Db2 12 for z/OS

Administration Guide
Last updated: 2024-03-29

.||I

Notes

Before using this information and the product it supports, be sure to read the general information under
"Notices" at the end of this information.

Subsequent editions of this PDF will not be delivered in IBM Publications Center. Always download the
latest edition from IBM Documentation.

2024-03-29 edition

This edition applies to Db2° 12 for z/0S® (product number 5650-DB2), Db2 12 for z/0S Value Unit Edition (product
number 5770-AF3), and to any subsequent releases until otherwise indicated in new editions. Make sure you are using
the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright International Business Machines Corporation 1982, 2024.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html

Contents

About this INformation.......ccccieiieiiiiiiiiiiiiicinrrccc st s e csesseesaneas XV
Who should read this iNfOrMation........ceciiriiiriiiiie e st e be e sa e sbeesane s XVi
D2 ULILITIES SUITE TOF Z/OS. e iieieeiiieeee ettt e e e e et e e e e e e s e s s absbb e e e reeesesesesssssssssrareeeeseeesssnnns Xvi
Terminology and CITAtiONS.....ccuieieiieeeiee ettt ee e e rte e e e te e e et e e e s baeeebeeessseeeensaeesnsaeeanseeasnseenan XVi
Accessibility features for DD2 for Z/OS...... ettt st e e e ae e XVii
HOW t0 SENU COMMIENTS..c.uiiiiiiiiiiiiieeiteerte st ese e st et e steesteesteesbeesaressbeesabessbeessaessbeensaesaseensaessseenseesssesnses Xvii
HOW 10 read SYNtaX dia@ramS. .. .cccuuieccieeciiieectie et e ettt eeste e e rte e e ste e e ate e e abe e e abae e saae e nsaeesasaeannsaesnnseesnnsns Xviii

Part 1. Desighing and implementing Db2 databases.......cccccceiruiieiieiieiiececencnncnanne. 1
Chapter 1. Database objects and relatioNShiPS.....cccuiic i e e 3

Logical database design with the entity-relationship Modelccocveeeiieiiciiiciec e 3
1 oTa Lo LT Y= Yo TUT e F=1 - VO 3
Recommendations for logical data MOdeliNg.......c.ueeiciiieciiicceecee e e 4
Practical examples of data MOdELiNG......c.ue i e e e 5
Entities for different types of relationShips......ccueeeciii i 5
Lo N AN A A=Y 4] o T =TSSP 7
ENtity NOrMAliZAtioN.....iieiiee ettt rtre e s ete e e stae e s be e e s bt e e sbae e eareeeraeeeans 10

Logical database design with Unified Modeling Language........cceeecueeeecieeeiieeecieeeee e 13

Physical database ESIGN......ciciiiiciiiiiee ettt e et e s ate e e be e e s abeeessbae s nsaeeenseeennsaens 14
Denormalization Of tableS.....c.ui i e e ae e 15
Views t0 customize What data USErS SEE.....cuiriiiiiirieriiiineeeieeneesre st e sre e e sieesreesbeesaseesseesaneens 16
INdexes 0N table COLUMNS.iiiiiiiiiie ettt et st esa e s be e s e e sbeesbaesabeesbaesasesnsaenns 17
HASh @CCESS ON tABLES....ciiieiieiececeee ettt sre e be e st e s be e s s e sbeesanesnreenes 17
Maintaining ArChiVe ata.....c.ueicciieeiiieccieeecee et ae e e te e s tte e e sabe e e abeeessaae e nsaeennseas 18

Chapter 2. Implementing your database desigN........cccuiiceeieieiciie et e 19

Implementing DD2 databases....cccuie ettt et et e e et e s ae e e be e e aae e e abeeennrae s 19
Creating DD2 databasSes.....c.uii ettt ettt et e e e e e be e e s b e e e e ba e e e bae e e nbeeeenreeeenneas 19
Dropping DD2 databasSes....cccuiiiciiiieiieceiee ettt et sete e eete e s tte e setteeserteesesteesestaeeesteeensteesnreaeanes 20

Implementing DD2 STOrage SrOUPS....ccccieeierieeeerieeeeteeeeteeesteeeereeeeereeeesseeeseseeessseesenseessnseassnseessseessnsens 20
Advantages Of StOraZe GrOUPS....cuuiiicieeeieeeeieeeeceeeectre e erteeestee e s tee e s taeesbeeessaeessseeesnsaessssaeennseeennees 21
Creating DD2 STOrage SrOUPS....ccciieicieeeeieeeeteeeeteeeeteeeeteeseteeeesteesssteeesstasessseessssessassasssssesssssessnnes 22
Enabling SMS to control D2 StOrage SroUPS......uiccieeiriieeecieeecireesteeesreeesveeesreeeebeeesvaessseeeeaneas 23
Deferring allocation of Db2-managed data SetS.......cuciiieiieiciiieeeeeee e e 23
HOW DD2 eXteNdS data SEES...cccuiiiiiiiiieiieiieeieete ettt sbe e st s e e sbe e sabe e beesaseebaesane s 24
(B oY oL Tot- =1 1T o= 1 4[] PSSR 25
Managing Db2 data sets With DFSMSNSM......cccciiiiiiiectieccte ettt e 28
Defining your own user-managed data SEtS......ccciiiiiicciiiecieeee e 34
Data set NAMING CONVENTIONS.......iiicieiciie ettt et e etee e te e e s te e e e tee e e bee e sbeeseateeseabeeesnsaeennseas 37
Assignment of table spaces and index spaces to physical storage.......cccccveeecveeeccieecceecccieeeenen. 39
Defining INAEX SPACE STOrAZE. ..ccuiiieiiieeiteeecte e et ecte e ettt e e rte e e te e e sate e e ateeerabeeesstae e aseeesaseeennsaeennses 41
Creating EA-enabled table spaces and iNdeX SPACES.......ccicvuieeciiieeciee ettt e 41

Implementing DD2 table SPACES......uiii ettt e e s re e e e e e s bae e e bae e e naaeennaeas 42
Table space types and characteristics in DB2 for z/OS.......uiviiecieeceeee e 43
Implicitly defined table SPACES.......cccii ittt ra e e e e e 52
Creating table SPaces EXPLICITLY..uiiiciieeiieecee e e re e e be e e ave e e abae e areas 57
Creating partition-by-range table SPACES.......cicciiiiciii et 61
Creating partition-by-growth table SPaCES......cuiiiciii e e e 63
Creating LOB table spaces, auxiliary tables, and auxiliary indexes expliCitly........cccccvveeecvveeinnnene 65

Creating non-UTS table spaces (depreCated).....ccoiiieiercieeecieeceeeee e eee e sae e e saee e 66

Syntax and descriptions for creating non-UTS table spaces (deprecated).......ccceceeveeecieeieennenne 67
EA-enabled table spaces and INAEX SPACES.....cuiiiciieeeeiiiiee e cecitee et e et e e e e reee e s e ersee e s eeasseeas 71
Implementing DD2 1ables......coo i s sree e s 72
B Y/ 0TI o i = o] (=TSR 73
GUIdEliNeS TOr 1able NAMES.....ci it e s s ae e s s ae e ssaeeas 75
Creating Dase tables......uii i s st e s ba e s raeeas 76
Partitioning data in DD2 tables. ...ttt 77
Nullable partitioning COLUMNS......cii ittt et e s e e s s e e s sabeessabeessabeessanas 79
Creating teMPOrary tabLlES. ... ittt e st e e s eaee e s snre e s aeeesans 80
Creating temMpPOral tabLES.ui i s s 86
Creating materialized qUEIY tables. ...t s 99
Creating @ CloNE TADLE ...iii e 100
Creating an arChive table.. ... ittt sbee e s rae e sbee e sbeeesane 102
IMPLEMENTING DD2 VIEWS....iiiiiiiiiieiieeeite sttt st sse e st s st e s s be e s s ba e s s beessabeessasaesssseeesaseessnsens 103
Creating DD2 VIBWS...iiicuiiieiiieeiiteeie sttt et e st e s ste e s e e st e e s sab e e s beessabaeesabaessasaeesasaessaseesnnses 103
GUIAELINES TOI VIEW NAMES...iiiiiiieiieieitteeite et es sttt s et ssiee e s iee s s tee e s tee e ssaeeessseeessaeaesnssaesnsenesnnens 105
Querying views that reference temporal tables.......cccviiiiiiiiiriieiee e 105
How Db2 inserts and updates data through VIEWS........coccuieiriiiiniiiiniientecece e 106
DrOPPING DB2 VIEWS...uiiiciieiiiieeiiieeieiee st seie e seite e s ee e serteessseeessteesbtaeseseeessteesseaesaseesssssessaseessane 106
IMpPLlementing DD2 INAEXES.......uiiiiiiieiieiete ettt et e s ste e s sae e s saee e ssabeessseaessseeesnseaesnneas 107
TYPES OF INAEXES . .uttieiieiiiee ettt e e e e e et e e s e e ete e e e s e s tteeeeeesbeeeeeesbeeaesennstaeeesasseneessnsssenennn 107
Creating DD2 INAEXES.....uiiiiiiiieiieeeiteeete ettt ettt e st e s s bt e s sba e e s be e e sbaeesabaessssaessssaeesnseeennee 110
How indexes can help t0 aVoid SOMS.......uuiiii ittt e e e e e e b e e e e e neeeee e 111
| Te [0t (=2 112
Index NamMeES and GUIAELINES.....iiiiiiiririiecieeee ettt et re e s see e s sabe e s saaeessabaessasaesnaseas 113
General INAEX attriDULES. ..o cvii ettt be e e s e e s saee e s s aee e s saeeesaeas 114
XML INAEX @tEFDULES....eiiiiiiiiieeeee sttt s e e s ae e st e e s abe e s abaessabaesnaseens 120
Indexes on partitioNed tables......cuu i e e 121
How Db2 implicitly Creates an iINAEX.......cueiccciiieiieciiiee et et eecre e e e et e e e eree e e e e enseeeeeennes 126
Implementing DD2 SCHEMAS.cii ittt see s st e e st e s s be e e sbee s sabeeesareas 127
Creating a schema by using the sChema ProCeSSOr......ccuiiiiviiiiriieieiece e 127
Processing SChema defiNitioNS......uiv ittt sree s be e sbe e s sbae s sraeeeas 128
Loading data int0 DD2 tables.. ...ttt ettt st s e s e s e s 128
Loading data with the LOAD ULILITY....ceiecuieieiieieie ettt sre e s sre e s saae s sraeenane 129
Loading data by using the INSERT Statement.......ccccevivieiiiiiiiiieecieecte st svee e svee e svee e 131
Loading data with DRDA fast l0ad (ZLOA)......ccccuerieriiierieeieecie sttt 133
Loading data frOmM DL/ L. ..cciicieiciiee ettt sttt ste e sete e st e e sbee e s bt e e sbee e sseeesnaeessaeesaseeesane 136
Implementing DD2 StOred ProCEAUIES. .. .ciciii ittt ettt seeeeseaee e sereeeseaeeesreeesseeesaneeesans 137
Creating STOred PrOCEAUIES.iiviiiieteeete ettt s bt e s te e s sbe e s sbeesssbeeessbeesssaesssseessssaesnns 137
Dropping StOred PrOCEAUIES......ccccveiicieeriiee e scte e estte e siee e ssree e sree s sbee e sbeeesbeessabeessseeesaseessasens 138
Implementing relationships with referential CoONSTraiNtS......ccvvivvieiriieiiiieee e 139
How Db2 enforces referential CONSTIraiNTS......civciiiiiiieiiiieiriecete et sre e s seee e 139
Y=Y o U] =TSO PR PSP SPRUPPRRRPPPRNt 140
6T oTe F=Y (I U1 R 141
DELETE FTULES . ..tti ittt ettt s e s st e e s be e s s bt e e s aba e e st e e e e ba e e e baeeetaeeebaeeeraeenaee 141
Constructing a referential StrUCTUIE.....c.uiiiciei et 142
IMPLlemMeENnting DD2 TrigEOIS. ..uiiiiiiiiiiieicieeeciee sttt s e st s e e s sabe e s s be e s abeesssbeessabaessnseesnnsaesan 142
Implementing Db2 user-defined fUNCIIONS.......cii it 143
Creating user-defined fUNCIIONS.......oi i ee s s s 143
Deleting user-defined fUNCLIONS.ccuiiiiiiiiieciee sttt e s e s be e ssabeessaaeeas 146
Implementing Db2 system-defined rOULINES........covciiiiiiiieieiiectecete et aee s 146
Obfuscating source code of SQL procedures, SQL functions, and triggers.......ccccccvveverrnveerrneeennnnn 147
Estimating disk storage for USEr data......ucueiiciieiiieiiieisieeste sttt et se e s s be e s s e s 149
General approach t0 estimating STOraZE.uuieviiiriieiriieeeie et sae e s saee e s aees 149
Calculating the space required for @ tablecciiiiiiiiiiiic e 151
Calculating the space required for an INAEX......cuccueiviiieiniiieniieeee e e e ee s 155
Identifying databases that might exceed the OBID limit......ccccvevierriieniiienniieerieeeeee e 160

Chapter 3. Altering your database deSIZN......cccvviciiiiiieiiiieirteeete sttt et e see e s e e s s e e s saeeessaneas 163

Using the catalog in database deSIZN......ccciiiriiiiiiiiiiiecciee e saee e s saee e s 164
Retrieving catalog information about Db2 StOrage groUpS......ccecueeecveeriieeriieenireesiieessneeessneeens 164
Retrieving catalog information about @ table.......cceveiiiiiiiiiiiiieeee e 164
Retrieving catalog information about partition Order.........ccceevevieiiiieiniienniieeecee e 165
Retrieving catalog information about aliasSes.......coevuiiiiiieiiiiiiniieireeeee e 165
Retrieving catalog information about COLUMNS........coiviiiiriiiirecee e 166
Retrieving catalog information about INAEXES......cccuiiiiviiiiriiiiiiieree et 167
Retrieving catalog information about VIEWS.......ccccuiiiiiiiiiiiiiniecciec e 167
Retrieving catalog information about materialized query tables.......ccovvvvviiiiiiiinicienneeeeen, 168
Retrieving catalog information about authorizationS.........cceeviiiiiieiniieineeeee e 168
Retrieving catalog information about primary KEYS.......cueivieiiriiiiniieinieeciee e 169
Retrieving catalog information about foreign Keys.......cucuiiiiiiiiiiieniieennieessiee s ssee s 169
Retrieving catalog information about check pending.........cccceeiviieiiiiinnieeeecee e 170
Retrieving catalog information about check CONStraints.......cccccvveveiiciiiniieeeeee e 171
Retrieving catalog information about LOBS......c.ccuiiiiiiiiiiiiiiiescieessie ettt ssee e ssveessaeeesseee s 171
Retrieving catalog information about user-defined functions and stored procedures.............. 172
Retrieving catalog information about trig8ers......cuiiiiiiriieiriieiteeree et 172
Retrieving catalog information about SEQUENCES.......cccuiiiciiiiciieiiee e 173
Adding and retrieVing COMMENTS....cccviiiiieriieerie ettt e st st e ssreeessreeessaeeesssbeesaseeessssaesnseeesn 173
Verifying the accuracy of the database definition........ccoccviviiiiniiiinien e, 174
Trailing blanks in Db2 catalog COlUMNS.......cii ittt 174

ALLENNG DD2 databases....uuiiiiiiiiiiieeieeete ettt ettt ae e st e s e e e s be e s s be e e s abaeenaneas 175

ALLENNG DD2 STOraBE SrOUPS..ccicureiicuieeriieeretteeieteeseieeseteessseeesasteesasteesaseeesaseesssssesssssesssseesssseessaeessan 176
Letting SMS manage your DD2 StOrage SroUPS....cuueiruierrieeriieesrreessreessiseessseesssseesssseesssseessssees 176
Adding or removing volumes from a Db2 StOrage SroUP.....cecceereierrieeiriieeneeeseeeseesssveeesnees 177
Migrating existing data sets t0 a Solid-State driVe.......cuvuiiiciiiiiiiecieceeee e 178

ALLEING 1AL SPACES. .. .ttt ittt sttt e e e s be e s be e e e baeenaaeas 179
Changing the logging attribute for a table SPacCe.......ccciviiiiiiiiirieee e 180
Changing the space allocation for user-managed data Sets......cccccevrvieiriieiriieeiniieeereee e 182
Dropping and re-creating a table space to change its attributes........ccccvvievriieiniieinienncenne, 182
Redistributing data in partitioned table SPaCES.......cccvveviiiiiieiiiieecieeeee e 184
INCreasing Partition SIZE......cicciiiiiiiiiiieerieeeee ettt e s te e s s be e s s te e s sabeessabeesssbaeesssaesnaseeas 185
Altering a page set to contain Db2-defined eXtents.......cccvcieiicieriiieiicieecrec e 186
Converting deprecated table spaces to the UTS types....uiiiiiiniieicieeirieeciee e 187
Moving tables from multi-table table spaces to partition-by-growth table spaces................... 188
Converting partitioned (non-UTS) table spaces to partition-by-range universal table spaces..192
Converting table spaces to use table-controlled partitioning.........ccceeeveeirvieeinieeinieennieeceieeene 193

ALLEINNEG DD2 1ABLES . ettt ettt e s ee e st e e st e e s bee e s aee e s nteeseneeesaneeesane 196
Adding a CoOlUMN 10 @ 1ADLE.....uiiiie e e ane s 197
Specifying a default value when altering a column.......ccoociiiriiiirieiireee e 199
Altering the data type Of @ COLUMN. ..ottt 200
Altering a table for referential INTEEITY.....cvvi e 211
Adding or dropping table check CONSTIrAINTS.......cccciiiriiiiiiriieeee e 215
Faa o [l oY= o Y-V 1) Ao 1= F PSPPSR 216
LN R =T aT o F= S o =Y (1 (o] T PSPPSR 221
AdAING XML COLUMINS...ciittiiiitieiiiieeeteesite e estt e st e e stee s stte e sbeessbaesssbaeesbeeesasaeesasaeesseeesnsaessnsaessns 230
Altering the size Of yOUr hash SPACES ...c.uiiiiciiiiiiiiiieee et sbe e e sbe e 231
Adding a system period and system-period data versioning to an existing table..........ccecuee... 232
Adding an application period t0 @ table......cuiiiiiiiiiiii e 233
Manipulating data in a system-period temporal table.........ccoeviiiiiiiiiiiiinieeee e 234
Altering materialized QUETY tableS....couiiiiiiiiieeetcee e e s 235
Altering the assignment of a validation roULINE........covciiiriiiircie e 236
Altering a table to capture changed data.......cccceiieeiiiniiieece e s 237
Changing an edit procedure or a field ProCedUIE......cuiviiiiriieiiececeee e 238
Altering the subtype of @ StHNG COLUMN..c..iiiiiiieet e s s 239
Altering the attributes of an identity COUMN.....coocviiiiiii e 239

Changing data types by dropping and re-creating the table.......ccccvviiniiiinciiiniee, 240

Moving a table to a table space of a different page Size.......ccevveeirviiiirciiiiecieceeeee e 244
ALLEINEG DD2 VIBWS..ciitiieiiieeiteeecite ettt stt st e s saae e s saee e sttt e ssaea e s aeeesabeessbaessseesnssaesnssaesnsseesnnses 244
Altering views by UsSing the INSTEAD OF Tri88eN...ccuiuiiiiiieriiieriiteesieessreessieesseeessneeesseeessneeas 245
Changing data by using views that reference temporal tables.......cccoccviviieiniiiiniieinieeceeee, 245
ALLEINEG DD2 INUEXES. . uttiieiiiieiiteeiiteectt st e sttt e st e st e s bee e s s sbe e ssseeesaseeessasaessssaesnsseesnssaesnssaesnnses 246
Alternative method for altering an INAEX.......occiiircieiniiieiree et 246
Adding COLUMNS 10 @N INAEX....iiiiiiiiiiieiiiieeiieeretee st e st e st e ssreesste e s beesssbeesssbeessssaesssseessnseesan 247
Altering how varying-length index columns are StOred........ccccveveerriierriiennieenreeesee e 249
Altering the clustering of N INAEX.....cuiiiiiiiiiiieeetere e s bee s s 250
Dropping and redefining @ DD2 INAEX....cuiiiiiiiiiiieiiieiriee sttt ettt esste e ssee e s ee e s sate e ssaeaesnns 251
REOIEANIZING INUEXES. .. .iiiiciiiieiie ettt ettt e st e s s te e s sbe e s s be e s sateessabeessaseessseeesnssaesnnseesnaeens 252
Pending data definition ChangES.....cuui ittt ae e e sbee e s ba e e sbaeesaee 253
Materializing pending definition ChaNgES.......ciiviiiiiiiieece e s s 256
Restrictions for pending data definition Changes........ccuviviiiieiiiinieeiecccee e e 261
Pending COlUMN AlEEratioNS.....uii ittt ettt sttt e et e s b e e s saee e sbeeessteesseaeen 266
ALLEIING STOTEA PrOCEAUIES. . ciicutiiieiee ittt eeiee et e st e e st e sste e s sbeessbeessataesssteesssseessssaesssseesssseessseesnnes 268
Altering user-defined fUNCHIONS......iii i bee s s be e e s bee e sbeas 269
Altering implicitly created XML 0DJECTS. .. .uiiiiiiiiiiicee ettt 270
Changing the high-level qualifier for DbB2 data Sets.....cccviiriiiiiiiieiiieiie et 271
Defining a new integrated catalog alias......ccvevueiieiieiiieiiiiecciec e 271
Changing the qualifier for system data SetS......ccvvviiiriiiiiieiee e 272
Changing qualifiers for other databases and user data Sets.....cccccccvvvviiiiriieiniiennieeceeeee e 275
ToOLS FOr MOVING DD2 dAta....iiiiiiiiiiieiiiie ittt sttt et sre e s st e s sbe e s sabeessateesssteessnsaesnes 279
MOVING DD2 AATA...uiiiiiiiiiiieieiecete ettt e st e e s e e s s ba e s s be e e s baeesasaeesasaeesasaeesnseeesseeean 281
MOVING @ DD2 dAta SET..uiiiiiiiiiiiei ettt ettt s e e s s te e s s ae e s s abe e s saraesnaneas 282
When to regenerate Db2 database objects and roUtINES........cocvieriiiiriiieniieeriieeeee e 284

Part 2. Operation and reCOVErY.....cciiiuieiieirieiieteitentetettectecestecssessscasssssscassscsssesss 289

Chapter 4. Controlling Db2 operations by using COMMAaNdS.........covvveiriieeniieeiiieeeiee e see e 407
Issuing commands from the zZ/OS CONSOLE.....cciciiiiiiiiiiiiecee e ae e s sareeeas 409
Issuing commands from TSO tErMINALS......ciiiciiiiiieiee e ee e s saee e s saeas 409
Issuing commands from CICS terMINaLlS......coccciiiiiieiiiieinieeeee et see e s re e s s bee s 411
Issuing commands from IMS 1erMINALS....cceciiiiriiieieie ettt re e e ba e e be e s saeeeas 411
Issuing commands from application ProgramsS.......civcieercieiriieeiniee e esee et e e see s sae e s sree s saeas 412
Destinations for command OULPUL MESSAEES.ciiiiiiiriierriierrieersreessieessreessreessaeessseessseessseesas 413
UNSOLICITEA DD2 MESSAEES...ttiicviiiiirieiiiieiiiieesiteesittesstteessitesssteesssbeessbeessseesssaessssaesssnessseesssseesnnees 413

Chapter 5. Starting and StOPPING DD2.......oiiiiiiieeeeeeeeee ettt see e s ae e s ee e ssaeeesnaeeas 415
Y 2= L 4] =3 5] o) PSPPSR 415

MESSAEES AT ST .ttt e e e e e e s e st e e e e e e e e s e e reeeeeeeeeeas 416
Subsystem Parameters At STAI......ciicciiiii et e e ree e e e e e e e s s nree e e s e nseeeeeennnes 416
Application defaults module NamMe at STart.......ccueerieeciiiie e e 417
RESLICHING ACCESS 10 UALA. . uuiiiriieiiiieirite ettt ettt e st e e s sbe e e sba e e sbeeesbaeesbaeesasaeenane 417
Ending the wait state at StArtUP....cceiiciei e s s e e 417
Restart options after an @beNd.........oo i et ae e e e e 417
Y (0] o] o1 1= 31 B 12PN 418

Chapter 6. SUDMITEHING WOIK 10 DB2....ciiiiiiiiiieeieesee sttt sttt et s e e s be e s abe e s bae s 419
Submitting WOrk by USING DB21......ciiiiiiiiiieieiieiniieesieessieessitessiee s s ieessbeessbeessbeeesbeesssseesssneessnnens 419
RUNNING TSO appliCation PrOZIamS.....cii e uieirieeieieeieieessieessteessreessreessseesssseesssseesssseessseesssseessssees 420

Sources that Db2 checks to find authorization access for an application program................... 420
RUNNING IMS appliCation PrOSramS....ccuiiieieeieieeirieessiee et e st e s see e s ste e sste e ssaeeessateessseeessseeesneeesnses 420
RUNNINg CICS appliCation PrOZIamiS.....ciucueiecieeriieeriieesiieessireesseeesssseessenessseessssessssseessseesssseesssses 421
Running batch application PrOgramsS.. ... i icieiriiecete ettt et e s see e s see e s s ae e s s ee e s saeaesnaeas 422

Running application programs USING CAF......couiiiiiieiiiieeiieesseessieessieessreesseeessaeessseessveessseeeas 422

Running application programs USING RRSAF ...ttt ettt ssee e s see s s saee e s saeeesnees 423

Chapter 7. Scheduling adminiStrative tasks. ..o e 425
Interacting with the administrative task SChedULer........cccviviiiiiciii i 425
Faa Lo L g~ A= T =T OSSPSR 425
LiSTiNgG SCREAULEA TASKS....uviiiiiiiiciieeite ettt sttt st e st e st e s s be e s s beessabeesssbaesnnsaess 431
Listing the status of scheduled tasks........cuiiiiiiiiiee e 431
Updating the schedule fOr @ 1asK......ccuciiiriiiniiecieecte ettt sre e e s ra e s sraeeeaee 433
Stopping the execution 0f @ TaSK......iiv it e 434
RemMOVING @ SChedULE TaSK.....cii ittt sre e s e s sba e s sbae e e 434
Manually starting the administrative task scheduler ... 435
Manually stopping the administrative task scheduler ... 435
Synchronization between administrative task schedulers in a data sharing environment........ 436
Troubleshooting the administrative task sScheduler.........ccciveiiiiiiiiinieee e, 436
Architecture of the administrative task SChedUler........couiiiiiiii e 439
The lifecycle of the administrative task SChedULET........cc.uuiiiiecciieeeeeeee e 440
Task lists of the administrative task SChedULET..........coviiiiiiiiii e 441
Architecture of the administrative task scheduler in a data sharing environment..................... 442
Accounting information for stored proCedure tasks.......cccveveiierieeiniiieiniee et ssee e 443
Security guidelines for the administrative task scheduler.........cccvvuieiiiiiiniieinciecee e 444
User roles in the administrative task SChedUler........c.oiviiiiiiiiiiiece e 444
Protection of the interface of the administrative task scheduler........ccccooveiiivieiiiciiinveninieeeee, 445
Protection of the resources of the administrative task scheduler........ccoceviviiiiiiiiiniieeinieennee, 445
Secure execution of tasks in the administrative task scheduler......cocccvvveiinieiinieiinieninieeee, 446
Execution of scheduled tasks in the administrative task scheduler.......cccccvvvvieiniiieiniienniieeiieeene 446
Multi-threading in the administrative task scheduler.........coviiiiiiniiiin e 447
Scheduling execution of @ Stored ProCEAUIE........ccuiiirciiiiiie e 448
How the administrative task scheduler works with Unicode.........ccoevueeiriieiniienniienniieeneeeene 449
Scheduled execution Of @ JCL JOD....uui e e e e e e e e 449
Execution of scheduled tasks in a data sharing environment.......cccccceveviennieennieennseensieesseeens 450
Time zone considerations for the administrative task scheduler......c.ccccoveviiiiviiniieeniiieniiieenans 450
Chapter 8. Monitoring and controlling Db2 and its CONNECTIONS......cccciiiiviiiiriieiieeeeee e 453
Controlling Db2 databases and buffer POOLS.........cciiiiiiiiiieirieec e 453
STArtING AatabaSES.cieiiiiieicte ettt e st e st e st e s e ta e s abe e s araeean 454
MONITONNG AtADASES.uiiiiieiiiee ettt ete e seee e s ree e s ate e ssateessseeeseneeesaneaesans 456
Obtaining information about application Programs........cccecueeecieeriieeniieenreeree e eseeesree e 458
Obtaining information about and handling Pages iN Error.........eeieeerieerriieeereeeee e 460
Making 0bjects UNAVAILADLE....cccuiiiiiiiieeeec et s e s e s 463
ALLErING DUTTEI POOLS.cc.ueiiiiiie ettt see e s ee e st e e s e e e sbee e s beeesbeessaneas 464
MONITONING DUFEI POOLS..c.ueviiiiiiiite et e s bee e s aee e s sbae e s seeessneas 465
Controlling user-defined fUNCIIONS.......uii it ee e s aee e s saeas 465
Starting user-defined FUNCLIONS.....cii it s e e s abeessaeee s 466
Monitoring user-defined FUNCLIONS......ciciiiiiieiiee e see e s eee e sree e sreeesane 467
Stopping user-defined fFUNCLIONS.cciiiriiieieeeeee s e e s aee e saee s 468
Monitoring and controlling Stored ProCEAUIES.ccuiii ittt ettt e ssee e s eee e ssreeessaeaesnee 468
Displaying information about stored procedures with Db2 commands........cccecceevrveerriieennneenn. 468
Determining the status of an application enViroNMENt......cccevciiiiiieeiiieeete e 471
Refreshing WLM application environments for stored procedures.......cccocveerveeerceeenieeencveennnne 471
Refreshing WLM environments for stored procedures automatically........cccceveveeriieiriienninennane 473
Obtaining diagnostic information and debugging stored procedures.........cccceveeerveeinceennseenne 474
Migrating stored procedures from test t0 Production........cccuievcieiriieeniieenrie e 475
Setting the priority Of Stored ProCeAUIES.......cicciiiiciiiieieeteerte et see e s e e s saeeens 477
Controlling autONOMOUS PrOCEAUIES....ccvtiieiiiieiteeete ettt et e st e s sbee e s sbeeessbaeessseessseeesseeessseenn 478
(00T Ao 1 aF=ll D] o Y U {1 1) (=T PSR 479
StArting ONLINE ULILITIES . cuviiiiieieiee ettt see e st e e s bt e e sbee e sbeeesbaeesreeesane 479
Monitoring and changing oNliNg ULILITIES.....ccuiivciiiiiieiieeee et sree e 479
Controlling Db2 stand-alone ULIlITIES.....c.eiieiiiiiiiiiriieiiee ettt ettt see e s see e seseee e 480

