ENTER and wait.
5. After TSO issues a "READY" message, the dump can be browsed or printed.

Results
Sometimes, the information dumped is not the information that you want. Always use the ABEND
subcommand as soon as possible after a problem is re-created to increase the chances of obtaining
meaningful data. Do not press the ATTENTION key before issuing the ABEND subcommand; usually, the
data is lost.

Related reference
DSN (TSO) (Db2 Commands)
ABEND (DSN) (Db2 Commands)
Printing and analyzing dumps

Chapter 4. Diagnostic aids for single systems and data sharing 281

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_dsn.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_abend.html

You might need to print and analyze a memory dump to help to diagnose a problem.

SYS1 service aids
Internal resource lock manager (IRLM) diagnostic aids include SVC dumps of the IRLM address space
in the SYS1.DUMPxx data sets, entries on the SYS1.LOGREC data set, and output from the MODIFY
…,STATUS command.

Other IRLM diagnostic aids include:

• z/OS component trace (CTRACE) entries.
• Db2 performance trace classes 6 and 7.
• IRLM messages and codes.

Related concepts
IRLM - Db2 activity trace
IRLM uses the z/OS component trace (CTRACE) to trace the flow of activity between IRLM and Db2.
Using the performance trace for diagnosis
While the performance trace is primarily a tuning aid, it can sometimes be useful for diagnosis because
degraded performance can also indicate a Db2 problem, one for which you would specify the PERFM
keyword in building a keyword string to describe the problem.
Related reference
Facilities and tools for Db2 performance monitoring (Db2 Performance)

SYS1.DUMPXX
The IRLM address space is dumped to a SYS1.DUMPxx data set with an SVC dump whenever the IRLM, or
an SRB that is related to the IRLM, abnormally terminates.

You can use IPCS to format and display a dump of an IRLM address space. To view a list of parameters
that you can use to extract information from the dump, issue this command in IPCS:

VERBX IRLM 'HELP'

The IRLM verb has a parameter, IRLMNM, which is the IRLM subsystem name. The default is IRLM. If you
are using a subsystem name other than the default, you need to specify the parameter.

SYS1.LOGREC
When IRLM detects a program error, it generates an entry on the SYS1.LOGREC data set.

Use the IFCEREP1 service aid to obtain a listing of the SYS1.LOGREC data set containing the
SYS1.LOGREC entries pertaining to the IRLM. For more information about this service aid, refer to the
z/OS diagnostic techniques publication.

Output from the MODIFY command
When you diagnose IRLM problems, you need to know the levels of the IRLMs to which your Db2
subsystems are connected. This is especially important in the data sharing environment, where there
might be several IRLMs, all at different levels.

The output from the command MODIFY irlmproc,STATUS,ALLI gives you information about the
service level and function level of each IRLM in a data sharing group. The service level is the last APAR
applied to the IRLM, or the release level of the IRLM, if no APARs have been applied. The function level is
a number that IRLM increments when service to IRLM introduces a new function. The first two characters
of the function level indicate the IRLM version. For example, 2. indicates IRLM 2.2. For a data sharing
group, the output also includes the minimum function level and service level that the group can tolerate.

282 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_usetools2monitorperformance.html

To determine the levels of the IRLMs in the group, you issue the command:

MODIFY IRLMPR21,STATUS,ALLI

It is also important to know the maintenance level of each IRLM module. To display this information, issue
this modify command:

MODIFY irlmproc,STATUS,MAINT

Related reference
MODIFY irlmproc,STATUS (z/OS IRLM) (Db2 Commands)

Data sharing problem diagnosis
Problem diagnosis in the data sharing environment is similar to diagnosing problems that occur in a single
Db2 subsystem. The key difference is that the actions required to identify and resolve problems must be
applied to more than one Db2 subsystem.

Data sharing environment
Data sharing requires a z/OS sysplex, a group of central processor complexes (CPCs) running z/OS that are
connected through channel-to-channel (CTC) communications or through a coupling facility.

Data sharing uses IBM zSystems Parallel Sysplex® technology. The sysplex technology is supported by
the z/OS Cross-System Coupling Facility (XCF) and Cross-System Extended Services (XES). Cross-System
Coupling Facility services allow authorized applications on one system to communicate with applications
on the same system or on other systems. Cross-System Extended Services allow authorized applications
or subsystems that are running in a sysplex to share data by using a coupling facility.

In Db2 data sharing, Db2 subsystems belong to a Db2 data sharing group. Each Db2 subsystem, or group
member, has the same direct access to the same data as any other member of the data sharing group.

Group members share databases, a single Db2 catalog and directory, and a single z/OS ICF catalog. Each
member has its own IRLM, buffer pool, EDM pool, workfiles, log, and local BSDS. The sysplex provides
support for other facilities that are required for data sharing that include a global lock manager, and
shared storage.

Hangs in a data sharing environment
In a data sharing environment, there can be two types of hangs: single system hangs and group hangs
(multi-system hangs).

A single system hang means that the agent that is hanging is contending for resources that are held by
other agents on the same Db2 member. A single-system hang can be diagnosed with a console dump of
only the one Db2, and its associated IRLM.

A group hang means that the agent or agents that are hanging are contending for resources that are held
by other agents on other members. Diagnosing a group hang requires console dumps from multiple Db2
systems, and their associated IRLMs.

If a hang is in a sysplex and there is any doubt of the extent of the hang, take dumps of all instances of
Db2 and their IRLMs.

If applications hang in the data sharing environment, there are several places where the problem can
occur. The problem location might be:

• The local Db2/IRLM
• A peer member Db2/IRLM
• In the z/OS XES component within the sysplex

The probable cause for a hang in the data sharing environment is a problem with one of the following
functions:

Chapter 4. Diagnostic aids for single systems and data sharing 283

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_modifyirlmprocstatus.html

• P-lock negotiation
• Global locking
• IRLM Notify message sending
• Making the transition from group buffer pool simplex mode to duplex mode, or from duplex mode to

simplex mode

Regardless of the type of hang or the symptoms of the hang, you can diagnose it by using the procedures
in “WAIT/LOOP keywords” on page 19.

Timeouts and deadlocks in a data sharing environment
A timeout or deadlock in the data sharing environment is similar to one in the non-data sharing
environment, except that the problem might be caused by a lock that is held by a peer group member
rather than a local or remote user on the same subsystem.

When a deadlock or timeout occurs, you receive one or more of the messages DSNT318I, DSNT375I,
DSNT376I, or DSNT377I. Those messages display the holder of the lock and its Db2 member name and
provide detailed diagnostic guidance.

Use the command DISPLAY DATABASE to gather information about the lock status of all members of the
data sharing group. Specify the LOCKS keyword for information about transaction locks for table spaces,
tables, index spaces, and partitions. Specify the CLAIMERS keyword for information about claims on table
spaces, tables, index spaces, and partitions.

Issue the IRLM MODIFY irlmproc,DIAG,HANG command to collect SVC dumps for all the IRLM instances
in the sysplex. This command should be used only under the direction of your IBM service representative.
This command prevents the TIMEOUT/LOCK SRB from running until z/OS dump services reschedules it.
After this command runs, you must ensure that IRLM returns to normal processing.

You can activate statistics trace class 3 or performance trace class 6 to get information about timeouts
and deadlocks. IFCID 0196 gives timeout statistics, and IFCID 0172 gives deadlock statistics. Start the
trace on the member where the application with timeout or deadlock problems runs. When a timeout or
deadlock occurs, Db2 gathers information from all other members of the data sharing group.

Related reference
-DISPLAY DATABASE (Db2) (Db2 Commands)
Trace field descriptions (Db2 Performance)
Related information
DSNT318I (Db2 Messages)
DSNT375I (Db2 Messages)
DSNT376I (Db2 Messages)
DSNT377I (Db2 Messages)

IRLM delays in a data sharing environment
IRLM can experience delays in child lock propagation

The following events can cause IRLM to experience delays in child lock propagation:

• Member recovery

XES delays work but does not inform IRLM of the failed connection.
• Loss of connectivity of a lock structure

XES delays work but does not request IRLM to rebuild or disconnect a lock structure.
• XES is slow to process a lock request for an undetermined reason.

IRLM can also experience a delay in P-lock negotiation. A common reason for a delay in P-lock negotiation
is that an active log is full, and Db2 is waiting for the operator to mount an archive tape.

284 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displaydatabase.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_tracefields.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnt318i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnt375i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnt376i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnt377i.html

If your data sharing system experiences delays in child lock propagation or P-lock negotiation, you can
request dumps of all IRLM instances in the data sharing group when a delay for child lock propagation
lasts 45 seconds or more, or a delay for P-lock negotiation lasts two minutes or more. Issue this console
command to request IRLM dumps for delays in child lock propagation:

MODIFY irlmproc,DIAG,DELAY

Issue this console command to request IRLM dumps for delays in P-lock negotiation:

MODIFY irlmproc,DIAG,PLOCK

Issue this console command to request IRLM dumps for either type of delay:

MODIFY irlmproc,DIAG,ALL

You need to issue MODIFY irlmproc,DIAG commands on only one member of a data sharing group.
These commands are sent to all peer members to capture the same dumps from each member. A
MODIFY irlmproc,DIAG command is active for only a single incident on a single member. After dump
processing is triggered for a specific incident, dump collection for later incidents of that type are disabled.
If diagnosis of another incident is needed, issue the MODIFY irlmproc,DIAG command again.

Related concepts
Concurrency and locks in data sharing environments (Db2 Data Sharing Planning and Administration)

Inconsistent data in a data sharing environment
As is true in the non-data-sharing environment, problems with inconsistent data in the data sharing
environment might be caused by broken pages, inconsistent data pages and index pages, or down-level
data sets.

One cause of inconsistent data occurs only in the data sharing environment: Db2 might be improperly
maintaining communication or data coherency between members. If more than one group member
returns incorrect output, it might be an indication of a buffer pool coherency problem. For diagnosis of this
problem, you must provide merged logs from all members of the data sharing group. Use the DSN1LOGP
utility to obtain them. To format the merged logs, include the following in your DSN1LOGP job:

• A GROUP DD statement in the JCL. This statement names a BSDS for one member of the data sharing
group. Db2 can find the rest of the information from that one BSDS.

• The option LRSNSTART in the DSN1LOGP statement.

You might also be asked to provide the following for all members of the data sharing group:

• A dump of the group buffer pool (GBP) and shared communications area (SCA) list structures.

You can use an z/OS DUMP command similar to this one to obtain a dump of each group buffer pool:

DUMP COMM=(GBPx-dump-name)
nnn,STRLIST=(STRNAME=GBPx-structure-name,
 CONNAME=conname,ACCESSTIME=NOLIMIT,
 (STGCLASS=ALL,COCLASS=ALL,EDATA=SER)),END

To obtain a dump of the shared communications area, use a DUMP command similar to this one:

DUMP COMM=(SCA-dump-name)
nnn,STRLIST=(STRNAME=SCA-structure-name,
 (LISTNUM=ALL,EDATA=SER)),END

• Dumps of all Db2 and IRLM address spaces
• Console logs
• SYS1.LOGREC data sets

Related tasks
Identifying Db2 data inconsistency problems

Chapter 4. Diagnostic aids for single systems and data sharing 285

https://www.ibm.com/docs/en/SSEPEK_12.0.0/dshare/src/tpc/db2z_improveconcurrencyds.html

Data inconsistency problems occur for various reasons, including internal Db2 problems, I/O errors, or
system problems.

Query parallelism problem diagnosis
Query parallelism is the ability to process read-only queries in parallel. Queries that are most likely to be
processed in parallel have access paths that perform sequential prefetch against page sets that consist of
multiple data sets.

Db2 uses query CP parallelism. A single Db2 subsystem on an z/OS system with multiple processors uses
multiple parallel tasks to process a query.

Db2 uses multiple modes of query parallelism:

DB2 uses multiple modes of query parallelism:

Query I/O parallelism
Db2 prefetches data from several partitions of a table space at one time. A single processor processes
the first request from each partition, then the second request from each partition, and so on. The
processor does not wait for I/O, but there is only one processing task.

Query CP parallelism
A single Db2 subsystem on an z/OS system with multiple processors uses multiple parallel tasks to
process a query.

Related concepts
Parallel processing (Db2 Performance)
Related tasks
Enabling parallel processing (Db2 Performance)
Disabling query parallelism (Db2 Performance)

Determine if a query problem is related to parallelism
The first question to ask when you encounter a problem in a parallel query is whether that problem is
related to parallelism. To answer that question, disable all parallelism, then try the query again.

If the problem occurs whether or not you have parallelism enabled, you can assume that it is unrelated
to parallelism. If the problem occurs only with parallelism enabled, follow these steps to determine which
type of parallelism is causing the problem:

1. Disable all parallelism. Run the problem query again.
2. If the problem still occurs, enable CP parallelism. Run the query again.

When you run the query with CP parallelism, issue the following commands and collect the output:

DISPLAY BUFFERPOOL
The output shows the buffer pool thresholds for parallelism. Issue this command for all constrained
buffer pools.

DISPLAY THREAD
Issue this command if you suspect a hang problem. The output shows PT in the status column for
parallel threads. It also indicates which task is the originating task.

Disabling all parallelism
To disable parallelism, take one of the following actions:

• For queries that use static SQL statements, bind the plan or package that contains the queries with the
option DEGREE(1).

• For queries that use dynamic SQL statements, run the following SQL statement before you run the
queries:

SET CURRENT DEGREE='1'

286 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_parallelprocessing.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_enableparallelprocess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_disablequeryparallel.html

Disabling CP Parallelism
To disable CP parallelism and leave I/O parallelism enabled

1. Determine which processors are online by issuing the z/OS command:

D M=CPU

2. Vary all but one processor offline by issuing the z/OS command:

CF CPU(n),OFFLINE

Disabling parallelism by using the resource limit facility
If you use the resource limit facility (RLF), you can disable CP parallelism for static or dynamic SQL
statements by specifying the RLST values shown in the following table. Use RLF to disable parallelism for
static statements only for diagnosis.

Table 37. RLST values for disabling parallelism

RLFFUNC RLFBIND Effect

4 blank Disable CP parallelism for dynamic statements

4 S Disable CP parallelism for static plans or packages

4 A Disable CP parallelism for static and dynamic statements

These RLST values do not affect the way RLF governs the processor time for dynamic statements. To use
RLF to change the parallelism mode for a plan or package, you must rebind the plan or package while RLF
is active. For data sharing, RLF must be active on the Db2 member where the rebind occurs.

Related concepts
Parallel processing (Db2 Performance)
Related tasks
Disabling query parallelism (Db2 Performance)
Enabling parallel processing (Db2 Performance)
Related reference
CURRENT DEGREE special register (Db2 SQL)
-DISPLAY BUFFERPOOL (Db2) (Db2 Commands)
-DISPLAY THREAD (Db2) (Db2 Commands)

Types of parallelism problems
Parallel queries can experience several types of problems.
Hangs

The diagnostic procedures for hangs during parallel processing are similar to those for hangs during
other types of Db2 processing.

One useful source of diagnostic information is the output that you receive when you run DSNWDMP
with option DS=3 on dumps of the Db2 master address spaces. With DS=3, you can see what parallel
tasks were running when the hang occurred.

Incorrect output

Diagnosing incorrect output problems for query parallelism is similar to diagnosing problems when
there is no parallelism.

If you collected trace data for IFCID 0221, you can check that data for parallel processing errors.
Examine the page range or key range values in the QW0221D sections. There is a QW0221D section
for each parallel task. Ensure that the ranges in any two QW0221D sections do not overlap.

Chapter 4. Diagnostic aids for single systems and data sharing 287

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_parallelprocessing.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_disablequeryparallel.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_enableparallelprocess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_currentdegree.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displaybufferpool.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displaythread.html

If the query produces output, you can obtain further diagnostic information by forcing a dump
in CSECT DSNXROUA while the query runs. To do that, run utility DSN1SDMP with these control
statements:

* START A GLOBAL TRACE TO TRACE MODULE ENTRIES AND EXITS
START TRACE=GLOBAL CLASS(3) DEST(OPX)
FOR(1)
* ABEND WHEN THE SELECT CRITERIA ARE MET
ACTION(ABENDTER(00E60100))
SELECT
* FIND THE LOCATION OF THE EVENT CODE
 P2,06
* ABEND WHEN THE EVENT CODE IS DSNXROUA ENTRY
 DR,00,X'023A'

Next, run the query and collect the resulting dump data.

No parallelism

The access path that Db2 chooses for a query is one factor that determines whether the query uses
parallelism. For example, in a correlated subquery, the inner table access (single row retrieval) is not a
good candidate for parallelism because the overhead of parallelism is too high. Db2 does not support
parallel access for certain other access paths, such as an IN-list index scan.

Even when the access path is right for parallelism, Db2 might choose sequential access instead. Some
reasons for this are:

• Host variable values limit the query to a single partition.
• ESA sort facility hardware is not available.
• Buffer pool resources are constrained.

If you think a query that is not being processed in parallel should be, collect the following information:

• A trace for IFCID 0221. This trace indicates whether buffer pools are constrained. IFCID 0221
records are written when performance trace class 8 is on.

• An SVC dump of the database services address space (ssnmDBM1).
• Execute the EXPLAIN statement for the problem queries and select all columns from the

PLAN_TABLE. For column IBM_SERVICE_DATA, select HEX(IBM_SERVICE_DATA). The information
in the PLAN_TABLE indicates whether the access path for the statement is right for parallelism.

ABENDs
When a parallel task abnormally terminates, the originating task returns SQLCODE -904 with reason
code X'00E30101'. Db2 generates no dump for the originating task. Obtain the dump that is
generated for the parallel task and analyze it as you would any other dump that is produced during a
query.

Related concepts
WAIT/LOOP keywords
The symptoms for WAIT and LOOP keywords might not be distinguishable at first.
Related tasks
INCORROUT modifier keyword
Use this modifier keyword if the type-of-failure keyword is INCORROUT.
Related reference
Format dumps by using the DSNWDMP statement
You can use the DSNWDMP statement to specify the dump records to be used as input, and causes the
Db2 dump formatter (DSNWDPRD) to be invoked, which formats the specified Db2 control blocks.

Diagnose parallelism problems by using traces
Db2 generates a number of trace records that are useful in diagnosing parallelism problems.

288 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

The IFCIDs for the trace records are 0221, 0222, and 0231. Those IFCIDs are in performance trace class
8. See the IFCID flat file (DSNWMSGS) for explanations of those trace records.

Related concepts
Trace field descriptions (Troubleshooting problems in Db2)

Chapter 4. Diagnostic aids for single systems and data sharing 289

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_tracefielddescriptions.html

290 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Chapter 5. Diagnostic aids for distributed data
Use traces, error messages, and -DISPLAY THREAD command output to diagnose distributed problems.

Diagnosing distributed data facility (DDF) failures
It is important to understand the flow of distributed requests and the procedures that can be used for
doing problem determination for Db2 for z/OS in a distributed environment.

Distributed SQL application flow for VTAM connections
When the application program (the requester) issues the first SQL statement that references a remote
database system, an LU6.2 conversation must be established with the remote database system (the
server).

The APPC ALLOCATE verb is used to establish a conversation. When you look at a System Network
Architecture (SNA) buffer trace, an ALLOCATE verb can easily be spotted, because the first path
information unit (PIU) transmitted after the ALLOCATE is marked with the begin bracket (BB) flag. Path
information unit is the structure for transmitting data through the network.

Once the LU6.2 conversation is allocated, the local Db2 system builds a message that represents the
application's SQL statement. The APPC SEND_DATA verb is used to send the SQL statement to the server
for processing. During transmission, the message that represents the SQL statement is broken up into
path information units (PIUs), where the SQL data in each path information unit (PIU) is no larger than
the request unit (RU) size that is selected by the communication administrator. If the data does not fill a
complete PIU, the data remains in the APPC buffer until the PREPARE_TO_RECEIVE verb is issued.

System Network Architecture (SNA) pacing is what the receiver application can use to control the rate
at which the sending application transmits data. A pacing window can be defined, which specifies the
maximum number of path information units that can be transmitted by the sender before the sender must
wait for the receiver to process the data. The sender must request pacing responses at the intervals that
are dictated by the pacing window size.

The requester's Db2 system issues the APPC PREPARE_TO_RECEIVE verb to tell the server that it is
waiting for an answer to the SQL statement. The PREPARE_TO_RECEIVE verb transmits the very last path
information unit (PIU) for the SQL statement, and marks the path information unit (PIU) with the change
direction (CD) indicator. When the path information unit (PIU) immediately follows an ALLOCATE verb, the
path information unit (PIU) is also marked with the BB (Begin Bracket) indicator.

When the server detects the change direction (CD) indicator, it knows the SQL statement is complete and
the requester is waiting to receive the answer to the SQL statement.

The server runs the SQL statement, and builds a reply message that represents the answer to the SQL
statement. As before, the answer message is broken into path information units for transmission, with the
last path information unit (PIU) in the answer marked change direction (CD). The change direction (CD)
indicator tells the requester that the SQL answer is complete, and the server is waiting for the next SQL
statement.

The requesting database returns the SQL answer to the application program, and waits for the next SQL
request from the application.

The next SQL request is also converted into a message that represents the application's SQL statement.

The message is broken into path information units for transmission, where the last path information unit
(PIU) is marked change direction (CD). In this case, the SQL request fits in a single PIU. As before, the
change direction (CD) indicator tells the server that the SQL statement is complete, and the requester is
awaiting the answer message.

The server sends the reply message, marking the last path information unit (PIU) with change direction
(CD).

© Copyright IBM Corp. 1983, 2024 291

When the application program terminates, a DEALLOCATE verb is issued by the requesting database to
tell the database server that the distributed database application is complete. The DEALLOCATE verb
causes a path information unit (PIU) containing the conditional end bracket CEB flag to be transmitted to
the server, which tells the server that the application is complete.

Distributed SQL application flow for TCP/IP connections
When the application program (the requester) issues the first SQL statement that references a remote
database system, a connection must be established with the remote database system (the server).

The TCP/IP connect socket call is used to establish a conversation.

The requester's Db2 system issues the READ call to tell the server that it is waiting for an answer to the
SQL statement.

Once the connection is established, the local Db2 system builds a message that represents the
application's SQL statement. The WRITEV call is used to send the SQL statement to the server for
processing.

When the application program terminates, a CLOSE call is issued by the requesting database to tell the
database server that the distributed database application is complete. The CLOSE call tells the server that
the application is complete.

DDF error messages
A distributed request can run unsuccessfully for a number of reasons.

• Local DDF is not started.
• Remote DDF is not started (if the remote system is a Db2).
• Remote system is not started.
• VTAM LU is not active.
• VTAM path errors occurred.
• VTAM failure occurred.
• Session or conversation failures occurred.
• Db2 communications database entries are incorrect.
• Security failure occurred.
• TCP/IP failure occurred.

Resource unavailable messages for DDF
For some errors in the distributed environment, the Db2 user or application receives:

 SQLCODE -904; RESOURCE UNAVAILABLE

The following is returned to the user in the SQLCA: The Db2 reason code, a code that describes the type of
the resource that is unavailable, and the resource name. Distributed data facility reason codes start with
'00D3'.

RESOURCE TYPES for errors in a distributed environment are:

• 00001000 DDF
• 00001001 System conversation
• 00001002 Agent conversation
• 00001003 CNOS processing
• 00001004 Communications database
• 00001005 Database access agent
• 00001007 TCP/IP domain name

292 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

• 00001008 TCP/IP service name

VTAM resource information
For VTAM connections, the RESOURCE NAME contains:

• LU-name
• VTAM logon mode name
• VTAM return codes
• SNA sense data.

Four VTAM return codes are displayed in the Db2 error message:

• RTNCD: VTAM primary return code
• FDBK2: VTAM secondary return code
• RCPRI: APPC primary return code
• RCSEC: APPC secondary return code.

The SNA sense data is 4 bytes long and consists of:

• BYTE 0 + 1: Sense code: Category (Byte 0) and Modifier (Byte 1)
• BYTE 2 + 3: Sense code-specific information.

Sense Data

Sense Code

Byte 0 Byte 1 Byte 2 Byte 3

Category Modifier
Specific Information
Sense Code

Figure 80. SNA sense data

The SNA sense data categories are:

• X'00': User sense data only (not for LU 6.2)
• X'08': Request reject
• X'10': Request error
• X'20': State error
• X'40': Request header (RH) usage error
• X'80': Path error.

If RTNCD contains '00' and FDBK2 contains '0B', the requested VTAM function was unsuccessful and
RCPRI and RCSEC should be analyzed. Together with the SNA sense data, the problem can be identified.

Chapter 5. Diagnostic aids for distributed data 293

 CNOS processing for LU 'LUDBD1' (which is DB2 system 'SYDNEY') and VTAM logon
 mode 'SYSTOSYS' was unsuccessful. The VTAM return codes must be analyzed:
 --
 SELECT * FROM SYDNEY.SYSIBM.SYSCOLUMNS;
 --
 DSNT408I SQLCODE = -904, ERROR: UNSUCCESSFUL EXECUTION CAUSED BY AN
 UNAVAILABLE RESOURCE. REASON 00D31029, TYPE OF RESOURCE 00001003, AND
 RESOURCE NAME LUDBD1.SYSTOSYS.00.0B.0008.0001.08570003
 DSNT415I SQLERRP = DSNLXCNV SQL PROCEDURE DETECTING ERROR
 DSNT416I SQLERRD = 900 0 0 0 0 0 SQL DIAGNOSTIC INFORMATION
 DSNT416I SQLERRD = X'FFFFFC7C' X'00000000' X'00000000' X'00000000'
 X'00000000' X'00000000' SQL DIAGNOSTIC INFORMATION
 --
 DSNE618I ROLLBACK PERFORMED, SQLCODE IS 0
 DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
 --
 The DB2 error message is shown below:
 DSNT408I SQLCODE = -904, ERROR: UNSUCCESSFUL EXECUTION CAUSED BY AN
 UNAVAILABLE RESOURCE. REASON 00D31029, TYPE OF RESOURCE 00001003,AND
 RESOURCE NAME LUDBD1.SYSTOSYS.00.0B.0008.0001.08570003
 SQLCODE -904, RESOURCE UNAVAILABLE, tells that the SQL statement
 could not be executed, because a specific resource was not available at the
 time the statement was executed:
 +--+
 DSNT408I|SQLCODE = -904, ERROR: UNSUCCESSFUL EXECUTION CAUSED BY AN |
 | +--------------------------------------+
 |UNAVAILABLE RESOURCE.|
 +---------------------+
 DB2 reason code X'00D31029' tells that the requested VTAM function to allocate
 a conversation failed (VTAM returned a non-zero return code):
 +---------------+
 |REASON 00D31029|
 +---------------+
 Code '00001003' defines the resource type of 'CNOS processing':
 +-------------------------+
 |TYPE OF RESOURCE 00001003|
 +-------------------------+
 Because the VTAM function to perform CNOS processing failed,
 the specific resource name must be analyzed.
 The combination of RTNCD/FDBK2 '00/0B' tells that the VTAM function
 was unsuccessful and the APPC codes should be analyzed.
 The combination of RCPRI/RCSEC '0008/0001' tells that a conversation
 cannot be allocated. The SNA SENSE field '08570003' tells that the
 SSCP-SLU session is not active.
 In other words, DDF of 'SYDNEY' is not active.
 +--+
 |RESOURCE NAME LUDBD1.SYSTOSYS.00.0B.0008.0001.08570003|
 +--+
 | | | | | | |
 | | | | | | |
 LUNAME <----------------+ | | | | | |
 Logon Mode Name <---------------+ | | | | |
 RTNCD (VTAM primary return code) <-----+ | | | |
 FDBK2 (VTAM secondary return code) <------+ | | |
 RCPRI (APPC primary return code) <------------+ | |
 RCSEC (APPC secondary return code) <---------------+ |
 SENSE (SNA sense code) <----------------------------------+

Figure 81. Db2 DDF error message in VTAM environment -- resource unavailable

TCP/IP resource information
For TCP/IP connections, the RESOURCE NAME contains:

• Value in column LINKNAME in table SYSIBM.IPNAMES
• Value in column IPADDR in table SYSIBM.IPNAMES
• TCP/IP error code from socket call gethostbyname or getservbyname

if the resource is a TCP/IP domain name, or

• Value in column LOCATION in table SYSIBM.LOCATIONS
• Value in column PORT in table SYSIBM.LOCATIONS
• TCP/IP error code from socket call gethostbyname or getservbyname

if the resource is a TCP/IP service name.

294 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Example TCP/IP and Db2 error messages
The following figure shows an example of messages you receive on the z/OS console when a local Db2
subsystem attempts to connect to a remote Db2 subsystem, but DDF is down on the remote system.

 DSNL511I ? DSNLIENO TCP/IP CONVERSATION FAILED
 TO LOCATION STLEC1B
 IPADDR=9.112.126.120 PORT=447
 SOCKET=CONNECT RETURN CODE=1128 REASON CODE=12F80291

Figure 82. Analyzing Db2 and TCP/IP error message on z/OS console

Message DSNL511I indicates that the TCP/IP CONNECT socket call failed. The CONNECT call establishes
a connection between the socket for the local Db2 and the socket for the remote Db2. The IPADDR and
PORT values are for the remote Db2.

TCP/IP startup problems
TCP/IP startup problems are common sources of unsuccessful DDF operation.

• The TCP/IP listener is not started because of a TCP/IP configuration problem, or because the DNS is not
available during DDF startup.

In this situation, DDF startup completes, but the domain name in message DSNL004I is -UNKNOWN.
Connections cannot be established until the TCP/IP listener is successfully established and TCP/IP
services become available for DDF. After the initial connection failure, Db2 periodically attempts to
reinitialize TCP/IP. When the connection is successful, Db2 issues message DSNL519I.

• A TCP/IP getaddrinfo socket call fails during DDF startup.

When this failure occurs, Db2 issues the following message:

DSNL512I ? DSNLILNR TCP/IP GETADDRINFO(myhostname) FAILED WITH
 RETURN CODE=1 AND REASON CODE=78AE1004

Possible causes:

– The DDF application cannot access the TCPDATA data set.
– The DNS is not available.
– There is no entry for the IP address of the local host in the DNS.
– There is no entry in the /etc/hosts file.
– There is no entry in the hlq.HOSTS.ADDRINFO data set.

The following search order is used to find the TCPDATA data set for the DDF application:

1. /etc/resolv.conf file
2. Data sets in the //SYSTCPD DD statement
3. jobname.TCPIP.DATA
4. SYS1.TCPPARMS(TCPDATA)
5. TCPIP.TCPIP.DATA

The first file in this list is used as the TCPDATA file. After this file is correctly defined to DDF, you can use
the TRACE RESOLVER statement in this file to further diagnose a problem. The resolver trace displays
the IP address that is being resolved, so you can confirm that the gethostid call was successful. The
resolver trace also displays any errors that are encountered with the DNS or local files. The output of the
resolver trace is in the JES log of the DDF started task, DSNDIST.

Chapter 5. Diagnostic aids for distributed data 295

Db2 hangs during distributed processing
If a user or application "hangs" during distributed processing, the condition that causes the problem can
be at the requesting (local) system, the serving (remote) system, or in the network (VTAM, TCP/IP, CTC, or
NCP).

At a Db2 system, the command DISPLAY THREAD DETAIL can be used to get information about
distributed threads. This command should be issued at both requesting and serving locations to get
the status of the distributed thread.

The command -DISPLAY THREAD (*) TYPE(SYSTEM) can be used to identify the tokens of DB commands
and system agents that can be canceled. After the tokens are identified, you can use the -CANCEL
THREAD (token) command to cancel DB commands and system agents that are in progress.

Canceling a distributed thread that is hung in VTAM
When your network connection is through VTAM, a distributed thread can be:

• Active in VTAM
• Waiting in Db2 for VTAM notification that a particular event is completed
• Not in VTAM, not in Db2 (for example, waiting for user input).

If the distributed thread is not active in VTAM, it can be canceled by using the CANCEL DDF THREAD
command. A distributed thread should be canceled at the requesting location. In this case, both the
allied thread (at the requesting location) and the database access threads (at the serving location) are
terminated with an SVC dump. If the distributed thread is canceled at the serving site, only the database
access thread is terminated with a dump.

If a distributed thread is hung in VTAM, the following VTAM command can be used to terminate the
session:

 V NET,TERM,SID=SESSION-ID

To terminate a session, the session identifier must be known. The following procedure can be used to find
the session identifier and terminate the thread:

1. Use the Db2 command DISPLAY THREAD LOCATION DETAIL to identify the hung thread. Get the
session identifier (field SESSID).

A Db2 command DISPLAY THREAD LOCATION DETAIL is used to find the hung thread. In this example,
it is authorization ID SYSOPR by using Db2 plan CAN1. The session identifier is 'F0EF951D7B824660':

?DIS THD(*) LOC(*) DET
 DSNV401I ? DISPLAY THREAD REPORT FOLLOWS -
 DSNV402I ? ACTIVE THREADS - 056
 NAME ST A REQ ID AUTHID PLAN ASID TOKEN
 TSO TR 178 SYSOPR SYSOPR CAN1 0012 3
 -IMSNET.LUDBD2.A0FFF131B239=3 ACCESSING DATA AT
 -SYDNEY
 --LOCATION SESSID A ST TIME
 --SYDNEY F0EF951D7B824660 S 8927509332750
 DISPLAY ACTIVE REPORT COMPLETE
 DSN9022I ? DSNVDT '?DIS THD' NORMAL COMPLETION

Figure 83. Session identifier
2. Use the VTAM command D NET,ID=luname,SCOPE=ALL: Take the last 7 bytes of the session

identifier that is provided by the DISPLAY THREAD DETAIL command from step 1 to correlate
the VTAM session identifier (field SID). In the following figure, the VTAM session identifier is
'E2EF951D7B824660'.

296 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

D NET,ID=LUDBD2,SCOPE=ALL
 IST097I DISPLAY ACCEPTED
 IST075I NAME = LUDBD2, TYPE = APPL
 IST486I STATUS= ACTIV, DESIRED STATE= ACTIV
 IST861I MODETAB=DB2MODES USSTAB=***NA*** LOGTAB=***NA***
 IST934I DLOGMOD=***NA***
 IST597I CAPABILITY-PLU ENABLED ,SLU ENABLED ,SESSION LIMIT NONE
 IST654I I/O TRACE = OFF, BUFFER TRACE = OFF
 IST271I JOBNAME = DBD2DIST, STEPNAME = DBD2DIST
 IST171I ACTIVE SESSIONS = 0000000004, SESSION REQUESTS = 0000000000
 IST206I SESSIONS:
 IST634I NAME STATUS SID SEND RECV VR TP NETID
 IST635I LUDBD1 ACTIV-S E2EF951D7B824660 000A 0010 0 0 IMSNET
 IST635I LUDBD1 ACTIV-S E2EF951D7B82465F 001D 0000 0 0 IMSNET
 IST635I LUDBD1 ACTIV-P E3EF951D7C824D69 0000 000F 0 1 IMSNET
 IST635I LUDBD1 ACTIV-P E3EF951D7C824D68 0002 0002 0 1 IMSNET
 IST314I END

Figure 84. Session identifier
3. Use the session identifier that is provided by the VTAM DISPLAY command from step 2 to terminate

the session by way of the VTAM TERMINATE command V NET,TERM,SID=session-id.

V NET,TERM,SID=E2EF951D7B824660
 IST097I VARY ACCEPTED
 MSG0: PLEASE STAND BY
 IST455I SID=E2EF951D7B824660 SESSIONS ENDED

Figure 85. Session identifier

After the session is terminated, APPC primary/secondary return codes of RCPRI=0048, RCSEC=0000 are
returned to Db2. This combination of RCPRI and RCSEC indicates that the conversation was terminated
because the session, which was used by the conversation, was terminated. This combination of RCPRI/
RCSEC is called "Resource failure, no retry". At the remote site (subsystem recognition character
"!"), APPC primary/secondary return codes of RCPRI=004C, RCSEC=0000 are returned to Db2. This
combination is called "Resource failure, retry".

Canceling a distributed thread with a TCP/IP connection
When your network connection is through TCP/IP, a distributed thread can be:

• Active in TCP/IP
• Waiting in Db2 for TCP/IP notification that a particular event is completed
• Not in TCP/IP, not in Db2 (for example, waiting for user input)

A distributed thread that uses a TCP/IP connection can be canceled by using the Db2 command CANCEL
DDF THREAD. Use the Db2 command DISPLAY THREAD DETAIL to identify the hung thread. A distributed
thread should be canceled at the requesting location. In this case, both the allied thread (at the
requesting location) and the database access threads (at the serving location) are terminated with an
SVC dump. If the distributed thread is canceled at the serving site, only the database access thread is
terminated with a dump.

Problem determination procedures
Distributed processing problems fall into several general categories.

Abends
All programs can abnormally end (ABEND) at one time or another. Most applications have some sort of
recovery processing to try to avoid actually terminating the application. VTAM and TCP/IP are fairly typical
in this respect, and usually attempt to recover before they terminate.

If there is no other indication of a problem, check whether a dump was taken. For an ABEND0C4 or
ABEND0A9, usually an SVC dump of the address space is taken. In general, for complete diagnosis of a
VTAM or TCP/IP problem, CSA must be dumped.

Chapter 5. Diagnostic aids for distributed data 297

From the dump, the location of the failure can be determined. This information is often included in a
dump summary, formatted at the top of the dump. This information can be used to check in INFOSYS (if
INFOSYS is available at your site) for known problems in this area. If INFOSYS is not available or a fix
cannot be found, then contacting the IBM Support Center or IBM Service with the following information
often resolves the problem.

• Abend code
• Failing module name

This information can be gathered from the dump, or sometimes from the console log messages that
are issued at abend time. If the module name is not included in the dump summary information, then
locate the PSW address (second word of the PSW) in the dumped storage. Work backwards through the
dump (towards zero) until an eyecatcher is encountered. The eyecatcher includes the module name.
VTAM module names all start with 'IST'. TCP/IP module names all start with 'TC'. (The eyecatcher
is alphanumeric data that is written at the front of the module. It can be read from the EBCDIC
conversion area on the right side of the dump. For example, in the dump, the module name could be
x'C9E2E3D6D9C6C2C1'. In the EBCDIC conversion area, you would see, 'ISTORFBA'.)

• Offset of PSW into this module

Usually, before the eyecatcher is an x'47....' instruction, which branches around the eyecatcher and into
the module code. This instruction is the start of the module. Subtract the address of this instruction from
the PSW address to determine the offset. Remember that this is in hex, not decimal. If the module is in
LPA, an LPA map can be generated. The LPA map indicates the start of the module. Work out the offset by
using this start address.

• Latest maintenance to hit this module

This information can be gathered either from the dump, or by using SMP/E. Again, find the eyecatcher in
the dump. This information normally includes an assembly date and the latest PTF to be applied to the
module. Write down both the assembly date and the PTF number.

• Registers at the time of the abend

This information can be taken either from the console log or the dump. Register 15 sometimes contains a
return code that helps problem diagnosis; for example, on an ABEND0A9.

• Recent maintenance that is applied

PTFs or APARs that were recently applied might contribute to the circumstances that caused the problem.

• Recent changes to the system

In general, problems occur only after changes are made to a system. Keep an open mind when you look at
recent changes. Even changes that appear unconnected can be the cause of the problem.

• Frequency of the abend

How often the abend occurred can give some idea of the magnitude of the problem. If the abend
is occurring frequently, it indicates that something fairly fundamental is wrong. If it is a one-time
occurrence, it might be an obscure set of circumstances that caused the problem.

IBM Support might request more information. The console log around the time of the abend and the
dump should be kept in case further diagnosis of the problem requires more information from the dump.

Abends in VTAM
VTAM abends fall into two categories: those where there is an abend in the VTAM address space, and
those where the abend occurs in the VTAM code in a user (like DDF) address space.

The link pack area (LPA) has VTAM code, which is accessible by all address spaces. VTAM has its
control blocks in the common service area (CSA). These too, are accessible by all address spaces.
In this way, each address space can do VTAM processing in its own address space. In general, this
is I/O processing: sending and receiving data across the application interface. In this way the DDF

298 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

address space (ssnmDIST) might abend in a VTAM module and cause a dump of the DDF address space
(ssnmDIST) to be taken.

VTAM has several z/OS abend codes that are reserved for VTAM's use only. These are ABEND0A7, 0A8,
0A9, 0AA, 0AB, 0AC, and 0AD. The most commonly occurring of these abends is ABEND0A9. The value in
general-purpose register 15 (GPR15) gives some indication of the problem.

Sometimes the ABEND0A9 is preceded by an ABEND0C4. Always look for an indication of a previous
error. This could be another abend, or an error message to the user or the console. It is not necessarily a
VTAM message, and might not occur immediately before the abend. LOGREC is a good source for finding
abends that might have been missed on the console by the operators. It is important to start diagnosing
a problem when the first sign of trouble occurs, as later problems are often part of the aftermath of the
original problem. Recovery routines normally try the failing process again before eventually terminating.

Performance problems and hang situations
When the problem is a hang, it can be difficult to determine the cause of the problem.

Always look for any indication of a problem on the console log. If the log contains nothing of immediate
interest, try to determine the extent of the hang. Try to put the users that are hung into groups with
common characteristics:

Are only users of one particular application hung?

For example, local Db2 (on DBD1) requests are working, but requests to another remote Db2 (DBD2)
are hanging.

Are local requests on the remote host (DBD2) working?

If not, this situation would appear to be a problem on the other host. Look for an abend, loop, or
wait type problem. Check the remote host console for any relevant messages. Check whether Db2
commands on the remote host (DBD2) work.

For example, if no commands work, this situation could mean a problem in Db2. If most commands
work, but a cancel thread command does not, this situation might indicate a problem in the DDF
address space (ssnmDIST) or in VTAM or TCP/IP.

If local requests are working, then the problem would appear to be in either the network or the DDF
address space (ssnmDIST).

Is any network traffic flowing between the two hosts?

Check whether there are any other network users hung. If there are, then this situation is most likely a
network problem.

Are all the hung users in one particular part of the network?

For example, all hung users might have terminals on one controller. In this case, the problem could be
the controller. Display the status of the controller, for it might need to be used again. Another example
could be that all the hung users are accessing the network through one particular link and this link is
having a large numbers of errors. This situation could result in slow response times because of error
recovery and retries. Investigate the link problem.

When a device or line that is connected to an NCP goes inoperative (INOP), NCP generates a
miscellaneous data record (MDR). This information is sent to the owning SSCP. These records are
found in LOGREC and can be viewed by requesting an EREP report. The records can also be seen
online by using NetView Hardware Monitor (or an equivalent). These records contain information
about why the resource went INOP. They are very useful for problem determination.

Is any particular address space using very high CPU utilization?

If so, monitor this situation, as the address space might be in a loop.

Are all users hung?

If so, this is could be a more fundamental problem with the operating system. Check whether any
z/OS commands are working.

Chapter 5. Diagnostic aids for distributed data 299

In any hang situation, the results (or lack of results) from various displays can give a clearer picture
of the scope of the problem. The more information that is available, the easier the problem diagnosis
is, and, usually, the faster the resolution is. It is a discouraging task to find a problem in a VTAM dump
when only told that it was hanging. It can also be time-consuming.

Questions to ask that are specific to VTAM
What is the status of the remote application LU (LUDBD2)?

The command D NET,ID=<remote DDF>,SCOPE=ALL issued on the host that owns the application
indicates if the application is active and has any sessions with the local DDF. If the status is not
'ACTIV', check the meaning of the status in the manual and take appropriate action.

The same command that is issued on the local host displays the CDRSC status. Make sure this is
ACTIV (or ACT/S) also.

Are sessions already set up?

The command above indicates whether there are active sessions. There are three sessions that are
required for system use; one with a LOGMODE of SNASVCMG, and two with SYSTOSYS LOGMODE. If
there are no sessions, then check the virtual route between the subareas.

Are the sessions working?

By repeating the displays, check the send and receive counts on the user sessions. Also, a DISPLAY
THREAD(*) DETAIL command shows whether there is a conversation on each session. The users might
be hung waiting for a conversation to end. When a session becomes available for a new conversation,
this user's remote database access is processed.

Is the virtual route between the two subareas open and active?

Use a D NET,ROUTE command to see if the virtual route is operational. If the virtual route is blocked,
this indicates there could be a storage shortage problem somewhere in the network. This might be a
host or an NCP storage shortage.

Is the CDRM to CDRM session between the two hosts active?

The command D NET,ID=<CDRM name> can be used to display the status of the CDRMs, these
should both be 'ACTIV'.

Are all users that are in session working and only those that are causing a session to be established
hung?

In this circumstance, the problem could be a VTAM problem. Most of the send and receive data
processing is done in the user's address space. All session establishment is done in the VTAM address
space.

Do VTAM commands work?

If so, then VTAM seems to be working. If not, then VTAM might be in a wait (unlikely) or loop (more
likely) or perhaps VTAM is unable to get a share of the CPU.

VTAM paging: Is VTAM doing a large amount of paging?

If so, what looks like a loop in VTAM could be VTAM running a long chain of control blocks.

If the hang occurs only on a session when one particular request is made, often a VTAM buffer trace
can be used to see the last PIUs flowing on the session. These PIUs can often hold the key to the
problem.

300 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Loops
When a loop is suspected, there are various actions that can be taken.
CPU usage

Usually a loop can be readily found by displaying CPU usage. It is necessary to have some idea
of "normal" CPU usage for the suspected address space, for comparison purposes. In general, any
address space that uses an unusually high amount of CPU should be suspected.

Paging rates
The paging rates can be monitored to check for any abnormally high rates. Normal usage is again
needed for comparison purposes.

Loop recording
The 3090 and 308X CPUs have a hardware facility to record up to 490 PSWs. This facility is activated
from the hardware console and can be used to trace a loop. The output is dumped when an SVC or
stand-alone dump is taken This information can be helpful when you debug a loop problem. For more
information about this facility, consult the documentation for your particular CPU.

Dumps
Usually when a loop is encountered, there is not much that can be done to recover the situation.
Usually, a dump must be taken and the system restarted. Dumps can be taken in any of the following
ways:
z/OS DUMP command

If the CPU has several processors, z/OS commands might still be working. If so, then, requesting a
dump of the looping address space might be sufficient to obtain a dump.

Restart dump
If the CPU has only a single processor, then a restart dump can be taken.

Stand-alone dump
If neither of the previous dumping methods is appropriate, then a stand-alone dump can be taken.
Normally, this option is the last choice as the entire system is taken down, and an IPL is required
to recover.

With a multi-processor CPU a loop can appear as degraded performance. For example, if the CPU has four
processors and one is processing the loop, this leaves three CPUs for normal processing. This reduction in
processing power normally causes some performance degradation. Any users that are associated with the
looping address space are normally hung.

Before you contact the IBM Support Center, try to have the following information available:

• Looping modules. Try to determine the modules that are involved in the loop by using Failing module
(z/OS Communications Server: SNA Diagnosis).

• Maintenance level of the modules. Gather this information from SMP/E.
• Messages. Look for any messages on the console that might have triggered the loop. If one message is

being repeatedly issued, include it in the description of the loop.
• Trace output. Have the output from any traces taken available, together with any information gained

from the trace.
• Dump
• Console log

Have the following items available in case further diagnosis is required.

VTAM internal trace: If the VIT is active, this can give some insight into the problem. If the loop causes
entries to be written to the VIT, then the trace table is likely to wrap before the operators have determined
that VTAM is in a loop. However, if the loop does not cause trace entries to be written, the VIT can be
invaluable in determining the event that initiated the loop.

Chapter 5. Diagnostic aids for distributed data 301

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.istdgn1/modlep.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.istdgn1/modlep.htm

Storage shortages
Diagnosing storage shortage problems can be difficult. However, with a dump and an idea of where the
shortage occurs, the problem source can be identified.

When you contact the IBM Support Center, have available as much relevant information as possible.
Remember to check for any changes that were made at the site. Many applications use VTAM's or TCP/
IP's services. Changes that are made for one application can adversely affect another application.

Storage shortages in VTAM
Storage shortages can manifest themselves in any of the following ways:

VTAM messages
A VTAM message might be received at the console, indicating a storage shortage. This message
normally indicates the z/OS subpool where the shortage occurred. Using this subpool number, the
area of storage that experiences the shortage can be determined. For example, subpool 231 (SP231)
is CSA, while subpool 17 (SP17) is in the address space private area.

The most common storage shortage problems involve CSA. VTAM uses large amounts of CSA for its
control blocks and buffers that contain data that is being sent around the network. This problem can
be because of various causes. For example, if one application is flooding another with data, and the
second application is unable to receive the data and process it at an adequate rate, then the buffers
build up in VTAM storage. This situation can be avoided by using session pacing.

If VTAM is unable to get enough storage to issue a message, then the normal storage shortage
message is accompanied by an IST999E message.

RCPRI and RCSEC
The Primary return code (RCPRI) and secondary return code (RCSEC) are both given to DDF when an
APPCCMD macro completes. On occasion, these codes might indicate that there is a storage shortage
in VTAM. For example, if RCPRI is x'0084' and RCSEC is x'0000', then this indicates a storage shortage
while VTAM was receiving data or sending a pacing response. An RCPRI of x'0098' with RCSEC of
x'0000' indicates there is a temporary storage shortage while sending data. Usually this return code
means that the send request temporarily depleted the buffer pool to such an extent that the pool
must be expanded. The expansion did not occurr before the completion of the APPCCMD macro.

SNA sense code
Some SNA sense codes indicate there might be a storage shortage also. For example, a user might
be accessing data from the remote database, and receive '084C0000'. Checking this sense code in
the manual indicates that there is a permanent insufficient resource condition. This resource could be
storage. Other sense codes, such as '800A000' indicate a storage type problem, but not necessarily a
storage shortage.

Abends
There are a series of z/OS abends, which indicate storage shortage problems. For example,
ABEND878 and ABEND80A. These are uncommon in VTAM.

Hangs
Depending on the storage shortage and the processing that is occurring, the storage shortage could
manifest itself in a hang situation. For example, if a virtual route becomes blocked because of storage
shortages, then all the sessions that were using that session hangs until the storage shortage is
relieved and the virtual route becomes open again. When any of these indications of a storage
problem is received, the following steps can be used to find out more information about the shortage:
Determine the area of storage shortage:

This task is important, as the VTAM display command has information about the VTAM CSA usage.
This information does not help diagnosis if the storage shortage is in VTAM private. However,
perhaps CSA usage should be checked anyway.

302 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

The area can be determined by checking the z/OS subpool number (for example, as given in a
message). The following subpools are in the CSA area:

 SP227, SP228, SP231, SP239, and SP241.

Display buffer usage:

If the storage shortage occurred in one of the CSA subpools, then a D NET,BFRUSE command can
be used to determine the amount of CSA storage that is being used by VTAM. Usually the buffer
use display gives a good idea of which VTAM pool is causing the storage shortage.

Monitor buffer usage:

When you look at a buffer shortage, it is often helpful to know whether the onset of the problem
was gradual or immediate. If regular buffer usage displays are done, then gradual increases
in buffer use can be seen. These gradual increases might take days to manifest themselves
into storage shortage problems. In fact, if VTAM is taken down regularly, the storage shortage
symptom might not be seen.

Another benefit of regular monitoring of the buffers is that when a problem does occur "normal"
buffer usage for that host is known, so some comparison of the buffer values can be done.

If the onset of the buffer shortage is very fast, then check the system console (or log), looking for
some event that has triggered this problem. This could be virtually anything. For example, an NCP
has a problem and large amounts of data that was heading out onto the network is now caught in
VTAM while recovery of the NCP is attempted.

Create a dump file
To finally determine the cause of the problem, a dump is usually necessary. When you take the dump,
be sure to include CSA in the dumping options. Without CSA the dump is almost useless. The VTAM
diagnosis manual describes how to find each of the VTAM pools, and what control blocks are allocated
in each pool.

Traces
The SMS option on the VTAM Internal Trace can be helpful when you look at storage-related
problems. When used with other options (PSS, SSCP and PIU for example), it can give a much clearer
insight into the processing that is causing the storage shortage.

The SMS storage trace can be used to monitor the buffer pool usage if regular displays are
inconvenient.

Storage shortage problems fall into the following main categories:

No session pacing
In this case, the VTAM IO buffers (IOBUFs) are being flooded by one application. Finding the IOBUFs
in the dump can often lead to the application at fault. Usually the problem starts after the introduction
of (or changes to) an application. Look for any changes in the system that could have caused the
problem.

Control blocks not freed
There have been problems in the past where control blocks were not freed when they were no longer
needed. These control blocks gradually fill large amounts of CSA. This type of problem can normally
be found with a search in INFOSYS, if this is available at the site, or RETAIN, if you call IBM Support
or IBM Service. If a known problem is not found, then the IBM Support Center should be contacted for
further problem diagnosis.

Buffer pool unable to expand
If the buffer pool is scheduled for expansion by VTAM, but for some reason is unable to do so, a
storage shortage error can be received. This could be a transient condition while the buffer pool is
being expanded.

If this is not a transient condition, check that the pool is eligible for expansion. That is, there is an
expansion limit and expansion number that is assigned to the buffer pool. If dynamic expansion has
not been allowed, then the pool might have used all of its base allocation. In this case, the base
allocation should be increased.

Chapter 5. Diagnostic aids for distributed data 303

Incorrect output
Incorrect output problems can take various forms. In general, the problems can be grouped into two
categories. The first category is where the remote access request fails. An SQL return code and SNA sense
code or TCP/IP return code and reason code are received. In the second category the request works, but
the information that received is not correct.

REQUEST FAILS WITH RETURN CODE: When a remote database access fails, normally the user receives
a Db2 DDF message. These codes should be investigated and depending on the type of error, the
appropriate action taken.

VTAM example
A user receives an SNA sense x'800A0000'. Checking this sense code in the SNA formats manual tells us
that either the PIU was too long, or there was not sufficient buffering available for the PIU.

To diagnose the problem, it is easiest to see the PIUs to check whether the length is over the RUSIZE
maximum that is defined in the MODETABLE entry for the session. To do this task, take a VTAM buffer
trace of the attempted remote access by starting the trace with ID=<DB2 LU>. Optionally, either (or both)
of the Db2 systems can be traced: that is, the local or remote Db2 LU. If the remote Db2 system is traced,
we see the PIUs (and the lengths of these PIUs) that the remote Db2 is sending. Large amounts of data
are coming from the remote host, so these large PIUs are more likely to be too long than the smaller
requests from the local Db2. If the local Db2 is traced, the large PIUs should be seen arriving from the
remote Db2. In this trace, look for a PIU that has sense included as part of the RU.

Often a search in INFOSYS, or RETAIN reveals information about the effect of particular VTAM definitions.
This often leads to a resolution. If not directly, then indirectly by indicating new areas that can be checked
for errors.

Of course, each problem must be treated individually, depending on the information received from the
sense codes. Often a VTAM buffer trace helps in understanding a problem that results in a SNA sense
code. The trace shows exactly what is happening on the session and the sequence of events that lead up
to the issuing of the sense.

Inconsistent data
Under normal circumstances, inconsistent data is not caused by the network. If there is a network
problem, all the network users are likely to be affected, not just one application. So, inconsistent data is
more likely to be a problem within the database.

For example, if a user does a remote update and the commit fails to complete, the data on the database
could be updated or not, depending on how far the commit progressed. A Db2 code, for example,
x'00D300FE' might be received when a DDF thread is canceled. In these circumstances, a local request
for the updated data should be made to check the actual state of the data to avoid inconsistent data being
given to the users.

Unexpected messages
Sometimes the first indication of a problem is a message received at the console.

VTAM example
Message DSNL013I VTAM OPEN ACB FAILED ERROR=90 is received. This message indicates a problem
was encountered while DDF was trying to open its ACB.

In this case, an error code of 90 means that VTAM could not find a resource in the VTAM definitions that
matches the name in the ACB's APPLID field. This is probably because the application major node is not
active. Often an open ACB error is because of the ACB not closing properly when the application was last
deactivated. The console log should be checked around the time of the last deactivation for any sign of an
error.

304 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

TCP/IP example
A Db2 data sharing group consists of 2 members, DB2A and DB2B. These messages appear on the z/OS
console of member DB2B when DDF starts on DB2B:

 DSNL512I -DSNB DSNLILNR TCP/IP LISTEN FAILED WITH
 RETURN CODE=1115 AND REASON CODE=12E00291
 DSNL004I -DSNB DDF START COMPLETE
 LOCATION STLEC2
 LU USIBMSY.SYEC2B
 GENERICLU -NONE
 DOMAIN V8EC113.STL.IBM.COM
 TCPPORT 446

All members of the data sharing group share port number for incoming requests. In this instance, DB2A
is already using the port number (446), so DB2B gets error DSNL512I, which indicates that the LISTEN
socket call failed. This means that DB2B cannot service incoming connection requests. Db2 retries the
LISTEN call every 3 minutes. When DB2A stops, DB2B can use port 446, and Db2 issues message
DSNL004I, which indicates that DDF started successfully on DB2B.

Related information
z/OS Communications Server: SNA Messages
Return Codes (z/OS Communications Server: SNA Programmer's LU 6.2 Guide)

Diagnostic tools for DDF and VTAM
Various tools are available to help diagnose problems in DDF.

VTAM traces
The VTAM buffer trace, the VTAM internal trace, and the z/OS I/O trace can be used to determine
problems during distributed processing, including investigating the flows between logical units (LUs).

Generalized trace facility (GTF)
The generalized trace facility (GTF) in z/OS allows users to write records to a trace file. These traces can
then be formatted into a more easily read form.

GTF can be started by issuing the following command:

 S GTFDDF.GTF
(S is the z/OS Start command
 GTFDDF is the name of the GTF procedure
 GTF is the name of this job. Use this name
 when you want to stop GTF.)

GTF must be initialized with the USR option when you run the Db2 traces, the VTAM buffer, or the VTAM
internal trace. The USR option allows VTAM or Db2 to write user (USR) to the GTF file. When you use the
VTAM IO trace, RNIO should be included among the GTF options. The RNIO parameter includes all VTAM
network activity in the trace. The output data set for the GTF trace (the default is called SYS1.TRACE)
must be large enough to avoid wrapping the traces. If the GTF trace data is on DASD and fills up, it wraps
around to the beginning and the initial trace data is lost. In particular, the VTAM internal trace can create
many records.

After the traces finish running, the GTF job should be stopped. After the traces are completed, the GTF job
should be stopped, by using the z/OS STOP command, which closes the data set holding the user records.
The records can then be formatted.

Chapter 5. Diagnostic aids for distributed data 305

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.istmnc0/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.istp620/oprcntl.htm

Path information units (PIUs)
The path information unit (PIU) is the basic unit of information transfer throughout the network. The PIU
contains the information necessary to reach its destination logical unit (LU) to maintain the protocols that
the session is using, and to carry the data that the user transmits.

Transmission Header (26 bytes)

RH Request/Response Header (3 bytes)

Request Unit (variable size)

Figure 86. The format of a PIU

The following major parts of the PIU are shown in the previous figure:

• Transmission Header (TH)
• Request or Response Header (RH)
• Request Unit (RU).

The following figure displays an example of a BIND PIU.

 LUDBD3 /LUDBD1 LRC(000,000) INBOUND
 TH=40000001 20008000 0000000F 0000000E 1D00006D 006A0018 0085 RH=6B8000
 31001307 B0B050B3 00888585 88000602 00000000 *......&;.heeh.......*
 00000010 23000006 D3E4C4C2 C4F12400 0902E2D5 *........LUDBD1....SN*
 C1E2E5C3 D4C70903 00EF951D 79D77865 0E04C9D4 *ASVCMG....n..P....IM*
 E2D5C5E3 4BD3E4C4 C2C4F100 06D3E4C4 C2C4F360 *SNET.LUDBD1..LUDBD3-*
 15E3EF95 1D79D778 650CC9D4 E2D5C5E3 4BE5E3C1 *.T.n..P...IMSNET.VTA*
 D4C50E0E F3C9D4E2 D5C5E34B D3E4C4C2 C4F12C0A *ME..3IMSNET.LUDBD1..*
 01084040 40404040 4040 *... *

Figure 87. A BIND path information unit

Transmission header (TH)
The transmission header (TH) is used for routing information. It includes both the destination and origin
logical unit (LU) addresses, and a length field.

In Figure 87 on page 306, the origin subarea address is 4 bytes long at offset X'C', and the element
address is 2 bytes long at offset X'14'. So, the origin address in our BIND PIU is subarea X'0000000E',
element X'006A'.

The destination subarea address is 4 bytes long at offset X'8', and the element address is 2 bytes long at
offset X'12'. The destination address in Figure 87 on page 306 is subarea X'0000000F', element X'006D'

At offset X'18' in the transmission header, there is a length field. This length does not include the length
of the transmission header, but only the length of the request/response header (RH) and the request unit
(RU). In Figure 87 on page 306 the length is X'85'. In the example, there is a request/response header of
3 bytes; the request unit is X'82' bytes long. VTAM uses the length byte to ensure that the correct length
of data is received.

Request/response header (RH)
The request/response header (RH) is used for maintaining the session's protocols. Each bit in the 3 bytes
is an indicator.

The following bits are relevant while you use the distributed data facility (DDF):

BYTE 0 - X'6B'

• Request response indicator (RRI - byte 0 bit 0). If this bit is on (1), this PIU is a response PIU. If it is off
(0), then the PIU is a request.

306 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

• Sense data included (SDI - byte 0 bit 5).

If this bit is on, then the first 4 bytes of the RU is SNA sense data. This sense data can often help to
determine the cause of a problem.

BYTE 1 - X'80'

Pacing indicator (PI - byte 1 bit 7)

• If this bit is on and the PIU is a request, it is called a pacing request. A number of PIUs have been
sent across the session and the origin LU is asking for confirmation that the destination LU is capable
of taking more data. The LU that receives this PIU would normally (if there were no resource shortages)
send back a pacing response.

• The pacing response (with both the RRI and PI bits on) is normally sent with no user data. That is, it is
sent on its own. The pacing request, however, is usually sent on a PIU that contains data.

BYTE 2 - X'00'

• Begin bracket indicator (BBI - byte 2 bit 0)
• End bracket indicator (EBI - byte 2 bit 1)
• Conditional End Bracket Indicator (EBI - byte 2 bit 7). These 3 bits control the use of bracketing on the

session. Brackets are used around each distributed data facility (DDF) conversation.
• Change Direction Indicator (CDI - byte 2 bit 2). This bit is used in the control of the half duplex session.

On a half duplex session, only one LU can be sending at a time. The other LU, at this stage, must be
receiving. The CDI allows the receiving LU to send data after the receive is complete.

Related reference
Request/Response Headers (RHs) (Systems Network Architecture Formats)

Request unit (RU)
The Request Unit is the information that is being sent between the two network addressable units (NAU)
on the session.

Depending on the session the RU can take different forms.

SSCP sessions:

• The first bytes of the RU indicate a request or response code. Depending on the code, the rest of the
RU takes a format specific for that code. For example, a CDINIT (Cross Domain INITiate) has a code of
X'818641' while a SESSST (session started) RU has X'810686' as the first 3 bytes of the RU.

LU to LU sessions:

• The first byte might contain a code like the code in the SSCP sessions. The BIND has a code of X'31' and
has a standard format.

The first bytes of the RU might be a Function Management Header (FMH). The distributed data facility
(DDF) uses FMH5 to start conversations and for CNOS. It also uses FMH7 for errors. Usually, the FMH is
followed by other data that is being sent.

The request unit (RU) can be data only, in a format (or it might be unformatted) that is recognized only by
the applications on the session.

 USRFD FEF ASCB 00F9D980 JOBN DBD2DIST
 BUFF LUDBD1 /LUDBD2 LRC(000,000) OUTBOUND
 VTAM TH=40000000 00000000 0000000E 0000000F 1C00006B 006E0007 0350 RH=0B90A0
 270502FF 0003D000 400430F0 F3F20000 00000000 *........ ..032......*
 00000000 00000000 00000000 00000000 00000003 *....................*
 26EFFE41 550010D4 C2C84000 00032641 080060D4 *.......MBH-M*
 C9C24000 00008B00 00000000 00000000 010002A0 *IB*
 EFCF1437 699C01A0 EFCF1437 699C0100 00000000 *....................*
 00000000 00000000 00000000 00000000 00000000 *....................*
 00000000 00000000 00000000 00000000 00000000 *....................*
 00000000 00000000 000000C9 D4E2D5C5 E34040D3 *...........IMSNET L*
 E4C4C2C4 F24040A0 EFCF1437 91008000 0000E2E3 *UDBD2 j.....ST*
 E4E3E3C7 C1D9E36D D7D9D6C4 404041 *UTTGART_PROD . *
 TIME 48910.013156

Figure 88. Outbound VTAM buffer entry

Chapter 5. Diagnostic aids for distributed data 307

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.istprg0/cbfmtistrh.htm

Related concepts
Path information units (PIUs)
The path information unit (PIU) is the basic unit of information transfer throughout the network. The PIU
contains the information necessary to reach its destination logical unit (LU) to maintain the protocols that
the session is using, and to carry the data that the user transmits.
Related reference
Function Management (FM) Headers (Systems Network Architecture Formats)

VTAM buffer traces
The VTAM buffer trace shows the contents of the message buffers as messages flow inbound and
outbound from VTAM.

To start a VTAM buffer trace, the user must first start the z/OS generalized trace facility (GTF) with
option=USR. Then, an z/OS modify command is used to start and stop the trace.

To start the trace:

 F VTAMDDF,TRACE,TYPE=BUF,ID=LUDBD2

To stop the trace:

 F VTAMDDF,NOTRACE,TYPE=BUF,ID=LUDBD2

 (F is the z/OS modify command
 VTAMDDF is the name of the VTAM startup procedure
 TRACE indicates that the trace is being turned
 on
 NOTRACE indicates that the trace is being turned

 off
 TYPE=BUF indicates that this command affects the
 buffer trace
 ID=LUDBD2 indicates which node is to be traced,
 or is to no longer be trace.)

The 'ID=' parameter on the command causes the messages to and from this resource to be traced. When
you trace session setup attempts, selection of the resource to be traced is important.

After the trace is started, re-create the problem situation that needs diagnosing. After you trace the
problem, stop the trace to avoid writing unnecessary records to the GTF data set.

Now, the programs available to format the VTAM buffer trace are ACFTAP and IPCS.

The VTAM buffer trace is primarily used to determine the cause of session and network-related problems.
The trace contains the transmission header (TH), the request/response header (RH), and up to 256 bytes
of request unit (RU) data. Because the distributed data facility uses a RUSIZE of 4 KB, the buffer trace is
of limited use when trying to capture the data that is sent from the session. The data can be traced by
using the Db2 trace that specifies IFCIDs 160 and 161.

308 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.istprg0/fmhead.htm

 USRFD FEF ASCB 00F9D980 JOBN DBD2DIST
 BUFF LUDBD2 /LUDBD1 LRC(000,000) INBOUND
 VTAM TH=40000000 20000010 0000000F 0000000E 1C00006E 006B0006 030D RH=039020
 030AEFFE 41550010 D4C2C840 0000030A 41080060 *........MBH-*
 D4C9C240 000002FA 00000000 48000000 00030001 *MIB*
 A0EFCF14 37DA5B01 A0EFCF14 45E83700 4D000000 *......x......Y..(...*
 0003561E 4D000000 0002F9F6 00000000 00000000 *....(.....96........*
 00000000 00000000 00000000 00000000 00000000 *....................*
 00000000 00000000 00000000 E2D8D3C3 C1404040 *............SQLCA *
 00000088 00000000 00004040 40404040 40404040 *...h...... *
 40404040 40404040 40404040 40404040 40404040 * *
 40404040 40404040 40404040 40404040 40404040 * *
 40404040 40404040 40404040 404040 * *
 TIME 48910.070212
 USRFD FF1 ASCB 00F9D980 JOBN DBD2DIST
 BUFF LUDBD2 /LUDBD1 LRC(000,000) INBOUND
 USER 030AEFFE 41550010 D4C2C840 0000030A 41080060 *........MBH-*
 D4C9C240 000002FA 00000000 48000000 00030001 *MIB*
 A0EFCF14 37DA5B01 A0EFCF14 45E83700 4D000000 *......x......Y..(...*
 0003561E 4D000000 0002F9F6 00000000 00000000 *....(.....96........*
 00000000 00000000 00000000 00000000 00000000 *....................*
 00000000 00000000 00000000 E2D8D3C3 C1404040 *............SQLCA *
 00000088 00000000 00004040 40404040 40404040 *...h...... *
 40404040 40404040 40404040 40404040 40404040 * *
 40404040 40404040 40404040 40404040 40404040 * *
 40404040 40404040 40404040 40404040 40404040 * *
 C4E2D540 40404040 00000000 00000000 00000000 *DSN *
 436F24F0 *.?.0 *
 TIME 48910.070577

Figure 89. Inbound VTAM and user buffer entries

 0000001 RNIO TRACE OUT ORIGIN(0000000F) DESTINATION(0000000E) TIME(10.08.48.174531) DATE(09.26.89)
 TH 40000000000000000000000E0000000F1C00006B006E00070350 OSAF OEF(0000000F 006E) DSAF DEF(0000000E 006B)
 ERN(0) VRN(0) TP PRI(0) VR SEQ(000) TG SEQ(000) SEQ(0007) COUNT(00848)
 RH 0B90A0 FM DR1 EXC BB CD FMT REQ UNKNOWN
 RU 270502FF0003D0
 0000002 RNIO TRACE IN ORIGIN(0000000E) DESTINATION(0000000F) TIME(10.08.48.371635) DATE(09.26.89)
 TH 40000000200000100000000F0000000E1C00006E006B0006030D OSAF OEF(0000000E 006B) DSAF DEF(0000000F 006E)
 ERN(0) VRN(0) TP PRI(0) VR SEQ(010) TG SEQ(000) SEQ(0006) COUNT(00781)
 RH 039020 FM DR1 EXC CD REQ
 RU 030AEFFE415500

Figure 90. ACFTAP formatting with PRINT=YES

Related concepts
Request unit (RU)
The Request Unit is the information that is being sent between the two network addressable units (NAU)
on the session.

Advanced communication function trace analysis program (ACFTAP)
The Advanced Communication Function Trace Analysis Program (ACFTAP) is part of the ACF/SSP (System
Support Programs) licensed product. This formatter interprets the GTF records and puts out the buffer
trace records in various formats, depending on the options requested.

ACFTAP does not format the data that is given to VTAM over the application interface. This information is
available only when formatting with IPCS. The following options are relevant to the VTAM buffer trace:

SOURCE=GTF
This option tells ACFTAP that the input data set has records in GTF format. Normally, this is the only
input that is defined in an z/OS system.

INPUT=BUFFER
This option tells ACFTAP to use only the buffer records in the input data set. The input data set could
have various different record types, including VTAM internal trace records, Db2 performance trace
records, and many different z/OS records.

NODE=<name>
This option requests ACFTAP to format any records for the node specified. If this option is omitted,
ACFTAP formats only network PIUs (those PIUs flowing to set up or take down a session, activate or
deactivate resources, etc.). Depending on the time the trace was taken, there might be no output from
the job.

PRINT=YES
This option gives an entry for each PIU, including the interpretation of the TH and RH. Only 45 bytes of
the RU is printed.

Chapter 5. Diagnostic aids for distributed data 309

In Figure 90 on page 309 is an example of ACFTAP formatting when using PRINT=YES. The PIU is the
same as the one in Figure 88 on page 307.

This trace entry shows an OUTbound (from this VTAM) PIU flowing from LUDBD2 to LUDBD1.

The interpretation of the TH shows the addresses of the LUs and the count field. The count field has
converted the length field in the TH from X'350' to decimal 848. The Origin SubArea Field (OSAF) and
Origin Element Field (OEF) show an address for LUDBD2 of '0000000F 006E'. Similarly, the destination
address is '0000000E 006B' This address represents LUDBD1.

 ADVANCED COMMUNICATIONS FUNCTION
 TRACE ANALYSIS PROGRAM
 DATE: 09:19:89 SYSTEMS NETWORK ARCHITECTURE SUMMARY PAGE: 00001
 *******SDLC****** **********TRANSMISSION HEADER********* ************************REQUEST HEADER*********************
 ..-SDLC ADDRESS .-FORMAT IDENTIFIER (FID) .-REQUEST(Q) OR RESPONSES .-PACING INDICATOR
 || .-CMND/RESP | .-F/M/L/(=ENTIRE)SEGMENT **FID3** | .-SC/DFC/NC/(=FMDATA)RU | .-BEGIN BRACKET INDICATOR
 DIRECTION-. || | .-POLL/FINAL | | .-EXPEDITED | | .-FORMATTED | | .-END BRACKET INDICATOR
 | || | | .-RECEIVE | | | LSID---. | | | .-F/M/L(=ONLY)CHAIN | | | .-CHANGE DIRECTION IND
 TYPE--. | || | | | .-SEND | | | SAF-EF FROM/TO SSCP--. | | | | | | | | | .-ALT CODE
 ------- | | || | | | | .-TYPE | | | OR FROM/TO PU--. | | | | | | | | | | | *********RU******
 MESSAGE | | || | | | | | CMND | | | OAF DAF SEQNO COUNT | | | | | | | REQUEST/RESPONSES | | | | | COMMAND SENSE
 NUMBER V V VV V V V V V ____ V V V _____________ _____ _____ V V V V V V V _________________ V V V V V _________ ______
 0000001 B O 4 0000000F 006E 0007 00848 Q F DR1 EXCEPTION B S UNKNOWN
 0000000E 006B
 0000002 B I 4 0000000E 006B 0006 00781 Q DR1 EXCEPTION S
 0000000F 006E

Figure 91. Buffer trace formatted by using ACFTAP option SSPRT=YES

The bits in the RH have also been interpreted. The following functions are listed:

• FMT to show there in an FMH in the RU. In our case, this is the FMH5.
• BB to show that this is the beginning of a bracket.
• CD for change direction, to allow LUDBD1 to send some data back.
• REQ to show that this is a request PIU.
• DR1 and EXC tell LUDBD1 to send a response to this PIU only if there is an error.
• FM is the RU data type.

This format indicates that the RU holds the FMH5, but little else.

The following figure is an inbound PIU. It is the same as the PIU formatted in the VTAM entry in “VTAM
buffer traces” on page 308.

This trace entry shows an Inbound buffer from LUDBD1 to LUDBD2. Similar interpretation of the TH and
RH has occurred for this PIU. This PIU is in fact the first row of output from a select being sent back to
LUDBD2. Not all the data is available in the VTAM buffer trace. It can be seen in the Db2 performance
trace.

SDPRT=YES
This option requests an SNA detail report of the VTAM buffer trace. The two entries that are formatted
for the PRINT=YES were formatted by using the SDPRT=YES option for comparison purposes.

SNA detail gives interpretation for each section of the TH and each bit of the RH, whether it is on or
not. PRINT=YES gave only interpretation of the bits that were on. SNA detail also includes all of the
traced PIU - TH, RH and up to 256 bytes of the RU. In the 'USER DATA' the RU was converted from
EBCDIC to alphanumeric characters, for easier interpretation of the data.

SSPRT=YES
This option requests an SNA summary report that is shown in the previous figure. On its own, this
report is of little use in diagnosing a problem. However, it is helpful if the buffer trace is long and you
are looking for a particular event that occurred. You might be able to find the particular event by using
the command or sense column of the output. After the event is located, use the message number
on that row to cross-reference into the SNA detail or print reports. Any particular PIU has the same
message number in each of the reports.

310 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

 0000001 RNIO TRACE OUT ORIGIN(0000000F) DESTINATION(0000000E) TIME(10.08.48.174531) DATE(09.26.89)
 TH 40000000000000000000000E0000000F1C00006B006E00070350 OSAF OEF(0000000F 006E) DSAF DEF(0000000E 006B)
 ERN(0) VRN(0) TP PRI(0) VR SEQ(000) TG SEQ(000) SEQ(0007) COUNT(00848)
 RH 0B90A0 FM DR1 EXC BB CD FMT REQ UNKNOWN
 RU 270502FF0003D0
 0000002 RNIO TRACE IN ORIGIN(0000000E) DESTINATION(0000000F) TIME(10.08.48.371635) DATE(09.26.89)
 TH 40000000200000100000000F0000000E1C00006E006B0006030D OSAF OEF(0000000E 006B) DSAF DEF(0000000F 006E)
 ERN(0) VRN(0) TP PRI(0) VR SEQ(010) TG SEQ(000) SEQ(0006) COUNT(00781)
 RH 039020 FM DR1 EXC CD REQ
 RU 030AEFFE415500

Figure 92. VTAM IO trace printed by using ACFTAP

The SNA summary report contains five main column sections:

1. Section 1 has the message number, the type (in this case shows 'B' for buffer), and the direction ('O' for
outbound and 'I' for inbound).

2. Section 2 is 'SDLC'. This is used for NCP line traces and is not used for buffer traces.
3. Section 3 is a summary of the transmission header. The parts of interest are the addresses. The origin

address '0000000F 006E' is on the first line and the destination address '0000000E 006B' is on the
second line for the first message. These are the same addresses as the other formats, but the names
of the LUs are not included. The count is the length value that is again converted to decimal. The
sequence number of the PIUs (SEQNO) is included here also. Sequence numbers are kept on the PIUs
that flow in each direction on the session to avoid getting data out of order at the receiving end and for
pacing purposes.

4. Section 4 is a summary of the bits in the request header (RH). This has the same information that is
explained under the other formatting options.

5. Section 5 is for the RU. Only the command and sense are included here. On message number
'0000001' the command is unknown. This is because the formatter does not recognize the FMH5.
For PIUs that have a command code as the first bytes in the RU this indicates the interpreted code.
For example, if the RU is a BIND, it has X'31' as the first byte of the RU. ACFTAP interprets this, and
put 'BIND' in the command column for that PIU. If there is any sense in the RU, (remember there is a
sense-data-included bit in the RH), ACFTAP puts the sense data in the SENSE column.

z/OS I/O trace
The I/O trace record is similar to the VTAM buffer trace. However, instead of tracing in VTAM itself, this
trace is taken by z/OS in the I/O subsystem.

Only 36 bytes of data are traced. That is, 26 bytes of TH, 3 bytes of RH and up to 7 bytes of RU. The IO
trace is only of use when you investigate the flow of PIUs on the session.

GTF should be started with option=RNIO before you start the I/O trace with the command:

 F VTAMDDF,TRACE,TYPE=IO,ID=LUDBD2
(F is the z/OS modify command
 VTAMDDF is the name of the VTAM startup procedure
 TRACE indicates that the trace is being turned on
 TYPE=IO indicates that this command affects the I/O
 trace
 ID=LUDBD2 indicates which node is to be traced.)

Stop the I/O trace and GTF after the event you are tracing occurs. Use IPCS or ACFTAP to format the
output.

When formatting with ACFTAP in the SYSIN input commands, include INPUT=RNIO and PRINT=YES.
Figure 92 on page 311 shows an example of the output from the IO trace that is formatted by ACFTAP.

The information available in the buffer trace is generally available in the IO trace. The only difference is in
the amount of RU data recorded, and the actual place of the recording.

The ACFTAP format of the IO trace is similar to the ACFTAP format of the VTAM buffer trace when you use
PRINT=YES. 'IN' and 'OUT' indicate whether the data is inbound or outbound to VTAM from the network.

Chapter 5. Diagnostic aids for distributed data 311

 USRFD FF0 ASCB 00F9DB00 JOBN DBD2DIST
 VTAM BUFFERS MAXU MAXQ AVNO TEXP MBUF TOTL
 IO 00000008 00000000 000000C8 00000000 000000C8 000000C8
 PP 00000000 00000000 00000000 00000000 00000000 00000000
 LP 00000008 00000000 0000003B 00000000 00000040 00000040
 WP 0000000A 00000000 00000044 00000000 0000004E 0000004E
 NP 00000000 00000000 00000000 00000000 00000000 00000000
 LF 00000002 00000000 00000027 00000000 00000029 00000029
 TIME 41772.136371
 USRFD FF0 ASCB 00F9DB00 JOBN DBD2DIST
 VTAM BUFFERS MAXU MAXQ AVNO TEXP MBUF TOTL
 CR 00000008 00000000 000000C1 00000000 000000C8 000000C8
 UE 00000000 00000000 00000000 00000000 00000000 00000000
 SF 00000004 00000000 00000060 00000000 00000064 00000064
 SP 00000000 00000000 00000002 00000000 00000002 00000002
 AP 00000000 00000000 00000010 00000000 00000010 00000010
 TIME 41772.136411

Figure 93. SMS trace printed by IPCS

VTAM internal trace

Under normal circumstances, the VTAM internal trace is run at the request of IBM service personnel. A
great deal of information is available from these VTAM internal trace entries.

The VTAM internal trace (VIT) can be run internally to VTAM or externally to GTF. When VTAM is started
the default is to have the trace running internal to two 4 KB pages with no options. When the trace is
running internally, the only method of getting the trace records is to dump VTAM. The trace can then be
viewed in the unformatted dump, or it can be formatted by using the VTAMMAP options in IPCS. Beside
not having to dump VTAM, an additional advantage to running the VTAM internal trace to GTF is that GTF
timestamps each entry. A VTAM internal trace run internally has no timestamps.

GTF must be started before the VTAM internal trace is started. Use the following commands to stop the
VTAM internal trace running internally and to start it running to GTF.

F VTAMDDF,NOTRACE,TYPE=VTAM,OPTION=END
(F is the z/OS modify command
 VTAMDDF is the name of the VTAM startup procedure
 NOTRACE indicates that the trace is being turned off
 TYPE=VTAM indicates that this command affects the VTAM
 internal trace
 OPTION=END stops the VIT and frees the pages in storage.
 F VTAMDDF,TRACE,TYPE=VTAM,MODE=EXT
 TRACE indicates that the trace is being turned on
 MODE=EXT causes the VIT records to be sent to GTF.)

After the trace is running externally, the trace can be started with the options that you require:

F VTAMDDF,TRACE,TYPE=VTAM,OPTION=(APPC,PIU,API,MSG)
 OPTION=xxx indicates which record types are to be traced.

After the event is traced, you can stop the VTAM internal trace with the following command:

F VTAMDDF,NOTRACE,TYPE=VTAM,OPTION=ALL
(OPTION=ALL requests the VIT remain active, but trace
 nothing
 OPTION=END stops the VIT.)

Then, stop GTF so that the trace data can be formatted.

Related reference
Failing module (z/OS Communications Server: SNA Diagnosis)

VTAM internal trace options
Trace options should be tailored to the requirements of the problem so that unnecessary record types are
not included in the trace.

The following options are of most interest to distributed data facility (DDF) diagnosis:

312 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.istdgn1/modlep.htm

APPC
The Advanced Program to Program Communication option writes entries each time an application
issues an APPC command by using the APPCCMD macro, and each time one of these commands is
posted back as complete.

API

The API option traces the non-APPC application interface macros that are being issued and posted
back. There are also trace entries that are written when the non-LU 6.2 exits (for example, the LOGON
and SCIP exits) are driven.

PIU
The PIU option gives details of all the PIUs that flow through this VTAM.

MSG
Each time a message is issued by VTAM or an operator issues a VTAM command, an entry is made in
the VIT. This entry can be useful when you become oriented in a large VIT, and should be included
when you run traces. Db2 messages do not appear in the VIT.

The programs available to format the VTAM internal trace are the same as for the VTAM buffer trace. They
are IPCS (depending on the level of z/OS) and ACFTAP.

Storage Management Services (buffer use) trace
The Storage Management Services trace provides information about the use and availability of VTAM
buffer pools.

The trace entries are written after a specified number of requests for VTAM buffers. The IBM default
causes an entry after every 1000 (x'3E8') buffer requests. This threshold is specified by the halfword at
label RACBSNAP in VTAM module ISTRACON. This can be changed by using z/OS's SPZAP (SUPERZAP)
facility.

This trace facility is very similar to the display buffer use command in VTAM. It should not be confused
with the SMS option in the VTAM internal trace.

GTF should be started with option=USR before you start the SMS trace with the following command:

F VTAMDDF,TRACE,TYPE=SMS,ID=VTAMBUF
(F is the z/OS modify command
 VTAMDDF is the name of the VTAM startup procedure
 TRACE indicates that the trace is being turned on
 TYPE=SMS indicates the storage management services
 trace
 ID=VTAMBUF required for the SMS trace.)

The formatters can again be used to print the SMS trace. ACFTAP, however, gives only a hex dump of
the trace record. IPCS formats the SMS trace records into a more readable form. Figure 93 on page 312
shows a record that is formatted by using IPCS.

There is an entry for each of the VTAM buffer types:

• AP APBUF, Application Program Pageable pool
• CR CRPLBUF, Copied RPL pool
• IO IOBUF, IO buffer pool
• LF LFBUF, Large Fixed pool
• LP LPBUF, Large Pageable pool
• SF SFBUF, Small Fixed pool
• SP SPBUF, Small Pageable pool
• WP WPBUF, Working Set Pageable pool.

PPBUFs, NPBUFs, and UEBUFs are no longer used by VTAM, though they still appear in the output listings.

The following columns are in the output:

Chapter 5. Diagnostic aids for distributed data 313

• MAXU. Records the maximum number of buffers in use in the pool at any one time.
• MAXQ. Records the maximum number of requests for buffers that were queued waiting for storage at

any one time.
• AVNO. Number of buffers available when the trace entry was written.
• TEXP. Number of times the buffer pool expanded.
• MBUF. Records the maximum number of buffers, used and unused, that were in the pool. This includes

the static and expansion parts of the pool.
• TOTL. Records the total number of buffers in the pool at the time the trace entry was written.

Each time a trace entry is written these counters are reset. So, MAXU, MAXQ, TEXP, and MBUF are
counters relevant since the last trace entry was written.

Similarly, for a display of buffer use by the D NET, BFRUSE command, the values in the resulting display
are valid since the last trace entry was written; or, since the last VTAM startup, if the SMS trace is not
running.

Exception condition diagnostic procedures
Several exception condition diagnostic procedures are available.

DRDA exception condition diagnostic procedures
Db2 defines a DRDA exception condition as an event that represents one of several conditions.

1. A reply message that is received from the AS, defined by Distributed Data Management (DDM) Level 6
as valid for the DDM command, but that is other than the normal reply message or reply data object
defined for that command.

2. A reply message or reply data object returned from the AS in response to a DDM command that is not
valid for the DDM command, or is structurally incorrect. In the latter case, a parsing error was detected
by Db2.

3. A reply message or reply data object that is both valid and structurally correct but whose contents are
inconsistent with the semantic of the reply message or reply data object.

4. A command or command data object that is not valid, as defined by DDM Level 6, or is structurally
incorrect. In the latter case, a parsing error was detected by Db2.

In terms of the DDM process model, a DRDA exception condition might be detected in either the SQLAM,
AGENT, or CMNMGR layers. The Db2 implementations of these managers are contained within the
data communications resource manager (DCRM), the distributed transaction manager (DTM), distributed
relational database systems (DRDS), and distributed data interchange services (DDIS).

DRDA exception event notification
When DDF resource managers identify DRDA exception conditions, event notification is sent to several
destinations.

1. The application if detected by the requester
2. The requester through a DDM reply message if detected by the server
3. One or more trace records written to the statistics class 4 trace.

While event notification of all DRDA exception conditions is targeted to various destinations, the amount
of diagnostic information sent to some destinations is limited. This limitation is due primarily to the
inability of Db2 to influence either the structure or content of information. For example, the SQLCA
structure and contents are determined mainly by the SQL language. The one destination which Db2
alone can define is the structure and content of the statistics class 4 trace records. Db2 designed these
trace records to provide, for each DRDA exception condition, a rich amount of relevant information. This
information is contributed by one or more DDF resource managers, which are sufficient to determine the
exact nature of the DRDA exception condition.

314 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

DRDA exception condition trace records
Several statistic class 4 trace records are available for diagnosis of DRDA exception conditions.

IFCID 0191
This record is written by DDIS when it identifies a DRDA exception condition, or on behalf of either
DTM or DRDS when they identify a DRDA exception condition.

IFCID 0192
This record is written by DCRM when it identifies a DRDA exception condition.

IFCID 0193
This record is written by DTM when it identifies a DRDA exception condition.

IFCID 0194
This record is written by DCRM when it identifies a DRDA exception condition.

IFCID 0195
This record is written by DRDS when it identifies a DRDA exception condition.

The first 8 characters of each DDF diagnostic trace record contain an eyecatcher with the following
format.

IFCID Hexadecimal Printable

0191 X'C4D9C4C1F0F1F9F1' DRDA0191

0192 X'C4D9C4C1F0F1F9F2' DRDA0192

0193 X'C4D9C4C1F0F1F9F3' DRDA0193

0194 X'C4D9C4C1F0F1F9F4' DRDA0194

0195 X'C4D9C4C1F0F1F9F5' DRDA0195

Db2 DRDA exception condition reason codes
In most cases, Db2 provides a 32-bit reason code as the common token sent to all destinations to be
notified of the DRDA exception condition.

Db2 requester role
If the DRDA exception condition is identified at the Db2 AR, then the reason code is placed within the
SQLERRD1 field within the SQLCA. Additionally, the reason code is externalized within the detailed data,
subfield X'82', subvector X'96' (WHY) of the Tivoli® NetView for z/OS alert and the IFCID 0191, 0192,
0193, 0194 and 0195 trace records. This reason code is directly traceable to an SQL statement that is
issued by an application. It is the common token that identifies the alert and all relevant trace records
produced. The reason code is the starting point for the DRDA exception condition diagnosis.

Db2 database server role
If the DRDA exception condition is identified at the Db2, then the reason code is placed within the server
diagnostic information scalar, included within the DDM reply message that is returned to the requester.
The reason code is externalized within the detailed data, subfield X'82', subvector X'96' (WHY) of the
Tivoli NetView for z/OS alert and the IFCID 0191 trace records. This reason code is directly traceable to
a DDM command that is received from the AR. It is the common token that identifies the alert and all
relevant trace records produced. The reason code is the starting point for the DRDA exception condition
diagnosis.

Chapter 5. Diagnostic aids for distributed data 315

Additional diagnostic options for DRDA exceptions
Under direction of IBM Service, a dump can be forced when some DRDA exception conditions are
encountered instead of generating a trace record. This dump provides more diagnostic information not
present in the trace alone.

To force the dump, the IFCID 299 trace must be activated. In general, the dump reason code is the DRDA
exception reason code, but might be different in some cases. The reason code is identified by IBM Service
when you are instructed to take this course of action.

DRDA summary
Before you use the Statistics Class 4 trace records, be familiar with the distributed relational database
architecture.

DDM/FDOCA models
The DDM object model and the basic concepts of formatted data object content architecture (FDOCA)
geometry and their application to the description of DRDA data are reviewed here.

DDM commands and reply messages
The DDM commands that are defined for Level 6 of the architecture include all commands unique to
DRDA.

For each DDM command, which can be sent from an AR to an AT, DDM defines the collection of reply
messages, which the AT can send in response to the command. Db2 supports this semantic for all valid
reply messages that are received in response to all DDM commands sent by Db2 to an AT.

DDM command data and reply data
For each DDM command that can be sent from an AR to an AS, DDM defines the collection of command
data objects that might accompany the command. Additionally, DDM defines the valid DDM objects that
the AS might send in response to that command.

Except for EXCSATRD returned in response to EXCSAT, all command and reply data are either FDOCA
descriptors or FDOCA data described by some FDOCA descriptor.

DRDA object descriptors
FDOCA models data or collections of data, based on relating finite and discrete geometrical spaces of
arbitrary dimension.

Regarding describing DRDA objects, the application of the FDOCA geometry is restricted to simple data
array (SDA), group data array (GDA), and row layout (RLO) triplets. Each SDA, GDA, and RLO are assigned,
through the metadata definition triplet (MDD), a unique DRDA type. In the case of simple data arrays, the
DRDA type is always a data type supported by DRDA. The DRDA data types might be mapped directly to
SQL data types. Each group is assigned a DRDA type and describes an ordered collection of other groups
or simple data arrays (possibly including length overrides). A row is assigned a DRDA type and describes
an ordered set of elements, each of which is selected from one or more groups. An array is assigned a
DRDA type and describes a finite number of rows.

Local identifiers (LIDs)
All FDOCA Descriptors are identified by a local identifier (LID). It is local because its definition is restricted
to the current data stream that contains the descriptor.

The LID is merely a name by which the descriptor might be referenced. Thus, array descriptors reference
row descriptors (RLOs) by LID, row descriptors reference groups (GDAs), and simple data arrays (SDAs) by
LID, and groups reference other groups (GDAs) and simple data arrays (SDAs) by LID. The LID is distinct
from the DRDA type.

Early DRDA descriptors
During application requester (AR) or server (AS) connection processing, a subset of the DRDA object
descriptions is fixed and cannot be changed during that connection. These descriptors are called the

316 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

DRDA early descriptors and consist of simple data arrays (SDAs), group data arrays (GDAs), rows, and
arrays (RLOs).

The simple data arrays describe each data type supported by DRDA and are called the early
environmental descriptors. Additionally, the early descriptors include few groups, rows, and arrays (GDAs
and RLOs). After committed, the AR/ must send only the DRDA object to the /AR; the descriptor is not
sent.

An AR or AS commits support to the early descriptors at two distinct points during connection processing.

1. The early DRDA group, row, and array descriptors are established during EXCSAT/EXCSATRD
processing.

2. The early environmental descriptors are established during ACCRDB/ACCRDBRM processing. These
represent the 84 supported DRDA data types and are fixed and identical across these environments:
QTDSQL370, QTDSQLX86, QTDSQL400, QTDSQLC, and QTDSQLVAX. Accepting one of these
environments commits the AR or AS to support all 84 DRDA data types in a specific machine
representation. While the DRDA data types cannot change, data type representations might be
changed at various points in the processing of commands and replies.

Early descriptor LIDs
The LID, which is assigned to each early descriptor (SDA, Group, Row, Array), is identical to its DRDA type.
This assignment is fixed and cannot be changed.

There are 84 DRDA data types and naming a particular environment, QTDSQL370, QTDSQLX86,
QTDSQL400, QTDSQLC, or QTDSQLVAX, therefore identifies 84 MDDs and corresponding SDAs. The MDD
contains the DRDA data type, and the SDA contains the LID by which each early environmental descriptor
might be referenced. For each Environmental Descriptor, the DRDA type is the DRDA data type and
therefore the LID is identical to the DRDA data type. In order to describe data of a specific DRDA data
type, the AR/ must identify only the 1-byte LID (DRDA data type) and this resolves to a complete early
environmental descriptor that consists of an MDD and SDA.

DRDA describes the following DDM reply data objects through early descriptors:

• The SQLCARD is described as an early FDOCA row.
• The SQLDARD is described as an early FDOCA array.

DRDA describes the following DDM command data objects through early descriptors:

• The SQLSTT is described as an early FDOCA row.
• The SQLNUM is described as an early FDOCA row.
• The SQLOBKNAM is described as an early FDOCA row.
• The SQLSTTVRB is described as an early FDOCA array.

Late DRDA descriptors
There is a class of DRDA objects whose description is not known at connection time, but can be only
known at SQL statement run time.

These objects include descriptions of input host variables that are passed by the application in support
of OPNQRY and EXCSQLSTT, and descriptions of the answer set returned in response to an OPNQRY or
SQL static SELECT (EXCSQLSTT). In these cases, the number of host variables or columns, their SQL data
types and lengths are only known when the application runs the statement. The description of the data
is assembled dynamically and sent to the AR/ along with (but preceding) the data. They are called late
descriptors.

The DRDA data types are fixed at ACCRDB/ACCRDBRM processing. The SQL types of all input host
variables and constituent columns of an answer set must be mappable to one of these DRDA data types.
If this mapping cannot be done, then the AR/ supports some data type, which is not defined within DRDA.
It is in violation of DRDA. Otherwise, a DRDA data type can be identified.

Chapter 5. Diagnostic aids for distributed data 317

Db2 representation of early and late descriptors
It is important to understand how Db2 represents early and late descriptors.

The DDIS FDLIDLST structure
Every FDOCA array consists of one or more FDOCA rows and all FDOCA rows represent elements of an
FDOCA group.

Command and reply data are either described as FDOCA rows or arrays. Db2 creates data structures to
support data retrieval of DDM command/reply data objects that are described by an Early or Late Row
Descriptor. This data structure is a list of FDOCA Local Identifiers (LIDs) and is called an FDLIDLST. A
collection of FDLIDLST structures is created for every FDOCA row to be retrieved from command or reply
data. Thus, the Db2 unit of data transfer is an FDOCA row.

An FDOCA row is an ordered collection of elements of an FDOCA group. FDOCA groups are recursive. The
elements are other FDOCA groups or Simple Data Arrays (SDAs). The DRDA objects that are described by
FDOCA are usually defined in terms of nullable groups, that is all elements of the group are present in the
object if the group null indicator value is 0, or none of the elements of the group are present in the object
if the group null indicator value is positive (empty set).

An FDOCA group might be modeled as a tree such that the root represents the group occurrence and
nonterminal nodes represent other FDOCA groups. Terminal nodes consist of Simple Data Arrays (SDAs),
and always represent a datum of a unique DRDA data type. Given an FDOCA row, which orders the
elements of an FDOCA group, G, there is a (parent) FDLIDLST representing G (root node) and an FDLIDLST
for each non-terminal group that is contained within G. Terminal nodes up consist of SDAs and always
represent a datum of a unique DRDA data type. The hierarchical (tree) structure of the FDOCA group is
represented by one or more FDLIDLSTs. Each FDLIDLST retrieves the subset of the data that is described
by the parent FDLIDLST.

The FDLIDLST header defines the total number of elements (GDAs or SDAs) comprising the group. This is
followed by one LIDENT entry for each of these elements. The LID is stored in LIDENTLI and the DRDA
type (SDA or GDA) is stored within LIDENTTY. The entry defines an SDA (terminal node) if the DRDA type
(LIDENTTY) is less than X'50'. In this case, the value of LIDENTO1 is the offset relative to the Level 6b
data stream (QW01916B) of the source data. If the value of LIDENTTY is greater than X'50', the entry
represents a non-terminal node (another group) and the value of LIDENTO1 is the offset relative to the
0191 record of the child FDLIDLST, which describes that group.

FDLIDLST structures for early descriptors
Several FDLIDLST structures retrieve objects that are described by Late Descriptors.

SQLCARD
The SQLCARD is described as a row, consisting of all elements of the nullable group SQLCAGRP. The
SQLCAGRP contains three nonterminal SDAs, SQLSTATE, SQLCODE, and SQLERRPROC and the nullable
group SQLCAXGRP, which itself contains 20 SDAs. The FDLIDLST to retrieve an SQLCARD:

1. Parent FDLIDLST containing one entry with DRDA type (LIDENTTY) of X'54'. This is the parent and the
value of LIDENTO1 is the offset to the child FDLIDLST.

2. The child FDLIDLST contains four entries, one each for SQLCODE, SQLSTATE, SQLERRPROC, and
SQLCAXGRP. The value of LIDENTTY for SQLCODE, SQLSTATE, and SQLERRPROC are DRDA data
types (less than X'50'). The data must be retrieved exactly as defined by the LIDENT lengths and
representation. The value of LIDENTTY for the fourth entry is X'52' and this is the DRDA type of
SQLCAXGRP, an FDOCA group. Thus, the LIDENTO1 points to a third FDLIDLST structure.

3. The SQLCAXGRP FDLIDLST structure contains 20 entries all of which are terminal nodes (SDAs). These
entries describe the representations and lengths of the data, which is retrieved from the data stream.

SQLDARD
The content and structure of the SQLDARD depends on the DDM Levels of the AR and AT. If both AR and
AT are both at DDM Level 6 and higher:

318 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

The SQLDARD is described as an open array, such that row 1 is an SQLCARD, row 2 is an SQLNUMROW,
and rows 3 through (N+2) are SQLDAROW instances. The SQLDARD thus couples an SQLCA with an
SQLDA. The number of SQLDAROW instances, N, is given by row 2, SQLNUMROW. This row contains the
only element from the nonnullable SQLNUMGRP, an SDA of type Integer 2. The SQLDAROW consists of all
elements of the nonnullable SQLDAGRP group. Because data retrieval is at the row level, the FDLIDLSTs
required to retrieve the SQLDARD consist of one FDLIDLST to process the SQLCARD, one FDLIDLST to
retrieve the SQLNUMROW and one FDLIDLST to retrieve each of the N SQLDAROW instances.

1. The FDLIDLST to retrieve an SQLCARD has been described previously as a parent FDLIDLST, child
FDLIDLST containing three terminal SDAs, and one subordinate FDLIDLST describing the 20 terminal
SDAs comprising the SQLCAXGRP

2. The FDLIDLST to retrieve an SQLNUMROW contains a single entry, defining the terminal SDA of type
integer 2.

3. The FDLIDLST to retrieve an SQLDAROW contains 11 entries, each defining terminal SDAs, and one
subordinate FDLIDLST describing the two terminal SDAs comprising the SQLUDTGRP. NOTE: the
definitions of the terminal SDAs are dependent on the DDM levels of the AR and the AT. Check the
DRDA reference for the contents at DDM Level 6.

The following information is true if either or both of the AR or AT has a DDM Level less than 6:

The SQLDARD is described as an open array, such that row 1 is an SQLCARD, row 2 is an SQLNUMROW,
and rows 3 through (N+2) are SQLDAROW instances. The SQLDARD thus couples an SQLCA with an
SQLDA. The number of SQLDAROW instances, N, is given by row 2, SQLNUMROW. This row contains the
only element from the nonnullable SQLNUMGRP, an SDA of type Integer 2. The SQLDAROW consists of all
elements of the nonnullable SQLDAGRP group. Because data retrieval is at the row level, the FDLIDLSTs
required to retrieve the SQLDARD consist of one FDLIDLST to process the SQLCARD, one FDLIDLST to
retrieve the SQLNUMROW and one FDLIDLST to retrieve each of the N SQLDAROW instances.

1. The FDLIDLST to retrieve an SQLCARD is described as a parent FDLIDLST, child FDLIDLST containing
three terminal SDAs, and one subordinate FDLIDLST describing the 20 terminal SDAs comprising the
SQLCAXGRP.

2. The FDLIDLST to retrieve an SQLNUMROW contains a single entry, defining the terminal SDA of type
integer 2.

3. The FDLIDLST to retrieve an SQLDAROW contains 11 entries, each defining terminal SDAs.

NOTE: the definitions of the terminal SDAs are dependent on the DDM levels of the AR and the AT.
Check the DRDA reference for the contents at DDM Level less than 6.

SQLSTT
The SQLSTT row consists of all occurrences of the SQLSTTGRP. The SQLSTTGRP is a nonnullable group
that contains two SDAs: a variable SBCS character string and a variable Mixed character string. The
FDLIDLST contains two entries, one each for the two SDAs and retrieval of the SQLSTT row must always
retrieve both an SBCS variable character string and a Mixed variable character string. Only one of these
strings can have a positive length.

SQLOBKNAM
The SQLOBKNAM row consists of all occurrences of the SQLOBJGRP. The SQLOBJGRP is a nonnullable
group that contains two SDAs: a variable SBCS character string and a variable Mixed character string. The
FDLIDLST contains two entries, one each for the two SDAs and retrieval of the SQLSTT row must always
retrieve both an SBCS variable character string and a Mixed variable character string. Only one of these
two strings can have a positive length.

SQLSTTVRB
The SQLSTTVRB is described as an open array, such that row 1 is an SQLNUMROW row and rows
2 through (N+1) are SQLVRBROW instances. The SQLNUMROW consists of the single element of

Chapter 5. Diagnostic aids for distributed data 319

the nonnullable SQLNUMGRP. The SQLVRBROW consists of the nine occurrences of the nonnullable
SQLVRBGRP group.

1. Because SQLNUMGRP is not nullable, the FDLIDLST structure to retrieve the SQLNUMROW contains
a single LIDENT, defining a 2-byte integer, the contents of which is the number of SQLVRBROW
instances.

2. Since SQLVRBGRP is not nullable, the FDLIDLST structure to retrieve an SQLVRBROW instance
contains nine terminal SDAs.

NOTE: the definitions of the terminal SDAs are dependent on the DDM levels of the AR and the AT.
Check the DRDA reference for the contents at DDM Level less than 6.

FDLIDLST structures for late descriptors
Several FDLIDLST structures retrieve objects that are described by Early Descriptors.

SQLDTARD
The SQLDTARD array is an open array of SQLCADTA rows. Each SQLCADTA row consists of all occurrences
of the SQLCAGRP (DRDA type is X'54), followed by all occurrences of LIDs defined in the nullable
SQLDTAGRP. If there are N elements (triplets) contained within the SQLDTAGRP, then the FDLIDLST
consists of the following items:

1. Parent SQLCAGRP FDLIDLST containing a single entry.
2. Child FDLIDLST containing three terminal SDAs and a non-terminal GDA, pointing to a subordinate

SQLCAXGRP FDLIDLST.
3. SQLCAXGRP subordinate FDLIDLST containing 20 terminal SDAs to retrieve the SQLCAXGRP.
4. Parent FDLIDLST containing a single entry (DRDA type is X'D0'), pointing to a child SQLDTAGRP

FDLIDLST.
5. Child FDLIDLST containing N entries each representing a terminal SDA.

The FDLIDLST structure follows.

FDLIDLST DSECT
FDLIDCNT DS F Total # LIDs this Group
* Each LID is described by one
* LIDENT entry. The LIDENT entries
* are contiguous to FDLIDLST.
FDLIDLST DS F Last LIDLSTE processed
FDLIDF DS X Flag byte
* '80'X Optimization Flag
 DS XL3 Reserved
FDLIDMX DS F Max length if FDLIDF='80'X
 DS XL8 Reserved
FDLIDHLL EQU *-FDLIDLST Sizeof(FDLIDLST header)

* Define Mapping for LID element within FDLIDLST. *
* There is one LIDENT for each of the total number of LIDs *
* specified by FDLIDCNT. The LIDENTs follow FDLIDLST. *

LIDENT DSECT FDOCA LID entry Mapping
LIDENTLI DS X FDOCA LID to be processed
* this is identical to DRDA type
* unless described by a Late
* Environmental Descriptor
LIDENTTY DS X DRDA Type (GDA or SDA)
LIDENTFD DS X FDOCA Data Type Representation
LIDENTNU DS X Null Byte if nullable
LIDENTLT DS F Length of data in bytes
* upper bound for variable
LIDENTO1 DS F If LIDENTTY >= X'50' then offset
* relative to 0191 record to child
* FDLIDLST. If LIDENTTY < X'50'
* then offset relative to objdss
LIDENTO2 DS F Offset if partial object
LIDENTVA DS X High Order Byte if Variable
* data and LIDENT state is SV2
LIDENTST DS X FD_LIDENT State

320 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

* values are defined below
LIDENTVR DS X 0 - data is not variable
* 1 - data is variable with
* halfword prefix
* 2 - data is variable null
* terminated
* 3 - data is variable with
* one-byte prefix
LIDENT37 DS X 0 - data is numeric,
* representation is S/370
* 1 - data is numeric,
* representation is 80X86
* 2 - data is numeric,
* representation is /400
LIDENTAL DS F Actual size of object (may differ
* from LIDENTLT is data is variable
LIDENTSD DS F 0
LIDENTRT DS A Data routine or 0
LIDENTDL DS F Max length of data or 0
LIDENTF DS X Flag
 '80'X Data is placeholder
 DS XL3 Reserved
LIDENTLL EQU *-LIDENT Sizeof(LIDENT)

**
* Define LIDENT states: *
* State 0: Initial/Final State *
* NOTE: *
* States SV1, SV2, SV3, SN1 and SN2 are only valid *
* if the data described by the LIDLST may span multiple *
* DDM objects. This is only true if the LIDLST describes *
* row data which is being processed via Limited Block *
* protocols. In this case, row data may span multiple *
* query blocks, each of size qryblksz, each containing *
* one qrydta object. *
* *
* For fixed data, the size of the datum is determined from *
* the size specified by the DRDA SDA specification, or *
* if a Late Descriptor, from a length override. Once spec- *
* ified, the length cannot change. For variable data, the *
* size specified from the DRDA SDA specification or length *
* override is an upper bound (a maximum). The actual length *
* of the datum is transmitted as a halfword preceding the *
* datum. Thus, it is possible that all or part of the half- *
* word prefix is transferred in block n and the remainder *
* is transferred in other blocks. *
* The following LIDENT states support partitioning of *
* the null indicator (if nullable), halfword length pre- *
* fix and data. *
* *
* State SV1: Variable Data - 0 bytes of halfword ll *
* State SV2: Variable Data - 1 byte of halfword ll *
* State SV3: Variable Data - 2 bytes of halfword ll - no *
* data retrieved *
* State SN1: Nullable Data - Null Indicator not available *
* State SN2: Nullable Data - Null Indicator available - no *
* data retrieved *
**
*
LIDST0 EQU X'00'
LIDSTV1 EQU X'01'
LIDSTV2 EQU X'02'
LIDSTV3 EQU X'03'
LIDSTV4 EQU X'04'
LIDSTN1 EQU X'10'
LIDSTN2 EQU X'20'

Figure 94. FDLIDLST structure

The DDIS RDTA structure
There exists one parent FDLIDLST structure and 1 or more child FDLIDLSTs for every FDOCA row to
be retrieved from the data stream. This is true for early and late FDOCA rows. However, a second data
structure, the DDIS RDTA structure, is created to support Late Descriptors.

There are two DRDA late descriptors defined: the SQLDTA describes the host variables that are sent in
support of EXCSQLSTT or OPNQRY and the SQLDTARD describes the answer set returned from OPNQRY

Chapter 5. Diagnostic aids for distributed data 321

or EXCSQLSTT. Both descriptors have a simple geometry that is built around the late group descriptor,
SQLDTAGRP.

The SQLDTA Late Descriptor is built from an SQLDTAGRP and describes input host variables. It is mapped
to an input SQLDA. Similarly, the SQLDTARD, also built from the SQLDTAGRP, describes an output answer
that is set and is mapped to an output SQLDA. The RDTA structure correlates the SQLDTAGRP elements
(SDAs) in terms of SQL data types, lengths, and character representation (CCSID).

The RDTA structure is given the following figure. RDTALID contains the address of the parent SQLDTAGRP
FDLIDLST structure that is required to retrieve data that is described by the late SQLDTA/SQLDTARD.
For every triplet contained within the SQLDTAGRP, an RDTAENT element exists which defines the SQL
attributes for that DRDA data type.

RDTA DSECT Relational Data Block
RDTAID DS H RDTA ID
RDTALEN DS H RDTA Length
RDTAEYE DS CL4 RDTA Eye Catcher
RDTDA DS A A(DB2 Sqlda)
RDTALID DS F offset within 0191 record
* of QW0191LT section
RDTAROW DS A A(Input Host Variables)
RDTALED DS 0XL4
RDTAGLID DS X SQLDTAGRP RLO LID and
* DS XL2 Reserved
RDTANUM DS F Total Number RDTAENT slots
RDTANPH DS F Number of placeholders
RDTAFLG DS X Flag
 '80'X RDTARAWP is used
 DS XL3 Reserved
RDTALL EQU *-RDTA Sizeof(RDTA Header)
*

RDTAENT DSECT RDTA Entry Mapping - one entry for
* each SDA processed in sqldtagrp
RDTTYP DS H SQLTYPE
RDTUBT DS H SQLSUBTYPE
RDTACCSI DS XL2 Derived CCSID
RDTALGTH DS 0H SQL Length
RDTALEN1 DS X Decimal Precision
RDTALEN2 DS X Decimal Scale
RDTAFLG1 DS X Flag
 '80'X Placeholder only
 '40'X Mapped type
 DS X Reserved
RDTAOTYP DS H Original SQLTYPE, if mapped
RDTARAWP DS A Raw data pointer, if mapped
 DS XL4 Reserved
RDTALL EQU *-RDTAENT Sizeof(RDTAENT)

Figure 95. RDTA structure

The DDIS ZEDA structure
The SQLDTA describes the input host variables that are sent in support of EXCSQLSTT or OPNQRY
command. It has a simple geometry that is built around the late group descriptor, SQLDTAGRP, and it is
mapped to an input SQLDA.

The ZEDA structure is used internally to support the late descriptors that are retrieved from an SQLDTA
object, which represents the input host variables that are received at the application server. This structure
is traced for Db2 serviceability purpose only.

DDIS IFCID 0191 trace record structure
The IFCID 0191 record always consists of a header, QW0191HD, and one or more other sections. The
exact structure of the 0191 record is dependent upon the Db2 parse state, DDM command and command/
reply data object, and nature of the DRDA exception condition.

322 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

In addition to the QW0191HD section, the IFCID 0191 record might contain one or more of the following
sections:

QW0191CR
There is one of these sections for each DDM command, command data object, reply message, and
reply data object processed (successfully or unsuccessfully) by DDIS. This section summarizes salient
information that is extracted during Db2 processing.

QW0191FD
There is one of these sections for every DDM QRYDSC object or FDODSC scalar contained within
an SQLDTARD or SQLDTA object processed (successfully or unsuccessfully) by DDIS. These objects
(scalars) contain FDOCA Late Descriptors (SQLDTA or SQLDTARD) and this section summarizes the
state of the FDOCA geometry as processed by Db2. This section is also present if an OUTOVR
descriptor is sent with a command to override the format of output data.

QW0191RT
There is one of these sections for every DDM QRYDTA object or FDODTA scalar contained within
an SQLDTARD or SQLDTA object processed (successfully or unsuccessfully) by DDIS. These objects
(scalars) contain data that is described by an FDOCA late descriptor that is previously processed and
this section contains the Db2 RDTA data structure that is required to process the data. The format of
the RDTA data structure is described below.

QW0191LT
There is one of these sections for every DDM command data object or reply data object that
is described by an FDOCA early or late descriptor and has been processed (successfully or
unsuccessfully) by DDIS. This section contains the Db2 FDLIDLST data structure that is required to
retrieve the data from the command or reply data object. The format of the FDLIDLST data structure is
described below.

QW0191EA
There is one of these sections for every DDM FDODTA scalar contained within an SQLDTA object that
is processed successfully or unsuccessfully by DDIS. This section is provided for Db2 serviceability
purpose only.

QW01916B
There is one of these sections for every DDM command or command data object received from
a requester, or reply message or reply data object received from a database server. This section
contains the actual level 6b data stream received.

DDIS IFCID 0191 common diagnostic procedures
The diagnosis of DRDA exception conditions that are detected by DDIS always begins with the 32-bit Db2
reason code.

If the DRDA exception condition is detected at the requester, then the reason code is presented to the
application through the SQLERRD1 field within the SQLCA. Additionally, it is included within the Detailed
Data section of the Tivoli NetView for z/OS Alert and the QW0191HD section of the IFCID 0191 trace
record.

If the DRDA exception condition is detected at the database server, then the reason code is included
within the Server Diagnostic information scalar (SRVDGN) and returned as part of the DDM reply message
sent to the requester. Additionally, the reason code is included within the Detailed Data section of the
Tivoli NetView for z/OS Alert and the QW0191HD section of the IFCID 0191 trace record.

Chapter 5. Diagnostic aids for distributed data 323

Interpreting IFCID 0191 records
Each IFCID 0191 trace record contains a QW0191HD section, one QW0191CR section, and one
QW01916B section for each DDM level 6b object that was successfully or unsuccessfully parsed by DDIS.

Depending upon the DDM object that is processed, there might be associated with the QW0191CR section
a QW0191FD section, a QW0191RT section, and a QW0191LT section:

• The QW0191FD section is present if the DDM object is either a QRYDSC or the FDODSC scalar contained
within the SQLDTA or SQLDTARD objects.

• The QW0191RT section is present if the DDM object is either a QRYDTA or the FDODTA scalar contained
within the SQLDTA or SQLDTARD objects.

• The QW0191LT section is present if the DDM object is either a command data object or a reply data
object, described by an FDOCA early or late descriptor.

How to read the QW0191HD section
The QW0191HD section contains the following fields:

QW0191RS
Contains the DDIS reason code, which uniquely describes the DRDA exception condition. This reason
code should be used as the basis for further diagnosis of the DRDA exception condition.

QW0191MN
Contains the name of the DDF module (DRDS, DDIS, DTM) which requested the 0191 record.

QW0191NO
Contains the number of this IFCID 0191 record instance relative to the total number as specified in
QW019190.

QW0191T0
Contains the total number of IFCID 0191 records that are required to capture all DDM objects and
FDOCA data.

QW0191FL
Contains the length of the DDM object or FDOCA data that is retrieved from the data stream and that
resulted in the DRDA Exception Condition.

QW0191MI
A unique 2-byte identifier, which identifies the processing point within the module that is defined in
QW0191MN at which the 0191 request was made.

QW0191TK
A unique 12 character error token.

QW0191C1
The code point of the DDM command whose processing resulted in the request for the 0191 record.

QW0191PA
The DDIS parse state of the command.

• If this is 'P1', the remaining sections in the 0191 record represent reply messages and reply data
objects that were received by the AR.

• If this is 'P2', the remaining sections in the 0191 record represent command data objects that are
received from the AR.

QW0191LN
The location name of the AR (if QW0191PA is 'P2'), or the location name of the (if QW0191PA is 'P1').

QW0191RN
The total number of reply messages that are returned from the AS in response to the command. This
is 0 if QW0191PA is 'P2'.

324 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

QW0191ON
The total number of OBJDSSs received from the AR.

QW0191DN
The total number of level 6b data streams received all of which have the same request correlator.

QW0191ET
Defines the Db2 response to a detected error.

• If QW0191ET is 0, then Db2 detected no syntactic or semantic errors in the data stream.
• If QW0191ET is 1, then the Db2 AR detected an error or exception condition, which resulted

in formatting the SQLCA with an SQLCODE and SQLSTATE. In this case, QW0191SS contains the
SQLSTATE.

• If QW0191ET is 2, then the Db2 detected an error or exception condition, which resulted in a DDM
reply message that is being sent to the AR. The code point of the DDM reply message is contained in
QW0191C2.

QW0191PT
If QW0191PA is 'P1', then QW0191PT contains the last five states and events of the top-level DDIS
Reply Parser (DSNLZRPA). Similarly, if QW0191PA is 'P2', the QW0191PT contains the last five states
and events of the top-level DDIS Request Parser (DSNLZSPA). These parsers are implemented as
finite state machines, consequently, the (state,event) trace provides the last path through the parser.

How to read the QW0191CR section
If the value of QW0191PA is 'P1', then one QW0191CR section is included for every reply message and
reply data object processed in response to the command. If the value of QW0191PA is 'P2', then one
QW0191CR section is included for the command and one section for every command data object that was
processed.

The QW0191CR section contains the following fields:

QW0191PS
Contains the parse state of the DDM object. If the value is 'DRDUCC', then this object was successfully
parsed. If the value is 'DRDAFAIL', then the object parse failed.

QW0191C3
Contains the code point of the command, command data object, reply message, or reply data object.

QW0191NM
Contains the DSS number, carrying the level 6b object that is defined by QW0191C3.

QW0191OF
Contains the offset relative to the start of the 0191 record of QW01916B section. It contains a level
6b RQSDSS, OBJDSS, or RPYDSS containing the object that is defined by QW0191C3.

If QW0191PS is 'DRDUCC', then the value of QW0191FO is 0. If QW0191PS is 'DRDAFAIL', then the
contents of QW0191FO are the offset relative to the 0191 record of the point at which the parse failed.
This offset points within the data stream beginning at QW01916B. The cause of the parse failure depends
on the object as defined by QW0191C3.

If the value of QW0191C3 is X'241A' (QRYDSC) or X'2413' (SQLDTARD), then the object contains a Late
Descriptor. In this case, QW0191D1 contains the offset relative to the start of the 0191 record of a
QW0191FD section, describing the progress of the parse of the Late Descriptor.

If the value of QW0191C3 is X'241B' (QRYDTA), or X'2413' (SQLDTARD), then the object contains data
that are described by a late descriptor. In this case, QW0191D2 contains the offset relative to the start
of the 0191 record of a QW0191RT section. This section contains a Db2 RDTA data structure, which
correlates the DRDA types that are extracted from the Late Descriptor with the SQL type.

If the value of QW0191C3 is X'243E' (SQLOBKNAM), X'2414' (SQLSTT), X'2419' (SQLSTTVRB), X'2408'
(SQLCARD), X'2411' (SQLDARD), X'241B' (QRYDTA) or X'2413' (SQLDTARD), then the object contains data
that is described by an early or late FD:OCA descriptor, In this case, QW0191D3 contains the offset
relative to the start of the 0191 record of a QW0191LT section. This section contains a Db2 data structure

Chapter 5. Diagnostic aids for distributed data 325

(FDLIDLST) which is a representation of the early or late descriptor and used to retrieve data from the
data stream.

If the value of QW0191C3 is X'2412' (SQLDTA), then the object contains data that is described by an early
or late FD:OCA descriptor. In this case, QW0191D4 contains the offset relative to the start of the 0191
record of a QW0191EA section. This section contains an internal Db2 structure that is provided for Db2
serviceability purpose only.

How to read the QW0191FD section
This section is present within the 0191 record only if the object is a Late Descriptor (SQLDTA or
SQLDTARD). The section is found from offset QW0191D1 within the QW0191CR section.

QW0191LD
Contains the number of late environmental descriptors that are sent as part of the Late Descriptor.

QW0191L1
Contains the SQLDTAGRP LID extracted from the descriptor. If this is 0, the SQLDTAGRP was not
processed.

QW0191L2
Contains the SQLCADTA LID extracted from the SQLDTARD descriptor. This is 0 if QW0191PA is 'P2'. It
is also 0 if QW0191PA is 'P1' and the SQLCADTA array descriptor has not been processed.

QW0191L3
Contains the SQLDTA LID extracted from the SQLDTA descriptor. This is 0 if QW0191PA is 'P1'. It is
also 0 if QW0191PA is 'P2' and the SQLDTA array descriptor has not been processed.

QW0191L4
Contains the SQLDTARD LID extracted from the SQLDTARD descriptor. This is 0 if QW0191PA is 'P2'. It
is also 0 if QW0191PA is 'P1' and the SQLDTARD array descriptor has not been processed.

QW0191GN
Contains the total number of triplets (excluding Continue Previous Triplet) which reference DRDA
types by LID, and are contained within the SQLDTAGRP. This is the number of input host variables that
are being passed (QW0191PA is 'P2') or the number of columns in the answer set (QW0191PA is 'P1').

QW0191F0
Is on if the geometry of the SQLDTAGRP descriptor is correct. All LIDs specified by the constituent
SQLDTAGRP triplets must define a valid DRDA type. If the SQLTAGRP specifies LIDs outside the range
of X'02' through X'49' as late environmental descriptors, then the SQLTAGRP Meta Data Definition
(MDD) (DRDA type X'D0') must precede the SQLTAGRP GDA and each Late Environmental Descriptor
must be specified by its 7-byte MDD and 12-byte SDA.

QW0191F1
Is on if the geometry of the SQLCADTA row descriptor is correct. The SQLCADTA row must define all
occurrences of the SQLCAGRP followed by all elements of the SQLDTAGRP. If QW0191PA is 'P1', then
the DDM object is either a QRYDSC or the FDODSC scalar of the SQLDTARD. If QW0191PA is 'P2', then
the DDM object is the FDODSC scalar of the SQLDTA object.

If the SQLTAGRP specifies late environmental descriptors, then the SQLCADTA RLO must be preceded
by the Meta Data Definition (MDD) for type X'E0'.

In addition to satisfying the SQLDTAGRP requirements, the SQLCADTA row descriptor must define
the row as consisting of all elements of the (nullable) SQLCAGRP followed by all occurrences of
elements of the SQLDTAGRP. The reference to SQLCAGRP and SQLDTAGRP is by LID. The reference to
SQLCAGRP must be X'54', the reference to SQLDTAGRP must be identical to the LID, which appeared
within the SQLDTAGRP descriptor.

QW0191F2
Is on if the geometry of the SQLDTA descriptor is correct. The SQLDTA descriptor must be such that all
late environmental descriptors precede the SQLTAGRP descriptor. The SQLDTA/SQLDTARD geometry
must be such that all late environmental descriptors precede the SQLDTAGRP descriptor. Also, all
LIDs contained within the constituent SQLDTAGRP triplets must have been defined previously by
some Late Environmental Descriptor, or default to the DRDA type. In the latter case, the LID must be

326 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

within the range X'02' through X'4F' and X 'C8' through X'CF'. If any of these requirements are not
satisfied, then the SQLDTA/SQLDTARD geometry is incorrect.

In addition to satisfying the SQLDTAGRP requirements, the SQLDTA descriptor must define the row
as all occurrences of the SQLDTAGRP. The reference to the SQLDTAGRP is via LID and this reference
must be identical to the LID specified in the SQLDTAGRP descriptor. If the SQLTAGRP specifies late
environmental descriptors, then the SQLDTA RLO must be preceded by the Meta Data Definition
(MDD) for type X'E4'. If these requirements are not satisfied, the SQLDTA geometry is incorrect.

QW0191F3
Is on if the geometry of the SQLDTARD row is correct. Following the SQLCADTA row, the descriptor
must define the SQLDTARD array as an (open) array such that each row is one occurrence of the
SQLCADTA row. Reference to the SQLCADTA row is by LID, thus, the LID referenced within the
SQLDTARD array must be identical to the LID, which appeared in the SQLCADTA row descriptor. If
the SQLTAGRP specifies late environmental descriptors, then the SQLDTA RLO must be preceded by
the Meta Data Definition (MDD) for type X'E4'. If any of these requirements are not satisfied, the
SQLDTARD geometry is incorrect.

How to read the QW0191RT section
The QW0191RT section is included only if the object contains a late descriptor. Therefore, this section is
included only if the object is a QRYDSC, SQLDTA, SQLDTARD, or OUTOVR. Both QRYDSC and SQLDTARD
contain the late SQLDTARD descriptor, both of which map to a Db2 output SQLDA. The FDODSC scalar in
the SQLDTA object contains the late SQLDTA descriptor, and this maps to a Db2 input SQLDA.

The OUTOVR descriptor contains override type information for the output SQLDA and only applies if LOB
data formats are being overridden (either from LOB data value to LOB locator or vice versa).

This section includes the Db2 RDTA data structure that is built from the SQLDTAGRP. There is one
RDTAENT entry for every LID processed as one of the elements of the SQLDTAGRP. The value of
RDTANUM is identical to the number of SDA references contained in the SQLDTAGRP.

For each RDTAENT entry within this structure, the Db2 derived SQL type, subtype, CCSID, and length are
recorded. The RDTA is the source of the input or output Db2 SQLDA. The DRDA type that is specified in the
SQLDTAGRP triplets is used to find the 12-byte SDA for that DRDA type. If the SDA describes the data as
character, then subtype is 1 for SBCS, 2 for Mixed and 3 for Graphic. Given the subtype of character data,
the CCSID is derived from the CCSID overrides in effect at the time of descriptor processing.

The selection precedence is as follows:

1. If Late Environmental Descriptor describes this LID, select CCSID from 12-byte SDA.
2. If no late environmental descriptor, then choose command local CCSID as specified via TYPDEFOVR

command/reply data object.
3. If neither late environmental descriptor nor TYPDEFOVR, then choose CCSID as specified at ACCRDB/

ACCRDBRM time.

RDTDA contains the address of the Db2 input/output SQLDA that was created for DRDS. The SQLDA is
not traced. RDTALID contains an offset to the QW0191LT section. This points to the same section pointed
to by QW0191D3. The contents of RDTAROW are 0. RDTAGLID is the SQLDTAGRP LID extracted from the
SQLDTA or SQLDTARD descriptor and RDTARLID is the SQLCADTA row LID extracted from the SQLDTARD
descriptor. These values are identical to the values of QW0191DG and QW0191CA, appearing within the
QW0191FD section.

If the DRDA Exception Condition occurred during the data retrieval, the RDTA specifies the SQLDA that
was presented to the RDS Resource Manager (input SQLDA) or the DRDS Resource Manager (output
SQLDA).

How to read the QW0191LT section
This section includes the Db2 FDLIDLST data structure that is used to retrieve data that is described by
an early or late descriptor. All early descriptors FDLIDLSTs are pre-built and are part of Db2. Local copies

Chapter 5. Diagnostic aids for distributed data 327

from the read only pre-built structures are made on a demand basis. The FDLIDLSTs that support late
descriptors are dynamically created during descriptor processing.