vii

viii

CoNtrolliNgG The IRLM...ii ittt sttt et e st e s bt e e st e e e s be e e s abaeessbaeesasaeesasaeessseeennseaean 481

z/0S commands that operate 0N IRLM....c..euiiii it e e e br e e e 482
STArtiNG the IRLMu .ttt ettt ettt e s te e s s te e s sabe e s s abeessataessaeaessneaesneas 482
STOPPING The IRLM. ..ottt te e s te e s s abe e s sabe e s sbeesssbaessstaessasaesnnes 483
MONITOTING ThIQAAS. ..ciietiiiciee et ee st e e sbee e s bee e sbee e sbee e sabeeesabeessaseessseeesasens 484
Monitoring threads with DISPLAY THREAD COMMANGS.....ccttiiiieiriiieiniieinieeesieessieessieesseeeens 484
Controlling allied threads and CONNECTIONS........iiiiiiiiiieiiiiee et see s see e s re e e sbee s sans 491
Controlling TSO CONNECTIONS.iiiiiiiriiteriiteerie st e st e st e st essbe e s s e e s sbeessabeessabeesssseessnseessnses 492
Controlling CICS CONNECTIONS. ...ciiiiiiriieeieieeeriteesite st e s sreessbeeesbeeesbeeessbaeesbeessseesssesesseessnsees 495
Controlling IMS CONNECTIONS. ... uiiiiiei ittt sttt e s saee s st e s sbee e sbee e sbae s sabaessasaeesans 500
Controlling RRSAF CONNECTIONS......utiiiiieiiiieinieeeeite et et esste e s ste e s te e s seeesssteessseeessssaessssaesnnee 510
Controlling distributed data connections and database access threads (DBATS).....ccccceevveevveerunenns 516
STAMTING DDF...iiiiiieeiciee sttt ettt sette e sebt e e s bte e sbteesbeeessteesabteesasteesaseeesseeesaseeesaseeesaseessane 516
STOPPING DDF ..ttt ettt ettt et e st e e st e e s st e e st teesaeeesseeesasseesnseesasseesssaessseesnnsaesas 517
Suspending and resuming DDF SErver aCtiVity.....occccevcieriieeiniiennries e see s seesseeessee s ssnee e 518
Displaying information about DDF WOIK.......cuiieciiiiriiiinieieiteesie et see e sieeesareessnee s 519
Monitoring remote connections by using profile tables......cccccvvviiiriiiiniiiin e, 523
Monitoring threads by USINg Profile tables.......ciiiiiiiciiieee e 528
Monitoring idle threads by using profile tables.......cooiiiiiiniii e 534
Canceling SQL from an IBM data SErver driVer.....ccuuceeieiieieeeeeiee et ssie e sseeessae e 539
(08T aTor= 1] =0 { L= =T £ RO 540
Monitoring DDF problems by USING NETVIEW....ccccuiiiiiiiiiiiiiiiensieessiee st ssre e ssee e ssve e s s 541
CONTIOLLING TrACES. ettt ittt ettt ettt s e st e s s bt e e s ba e s sbeeesabaesssbaeesssaessssaeesnsaeesssaesssaeens 543
Diagnostic traces for attachment faCilities.....cuiieiiiieiiiiriiee e 543
Controlling Db2 trace data COLECTION....c.uiiiciiiiiiccieccec e e e e 544
Diagnostic trace for the IRLM.....ci ittt sttt be e s e e s sabee e sans 545
Setting special registers by Using profile tables.......ccciiiiiiiiiiiiee e 545
Setting built-in global variables by using profile tables........ccoociiirviiieviiircee e 550
Chapter 9. Monitoring and controlling Db2 by using profile tables......ccccccvvviiiriiiinieinieeee e, 555
Starting and STOPPING PrOfIlES.....uiii it sbe e s s rae s sbe e s sbaeeas 559
Modifying eXiStING PrOfILES. .. .uiiiiieieieie e s e s e e s e e e s bae e s beeesasaeeas 560
How Db2 applies multiple matching profiles for threads and connections.........ccccevceeivieeinieennnee. 561
Examples for profiles that monitor and control threads and connections........cccccceeeeeciieeeeccneeennn. 565
Chapter 10. Managing the log and the bootstrap data Set.......ccecveeiriiiiiiiiiiieiecee e 569
How database Changes are Made.. ... ittt see e s see e s ree e ssaee e ssaeeesaeas 569
Units of recovery and points Of CONSISTENCY...cciccuiiiiiicciiiee et 569
HOW DD2 rollS DaCK WOIK....iieieiiieeee ettt s s e 570
How the initial Db2 logging environment is established........ccccoviiiiiiiiniiiininieec e, 571
HOW DD2 Creates LOg rECOMAS. .. .uiiiiiiiiei ittt ettt ste e srte e see e seree s st e s s bee s sbae s sbee s sabaessabaessaseas 571
HOW Db2 WteS the aCtiVE LO8..ccuuiiiiiiiiiiiiiiieeete sttt st s s s s e e s sabe e s aaeeas 571
How Db2 writes (offloads) the archive log........uceieiieeieeeeeeceeeee e 572
HOW DD2 retrieVes LOZ FECOMTS. . .uuiiiiiiiiiiteeeiiteecite ettt s et s e e s saee e s saae e s sabaessseaessasaesnssaesnneeas 576
MaANAZINEG ThE LOG...eii ittt e s bt e e st e e s bte e sste e s ateesaaseesssaesaseaesnnsaenn 577
Quiescing activity before offloading........cciivciiiiiiiiiii e 577
ATCRIVING ThE LOG .. eiiuiieiiiiieeee ettt s be e s s te e s s te e e s be e e sabeesssteessasaessssaesans 578
Adding an active log data set to the active log inventory with the SET LOG command............. 579
Dynamically changing the checkpoint freqQUENCY.......covviiiiiiiiiiiieieeceecee e 580
Setting limits for archive log tape UNItS.....ciii ittt s 580
Monitoring the SysStem CheCKPOINT. ...ttt s e e s e s 581
Displaying Llog INTOrMAtiON.....ciii ittt sre e sbe e e sbe e s saba e s sbae e sabaessasaeenaee 581
What to do before RBA or LRSN limits are reached.........cceeeeriieiiiniieiienieeeneeeesee e 582
Converting page sets to the 10-byte RBA or LRSN fOrmat.......cccceeeciiirviieiniieiniiesssieessieesseeeene 584
Resetting the log RBA value in a data sharing environment (6-byte format).......cccceeveeveennennee. 585
Resetting the log RBA value in a non-data sharing environment (6-byte format).......cccccc........ 586
Canceling and restarting an offload........ooviiiiiinie e e 588
Displaying the status of an offload........couiiiiiiiii e 588

Discarding arChive LOZ FECOMTS.cuuiiiiiieeriteeciee ettt sttt e st e s s e s s e e s s beessabeessabeeesabeessanens 589

Locating archive Log data SEIS.....iiiiiiiiiieiiiee ettt s e s s e e s s bee e s be e e sabaessans 589
Management of the bootstrap data SET......uciiiiiiiiier e s 591
ReStOring dual-BSDS MOGE....cciicuiiiiiieiiiieieiteeeite e eite st e etee e stee s seee e sbe e e sbaeesbaesssaesssaesssaeenns 592
BSDS copies with archive l0g data SEIS......ciuiiiiiiiiiiiiiieirieetesste st s 592
Recommendations for changing the BSDS log iNVENTOIY.......cocceeiiviieiiiieiiiiieinieeseieeseieeseeee s 593
Chapter 11. Restarting Db2 after termination........ocuieiciieiiiienecceree e s 595
METhOAS OF FESTAMTING..ciuiiiieiiiieiie ettt s ste e s st e e s s ateesssteesssbeessstaesssteessssaesnnsaesnns 595
(D] 02228 (=T g 1T F= N o] a1 44 0 1= TS 595
NOIrmMal reStart AN FECOVEIYuuiiieiecctieee ettt e e cttre e e et e e e e e abee e e s snbeeeeseenstaeeeesnssenesnennnes 596
AUTOMATIC FESTAM . .tiiieiieieiieeete et e s ee e s bee e s bbe e s bee e s aeeessabee s sbaesnasaesnssaesnnenas 601
Restart in a data sharing eNVIFONMENT.......ciiciiiriieeeiieete ettt essaee e saee s 601
Restart implications for table spaces that are Not logged........cocvviiriiiiriiieriiieeniieeeieesee e 601
(000]aTe [} (oY a T 1N =T - L PSPPSR 602
Terminating DD2 NOMALLY.....ciiciiiieiee ettt etee et e e st e e s ba e e sbae s sbae e sasaeesraeesane 602
Restarting automMatiCally.....cciiciei ittt e s e s s e e s re e e nees 603
Deferring rESTArt PrOCESSING. . ciicviiirciieieiieeeite e ettt e sitte e ettt e sttt e srteessbeeesbaeesssaeessaesssaeessaesssaesssseeenns 603
Performing CONAitioNal FESTAI......uiiiciieiiieeee ettt e s e s te e ssare e s sabeessabeesaseesn 604
Conditional restart with system-level BackuUPS.......coouciiie i 605
Options for recovery operations after conditional restart........ccccoeecveeeeieciieee e, 605
CoNditioNal FESTAI FECOITUS...iiiiiiieiiieeieeecte ettt st e s ee e s sae e ssaee e s s aae e sssaaessaraesnneas 605
Resolving postponed UNItS Of FECOVEIY.....iiviiiiiiiieiieeeriteeecte sttt see e s saee e s sare e ssaeeessseeessseeen 606
Recovering from an error during RECOVER POSTPONED ProCesSing......c.ceevveeerieerrieeessieeeenseeesnnnns 607
Chapter 12. Maintaining consistency across multiple SyStemS.......cccccvvvieiriiieiniieeniieeseee e 609
MULLIPLE SYSTEM CONSISTENCY .. .uiiiiiiiiiiieeiecciiee e et e e e ecee e e seetee e e s esseee e e eesbeeeeseabeeeeeesnsseeesesssensesannes 609
TWO-PhaSE COMMUEL PrOCESS. . .uuiiiiieeiiiieeieittteeeeertteeeeesctreeesesbteeeeessseeeeesassteeessensteeesssansenessesnssenes 609
Commit coordinator and multiple partiCiPantS.......ciceccieeeeccciiee e e 611
Illustration of MUlti=SItE UPAAte....cccuuiiiiieieee e e e ee e e e aree s 612
Termination for MULLIPLE SYSTEMIS ... uuiiie it e e e e e e e baee e e e naaee s 613
Consistency after termination or failure........cooccceiiii e e 613
Normal restart and recovery for multiple SYStEMS......cceiicciiie e 615
Multiple-system restart With CONAItIONS.....ciiccuiiiiicceee e e e 615
Heuristic decisions about whether to commit or abort an indoubt thread...........ccccovueernennnee 616
Resolving iNdOUbT UNItS Of FECOVETY....iiiiiiiiiieeecceece ettt e e s saee e ssaeee s 616
Resolution of IMS indoubt UNItS Of FECOVETY.....uuii ettt rree e e e 616
Resolution of CICS indoubt UNitS Of FECOVEIY...cc.euiiieicieee ettt e 617
Resolution of RRS indoubt UNitS Of FECOVEIY...ciii ettt 618
Resolving WebSphere Application Server indoubt units of recovery.......ccccvvveviiveeeniecenieeennee. 619
Resolving remote DBMS indoubt Units Of rECOVEIY.....civiiiriiiieieieiiecete et 621
Determining the coordinator's commit or abort deCiSION......cccceiieviiiirvieeireecee e 621
Recovering iNdOUDT thrEadS......ooviiiiiiiiiieece et s s e s e e e ba e e s aaeeas 622
Resetting the status of an iNdoubt thread........cevvciiiriiiice e 622
Resolving an indoubt unit of recovery during Db2 restart........ccoceeveiieiniieiniiennieeeee e 623
Chapter 13. Backing up and recovering yOoUr data......cccveverreieriiiieiniieesieeeseeesseesssieeessveesssseessneesssnens 625
Plans for recovery of distributed data..........ceeieeciiiei i 626
Plans for recovering the Db2 tables and indexes used to support Db2 query acceleration............ 626
Plans for extended recovery facility t0leration.........ccueeeiecciiee e e e 626
Plans fOr reCOVEIY Of INAEXES.ccii i ettt e e ertee e e e ae e e s e eabte e e s e esteeeesenbaneesenseneens 627
Actions to take When you back UP data.....cccuieeee et evree e e vae e e e e nrae e e 627
Actions to avoid when you back UP dat@......ccueeeeieciiiee et cree e e ree e e s nrae e e e e eaneaee e s 628
Preparation fOr FECOVEIY: @ SCENANIO.....uuuiiiieccieeeeeecrieeeeeetteeeeeeiteeeeeestaeeeesestreeeeessseeessesnseseseensssenes 629
Events that OCCUI AUIMNNE FECOVETY...ciiiiiiiiiieriiteeiieesciie e st e st e ssae e s see e s be e s e e ssabeessabeessaseessasaessanes 630
COMPLETE FECOVEIY CYCLES .. nniiiiei ettt e e e e et e e e et e e e e e nsae e e s eensteeeesenraneeeennseeeeas 631

A recovery cycle example when USing iMage COPIES.....cuuiiierriierriiernieeerieeesieessreessreeesreessaes 632
How DFSMShsm affects your reCovery nNVIirONMENT......cccccciieeiecciieeeeeciieee e ecrre e e eeveee e e e eveeeeas 633

Tips for maximizing data availability during backup and recovery......cccccccvveinveeinceeiniee e, 633

Where to find recovery iNfOrMAatioN.........cciiiei it e e et e e e e nre e e e s e eaeraeeeeeanes 637
How to report reCovery iNfOrMAatioN.......cccuiiii ettt e e e e e e e s e beee e e e areeeeeeannes 638
Discarding SYSCOPY and SYSLGRNX rECOIUS.....ciirvuiiiriieiriieinieeieieeesieesseeesseeessseessseessseesssseesnns 638
Preparations fOr diSASTEI FECOVETY....uuii i iiieececitie e eectte e eectte e e e eeee e e e seertee e s s e nseeeeeeeanteeeessnnseeeesannsens 639
System-wide POINtS Of CONSISTENCY .cciiiuviiieieeiiiie et e e e e e e e abe e e e s eesreeeeenns 641
Recommendations for more effective recovery from inCONSISTENCY....cceeevvieeeieciiiiieeccciiee e, 641
Actions to take to aid in successful recovery of inconsistent data........ccccceeeevveeeececiieeeecciieenn. 641
Actions to avoid in recovery of inconsistent data.......cccceeeeeeciiie e 643
How to recover multiple 0bjects in Parallel...... i e e e 643
Recovery of page sets and data SETS.....cii ittt e s s e s sareeeas 644
Recovery of the Work file database.......ccuueee i 645
Page set and data SEt COPIES...iiiiiiiiiieie ettt et s e s e e s sbe e s sabeessbaessssaessnsaesnnee 646
System-level backups for object-level reCOVENIES.......uuiiiiiiiiccee e 649
Recovery of data to a prior POINt iN tiME......iii e e e e e e e s e eree e e e e eanes 650
Plans for POINt=iN=tiME FECOVEIYuiii i ieee ettt et e e e ectre e e eetee e e e e eabee e e e essteeessenreeeeeennseneesanns 650
Point-in-time recovery with system-level backups........ccueviieciiei e 651
Point-in-time recovery using the RECOVER ULIliTY......coociiiiiiiiniieiiieceieeceiee e 653
Implications of moving data sets after a system-level backup......ccoccevvvvienniiiniiininieeceeeen, 662
RECOVEIY Of 1Al SPACES. .. utiiiii ettt e e et e e e et e e e e s e sabe e e e sesbaeeeeesnnseeaessanes 662
RECOVETY Of INAEXES...uiiiiiciiiee ettt e e e e e ette e e e e e etee e e e e atae e s s e e s staeeeesnstaeessenseeeseennseeeesnnnnes 665
Recovery of FLashCOPY IMage COPIES....utiiiiiiiiiieiiiie ittt sriee st e st e s see e sseeessaeeessaeeessaeesssaeeesneas 666
Preparing to recover to a prior point of CONSISTENCY...cccviiiiiiiiiiiiiieecriee et 667
Preparing to recover an entire Db2 subsystem to a prior point in time using image copies or
o] o] =Yoo LAY B o F= Tl (U o 1SN 669
Creating essential disaster reCcovery EleMENTS.......coivviiiicieiiiie et 670
Resolving problems with a user-defined work file data Set.....ccocvevviieiniiiiniieisee e, 671
Resolving problems with Db2-managed work file data SetsS......ccccvvvieiriieiniienniieeceeeree e 672
Recovering error ranges for a work file table SPace.......ccvvviiiriiiiiiiiicceeee e 672
Recovery of error ranges for a work file table Space.....c.ccccvviiiriiiniieinee e, 673
Recovering after a conditional restart 0f DD2......ccociiiiiiiiiiiieiieeecee e 673
Recovery of the catalog and dir€CTONY.....iiiciiiiciiiicieectecee e s e e seeeesaee 673
Regenerating missing identity COLUMN VALUES........cooviiiiriiiiiiieieec ittt s 674
Recovery of tables that contain identity COlUMNS.......coocciiiiiiccee e 674
Recovering a table space and all of itS INAEXES......iivciiiriiiiiiiieeee e 675
Recovery implications for objects that are Not logged........coivviiiiviiiniiiinieecec e 675
Removing various pending states from LOB and XML table spaces.........ccccvveerrviiiniieinieeenceeeenne 679
Restoring data by USING DSNLCOPY ...ccccuiiiiiiieiiiieeeiieeeiie ettt esiteessteeessrteessbaesssaesssraessseesssaessseeenas 679
Backing up and restoring data with non-Db2 dump and restore.....c.occcvveeeirieeinceeenceeescee e 679
Recovering accidentally dropped ObJECES.....uiiiiiiiiieiiiecee et s 680
Recovering an accidentally dropped table.......oi i 680
Recovering an accidentally dropped table SPaCe.......cccviviiiiiiiiincieee e 682
Recovering a Db2 system to a given point in time using the RESTORE SYSTEM utility...........c....... 686
Recovering by using DD2 reStart FECOVETY...cccuiiviiiiriieeite ettt s e s e s sbee s sbee s s e e s s beeesvees 688
Recovering by using FlashCopy volume BackUpPS.......cccviviieiiiiiiiieinies e 688
Making catalog definitions consistent with your data after recovery to a prior point in time.......... 689
Recovery of catalog and direCtory tables.......uiiiiiiriiiiiiiieceeecc e 691
Performing remote site recovery from a disaster at a local Site.....c.ccccevvcieiriieiricieinieeeree e, 691
Recovering with the BACKUP SYSTEM and RESTORE SYSTEM Utilities.....ccccevevverriieercieniinennane 691
Recovering without using the BACKUP SYSTEM ULILItY....cceeirviiiniiiiirieeeriee et 692
Backup and recovery involving Clone tables......ooiiiiiiiiieiiiecce e 692
Recovery of temporal tables with system-period data versioning.........cccecveeeeveereseenssieeessieessseeenns 693
Data restore 0f @n ENTIrE SYSTEM. .t e e e e e e e et e e e s e baee e s s e ssaeeeeesnneaeeeas 693
RUNNINg RECOVER iN tE€ST MOGE.....ciiiiiiiiiiiiiee ettt sttt ste e st e s siee e ssaae e ssaee e ssaee e sneeesnneas 693
Accessing historical data from moved tables by USINg iMage COPIES.....cccvvrviiiriieirieeeree e, 694
Recovering from different Db2 for z/OS Problems......cucueiiiiiiiiieceeceececsee e 285
Recovering from IRLM failUrE....ciicuii ittt et st siee e sbee e sbee s saee e saneas 285

Recovering from z/OS or POWET TAIlUIE...cc.uiiieiiiieiiiceite ettt ee e s e s 286

Recovering from diSK faIlUMB.....uiiiiiieieiieceee ettt e st e s sbe e s sbeessabeeens 286

Recovering from appliCatiON EITOTS.....c.uiiicieiieiee ettt ste e siee e seiee e st e e sbee e sree s sbeessareessanes 288
Backing out incorrect application changes (with a quiesce pPoint)....ccccceecceecceeeceeceecree e 289
Backing out incorrect application changes (without a quiesce pPoint).....ccccceeveeeceeveesceeseesnenns 289

Recovering from IMS-related failUres ...ttt s e 290
Recovering from IMS control region failUreoecveeiiiiiiiiiecteeceee e 290
Recovering from IMS indoubt Units Of FECOVEIY.....uiiiiiiiiiiiiciectee e 291
Recovering from IMS application failure.......ccicviiiiiiiiiieeciecec e 293
Recovering from a Db2 failure in an IMS enviroNmMeNt.......ccovciiiriieiniiieineeceee e 293

Recovering from CICS-related fAailUrecuiieiiiriiiiiiecsieceie ettt e s 294
Recovering from CICS application failures.......cccviirciiiriieiiiiieniieeesite st siee e saeeessaee s 294
Recovering Db2 when CICS is NOt 0perationalcocceueiecieiniiiiiniieeeiiecete et 295
Recovering Db2 when the CICS attachment facility cannot connect to Db2cccoeeeerrveennnee. 296
Recovering CICS indoubt UNItS Of FECOVETY....uuiiiiiiiiiiiiieciee ettt 296
Recovering from CICS attachment facility failurecocceevoieiiiiiiniice e 299

Recovering from a QMF QUENY failUIE..c...uiiiiiiiiieecieectec sttt e s e s e e ssaaeeeas 299

Recovering from subsystem terMINAtioNccciveciiiiiieiiiieeee et se e e s sbee e saeas 300

Recovering from temporary reSOUrCe failUreiivciieieiiiiiiieiieeciee e s see e s saee e 301

Recovering from active LOg fAILUIES ..o.uii ittt s s e e e s 301
Recovering from being out of space in active LOZSoucviiriiiiiriiiiniiieeeeeeee e 302
Recovering from a write I/O error on an active log data Setccoccevvceeirieeinieeicee e, 303
Recovering from a loss of dual active LOZBINGeiveiiiiiiiiiiieitecee et 304
Recovering from I/O errors while reading the active logccovvvieiriiiiiiienniiineeceeeeeee e 304

Recovering from archive Log fAIlUIESc..iiieiiiiiieceecete et re e s aee s 306
Recovering from allocation problems with the archive l0gccevvviiiriiiiniiiiccieceeee, 306
Recovering from write I/O errors during archive log offloadcccccevvviiiniiiiniienniieceeeceeee 307
Recovering from read I/O errors on an archive data set during reCOVEryccccvevveercveerineennns 307
Recovering from insufficient disk space for offload processingcc.cccceveeeerveeincieinieenncieenne 308

Recovering from BSDS failUrES.....uiiiiiiiiieieiieenietessit ettt et e s bee e s bee e s see s ssnee e ssneeesneas 309
Recovering from an I/O error 0N the BSDSoeiiiiieiiieecteeete ettt see e sre e seee e 309
Recovering from an error that occurs while opening the BSDSccccovvveiviieiniiennieeeneeeee, 310
Recovering from unequal timestamps 0N BSDSScivciiiriiiiiniiiiniieeniesssieeeeseeeesseeeesveeesseeeens 310
Recovering the BSDS from @ baCkup COPY..ccuiiiiiiiiiiiiiiiieeeiteceiteesite et snee s 311

Recovering from BSDS or log failures during reStart........ccccvceeirieeriieeniiieesseesseeesee s seesssvee e 313
Recovering from failure during log initialization or current status rebuild........ccccccovvvernieenee. 316
Recovering from a failure during forward lOg rECOVETY.......uuivviiiriiiirieecteceee e 326
Recovering from a failure during backward log reCOVETY......ccciviriiiiniieeiniieerieesee e 331
Recovering from a failure during a log RBA read reqUEST........coecieiriveeriieeniieesreescreessieeessneeens 334
Recovering from unresolvable BSDS or log data set problem during restart........cccecceeevceennnen. 335
Recovering from a failure resulting from total or excessive loss of log data.......cccccceevvveernneen. 337
Resolving inconsistencies resulting from a conditional restart.......ccccceveveeviveeinieeinveeenee e, 341

Recovering from Db2 database failure ...t 346

Recovering a Db2 subsystem to a prior POINt iN tiME.....cuiiiiiiiiiiieeieeeieceee e 347

Recovering from a down-level page set problem ... 348

Recovering from a problem with iNValid LOBS........ccciivieiiiiiiiieeeiee et svee e see e svee s svee s 350

Recovering from table SPACe I/O EITOISiiiiiiiiiiiieiiierite sttt et st e s s e e s sbee s sabeessaneas 351

Recovering from Db2 catalog or direCtory I/O €rTOrS ...cucuiieiiiiriieieiieeeieeee e e s 352

Recovering from integrated catalog facility failureccocceeviiiiiiiiin e 353
Recovering VSAM volume data sets that are out of space or destroyed........cccceveeevrveerrceeennnne. 353
Recovering from out-of-disk-space or extent limit problemscccoccevrieiniiiiniieinieeneeeee, 354

Recovering from referential constraint violationcceeviieiiiiiiiiieeieee e 358

Recovering from distributed data facility failure ... 358
Recovering from conversation failUre ... seee e 359
Recovering from communications database failure........ccceceeieiieiniieiniieeeeee e 359
Recovering from database access thread failure ... 360
Recovering from VTAM fAIlUIE ...coiiiiieie ettt sttt ettt e s ae e s ee e s saee e s aae e sneas 361
Recovering from VTAM ACB OPEN ProblemsS.....cuuiiiiiiiniienieesrieessieessieessieessveessveessseesssveas 361
Recovering from TCP/IP fAIlUIE ..cocviiieiieiee ettt ettt 362

xi

Recovering from remote logical Unit failurecocceeieiiiniiii e 363

Recovering from an indefinite wait CONAITION.....c..ciiiiiiiiiiiiiiiiiececee e 363
Recovering database access threads after security failureccooccevveveiiiciiinieiineececee, 364
Performing remote-site diSASTEr FECOVETYiivciiiriieiiiieieite et eite e eree e st e e sreessrae s sbaeesraeesseessnes 364
Recovering from a disaster by using system-level backups.........cccocvveirviiiniiiiniienniieceieceee, 365
Restoring data from image copies and archive LOgS......ccuuvvviiiiiieiiiieiiieecieceee e 365
Recovering from disasters by USing a tracker SIte......occiviiciiiiciiiicieice e 379
Using data mirroring for diSASter FECOVETY....ccuiiiriiiieieieiteeeite sttt seee s sbe e s sae e s sbeessaeeas 388
Scenarios for resolving problems with indoubt threads.........ccccoviiiiiiiinii e 393
Scenario: Recovering from communication failureccceeceeiniiiinienneeeecee e 395
Scenario: Making a heuristic decision about whether to commit or abort an indoubt thread... 397
Scenario: Recovering from an IMS outage that results in an IMS cold start.......ccccccevevveereiennnne 398
Scenario: Recovering from a Db2 outage at a requester that results in a Db2 cold start.......... 400
Scenario: What happens when the wrong Db2 subsystem is cold started........cccccceevvveerneennnen. 403
Scenario: Correcting damage from an incorrect heuristic decision about an indoubt thread....405
Chapter 14. REadiNg LOZ FECONTUS. ...uuiiiiiieiriieertteeeite sttt ssteesete e s see e s steessateessbeesssteessasaessssaessssaessssaeenns 699
CONEENTS OF ThE LOZ..uuiiiiiiiiiie ittt e s st e e s s be e s sateessabeessataesssteessssaesassaesnns 699
UNit Of rECOVEIY LOZ FECOITS. ..ciiuiiiieiieieiie ettt ettt e e ste e s s te e s sbe e s ssbe e s ssbeesssbaesssseesnee 700
CheCKPOiNt LOZ MECOMTS....uiiiiiiiieiieiete ettt ettt et e et e s st e e s te e e sbe e e sbaeesabaeesasaeessaessnseeessaesns 703
Database page Set CONTIOL FECOIAS.....uiiiiiiiiciiercieercre ettt e e s e s saae e saeeessaeee s 704
Other exception INFOrMATION......ciii e rre e e e e e e e e e bre e e s e ntaee e e e nnaaeas 704
The physical StruCtUre Of the LOZ.....ucuiiiiiir e s s e s es 705
Physical and logiCal lOg rECOMTS.....uiiiriiiiriie ittt ettt see e st e s e s sree e s aee e ssaees 705
Rl A (=R (o= L=l] o I g == Vo L= USRS 706
The log control interval definition (LCID)......cccieeiercieeieceereesieesee et esveesaeeseeesree e saaeereesane s 707
LOZ rECOId TYPE COUBS.c.uuiiiiiitiiiieiette e eite sttt ett e et e e st e e s te e s sbe e e ssbaeesbaeesbaessnsaessssaesssaeessanennee 711
LOZ reCOrd SUDTYPE COUBS....uiiiiiiiiiieirite ettt ettt e st e s ste e s s be e s sabeesssteesssseessseaessnsaesnee 712
Interpreting data change lOg rECOIAS......uiiiiiiiiiieiiee et e s eaee e ssseeesane 714
Reading log records With IFL......cccuiiiiiiiiiiiiiieeeieesree ettt e s s s e s s e e s s e e e sbaeesaneas 714
Gathering active log records iNt0 @ BUFfEr....ccciiviiiiiiiee e 715
Reading specific log records (IFCID 0129).....ciuciicieecieecieeieeieeseesteesreeseeeseeeseesseessaessessseesnns 715
Reading complete log data (IFCID 0306).....cccceevieeieerrieeireeseeeieeseessteesseesseesseessessseesssesssessneens 716
Reading complete log data for the GDPS Continuous Availability with zero data loss solution...... 720
Modifying Db2 for the GDPS Continuous Availability with zero data loss solution...........cc........ 720
Upgrading a Db2 11 GDPS Continuous Availability with zero data loss environment to a Db2
D2 ENVIFONMIENT .ttt ettt et st et e st e e bt e st e e beesae e e b e e smeeebeesneesabeesneesaseeneesnnenans 723
Modifying IFI READS calls for the GDPS Continuous Availability with zero data loss
ENVITONMENT ettt ettt ettt et e b e s bt e st e e bt e saee e be e sase e beesae e e beesmeeenreesneesnreennes 724
Recovering the compression dictionary data set without bringing down a Db2 data sharing
=L (o1 o O S POT TOU UPPPP PP PPPPPP 725
Reading log records with OPEN, GET, and CLOSE.........ccooviiiriiiiniie et ssiee st see e 726
JCL DD statements for Db2 stand-alone l0g SErVICES......uuiviiiiriiiiriiierieeeieeere e 726
Data sharing members that participate in @ read........ccceeeveeiniiiinieeireccec e 728
ReZIStErs and FEtUIN COUES...civuiiiiiiiiriie ettt ettt see e st s e e s te e s sate e s sate e ssaeeessaeaesnneas 729
Stand-alone L0g OPEN rEQUEST...cccuiiiiiieiriteerite et ssie e st e s e e s ree s s bee s s bee s sbeessbeeesbeeesneessnnens 729
Stand-alone L0 GET rEQUEST....ii ittt et e s re e s ste e s sabe e sssbeesssbaessasaess 731
Stand-alone [0g CLOSE FEQUEST......utiiiiieriiteeiitescitt e st e st e st e s see e s saeesssteessaseessaseessssaesssseessnses 733
Sample application that uses stand-alone l0g SErVICES.......cucuiiriviiiriiieiiieeeee e 733
Reading log records with the log capture exit roULINE.......ccovciiiiiiiiriieineeee e 734
How RBA and LRSN values are diSplayedceoccciiieeieciiiee et eeciiee et e e e sevtee e e evree e s e e ennaneeeeas 735