There is one FDLIDLST for every FDOCA group (nullable or nonnullable) to be retrieved from the data
stream. The Db2 unit of data transfer is an FDOCA row. Each row contains one or more groups, and the
QW0191LT section captures the FDLIDLSTs required to retrieve all groups that constitute a row. When
contained in a QW0191LT section, the contents of the FD_LIDENT_PTR fields are the offset relative to the
data stream (QW01916B section) of the start of the data that is processed for that entry.

How to read the QW01916B section
The QW01916B section contains a level 6b header, defining an RQSDSS, RPYDSS, or OBJDSS data
stream, followed by the data stream.

IFCID 0191 trace record common diagnostic procedures
The diagnosis of a DRDA exception condition that is identified by DDIS begins with one or more IFCID
0191 trace records and the Db2 reason code that is recorded within the QW0191RS field of the
QW0191HD section.

For each reason code, a diagnostic procedure exists which documents the specific nature of the IFCID
0191 records.

How to interpret IFCID 0192 records
The correct format for DDM data streams is described in DDM under the term "DSS". Essentially, DDM data
streams consist of one or more DSSs, each of which contains a DDM level 6a header. Flags in the DDM
level 6a header tell the receiver (Db2) about the relationship between the current DSS and other DSSs in
the data stream.

The DCRM component of Db2 is responsible for validating the content of DDM level 6a data streams, as
described by the DDM term DSS. DDM defines several syntax error and protocol error conditions, which
are produced when invalid DDM data streams are detected. These errors are produced for one of the
following reasons:

• A DDM level 6a header contains an invalid flag setting or data value.
• The flag settings or data values in a DDM level 6a header are not consistent with the flag settings or data

values in the previous DDM level 6a header.

In order to describe these errors, the DCRM component records trace data for two events:

1. A DDM data stream is detected which contains a syntax error. When an error of this type is
encountered, a DDM SYNTAXRM message is sent to describe the error. Within the SYNTAXRM
message, the DDM SYNERRCD (syntax error code) and the DDM SVRCOD (severity code) describe
the cause and severity of the error. For these errors, the reader should refer to the DDM SYNERRCD
documentation, to determine the nature of the error.

2. A DDM data stream is detected which contains a protocol error. When an error of this type is
encountered, a DDM PRCCNVRM message is sent to describe the error. Within the PRCCNVRM
message, the DDM PRCCNVCD (conversational protocol error code) and the DDM SVRCOD (severity
code) describe the cause and severity of the error. For these errors, the reader should refer to the DDM
PRCCNVCD documentation to determine the nature of the error.

In either case, DCRM records the following information in the trace record:

• The nature of the error (protocol or syntax)
• The DDM severity code (SVRCOD)
• The DDM error code (PRCCNVCD for protocol errors, SYNERRCD for syntax errors)

328 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

• The offset of the current DDM level 6a header in the data stream. This offset is measured from the start
of the first DDM level 6a header in the data stream.

• The current DDM level 6a header, as defined in the DDM DSS term. This header might or might not be
the cause of the error, since many of the errors indicate an inconsistent condition between the current
DDM level 6a header and the previous DDM level 6a header. Thus, it is possible that the error was
caused by the previous DDM level 6a header.

• The first 250 bytes of data in the data stream that follows the current level 6a header
• The offset of the previous DDM level 6a header, if the error was detected in a header other than the first.

This offset is measured from the start of the first DDM level 6a header in the data stream.
• The previous DDM level 6a header, as defined in the DDM DSS term.

How to interpret IFCID 0193 records
These records document the inconsistency between the SQLCODE returned by the AS for a commit or
rollback command, and the disposition of the Unit of Work reported by the AS. For example, if a commit
command was sent, and an ENDUOWRM reply message was received with UOWDSP = '01'X (commit
disposition), and the SQLCODE in the SQLCA was -204, then the IFCID record would contain the values
-204,'C','C'. The complete data stream for the reply, including the SQLCARD and the ENDUOWRM, is in the
IFCID 0191 record, which is always written when an IFCID 0193 record is written.

Distributed two-phase commit error conditions
Db2 support of distributed two-phase commit provides the detection of a number of events that can have
a negative impact on data availability or that indicate or can lead to data inconsistency.

Each of these events is the result of an error condition or recovery actions that follow an error condition.
These error situations place Db2 in the role of recovery coordinator, recovery participant, or both.

All of these events are traced to statistics class 4 and some of these events result in a Tivoli NetView for
z/OS alert. The Tivoli NetView for z/OS alerts include alert models A001 - A006.

Related concepts
Diagnostic tools for DDF and VTAM
Various tools are available to help diagnose problems in DDF.

Statistics class 4 trace records
The statistics class 4 trace includes error situations that involve indoubt threads during the distributed
two-phase commit process.

The trace records available for diagnosis of indoubt thread error conditions are IFCIDs 0203 - 0210 and
0234 - 0236. For a complete description of these and the other statistics class 4 IFCIDs (0191 - 0195
and 0238), see SDSNIVPD(DSNWMSGS). The IFCIDs described here are helpful in the diagnosis and
resolution of indoubt thread error conditions.

IFCID 0203
IFCID 0203 reports a heuristic decision that forces a commit or rollback for a distributed indoubt
thread. A heuristic decision is made when errors prevent or significantly delay automatic indoubt thread
resolution.

This record is written when:

• A Db2 RECOVER INDOUBT command is issued
• During the resynchronization process

Chapter 5. Diagnostic aids for distributed data 329

This IFCID is often produced under a system service task rather than the Db2 agent's task. For this
reason, the fields in this trace record should take precedence over similar values that are found in the
product information portion of the IFC trace data. For example, the LUWID in the product information
describes the Db2 system service task. The LUWID in this record describes the Db2 agent's thread.

IFCID 0204
IFCID 0204 is written when Db2 attempts to reconnect to a remote system that requests a cold start.

A cold start means that the remote system has no memory of the work that was in progress when the
previous connection failed. Db2 produces this record only when Db2 has memory of threads whose
outcome must be resolved.

If Db2 was the coordinator of one or more of those threads, the partner system might have been indoubt
when the cold start occurred. The Db2 coordinator assumes that the participant recovery log record is lost
or damaged and indoubt threads cannot be resolved.

If the partner system was the coordinator of one or more of those threads, the local Db2 subsystem might
be indoubt, requiring manual intervention with the RECOVER INDOUBT command.

This IFCID is often produced under a system service task rather than the Db2 agent's task. For this
reason, the fields in this trace record should take precedence over similar values that are found in the
product information portion of the IFC trace data. For example, the LUWID in the product information
describes the Db2 system service task. The LUWID in this record describes the Db2 agent's thread.

IFCID 0207
IFCID 0207 reports when heuristic damage is detected during two-phase commit resynchronization.

Heuristic damage occurs when an operator forces an indoubt unit of work to commit or rollback, and the
operator's choice conflicts with the outcome chosen by the coordinator of the unit of work. If the alerting
Db2 is the participant, the damage is at this Db2. If the alerting Db2 is the coordinator, the damage is at
the participant.

This trace record is recorded by the Db2 subsystem that makes the heuristic decision and any Db2
coordinator immediately upstream from that subsystem. Other Db2 subsystems that are involved in the
unit of work do not produce this trace record.

This IFCID is often produced under a system service task rather than the Db2 agent's task. For this
reason, the fields in this trace record should take precedence over similar values that are found in the
product information portion of the IFC trace data. For example, the LUWID in the product information
describes the Db2 system service task. The LUWID in this record describes the Db2 agent's thread.

IFCID 0209
IFCID 0209 is written when a communication failure occurs after 1 and before or during phase 2 of the
resynchronization process.

The thread that experiences the communication failure might still be indoubt at the participant location. If
Db2 is the participant, the status is indoubt. If Db2 is the coordinator, the status is commit or rollback.

IFCID 0234
IFCID 0234 records when CICS or IMS attempts to perform indoubt thread resolution for a network
identifier (NID) which Db2 does not recognize.

This error can occur due to the following reasons:

• a Db2 conditional restart
• a Db2 restart after your recover all of Db2 to a previous point in time

330 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

• an IMS or a CICS start with downlevel recovery logs

When a restart loses indoubt logical units of work, other downstream participants might be left with
indoubt threads.

IFCID 0235
IFCID 0235 is written when a Db2 conditional restart results in partial information about a LUWID that
might require resynchronization with a coordinator or participant. Incomplete information about the
LUWID prevents resynchronization.

This IFCID is often produced under a system service task rather than the Db2 agent's task. For this
reason, the fields in this trace record should take precedence over similar values that are found in the
product information portion of the IFC trace data. For example, the LUWID in the product information
describes the Db2 system service task. The LUWID in this record describes the Db2 agent's thread.

Chapter 5. Diagnostic aids for distributed data 331

332 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Chapter 6. Data management
You have several options when identifying and diagnosing inconsistent data.

Resolving inconsistencies manually
If you cannot resolve an issue by using the RECOVER utility, you might need to manually determine the
cause of a data or index inconsistency and resolve the problem. Be sure to keep a complete record of the
actions you take.

Analyzing 00C9010X or 00C902XX abends
The 00C9010x and 00C902xx abend reason codes are issued along with informational error messages
(usually DSNI013I or DSNI014I) when logic errors, such as record length inconsistencies, are found.

Referential integrity constraint violations do not cause 00C9010x or 00C902xx abends because Db2 does
not depend on referential constraints in order to operate. Referential constraint violations do, however,
cause incorrect results in processing.

• For 00C90101 or 00C90105 abends, the error messages that issued include all pages in use at the
time of abend. Generally, the pages have no inconsistency problem. However, if you receive several
error messages or abends that identify problems with the same set of pages, it can be an inconsistency
problem.

• For 00C902xx abends, the error messages issued usually include all pages that are involved in the
inconsistency problem.

The error messages provide the following information for each page:

REASON
The abend reason code that is issued with the message.

TYPE
A type code that identifies the type of resource involved.

NAME
The name of the resource (database name, space name, and page number).

CONN-ID
The connection ID, which, when combined with the correlation ID (CORR-ID), and the logical-unit-of-
work ID (LUW-ID), identifies the communication path involved.

CORR-ID
The correlation ID, which, when combined with the connection ID (CONN-ID), and the logical-unit-of-
work ID (LUW-ID), identifies the communication path involved.

LUW-ID
The logical-unit-of-work ID, which, when combined with the connection ID (CONN-ID), and
correlation ID (CORR-ID), identifies the communication path involved.

Much of this information also appears in the abend's diagnostic area of the associated SVC dump. Register
13 is at offset X'4C' in the SDWA. Offset X'F4' from the value in register 13 is the address of the CT. At
offset X'78' in the CT i's the address of the abend's diagnostic area. The following figure illustrates the
format and contents of this diagnostic area. It begins with a 96-byte prefix area, which is followed by a
number of 96 byte “subareas,” each containing information about 1 page that is involved in the problem.
The diagnostic area contains as many contiguous subareas as there are pages that are involved in the
problem.

© Copyright IBM Corp. 1983, 2024 333

Figure 96. 00C9010X and 00C902XX SVC dump diagnostic area format

The name of page field is abbreviated as DB.SP.PG.ID:

DB
Database name: eight characters, followed by a one-character delimiter

SP
Table space (file page set) or index space (index page set) name: eight characters, followed by a
three-character delimiter

PG
Page number: eight characters, followed by a four-character delimiter

ID
The ID of a record in a data page or the index subpage number in a segmented leaf page: two
characters, followed by a one-character delimiter

For example:

DSN8DAPP.DSN8SDEP.X'000002'.X'01' (as it appears in messages)
DSN8DAPP.DSN8SDEP.X.000002..X.01. (as it appears in dumps)

334 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Names are stored in character format. If the ID is unavailable, the field contains blanks. If the high-order
bit of the ID field is on, the ID identifies an anchor point in a hash page, meaning that the Db2 directory
or catalog is involved in the problem. Although the database name, the space name, and the page number
are included in DSNI013I and DSNI014I messages that are issued, the ID (when available) is only found
in the diagnostic area of the dump.

Related concepts
Type-of-failure keywords
A type-of-failure keyword describes an external symptom of a program failure.

Analyzing the SVC dump
You can analyze the SVC dump that is issued for the abend that you received.

Procedure
To analyze the SVC dump:

1. For each subarea in the diagnostic area of the dump, examine the ID in the name of page field.
2. If the ID is not included in the subarea for a given page, other diagnostic information that is produced

before or along with the abend might indicate the record that is involved. However, you might have
to analyze all the records in all the named pages. In cases of incomplete information, contact IBM
Support.

3. If you found one or more IDs, locate each record that is identified by the corresponding ID. For
00C9010x abends, each ID identifies the record in use at the time of abend. For 00C902xx abends,
each ID identifies a specific record that is involved in the inconsistency.

4. Examine the records that you found and try to determine where the inconsistency exists.
5. Analyze the structure that contains each record and verify that the connecting RID pointers are

correct.
6. Be aware that the inconsistency might involve a missing record. In this case, the PG field identifies

the page that was supposed to contain the indicated record. The DM might have tried unsuccessfully
to find the record in the page.

7. In some operations, such as a DELETE, one of the pages that are involved in the inconsistency might
not be identified at all because processing on that page had already completed at the time of the
abend. In cases of incomplete information, contact IBM Support.

8. In the case of a 00C9010x abend, further information about the source of the problem might be
obtained from knowing what DM operation was in process at the time the problem was detected. Use
the following steps to determine what was going on:
a) Find the CSECT name identifier (last 5 bytes of the CSECT name) in the field named VRARRK5 of

the variable recording area (VRA) in the SDWA. In an SVC dump, the VRA begins at offset X'190' in
the SDWA. The first 3 bytes are always “DSN”.

b) Look up this CSECT name in the online CSECT Directory and read the description.
In most cases, the description of the CSECT provides some indication of what was going on at the
time of the abend.
For example, suppose DSNIBHUN was the name of the CSECT that issued the 00C9010x abend.
The description indicates that this CSECT is involved with processing recovery log records. The
problem in this case might be an inconsistency within the log record that is being processed or
an inconsistency between the log record and the page to which the log record is being applied.
If a page is involved in the problem, it is identified in a DSNI014I message and corresponding
diagnostic area in the dump.

9. For 00C902xx abend reason codes, it is possible for more pages to be identified as being involved in
the problem than the number of pages that are actually involved. These additional pages are included
because they were in use at the time of the abend.

10. If no problem is found after you analyze the records that are involved, it is still possible that an
inconsistency exists between a database descriptor (DBD) and the data or index involved. If a DBD

Chapter 6. Data management 335

was involved at the time of the abend, the address of the DBD is in the prefix of the diagnostic area.
Use this address to locate the DBD in the dump.
If you find one or more inconsistencies in the pages you analyzed in the SVC dump, determine
whether the problem exists on DASD or only in virtual storage
a) Obtain a REPAIR, DSN1COPY, or DSN1PRNT dump of each page that is involved in the problem.
b) Analyze the dump to determine whether the problem you found in the SVC dump also exists on

DASD.

• If the problem does not appear in the dump of the pages, indicating that the transaction that
was in process at the time the SVC dump was issued caused the problem, but only exists in
virtual storage. This transaction is likely to cause the same problem when it is processed again.

• If the problem does appear in the dump of the pages as well as in the SVC dump, the problem
exists on DASD. Continue with the next step.

c) If the problem exists on DASD:

• Use the RECOVER utility to recover the page set containing the pages that are involved.

If RECOVER completes successfully, you still must verify that the problem is resolved on DASD:

i) Obtain a REPAIR, DSN1COPY, or DSN1PRNT dump of the pages involved.
ii) Look at the dump to determine whether the inconsistency is resolved.

iii) If the inconsistency is resolved, you should be able to continue normal operations. If it is not
resolved, use the REPAIR utility to manually resolve the problem.

Related concepts
Analyzing 00C9010X or 00C902XX abends
The 00C9010x and 00C902xx abend reason codes are issued along with informational error messages
(usually DSNI013I or DSNI014I) when logic errors, such as record length inconsistencies, are found.
Diagnosing DBD inconsistencies
You can locate a database descriptor (DBD) by using the REPAIR DBD utility or in a dump, and analyze the
structure of the DBD.
Related tasks
Running REPAIR
The REPAIR utility is used to resolve data or index inconsistencies manually.
Related reference
Printing and analyzing dumps
You might need to print and analyze a memory dump to help to diagnose a problem.
DSN1COPY (Db2 Utilities)
DSN1PRNT (Db2 Utilities)
REPAIR (Db2 Utilities)

Analyzing 00C90102 abends
The 00C90102 abend reason code is issued when an inconsistency is found within a data or index page
and automatic recovery is not successful.

Before a 00C90102 abend reason code is issued, Db2 issues a message (DSNI011I or DSNI012I),
indicating that a page is damaged. These messages identify the page number and page type, the name of
the module that detected the inconsistency, and the trace code that describes the event in process.

If you were unable to successfully resolve the inconsistency by using the RECOVER utility, and there is
an SVC dump associated with the problem, start an analysis by finding the trace code. SVC dumps can
provide some useful information, but might not always reflect the data actually residing on DASD, so do
not use it as a basis for repairing data with the REPAIR utility. Instead, use a dump that is produced by
REPAIR, DSN1COPY or DSN1PRNT.

336 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1copy.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1prnt.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_repair.html

Finding the trace code
The trace code describes the event that was in process at the time of abend and is shown in the messages
that are issued for the abend (the value after the ERQUAL variable in the message), as well as in the SVC
dump that is issued for the abend.

If for some reason the trace code cannot be determined from the messages, you can find it in the SVC
dump in the following locations:

• In the last 2-byte field of the dump title on the first page. The trace code appears after the colon that
follows the failing CSECT name.

• In the VRA diagnostic information report and the VRA area of the SDWA or SYS1.LOGREC. The trace
code is associated with the key X'CE' (field name VRARRK6). See “The variable recording area (VRA)” on
page 203 for information about where these data areas appear in an SVC dump.

Do not refer to the Db2 trace table in the dump; subsequent events might have overwritten necessary
information.

Use the trace code to determine what is wrong with the page. This error is the first error Db2 detected in
the page, but there can be others.

Trace code X'FFFx' is one indication the Db2 catalog or directory is involved. Trace code X'0000' indicates
an abend occurred during RECOVER processing, causing Db2 to mark the page as inconsistent or
"broken".

Refer to the information in “Analyzing a data page” on page 337 and “Analyzing an index page” on page
340 when you have a REPAIR, DSN1COPY or DSN1PRNT dump of the inconsistent page. An SVC dump
can also be used for analysis, but do not use it as the basis for changing data with the REPAIR utility. SVC
dumps might not reflect the data as it appears on DASD. In SVC dumps, the address of the damaged page
is in register 9 at offset X'3C' in the SDWA.

Analyzing a data page
Analyze the data page when you have a REPAIR, DSN1COPY or DSN1PRNT dump of the inconsistent page.

About this task
To determine whether a data page is damaged, you probably must check the page header, the ID map, the
records and holes, and the total free space by working through the procedure that follows. If you find an
error, continue checking all areas because other errors might exist as well. All errors must be resolved to
restore the page to a consistent state.

The following figure illustrates the structure of a data page.
X’00’ X’0C’ X’0E’ X’10’ X’12’ X’13’

Page 3
X’14’

PGNANCHPGMAXIDPGHOLE1PGFREEPPGFREEHeader

Record X’00000302’

Records or
Anchor Points

Header Data

6 bytes
Offset
in
PGFREEP Contiguous

Free Space

ID2 contains the
offset in the page
to the record with
RID=X’00000302’

ID3 ID2 ID1 Ptr Page Trailer Byte
X’C5’ or X’D5’

03 02 01

(PGMAXID contains number of
2-byte ID map entries)

2-byte
Page Tail Area

Figure 97. Format of file page set data page

Chapter 6. Data management 337

Follow all steps in this procedure, even after you detect an error. All errors must be resolved, not just the
first one you find. If data sharing, the relative byte address (RBA) field should have an LRSN value.

Procedure
To analyze a data page:
1. Check the page header (PGHEAD)

• Check PGCOMB, a 1-byte field at offset X'00'.

– If Bit 3 = B'1', the last byte in the page must be X'D5'.
– If Bit 3 = B'0', the last byte in the page must be X'C5'.

• Check PGFLAGS, a 1-byte field at offset X'0B'.

– If Bit 0 = B'1', the data manager (DM) set the "broken" bit on to indicate a damaged page.
– If Bit 0 = B'0', the DM did not set the "broken" bit. However, a problem can still exist.
– Bits 1 and 5 should be B'0', indicating a data page.
– If Bit 3 = B'1', the page is a space map page of either a segmented (Bit 2 is also B'1') or

nonsegmented file page set. Do not follow the remaining procedures. Call an IBM support center.
2. Check whether the Db2 directory (DSNDB01) is involved.

• Check PGNANCH, a one-character field at offset X'13'.

If PGNANCH > X'00', bit 4 of PGFLAGS (at offset X'0B') must be B'1', indicating that the page is a
hash page in the Db2 directory. PGNANCH contains the number of 8-byte anchors points in the page.
Each anchor point contains a forward and backward pointer. For all anchors points, verify that either
both pointers are X'00000000' or both pointers contain valid record identifiers (RIDs). A valid RID
has a nonzero value in the first 3-byte portion and a nonzero value in the last byte.

3. Define three working variables:

• #IDS to accumulate the number of ID map entries.
• TOTAL HOLE to accumulate the total amount of storage that is contained in holes.
• CURRENT OFFSET to accumulate the offset to the part of the page that is being analyzed.

4. Analyze the space that contains records and holes, which begins at offset X'14' + (8×PGNANCH).
This space ends at the offset stored in PGFREEP (a two-character field at offset X'0E'). Starting with
the first record or hole, perform the following checks, depending on what is stored in the page at the
current point of interest.

a. Record or Overflow Record (first byte is X'00' or X'20'):

• Verify that the ID map entry whose number is contained in PGSBID (a one-character field at
offset X'05') contains the offset of this record. Add 1 to the value currently in the working variable
that named #IDS.

• Add the value in PGSLTH (a two-character field at offset X'01' in the record) to CURRENT OFFSET
to get the offset to the next record or hole.

b. Pointer Record (first byte is X'40'):

• Add 6 bytes to CURRENT OFFSET to get the offset to the next record or hole.
c. Large Hole (first byte is X'80'):

• Add the value in PGHLTH (a two-character field at offset X'01' in the hole) to TOTAL HOLE.
• Add the value in PGHLTH to CURRENT OFFSET to get the offset to the next record or hole.

d. Small Hole (first byte is X'81', X'82', X'83' or X'84'):

• Add the length of the hole to TOTAL HOLE. The length is the value of the second nibble in the first
byte (for example, the first byte of a 2-byte short hole is X'82').

• Add the length to CURRENT OFFSET to get the offset to the next record or hole.

338 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Repeat these steps until CURRENT OFFSET is equal to the value in PGFREEP.
5. Analyze the chain of large holes by checking PGHOLE1, a two-character field at offset X'10' in the data

page. If PGHOLE1 is not X'0000', use the value in PGHOLE1 as the offset to the first hole, and perform
the following tests:
a) Verify that a large hole is at the offset (the value of the first byte should be X'80').
b) Use the value in PGHCHAIN (a two-character field at offset X'03' of the large hole) as the offset to

the next hole and repeat this step if PGHCHAIN > X'0000'. If PGHCHAIN = X'0000', continue with
the next step.

6. Analyze the ID map and page tail area. If not all existing ID map entries are in use (#IDS (used entries)
does not equal PGMAXID (used + free entries)), the next-to-the-last byte in the page should contain
the number of the first free ID map entry in the chain.
a) The ID map entry pointed to should not be currently in use (high-order bit should be on).
b) Use the low-order portion of the free ID map entry as an ID map entry number, and repeat these

steps until you reach the end of the chain of free ID map entries.
7. Verify PGMAXID, a one-character field at offset X'12' of the page, contains the number of ID map

entries that have been allocated, including both used and free entries.
8. Verify PGFREE, a two-character field at offset X'0C' of the page, contains the amount of total free

space in the page.

• For 4-KB pages (X'1000', or 4096, bytes):

free space = X'1000' - X'02' for tail area
 - (2×PGMAXID) - PGFREEP
 + X'TOTAL HOLE' = PGFREE

• For 8-KB pages (X'2000', or 8192, bytes):

free space = X'2000' - X'02' for tail area
 - (2×PGMAXID) - PGFREEP
 + X'TOTAL HOLE' = PGFREE

• For 16-KB pages (X'4000', or 16384, bytes):

free space = X'4000' - X'02' for tail area
 - (2×PGMAXID) - PGFREEP
 + X'TOTAL HOLE' = PGFREE

• For 32-KB pages (X'8000', or 32768, bytes):

free space = X'8000' - X'02' for tail area
 - (2×PGMAXID) - PGFREEP
 + X'TOTAL HOLE' = PGFREE

PGMAXID, at offset X'12' of the page, contains the number of allocated ID map entries. PGFREEP, at
offset X'0E' of the page, contains the offset to the contiguous free space in the page. TOTAL HOLE is
the figure that you computed in Step 4 for the total space that is occupied by holes in the page.

Results
If you found errors and determined what must be modified by way of the REPAIR utility, continue with
“Running REPAIR” on page 340. If no errors or inconsistencies were detected, the page is probably not
damaged.

Chapter 6. Data management 339

Analyzing an index page
Analyze the index page when you have a REPAIR, DSN1COPY or DSN1PRNT dump of the inconsistent
page.

Procedure
Run the CHECK INDEX utility.
This checks the index page header, the physical index page header, the subpage directory, the logical
index page header, and the page entries. All errors must be resolved to restore the page to a consistent
state.

• If you found errors and determined what must be modified by way of the REPAIR utility, continue with
“Running REPAIR” on page 340.

• If you detect no errors or inconsistencies, the index page is probably not damaged.

Running REPAIR
The REPAIR utility is used to resolve data or index inconsistencies manually.

About this task
(Use the CHECK utility to manually resolve referential constraint inconsistencies.) Use the following task
after you locate and analyzed the damaged page in a dump and you failed to resolve the problem with the
RECOVER utility.

Do not use an SVC dump as the basis for changing data by way of REPAIR. SVC dumps do not always
reflect the data as it exists on DASD. Use a dump that is produced by REPAIR, DSN1COPY, or DSN1PRNT
instead. Always verify that the page has not changed on DASD by using the VERIFY keyword of REPAIR to
verify the log RBA (PGLOGRBA) at offset X'01' of the page header.

Be extremely careful if you are changing the Db2 catalog or directory; refer to Physical Formats and
Diagrams for detailed information about the contents and structure of the catalog and directory.

Refer to Syntax and options of the REPAIR control statement (Db2 Utilities) for the complete syntax of the
REPAIR utility

Procedure
To run REPAIR:
1. Invoke the REPAIR utility with the LOG YES option and the DUMP control statement, specifying the

pages that you suspect are damaged.
Then, verify that the dump you received contains the pages that you want.

2. If you know which page is damaged and you can see how to resolve the error, repair the page, and
reset the "broken" bit. Invoke the REPAIR utility with the REPLACE RESET DATA control statement.
Keep track of your actions in case anything must be "undone" later.

3. If you determined that the page is not damaged but merely has the "broken" bit on, reset the "broken"
bit. Invoke the REPAIR utility with the REPLACE RESET control statement.

4. If you cannot determine how to resolve the problem by way of REPAIR or are unable to do so, contact
IBM Support.

Results
If the REPAIR utility was used with the LOG NO option, do not use the RECOVER utility on the data that
is modified by REPAIR. Because REPAIR activities are not logged, the RECOVER utility does not recognize
the changes that are made with REPAIR. After you successfully use REPAIR (all inconsistencies in the
page set are resolved), take an image copy of the data. When the image copy is successfully completed,
use the RECOVER utility on the data. This task is because RECOVER uses the new image copy of the

340 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_repairsyntax.html

data that you modified with REPAIR. If the image copy of the repaired data should become damaged and
fallback to a prior image copy occurs, the result of using REPAIR is lost, and the inconsistency reappears.

Inconsistency resolution with RECOVER TABLESPACE and
RECOVER INDEX

The RECOVER and REBUILD INDEX utilities provide the easiest way to recover inconsistent data that is
indicated by abend reason codes 00C9010x or 00C902xx.
Related reference
RECOVER (Db2 Utilities)
REBUILD INDEX (Db2 Utilities)

RECOVER preparation
Before you run RECOVER on a table space or index space, determine the name of the page set and the
number of the page that is involved in the data or index inconsistency.

To prepare to run RECOVER, use the most convenient of the following procedures:

• Review the DSNIxxxx messages you received. The format of the NAME category is DB.SP.PG
where

DB = database name
SP = table space (file page set) or index space (index page set)
PG = page number

If the database name of the inconsistent resource is DSNDB01 (directory) or DSNDB06 (catalog), there
can be inconsistency problems in the hash chains in the directory or catalog, and subsequent DDL
activity can cause more damage. Before proceeding, stop further DDL activity by issuing the following
command:

-START DATABASE (DSNDB06) ACCESS (RO)

• Another way to find the page number of the damaged page is to locate register 8 at offset X'38' in the
system diagnostic work area (SDWA) of the SVC dump that is issued for the abend. The SDWA is at the
beginning of the dump. Register 8 contains the address of the buffer manager (BM) block. At offset X'10'
in that block is the 3-byte hexadecimal number of the inconsistent page.

• A third method for determining the number of the damaged page and the name of a damaged page set
is to locate either the variable recording area (VRA) or the VRA diagnostic information report. In an SVC
dump, the VRA begins at offset X'190' in the SDWA. The VRA diagnostic information report is at the
beginning of the formatted section of the dump. The page number in the dump where the formatted
section begins can be found as the last entry of Print Dump Index or Table of Contents in the dump
(indexed by "Formatted From DSNWDMP").

In the VRA, offset X'02' contains the type code. If the type code is 302, the damaged page is a data
page; a type code of 301 or 303 indicates an index subpage or index page. Offset X'16' of the VRA
contains the number of the damaged page and offset X'0B' contains the name of the page set involved
in the inconsistency.

In the VRA diagnostic information report, this information is associated with the following keys:

X'D6'
The field name is VRARRK14; it contains the type code.

X'D7'
The field name is VRARRK15; it contains the name of the resource that is inconsistent. The page
number is at offset X'14' and the page set name is at offset X'09' of this field.

To determine which pages in a table space are logically in error, issue the command

-DISPLAY DATABASE(database-name) SPACENAM(ts-name) LPL

Chapter 6. Data management 341

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_recover.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_rebuildindex.html

Related concepts
The variable recording area (VRA)
More diagnostic information for Db2 abend reason codes is placed in the variable recording area (VRA) of
the system diagnostic work area (SDWA) and is extracted and displayed in the VRA Diagnostic Information
Report. This data can be produced by common recording routines and certain Db2 subcomponents.

Running RECOVER TABLESPACE and REBUILD INDEX
RECOVER can be used to recover an entire file page set, a single data page in a page set, or pages in error
range. RECOVER can be used for table spaces and index spaces. REBUILD INDEX can be used to recover a
single index or multiple indexes that are associated with a table space.

Procedure
To run RECOVER TABLESPACE and REBUILD INDEX:
1. Run RECOVER TABLESPACE for inconsistencies in a table space, supplying the page set name and page

number. Run REBUILD INDEX for an inconsistent index, supplying the name of the index. All indexes in
a table space can be rebuilt, that is, every index on every table in the table space. Or specify a number
of individual indexes (index spaces) to recover.

2. Verify that the recovery was successful. Message DSNU500I indicates successful data recovery and
message DSNU259I indicates a successful index rebuild.

3. If the inconsistency cannot be resolved with RECOVER TABLESPACE or REBUILD INDEX, use the SVC
dump that is issued for the abend. Continue with “Resolving inconsistencies manually” on page 333.

If an SVC dump is not available, but you know the page number that is involved, obtain a REPAIR,
DSN1COPY or DSN1PRNT dump of the inconsistent page. The REPAIR utility can be used with the
DUMP option to obtain a dump, or, for 00C90102 abends, DSN1COPY can be used with the CHECK
option to obtain a dump. After a dump of the page that is involved in the inconsistency is obtained,
continue with “Resolving inconsistencies manually” on page 333.

4. When in doubt about what page to recover and a dump is not available, contact the IBM Support
Center or IBM Service.

Related reference
REBUILD INDEX (Db2 Utilities)
RECOVER (Db2 Utilities)
REPAIR (Db2 Utilities)
DSN1COPY (Db2 Utilities)
DSN1PRNT (Db2 Utilities)

Diagnosing DBD inconsistencies
You can locate a database descriptor (DBD) by using the REPAIR DBD utility or in a dump, and analyze the
structure of the DBD.

Using REPAIR DBD
REPAIR DBD is an extension to the REPAIR utility. It is designed to help maintain consistent database
definitions between the Db2 catalog and directory.

Running REPAIR DBD, requires SYSADM authority, SYSCTRL, or installation SYSOPR authority.

REPAIR DBD provides the following abilities:

• Compare the definition of a database in the catalog with its definition in the directory.
• Rebuild the directory from the information in the catalog.
• Remove an inconsistent database descriptor (DBD) from the catalog and the directory.

342 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_rebuildindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_recover.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_repair.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1copy.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1prnt.html

Db2 must be operational when REPAIR DBD is run. Also, REPAIR assumes referential integrity in
the catalog. You can run the CHECK DATA utility or sample queries from member DSNTESQ of the
prefix.SDSNSAMP library to verify data consistency within the catalog.

To aid in the diagnosis of an inconsistent DBD, run REPAIR DBD with the DIAGNOSE option. The
output from REPAIR DBD contains two DBDs - the actual DBD on DASD and a DBD reconstructed from
information in the Db2 catalog and directory. If you can obtain a copy of the inconsistent DBD with
REPAIR DBD, continue with “Analyzing a DBD” on page 347. If you use REPAIR DBD to obtain a copy of
the inconsistent DBD is not successful, continue with “Finding a DBD in a dump” on page 343.

Related reference
REPAIR (Db2 Utilities)

Finding a DBD in a dump
When you analyze problems that involve a DBD, it is necessary to obtain an SVC dump that contains the
DBD or a dump that is produced by REPAIR, DSN1COPY or DSN1PRNT.

If you use an SVC dump that contains the DBD to analyze the inconsistency, be aware that the DBD that
appears in the dump is not contained in DBD01 records, but rather in memory as one contiguous block
or a chain of DBD blocks. Also, the area of memory that appears in the SVC dump might not include the
entire DBD. To obtain a REPAIR, DSN1COPY or DSN1PRNT dump of the DBD, you need to know which DBD
is involved and follow the steps under “Analyzing a repair, DSN1COPY or DSN1PRNT dump” on page 345.

If you do not know which DBD is involved and are unable to obtain a dump, contact an IBM support
center.

Analyzing an SVC dump issued by a DSNGDxxx module
When an SVC dump is issued by a DSNGDxxx module, a programming error was encountered while a DBD
was being built or modified. In this case, there is nothing that can be done to analyze the structure of the
DBD because the structure is not completed.

About this task
After you complete the following steps, contact IBM Support for assistance.

Procedure
To analyze an SVC dump that is issued by a DSNGDxxx module:
1. Print the dump that was issued.
2. Make a note of the SQL operations that were being performed before the dump was issued. If you

cannot determine what SQL operations were going on, review the description of the abend code. This
information might help IBM Support understand and resolve the problem.

3. To prevent more DDL activity from causing further damage, issue a -START DATABASE command for
read-only (RO) access for the catalog database, DSNDB06:

GUPI

-START DATABASE (DSNDB06) ACCESS (RO)

GUPI

Chapter 6. Data management 343

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_repair.html

Analyzing an SVC dump issued by a DSNIxxxx or DSNKxxxx module
Some SVC dumps issued by DSNIxxxx or DSNKxxxx modules contain DBDs.

About this task
If an SVC dump is obtained from a DSNIxxxx or DSNKxxxx module and you suspect that a DBD is involved
in the problem, follow the following procedure to determine whether a DBD is included in the dump.

Procedure
To analyze an SVC dump that is issued by a DSNIxxxx or DSNKxxxx module:
1. Review the abend reason code:

Option Description

If the abend reason code is
00C90102:

Continue with step “2” on page 344 until the DBD is found, or until it is
determined that there is no DBD in the dump.

If the abend reason code
is 00C90101, 00C9011x, or
00C902xx:

Obtain the address of the DBD in the diagnostic area of the dump by
analyzing the 00C9010X or 00C902XX abends.

After you locate the DBD in the dump, continue with “Analyzing a
DBD” on page 347.

2. Locate the system diagnostic work area (SDWA) at the beginning of the dump.
3. In the field named SDWAGR13 (at offset X'4C' in the SDWA) is register 13. The value at offset X'F4'

from the value in register 13 is the address of the cursor table (CT). At the beginning of the CT should
be the following value:

X'200F'

If this value is not in the dump at this location, there is no DBD in the dump.
4. Use the DMPR or the CTDB to find the DBD:

Option Description

Using the
DMPR
control
block to
find the
DBD:

a. CTDMPR in the CT contains either a 0 or the address of the DMPR (dump request)
control block. If the value is 0, there is no DBD in the dump.

b. At the beginning of the DMPR should be the following value:

X'20DFxxxC4D4D7D9'

If this value is not in the dump at this location, there is no DBD in the dump.
c. At offset X'40' from the start of the DMPR control block is an array of 16 8-byte

elements. These elements represent the last 16 DBD requests. Each element
contains a 2-byte control ID, followed by a 2-byte length field, followed by a 4-byte
address field, DMPRRADR. Each DMPRRADR field contains the starting address of a
requested DBD.

d. At the beginning of each DBD should be the following value:

X'2039xxxxC4C2C440'

e. If the DBD you are looking for is not at one of the 16 DMPRRAD addresses, use the
CTDB to find the DBD.

Using the
CTDB to
find the
DBD:

a. CTCUBPT in the CT contains either a 0 or the address of the CUB (cursor block). If
the value is 0, there is no DBD in the dump.

b. At the beginning of the CUB should be the following value:

344 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Option Description

X'2015xxxxC3E4'

If this value is not in the dump at this location, there is no DBD in the dump.
c. CUBCTDBP in the CUB contains the address of a CTDB (cursor table DBD block). At

the beginning of the CTDB should be the following value:

X'200DxxxxC3E3C4C2'

If this value is not in the dump at this location, there is no DBD in the dump.
d. CTDBPTR in the CTDB contains either 0 or the address of a DBD. If the value is 0,

there is no DBD in the dump.
e. At the beginning of the DBD should be the following value:

X'2039xxxxC4C2C440'

5. Continue with “Analyzing a DBD” on page 347.

Related concepts
Analyzing 00C9010X or 00C902XX abends
The 00C9010x and 00C902xx abend reason codes are issued along with informational error messages
(usually DSNI013I or DSNI014I) when logic errors, such as record length inconsistencies, are found.
The system diagnostic work area (SDWA)
Each SVC dump that is requested by a Db2 functional recovery routine usually contains an SDWA with
information about the status of the subsystem at the time of the error. Typically, the SDWA is a starting
point for diagnosis.

Analyzing a repair, DSN1COPY or DSN1PRNT dump
If you know which DBD is involved in the problem and you do not have an SVC dump that includes the
DBD, obtain a REPAIR dump of the various sections of the DBD or a DSN1COPY or DSN1PRNT dump of the
data set that contains the DBD.

About this task
If the data set is large, you might want to dump the individual pages that the following procedures point
you to, rather than expend the resources necessary to obtain a dump of the entire data set. However,
dumping individual pages can involve a great deal of work.

This task explains how to obtain a dump of specific data areas by using the REPAIR utility. You can also
obtain a dump of these areas by using the DSN1COPY or DSN1PRNT utility.

If a DSN1PRNT dump is used to analyze the inconsistency, the FORMAT option should not be specified
when the dump is printed. This option separates the header and anchor point area from the rest of the
page, labels the individual fields of the header, and does not show the offsets from the beginning of the
page, making it difficult to analyze the page.

Procedure
To obtain a REPAIR dump:
1. DBDs are stored in the Db2 directory in the DBD01 page set

(vsamcatalogname.DSNDBD.DSNDB01.DBD01.I0001.A001) in DBDR and DBDS records. The DBDR
(parent) record is connected to the DBDS (child) record via a link. Use the following steps to locate the
DBDR:

a. The anchor point of the DBD contains the RID of the first DBDR on the hash chain. Use the hashing
algorithms to find the page number and anchor point.

Chapter 6. Data management 345

b. Use the REPAIR utility with the DUMP control statement to dump the page of anchor points.

The REPAIR utility expects page numbers to be given in hexadecimal, and offsets in either decimal
or hexadecimal.

c. After the anchor point is found, use the REPAIR utility with the DUMP control statement to dump
the page that is specified in the first RID (if the page has not already been dumped).

2. Use the ID map entry value in the fourth byte of the first RID to locate the first DBDR record in the hash
chain.

3. After you located the first DBDR in the chain, determine whether the DBID at offset X'16' in the DBDR
matches the DBID of the DBD being checked.
Option Description

If the DBID matches: Continue with step “4” on page 346.

If the DBID does not
match:

Follow the hash chain (the RID at offset X'06' of the DBDR) forward until you
locate the DBDR with a DBID that matches the DBD in question. If a REPAIR,
DSN1COPY or DSN1PRNT dump of the entire page set is not available, dump
the page that the RID points to.

The following figure illustrates the structure of DBDRs in the hash chain of an anchor point.
Anchor Point

RID of 1st DBDR
on hash chain

RID of last DBDR
on hash chain

Hash Chain

DBDR DBDR DBDR

Link Fan Set DBDS DBDS

DBDS

Figure 98. DBDRs in hash chain
4. Next, find the DBDS (child) records.
5. To locate the first DBDS record in the link fan set, use the RID at offset X'0E' of the DBDR. A RID of 0

indicates that no child exists for this parent record.
6. Use the forward link pointer at offset X'06' of the first child record to locate the second child record.
7. Continue to use the forward link pointers to locate successive child records in the link fan set. The

forward link pointer of the last child record contains the RID of the parent record; the high-order bit of
the last byte in the RID should be turned on.

8. After you locate the parent (DBDR) and all the child (DBDS) records for the DBD, logically concatenate
the data areas of these records so they can be analyzed as if they were in one contiguous section.

9. Continue with “Analyzing a DBD” on page 347.

Related reference
DSN1COPY (Db2 Utilities)
DSN1PRNT (Db2 Utilities)
REPAIR (Db2 Utilities)

346 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1copy.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1prnt.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_repair.html

Analyzing a DBD
After you locate the DBD in the dump, the cause of the inconsistency can now be analyzed.

A DBD in virtual storage (memory) can have many DBD sections, resulting from DDL CREATE statements.
Conceptually, however, a DBD is a contiguous block of information that contains object descriptors (OBDs)
for various DM objects. Each OBD has an identifier that is called an OBID. The OBID is an index into the
OBDDMAP. The offset to a particular OBD from the beginning of the DBD header is equal to the value in
OBDDMAP (OBID). For instance, if the OBID is 4, the offset to that OBD is stored at OBDDMAP(4), the
fourth word of the OBDDMAP. The OBDDMAP begins at offset X'48' from the start of the DBD header.

The following figure illustrates these relationships and can aid in analysis.
DBD

X’14’ DBID

OBID of
first file OBD

OBDDMAP

Offset to OBD1 Element 1

Offset to OBD2 Element 2

..

....
DBD Header (OBDDBD)

X’26“ X’48’

OBDDFILE OBDDMAP Offset to OBDn Element n

OBIDnX’04’

OBD (OBDFILE)

X’3C’ OBDFINX

DBD address +
offset in
element n of
OBDDMAP

OBID of next file OBD
(X’00’ if last in chain)..

....

DBD address +
offset in
element 2 of
OBDDMAP

X’04’ OBID2

OBD (OBDPSET)

X’04’ OBID1

OBD (OBDREC)

X’3C’ OBDREREC OBID of next record type OBD
(X’00’ if last in chain)

DBD address +
offset in
element 1 of
OBDDMAP

Figure 99. DBD and file OBD structure

The procedure that is provided explains how to go through all OBDs of all DBDs and how to analyze their
structure. This process is extremely time consuming. When an error or inconsistency is found, you can
choose to stop the analysis and assume that the problem is the only problem, or you can continue in an
attempt to find other potential errors.

If you suspect that a certain OBID is involved in the problem, you can locate the corresponding OBD
directly, and use parts of the procedure for analyzing a DBD (depending on what type of OBD is involved).

Begin with the first procedure, “Checking the DBD header and chain of files” on page 348, which explains
how to start analyzing the structure of the DBD. This general procedure refers you to other more specific
procedures that follow it.

The procedure for checking the structure of the DBD applies to DBDs for user-defined databases only.
Assume that the structure of system-defined DBDs for Db2 areas such as the catalog are correct.

Locating an OBD (given the OBID of the OBD) involves using the OBID value as an index into OBDDMAP.
When doing this task, mark the OBID to indicate that it is being used. When you search a chain, if an OBID
is encountered that is already marked, the OBD is pointed to by more than one other OBD; that is, it is
in two chains. If the OBD is not a relationship OBD between tables in the same database, this is an error
(only relationship OBDs in the same database can appear in two chains).

Chapter 6. Data management 347

Checking the DBD header and chain of files
After you locate the DBD in the dump, the DBD header and chain of files can be analyzed for
inconsistencies.

Procedure
To check the DBD header and chain of files:
1. Check the DBD header.

The control block identifier (first 2 bytes of the DBD header) is X'2039'. At offset X'04' is the DBD
eye-catcher.

2. Cross-check the DBD with the Db2 catalog.

Issue the following SQL statement, specifying the DBID for the DBD being checked.

SELECT NAME FROM SYSIBM.SYSDATABASE
 WHERE DBID=dbid;

The result from this SELECT statement should be one row, and the name should equal the name found
in the field named OBDDBNAM. If the number of rows that are returned is not 1 or the name does not
equal the name found in OBDDBNAM, make a note of the error.

3. Check the OBD file chain.

The OBDDFILE field in the OBDDBD contains the OBID of the first file OBD (OBDFILE). The OBDFINX
field in the OBDFILE contains either 0 or the OBID of the next file OBD. (A zero indicates that the last
file OBD in the chain.)

For each file OBD (indicated by an OBDTYPE field that equals binary B'10') on the file chain, mark it
and perform the check that is described under “Checking the files” on page 348.

If the file chain is damaged (that is, the OBD located is not a file OBD), make a note of the error.
4. After you complete this procedure, no errors are found and if all OBIDs are marked, the structure of

the DBD is probably consistent. If there are one or more unmarked OBIDs, then there is one or more
errors.

5. If any errors are found when you analyze the structure of the DBD, contact the IBM support center and
describe the analysis that was done.

Checking the files
After you locate the DBD in the dump, the files can be analyzed for inconsistencies.

Procedure
To check each file that is located by OBD:
1. Cross-check the file OBD with the catalog. To do this task, issue the following SQL statements,

replacing dbid with the DBID of the DBD being checked and obid with the OBID of the file that is
being checked.

SELECT NAME, PSID FROM SYSIBM.SYSTABLESPACE
 WHERE DBID=dbid
 AND OBID=obid;

The result is one row, and the name and PSID matches the OBDFNAME and OBDFIPS, in OBDFILE.

348 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

If the number of rows that are returned is not 1, or if the name and PSID do not match, make a note of
the error.

2. Check the data page set of the file OBD. Use the OBID contained in the OBDFIPS field to locate, check,
and mark the data page set OBD (OBDPSET). The value for OBDTYPE is binary B'11'. To check the data
page set OBD:

• Determine whether the value of the OBDPSOB field matches the file OBID.
• Cross-check the page set OBD with the catalog. Issue the following SQL statement, replacing
obdfname with the value found in the OBDFNAME field of the file OBD, and replacing dbddbnam
with the database name of the DBD being checked (that is, the value found in the DBDDBNAM field of
the DBD header).

GUPI

SELECT COUNT(*) FROM SYSIBM.SYSTABLEPART
 WHERE TSNAME=obdfname
 AND DBNAME=dbddbnam;

GUPI

The result is 1 if the table space is a simple table space (that is, if OBDPSANM equals 0). If the table
space is partitioned, the result is equal to the value of OBDPSANM (in OBDPS).

3. Check the OBD record chain within the file. The OBDFIREC field in the OBDFILE contains the OBID of
the first record OBD (OBDREC). The OBDREREC field in OBDREC contains either a 0 or the OBID of the
next record OBD. A 0 in OBDREREC indicates that it is the last record OBD.

Check the record chain for the file. Mark each record OBD (indicated by an OBDTYPE field that equals
binary B'01') in the record chain. Perform the check that is described under “Checking the records” on
page 349.

If the record chain is damaged (that is, the OBD located is not a record OBD), make a note of the error.
4. Return to the procedure that referred you here.

Checking the records
After you locate the DBD in the dump, the records can be analyzed for inconsistencies.

Procedure
To check each record that is located by OBD:
1. If the record OBD is marked, make a note that it is a duplicate OBD (indicating an error) and return to

the procedure that referred you here. If it is not marked, continue with the next step.
2. Determine whether the OBDREFIL field of the OBDREC matches the file OBID. If not, make a note of

the error and continue.
3. Cross-check the OBD with the catalog. Issue the following SQL statement, replacing dbid with the

DBID of the DBD being checked, and obid with the OBID of the record OBD being checked.

SELECT NAME, CREATOR FROM SYSIBM.SYSTABLES
 WHERE DBID=dbid
 AND OBID=obid;

The result is one row of output; if you receive more or less than one row, make a note of the error.
4. Issue the following SQL statement, replacing name with the NAME you received in the row of output

from the previous SELECT, and creator with the CREATOR you received.

Chapter 6. Data management 349

GUPI

SELECT COUNT(*) FROM SYSIBM.SYSCOLUMNS
 WHERE TBNAME=name
 AND TBCREATOR=creator;

GUPI

The result is equal to the value of the OBDRENFD field of OBDREC; this field contains the number of
columns in the table.

If the result is not as previously described, make a note of the error.
5. Check the index chain of the record. The OBDRECHI field of the OBDREC contains the OBID of the first

index OBD (OBDFS). The OBDFSFSC field of the OBDFS contains either 0 or the OBID of the next index
OBD. 0 indicates the last index OBD.

Check the index fan set chain. Mark each index fan set OBD (indicated by an OBDTYPE field that equals
B'00') defined on the record. Perform the check that is described under “Checking the indexes” on
page 357.

If the index chain is damaged (that is, the OBD located is not an index type OBD), make a note of the
error.

6. Check the referential integrity (RI) relationship chains of the record.
a) Parent record: The OBDRELPA field of the OBDREC contains the OBID of the first RI relationship

OBD (OBDFS) in which the record is a parent. The OBDFSFSP field of the OBDFS contains either a 0
or the OBID of the next RI relationship OBD in which the record is a parent. A 0 indicates the last RI
relationship OBD.

Be sure that the record that is a parent in an RI relationship has a primary key and a primary index.
The OBDRDEF field in the OBDREC equals binary B'0' if a primary key and an index exist.

b) Dependent record: The OBDRELCH field of the OBDREC contains the OBID of the first RI
relationship OBD (OBDFS) in which the record is a child. The OBDFSFSC field of the OBDFS contains
either a 0 or the OBID of the next relationship OBD in which the record is a child. A 0 indicates that
it is the last RI relationship OBD.

7. Check the RI relationship fan set chains. Mark each RI relationship fan set OBD (indicated by an
OBDTYPE field that equals binary B'00' and an OBDFSDC field that equals binary B'1') defined on the
record. Perform the checks that are described under “Checking the referential integrity relationships”
on page 351

If the RI relationship chain is damaged (that is, the OBD located is not an RI relationship-type OBD),
make a note of the error.

8. Check the auxiliary relationship chains. To do this task, examine the first and second extensions to the
OBDREC. Find the first extension (OBDRX) by adding the offset in OBDREXTO to the address of the
OBDREC. Find the second extension (OBDRX2) by adding the offset in OBDREXT2 (which is in OBDRX)
to the address of OBDRX. If OBDRXLOB (in OBDRX) equals B'1' and OBDRXILO (in OBDRX) equals B'0',
then OBDRX2RA (in OBDRX2) contains the OBID of the first auxiliary relationship OBD (OBDRA) for the
table. The OBDANEXT field of the OBDRA contains either 0 or the OBID of the next OBDRA. Perform
the checks that are described in “Checking the auxiliary relationships” on page 353. If the relationship
chain is damaged (that is, the OBD located is not an auxiliary relationship-type OBD), make a note of
the error.

9. Return to the procedure that referred you here.

350 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Example
External representation:

T1
R1

Parent of T4 and T5
Dependent of T1

T3
R2

T4 T5

R3

Internal representation:

T3
OBDREC

.

OBDRELPA
.

OBDRELCH

R2

R3

R1

0
0

0

OBDFS

OBDFSFSP
OBDFSPAR
OBDDCIP

OBDFS

OBDFSFSP
OBDFSPAR
OBDDCIPOBDFS

OBDFSFSC
OBDDCIF
OBDFSCHI OBDFS

OBDFSPAR

Relationship
fan sets

Primary
index fan
set

A parent record type OBD is incomplete if there is no primary index on the parent key..
A dependent record type OBD might or might not have an index on a foreign key.

Figure 100. Example of an RI relationship fan set chain

Checking the referential integrity relationships
After you locate the DBD in the dump, the referential integrity (RI) relationships can be analyzed for
inconsistencies.

Procedure
To check the RI relationships:
1. “Checking the records” on page 349 illustrates the structure of relationship fan set chains. Refer to

that figure to perform the following checks. These checks apply to informational referential constraints
as well as enforced referential constraints.
a) For each relationship fan set OBD (OBDFS):

• If OBDDCCHR is non-zero, then the dependent in the relationship resides in a different database
than the parent. The DBID of the other database is in the OBDDCCHD field of this relationship fan
set.

Chapter 6. Data management 351

Make a note that when you check the relationship chains for database OBDDCCHD, you should
ensure that the OBDDCPAR field contains the OBID of this relationship fan set, and that
OBDDCPAD contains the DBID of this database.

• Check that OBDFSPAR is equal to the OBID of the parent record type OBD (OBDREC). The OBID of
OBDREC is stored in OBDRECID.

• If OBDRDEF is equal to binary B'0' OBDREC, then OBDDCIP (in OBDFS) contains the OBID of the
index fan set for the primary index. Verify the existence of that index fan set.

If OBDRDEF is equal to binary B'1' in OBDREC, then the definition of OBDREC is incomplete (there
is no primary index on the primary key) and OBDDCIP is meaningless.

• Cross-check the OBD with the catalog. Issue the following SQL statement, replacing DBID with
the DBID of the DBD being checked, and OBID with the OBID of the relationship.

SELECT R.RELNAME, R.REFTBCREATOR, R.REFTBNAME
 FROM SYSIBM.SYSRELS R,
 SYSIBM.SYSTABLES T
 WHERE R.REFTBCREATOR = T.CREATOR
 AND R.REFTBNAME = T.NAME
 AND T.DBID = dbid
 AND R.RELOBID1 = obid

This returns the name of the relationship with respect to the parent table.
b) Relationship chain in which record is a dependent

For each relationship fan set OBD (OBDFS):

• If OBDDCPAR is non-zero, then the parent in the relationship resides in a different database than
the dependent. The dbid of the other database is in the OBDDCPAD field of this relationship fan
set.

Make a note that when you check the relationship chains for database OBDDCPAD, you should
ensure that the OBDDCCHR field contains the obid of this relationship fan set, and that
OBDDCCHD contains the dbid of this database.

• Check that OBDFSCHI is equal to the OBID of the dependent record type OBD (OBDREC). The
OBID of OBDREC is stored in OBDRECID.

• If OBDDCIF is not equal to zero, then it contains the OBID of the index fan set on the foreign key.
Verify the existence of that index fan set.

If OBDDCIF is equal to zero, then there is no index on the foreign key.
• Cross-check the OBD with the catalog. Issue the following SQL statement, replacing dbid with

the DBID of the DBD being checked, and OBID with the OBID of the relationship.

SELECT R.RELNAME R.CREATOR, R.TBNAME
 FROM SYSIBM.SYSRELS R,
 SYSIBM.SYSTABLES T
 WHERE R.CREATOR = T.CREATOR
 AND R.TBNAME = T.NAME
 AND T.DBID = dbid
 AND R.RELOBID1 = obid

This returns the name of the relationship with respect to the dependent table.
2. To check the number of foreign keys, issue the following SQL statement:

352 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

GUPI

SELECT COUNT(*) FROM SYSIBM.SYSFOREIGNKEYS
 WHERE CREATOR = creator
 AND RELNAME = relname

GUPI

To check the number of primary keys, issue:

GUPI

SELECT COUNT(*)
 FROM SYSIBM.SYSINDEXES I,
 SYSIBM.SYSKEYS K
 WHERE I.UNIQUERULE = 'P'
 AND I.TBCREATOR = reftbcreator
 AND I.TBNAME = reftbname
 AND I.CREATOR = K.IXCREATOR

GUPI

3. Return to the procedure that referred you here.

Checking the auxiliary relationships
After you locate the DBD in the dump, the auxiliary relationships can be analyzed for inconsistencies.

Procedure
For each auxiliary relationship OBD (OBDRA):
1. Check that the OBD located is an OBDRA. For an OBDRA, the first 3 bits of OBDFLAGS are B'010'

and OBDATYP3 is B'1'. If these fields do not contain the correct values, return to the procedure that
referred you here.

2. Check that the OBDABT contains the OBID of the record OBD for the base table. If the base table
space is partitioned, run the following SQL statement, replacing dbname with the name of the
database and tsname with the name of the base table space.

GUPI

SELECT COUNT(*) FROM SYSIBM.SYSTABLEPART WHERE
 DBNAME = 'dbname' AND TSNAME = 'tsname';

GUPI

The result is equal to the value in field OBDAPARTN of OBDRA. This field contains the number of
partitions in the base table space.

3. If the base table space is partitioned, there is an OBDAPART section for each partition. Element i in
the OBDAPART array corresponds to partition i of the base table space. If the base table space is not
partitioned, there is a single OBDAPART section.

Each OBDAPART section contains:

a. OBDAAT (OBID of the OBDREC for the auxiliary table)
b. OBDAPS (OBID of the OBDPS for the LOB table space)
c. OBDAFS (OBID of the OBDFS for the auxiliary index)
d. OBDAFI (OBID of the OBDFILE for the LOB table space)
e. OBDAIPS (OBID of the OBDPS for the auxiliary index)

4. Use the following queries to cross-check the values in the OBDAPART fields with the catalog.

• Replace column with the value in field OBDACOLNO (the column number) in OBDRA.
• Replace obid with the value in OBDAAT.

Chapter 6. Data management 353

• Replace obid1, obid2, … obidn with the values in OBDAAT.

• To cross-check the value in OBDAAT with the catalog, run one of the following SQL statements. In
these SQL statements, make the following changes:

– Replace column with the value in field OBDACOLNO (the column number) in OBDRA.
– Replace obid with the value in OBDAAT.
– Replace obid1, obid2, … obidn with the values in OBDAAT.

– For a nonpartitioned base table space, run this statement:

SELECT A.AUXTBNAME, A.COLNAME, A.TBNAME FROM
 SYSIBM.SYSCOLUMNS C,
 SYSIBM.SYSAUXRELS A,
 SYSIBM.SYSTABLES T
 WHERE C.NAME = A.COLNAME
 AND C.COLNO = 'column'
 AND T.NAME = A.AUXTBNAME
 AND T.OBID = 'obid';

The value of A.AUXTBNAME should be the name of the auxiliary table that is created for column
A.COLNAME in base table A.TBNAME.

– For a partitioned base table space, run the following query:

SELECT A.AUXTBNAME, A.COLNAME, A.TBNAME FROM
 SYSIBM.SYSCOLUMNS C,
 SYSIBM.SYSAUXRELS A,
 SYSIBM.SYSTABLES T
 WHERE C.NAME = A.COLNAME
 AND C.COLNO = 'column'
 AND T.NAME = A.AUXTBNAME
 AND T.OBID IN (obid1, obid2, …, obidn);

The values of A.AUXTBNAME should be the names of the auxiliary tables that are created for
column A.COLNAME in base table A.TBNAME.

• To cross-check the value in OBDAPS with the catalog, run one of the following SQL statements. In
these SQL statements, make the following changes:

– Replace column with the value in field OBDACOLNO (the column number) in OBDRA.
– Replace obid with the value in OBDAPS.
– Replace obid1, obid2, … obidn with the values in OBDAPS.

– For a nonpartitioned base table space, run this SQL statement:

 SELECT S.NAME, A.COLNAME, A.TBNAME FROM
 SYSIBM.SYSCOLUMNS C,
 SYSIBM.SYSAUXRELS A,
 SYSIBM.SYSTABLES T,
 SYSIBM.SYSTABLESPACE S
 WHERE C.NAME = A.COLNAME
 AND C.COLNO = column
 AND T.NAME = A.AUXTBNAME
 AND T.TSNAME = S.NAME
 AND S.PSID = obid;

354 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

The value of S.NAME should be the name of the LOB table space that is associated with
A.COLNAME in base table A.TBNAME.

– For a partitioned base table space, run this SQL statement:

SELECT S.NAME, A.COLNAME, A.TBNAME FROM
 SYSIBM.SYSCOLUMNS C,
 SYSIBM.SYSAUXRELS A,
 SYSIBM.SYSTABLES T,
 SYSIBM.SYSTABLESPACE S
 WHERE C.NAME = A.COLNAME
 AND C.COLNO = column
 AND T.NAME = A.AUXTBNAME
 AND T.TSNAME = S.NAME
 AND S.PSID IN
 (obid1, obid2, ... , obidn);

The values of S.NAME should be the names of the LOB table spaces that are associated with
A.COLNAME in base table A.TBNAME.

• To cross-check the value in OBDAFS with the catalog, run the following SQL statements. In these
SQL statements, make the following changes:

– Replace column with the value in field OBDACOLNO (the column number) in OBDRA.
– Replace obid with the value in OBDAFS.
– Replace obid1, obid2, … obidn with the values in OBDAFS.

– For a nonpartitioned base table space, run this SQL statement:

SELECT I.NAME, A.AUXTBNAME,
 A.COLNAME, A.TBNAME FROM
 SYSIBM.SYSCOLUMNS C,
 SYSIBM.SYSAUXRELS A,
 SYSIBM.SYSTABLES T,
 SYSIBM.SYSINDEXES I
 WHERE C.NAME = A.COLNAME
 AND C.COLNO = column
 AND T.NAME = A.AUXTBNAME
 AND T.NAME = I.TBNAME
 AND I.OBID = obid;

The value of I.NAME should be the name of the auxiliary index on table A.AUXTBNAME associated
with A.COLNAME in base table A.TBNAME.

– For a partitioned base table space, run this SQL statement:

SELECT I.NAME, A.AUXTBNAME,
 A.COLNAME, A.TBNAME FROM
 SYSIBM.SYSCOLUMNS C,
 SYSIBM.SYSAUXRELS A,
 SYSIBM.SYSTABLES T,
 SYSIBM.SYSINDEXES I
 WHERE C.NAME = A.COLNAME
 AND C.COLNO = column
 AND T.NAME = A.AUXTBNAME
 AND T.NAME = I.TBNAME
 AND I.OBID IN
 (obid1, obid2, ... , obidn);

Chapter 6. Data management 355

I.NAME should be the names of the auxiliary indexes on tables A.AUXTBNAME and associated
with A.COLNAME in base table A.TBNAME.

• To cross-check the value in OBDAFI with the catalog, run one of the following SQL statements. In
these SQL statements, make the following changes:

– Replace column with the value in field OBDACOLNO (the column number) in OBDRA.
– Replace obid with the value in OBDAFI.
– Replace obid1, obid2, … obidn with the values in OBDAFI.

– For a nonpartitioned base table space, run this SQL statement:

SELECT S.NAME, A.COLNAME, A.TBNAME FROM
 SYSIBM.SYSCOLUMNS C,
 SYSIBM.SYSAUXRELS A,
 SYSIBM.SYSTABLES T,
 SYSIBM.SYSTABLESPACE S
 WHERE C.NAME = A.COLNAME
 AND C.COLNO = column
 AND T.NAME = A.AUXTBNAME
 AND T.TSNAME = S.NAME
 AND S.OBID = obid;

The value of S.NAME should be the name of the LOB table space that is associated with
A.COLNAME in base table A.TBNAME.

– For a partitioned table space, run this SQL statement:

SELECT S.NAME, A.COLNAME, A.TBNAME FROM
 SYSIBM.SYSCOLUMNS C,
 SYSIBM.SYSAUXRELS A,
 SYSIBM.SYSTABLES T,
 SYSIBM.SYSTABLESPACE S
 WHERE C.NAME = A.COLNAME
 AND C.COLNO = column
 AND T.NAME = A.AUXTBNAME
 AND T.TSNAME = S.NAME
 AND S.OBID IN
 (obid1, obid2, ... , obidn);

The values of S.NAME should be the names of the LOB table spaces that are associated with
A.COLNAME in base table A.TBNAME.

• To cross-check the value in OBDAIPS with the catalog, run the following SQL statements. In these
SQL statements, make the following changes:

– Replace column with the value in field OBDACOLNO (the column number) in OBDRA.
– Replace obid with the value in OBDAIPS.
– Replace obid1, obid2, … obidn with the values in OBDAIPS.

– For a nonpartitioned base table space, run this SQL statement:

SELECT A.COLNAME, I.NAME, A.AUXTBNAME, T.NAME FROM
 SYSIBM.SYSCOLUMNS C,
 SYSIBM.SYSAUXRELS A,
 SYSIBM.SYSTABLES T,
 SYSIBM.SYSINDEXES I
 WHERE C.NAME = A.COLNAME
 AND C.COLNO = column

356 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

 AND T.NAME = A.AUXTBNAME
 AND T.NAME = I.TBNAME
 AND I.ISOBID = obid;

The value of I.NAME should be the name of the auxiliary index on table A.AUXTBNAME associated
with A.COLNAME in base table T.NAME.

– For a partitioned base table space, run this SQL statement:

SELECT I.NAME, A.AUXTBNAME, A.COLNAME, A.TBNAME FROM
 SYSIBM.SYSCOLUMNS C,
 SYSIBM.SYSAUXRELS A,
 SYSIBM.SYSTABLES T,
 SYSIBM.SYSINDEXES I
 WHERE C.NAME = A.COLNAME
 AND C.COLNO = column
 AND T.NAME = A.AUXTBNAME
 AND T.NAME = I.TBNAME
 AND I.ISOBID IN (obid1, obid2, ... , obidn);

The values of I.NAME should be the names of the auxiliary indexes on tables A.AUXTBNAME
associated with A.COLNAME in base table A.TBNAME.

Checking the indexes
After you locate the DBD in the dump, the indexes can be analyzed for inconsistencies.

Procedure
To check each index fan set located by ODB:
1. If the index OBD is marked, make a note that it is a duplicate OBD (indicates an error) and return to the

procedure that referred you here. If it is not marked, continue with the next step.
2. Determine whether the OBDFSCHI field of the OBDFS matches the record OBID. If not, make a note of

the error and continue.
3. Cross-check the OBDFS in the DBD with the Db2 catalog. Issue the following SQL statement, replacing
dbid with the DBID of the DBD being checked, and obid with the OBID of the index fan set.

SELECT NAME, CREATOR FROM SYSIBM.SYSINDEXES
 WHERE DBID=dbid
 AND OBID=obid;

The result is one row is returned. If more or less than one row is returned, make a note of the error.
4. Issue the following SQL statement, using the NAME you received from the previous SELECT and the

CREATOR you received.

GUPI

SELECT COUNT(*) FROM SYSIBM.SYSKEYS
 WHERE IXNAME=name
 AND IXCREATOR=creator;

GUPI

Chapter 6. Data management 357

The result is equal to the value of OBDKNFDO in OBDFS; this field contains the number of columns in
the key. If the result is not as described, make a note of the error.

5. Use the OBID contained in the OBDIPSET field to locate, check, and mark the index page set OBD. The
value for OBDTYPE is binary B'11'. To check the index page set OBD:

• Determine whether the OBDPSOB field matches the index OBID.
• Compare the value of the OBDPSET field in the DBD to values in the SYSIBM.SYSINDEXPART catalog

table. Issue the following SQL statement, replacing the NAME returned in step “3” on page 357 and
the CREATOR returned in step “3” on page 357.

GUPI

SELECT COUNT(*) FROM SYSIBM.SYSINDEXPART
 WHERE IXNAME=name
 AND IXCREATOR=creator;

GUPI

The result is equal the value of OBDPSANM in OBDPS if the index is a clustering index for a
partitioned table space. If the index is not a clustering index for a partitioned table space, the result
is 1.

If the results are not as described, make a note of the error.
• Return to the procedure that referred you here.

Resolve the inconsistent DBD
You can contact IBM Support after you narrow down the probable cause.

After you follow the procedures to resolve the inconsistent DBD and compare the SVC dump of the DBD
(the DBD as it appears in memory) to the dump produced by REPAIR, DSN1COPY or DSN1PRNT (the DBD
as it appears in permanent storage), probable cause of the inconsistent DBD is narrowed down.

Next, contact IBM Support and describe the analysis that was done. Do not attempt to resolve the
problem with the REPAIR utility. IBM Support requires the dumps that you worked with to resolve the
inconsistent DBD.

358 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Chapter 7. Trace messages and codes
The DSNWEIDS file is shipped with Db2. It provides brief descriptions of trace codes that the global trace
facility issues. The TSO attachment facility, call attach facility, and SPUFI issue their own trace messages.

Db2 trace codes
A readable z/OS data set is shipped with Db2, which describes the Db2 trace codes that are issued by
the global trace facility. These trace codes are known as event identifiers (EIDs). The data set is called
prefix.SDSNSAMP(DSNWEIDS).

Use the TSO or ISPF browse function to look at these descriptions online, even when Db2 is down. To look
at the descriptions in printed form, use ISPF to print a listing of the data set.

Alternatively, the data set can be loaded into a user-defined Db2 table. This approach has the advantage
of providing access to the EID descriptions through SQL SELECT statements in whatever order or format
required. SQL can also be used to tailor the information before you print it.

Maintaining EID descriptions
Periodically, updated data is included on Db2 corrective service tapes. These tapes are shipped with the
++HOLD statement, with instructions to replace the original data set with the updated data set. In this
way, the EID descriptions are kept current with Db2 code.

Loading EID descriptions into a table
You can load EID descriptions through SQL SELECT statements in whatever order or format that is
required.

About this task

Procedure
To load EID descriptions into a table:
1. Run the following CREATE statements, under SYSADM authority. The SQL can be changed to place the

tables in a different table space.

CREATE TABLESPACE EIDTS
 IN DSN8D12A
 USING STOGROUP DSN8G120;
CREATE TABLE DSN8C10.EID_DESCRIPTIONS
 (RMID CHAR(6) NOT NULL,
 EID CHAR(9),
 CSECT CHAR(8),
 DESCRIPTION CHAR(29),
 TYPE CHAR,
 TRACEITEMS CHAR(14),
 SEQ INTEGER NOT NULL)
 IN DSN8D12A.EIDTS;

2. Use the following LOAD command to load the table with the data in prefix.SDSNSAMP(DSNWEIDS).
Change the JCL on the LOAD command to suit your environment. Make sure that the INDDN parameter
identifies a DD statement that points to the data as it is shipped with Db2.

LOAD DATA INDDN(SYSREC) LOG(NO)
 INTO TABLE DSN8C10.EID_DESCRIPTIONS
 (RMID POSITION(1:6) CHAR(6),
 EID POSITION(8:16) CHAR(9),
 CSECT POSITION(18:25) CHAR(8),
 DESCRIPTION POSITION(27:55) CHAR(29),
 TYPE POSITION(57) CHAR,

© Copyright IBM Corp. 1983, 2024 359

 TRACEITEMS POSITION(59:72) CHAR(14),
 SEQ POSITION(74:80) INTEGER EXTERNAL(6))

3. After the table is loaded, run the following command to start the database:

-START DATABASE (DSN8D12A) SPACENAM (EIDTS) ACCESS (RW)

Retrieving EID descriptions
SQL can be used to retrieve the EID descriptions in whatever format or order that is required. The SQL
statements can be run as would any other SQL (for example, through SPUFI, QMF, or DSNTEP2).

About this task

Some sample SQL statements follow that might be useful in analyzing the Db2 global trace. Consider
printing a formatted report of the results from the first query as a reference. Be aware, however, that this
information is licensed. The terms and conditions of the licensing agreement, as stated at the beginning of
the file, apply to any hardcopy that is generated.

Procedure
• To retrieve all EID descriptions, ordered numerically by RMID:

SELECT DISTINCT *
 FROM DSN8C10.EID_DESCRIPTIONS
 ORDER BY SEQ;

• To retrieve only the EID descriptions for RMID 04-04:

SELECT DISTINCT *
 FROM DSN8C10.EID_DESCRIPTIONS
 WHERE RMID = 'AGREE' OR RMID = '04-04'
 ORDER BY SEQ;

• To retrieve only the EID description for EID 10-0A:

SELECT DISTINCT *
 FROM DSN8C10.EID_DESCRIPTIONS
 WHERE RMID = 'AGREE' OR EID = '10-0A'
 ORDER BY SEQ;

• To retrieve only the EID descriptions for CSECT DSNICFLD:

SELECT DISTINCT *
 FROM DSN8C10.EID_DESCRIPTIONS
 WHERE RMID = 'AGREE' OR CSECT = 'DSNICFLD'
 ORDER BY SEQ;

• To retrieve only the EID description for EID 3376-0D30 in RMID 21-15:

SELECT DISTINCT *
 FROM DSN8C10.EID_DESCRIPTIONS
 WHERE EID = 'AGREE' OR
 (RMID = '21-15' AND EID = '3376-0D30')
 ORDER BY SEQ;

360 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

TSO attachment facility trace messages
Some TSO trace messages have the same message number. They are listed in order of the CSECTs that
issue them.

When a message is printed, it is preceded by the name of the issuing CSECT. To find a particular message,
look for the issuing CSECT shown in an " eye-catcher" box before each block of messages that is issued
by one CSECT. Then, look for the message within that group that has the same text as the message you
received.

This trace facility is primarily intended for use either by IBM personnel or by a system programmer that
works with IBM Support.

The following table shows the beginning page number for each CSECT.

CSECT: DSNECP00
Message text Explanation

ENTER DSNECP00 R1 token1 token2 CSECT DSNECP00 has been entered from TSO.

The first hexadecimal token is register 1.

The second hexadecimal token is not used.

AFTER STAX R6,R15 token1 token2 The STAX macro has been issued.

The first hexadecimal token is register 6, which
contains the pointer to the connection information
block (CIB).

The second hexadecimal token is register 15, the
return code from the STAX macro.

MAIN LOOP TOP CIBP00C,CIBSTIP1 token1
token2

This is the start of the main loop in CSECT
DSNECP00.

The first hexadecimal token is CIBP00C, the loop
control variable.

The second hexadecimal token is CIBSTIP1, the
user attention indication variable.

BEFORE ATTACH R2,R3 token1 token2 Load module DSNECP00 is about to attach load
module DSNECP10.

The first hexadecimal token is register 2, a pointer
to DSNE0CIB.

The second hexadecimal token is register 3, the
ATTACH ECB.

BEFORE WAIT CIBEXECB,CIBSBECB token1
token2

The WAIT macro is about to be issued.

The first hexadecimal token is CIBEXECB, the EXIT
ECB.

The second hexadecimal token is CIBSBECB, the
ATTACH ECB.

Chapter 7. Trace messages and codes 361

Message text Explanation

WAIT WAS JUST POSTED CIBEXECB,CIBSBECB
token1 token2

The WAIT was just posted by either the Db2 (the
EXIT ECB) or by DSNECP10, the DSN subtask.

The first hexadecimal token is CIBEXECB, the EXIT
ECB.

The second hexadecimal token is CIBSBECB, the
ATTACH ECB.

DSNECP10 WAS POSTED CIBSBECB,CIBSTIP1
token1 token2

DSNECP10 has completed.

The first hexadecimal token is CIBSBECB, the
DSNECP10 ECB.

The second hexadecimal token is CIBSTIP1, the
user attention indicator variable.

BIG IF BOTTOM CIBEXECB,CIBSBECB token1
token2

Execution is at the bottom of the main IF statement
in the CSECT.

The first hexadecimal token is CIBEXECB, the EXIT
ECB.

The second hexadecimal token is CIBSBECB, the
DSNECP10 subtask ECB.

MAIN LOOP BOTTOM CIBP00C,CIBSTIP1 token1
token2

The program is at the bottom of the main loop.

The first hexadecimal token is CIBP00C, the loop
control variable. The second hexadecimal token is
CIBSTIP1, the attention indicator variable.

EXIT DSNECP00 CIBEXECB,CIBSBECB token1
token2

The DSN command processor is terminating.
Control will return to TSO.

The first hexadecimal token is CIBEXECB, the EXIT
ECB.

The second hexadecimal token is CIBSBECB, the
DSNECP10 subtask ECB.

ENTER ZSTOMP CIBP00C,CIBMAXRC token1
token2

Control is entering the subroutine that will DETACH
DSNECP10.

The first hexadecimal token is CIBP00C, the main-
loop control variable.

The second hexadecimal token is CIBMAXRC, the
maximum return code that has occurred so far in
DSN processing.

AFTER CS R2,CIBSBTCB token1 token2 The compare and swap (CS), that checks the TCB
before detaching it, has just occurred. The two
tokens should be identical for the CS to occur.

The first hexadecimal token is the contents of
register 2.

The second hexadecimal token is CIBSBTCB, the
TCB address.

362 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

BEFORE DETACH ZTCBPTR,CIBSTIP1 token1
token2

The DSNECP00 task is about to DETACH the
DSNECP10 subtask.

The first hexadecimal token is ZTCBPTR, the
address of the TCB to be detached.

The second hexadecimal token is CIBSTIP1, the
attention indicator variable.

AFTER DETACH ZTCBPTR,CIBSTIP1 token1
token2

DETACH has completed.

The first hexadecimal token is ZTCBPTR, the
address of the TCB detached.

The second hexadecimal token is CIBSTIP1, the
attention indicator variable.

CIBPUTGT WAS ON AND USER PRESSED
ATTENTION token1 token2

CIBPUTGT being on means that the DSN
initialization processing is complete and that
normal attention processing is enabled.

The first hexadecimal token is ZTCBPTR, the
address of the TCB that was processing at the time
of attention.

The second hexadecimal token is CIBSTIP1, which
indicates whether the user pressed attention.

ENTER DSNECP00 ESTAI ROUTINE, R0=12
token1 token2

The ESTAI was entered with no SDWA.

The first hexadecimal token is unpredictable.

The second hexadecimal token is the attention
indicator variable, CIBSTIP1.

CIBSTIP1=ATTN token1 token2 The user pressed the attention key.

The hexadecimal tokens are not used.

ENTER DSNECP00 ESTAI ROUTINE, ABEND
CODE, REASON CD token1 token2

The ESTAI routine in DSNECP00 has been entered
with an SDWA.

The first hexadecimal token is the ABEND code.

The second hexadecimal token is the reason code.

ABEND ADDRESS FROM PSW token1 token2 An SDWA was available and the abend address is in
token one.

The first hexadecimal token is SDWAPMKA.

The second hexadecimal token is not used.

CIBSTIP1=ATTN token1 token2 The user pressed the attention key.

The hexadecimal tokens are not used.

Chapter 7. Trace messages and codes 363

CSECT: DSNECP01
Message text Explanation

ENTER DSNECP01, R6= token1 token2 Attention routine has been entered.

The first hexadecimal token is unpredictable.

The second hexadecimal token is register 6, the
address of the connection information block (CIB).

"No Text" There is no text after the leading blanks in the input
buffer.

The first hexadecimal token is ZI, the offset into the
buffer.

The second hexadecimal token is the message
length.

firstchar token1 token2 The message text (firstchar) contains the first
character in the input buffer.

The first hexadecimal token contains the buffer
index to ‘firstchar'.

The second hexadecimal token contains the size of
the buffer.

ZINPUT= token1 token2 Result of scanning the input buffer has been
determined.

The first hexadecimal token is not used.

The second hexadecimal token contains the
character to be used for cancel/resume decision.

NO C INPUT, MXRPLEN= token1 token2 No C for cancel was found.

The first hexadecimal token contains the scan limit.

The second hexadecimal token is not used.

LEAVE DSNECP01 token1 token2 DSNECP01 is about to end.

The first hexadecimal token is the contents of
register 15. Register 15 contains the results of the
FREEMAIN that just occurred.

The second hexadecimal token is unpredictable.

NO PUTGET MESSAGE, R15= token1 token2 The PUTGET failed.

The first hexadecimal token contains register 15
after PUTGET.

The second hexadecimal token is not used.

AFTER COMPARE/SWAP, R2, ZTCBPTR token1
token2

DSNECP01 is serializing DETACH of subtask.

The first hexadecimal token contains register 2.

The second hexadecimal token contains the TCB
pointer of the task to be detached.

364 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

BEFORE DETACH, ZTCBPTR = token1 token2 DSNECP01 is about to DETACH subtask.

The first hexadecimal token contains the address of
the TCB to be detached.

The second hexadecimal token is unpredictable.

DSNECP01 AFTER DETACH, R15= The DETACH has been performed.

The first hexadecimal token contains the return
code from DETACH.

The second hexadecimal token is unpredictable.

CSECT: DSNECP10
Message text Explanation

ENTER DSNECP10, R6 token1 token2 CSECT DSNECP10 has been entered.

The first hexadecimal token contains register 6, the
address of the connection information block (CIB).

The second hexadecimal token is unpredictable.

AFTER DSNECP20 token1 token2 CSECT DSNECP20 has finished initializing control
blocks.

The hexadecimal tokens are not used.

CIBSCANC: subcmd token1 token2 subcmd is the current subcommand being
processed.

The first hexadecimal token is CIBMAXRC, the
maximum return code so far.

The second hexadecimal token is CIB10RTC, an
internal return code.

BEGIN DSN COMMAND token1 token2 User has entered DSN as a subcommand.

The first hexadecimal token is the contents of
CIBSESS, a session control variable.

The second hexadecimal token is the contents of
CIB10RTC, which is an internal return code.

CIBMAXRC,CIB10RCT token1 token2 Execution is just before the check for the new
maximum return code.

The first hexadecimal token contains CIBMAXRC,
the internal maximum return code.

The second hexadecimal token contains CIB10RCT,
which is the current subcommand's return code.

Chapter 7. Trace messages and codes 365

Message text Explanation

EXIT DSNECP10, MAXRC, CIB10RTC token1
token2

DSNECP10 is about to return to DSNECP00.

The first hexadecimal token contains CIBMAXRC,
the internal maximum return code.

The second hexadecimal token contains CIB10RTC,
the return code from the current subcommand.

ENTER DSNECP10 ESTAERTN, R0, R6 token1
token2

The ESTAE routine for DSNECP10 has been
entered.

The first hexadecimal token contains register 0. If it
is 12, then no SDWA was obtained.

The second hexadecimal token contains register 6,
the address of the connection information block
(CIB).

ADDR(DSNECP10),PSW ADDR token1 token2 An SDWA was obtained.

The first hexadecimal token is the current address
of DSNECP10.

The second hexadecimal token contains
SDWANXT1.

USER ATTENTION RECOGNIZED, R0, R6 token1
token2

The ABEND was caused by user attention; dumping
will be suppressed.

The first hexadecimal token is the contents of
register 0.

The second hexadecimal token is register 6, the
address of the connection information block (CIB).

CIBMAXRC token1 token2 The ESTAE routine is about to return to ABTERM
(RTM) processing.

The first hexadecimal token contains ZMAXRC, the
maximum return code.

The second hexadecimal token is not used.

END DSNECP10 ESTAERTN, MAXRC, R15 token1
token2

Control is now leaving the ESTAE routine.

The first hexadecimal token contains MAXRC.

The second hexadecimal token is the contents of
register 15.

CSECT: DSNECP12
Message text Explanation

ENTER DSNECP12, CIBRTRY=, CIBIDFRB=
token1 token2

CSECT DSNECP12 has been entered.

The first hexadecimal token is CIRBRTY, the retry
parm from the DSN command.

The second hexadecimal token is CIBIDFRB, the
Identify FRB address.

366 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

CIBCORID=cibcorid CIBMODE=token1 token2 This message shows the correlation identifier and
the mode (foreground or background).

The first hexadecimal token contains CIBMODE.

The second hexadecimal token is zero.

BEFORE IDENTIFY DB2 CALL
================, token1 token2

CSECT DSNECP12 is about to establish the Identify
level connection with Db2. Control is now passing
to Db2.

The first hexadecimal token contains FRBRC1,
which is not used at this time.

The second hexadecimal token contains FRBRC2,
which is not used at this time.

AFTER IDENTIFY DB2 CALL
=================, token1 token2

Control has just returned from the identify call.

The first hexadecimal token contains FRBRC1, the
return code from the identify.

The second hexadecimal token contains FRBRC2,
the reason code from the identify.

BEFORE ESTABLISH-EXIT DB2 CALL
==================== token1 token2

DSN is about to hand control to Db2 for the
Establish EXIT call.

The first hexadecimal token is FRBRC1.

The second hexadecimal token is FRBRC2.

AFTER ESTABLISH-EXIT DB2 CALL
===================== token1 token2

Control has now returned from Db2.

The first hexadecimal token is FRBRC1.

The second hexadecimal token is FRBRC2.

EXIT DSNECP12, FRBRC1=, FRBRC2= token1
token2

The identify attempt is complete.

The first hexadecimal token contains FRBRC1,
preceded by two bytes of zeros.

The second hexadecimal token is FRBRC2.

FRB FIELD CONTENTS FOLLOW (CIBIDFRB)
token1 token2

The FRB contents are about to be written.

The first hexadecimal token contains the address of
the identify FRB.

The second hexadecimal token is not used.

FRBRAL(PTR), FRBRALE(BIN15),
FRBFVLE(BIN15) token1 token2

More of FRB.

The first hexadecimal token contains FRBRAL.

The second hexadecimal token contains FRBFVLE
and FRBFVLE.

Chapter 7. Trace messages and codes 367

Message text Explanation

FRBPARM(PTR), FRBPCNT(BIN15) token1 token2 More of FRB.

The first hexadecimal token is the FRBPARM
pointer.

The second hexadecimal token is the FRBPCNT.

FRBRC1(BIN15), FRBRC2(CHAR4) token1 token2 More of FRB.

The first hexadecimal token is FRBRC1.

The second hexadecimal token is FRBRC2.

FRBFBACK(PTR), FRBRHPC(BIN32) token1
token2

More of FRB.

The first hexadecimal token is the FRBFBACK
pointer.

The second hexadecimal token is the FRBRHPC.

FRBQUAL(BIN15), FRBRSV1(BIN15) token1
token2

More of FRB.

The first hexadecimal token is FRB QUAL.

The second hexadecimal token is FRBRSV1.

SSID- cibssid ,CONID- cibconid token1 token2 The IDENTIFY was done for Db2 ‘ssid' and
connection ID ‘conid'.

The first hexadecimal token contains ZSSID.

The second hexadecimal token contains ZCONID.

CONTY- cibconty ,ZFRB token1 token2 The connection type used in this IDENTIFY was
‘conty'.

The first hexadecimal token contains ZCONTY.

The second hexadecimal token contains ZFRB.

CSECT: DSNECP13
Message text Explanation

ENTER DSNECP13, R6=, CIBRFRB= token1
token2

CSECT DSNECP13 (create thread) has been
entered.

The first hexadecimal token is the connection
information block (CIB) pointer.

The second hexadecimal token is CIBRFRB, the
FRB pointer.

BEFORE CREATE THREAD DB2 CALL
=======R6,CIBCTFRB token1 token2

DSNECP13 is about to complete the connection to
Db2 with a create thread call to the PRH.

The first hexadecimal token is the address of the
connection information block (CIB).

The second hexadecimal token is the FRB address.

368 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

AFTER CREATE THREAD DB2
CALL========R6,CIBCTFRB token1 token2

Control has just returned from Db2.

The first hexadecimal token contains register 6, the
address of the connection information block (CIB).

The second hexadecimal token is CIRRFRB, the
FRB address.

R6=, CIBCTRTN= token1 token2 Control is about to leave DSNECP13.

The first hexadecimal token is register 6, the
address of the connection information block (CIB).

The second hexadecimal token is CIBCTRTN, a
create thread return code.

EXIT DSNECP13 token1 token2 Now leaving CSECT DSNECP13

The first hexadecimal token is not used.

The second hexadecimal token is the address in
CIBRFRB.

FOLLOWING ARE FRB FIELD CONTENTS,
CIBCTFRB= token1 token2

This and following messages are a dump of the FRB
pointed to by CIBCTFRB. These messages precede
and follow the CREATE THREAD call.

The first hexadecimal token contains CIBCTFRB.

The second hexadecimal token is not used.

FRBRAL(PTR), FRBRALE(BIN15),
FRBFVLE(BIN15) token1 token2

More of FRB.

The first hexadecimal token is FRBRAL.

The second hexadecimal token contains FRBRALE,
the resource access list entry and FRBFVLE, the
function vector list entry.

FRBPARM(PTR), FRBPCNT(BIN15) token1 token2 More of FRB.

The first hexadecimal token is FRBPARM.

The second hexadecimal token is FRBPCNT.

FRBRC1(BIN15), FRBRC2(CHAR4) token1 token2 More of FRB.

The first hexadecimal token is the FRBRC1.

The second hexadecimal token is the FRBRC2.

FRBKNAME: fback token1 token2 This message lists the contents of the area pointed
to by FRBFBACK.

The hexadecimal tokens are not used.

FRBFBACK PTR(31), FRBRHPC token1 token2 More of FRB.

The first hexadecimal token is FRBFBACK.

The second hexadecimal token is FRBRHPC.

Chapter 7. Trace messages and codes 369

Message text Explanation

FRBQUAL(BIN15), FRBRSV1(BIN15) token1
token2

More of FRB.

The first hexadecimal token is FRBQUAL.

The second hexadecimal token is FRBRSV1.

CIBPLNID : planid The CREATE THREAD was done for plan ‘planid.'

The hexadecimal tokens are not used.

CIBCORID : corid The CREATE THREAD was done by using ‘corid' as
the correlation ID.

The hexadecimal tokens are not used.

ZINDOUBT : indoubt The CREATE THREAD was done by using ‘indoubt'
for indoubt status.

The hexadecimal tokens are not used.

CSECT: DSNECP14
Message text Explanation

ENTER DSNECP14, SIBDFLAG=, ADDR(SIBDCL)=
token1 token2

This message announces entry into CSECT
DSNECP14.

The first hexadecimal token is SIBDFLAG, a byte of
DCLGEN flag bits.

The second hexadecimal token is ADDR(SIBDCL),
the DCLGEN section of the SIB.

BEFORE LI SETUP,PARSE WAS GOOD
CIBRFRB,CIBFRMLI token1 token2

This message indicates that preparation for the
create thread is in progress.

The first hexadecimal token is CIBRFRB, the
address of the FRB.

The second hexadecimal token is CIBFRMLI,
which contains the address to which the language
interface will branch.

AFTER DSNECP66, SIBDSQLD=, SQLD= token1
token2

The PREPARE, DESCRIBE, and SELECT are now
successfully completed.

The first hexadecimal token is SIBDSQLD, the
SQLDA address.

The second hexadecimal token is SQLD.

BEGIN COMMENT token1 token2 The CSECT is about to begin writing the first
comment block.

The hexadecimal tokens are not used.

370 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

BEFORE CALL DSNECP67, SIBDOFF=, ZBIN31=
token1 token2

The CSECT just completed the first comment block.

The first hexadecimal token contains the current
value of SIBDOFF, the offset into the main output
buffer.

The second hexadecimal token is contains ZBIN31.

AFTER DSNECP67, SIBDOFF= token1 token2 Control that is just returned from DSNECP67.

The first hexadecimal token contains the current
value of SIBDOFF, the offset into the main output
buffer.

The second hexadecimal token is not used.

FINISHED SECOND COMMENT BLOCK,
SIBDOFF= token1 token2

The second comment block is now complete.

The first hexadecimal token contains the current
value of SIBDOFF, the offset into the main output
buffer.

The second hexadecimal token is not used.

BEFORE TERMINATE THREAD, SIBDOFF= token1
token2

DCLGEN is starting to shutdown and is about to
terminate its thread.

The first hexadecimal token contains the current
value of SIBDOFF, the offset into the main output
buffer.

The second hexadecimal token is not used.

BEFORE CALL DSNECP69 TO CLOSE &
DEALLOCATE SIBDOFF= token1 token2

DCLGEN continues its cleanup process.

The first hexadecimal token is SIBDOFF.

The second hexadecimal token is not used.

BEFORE FREEMAIN, SIBDSQLS=, SIBDSQLD=
token1 token2

The FREEMAIN of the SQLDA is about to happen.

The first hexadecimal token contains the size of the
SQLDA.

The second hexadecimal token contains the
address of the SQLDA.

LEAVE DSNECP14, SIBDFLAG=, SIBDOFF=
token1 token2

DCLGEN has just completed. Control will return to
the calling CSECT, DSNECP19.

The first hexadecimal token contains the value of
SIBDFLAG, the DCLGEN flag area.

The second hexadecimal token contains the
current value of SIBDOFF, the offset into the main
output buffer.

Chapter 7. Trace messages and codes 371

Message text Explanation

ENTER DECORATE, SIBDOFF= token1 token2 Control has passed to subroutine DECORATE,
which writes decorative lines around comment
blocks.

The first hexadecimal token contains the current
value of SIBDOFF, the offset into the main output
buffer.

The second hexadecimal token is not used.

LEAVE DECORATE, SIBDOFF= token1 token2 DECORATE is finished and will return control to the
mainline code.

The first hexadecimal token contains the current
value of SIBDOFF, the offset into the main output
buffer.

The second hexadecimal token is not used.

ENTER RESETBUF, SIBDOFF= token1 token2 Control has passed to subroutine RESETBUF, which
clears the output buffer and resets SIBDOFF.

The first hexadecimal token contains the current
value of SIBDOFF, the offset into the main output
buffer.

The second hexadecimal token is not used.

LEAVE RESETBUF, ZBIGBUF(1:25)= 25bytes
token1 token2

The first 25 bytes of ZBIGBUF are shown.

The first hexadecimal token contains the current
value of SIBDOFF, the offset into the main output
buffer.

The second hexadecimal token is not used.

ENTER WRITECOM, SIBDOFF= token1 token2 Control has now passed to subroutine WRITECOM,
which writes a line of comment block output.

The first hexadecimal token contains the current
value of SIBDOFF, the offset into the main output
buffer.

The second hexadecimal token is not used.

LEAVE WRITECOM, SIBDOFF= token1 token2 Control will now return to the mainline code.

The first hexadecimal token contains the current
value of SIBDOFF, the offset into the main output
buffer.

The second hexadecimal token is not used.

372 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

CSECT: DSNECP16
Message text Explanation

ENTER DSNECP16, ADDR(SIB)=,
ADDR(SIBRUN)= token1 token2

CSECT DSNECP16 has been entered.

The first hexadecimal token contains the
subcommand information block (SIB) address.

The second hexadecimal token contains the
address of SIBRUN, the RUN section of the SIB.

BEGIN TSO COMMAND CIBCPPL=,CPPLECT
token1 token2

Start processing TSO command sequence.

The first hexadecimal token is CIBCPPL.

The second hexadecimal token is CPPLECT.

userinput token1 token2 This message echoes the users input from the
PUTGET.

The first hexadecimal token is the command length
(ZCMDLEN).

The second hexadecimal token is not used.

AFTER PUTGET ZRETCODE=, CPPLCBUF= token1
token2

This is more information regarding the PUTGET that
just completed.

The first hexadecimal token is the return code from
the PUTGET.

The second hexadecimal token is CPPLCBUF.

END MODE CPPLCBUF= token1 token2 TSO command has been invoked or PUTGET failed.

The first hexadecimal token is CPPLCBUF.

The second hexadecimal token is not used.

CIBMAC= BEFORE FREEMAIN, CPPLCBUF=,
ZCMDLEN=token1 token2

About to freemain the TSO command buffer.

The first hexadecimal token contains CPPLCBUF,
the address of the command buffer about to be
freed with FREEMAIN.

The second hexadecimal token contains ZCMDLEN,
the length of the command buffer.

END TSO COMMAND token1 token2 The TSO command processing is completed.

The hexadecimal tokens are not used.

BEFORE LINK TO PROGRAM SIBRDCB=,
ADDR(SIBRUN)= token1 token2

About to LINK to application program.

The first hexadecimal token contains SIBRDCB.

The second hexadecimal token contains the
address of SIBRUN.

Chapter 7. Trace messages and codes 373

Message text Explanation

AFTER LINK XXXX, R15=, R1= token1 token2 XXXX is 'GOOD' if LINK found the user program.

The first hexadecimal token contains register 15
from the user program.

The second hexadecimal token contains register 1
after LINK.

EXIT DSNECP16, CIBSCANC=cibscanc
SIBRCODE=token1 token2

DSNECP16 is about to return to caller. CIBSCANC is
the current subcommand being processed by DSN.

The first hexadecimal token contains SIBRCODE.

The second hexadecimal token contains zero.

CSECT: DSNECP17
Message text Explanation

ENTER DSNECP17, CPPLCBUF= token1 token2 This message announces entry into CSECT
DSNECP17, where a Db2 command will be
processed.

The first hexadecimal token contains the address of
the CPPLCBUF, which contains the command.

The second hexadecimal token is not used.

END DSNECP17, R15=, SIBRCODE= token1
token2

This message indicates the CSECT is exiting.
Control will return to CSECT DSNECP19.

The first hexadecimal token contains the current
value in register 15.

The second hexadecimal token is SIBRCODE.

HERE COMES THE FRB <<<<<<<<<<<<<<<<<<<
CIBFRB token1 token2

The next series of messages are the various fields
in the function request block (FRB). They are listed
both before and after the Db2 command.

The first hexadecimal token contains the address of
the FRB.

The second hexadecimal token is not used.

FRBRAL(PTR), FRBRALE(BIN15),
FRBFVLE(BIN15) token1 token2

More of the FRB.

The first hexadecimal token is FRBRAL.

The second hexadecimal token is FRBFVLE
followed by FRBFVLE.

FRBPARM(PTR), FRBPCNT(BIN15) token1 token2 More of the FRB.

The first hexadecimal token is FRBPARM.

The second hexadecimal token is FRBPCNT.

374 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

FRBRC1(BIN15), FRBRC2(CHAR4) token1 token2 More of the FRB.

The first hexadecimal token is FRBRC1.

The second hexadecimal token is FRBRC2.

FRBFBACK(PTR), FRBRHPC(BIN32) token1
token2

More of the FRB.

The first hexadecimal token is FRBFBACK.

The second hexadecimal token is FRBRHPC.

FRBQUAL(BIN15), FRBRSV1(BIN15) token1
token2

More of the FRB.

The first hexadecimal token is FRBQUAL.

The second hexadecimal token is FRBRSV1.

ZPARM1(PTR31) , ZPARM2(PTR31) token1 token2 This displays more of the FRB parameter list.

The first hexadecimal token is ZPARM1.

The second hexadecimal token is ZPARM2.

ZPARM3(PTR31) , ZFWD0 token1 token2 This displays more of the FRB parameter list.

The first hexadecimal token is ZPARM3.

The second hexadecimal token is ZFWD0.

CSECT: DSNECP18
Message text Explanation

ENTER DSNECP18 CIBTRMOP=, R6= token1
token2

CSECT DSNECP18 has been entered.

The first hexadecimal token contains CIBTRMOP.

The second hexadecimal token is R6, the base
register for the main DSN control block (the CIB).

CIBTRMOP NOT BLANK, CIBTRMOP= token1
token2

There is a termination option.

The first hexadecimal token is CIBTRMOP.

The second hexadecimal token is not used.

BEFORE TERMINATE DB2 CALL
===================== token1 token2

Control is about to be passed to Db2 to do the
TERMINATE.

The first hexadecimal token is CIBTRMOP, the
termination option.

The second hexadecimal token is not used.

AFTER TERMINATE DB2 CALL
===================== token1 token2

Control has returned from Db2 to DSN.

The hexadecimal tokens are not used.

Chapter 7. Trace messages and codes 375

Message text Explanation

EXIT DSNECP18 token1 token2 DSNECP18 is about to return to caller.

The first hexadecimal token is SIBRCODE, the main
DSN return code.

The second hexadecimal token is not used.

FRB FIELDS FOLLOW (CIBFRB): token1 token2 The following messages show the FRB contents.

The first hexadecimal token is the FRB address.

The second hexadecimal token is not used.

FRBRAL(PTR), FRBRALE(BIN15),
FRBFVLE(BIN15) token1 token2

More of the FRB.

The first hexadecimal token is FRBRAL.

The second hexadecimal token is FRBRALE
followed by FRBFVLE.

FRBPARM(PTR), FRBPCNT(BIN15) token1 token2 More of the FRB.

The first hexadecimal token is FRBPARM.

The second hexadecimal token is FRBPCNT.

FRBRC1(BIN15), FRBRC2(CHAR4) token1 token2 More of the FRB.

The first hexadecimal token is FRBRC1.

The second hexadecimal token is FRBRC2.

FRBFBACK(PTR), FRBRHPC(BIN32) token1
token2

More of the FRB.

The first hexadecimal token is FRBFBACK.

The second hexadecimal token is FRBRHPC.

FRBQUAL(BIN15), FRBRSV1(BIN15) token1
token2

More of the FRB.

The first hexadecimal token is FRBQUAL.

The second hexadecimal token is FRBRSV1.

CSECT: DSNECP19
Message text Explanation

ENTER DSNECP19 token1 token2 This message announces entry into CSECT
DSNECP19, which does individual subcommand
processing and issues the main DSN PUTGET.

The first hexadecimal token is CIBPTR, the base for
the CIB, (the main DSN control block).

The second hexadecimal token is not used.

376 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

BEFORE TEST CPPLCBUF,CIBEXECB token1
token2

If CPPLCBUF, the address of the command buffer,
is zero, this CSECT issues a PUTGET, writes 'DSN',
and reads in a new command buffer.

The first hexadecimal token is CPPLCBUF.

The second hexadecimal token is CIBEXECB.

AFTER PUTGET CPPLCBUF=, ZRETCODE= token1
token2

This message occurs after the PUTGET has
completed. The PUTGET got DSN a subcommand
to process.

The first hexadecimal token is CPPLCBUF, the
address of the buffer holding the current
subcommand.

The second hexadecimal token is the return code
from the PUTGET.

userinput This message echoes the user input from the
PUTGET.

The first hexadecimal token is the command
length.

The second hexadecimal token is the return code
from the PUTGET.

BEGIN ZCLEANER, ZPLACE=, ZSIZE= token1
token2

DSNECP19 is about to clear an area in the
subcommand information block (SIB).

The first hexadecimal token is ZPLACE.

The second hexadecimal token is ZSIZE.

CLEAR LOOPTOP, ZPLACE=, ZSIZE= token1
token2

Each time this message appears, another 255-byte
portion of the SIB is about to be zeroed.

The first hexadecimal token is ZPLACE.

The second hexadecimal token is ZSIZE.

END ZCLEANER, ZPLACE= token1 token2 The varying area of the subcommand information
block (SIB) has now been zeroed.

The first hexadecimal token is ZPLACE.

The second hexadecimal token is not used.

BEFORE SUBCOMMAND SELECT,
CIBSCANC=cibscanc token1 token2

Subcommand processing is about to begin. The
main SELECT statement follows.

The hexadecimal tokens are not used.

BEFORE CALL DSNECP21 ADDR(DSNECP21)=
token1 token2

DSNECP19 is about to call DSNECP21 to parse the
DSN command.

The first hexadecimal token is the address of
DSNECP21.

The second hexadecimal token is not used.

Chapter 7. Trace messages and codes 377

Message text Explanation

BEFORE CALL DSNECP40 (BIND)
ADDR(DSNECP40)= token1 token2

DSNECP19 is about to call DSNECP40 to parse the
BIND subcommand.

The first hexadecimal token is the address of
DSNECP40.

The second hexadecimal token is not used.

BEFORE CALL DSNECP29 ADDR(DSNECP29)=
token1 token2

The BIND parse was successful and DSNECP29 is
about to be called to perform dynamic allocation
for BIND.

The first hexadecimal token is the address of
DSNECP29.

The second hexadecimal token is not used.

BEFORE CALL DSNECP41 (REBIND)
ADDR(DSNECP41)= token1 token2

DSNECP19 is about to call DSNECP41 to parse the
REBIND subcommand.

The first hexadecimal token is the address of
DSNECP41.

The second hexadecimal token is not used.

BEFORE CALL DSNECP42 (FREE) token1 token2 DSNECP19 is about to call DSNECP42 to parse the
FREE subcommand.

The hexadecimal tokens are not used.

BEFORE CALL DSNECP26 (RUN) token1 token2 DSNECP19 is about to call DSNECP26 to parse the
RUN subcommand.

The hexadecimal tokens are not used.

BEFORE CALL DSNECP24 (DCLGEN) token1
token2

DSNECP19 is about to call DSNECP24 to parse the
DCLGEN subcommand.

The hexadecimal tokens are not used.

BEFORE CALL DSNECP17 (SUBSYSTEM CMD)
token1 token2

DSNECP19 is about to call DSNECP17 to process a
Db2 command.

The hexadecimal tokens are not used.

BEFORE LINK DSNESM00 (SPUFI) R6=, R7=
token1 token2

DSNECP19 is about to call DSNECP17 to process a
Db2 command.

The first hex token contains the contents of R6, the
CIB address.

The second hex token contains the contents
of R7, the address of the SPUFI load module
(DSNESM00).

378 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

AFTER LINK TO SPUFI R6=, ZRETCODE= token1
token2

SPUFI just completed and DSNECP19 regained
control.

The first hex token contains the contents of R6, the
CIB address.

The second hex token contains the return code
from the LINK.

BEFORE ABEND 00C50101 R6=token1 token2 The user entered the ABEND subcommand with
the TEST parameter on the DSN command set to a
nonzero value. The next thing to happen will be a
system ABEND that takes a dump.

The first hexadecimal token is R6.

The second hexadecimal token is not used.

UNRECOGNIZED SUBCOMMAND, ASSUME TSO
COMMAND cibscanc ADDR(DSNECP31)=token1
token2

An unrecognized subcommand has been detected.
DSN will try to ATTACH it. The following message
shows the subcommand.

The first hexadecimal token is the address of csect
DSNECP31, which will attempt to ATTACH a load
module called whose name is stored in cibscanc.

The second hexadecimal token is not used.

cibscanc token1 token2 cibscanc is the unrecognized command string that
will be attached.

The hexadecimal tokens are not used.

END SUBCOMMAND ROUTINE token1 token2 The unrecognized subcommand processing is
complete.

The hexadecimal tokens are not used.

BEFORE FREEMAIN, CPPLCBUF,ZCMDLEN token1
token2

The command buffer is about to the freed.

The first hexadecimal token is CPPLCBUF.

The second hexadecimal token is ZCMDLEN.

EXIT DSNECP19 CIBSCANC=cibscanc R6=,
CPPLPTR=token1 token2

CSECT DSNECP19 has completed processing one
subcommand. Control now returns to CSECT
DSNECP10. The current subcommand is cibscanc.

The first hex token is R6, the CIB base register.

The second hex token is CPPLPTR, the pointer to
the CPPL.

Chapter 7. Trace messages and codes 379

CSECT: DSNECP20
Message text Explanation

ENTER DSNECP20 R6,CIBCPPL token1 token2 This message announces entry into CSECT
DSNECP20, which initializes the parse and scan
parameter lists.

The first hexadecimal token is the CIB address.

The second hexadecimal token is CIBCPPL.

cibpromp token1 token2 This message displays the prompting string that
will be written to the terminal or batch-output
stream when CSECT DSNECP19 issues a PUTGET.

The hexadecimal tokens are not used.

PPLDONE PPLPTR,PPLANS token1 token2 The parse parameter list has been built. It will be
used by all of the DSN CSECTs that do parsing.

The first hexadecimal token is PPLPTR.

The second hexadecimal token is PPLANS.

CSPLDONE CSPLPTR,CSOAPTR token1 token2 The command scan parameter list has been built. It
will be used by CSECT DSNECP22.

The first hexadecimal token is CSPLPTR.

The second hexadecimal token is CSOAPTR.

CSECT: DSNECP21
Message text Explanation

ENTER DSNECP21 CIBPTR=, CIBHDECP= token1
token2

This message announces entry into CSECT
DSNECP21, which parses the DSN command.

The first hexadecimal token is CIBPTR, the address
of the main DSN control block.

The second hexadecimal token is the address of
csect DSNHDECP.

BEFORE PARSE CALL PPLPTR=, CPPLPTR=
token1 token2

The CSECT is about to call IKJPARS.

The first hexadecimal token is the Parse Parameter
List address.

The second hexadecimal token is the Command
Processor Parameter List address.

AFTER PARSE, R15= token1 token2 This message is displayed after the call to IKJPARS
has taken place.

The first hexadecimal token is register 15.

The second hexadecimal token is not used.

380 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

TEST LEVEL: CIBTESTL=token1 token2 The TEST parameter of the DSN command has
been parsed.

The first hexadecimal token is CIBTESTL level.

The second hexadecimal token is not used.

SUBSYS ID: subsys CIBHDECP=token1 token2 The subsystem parameter of the DSN command
has been parsed.

The first hexadecimal token is the contents of
CIBHDECP.

The second hexadecimal token is not used.

RETRY COUNT: CIBRTRY=token1 token2 The RETRY parameter of the DSN command has
been parsed.

The first hexadecimal token is the RETRY value.

The second hexadecimal token is not used.

EXIT DSNECP21, R15= token1 token2 CSECT DSNECP21 has now completed processing.
Control will now return to the calling CSECT,
DSNECP19.

The first hexadecimal token is register 15.

The second hexadecimal token is not used.

CSECT: DSNECP22
Message text Explanation

ENTER DSNECP22 token1 token2 This message announces entry into CSECT
DSNECP22, which scans the various DSN
subcommands.

The hexadecimal tokens are not used.

BEFORE CALL IKJSCAN token1 token2 This message is displayed before the call to
IKJSCAN that will determine what subcommand
the user entered.

The hexadecimal tokens are not used.

ZCMDLEN, CSOAFLG token1 token2 This message reports results from the call to
IKJSCAN.

The first hexadecimal token is the length of the
command.

The second hexadecimal token is CSOAFLG.

CIBSCANC=cibscanc token1 token2 cibscanc is the subcommand the user entered (via
the PUTGET in DSNECP19).

The first hexadecimal token is register 15.

The second hexadecimal token is CSOAFLG.

Chapter 7. Trace messages and codes 381

Message text Explanation

ZI, CSOAFLG token1 token2 Bad input to IKJSCAN was detected.

The first hexadecimal token is ZI.

The second hexadecimal token is CSOAFLG.

BLANK OR NULL, ZI=, CSOAFLG= token1 token2 This message appears only if the subcommand was
a null or blank string.

The first hexadecimal token is ZI.

The second hexadecimal token is CSOAFLG.

DB2 COMMAND FOUND A Db2 command has been found by recognizing the
system start character in the command buffer.

The hexadecimal tokens are not used.

CIBSCANC= token1 token2 This message contains the current value of
CIBSCANC, the subcommand that the user
entered.

The hexadecimal tokens are not used.

EXIT DSNECP22 token1 token2 CSECT DSNECP22 has just completed. Control will
return to the calling CSECT, DSNECP19.

The hexadecimal tokens are not used.

CSECT: DSNECP23
Message text Explanation

ENTER DSNECP23, SIBRSW1= token1 token2 This message announces entry into CSECT
DSNECP23.

The first hexadecimal token is SIBRSW1.

The second hexadecimal token is 0.

END INITIALIZATION, ZOHDAIR=, ZS99RB=
token1 token2

Initialization is now complete.

The first hexadecimal token is the address of
ZOHDAIR.

The second hexadecimal token is the address of
ZS99RB.

BEGIN DYNALLOC, SIBRSW1= token1 token2 The CSECT is starting to build DYNALLOC text units.

The first hexadecimal token is SIBRSW1.

The second hexadecimal token is not used.

DSN TU, ZTUNDX=, ZPTR=, DSNAME: token1
token2

Building the dsname text unit (TU).

The first hexadecimal token is ZTUNDX, the index
to this TU.

The second hexadecimal token is ZPTR, the pointer
to the TU.

382 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

dsname token1 token2 Part of the S99 parameter list is displayed, the
dsname.

The hexadecimal tokens are not used.

DDN TU, ZTUNDX=, ZPTR= token1 token2 The DDNAME text unit (TU) has been built.

The first hexadecimal token is ZTUNDX, the index
to this TU.

The second hexadecimal token is ZPTR, the pointer
to the TU.

DSORG TU, ZTUNDX=, ZPTR= token1 token2 The return DSORG text unit (TU) has been built.

The first hexadecimal token is ZTUNDX, the index
to this TU.

The second hexadecimal token is ZPTR, the pointer
to the TU.

DS STATUS TU, ZTUNDX=, ZPTR= token1 token2 The data set status text unit (TU) has been built.

The first hexadecimal token is ZTUNDX, the index
to this TU.

The second hexadecimal token is ZPTR, the pointer
to the TU.

NDISP TU, ZTUNDX=, ZPTR= token1 token2 The normal disposition text unit (TU) has been
built.

The first hexadecimal token is ZTUNDX, the index
to this TU.

The second hexadecimal token is ZPTR, the pointer
to the TU.

CDISP TU, ZTUNDX=, ZPTR= token1 token2 The conditional disposition text unit (TU) has been
built.

The first hexadecimal token is ZTUNDX, the index
to this TU.

The second hexadecimal token is ZPTR, the pointer
to the TU.

PSWD TU, ZTUNDX=, ZPTR= token1 token2 The password text unit (TU) has been built.

The first hexadecimal token is ZTUNDX, the index
to this TU.

The second hexadecimal token is ZPTR, the pointer
to the TU.

BEFORE DYNALLOC, S99RBPTR=, ZPTR= token1
token2

About to issue DYNALLOC SVC.

The first hexadecimal token is S99RBPTR.

The second hexadecimal token is ZPTR, the pointer
to the text unit.

Chapter 7. Trace messages and codes 383

Message text Explanation

AFTER DYNALLOC, R15=, S99RSC= token1
token2

After the DYNALLOC SVC.

The first hexadecimal token is register 15.

The second hexadecimal token is S99RSC.

END DYNALLOC, SIBRCODE=, SIBRSW1= token1
token2

The DYNALLOC function is completed.

The first hexadecimal token is SIBRCODE, the
return code from this routine.

The second hexadecimal token is SIBRSW1, a byte
of status switches.

OPEN COMPLETE, SIBRCODE=, SIBRSW1=
token1 token2

The OPEN function has been completed.

The first hexadecimal token is SIBRCODE, the
return code from this routine.

The second hexadecimal token is SIBRSW1, a byte
of status switches.

BEGIN DEALLOC, SIBRSW1= token1 token2 Starting data set deallocation.

The first hexadecimal token is SIBRSW1.

The second hexadecimal token is not used.

DALLOC TU, ZTUNDX=, ZPTR=, DSNAME: token1
token2

The deallocation text unit has been built.

The first hexadecimal token is ZTUNDX.

The second hexadecimal token is ZPTR.

dsname token1 token2 Data set name used in the deallocation text unit.

The hexadecimal tokens are not used.

AFTER DYNALLOC, R15=, S99RSC= token1
token2

After the DYNALLOC SVC.

The first hexadecimal token is register 15.

The second hexadecimal token is S99RSC.

EXIT DSNECP23, SIBRCODE=, SIBRSW1= token1
token2

DSNECP23 is about to return to caller.

The first hexadecimal token is SIBRCODE.

The second hexadecimal token is SIBRSW1.

BEFORE CALL TO DAIRFAIL, R15=, S99RSC=
token1 token2

DAIRFAIL is about to be invoked.

The first hexadecimal token is register 15.

The second hexadecimal token is S99RSC.

AFTER DAIRFAIL, R15=, R1= token1 token2 After DAIRFAIL call.

The first hexadecimal token is register 15.

The second hexadecimal token is register 1.

384 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

CSECT: DSNECP24
Message text Explanation

ENTER DSNECP24, CIBPTR=, ADDR(SIBDCL)=
token1 token2

This message announces entry into CSECT
DSNECP24, which parses the DCLGEN command.

The first hexadecimal token is CIBPTR.

The second hexadecimal token is the address of
SIBDCL.

BEFORE CALL IKJPARS, R1= token1 token2 This message is displayed just before the call to
IKJPARS.

The first hexadecimal token is register 1.

The second hexadecimal token is zero.

AFTER PARSE, RETCODE R15=token1 token2 This message is displayed after the call to IKJPARS
has taken place.

The first hexadecimal token is register 15.

The second hexadecimal token is not used.

TABLENAME: tabname ZPARMLEN=token1 token2 This message indicates the table parameter,
tabname, from the DCLGEN subcommand.

The first hexadecimal token is ZPARMLEN.

The second hexadecimal token is zero.

LIBRARY : libname ZPARMLEN=token1 token2 This message shows the library parameter,
libname, from the DCLGEN subcommand.

The first hexadecimal token is ZPARMLEN.

The second hexadecimal token is zero.

MEMBER : memname ZPDEBIN=token1 token2 This message shows the member parameter,
memname, from the DCLGEN subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is not used.

PASSWORD : password ZPDEBIN=token1 token2 This message shows the password parameter from
the DCLGEN subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is not used.

ACTION : action ZPDEBIN=token1 token2 This message shows the action parameter from the
DCLGEN subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is not used.

Chapter 7. Trace messages and codes 385

Message text Explanation

WILL GET LANGUAGE FROM DSNHDECP
ZDECPPTR=, ZPTR= token1 token2

The user did not enter a language parameter on
the DCLGEN subcommand, so the value specified
at installation time and written in the DECP CSECT
will be used.

The first hexadecimal token is ZDECPPTR, the base
pointer for DECP.

The second hexadecimal token is ZPTR, the
address of the language parameter's PDE.

LANGUAGE : language ZPDEBIN=token1 token2 This message shows the language parameter from
the DCLGEN subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is not used.

NAMES : names ZPDEBIN=, SIBDNAML= token1
token2

This message shows the names parameter from
the DCLGEN subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is SIBDNAML, the
length of the NAMES parameter.

STRUCTURE:structure ZPDEBIN=, SIBDNAML=
token1 token2

This message shows the structure parameter from
the DCLGEN subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is SIBDSTRL, the
length of the STRUCTURE parameter.

WILL GET DELIMITER FROM DSNHDECP
ZDECPPTR=, DECPSDL= token1 token2

This message indicates that the user did not
enter either QUOTE APOST on the DCLGEN
subcommand. The APOST/QUOTE setting will be
taken from DSNHDECP, a CSECT that is initialized
for the whole system at installation time.

The first hexadecimal token is ZDECPPTR, a pointer
to DECP.

The second hexadecimal token is the DECP byte
containing the delimiter setting.

APOST token1 token2 This message indicates that the APOST option
was specified on the DCLGEN subcommand. This
message and the next (QUOTE) are mutually
exclusive.

The first hexadecimal token is ZSQLDLIM, the PDE
returned from parse.

The second hexadecimal token is not used.

386 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

QUOTE token1 token2 This message indicates that the QUOTE option
was specified on the DCLGEN subcommand. This
message and the previous (APOST) are mutually
exclusive.

The first hexadecimal token is ZSQLDLIM, the PDE
returned from parse.

The second hexadecimal token is not used.

LABEL : label ZPDEBIN=, SIBDFLG2= token1
token2

This message indicates the LABEL option used in
the DCLGEN command. It will be either YES or NO.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is the second
DCLGEN flag byte.

LEAVE DSNECP24, SIBDFLAG=, SIBRCODE=
token1 token2

This CSECT has just completed processing. Control
will return to the calling CSECT, DSNECP19.

The first hexadecimal token is SIBDFLAG.

The second hexadecimal token is SIBRCODE.

CSECT: DSNECP25
Message text Explanation

ENTER DSNECP25 token1 token2 This message announces entry into CSECT
DSNECP25, which prepares the DCLGEN command
string before the string is input to the TSO parser.

The first hexadecimal token is CIBPTR.

The second hexadecimal token is the address of
SIBDCL.

STRING (LANGUAGE) FOUND AT: token1 This message indicates that the LANGUAGE
parameter was found in a DCLGEN command
string.

The token gives the offset into the command string
of the parameter.

BLANK FOLLOWS STRING AT: token1 This message is issued if a blank is found between
a DCLGEN parameter and its argument.

The token gives the offset into the command string
of the blank.

LAST SCAN CHARACTER: token1 This message indicates that the first non-blank
character after the DCLGEN LANGUAGE, TABLE,
STRUCTURE, or NAMES parameter has been found.

The token is the position of this character.

Chapter 7. Trace messages and codes 387

Message text Explanation

BLANK FOLLOWS PAREN AT token1 This message indicates that a blank follows an
opening parenthesis within the TABLE parameter
argument in a DCLGEN command string.

The token gives the offset into the command string
of the blank.

LANGUAGE IS C This message indicates that DCLGEN output will be
in the C language.

STRING (TABLE) FOUND AT: token1 This message indicates that the TABLE parameter
was found in a DCLGEN command string.

The token gives the offset into the command string
of the parameter.

STRING (STRUCTURE) FOUND AT: token1 This message indicates that the STRUCTURE
parameter was found in a DCLGEN command
string.

The token gives the offset into the command string
of the parameter.

STRING (NAMES) FOUND AT: token1 This message indicates that the NAMES parameter
was found in a DCLGEN command string.

The token gives the offset into the command string
of the parameter.

FOUND: token1 token2 This message indicates that the table name in a
DCLGEN statement contains a period.

The first token gives the offset into the command
string of the period.

The second token gives one of six states in which
the string can be:

• 0 - First part of the table name string
• 1 - Blank after first part of the string
• 2 - Period separating two parts of the table name
• 3 - Blank after a separating period
• 4 - Second string after a separating period
• 5 - End of the table name

388 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

QUOTE FOUND: token1 token2 This message indicates that a delimiter was found
in the TABLE parameter value in a DCLGEN
command string.

The first token gives the offset into the command
string of the character.

The second token gives one of six states in which
the string can be:

• 0 - First part of the table name string
• 1 - Blank after first part of the string
• 2 - Period separating two parts of the table name
• 3 - Blank after a separating period
• 4 - Second string after a separating period
• 5 - End of the table name

S0 FOUND: token1 token2 This message indicates that a DBCS shift-out
character was found in the TABLE parameter value
in a DCLGEN command string.

The first token gives the offset into the command
string of the character.

The second token gives one of six states in which
the string can be:

• 0 - First part of the table name string
• 1 - Blank after first part of the string
• 2 - Period separating two parts of the table name
• 3 - Blank after a separating period
• 4 - Second string after a separating period
• 5 - End of the table name

SI FOUND: token1 token2 This message indicates that a DBCS shift-in
character was found in the TABLE parameter value
in a DCLGEN command string.

The first token gives the offset into the command
string of the character.

The second token gives one of six states in which
the string can be:

• 0 - First part of the table name string
• 1 - Blank after first part of the string
• 2 - Period separating two parts of the table name
• 3 - Blank after a separating period
• 4 - Second string after a separating period
• 5 - End of the table name

Chapter 7. Trace messages and codes 389

Message text Explanation

BLANK FOUND: token1 token2 This message indicates that the table name in a
DCLGEN statement contains a blank.

The first token gives the offset into the command
string of the blank.

The second token gives one of six states in which
the string can be:

• 0 - First part of the table name string
• 1 - Blank after first part of the string
• 2 - Period separating two parts of the table name
• 3 - Blank after a separating period
• 4 - Second string after a separating period
• 5 - End of the table name

) FOUND: token1 token2 This message indicates that a closing parenthesis
was found within the argument of the TABLE
parameter in a DCLGEN command string.

The first token gives the offset into the command
string of the closing parenthesis.

The second token gives one of six states in which
the string can be:

• 0 - First part of the table name string
• 1 - Blank after first part of the string
• 2 - Period separating two parts of the table name
• 3 - Blank after a separating period
• 4 - Second string after a separating period
• 5 - End of the table name

OTHER CHAR FOUND: token1 token2 This message indicates that a character other than
a delimiter, a DBCS shift-out or shift-in character, a
blank or a right parenthesis was found in the TABLE
parameter value in a DCLGEN command string.

The first token gives the offset into the command
string of the character.

The second token gives one of six states in which
the string can be:

• 0 - First part of the table name string
• 1 - Blank after first part of the string
• 2 - Period separating two parts of the table name
• 3 - Blank after a separating period
• 4 - Second string after a separating period
• 5 - End of the table name

ENTER COPYNME This message is issued on entry to the COPYNME
routine, which copies a STRUCTURE or NAMES
argument to a temporary buffer.

390 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

APOSTROPHE FOUND AT: token1 This message indicates an apostrophe was found
within a STRUCTURE or NAMES argument in a
DCLGEN command string.

The token gives the offset into the command string
of the apostrophe.

APOSTROPHE FOLLOWS APOSTROPHE AT:
token1

This message indicates two consecutive
apostrophes were found within a STRUCTURE or
NAMES argument in a DCLGEN command string.

The token gives the offset into the command string
of the first apostrophe.

S0 FOUND AT: token1 This message indicates that a DBCS shift-out
character was found within the argument of a
NAMES or STRUCTURE parameter in a DCLGEN
command string.

The token gives the offset into the command string
of the shift-out character.

SI FOUND AT: token1 This message indicates that a DBCS shift-in
character was found within the argument of a
NAMES or STRUCTURE parameter in a DCLGEN
command string.

The token gives the offset into the command string
of the shift-in character.

BLANK IN DB OR DLMED STRING AT: token1 This message is issued if a blank is found within
a STRUCTURE or NAMES argument in a DCLGEN
command string, and the blank is within a DBCS
string or a delimited string.

The token gives the offset into the command string
of the blank.

BLANK INDICATES END OF STRING AT: token1 This message is issued when the first blank is
found at the end of a STRUCTURE or NAMES
argument in a DCLGEN command string.

The token gives the offset into the command string
of the blank.

BLANK FOUND AT: token1 This message is issued if a blank is found within
a STRUCTURE or NAMES argument in a DCLGEN
command string.

The token gives the offset into the command string
of the blank.

Chapter 7. Trace messages and codes 391

Message text Explanation

) FOUND AT: token1 This message indicates that a closing parenthesis
was found within the argument of a NAMES or
STRUCTURE parameter in a DCLGEN command
string.

The token gives the offset into the command string
of the closing parenthesis.

TRANSLATING CHAR: token1 token2 This message indicates that a character in a
DCLGEN command string is being translated to
uppercase.

The first token gives the value of the character.

The second token gives the offset into the
command string of the character.

OUTPUT STRING LENGTH: token1 token1 is the length of the modified copy of the
DCLGEN command string.

INPUT STRING LENGTH: token1 token1 is the length of the original DCLGEN
command string.

IN AND OUT INDEXES: token1 token2 This message gives the offsets into the input and
output data strings when the COPYNME routine
has finished copying a NAMES or STRUCTURE
parameter value into the output string.

The first token is the offset into the input string.

The second token is the offset into the output
string.

EXIT COPYNME This message is issued on exit from the COPYNME
routine.

CSECT: DSNECP26
Message text Explanation

ENTER DSNECP26, R6=, CIBCPPL= token1
token2

This message announces entry into CSECT
DSNECP26, which parses the RUN subcommand.

The first hexadecimal token is register 6.

The second hexadecimal token is CIBCPPL.

AFTER IKJPARS, R15= token1 token2 This message is displayed after the call to IKJPARS
has taken place.

The first hexadecimal token is register 15.

The second hexadecimal token is not used.

392 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

PROGRAM : program token1 token2 This message shows the program parameter,
program, from the RUN subcommand.

The first hexadecimal token is register 15.

The second hexadecimal token is ZPARMLEN.

PLANID : planid token1 token2 This message shows the plan parameter from the
RUN subcommand.

The first hexadecimal token is register 15.

The second hexadecimal token is ZPARMLEN.

LIBRARY : libname token1 token2 This message shows the library parameter from the
RUN subcommand.

The first hexadecimal token is register 15.

The second hexadecimal token is ZPARMLEN.

PASSWORD : password token1 token2 This message shows the password parameter from
the library parameter of the RUN subcommand.