Appendix A. EXit roUtineS......ccciuieiieiiieiieiiiienieieiieticettesetestecestessscassecsscassscassasses 13 7

Lo L T Lo Yo=Y LU= SRR 737
SPECITYING EAIT PrOCEAUIES.....eiiieiteeetteeteee ettt e ee e s are e s abe e s sabe e ssaraessasaessssaessaseas 738
When edit roUTINES are 1aKEN....ccuii ittt s s e s s b e e e s be e e s beeesbaeesssaeens 738

Parameter list for @dit PrOCEAUIES.......oii ettt eeeee e s e sree e e e e sabee e e s senbteeeesesseneeeennnes 738

Incomplete rows and edit FOUTINES.coii ettt e e e e e s e sbe e e e e e e saee e e e enreeeesennns 739

Expected output fOr €dit FOUTINES.oeic et e e e e ar e e e e e e nrees 740
V=11 Ta EoY oY T (o TUL (] =TT PP 741
SpPecifying validation FOUTINES.......ciiciiiiiieeeciec ettt sttt e e s sare e ssabe e sssteesssbeesseeesassaesas 741
When validation routings are takeN......civieeieiieiiieeiee ettt s e e s ee e saes 742
Parameter list for validation FOUTINES......c.civiiiiiiiiiieiie ettt s e s sba e s ba e e ssee s 742
Incomplete rows and validation FOULINES........ceiiicciiiee ittt e e e e e e e e e e e reee e e e e nraeeeeeas 743
Expected output for validation FrOULINES........ceiicciiiei et e e e e e e e aree e e s e enraeeeeenns 743
Date and tiME FOULINES...uiiiiiii ittt ittt sttt sste e s eee e st e e s ate e s saeeesabeeessteesstaesseaesasteesaseaesaseeesasseesans 743
Specifying date and timMe FOULINES......ii ittt e s ae e s ste e e sbe e e sbaesseaeenns 744
When date and time routings are takeN......cucuiiiiiiiiiieiieeetessee sttt see s be e s aee e s nees 745
Parameter list for date and timMe rOUTINES.......iiiiiiiiiiiiiieeriee sttt e s saeessaeee s 745
Expected output for date and time rOULINES........uviii it e e e re e e e e nree e e e enns 746
CONVEISION PrOCEAUIES. .. uiieiiecitieeeeeiieeeeeiitteeeeeetteeeeeesteeeeesasteeessaasssessaaasseesessasstesssesssssssessasssnsesessssenenn 747
SPEeCITYiNG CONVEIrSION PrOCEAUIES.ciiiciieieiieietee ettt eeieeesteeseteessteeesteessbeesssseesssaessssaesssseesssseesns 747
When conversion procedures are takeN........uouiiee et eeceee e e e st e e e ebre e e e e reeeeeeennes 748
Parameter list for CONVErSiON PrOoCEAUIES....cc..uiiiieecctiiee e ecttee e eectee e eeree e e eeree e e e e ebae e e s eesraeeeeensens 748
Expected output for CONVErSioN PrOCEAUIES........uiiiiieciiieeeeccieee e eecrere e e eeire e e eeree e e e esbaeeeeessseneesennes 749
=] Lol oY oY ol = LU T =S 750
Field-definition for fleld ProCEAUIES..... . et e e e e e e e ar e e e e e e nrees 751
SPECITYING FlEld PrOCEAUIES. ..ciiciiiictee ettt e st e e s st e e s srte e ssateessateessneaesaneaesans 751
When field procedures are takeN.... ..o eeiee e e e e e ree e e s nrae e e e e nere e e e e nnree s 751
Control blocks for execution of field ProCEAUIES.......cuviiii it ree e e 752
Field-definition (FUNCHION COE 8)....uiiiiiieiieeeeeeeeete ettt na e e s 756
Field-encoding (fFUNCLION COUE 0)....uicieiiiiiieecieecie et eree et esee e teeste e ste e ve e e aeebeesseesbeesseeeseesseesnseanns 758
Field-decoding (FUNCLION COUE 4)....uirririiieeeeieeeeee ettt se e e e e ese e e b e e s raeeaeessaeenseesnee s 760
LOZ CAPIUIE FOULINES. .. uiiiieieiiciee it ettt ettt e s ete e s eate e setee e ssaee e sebeeesbeeesbeeesabaeessseeesnseeesaseessnseessnseessnsens 762
SPECITYING lOZ CAPTUIE FOUTINES. .. uiiiiiiieiiieccieee ettt st e s st e s s e e s s e e e s e e s sbeeessbeessaseas 762
When log capture routines are iINVOKE........occuieieiiiieiiieiniieieiieee e sssee e ssee s s sieeesseeessseeessaeeesnneas 762
Parameter list for log CapIUre FOUTINES.......uiiiiieeeiieerite ettt e s bee e s e e s e e e s aeeesaeas 763
Routines for dynamic plan selection in CICS.........oi i iiie et e s rreee e e rrae e e e e enneeee e s 764
General guidelines for Writing eXit FOULINES.....c.ciivciiiiriiiieiie ettt e s sre e sre e e sbae s sbeessbeeesaes 765
Coding rules fOr EXIT FOULINES....uiiiiiieiciee ittt ettt see e s see s seaee e s saee e ssbeaessseeesseeesseeesanens 765
MOITYING EXIT FOULINES...ciitiiieiiiieiiteecte ettt ettt e s bee e s tee e s sate e s saeeessaeeessbaesnssaesssaesnssnesnnees 766
Execution environment for @Xit FOUTINES......iivciiiicieirieceee ettt s s see e s 766
Registers at invocation fOr eXit rOUTINES.......ivciiiiiiii et 766
Parameter LSt fOr @XiT FOULINES....uiiiiiiiiciie ettt st e s s te e s s be e e s be e s sabaesssbaessasaenas 766
Row formats for edit and validation FOULINES......cuiiiiiiiiiiieiieeete ettt sae e s 768
Column boundaries for edit and validation ProCedUIES.......cccccuiieeeeciiiee e e 768
Null values for edit procedures, field procedures, and validation routines.........ccccceeeccveeeeeccieeennne 768
Fixed-length rows for edit and validation rOULINES........cccciiiriiiiniii it 768
Varying-length rows for edit and validation FrOULINES.......c.ciiriieiiiieiieece e 769
Varying-length rows with nulls for edit and validation routings..........cccceecveeieveeinveeinneeneiee e 769
EDITPROCs and VALIDPROCs for handling basic and reordered row formats........c.ccccevvveirveennnee. 770
Converting basic row format table spaces with edit and validation routines to reordered row
1(0] 11 =1 SRR PRSP 770
Dates, times, and timestamps for edit and validation routings........cccceeeeeciieee e, 772
Parameter list for row format deSCriPtiONS....ccccuuiiei et e e e rree e e e e earee e e e enns 772
Db2 decoding for numeric data in edit and validation routings......c..cccceeveeinieeiniiennieeenee e 774

Appendix B. Stored procedures for administration.......cccccceeieiieceiieniececiecececeeenac 777

Common SQL API STOred PrOCEAUIES.....uuviieeieciieeeeectitee e e cttee e e eettreeeeesabeeeeeeabeeeeseanbeeeessasseeesesnssanesanns 777
Versioning Of XML dOCUMENTS.......ciiiiiiiiieieiieeeiteeeiteeete sttt este e e st e e s be e e sseeesssaeessaeesssaeessseeessseean 778
XML NPUL AOCUMENTES....utiiie ettt e e ecte e e e et e e e e stee e e e e tbe e e eesasteeeeeeabeeeeeennsseeeessnssenaessnnes 778
D | o TV 01U e Lo Yol U Ty a =T o £ SRR 780
XML MESSALEE AOCUMENTS. .. .viiiurieiiiieiiiee ettt sstee st e s et e ssteesssteesssteesssteesssteessssaessssaesssseessssessnseesns 781

Troubleshooting Db2 stored procedure ProblemS........c.uiiciiercieeiiieeirieesie e e seee e sseeessaeeesane 782

xiii

xiv

Information resources for Db2 for z/0S and related products........cccceeeveeieiacannans 783

N 0 4o = N 785
Programming interface iNformMation. ... e e 786
= e (=10 =T OO OO PRRROPRPRNt 787
Terms and conditions for product doCUMENTAtION........uiiiieciiiie e e e e e 787
e EAVZ (oY oYo] o3Vt] g 1T =T =X {1 SRR 787
GlOSSANY . cuiuuiuinuienteieitareetentenstessecastossscasssssssassssassesssssssssasssssssassssassassssassassssassasas 789
INO@Xcteuiieiireiiieiineniecreiiresieesiaesrassrescrsssssstassrsssssssssssssssassrassssssssssasssssssssssnssssssanss 791

About this information

This information provides guidance information that you can use to perform a variety of administrative
tasks with Db2 for z/OS (Db2).

Throughout this information, "Db2" means "Db2 12 for z/OS". References to other Db2 products use
complete names or specific abbreviations.

Important: To find the most up to date content for Db2 12 for z/0S, always use IBM® Documentation
or download the latest PDF file from PDF format manuals for Db2 12 for z/OS (Db2 for z/OS in IBM
Documentation).

Most documentation topics for Db2 12 for z/OS assume that the highest available function level is
activated and that your applications are running with the highest available application compatibility level,
with the following exceptions:

« The following documentation sections describe the Db2 12 migration process and how to activate new
capabilities in function levels:

— Migrating to Db2 12 (Db2 Installation and Migration)
— What's new in Db2 12 (Db2 for z/OS What's New?)
— Adopting new capabilities in Db2 12 continuous delivery (Db2 for z/OS What's New?)

« FL 501 A label like this one usually marks documentation changed for function level 500 or higher,
with a link to the description of the function level that introduces the change in Db2 12. For more
information, see How Db2 function levels are documented (Db2 for z/OS What's New?).

The availability of new function depends on the type of enhancement, the activated function level, and
the application compatibility levels of applications. In the initial Db2 12 release, most new capabilities are
enabled only after the activation of function level 500 or higher.

Virtual storage enhancements
Virtual storage enhancements become available at the activation of the function level that introduces
them or higher. Activation of function level 100 introduces all virtual storage enhancements in
the initial Db2 12 release. That is, activation of function level 500 introduces no virtual storage
enhancements.

Subsystem parameters
New subsystem parameter settings are in effect only when the function level that introduced them or
a higher function level is activated. Many subsystem parameter changes in the initial Db2 12 release
take effect in function level 500. For more information about subsystem parameter changes in Db2
12, see Subsystem parameter changes in Db2 12 (Db2 for z/OS What's New?).

Optimization enhancements
Optimization enhancements become available after the activation of the function level that introduces
them or higher, and full prepare of the SQL statements. When a full prepare occurs depends on the
statement type:

« For static SQL statements, after bind or rebind of the package

« For non-stabilized dynamic SQL statements, immediately, unless the statement is in the dynamic
statement cache

- For stabilized dynamic SQL statements, after invalidation, free, or changed application compatibility
level

Activation of function level 100 introduces all optimization enhancements in the initial Db2 12
release. That is, function level 500 introduces no optimization enhancements.

SQL capabilities
New SQL capabilities become available after the activation of the function level that introduces them
or higher, for applications that run at the equivalent application compatibility level or higher. New SQL
capabilities in the initial Db2 12 release become available in function level 500 for applications that

© Copyright IBM Corp. 1982, 2024 XV

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/home/src/tpc/db2z_12_prodhome.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_migrdb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_wnew.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_managenewcapability.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m501.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_aboutflinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_subsysparmchanges.html

run at the equivalent application compatibility level or higher. You can continue to run SQL statements
compatibly with lower function levels, or previous Db2 releases, including Db2 11 and DB2°® 10. For
details, see Application compatibility levels in Db2 (Db2 Application programming and SQL)

Who should read this information

This information is primarily intended for system and database administrators. It assumes that the user is
familiar with:

« The basic concepts and facilities of Db2
Time Sharing Option (TSO) and Interactive System Productivity Facility (ISPF)
« The basic concepts of Structured Query Language (SQL)

- The basic concepts of Customer Information Control System (CICS®)
« The basic concepts of Information Management System (IMS)

« How to define and allocate z/OS data sets using job control language (JCL).
Certain tasks require additional skills, such as knowledge of Transmission Control Protocol/Internet
Protocol (TCP/IP) or Virtual Telecommunications Access Method (VTAM®) to set up communication

between Db2 subsystems, or knowledge of the IBM System Modification Program (SMP/E) to install IBM
licensed programs.

Db2 Utilities Suite for z/0S

Important: Db2 Utilities Suite for z/OS is available as an optional product. You must separately order
and purchase a license to such utilities, and discussion of those utility functions in this publication is not
intended to otherwise imply that you have a license to them.

Db2 12 utilities can use the DFSORT program regardless of whether you purchased a license for DFSORT
on your system. For more information about DFSORT, see https://www.ibm.com/support/pages/dfsort.

Db2 utilities can use IBM Db2 Sort for z/OS as an alternative to DFSORT for utility SORT and MERGE
functions. Use of Db2 Sort for z/OS requires the purchase of a Db2 Sort for z/OS license. For more
information about Db2 Sort for z/0S, see Db2 Sort for z/OS documentation.

Related concepts
Db2 utilities packaging (Db2 Utilities)

Terminology and citations

When referring to a Db2 product other than Db2 for z/0S, this information uses the product's full name to
avoid ambiguity.

The following terms are used as indicated:

Db2
Represents either the Db2 licensed program or a particular Db2 subsystem.

IBM rebranded DB2 to Db2, and Db2 for z/OS is the new name of the offering that was previously
known as "DB2 for z/OS". For more information, see Revised naming for IBM Db2 family products on
IBM z/0S platform. As a result, you might sometimes still see references to the original names, such
as "DB2 for z/0OS" and "DB2", in different IBM web pages and documents. If the PID, Entitlement
Entity, version, modification, and release information match, assume that they refer to the same
product.

IBM OMEGAMON?® for Db2 Performance Expert on z/0S
Refers to any of the following products:

« IBM IBM OMEGAMON for Db2 Performance Expert on z/0OS
« IBM Db2 Performance Monitor on z/0S

xvi About this information

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applicationcompatibility.html
https://www.ibm.com/support/pages/dfsort
https://www.ibm.com/docs/en/db2-sort-for-zos
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utlpackaging.html
https://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/899/ENUSLP18-0047/index.html
https://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/899/ENUSLP18-0047/index.html

- IBM Db2 Performance Expert for Multiplatforms and Workgroups

« IBM Db2 Buffer Pool Analyzer for z/OS
C, C++, and C language
Represent the C or C++ programming language.
CICs
Represents CICS Transaction Server for z/OS.
IMS
Represents the IMS Database Manager or IMS Transaction Manager.

Mvs™
Represents the MVS element of the z/OS operating system, which is equivalent to the Base Control
Program (BCP) component of the z/OS operating system.

RACF®
Represents the functions that are provided by the RACF component of the z/OS Security Server.

Accessibility features for Db2 for z/0S

Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products, including Db2 for z/OS. These
features support:

« Keyboard-only operation.

« Interfaces that are commonly used by screen readers and screen maghnifiers.

« Customization of display attributes such as color, contrast, and font size

Tip: IBM Documentation (which includes information for Db2 for z/OS) and its related publications are

accessibility-enabled for the IBM Home Page Reader. You can operate all features using the keyboard
instead of the mouse.

Keyboard navigation

For information about navigating the Db2 for z/OS ISPF panels using TSO/E or ISPF, refer to the z/0S
TSO/E Primer, the z/0S TSO/E User's Guide, and the z/OS ISPF User's Guide. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information about the commitment
that IBM has to accessibility.

How to send your comments about Db2 for z/0S documentation

Your feedback helps IBM to provide quality documentation.

Send any comments about Db2 for z/OS and related product documentation by email to
db2zinfo@us.ibm.com.

To help us respond to your comment, include the following information in your email:

« The product name and version

About this information xvii

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/home/src/tpc/db2z_12_prodhome.html
http://www.ibm.com/able
mailto:db2zinfo@us.ibm.com

« The address (URL) of the page, for comments about online documentation

« The book name and publication date, for comments about PDF manuals

« The topic or section title

« The specific text that you are commenting about and your comment

Related concepts

About Db2 12 for z/OS product documentation (Db2 for z/OS in IBM Documentation)

Related reference
PDF format manuals for Db2 12 for z/OS (Db2 for z/OS in IBM Documentation)

How to read syntax diagrams

Certain conventions apply to the syntax diagrams that are used in IBM documentation.
Apply the following rules when reading the syntax diagrams that are used in Db2 for z/OS documentation:
- Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The =~ ~—— symbol indicates the beginning of a statement.

The —» symbol indicates that the statement syntax is continued on the next line.

The »~—— symbol indicates that a statement is continued from the previous line.

The —~ < symbol indicates the end of a statement.
« Required items appear on the horizontal line (the main path).

»— required_item -»<

« Optional items appear below the main path.
»— required_item >«
L optional_item —J

If an optional item appears above the main path, that item has no effect on the execution of the
statement and is used only for readability.

f_ optional_item T
»— required_item >

« If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.
»— required_item T required_choicel j—N
required_choice2
If choosing one of the items is optional, the entire stack appears below the main path.
»— required_item <
toptional_choicel j
optional_choice2

If one of the items is the default, it appears above the main path and the remaining choices are shown
below.

xviii About this information

https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/cmn/db2z_cmn_aboutinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html

default_choice

optional_choice j

optional_choice

»— required_item

A

T 1)

An arrow returning to the left, above the main line, indicates an item that can be repeated.

<
<

),.ﬁ

»— required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

<
» €

),.ﬁ

»— required_item repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.

Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the
main syntax diagram, but the contents of the fragment should be read as if they are on the main path of
the diagram.

fragment-name

»— required_item >«
L optional_name —J

For some references in syntax diagrams, you must follow any rules described in the description for that
diagram, and also rules that are described in other syntax diagrams. For example:

— For expression, you must also follow the rules described in Expressions (Db2 SQL).

— For references to fullselect, you must also follow the rules described in fullselect (Db2 SQL).

— For references to search-condition, you must also follow the rules described in Search conditions
(Db2 SQL).

With the exception of XPath keywords, keywords appear in uppercase (for example, FROM). Keywords
must be spelled exactly as shown.

XPath keywords are defined as lowercase names, and must be spelled exactly as shown.

Variables appear in all lowercase letters (for example, column-name). They represent user-supplied
names or values.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must
enter them as part of the syntax.

Related concepts
Commands in Db2 (Db2 Commands)

Db2 online utilities (Db2 Utilities)

Db2 stand-alone utilities (Db2 Utilities)

About this information xix

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_expressionsintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_fullselect.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_searchconditionssql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_searchconditionssql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_aboutcommands.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_onlineutilities.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_standaloneutilities.html

xx Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

Part 1. Desighing and implementing Db2 databases

The objects in a relational database are organized into sets called schemas. A schema provides a logical
classification of objects in the database. The schema name is used as the qualifier of SQL objects such as
tables, views, indexes, and triggers.

You define, or create, objects by executing SQL statements. This information summarizes some of the
naming conventions for the various objects that you can create. Also in this information, you will see
examples of the basic SQL statements and keywords that you can use to create objects in a Db2
database. (This information does not document the complete SQL syntax.)

Tip: When you create Db2 objects (such as tables, table spaces, views, and indexes), you can precede
the object name with a qualifier to distinguish it from objects that other people create. (For example,
MYDB.TSPACE1 is a different table space than YOURDB.TSPACEZ1.) When you use a qualifier, avoid using
SYS as the first three characters. If you do not specify a qualifier, Db2 assigns a qualifier for the object.

© Copyright IBM Corp. 1982, 2024 1

2 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

Chapter 1. Database objects and relationships

The general tasks that are necessary to design a database are logical data modeling and physical data
modeling.

In logical data modeling, you design a model of the data without paying attention to specific functions and
capabilities of the DBMS that will store the data. In fact, you could even build a logical data model without
knowing which DBMS you will use. The logical data modeling topics focus on the entity-relationship model
and provides an overview of the Unified Modeling Language (UML) and IBM Rational® Data Architect.

Physical data modeling begins when you move closer to a physical implementation. The primary purpose
of the physical design stage is to optimize performance while ensuring the integrity of the data.

After completing the logical and physical design of your database, you implement the design.

Logical database design with the entity-relationship model

Before you implement a database, you should plan or design the database so that it satisfies all
requirements.

Designing and implementing a successful database, one that satisfies the needs of an organization,
requires a logical data model. Logical data modeling is the process of documenting the comprehensive
business information requirements in an accurate and consistent format. Analysts who do data modeling
define the data items and the business rules that affect those data items. The process of data modeling
acknowledges that business data is a vital asset that the organization needs to understand and carefully
manage. This section contains information that was adapted from Handbook of Relational Database
Design.

Consider the following business facts that a manufacturing company needs to represent in its data model:

« Customers purchase products
« Products consist of parts

Suppliers manufacture parts
« Warehouses store parts
« Transportation vehicles move the parts from suppliers to warehouses and then to manufacturers

These are all business facts that a manufacturing company's logical data model needs to include. Many
people inside and outside the company rely on information that is based on these facts. Many reports
include data about these facts.

Any business, not just manufacturing companies, can benefit from the task of data modeling. Database
systems that supply information to decision makers, customers, suppliers, and others are more
successful if their foundation is a sound data model.

Modeling your data

Data analysts can perform the task of data modeling in a variety of ways.

Procedure
To model data:
1. Build critical user views.
a) Carefully examining a single business activity or function.
b) Develop a user view, which is the model or representation of critical information that the business
activity requires.

This initial stage of the data modeling process is highly interactive. Because data analysts cannot
fully understand all areas of the business that they are modeling, they work closely with the actual

© Copyright IBM Corp. 1982, 2024 3

users. Working together, analysts and users define the major entities (significant objects of interest)
and determine the general relationships between these entities.

In a later stage, the analyst combines each individual user view with all the other user views into a
consolidated logical data model.

2. Add key business rules to user views
Key business rules affect insert, update, and delete operations on the data.

For example, a business rule might require that each customer entity have at least one unique
identifier. Any attempt to insert or update a customer identifier that matches another customer
identifier is not valid. In a data model, a unique identifier is called a primary key.

3. Add detail to user views and validate them.
a) Add other descriptive details that are less vital.
b) Associate these descriptive details, called attributes, to the entities.

For example, a customer entity probably has an associated phone number. The phone number is a
non-key attribute of the customer entity.

c) Validate all the user views

To validate the views, analysts use the normalization process and process models. Process models
document the details of how the business will use the data.

4. Determine additional business rules that affect attributes.
a) Clarify the data-driven business rules.

Data-driven business rules are constraints on particular data values. These constraints need to be
true, regardless of any particular processing requirements.

The advantage to defining data-driven business rules during the data design stage, rather than
during application design is that programmers of many applications don't need to write code to
enforce these business rules.

For example, assume that a business rule requires that a customer entity have a phone number,
an address, or both. If this rule doesn't apply to the data itself, programmers must develop, test,
and maintain applications that verify the existence of one of these attributes. Data-driven business
requirements have a direct relationship with the data, thereby relieving programmers from extra
work.

5. Integrate user views.
a) Combine the newly created different user views into a consolidated logical data model.

b) Integrate other data models that already exist in the organization with the new consolidated logical
data model.

At this stage, analysts also strive to make their data model flexible so that it can support the current
business environment and possible future changes.

For example, assume that a retail company operates in a single country and that business plans
include expansion to other countries. Armed with knowledge of these plans, analysts can build the
model so that it is flexible enough to support expansion into other countries.

Recommendations for logical data modeling
To build sound data models, analysts follow a well-planned methodology.
Follow these recommendation for building quality data models:

« Work interactively with the users as much as possible.
« Use diagrams to represent as much of the logical data model as possible.
« Build a data dictionary to supplement the logical data model diagrams.

A data dictionary is a repository of information about an organization's application programs, databases,
logical data models, users, and authorizations. A data dictionary can be manual or automated.

4 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

Practical examples of data modeling

To better understand the key activities that are necessary for creating valid data models, investigate one
or more real-life data modeling scenarios.

You begin by defining your entities, the significant objects of interest. Entities are the things about which
you want to store information. For example, you might want to define an entity, called EMPLOYEE, for
employees because you need to store information about everyone who works for your organization. You
might also define an entity, called DEPARTMENT, for departments.

Next, you define primary keys for your entities. A primary key is a unique identifier for an entity. In the
case of the EMPLOYEE entity, you probably need to store a large amount of information. However, most
of this information (such as gender, birth date, address, and hire date) would not be a good choice for
the primary key. In this case, you could choose a unique employee ID or number (EMPLOYEE_NUMBER)
as the primary key. In the case of the DEPARTMENT entity, you could use a unique department number
(DEPARTMENT_NUMBER) as the primary key.

After you have decided on the entities and their primary keys, you can define the relationships that exist
between the entities. The relationships are based on the primary keys. If you have an entity for EMPLOYEE
and another entity for DEPARTMENT, the relationship that exists is that employees are assigned to
departments. You can read more about this topic in the next section.

After defining the entities, their primary keys, and their relationships, you can define additional attributes
for the entities. In the case of the EMPLOYEE entity, you might define the following additional attributes:

« Birth date
Hire date

« Home address
 Office phone number
- Gender

* Resume

Lastly, you normalize the data.

Related concepts

Entity normalization
After you define entities and decide on attributes for the entities, you normalize entities to avoid
redundancy.

Entities for different types of relationships
In a relational database, you can express several types of relationships.

Consider the possible relationships between employees and departments. If a given employee can work
in only one department, this relationship is one-to-one for employees. One department usually has
many employees; this relationship is one-to-many for departments. Relationships can be one-to-many,
many-to-one, one-to-one, or many-to- many.

Database designers and data analysts can be more effective when they have a good understanding of
the business. If they understand the data, the applications and the business rules, they can succeed in
building a sound database design.

When you define relationships, you have a large influence on how smoothly your business runs. If you
define relationships poorly, your database and associated applications are likely to have many problems,
some of which might not manifest themselves for years.

Subsections:

« “One-to-one relationships” on page 6

« “One-to-many and many-to-one relationships” on page 6

« “Many-to-many relationships” on page 6

Chapter 1. Database objects and relationships 5

« “Business rules for relationships” on page 7

The type of a given relationship can vary, depending on the specific environment. If employees of a
company belong to several departments, the relationship between employees and departments is many-
to-many.

You need to define separate entities for different types of relationships. When modeling relationships,
you can use diagram conventions to depict relationships by using different styles of lines to connect the
entities.

One-to-one relationships

When you are doing logical database design, one-to-one relationships are bidirectional relationships,
which means that they are single-valued in both directions. For example, an employee has a single
resume; each resume belongs to only one person. The previous figure illustrates that a one-to-one
relationship exists between the two entities. In this case, the relationship reflects the rules that an
employee can have only one resume and that a resume can belong to only one employee.

An employee
has a resume

Employee Resume
Aresume is owned
by an employes

Figure 1. Assigning one-to-one facts to an entity

One-to-many and many-to-one relationships

A one-to-many relationship occurs when one entity has a multivalued relationship with another entity. In
the following figure, you see that a one-to-many relationship exists between the two entities—employee
and department. This figure reinforces the business rules that a department can have many employees,
but that each individual employee can work for only one department.

Many employees work
for one department
Employee < ® Department
One department can
have many employees

Figure 2. Assigning many-to-one facts to an entity

Many-to-many relationships

A many-to-many relationship is a relationship that is multivalued in both directions. The following figure
illustrates this kind of relationship. An employee can work on more than one project, and a project can
have more than one employee assigned.

Employees workon
many projects

r

Employee |
Projects are worked on
by many emplryees

Frojects

Figure 3. Assigning many-to-many facts to an entity

Try to answer the following questions using the information in the Db2 sample tables (Introduction to Db2

for z/OS):
« What does Wing Lee work on?
« Who works on project number OP2012?

Both questions yield multiple answers. Wing Lee works on project numbers OP2011 and OP2012. The
employees who work on project number OP2012 are Ramlal Mehta and Wing Lee.

6 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesdescription.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesdescription.html

Business rules for relationships

Whether a given relationship is one-to-one, one-to-many, many-to-one, or many-to-many, your
relationships need to make good business sense. Therefore, database designers and data analysts can be
more effective when they have a good understanding of the business. If they understand the data, the
applications, and the business rules, they can succeed in building a sound database design.

When you define relationships, you have a big influence on how smoothly your business runs. If you don't
do a good job at this task, your database and associated applications are likely to have many problems,
some of which may not manifest themselves for years.

Entity attributes

When you define attributes for the entities, you generally work with the data administrator to decide on
names, data types, and appropriate values for the attributes.

Attribute names

Naming conventions for attributes help database designers ensure consistency within an organization.
Most organizations have naming guidelines. In addition to following these guidelines, data analysts also
base attribute definitions on class words.

A class word is a single word that indicates the nature of the data that the attribute represents.

The class word NUMBER indicates an attribute that identifies the number of an entity. Therefore, attribute
names that identify the numbers of entities should include the class word of NUMBER. Some examples
are EMPLOYEE_NUMBER, PROJECT_NUMBER, and DEPARTMENT_NUMBER.

When an organization does not have well-defined guidelines for attribute names, data analysts try to
determine how the database designers have historically named attributes. Problems occur when multiple
individuals are inventing their own naming guidelines without consulting one another.

Data types of attributes

You must specify a data type for each attribute of an entity. Most organizations have well-defined
guidelines for using the different data types.

Subsections:

« “String data types” on page 7

« “Numerical data types” on page 8

 “Datetime data types” on page 8

« “Examples” on page 8

String data types

Data that contains a combination of letters, numbers, and special characters. String data types are listed
below:

« CHARACTER: Fixed-length character strings. The common short name for this data type is CHAR.
« VARCHAR: Varying-length character strings.

« CLOB: Varying-length character large object strings, typically used when a character string might exceed
the limits of the VARCHAR data type.

« GRAPHIC: Fixed-length graphic strings that contain double-byte characters.

« VARGRAPHIC: Varying-length graphic strings that contain double-byte characters.
- DBCLOB: Varying-length strings of double-byte characters in a large object.

- BINARY: A sequence of bytes that is not associated with a code page.

« VARBINARY: Varying-length binary strings.

Chapter 1. Database objects and relationships 7

- BLOB: Varying-length binary strings in a large object.
« XML: Varying-length string that is an internal representation of XML.

Numerical data types
Data that contains digits. Numerical data types are listed below:

e SMALLINT: for small integers.
« INTEGER: for large integers.
« BIGINT: for bigger values.

« DECIMAL(p,s) or NUMERIC(p,s), where p is precision and s is scale: for packed decimal numbers with
precision p and scale s. Precision is the total number of digits, and scale is the number of digits to the
right of the decimal point.

« DECFLOAT: for decimal floating-point numbers.
- REAL: for single-precision floating-point numbers.
- DOUBLE: for double-precision floating-point numbers.

Datetime data types
Data values that represent dates, times, or timestamps. Datetime data types are listed below:

« DATE: Dates with a three-part value that represents a year, month, and day.
- TIME: Times with a three-part value that represents a time of day in hours, minutes, and seconds.

« TIMESTAMP: Timestamps with a seven-part value that represents a date and time by year, month, day,
hour, minute, second, and microsecond

Examples
You might use the following data types for attributes of the EMPLOYEE entity:

EMPLOYEE_NUMBER: CHAR(6)
EMPLOYEE_LAST_NAME: VARCHAR(15)
EMPLOYEE_HIRE_DATE: DATE
EMPLOYEE_SALARY_AMOUNT: DECIMAL(9,2)

The data types that you choose are business definitions of the data type. During physical database design,
you might need to change data type definitions or use a subset of these data types. The database or

the host language might not support all of these definitions, or you might make a different choice for
performance reasons.

For example, you might need to represent monetary amounts, but Db2 and many host languages do not
have a data type MONEY. In the United States, a natural choice for the SQL data type in this situation is
DECIMAL(10,2) to represent dollars. But you might also consider the INTEGER data type for fast, efficient
performance.

Related concepts

Data types of columns (Introduction to Db2 for z/OS)
Related reference

CREATE TABLE (Db2 SQL)

SQL data type attributes (Db2 Programming for ODBC)

8 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_datatypes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_sqdtatt.html

Appropriate values for attributes

When you design a database, you need to decide what values are acceptable for the various attributes of
an entity.

For example, you would not want to allow numeric data in an attribute for a person's name. The data
types that you choose limit the values that apply to a given attribute, but you can also use other
mechanisms. These other mechanisms are domains, null values, and default values.

Subsections:

- “Domain” on page 9

« “Null values” on page 9

 “Default values” on page 9

Domain

A domain describes the conditions that an attribute value must meet to be a valid value. Sometimes
the domain identifies a range of valid values. By defining the domain for a particular attribute, you apply
business rules to ensure that the data will make sense.

Example 1: A domain might state that a phone number attribute must be a 10-digit value that contains
only numbers. You would not want the phone number to be incomplete, nor would you want it to contain
alphabetic or special characters and thereby be invalid. You could choose to use either a numeric data
type or a character data type. However, the domain states the business rule that the value must be a
10-digit value that consists of numbers.

Example 2: A domain might state that a month attribute must be a 2-digit value from 01 to 12. Again, you
could choose to use datetime, character, or numeric data types for this value, but the domain demands
that the value must be in the range of 01 through 12. In this case, incorporating the month into a datetime
data type is probably the best choice. This decision should be reviewed again during physical database
design.

Null values

When you are designing attributes for your entities, you will sometimes find that an attribute does not
have a value for every instance of the entity. For example, you might want an attribute for a person's
middle name, but you can't require a value because some people have no middle name. For these
occasions, you can define the attribute so that it can contain null values.

A null value is a special indicator that represents the absence of a value. The value can be absent because
it is unknown, not yet supplied, or nonexistent. The DBMS treats the null value as an actual value, not as a
zero value, a blank, or an empty string.

Just as some attributes should be allowed to contain null values, other attributes should not contain null
values.

Example: For the EMPLOYEE entity, you might not want to allow the attribute EMPLOYEE_LAST_NAME to
contain a null value.

Default values

In some cases, you may not want a given attribute to contain a null value, but you don't want to require
that the user or program always provide a value. In this case, a default value might be appropriate.

A default value is a value that applies to an attribute if no other valid value is available.

Example: Assume that you don't want the EMPLOYEE_HIRE_DATE attribute to contain null values and
that you don't want to require users to provide this data. If data about new employees is generally added
to the database on the employee's first day of employment, you could define a default value of the current
date.

Chapter 1. Database objects and relationships 9

Entity normalization

After you define entities and decide on attributes for the entities, you normalize entities to avoid
redundancy.

An entity is normalized if it meets a set of constraints for a particular normal form, which this section
describes. Normalization helps you avoid redundancies and inconsistencies in your data. This section
summarizes rules for first, second, third, and fourth normal forms of entities, and it describes reasons why
you should or shouldn't follow these rules.

Subsections:

« “First normal form” on page 10

« “Second normal form” on page 10

e “Third normal form” on page 11

« “Fourth normal form” on page 12

The rules for normal form are cumulative. In other words, for an entity to satisfy the rules of second
normal form, it also must satisfy the rules of first normal form. An entity that satisfies the rules of fourth
normal form also satisfies the rules of first, second, and third normal form.

In the context of logical data modeling, an instance is one particular occurrence. An instance of an entity
is a set of data values for all of the attributes that correspond to that entity.

Example: The following figure shows one instance of the EMPLOYEE entity.

Employee
EMPLOYEE EMPLOYEE
EMPLOYEE _FIRST _LAST DEPARTMENT EMPLOYEE
_NUMBER _NAME _NAME _NUMBER _HIRE_DATE
000010 CHRISTINE HAAS A00 1975-01-01

Figure 4. The EMPLOYEE entity

First normal form

A relational entity satisfies the requirement of first normal form if every instance of an entity contains only
one value, never multiple repeating attributes. Repeating attributes, often called a repeating group, are
different attributes that are inherently the same. In an entity that satisfies the requirement of first normal
form, each attribute is independent and unique in its meaning and its name.

Example: Assume that an entity contains the following attributes:

EMPLOYEE_NUMBER

JANUARY _SALARY_AMOUNT
FEBRUARY_SALARY_AMOUNT
MARCH_SALARY_AMOUNT

This situation violates the requirement of first normal form, because JANUARY_SALARY_AMOUNT,
FEBRUARY_SALARY_AMOUNT, and MARCH_SALARY_AMOUNT are essentially the same attribute,
EMPLOYEE_ MONTHLY_SALARY_AMOUNT.

Second normal form

An entity is in second normal form if each attribute that is not in the primary key provides a fact that
depends on the entire key. A violation of the second normal form occurs when a nonprimary key attribute
is a fact about a subset of a composite key.

Example: An inventory entity records quantities of specific parts that are stored at particular warehouses.
The following figure shows the attributes of the inventory entity.

10 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

PART WAREHOUSE = QUANTITY = WAREHOUSE_ADDRESS
Figure 5. Entity in violation of the second normal form

Here, the primary key consists of the PART and the WAREHOUSE attributes together. Because the
attribute WAREHOUSE_ADDRESS depends only on the value of WAREHOUSE, the entity violates the rule
for second normal form. This design causes several problems:

Each instance for a part that this warehouse stores repeats the address of the warehouse.

If the address of the warehouse changes, every instance referring to a part that is stored in that
warehouse must be updated.

Because of the redundancy, the data might become inconsistent. Different instances could show
different addresses for the same warehouse.

If at any time the warehouse has no stored parts, the address of the warehouse might not exist in any
instances in the entity.

To satisfy second normal form, the information in the previous figure would be in two entities, as the
following figure shows.

PART ~ WAREHOUSE QUANTITY

~——— Key ————
1 1

WAREHOUSE WAREHOUSE_ADDRESS

Figure 6. Entities that satisfy the second normal form

Third normal form

An entity is in third normal form if each nonprimary key attribute provides a fact that is independent of
other non-key attributes and depends only on the key. A violation of the third normal form occurs when a
nonprimary attribute is a fact about another non-key attribute.

Example: The first entity contains the attributes EMPLOYEE_NUMBER and DEPARTMENT_NUMBER.
Suppose that a program or user adds an attribute, DEPARTMENT_NAME, to the entity. The new attribute
depends on DEPARTMENT_NUMBER, whereas the primary key is on the EMPLOYEE_NUMBER attribute.
The entity now violates third normal form.

Changing the DEPARTMENT_NAME value based on the update of a single employee, David Brown,

does not change the DEPARTMENT_NAME value for other employees in that department. The updated
version of the entity as shown in the previous figure illustrates the resulting inconsistency. Additionally,
updating the DEPARTMENT_ NAME in this table does not update it in any other table that might contain a
DEPARTMENT_NAME column.

Chapter 1. Database objects and relationships 11

Employee_Department table before updating

-——Key—=1
I 1
EMPLOYEE EMPLOYEE

EMPLOYEE _FIRST _LAST DEPARTMENT DEPARTMENT
_NUMBER _NAME _NAME _NUMBER _NAME
000200 DAVID BROWN D11 MANUFACTURING
000320 RAMAL MEHTA E21 SOFTWARE
000220 JENIFFER LUTZ D11 MANUFACTURING

Employee_Department table after updating
i— — —Key ——,

EMPLOYEE EMPLOYEE

EMPLOYEE _FIRST _LAST DEPARTMENT DEPARTMENT
_NUMBER _NAME _NAME _NUMBER _NAME

000200 DAVID BROWN D11 INSTALLATION
000320 RAMAL MEHTA =24 SOFTWARE
000220 JENIFFER LUTZ D11 MANUFACTURING

Figure 7. Results of an update in a table that violates the third normal form

You can normalize the entity by modifying the EMPLOYEE_DEPARTMENT entity and creating two new
entities: EMPLOYEE and DEPARTMENT. The following figure shows the new entities. The DEPARTMENT
entity contains attributes for DEPARTMENT_NUMBER and DEPARTMENT_NAME. Now, an update such as
changing a department name is much easier. You need to make the update only to the DEPARTMENT

entity.

Employee table

-——Key—=—1

| 1

EMPLOYEE EMPLOYEE

EMPLOYEE _FIRST _LAST
_NUMBER _NAME _NAME
000200 DAVID BROWN
000320 RAMAL MEHTA
000220 JENIFER LuTZ

Department table

-——Key = ===

| I
DEPARTMENT DEPARTMENT
_NUMBER _NAME
D11 MANUFACTURING
E21 SOFTWARE

Employee_Department table

- Key = === ===~ |
DEPARTMENT EMPLOYEE
_NUMBER _NUMBER
D11 000200
D11 000220
E21 000320

Figure 8. Employee and department entities that satisfy the third normal form

Fourth normal form

An entity is in fourth normal form if no instance contains two or more independent, multivalued facts
about an entity.

Example: Consider the EMPLOYEE entity. Each instance of EMPLOYEE could have both SKILL_CODE and
LANGUAGE_CODE. An employee can have several skills and know several languages. Two relationships
exist, one between employees and skills, and one between employees and languages. An entity is not in
fourth normal form if it represents both relationships, as the previous figure shows.

12 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

EMPID SKILL_CODE LANGUAGE_CODE SKILL_PROFICIENCY LANGUAGE_PROFICIENCY
Figure 9. Entity in violation of the fourth normal form

Instead, you can avoid this violation by creating two entities that represent both relationships, as the
following figure shows.

————— Key— ===+
1 1

EMPID SKILL_CODE SKILL_PROFICIENCY

EMPID LANGUAGE_CODE |ANGUAGE_PROFICIENCY
Figure 10. Entities that satisfy the fourth normal form

If, however, the facts are interdependent (that is, the employee applies certain languages only to certain
skills), you should not split the entity.

You can put any data into fourth normal form. A good rule to follow when doing logical database design is
to arrange all the data in entities that are in fourth normal form. Then decide whether the result gives you
an acceptable level of performance. If the performance is not acceptable, denormalizing your design is a
good approach to improving performance.

Related concepts

Practical examples of data modeling
To better understand the key activities that are necessary for creating valid data models, investigate one
or more real-life data modeling scenarios.

Denormalization of tables
During physical design, analysts transform the entities into tables and the attributes into columns.

Logical database design with Unified Modeling Language

You can use the Unified Modeling Language (UML) to create a model of your database design.

The Object Management Group is a consortium that created the UML standard. UML modeling is based
on object-oriented programming principles. The basic difference between the entity-relationship model
and the UML model is that, instead of designing entities, you model objects. UML defines a standard set
of modeling diagrams for all stages of developing a software system. Conceptually, UML diagrams are like
the blueprints for the design of a software development project.

Some examples of UML diagrams are as follows:

Class
Identifies high-level entities, known as classes. A class describes a set of objects that have the same
attributes. A class diagram shows the relationships between classes.

Use case
Presents a high-level view of a system from the user's perspective. A use case diagram defines the
interactions between users and applications or between applications. These diagrams graphically
depict system behavior. You can work with use-case diagrams to capture system requirements, learn
how the system works, and specify system behavior.

Activity
Models the workflow of a business process, typically by defining rules for the sequence of activities
in the process. For example, an accounting company can use activity diagrams to model financial
transactions.

Interaction
Shows the required sequence of interactions between objects. Interaction diagrams can include
sequence diagrams and collaboration diagrams.

Chapter 1. Database objects and relationships 13

- Sequence diagrams show object interactions in a time-based sequence that establishes the roles of
objects and helps determine class responsibilities and interfaces.

« Collaboration diagrams show associations between objects that define the sequence of messages
that implement an operation or a transaction.

Component
Shows the dependency relationships between components, such as main programs and subprograms.

Developers can graphically represent the architecture of a database and how it interacts with applications
using one of many available UML modeling tools. Similarities exist between components of the entity-
relationship model and UML diagrams. For example, the class structure corresponds closely to the entity
structure.

The logical data model provides an overall view of the captured business requirements as they pertain to
data entities. The data model diagram graphically represents the physical data model. The physical data
model applies the logical data model's captured requirements to specific DBMS languages. Physical data
models also capture the lower-level detail of a DBMS database.

Database designers can customize the data model diagram from other UML diagrams, which allows them
to work with concepts and terminology, such as columns, tables, and relationships, with which they are
already familiar. Developers can also transform a logical data model into a physical data model.

Because the data model diagram includes diagrams for modeling an entire system, it allows database
designers, application developers, and other development team members to share and track business
requirements throughout development. For example, database designers can capture information, such
as constraints, triggers, and indexes, directly on the UML diagram. Developers can also transfer between
object and data models and use basic transformation types such as many-to-many relationships.

Physical database design

After you complete the logical design of your database, you now move to the physical design. The purpose
of building a physical design of your database is to optimize performance, while ensuring data integrity by
avoiding unnecessary data redundancies.

During physical design, you transform the entities into tables, the instances into rows, and the attributes
into columns. You and your colleagues must decide on many factors that affect the physical design, such
as:

- How to translate entities into physical tables

What attributes to use for columns of the physical tables
« Which columns of the tables to define as keys
What indexes to define on the tables

What views to define on the tables

« How to denormalize the tables
« How to resolve many-to-many relationships

Physical design is the time when you abbreviate the names that you chose during logical design.

For example, you can abbreviate the column name that identifies employees, EMPLOYEE_NUMBER, to
EMPNO. The column name size has a 30- byte maximum, and the table name size has a 128-byte
maximum. For more information about the conventions and rules for database object names, see Naming
conventions (Db2 SQL) and Identifiers in SQL (Db2 SQL).

The task of building the physical design is a job that never ends. You need to continually monitor the
performance and data integrity characteristics of a database as time passes. Many factors necessitate
periodic refinements to the physical design.

Db2 lets you change many of the key attributes of your design with ALTER SQL statements. For example,

assume that you design a partitioned table so that it will store 36 months of data. Later you discover that
you need to extend that design to hold 84 months of data. You can add or rotate partitions for the current
36 months to accommodate the new design.

14 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sqlidentifiers.html

Denormalization of tables
During physical design, analysts transform the entities into tables and the attributes into columns.

Denormalization is a key step in the task of building a physical relational database design. It is the
intentional duplication of columns in multiple tables, and the consequence is increased data redundancy.

Consider an inventory entity that records quantities of specific parts that are stored at particular
warehouses. The warehouse address column first appears as part of a table that contains information
about parts and warehouses. To further normalize the design of the table, analysts remove the warehouse
address column from that table. Analysts also define the column as part of a table that contains
information only about warehouses.

Normalizing tables is generally the recommended approach. What if applications require information
about both parts and warehouses, including the addresses of warehouses? The premise of the
normalization rules is that SQL statements can retrieve the information by joining the two tables. The
problem is that, in some cases, performance problems can occur as a result of normalization. For
example, some user queries might view data that is in two or more related tables; the result is too

many joins. As the number of tables increases, the access costs can increase, depending on the size of
the tables, the available indexes, and so on. For example, if indexes are not available, the join of many
large tables might take too much time. You might need to denormalize your tables. Denormalization is the
intentional duplication of columns in multiple tables, and it increases data redundancy.

Example: Consider the design in which both tables have a column that contains the addresses of
warehouses. If this design makes join operations unnecessary, it could be a worthwhile redundancy.
Addresses of warehouses do not change often, and if one does change, you can use SQL to update all
instances fairly easily.

Tip: Do not automatically assume that all joins take too much time. If you join normalized tables, you

do not need to keep the same data values synchronized in multiple tables. In many cases, joins are the
most efficient access method, despite the overhead they require. For example, some applications achieve
44-way joins in subsecond response time.

When you are building your physical design, you and your colleagues need to decide whether to
denormalize the data. Specifically, you need to decide whether to combine tables or parts of tables

that are frequently accessed by joins that have high performance requirements. This is a complex
decision about which this book cannot give specific advice. To make the decision, you need to assess

the performance requirements, different methods of accessing the data, and the costs of denormalizing
the data. You need to consider the trade-off: is duplication, in several tables, of often-requested columns
less expensive than the time for performing joins?

Recommendations:

« Do not denormalize tables unless you have a good understanding of the data and the business
transactions that access the data. Consult with application developers before denormalizing tables
to improve the performance of users' queries.

« When you decide whether to denormalize a table, consider all programs that regularly access the table,
both for reading and for updating. If programs frequently update a table, denormalizing the table affects
performance of update programs because updates apply to multiple tables rather than to one table.

In the following figure, information about parts, warehouses, and warehouse addresses appears in two
tables, both in normal form.

PARTNO WRH_NO PART_QTY WAREHOUSE WRH_ADDRESS
Figure 11. Two tables that satisfy second normal form

The following figure illustrates the denormalized table.

Chapter 1. Database objects and relationships 15

PARTNO WRHS_NO PART_QTY WRH_ADDRESS
Figure 12. The denormalized table

Resolving many-to-many relationships is a particularly important activity because doing so helps maintain
clarity and integrity in your physical database design. To resolve many-to-many relationships, you
introduce associative tables, which are intermediate tables that you use to tie, or associate, two tables to
each other.

Example: Employees work on many projects. Projects have many employees. In the logical database
design, you show this relationship as a many-to-many relationship between project and employee. To
resolve this relationship, you create a new associative table, EMPLOYEE_PROJECT. For each combination
of employee and project, the EMPLOYEE_PROJECT table contains a corresponding row. The primary key
for the table would consist of the employee number (EMPNO) and the project number (PROINO).

Another decision that you must make relates to the use of repeating groups.

Example: Assume that a heavily used transaction requires the number of wires that are sold by month in
a given year. Performance factors might justify changing a table so that it violates the rule of first normal
form by storing repeating groups. In this case, the repeating group would be: MONTH, WIRE. The table
would contain a row for the number of sold wires for each month (January wires, February wires, March
wires, and so on).

Recommendation: If you decide to denormalize your data, document your denormalization thoroughly.
Describe, in detail, the logic behind the denormalization and the steps that you took. Then, if your
organization ever needs to normalize the data in the future, an accurate record is available for those who
must do the work.

Related concepts
Entity normalization

After you define entities and decide on attributes for the entities, you normalize entities to avoid
redundancy.

Database design with denormalization (Introduction to Db2 for z/OS)

Views to customize what data users see
A view offers an alternative way of describing data that exists in one or more tables.

Some users might find that no single table contains all the data they need; rather, the data might be
scattered among several tables. Furthermore, one table might contain more data than users want to see,
or more than you want to authorize them to see. For those situations, you can create views.

You might want to use views for a variety of reasons:
- To limit access to certain kinds of data

You can create a view that contains only selected columns and rows from one or more tables. Users
with the appropriate authorization on the view see only the information that you specify in the view
definition.

Example: You can define a view on the EMP table to show all columns except SALARY and COMM
(commission). You can grant access to this view to people who are not managers because you probably
don't want them to have access to salary and commission information.

« To combine data from multiple tables

You can create a view that uses UNION or UNION ALL operators to logically combine smaller tables, and
then query the view as if it were one large table.

Example: Assume that three tables contain data for a period of one month. You can create a view that
is the UNION ALL of three fullselects, one for each month of the first quarter of 2004. At the end of the
third month, you can view comprehensive quarterly data.

16 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_denormalizationforperformance.html

You can create a view any time after the underlying tables exist. The owner of a set of tables implicitly
has the authority to create a view on them. A user with administrative authority at the system or database
level can create a view for any owner on any set of tables. If they have the necessary authority, other
users can also create views on a table that they did not create.

Related concepts
Db2 views (Introduction to Db2 for z/OS)

Indexes on table columns

If you are involved in the physical design of a database, you will be working with other designers to
determine what columns you should index.

You will use process models that describe how different applications are going to be accessing the data.
This information is important when you decide on indexing strategies to ensure adequate performance.

The main purposes of an index are:

« To optimize data access
In many cases, access to data is faster with an index than without an index. If the DBMS uses an index
to find a row in a table, the scan can be faster than when the DBMS scans an entire table.

« To ensure uniqueness
A table with a unique index cannot have two rows with the same values in the column or columns that

form the index key. For example, if payroll applications use employee numbers, no two employees can
have the same employee number.

Unique indexes can include additional columns that are not part of a unique constraint. Those columns
are called INCLUDE columns. When you specify INCLUDE columns in a unique index, queries can use
the unique index for index-only access. Including these columns can eliminate the need to maintain
extra indexes that are used solely to enable index-only access.

- To enable clustering
A clustering index keeps table rows in a specified sequence to minimize page access for a set of rows.

In general, users of the table are unaware that an index is in use. Db2 decides whether to use the index to
access the table.

Related concepts

Creation of indexes (Introduction to Db2 for z/OS)

Implementing Db2 indexes

Indexes provide efficient access to table data, but can require additional processing when you modify
datain a table.

Index access (ACCESSTYPE is 'T', 'IN', 'I1', 'N', 'MX', or 'DX") (Db2 Performance)

Related tasks

Designing indexes for performance (Db2 Performance)

Hash access on tables
You can use hash access to optimize data access for certain kinds of tables.
Introductory concepts

Db2 hash spaces (deprecated) (Introduction to Db2 for z/QOS)

If you are involved in the physical design of a database, you work with other designers to determine when
to enable hash access on tables.

The main purposes of hash access is to optimize data access. If your programs regularly access a single
row in a table and the table has a unique identifier for each row, you can use hash access to directly
retrieve the data from individual rows. Hash access requires that tables have at least one column with
values that are unique to each row.

Chapter 1. Database objects and relationships 17

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_views.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationofindexes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_indexaccess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_evaluateindexesperf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_hashspace.html

Related concepts

Hash access (ACCESSTYPE='H', 'HN', or 'MH') (deprecated) (Db2 Performance)
Related tasks

Monitoring hash access (deprecated) (Db2 Performance)

Maintaining archive data
Suppose that you have historical data that you want to save but do not intend to reference frequently. Db2
can store and maintain that data for you in a separate table that is called an archive table.
About this task

An archive table is associated with a particular base table that is called an archive-enabled table.

Introductory concepts

Archive-enabled tables and archive tables (Introduction to Db2 for z/OS)

Procedure

To maintain archive data:
1. Create an archive table.

2. Turn archiving on and off as needed by using the SYSIBMADM.MOVE_TO_ARCHIVE built-in global
variable, as described in “Creating an archive table” on page 102.

When archiving is turned on, you cannot update the archive-enabled table.

3. For queries against the archive-enabled table, set them to include or exclude archive data as needed
by using the SYSIBMADM.GET_ARCHIVE built-in global variable, as described in Archive-enabled
tables and archive tables (Introduction to Db2 for z/OS).

Related reference
GET_ARCHIVE (Db2 SQL)
MOVE_TO_ARCHIVE (Db2 SQL)

18 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_hashaccesstype.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_monitoringhashaccess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_archivetables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_archivetables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_archivetables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bigv_getarchive.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bigv_movetoarchive.html

Chapter 2. Implementing your database design

Implementing your database design involves implementing Db2 objects, loading and managing data, and
altering your design as necessary.

Tip: GUPIYou can simplify your database implementation by letting Db2 implicitly create certain objects
for you. For example, if you omit the IN clause in a CREATE TABLE statement, Db2 creates a table space
and database for the table, and creates other required objects such as:

« The primary key enforcing index and the unique key index
« The ROWID index (if the ROWID column is defined as GENERATED BY DEFAULT)

 LOB table spaces and auxiliary tables and indexes for LOB columns* GUPI

Related concepts

Altering your database design

After using a relational database for a while, you might want to change some aspects of its design.
Related tasks

Designing databases for performance (Db2 Performance)

Compressing your data (Db2 Performance)

Related reference

CREATE TABLE (Db2 SQL)

Implementing Db2 databases

Db2 databases are a set of Db2 structures that include a collection of tables, their associated indexes,
and the table spaces in which they reside.

Use Db2 databases to collect and control data.

Related concepts
Db2 databases (Introduction to Db2 for z/OS)

Creating Db2 databases

You can create a Db2 database by defining a database at the current server.

About this task

Creating a set of objects in a specific database has the following advantages.

 You can start and stop an entire database as a unit. You can display the status of all objects in the
database by using a single command that names only the database. Therefore, place a set of related
tables into the same database. (The same database holds all indexes on those tables.)

- If you want to improve concurrency and memory use, keep the number of tables in a single database
relatively small (maximum of 20 tables). For example, with fewer tables, Db2 performs a reorganization
in a shorter length of time.

- Having separate databases allows data definitions to run concurrently and also uses less space for
control blocks.

A Db2 database name must not be the same as the name of any other Db2 database.

Procedure

To create a database, use one of the following approaches:
« Issue a CREATE DATABASE statement.

© Copyright IBM Corp. 1982, 2024 19

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_designdbperformance.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_compressdataperf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_databases.html

« Issue a CREATE TABLE statement and omit the IN clause.
Db2 implicitly creates the table space and database for the table. The name of the database is
DSNxxxxx, where xxxxx is the next five-digit number from a sequence.

However, if you do not specify the IN clause in a CREATE TABLESACE statement, the table space is
created in database DSNDBO4.

Example
GUPI" The following example CREATE DATABASE statement creates a database named MYDB:

CREATE DATABASE MYDB
STOGROUP MYSTOGRP
BUFFERPOOL BP8K4
INDEXBP BP4;

The STOGROUP, BUFFERPOOL, and INDEXBP clauses that this example shows establish default values.
You can override these values on the definitions of the table space or index space. “GUPI

Related concepts

Db2 databases (Introduction to Db2 for z/OS)
Related tasks

Dropping Db2 databases

You can drop a Db2 database by removing the database at the current server. When you drop a database,
all of its table spaces, tables, index spaces, and indexes are dropped, too.

Related reference
CREATE DATABASE (Db2 SQL)

Dropping Db2 databases

You can drop a Db2 database by removing the database at the current server. When you drop a database,
all of its table spaces, tables, index spaces, and indexes are dropped, too.

Procedure
Issue the DROP DATABASE statement.

Related concepts
Db2 databases (Introduction to Db2 for z/OS)
Related tasks

Creating Db2 databases
You can create a Db2 database by defining a database at the current server.