The first hexadecimal token is SIBRLPLN.

The second hexadecimal token is zero.

CP: xxx, R15= token1 token2 xxx will be YES or NO, to indicate whether or not
the CP parameter was entered.

The first hexadecimal token is register 15.

The second hexadecimal token is zero.

SIBRSW1=sibrsw1 token1 token2 This message displays the byte of RUN
subcommand switches called SIBRSW1.

The first hexadecimal token is SIBRSW1.

The second hexadecimal token is not used.

END DSNECP26, SIBRCODE=, CIBCPPL= token1
token2

This CSECT has just completed. Control will now
return to the calling CSECT, DSNECP19.

The first hexadecimal token is SIBRCODE.

The second hexadecimal token is CIBCPPL.

CSECT: DSNECP27
Message text Explanation

ENTER DSNECP27, SIBP27IN= token1 token2 This message announces the entry into CSECT
DSNECP27, which formats messages from BIND
and Db2 command processing.

The first hexadecimal token is SIBP27IN, the
address of the message buffer.

The second hexadecimal token is zero.

Chapter 7. Trace messages and codes 393

Message text Explanation

ZLEN= token1 token2 The message buffer length is displayed.

The first hexadecimal token is ZLEN.

The second hexadecimal token is zero.

MSG BUF(73CHARS): msgbuf token1 token2 A portion of the actual message buffer (including
LL00) is displayed.

The hexadecimal tokens are not used.

BEFORE DO-WHILE, ZBUFPTR=, ZBUFEND=
token1 token2

About to start displaying lines of the message.

The first hexadecimal token is ZBUFPTR.

The second hexadecimal token is ZBUFEND.

TOP OF LOOP, ZLEN=, ZBUFPTR= token1 token2 This message is displayed once for each line of the
message.

The first hexadecimal token is ZLEN.

The second hexadecimal token is ZBUFPTR.

END DSNECP27, R15=, SIBRCODE= token1
token2

CSECT DSNECP27 is about to return to its caller.

The first hexadecimal token is register 15.

The second hexadecimal token is SIBRCODE.

CSECT: DSNECP28
Message text Explanation

ENTER DSNECP28, R1=, CIBRFRB= token1
token2

This message announces entry into CSECT
DSNECP28, which does the initialization processing
for the first SQL call from an application program.

The first hexadecimal token is register 1.

The second hexadecimal token is the FRB address.

CALL DSNECP12, CIB=, CIBRFRB= token1 token2 An IDENTIFY request is being made.

The first hexadecimal token is the address of the
CIB.

The second hexadecimal token is the address of
the FRB.

AFTER DSNECP12, CIB=, CIBIDRTN= token1
token2

The IDENTIFY request has been completed.

The first hexadecimal token is the address of the
CIB.

The second hexadecimal token is return code from
the Identify routine.

394 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

CALL DSNECP13, CIB=, CIBCTFRB= token1
token2

A CREATE-THREAD request is about to be made.

The first hexadecimal token is the address of the
CIB.

The second hexadecimal token is the address of
the FRB.

AFTER DSNECP13, CIBCTRTN=, CIBCTFRB=
token1 token2

The CREATE-THREAD request has been completed.

The first hexadecimal token is the return code from
Create Thread.

The second hexadecimal token is the address of
the FRB.

BEFORE SQL CALL NUMBER ONE CIBFRMLI=,
DSNETRAP= token1 token2

Both the Create Thread and any Identify done in
DSNECP28 were successful. DSNECP28 is about to
send the first SQL request to the program request
handler.

The first hexadecimal token is the address to which
DSNECP28 will branch. This field will contain either
the address of the program request handler or
DSNETRAP.

The second hexadecimal token is the address of
DSNETRAP, a CSECT that writes a trace message
just before branching to the program request
handler.

CREATE THREAD OR IDENTIFY FAILED
CIBFRMLI=, TRAP=token1 token2

Either an Identify or Create Thread request
originating in DSNECP28 has failed. The normal
first SQL call will not be made. Rather, control will
return to the language interface, which will make
an XLAT call.

The first hexadecimal token is the address to which
DSNECP28 will branch. This field will contain either
the address of the program request handler or
DSNETRAP.

The second hexadecimal token is the address of
DSNETRAP, a CSECT that writes a trace message
just before branching to the program request
handler.

EXIT DSNECP28, RETURNING TO DSNELI
FRBRC1, FRBRC2 token1 token2

This message is produced just before CSECT
DSNECP28 returns to the language interface.

The first hexadecimal token is FRBRC1.

The second hexadecimal token is FRBRC2.

Chapter 7. Trace messages and codes 395

Message text Explanation

HERE COMES THE FRB <<<<<<<<<<<<<<<<
CIBRFRB= token1 token2

This and following messages are a dump of
the function request block (FRB) pointed to by
CIBRFRB.

The first hexadecimal token is the address of the
FRB.

The second hexadecimal token is zero.

FRBRAL(PTR), FRBRALE(BIN15),
FRBFVLE(BIN15) token1 token2

More of FRB.

The first hexadecimal token is FRBRAL.

The second hexadecimal token is FRBRALE
followed by FRBFVLE.

FRBPARM(PTR), FRBPCNT(BIN15) token1 token2 More of FRB.

The first hexadecimal token is FRBPARM.

The second hexadecimal token is FRBPCNT.

FRBRC1(BIN15), FRBRC2(CHAR4) token1 token2 More of FRB.

The first hexadecimal token is FRBRC1.

The second hexadecimal token is FRBRC2.

FRBFBACK: fbackarea token1 token2 More of FRB. fbackarea is the actual area pointed
to by FRBFBACK.

The first hexadecimal token is zero.

The second hexadecimal token is zero.

FRBFBACK PTR(31),FRBRHPC token1 token2 More of FRB.

The first hexadecimal token is FRBFBACK.

The second hexadecimal token is FRBRHPC.

FRBQUAL(BIN15), FRBRSV1(BIN15) token1
token2

More of FRB.

The first hexadecimal token is FRBQUAL.

The second hexadecimal token is FRBRSV1.

ADDR(dsnaprh)=, ADDR(DSNETRAP)= token1
token2

This message is issued by the subroutine that
writes the FRB just before and after an SQL call.

The first hexadecimal token is the address of the
program request handler.

The second hexadecimal token is the address of
DSNETRAP, a CSECT that writes a trace message
just before branching to the program request
handler.

396 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

EXIT DSNECP28,CIBRFRB,CIBFRMLI token1
token2

CSECT DSNECP28 has completed processing and is
about to return to caller.

The first hexadecimal token is the FRB address.

The second hexadecimal token is where the
language interface will go for the actual SQL
processing. Normally, it points to the program
request handler.

CSECT: DSNECP29
Message text Explanation

ENTER DSNECP29, ADDR(SIBBIND)= token1
token2

This message announces the entry into CSECT
DSNECP29, which performs dynamic allocation
services for the BIND subcommand.

The first hexadecimal token is the address of
SIBBIND.

The second hexadecimal token is zero.

END INITIALIZATION, ADDR(ZOHDAIR)=,
ADDR(ZS99RB)= token1 token2

Initialization has completed.

The first hexadecimal token is the address of
ZOHDAIR.

The second hexadecimal token is the address of
ZS99RB.

BEFORE DDNAME ALLOC, S99RBPTR=,
S99TUPAR(1:4)= token1 token2

CSECT DSNECP29 is checking for the presence of a
DBRMLIB (DDNAME).

The first hexadecimal token is S99RBPTR.

The second hexadecimal token is the first 4 bytes
of the ddname.

AFTER DYNALLOC1, R15=, S99RSC= token1
token2

The first dynamic allocation call just took place.

The first hexadecimal token is the return code from
the call.

The second hexadecimal token is S99RSC, the
reason code.

BEFORE RETURN DSORG, S99RBPTR=,
S99TUPAR(1:4)= token1 token2

CSECT DSNECP29 is about to check on the data set
organization of the DBRMLIB.

The first hexadecimal token is S99RBPTR.

The second hexadecimal token is the first four
bytes of S99TUPAR.

Chapter 7. Trace messages and codes 397

Message text Explanation

AFTER RETURN DSORG, S99TUPAR(1:4)=,
S99RSC= token1 token2

The DYNALLOC call has completed.

The first hexadecimal token is the data set
organization code.

The second hexadecimal token is S99RSC, the
reason code.

1ST TU, ZTUNDX=, ZPTR=, DSNAME:,
ADDR(DSN): token1 token2

The dsname text unit has been built. The next
message contains the DSNAME.

The first hexadecimal token is the TU index value
(ZTUNDX).

The second hexadecimal token is the TU pointer
(ZPTR).

S99TUPAR(1:S99TULNG) token1 token2 This message is the data set name.

The hexadecimal tokens are not used.

2ND TU, ZTUNDX=, ZPTR= token1 token2 The return DDNAME text unit has been built.

The first hexadecimal token is the TU index value
(ZTUNDX).

The second hexadecimal token is the TU pointer
(ZPTR).

3RD TU, ZTUNDX=, ZPTR= token1 token2 The return DSORG text unit has been built.

The first hexadecimal token is the TU index value
(ZTUNDX).

The second hexadecimal token is the TU pointer
(ZPTR).

4TH TU, ZTUNDX=, ZPTR= token1 token2 The data set status text unit has been built.

The first hexadecimal token is the TU index value
(ZTUNDX).

The second hexadecimal token is the TU pointer
(ZPTR).

5TH TU, ZTUNDX=, ZPTR= token1 token2 The normal disposition text unit has been built.

The first hexadecimal token is the TU index value
(ZTUNDX).

The second hexadecimal token is the TU pointer
(ZPTR).

6TH TU, ZTUNDX=, ZPTR= token1 token2 The conditional disposition text unit has been built.

The first hexadecimal token is the TU index value
(ZTUNDX).

The second hexadecimal token is the TU pointer
(ZPTR).

398 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

7TH TU, ZTUNDX=, ZPTR= token1 token2 The password text unit has been built.

The first hexadecimal token is the TU index value
(ZTUNDX).

The second hexadecimal token is the TU pointer
(ZPTR).

BEFORE DS ALLOC, S99RBPTR=, ZPTR= token1
token2

This CSECT is about to issue the DYNALLOC SVC.

The first hexadecimal token is S99RBPTR.

The second hexadecimal token is ZPTR.

AFTER DYNALLOC3, R15=, S99RSC= token1
token2

After the third DYNALLOC SVC.

The first hexadecimal token is register 15.

The second hexadecimal token is S99RSC.

CONCATENATION COUNT= token1 token2 This message shows the number of data sets to be
concatenated for BIND.

The first hexadecimal token is SIBBCCB.

The second hexadecimal token is zero.

BEFORE CONCAT, S99RBPTR=, ZPTR= token1
token2

CSECT DSNECP29 is about to request dynamic
concatenation.

The first hexadecimal token is S99RBPTR.

The second hexadecimal token is ZPTR.

AFTER DYNALLOC4, R15=, S99RSC= token1
token2

The fourth dynamic allocation call has just
occurred.

The first hexadecimal token is the return code from
that call.

The second hexadecimal token is S99RSC.

CALL DSNECP30 (BIND), ADDR(SIBBIND)=
token1 token2

CSECT DSNECP30 is about to be called.

The first hexadecimal token is the address of
SIBBIND.

The second hexadecimal token is not used.

AFTER DSNECP30, SIBRCODE=,
ADDR(SIBBIND)= token1 token2

CSECT DSNECP30 has returned control to
DSNECP29.

The first hexadecimal token is SIBRCODE.

The second hexadecimal token is the address of
SIBBIND.

BEFORE DECONCAT, S99RBPTR=, SIBBCCBP=
token1 token2

CSECT DSNECP29 is about to request dynamic
deconcatenation.

The first hexadecimal token is S99RBPTR.

The second hexadecimal token is SIBBCCBP.

Chapter 7. Trace messages and codes 399

Message text Explanation

AFTER DYNALLOC5, R15=, S99RSC= token1
token2

The fifth dynamic deallocation has just occurred.

The first hexadecimal token is register 15, the
return code from the deallocation.

The second hexadecimal token is S99RSC, the
reason code from the deallocation.

BEFORE UNALLOC, S99RBPTR=, ZTUPTR(1)=
token1 token2

CSECT DSNECP29 is about to request dynamic
deallocation.

The first hexadecimal token is S99RBPTR.

The second hexadecimal token is ZTUPTR(1).

AFTER DYNALLOC6, R15=, S99RSC= token1
token2

The sixth dynamic allocation call has just occurred.

The first hexadecimal token is the return code from
that call.

The second hexadecimal token is the reason code
from that call.

EXIT DSNECP29, SIBRCODE= token1 token2 CSECT DSNECP29 is about to return to caller.

The first hexadecimal token is SIBRCODE, the
return code from this CSECT's execution.

The second hexadecimal token is not used.

BEFORE CALL TO DAIRFAIL, R15=, S99RSC=
token1 token2

DAIRFAIL is about to be invoked.

The first hexadecimal token is register 15.

The second hexadecimal token is S99RSC.

AFTER DAIRFAIL, R15=, R1= token1 token2 After DAIRFAIL call to format an error message.

The first hexadecimal token is register 15, the
return code from DAIRFAIL.

The second hexadecimal token is register 1, the
address of DFPARMS.

BEFORE DBRMLIB UNALLOC, S99RBPTR=,
ZPTR= token1 token2

CSECT DSNECP29 is about to request freeing of
DBRMLIB DDNAME.

The first hexadecimal token is S99RBPTR.

The second hexadecimal token is ZPTR.

AFTER DYNALLOC7, R15=, S99RSC= token1
token2

The seventh dynamic allocation call has
completed.

The first hexadecimal token is register 15.

The second hexadecimal token is S99RSC.

400 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

CSECT: DSNECP30
Message text Explanation

ENTER DSNECP30 token1 token2 This message announces entry into CSECT
DSNECP30, which performs the Db2 calls needed
for BIND, REBIND, or FREE.

The hexadecimal tokens are not used.

END DSNECP30, R15= token1 token2 CSECT DSNECP30 is about to return to its caller.

The first hexadecimal token is register 15.

The second hexadecimal token is zero.

HERE COMES THE FRB CIBFRB token1 token2 This and following messages are a dump of the
function request block (FRB) pointed to by CIBFRB.
These messages will precede and follow the
TERMINATE call.

The first hexadecimal token is the FRB address.

The second hexadecimal token is zero.

FRBRAL(PTR), FRBRALE(BIN15),
FRBFVLE(BIN15) token1 token2

More of FRB.

The first hexadecimal token is FRBRAL.

The second hexadecimal token is FRBRALE
followed by FRBFVLE.

FRBPARM(PTR), FRBPCNT(BIN15) token1 token2 More of FRB.

The first hexadecimal token is FRBPARM.

The second hexadecimal token is FRBPCNT.

FRBRC1(BIN15), FRBRC2(CHAR4) token1 token2 More of FRB.

The first hexadecimal token is FRBRC1.

The second hexadecimal token is FRBRC2.

FRBFBACK(PTR), FRBRHPC(BIN32) token1
token2

More of FRB.

The first hexadecimal token is FRBFBACK.

The second hexadecimal token is FRBRHPC.

FRBQUAL(BIN15), FRBRSV1(BIN15) token1
token2

More of FRB.

The first hexadecimal token is FRBQUAL.

The second hexadecimal token is FRBRSV1.

Chapter 7. Trace messages and codes 401

CSECT: DSNECP31
Message text Explanation

ENTER DSNECP31, CIBSCANC=command,
CIBCPPL=, R6= token1 token2

This message announces entry into CSECT
DSNECP31, which attaches potential TSO
commands. SIBSCANC is the subcommand to be
attached.

The first hexadecimal token is CIBCPPL.

The second hexadecimal token is register 6, the
base register for the CIB.

CPPLCBUF: cbuf ZCMDLEN=, ZCMDOFF= token1
token2

This message echoes the command buffer to be
processed by DSNECP31.

The first hexadecimal token is ZCMDLEN, the
command buffer length.

The second hexadecimal token is ZCMDOFF, the
command buffer offset.

FOUND "HELP" ONLY ADDR(ZHLPCBUF)=,
ZHLPOFF= token1 token2

HELP command processing is beginning. This
command buffer contains only HELP. It is not
followed by any other operand.

The first hexadecimal token is the address of the
CPPLCBUF used for HELP processing.

The second hexadecimal token is the command
offset into this buffer.

USER ENTERED "HELP SOMETHING" token1
token2

HELP command processing is beginning. This
command buffer contains HELP followed by some
other operand.

The hexadecimal tokens are not used.

CBUF BEFORE DSNECP22 cbuf ZCMDLEN=,
ZCMDOFF= token1 token2

DSNECP31 is about to call DSNECP22 to scan the
command buffer. The current buffer is displayed.

The first hexadecimal token is the LL part of the
buffer.

The second hexadecimal token is the OO part of the
buffer.

NEW CIBSCANC IS cibscanc ZCMDLEN=,
CPPLCBUF= token1 token2

The first word after HELP (in the command buffer)
is being displayed.

The first hexadecimal token is ZCMDLEN, the first 2
bytes in the command buffer.

The second hexadecimal token is CPPLCBUF, the
command buffer address.

402 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

NOT A DSN SUBCMD ZCMDLEN=, CPPLCBUF=
token1 token2

The user requested HELP for a string that has not
been recognized as a DSN subcommand.

The first hexadecimal token is ZCMDLEN, the first 2
bytes in the buffer.

The second hexadecimal token is CPPLCBUF, the
command buffer address.

NOT A HELP COMMAND ZSIBPTR=, ECTSCMD=
token1 token2

The command being processed has been scanned
and found not to be a HELP subcommand.

The first hexadecimal token is the SIB address.

The second hexadecimal token is the CPPL
address.

ECTPCMD, ECTSCMD pcmd scmd
SIBTDCB=token1 token2

ECTPCMD and ECTSCMD are listed.

The first hexadecimal token is SIBTDCB.

The second hexadecimal token is zero.

BEFORE ATTACH================== ZECB=,
CIBCPPL= token1 token2

CSECT DSNECP30 is about to ATTACH the potential
command.

The first hexadecimal token is ZECB.

The second hexadecimal token is the address of
the CPPL.

AFTER ATTACH================== ZECB=,
CIBRC= token1 token2

CSECT DSNECP30 is about to ATTACH the potential
command.

The first hexadecimal token is ZECB.

The second hexadecimal token is the return code
from the ATTACH.

BEFORE WAIT ZECB=, ADDR(ZECB)= token1
token2

CSECT DSNECP30 is about to WAIT on the
completion of the subtask.

The first hexadecimal token is the ECB.

The second hexadecimal token is the address of
ZECB.

AFTER WAIT ZECB=, ZTCB= token1 token2 The wait has been posted.

The first hexadecimal token is ZECB, the posted
ECB.

The second hexadecimal token is ZTCB, the TCB of
the attached process.

BEFORE DETACH, ZTCB= token1 token2 CSECT DSNECP30 is about to detach the subtask.

The first hexadecimal token is ZTCB, the
command's TCB.

The second hexadecimal token is zero.

Chapter 7. Trace messages and codes 403

Message text Explanation

AFTER DETACH R15=token1 token2 The subtask has been detached.

The first hexadecimal token is register 15, the
return code from the DETACH.

The second hexadecimal token is zero.

BEFORE DS ALLOC, S99RBPTR=, TUPTR= token1
token2

CSECT DSNECP31 is requesting removal of 'in-use'
bits left over from subtask.

The first hexadecimal token is S99RBPTR.

The second hexadecimal token is TUPTR.

AFTER DYNALLOC, S99RSC=, R15= token1
token2

The DYNALLOC request has completed.

The first hexadecimal token is S99RSC.

The second hexadecimal token is register 15.

ZECB & ZMASK=, ZECB= token1 token2 CSECT DSNECP30 is checking for an 806 system
ABEND, which probably indicates typographic
errors on the user's subcommand.

The first hexadecimal token is ZECB ANDed with
ZMASK.

The second hexadecimal token is the ECB.

TCB ADDRESS ZTCB=, ZECB= token1 token2 The subtask completed with other than an 806
system ABEND.

The first hexadecimal token is ZTCB, the subtask
TCB.

The second hexadecimal token is the ECB.

BEFORE CALL TO DAIRFAIL ZR15=, S99RSC=
token1 token2

CSECT DSNECP30 is requesting translation of
DYNALLOC failure.

The first hexadecimal token is ZR15.

The second hexadecimal token is S99RSC.

AFTER DAIRFAIL, R15=, ADDR(DFPARMS)=
token1 token2

The DAIRFAIL request has completed.

The first hexadecimal token is register 15, the
return code from the DAIRFAIL call.

The second hexadecimal token is the address of
DFPARMS.

ENTER DSNECP31 ESTAIRTN R0=, SDWACWT=
token1 token2

The subtask abended and CSECT DSNECP31's
ESTAI routine has been entered.

The first hexadecimal token is register 0.

The second hexadecimal token is SDWACWT.

404 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

R0=12 R1=token1 token2 The ESTAI routine was entered with no SDWA.

The first hexadecimal token is register 1.

The second hexadecimal token is not used.

R0=12, X06 ABEND R0=, R1= token1 token2 An 806 system ABEND occurred in the subtask
and no SDWA was passed to the ESTAI routine.
A typographic error probably occurred on the
subcommand entered.

The first hexadecimal token is register 0.

The second hexadecimal token is register 1.

SDWA COMPLETION CODE, PSW ADDRESS
SDWAABCC=, SDWANXT1= token1 token2

The subtask abended and a SDWA was passed to
CSECT DSNECP31's ESTAI routine.

The first hexadecimal token is SDWAABCC.

The second hexadecimal token is SDWANXT1.

R0<>12 SDWAPSTI=token1 token2 The subtask ended with an 806 system ABEND
and a SDWA was presented to CSECT DSNECP31's
ESTAI routine.

The first hexadecimal token is SDWAPSTI.

The second hexadecimal token is not used.

END DSNECP31 ESTAIRTN ZRETCODE=,
R14SAVE= token1 token2

The ESTAI routine is returning to ABTERM
processing.

The first hexadecimal token is ZRETCODE.

The second hexadecimal token is R14SAVE.

CSECT: DSNECP40
Message text Explanation

ENTER DSNECP40 CIBPTR=token1 token2 This message announces entry into CSECT
DSNECP40, which parses the BIND subcommand.

The first hexadecimal token is the CIB address.

The second hexadecimal token is not used.

AFTER IKJPARS, R15=, PPLPTR= token1 token2 This message is displayed after the call to IKJPARS
has taken place.

The first hexadecimal token is register 15.

The second hexadecimal token is the address of
the Parse Parameter List.

Chapter 7. Trace messages and codes 405

Message text Explanation

PLAN NAME LOOPTOP CHAR: char ZI=,
ZPARMLEN= token1 token2

This loop executes once for each character in
the PLAN name. That character is printed in the
message.

The first hexadecimal token is ZI, the loop index.

The second hexadecimal token is ZPARMLEN, the
length of the PLAN.

PLAN : planname ZPARMLEN=, ZPDEBIN= token1
token2

This message shows the plan parameter,
planname, from the BIND subcommand.

The first hexadecimal token is ZPARMLEN, the
length of the plan name.

The second hexadecimal token is ZPDEBIN, a
parameter presence indicator.

MEMBER : memname ZPARMLEN=, ZPTR= token1
token2

This message shows the member parameter,
memname, from the BIND subcommand.

The first hexadecimal token is ZPARMLEN, the
length of the member name.

The second hexadecimal token is the PDE address.

NO LIBRARY PARM ENTERED ZPDEBIND=,
ZPTR= token1 token2

This message indicates that the user did not enter
a library parameter.

The first hexadecimal token is ZPDEBIN, a
parameter presence indicator.

The second hexadecimal token is the address of
the LIBRARY parameter's PDE.

LIBRARY : libname ZPARMLEN=, SIBBPDSN=
token1 token2

This message shows the library parameter,
libname, from the BIND subcommand.

The first hexadecimal token is ZPARMLEN, the
name length.

The second hexadecimal token is SIBBPDSN, the
address of the name.

PASSWORD : password ZPWDLEN=, ZPWDPTR=
token1 token2

This message shows the password parameter from
the BIND subcommand.

The first hexadecimal token is ZPWDLEN, the
length of the password.

The second hexadecimal token is ZPWDPTR, a
pointer to the password.

ACTION : action ZPARMLEN=, ZPTR= token1
token2

This message shows the action parameter from the
BIND subcommand.

The first hexadecimal token is ZPARMLEN, the
length of the parameter.

The second hexadecimal token is ZPTR.

406 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

RETAIN : retparm ZPDEBIN=, ZPTR= token1
token2

This message shows the retain parameter, retparm,
from the BIND subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

VALIDATE : valparm ZPDEBIN=, ZPTR= token1
token2

This message shows the validate parameter,
valparm, from the BIND subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

ACQUIRE : acqparm ZPDEBIN=, ZPTR= token1
token2

This message shows the acquire parameter,
acqparm, from the BIND subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

RELEASE : relparm ZPDEBIN=, ZPTR= token1
token2

This message shows the release parameter,
relparm, from the BIND subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

ISOLATE : isoparm ZPDEBIN=, ZPTR= token1
token2

This message shows the isolate parameter,
isoparm, from the BIND subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

FLAG : flagval ZPDEBIN=, ZPTR= token1 token2 This message shows the flag parameter, flagval,
from the BIND subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

LEAVE DSNECP40 R15=, SIBRCODE= token1
token2

CSECT DSNECP40 has completed processing.
Control will return to the calling CSECT, DSNECP19.

The first hexadecimal token is register 15.

The second hexadecimal token is SIBRCODE.

CSECT: DSNECP41
Message text Explanation

ENTER DSNECP41 ADDR(SIBRBIND)=, R6=
token1 token2

This message announces entry into CSECT
DSNECP41, which parses the REBIND
subcommand.

The first hexadecimal token is the address of the
BIND area of the SIB.

The second hexadecimal token is R6, the CIB
address.

Chapter 7. Trace messages and codes 407

Message text Explanation

AFTER IKJPARS, R15= token1 token2 This message is displayed after the call to IKJPARS
has taken place.

The first hexadecimal token is register 15.

The second hexadecimal token is not used.

PLAN : planname ZPARMLEN=, ZPTR= token1
token2

This message shows the plan parameter, plan
name, from the REBIND subcommand.

The first hexadecimal token is ZPARMLEN, the
length of the plan name.

The second hexadecimal token is ZPTR, the PDE
address for the plan parameter.

PLAN NAME LOOPTOP ZJ=, SIBRBPSZ= token1
token2

This loop executes once per plan name.

The first hexadecimal token is ZJ, the loop index.

The second hexadecimal token is SIBRBPSZ, the
size for the coming FREEMAIN.

FOUND AN ASTERISK ZPARMLEN=, ZPTR=
token1 token2

The plan name was an asterisk, indicating 'all' plan
names.

The hexadecimal tokens are not used.

LITTLE LOOPTOP ZI=, ZPARMLEN= token1 token2 This loop executes once for each character in a
plan name.

The first hexadecimal token is ZI.

The second hexadecimal token is ZPARMLEN.

PUT PARM INTO LIST ZPARMLEN=token1 token2 A plan name was just added to the plan name list.

The first hexadecimal token is ZPARMLEN.

The second hexadecimal token is zero.

VALIDATE : valparm ZPDEBIN=, ZPTR= token1
token2

This message shows the validate parameter,
valparm, from the REBIND subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

ACQUIRE : acqparm ZPDEBIN=, ZPTR= token1
token2

This message shows the acquire parameter,
acqparm, from the REBIND subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

RELEASE : relparm ZPDEBIN=, ZPTR= token1
token2

This message shows the release parameter,
relparm, from the REBIND subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

408 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

ISOLATE : isoparm ZPDEBIN=, ZPTR= token1
token2

This message shows the isolate parameter,
isoparm, from the REBIND subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

EXPLAIN : NO ZPTR=, ZPARMLEN= token1 token2 This message shows that the NO EXPLAIN
parameter was detected in the REBIND
subcommand.

The first hexadecimal token is ZPTR.

The second hexadecimal token is ZPARMLEN.

LEAVE DSNECP41 SIBRCODE=, SIBRBSW=
token1 token2

CSECT DSNECP41 has just completed. Control will
return to the calling CSECT, DSNECP19.

The first hexadecimal token is SIBRCODE, the
return code from the REBIND. The second
hexadecimal token is SIBRBSW, the REBIND
switches.

CSECT: DSNECP42
Message text Explanation

ENTER DSNECP42, SIBFREE= token1 token2 This message announces entry into CSECT
DSNECP42, which parses the FREE subcommand.

The first hexadecimal token is the address of the
FREE area in the SIB.

The second hexadecimal token is not used.

AFTER IKJPARS, R15= token1 token2 This message is displayed after the call to IKJPARS
has taken place.

The first hexadecimal token is register 15, the
return code from the parse.

The second hexadecimal token is zero.

BEFORE MEMBER LOOP token1 token2 This message appears before the loop that
processes the planid list that the user entered.

The hexadecimal tokens are not used.

PLAN : planname token1 token2 This message shows the plan parameter,
planname, from the FREE subcommand. This
message appears once for each PLAN to be freed.

The first hexadecimal token is ZPARMLEN, the
length of the parameter.

The second hexadecimal token is zero.

Chapter 7. Trace messages and codes 409

Message text Explanation

GETMAIN SUCCESSFUL, ZGMPTR= token1 token2 The GETMAIN for the area to hold the compacted
plan name list was successful.

The first hexadecimal token is ZGMPTR, the
address of the area just obtained.

The second hexadecimal token is not used.

PLAN NAME LOOPTOP ZJ=, SIBFRBPS= token1
token2

This loop executes once per plan name.

The first hexadecimal token is ZJ, the loop index.

The second hexadecimal token is SIBFRBPS, the
size of the previous GETMAIN.

FOUND AN ASTERISK token1 token2 An asterisk was entered in the plan name list.

The hexadecimal tokens are not used.

LITTLE LOOPTOP ZI=, ZPARMLEN token1 token2 This loop executes once per character in each plan
name.

The first hexadecimal token is ZI, the loop index.

The second hexadecimal token is ZPARMLEN, the
length of the plan name.

PUT PARM INTO LIST token1 token2 A plan name was just added to the plan name list.

The hexadecimal tokens are not used.

FLAG : flagval ZPDEBIN token1 token2 This message shows the flag parameter, flagval,
from the FREE subcommand.

The first hexadecimal token is ZPDEBIN, a
parameter presence indicator.

The second hexadecimal token is not used.

CALL DSNECP30, SIBFREE=, SIBRCODE= token1
token2

CSECT DSNECP42 is about to call CSECT
DSNECP30 to invoke Db2 to do the FREE
processing.

The first hexadecimal token is the address of the
FREE area in the SIB.

The second hexadecimal token is SIBRCODE, the
FREE return code so far.

AFTER DSNECP30, SIBFREE=, SIBRCODE=
token1 token2

CSECT DSNECP42 just regained control after
calling CSECT DSNECP30.

The first hexadecimal token is the address of
SIBFREE.

The second hexadecimal token is SIBRCODE.

410 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

LEAVE DSNECP42, SIBRCODE=, SIBFRBSW=
token1 token2

CSECT DSNECP42 has completed. Control will
return to the calling CSECT, DSNECP19.

The first hexadecimal token is SIBRCODE, the FREE
return code.

The second hexadecimal token is SIBFRBSW.

CSECT: DSNECP44
Message text Explanation

ENTER DSNECP44, CIPPTR= token1 token2 This message announces entry into CSECT
DSNECP44, which parses the BIND PACKAGE
subcommand.

The first hexadecimal token is CIBPTR.

The second hexadecimal token is not used.

AFTER IKJPARS, R15= token1 token2 This message is displayed after the call to IKJPARS
has taken place.

The first hexadecimal token is register 15, the
return code from the parse.

The second hexadecimal token is zero.

MEMBER : memname ZPARMLEN=, ZPDEPTR=
token1 token2

This message shows the member parameter,
memname, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN, the
length of the parameter.

The second hexadecimal token is the PDE address.

NO LIBRARY PARM ENTERED ZPDEBIND=,
ZPTR= token1 token2

This message indicates that the user did not enter
a library parameter.

The first hexadecimal token is ZPDEBIN, a
parameter presence indicator.

The second hexadecimal token is the address of
the LIBRARY parameter's PDE.

LIBRARY : libname ZPARMLEN=, SIBBPDSN=
token1 token2

This message shows the library parameter,
libname, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN, the
name length.

The second hexadecimal token is SIBBPDSN, the
address of the name.

Chapter 7. Trace messages and codes 411

Message text Explanation

PASSWORD : password ZPWDLEN=, ZPWDPTR=
token1 token2

This message shows the password parameter from
the BIND PACKAGE subcommand.

The first hexadecimal token is ZPWDLEN, the
length of the password.

The second hexadecimal token is ZPWDPTR, a
pointer to the password.

COPYVER : version ZPARMLEN= token1 This message shows the COPYVER parameter from
the BIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN, the
length of the COPYVER parameter.

OPTIONS : optionsval ZPDEBIN=, ZPDEPTR=
token1 token2 ZPARMLEN= token1

This message shows the OPTIONS parameter from
the BIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN, a
parameter presence indicator.

The second hexadecimal token is the address of
the OPTIONS parameter's PDE.

ACTION : action ZPARMLEN=, ZPTR= token1
token2

This message shows the action parameter from the
BIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN, the
length of the parameter.

The second hexadecimal token is ZPTR.

REPLVER : version ZPARMLEN= token1 This message shows the REPLVER parameter from
the BIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN, the
length of the REPLVER parameter.

VALIDATE : valparm ZPDEBIN=, ZPTR= token1
token2

This message shows the validate parameter,
valparm, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

RELEASE : relparm ZPDEBIN=, ZPTR= token1
token2

This message shows the RELEASE parameter,
relparm, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

SQLERROR : sqlerract ZPDEBIN=, ZPTR= token1
token2

This message shows the SQLERROR parameter,
sqlerract, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

412 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

ISOLATION : isoparm ZPDEBIN=, ZPTR= token1
token2

This message shows the ISOLATION parameter,
isoparm, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

FLAG : flagval ZPDEBIN=, ZPTR= token1 token2 This message shows the FLAG parameter, flagval,
from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

EXPLAIN : explval ZPDEBIN=, ZPTR= token1
token2

This message shows the EXPLAIN parameter,
explval, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

CURRENTDATA : cdval ZPDEBIN=, ZPTR= token1
token2

This message shows the CURRENTDATA parameter,
cdval, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

DYNAMICRULES: dynval ZPDEBIN=, ZPTR=
token1 token2

This message shows the DYNAMICRULES
parameter, dynval, from the BIND PACKAGE
subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

DBPROTOCOL: dbprotval ZPDEBIN=, ZPTR=
token1 token2

This message shows the DBPROTOCOL parameter,
dbprotval, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

DEFER: defer ZPDEBIN=, ZPTR= token1 token2 This message shows the DEFER parameter, defer,
from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

NODEFER: nodefer ZPDEBIN=, ZPTR= token1
token2

This message shows the NODEFER parameter,
nodefer, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

REOPT: reopt ZPDEBIN=, ZPTR= token1 token2 This message shows the REOPT parameter, defer,
from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

Chapter 7. Trace messages and codes 413

Message text Explanation

NOREOPT: noreopt ZPDEBIN=, ZPTR= token1
token2

This message shows the NOREOPT parameter,
noreopt, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

KEEPDYNAMIC: keepdynval ZPDEBIN=, ZPTR=
token1 token2

This message shows the KEEPDYNAMIC
parameter, keepdynval, from the BIND PACKAGE
subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

NO PATH PARAMETER ENTERED: ZPDEBIN=,
ZPTR= token1 token2

This message is displayed if the PATH is not
specified for the BIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

PATH : ZPARMLEN=, PATHPTR= token1 token2 This message displays the schema names in
the PATH parameter for the BIND PACKAGE
subcommand.

The first hexadecimal token is ZPARMLEN.

The second hexadecimal token is the pointer to the
PATH list.

PATH (# SCHEMA NAMES): SIBBPATHN token1 This message displays the number of schema
names in the PATH parameter for the BIND
PACKAGE subcommand.

The first hexadecimal token is the number of
schemas in the PATH list.

OWNER : ownerid ZPARMLEN= token1 This message shows the OWNER parameter,
ownerid, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

QUALIFIER : qualid ZPARMLEN= token1 This message shows the QUALIFIER parameter,
qualid, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

DEGREE : degreeprm ZPARMLEN=, ZPTR= token1
token2

This message shows the DEGREE parameter,
degreeprm, from the BIND PACKAGE
subcommand.

The first hexadecimal token is ZPARMLEN, the
length of the DEGREE parameter value.

The second hexadecimal token is PDE address.

414 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

SIB RELEASE DEPENDENCY MARK IS: token1 This message appears before exit from DSNECP44.

The first hexadecimal token is the release
dependency character for the BIND command set
by this CSECT.

LEAVE DSNECP44, R15=, SIBRCODE= token1
token2

CSECT DSNECP44 has completed. Control will
return to the calling CSECT, DSNECP19.

The first hexadecimal token is the value in register
15.

The second hexadecimal token is SIBRCODE, the
BIND return code.

CSECT: DSNECP45
Message text Explanation

ENTER DSNECP45, SIBRBIND= token1 token2 This message announces entry into CSECT
DSNECP45, which parses the REBIND PACKAGE
subcommand.

The first hexadecimal token is CIBPTR.

The second hexadecimal token is not used.

AFTER IKJPARS, R15= token1 token2 This message is displayed after the call to IKJPARS
has taken place.

The first hexadecimal token is register 15, the
return code from the parse.

The second hexadecimal token is zero.

VALIDATE : valparm ZPDEBIN=, ZPTR= token1
token2

This message shows the validate parameter,
valparm, from the REBIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

RELEASE : relparm ZPDEBIN=, ZPTR= token1
token2

This message shows the RELEASE parameter,
relparm, from the REBIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

ISOLATE : isoparm ZPDEBIN=, ZPTR= token1
token2

This message shows the ISOLATION parameter,
isoparm, from the REBIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

Chapter 7. Trace messages and codes 415

Message text Explanation

FLAG : flagval ZPDEBIN=, ZPTR= token1 token2 This message shows the FLAG parameter, flagval,
from the REBIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

EXPLAIN : explval ZPDEBIN=, ZPTR= token1
token2

This message shows the EXPLAIN parameter,
explval, from the REBIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

DYNAMICRULES: dynval ZPDEBIN=, ZPTR=
token1 token2

This message shows the DYNAMICRULES
parameter, dynval, from the REBIND PACKAGE
subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

DBPROTOCOL: dbprotval ZPDEBIN=, ZPTR=
token1 token2

This message shows the DBPROTOCOL
parameter, dbprotval, from the REBIND PACKAGE
subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

CURRENTDATA : cdval ZPDEBIN=, ZPTR= token1
token2

This message shows the CURRENTDATA parameter,
cdval, from the REBIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

DEFER: defer ZPDEBIN=, ZPTR= token1 token2 This message shows the DEFER parameter, defer,
from the REBIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

NODEFER: nodefer ZPDEBIN=, ZPTR= token1
token2

This message shows the NODEFER parameter,
nodefer, from the REBIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

REOPT: reopt ZPDEBIN=, ZPTR= token1 token2 This message shows the REOPT parameter, defer,
from the REBIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

416 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

NOREOPT: noreopt ZPDEBIN=, ZPTR= token1
token2

This message shows the NOREOPT parameter,
noreopt, from the REBIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

KEEPDYNAMIC: keepdynval ZPDEBIN=, ZPTR=
token1 token2

This message shows the KEEPDYNAMIC
parameter, keepdynval, from the REBIND PACKAGE
subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

NO PATH PARAMETER ENTERED: ZPDEBIN=,
ZPTR= token1 token2

This message is displayed if the PATH is not
specified for the REBIND PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

PATH : ZPARMLEN=, PATHPTR= token1 token2 This message displays the schema names in
the PATH parameter for the REBIND PACKAGE
subcommand.

The first hexadecimal token is ZPARMLEN.

The second hexadecimal token is the pointer to the
PATH list.

PATH (# SCHEMA NAMES): SIBBPATHN token1 This message displays the number of schema
names in the PATH parameter for the REBIND
PACKAGE subcommand.

The first hexadecimal token is the number of
schemas in the PATH list.

PATHDEFAULT: ZPDEBIN, SIBRPATHP token1
token2

This message displays the PATHDEFAULT
parameter for the REBIND PACKAGE subcommand.

The first hexadecimal token is ZPTR.

The second hexadecimal token is a pointer to the
PATH list.

OWNER : ownerid ZPARMLEN= token1 This message shows the OWNER parameter,
ownerid, from the REBIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

QUALIFIER : qualid ZPARMLEN= token1 This message shows the QUALIFIER parameter,
qualid, from the REBIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

Chapter 7. Trace messages and codes 417

Message text Explanation

BEFORE CALL DSNECP30 SIBRBIND=,
SIBRCODE= token1 token2

CSECT DSNECP45 is about to call CSECT
DSNECP30 to make the Db2 call to perform the
REBIND PACKAGE.

The first hexadecimal token is SIBRCODE.

The second hexadecimal token is SIBRCODE, the
highest return code so far.

AFTER CALL DSNECP30, SIBRBIND=,
SIBRCODE= token1 token2

CSECT DSNECP45 just regained control after
calling CSECT DSNECP30.

The first hexadecimal token is the address of
SIBRBIND.

The second hexadecimal token is SIBRCODE, the
highest return code so far.

AFTER PARSE token1 This message after parsing of the REBIND
PACKAGE subcommand is complete.

The first hexadecimal token is the release
dependency character for the BIND command set
by this CSECT.

SIB RELEASE DEPENDENCY MARK IS: token1 This message appears before exit from DSNECP45.

The first hexadecimal token is the release
dependency character for the BIND command set
by this CSECT.

LEAVE DSNECP45, R15=, SIBRCODE= token1
token2

CSECT DSNECP45 has completed. Control will
return to the calling CSECT, DSNECP19.

The first hexadecimal token is the value in register
15.

The second hexadecimal token is SIBRCODE, the
BIND return code.

CSECT: DSNECP46
Message text Explanation

ENTER DSNECP46, SIBFREE PACKAGE= token1
token2

This message announces entry into CSECT
DSNECP46, which parses the FREE PACKAGE
subcommand.

The first hexadecimal token is the address of the
FREE PACKAGE area in the SIB.

The second hexadecimal token is not used.

AFTER IKJPARS, R15= token1 token2 This message is displayed after the call to IKJPARS
has taken place.

The first hexadecimal token is register 15, the
return code from the parse.

418 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

FLAG : flagval ZPDEBIN=, ZPTR= token1 token2 This message shows the FLAG parameter, flagval,
from the FREE PACKAGE subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

BEFORE CALL DSNECP30, SIBFREE PACKAGE=,
SIBRCODE= token1 token2

CSECT DSNECP46 is about to call CSECT
DSNECP30 to invoke Db2 to do the FREE PACKAGE
processing.

The first hexadecimal token is the address of the
FREE PACKAGE area in the SIB.

The second hexadecimal token is SIBRCODE, the
FREE PACKAGE return code so far.

AFTER CALL DSNECP30, SIBFREE PACKAGE=,
SIBRCODE= token1 token2

CSECT DSNECP46 just regained control after
calling CSECT DSNECP30.

The first hexadecimal token is the address of
SIBFREE PACKAGE.

The second hexadecimal token is SIBRCODE.

LEAVE DSNECP46, SIBRCODE=, SIBFRBSW=
token1 token2

CSECT DSNECP46 has completed. Control will
return to the calling CSECT, DSNECP19.

The first hexadecimal token is SIBRCODE, the FREE
PACKAGE return code.

The second hexadecimal token is SIBFRBSW.

CSECT: DSNECP47
Message text Explanation

ENTER DSNECP47, SIBRBIND= token1 token2 This message announces entry into CSECT
DSNECP47, which parses the REBIND TRIGGER
PACKAGE subcommand.

The first hexadecimal token is CIBPTR.

The second hexadecimal token is not used.

AFTER IKJPARS, R15= token1 token2 This message is displayed after the call to IKJPARS
has taken place.

The first hexadecimal token is register 15, the
return code from the parse.

The second hexadecimal token is zero.

TRIGGER : trigname ZPDEBIN=, ZPTR= token1
token2

This message shows the TRIGGER parameter,
trigname, from the REBIND TRIGGER PACKAGE
subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

Chapter 7. Trace messages and codes 419

Message text Explanation

RELEASE : relparm ZPDEBIN=, ZPTR= token1
token2

This message shows the RELEASE parameter,
relparm, from the REBIND TRIGGER PACKAGE
subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

ISOLATION : isoparm ZPDEBIN=, ZPTR= token1
token2

This message shows the ISOLATION parameter,
isoparm, from the REBIND TRIGGER PACKAGE
subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

FLAG : flagval ZPDEBIN=, ZPTR= token1 token2 This message shows the FLAG parameter,
flagval, from the REBIND TRIGGER PACKAGE
subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

EXPLAIN : explval ZPDEBIN=, ZPTR= token1
token2

This message shows the EXPLAIN parameter,
explval, from the REBIND TRIGGER PACKAGE
subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

CURRENTDATA : cdval ZPDEBIN=, ZPTR= token1
token2

This message shows the CURRENTDATA parameter,
cdval, from the REBIND TRIGGER PACKAGE
subcommand.

The first hexadecimal token is ZPDEBIN.

The second hexadecimal token is ZPTR.

BEFORE CALL DSNECP30 SIBRBIND=,
SIBRCODE= token1 token2

CSECT DSNECP47 is about to call CSECT
DSNECP30 to make the Db2 call to perform the
REBIND TRIGGER PACKAGE.

The first hexadecimal token is SIBRCODE.

The second hexadecimal token is SIBRCODE, the
highest return code so far.

AFTER CALL DSNECP30, SIBRBIND=,
SIBRCODE= token1 token2

CSECT DSNECP47 just regained control after
calling CSECT DSNECP30.

The first hexadecimal token is the address of
SIBRBIND.

The second hexadecimal token is SIBRCODE, the
highest return code so far.

420 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

AFTER PARSE token1 This message after parsing of the REBIND
TRIGGER PACKAGE subcommand is complete.

The first hexadecimal token is the release
dependency character for the BIND command set
by this CSECT.

SIB RELEASE DEPENDENCY MARK IS: token1 This message appears before exit from DSNECP47.

The first hexadecimal token is the release
dependency character for the BIND command set
by this CSECT.

LEAVE DSNECP47, R15=, SIBRCODE= token1
token2

CSECT DSNECP47 has completed. Control will
return to the calling CSECT, DSNECP19.

The first hexadecimal token is the value in register
15.

The second hexadecimal token is SIBRCODE, the
BIND return code.

CSECT: DSNECP50
Message text Explanation

ENTER DSNECP50 ZPTR=, SIBRCODE= token1
token2

This message announces entry into CSECT
DSNECP50, which validates the BIND PLAN
parameters.

The first hexadecimal token is the ZPTR, the
pointer to the parameter list.

The second hexadecimal token is SIBRCODE, the
highest return code so far.

OWNER : ownerid ZPARMLEN= token1 This message shows the OWNER parameter,
ownerid, from the BIND PLAN subcommand.

The first hexadecimal token is ZPARMLEN.

QUALIFIER : qualid ZPARMLEN= token1 This message shows the QUALIFIER parameter,
qualid, from the BIND PLAN subcommand.

The first hexadecimal token is ZPARMLEN.

OPTHINT : qoptprm ZPARMLEN=, ZPDEPTR=
token1 token2

This message shows the OPTHINT parameter,
qoptprt, from the BIND PLAN subcommand.

The first hexadecimal token is ZPARMLEN.

The second hexadecimal token is the address of
the OPTHINT parameter's PDE.

Chapter 7. Trace messages and codes 421

Message text Explanation

PKLIST : pklist ZPARMLEN=, ZPARM_PTR=
token1 token2

This message shows an entry in the PKLIST
parameter, pklist, from the BIND PLAN
subcommand.

The first hexadecimal token is ZPARMLEN.

The second hexadecimal token is ZPARM_PTR, the
pointer to the current entry in the package list.

IN PKLIST : SIBBPKLN= token1 This message shows the number of entries in the
package list.

The first hexadecimal token is SIBBPKLN, the
number of entries in the package list.

CURRSERV : currentserver ZPARMLEN=,
ZPDEPTR=, token1 token2

This message shows the CURRENTSERVER
parameter, currentserver, from the BIND PLAN
subcommand.

The first hexadecimal token is ZPARMLEN.

The second hexadecimal token is the address of
the CURRENTSERVER parameter's PDE.

DEGREE : degree ZPARMLEN=, ZPDEPTR=,
token1 token2

This message shows the DEGREE parameter,
degree, from the BIND PLAN subcommand.

The first hexadecimal token is ZPARMLEN.

The second hexadecimal token is the address of
the DEGREE parameter's PDE.

ENABLE : enableparm ZPARMLEN= token1 This message shows the ENABLE parameter,
enableparm, from the BIND PLAN subcommand.

The first hexadecimal token is ZPARMLEN.

DISABLE : disableparm ZPARMLEN= token1 This message shows the DISABLE parameter,
disableparm, from the BIND PLAN subcommand.

The first hexadecimal token is ZPARMLEN.

CICSCON : cicsconnid ZPARMLEN= token1 This message shows the CICS connection
ID subparameter, cicsconnid, of the
ENABLE(CICS(cicsconnid)) parameter from the
BIND PLAN subcommand.

The first hexadecimal token is ZPARMLEN.

IMSBCON : imsid ZPARMLEN= token1 This message shows the IMS BMP
IMSID subparameter, imsid, of the
ENABLE(IMSBMP(imsid)) parameter from the BIND
PLAN subcommand.

The first hexadecimal token is ZPARMLEN.

422 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

IMSMCON : imsid ZPARMLEN= token1 This message shows the IMS MPP
IMSID subparameter, imsid, of the
ENABLE(IMSMPP(imsid)) parameter from the BIND
PLAN subcommand.

The first hexadecimal token is ZPARMLEN.

DLIBATC : connection-name ZPARMLEN= token1 This message shows the connection ID
subparameter, connection-name, of the
ENABLE(DLIBATCH(connection-name)) parameter
from the BIND PLAN subcommand.

The first hexadecimal token is ZPARMLEN.

LEAVE DSNECP50 SIBRCODE= token1 CSECT DSNECP50 has completed processing.
Control will return to the calling CSECT, DSNECP40.

The first hexadecimal token is SIBRCODE, the
highest return code.

CSECT: DSNECP51
Message text Explanation

ENTER DSNECP51 CIBPTR= token1 This message announces entry into CSECT
DSNECP51, which validates the REBIND PLAN
parameters.

The first hexadecimal token is the CIB address.

NUM OF PLAN : SIBRBPN= token1 This message shows the number of plans to rebind.

The first hexadecimal token, SIBRBPN, is the
number of plans to rebind.

PLAN NAME: ZPARMLEN=, ZJ= token1 token2 This message shows the name of a plan to rebind.

The first hexadecimal token, ZPARMLEN, is the
length of the plan name.

The second hexadecimal token, ZJ, is the number
of the plan name in the list of plans to rebind.

FOUND AN ASTERISK ZPARMLEN=, ZPDEPTR=
token1 token2

This message indicates that the list of plans to
rebind contains an asterisk.

The first hexadecimal token, ZPARMLEN, is 1.

The second hexadecimal token, ZPDEPTR, is the
pointer to the PDE for the PLAN parameter.

PUT PARM INTO LIST: planid ZPARMLEN= token1 This message shows the ID of a plan in the list of
plans to rebind.

The first hexadecimal token, ZPARMLEN, is the
length of the plan name.

Chapter 7. Trace messages and codes 423

Message text Explanation

OWNER : ownerid ZPARMLEN= token1 This message shows the OWNER parameter,
ownerid, from the REBIND PLAN subcommand.

The first hexadecimal token is ZPARMLEN.

QUALIFIER : qualid ZPARMLEN= token1 This message shows the QUALIFIER parameter,
qualid, from the REBIND PLAN subcommand.

The first hexadecimal token is ZPARMLEN.

PKLIST : pklist ZPARMLEN=, ZPARM_PTR=
token1 token2

This message shows an entry in the PKLIST
parameter, pklist, from the REBIND PLAN
subcommand.

The first hexadecimal token is ZPARMLEN.

The second hexadecimal token is ZPARM_PTR, the
pointer to the current entry in the package list.

IN PKLIST : SIBBPKLN= token1 This message shows the number of entries in the
package list.

The first hexadecimal token is SIBBPKLN, the
number of entries in the package list.

CURRSERV : currentserver ZPARMLEN=,
ZPDEPTR=, token1 token2

This message shows the CURRENTSERVER
parameter, currentserver, from the REBIND PLAN
subcommand.

The first hexadecimal token is ZPARMLEN.

The second hexadecimal token is the address of
the CURRENTSERVER parameter's PDE.

DEGREE : degree ZPARMLEN=, ZPDEPTR=,
token1 token2

This message shows the DEGREE parameter,
degree, from the REBIND PLAN subcommand.

The first hexadecimal token is ZPARMLEN.

The second hexadecimal token is the address of
the DEGREE parameter's PDE.

ENABLE : enableparm ZPARMLEN= token1 This message shows the ENABLE parameter,
enableparm, from the REBIND PLAN subcommand.

The first hexadecimal token is ZPARMLEN.

DISABLE : disableparm ZPARMLEN= token1 This message shows the DISABLE parameter,
disableparm, from the REBIND PLAN
subcommand.

The first hexadecimal token is ZPARMLEN.

CICS CON NUM: SIBRCNUM= token1 This message shows the number of connection
ID entries for the ENABLE(CICS(cicsconnid))
parameter from the REBIND PLAN subcommand.

The first hexadecimal token is ZPARMLEN.

424 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

IMSBMP CON NUM: SIBRINUM= token1 This message shows the number of IMSBMP
entries for the ENABLE(IMSBMP(imsid)) parameter
from the REBIND PLAN subcommand.

The first hexadecimal token is SIBRINUM, the
number of IMSBMP entries.

IMSBMP: imsid ZPARMLEN= token1 This message shows the IMS BMP
IMSID subparameter, imsid, of the
ENABLE(IMSBMP(imsid)) parameter from the
REBIND PLAN subcommand.

The first hexadecimal token is ZPARMLEN.

IMSMPP CON NUM: SIBRIMUM= token1 This message shows the number of IMSMPP
entries for the ENABLE(IMSMPP(imsid)) parameter
from the REBIND PLAN subcommand.

The first hexadecimal token is SIBRIMUM, the
number of IMSMPP entries.

IMSMPP: imsid ZPARMLEN= token1 This message shows the IMS MPP
IMSID subparameter, imsid, of the
ENABLE(IMSMPP(imsid)) parameter from the
REBIND PLAN subcommand.

The first hexadecimal token is ZPARMLEN.

DLIBATCH CON NUM: SIBRDNUM= token1 This message shows the number of DLIBATCH
entries for the ENABLE(DLIBATCH(connection-
name)) parameter from the REBIND PLAN
subcommand.

The first hexadecimal token is SIBRDNUM, the
number of DLIBATCH entries.

DLIBATC: connection-name ZPARMLEN= token1 This message shows the connection ID
subparameter, connection-name, of the
ENABLE(DLIBATCH(connection-name)) parameter
from the REBIND PLAN subcommand.

The first hexadecimal token is ZPARMLEN.

LEAVE DSNECP51 SIBRCODE= token1 CSECT DSNECP51 has completed processing.
Control will return to the calling CSECT, DSNECP41.

The first hexadecimal token is SIBRCODE, the
highest return code.

CSECT: DSNECP54
Message text Explanation

ENTER DSNECP54 CIBPTR= token1 This message announces entry into CSECT
DSNECP54, which validates the BIND PACKAGE
parameters.

The first hexadecimal token is the CIBPTR.

Chapter 7. Trace messages and codes 425

Message text Explanation

PACKAGE: package ZPARMLEN=, ZPDEPTR=
token1 token2

This message shows the PACKAGE parameter,
package, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

The second hexadecimal token is the pointer to the
PDE for the PACKAGE parameter.

COPY ID: package ZPARMLEN=, ZPDEPTR=
token1 token2

IF the COPY parameter is specified, this message
shows the name of the package to copy.

The first hexadecimal token is ZPARMLEN.

The second hexadecimal token is the pointer to the
PDE for the COPY parameter.

COPYVER: version ZPARMLEN= token1 This message shows the COPYVER parameter,
copyver, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

OPTIONS : optionsval ZPARMLEN= token1 This message shows the OPTIONS parameter from
the BIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

REPLVER : version ZPARMLEN= token1 This message shows the REPLVER parameter,
version, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

OWNER : ownerid ZPARMLEN= token1 This message shows the OWNER parameter,
ownerid, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

QUALIFIER : qualid ZPARMLEN= token1 This message shows the QUALIFIER parameter,
qualid, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

OPTHINT : qoptprm ZPARMLEN= token1 This message shows the OPTHINT parameter,
qoptprt, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

The second hexadecimal token is the address of
the OPTHINT parameter's PDE.

DEGREE : degree ZPARMLEN=, ZPDEPTR=,
token1 token2

This message shows the DEGREE parameter,
degree, from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

The second hexadecimal token is the address of
the DEGREE parameter's PDE.

426 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

ENABLE : enableparm ZPARMLEN= token1 This message shows the ENABLE parameter,
enableparm, from the BIND PACKAGE
subcommand.

The first hexadecimal token is ZPARMLEN.

DISABLE : disableparm ZPARMLEN= token1 This message shows the DISABLE parameter,
disableparm, from the BIND PACKAGE
subcommand.

The first hexadecimal token is ZPARMLEN.

CICSCON : cicsconnid ZPARMLEN= token1 This message shows the CICS connection
ID subparameter, cicsconnid, of the
ENABLE(CICS(cicsconnid)) parameter from the
BIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

IMSBCON : imsid ZPARMLEN= token1 This message shows the IMS BMP
IMSID subparameter, imsid, of the
ENABLE(IMSBMP(imsid)) parameter from the BIND
PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

IMSMCON : imsid ZPARMLEN= token1 This message shows the IMS MPP
IMSID subparameter, imsid, of the
ENABLE(IMSMPP(imsid)) parameter from the BIND
PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

DLIBATC : connection-name ZPARMLEN= token1 This message shows the connection ID
subparameter, connection-name, of the
ENABLE(DLIBATCH(connection-name)) parameter
from the BIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

REMOTE : connection-name ZPARMLEN=,
ZPDEPTR= token1 token2

This message shows the connection
ID subparameter, connection-name, of
the ENABLE(REMOTE(location-name)) or
ENABLE(REMOTE(<luname>)) parameter from the
BIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

The first hexadecimal token is the pointer to
the PDE for ENABLE(REMOTE(location-name)) or
ENABLE(REMOTE(<luname>).

LEAVE DSNECP54 SIBRCODE= token1 CSECT DSNECP54 has completed processing.
Control will return to the calling CSECT, DSNECP44.

The first hexadecimal token is SIBRCODE, the
highest return code.

Chapter 7. Trace messages and codes 427

CSECT: DSNECP55
Message text Explanation

ENTER DSNECP55 CIBPTR= token1 This message announces entry into CSECT
DSNECP55, which validates the REBIND PACKAGE
parameters.

The first hexadecimal token is CIBPTR.

OWNER : ownerid ZPARMLEN= token1 This message shows the OWNER parameter,
ownerid, from the REBIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

QUALIFIER : qualid ZPARMLEN= token1 This message shows the QUALIFIER parameter,
qualid, from the REBIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

OPTHINT : qoptprm ZPARMLEN=, ZPDEPTR=
token1 token2

This message shows the OPTHINT parameter,
qoptprt, from the REBIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

The second hexadecimal token is the address of
the OPTHINT parameter's PDE.

DEGREE : degree ZPARMLEN=, ZPDEPTR=,
token1 token2

This message shows the DEGREE parameter,
degree, from the REBIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

The second hexadecimal token is the address of
the DEGREE parameter's PDE.

ENABLE : enableparm ZPARMLEN= token1 This message shows the ENABLE parameter,
enableparm, from the REBIND PACKAGE
subcommand.

The first hexadecimal token is ZPARMLEN.

DISABLE : disableparm ZPARMLEN= token1 This message shows the DISABLE parameter,
disableparm, from the REBIND PACKAGE
subcommand.

The first hexadecimal token is ZPARMLEN.

CICS CON NUM: SIBRCNUM= token1 This message shows the number of connection
ID entries for the ENABLE(CICS(cicsconnid))
parameter from the REBIND PACKAGE
subcommand.

The first hexadecimal token is ZPARMLEN.

PUT PARM INTO LIST ZPARMLEN=token1 This message is issued when a connection ID is
added to the CICS connection ID list.

The first hexadecimal token is ZPARMLEN.

428 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

IMSBMP CON NUM: SIBRINUM= token1 This message shows the number of IMSBMP
entries for the ENABLE(IMSBMP(imsid)) parameter
from the REBIND PACKAGE subcommand.

The first hexadecimal token is SIBRINUM, the
number of IMSBMP entries.

IMSBMP: imsid ZPARMLEN= token1 This message shows the IMS BMP
IMSID subparameter, imsid, of the
ENABLE(IMSBMP(imsid)) parameter from the
REBIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

IMSMPP CON NUM: SIBRIMUM= token1 This message shows the number of IMSMPP
entries for the ENABLE(IMSMPP(imsid)) parameter
from the REBIND PACKAGE subcommand.

The first hexadecimal token is SIBRIMUM, the
number of IMSMPP entries.

IMSMPP: imsid ZPARMLEN= token1 This message shows the IMS MPP
IMSID subparameter, imsid, of the
ENABLE(IMSMPP(imsid)) parameter from the
REBIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

DLIBATCH CON NUM: SIBRDNUM= token1 This message shows the number of DLIBATCH
entries for the ENABLE(DLIBATCH(connection-
name)) parameter from the REBIND PACKAGE
subcommand.

The first hexadecimal token is SIBRDNUM, the
number of DLIBATCH entries.

DLIBATC: connection-name ZPARMLEN= token1 This message shows the connection ID
subparameter, connection-name, of the
ENABLE(DLIBATCH(connection-name)) parameter
from the REBIND PACKAGE subcommand.

The first hexadecimal token is ZPARMLEN.

REMOTE CON NUM: SIBRSNUM=, SIBRSNUM
token1

This message shows the number of REMOTE
entries for the ENABLE(REMOTE(location or
<luname>)) parameter from the REBIND PACKAGE
subcommand.

The first hexadecimal token is SIBRSNUM, the
number of REMOTE entries.

Chapter 7. Trace messages and codes 429

Message text Explanation

REMOTE: location or <luname> ZPARMLEN=,
ZPDEPTR= token1 token2

This message shows the connection
ID subparameter, connection-name, of
the ENABLE(REMOTE(location or <luname>))
parameter from the REBIND PACKAGE
subcommand.

The first hexadecimal token is ZPARMLEN.

The second hexadecimal token is the pointer to the
PDE for ENABLE(REMOTE(location or <luname>)).

LEAVE DSNECP55 SIBRCODE= token1 CSECT DSNECP55 has completed processing.
Control will return to the calling CSECT, DSNECP45.

The first hexadecimal token is SIBRCODE, the
highest return code.

CSECT: DSNECP60
Message text Explanation

ENTER DSNECP60, CIBPTR=, ADDR(SIBDCL)=
token1 token2

This message announces entry into CSECT
DSNECP60, where a SQL declaration will be
written.

The first hexadecimal token is the address of the
CIB.

The second hexadecimal token is the address of
the DCLGEN area in the SIB.

WROTE "EXEC SQL DCL", SIBDOFF= token1
token2

This message indicates that CSECT DSNECP60
has begun writing the very first part of the SQL
declaration.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is not used.

WROTE FIRST LINE, SIBDOFF= token1 token2 The first line of SQL output has been written.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is not used.

BEGIN BIG LOOP, SIBDOFF=, ZCOL= token1
token2

Execution is now at the top of the main loop in this
CSECT.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZCOL, the column
number being processed.

430 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

BEFORE DSNECP67 sqlname SIBDOFF=, ZCOL=
token1 token2

CSECT DSNECP60 is about to write a field
specification. The name of the field is sqlname.