Related reference
DROP (Db2 SQL)

Implementing Db2 storage groups

A storage group is a set of storage objects on which Db2 for z/OS data can be stored. Db2 uses storage
groups to allocate storage for table spaces and indexes, and to define, extend, alter, and delete VSAM
data sets.

You have the following options for creating storage groups and managing Db2 data sets:

 You can let Db2 manage the data sets. This option means less work for Db2 database administrators.

 You can let SMS manage some or all of the data sets, either when you use Db2 storage groups or
when you use data sets that you have defined yourself. This option offers a reduced workload for
Db2 database administrators and storage administrators. For more information, see “Enabling SMS to
control Db2 storage groups” on page 23.

20 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_databases.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createdatabase.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_databases.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_drop.html

 You can define and manage your own data sets using VSAM Access Method Services. This option gives
you the most control over the physical storage of tables and indexes.
Related tasks

Altering Db2 storage groups
To change the description of a storage group at the current server, use the ALTER STOGROUP statement.

Advantages of storage groups
Allowing Db2 to manage your data sets by using Db2 storage groups offers several advantages.

The following list describes some of the things that Db2 does for you in managing your auxiliary storage
requirements:

- When a table space is created, Db2 defines the necessary VSAM data sets using VSAM Access Method
Services. After the data sets are created, you can process them with access method service commands
that support VSAM control-interval (CI) processing (for example, IMPORT and EXPORT).

Exception: You can defer the allocation of data sets for table spaces and index spaces by specifying the
DEFINE NO clause on the associated statement (CREATE TABLESPACE and CREATE INDEX), which also
must specify the USING STOGROUP clause.

When a table space is dropped, Db2 automatically deletes the associated data sets.

« When a data set in a segmented or simple table space reaches its maximum size of 2 GB, Db2 might
automatically create a new data set. The primary data set allocation is obtained for each new data set.

« When needed, Db2 can extend individual data sets.

« When you create or reorganize a table space that has associated data sets, Db2 deletes and
then redefines them, reclaiming fragmented space. However, when you run REORG with the REUSE
option and SHRLEVEL NONE, REORG resets and reuses Db2-managed data sets without deleting and
redefining them. If the size of your table space is not changing, using the REUSE parameter could be
more efficient.

Exception: When reorganizing a LOB table space with the SHRLEVEL NONE option, Db2 does not delete
and redefine the first data set that was allocated for the table space. If the REORG results in empty data
sets beyond the first data set, Db2 deletes those empty data sets.

« When you want to move data sets to a new volume, you can alter the volumes list in your storage group.
Db2 automatically relocates your data sets during the utility operations that build or rebuild a data set
(LOAD REPLACE, REORG, REBUILD, and RECOVER).

Restriction: If you use the REUSE option, Db2 does not delete and redefine the data sets and therefore
does not move them.

For a LOB table space, you can alter the volumes list in your storage group, and Db2 automatically
relocates your data sets during the utility operations that build or rebuild a data set (LOAD REPLACE and
RECOVER).

To move user-defined data sets, you must delete and redefine the data sets in another location.

Related tasks

Defining your own user-managed data sets

You can use Dbh2 storage groups to let Db2 manage the VSAM data sets. However, you can also define
your own user-managed data sets. With user-managed data sets, Db2 checks whether you have defined
your data sets correctly.

Related information
Managing Db2 data sets with DFSMShsm

Chapter 2. Implementing your database design 21

You can use the Hierarchical Storage Management functional component (DFSMShsm) of DFSMS to
manage space and data availability among the storage devices in your system.

Control interval sizing

A control interval is an area on disk where VSAM stores records and creates distributed free space. A
control interval is a unit of information that VSAM transfers between virtual and auxiliary storage.

Db2 page sets are defined as VSAM linear data sets. Db2 can define data sets with variable VSAM control
intervals. One of the biggest benefits of variable VSAM control intervals is an improvement in query
processing performance.

The VARY DS CONTROL INTERVAL parameter on installation panel DSNTIP7 allows you to control
whether Db2-managed data sets have variable VSAM control intervals:

« Avalue of YES indicates that a Db2-managed data set is created with a VSAM control interval that
corresponds to the size of the buffer pool that is used for the table space. This is the default value.

- Avalue of NO indicates that a Db2-managed data set is created with a fixed VSAM control interval of 4
KB, regardless of the size of the buffer pool that is used for the table space.

The following table shows the default and compatible control interval sizes for each table space page size.
For example, a table space with pages that are 16 KB in size can have a VSAM control interval of 4 KB or
16 KB. Control interval sizing has no impact on indexes. Index pages are always 4 KB in size.

Table 1. Default and compatible control interval sizes

Compatible control interval

Table space page size Default control interval size sizes

4 KB 4 KB 4 KB

8 KB 8 KB 4 KB, 8 KB
16 KB 16 KB 4 KB, 16 KB
32 KB 32 KB 4 KB, 32 KB

Creating Db2 storage groups

You can create Db2 storage groups by using the CREATE STOGROUP statement. Db2 storage groups are a
set of volumes on disks that hold the data sets in which tables and indexes are stored.

Procedure

GUPI ‘To create a Db2 storage group:
1. Issue the SQL statement CREATE STOGROUP.
2. Specify the storage group name.

Db2 storage group names are unqualified identifiers of up to 128 characters. A Db2 storage group
name cannot be the same as any other storage group name in the Db2 catalog.” GUPI

Results

After you define a storage group, Db2 stores information about it in the Db2 catalog. (This catalog is not
the same as the integrated catalog facility catalog that describes Db2 VSAM data sets). The catalog table
SYSIBM.SYSSTOGROUP has a row for each storage group, and SYSIBM.SYSVOLUMES has a row for each
volume. With the proper authorization, you can retrieve the catalog information about Db2 storage groups
by using SQL statements.

Related reference
CREATE STOGROUP (Db2 SQL)

22 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createstogroup.html

Enabling SMS to control Db2 storage groups

Managing data sets with the Storage Management Subsystem (SMS) family of products can reduce
workload for database administrators and storage administrators.

Procedure

To enable SMS to control Db2 storage groups:
1. Issue a CREATE STOGROUP SQL statement to define a Db2 storage group.
You can specify SMS classes when you create a storage group.
2. Indicate how you want SMS to control the allocation of volumes in one of the following ways:

« Specify an asterisk (*) for the VOLUMES attribute.
« Specify the DATACLAS, MGMTCLAS, or STORCLAS keywords.

What to do next

If you use Db2 to allocate data to specific volumes, you must assign an SMS storage class with
guaranteed space, and you must manage free space for each volume to prevent failures during the initial
allocation and extension. Using guaranteed space reduces the benefits of SMS allocation, requires more
time for space management, and can result in more space shortages. You should only use guaranteed
space when space needs are relatively small and do not change.

Related tasks

Migrating to DFSMShsm
If you decide to use DFSMShsm for your Db2 data sets, you should develop a migration plan with your
system administrator.

Related reference
CREATE STOGROUP (Db2 SQL)

Deferring allocation of Db2-managed data sets

When you execute a CREATE TABLESPACE statement with the USING STOGROUP clause, Db2 generally
defines the necessary VSAM data sets for the table space. However, you might want to define a table
space without immediately allocating the associated data sets.

About this task

For example, you might be installing a software program that requires that many table spaces be created,
but your company might not need to use some of those table spaces. You might prefer not to allocate data
sets for the table spaces that you will not be using.

The deferral of allocating data sets is recommended when:

« Performance of the CREATE TABLESPACE statement is important
« Disk resource is constrained

Procedure
Issue a CREATE TABLESPACE statement with the DEFINE NO clause.

The DEFINE NO clause is allowed on some Db2 objects, such as explicitly created LOB table spaces,
auxiliary indexes, and XML indexes. Additionally, the IMPDSDEF subsystem parameter specifies whether
Db2 defines the underlying data set for implicitly created table spaces and index spaces. When you
specify this subsystem parameter as NO, the data set is not defined when the table space or index space
is implicitly created.

Chapter 2. Implementing your database design 23

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createstogroup.html

Restriction: The DEFINE NO clause is not allowed for table spaces in a work file database, or for
user-defined data sets. (In the case of user-defined data sets, the table space is created with the USING
VCAT clause of the CREATE TABLESPACE statement).

Do not use the DEFINE NO clause on a table space if you plan to use a tool outside of Db2 to propagate
data into a data set in the table space. When you use DEFINE NO, the Db2 catalog indicates that the data
sets have not yet been allocated for that table space. Then, if data is propagated from a tool outside of
Db2 into a data set in the table space, the Db2 catalog information does not reflect the fact that the data
set has been allocated. The resulting inconsistency causes Db2 to deny application programs access to
the data until the inconsistency is resolved.

Results

The table space is created, but Db2 does not allocate (that is, define) the associated data sets until a

row is inserted or loaded into a table in that table space. The Db2 catalog table SYSIBM.SYSTABLEPART

contains a record of the created table space and an indication that the data sets are not yet allocated.
GUPI

How Db2 extends data sets

When a data set is created, Db2 allocates a primary allocation space on a volume that has available
space and that is specified in the Db2 storage group. Any extension to a data set always gets a secondary
allocation space.

If new extensions reach the end of the volume, Db2 accesses all candidate volumes from the Db2 storage
group and issues the Access Method Services command ALTER ADDVOLUMES to add these volumes to
the integrated catalog facility (ICF) catalog as candidate volumes for the data set. Db2 then makes a
request to allocate a secondary extent on any one of the candidate volumes that has space available.
After the allocation is successful, Db2 issues the command ALTER REMOVEVOLUMES to remove all
candidate volumes from the ICF catalog for the data set.

Db2 extends data sets when either of the following conditions occurs:

- The requested space exceeds the remaining space in the data set.
« 10% of the secondary allocation space (but not over 10 allocation units, based on either tracks or
cylinders) exceeds the remaining space.

If Db2 fails to extend a data set with a secondary allocation space because of insufficient available space
on any single candidate volume of a Db2 storage group, Db2 tries again to extend with the requested
space if the requested space is smaller than the secondary allocation space. Typically, Db2 requests only
one additional page. In this case, a small amount of two units (tracks or cylinders, as determined by
DFSMS based on the SECQTY value) is allocated. To monitor data set extension activity, use IFCID 258 in
statistics class 3.

Nonpartitioned spaces

For a nonpartitioned table space or a nonpartitioned index space, Db2 defines the first piece of the page
set starting with a primary allocation space, and extends that piece by using secondary allocation spaces.
When the end of the first piece is reached, Db2 defines a new piece (which is a new data set) and extends
that new piece starting with a primary allocation space.

Exception: When a table space requires a new piece, the primary allocation quantity of the new piece is
determined as follows:

The primary quantity is the maximum of the following values:

« The quantity that is calculated through sliding scale methodology
« The primary quantity from rule 1
» The specified SECQTY value

24 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

Partitioned spaces

For a partitioned table space or a partitioned index space, each partition is a data set. Therefore, Db2
defines each partition with the primary allocation space and extends each partition's data set by using a
secondary allocation space, as needed.

Extension failures

If a data set uses all possible extents, Db2 cannot extend that data set. For a partitioned page set, the
extension fails only for the particular partition that Db2 is trying to extend. For nonpartitioned page sets,
Db2 cannot extend to a new data set piece, which means that the extension for the entire page set fails.

To avoid extension failures, allow Db2 to use the default value for primary space allocation and to use a
sliding scale algorithm for secondary extent allocations.

Db2 might not be able to extend a data set if the data set is in an SMS data class that constrains

the number of extents to less than the number that is required to reach full size. To prevent extension
failures, make sure that the SMS data class setting for the number of allowed extents is large enough to
accommodate 128 GB and 256 GB data sets.

Related concepts

Primary space allocation
Db2 uses default values for primary space allocation of Db2-managed data sets.

Secondary space allocation
Db2 can calculate the amount of space to allocate to secondary extents by using a sliding scale algorithm.

Related tasks
Avoiding excessively small extents (Db2 Performance)

Db2 space allocation

Primary and secondary space allocation sizes are the main factors that affect the amount of disk space
that Db2 uses.

In general, the primary space allocation must be large enough to handle the storage needs that you
anticipate. The secondary space allocation must be large enough for your applications to continue
operating until the data set is reorganized.

If the secondary space allocation is too small, the data set might have to be extended more times to
satisfy those activities that need a large space.

Primary space allocation

Db2 uses default values for primary space allocation of Db2-managed data sets.
The default values are:

« 1 cylinder (720 KB) for non-LOB table spaces

» 10 cylinders for LOB table spaces

« 1 cylinder for indexes

To indicate that you want Db2 to use the default values for primary space allocation of table spaces and
indexes, specify a value of 0 for the following parameters on installation panel DSNTIP7, as shown in the
following table.

Table 2. DSNTIP7 parameter values for managing space allocations

Installation panel DSNTIP7 parameter Recommended value
TABLE SPACE ALLOCATION 0
INDEX SPACE ALLOCATION 0

Chapter 2. Implementing your database design 25

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_avoidsmallextents.html

Thereafter:

« On CREATE TABLESPACE and CREATE INDEX statements, do not specify a value for the PRIQTY option.
« On ALTER TABLESPACE and ALTER INDEX statements, specify a value of -1 for the PRIQTY option.

Primary space allocation quantities do not exceed DSSIZE or PIECESIZE clause values.

For those situations in which the default primary quantity value is not large enough, you can specify a
larger value for the PRIQTY option when creating or altering table spaces and indexes. Db2 always uses a
PRIQTY value if one is explicitly specified.

If you want to prevent Db2 from using the default value for primary space allocation of table spaces
and indexes, specify a non-zero value for the TABLE SPACE ALLOCATION and INDEX SPACE ALLOCATION
parameters on installation panel DSNTIP7.

Related reference
DSNTIP7: SQL OBJECT DEFAULTS PANEL 1 (Db2 Installation and Migration)

Secondary space allocation
Db2 can calculate the amount of space to allocate to secondary extents by using a sliding scale algorithm.

The first 127 extents are allocated in increasing size, and the remaining extents are allocated based on
the initial size of the data set:

« For 32 GB, 64 GB, 128 GB, and 256 GB data sets, each extent is allocated with a size of 559 cylinders.

 For data sets that range in size from less than 1 GB to 16 GB, each extent is allocated with a size of 127
cylinders.

This approach has several advantages:

- It minimizes the potential for wasted space by increasing the size of secondary extents slowly at first.
- It prevents very large allocations for the remaining extents, which would likely cause fragmentation.

It does not require users to specify SECQTY values when creating and altering table spaces and index
spaces.

It is theoretically possible to reach maximum data set size without running out of secondary extents.

In the case of severe DASD fragmentation, it can take up to 5 extents to satisfy a logical extent request. In
this situation, the data set does not reach the theoretical data set size.

You can modify the Extent Constraint Removal option. By setting the Extent Constraint
Removal option to YES in the SMS data class, the maximum number of extents can be up to 7257.
However, the limits of 123 extents per volume and a maximum volume count of 59 per data set remain
valid. For more information, see Using VSAM extents (DFSMS Using Data Sets).

Maximum allocation is shown in the following table. This table assumes that the initial extent that is
allocated is one cylinder in size.

Table 3. Maximum allocation of secondary extents

Maximum allocation, in Extents required to reach full

Maximum data set size, in GB cylinders size
1 127 54

2 127 75

4 127 107
8 127 154
16 127 246
32 559 172

26 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntip7.html
https://www.ibm.com/docs/zos/2.5.0?topic=SSLTBW_2.5.0/com.ibm.zos.v2r5.idad400/extent.htm

Table 3. Maximum allocation of secondary extents (continued)

Maximum allocation, in Extents required to reach full
Maximum data set size, in GB cylinders size
64 559 255
128 1785 145
256 1785 254

GUPI Dh2 uses a sliding scale for secondary extent allocations of table spaces and indexes when:

 You do not specify a value for the SECQTY option of a CREATE TABLESPACE or CREATE INDEX
statement

« You specify a value of -1 for the SECQTY option of an ALTER TABLESPACE or ALTER INDEX statement.

Otherwise, Db2 always uses a SECQTY value for secondary extent allocations, if one is explicitly
specified. GUPI

Exception: For those situations in which the calculated secondary quantity value is not large enough,
you can specify a larger value for the SECQTY option when creating or altering table spaces and indexes.
However, if you specify a value for the SECQTY option, Db2 uses the value of the SECQTY option to
allocate a secondary extent only if the value of the option is larger than the value that is derived from the
sliding scale algorithm. The calculation that Db2 uses to make this determination is:

Actual secondary extent size = max (min (ss_extent, MaxAlloc), SECQTY)

In this calculation, ss_extent represents the value that is derived from the sliding scale algorithm, and
MaxAlloc is the maximum allocation in cylinders, which depends on the maximum potential data set size,
as described in Table 3 on page 26. This approach allows you to reach the maximum page set size faster.
Otherwise, Db2 uses the value that is derived from the sliding scale algorithm.

If you do not provide a value for the secondary space allocation quantity, Db2 uses the following
calculation to determine a secondary space allocation value.

Actual secondary extent size = max (ss_extent, min (0.1 x PRIQTY, MaxAlloc))

That is, Db2 uses the following process to determine the secondary space allocation quantity:
1. Db2 first determines the lessor the following two values:

« 10% of the primary space allocation (PRIQTY) value.

« The maximum allocation in cylinders (MaxAlloc), as described in Table 3 on page 26.

2. Db2 then compares the result of the preceding step to the value determined by the sliding scale
algorithm (ss_extent) and uses the greater of these two values for the actual secondary space
allocation quantity.

Secondary space allocation quantities do not exceed DSSIZE or PIECESIZE clause values.

If you do not want Db2 to extend a data set, you can specify a value of O for the SECQTY option. Specifying
0 is a useful way to prevent DSNDBO7 work files from growing out of proportion.

Related concepts
How Db2 extends data sets

Chapter 2. Implementing your database design 27

When a data set is created, Db2 allocates a primary allocation space on a volume that has available
space and that is specified in the Db2 storage group. Any extension to a data set always gets a secondary
allocation space.

Example of primary and secondary space allocation

Primary and secondary space allocation quantities are affected by a CREATE statement and two
subsequent ALTER statements.

This example assumes a maximum data set size of less than 32 GB, and the following parameter values
on installation panel DSNTIP7:

» TABLE SPACE ALLOCATION =0
« INDEX SPACE ALLOCATION =0

Table 4. Example of specified and actual space allocations

Specified Actual primary Specified Actual secondary
Action PRIQTY quantity allocated SECQTY quantity allocated
CREATE TABLESPACE 100 KB 100 KB 1000 KB 2 cylinders
ALTER TABLESPACE -1 1 cylinder 2000 KB 3 cylinders
ALTER TABLESPACE 1 cylinder -1 1 cylinder

Partition-by-range table spaces with relative page numbering

Partition-by-range (PBR) table spaces with relative page numbering allow larger partition sizes than
partition-by-range table spaces with absolute page numbering.

Partition-by-range table spaces with relative page numbering allow the following improvements in space
allocation:

« Data partition sizes can be up to 1 TB.

« Greater flexibility in growing your partitions. With partition-by-range table spaces with relative page
numbering, you can grow partitions by any number of gigabytes. With absolute page numbering,
partition growth is restricted to gigabytes in powers of 2.

« DSSIZE can be increased for individual partitions as an immediate ALTER, without requiring a REORG.

The page numbering used for a PBR table space is controlled by the PAGENUM clause of the CREATE
TABLE SPACE and ALTER TABLE statements. The PAGESET_PAGENUM subsystem parameter value
specifies the default value for the PAGENUM clause. The default for PAGESET_PAGENUM is ABSOLUTE.

Related concepts

Increased partition sizes and simplified partition management for partition-by-range table spaces with
relative page numbering (Db2 for z/OS What's New?)

Related reference

PAGE SET PAGE NUMBERING field (PAGESET_PAGENUM subsystem parameter) (Db2 Installation and
Migration)

CREATE TABLESPACE (Db2 SQL)

ALTER TABLESPACE (Db2 SQL)

Managing Db2 data sets with DFSMShsm

You can use the Hierarchical Storage Management functional component (DFSMShsm) of DFSMS to
manage space and data availability among the storage devices in your system.

You can also use DFSMShsm to move data sets that have not been recently used to slower, less expensive
storage devices. Moving the data sets helps to ensure that disk space is managed efficiently.

28 Db2 12 for z/0OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_increasedpartitionsize.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_increasedpartitionsize.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html

Related concepts

Advantages of storage groups
Allowing Db2 to manage your data sets by using Db2 storage groups offers several advantages.

Related tasks

Defining your own user-managed data sets

You can use Db2 storage groups to let Db2 manage the VSAM data sets. However, you can also define
your own user-managed data sets. With user-managed data sets, Db2 checks whether you have defined
your data sets correctly.

Migrating to DFSMShsm

If you decide to use DFSMShsm for your Db2 data sets, you should develop a migration plan with your
system administrator.

About this task

With user-managed data sets, you can specify DFSMS classes on the Access Method Services DEFINE
command. With Db2 storage groups, you can specify SMS classes in the CREATE STOGROUP statement,
develop automatic class selection routines, or both.

Restriction: If you use the BACKUP SYSTEM utility to create system-level backups, do not use DFSMShsm
to migrate Db2 table spaces and indexes. You can use DFSMShsm to migrate or recall archive log data
sets.

Procedure

To enable DFSMS to manage your Db2 storage groups:

1. Issue either a CREATE STOGROUP or ALTER STOGROUP SQL statement.

2. Specify one or more asterisks as volume-ID in the VOLUMES option, and optionally, specify the SMS
class options.

The following example causes all database data set allocations and definitions to use nonspecific
selection through DFSMS filtering services.

GUPI

CREATE STOGROUP G202

VOLUMES ('%')

VCAT vcat name

DATACLAS dataclass name
MGMTCLAS management class name
STORCLAS storage class name;

GUPI

3. Define the SMS classes for your table space data sets and index data sets.

4. Code the SMS automatic class selection (ACS) routines to assign indexes to one SMS storage class and
to assign table spaces to a different SMS storage class.

Example
GUPI The following example shows how to create a storage group in a SMS managed subsystem:

CREATE STOGROUP SGOS0101
VCAT REGSMS
DATACLAS REGSMSDC
MGMTCLAS REGSMSMC
STORCLAS REGSMSSC;

GUPI

Chapter 2. Implementing your database design 29

Related concepts

How archive logs are recalled by DFSMShsm

DFSMShsm can automatically migrate and recall archive log data sets and image copy data sets. If Db2
needs an archive log data set or an image copy data set that DFSMShsm has migrated, a recall begins
automatically and Db2 waits for the recall to complete before continuing.

The RECOVER utility and the DFSMSdss RESTORE command
The RECOVER utility can run the DFSMSdss RESTORE command, which generally uses extensions that are
larger than the primary and secondary space allocation values of a data set.

Considerations for using the BACKUP SYSTEM utility and DFSMShsm

If you plan to use the BACKUP SYSTEM utility to take volume-level copies of data and logs, all of the Db2
data sets must reside on volumes that are managed by DFSMSsms. You can take volume-level copies of
the data and logs of a data sharing group or a non-data-sharing Db2 subsystem.

Incremental system-level backups

You can use the BACKUP SYSTEM utility to take incremental FlashCopy backups of the data of a non-data
sharing Db2 subsystem or a Db2 data sharing group. All of the Db2 data sets must reside on volumes that
are managed by DFSMSsms.

Related tasks

Letting SMS manage your Db2 storage groups
Using the SMS product Data Facility Storage Management Subsystem (DFSMS) to manage your data sets
can result in a reduced workload for Db2 database and storage administrators.

Enabling SMS to control Db2 storage groups
Managing data sets with the Storage Management Subsystem (SMS) family of products can reduce
workload for database administrators and storage administrators.

How archive logs are recalled by DFSMShsm

DFSMShsm can automatically migrate and recall archive log data sets and image copy data sets. If Db2
needs an archive log data set or an image copy data set that DFSMShsm has migrated, a recall begins
automatically and Db2 waits for the recall to complete before continuing.

For processes that read more than one archive log data set, such as the RECOVER utility, Db2 anticipates
a DFSMShsm recall of migrated archive log data sets. When a Db2 process finishes reading one data set, it
can continue with the next data set without delay, because the data set might already have been recalled
by DFSMShsm.

If you accept the default value YES for the RECALL DATABASE parameter on the Operator Functions panel
(DSNTIPO), Db2 also recalls migrated table spaces and index spaces. At data set open time, Db2 waits for
DFSMShsm to perform the recall. You can specify the amount of time Db2 waits while the recall is being
performed with the RECALL DELAY parameter, which is also on panel DSNTIPO. If RECALL DELAY is set to
zero, Db2 does not wait, and the recall is performed asynchronously.

You can use System Managed Storage (SMS) to archive Db2 subsystem data sets, including the

Db2 catalog, Db2 directory, active logs, and work file databases (DSNDBO7 in a non-data-sharing
environment). However, before starting Db2, you should recall these data sets by using DFSMShsm.
Alternatively, you can avoid migrating these data sets by assigning them to a management class that
prevents migration.

If a volume has a STOGROUP specified, you must recall that volume only to volumes of the same device
type as others in the STOGROUP.

In addition, you must coordinate the DFSMShsm automatic purge period, the Db2 log retention period,
and MODIFY utility usage. Otherwise, the image copies or logs that you might need during a recovery
could already have been deleted.

Related concepts
The RECOVER utility and the DFSMSdss RESTORE command

30 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

The RECOVER utility can run the DFSMSdss RESTORE command, which generally uses extensions that are
larger than the primary and secondary space allocation values of a data set.

Considerations for using the BACKUP SYSTEM utility and DFSMShsm

If you plan to use the BACKUP SYSTEM utility to take volume-level copies of data and logs, all of the Db2
data sets must reside on volumes that are managed by DFSMSsms. You can take volume-level copies of
the data and logs of a data sharing group or a non-data-sharing Db2 subsystem.

Incremental system-level backups

You can use the BACKUP SYSTEM utility to take incremental FlashCopy backups of the data of a non-data
sharing Db2 subsystem or a Db2 data sharing group. All of the Db2 data sets must reside on volumes that
are managed by DFSMSsms.

Related tasks

Migrating to DFSMShsm
If you decide to use DFSMShsm for your Db2 data sets, you should develop a migration plan with your
system administrator.

The RECOVER utility and the DFSMSdss RESTORE command

The RECOVER utility can run the DFSMSdss RESTORE command, which generally uses extensions that are
larger than the primary and secondary space allocation values of a data set.

The RECOVER utility runs this command if the point of recovery is defined by an image copy that was
taken by using the CONCURRENT option of the COPY utility.

When the RECOVER utility chooses a system-level backup for object-level recovery, DFSMShsm is used to
restore the data sets from the system-level backup.

The DFSMSdss RESTORE command extends a data set differently than Db2, so after this command runs,
you must alter the page set to contain extents that are defined by Db2.

Related concepts

How archive logs are recalled by DFSMShsm

DFSMShsm can automatically migrate and recall archive log data sets and image copy data sets. If Db2
needs an archive log data set or an image copy data set that DFSMShsm has migrated, a recall begins
automatically and Db2 waits for the recall to complete before continuing.

Considerations for using the BACKUP SYSTEM utility and DFSMShsm

If you plan to use the BACKUP SYSTEM utility to take volume-level copies of data and logs, all of the Db2
data sets must reside on volumes that are managed by DFSMSsms. You can take volume-level copies of
the data and logs of a data sharing group or a non-data-sharing Db2 subsystem.

Incremental system-level backups

You can use the BACKUP SYSTEM utility to take incremental FlashCopy backups of the data of a non-data
sharing Db2 subsystem or a Db2 data sharing group. All of the Db2 data sets must reside on volumes that
are managed by DFSMSsms.

Related tasks

Migrating to DFSMShsm
If you decide to use DFSMShsm for your Db2 data sets, you should develop a migration plan with your
system administrator.

Altering a page set to contain Db2-defined extents
After you use the RECOVER utility to run the DFSMSdss RESTORE command, you must alter the page set
to contain extents that are defined by Db2.

Related reference
RECOVER (Db2 Utilities)

Chapter 2. Implementing your database design 31

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_recover.html

Considerations for using the BACKUP SYSTEM utility and DFSMShsm

If you plan to use the BACKUP SYSTEM utility to take volume-level copies of data and logs, all of the Db2
data sets must reside on volumes that are managed by DFSMSsms. You can take volume-level copies of
the data and logs of a data sharing group or a non-data-sharing Db2 subsystem.

Restriction: If you use the BACKUP SYSTEM utility to create system-level backups, do not use DFSMShsm
to migrate Db2 table spaces and indexes.

The BACKUP SYSTEM utility uses copy pools. A copy pool is a named set of storage groups that can
be backed up and restored as a unit; DFSMShsm processes the storage groups collectively for fast
replication. Each Db2 subsystem has up to two copy pools, one for databases and one for logs.

Copy pools are also referred to as source storage groups. Each source storage group contains the name
of an associated copy pool backup storage group, which contains eligible volumes for the backups. The
storage administrator must define both the source and target storage groups. Use the following Db2
naming convention for a copy pool:

DSN$locn-name$cp-type

The variables that are used in this naming convention are described in the following table.

Table 5. Naming convention variables for a copy pool

Variable Meaning

DSN The unique Db2 product identifier

$ A delimiter. You must use the dollar sign ($) character.
locn-name The Db2 location name

cp-type The copy pool type. Use DB for database and LG for log.

The Db2 BACKUP SYSTEM and RESTORE SYSTEM utilities invoke DFSMShsm to back up and restore the
copy pools. DFSMShsm interacts with DFSMSsms to determine the volumes that belong to a given copy
pool so that the volume-level backup and restore functions can be invoked.

Tip: The BACKUP SYSTEM utility can dump the copy pools to tape automatically if you specify the options
that enable that function.

Related concepts

How archive logs are recalled by DFSMShsm

DFSMShsm can automatically migrate and recall archive log data sets and image copy data sets. If Db2
needs an archive log data set or an image copy data set that DFSMShsm has migrated, a recall begins
automatically and Db2 waits for the recall to complete before continuing.

The RECOVER utility and the DFSMSdss RESTORE command
The RECOVER utility can run the DFSMSdss RESTORE command, which generally uses extensions that are
larger than the primary and secondary space allocation values of a data set.

Incremental system-level backups

You can use the BACKUP SYSTEM utility to take incremental FlashCopy backups of the data of a non-data
sharing Db2 subsystem or a Db2 data sharing group. All of the Db2 data sets must reside on volumes that
are managed by DFSMSsms.

Related tasks

Migrating to DFSMShsm
If you decide to use DFSMShsm for your Db2 data sets, you should develop a migration plan with your
system administrator.

Managing DFSMShsm default settings when using the BACKUP SYSTEM, RESTORE SYSTEM, and RECOVER
utilities

32 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

In some data mirroring situations, you might need to set or override the DFSMShsm default settings for
the BACKUP SYSTEM, RESTORE SYSTEM, and RECOVER utilities.

Related reference

BACKUP SYSTEM (Db2 Utilities)

RESTORE SYSTEM (Db2 Utilities)

Incremental system-level backups

You can use the BACKUP SYSTEM utility to take incremental FlashCopy backups of the data of a non-data
sharing Db2 subsystem or a Db2 data sharing group. All of the Db2 data sets must reside on volumes that
are managed by DFSMSsms.

An incremental FlashCopy relationship is established for each source volume in the copy pool with
corresponding target volumes. Multiple incremental FlashCopy backup versions are supported.

The following BACKUP SYSTEM utility keywords support this feature:

ESTABLISH FCINCREMENTAL
Specifies that a persistent incremental FlashCopy relationship is to be established, if none exists for
source copy volumes in the database copy pool. Use this keyword once to establish the persistent
incremental FlashCopy relationships. Subsequent invocations of BACKUP SYSTEM (without this
keyword) will automatically process the persistent incremental FlashCopy relationship.

END FCINCREMENTAL
Specifies that a last incremental FlashCopy backup be taken and for the persistent incremental
FlashCopy relationship to be withdrawn for all of the volumes in the database copy pool. Use this
keyword only if you do not need additional incremental FlashCopy backups of the database copy pool.

The first time that you use the ESTABLISH FCINCREMENTAL keyword in an invocation of the BACKUP
SYSTEM utility the persistent incremental FlashCopy relationship is established. The incremental
FlashCopy relationship exists until you withdraw it by specifying the END FCINCREMENTAL keyword in the
utility control statement.

For the first invocation of BACKUP SYSTEM that specifies the ESTABLISH FCINCREMENTAL keyword, all
of the tracks of each source volume are copied to their corresponding target volumes. For subsequent
BACKUP SYSTEM requests, only the changed tracks are copied to the target volumes.

If you keep more than one DASD FlashCopy version of the database copy pool, you need to create
full-copy backups for versions other than the incremental version.

For example, you decide to keep two DASD FlashCopy versions of your database copy pool. You invoke
the BACKUP SYSTEM utility with the ESTABLISH FCINCREMENTAL keyword. A full-copy of each volume is
created, because the incremental FlashCopy relationship is established for the first time. You invoke the
BACKUP SYSTEM utility the next day. This request creates the second version of the backup. This version
is a full-copy backup, because the incremental FlashCopy relationship is established with the target
volumes in the first version. The following day you run the BACKUP SYSTEM utility again, but without the
ESTABLISH FCINCREMENTAL keyword. The incremental version is the oldest version, so the incremental
version is used for the FlashCopy backup. This time only the tracks that have changed are copied. The
result is a complete copy of the source volume.

DFSMShsm supports multiple versions of FlashCopy backups for a copy pool.

Related concepts

How archive logs are recalled by DFSMShsm

DFSMShsm can automatically migrate and recall archive log data sets and image copy data sets. If Db2
needs an archive log data set or an image copy data set that DFSMShsm has migrated, a recall begins
automatically and Db2 waits for the recall to complete before continuing.

The RECOVER utility and the DFSMSdss RESTORE command
The RECOVER utility can run the DFSMSdss RESTORE command, which generally uses extensions that are
larger than the primary and secondary space allocation values of a data set.

Considerations for using the BACKUP SYSTEM utility and DFSMShsm

Chapter 2. Implementing your database design 33

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_backupsystem.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_restoresystem.html

If you plan to use the BACKUP SYSTEM utility to take volume-level copies of data and logs, all of the Db2
data sets must reside on volumes that are managed by DFSMSsms. You can take volume-level copies of
the data and logs of a data sharing group or a non-data-sharing Db2 subsystem.

Related tasks

Migrating to DFSMShsm
If you decide to use DFSMShsm for your Db2 data sets, you should develop a migration plan with your
system administrator.

Related reference
BACKUP SYSTEM (Db2 Utilities)

Defining your own user-managed data sets

You can use Db2 storage groups to let Db2 manage the VSAM data sets. However, you can also define
your own user-managed data sets. With user-managed data sets, Db2 checks whether you have defined
your data sets correctly.

About this task

You can let Db2 manage the data sets for your database objects, and Db2 always manages the data sets
for partition-by-growth table spaces. However, you might choose to define your own user-managed VSAM
data sets for several reasons, including:

« You have a large nonpartitioned table space on several data sets. If you manage your own data sets, you
can better control the placement of individual data sets on the volumes (although you can keep a similar
type of control by using single-volume Db2 storage groups).

« You want to prevent deleting a data set within a specified time period, by using the TO and FOR options
of the Access Method Services DEFINE and ALTER commands. You can create and manage the data
set yourself, or you can create the data set with Db2 and use the ALTER command of Access Method
Services to change the TO and FOR options.

= You are concerned about recovering dropped table spaces. Your own data set is not automatically
deleted when a table space is dropped, making it easier to reclaim the data.

Tip: As table spaces and index spaces expand, you might need to provide additional data sets. To take
advantage of parallel I/O streams when doing certain read-only queries, consider spreading large table
spaces over different disk volumes that are attached on separate channel paths.

If you define your own user-managed data sets, you must define a data set for each of the following
items:

« Table space partition

LOB table space

Segmented (non-UTS) or simple table space (deprecated)

Index partition
Non-partitioned index (NPI)

You must define the data sets before you can issue the CREATE TABLESPACE, CREATE INDEX, or ALTER
TABLE ADD PARTITION statements.

When you drop indexes or table spaces that you defined user-managed data sets for, you must also
delete the data sets unless you want to reuse them. To reuse a data set, first commit, and then create
a new table space or index with the same name. When Db2 uses the new object, it overwrites the old
information with new information, which destroys the old data.

Procedure

To define your own user-managed VSAM data sets, complete the following steps:
1. Issue a DEFINE CLUSTER statement to create the data set an specify the following attributes:

34 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_backupsystem.html

a) Specify a name for each data set in a format that complies with the following naming convention.

catname .DSNDBx . dbname . psname . yoo001. znnn

catalog-name
The catalog name or alias.

The data sets are VSAM linear data sets cataloged in the integrated catalog facility catalog
that catalog-name identifies. For more information about catalog-name values, see Naming
conventions (Db2 SOL).

Use the same name or alias here as in the USING VCAT clause of the CREATE TABLESPACE and
CREATE INDEX statements.

x
C (for VSAM clusters) or D (for VSAM data components).

dbname
Db2 database name. If the data set is for a table space, dbname must be the name given in the
CREATE TABLESPACE statement. If the data set is for an index, dbname must be the name of
the database containing the base table. If you are using the default database, dbname must be
DSNDBOA4.

psname
Table space name or index name. This name must be unique within the database.

You use this name on the CREATE TABLESPACE or CREATE INDEX statement. (You can use
a name longer than eight characters on the CREATE INDEX statement, but the first eight
characters of that name must be the same as in the psname for that data set.)

y0001
Instance qualifier for the data set.

If you plan to run any of the following utilities, define two data sets, one data set with a value of
I for y, and one with a value of J for y:

LOAD REPLACE SHRLEVEL REFERENCE

REORG with SHRLEVEL CHANGE or SHRLEVEL REFERENCE
CHECK DATA with SHRLEVEL REFERENCE

CHECK INDEX with SHRLEVEL REFERENCE

« CHECK LOB with SHRLEVEL REFERENCE

Otherwise, define one data set for the table space or index with a value of I for y.

Tip: Instance numbers for cloned tables before and after an exchange: The instance
numbers in the underlying VSAM data set names for the objects (tables and indexes) in a
clone relationship toggle between 1 and 2. For example, suppose that a base table exists with
the data set name *I0001.*. When the table is cloned, the clone's data set is initially named
10002.. After an exchange, the base objects are named *.10002.* and the clones are named
I0001.. Each time that an exchange happens, the instance numbers that represent the base
and the clone objects change.

2nnn
Data set number. The first digit z of the data set number is represented by the letter A, B, C, D,
or E, which corresponds to the value 0, 1, 2, 3, or 4 as the first digit of the partition number.

For partitioned table spaces, if the partition number is less than 1000, the data set number is
Annn in the data set name (for example, A999 represents partition 999). For partitions 1000

t0 1999, the data set number is Bnnn (for example, BOOO represents partition 1000). For
partitions 2000 to 2999, the data set number is Cnnn. For partitions 3000 to 3999, the data set
number is Dnnn. For partitions 4000 up to a maximum of 4096, the data set number is Ennn.

The naming convention for data sets that you define for a partitioned index is the same as the
naming convention for other partitioned objects.

Chapter 2. Implementing your database design 35

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_namingconventions.html

For simple or segmented (non-UTS) table spaces, the number is 001 (preceded by A) for the
first data set. When little space is available, Db2 issues a warning message. If the size of the
data set for a simple or a segmented (non-UTS) table space approaches the maximum limit,
define another data set with the same name as the first data set and the number 002. The next
data set will be 003, and so on.

You can reach the VSAM extent limit for a data set before you reach the size limit for a
partitioned or a nonpartitioned table space. If this happens, Db2 does not extend the data set.

b) In the DEFINE CLUSTER statement, specify the size of the primary and secondary extents of the
VSAM cluster. If you specify zero for the secondary extent size, data set extension does not occur.

c) Specify that the data sets be LINEAR. Do not use RECORDSIZE; this attribute is invalid. Use the
CONTROLINTERVALSIZE attribute if you are using variable-sized control intervals.

d) Specify the REUSE option. You must define the data set as REUSE before running the DSN1COPY
utility.
e) For the SHAREOPTIONS option of the DEFINE CLUSTER statement, specify SHAREOPTIONS (3 3).

For example, the following DEFINE CLUSTER command defines a VSAM data set for the SYSUSER table
space in database DSNDBO6. Assume that an integrated catalog facility catalog named DSNCAT is
already defined.

DEFINE CLUSTER -
(NAME (DSNCAT . DSNDBC . DSNDBO6 . SYSUSER . 10001 .A001)
LINEAR
REUSE
VOLUMES (DSNVO1)
KILOBYTES (40 40)
SHAREOPTIONS(3 3))
DATA
(NAME (DSNCAT . DSNDBD . DSNDBO6 . SYSUSER . I0001.A001)
CATALOG (DSNCAT)

The DEFINE CLUSTER command has many optional parameters that do not apply when Db2 uses
the data set. If you use the parameters SPANNED, EXCEPTIONEXIT, BUFFERSPACE, or WRITECHECK,
VSAM applies them to your data set, but Db2 ignores them when it accesses the data set.

The value of the OWNER parameter for clusters that are defined for storage groups is the first SYSADM
authorization ID specified at installation.

2. With user-managed data sets, you must pre-allocate shadow data sets before you can run the
following Db2 utilities against the table space:

« CHECK DATA with SHRLEVEL CHANGE

« CHECK INDEX with SHRLEVEL CHANGE

« CHECK LOB with SHRLEVEL CHANGE

- REORG INDEX utility with SHRLEVEL REFERENCE or SHRLEVEL CHANGE
« REORG TABLESPACE with SHRLEVEL CHANGE or SHRLEVEL REFERENCE

For example, you can specify the MODEL option for the DEFINE CLUSTER command so that the
shadow is created like the original data set, as shown in the following example code.

DEFINE CLUSTER -
(NAME (' DSNCAT . DSNDBC . DSNDBO6 . SYSUSER . x0001.A001"') -
MODEL (' DSNCAT .DSNDBC . DSNDBO6 . SYSUSER. y0001.A001")) -
DATA =
(NAME (' DSNCAT . DSNDBD . DSNDBO6 . SYSUSER . x0001.A001"') -
MODEL (' DSNCAT .DSNDBD . DSNDBO6 . SYSUSER. y0001.A001")) -

In the example, the instance qualifiers x and y are distinct and are equal to either I or J. You can
querying the Db2 catalog for the database and table space to determine the correct instance qualifier
to use.

36 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_shadowdatasetscheckdata.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_shadowdatasetscheckindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_shadowdatasetschecklob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_shadowdatasetsreorgindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_shadowdatasetreorgtablespace.html

What to do next

« Before the current volume runs out of space, you must extend the data set. See “Extending user-
managed data sets” on page 37.

« When you drop indexes or table spaces that you defined your data sets for, you must also delete the
data sets. See “Deleting user-managed data sets” on page 37.

Related concepts

Advantages of storage groups
Allowing Db2 to manage your data sets by using Db2 storage groups offers several advantages.

Related reference

CREATE INDEX (Db2 SQL)
CREATE TABLESPACE (Db2 SQL)
Related information

Managing Db2 data sets with DFSMShsm
You can use the Hierarchical Storage Management functional component (DFSMShsm) of DFSMS to
manage space and data availability among the storage devices in your system.

Extending user-managed data sets

A user-managed data set is allocated by using only volumes that are defined for that data set in the ICF
catalog. Before the current volume runs out of space, you must extend the data set.

Procedure

Issue the Access Method Services commands ALTER ADDVOLUMES or ALTER REMOVEVOLUMES for
candidate volumes.

Related information
ALTER command (DFSMS Access Method Services for Catalogs)

Deleting user-managed data sets

If you define your own user-managed the data sets, you might need to delete data sets.

About this task

When you drop indexes or table spaces that you defined user-managed data sets for, you must also
delete the data sets unless you want to reuse them. To reuse a data set, first commit, and then create
a new table space or index with the same name. When Db2 uses the new object, it overwrites the old
information with new information, which destroys the old data.

Procedure
Issue the DELETE CLUSTER command for candidate volumes.

Related information
DELETE command (DFSMS Access Method Services for Catalogs)

Data set naming conventions
When you define a data set, you must name it in the correct format.

The name of a data set has the following format:
catname .DSNDBx . dbname . psname . y0001. znnn

catalog-name
The catalog name or alias.

Chapter 2. Implementing your database design 37

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/da6i2052.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/delet.htm

The data sets are VSAM linear data sets cataloged in the integrated catalog facility catalog that
catalog-name identifies. For more information about catalog-name values, see Naming conventions
(Db2 SQL).

Use the same name or alias here as in the USING VCAT clause of the CREATE TABLESPACE and
CREATE INDEX statements.

x
C (for VSAM clusters) or D (for VSAM data components).

dbname
Db2 database name. If the data set is for a table space, dbname must be the name given in the
CREATE TABLESPACE statement. If the data set is for an index, dbname must be the name of the
database containing the base table. If you are using the default database, dbname must be DSNDBO0A4.

psname
Table space name or index name. This name must be unique within the database.

You use this name on the CREATE TABLESPACE or CREATE INDEX statement. (You can use a name
longer than eight characters on the CREATE INDEX statement, but the first eight characters of that
name must be the same as in the psname for that data set.)

yo0001
Instance qualifier for the data set.

If you plan to run any of the following utilities, define two data sets, one data set with a value of I for
y, and one with a value of J for y:

« LOAD REPLACE SHRLEVEL REFERENCE

« REORG with SHRLEVEL CHANGE or SHRLEVEL REFERENCE
« CHECK DATA with SHRLEVEL REFERENCE

« CHECK INDEX with SHRLEVEL REFERENCE

e CHECK LOB with SHRLEVEL REFERENCE

Otherwise, define one data set for the table space or index with a value of I for y.

Tip: Instance numbers for cloned tables before and after an exchange: The instance numbers in
the underlying VSAM data set names for the objects (tables and indexes) in a clone relationship toggle
between 1 and 2. For example, suppose that a base table exists with the data set name *10001.*.
When the table is cloned, the clone's data set is initially named *10002.*. After an exchange, the

base objects are named *.10002.* and the clones are named *I0001.*. Each time that an exchange
happens, the instance numbers that represent the base and the clone objects change.

2nnn
Data set number. The first digit z of the data set number is represented by the letter A, B, C, D, or E,
which corresponds to the value 0, 1, 2, 3, or 4 as the first digit of the partition number.

For partitioned table spaces, if the partition number is less than 1000, the data set number is Annn
in the data set name (for example, A999 represents partition 999). For partitions 1000 to 1999, the
data set number is Bnnn (for example, BOOO represents partition 1000). For partitions 2000 to 2999,
the data set number is Cnnn. For partitions 3000 to 3999, the data set number is Dnnn. For partitions
4000 up to a maximum of 4096, the data set number is Ennn.

The naming convention for data sets that you define for a partitioned index is the same as the naming
convention for other partitioned objects.

For simple or segmented (non-UTS) table spaces, the number is 001 (preceded by A) for the first data
set. When little space is available, Db2 issues a warning message. If the size of the data set for a
simple or a segmented (non-UTS) table space approaches the maximum limit, define another data set
with the same name as the first data set and the number 002. The next data set will be 003, and so
on.

You can reach the VSAM extent limit for a data set before you reach the size limit for a partitioned or a
nonpartitioned table space. If this happens, Db2 does not extend the data set.

38 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_namingconventions.html

Related reference
CREATE INDEX (Db2 SQL)
CREATE TABLESPACE (Db2 SQL)

Assignment of table spaces and index spaces to physical storage

You can store table spaces and index spaces in user-managed storage, SMS-managed storage, or in
Db2-managed storage groups. (A storage group is a set of disk volumes.)

If you do not use SMS, you need to name the Db2 storage groups when you create table spaces or index
spaces. Db2 allocates space for these objects from the named storage group. You can assign different
partitions of the same table space to different storage groups.

Recommendation: Use products in the IBM Storage Management Subsystem (SMS) family, such as Data
Facility SMS (DFSMS), to manage some or all of your data sets. Organizations that use SMS to manage Db2
data sets can define storage groups with the VOLUMES(*) clause. You can also assign management class,
data class, and storage class attributes. As a result, SMS assigns a volume to the table spaces and index
spaces in that storage group.

The following figure shows how storage groups work together with the various Db2 data structures.

Database A

Table space 1 (segmented)

Table A1 Table A2
Index space Index space Storage group G1
—_—
Index Index
on Table on Table
Al A2 “
Database B _
Volume 1 .
Table space 2 d
(partitioned) Index space _
Table B1 Partitioning
Part 1 index Part 1
Part 2 Part 2 L
Part 3 Part 3 —_—
Part 4 Part 4
JStorage group G2 J

Disk

Volume
L]
2 .Votume 1

Figure 13. Hierarchy of Db2 structures

To create a Db2 storage group, use the SQL statement CREATE STOGROUP. Use the VOLUMES(*) clause
to specify the SMS management class (MGMTCLAS), SMS data class (DATACLAS), and SMS storage class
(STORCLAS) for the Db2 storage group.

After you define a storage group, Db2 stores information about it in the Db2 catalog. The catalog table
SYSIBM.SYSSTOGROUP has a row for each storage group, and SYSIBM.SYSVOLUMES has a row for each
volume in the group.

The process of installing Db2 includes the definition of a default storage group, SYSDEFLT. If you have
authorization, you can define tables, indexes, table spaces, and databases. Db2 uses SYSDEFLT to
allocate the necessary auxiliary storage. Db2 stores information about SYSDEFLT and all other storage
groups in the catalog tables SYSIBM.SYSSTOGROUP and SYSIBM.SYSVOLUMES.

Chapter 2. Implementing your database design 39

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html

Recommendation: Use storage groups whenever you can, either explicitly or implicitly (by using the
default storage group). In some cases, organizations need to maintain closer control over the physical
storage of tables and indexes. These organizations choose to manage their own user-defined data sets
rather than using storage groups. Because this process is complex, this information does not describe the
details.

Example

GUPI
Consider the following CREATE STOGROUP statement:

CREATE STOGROUP MYSTOGRP
VOLUMES (x)
VCAT ALIASICF;

This statement creates storage group MYSTOGRP. The asterisk (*) on the VOLUMES clause indicates that
SMS is to manage your storage group. The VCAT catalog-name clause identifies ALIASICF as the name or
alias of the catalog of the integrated catalog facility that the storage group is to use. The catalog of the
integrated catalog facility stores entries for all data sets that Db2 creates on behalf of a storage group.

The data sets are VSAM linear data sets cataloged in the integrated catalog facility catalog that catalog-
name identifies. For more information about catalog-name values, see Naming conventions (Db2 SQL).

GUPI

IBM Storage Management Subsystem

Db2 for z/OS includes the Storage Management Subsystem (SMS) capabilities. A key product in the SMS
family is the Data Facility Storage Management Subsystem (DFSMS). DFSMS can automatically manage
all the data sets that Db2 uses and requires. If you use DFSMS to manage your data sets, the result is a
reduced workload for Db2 database administrators and storage administrators.

You can experience the following benefits by using DFSMS:

« Simplified data set allocation
« Improved allocation control
« Improved performance management

Automated disk space management

Improved management of data availability

Simplified data movement

Db2 database administrators can use DFSMS to achieve all their objectives for data set placement and
design. To successfully use DFSMS, Db2 database administrators and storage administrators need to
work together to ensure that the needs of both groups are satisfied.

Related concepts

Db2 storage groups (Introduction to Db2 for z/0S)
Implementing Db2 indexes

Indexes provide efficient access to table data, but can require additional processing when you modify
datain a table.

Related tasks

Choosing data page sizes (Db2 Performance)
Related reference

CREATE STOGROUP (Db2 SQL)

Related information

Implementing Db2 table spaces

40 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_stogroups.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_pagesizerecommendations.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createstogroup.html

Db2 table spaces are storage structures that store one or more data sets, which store one or more tables.

Defining index space storage

Generally, the CREATE INDEX statement creates an index space in the same Db2 database that contains
the table on which the index is defined, even if you defer building the index.

Exceptions:

« If you specify the USING VCAT clause for indexes that are not created on the Db2 catalog, you create
and manage the data sets yourself.

- If you specify the DEFINE NO clause on a CREATE INDEX statement with the USING STOGROUP clause,
Db2 defers the allocation of the data sets for the index space.

Procedure
Issue a CREATE INDEX statement.

Optionally, for indexes that are not on Db2 catalog tables, include the USING clause to specify whether
you want Db2-managed or user-managed data sets. For Db2-managed data sets, you can also specify
the primary and secondary space allocation parameters for the index or partition in the USING clause. If
you do not specify USING, Db2 assigns the index data sets to the default storage groups with the default
space attributes.

For indexes on Db2 catalog tables, Db2 defines and manages the index data sets. The data sets are
defined in the same SMS environment that is used for the catalog data sets with default space attributes.
If you specify the USING clause for indexes on the catalog, Db2 ignores that clause.

GUPI

Results

Information about space allocation for the index is stored in the Db2 catalog table
SYSIBM.SYSINDEXPART. Other information about the index is in the SYSIBM.SYSINDEXES table.

Related reference
CREATE INDEX (Db2 SQL)

Creating EA-enabled table spaces and index spaces

DFSMS has an extended-addressability function, which is necessary to create data sets that are larger
than 4 GB. Therefore, the term for page sets that are enabled for extended addressability is EA-enabled.

About this task

You must use EA-enabled table spaces or index spaces if you specify a DSSIZE that is larger than 4 GB in
the CREATE TABLESPACE statement.

Procedure

To create EA-enabled page sets:
1. Use SMS to manage the data sets that are associated with the EA-enabled page sets.

2. Associate the data sets with a data class (an SMS construct) that specifies the extended format and
extended addressability options.

To make this association between data sets and the data class, use an automatic class selection
(ACS) routine to assign the Db2 data sets to the relevant SMS data class. The ACS routine does the
assignment based on the data set name. No performance penalty occurs for having non-EA-enabled
Db2 page sets assigned to this data class, too, if you would rather not have two separate data classes
for Db2.

Chapter 2. Implementing your database design 41

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html

For user-managed data sets, you can use ACS routines or specify the appropriate data class on the
DEFINE CLUSTER command when you create the data set.

3. Create the partitioned or LOB table space with a DSSIZE of 8 GB or greater. The partitioning index for
the partitioned table space takes on the EA-enabled attribute from its associated table space.

After a page set is created, you cannot use the ALTER TABLESPACE statement to change the DSSIZE.
You must drop and re-create the table space.

Also, you cannot change the data sets of the page set to turn off the extended addressability or
extended format attributes. If someone modifies the data class to turn off the extended addressability
or extended format attributes, Db2 issues an error message the next time that it opens the page set.

Creating partitioned table spaces that are enabled for EA

The following CREATE TABLESPACE statement creates an EA-enabled table space, SALESHX. Assume that
a large query application uses this table space to record historical sales data for marketing statistics. The
first USING clause establishes the MYSTOGRP storage group and space allocations for all partitions:

CREATE TABLESPACE SALESHX
IN MYDB
USING STOGROUP MYSTOGRP
PRIQTY 4000
SECQTY 130
ERASE NO
DSSIZE 166G
NUMPARTS 48
(PARTITION 46
COMPRESS YES,
PARTITION 47
COMPRESS YES,
PARTITION 48
COMPRESS YES)
LOCKSIZE PAGE
BUFFERPOOL BP1
CLOSE NO;

Related tasks

Creating table spaces explicitly
Db2 can create table spaces for you. However, you might also create table spaces explicitly by issuing
CREATE TABLESPACE statements if you manage your own data sets, among other reasons.

Implementing Db2 table spaces

Db2 table spaces are storage structures that store one or more data sets, which store one or more tables.

Introductory concepts
Db2 table spaces (Introduction to Db2 for z/0S)

You can let Db2 create table spaces for your tables implicitly, or you can create them explicitly before
you create the tables. You only need to create a table space explicitly when you define a declared
temporary table or if you manage all of your own data sets. It is best to create partition-by-growth or
partition-by-range universal table spaces in most cases. Other table space types are deprecated. That is,
they are supported in Db2 12, but support might be removed in the future.

Related concepts

Assignment of table spaces and index spaces to physical storage

You can store table spaces and index spaces in user-managed storage, SMS-managed storage, or in
Db2-managed storage groups. (A storage group is a set of disk volumes.)

Related tasks

Converting table spaces to use table-controlled partitioning

42 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_tablespaces.html

Before you can convert a partitioned (non-UTS) table space that uses index-controlled partitioning to a
partition-by-range table space, you must convert it to use table controlled partitioning. Table spaces that
use index-controlled partitioning, like all non-UTS table spaces are deprecated.

Related reference

CREATE TABLE (Db2 SQL)

CREATE TABLESPACE (Db2 SQL)

Table space types and characteristics in Db2 for z/0S

Db2 supports several different types of table spaces. The partitioning method and segmented
organization are among the main characteristics that define the table space type.

Advantages of universal table spaces

Universal table spaces (UTS) combine the benefits of data partitions and segmented organization. Each
UTS table space always contains only a single table.

Universal table spaces offer the following advantages, when compared to the deprecated non-UTS table
space types:

« A choice of partitioning methods:

— Partitions based on ranges of data values, with “Partition-by-range table spaces” on page 45 (PBR)

— Partitions based on data growth and automatically managed by Db2, with “Partition-by-growth table
spaces” on page 46 (PBG)

- Improved space management for varying-length rows because a segmented space-map page has more
information about free space than a partitioned space-map page

Improved mass delete performance because mass delete in a segmented table space organization
tends to be faster than in non-segmented table space organizations

Table scans that are localized to segments
- Immediate reuse of all or most of the segments of a table after the table is dropped or mass deleted

Tip: PBG table spaces are best used for small to medium-sized tables. If you expect a table to grow much
larger than the 64 GB, consider using a partition-by-range (PBR) table space instead.

Non-UTS table space types

Deprecated function: FL 504 Non-UTS table spaces for base tables are deprecated. CREATE
TABLESPACE statements that run at application compatibility level V12R1M504 or higher always create a
partition-by-growth or partition-by-range table space, and CREATE TABLE statements that specify a non-
UTS table space (including existing multi-table segmented table spaces) return an error. However, you can
use a lower application compatibility level to create table spaces of the deprecated types if needed, such
as for recovery situations. For instructions, see “Creating non-UTS table spaces (deprecated)” on page

66.

Partitioned (non-UTS) table spaces use partitions based on ranges of data values, like partition-by-range
table spaces, but they do not use segmented organization. Segmented (non-UTS) table spaces store the
data from separate tables in different segments, but they cannot be partitioned. Simple table spaces are
not partitioned or segmented.

Tip: For best results, convert all simple and other non-UTS table spaces to PBG or PBR as soon as
possible. For more information, see “Converting deprecated table spaces to the UTS types” on page 187.

Comparison of table space types

The following table compares the characteristics of the various table space types that Db2 for z/OS
supports.

Chapter 2. Implementing your database design 43

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

Table 6. Comparison of table space types

Type Segmented? Partitioned? Remarks
I Partition-by-range table Yes Yes, based on data value Can use absolute or

space ranges relative page numbering.

Partition-by-growth Yes Yes, based on data growth

table space

LOB table space No No For auxiliary tables that

contain the data for LOB
columns.

XML table space Yes Yes, based on the UTS table spaces that are
partitioning method of the created implicitly for XML
base table. data.

Partitioned (non-UTS) No Yes, based on data value This type is deprecated.””

table space ranges. on page 44

Segmented (non-UTS) Yes No This type is deprecated.””

table space on page 44

Simple table space No No This type is deprecated.”2"

on page 44
Notes:

1. FL 504 Non-UTS table spaces for base tables are deprecated. CREATE TABLESPACE statements that
run at application compatibility level V12R1M504 or higher always create a partition-by-growth or
partition-by-range table space, and CREATE TABLE statements that specify a non-UTS table space
(including existing multi-table segmented table spaces) return an error. However, you can use a lower
application compatibility level to create table spaces of the deprecated types if needed, such as for
recovery situations. For instructions, see “Creating non-UTS table spaces (deprecated)” on page 66.