The first hexadecimal token is SIBDOFF, the
current offset into the output buffer.

The second hexadecimal token is ZCOL, the
number of the column being processed.

BEFORE LABEL sqlname
SQLNAMEL(ZCOL+SQLD)=, SQLD= token1 token2

DSNECP61 is about to write a label. The
label is sqlname (which can contain unprintable
characters).

The first hexadecimal token is the length of the
label.

The second hexadecimal token is the number of
columns in the table.

BEFORE FIELD SPECIFICATION, SIBDOFF=,
ZCOL= token1 token2

DCLGEN is about to write a field type specification.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZCOL, the column
number being processed.

WROTE NOT NULL, SIBDOFF=, ZCOL= token1
token2

The string 'NOT NULL' was just written to the output
buffer.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZCOL, the column
number being processed.

DID NOT WRITE NOT NULL, SIBDOFF=, ZCOL=
token1 token2

The string 'NOT NULL' was not written to the output
buffer.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZCOL, the column
number being processed.

LOOP BOTTOM, SIBDOFF=, ZCOL= token1 token2 CSECT DSNECP60 is now executing at the bottom
of its main loop.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZCOL, the column
number being processed.

Chapter 7. Trace messages and codes 431

Message text Explanation

LEAVE DSNECP60, SIBDFLAG=, SIBDOFF=
token1 token2

CSECT DSNECP60 has completed. Control will
return to the calling CSECT, DSNECP14.

The first hexadecimal token is SIBDFLAG, the
DCLGEN flag byte.

The second hexadecimal token is SIBDOFF, the
offset into the output buffer.

FOUND NON-VANILLA CHARACTER IN zbuf
token1 token2

CSECT DSNECP60 found a character that is not
an upper case alphanumeric as it scanned an
identifier. The identifier is zbuf.

The hexadecimal tokens are zero.

VANILLA IDENTIFIER: zbuf token1 token2 CSECT DSNECP60 found a character that is
an upper case alphanumeric as it scanned an
identifier. The identifier is zbuf.

The hexadecimal tokens are zero.

CSECT: DSNECP61
Message text Explanation

ENTER DSNECP61, CIBPTR=, ADDR(SIBDCL)=
token1 token2

This message announces entry into CSECT
DSNECP61, which writes a COBOL declaration.

The first hexadecimal token is the address of the
CIB.

The second hexadecimal token is the address of
the DCLGEN area in the SIB.

BEFORE WRITE LINE OF ASTERISKS, SIBDOFF=
token1 token2

This message indicates that CSECT DSNECP61 is
about to write a line of decorative asterisks.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is not used.

WROTE FIRST COMMENT, SIBDOFF= token1
token2

The first comment has been written.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is not used.

WROTE LEVEL 1 LINE, SIBDOFF= token1 token2 The first line of SQL output has been written.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is not used.

432 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

BEGIN BIG LOOP, SIBDOFF=, ZCOL= token1
token2

Execution is now at the top of the main loop in
CSECT DSNECP61.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZCOL, the
number of the column being processed.

BEFORE FIELD SPECIFICATION, SIBDOFF=,
ZCOL= token1 token2

CSECT DSNECP61 is about to write a field
specification.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZCOL, the
number of the column being processed.

BEFORE LABEL sqlname
SQLNAMEL(ZCOL+SQLD)=, SQLD= token1 token2

CSECT DSNECP61 is about to write a column label.

The first hexadecimal token is the length of the
label.

The second hexadecimal token is SQLD, the
number of the columns in the table be processed.

BEGIN LEVEL 3, SIBDOFF=, ZCOL= token1 token2 CSECT DSNECP61 is now beginning to write the
third level of the declaration.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZCOL, the
number of the column being processed.

AFTER LEVEL 3 COMMENT 1, SIBDOFF=, SQLD=
token1 token2

The first of the level-3 comments was just written
to the output buffer.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is SQLD, the
number of the columns in the table.

AFTER LEVEL 3 CODE 1, SIBDOFF=, ZCOL=
token1 token2

The first of the level 3 code was just written to the
output buffer.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZCOL, the
number of the column being processed.

AFTER LEVEL 3 COMMENT 2, SIBDOFF=, ZCOL=
token1 token2

The second of the level-3 comments was just
written to the output buffer.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZCOL, the
number of the column being processed.

Chapter 7. Trace messages and codes 433

Message text Explanation

AFTER LEVEL 3 COMMENT 2, LOOP BOTTOM
SIBDOFF= ,ZCOL= token1 token2

The second of the level-3 comments was just
written to the output buffer. Execution is at the
bottom of the main loop.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZCOL, the
number of the column being processed.

LEAVE DSNECP61, SIBDFLAG=, ZCOL= token1
token2

CSECT DSNECP61 has just completed. Control will
return to the calling CSECT, DSNECP14.

The first hexadecimal token is SIBDFLAG, the
DCLGEN flag area.

The second hexadecimal token is ZCOL, the
number of the column being processed.

ENTER GETNAME, SIBDOFF= token1 token2 The GETNAME procedure was just entered. This
procedure puts the field names into the output
buffer.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is not used.

LEAVE GETNAME, SIBDOFF= token1 token2 The GETNAME procedure was just exited. This
procedure put the field names into the output
buffer.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is not used.

ENTER COMMENT, SIBDOFF= token1 token2 Procedure COMMENT was just entered. This
procedure initializes ZBIGBUF and writes a
comment.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is not used.

LEAVE COMMENT, SIBDOFF= token1 token2 The COMMENT procedure was just exited. This
procedure put the comment characters into
ZBIGBUF and set the offset into that buffer.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is not used.

434 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

CSECT: DSNECP62
Message text Explanation

ENTER DSNECP62, CIBPTR=, ADDR(SIBDCL)=
token1 token2

This message announces entry into CSECT
DSNECP62, where a PLI declaration will be written.

The first hexadecimal token is the CIB address.

The second hexadecimal token is the address of
the DCLGEN area of the subcommand information
block (SIB) area.

WROTE FIRST COMMENT, SIBDOFF= token1
token2

This message indicates that the CSECT just wrote
the first comment from this CSECT.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is not used.

WROTE FIRST LINE, SIBDOFF= token1 token2 The first line of PLI output has been written.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is not used.

BIG LOOP TOP, SIBDOFF=, ZCOL= token1 token2 Execution is now at the top of the main loop in
CSECT DSNECP62.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZCOL, the column
number being processed.

BEFORE DSNECP67, SQLNAME(ZCOL):fieldname
SIBDOFF=, ZCOL= token1 token2

CSECT DSNECP62 is about to write a field name by
calling DSNECP67 with a request to put it into the
main output buffer.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZCOL, the column
number being processed.

BEFORE FIELD SPECIFICATION SIBDOFF=,
SIBDNAML= token1 token2

CSECT DSNECP62 is about to write a field type
specification.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is SIBDNAML, the
length of the column name being processed.

LABEL WAS YES ZLABCOL=, ZLABLEN= token1
token2

The user specified a LABEL parameter of YES.

The first hexadecimal token is ZCOL + SQLD, the
number of the SQLVAR element containing the
label information.

The second hexadecimal token is ZLABLEN, the
length of the label being processed.

Chapter 7. Trace messages and codes 435

Message text Explanation

BBUF zbigbuf ZCOL=token1 token2 The main output buffer, ZBIGBUF, is echoed in this
message.

The first hexadecimal token is ZCOL, the number of
the current column being processed.

The second hexadecimal token is not used.

LOOP BOTTOM, SIBDOFF=, ZCOL= token1 token2 The bottom of the main loop in CSECT DSNECP62
has just been reached.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZCOL, the column
number being processed.

END DSNECP62, SIBDFLAG=, ZCOL= token1
token2

CSECT DSNECP62 has just completed. Control will
return to the calling CSECT, DSNECP14.

The first hexadecimal token is SIBDFLAG, the
DCLGEN flag area.

The second hexadecimal token is ZCOL, the column
number being processed.

CSECT: DSNECP63
Message text Explanation

ENTER DSNECP63, CIBPTR=, ADDR(SIBDCL)=
token1 token2

This message announces entry into CSECT
DSNECP63, where a C declaration will be written.

The first hexadecimal token is the CIB address.

The second hexadecimal token is the address of
the DCLGEN area of the subcommand information
block (SIB) area.

BEFORE DSNECP67, ZBUF= zbuf SIBDOFF=,
ZCOL= token1 token2

CSECT DSNECP63 is about to write a field
specification. The name of the field is zbuf.

The first hexadecimal token is SIBDOFF, the
current offset into the output buffer.

The second hexadecimal token is ZCOL, the
number of the column being processed.

WROTE FIRST COMMENT, SIBDOFF= token1
token2

This message indicates that the CSECT just wrote
the first comment from this CSECT.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is not used.

436 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

WROTE FIRST LINE, SIBDOFF= token1 token2 The first line of C output has been written.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is not used.

BIG LOOP TOP, SIBDOFF=, ZCOL= token1 token2 Execution is now at the top of the main loop in
CSECT DSNECP63.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZCOL, the column
number being processed.

FOUND AN INTEGER, SQLNAME(ZCOL)=colname
SIBDOFF=, SIBDNAML= token1 token2

The table column with name colname has the
INTEGER data type.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is SIBDNAML, the
length of the column name.

FOUND A SMALL INTEGER,
SQLNAME(ZCOL)=colname SIBDOFF=,
SIBDNAML= token1 token2

The table column with name colname has the
SMALLINT data type.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is SIBDNAML, the
length of the column name.

FOUND A ROWID. SQLNAME(ZCOL)=colname
SIBDOFF=, SIBDNAML= token1 token2

The table column with name colname has the
ROWID data type.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is SIBDNAML, the
length of the column name.

FOUND A BLOB, CLOB, OR
DBCLOB, SQLNAME(ZCOL)=colname SIBDOFF=,
SIBDNAML= token1 token2

The table column with name colname has the
ROWID data type.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is SIBDNAML, the
length of the column name.

FOUND BLOB, CLOB, OR DBCLOB.
SQLNAME(ZCOL)=colname SIBDOFF=,
SIBDNAML= token1 token2

The table column with name colname has the
BLOB, CLOB, or DBCLOB data type.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is SIBDNAML, the
length of the column name.

Chapter 7. Trace messages and codes 437

Message text Explanation

FOUND CHAR,DATE,TIME, OR TS.
SQLNAME(ZCOL)=colname SIBDOFF=,
SIBDNAML= token1 token2

The table column with name colname has the
CHAR, DATE, TIME, or TIMESTAMP data type.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is SIBDNAML, the
length of the column name.

FOUND A VARCHAR, SQLNAME(ZCOL)=colname
SIBDOFF=, SIBDNAML= token1 token2

The table column with name colname has the
VARCHAR data type.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is SIBDNAML, the
length of the column name.

FOUND GRAPHIC. SQLNAME(ZCOL)=colname
SIBDOFF=, SIBDNAML= token1 token2

The table column with name colname has the
GRAPHIC data type.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is SIBDNAML, the
length of the column name.

FOUND A VARGRAPHIC,
SQLNAME(ZCOL)=colname SIBDOFF=,
SIBDNAML= token1 token2

The table column with name colname has the
VARGRAPHIC data type.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is SIBDNAML, the
length of the column name.

FOUND A FLOAT, SQLNAME(ZCOL)=colname
SIBDOFF=, SIBDNAML= token1 token2

The table column with name colname has the
FLOAT data type.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is SIBDNAML, the
length of the column name.

LOOP BOTTOM, SIBDOFF=, ZCOL= token1 token2 The bottom of the main loop in CSECT DSNECP63
has just been reached.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZCOL, the column
number being processed.

WROTE INDICATOR VAR ARRAY, SIBDOFF=,
token1

DCLGEN wrote an indicator variable array to the
output buffer.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

438 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

ENTER PROCEDURE LABELER.
FIELDNAME=colname SIBDOFF=, ZBEGCOM=
token1 token2

Entering the subroutine that is called if the
user specified LABEL(YES) on the DCLGEN
subcommand.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZBEGCOM, the
column in an output record where comments begin.

LABEL WAS YES ZLABCOL=, ZLABLEN= token1
token2

The user specified a LABEL parameter of YES.

The first hexadecimal token is ZCOL + SQLD, the
number of the SQLVAR element containing the
label information.

The second hexadecimal token is ZLABLEN, the
length of the label being processed.

BBUF zbigbuf ZCOL=token1 token2 The main output buffer, ZBIGBUF, is echoed in this
message.

The first hexadecimal token is ZCOL, the number of
the current column being processed.

The second hexadecimal token is not used.

LEAVE PROCEDURE LABELER.
FIELDNAME=colname SIBDOFF=, ZBEGCOM=
token1 token2

Leaving the subroutine that is called if the
user specified LABEL(YES) on the DCLGEN
subcommand.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZBEGCOM, the
column in an output record where comments begin.

ENTER PROCEDURE FIELDNAM.
FIELDNAME=colname SIBDOFF=, ZBEGCOM=
token1 token2

Entering the subroutine that generates a host
variable name that corresponds to colname.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZBEGCOM, the
column in an output record where comments begin.

LEAVE PROCEDURE FIELDNAM.
FIELDNAME=colname SIBDOFF=, ZBEGCOM=
token1 token2

Leaving the subroutine that generates a host
variable name that corresponds to colname.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZBEGCOM, the
column in an output record where comments begin.

Chapter 7. Trace messages and codes 439

Message text Explanation

ENTER PROCEDURE COMMENT.
FIELDNAME=colname SIBDOFF=, ZBEGCOM=
token1 token2

Entering the subroutine that writes a comment that
contains colname.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZBEGCOM, the
column in an output record where comments begin.

LEAVE PROCEDURE COMMENT.
FIELDNAME=colname SIBDOFF=, ZBEGCOM=
token1 token2

Leaving the subroutine that writes a comment that
contains colname. that corresponds to colname.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZBEGCOM, the
column in an output record where comments begin.

ENTER PROCEDURE CHKDB. Entering the subroutine that checks for DBCS
characters in a column name.

SI FOUND AT ZI= token1 The column name contains a DBCS shift-in
character at position ZI.

The first hexadecimal token, ZI, contains the
position in the column name of the shift-in
character.

LEAVE PROCEDURE CHKDB. Leaving the subroutine that checks for DBCS
characters in a column name.

END DSNECP63, SIBDFLAG=, ZCOL= token1
token2

CSECT DSNECP63 has just completed. Control will
return to the calling CSECT, DSNECP14.

The first hexadecimal token is SIBDFLAG, the
DCLGEN flag area.

The second hexadecimal token is ZCOL, the column
number being processed.

CSECT: DSNECP66
Message text Explanation

ENTER DSNECP66, CIBPTR=, ADDR(SIBDCL)=
token1 token2

This message announces entry into CSECT
DSNECP66, which assists CSECT DSNECP68 to
make the DCLGEN SQL call.

The first hexadecimal token is the CIB address.

The second hexadecimal token is the address of
the DCLGEN area in the SIB.

440 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

BEFORE FIRST GETMAIN, SIBDSQDS= token1
token2

This message indicates that CSECT DSNECP66 is
about to do the GETMAIN for SQL DSECT.

The first hexadecimal token is SIBDSQDS, the size
of the first getmained area.

The second hexadecimal token is not used.

GETMAIN SUCCESSFUL, R1= token1 token2 The GETMAIN for the area needed by the
precompiler was successful.

The first hexadecimal token is the address of the
getmained area.

The second hexadecimal token is not used.

AFTER PREPARE, SQLCODE= token1 token2 The PREPARE is complete.

The first hexadecimal token is SQLCODE.

The second hexadecimal token is not used.

BEFORE DESCRIBE1, SQLN=, SIBDSQLD= token1
token2

CSECT DSNECP66 is about to do its first DESCRIBE,
so it can determine how large to make the real
SQLDA for the second DESCRIBE.

The first hexadecimal token is SQLN, the estimated
number of columns.

The second hexadecimal token is the SQLDA
address.

BEFORE SQLDA GETMAIN, SIBDSQLS=, SQLD=
token1 token2

DCLGEN is about to getmain the area for the actual
SQLDA.

The first hexadecimal token is the size of the area
to getmain.

The second hexadecimal token is the actual
number of columns in the table.

REAL SQLDA SIBDSQLD=, SIBDSQLS= token1
token2

The area for the final SQLDA has been obtained.

The first hexadecimal token is SIBDSQLD, the
address of the SQLDA.

The second hexadecimal token is SIBDSQLS, the
size of the SQLDA.

AFTER GETMAIN, SIBDSQLD= token1 token2 The GETMAIN for the real SQLDA is complete.

The first hexadecimal token is SIBDSQLD, the
SQLDA address.

The second hexadecimal token is not used.

BEFORE DESCRIBE2 SIBDSQLD=, SQLN= token1
token2

The main DESCRIBE is about to happen.

The first hexadecimal token is the SQLDA address.

The second hexadecimal token is the estimated
number of columns.

Chapter 7. Trace messages and codes 441

Message text Explanation

AFTER DESCRIBE2, SQLD=, SQLCODE= token1
token2

The final DESCRIBE is complete.

The first hexadecimal token is the number of
columns in the table.

The second hexadecimal token is SQLCODE, the
return code from the DESCRIBE.

BEFORE FREEMAIN SIBDSECT=, SIBDSQDS=
token1 token2

The SQLDSECT area is about to be freemained.

The first hexadecimal token is the address of the
area to free.

The second hexadecimal token is the size of the
area to free.

LEAVE DSNECP66, SIBDFLAG=, SQLD= token1
token2

CSECT DSNECP66 has completed. Control will
return to the calling CSECT, DSNECP14. DCLGEN
SQL calls are now complete.

The first hexadecimal token is the DCLGEN flag
area.

The second hexadecimal token is the actual
number of columns in the table.

ENTER ZCLEANER, ZPLACE=, ZSIZE= token1
token2

CSECT DSNECP66 is about to zero a getmained
area.

The first hexadecimal token is the address to clear.

The second hexadecimal token is the size of the
area.

CLEAR LOOPTOP, ZPLACE=, ZSIZE= token1
token2

The ZCLEANER procedure is at the top of its
clearing loop. It is about to clear 255 bytes.

The first hexadecimal token is the address of the
area that is currently being cleared.

The second hexadecimal token is the size of the
remaining area to clear.

LEAVE ZCLEANER, ZPLACE=, ZSIZE= token1
token2

The ZCLEANER procedure is complete. The
getmained area is zeroed.

The first hexadecimal token is meaningless.

The second hexadecimal token should be zero or
negative.

ENTER CHEKCODE, SQLCODE= token1 token2 CSECT DSNECP66 is about to translate a non-zero
SQLCODE into an error message.

The first hexadecimal token is SQLCODE.

442 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

BEFORE CALLING DSNTIAR,
ADDR(ZMSGBUF),SIBDSQLC token1 token2

DSNTIAR is the routine that translates SQLCODEs
into error messages.

The first hexadecimal token is the address of the
message buffer.

The second hexadecimal token is the address of
the SQLCA.

AFTER CALLING DSNTIAR, ADDR(ZMSGBUF)=,
ZR15= token1 token2

Control has returned from DSNTIAR.

The first hexadecimal token is the address of the
buffer from DSNTIAR.

The second hexadecimal token is ZR15, the return
code from DSNTIAR.

LEAVE CHEKCODE, SQLCODE= token1 token2 The CHEKCODE procedure is complete. The
SQLCODE has been evaluated and any necessary
error messages have been issued.

The first hexadecimal token is the SQLCODE.

The second hexadecimal token is not used.

CSECT: DSNECP67
Message text Explanation

ENTER DSNECP67, ZACTION="xxx", SIBDOFF=,
ZHEXNUM= token1 token2

This message announces entry into CSECT
DSNECP67, where various DCLGEN utility functions
are performed. xxx is a code indicating which
function is to be performed.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is ZHEXNUM, a
number to be translated to EBCDIC.

ZEBCDIC=ebcdic , ZCVESIG= token1 token2 The variable 'ebcdic' is the converted number.

The first hexadecimal token is used for the EDMK
instruction.

ZERO ENTERED, ZCVESIG= token1 token2 The number to be converted was a zero.

The first hexadecimal token is used by the EDMK
instruction.

The second hexadecimal token is zero.

NON-ZERO ENTERED, OLD SIBDOFF= token1
token2

The number to be converted was not a zero.

The first hexadecimal token is SIBDOFF, the non-
updated offset into the output buffer.

The second hexadecimal token is not used.

Chapter 7. Trace messages and codes 443

Message text Explanation

ZBIGBUF: zbigbuf SIBDOFF= token1 token2 This is the current contents of the main output
buffer. This buffer can appear truncated because
of length restrictions on trace message tokens.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is zero.

PUT: SIBDOFF=, SIBDCBA= token1 token2 CSECT DSNECP67 is about to PUT ZBIGBUF to the
output data set.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is the DCB address,
SIBDCBA.

LEAVE WRITEBUF, SIBDOFF= token1 token2 CSECT DSNECP67 just wrote a line to the output
data set.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is not used.

ZBIGBUF: zbigbuf SIBDOFF=token1 token2 The variable 'zbigbuf' is the new ZBIGBUF.

The first hexadecimal token is SIBDOFF, the offset
into the output buffer.

The second hexadecimal token is not used.

LEAVE DSNECP67, SIBDFLAG=, SIBDOFF=
token1 token2

CSECT DSNECP67 has just completed processing.
Control will return to the calling CSECT.

The first hexadecimal token is the DCLGEN flag
area.

The second hexadecimal token is SIBDOFF, the
offset into the output buffer.

CSECT: DSNECP68
Message text Explanation

ENTER DSNECP68, CIBPTR=, ADDR(SIBDCL)=
token1 token2

This message announces entry into CSECT
DSNECP68, where the DCLGEN SQL calls will be
made.

The first hexadecimal token is the CIB address.

The second hexadecimal token is the address of
the DCLGEN area of the SIB.

444 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

AFTER WHENEVER SQL ERROR, SIBDWHAT=
token1 token2

This message indicates that the WHENEVER SQL
ERROR statement was just issued.

The first hexadecimal token is SIBDWHAT, the code
for what to do next.

The second hexadecimal token is zero.

R2(SIBDSQLC)=, R3(SIBDSQLD)= token1 token2 The code is now setting up base registers.

The first hexadecimal token is the SQLCA address.

The second hexadecimal token is the SQLDA
address.

R4(SIBDSECT)= token1 token2 This message displays the address of the
precompiler's SQLDSECT area.

The first hexadecimal token is the address of the
precompiler's SQLDSECT area.

The second hexadecimal token is not used.

BEFORE GET SIBDSQDS(LEN OF SQLDSECT)
token1 token2

Execution is just before the GETMAIN (which
occurs in DSNECP66) for the precompiler area.

The hexadecimal tokens are not used.

AFTER GET SIBDSQDS, SIZE= token1 token2 The previous GETMAIN just completed.

The first hexadecimal token is the size of the area
getmained.

The second hexadecimal token is not used.

zsqlstmt token1 token2 This is the SQL statement, including the substituted
table name, that is about to be prepared.

The hexadecimal tokens are not used.

AFTER PREPARE token1 token2 The PREPARE has completed.

The hexadecimal tokens are not used.

BEFORE DESCRIBE, R3= token1 token2 A DESCRIBE is about to be issued.

The first hexadecimal token is register 3, the
SQLDA address.

The second hexadecimal token is not used.

AFTER DESCRIBE token1 token2 A DESCRIBE has completed.

The hexadecimal tokens are not used.

Chapter 7. Trace messages and codes 445

CSECT: DSNECP69
Message text Explanation

ENTER DSNECP69, ADDR(SIBDCL)= token1
token2

This message announces entry into CSECT
DSNECP69, which performs dynamic allocation
services for DCLGEN.

The first hexadecimal token is the address of the
DCLGEN area in the SIB.

The second hexadecimal token is not used.

SIBRCODE=, SIBDFLAG= token1 token2 The contents of the named variables are displayed
by this message.

The first hexadecimal token is the DCLGEN return
code so far.

The second hexadecimal token is the DCLGEN flag
area.

END INIT, ADDR(ZOHDAIR)=, ADDR(ZS99RB)=
token1 token2

Initialization has completed.

The first hexadecimal token is the address of
ZOHDAIR.

The second hexadecimal token is the address of
ZS99RB.

DALLOC CALLED, R14=, SIBDFLAG= token1
token2

CSECT DSNECP69 has started to deallocate the
output data set.

The first hexadecimal token is register 14.

The second hexadecimal token is SIBDFLAG, the
DCLGEN flag area.

DALLOC TU, ZTUNDX=, ZPTR=, DSNAME token1
token2

The deallocation text unit has been built.

The first hexadecimal token is ZTUNDX, the index
into the text unit list.

The second hexadecimal token is ZPTR, the pointer
to the current TU.

S99TUPAR(1:S99TULNG) token1 token2 This message prints the dsname being processed.

The hexadecimal tokens are not used.

AFTER DYNALLOC, S99RSC=, R15= token1
token2

This message appears just after the DYNALLOC
SVC.

The first hexadecimal token is S99RSC, the reason
code from dynamic deallocation.

The second hexadecimal token is register 15, the
return code from dynamic deallocation.

446 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

DALLOC ENDED, SIBDFLAG=, token1 token2 The deallocation portion of CSECT DSNECP69 has
completed.

The first hexadecimal token is the DCLGEN flag
area.

The second hexadecimal token is zero.

EXIT DSNECP69, SIBRCODE=, SIBDFLAG=
token1 token2

CSECT DSNECP69 is about to return to caller.

The first hexadecimal token is the DCLGEN return
code, so far.

The second hexadecimal token is the DCLGEN flag
area.

BEFORE CALL TO DAIRFAIL, R15=, S99RSC=
token1 token2

DAIRFAIL is about to be invoked.

The first hexadecimal token is ZR15.

The second hexadecimal token is S99RSC.

AFTER DAIRFAIL, R15=, R1= token1 token2 This message appears after the DAIRFAIL call.

The first hexadecimal token is register 15, the
return code from the DAIRFAIL call.

The second hexadecimal token is register 1, the
address of DFPARMS.

ZOPEN CALLED, R14=, SIBDCBA= token1 token2 The OPEN subroutine has been called.

The first hexadecimal token is register 14.

The second hexadecimal token is SIBDCBA.

SIBRCODE=, SIBDFLAG= token1 token2 Processing continues in the OPEN routine.

The first hexadecimal token is SIBRCODE.

The second hexadecimal token is the DCLGEN flag
area.

LEAVE ZOPEN, SIBRCODE=, SIBDFLAG= token1
token2

The OPEN function has completed.

The first hexadecimal token is SIBRCODE, the
DCLGEN return code so far.

The second hexadecimal token is the DCLGEN flag
area.

ZCLOSE CALLED, R14=, SIBDFLAG= token1
token2

The CLOSE subroutine has been called.

The first hexadecimal token is register 14.

The second hexadecimal token is the DCLGEN flag
area.

Chapter 7. Trace messages and codes 447

Message text Explanation

LEAVE ZCLOSE, SIBDCBA=, SIBDFLAG= token1
token2

The CLOSE function has completed.

The first hexadecimal token is SIBDCBA, the DCB
address.

The second hexadecimal token is the DCLGEN flag
area.

ZALLOC CALLED, R14=, ZUSEMBR= token1
token2

The dynamic allocation subroutine has been called.

The first hexadecimal token is register 14.

The second hexadecimal token is ZUSEMBR.

1ST TU, ZTUNDX=, ZPTR=, DSNAME= token1
token2

The dsname text unit has been built.

The first hexadecimal token is ZTUNDX, an index
into the text unit list.

The second hexadecimal token is ZPTR, the
address of the current TU.

dsname token1 token2 This message prints the data set name.

The hexadecimal tokens are not used.

2ND TU, ZTUNDX=, ZPTR= token1 token2 The return DDNAME text unit has been built.

The first hexadecimal token is ZTUNDX, an index
into the text unit list.

The second hexadecimal token is ZPTR, the
address of the current TU.

3RD TU, ZTUNDX=, ZPTR= token1 token2 The return DSORG text unit has been built.

The first hexadecimal token is ZTUNDX, an index
into the text unit list.

The second hexadecimal token is ZPTR, the
address of the current TU.

4TH TU, ZTUNDX=, ZPTR= token1 token2 The data set status text unit has been built.

The first hexadecimal token is ZTUNDX, an index
into the text unit list.

The second hexadecimal token is ZPTR, the
address of the current TU.

5TH TU, ZTUNDX=, ZPTR= token1 token2 The normal disposition text unit has been built.

The first hexadecimal token is ZTUNDX, an index
into the text unit list.

The second hexadecimal token is ZPTR, the
address of the current TU.

448 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

6TH TU, ZTUNDX=, ZPTR= token1 token2 The conditional disposition text unit has been built.

The first hexadecimal token is ZTUNDX, an index
into the text unit list.

The second hexadecimal token is ZPTR, the
address of the current TU.

MBR TU, ZTUNDX=, ZPTR= token1 token2 The member text unit has been built.

The first hexadecimal token is ZTUNDX, an index
into the text unit list.

The second hexadecimal token is ZPTR, the
address of the current TU.

PSWD TU, ZTUNDX=, ZPTR= token1 token2 The password text unit has been built.

The first hexadecimal token is ZTUNDX, an index
into the text unit list.

The second hexadecimal token is ZPTR, the
address of the current TU.

BEFORE DYNALLOC, S99RBPTR=, ZPTR= token1
token2

CSECT DSNECP69 is about to issue the DYNALLOC
SVC.

The first hexadecimal token is S99RBPTR.

The second hexadecimal token is ZPTR.

AFTER DYNALLOC, S99RSC=, R15= token1
token2

This message appears after the DYNALLOC SVC.

The first hexadecimal token is S99RSC, the reason
code.

The second hexadecimal token is register 15, the
return code.

LEAVE ZALLOC, SIBDFLAG= token1 token2 The dynamic allocation subroutine has completed.

The first hexadecimal token is the DCLGEN flag
area.

The second hexadecimal token is zero.

CSECT: DSNETRAP
Message text Explanation

BEFORE SQL CALL==============FRB,R1==
token1 token2

Control is about to pass from the TSO attach
package to Db2 to process a SQL call.

The first hexadecimal token is the FRB address.

The second hexadecimal token is register 1.

Chapter 7. Trace messages and codes 449

Message text Explanation

AFTER SQL CALL==============RC1,FBACK==
token1 token2

Control has just returned to the TSO attach facility
after Db2 processed a SQL call.

The first hexadecimal token is FRBRC1.

The second hexadecimal token is FRBFBACK.

Call attachment facility trace messages
An application programmer that uses the call attachment facility (CAF) to write an application that
attaches to Db2 can choose whether the messages are displayed or not. They display if the DSNTRACE
ddname is allocated during CAF execution.

The following table describes the following information:

• Message number
• Name of the CSECT that caused the message to be written.
• TCB address of the task currently running.
• A series of tokens and token-explanations unique to each message.

Message number Message text Explanation

DSNA800I DSNACA00 TCB=address ENTERED DSNACA00
ACTION=action R1=address CABPTR=address
CABFLAG1=flag1 CABFLAG2=flag2

The call attachment facility
received a call attachment
facility request to perform
the 'action' function. The
parameter list begins at location
'address'. CABPTR specifies the
location of the call attachment
facility control block (the CAB).
CABFLAG1 and CABFLAG2 are
the current flag bytes.

This message is issued by the
following module: DSNACA00

DSNA801I DSNACA00 TCB=address LEAVE
DSNACA00 CABFLAG1=flag1 CABFLAG2=flag2
CABPTR=address

The call attachment facility
issues this message following
completion of a call attachment
facility request. CABFLAG1 and
CABFLAG2 are the flag bytes and
CABPTR specifies the location
of the call attachment facility
control block.

This message is issued by the
following module: DSNACA00

450 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message number Message text Explanation

DSNA805I DSNACA00 TCB=address CONNECT REQUEST
SSID=ssid SECBP=ecb address TECBP=ecb
address RIBW=address

The call attachment facility
received a CONNECT request
with the specified parameter
values. SSID is the subsystem
identifier, SECBP is the Db2 start-
up ECB address, TECBP is the
Db2 termination ECB address,
and RIBW is the address of
the fullword that will be set
to contain the address of the
release information block (RIB)
after the CONNECT completes.

This message is issued by the
following module: DSNACA00

DSNA806I DSNACA00 TCB=address DISCONNECT
REQUEST

The call attachment facility
received a DISCONNECT request
for the specified TCB.

This message is issued by the
following module: DSNACA00

DSNA807I DSNACA00 TCB=address OPEN REQUEST
SSID=ssid PLAN=plan name

The call attachment facility
received an OPEN request with
the specified SSID and PLAN
values.

This message is issued by the
following module: DSNACA00

DSNA808I DSNACA00 TCB=address CLOSE REQUEST
TRMOP=terminate option

The call attachment facility
received a CLOSE request with
the specified termination option.

This message is issued by the
following module: DSNACA00

DSNA810I DSNACA00 TCB=address BEFORE function
====================

The call attachment facility
issues this message before a
'function' request to Db2. This is
the last call attachment facility
action performed before passing
control to Db2 for processing. If
this is the last call attachment
facility message before an abend,
then the abend very probably
occurred in the Db2 code proper,
rather than in the call attachment
facility code.

This message is issued by the
following module: DSNACA00,
DSNACA70

Chapter 7. Trace messages and codes 451

Message number Message text Explanation

DSNA811I DSNACA00 TCB=address AFTER function
====================

The call attachment facility
issues this message when Db2
returns control after a 'function'
request.

This message is issued by the
following modules: DSNACA00,
DSNACA70

DSNA813I csectname TCB=address FRBP=address
RAL=data RALE=data FVLE=data PARM=data
PCNT=data

This message, along with
message DSNA814I, displays the
contents of the FRB control block
before or after a call to Db2.

This message is issued by the
following modules: DSNACA00,
DSNACA70

DSNA814I csectname TCB=address RC1=retcode
RC2=reascode FBACK=feedback RHPC=data
QUAL=data RSV1=data

This message, along with
message DSNA813I, displays the
contents of the FRB control block
before or after a call to Db2.

This message is issued by the
following modules: DSNACA00,
DSNACA70

DSNA815I DSNACA70 TCB=address FDBKEIB=EIB-
address SSID=ssid GATT=group-attach-name
GRPN=group-name MBRN=member-name
SGATT=subgroup-name

This message displays the
address and contents of the
environment information control
block (EIB). Db2 generates this
message when the EIB address is
not 0.

DSNA821I DSNACA00 TCB=address IMPLICIT
CONNECTION REQUEST

The call attachment facility
received an SQL request before
establishing the Db2 connection.
This results in an implicit
connection to Db2 using defaults
for the application plan name
and, if no CONNECT was issued,
the Db2 subsystem identifier.

This message is issued by the
following module: DSNACA00

DSNA822I DSNACA00 TCB=address TRANSLATE
REQUEST SQLCA=address CABFRC1=retcode
CABFRC2=reascode FRBRHPC=frbrhpc

The call attachment facility
received a TRANSLATE request.
This message identifies the
location of the SQLCA whose
SQLCODE field will be set and
the return codes that will be
translated. The translate will not
be performed if FRBRHPC is zero.

452 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message number Message text Explanation

DSNA824I DSNACA00 TCB=address CAF READY FOR NEW
CONNECTION SERVICE REQUESTS

This message indicates that the
previous Db2 connection has
been terminated, certain clean-
up processing has occurred, and
that the call attachment facility is
now ready to process additional
connection requests.

This message is issued by the
following module: DSNACA70. It
is accompanied by return code 4
in register 15 and code reason
code 00C10824 in register 0.

DSNA825I DSNACA70 TCB=address CABSSID=ssid
CABREL=release CABDECPP=address
EIBPARM=EIB-address

This message lists the current
values in DSNHDECP, which
is link edited with the call
attachment facility main load
module, DSNACAF. These values
are used as defaults on implicit
connection requests.

DSNA826I DSNACA00 TCB=address BEFORE VALIDITY
CHECKING THE type ECB AT ADDRESS location

This trace message indicates that
a check of the 'type' ECB (either
start-up or shutdown), is about
to be done to determine if the
address identified by 'location'
is addressable. If an 0C4 abend
occurs immediately following
this message, then an invalid
ECB address was passed on a
CONNECT request.

DSNA827I DSNACA00 TCB=address AFTER VALIDITY
CHECKING THE ECB WHICH CONTAINS 'data'

This trace message indicates that
the identified ECB is addressable
and contains the specified
data value. Appearance of this
message is not a guarantee that
the ECB address that was passed
is valid; it has only passed
preliminary tests. Deleting this
ECB without Db2 knowing makes
the ECB invalid.

This message is issued by the
following module: DSNACA00

Chapter 7. Trace messages and codes 453

Message number Message text Explanation

DSNA828I DSNACA00 TCB=address RIB ADDRESS=ribaddr
RIBPTR ADDR=ribptr

This trace message lists the
address of the Db2 release
information block (ribaddr) and
the address of the fullword
that points to the RIB (ribptr)
after connection attempts that
were made to a Db2 subsystem
identifier that existed.

This message is issued by the
following module: DSNACA70

DSNA829I DSNACA00 TCB=address R1(FRB)=frbaddr
SQLDSECT(FRBPARM)=dsectaddr RDI=rdiaddr
SQLCA=sqlcaaddr CABFLAG2=flag2

This trace message lists the
addresses of the FRB, the
SQLDSECT, the RDI and the
SQLCA. The CABFLAG2 flag
byte is useful for learning
the AMODE of DSNACA00's
caller, the Language Interface
(DSNALI).

This message is issued by the
following module: DSNACA00

DSNA830I DSNACA00 TCB=address SQLCODE=sqlcode
CABFLAG1=flag1 CABFLAG2=flag2

This trace message lists the
SQLCODE and the two call
attachment flag bytes.

This message is issued by the
following module: DSNACA00

454 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message number Message text Explanation

DSNA831I DSNACA70 RELEASE LEVELS NOT COMPATIBLE.
CAF=release_level, DB2=release_level

The call attachment facility (CAF)
has detected a release level
incompatibility between Db2 and
itself. The current release levels
of CAF code and the Db2
subsystem load modules are
indicated as a string of three
numeric characters, one for each
of the following items:

• Version
• Release
• Modification level

The connection to the Db2
subsystem is not successful.
A return code of 8, and
a reason code of 00C10831
are returned to the caller's
application program.

If you used JCL or a TSO logon
procedure to invoke CAF, check
that the correct Db2 libraries
are defined in your JOBLIB and
STEPLIB allocations. See your
system programmer if you invoke
CAF by using procedures that
are supplied by your system
programmer.

If you are unable to determine
the problem, you can trace
CAF execution by defining a
DSNTRACE DD data set.

Ensure that coexistence is
supported on both release levels
(CAF and Db2). If coexistence
is supported, ensure that the
lower-level release has the
correct SPE level code support
that is required to coexist with
the current higher level release.

SPUFI trace messages
The SPUFI trace messages, issued by the TSO attachment facility, have unique message numbers.

The following SPUFI trace messages are listed in message number order.

Chapter 7. Trace messages and codes 455

Message text Explanation

DSNESM85 MODULE LIST INCOMPLETE. module
address NOT DEFINED

An internal Db2 error occurred. The tracing
subsystem is disabled.

This message is issued by the following CSECT:
DSNESM85

csectname ENTERED The CSECT specified in the message was entered.

This message is issued by the following CSECTs:
DSNESM21, DSNESM30, DSNESM32, DSNESM81

csectname EXITED Control left the CSECT that is named in the
message. This CSECT is about to return control to
the CSECT that called it.

This message is issued by the following CSECTs:
DSNESM21, DSNESM30, DSNESM32, DSNESM81

csectname STARTING INITIALIZATION The CSECT named in the message is starting its
initialization processing. Events such as GETMAINs
and variable initialization will be taking place.

This message is issued by the following CSECT:
DSNESM32

csectname STARTING WRAPUP The CSECT specified in the message is starting its
cleanup processing. Events such as FREEMAINs
will be taking place.

This message is issued by the following CSECT:
DSNESM32

csectname BEFORE GETMAIN The CSECT specified in the message is about to
perform a GETMAIN of the area that holds the
YCOLWID array.

This message is issued by the following CSECTs:
DSNESM32, DSNESM21

csectname AFTER GETMAIN The CSECT specified in the message has completed
a GETMAIN of the area that holds the YCOLWID
array.

This message is issued by the following CSECTs:
DSNESM32, DSNESM21

csectname BEFORE MAIN LOOP The CSECT specified in the message is about to
begin running the CSECT's main loop.

This message is issued by the following CSECTs:
DSNESM30, DSNESM32, DSNESM81

csectname LOOPTOP This message is issued after the main loop in the
referred to CSECT specified in the message begins
running.

This message is issued by the following CSECTs:
DSNESM21, DSNESM30, DSNESM32, DSNESM81

456 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

csectname TYPE IS INTEGER The CSECT specified in the message has detected a
data type of integer.

This message is issued by the following CSECT:
DSNESM32

csectname TYPE IS SMALL INTEGER The CSECT specified in the message has detected a
data type of small integer.

This message is issued by the following CSECT:
DSNESM32

csectname TYPE IS DECIMAL The CSECT specified in the message has detected a
data type of decimal.

This message is issued by the following CSECTs:
DSNESM30, DSNESM32

csectname TYPE IS FLOAT The CSECT specified in the message has detected a
data type of float.

This message is issued by the following CSECTs:
DSNESM30, DSNESM32

csectname TYPE IS CHARACTER The CSECT specified in the message has detected a
data type of character.

This message is issued by the following CSECTs:
DSNESM30, DSNESM32

csectname TYPE IS VARCHAR The CSECT specified in the message has detected a
data type of VARCHAR.

This message is issued by the following CSECT:
DSNESM32

csectname TYPE IS LONG VARCHAR The CSECT specified in the message has detected a
data type of LONG VARCHAR.

This message is issued by the following CSECT:
DSNESM32

csectname CHECKING FOR COLUMN HEADER
TRUNCATION

The CSECT specified in the message has started
the section of code that checks for column headers
that will not fit in the space allowed for the column
(as specified on SPUFI panel 2).

This message is issued by the following CSECT:
DSNESM32

csectname COLUMN HEADER TRUNCATION
OCCURRED

The CSECT specified in the message has
discovered a column header that will not fit into
the space allotted for it on panel 2. This will cause
a message to be written to the output data set.

This message is issued by the following CSECT:
DSNESM32

Chapter 7. Trace messages and codes 457

Message text Explanation

csectname BEFORE WRITING GUTTER
CHARACTER

The CSECT specified in the message is about to
write the string of characters that appears between
columns of data in SPUFI output.

This message is issued by the following CSECT:
DSNESM32

csectname FOUND A QUOTE The CSECT specified in the message is scanning
the SQL statement in the input data set and has
just encountered a quotation ("). This quotation
indicates the beginning or end of a quoted string.

This message is issued by the following CSECT:
DSNESM21

csectname FOUND A DBCS SO The CSECT specified in the message is scanning
the SQL statement in the input data set and
has just encountered a shift out (SO) character.
This indicates the beginning of a DBCS string or
substring.

This message is issued by the following CSECT:
DSNESM21

csectname FOUND A DBCS SI The CSECT specified in the message is scanning
the SQL statement in the input data set and has
just encountered a shift in (SI) character. This
indicates the end of a DBCS string or substring.

This message is issued by the following CSECT:
DSNESM21

csectname NOT END OF FILE YET The CSECT specified in the message has not yet
discovered an end-of-file condition. It will continue
to look for SQL input.

This message is issued by the following CSECT:
DSNESM21

csectname BEGINNING FIRST TIME
PROCESSING

The CSECT specified in the message is now starting
its initialization section. This section performs a
GETMAIN and does variable initialization.

This message is issued by the following CSECT:
DSNESM21

csectname COMPLETING FIRST TIME
PROCESSING

The CSECT specified in the message has finished
its initialization processing.

This message is issued by the following CSECT:
DSNESM21

458 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

csectname ECHOED A RECORD TO OUTPUT DATA
SET

The CSECT specified in the message has written
a line of SQL from the input data set to the
output data set. The SQL statement is echoed for
documentation purposes.

This message is issued by the following CSECT:
DSNESM21

csectname FOUND AN APOSTROPHE The CSECT specified in the message is scanning
the SQL statement in the input data set and has
just encountered an apostrophe. This indicates the
beginning or end of a quoted string.

This message is issued by the following CSECT:
DSNESM21

csectname FOUND A SEMICOLON The CSECT specified in the message was scanning
the SQL input from the SPUFI input data set and
found a semicolon. This indicates the end of an SQL
statement.

This message is issued by the following CSECT:
DSNESM21

csectname BEFORE MOVING SQL TO IBUF The CSECT specified in the message is about to
move part of an SQL statement (from the SPUFI
input data set) into the statement buffer (IBUF).

This message is issued by the following CSECT:
DSNESM21

csectname AFTER MOVING SQL TO IBUF The CSECT specified in the message has moved
part of an SQL statement (from the SPUFI input
data set) into the statement buffer (IBUF).

This message is issued by the following CSECT:
DSNESM21

csectname NULL DATA FOUND The CSECT specified in the message has
discovered a null data item. Null strings are about
to be written to the SPUFI output data set.

This message is issued by the following CSECT:
DSNESM30

csectname TYPE IS INTEGER OR SMALL
INTEGER

The CSECT specified in the message has
discovered a data item of type integer or small
integer.

This message is issued by the following CSECT:
DSNESM30

Chapter 7. Trace messages and codes 459

Message text Explanation

csectname BEFORE CONVERSION The CSECT specified in the message is about
to perform a data conversion of either decimal,
integer, or small integer to EBCDIC. This is so the
data can be written to the output data set.

This message is issued by the following CSECT:
DSNESM30

csectname AFTER CONVERSION The named CSECT just performed a data
conversion of either decimal, integer, or small
integer to EBCDIC. This is so the data can be
written to the output data set.

This message is issued by the following CSECT:
DSNESM30

csectname TRUNCATION OCCURRED The CSECT specified in the message has
discovered a data item that will not fit in the
space allotted for it on the second SPUFI panel.
A message will be written to the output data set
to indicate that this has happened. Character-type
data will be truncated and the remainder will be
written. Numeric data will not be written; rather, it
will show as all asterisks.

This message is issued by the following CSECT:
DSNESM30

csectname NO TRUNCATION OCCURRED The CSECT specified in the message has
discovered a data item that fits in the space
allotted for it on the second SPUFI panel. No
truncation has occurred.

This message is issued by the following CSECT:
DSNESM30

csectname BEFORE CALLING DSNESM34 The CSECT specified in the message is about to
call CSECT DSNESM34 to convert a floating-point
number to EBCDIC.

This message is issued by the following CSECT:
DSNESM30

csectname AFTER CALLING DSNESM34 The CSECT specified in the message has called
CSECT DSNESM34 to convert a floating-point
number to EBCDIC.

This message is issued by the following CSECT:
DSNESM30

csectname TYPE IS CHAR, VARCHAR, OR
LVARCHAR

The CSECT specified in the message has detected
a data item of type character, VARCHAR, or LONG
VARCHAR.

This message is issued by the following CSECT:
DSNESM30

460 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

csectname LEAVE YSTUFBUF WITH RBUFU NOW
= offset

The CSECT specified in the message has inserted
a string of characters into the row buffer so that
it can be written to the output data set. The next
available free position in the output buffer (RBUF)
is now offset.

This message is issued by the following CSECT:
DSNESM30

csectname TYPE IS GRAPHIC The CSECT specified in the message has detected a
data type of GRAPHIC.

This message is issued by the following CSECT:
DSNESM32

csectname TYPE IS VARGRAPHIC OR LONG
VARGRAPHIC

The CSECT specified in the message has detected a
data type of VARGRAPHIC or LONG VARGRAPHIC.

This message is issued by the following CSECT:
DSNESM32

csectnamecsectname - START COLUMN LOOP
WITH SQLD = colcount

The program is about to enter a loop that will cycle
once for each column looking for truncated data or
column names.

This message is issued by the following CSECT:
DSNESM40

csectname - BEGIN YBLDL SUBROUTINE CSECT DSNESM55 has entered the YBLDL internal
subroutine.

This message is issued by the following CSECT:
DSNESM55

csectname - END YBLDL SUBROUTINE - OPEN
oresult; BLDL bresult

The BLDL has just been completed with an open
return code of "oresult " and a BLDL return code of
"bresult."

This message is issued by the following CSECT:
DSNESM55

modid - END EXECUTION returncode The CSECT csectname has returned to the caller.
The "returncode " in the message is its return code.

This message is issued by the following CSECTs:
DSNESM20, DSNESM22

csectname - EXTRACTED DAIRFAIL TEXT
DISPLAYED dftext2

This message will accompany message DSNE582.
The "dftext2" in the message is the second-level
error explanation from DAIRFAIL.

DSNESM55 - BEFORE CLOSE OF DATA SET DSNESM55 is about to close a data set.

This message is issued by the following CSECT:
DSNESM55

Chapter 7. Trace messages and codes 461

Message text Explanation

DSNESM55 - AFTER CLOSE OF DATA SET DSNESM55 has closed a data set.

This message is issued by the following CSECT:
DSNESM55

DSNESM55 - END OF MODULE EXECUTION -
RCODE = returncode

DSNESM55 has terminated.

This message is issued by the following CSECT:
DSNESM55 The "returncode " in the message is its
return code.

DSNESM55 - END OPEN SUBROUTINE DSNESM55 has completed the internal OPEN
subroutine.

This message is issued by the following CSECT:
DSNESM55

DSNESM55 - BEGIN OPEN SUBROUTINE The CSECT DSNESM55 is attempting to OPEN a
data set.

This message is issued by the following CSECT:
DSNESM55

DSNESM55 - END DEALLOCATION SUBROUTINE The deallocation subroutine of CSECT DSNESM55
has completed.

This message is issued by the following CSECT:
DSNESM55

DSNESM55 - AFTER DYNALLOC DEALLOCATION
REQUEST

The CSECT DSNESM55 has issued a DYNALLOC
request to deallocate a data set.

This message is issued by the following CSECT:
DSNESM55

DSNESM55 - BEFORE DYNALLOC DEALLOCATION
REQUEST

The CSECT DSNESM55 is about to request
deallocation of a data set.

This message is issued by the following CSECT:
DSNESM55

DSNESM55 - BEFORE DEALLOCATION
SUBROUTINE

The CSECT DSNESM55's deallocation subroutine
has been entered.

This message is issued by the following CSECT:
DSNESM55

DSNESM55 - END OF ALLOCATION SUBROUTINE The CSECT DSNESM55's deallocation subroutine
has completed.

This message is issued by the following CSECT:
DSNESM55

DSNESM55 - AFTER DYNALLOC ALLOCATION
REQUEST

The CSECT DSNESM55 has issued a DYNALLOC
request.

This message is issued by the following CSECT:
DSNESM55

462 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Message text Explanation

DSNESM55 - BEFORE DYNALLOC ALLOCATION
REQUEST

The CSECT DSNESM55 is about to issue a
DYNALLOC request.

This message is issued by the following CSECT:
DSNESM55

DSNESM55 - BEFORE ALLOCATION SUBROUTINE The CSECT DSNESM55's allocation subroutine has
been entered.

This message is issued by the following CSECT:
DSNESM55

DSNESM55 - AFTER INITIALIZATION Initialization for the current call to CSECT
DSNESM55 has completed.

This message is issued by the following CSECT:
DSNESM55

modid - BEGIN EXECUTION The CSECT "csectname" has been entered.

This message is issued by the following CSECTs:
DSNESM20, DSNESM22

CALL PRH. RALE=rale#, FVLE=fvle#,
QUAL=qualifier

CSECT DSNESM70 is about to transfer program
control to DSNAPRH, the application program
request handler, for connection to Db2. The RALE,
FVLE, and QUAL are parameters that are passed to
the APRH.

This message is issued by the following CSECT:
DSNESM70

A TSO trace message is issued.

CONNECTION TO SUBSYSTEM subsystem-id
SUCCESSFUL

SPUFI has successfully completed all the
necessary protocols to access SQL processing
functions. SPUFI is about to open the user-
specified input and output data sets.

This message is issued by the following CSECT:
DSNESM00

A TSO trace message is issued.

END OF SQL INPUT AND OUTPUT PROCESSING SPUFI SQL execution function has just completed.
The SQL statements in the input data set have been
processed, and the results have been written to the
output data set. Messages DSNE802 and DSNE805
together bracket the section of SPUFI code that is
executed whenever the EXECUTE option is YES and
the Db2 subsystem is available.

This message is issued by the following CSECT:
DSNESM00

A TSO trace message is issued.

Chapter 7. Trace messages and codes 463

Message text Explanation

csectname JUST READ IN ONE SQL STATEMENT A SQL statement from the input data set is now
in the SPUFI input buffer. The processing of this
statement by Db2 SQL-dependent code is to begin
immediately.

This message is issued by the following CSECT:
DSNESM20

A TSO trace message is issued.

CSECT name JUST COMPLETED PROCESSING
ONE SQL STATEMENT

The processing of the SQL statement (which is still
in the SPUFI input buffer) by Db2 SQL dependent
code has ended. The execution results have been
written to the output data set. Messages DSNE810
and DSNE811 together bracket the parts of SPUFI
code that are dependent on the protocols and
data structures used by the Db2 SQL processing
functions.

This message is issued by the following CSECT:
DSNESM20

A TSO trace message is issued.

csectname ABOUT TO WRITE A LINE OF OUTPUT The current content of the SPUFI output buffer has
been formatted and is about to be written to the
output data set.

This message is issued by the following CSECT:
DSNESM22

A TSO trace message is issued.

csectname - BEGIN EXECUTION - SQL REQUEST
= request-type

Program control has been given to the CSECT
specified in the message. The " request-type" in
the message is the Db2 request that is to be
issued by DSNESM68. The meaning of the request-
types (PREPARE, DESCRIBE, EXECUTE, OPEN,
CLOSE, FETCH, COMMIT, ROLLBACK) correlate
exactly with SQL statements with the same names.
PRESCRIB, however, correlates with the composite
SQL statement PREPARE INTO.

This message is issued by the following CSECT:
DSNESM68

A TSO trace message is issued.

csectname - END OF MODULE EXECUTION -
SQLCODE = sqlcode

Program control has been returned to the CSECT
specified in the message from Db2. The SQLCODE
in the SQLCA is displayed in hexadecimal.

This message is issued by the following CSECT:
DSNESM68

A TSO trace message is issued.

464 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Chapter 8. Collecting diagnostic data
To diagnose Db2 problems you might need to collect symptom descriptions, traces, logs, and dump data
sets.

Before you begin
Prior to a problem occurring, you can set up your z/OS environment to collect diagnostic data. Collecting
data before you open a support case with IBM Support can help expedite the resolution of the problem.

About this task
The type of data that is needed to diagnose a problem depends on the problem that is being investigated.
Sometimes you cannot solve a problem with only a description of its symptoms. In such cases, you need
to collect diagnostic data. Collecting data starts with answering questions like these to narrow down the
list of system components that are involved:

• With which components are errors associated?
• Do the symptoms match any known problems? If so, has a fix or workaround been published?
• Can the problem be identified and resolved without a code fix?
• Under what conditions does the problem occur?

When you are researching the cause of your problem, you need to describe your problem and collect
diagnostic data.

Procedure
1. Write a clear description of the problem and any steps that are required to re-create the problem.
2. Identify and record all messages and codes that were issued as a result of the problem.
3. Search the Db2 information for troubleshooting topics about your problem.
4. Search to check whether a fix or solution already exists for your problem.

See Chapter 2, “Searching the IBM Support site for known problems and solutions,” on page 3. For a
list of fixes available for Db2 for z/OS, see the IBM Support page for Db2 for z/OS.

5. Use the recommended procedures to diagnose the problem and to determine your next actions.

What to do next
If you cannot find documented procedures to solve your problem, you can contact IBM Support. You
might be asked to collect logs, data sets, and dumps that can help determine the source of your problem.
For certain problem symptoms, or for problems in a specific component, you might need to collect
additional data. Follow the instructions to collect diagnostic data for problems of your type.

Related tasks
Contacting IBM Support about Db2 problems (Troubleshooting problems in Db2)

Setting up the z/OS environment to collect diagnostic data
To collect diagnostic data efficiently, you need to set up your z/OS environment correctly.

About this task
The diagnostic data that is needed to diagnose Db2 problems might originate from several components in
the z/OS environment. To ensure that the diagnostic data is available when problems occur, set up your
environment to capture this data.

© Copyright IBM Corp. 1983, 2024 465

https://www.ibm.com/support/home/product/Z736916P90323T50/DB2_for_z/OS
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_contactsupportaboutdb2.html

Maximizing the size of the z/OS system trace table
The system trace table is valuable in diagnosing various problems, such as abends, loops, and
performance issues. If you increase the size of the trace table, you can collect system trace information
for a longer time period.

Before you begin
System trace tables reside in fixed storage on each processor. Ensure that your system has enough real
storage to support an increase in system trace table size. Before changing the size of the system trace
table, you can view the current trace table settings by using the following DISPLAY TRACE z/OS operator
command:

DISPLAY TRACE

About this task
The default size and maximum size of the system trace table depend on the z/OS version. Consider the
amount of fixed storage that is available on your system when setting the size of the system trace. A
commonly used trace table value is 5 M.

Procedure
Update the COMMNDxx member of the SYS1.PARMLIB partitioned data set to issue the TRACE command
during z/OS initialization.
For example, the following z/OS command sets the system trace table size to 5 M:

TRACE ST,5M

Related concepts
System trace (MVS Diagnosis: Tools and Service Aids)
Increasing the size of the z/OS system trace (MVS Diagnosis: Tools and Service Aids)
Related reference
z/OS DISPLAY TRACE command (MVS System Commands)
z/OS TRACE command (MVS System Commands)
Related information
z/OS COMMNDxx (commands automatically issued at initialization) (MVS Initialization and Tuning
Reference)

Increasing the size of the master trace table
The master trace maintains a wraparound table of the most recently issued operator messages. At the
time of failure, these messages provide a view of external events. You might want to increase the size of
the master trace table so that it includes trace messages for a longer time period.

About this task
The master trace table is embedded in dumps that have the TRT option. The default size of the master
trace table is 24 KB, which is enough space for approximately 336 messages. A size of 500 KB is enough
space for approximately 7000 messages.

Procedure
To increase the size of the master trace table to 500 KB, use one of the following approaches::
• Update the SCHEDxx member of the SYS1.PARMLIB partitioned data set to issue the following

command during z/OS initialization:

466 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/strt.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/strt2.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag100/d3trace.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag100/trace.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae200/commnd.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae200/commnd.htm

MT SIZE(500K)

• Enter the following z/OS trace command:

TRACE MT,500K

Related concepts
Master trace (MVS Diagnosis: Tools and Service Aids)
Related reference
z/OS TRACE command (MVS System Commands)
Related information
z/OS SCHEDxx member (MVS Initialization and Tuning Reference)

Increasing the storage capacity for an SVC dump
By increasing the MAXSPACE setting, you can avoid a partial dump and capture the entire internal
supervisor call (SVC) dump.

Before you begin
Ensure that the local page data sets are large enough to contain their normal peak load plus additional
SVC dumps. Estimate the amount of storage that is needed by adding the total amount of global storage
that is in use (at peak usage) in all regions. You can use an online monitor program to determine the
storage that is used at peak time. If the MAXSPACE size setting is not large enough, partial dumps might
be produced without all the necessary diagnostic data.

About this task
The default maximum virtual space that is allocated is 500 MB. The typical size of SDUMP MAXSPACE
settings for large Db2 subsystems is 16000 MB.

Procedure
Update the COMMNDxx member of the SYS1.PARMLIB partitioned data set to issue the following
CHNGDUMP command to set MAXSPACE to the appropriate size during z/OS initialization:

CHNGDUMP SET,SDUMP,MAXSPACE=16000M

Related concepts
SVC Dump (MVS Diagnosis: Tools and Service Aids)
Related reference
z/OS CHNGDUMP command (MVS System Commands)
Related information
z/OS COMMNDxx (commands automatically issued at initialization) (MVS Initialization and Tuning
Reference)

Ensuring that dump data sets are available and automatically updated
To avoid partial supervisor call (SVC) dumps, you can ensure that automatic dump data set allocation is in
place.

Before you begin
Ensure that the assigned storage class for dump data sets has enough disk space to avoid partial dumps
and to capture the entire internal supervisor call (SVC) dump. You might need to increase the amount
of virtual storage to capture volatile virtual storage data, capture summary dump data, and capture
component-specific data.

Chapter 8. Collecting diagnostic data 467

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/mtr.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag100/trace.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae200/ieae200539.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/svcdmp.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag100/chgdmp.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae200/commnd.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae200/commnd.htm

Procedure
Use the COMMNDxx member of the SYS1.PARMLIB partitioned data set to issue the appropriate DUMPDS
commands during z/OS initialization.

Example

The following commands create a name pattern, add data sets, and activate automatic allocation of dump
data sets:

DUMPDS NAME=&SYSNAME..&JOBNAME..T&HHMMSS..S&SEQ.
DUMPDS ADD,DSN=ALL
DUMPDS ALLOC=ACTIVE

Related reference
z/OS DUMPDS command (MVS System Commands)
Related information
z/OS COMMNDxx (commands automatically issued at initialization) (MVS Initialization and Tuning
Reference)

Setting up a customized Db2 SVC dump
You can add customized parameters to the IEADMCxx member of SYS1.PARMLIB to simplify the operator
interface to create Db2 supervisor call (SVC) dumps.

About this task
You can minimize then number of DUMP commands you enter by setting up a customized PARMLIB
member before the error event.

Procedure
Create an IEADMCxx member of the SYS1.PARMLIB partitioned data set that contains parameters for
a customized Db2 SVC dump on several subsystems. In the following example, member IEADMCD1
specifies customized options that are to be invoked by the DUMP command:

/*
THIS GETS INVOKED VIA CONSOLE COMMAND:
DUMP COMM=(...),PARMLIB=D1
*/
TITLE=('DUMP OF DSNT1 GROUP')
JOBNAME=(XCFAS,DT1*),
SDATA=(XESDATA,COUPLE,PSA,LPA,RGN,CSA,SUM,TRT),
REMOTE=(SYSLIST=(STLABBB('XCFAS','DT11*'),
 STLABB6('XCFAS','DT12*'),
 STLABBC('XCFAS','DT13*'),
 STLABB7('XCFAS','DT14*')),SDATA),
END

In this example, wildcard characters are used to specify multiple parameter values to create dumps on
multiple subsystems. The wildcard character * (asterisk) indicates multiple characters, and the wildcard
character ? (question mark) indicates a single character.

Related concepts
SVC Dump (MVS Diagnosis: Tools and Service Aids)
Dump suppression (MVS Diagnosis: Tools and Service Aids)
Related tasks
Requesting Db2 SVC dumps (Collecting data)
Related reference
z/OS DUMP command (MVS System Commands)
z/OS DUMP command wildcards (MVS System Commands)

468 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag100/dumpds.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae200/commnd.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae200/commnd.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/svcdmp.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/dumsup.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_requestingsvcdumps.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag100/dump.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag100/dmpgen.htm

Related information
z/OS IEADMCxx member (MVS Initialization and Tuning Reference)

Setting up Db2 SLIP traps for a data sharing environment
In a data sharing environment, you can set up a PARMLIB member to create serviceability level indication
processing (SLIP) traps. SLIP traps create dumps that can help you diagnose hangs or other problems.

About this task
In data sharing environments, a hang or problem on one Db2 member might be due to a problem
that originates from another member. To find the problem, you need to create serviceability level
indication processing (SLIP) trap supervisor call (SVC) dumps on the members involved. Ensure that
dump parameters specify all appropriate address spaces on each system.

Procedure
Create an IEASLPxx member of the SYS1.PARMLIB partitioned data set containing parameters for a SLIP
trap. In the following example, member IEASLPD1 specifies customized options for Db2 SVC dumps on
several subsystems.

SLIP SET,IF,N=(IEAVEDS0,00,FF),ID=DB21,ML=1,
JOBLIST=(DT44*),A=SVCD,
SDATA=(COUPLE,CSA,GRSQ,LPA,LSQA,PSA,RGN,SQA,SUM,SWA,TRT,XESDATA),
REMOTE=(SYSLIST=(STLAB21,STLAB22,STLABBB,STLABBC),
JOBLIST,SDATA),END

In this example, wildcard characters are used to specify multiple parameter values. The wildcard
character * (asterisk) indicates multiple characters, and the wildcard character ? (question mark)
indicates a single character.

Related tasks
Requesting data sharing environment Db2 SLIP traps (Collecting data)
Related reference
z/OS SLIP command (MVS System Commands)
z/OS SLIP command SET parameters (MVS System Commands)
Related information
z/OS IEASLPxx (SLIP commands) (MVS Initialization and Tuning Reference)

Preserving standard diagnostic documentation
If an error occurs, you can preserve diagnostic data that might be helpful in problem diagnosis. You can
create operating procedures to preserve commonly needed diagnostic information.

About this task
Due to the interactions between address spaces, you might sometimes need to obtain a dump of
associated address spaces so that you can diagnose problems. To ensure that information that is needed
to diagnose the problem is available, consider the following factors when requesting dumps of data:

If you request a dump of less data, the dump process might complete more quickly and capture
diagnostic data as it existed at the time of the error. Thus more control block information might be
synchronized. Conversely, if you request a complete address space dump, it might contain more data
areas, but data areas might have changed since the error event occurred.

Consider these recommendations when deciding which data areas to include in the dump data set:

• If a slow-moving performance problem is being diagnosed, request a complete address space dump.
• If Db2 is in a hard-wait situation, request a complete address space dump.

Chapter 8. Collecting diagnostic data 469

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae200/ieadmc.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_requestingslpsysplexdumps.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag100/slip.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag100/slpsetp.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae200/ieaslp.htm

• If you can narrow the problem to specific components, request a dump of only the pertinent address
space and data areas.

• If you cannot narrowed the problem to a specific component, request a dump of all related address
spaces with minimal data for each address space.

Procedure
To collect and preserve diagnostic data, complete the following tasks.

Preserving the z/OS console (SYSLOG)
The z/OS console log (SYSLOG) contains messages about the state of the operating system. Because
these messages might indicate the source of the problem, retaining the SYSLOG data set is
recommended.

About this task
The SYSLOG data set contains system-level messages and commands about the state of the z/OS system.
The SYSLOG data set provides symptom data about failures of components of the operating system. The
SYSLOG data set for each LPAR that is involved needs to be preserved. The SYSLOG is a binary data set,
but it can be viewed using the Spool Display and Search Facility (SDSF). Retaining four hours of SYSLOG
data is enough for 90% of problem situations.

Procedure
At the time of an error event, copy the SYSLOG data set to preserve its contents.

Related concepts
SYSLOG records (MVS Diagnosis: Tools and Service Aids)
Related reference
z/OS SDSF Operation and Customization

Preserving LOGREC data
The log record (LOGREC) data contains messages about hardware and software errors. Therefore,
retaining the LOGREC data is recommended.

About this task
The LOGREC data contains information about hardware and software errors across the z/OS system.
LOGREC data provides symptom data about failures of components. You can use LOGREC data with
corresponding dump data sets. The LOGREC data is written to a log stream or the data set SYS1.LOGREC.
One way to read LOGREC data is to use the Environmental Record, Editing, and Printing program
(EREP). The LOGREC entries that are recorded near the time of abend might provide valuable historical
information about the events leading up to the error. Retaining four hours of data is enough for 90% of
problem situations.

LOGREC data tracks the recovery of Db2 abends and provides evidence of FRR (functional recovery
routines) percolations and retries.

Procedure
At the time of an error event, copy the LOGREC data set to preserve its contents.

Related concepts
Recording LOGREC error records (MVS Diagnosis: Tools and Service Aids)

470 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/iea3v1_System_log.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.isfa500/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/logds.htm

Preserving the JES job logs for key Db2 address spaces
The JES job log from key Db2 address spaces contains relevant job-related messages. Therefore,
retaining the JES job log is recommended.

About this task
The JES job log contains job-related messages that can help you diagnose certain problems that might
occur. Therefore, retaining the JES job log from key Db2 address spaces is recommended. You can view
JES job log information using the System Display and Search Facility (SDSF).

Procedure
To view relevant messages for Db2 address spaces, save the JES job logs for:
• ssnmDBM1 address space
• ssnmMSTR address space
• ssnmDIST address space if distributed data facility (DDF) is in use
• ssnmWLM address space if Db2 stored procedures run in WLM-managed address spaces

Related tasks
Setting up a WLM application environment for stored procedures during installation (Db2 Installation and
Migration)
Related reference
z/OS SDSF Operation and Customization

Retention of Db2 dump data sets
To ensure that you have diagnostic data available if a problem occurs, you need to retain SYS1.DUMP data
sets and dump data sets that were dynamically allocated.

In the Db2 subsystem, a problem might not have a clear origin. Dump data sets are a representation of
virtual storage at the time that an error occurs. Therefore, you need to retain all dump data sets at the
time of failure regardless of the subsystem of origin. Specifically, you need to retain SYS1.DUMPxx and
all dynamically allocated dump data sets. Multiple dump data sets might be created. You might need to
examine all of the information in these dumps by using the Interactive Program Control System (IPCS).

Retention of original dumps for redacted buffer pool data
Db2 marks buffer pool data in the dump as sensitive=yes for data privacy. You can optionally redact
the buffer pool data before you send the dump to IBM Support for analysis. However, always retain the
original dump until all problem analysis concludes, in case IBM Support requests specific information
from the redacted data. For more information see Redacting buffer pool data in SVC dumps for data
privacy (Troubleshooting problems in Db2).

Related reference
Introduction to IPCS (MVS IPCS User's Guide)

Retention of Db2 logs
Db2 log data sets are often helpful when you diagnose problems. Therefore, retaining Db2 log data sets is
recommended.

To ensure that you have all of the information that might be needed to solve the problem, retain
approximately 4 hours worth of Db2 log data prior to the point at which the failure occurred. This
log data is especially important for Db2 problems that involve data inconsistency and restart. For data
inconsistency, log data for all updates might be needed from the last time the page was valid, which could
be a few days. In this case, IBM Support might provide you with a Db2 DSN1LOGP utility job to limit the
output.

Chapter 8. Collecting diagnostic data 471

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_setupwlmenvironment.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_setupwlmenvironment.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.isfa500/abstract.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_redactdumps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_redactdumps.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieac600/ipcsint.htm

Related reference
DSN1LOGP (Db2 Utilities)

Requesting Db2 SVC dumps
You can use the system console DUMP command to request a Db2 supervisor call (SVC) dump.

Before you begin
Set up a customized member in the SYS1.PARMLIB partitioned data set before issuing the DUMP
command. All jobs must be active; otherwise, Db2 does not produce a dump on the system on which
you enter the dump command. If you do not specify a JOBNAME for a remote system, a dump of the
entire DUMPSERV address space might be generated. Also ensure that your system is not suppressing the
generation of SVC dumps.

Procedure
Issue the DUMP command from the system console.
For example, to use the IEADMCD1 member of the SYS1.PARMLIB partitioned data set, issue the
following DUMP command:

DUMP TITLE=(DUMP OF DB2 production),PARMLIB=(D1)

What to do next
Db2 marks buffer pool data in the dump as sensitive=yes for data privacy. You can optionally redact
the buffer pool data before you send the dump to IBM Support for analysis. However, always retain the
original dump until all problem analysis concludes, in case IBM Support requests specific information
from the redacted data. For more information see Redacting buffer pool data in SVC dumps for data
privacy (Troubleshooting problems in Db2).

Related concepts
SVC Dump (MVS Diagnosis: Tools and Service Aids)
Dump suppression (MVS Diagnosis: Tools and Service Aids)
Related tasks
Setting up a customized Db2 SVC dump (Collecting data)
Related information
z/OS IEADMCxx member (MVS Initialization and Tuning Reference)

Requesting data sharing environment Db2 SLIP traps
In a Db2 data sharing environment, a hang or problem on one Db2 member might originate in a separate
member. To find the problem, you need to create a serviceability level indication processing (SLIP) trap to
catch error events and to create supervisor call (SVC) dumps.

Before you begin
Be sure to set up the IEASLPxx member in the SYS1.PARMLIB partitioned data set. Before activating the
SLIP trap, disable all existing program event recordings (PER) SLIP traps for each system image in the
data sharing group. For example, use the following command, where trap-id identifies the SLIP trap:

ROUTE *ALL,SLIP MOD,DISABLE,ID=trap-id

Procedure

1. To activate the SLIP trap using the IEASLPD1 member, enter the following system command:

472 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1logp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_redactdumps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_redactdumps.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/svcdmp.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/dumsup.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_settingupcustomizedsvcdumps.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae200/ieadmc.htm

SET SLIP=D1

2. To invoke the associated supervisor call (SVC) dump for trap identifier DB21, enter the system
command:

SLIP MOD,ENABLE,ID=DB21

Results
When the conditions that you defined in the SLIP trap occur, matching dumps are produced based on the
wildcard specification in the IEASLPxx member.

Related tasks
Setting up Db2 SLIP traps for a data sharing environment (Collecting data)
Related reference
z/OS SLIP command (MVS System Commands)
Related information
z/OS IEASLPxx (SLIP commands) (MVS Initialization and Tuning Reference)

Collecting service SQL documentation
Service SQL documentation is the standard format for query problem analysis documentation, for use by
IBM Support. It includes the data definition statements (DDL), catalog statistics, EXPLAIN records, and
other data that describes a Db2 for z/OS environment.

Before you begin
• Ensure that the latest Db2 maintenance is applied.
• You must have appropriate Db2 administrative authority.
• If you want to report an access path performance problem and you have not already done so, complete

the following tasks first:

1. Investigate the problem, as described in Investigating access path problems (Db2 Performance).
2. If you are unable to resolve the problem, collect diagnostic data, as described in Collecting data for

access path performance problems (Collecting data).

About this task
The service SQL documentation includes information that describes the following aspects of the
environment for Db2 for z/OS SQL statements:

• Objects such as tables, indexes and views that are referenced by the SQL statements
• Catalog statistics the Db2 to select access paths for the SQL statements
• EXPLAIN table information that describes access paths for the SQL statements
• Db2 module details
• Subsystem parameter settings

IBM Support can use this information to re-create and analyze the performance problems.

Procedure
To generate problem analysis documentation for a Db2 environments:
1. If you have not already done so, run EXPLAIN statements to populate the EXPLAIN table records for

the SQL statement or workload.
2. Generate the data definition statements, EXPLAIN table records, and catalog statistics that describe

the Db2 environment for the SQL statement or workload.

Chapter 8. Collecting diagnostic data 473

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_settingupsysplexenvtdumps.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag100/slip.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae200/ieaslp.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_investigateaccesspaths.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_cd4accesspath.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_cd4accesspath.html

You can use the following approaches to call the ADMIN_INFO_SQL stored procedure:

• Run the DSNTEJ6I sample job that is supplied with Db2 in the prefix.SDSNSAMP data set.
DSNTEJ6I calls DSNADMSB which executes SYSPROC.ADMIN_INFO_SQL. The job prologue
contains detailed instructions for customizing the job. For more information, see DSNTEJ6I (Db2
Programming samples).

• Use the capture query environment feature of tools such as IBM Db2 Administration Foundation for
z/OS and IBM Db2 for z/OS Developer Extension

Tip: Always select the Parallelism option, even if your system does not use parallelism. This option
ensures that important statistics are included in the Service SQL data.

The output from ADMIN_INFO_SQL is intended primarily for the use of IBM Support. The format and
content of the output might change at any time.

What to do next
For information about submitting the service SQL data to IBM Support, see Contacting IBM Support about
Db2 problems (Troubleshooting problems in Db2).

Related tasks
IBM Data Studio: Gathering SQL statement environment information for IBM Software Support
Investigating access path problems (Db2 Performance)
Collecting data for CCSID problems (Collecting data)
Related reference
DSNADMSB (Db2 Utilities)
ADMIN_INFO_SQL stored procedure (Db2 SQL)

Collecting data for specific types of Db2 problems
Depending on the type of Db2 problem that you are diagnosing, you might collect different types of
diagnostic data.

Before you begin
If you contact IBM Support regarding a Db2 problem, you might be asked to collect logs, data sets, and
dumps that can help determine the source of your problem. Before a problem occurs, set up your z/OS
environment to collect diagnostic data. Collecting data before you open a support case can help expedite
the problem resolution process.

About this task
Review the following topics to determine the type of diagnostic data that you might collect for your
problem.

What to do next
If you cannot find documented procedures to correct the problem, contact IBM Support by following the
instructions in Contacting IBM Support about Db2 problems (Troubleshooting problems in Db2).

Related tasks
Setting up the z/OS environment to collect diagnostic data (Collecting data)

474 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/appdevsamp/src/tpc/db2z_samp_dsntej6i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/appdevsamp/src/tpc/db2z_samp_dsntej6i.html
https://www.ibm.com/docs/en/SSPQNG_1.2.0/topics/izp_con_gs_AF.htm
https://www.ibm.com/docs/en/SSPQNG_1.2.0/topics/izp_con_gs_AF.htm
https://marketplace.visualstudio.com/items?itemName=ibm.db2forzosdeveloperextension
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_contactsupportaboutdb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_contactsupportaboutdb2.html
https://www.ibm.com/docs/en/data-studio/4.1.1?topic=SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/capqryenv.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_investigateaccesspaths.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_cd4ccsidproblems.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_dsnadmsb.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sp_admininfosql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_contactsupportaboutdb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_settingupenvt4collectingdata.html

Collecting data for general performance problems
For performance problems that are not related to access path issues, collect a description of the problem
symptoms, SMF data, RMF data, and a supervisor call (SVC) dump.

Before you begin
To diagnose performance problems, you must have the appropriate authorization to collect data from
different z/OS components.

Procedure
To collect diagnostic data for general performance problems:
1. Write a description of the problem and include answers to these questions:

a) What are the names of packages, user IDs, and subsystems that are experiencing performance
problems?

b) If a job abended, what were the abend codes?
c) Has anything recently changed in the environment that caused the problem?
d) How do you reproduce the problem?

2. Collect SMF type 100-102 trace records by issuing Db2 START TRACE commands for both a successful
and an unsuccessful run.
For example, start both accounting and statistics traces:

GUPI

-START TRACE(ACCTG) CLASS(1,2,3,7,8) DEST(SMF)
-START TRACE(STAT) CLASS(1,3,4,5,6) DEST(SMF)

GUPI

Separate accounting data from other transactions to prevent accumulation. In a Resource Recovery
Services (RRS) or distributed data facility (DDF) attach environment, set the ACCUMACC subsystem
parameter to NO.

3. Collect RMF Monitor I and RMF Monitor II SMF type 70-79 trace records by issuing RMF commands for
both a successful and unsuccessful run:
a) Start RMF Monitor I:

MODIFY RMF, START ZZ

b) Start RMF Monitor II:

MODIFY RMF, START session-id

In this example, session-id is two alphanumeric characters (not ZZ) to start RMF Monitor II.
4. Issue the z/OS DUMP command to dump Db2 associated address spaces:

 DUMP COMM=(title),
 JOBNAME=(ssnmIRLM,ssnmMSTR,ssnmDBM1,ssnmDIST),
 SDATA=(RGN,CSA,SQA,LPA,LSQA,SWA,PSA,ALLNUC,XESDATA,TRT,GRSQ,SUM),END

where title is the title of the dump data set and ssnm is the Db2 subsystem name.
5. If IBM Support asks you to do so, issue this command:

DISPLAY DATABASE(database-name) SPACENAM(space-name) PART(part-num) LRSN

Chapter 8. Collecting diagnostic data 475

This command is used for diagnosis of performance problems that are related to over-locking or
inefficient space reuse.

6. Collect service SQL documentation that describes the environment for the SQL statement, as
described in Collecting service SQL documentation (Troubleshooting problems in Db2).

Related concepts
SVC Dump (MVS Diagnosis: Tools and Service Aids)
Related tasks
Requesting Db2 SVC dumps (Collecting data)
Requesting data sharing environment Db2 SLIP traps (Collecting data)
Related reference
z/OS RMF User's Guide
-START TRACE (Db2) (Db2 Commands)
DDF/RRSAF ACCUM field (ACCUMACC subsystem parameter) (Db2 Installation and Migration)
STATISTICS TIME field (STATIME subsystem parameter) (Db2 Installation and Migration)

Collecting data for access path performance problems
For performance problems that are related to access path issues, you can collect a description of
the problem symptoms, the output of the EXPLAIN statement for the query, related data definition
statements, and catalog statistics.

Before you begin
• Ensure that the data is well organized and that complete, accurate, and current statistics are available

for relevant database objects. For more information, see Maintaining data organization and statistics
(Db2 Performance).

• Try to resolve the access path problem by using the statistics advisor feature of free tools such as
Data Server Manager or your own analysis of the statistics, as described in Investigating access path
problems (Db2 Performance).

• To collect data to diagnose performance problems, you need the appropriate Db2 administrative
authority.

• Ensure that the latest Db2 maintenance is applied.

About this task
Most access path performance issues and access path performance regressions can be resolved by
ensuring that a complete, current, and accurate set of statistics from the RUNSTATS utility is available to
Db2. Include the basic statistics that are needed for all database objects, and selectivity statistics that
support the particular SQL statement.

If you contact IBM Support, you can provide information to help diagnose your access path problems.

Tip: Enhanced query tuning capabilities that can help you with this task are available in IBM Db2 Query
Workload Tuner for z/OS and IBM Db2 Administration Foundation for z/OS.

Procedure
To collect access path diagnostic data to send to IBM Support:
1. Generate an EXPLAIN report of the query during a time period when the query performed poorly.

For example, issue the following EXPLAIN statement. Replace query-number with the PLAN_TABLE
rows for the query, and replace problem-SQL-statement with the SQL statement.

EXPLAIN PLAN SET QUERYNO = query-number FOR

problem-SQL-statement;

476 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/svcdmp.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_requestingsvcdumps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_requestingslpsysplexdumps.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.erbb200/abstract.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_starttrace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_accumacc.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statime.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_maintainstatsdataorg.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_maintainstatsdataorg.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_investigateaccesspaths.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_investigateaccesspaths.html

You can issue the following SQL statement to create a report that describes the access path for the
SQL statement:

SELECT *
FROM PLAN_TABLE
WHERE QUERYNO = query-number
ORDER BY TIMESTAMP, QUERYNO, QBLOCKNO, PLANNO, MIXOPSEQ;

2. Collect service SQL documentation that describes the Db2 environment for the SQL statement or
workload, as described in Collecting service SQL documentation (Troubleshooting problems in Db2).
If possible, collect the service SQL documentation for both before and after the access path problem
occurred.

Related concepts
Investigating SQL performance by using EXPLAIN (Db2 Performance)
Related tasks
Managing and preventing access path change (Db2 Performance)
Related reference
EXPLAIN (Db2 SQL)
RUNSTATS (Db2 Utilities)

Collecting data for data access problems
You can collect diagnostic data to diagnose data access problems.

About this task
Collect the following types of information:

• Supervisor call (SVC) dumps
• Service SQL documentation, as described in Collecting service SQL documentation (Troubleshooting

problems in Db2).
• Other system data sets that are needed to resolve Db2 data access problems.

Collecting data for incorrect output from an SQL statement
If the results of an SQL query are unexpected, collect a copy of the SQL statement, the related DDL and
catalog statistics, and the EXPLAIN output to diagnose the problem.

Before you begin
To collect data to diagnose incorrect SQL results, you need the appropriate Db2 administrative authority.

Procedure
To collect data for incorrect output from an SQL statement:
1. Obtain a copy of the SQL statement to investigate.
2. Write a detailed description of the SQL statement results. Describe whether the results returned

contain unexpected rows, too few rows, or too many rows. Also, describe any recent changes to
the Db2 subsystem such as Db2 migrations, maintenance, application code updates, or access path
changes.

3. Generate an EXPLAIN report of the query.
For example, use the following EXPLAIN statement. Replace query-number with the row identifier in
the PLAN_TABLE and problem-SQL-statement with the SQL statement.

EXPLAIN PLAN SET QUERYNO = query-number FOR

{problem-SQL-statement}

SELECT *

Chapter 8. Collecting diagnostic data 477

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_useexplain2capturesqlinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_managingqueryplans.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_explain.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_runstats.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html

FROM PLAN_TABLE
WHERE QUERYNO = query-number
ORDER BY TIMESTAMP, QUERYNO, QBLOCKNO, PLANNO, MIXOPSEQ;

4. Collect service SQL documentation that describes the environment for the SQL statement, as
described in Collecting service SQL documentation (Troubleshooting problems in Db2).

Related reference
EXPLAIN (Db2 SQL)

Collecting data when an abend occurs for an SQL query
If an abend occurs during an SQL query, collect the SQL statement, EXPLAIN report, DDL, supervisor call
(SVC) dump, LOGREC, and SYSLOG diagnostic data.

Before you begin
To diagnose query abend problems, you must have the appropriate authorization to collect data from
different z/OS components.

Procedure
Collect the following data to diagnose an abend for an SQL query:

• A copy of the SQL statement to investigate
• Service SQL documentation that describes the environment for the SQL statement, as described in

Collecting service SQL documentation (Troubleshooting problems in Db2)
• The LOGREC, which might contain messages during the time of the error
• The SYSLOG data set messages from the ssnnMSTR address space
• Any supervisor call (SVC) dump that is generated by the abend

Related concepts
SVC Dump (MVS Diagnosis: Tools and Service Aids)
Dump suppression (MVS Diagnosis: Tools and Service Aids)
Related tasks
Preserving LOGREC data (Collecting data)
Preserving the z/OS console (SYSLOG) (Collecting data)
Setting up a customized Db2 SVC dump (Collecting data)
Requesting Db2 SVC dumps (Collecting data)
Related reference
EXPLAIN (Db2 SQL)

Collecting data for stored procedure problems
If Db2 returns SQLCODE -440, collect data for diagnosing stored procedure not found conditions.

Before you begin
To diagnose performance problems, you must have the appropriate authorization to collect data from
different z/OS components.

Procedure
Collect the following data to diagnose stored procedure problems:

• A detailed problem description which includes:

– A description of the stored procedure with a list of source code programming languages

478 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_explain.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/svcdmp.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/dumsup.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservinglogrec.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservingzossyslog.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_settingupcustomizedsvcdumps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_requestingsvcdumps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_explain.html

– A copy of source code of the stored procedure
• The CREATE PROCEDURE SQL statement
• The WLM PROC startup JCL
• For SQLCODE -440 errors, include:

– The value of CURRENT PATH special register
– The BIND PACKAGE command for the stored procedure
– The data types of parameters from the CALL statement to the stored procedure

Related tasks
Troubleshooting Db2 stored procedure problems (Db2 Administration Guide)
Related reference
CREATE PROCEDURE (Db2 SQL)
WLM PROC NAME field (Db2 Installation and Migration)
CURRENT PATH special register (Db2 SQL)
Related information
-440 (Db2 Codes)

Collecting data for authorization problems
If Db2 returns SQLCODE -551, which indicates an operation was denied, and you think it is valid, collect
data for diagnosing authorization problems.

Before you begin
To diagnose authorization problems, you must have the appropriate authorization to collect data from
different z/OS components.

About this task
The type of diagnosis data that is collected is different for systems that use Db2 internal security than
external security.

Procedure
Collect the following data to diagnose authorization problems:

• Service SQL information for the SQL statement to investigate, as described in Collecting service SQL
documentation (Troubleshooting problems in Db2).

• The complete SQLCA that is returned
• The Db2 audit trace class 1 and 7 and Db2 performance trace class 22 from the time of failure
• The source code for any Db2 exits (Sign-on, Collection, or Authorization) that are in effect
• The bind parameters for the failing package

Collecting data for CCSID problems
If CCSID settings are not correct, Db2 might display an incorrect character or encounter a CCSID
conversion error. If Db2 returns an unexpected character from a query, message DSNT552I, SQLCODE
-330, or SQLCODE -332, collect data for diagnosing CCSID problems.

Procedure
To collect data to diagnose CCSID problems:
1. If you receive an unexpected display character or message DSNT552I, collect the application default

CCSID setting that is stored in DSNHDECP.

Chapter 8. Collecting diagnostic data 479

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sproc/src/tpc/db2z_troubleshootsp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_wlmprocname.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_currentpath.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/n440.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html

2. If you receive an unexpected SQLCODE, such as SQLCODE -330 or SQLCODE -332, generate a
DSN1SDMP data set.

3. Collect the bind encoding CCSID from the catalog.
For example, issue the following select statements, where:

• collection-id is the id of the collection
• package-name is the name of the package
• plan-name is the name of the plan

SELECT ENCODING_CCSID FROM SYSIBM.SYSPACKAGE WHERE COLLID=collection-id
 AND NAME=package-name;
SELECT ENCODING_CCSID FROM SYSIBM.SYSPLAN WHERE NAME=plan-name;

4. Collect the object CCSID settings from the catalog for any involved databases, table spaces, columns,
and stored procedures.
For example, issue the following select statements, where:

• database-name is the name of the database
• tablespace-name is the name of the table space
• column-name is the name of the column
• table-name is the name of the table
• routine-name is the name of the routine
• schema-name is the name of the schema

SELECT SBCS_CCSID FROM SYSIBM.SYSDATABASE WHERE NAME=database-name;
SELECT SBCS_CCSID FROM SYSIBM.SYSTABLESPACE WHERE NAME=tablespace-name
 AND DBNAME=database-name;
SELECT CCSID FROM SYSIBM.SYSCOLUMNS WHERE NAME=column-name
 AND TBNAME=table-name;
SELECT CCSID FROM SYSIBM.SYSPARMS WHERE NAME=routine-name
 AND SCHEMA=schema-name;

5. Collect the hexadecimal representation of the column data in error.
For example, issue the following select statement, where:

• column-in-error is the name of the column with the invalid character
• user-table is the name of the user table with the invalid character

SELECT column-in-error, HEX(column-in-error) FROM user-table

6. If you are using a local terminal emulator program, find the CCSID setting.
The Personal Communications (PCOM) CCSID setting is in the "Personal Parameters" menu "Host
Code Page" field. For other terminal emulator programs, consult related documentation for its CCSID
or code page setting.

7. If data is being passed from a distributed system, generate a client performance trace.
For example, issue the following -START TRACE command, where auth-id is the authorization ID
needed to start the trace command:

-START TRACE(PERFM) CLASS(1,2,32) DEST(GTF) TDATA(COR,TRA) IFCID(180) AUTHID(auth-id)

Related concepts
Application defaults parameters (Db2 Installation and Migration)
Related tasks
Debugging CCSID and Unicode problems (Db2 Internationalization Guide)
Collecting data for an unexpected SQLCODE (Collecting data)
Related reference
Character conversion terminology (Db2 Internationalization Guide)
-START TRACE (Db2) (Db2 Commands)

480 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_dsnhdecpparamsds.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/char/src/tpc/db2z_debugunicode.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_cd4sqlcode.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/char/src/tpc/db2z_charconvterm.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_starttrace.html

Related information
DSNT552I (Db2 Messages)
-330 (Db2 Codes)
-332 (Db2 Codes)

Collecting data for corruption and inconsistency problems
If you encounter corrupted or inconsistent data problems, collect diagnostic data from a time period
when the problem occurred. DSNI and DSNT messages usually indicate that the Db2 data manager
subcomponent encountered a problem.

About this task
Diagnosing data corruption problems and inconsistencies between indexes and data require IBM
Software Support expertise. A common reason for these errors is the incorrect use of DSN1COPY to
replace or restore Db2 objects. If the underlying data is consistent, a rebuild of the index might resolve
the problem.

Procedure
To collect diagnostic data if DSNI and DSNT messages indicate a corruption or inconsistency problem:
1. Collect Db2 archive log data sets from all Db2 members to the last point of consistency. Also, collect

the corresponding consistent REORG or IMAGE COPY data sets.
2. If data is corrupted, collect the DSN1COPY of the table space or index.
3. If an index is inconsistent, run CHECK INDEX or CHECK LOB.
4. Collect the SYSLOG, which might contain messages that indicate the source of the problem.
5. Collect the LOGREC, which might contain messages that indicate the source of the problem.
6. Collect the JES job log for the system services address space (ssnmMSTR).
7. Collect any supervisor call (SVC) dump generated with abend code 04E and reason code 00C9xxxx for

your Db2 environment.

Collecting data for IBM Db2 Analytics Accelerator for z/OS problems
When you encounter a IBM Db2 Analytics Accelerator for z/OS problem, report it directly to Db2 for z/OS
Technical Support, who will work with you to diagnose and resolve the problem.

Before you begin
Before contacting Db2 for z/OS Technical Support team to report a problem:

• Be prepared to provide the following documentation about the problem:

– A detailed description of the problem
– An indication of whether the problem is associated with a new query or with an existing query that

was changed in some way (for example, data volumes or query structures)
– Analytics Accelerator DEFAULT trace output, if you are reporting a failure with IBM Db2 Analytics

Accelerator for z/OS
– Relevant documents, such as Db2 logs, Db2 dumps, JES logs
– Additional trace output that could be relevant to the investigation

• Set up remote access to your accelerator environment to enable the support representative to
access your environment remotely, if necessary for further diagnosis purposes. Remote access to the
accelerator environment goes through Db2 for z/OS using the SSH (Secure Shell) command interface.

Chapter 8. Collecting diagnostic data 481

https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnt552i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/n330.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/n332.html

About this task
You do not need to perform problem source identification (PSI) to determine if the issue associated with
software or hardware components in your accelerator environment. When you encounter a problem in
your accelerator environment, report the issue directly to for Db2 for z/OS Technical Support.

Procedure
• In response to requests by the support team that is working on your problem, provide additional

information or documentation.
Examples of information that might be requested include:

– Timing of query runs
– Details of the previous runs (prior to the problem)
– Any queries that are involved
– Any DDL involved
– Any storage dump that was encountered
– Screen shots that could help the investigation
– Status of the statistics

Using information about the problem, the Db2 for z/OS Technical Support team provides the
preliminary problem diagnosis and determines the source of the reported problem. If needed, the
support team will engage with other appropriate IBM Technical Support teams for further problem
determination.

Due to the number of products that are involved in most accelerator environments, you might need to
work with IBM Technical Support representatives from different groups in order to resolve the problem
efficiently.

• Provide remote access to your accelerator environment to the IBM Technical Support representative, if
needed.

Generally, the accelerator environment acts as an appliance and can be accessed only by IBM
Technical Support representatives to whom the user has explicitly granted authority to remotely
access and control the system. The IBM Technical Support team can generate the service password
to access the system based on the serial number of the system. The user does not have the root
password to access the accelerator environment.

Related tasks
Enabling Db2 for IBM Db2 Analytics Accelerator for z/OS (Db2 Performance)
Monitoring the use of accelerators for Db2 for z/OS queries (Db2 Performance)
Related reference
Reference information for working with accelerators (Db2 Performance)

Collecting data for application programming problems
You can collect diagnostic data to diagnose problems with the interface between Db2 and your
application program.

Collecting data for an unexpected SQLCODE
If Db2 returns an unexpected SQLCODE, collect the SQLCA and DSN1SDMP dump data set that was
triggered by the SQLCODE.

Before you begin
To diagnose unexpected SQLCODE problems, you must have the appropriate authorization to collect data
from different z/OS components.

482 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_enablingaccelerators.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_monitoracceleratoruse.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_refinfoforaccel.html

Procedure
Collect the following diagnostic data to diagnose unexpected SQLCODE problems:

• Service SQL information for the SQL statement, as described in Collecting service SQL documentation
(Troubleshooting problems in Db2).

• A copy of the complete SQLCA that was returned to your application
• The DSN1SDMP dump data set that was triggered by the SQLCODE. DSN1SDMP SDMPIN DD control

statements are commonly supplied by IBM Software Support

Related reference
The included SQLCA (Db2 SQL)
DSN1SDMP (Db2 Utilities)

Collecting data for Db2 coprocessor or Db2 precompiler problems
When you diagnose Db2 coprocessor or Db2 precompiler problems, collect generated output listings and
diagnostic data.

About this task
Db2 coprocessor and Db2 precompiler problems might surface during the preparation or running of your
application.

Tip: The Db2 coprocessor is the recommended method for processing SQL statements in application
programs. Compared to the Db2 precompiler, the Db2 coprocessor has fewer restrictions on SQL
programs, and more fully supports the latest SQL and programming language enhancements. See
Processing SQL statements by using the Db2 coprocessor (Db2 Application programming and SQL).

Procedure
1. Collect the following diagnostic data that is generated when you prepare your application with the Db2

coprocessor or Db2 precompiler:

• A simplified version of your application source code with minimal dependency on included
members

• Any source code that is included by your application from a host language COPY or include
statement

• A source listing output with the SOURCE option
• Any diagnostic messages that are produced by the precompiler or coprocessor with your

application
• The cross-reference listing with the XREF option

2. Collect the following diagnostic data that is generated when you run your application:

• Service SQL information for the SQL statement in error, as described in Collecting service SQL
documentation (Troubleshooting problems in Db2).

• The SQLCODE and any generated dump data sets
• The DDCS trace

Related concepts
Output from the Db2 coprocessor (Db2 Application programming and SQL)
Output from the Db2 precompiler (Db2 Application programming and SQL)
Related tasks
Processing SQL statements for program preparation (Db2 Application programming and SQL)
Related reference
Descriptions of SQL processing options (Db2 Application programming and SQL)

Chapter 8. Collecting diagnostic data 483

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_theincludedsqlca.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1sdmp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_processsqlstmtcoprocessor.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_outputcoprocessor.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_outputprecompiler.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_processsqlstmt.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_descriptionprocessingoptions.html

Collecting data for XML problems
If you encounter problems with Db2 XML data, collect some initial diagnostic information about your
environment.

Before you begin
To diagnose Db2 XML data problems, you must have the appropriate authorization to collect data from
different z/OS components.

Procedure
To collect diagnostic data for Db2 XML data problems:
1. Collect a copy of the SQL statement, related SQL data manipulation statements and catalog statistics,

and the EXPLAIN output to diagnose incorrect output from an SQL statement, as described in
Collecting service SQL documentation (Troubleshooting problems in Db2).

2. Capture a supervisor call (SVC) dump for your Db2 application environment. Include all Db2 address
spaces in the JOBLIST of your DUMP command.

3. Unload your XML data by using the DSNTIAUL program.

Related concepts
SVC Dump (MVS Diagnosis: Tools and Service Aids)
Related tasks
Collecting data for incorrect output from an SQL statement (Collecting data)
Requesting Db2 SVC dumps (Collecting data)
Requesting data sharing environment Db2 SLIP traps (Collecting data)
Related reference
DSNTIAUL sample program (Db2 Application programming and SQL)

Collecting data for operational problems
You can collect diagnostic data to diagnose problems that you encounter managing Db2 operations.

Collecting data for problems with DFSMS VSAM data sets
If you encounter problems with DFSMS VSAM data set manipulation, you can collect initial diagnostic
information about your environment. DSNP messages usually indicate that the Db2 data space manager
subcomponent encountered a problem.

Before you begin
To diagnose problems, you must have the appropriate authorization to collect data from different z/OS
components. DFSMS VSAM error messages often accompany the Db2 errors and can help in problem
determination.

Procedure
To collect diagnostic data if DSNP messages indicate a problem with DFSMS VSAM data set manipulation:
1. Collect the SYSLOG, which might contain messages that indicate the source of the problem.
2. Collect the LOGREC, which might contain messages that indicate the source of the problem.
3. Collect the JES job log for the system services address space (ssnmMSTR) and any allied agent

address space.
4. Collect any supervisor call (SVC) dump that was generated with abend code 04E and reason code

00D7xxxx for your Db2 environment.
5. For a data set extend failure that is identified by message DSNP007I, collect the following data:

484 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/svcdmp.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_cd4incorrout.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_requestingsvcdumps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_requestingslpsysplexdumps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dsntiaul.html

a) Collect IDCAMS LISTCAT extent information for the target linear data set.
b) Collect Db2 Statistics CLASS 3 trace with IFCID 0258 with information about the data set extend

request.

Related concepts
SVC Dump (MVS Diagnosis: Tools and Service Aids)
Related tasks
Requesting Db2 SVC dumps (Collecting data)
Requesting data sharing environment Db2 SLIP traps (Collecting data)
Preserving the z/OS console (SYSLOG) (Collecting data)
Preserving LOGREC data (Collecting data)
Preserving the JES job logs for key Db2 address spaces (Collecting data)

Collecting data for problems with deadlocks and timeout failures
If you encounter locking problems, which are indicated by 00C90088 abends for deadlocks or 00C9008E
failures for timeouts, collect diagnostic information about your environment. DSNT50xx messages usually
indicate that the Db2 data manager subcomponent encountered a problem.

Before you begin
To diagnose problems, you must have the appropriate authorization to collect data from different z/OS
components.

Procedure
To collect diagnostic data if DSNT50xx messages indicate locking failures:
1. Collect the JES job log for the system services address space (ssnmMSTR).
2. Collect SMF 100 - 101 records. Statistics Class 3 and Performance Class 6 records contain information

about deadlocks and timeouts. IBM Support might request Performance Class 7 detailed lock
information in some situations.

Related tasks
Preserving the JES job logs for key Db2 address spaces (Collecting data)
Preserving LOGREC data (Collecting data)

Collecting data for data set access problems
If you encounter data set open, allocation, reading, writing, or synchronization problems, collect
diagnostic data from a time period when the problem occurred. DSNB messages usually indicate that
the Db2 buffer manager subcomponent encountered a problem.

Before you begin
To diagnose problems, you must have the appropriate authorization to collect data from different z/OS
components.

About this task
Diagnosing data set access problems requires IBM Support expertise. Often, DFSMS VSAM errors are
involved.

Procedure
To collect diagnostic data if DSNB messages indicate a corruption or inconsistency problem:
1. Collect Db2 archive log data sets from all Db2 members to the last point of consistency. Also, collect

the corresponding consistent REORG or IMAGE COPY data sets.

Chapter 8. Collecting diagnostic data 485

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/svcdmp.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_requestingsvcdumps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_requestingslpsysplexdumps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservingzossyslog.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservinglogrec.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservingjesjoblogs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservingjesjoblogs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservinglogrec.html

2. Collect the SYSLOG, which might contain messages that indicate the source of the problem.
3. Collect the LOGREC, which might contain messages that indicate the source of the problem.
4. Collect the JES job log for the system services address space (ssnmMSTR).
5. Collect any supervisor call (SVC) dump that was generated with abend code 04E and reason code

00C2xxxx for your Db2 environment.

Related concepts
SVC Dump (MVS Diagnosis: Tools and Service Aids)
Related tasks
Requesting Db2 SVC dumps (Collecting data)
Requesting data sharing environment Db2 SLIP traps (Collecting data)
Preserving the z/OS console (SYSLOG) (Collecting data)
Preserving LOGREC data (Collecting data)
Preserving the JES job logs for key Db2 address spaces (Collecting data)

Collecting data for storage abends
If you encounter storage errors, collect diagnostic data from a time period when the problem occurred.
DSNS messages usually indicate the Db2 storage manager subcomponent encountered a problem.

Before you begin
To diagnose problems, you must have the appropriate authorization to collect data from different z/OS
components.

About this task
Diagnosing storage management problems requires IBM Support expertise.

Procedure
To collect diagnostic data if DSNS messages indicate a storage management problem:
1. Collect any supervisor call (SVC) dump that was generated with abend code 878 and reason code

00E20003 for your Db2 environment. If a storage leak exists, multiple dumps might be needed.
2. Start a Statistics Class 1 or 6 trace to collect IFCID 0225 records. Collect SMF type 100 records from

startup until the storage abend.

Related concepts
SVC Dump (MVS Diagnosis: Tools and Service Aids)
Related reference
z/OS MVS System Code 878
z/OS SMF Records

Collecting data for resource limit facility problems
If SQL queries are not properly governed by the resource limit facility (RLF), then collect RLF table data,
and generate dumps to diagnose the problem.

About this task
Introductory concepts

The resource limit facility (Introduction to Db2 for z/OS)

Procedure
To collect data to diagnose resource limit facility problems:

486 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/svcdmp.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_requestingsvcdumps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_requestingslpsysplexdumps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservingzossyslog.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservinglogrec.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservingjesjoblogs.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/svcdmp.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieah700/m015281.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag200/records.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_resourcelimitfacility.html

1. Collect service SQL information for the SQL statement to investigate, as described in Collecting service
SQL documentation (Troubleshooting problems in Db2)

2. Collect the complete contents of the active RLF tables.
For example, use the following SELECT statements, where xx are the two-character identifiers that you
specified on the name of the active RLF tables:

SELECT * FROM DSNRLSTxx
SELECT * FROM DSNRLMTxx

3. If a dynamic SQL statement is not being limited by RLF, then generate a Db2 supervisor call (SVC)
dump when you expect the limit is exceeded.

4. If an SQL statement is limited improperly, generate a DSN1SDMP that is triggered by SQLCODE -905.

Related tasks
Requesting Db2 SVC dumps (Collecting data)
Related reference
Resource limit facility tables (Db2 Performance)
DSN1SDMP (Db2 Utilities)

Collecting data for problems with the EDM pool
If Db2 returns message DSNT500I with SQLCODE -904 and reason code 00C90089, collect data for
diagnosing EDM pool full conditions. EDM pool storage shortages might occur if there are too many
concurrent instances or too many result sets of a stored procedure.

Before you begin
To diagnose problems, you must have the appropriate authorization to collect data from different z/OS
components.

Procedure
To collect data to diagnose problems with EDM pool full conditions:
1. Collect the JES job log for the system services address space (ssnmMSTR).
2. Collect the LOGREC, which might contain messages that indicate the source of the problem.
3. Collect the SYSLOG data set, which might contain messages that indicate the source of the problem.
4. Generate a supervisor call (SVC) dump on the next occurrence of an EDM pool full condition, and

enable an internal EDM trace as part of the generated dump.

To do that, start a performance trace for IFCID 133 and IFCID 134 by issuing this command:

-START TRACE PERFM CLASS(30) IFCID(133,134)

Related concepts
SVC Dump (MVS Diagnosis: Tools and Service Aids)
Related tasks
Preserving the JES job logs for key Db2 address spaces (Collecting data)
Preserving LOGREC data (Collecting data)
Preserving the z/OS console (SYSLOG) (Collecting data)
Related reference
-START TRACE (Db2) (Db2 Commands)

Collecting data for distributed data facility problems
You can collect diagnostic data to diagnose distributed data facility (DDF) problems.

Chapter 8. Collecting diagnostic data 487

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_requestingsvcdumps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_resourcelimittables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1sdmp.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/svcdmp.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservingjesjoblogs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservinglogrec.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservingzossyslog.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_starttrace.html

Collecting data for a problem between a DRDA requester and server
Db2 trace data can be used to diagnose problems with the distributed data facility (DDF).

Before you begin
To diagnose DDF problems, you must have the appropriate authorization to collect data from different
z/OS components.

Procedure
Issue the appropriate START TRACE command for your situation:

• Start the Db2 performance trace:

-START TRACE (PERFM) CLASS(16) IFCID(165,180,184)

• For SQL problems, add class 3 to the performance trace:

-START TRACE (PERFM) CLASS(3)

• For DRDA exceptions, start statistics trace with class 4:

-START TRACE (STAT) CLASS(4)

• For authorization issues, start an audit trace with class 1 and 7:

-START TRACE (AUDIT) CLASS(1,7)

Related reference
-START TRACE (Db2) (Db2 Commands)

Collecting data for a DDF abend or DRDA exception
DDF abends and DRDA exceptions are indicated by DSNL messages. Information in messages DSNL032I
and DSNL027I might indicate the reasons for the abend or exception. Collect generated dumps, trace
records, and standard diagnostic information about Db2 and VTAM to diagnose the DDF abends and DRDA
exceptions.

Before you begin
To diagnose DDF problems, you must have the appropriate authorization to collect data from different
z/OS components.

Procedure
To collect diagnostic data for DDF abends and DRDA exceptions:
1. Collect any supervisor call (SVC) dumps that were generated at the time of the abend.
2. Collect the SYSLOG, which might contain messages that indicate the source of the problem.

Specifically, collect DSNL messages.
3. Collect the JES lob log, which might contain messages that indicate the source of the problem.

Specifically, collect DSNL messages.
4. Collect the LOGREC, which might contain messages that indicate the source of the problem.
5. Collect SMF Type 102 data with IFCID 0191 and 0192 from a Db2 statistics trace. Information in

message DSNL032I indicates the sequence number of the trace record to capture.
6. To capture trace records for exceptional conditions while Db2 is running:

-START TRACE(STAT) CLASS(4)

488 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_starttrace.html

Related concepts
SVC Dump (MVS Diagnosis: Tools and Service Aids)
Related tasks
Requesting Db2 SVC dumps (Collecting data)
Preserving the JES job logs for key Db2 address spaces (Collecting data)
Preserving LOGREC data (Collecting data)
Preserving the z/OS console (SYSLOG) (Collecting data)
Related reference
-START TRACE (Db2) (Db2 Commands)

Collecting data for a DDF hang
DRDA requesters excessively waiting for Db2 might indicate that DDF is hanging. Collect diagnostic data
that is similar to general Db2 hangs and information about your distributed environment.

Before you begin
To diagnose DDF problems, you must have the appropriate authorization to collect data from different
z/OS components.

Procedure
To collect data to diagnose DDF hangs:
1. Display the suspended Db2 threads before any dumps are generated by running the DISPLAY THREAD

command:

-DISPLAY THREAD(*) SERVICE(WAIT)

2. Capture a supervisor call (SVC) dump for your Db2 environment. Include the IRLM, VTAM, and TCPIP
address spaces in the JOBLIST of your DUMP command.

3. Collect the SYSLOG, which might contain messages that indicate the source of the problem.
4. Collect the LOGREC, which might contain messages that indicate the source of the problem.

Related concepts
SVC Dump (MVS Diagnosis: Tools and Service Aids)
Related tasks
Collecting data for a Db2 hang (Collecting data)
Requesting Db2 SVC dumps (Collecting data)
Preserving the JES job logs for key Db2 address spaces (Collecting data)
Preserving LOGREC data (Collecting data)
Preserving the z/OS console (SYSLOG) (Collecting data)

Collecting data for Db2 utility problems
Db2 utilities perform work in the ssnmDBM1 and utility address spaces. The type of data that you collect
to diagnose utility problems depends on the utility that you are running and the address space where it is
running.

About this task
Db2 utilities can run as batch jobs or they can be run by any of the following Db2-supplied stored
procedures:

• DSNUTILS
• DSNUTILU
• DSNUTILV

Chapter 8. Collecting diagnostic data 489

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/svcdmp.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_requestingsvcdumps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservingjesjoblogs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservinglogrec.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservingzossyslog.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_starttrace.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/svcdmp.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_cd4db2hang.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_requestingsvcdumps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservingjesjoblogs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservinglogrec.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservingzossyslog.html

Db2 utilities use z/OS multitasking and perform work in both the database services address space
(ssnmDBM1) and utility address spaces. In general, utility diagnostic information is needed from either
the database services address space (ssnmDBM1) or the utility address space.

Related concepts
WLM management of stored procedures (Db2 Installation and Migration)
Related reference
DSNUTILU stored procedure (Db2 SQL)
DSNUTILV stored procedure (Db2 SQL)

Collecting data for Db2 utility address spaces
To diagnose Db2 utility problems, collect Db2 utility address space and z/OS system diagnostic data.

Before you begin
To diagnose problems, you must have the appropriate authorization to collect data from different z/OS
components.

About this task
The following types of problems typically originate from the Db2 utility address space:

• Virtual storage availability issues that are identified by z/OS system code 878 with reason code 10
• Issues that are related to DFSORT SORT and MERGE functions of the utility
• Utility data set access issues
• Template code errors from the Db2 Utility parser

Procedure
Collect the following data to diagnose Db2 utility address space problems:

• The utility job log
• LOGREC data
• SVC dump data sets that were generated by the error
• The SYSLOG if a hardware-related issue is suspected
• DFSORT diagnostic data that is written to the SORTDIAG DD statement. To write to SORTDIAG , add the

following JCL to the utility job:

//SORTDIAG DD DUMMY

What to do next
Depending on the problem, more information might be requested by IBM Support. This information might
include:

• DDL for the table spaces, tables, and indexes
• SMF trace data
• Supervisor call (SVC) dump data sets that were generated by SLIP traps
• Db2 diagnose reports, which can be generated by running the following command:

DIAGNOSE DISPLAY MEPL (BEPL) report

Related concepts
Recording LOGREC error records (MVS Diagnosis: Tools and Service Aids)
SVC Dump (MVS Diagnosis: Tools and Service Aids)

490 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_wlmmanagementsp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sp_dsnutilu.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sp_dsnutilv.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/logds.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/svcdmp.htm

SYSLOG records (MVS Diagnosis: Tools and Service Aids)
Related reference
z/OS MVS System Code 878
z/OS MVS System Management Facilities (SMF)
DIAGNOSE (Db2 Utilities)
Related information
DFSORT Application Programming Guide

Collecting data for ssnmDBM1 utility problems
To diagnose Db2 utility problems, collect specific data from the database services address space
(ssnmDBM1).

About this task
Problems with Db2 utilities in the database services address space (ssnmDBM1) can involve a broad
range of components:

• z/OS
• DFSMS
• Db2 catalog
• Third-party software
• Hardware

Procedure
Collect the following data to diagnose problems with utilities in the database services address space
(ssnmDBM1):

• A description of the problem situation
• The utility job log output
• LOGREC data
• Generated SVC dump data sets
• ssnmDBM1 job log output
• ssnmMSTR job log output
• SYSLOG data
• Db2 catalog information from SYSIBM.SYSTABLEPART columns IPREFIX, AVGROWLEN, and PAGESAVE

What to do next
Depending on the problem, more information might be requested by IBM Support. This information might
include:

• Db2 diagnose reports
• Db2 internal trace reports from SMF or GTF
• CHECK INDEX, REPAIR DBD, DSN1COPY, and DSN1PRINT reports

Related concepts
Recording LOGREC error records (MVS Diagnosis: Tools and Service Aids)
SVC Dump (MVS Diagnosis: Tools and Service Aids)
SYSLOG records (MVS Diagnosis: Tools and Service Aids)
Related reference
z/OS MVS System Management Facilities (SMF)
DIAGNOSE (Db2 Utilities)

Chapter 8. Collecting diagnostic data 491

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/iea3v1_System_log.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieah700/m015281.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag200/abstract.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_diagnose.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.icea100/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/logds.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/svcdmp.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/iea3v1_System_log.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag200/abstract.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_diagnose.html

Collecting data for failures after a point-in-time recovery
If you have an inaccessible or incorrect data in a table space after a point-in-time recovery, collect
diagnostic information about your table space.

About this task
If a table space becomes inaccessible or incorrect output results

1. After you run REORG to complete recovery to a point in time
2. Before materialization of pending definition changes
3. Check the integrity of your subsystem to diagnose the cause

Procedure
To collect data to diagnose table space failures after a point-in-time recovery:

1. Save the output from the failed REORG TABLESPACE job.
2. Run REPAIR DBD DIAGNOSE to ensure that the catalog is consistent with the directory.
3. If you ran REPORT RECOVERY before you ran the point-in-time recovery, save the REPORT RECOVERY

output.
4. Examine the RECOVER output from the point-in-time recovery for error messages. Save that output.

Correct the errors, and run the RECOVER job again.
5. If the RECOVER completed successfully when you reran it in the previous step, run REORG

TABLESPACE again to complete the point-in-time recovery.
6. Examine the REORG TABLESPACE output from the previous step for error messages. Save that

output. Correct the errors, and run the REORG TABLESPACE job again.
7. If the REORG TABLESPACE job completed successfully when you reran it in the previous step,

run REPORT RECOVERY to determine whether the appropriate records were inserted into the
SYSIBM.SYSCOPY table by REORG TABLESPACE.

8. Issue a SELECT * FROM SYSIBM.SYSPENDINGDDL, statement, and save the results.
9. Run DSN1PRNT to dump the first few data pages of the table space, and validate the contents of the

data rows. Save the output.
10. Submit all saved output to IBM Software Support.

Related reference
RECOVER (Db2 Utilities)
REORG TABLESPACE (Db2 Utilities)
REPORT (Db2 Utilities)

Collecting data for IRLM problems
You can collect diagnostic data to diagnose internal resource lock manager (IRLM) problems. This
information can include supervisor call (SVC) dumps and other system data sets that are needed to
resolve Db2 locking problems.

Collecting data for IRLM child-lock delays
Issue the MODIFY command to collect diagnostic data when internal resource lock manager (IRLM)
processes are delayed during an operation that involves child-lock propagation.

Before you begin
To diagnose IRLM problems, you must have the appropriate authorization to collect data from different
z/OS components.

492 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_recover.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_report.html

About this task
In a data sharing environment, when child-lock propagation exceeds a time threshold, modify settings so
that a supervisor call (SVC) dump is created for the associated address spaces.

Procedure
To collect IRLM diagnostic trace information, use the following command in the z/OS console:

MODIFY irlmproc,DIAG,DELAY

Where irlmproc is the IRLM procedure name as identified in the IEFSSNxx member of the SYS1.PARMLIB
data set.

Results
The next time that the delay occurs, IRLM initiates dumps of the IRLM and Db2 address spaces to the
SYS1.DUMPxx data set.

Related tasks
Preserving the z/OS console (SYSLOG) (Collecting data)
Related reference
MODIFY irlmproc,DIAG (z/OS IRLM) (Db2 Commands)
Related information
IEFSSNxx (subsystem definitions) - keyword parameter form (MVS Initialization and Tuning Reference)

Collecting data for IRLM P-lock delays
Issue the MODIFY command to collect diagnostic data when the internal resource lock manager (IRLM)
processes are delayed during an operation that involves physical lock (P-lock) negotiation.

Before you begin
To diagnose IRLM problems, you must have the appropriate authorization to collect data from different
z/OS components.

About this task
In a data sharing environment, when P-lock negotiation exceeds a time threshold, modify settings so that
a supervisor call (SVC) dump is created for the associated address spaces. Message DSNT501I might be
issued to the z/OS console (SYSLOG), and SQLCODE -904 with reason code 00C20255 might be returned
to the application, indicating a P-lock cannot be obtained.

Procedure
To collect IRLM diagnostic trace information, use the following command in the z/OS console:

MODIFY irlmproc,DIAG,PLOCK

Where irlmproc is the IRLM procedure name as identified in the IEFSSNxx member of the SYS1.PARMLIB
data set.

Results
The next time that the delay occurs, IRLM initiates dumps of the IRLM and Db2 address spaces to the
SYS1.DUMPxx data set.

Related tasks
Preserving the z/OS console (SYSLOG) (Collecting data)

Chapter 8. Collecting diagnostic data 493

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservingzossyslog.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_modifyirlmprocdiag.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae200/iefssx.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservingzossyslog.html

Related reference
MODIFY irlmproc,DIAG (z/OS IRLM) (Db2 Commands)
Related information
IEFSSNxx (subsystem definitions) - keyword parameter form (MVS Initialization and Tuning Reference)
00C20255 (Db2 Codes)
DSNT501I (Db2 Messages)

Collecting data for IRLM hangs
Db2 uses the IRLM subsystem to control the locking of data. To diagnose IRLM waits and hangs, collect
IRLM supervisor call (SVC) dumps, SYSLOG, and LOGREC.

Before you begin
To diagnose IRLM problems, you must have the appropriate authorization to collect data from different
z/OS components.

About this task
The following messages might be displayed on the z/OS console (SYSLOG):

• DXR167E indicates that IRLM detected a hang. Diagnostic information must be collected before IRLM
no longer detects delayed processes.

• IXL040E with reference to the IRLM address space in CONNECTOR NAME, JOBNAME, and ASID
message tokens indicates that z/OS detected a possible hang with IRLM.

Procedure
To collect IRLM diagnostic information when a message indicates an IRLM hang:
1. Capture the IRLM SVC dump for your Db2 environment by setting up a SLIP trap.

• If you are not in a data sharing environment, set up and enable a SLIP trap to capture associated
SVC dumps:

SLIP SET,MSGID=message-id,ACTION=SVCD,ID=trapid,
JOBLIST=(irlmproc,ssnmMSTR,ssnmDBM1),
SDATA=(XESDATA,COUPLE,PSA,LSQA,LPA,GRSQ,RGN,CSA,SQA,SUM,TRT,ALLNUC),END

Where:

– message-id is the message that indicates the hang, (for example DXR167E or IXL040E)
– trapid is the trap identifier
– irlmproc, ssnmMSTR, ssnmDBM1 are the address spaces to be dumped

• If you are in a data sharing environment, set up and enable an SLIP trap to capture associated SVC
dumps:

SLIP SET,MSGID=message-id,ACTION=SVCD,ID=trapid,
JOBLIST=(XCF*,irlmproc,ssnmMSTR,ssnmDBM1),
SDATA=(XESDATA,COUPLE,PSA,LSQA,LPA,GRSQ,RGN,CSA,SQA,SUM,TRT,ALLNUC),
REMOTE=(JOBLIST,SDATA),END

Where:

– message-id is the message that indicates the hang, (for example DXR167E or IXL040E)
– trapid is the trap identifier
– XCF* is the value that you specify for the Cross System Coupling Facility name using wildcards
– irlmproc, ssnmMSTR, ssnmDBM1 are the address spaces to be dumped

2. Collect any abend dumps with JOBNAME ssnmIRLM for ABEND=S026, REASON=08118001.

494 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_modifyirlmprocdiag.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae200/iefssx.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/00c20255.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnt501i.html

3. Collect the SYSLOG, which might contain messages that indicate the source of the problem.
4. Collect the LOGREC, which might contain messages that indicate the source of the problem.

Related tasks
Preserving LOGREC data (Collecting data)
Preserving the z/OS console (SYSLOG) (Collecting data)
Related reference
z/OS SLIP command (MVS System Commands)
z/OS SLIP command SET parameters (MVS System Commands)
Message IXL040E (MVS System Messages)
Related information
DXR167E (IRLM messages and codes)

Collecting data for a Db2 hang
If Db2 seems to hang while processing, you can collect initial diagnostic information about your
environment.

Before you begin
To diagnose Db2 hang problems, you must have the appropriate authorization to collect data from
different z/OS components.

Procedure
To collect diagnostic data for Db2 hang problems:
1. Issue a DISPLAY THREAD command to display threads in a long-term suspend state. Refer to “Db2

commands for troubleshooting” on page 278 for information about the options of the DISPLAY
THREAD command to diagnose thread waits.

2. Capture a supervisor call (SVC) dump for your Db2 environment. Include all Db2 address spaces in the
JOBLIST of your DUMP command. Also, include the address space of any jobs in a long-term suspend
state that is waiting for Db2. In a data sharing environment, create a SLIP trap to capture address
spaces from remote Db2 members.

3. Collect the SYSLOG, which might contain messages that indicate the source of the problem. Ensure
this log contains information about the oldest waiting job.

4. Collect the LOGREC, which might contain messages that indicate the source of the problem. Ensure
this log contains information about the oldest waiting job.

5. Collect the JES job logs for key Db2 address spaces.

Related concepts
SVC Dump (MVS Diagnosis: Tools and Service Aids)
Related tasks
Requesting Db2 SVC dumps (Collecting data)
Requesting data sharing environment Db2 SLIP traps (Collecting data)
Preserving the z/OS console (SYSLOG) (Collecting data)
Preserving LOGREC data (Collecting data)
Preserving the JES job logs for key Db2 address spaces (Collecting data)

Chapter 8. Collecting diagnostic data 495

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservinglogrec.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservingzossyslog.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag100/slip.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag100/slpsetp.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieama00/m010487.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/irlm/src/tpc/dxr167e.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/svcdmp.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_requestingsvcdumps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_requestingslpsysplexdumps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservingzossyslog.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservinglogrec.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_preservingjesjoblogs.html

Collecting data for SQL data definition language statement errors
If an error occurs processing an SQL data definition language statement such as CREATE or ALTER, collect
the job output and all data definition language statements that are needed to re-create the objects that
are involved in your Db2 environment.

Before you begin
To diagnose data definition language statement errors, you must have the appropriate authorization to
collect data from different z/OS components.

Procedure
Collect the following data to diagnose data definition language statement errors:

• A copy of the job output with the failing SQL statement, and service SQL information for the statement,
as described in Collecting service SQL documentation (Troubleshooting problems in Db2).

• A copy of the complete SQLCA returned to your application
• Data definition language statements to re-create the query environment.
• A DSN1COPY of the catalog data if requested by IBM Support
• Output of the REPAIR DBD TEST or REPAIR DBD DIAGNOSE utility if requested by IBM Support

Related tasks
Repairing DBDs (Db2 Utilities)
Related reference
The included SQLCA (Db2 SQL)

Collecting data for RDS problems
To analyze a Db2 RDS problem, IBM Support might request several types of data.

In a situation with both a "good" and "bad" scenario, include data from both.

When the data is requested as "hardcopy", print the data on paper. When the data is requested as
"softcopy", put the data on a cartridge or tape. For the DDL and DML the preferred format is fixed block,
LRECL 80 or 132.

Class 1 data - always needed
A complete copy of the problem query

It is important that this information is an exact, unmodified copy of the query that is causing the
problem. If there are host variables in the query, they should be left in the query. Include a hardcopy
and a softcopy.

Values that are used for any host variables in the query
Include a hardcopy.

Service SQL documentation for the query
The service SQL documentation includes DDL statements for relevant objects, EXPLAIN records for
the SQL statement, and relevant catalog statistics in a standard format for analysis by IBM software
support. For instructions, see Collecting service SQL documentation (Troubleshooting problems in
Db2).

Buffer pool sizes (specified in IFCID 0202)
Include a hardcopy.

CPU model
Include a hardcopy.

496 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_userepairdbdstatement.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_theincludedsqlca.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html

A count of the number of rows that are returned from the query
Include a hardcopy.

DBRMs for static applications
Include a softcopy.

Class 2 data - might be needed
Performance summary report. The preferred report is the Db2 PM accounting summary report. However,
if Db2 PM is not available, a summary report from a different performance monitor can be used. Include a
hardcopy.

Class 3 data - might be needed
A complete, unformatted storage memory dump at a specified module or at the failure point. An IBM
support person can provide more details about how to generate a storage memory dump.

Class 4 data - might be needed
Performance trace of the problem query. The following start command is the most common type of trace.
An IBM support person might ask that different trace classes be turned on.

 -START TRACE(PERFM) CLASS(1,2,3,6,8,9,10,32) IFCID(135,136,186)
 RMID(*) DEST(GTF) TDATA(COR,CPU) AUTHID(AUTHID)
 PLANID(PLANID)

DEST(SMF) can be used. The trace must be unformatted. Include a softcopy.

Class 5 data - might be needed
A DSN1COPY of all table spaces and index spaces that are involved in the query, including DDL for all
tables that are defined in the table spaces and all DBID, PSID, and OBID information. Include a softcopy.

Collecting data for a cached dynamic statement that blocks another
statement with reason code 00E70081

A data definition (DDL) statement can fail because a statement in the dynamic statement cache is also
using an object that the data definition statement is modifying. You can collect trace data to determine
the cached statement that is causing the problem.

About this task
If you receive SQLCODE -904 with reason 00E70081 and resource type 00001202 from DSNXIDMH
during the execution of a data DDL statement, the DDL statement references an object that is also
referenced by a prepared dynamic SQL statement that is currently stored in the dynamic statement cache
and in use by an application.

The resource name is the statement identifier for the prepared statement in the dynamic statement
cache. If the application is running in a data sharing environment, the resource name has the form
member-name.statement-name, where member-name identifies data sharing member.

The DDL statement causes Db2 to mark the blocking statement invalid, so the blocking statement is
not returned by EXPLAIN STMTCACHE ALL, which only returns valid cached statements. However, even
though it is marked invalid, the cached statement can continue to block the DDL statement because
metadata for an application remains active until the transaction completes.

Chapter 8. Collecting diagnostic data 497

Procedure
You can use one of the following methods to obtain information about the cached statement that is using
the object that the DDL statement is modifying:
• Use an IFI READS for IFCID 316 to obtain information about the cached statement.

This option is best because it provides real-time diagnostic information, and cached dynamic
statement usage can change after a short time. The IFI READS retrieves all the cached statements and
reports them. Using a monitoring application or tool is the better option, especially if the statements
that are causing SQLCODE -904 are in the cache for a short time.