2. Db2 12 does not support creating simple table spaces. Existing simple table spaces remain supported,
but they are likely to be unsupported in the future.

Determining the table space type

The TYPE column of the SYSIBM.SYSTABLESPACE catalog table indicates the type of each table space.

Partitioned (non-UTS) table space created with the LARGE option (deprecated)

G

Partition-by-growth table space (PBG UTS)
R

Partition-by-range table space (PBR UTS)
o

LOB table space
P

XML table space
L
blank

One of the following deprecated types:
« Partitioned (non-UTS) table space

« Segmented (non-UTS) table space

« Simple table space

44 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

Non-large table spaces (deprecated)

The following types of table spaces are considered non-large table spaces, which means that they use
4-byte row identifiers (RIDs) and are limited to a maximum of 64 GB of data:

« Partitioned (non-UTS) table spaces that use index-controlled partitioning, if the DSSIZE clause (or
LARGE clause “1"onpage 45) was not specified when the table space was created.

« All segmented (non-UTS) table spaces

« All simple table spaces.

AlLUTS table spaces, and partitioned (non-UTS) table spaces that use table controlled partitioning are
considered large table spaces.

Notes:

1. CREATE TABLESPACE statements support the LARGE clause for compatibility with earlier releases of
Db2 for z/OS. However, the DSSIZE clause is the preferred method for specifying maximum partition
size of 4 GB or larger. Do not specify LARGE if a DSSIZE clause is specified.

Related tasks

Converting table spaces to use table-controlled partitioning

Before you can convert a partitioned (non-UTS) table space that uses index-controlled partitioning to a
partition-by-range table space, you must convert it to use table controlled partitioning. Table spaces that
use index-controlled partitioning, like all non-UTS table spaces are deprecated.

Related reference

Limits in Db2 for z/OS (Db2 SQL)

Related information

Conversion from index-controlled partitioning to Universal Table Space (UTS)

Partition-by-range table spaces

A partition-by-range (PBR) table space is a universal table space (UTS) that has partitions based on ranges
of data values. It holds data pages for a single table and has segmented space management capabilities
within each partition. PBR table spaces can use absolute or relative page numbering.

In a PBR table space, the partitions are based on the boundary values that are defined for specific data
columns.

Tip: To use a PBR table space for a table without a naturally suitable partitioning scheme, consider
creating the table with an implicitly hidden ROWID column in the partitioning key. Any ROWID column

in the partitioning key guarantees a very even distribution of data across the partitions, and an implicitly-
hidden ROWID column can also be transparent to applications.

Utilities and SQL statements can run concurrently on each partition. For example, a utility job can work
on part of the data while allowing other applications to concurrently access data on other partitions. In
that way, several concurrent utility jobs can, for example, load all partitions of a table space concurrently.
Because you can work on part of your data, some of your operations on the data might require less time.
Also, you can use separate jobs for mass update, delete, or insert operations instead of using one large
job; each smaller job can work on a different partition. Separating the large job into several smaller jobs
that run concurrently can reduce the elapsed time for the whole task.

You can create an index of any type on a table in a PBR space.

PBR table spaces can use relative page numbering (RPN) or absolute page numbering. PBR spaces
with relative page numbering support larger partition sizes than PBR table spaces with absolute page
numbering, and greater flexibility in growing your partitions. Instead of restricting partition growth to
gigabytes in powers of two, PBR table spaces with relative page numbering support the growth of
partitions by any number of gigabytes. DSSIZE can also be increased for individual partitions as an
immediate ALTER, without requiring a REORG. The PAGENUM option of a CREATE TABLE or CREATE
TABLESPACE statement specifies the type of page numbering that Db2 uses for a table space. If

you omit the PAGENUM clause, Db2 uses the value specified for the PAGESET_PAGENUM subsystem

Chapter 2. Implementing your database design 45

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_limits.html
http://www-01.ibm.com/support/docview.wss?uid=swg27047046&aid=1

parameter. The default for PAGESET_PAGENUM is ABSOLUTE. See PAGE SET PAGE NUMBERING field
(PAGESET_PAGENUM subsystem parameter) (Db2 Installation and Migration).

Tip: Partition-by-range (PBR) table spaces with relative page numbers (RPN) are the suggested
alternative for partitioned (non-UTS) table spaces, which are deprecated.

You can explicitly create PBR table spaces by issuing CREATE TABLESPACE statements, or Db2 can
create them for you, when you issue CREATE TABLE statements. For instructions, see “Creating partition-
by-range table spaces” on page 61.

Related tasks

Converting table spaces to use table-controlled partitioning

Before you can convert a partitioned (non-UTS) table space that uses index-controlled partitioning to a
partition-by-range table space, you must convert it to use table controlled partitioning. Table spaces that
use index-controlled partitioning, like all non-UTS table spaces are deprecated.

Creating partition-by-range table spaces
You can create a partition-by-range (PBR) table space to create partitions based on data value ranges and
use segmented space management capabilities within each partition.

Creating table spaces explicitly
Db2 can create table spaces for you. However, you might also create table spaces explicitly by issuing
CREATE TABLESPACE statements if you manage your own data sets, among other reasons.

Related reference

CREATE TABLESPACE (Db2 SQL)

CREATE TABLE (Db2 SQL)

Related information

Conversion from index-controlled partitioning to Universal Table Space (UTS)

Partition-by-growth table spaces

A partition-by-growth (PBG) table space is a universal table space (UTS) that has partitions that Db2
manages automatically based on data growth. It holds data pages for only a single table, and has
segmented space management capabilities within each partition.

Db2 manages PBG table spaces automatically as data grows, by automatically adding a new partition
when more space is needed to satisfy an insert operation.

PBG table spaces are best used for small or medium sized tables, especially when a table does not have
a suitable partitioning key. Partition-by-growth table spaces can grow up to 128 TB, depending on the
buffer pool page size used, and the MAXPARTITIONS and DSSIZE values specified when the table space
is created.

Any index created on a table in a PBG table space must be a non-partitioned index. That is, partitioned
indexes, including partitioning indexes and data-partitioned secondary indexes (DPSIs) are not supported
on table in PBG table spaces. For more information, see “Indexes on partitioned tables” on page 121.

Tip: PBG table spaces are best used for small to medium-sized tables. If you expect a table to grow much
larger than the 64 GB, consider using a partition-by-range (PBR) table space instead.

When a table in a PBG table space grows too large, several drawbacks can begin to arise, including the
following issues:

- Insert and query performance degradation, which is perhaps the most important factor suggesting that
conversion is required. Such performance degradation can have many causes, but for large tables in
PBG tables spaces, the size of the table space is often one of the major causes.

- Difficulty regaining clustering of the data (which requires a REORG of the entire table space).

« Problems associated with very large non-partitioned indexes, because partitioned (partitioning and
DPSI) indexes are not supported for tables in PBG table spaces. For more information, see

« Lack of partition parallelism support for utilities.

46 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html
http://www-01.ibm.com/support/docview.wss?uid=swg27047046&aid=1

 Limited support for partition-level utility operations.
If you encounter these issues, consider using partition-by-range (PBR) table spaces instead.

Tip: To use a PBR table space for a table without a naturally suitable partitioning scheme, consider
creating the table with an implicitly hidden ROWID column in the partitioning key. Any ROWID column

in the partitioning key guarantees a very even distribution of data across the partitions, and an implicitly-
hidden ROWID column can also be transparent to applications.

The partitioned structure supports partition-level utility operations and parallelism capabilities. A PBG
table space also has segmented organization and segmented space management capabilities within each
partition. The segmented structure provides better space management and mass delete capabilities.

Tip: PBG table spaces are the suggested alternative for single-table Db2-managed segmented (non-UTS)
table spaces, which are deprecated.

You can explicitly create PBG table spaces by issuing CREATE TABLESPACE statements, or Db2 can
create them for you when you issue CREATE TABLE statements. For instructions, see “Creating partition-
by-growth table spaces” on page 63

Restrictions for partition-by-growth table spaces:
The following restrictions apply to PBG table spaces:

« Db2 must manage space for the partitions (it cannot be user-managed) so that Db2 can create new data
sets as partitions become full.

« Partitions cannot be explicitly rotated, or altered. That is, ALTER TABLE statements that specify ALTER
PARTITION or ROTATE PARTITION cannot be used for PBG table spaces.

« The PART option of the LOAD utility is not supported.

« The REBALANCE option of the REORG utility is not supported.

« A non-partitioning index (NPI) always uses a 5 byte record identifier (RID).
« Partitioned indexes are not supported.

Related tasks

Creating table spaces explicitly
Db2 can create table spaces for you. However, you might also create table spaces explicitly by issuing
CREATE TABLESPACE statements if you manage your own data sets, among other reasons.

Related reference

ALTER TABLE (Db2 SOL)

ALTER TABLESPACE (Db2 SOQL)
CREATE TABLESPACE (Db2 SQL)
CREATE TABLE (Db2 SQL)

LOB table spaces

Large object (LOB) table spaces (also known as LOB or auxiliary table spaces) hold LOB data, such as
graphics, video, or large text strings. If your data does not fit entirely within a data page, you can define
one or more columns as LOB columns.

LOB objects can do more than store large object data. If you define your LOB columns for infrequently
accessed data, a table space scan on the remaining data in the base table is potentially faster because the
scan generally includes fewer pages.

A LOB table space always has a direct relationship with the table space that contains the logical LOB
column values. The table space that contains the table with the LOB columns is, in this context, the base
table space. LOB data is logically associated with the base table, but it is physically stored in an auxiliary
table that resides in a LOB table space. Only one auxiliary table can exist in a large object table space. A
LOB value can span several pages. However, only one LOB value is stored per page.

Chapter 2. Implementing your database design 47

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html

You must have a LOB table space for each LOB column that exists in a table. For example, if your table has
LOB columns for both resumes and photographs, you need one LOB table space (and one auxiliary table)
for each of those columns. If the base table space is a partitioned table space, you need one LOB table
space for each LOB in each partition.

Db2 can implicitly create the required LOB table spaces and related objects for you.

Db2 sometimes implicitly creates the LOB table space, auxiliary table, and index on the auxiliary table for
each LOB column in a table or partition. For more information, see “LOB table space implicit creation” on

page 54.
If Db2 does not implicitly create the LOB table spaces, auxiliary tables, and indexes on the auxiliary

tables, you must create these objects by issuing CREATE TABLESPACE, CREATE AUXILIARY TABLE, and
CREATE INDEX statements.

If the base table space is not a partitioned table space, each LOB table space is associated with one LOB
column in the base table. If the base table space is a partitioned table space, each partition of the base
table space is associated with a LOB table space. Therefore, if the base table space is a partitioned table
space, you can store more LOB data for each LOB column.

The following table shows the approximate amount of LOB data that you can store for a LOB column in
each of the different types of base table spaces.

Table 7. Base table space types and approximate maximum size of LOB data for a LOB column

Maximum (approximate) LOB data for each

Base table space type column
Segmented 16 TB
Partitioned, with NUMPARTS up to 64 1000 TB
Partitioned with DSSIZE, NUMPARTS up to 254 4000 TB
Partitioned with DSSIZE, NUMPARTS up to 4096 64000 TB

Consider defining long string columns as LOB columns when a row does not fit in a 32 KB page. Use the
following guidelines to determine if a LOB column is a good choice:

- Defining a long string column as a LOB column might be better if the following conditions are true:

— Table space scans are normally run on the table.
— The long string column is not referenced often.

— Removing the long string column from the base table is likely to improve the performance of table
space scans.

« LOBs are physically stored in another table space. Therefore, performance for inserting, updating, and
retrieving long strings might be better for non-LOB strings than for LOB strings.

Also Consider specifying a separate buffer pool for large object data.

Related concepts

LOB table space implicit creation

Db2 can sometimes implicitly create a LOB table space and related objects when you create a LOB
column or add a table partition that contains a LOB column.
Related tasks

Creating large objects (Introduction to Db2 for z/0S)
Choosing data page sizes for LOB data (Db2 Performance)
Choosing data page sizes (Db2 Performance)

Related reference

CREATE LOB TABLESPACE (Db2 SQL)

CREATE AUXILIARY TABLE (Db2 SQL)

48 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationoflargeobjects.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_lobpagesize.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_pagesizerecommendations.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createlobtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createauxiliarytable.html

XML table spaces
An XML table space is an implicitly created universal (UTS) table space that stores an XML table.

An XML table space is implicitly created when an XML column is added to a base table. If the base table is
partitioned, one partitioned table space exists for each XML column of data. An XML table space is always
associated with the table space that contains the logical XML column value. In this context, the table
space that contains the table with the XML column is called the base table space.

If the base table is partitioned, one partitioned table space exists for each XML column of data.

Related concepts

XML table space implicit creation
When you create an XML column in a table, Db2 implicitly creates an XML table space. Db2 also creates an
XML table to store the XML data, and a node ID.

Related tasks

Creating table spaces explicitly
Db2 can create table spaces for you. However, you might also create table spaces explicitly by issuing
CREATE TABLESPACE statements if you manage your own data sets, among other reasons.

Choosing data page sizes (Db2 Performance)

Partitioned (non-UTS) table spaces (deprecated)

A partitioned (non-UTS) table space stores data pages for a single table. Db2 divides the table space
into partitions. Non-UTS table spaces for base tables are deprecated and likely to be unsupported in the
future.

Deprecated function: FL 504 Non-UTS table spaces for base tables are deprecated. CREATE
TABLESPACE statements that run at application compatibility level V12R1M504 or higher always create a
partition-by-growth or partition-by-range table space, and CREATE TABLE statements that specify a non-
UTS table space (including existing multi-table segmented table spaces) return an error. However, you can
use a lower application compatibility level to create table spaces of the deprecated types if needed, such
as for recovery situations. For instructions, see “Creating non-UTS table spaces (deprecated)” on page

66.

Tip: Convert existing partitioned (non-UTS) spaces to partition-by-range table spaces as soon as possible,
as described in “Converting partitioned (non-UTS) table spaces to partition-by-range universal table
spaces” on page 192.

The partitions are based on the boundary values that are defined for specific data columns. Utilities and
SQL statements can run concurrently on each partition.

In the following figure, each partition contains one part of a table.

Partition 1
Key range A-L

Partition 2
Key range M-Z

Figure 14. Pages in a partitioned table space

Characteristics of partitioned (non-UTS) table spaces
Partitioned (non-UTS) table spaces have the following characteristics:

« You can plan for growth. When you define a partitioned table space, Db2 usually distributes the data
evenly across the partitions. Over time, the distribution of the data might become uneven as inserts and
deletes occur.

You can rebalance data among the partitions by redefining partition boundaries with no impact to
availability. You can also add a partition to the table and to each partitioned index on the table; the new
partition becomes available immediately.

Chapter 2. Implementing your database design 49

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_pagesizerecommendations.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

 You can spread a large table over several Db2 storage groups or data sets. The partitions of the table do
not all need to use the same storage group.

- Partitioned table spaces let a utility job work on part of the data while allowing other applications
to concurrently access data on other partitions. In that way, several concurrent utility jobs can, for
example, load all partitions of a table space concurrently. Because you can work on part of your data,
some of your operations on the data might require less time.

« You can use separate jobs for mass update, delete, or insert operations instead of using one large job;
each smaller job can work on a different partition. Separating the large job into several smaller jobs that
run concurrently can reduce the elapsed time for the whole task.

If your table space uses nonpartitioned indexes, you might need to modify the size of data sets in the
indexes to avoid I/O contention among concurrently running jobs. Use the PIECESIZE parameter of the
CREATE INDEX or the ALTER INDEX statement to modify the sizes of the index data sets.

 You can put frequently accessed data on faster devices. Evaluate whether table partitioning or index
partitioning can separate more frequently accessed data from the remainder of the table. You can put
the frequently accessed data in a partition of its own. You can also use a different device type.

« You can take advantage of parallelism for certain read-only queries. When Db2 determines that
processing is likely to be extensive, it can begin parallel processing of more than one partition at a
time. Parallel processing (for read-only queries) is most efficient when you spread the partitions over
different disk volumes and allow each I/0 stream to operate on a separate channel.

Use the Parallel Sysplex® data sharing technology to process a single read-only query across many Db2
subsystems in a data sharing group. You can optimize Parallel Sysplex query processing by placing each
Db2 subsystem on a separate central processor complex.

- Partitioned table space scans are sometimes less efficient than table space scans of segmented table
spaces.

« Db2 opens more data sets when you access data in a partitioned table space than when you access data
in other types of table spaces.

« Nonpartitioned indexes and data-partitioned secondary indexes are sometimes a disadvantage for
partitioned tables spaces.

Related concepts

Db2 data sharing (Introduction to Db2 for z/0S)

Partition-by-growth table spaces

A partition-by-growth (PBG) table space is a universal table space (UTS) that has partitions that Db2
manages automatically based on data growth. It holds data pages for only a single table, and has
segmented space management capabilities within each partition.

Partition-by-range table spaces

A partition-by-range (PBR) table space is a universal table space (UTS) that has partitions based on ranges
of data values. It holds data pages for a single table and has segmented space management capabilities
within each partition. PBR table spaces can use absolute or relative page numbering.

Assignment of table spaces and index spaces to physical storage

You can store table spaces and index spaces in user-managed storage, SMS-managed storage, or in
Db2-managed storage groups. (A storage group is a set of disk volumes.)

Related tasks

Choosing data page sizes (Db2 Performance)

Segmented (non-UTS) table spaces (deprecated)

Segmented non-UTS table spaces can store data for more than one table, especially for relatively small
tables. The pages hold segments, and each segment holds records from only one table. Non-UTS table
spaces for base tables are deprecated and likely to be unsupported in the future.

Deprecated function: FL 504 Non-UTS table spaces for base tables are deprecated. CREATE
TABLESPACE statements that run at application compatibility level V12R1M504 or higher always create a
partition-by-growth or partition-by-range table space, and CREATE TABLE statements that specify a non-

50 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_datasharingwithyourdb2data.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_pagesizerecommendations.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

UTS table space (including existing multi-table segmented table spaces) return an error. However, you can
use a lower application compatibility level to create table spaces of the deprecated types if needed, such
as for recovery situations. For instructions, see “Creating non-UTS table spaces (deprecated)” on page

66.

Tip: For best results, convert any segmented (non-UTS) table spaces to a partition-by-growth or
partition-by-range universal table space (UTS) as soon as possible. For more information, see “Converting
deprecated table spaces to the UTS types” on page 187.

Segmented (non-UTS) table spaces hold a maximum of 64 GB of data and can contain one or more VSAM
data sets.

Table space pages can be 4 KB, 8 KB, 16 KB, or 32 KB in size. The pages hold segments, and each
segment holds records from only one table. Each segment contains the same number of pages, and each
table uses only as many segments as it needs.

When you run a statement that searches all the rows for one table, Db2 does not need to scan the entire
table space. Instead, Db2 can scan only the segments of the table space that contain that table. The
following figure shows a possible organization of segments in a segmented table space.

Segment
Segment 5
Segment 4
- Segment 3
egment Table B
gl 2 Table A
Table C
Table B

Table A

Figure 15. A possible organization of segments in a segmented table space

When you use an INSERT statement, a MERGE statement, or the LOAD utility to insert records into a table,
records from the same table are stored in different segments. You can reorganize the table space to move
segments of the same table together.

Characteristics of segmented (non-UTS) table spaces
Segmented table spaces share the following characteristics:

« When Db2 scans all the rows for one table, only the segments that are assigned to that table need to be
scanned. Db2 does not need to scan the entire table space. Pages of empty segments do not need to be
fetched.

- When Db2 locks a table, the lock does not interfere with access to segments of other tables.

« When Db2 drops a table, its segments become available for reuse immediately after the drop is
committed without waiting for an intervening REORG utility job.

« When all rows of a table are deleted, all segments except the first segment become available for reuse
immediately after the delete is committed. No intervening REORG utility job is necessary.

« A mass delete, which is the deletion of all rows of a table, operates much more quickly and produces
much less log information.

- If the table space contains only one table, segmenting it means that the COPY utility does not copy
pages that are empty. The pages might be empty as a result of a dropped table or a mass delete.

« Some Db2 utilities, such as LOAD with the REPLACE option, RECOVER, and COPY, operate on only a
table space or a partition, not on individual segments. Therefore, for a segmented table space, you
must run these utilities on the entire table space. For a large table space, you might notice availability
problems.

« Maintaining the space map creates some additional overhead.

Related concepts

Db2 performance management (Introduction to Db2 for z/0S)

Use of free space in data and index storage (Introduction to Db2 for z/OS)
Guidelines for data reorganization (Introduction to Db2 for z/0OS)

Chapter 2. Implementing your database design 51

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_db2performancemanagement.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_freespaceinstorage.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_guidelinesfordatareorganization.html

Ways to improve performance for multiple users (Introduction to Db2 for z/OS)

Related tasks

Creating table spaces explicitly

Db2 can create table spaces for you. However, you might also create table spaces explicitly by issuing
CREATE TABLESPACE statements if you manage your own data sets, among other reasons.

Related reference
CREATE TABLESPACE (Db2 SQL)

Simple table spaces (deprecated)

A simple table space is not partitioned or segmented. Simple table spaces are deprecated, and the
creation of new simple table spaces is not supported in Db2 12. However, Db2 can still use existing
simple table spaces.

Deprecated function: FL 504 Non-UTS table spaces for base tables are deprecated. CREATE
TABLESPACE statements that run at application compatibility level V12R1M504 or higher always create a
partition-by-growth or partition-by-range table space, and CREATE TABLE statements that specify a non-
UTS table space (including existing multi-table segmented table spaces) return an error. However, you can
use a lower application compatibility level to create table spaces of the deprecated types if needed, such
as for recovery situations. For instructions, see “Creating non-UTS table spaces (deprecated)” on page

66.

You cannot create new simple table spaces, but you can alter and update or retrieve data from existing
simple table spaces. If you implicitly create a table space or explicitly create a table space without
specifying the NUMPARTS or MAXPARTITIONS causes, the result is a partition-by-growth table space.

Tip: For best results, convert any simple table space to a partition-by-growth or partition-by-range table
space as soon as possible. For more information, see “Converting deprecated table spaces to the UTS
types” on page 187.

Related concepts

Partition-by-growth table spaces

A partition-by-growth (PBG) table space is a universal table space (UTS) that has partitions that Db2
manages automatically based on data growth. It holds data pages for only a single table, and has
segmented space management capabilities within each partition.

Related tasks

Dropping and re-creating a table space to change its attributes

One approach for changing the attributes of a space is to drop the table space and create it again with
different attributes. When you use this approach you must also take action to preserve the data in the
table space.

Creating table spaces explicitly
Db2 can create table spaces for you. However, you might also create table spaces explicitly by issuing
CREATE TABLESPACE statements if you manage your own data sets, among other reasons.

Choosing data page sizes (Db2 Performance)
Related reference

CREATE TABLESPACE (Db2 SQL)

ALTER TABLESPACE (Db2 SQL)

Implicitly defined table spaces

Db2 implicitly creates a partition-by-growth or partition-by-range table space when you issue a CREATE
TABLE statement that does not specify an existing table space name.

When Db2 defines a table space implicitly, it generates an implicity created table space for the table.
The table space name is the same as the table name if the following conditions apply:

« No other table space or index space in the database already has that name.

52 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_improveperformancemultipleusers.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_pagesizerecommendations.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html

« The table name has no more than eight characters.
- The characters are all alphanumeric, and the first character is not a digit.

However, if another table space in the database already has the same name as the table, Db2 assigns a
name of the form xxxxnyyy, where xxxx is the first four characters of the table name, and nyyy is a single
digit and three letters that guarantee uniqueness.

If the IN database clause is not specified, Db2 generates a database for you with the name DSNxxxxx,
where xxxxx is a five-digit number.

Db2 uses the buffer pool for the specified database. However, if any of the following conditions apply,
Db2 chooses a suitable buffer pool for the table space from the subsystem parameter values TBSBPOOL,
TBSBP8K, TBSBP16K, and TBSBP32K, on panel DSNTIP2:

« The IN database-name clause is not specified.

- The IN database-name clause is specified, and the table record length does not fit in the database
buffer pool page size.

If the CREATE TABLE statement omits the PARTITION BY clause or specifies PARTITION BY SIZE, Db2

uses the default values of the partition-by-growth specification of the CREATE TABLESPACE statement. If
the CREATE TABLE statement specifies PARTITION BY (with or without the RANGE keyword) and a set of
column values as partition limit keys, Db2 uses the default values of the partition-by-range specification.

For other attributes of the implicitly created table space, if they are not specified in a CREATE TABLE
statement (only some can be specified), the result is the same as an explicit CREATE TABLESPACE
statement, except for the following attributes:

Table space attribute How it is determined

COMPRESS If not specified in the CREATE TABLE statement, the value is
determined by the IMPTSCMP subsystem parameter.

DEFINE Always determined by the value of the IMPDSDEF subsystem
parameter.

DSSIZE If not specified in the CREATE TABLE statement, the value is
determined by the IMPDSSIZE subsystem parameter.

LOCKMAX LOCKMAX SYSTEM is always used.

LOCKSIZE LOCKSIZE ROW is always used.

PAGENUM If not specified in the CREATE TABLE statement, the value
is determined by value of the PAGESET_PAGENUM subsystem
parameter.

SEGSIZE For a partition-by-range table space, SEGSIZE 32 is always used.

TRACKMOD If not specified in the CREATE TABLE statement, the value is
determined by the IMPTKMOD subsystem parameter.

In certain situations, Db2 can also implicitly create an LOB table space, auxiliary table, and auxiliary index
for a LOB column, and underlying XML objects for an XML column. For more information, see “LOB table
space implicit creation” on page 54 and “XML table space implicit creation” on page 55. In this case,

Db2 uses the default storage group, SYSDEFLT.

Db2 also creates the following objects:

« Unique indexes for UNIQUE constraints.
« The primary key index.
« The ROWID index, if the ROWID column is defined as GENERATED BY DEFAULT.

Db2 stores the names and attributes of all table spaces in the SYSIBM.SYSTABLESPACE catalog table,
regardless of whether you define the table spaces explicitly or Db2 creates them implicitly.

Chapter 2. Implementing your database design 53

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntip2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_imptscmp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_impdsdef.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_impdsdef.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_impdssize.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_imptkmod.html

Related concepts

Table space types and characteristics in Db2 for z/OS

Db2 supports several different types of table spaces. The partitioning method and segmented
organization are among the main characteristics that define the table space type.

Related reference

CREATE TABLE (Db2 SQL)

CREATE TABLESPACE (Db2 SQL)
SYSTABLESPACE catalog table (Db2 SQL)

LOB table space implicit creation

Db2 can sometimes implicitly create a LOB table space and related objects when you create a LOB
column or add a table partition that contains a LOB column.

When Db2 implicitly creates objects for LOB columns

When a CREATE TABLE statement creates a table that contains a LOB column, or an ALTER TABLE
statement specifies ADD COLUMN to add a new column, Db2 implicitly creates one or more LOB table
spaces, auxiliary tables, and auxiliary indexes if the following conditions are true:

- Db2 implicitly created the table space that contains the base table with the LOB column.

- The table space for the base table was created explicitly, but the CURRENT RULES special register value
is 'STD' when the CREATE or ALTER TABLE statement executes.

Otherwise, you must explicitly create these objects. See “Creating LOB table spaces, auxiliary tables, and
auxiliary indexes explicitly” on page 65.

For partitioned tables, each partition of the base table requires a separate LOB table space, auxiliary
table, and auxiliary index for each LOB column.

When a new partition is added for to a table that contains an existing LOB column, Db2 always implicitly
creates a LOB table space, auxiliary table, and auxiliary indexes in the following situations:

« An ALTER TABLE statement specifies the ADD PARTITION clause to add a partition to a table that
contains a LOB column.

« Db2 adds a partition to a partition-by-growth table space.

Naming conventions for implicitly created objects for LOB columns
Db2 chooses the names of the implicitly created objects according to the following naming conventions:

LOB table space
The name of the LOB table spaces is 8 characters long, consisting of the letter 'L' and 7 random
characters.

Auxiliary table
The name of the auxiliary table is 18 characters long. It consists of the first 5 characters of the name
of the base table, the first 5 characters of the name of the LOB column, and 8 characters that are
randomly generated. If a base table name or a LOB column name contains fewer than 5 characters,
Db2 adds underscore characters to the name to pad the length of 5 characters.

Index on the auxiliary table
The name of the index on the auxiliary table is 18 characters long. It consists of the letter 'T', the first
10 characters of the auxiliary table name, and 7 characters that are randomly generated. The index
has the COPY NO attribute.

Attributes of LOB table spaces for newly created LOB columns

The implicitly created LOB table space and related objects for new LOB columns have the following
attributes:

54 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsystablespacetable.html

Object names as specified in the preceding naming convention.

The database name is the database name of the base table.

The buffer pool specified by the TBSBPLOB subsystem parameter. The appropriate USE privilege is
required on that buffer pool.

Other attributes use the default values of the respective CREATE statements with the optional clauses
omitted.

Inherited attributes for new LOB table spaces for existing LOB columns

When a LOB table space is implicitly created for a new partition, it inherits the following attributes from
the LOB table space for the previous base table partition:

« BUFFERPOOL
« CLOSERULE
+ COMPRESS
« DSSIZE

« ERASERULE
+ GBPCACHE
» LOCKRULE
« LOCKMAX

+ LOG

« STORNAME
« VCATNAME

If the base table is involved in a clone relationship, implicitly created LOB table spaces and implicitly
created indexes are always created with the DEFINE YES attribute.

Identifying implicitly created objects for LOB columns

You can use the REPORT utility with the TABLESPACESET option to identify the LOB table spaces that Db2
implicitly created.

Related concepts

LOB table spaces

Large object (LOB) table spaces (also known as LOB or auxiliary table spaces) hold LOB data, such as
graphics, video, or large text strings. If your data does not fit entirely within a data page, you can define
one or more columns as LOB columns.

Related tasks

Creating large objects (Introduction to Db2 for z/0S)

Related reference

SYSTABLESPACE catalog table (Db2 SQL)

CURRENT RULES special register (Db2 SQL)

DEFAULT BUFFER POOL FOR USER LOB DATA field (TBSBPLOB subsystem parameter) (Db2 Installation
and Migration)

XML table space implicit creation

When you create an XML column in a table, Db2 implicitly creates an XML table space. Db2 also creates an
XML table to store the XML data, and a node ID.