For more information about writing a monitoring application, see Monitoring the dynamic statement
cache with READS calls (Db2 Performance).

Also, you can use monitor programs such as IBM OMEGAMON for Db2 Performance Expert on z/OS
to dump the cache contents. See Viewing the SQL statements in the dynamic SQL cache (Tivoli
OMEGAMON XE for Db2 Performance Expert on z/OS).

For a complete description of the fields in an IFCID 316 record, see the DSNWMSGS file.
• Generate dumps by using the DSN1SDMP utility and a SLIP command on other data sharing members,

by completing the following steps:
a) Under the guidance of IBM Support, you can run the DSN1SDMP utility to generate a dump when

SQLCODE -904 with reason code 00E70081 occurs.
For example, you can run the following DSN1SDMP job on the member where you execute the DDL
statement:

//SDMPIN DD * START TRACE=P CLASS(32) IFCID(340) DEST(SMF) TDATA(TRA)
AFTER(1)
FOR(1)
ACTION(ABENDTER(00E60194))
SELECT P4,00
* COMPARE FOR 340 IFCID
DR,04,X'0154'
* POSITION TO SECOND SECTION (1ST DATA SECTION)
P4,08
* COMPARE QW0340_MODNAME to DSNXIDMH
DR,6,C'DSNXIDMH'
* COMPARE SQLCODE FOR -904
DR,16,X'FFFFFC78'
/*

b) Because the resource might be used by statements on other members, also set a SLIP trap on the
dump to be generated by DSN1SDMP with the REMOTE option to take dumps on all data sharing
members.
For example, you can issue the following SLIP SET command on the same member where you set
the DSN1SDMP. Change ssnm to the Db2 subsystem name.

SLIP SET,ID=IDMH,C=04E,DATA=(15R,EQ,00E60194),ACTION=SVCD,
JOBLIST=(XCFAS,ssnmIRLM,ssnmMSTR,ssnmDBM1),
SDATA=(XESDATA,COUPLE,PSA,LSQA,LPA,GRSQ,SWA,RGN,CSA,SQA,SUM,TRT,ALLNUC),
ML=1,REMOTE=(JOBLIST,SDATA,DSPNAME),END

Because Db2 only stores information such as the statement text and number of current users of the
statement, you must identify the application or thread that is using the statement separately.

Related tasks
Monitoring the dynamic statement cache with READS calls (Db2 Performance)
Related reference
DSN1SDMP (Db2 Utilities)
Viewing the SQL statements in the dynamic SQL cache (Tivoli OMEGAMON XE for Db2 Performance Expert
on z/OS)
z/OS SLIP command (MVS System Commands)
Related information
00E70081 (Db2 Codes)

498 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_monitordynamicsqlreads.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_monitordynamicsqlreads.html
https://www.ibm.com/support/knowledgecenter/en/SSUSPA_5.4.0/com.ibm.omegamon.xe.pm_db2.doc_5.4.0/ko2mp/viewsql.htm
https://www.ibm.com/support/knowledgecenter/en/SSUSPA_5.4.0/com.ibm.omegamon.xe.pm_db2.doc_5.4.0/ko2mp/viewsql.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_monitordynamicsqlreads.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_dsn1sdmp.html
https://www.ibm.com/support/knowledgecenter/en/SSUSPA_5.4.0/com.ibm.omegamon.xe.pm_db2.doc_5.4.0/ko2mp/viewsql.htm
https://www.ibm.com/support/knowledgecenter/en/SSUSPA_5.4.0/com.ibm.omegamon.xe.pm_db2.doc_5.4.0/ko2mp/viewsql.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag100/slip.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/00e70081.html

-904 (Db2 Codes)

Chapter 8. Collecting diagnostic data 499

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/n904.html

500 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Chapter 9. Preparing data sets with program objects
for transfer to IBM Support

When IBM Support asks you to provide Db2 data sets that contain program objects, you can either pack a
copy of the contents and send them, or use the AMAPDUPL utility to prepare and send the contents.

About this task
IBM Support might ask you to provide them with Db2 partitioned data sets that contain program objects,
such as the prefix.SDSNLOAD data set. You cannot use a pack utility directly on those data sets.

You can use either of the following methods to pack and transfer a partitioned data set that contains
program objects:

• Use the procedure described below to pack a copy of the data set, and use FTP to transfer it IBM
Support.

• Use the AMAPDUPL utility to prepare and send the contents of the data set to IBM Support. When
you use AMAPDUPL, you do not need to pack the contents of the data set. See the AMAPDUPL
documentation for usage information and examples.

Procedure
To pack the contents of a partitioned data set that contains program objects and transfer the contents to
IBM Support, follow these steps.
1. Use the IEBCOPY or DFDSS utility to copy the contents of the data set to a sequential data set.
2. Use a utility such as the AMATERSE utility to pack the data set copy that you created in step “1” on

page 501.
3. FTP the packed data set to IBM Support.

Example: Pack the contents of the DSN1210.SDSNLOAD data set

Use JCL similar to this example to copy the contents of the DSN1210.SDSNLOAD data set to sequential
data set DSN1210.SDSNLOAD.IEBCOPY.

//JOBSTEP EXEC PGM=IEBCOPY
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//IN1 DD DSN=DSN1210.SDSNLOAD,DISP=SHR
//OUT1 DD DSN=DSN1210.SDSNLOAD.IEBCOPY,
// DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(900,300),RLSE),
// RECFM=FB,LRECL=80,DSORG=PS
//SYSUT3 DD UNIT=VIO,SPACE=(TRK,(10,10))
//SYSUT4 DD UNIT=VIO,SPACE=(TRK,(10,10))
//SYSIN DD *
 COPY INDD=IN1,OUTDD=OUT1
/*

Suppose that you are sending data for case number TS123456789 to IBM Support. Use JCL similar to this
example to pack the contents of the DSN1210.SDSNLOAD.IEBCOPY data set before you transfer it to IBM
Support.

//STEPNAME EXEC PGM=AMATERSE,PARM='PACK'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=DSN1210.SDSNLOAD.IEBCOPY
//SYSUT2 DD DSN=TS123456.789.SDSNLOAD.IEBCOPY.TRS,
// SPACE=(TRK,(1,1000),RLSE),
// UNIT=3390,DISP=(NEW,CATLG,DELETE)

© Copyright IBM Corp. 1983, 2024 501

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/pftp.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/terse.htm

Related information
AMATERSE: Pack and unpack a data set
AMAPDUPL: Problem Documentation Upload Utility

502 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/terse.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/pftp.html

Chapter 10. Contacting IBM Support about Db2
problems

If you are unable to successfully troubleshoot a problem in Db2 and you cannot find an existing fix, you
might need to contact IBM Support for assistance.

Before you begin
Before contacting IBM Support, check whether a fix or solution already exists for your problem. See
Chapter 2, “Searching the IBM Support site for known problems and solutions,” on page 3. For a list of
fixes available for Db2 for z/OS, see the IBM Support page for Db2 for z/OS.

Also, your company must have an active IBM Support subscription and support contract, and you must be
authorized to submit problems to IBM Support. For information about the types of available support, see
Support Portfolio.

Procedure
To contact IBM Support about Db2 problems:
1. Define the problem, gather background information, and determine the severity of the problem.
2. Collect appropriate diagnostic data for the type of problem that you are reporting. You can collect the

diagnostic data manually or automatically, depending on the data.
Diagnostic data can help reduce the time for resolving your Db2 problem. For example, having access
to relevant messages, error codes, log data, trace output, or dump output can speed the resolution
process. For more information, see Collecting diagnostic data (Collecting data).

3. Contact IBM Support by opening a case at https://www.ibm.com/mysupport/s/.
You can expect to provide the following information:

• Your customer number
• Current service level (PTF list and list of APAR fixes applied)
• Processor number (serial—model)
• Keyword string that is used to search the IBM Support database

4. Send the diagnostic data to IBM Support, as described in “Sending diagnostic data to IBM Support” on
page 503.

5. If directed by IBM Support, download data from IBM Support as described in “Receiving information
from IBM Support” on page 504.

What to do next
If IBM Support determines that an authorized program analysis report (APAR) is necessary to resolve your
problem, you might need to apply the PTF for the APAR. For more information, see “Getting fixes” on page
51.

Sending diagnostic data to IBM Support
For IBM Support to diagnose or identify a problem, you might need to provide diagnostic data and other
information from your system.

Before you begin
If you have not already done so, you must create an IBM Support File Transfer ID with your IBM ID. For
details, see Support File Transfer Details. Only secure transfer protocols, such as SFTP, HTTPS, MTFTP are
supported.

© Copyright IBM Corp. 1983, 2024 503

https://www.ibm.com/support/home/product/Z736916P90323T50/DB2_for_z/OS
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/offerings.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectingdata4db2zos.html
https://www.ibm.com/mysupport/s/
http://public.dhe.ibm.com/SupportFileTransferDetails.html

Procedure
1. Collect diagnostic data for the type of problem that you are reporting or as requested by IBM Support,

as described in Collecting diagnostic data (Collecting data).
2. If the diagnostic data includes SVC dumps captured on IBM z15 or later processors, you can redact

buffer pool data in the dump. For more information, see Redacting buffer pool data in SVC dumps for
data privacy (Troubleshooting problems in Db2).

3. Compress the data and name the files according to the naming convention, as described in ECuRep:
Prepare data.

4. Use one of the following secure methods to submit the data to IBM Support:

• If you use IBM Blue® Diamond, see Blue Diamond Help: Secure FTP.
• Otherwise, use a secure method to submit the data to the Enhanced Customer Data Repository

(ECuRep), as described in ECuRep: Send data.

For JCL examples, see JCL examples for PDUU. When you modify the JCL examples for your
environment, apply the following changes:

– For USERID, specify the Secure File Transfer ID that you created in the transfer ID generation
app.

– For PASSWORD, specify the password that was generated with the Secure File transfer ID.
– Specify the server that is closest to your physical location:

Region TARGET_SYS=

Americas testcase.boulder.ibm.com

Asia Pacific ftp.ap.ecurep.ibm.com

Europe ftps.ecurep.ibm.com

– Specify DIRECTORY=/toibm/im.
– Do not specify a CIPHER_KEY value. Separate encryption of the files is unnecessary because

secure transfer methods are always used.

Tip: Server-side values are case sensitive.

Receiving information from IBM Support
IBM Support might ask you to download diagnostic tools or other files to help solve your problem.

Before you begin
If you have not already done so, you must create an IBM Support File Transfer ID with your IBM ID. For
details, see Support File Transfer Details. Only secure transfer protocols, such as SFTP, HTTPS, MTFTP are
supported.

About this task
IBM Support might ask you to download diagnostic tools or other files.

Procedure
To download files from IBM Support:
1. Connect to the server by using the information that IBM Support provides.
2. Change to the generated directory name that IBM Support provides.

cd fromibm/generated-directory-name

3. Enable binary mode for your session.

504 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectingdata4db2zos.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_redactdumps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_redactdumps.html
https://www.ibm.com/support/pages/enhanced-customer-data-repository-ecurep-prepare-data
https://www.ibm.com/support/pages/enhanced-customer-data-repository-ecurep-prepare-data
https://msciportal.im-ies.ibm.com/help/#configure-zOS
https://www.ibm.com/support/pages/node/739401
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieav100/jclex.htm
https://www.secure.ecurep.ibm.com/transferids
https://www.secure.ecurep.ibm.com/transferids
http://public.dhe.ibm.com/SupportFileTransferDetails.html

binary

4. Use the get command to download the file that IBM Support specified.

get filename.extension

5. End the session.

quit

Example

The following sample job downloads sample files from IBM:

//FTPGETIT EXEC PGM=FTP,PARM='testcase.boulder.ibm.com (EXIT'
//SYSFTPD DD DISP=SHR,DSN=tcpip.ftps.data.testcase For Secure FTP
//OUTPUT DD SYSOUT=*
//AI12345 DD DISP=(,CATLG),UNIT=SYSDA,DSN=&SYSUID..FIX.AI12345,
// DSORG=PS,RECFM=FB,BLKSIZE=3120,LRECL=80,SPACE=(CYL,(1,1))
//AI56789 DD DISP=(,CATLG),UNIT=SYSDA,DSN=&SYSUID..FIX.AI56789,
// DSORG=PS,RECFM=FB,BLKSIZE=3120,LRECL=80,SPACE=(CYL,(1,1))
//*
//* NOTE: Clear sequence numbers in columns 73-80.
//* FTP Server-side values are Case-Sensitive.
//*
//INPUT DD *
 your-user-ID
 your-password
 cd /fromibm/generated-directory-name/
 bin
 get AI12345.HDBAA10 //DD:AI12345
 get AI56789.HDBAA10 //DD:AI56789
 quit
/*

Chapter 10. Contacting IBM Support about Db2 problems 505

506 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Information resources for Db2 for z/OS and related
products

You can find the online product documentation for Db2 12 for z/OS and related products in IBM
Documentation.

For all online product documentation for Db2 12 for z/OS, see IBM Documentation (https://
www.ibm.com/docs/en/db2-for-zos/12).

For other PDF manuals, see PDF format manuals for Db2 12 for z/OS (https://www.ibm.com/docs/en/
db2-for-zos/12?topic=zos-pdf-format-manuals-db2-12).

© Copyright IBM Corp. 1983, 2024 507

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/home/src/tpc/db2z_12_prodhome.html
https://www.ibm.com/docs/en/db2-for-zos/12
https://www.ibm.com/docs/en/db2-for-zos/12
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/db2-for-zos/12?topic=zos-pdf-format-manuals-db2-12
https://www.ibm.com/docs/en/db2-for-zos/12?topic=zos-pdf-format-manuals-db2-12

508 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785 US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

© Copyright IBM Corp. 1983, 2024 509

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as shown below:

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. (enter the year or years).

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
This information is intended to help you diagnose problems in a Db2 12 for z/OS environment. This
information also documents General-use Programming Interface and Associated Guidance Information
and Product-sensitive Programming Interface and Associated Guidance Information provided by Db2 12
for z/OS.

General-use Programming Interface and Associated Guidance Information
General-use Programming Interfaces allow the customer to write programs that obtain the services of
Db2 12 for z/OS.

General-use Programming Interface and Associated Guidance Information is identified where it occurs by
the following markings:

GUPI General-use Programming Interface and Associated Guidance Information… GUPI

Product-sensitive Programming Interface and Associated Guidance Information
Product-sensitive Programming Interfaces allow the customer installation to perform tasks such as
diagnosing, modifying, monitoring, repairing, tailoring, or tuning of this IBM software product. Use of such
interfaces creates dependencies on the detailed design or implementation of the IBM software product.
Product-sensitive Programming Interfaces should be used only for these specialized purposes. Because
of their dependencies on detailed design and implementation, it is to be expected that programs written
to such interfaces may need to be changed in order to run with new product releases or versions, or as a
result of service.

Product-sensitive Programming Interface and Associated Guidance Information is identified where it
occurs by the following markings:

Product-sensitive Programming Interface and Associated Guidance Information...

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered marks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks

510 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

of IBM or other companies. A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at: http://www.ibm.com/legal/copytrade.shtml.

Linux® is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions:

Applicability: These terms and conditions are in addition to any terms of use for the IBM website.

Personal use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Rights: Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies”

Notices 511

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details

and the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

512 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy

Glossary

The glossary is available in IBM Documentation

For definitions of Db2 for z/OS terms, see Db2 glossary (Db2 Glossary).

© Copyright IBM Corp. 1983, 2024 513

https://www.ibm.com/docs/en/SSEPEK_12.0.0/glossary/src/gloss/db2z_gloss.html

514 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Index

Numerics
00C9009F abend 174
00C90101 abend 35, 344
00C90102 abend 35, 344
00C90105 abend 35
00C9010x abend 333, 341
00C9011x abend 342, 344
00C902xx abend 35, 344

A
abend

00C90101 35, 344
00C90102 35, 336
00C90105 35
00C9010x 333, 341
00C9011x 342, 344
00C902xx 35, 333, 341, 344
AEY9 62
ASP7 62
backward log recovery 98
CICS

abnormal termination 62
scenario 66
waits 62

current status rebuild 85
DXR122E 53
forward log recovery 93
IMS

procedure 58
scenario 60, 61
U3047 60, 61
U3051 60, 61

IRLM
scenario 53

log
damage 80
lost information 103

log initialization phase 83
page problems 102
restarting 83
SQLCODE -923 67
VVDS (VSAM volume data set)

destroyed 121
out of space 121

ABEND
subcommand of DSN 281

ABENDx keyword 14
access method services

ALTER command 122
commands

DEFINE 102
IMPORT 102
REPRO 78

damaged bootstrap data set (BSDS)
deleting 76

access method services (continued)
damaged bootstrap data set (BSDS) (continued)

renaming 76
damaged BSDS (bootstrap data set)

deleting 76
renaming 76

table spaces
re-creating 102

access path performance problems
collecting diagnostic data 476
Db2 performance 476, 478, 479, 481, 485–489

accessibility
keyboard xi
shortcut keys xi

ACFTAP option
buffer trace formatting 309
VTAM IO trace 309

active log data sets
stopping

effects 72
active logs

gaps
creating 105

out-of-space conditions 69
recovering 69
troubleshooting 69

address space
home 194, 279
primary 194, 279
secondary 194, 279

ALTER command
access method services 122

analyze dumps 179
analyze traces 236
analyzing inconsistencies using SVC dump 336
application changes

backing out
with quiesce point 56

application errors
backing out

without a quiesce point 57
application program

monitor trace 237
application programs

errors 56
recovery procedures

CICS 62
IMS 60, 61

running
error recovery 56

archive log data sets
recovering 73

ASCB (address space control block,
z/OS)

in SVC dumps 195
ASCE (address space control element)

captured in SVC dump 196

Index 515

ASCE (address space control element) (continued)
finding in dump 208

ASCESCOM field 208
ASID (address space identifier)

in MEPL 209
in SYS1.LOGREC 224

authority
problems 274

B
backward log recovery phase

failures
recovering 98

batch utility MEPL 211
BM (buffer manager)

finding in a dump 341
BMEPL

finding in dump 211
illustration 211

BSDS (bootstrap data set)
dual recovery 78
failure symptoms 80
recovery procedures 76
recovery scenarios 101
restoring

from archive logs 78
single recovery 78

buffer trace formatting
ACFTAP option 309

C
CAB (call attachment facility control block)

traces 251
CAF (call attachment facility)

finding trace table 251
interpreting trace messages 251
producing trace messages 250
trace 250

call attachment facility
trace messages 450

catalog tables, DB2
consistency between 274
diagnosis 274

catalogs
Db2

recovery procedures 119
CCSID problems

DB2 unexpected results 479
change number of sessions (CNOS) 130
CHECK option (DSN1COPY) 174, 342
CICS

operating
terminates AEY9 67

recovery procedures
application failures 62
attachment facility failures 66
CICS not operational 62
DB2 connection failures 63
indoubt units of recovery 64

CNOS (change number of sessions)
failures 130

cold start
bypassing the damaged log 81
special situations 103

collecting data
service SQL 473

collecting diagnostic data
accelerator problems 481
address spaces, key 471
data definition language errors 496
Db2 attach problems

programming interface 482
Db2 data manager 485
Db2 data space manager 484
Db2 dump data sets 471
Db2 hangs 495
Db2 logs 471
Db2 packing data sets 501
Db2 performance

access path performance problems 476, 478, 479,
481, 485–489
general performance problems 475

Db2 problems
DB2 utilities 489
IRLM 492
performance 477, 484, 487

Db2 unexpected results
CCSID problems 479

Db2 utilities
database services address space (ssnmDBM1) 491
failure after point-in-time recovery 492
utility address space 490

Db2 XML 484
dump data sets, automatic updates 467
dump data sets, DB2 471
factors to consider

component-specific problems 469
performance, slow 469
wait situation 469

incorrect SQL results 477
IRLM problems

child-lock delay problems 492
hang problems 494
P-lock delay problems 493

JES job logs 471
LOGREC data 470
logs, DB2 471
Managing Db2 operations

resource limit facility problems 486
master trace, increasing storage capacity 466
overview 465
preserving 469
setting up z/OS 465
SLIP traps for data sharing environments 469
SLIP traps, requesting 472
SQL abend 478
SQLCODE

unexpected SQLCODE 482
SVC dumps, increasing storage capacity 467
SVC dumps, requesting 472
SVC dumps, setting up customized 468
SYS1.LOGREC data 470
SYSLOG 470
z/OS console (SYSLOG) 470
z/OS console (SYSLOG), preserving 470

516 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

collecting diagnostic data (continued)
z/OS system trace, maximizing 466

communications failure
scenarios 163

component identifier keyword 10
conditional restart

control record
backward log recovery failures 99
current status rebuild failures 91
forward log recovery failures 97
log initialization failures 91

excessive loss of active log data 105
total loss of log 104

CONN-ID 333
connections

IDs
identifying a unit of recovery 56

consistency groups 157
control status events

IMS attachment facility 255
trace

IMS table contents 255
conversion error 274
CORR-ID 333
correlation IDs

CICS 64
duplicates 64

CSECT
keyword 35
name, finding in dump 210
SVC dump 14, 27

CT (cursor table)
content 213
finding in dump 213, 214

CTERQUAL 200, 224
CTRACE

description 266
example 267

CTRDSP field 216
current status rebuild

failure recovery 83

D
damaged data

data page 337
index page 340
resolving data and index inconsistencies 341

DASD
problems 274

data
inconsistencies

resolving 108
limiting access to 177
restoring 133
unavailable 174

data inconsistency problems
causes 173
description 173
resolving with REBUILD INDEX 341
resolving with RECOVER 341
symptoms

00C9011x abend 342
symptoms and actions 173

data inconsistency problems (continued)
types 173

data mirroring
recovery 156, 158

data page
analyzing 337
illustration 337

data page header (PGHEAD) 337
data sets

adding 122, 124
extending 122

data sharing
environment 283
problem diagnosis

hangs 283
inconsistent data 285
IRLM delays 284
timeouts, deadlocks 284

data sharing environments, SLIP traps for 469, 472
database name 341
database services address space (ssnmDBM1)

Db2 utilities 491
databases

access threads
failures 128
security failure 132

recovering
failure scenarios 112

Db2 catalog
recovery procedure 119

Db2 commands 278
DB2 dump data sets

preserving 471
Db2 logs

preserving 471
Db2 performance

Db2 problems 477, 484, 487
Db2 programming interface

Db2 attach problems 482
DB2 subsystem

restarting
log truncation 86
resolving inconsistencies 92

starting 94
termination scenario 67

Db2-managed data sets
enlarging 124

DBD (database descriptor)
analyzing 347
hierarchic structure 347
inconsistencies, resolving 342
locating in dump 344
OBDDMAP 347
obtaining dumps of 343

DDF (distributed data facility)
failures

recovering 126
DDF error messages

analyzing 292
DEFINE command

access method services
re-creating table spaces 102

DELETE command
access method services 102

Index 517

DFSMShsm (Data Facility Hierarchical Storage Manager)
FRBACKUP PREPARE command 160

diagnosis with utilities 276
diagnostic area in SVC dump 333
diagnostic data

address spaces, key 471
collecting 465
data definition language errors 496
Db2 attach problems

programming interface 482
Db2 dump data sets 471
Db2 hangs 495
Db2 logs 471
Db2 operations

resource limit facility problems 486
Db2 packing data sets 501
Db2 performance

access path performance problems 476, 478, 479,
481, 485–489
general performance problems 475

Db2 problems
DB2 utilities 489
IRLM 492
performance 477, 484, 487

DB2 problems
accelerator 481

Db2 unexpected results
CCSID problems 479

Db2 utilities
database services address space (ssnmDBM1) 491
point-in-time recovery 492
utility address space 490

Db2 XML 484
deadlock failures 485
DFSMS VSAM 484
dump data sets, automatic updates 467
dump data sets, DB2 471
factors to consider

component-specific problems 469
performance, slow 469
wait situation 469

incorrect SQL results 477
IRLM problems

child-lock delay problems 492
hang problems 494
P-lock delay problems 493

JES job logs 471
LOGREC data 470
logs, DB2 471
master trace, increasing storage capacity 466
preserving 469
setting up z/OS 465
SLIP traps for data sharing environments 469
SLIP traps, requesting 472
SQL abend 478
SQLCODE

unexpected SQLCODE 482
SVC dumps, increasing storage capacity 467
SVC dumps, requesting 472
SVC dumps, setting up customized 468
SYS1.LOGREC data 470
SYSLOG 470
SYSLOG, preserving 470
z/OS console (SYSLOG) 470

diagnostic data (continued)
z/OS system trace, maximizing 466

diagnostic documentation
service SQL 473

diagnostics
DRDA exceptions 316

directory
order of recovery

I/O errors 119
disability xi
disaster recovery

archive logs 133, 138
data mirroring 156
image copies 133, 138
rolling disaster 156
scenarios 132
system-level backups 133
tracker sites 147

DISPLAY DATABASE(*) RESTRICT 177
DISPLAY OASN command

IMS 58
DISPLAY SPUFI 280
DISPLAY THREAD command

TYPE (INDOUBT) option 64
distributed data facility

"hangs" during processing 296
commands

CANCEL DDF THREAD 296
D NET,BFRUSE 302
D NET,ROUTE 299
DISPLAY THREAD DETAIL 296
DISPLAY THREAD(*) DETAIL 299
VTAM TERMINATE 296

DDF dumps 291
DDF serviceability trace 291
diagnosing

failures 291
loops 301
waits 291

distributed SQL application flow
TCP/IP connection 292
VTAM connection 291

error messages on the z/OS console
292
error unique to DDF 291
gathering diagnostic information 291
global trace 246
looping

VTAM internal trace 301
problem determination procedures 297
SNA

pacing 291
storage shortage 302
terminating a session 296
VTAM

buffer trace 308
common service area 297
internal trace 312
paging 299
path information units (PIU) 306
request unit (RU) 307
request/response header 306
return codes 292
session identifier 296

518 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

distributed data facility (continued)
VTAM (continued)

traces 305
transmission header 306

Distributed data facility
diagnosing

waits 25
distributed environment

restart conditions 107
restarting

DB2 subsystem 107
distributed relational database architecture (DRDA)

Db2 reason codes 315
DDM model 316
diagnosis

database server 315
requester 315

distributed data interchange services RDTA structure
321
distributed data interchange services ZEDAstructure
322
early descriptor LID 317
Early descriptors 316
exception condition 314
exception event notification 314
FDOCA

descriptors, local identifier (LID) 316
model 316

late descriptors 317
object descriptors 316
statistics class 4 316
trace records

IFCID 0191 315, 322
IFCID 0192 315, 328
IFCID 0193 315, 328
IFCID 0194 315
IFCID 0195 315

distributed two-phase commit
alerts 329
error conditions 329
statistics class 4 329
trace records

IFCID 0203 329
down-level detection

controlling 116
DSNTIPN panel 116

down-level page sets
recovering 116

DSN command processor 262
DSN subcommmands

ABEND 281
DSN1 value 224
DSN1COPY dump

using to resolve inconsistency 336
DSN1COPY utility

CHECK option 177
log RBA

resetting 110
DSN1LOGP utility

examples 88
limitations 110
lost work

showing 80
output 90

DSN1PRNT dump
using to resolve inconsistency 335, 336

DSN2 value 224
DSN3AUFR

VRA data recorded by 235
DSN9SCN9

VRA data recorded by 224
DSNDB07 database

data sets
extending 125

DSNGDxxx module
SVC dump 343

DSNLFRCV
VRA data recorded by 224

DSNSDWA 224
DSNTFRCV

VRA data recorded by 224
DSNTIPN panel

LEVEL UPDATE FREQ field 116
DSNTRACE 262
DSNTRACE messages 250
DSNU259I 342
DSNU500I 342
DSNV086E 18
DSNWDMP

gathering information from (SVC) 194
option keywords 181
volatile data 181

DSNWDSDM
VRA data recorded by 224

DSNWMSGS file 250
DSNWSDWA

VRA data recorded by 227
dump

Db2-issued SVC
analyzing 194

DBDs, of
obtaining 343

DSN1COPY (using to resolve inconsistency) 335, 336
DSN1PRNT (using to resolve inconsistency) 335, 336
finding

ASCE 208
BMEPL 211
CSECT name 210
CT 213
EB 205
load module name 209
MEPL 207
save area trace 206
SCOM 208
SQL statement 216
SQLCA 214
TCB summary 204
VRA report 203

IRLM data set 282
IRLM SVC 272
Print Dump Index 201
REPAIR (using to resolve inconsistency) 335, 336
sample

RTM2WA summary 223
SQLCA, unformatted 215
SVC title 197
SYSUDUMP 222

SUMDUMP Dump Index 201

Index 519

dump (continued)
SVC 194
SYS1.LOGREC data 180
TCB summary section 180
title format, Db2-issued SVC

data manager variation 198
distributed title variation 198
format for database access threads 197
format for threads with no remote activity 197
format for threads with remote activity 197
variation with PSW and ASID 198

trace code in SVC dump
finding in SVC dump 336

types 179
dump data sets

automatic updates 467
preserving 471

dump title
IRLM-issued 200

dynamic statement cache
problem diagnosis 497

E
EB (execution block)

address of failing EB 243
finding in dump 205

EBHASCE field 208
EBPASCE field 208
EBRMVT field 217
EDM pool space

diagnosing 272
EDM pool space shortage 274
EID (event identifier)

description 359
SDSNSAMP(DSNWEIDS) 359

EID descriptions 359, 360
error qualifier 200
ESTAE

established by IMS 258
event identifier (EID) 359

F
failure symptoms

abend
log problems 98
restart failure 93

BSDS (bootstrap data set) 80
CICS

attachment abends 63
task abends 66
waits 62

logs
lost information 103

messages
DFH2206 62
DFS555 60, 61
DSNB207I 112
DSNJ 101
DSNJ001I 77
DSNJ004I 71
DSNJ100 101

failure symptoms (continued)
messages (continued)

DSNJ103I 73
DSNJ105I 70
DSNJ106I 72
DSNJ107 101
DSNJ114I 74
DSNM002I 58
DSNM005I 59
DSNM3201I 62
DSNP007I 122
DSNP012I 121
DSNU086I 118, 119

processing failure 53
subsystem termination 67

file page set
data page

illustration 337
forward log recovery

failures 93
scenarios 93

FRR (functional recovery routine)
keyword 40

G
general performance problems

Db2 performance 475
general-use programming information, described 510
global trace

for distributed data facility 246
starting 238

GRANT statement
catalog table format 274

GTF (Generalized Trace Facility)
global trace data 246

GUPI symbols 510

I
I/O errors

archive log data sets
recovering 75

catalog 119
directory 119
table spaces 118

IEPL (initialization entry point list)
in MEPL 207

IFCEREP1 service aid 224, 282
IFCID

0160 308
0161 308
0191 315, 322
0192 315, 328
0193 315, 328
0194 315
0195 315
0203 329

IFCID (instrumentation facility component identifier)
0330 69

IFCID trace
MELP 209

IMPORT command

520 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

IMPORT command (continued)
access method services 102

IMS
loops 58
recovery procedures 57–59
waits 58

IMS attachment facility
trace 252

IMS commands
DISPLAY OASN 58

inconsistent data
data page 337
identifying 88
index page 340
resolving data and index inconsistencies 341

inconsistent data problems
causes 173
description 173
symptoms

00C9011x abend 342
symptoms and actions 173
types 173

inconsistent DBD problems
resolving 342

inconsistent page 174
INCORROUT keyword 35, 42
indefinite wait condition

recovering 131
index

problems 274
index name

finding in a dump 341
finding in VRA 341
finding in VRA report 341

index page
analyzing 340

index-based partitions
redefining 122

indoubt threads
resolving 161

indoubt units of recovery
CICS 64
IMS 58

integrated catalog facility catalog
VVDS (VSAM volume data set) failure

recovering 120
IPCS service aid 179
IRLM

child-lock delay problems 492
Db2 problems 492
hang problems 494
P-lock delay problems 493

IRLM (internal resource lock manager)
failure 53
recovery procedures 53

IRLM (Internal resource lock manager)
trace, IRLM-DB2 266

IRLM (Internal Resource Lock Manager)
dump data set 282
function level 282
service aids 282

IRLM SVC dump support 272

J
JES job logs, preserving 471

K
keyword

ABENDx 14
component identifier 10
CSECT 35
dependency 49
flowchart 4
INCORROUT 35, 42
load module 38
LOOP keyword 19
MSGx 33, 49
PERFM 35
recovery routine 40
release identifier 12
search process 3
searching 50
SQLCODE 48
string, building 3
structured, examples 197
VRA 41
WAIT keyword 19

keyword formats
free format 4
structured database cross-reference 6
structured database format 6

L
limiting access to data 177
links

non-IBM Web sites
511

load module
keyword 38
name, finding in dump 209

LOBs
invalid

recovering 118
log

IMS 257
ISPF 264

log initialization phase
failure recovery 83

LOGDATA 180
logical unit of work

identifier in SYS1.LOGREC 224
LOGREC data, preserving 470
logs

dual
minimizing restart efforts 101

excessive loss 103
failure

symptoms 80
total loss 103

recovery procedures
active logs 69
archive logs 73

recovery scenario 101

Index 521

logs (continued)
truncation 88

logs, DB2
preserving 471

LOOP diagnosing
during distributed processing 19

lost work
identifying 88

M
master trace

increasing storage capacity for 466
MAXSPACE

SVC dump setting 467
media failures

recovering 153
MELP

IFCID trace 209
MEPL (module entry point list)

finding in dump 207
illustration 208
in SVC dump 196

message by identifier
DFS3602I 59
DFS554I 60, 61
DFS555A 60, 61
DFS555I 60, 61
DSN1150I 99
DSN1151I 57
DSN1157I 88, 99
DSN1160I 88, 99
DSN1162I 57, 88, 99
DSN1213I 106
DSN2001I 64
DSN2025I 67
DSN2034I 64
DSN2035I 64
DSN2036I 64
DSN3100I 67
DSN3104I 67
DSN3201I 62
DSNB204I 112
DSNB207I 112
DSNB232I 116
DSNJ001I 80, 83
DSNJ003I 78
DSNJ004I 71
DSNJ007I 86, 94
DSNJ012I 86, 94
DSNJ100I 76, 77, 80, 101
DSNJ103I 73, 86, 94
DSNJ104I 73, 86, 94
DSNJ105I 70
DSNJ106I 72, 86, 94
DSNJ107I 76, 80, 101
DSNJ108I 76
DSNJ110E 69
DSNJ111E 69
DSNJ113E 86, 94, 100
DSNJ114I 74
DSNJ115I 73
DSNJ1191 80
DSNJ119I 101

message by identifier (continued)
DSNJ120I 76, 77
DSNJ124I 72
DSNJ126I 76
DSNJ128I 75
DSNL030I 132
DSNL500I 130
DSNL501I 126, 130
DSNL502I 126, 130
DSNL700I 127
DSNL701I 128
DSNL702I 128
DSNL703I 128
DSNL704I 128
DSNL705I 128
DSNM002I 58, 67
DSNM004I 58
DSNM005I 59
DSNP001I 122
DSNP007I 122
DSNP012I 121
DSNR002I 80
DSNR003I 57, 96, 99
DSNR004I 80, 83, 93
DSNR005I 80, 83, 98
DSNR006I 80
DSNU086I 118, 119
DSNU561I 125
DSNU563I 125
DSNV086E 67
DSNV401I 64
DSNV406I 64
DSNV408I 64
DSNV414I 64
DSNV415I 64
DXR122E 53
EDC3009I 121
IEC161I 112

MODIFY command
function level 282
IRLM 282
order of issue 29

MSGx keyword 33, 49
multiple address space

data sets 194

N
network ID (NID)

CICS 64
IMS 58

NID (network ID)
CICS 64
IMS 58

O
OBD (object descriptor)

finding (given OBID) 347
OBDDMAP

analyzing OBD structure 347
originating sequence number (OASN)

indoubt units of recovery 58

522 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

P
page number

determining from DSNI message 341
finding in a dump 341
finding in VRA 341
finding in VRA report 341

page set name
determining from DSNI message 341
finding in a dump 341
finding in VRA 341
finding in VRA report 341

parallelism problems
IFCID 288

partitions
index-controlled

redefining 122
redefining

index-based partitioning 124, 125
table-controlled

redefining 122
PC linkage

description 279
index, finding in dump 207

percolation
finding 227
multiple for single error 227
recovery termination manager 227

PERFM keyword 35
PGHEAD (page header) 337
point-in-time recovery

Db2 subsystem 113
Db2 utilities 492

Print Dump Index
dump index illustration 201
dump index usage 201
illustration 201
usage 201, 203
using to find TCB summary 204

print dumps 179, 180
print log map utility

before fall back 102
print traces 236
problem analysis documentation

service SQL 473
problem determination

analyzing 00C90102 abends 336
analyzing 00C9010x or 00C902xx abends 333
analyzing a DBD 347
analyzing symptoms of data inconsistency 177
dump analysis 194
symptoms of data inconsistency 174

product-sensitive programming information, described 510
programming interface information, described 510
PSPI symbols 510
PSW

as index into MEPL 209
in dumps 194

Q
QMF-related failures 66
query parallelism 286

R
RDA (RDS control area)

in SVC dump 216
RDASPPT1 field 216
RDS (relational data system)

problem diagnosis 496
REBUILD INDEX utility

using to resolve inconsistency 341
RECORDING MAX field

panel DSNTIPA
preventing frequent BSDS wrapping 100

RECOVER INDOUBT command
free locked resources 64

RECOVER TABLESPACE utility
modified data

recovering 102
RECOVER utility

failure 274
options

TOLOGPOINT 56
recovery cycle 151
removing inconsistencies 342
using to resolve inconsistency 341

recovery
application changes

backing out 56
backward log recovery failures 98
BSDS (bootstrap data set) 78
communications failure 163
Db2 outages

cold start 167
Db2 subsystem 105, 113
DDF (distributed data facility) failures 126
disk failures 54
down-level page sets 116
heuristic decisions

correcting 172
IMS outage with cold start

scenario 166
IMS-related failures

during indoubt resolution 59
indoubt units of recovery 58

inconsistent data
resolving 97

indoubt threads 161
indoubt units of recovery

CICS 64
integrated catalog facility catalog

VVDS failure 120
invalid LOBs 118
logs

truncating 86
lost status information 91
point in time 113
procedures 53
scenarios 167
table spaces 118
temporary resource failures 68

recovery cycle
RECOVER utility 151

RECOVERY option
REPORT utility 56

recovery procedures

Index 523

recovery procedures (continued)
application program errors 56
CICS-related failures

application failures 62
attachment facility failures 66
indoubt units of recovery 64
not operational 62

Db2-related failures
active log failures 69
archive log failures 73
BSDS (bootstrap data set) 76
catalog or directory I/O errors
119
database failures 112
subsystem termination 67
table space I/O errors 118

IMS-related failures
application failures 60, 61
control region failures 58

integrated catalog facility catalog
VVDS failure 122

IRLM failures 53
out-of-disk-space 122
QMF-related failures 66
restart 80
VTAM ACB OPEN failures 129
z/OS failures 53
z/OS power failures 53

recovery routine keyword 40
recovery scenarios

Db2 cold start 170
failures

current status rebuild phase 83
log initialization phase 83

heuristic decisions
making 164

referential constraint
violation

recovering 125
release level keyword 12
remote logical units

failures 130
REPAIR DBD 342
REPAIR dump

using to resolve inconsistency 335, 336
REPAIR utility

Analyzing a repair 345
inconsistent data

resolving 110
using to resolve inconsistency 340

REPORT utility
options

RECOVERY 56
TABLESPACESET 56

REPRO command
access method services 78

resolving inconsistencies
using REBUILD INDEX utility 341
using RECOVER utility 341
using REPAIR utility 340

resource limit facility problems
Db2 operations 486

restart
backward log recovery

restart (continued)
backward log recovery (continued)

failure during 98
BSDS (bootstrap data set) problems 101
cold start situations 103
conditional

excessive loss of active log data 105
total loss of log 104

current status rebuild phase
failure recovery 83

forward log recovery phase
failure during 93

inconsistencies
resolving 107

log data set problems 101
log initialization phase

failure recovery 83
restart processing

limiting 94
RESTORE SYSTEM

recovery cycle
establishing 149

RMFT (resource manager function table)
captured in SVC dump 196
unformatted trace table 217

RMFTRUSE 217
RMVT (resource manager vector table)

summary portion of dump 196
unformatted trace table 217

rolling disaster 156
RRSAF

finding trace table 260
interpreting trace messages 260
starting trace 259
trace 259

RTM2WA
finding in dump 204
illustration 204
summary in SYSABEND or SYSUDUMP 251
TCB summary section 204

RTM2WA summary (sample) 223
RUNSTATS function 274

S
save area trace 206
SCOM (subsystem communications block)

finding in dump 208
in SVC dump 196

SCOMMEPL field 208
SDSNSAMP(DSNWEIDS) 359
SDUMP

services 195
SDWA (system diagnostic work area)

finding in a dump 202, 341
functional recovery routines 195

SDWACOMU field 224
SDWAEC1 field 224
search process 3
service aid

IPCS 179
service SQL 473
shortcut keys

keyboard xi

524 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

SKB (stack storage block)
locating for failing agent 219

SLIP traps for data sharing environments 469, 472
SMF (System Management Facility)

global trace data 246
SPA (space block structure)

in SVC dump 216
space name

determining from DSNI message 341
SPASQLTX field 216
SPUFI

diagnostic panels, activating 280
trace messages 455

SQL (structured query language)
finding statements in dump 216

SQLCA (SQL communication area)
content 215
finding in dump 214
in SVC dump 196

SQLCODE keyword 48
SQLDA

binary XML data 275
stack storage block (SKB) 219
stack storage for failing agent, locating 219
stand-alone log services (DSNJSLR)

change log inventory (DSNJU003) 273
print log map (DSNJU004) 273

starting
Db2 94

statistics class 4 316, 329
Stop Trace command

description 241
stored procedures

SQLCODE -430 173
troubleshooting 173

SUMLSTA 196
SVC dump

diagnostic area 333
indexes 201
save area trace report section 206
summary portion 196
title 197
using to find trace code 336
using to resolve inconsistency 336

SVC dumps
increasing storage capacity for 467
MAXSPACE setting 467
requesting 472
setting up customized 468

symptoms of data inconsistency problems
00C9011x abend 342

syntax diagram
how to read xii

SYS1.LOGREC
entry 282
IRLM 282
percolation analysis 224
sample 224

SYS1.LOGREC data set 67
SYS1.LOGREC data, preserving 470
SYSABEND dump 251
SYSIBM.SYSCOLUMNS catalog table 274
SYSIBM.SYSCOPY catalog table 274
SYSIBM.SYSINDEXES catalog table 274

SYSIBM.SYSPACKAGE catalog table 274
SYSIBM.SYSPLANDEP catalog table 274
SYSIBM.SYSSTOGROUP catalog table 274
SYSIBM.SYSTABLE catalog table 274
SYSIBM.SYSTABLESPACE catalog table 274
SYSIBM.SYSUSAGE catalog table 274
SYSLOG, preserving 470
system trace, maximizing 466
system-level backups

disaster recovery 133
SYSUDUMP 251
SYSUDUMP dump sample 222

T
TAB (trace anchor block)

in unformatted trace table 217
table spaces

recovering 118
restoring 109

table-based partitions
redefining 122

TABLESPACESET option
REPORT utility 56

takeover site
setting 154, 155

TCB (task control block)
summary, finding in dump 204

TCP/IP
failure recovery 130
gethostbyaddr call failure 295
listener not started 295
startup problems 295

terminating
Db2

scenarios 67
title of SVC dump 197
trace

activating DSN command processor 262
activating SPUFI 264
activating TSO attachment CLIST 263
CAF trace 250
classes for global trace 246
code

EID (event identifier) 359
contents of unformatted table 244
Db2 global 237
Db2 vs. z/OS 246
Db2-IRLM 266
DSNTRACE 262
finding CAF table 251
finding Db2 table 217
finding formatted table 217
finding IMS table 257
finding RRSAF table 260
finding unformatted table 217
formatting, how to 217
IMS attachment facility 252, 254
IMS log entries 257
interpreting CAF messages 251
interpreting formatted table 243
interpreting GTF data 246
interpreting RRSAF messages 260
interpreting SMF data 246

Index 525

trace (continued)
producing DSNTRACE messages 250
RRSAF trace 259
save area 206
SPUFI 264
starting RRSAF trace 259
statistics class 4 records 329
table, header fields 217
TSO attachment CLIST 263
TSO attachment facility 261, 262
when to use Db2 table 243
z/OS 195, 273

trace field descriptions 250
trace messages

call attachment facility 450
TSO attachment facility 361

tracker site
characteristics 147
converting

takeover site 154, 155
disaster recovery 147
maintaining 153
migrating to Db2 12 148
recovering

RECOVER utility 155
RESTORE SYSTEM utility 154

recovery cycle
RESTORE SYSTEM utility 149

setting up 147
troubleshooting

QMF-related failures 66
stored procedures 173

troubleshooting with utilities 276
truncation

active logs 88
TSO attachment facility

SPUFI diagnostic panels 280
trace messages 361

type code
finding in VRA report 341

U
unavailable data 174
unexpected SQLCODE

SQLCODE 482
units of recovery

indoubt
CICS 64
IMS 58

user-defined data sets
extending 123
volumes

adding 123
user-managed data sets

enlarging 123
utilities

for diagnosis and troubleshooting 276
utilities, DB2

Db2 problems 489
utility address space, DB2

Db2 utilities 490
utility jobs

running

utility jobs (continued)
running (continued)

recovery procedures 145

V
VRA (variable recording area)

Db2-unique data 203
diagnostic information report 203
finding in a dump 341
key descriptions 224
obtaining data 203
percolation analysis 224
recording subcomponents 232
starting point in SDWA 205

VRA keyword 41
VRARRK14 341
VRARRK15 341
VRARRK5 335
VRARRK6 337
VSAM (virtual storage access method)

VSAM volume data set (VVDS)
recovering 120

VTAM
buffer trace 308
failures

recovering 129
internal trace 312
path information units (PIU) 306
request unit (RU) 307
request/response header 306
traces 305
transmission header 306

VTAM ACB OPEN)
failure 129

VTAM IO trace
ACFTAP option 309

VTAM)
recovery procedures 129

VVDS (VSAM volume data set)
recovering 120, 121

W
WAIT keyword

hangs during distributed processing 19
WAL (IMS-work area list key

7)
trace description 257

WAU (IMS-work area user key
8)

trace description 257
work file databases

data sets
enlarging 125

enlarging 122
extending 125

X
XRC (Extended Remote Copy) 161

526 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

Z
z.OS console, preserving 470
z/OS

power failure
recovering 53

z/OS abend
IEC030I 75
IEC031I 75
IEC032I 75

z/OS system trace, maximizing 466

Index 527

528 Db2 12 for z/OS: Troubleshooting for Db2 (Last updated: 2024-03-12)

IBM®

Product Number: 5650-DB2
 5770-AF3

	Contents
	About this information
	Who should read this information
	Db2 Utilities Suite for z/OS
	Terminology and citations
	Accessibility features for Db2 for z/OS
	How to send comments
	How to read syntax diagrams

	Chapter 1. Introduction to troubleshooting for Db2
	Chapter 2. Searching the IBM Support site for known problems and solutions
	Building a keyword string
	Db2 format (free format)
	Structured database format
	Component identifier keyword
	Locating the component identifier by using the SVC dump
	Locating the component identifier by using the SYS1.LOGREC entry
	Locating the component identifier by using the first page of an SVC dump

	Release level keyword
	Type-of-failure keywords
	ABENDx keyword
	SVC dump message
	SYSABEND or SYSUDUMP
	Db2 unresponsive
	Db2 abnormal termination message

	WAIT/LOOP keywords
	Guidelines for good operational procedures
	Initial procedure for the WAIT/LOOP keywords
	If Db2 is waiting during Db2 startup
	If Db2 is waiting during distributed processing with another Db2
	If Db2 and/or z/OS are not operational
	Looping
	Diagnosing a wait by using the SYSZDSN3.ERLYOLRH ENQ
	Locating the waiting CSECT

	If users in more than one environment cannot issue SQL statements
	If IMS dependent regions cannot issue SQL statements
	If DSN users cannot issue SQL statements

	MSGx keyword
	PERFM keyword
	INCORROUT keyword
	CSECT keyword
	Modifier keyword
	Load module modifier keyword
	Recovery routine modifier keyword
	VRA data modifier keyword
	INCORROUT modifier keyword
	SQLCODE modifier keyword
	Message modifier keyword

	Dependency keywords

	Techniques for varying the search
	Getting fixes

	Chapter 3. Recovering from different Db2 for z/OS problems
	Recovering from IRLM failure
	Recovering from z/OS or power failure
	Recovering from disk failure
	Recovering from application errors
	Backing out incorrect application changes (with a quiesce point)
	Backing out incorrect application changes (without a quiesce point)

	Recovering from IMS-related failures
	Recovering from IMS control region failure
	Recovering from IMS indoubt units of recovery
	Recovering IMS indoubt units of work that need to be rolled back

	Recovering from IMS application failure
	Recovering from a Db2 failure in an IMS environment

	Recovering from CICS-related failure
	Recovering from CICS application failures
	Recovering Db2 when CICS is not operational
	Recovering Db2 when the CICS attachment facility cannot connect to Db2
	Recovering CICS indoubt units of recovery
	Recovering from CICS attachment facility failure

	Recovering from a QMF query failure
	Recovering from subsystem termination
	Recovering from temporary resource failure
	Recovering from active log failures
	Recovering from being out of space in active logs
	Recovering from a write I/O error on an active log data set
	Recovering from a loss of dual active logging
	Recovering from I/O errors while reading the active log

	Recovering from archive log failures
	Recovering from allocation problems with the archive log
	Recovering from write I/O errors during archive log offload
	Recovering from read I/O errors on an archive data set during recovery
	Recovering from insufficient disk space for offload processing

	Recovering from BSDS failures
	Recovering from an I/O error on the BSDS
	Recovering from an error that occurs while opening the BSDS
	Recovering from unequal timestamps on BSDSs
	Recovering the BSDS from a backup copy

	Recovering from BSDS or log failures during restart
	Recovering from failure during log initialization or current status rebuild
	Failure during log initialization phase
	Description of failure during current status rebuild
	Restarting Db2 by truncating the log
	Task 1: Find the log RBA after the inaccessible part of the log
	Task 2: Identify lost work and inconsistent data
	DSN1LOGP summary report

	Task 3: Determine what status information is lost
	Task 4: Truncate the log at the point of error
	Task 5: Start Db2 and resolve data inconsistencies

	Recovering from a failure during forward log recovery
	Forward-log recovery failure
	Starting Db2 by limiting restart processing
	Task 1: Find the log RBA after the inaccessible part of the log
	Task 2: Identify incomplete units of recovery and inconsistent page sets
	Task 3: Restrict restart processing to the part of the log after the damage
	Task 4: Start Db2 and resolve inconsistent data

	Recovering from a failure during backward log recovery
	Backward log recovery failure
	Bypassing backout before restarting

	Recovering from a failure during a log RBA read request
	Recovering from unresolvable BSDS or log data set problem during restart
	Falling back to a prior shutdown point

	Recovering from a failure resulting from total or excessive loss of log data
	Recovering from a total loss of the log
	Recovering from an excessive loss of active log data
	Recovering Db2 by creating a gap in the active log
	Recovering Db2 without creating a gap in the active log

	Resolving inconsistencies resulting from a conditional restart
	Inconsistencies in a distributed environment
	Resolving inconsistencies
	Restoring the table space
	Using the REPAIR utility on inconsistent data

	Recovering from Db2 database failure
	Recovering a Db2 subsystem to a prior point in time
	Recovering the catalog and directory to a point in time before a CATMAINT or a function level upgrade in a data sharing environment
	Recovering the catalog and directory to a point in time before a CATMAINT or a function level upgrade in a non-data sharing environment
	Recovering from a down-level page set problem
	Recovering from a problem with invalid LOBs
	Recovering from table space I/O errors
	Recovering from Db2 catalog or directory I/O errors
	Recovering from integrated catalog facility failure
	Recovering VSAM volume data sets that are out of space or destroyed
	Recovering from out-of-disk-space or extent limit problems
	Extending a data set
	Enlarging a fully extended user-managed data set
	Enlarging a fully extended Db2-managed data set
	Adding a data set
	Redefining a partition (index-based partitioning)
	Redefining a partition (table-based partitioning)
	Enlarging a fully extended data set for the work file database

	Recovering from referential constraint violation
	Recovering from distributed data facility failure
	Recovering from conversation failure
	Recovering from communications database failure
	Recovering from a problem with a communications database that is incorrectly defined

	Recovering from database access thread failure
	Recovering from VTAM failure
	Recovering from VTAM ACB OPEN problems
	Recovering from TCP/IP failure
	Recovering from remote logical unit failure
	Recovering from an indefinite wait condition
	Recovering database access threads after security failure

	Performing remote-site disaster recovery
	Recovering from a disaster by using system-level backups
	Restoring data from image copies and archive logs
	Restoring data in a non-data sharing environment
	Restoring data in a data sharing environment
	What to do about utilities that were in progress at time of failure

	Recovering from disasters by using a tracker site
	Characteristics of a tracker site
	Setting up a tracker site
	Migrating a tracker site to Db2 12 or changing the Db2 12 catalog level or function level of the tracker site
	Establishing a recovery cycle by using RESTORE SYSTEM LOGONLY
	Establishing a recovery cycle by using the RECOVER utility
	Media failures during LOGONLY recovery
	Maintaining a tracker site
	Making the tracker site be the takeover site
	Recovering at a tracker site that uses the RESTORE SYSTEM utility
	Recovering at a tracker site that uses the RECOVER utility

	Using data mirroring for disaster recovery
	Role of data mirroring in recovery from a rolling disaster
	Role of consistency groups in recovery
	Recovering in a data mirroring environment
	Managing DFSMShsm default settings when using the BACKUP SYSTEM, RESTORE SYSTEM, and RECOVER utilities
	Recovering with Extended Remote Copy

	Scenarios for resolving problems with indoubt threads
	Scenario: Recovering from communication failure
	Scenario: Making a heuristic decision about whether to commit or abort an indoubt thread
	Scenario: Recovering from an IMS outage that results in an IMS cold start
	Scenario: Recovering from a Db2 outage at a requester that results in a Db2 cold start
	Scenario: What happens when the wrong Db2 subsystem is cold started
	Scenario: Correcting damage from an incorrect heuristic decision about an indoubt thread

	Troubleshooting Db2 stored procedure problems
	Identifying Db2 data inconsistency problems
	Data inconsistency symptoms and actions
	Special considerations for suspected page inconsistencies

	Chapter 4. Diagnostic aids for single systems and data sharing
	Printing and analyzing dumps
	Printing dumps
	Format dumps by using IPCS options
	Format dumps by using the DSNWDMP statement
	Analyze Db2 storage by using the SM options
	SVC dumps
	General contents of an SVC dump
	Contents of an SVC dump unique to Db2
	SVC dump titles that are issued by Db2
	Dump title variations

	Error qualifier
	SVC dump titles that are issued by IRLM
	Dump indexes
	The system diagnostic work area (SDWA)
	The variable recording area (VRA)
	The recovery termination manager work area (RTM2WA)
	The failing execution block (EB)
	The save area trace report
	The module entry point list (MEPL)
	Finding the MEPL in the SVC dump
	Finding the MEPL in the IFCID trace
	Finding the name of the failing load module in a MEPL
	Finding the name of the failing CSECT in the MEPL

	The batch utilities MEPL
	Finding the batch utilities MEPL

	The cursor table (CT)
	Finding the CT in the unformatted section of the SVC dump
	Finding the CT in the formatted section of the SVC dump

	The SQL communication area (SQLCA)
	Finding the SQLCA
	Finding the SQL statement

	The global trace table
	Formatted global trace table
	Finding the unformatted global trace table

	The task control block (TCB) summary
	Stack storage blocks (SKBs)
	Finding the stack storage blocks

	Redacting buffer pool data in SVC dumps for data privacy
	Suppression of SVC dumps by using z/OS DAE
	When SVC dumps are not produced
	SYSUDUMP dumps
	The RTM2WA summary in a SYSUDUMP

	SYS1.LOGREC
	Common VRA recording routines
	Individual VRA recording subcomponents
	Subsystem support

	Printing and analyzing global traces
	Global trace facility
	Starting the global trace
	Displaying global trace activity
	Modifying global trace activity
	Stopping global trace activity
	Using global trace output
	Interpreting trace record formats
	When to use the Db2 trace table
	Interpreting the formatted global trace table
	Interpreting the unformatted global trace table
	Distributed data facility global trace
	Correlating the Db2 trace with the z/OS trace
	Interpreting GTF and SMF global trace records
	Global trace classes

	Using the statistics trace for distributed diagnosis
	Using the performance trace for diagnosis
	Trace field descriptions

	Call attachment facility traces
	Producing trace messages
	Finding the trace table
	Interpreting trace messages

	IMS attachment facility traces and IMS log record
	IMS log entries
	IMS attachment facility X'5501FF00' log record
	IMS attachment facility X'5501FE00' log record

	IMS attachment facility trace diagnosis guidelines
	Contents of the IMS attachment facility trace table
	Locating the IMS attachment facility trace tables in a dump
	IMS attachment facility messages
	When abends occur

	Resource Recovery Services attachment facility traces
	Starting the RRSAF trace
	Finding the trace table
	Interpreting trace messages

	TSO attachment facility traces
	Activating the DSN trace stream
	Activating the CLIST trace facility
	Activating the SPUFI trace facility

	IRLM - Db2 activity trace
	Formatting the IRLM trace
	CTRACE content
	Finding the locks that belong to an agent
	RLIPL (request identify parameter list)
	RLQD (query parameter list)

	IRLM SVC dump support

	Diagnosing EDM pool space problems using traces
	z/OS traces

	Writing Db2 log buffers to IFI
	Db2 stand-alone log services: change log inventory and print log map
	Diagnostic information in Db2 catalog tables
	SQLDA extension for binary XML data
	Db2 utilities for troubleshooting
	Db2 commands for troubleshooting
	Program call linkages
	TSO attachment facility diagnostic aids
	SPUFI diagnostic panels
	ABEND subcommand of the DSN command processor

	SYS1 service aids
	SYS1.DUMPXX
	SYS1.LOGREC
	Output from the MODIFY command

	Data sharing problem diagnosis
	Hangs in a data sharing environment
	Timeouts and deadlocks in a data sharing environment
	IRLM delays in a data sharing environment
	Inconsistent data in a data sharing environment

	Query parallelism problem diagnosis
	Determine if a query problem is related to parallelism
	Types of parallelism problems
	Diagnose parallelism problems by using traces

	Chapter 5. Diagnostic aids for distributed data
	Diagnosing distributed data facility (DDF) failures
	Distributed SQL application flow for VTAM connections
	Distributed SQL application flow for TCP/IP connections
	DDF error messages
	TCP/IP startup problems
	Db2 hangs during distributed processing
	Problem determination procedures
	Abends
	Performance problems and hang situations
	Loops
	Storage shortages
	Incorrect output
	Unexpected messages

	Diagnostic tools for DDF and VTAM
	VTAM traces
	Generalized trace facility (GTF)
	Path information units (PIUs)
	Transmission header (TH)
	Request/response header (RH)
	Request unit (RU)
	VTAM buffer traces
	Advanced communication function trace analysis program (ACFTAP)
	z/OS I/O trace
	VTAM internal trace
	VTAM internal trace options

	Storage Management Services (buffer use) trace

	Exception condition diagnostic procedures
	DRDA exception condition diagnostic procedures
	DRDA exception event notification
	DRDA exception condition trace records
	Db2 DRDA exception condition reason codes
	Additional diagnostic options for DRDA exceptions

	DRDA summary
	DDM/FDOCA models
	DDM commands and reply messages
	DDM command data and reply data
	DRDA object descriptors
	Local identifiers (LIDs)
	Early DRDA descriptors
	Early descriptor LIDs
	Late DRDA descriptors

	Db2 representation of early and late descriptors
	The DDIS FDLIDLST structure
	FDLIDLST structures for early descriptors
	FDLIDLST structures for late descriptors
	The DDIS RDTA structure
	The DDIS ZEDA structure

	DDIS IFCID 0191 trace record structure
	DDIS IFCID 0191 common diagnostic procedures
	Interpreting IFCID 0191 records

	IFCID 0191 trace record common diagnostic procedures
	Distributed two-phase commit error conditions
	Statistics class 4 trace records

	Chapter 6. Data management
	Resolving inconsistencies manually
	Analyzing 00C9010X or 00C902XX abends
	Analyzing the SVC dump

	Analyzing 00C90102 abends
	Finding the trace code
	Analyzing a data page
	Analyzing an index page

	Running REPAIR

	Inconsistency resolution with RECOVER TABLESPACE and RECOVER INDEX
	RECOVER preparation
	Running RECOVER TABLESPACE and REBUILD INDEX

	Diagnosing DBD inconsistencies
	Using REPAIR DBD
	Finding a DBD in a dump
	Analyzing an SVC dump issued by a DSNGDxxx module
	Analyzing an SVC dump issued by a DSNIxxxx or DSNKxxxx module
	Analyzing a repair, DSN1COPY or DSN1PRNT dump

	Analyzing a DBD
	Checking the DBD header and chain of files
	Checking the files
	Checking the records
	Checking the referential integrity relationships
	Checking the auxiliary relationships
	Checking the indexes

	Resolve the inconsistent DBD

	Chapter 7. Trace messages and codes
	Db2 trace codes
	Loading EID descriptions into a table
	Retrieving EID descriptions

	TSO attachment facility trace messages
	Call attachment facility trace messages
	SPUFI trace messages

	Chapter 8. Collecting diagnostic data
	Setting up the z/OS environment to collect diagnostic data
	Maximizing the size of the z/OS system trace table
	Increasing the size of the master trace table
	Increasing the storage capacity for an SVC dump
	Ensuring that dump data sets are available and automatically updated
	Setting up a customized Db2 SVC dump
	Setting up Db2 SLIP traps for a data sharing environment

	Preserving standard diagnostic documentation
	Preserving the z/OS console (SYSLOG)
	Preserving LOGREC data
	Preserving the JES job logs for key Db2 address spaces
	Retention of Db2 dump data sets
	Retention of Db2 logs
	Requesting Db2 SVC dumps
	Requesting data sharing environment Db2 SLIP traps
	Collecting service SQL documentation

	Collecting data for specific types of Db2 problems
	Collecting data for general performance problems
	Collecting data for access path performance problems
	Collecting data for data access problems
	Collecting data for incorrect output from an SQL statement
	Collecting data when an abend occurs for an SQL query
	Collecting data for stored procedure problems
	Collecting data for authorization problems
	Collecting data for CCSID problems
	Collecting data for corruption and inconsistency problems
	Collecting data for IBM Db2 Analytics Accelerator for z/OS problems
	Collecting data for application programming problems
	Collecting data for an unexpected SQLCODE
	Collecting data for Db2 coprocessor or Db2 precompiler problems
	Collecting data for XML problems

	Collecting data for operational problems
	Collecting data for problems with DFSMS VSAM data sets
	Collecting data for problems with deadlocks and timeout failures
	Collecting data for data set access problems
	Collecting data for storage abends
	Collecting data for resource limit facility problems
	Collecting data for problems with the EDM pool

	Collecting data for distributed data facility problems
	Collecting data for a problem between a DRDA requester and server
	Collecting data for a DDF abend or DRDA exception
	Collecting data for a DDF hang

	Collecting data for Db2 utility problems
	Collecting data for Db2 utility address spaces
	Collecting data for ssnmDBM1 utility problems
	Collecting data for failures after a point-in-time recovery

	Collecting data for IRLM problems
	Collecting data for IRLM child-lock delays
	Collecting data for IRLM P-lock delays
	Collecting data for IRLM hangs

	Collecting data for a Db2 hang
	Collecting data for SQL data definition language statement errors
	Collecting data for RDS problems
	Collecting data for a cached dynamic statement that blocks another statement with reason code 00E70081

	Chapter 9. Preparing data sets with program objects for transfer to IBM Support
	Chapter 10. Contacting IBM Support about Db2 problems
	Sending diagnostic data to IBM Support
	Receiving information from IBM Support

	Information resources for Db2 for z/OS and related products
	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation
	Privacy policy considerations

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