Each XML column has its own table space. The XML table space does not have limit keys. The XML data
resides in the partition number that corresponds to the partition number of the base row. Tables that
contain XML columns also have the following implicitly created objects:

« A hidden column to store the document ID.

Chapter 2. Implementing your database design 55

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationoflargeobjects.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsystablespacetable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_currentrules.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_tbsbplob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_tbsbplob.html

The document ID is a Db2 generated value that uniquely identifies a row. The document ID is used
to identify documents within the XML table. The document ID is common for all XML columns, and its
value is unique within the table.

« A unique index on the document ID (document ID index).

The document ID index points to the base table RID. If the base table space is partitioned, the
document ID index is a non-partitioned secondary index (NPSI).

« The base table has an indicator column for each XML column containing a null bit, invalid bit, and a few
reserved bytes.

The XML table space inherits several attributes from the base table space or the first logical partition of
the base table space. The following table describes the inheritance of attributes. Attributes that are not
listed use the default value or a value calculated for XML table spaces.

Attribute Attribute source

CLOSERULE Base table space

COMPRESS FL 509 Base table space, if available “1”0on page 56
DSSIZE Depends on the base table space type “2”onpage 56
FREEPAGE First logical partition of the base table space
GBPCACHE First logical partition of the base table space
LOCKMAX Base table space

LOG Base table space

MAXPARTITIONS Base table space “3” on page 57

PAGENUM Base table space

PCTFREE First logical partition of the base table space
SEGSIZE Base table space

STORNAME First logical partition of the base table space
TRACKMOD First logical partition of the base table space
VCATNAME First logical partition of the base table space
Notes

1. The attribute is available if the SYSTABLESPACE value for the base table space is NULL. If the attribute
is not available, the XML table space inherits the attribute from the first logical partition of the base
table space.

2. The DSSIZE of the XML table space depends on the type of base table space:

Base table space type DSSIZE of the XML table space

Partition-by-growth UTS Inherited from base table space

Partition-by-range (PBG) or partitioned (non-UTS) [Calculated as described in the following table.

Segmented (non-UTS) or simple 4GB

The following table shows the DSSIZE for an implicitly created XML table space for a base table in

a partition-by-range (PBR) or range-partitioned (non-UTS) table space. For partition-by-range (PBR)
table spaces with relative page numbering, Db2 also rounds the DSSIZE up to the nearest power of
two before using the following table.

56 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html

Tgble 8. Default DSSIZE for XML table spaces, given the base table space DSSIZE and buffer-pool page
size

Base table space |4KB base page 8KB base page 16KB base page |32KB base page
DSSIZE size size size size

1-4 GB 4GB 4GB 4GB 4GB

5-8 GB 32GB 16 GB 16 GB 16 GB

9-16 GB 64 GB 32GB 16 GB 16 GB

17-32 GB 64 GB 64 GB 32GB 16 GB
33-64GB 64 GB 64 GB 64 GB 32GB

65-128 GB 256 GB 256 GB 128 GB 64 GB

129-256 GB 256 GB 256 GB 256 GB 128 GB
257-512 GB 512 GB 512 GB 512 GB 256 GB
513-1024 GB 1024 GB 1024 GB 1024 GB 512 GB

3. If the base table resides in a segmented (non-UTS) or simple table space, the default value is used.
If an edit procedure is defined on the base table, the XML table inherits the edit procedure.

For more information see Storage structure for XML data (Db2 Programming for XML).

Related reference
ALTER TABLE (Db2 SQL)
CREATE TABLE (Db2 SQL)

Creating table spaces explicitly

Db2 can create table spaces for you. However, you might also create table spaces explicitly by issuing
CREATE TABLESPACE statements if you manage your own data sets, among other reasons.

Before you begin
For information about how Db2 can create table spaces for you, see “Implicitly defined table spaces” on
page 52.

About this task

GUPI

FL 504 You can create partition-by-range or partition-by-growth table spaces. For base tables, table
spaces of other types are deprecated, creating them is not supported, and support for such existing tables
might be removed in the future. For more information about the different types, see “Table space types
and characteristics in Db2 for z/OS” on page 43.

Tip: You can alter table spaces after they are created, but the application of some statements, such as
ALTER TABLESPACE with MAXPARTITIONS, prevent access to the database until alterations complete.
Consider future growth when you define new table spaces.

Procedure

Issue a CREATE TABLESPACE statement and specify the type of table space to create and other
attributes.

a) Specify the table space type to create.

For instructions for creating the supported types, see “Creating partition-by-range table spaces” on
page 61 and “Creating partition-by-growth table spaces” on page 63.

Chapter 2. Implementing your database design 57

https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_xmlstoragestruct.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

FL 504The following table shows the resulting table space types.

Table 9. CREATE TABLESPACE clauses for specifying table space types, by application compatibility level.

Table space type APPLCOMPAT(V12R1M504) and APPLCOMPAT(V12R1M503) and
higher lower
Partition-by-growth Any of the following combinations: Any of the following combinations:
« MAXPARTITIONS and NUMPARTS « MAXPARTITIONS and NUMPARTS
« MAXPARTITIONS « MAXPARTITIONS and SEGSIZE
“2.a.i” 58
- Omit both n-SAL0n Bage 32
- MAXPARTITIONS
Partition-by-range NUMPARTS only NUMPARTS and SEGSIZE n“2:2."on
page 58
Segmented (non-UTS) Not supported-2:2i” on page 58 One of the following combinations:

« SEGSIZE n“2.a.i" on page 58

« Omit MAXPARTITIONS,
NUMPARTS, and SEGSIZE

Partitioned (non-UTS) Not supported-2:2:i” on page 58 NUMPARTS and SEGSIZE 0

Notes:

i) Where n is a non-zero value. The DPSEGSZ subsystem parameter determines the default value. For more
information, see DEFAULT PARTITION SEGSIZE field (DPSEGSZ subsystem parameter) (Db2 Installation and
Migration).

ii) FL 504 Non-UTS table spaces for base tables are deprecated. CREATE TABLESPACE statements that run
at application compatibility level V12R1M504 or higher always create a partition-by-growth or partition-by-
range table space, and CREATE TABLE statements that specify a non-UTS table space (including existing
multi-table segmented table spaces) return an error. However, you can use a lower application compatibility
level to create table spaces of the deprecated types if needed, such as for recovery situations. For
instructions, see “Creating non-UTS table spaces (deprecated)” on page 66.

b) Specify other attributes for the table space.

The following list introduces some CREATE TABLESPACE statement clauses that define the attributes
of a table space. For the complete list, see CREATE TABLESPACE (Db2 SQL).

table-space-name
The table space name is an identifier of up to 8 characters. You can qualify a table space name
with a database name. Consider the following facts about naming guidelines for table spaces:

- If you do not qualify an explicit table space with a database name, the default database name is
DSNDBOA4.

- If you do not explicitly specify a table space, Db2 implicitly creates the table space with a derived
name. The name is derived based on the name of the table that is being created.

- Db2 either implicitly creates a new database for the table space, or uses an existing implicitly
created database.

BUFFERPOOL bpname
Identifies the buffer pool that this table space is to use and determines the page size of the table

space. The buffer pool is a portion of memory in which Db2 temporarily stores data for retrieval.
For more information, see Tuning database buffer pools (Db2 Performance).

PAGENUM

Specifies the type of page numbering used for partition-by-range (PBR) table spaces. PBR spaces
with relative page numbering support larger partition sizes than PBR table spaces with absolute
page numbering, and greater flexibility in growing your partitions. Instead of restricting partition

58 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_dpsegsz.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_dpsegsz.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_tunedbbufferpools.html

growth to gigabytes in powers of two, PBR table spaces with relative page numbering support
the growth of partitions by any number of gigabytes. DSSIZE can also be increased for individual
partitions as an immediate ALTER, without requiring a REORG.

The PAGESET_PAGENUM subsystem parameter specifies the default value. See PAGE SET PAGE
NUMBERING field (PAGESET_PAGENUM subsystem parameter) (Db2 Installation and Migration).

MAXPARTITIONS
Specifies the maximum number of partitions for a partition-by-growth table space. Within this
clause, you can specify the NUMPARTS clause to specify the number of partitions that you want to
create initially.

NUMPARTS
Specifies the number of partitions to initially create for the table space.

COMPRESS
Specifies whether to compress the data. You can compress data in a table space to store more
data on each data page. For details, see Compressing your data (Db2 Performance).

FREEPAGE integer
Specifies how often Db2 is to leave a page of free space when the table space or partition is
loaded or reorganized. You specify that Db2 is to set aside one free page for every integer number
of pages. Using free pages can improve performance for applications that perform high-volume
inserts or that update variable-length columns. For details, see Reserving free space in table
spaces (Db2 Performance).

PCTFREE integer
Specifies the percentage of each page that Db2 leaves as free space when the table is loaded or
reorganized. Specifying PCTFREE can improve performance for applications that use high-volume
inserts or that update variable-length columns. For details, see Reserving free space in table
spaces (Db2 Performance).

LOCKSIZE
Specifies the size of locks that Db2 is to use within the table space. Db2 uses locks to protect
data integrity. Use of locks results in some processing costs, so choose the lock size carefully. For
details, see Specifying the size of locks for a table space (Db2 Performance).

MAXROWS
Specifies the maximum number of rows that Db2 places on each data page. The integer can range
from 1 through 255. If you do not specify MAXROWS, the default number of rows is 255. Do not
use MAXROWS for a LOB table space or a table space in a work file database.

MEMBER CLUSTER
Specifies that data that is inserted by an INSERT operation is not clustered by the implicit
clustering index (the first index), or the explicit clustering index. Db2 locates the data in the table
space based on available space. You can use the MEMBER CLUSTER keyword on partition-by-range
table spaces and partition-by-growth table spaces. For details, see Member affinity clustering (Db2
Data Sharing Planning and Administration).

DSSIZE
Specifies the maximum size in GB for each partition. The size of the table space depends on how
many partitions are in the table space and the size of each partition. For a partition-by-growth
table space, the maximum number of partitions depends on the value that is specified for the
MAXPARTITIONS clause.

SEGSIZE
FL 504 An integer value specifies the number of pages that are to be assigned to each segment of
the table space. integer must be a multiple of 4 from 4 to 64 (inclusive). Do not specify SEGSIZE for
a LOB table space.

If SEGSIZE is not specified, the value of SEGSIZE is determined as follows:

- If the DPSEGSZ subsystem parameter value is greater than 0, the SEGSIZE value for the table
space is equal to the DPSEGSZ value.

« If the DPSEGSZ value is 0, the SEGSIZE for the tables space is 32.

Chapter 2. Implementing your database design 59

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_compressdataperf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_reservefreespacetable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_reservefreespacetable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_reservefreespacetable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_reservefreespacetable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_uselocksizeclause.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/dshare/src/tpc/db2z_memberaffinitycluster.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/dshare/src/tpc/db2z_memberaffinitycluster.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

« If the table space is created in work file database, the DPSEGSZ value is not applicable and the
SEGSIZE value for the table space is 16.

Examples
The following examples illustrate how to use SQL statements to create different types of table spaces.

Creating partition-by-growth table spaces
The following example CREATE TABLE statement implicitly creates by a partition-by-growth table
space.

CREATE TABLE TESTO2TB(

C1 SMALLINT,

C2 DECIMAL(9,2),

C3 CHAR(4))

PARTITION BY SIZE EVERY 4G
IN TESTO2DB;

COMMIT;

The following SQL statement creates a partition-by-growth table space that has a maximum size of 2
GB for each partition, 4 pages per segment, with a maximum of 24 partitions for table space.

CREATE TABLESPACE TESTO1TS IN TESTO1DB USING STOGROUP SG1
DSSIZE 2G

MAXPARTITIONS 24

LOCKSIZE ANY

SEGSIZE 4;

COMMIT;

Creating partition-by-range table spaces with relative page numbering

The following example SQL statement creates a partition-by-range table space with relative page
numbering. The maximum partition size is 64G for partition 1, and 4G for each the other seven
partitions .

CREATE TABLESPACE TS1
IN DB1
USING STOGROUP SG1
NUMPARTS 7
(PARTITION 1 DSSIZE 64G
)

PAGENUM RELATIVE;

Creating partition-by-range table spaces
The following example SQL statement defines a partition-by-range table space with 16 pages per
segment and 55 partitions. This universal table space uses a storage group SG1 and has LOCKSIZE
ANY.

CREATE TABLESPACE TS1 IN DB1 USING STOGROUP SG1
NUMPARTS 55 SEGSIZE 16
LOCKSIZE ANY;

The following example SQL statement defines a partition-by-range table space with 64 pages per
segment and 7 defer-defined partitions. This table space uses a storage group SG1 and compresses
every odd-numbered partition.

CREATE TABLESPACE TS1 IN DB1 USING STOGROUP SG1
?UMPARTS 7

PARTITION 1 COMPRESS YES,

PARTITION 3 COMPRESS YES,

PARTITION 5 COMPRESS YES,

PARTITION 7 COMPRESS YES

)
SEGSIZE 64
DEFINE NO;

60 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

What to do next

Generally, when you use the CREATE TABLESPACE statement with the USING STOGROUP clause, Db2
allocates data sets for the table space. However, if you also specify the DEFINE NO clause, you can defer
the allocation of data sets until data is inserted or loaded into a table in the table space.

GUPI

Related tasks

Altering table spaces
Use the ALTER TABLESPACE statement to change the description of a table space at the current server.

Choosing data page sizes (Db2 Performance)
Choosing data page sizes for LOB data (Db2 Performance)

Creating EA-enabled table spaces and index spaces
DFSMS has an extended-addressability function, which is necessary to create data sets that are larger
than 4 GB. Therefore, the term for page sets that are enabled for extended addressability is EA-enabled.

Defining your own user-managed data sets

You can use Db2 storage groups to let Db2 manage the VSAM data sets. However, you can also define
your own user-managed data sets. With user-managed data sets, Db2 checks whether you have defined
your data sets correctly.

Related reference

CREATE TABLESPACE (Db2 SQL)

CREATE LOB TABLESPACE (Db2 SQL)

SYSTABLESPACE catalog table (Db2 SQL)

DEFAULT PARTITION SEGSIZE field (DPSEGSZ subsystem parameter) (Db2 Installation and Migration)

Creating partition-by-range table spaces

You can create a partition-by-range (PBR) table space to create partitions based on data value ranges and
use segmented space management capabilities within each partition.

About this task

A partition-by-range (PBR) table space is a universal table space (UTS) that has partitions based on ranges
of data values. It holds data pages for a single table and has segmented space management capabilities
within each partition. PBR table spaces can use absolute or relative page numbering. Absolute page
number offers the most flexibility for maximum partition size.

In a PBR table space, the partitions are based on the boundary values that are defined for specific data
columns.

Tip: To use a PBR table space for a table without a naturally suitable partitioning scheme, consider
creating the table with an implicitly hidden ROWID column in the partitioning key. Any ROWID column

in the partitioning key guarantees a very even distribution of data across the partitions, and an implicitly-
hidden ROWID column can also be transparent to applications.

Utilities and SQL statements can run concurrently on each partition. For example, a utility job can work
on part of the data while allowing other applications to concurrently access data on other partitions. In
that way, several concurrent utility jobs can, for example, load all partitions of a table space concurrently.
Because you can work on part of your data, some of your operations on the data might require less time.
Also, you can use separate jobs for mass update, delete, or insert operations instead of using one large
job; each smaller job can work on a different partition. Separating the large job into several smaller jobs
that run concurrently can reduce the elapsed time for the whole task.

You can create an index of any type on a table in a PBR space.

PBR table spaces can use relative page numbering (RPN) or absolute page numbering. PBR spaces
with relative page numbering support larger partition sizes than PBR table spaces with absolute page
numbering, and greater flexibility in growing your partitions. Instead of restricting partition growth to

Chapter 2. Implementing your database design 61

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_pagesizerecommendations.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_lobpagesize.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createlobtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsystablespacetable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_dpsegsz.html

gigabytes in powers of two, PBR table spaces with relative page numbering support the growth of
partitions by any number of gigabytes. DSSIZE can also be increased for individual partitions as an
immediate ALTER, without requiring a REORG. The PAGENUM option of a CREATE TABLE or CREATE
TABLESPACE statement specifies the type of page numbering that Db2 uses for a table space. If

you omit the PAGENUM clause, Db2 uses the value specified for the PAGESET_PAGENUM subsystem
parameter. The default for PAGESET_PAGENUM is ABSOLUTE. See PAGE SET PAGE NUMBERING field
(PAGESET_PAGENUM subsystem parameter) (Db2 Installation and Migration).

Tip: Partition-by-range (PBR) table spaces with relative page numbers (RPN) are the suggested
alternative for partitioned (non-UTS) table spaces, which are deprecated.

Procedure

To create a partition-by-range table space, use one of the following approaches:

» Issue a CREATE TABLE statement and specify the PARTITION BY RANGE clause.
The following example creates a table with partitions based on ranges of data values in the ACCTNUM
column, which resides in an implicitly created PBR table space:

CREATE TABLE TBO1 (

ACCT_NUM INTEGER,
CUST_LAST_NM CHAR(15),
LAST_ACTIVITY_DT VARCHAR(25),
coL2 CHAR(10),
coL3 CHAR(25),
coL4 CHAR(25),
CoL5 CHAR(25),
CoL6 CHAR(55),
STATE CHAR(55))
IN DBB.TSO1

PARTITION BY RANGE (ACCT_NUM)
(PARTITION 1 ENDING AT (199),
PARTITION 2 ENDING AT (299),
PARTITION 3 ENDING AT (399),
PARTITION 4 ENDING AT (MAXVALUE));

- Issue a CREATE TABLESPACE statement that specifies the NUMPARTS clause and omits the
MAXPARTITIONS clause.
The following example creates a partition-by-range table space, TS1, in database DSN8D12A using
storage group DSN8G120. The table space has 16 pages per segment and has 55 partitions.

CREATE TABLESPACE TS1
IN DSN8D12A
USING STOGROUP DSN8G120
NUMPARTS 55
SEGSIZE 16
LOCKSIZE ANY;

- To create a table without a naturally suitable partitioning scheme in a PBR table space, consider
creating the table with an implicitly hidden ROWID column in the partitioning key.

The ROWID column in the partitioning key guarantees a very even distribution of data across the
partitions. An implicitly-hidden ROWID column can also be transparent to applications.

For example, the following CREATE TABLE statement creates the TB02 table in a PBR table space with
16 partitions based on the implicitly-hidden ROWID column named ROW_ID.

CREATE TABLE TB02 (
CLIENT VARGRAPHIC(3) NOT NULL,
WI_ID VARGRAPHIC(12) NOT NULL,
LENGTH SMALLINT,
DATA VARCHAR(1000),
ROW_ID ROWID NOT NULL
IMPLICITLY HIDDEN GENERATED ALWAYS)

PARTITION BY (ROW_ID)
(PARTITION 1 ENDING AT (X'OFFF'),
PARTITION 2 ENDING AT (X'1FFF'),
PARTITION 3 ENDING AT (X'2FFF'),
PARTITION 4 ENDING AT (X'3FFF'),

62 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html

PARTITION 5 ENDING AT (X'4FFF'),
PARTITION 6 ENDING AT (X'5FFF'),
PARTITION 7 ENDING AT (X'6FFF'),
PARTITION 8 ENDING AT (X'7FFF'),
PARTITION 9 ENDING AT (X'8FFF'),
PARTITION 10 ENDING AT (X'9FFF'),
PARTITION 11 ENDING AT (X'AFFF'),
PARTITION 12 ENDING AT (X'BFFF'),
PARTITION 13 ENDING AT (X'CFFF'),
PARTITION 14 ENDING AT (X'DFFF'),
PARTITION 15 ENDING AT (X'EFFF'),
PARTITION 16 ENDING AT (MAXVALUE))

CCSID UNICODE;

Related concepts

Partition-by-range table spaces

A partition-by-range (PBR) table space is a universal table space (UTS) that has partitions based on ranges
of data values. It holds data pages for a single table and has segmented space management capabilities
within each partition. PBR table spaces can use absolute or relative page numbering.

ROWID data type (Introduction to Db2 for z/OS)

Related reference

CREATE TABLE (Db2 SQL)

CREATE TABLESPACE (Db2 SQL)

Creating partition-by-growth table spaces

You can create a partition-by-growth table space so that Db2 manages partitions based on data growth
and uses segmented space management capabilities within each partition.

About this task

A partition-by-growth (PBG) table space is a universal table space (UTS) that has partitions that Db2
manages automatically based on data growth. It holds data pages for only a single table, and has
segmented space management capabilities within each partition.

Db2 manages PBG table spaces automatically as data grows, by automatically adding a new partition
when more space is needed to satisfy an insert operation.

PBG table spaces are best used for small or medium sized tables, especially when a table does not have
a suitable partitioning key. Partition-by-growth table spaces can grow up to 128 TB, depending on the
buffer pool page size used, and the MAXPARTITIONS and DSSIZE values specified when the table space
is created.

Any index created on a table in a PBG table space must be a non-partitioned index. That is, partitioned
indexes, including partitioning indexes and data-partitioned secondary indexes (DPSIs) are not supported
on table in PBG table spaces. For more information, see “Indexes on partitioned tables” on page 121.

Tip: PBG table spaces are best used for small to medium-sized tables. If you expect a table to grow much
larger than the 64 GB, consider using a partition-by-range (PBR) table space instead.

When a table in a PBG table space grows too large, several drawbacks can begin to arise, including the
following issues:

 Insert and query performance degradation, which is perhaps the most important factor suggesting that
conversion is required. Such performance degradation can have many causes, but for large tables in
PBG tables spaces, the size of the table space is often one of the major causes.

- Difficulty regaining clustering of the data (which requires a REORG of the entire table space).

» Problems associated with very large non-partitioned indexes, because partitioned (partitioning and
DPSI) indexes are not supported for tables in PBG table spaces. For more information, see

« Lack of partition parallelism support for utilities.
- Limited support for partition-level utility operations.

Chapter 2. Implementing your database design 63

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_rowiddatatype.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html

If you encounter these issues, consider using partition-by-range (PBR) table spaces instead.

Tip: To use a PBR table space for a table without a naturally suitable partitioning scheme, consider
creating the table with an implicitly hidden ROWID column in the partitioning key. Any ROWID column

in the partitioning key guarantees a very even distribution of data across the partitions, and an implicitly-
hidden ROWID column can also be transparent to applications.

The partitioned structure supports partition-level utility operations and parallelism capabilities. A PBG
table space also has segmented organization and segmented space management capabilities within each
partition. The segmented structure provides better space management and mass delete capabilities.

Tip: PBG table spaces are the suggested alternative for single-table Db2-managed segmented (non-UTS)
table spaces, which are deprecated.

Procedure

To create a partition-by-growth table space, use one of the following approaches:
« Issue a CREATE TABLE statement, and specify the PARTITION BY SIZE clause.
Db2 implicitly creates a partition-by-growth table space for the new table.

The following example creates a table with partitions based on data growth, which resides in an
implicitly created partition-by-growth table space:

CREATE TABLE TS02TB
(C1 SMALLINT,
C2 DECIMAL(9,2),
C3 CHAR(4))
PARTITION BY SIZE EVERY 4G
IN DATABASE DSNDBO4;

« Issue a CREATE TABLESPACE statement and specify any of the following combinations of the
MAXPARITIONS and NUMPARTS clauses:

— Specify MAXPARTITIONS without NUMPARTS, for example:

CREATE TABLESPACE TESTO1TS IN TESTO1DB USING STOGROUP SG1
DSSIZE 2G

MAXPARTITIONS 24

LOCKSIZE ANY

SEGSIZE 4;

COMMIT;

- Specify both MAXPARTITIONS and NUMPARTS.
— FL 504 Omit both MAXPARTITIONS and NUMPARTS.

Related concepts

Partition-by-growth table spaces

A partition-by-growth (PBG) table space is a universal table space (UTS) that has partitions that Db2
manages automatically based on data growth. It holds data pages for only a single table, and has
segmented space management capabilities within each partition.

Related reference
CREATE TABLESPACE (Db2 SQL)
CREATE TABLE (Db2 SQL)

64 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html

Creating LOB table spaces, auxiliary tables, and auxiliary indexes explicitly

When you define a LOB column or add a partition to a base table that contains a LOB column, Db2 can
often implicitly create the required LOB table spaces, auxiliary tables and indexes for you. However, you
must create these objects explicitly in certain situations.

About this task

Although a table can contain a LOB column, the actual LOB data is usually stored in a another table, which
is called the auxiliary table. The auxiliary table exists in a separate table space called a LOB table space.
One auxiliary table must exist for each LOB column. The table with the LOB column is called the base
table. The base table has a ROWID column that Db2 uses to locate the data in the auxiliary table. The
auxiliary table must have exactly one index.

Db2 sometimes implicitly creates the LOB table space, auxiliary table, and index on the auxiliary table for
each LOB column in a table or partition. For more information, see “LOB table space implicit creation” on
page 54.

If Db2 does not implicitly create the LOB table spaces, auxiliary tables, and indexes on the auxiliary
tables, you must create these objects by issuing CREATE TABLESPACE, CREATE AUXILIARY TABLE, and
CREATE INDEX statements.

For example, if the LOB table space that is associated with the previous partition does not already exist,

Db2 does not implicitly create a LOB table space for the new partition. This situation occurs when a LOB

table space is not implicitly created for the first partition because SQLRULES is set to DB2, and you issue
ALTER TABLE with ADD PARTITION after you create the base table space, but before you create the first

LOB table space.

Procedure

To create LOB table spaces and related objects explicitly, complete the following steps:

1. If the LOB column does not already exist create it by issuing a CREATE TABLE statement or ALTER
TABLE statement with ADD COLUMN . You can also add an optional ROWID column, or let Db2 create
one for you. For more information, see Storing LOB data in Db2 tables (Db2 Application programming
and SQL).

2. Create table spaces and auxiliary tables for the LOB data.

You must create one LOB table space for each table partition and one auxiliary table for each LOB
column. For example, if your base table has three partitions, you must create three LOB table spaces
and three auxiliary tables for each LOB column. Use the following statements to create these objects:
CREATE LOB TABLESPACE (Db2 SQL) and CREATE AUXILIARY TABLE (Db2 SQL).

The privilege set must include the following privileges:

« The USE privilege on the buffer pool and the storage group that is used by the LOB objects

- If the base table space is explicitly created, CREATETS is also required on the database that contains
the table (DSNDBO4 if the database is implicitly created)

3. Create one index for each auxiliary table by using the CREATE INDEX statement. Each auxiliary table
must have exactly one index in which each index entry refers to a LOB.

Example

GUPI

Assume that you must define a LOB table space and an auxiliary table to hold employee resumes. You
must also define an index on the auxiliary table. You must define the LOB table space in the same
database as the associated base table. Assume that EMP_PHOTO_RESUME is a base table. This base

Chapter 2. Implementing your database design 65

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_storelobdatatable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_storelobdatatable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createlobtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createauxiliarytable.html

table has a LOB column named EMP_RESUME. You can use statements like this to define the LOB table
space, the auxiliary table space, and the index:

CREATE LOB TABLESPACE RESUMETS
IN MYDB
LOG NO;

COMMIT;

CREATE AUXILIARY TABLE EMP_RESUME_TAB
IN MYDB.RESUMETS
STORES EMP_PHOTO_RESUME
COLUMN EMP_RESUME;

CREATE UNIQUE INDEX XEMP_RESUME
ON EMP_RESUME_TAB;

COMMIT;

GUPI

Related concepts

Large objects (LOBs) (Db2 SQL)

Related tasks

Creating large objects (Introduction to Db2 for z/0S)
Related reference

CREATE INDEX (Db2 SQL)

Creating non-UTS table spaces (deprecated)

Starting at function level V12R1M504, CREATE TABLESPACE and CREATE TABLE statements that run at
application compatibility level V12R1M504 or higher cannot create or use deprecated non-UTS table
spaces. However, you can still create or use the deprecated table space types by running the CREATE
statements at a lower application compatibility level.

Before you begin

For best results, use the non-deprecated table space types for all new table spaces whenever possible,
and develop plans for converting existing table spaces to the non-deprecated UTS types. Although

the deprecated types remain supported in Db2 12, many of the new capabilities and enhancements
introduced in DB2 10 and later are supported only for UTS. Also, the non-deprecated types are likely to
be unsupported eventually. For more information, see “Converting deprecated table spaces to the UTS
types” on page 187.

Procedure

1. FL 504 Change the application compatibility level of the CREATE statement to V12R1M503 or lower, by
using one of the following approaches:

- Issue the following statement first:

SET CURRENT APPLICATION COMPATIBILITY = 'V12R1M503'

Then issue the CREATE statement as a dynamic SQL statement. For more information, see SET
CURRENT APPLICATION COMPATIBILITY (Db2 SQL).

- For remote applications, you can avoid application changes by using the DSN_PROFILE_TABLE to
set the special register value. For more information, see “Setting special registers by using profile
tables” on page 545.

« Bind the package that issues the CREATE statement with APPLCOMPAT(V12R1M503) or lower. For
more information, see APPLCOMPAT bind option (Db2 Commands).

2. Use one of the following specifications in the CREATE statement.

« Tocreate a segmented (non-UTS) table space, issue a CREATE TABLESPACE statement and specify
a non-zero SEGSIZE value. Do not specify NUMPARTS or MAXPARTITIONS. For the syntax and
descriptions, see “segmented-non-uts-specification” on page 67.

66 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_lobsintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationoflargeobjects.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_setcurrentapplicationcompatibility.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_setcurrentapplicationcompatibility.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptapplcompat.html

« To create a partitioned (non-UTS) table space, issue a CREATE TABLESPACE statement and specify
NUMPARTS, omit MAXPARTITIONS, and specify SEGSIZE 0. For the syntax and descriptions, see
“paritioned-non-UTS-specification” on page 69.

- Tocreate a new table in an existing segmented table space, specify the existing table space in the
IN clause of the CREATE TABLE statement. For the syntax and descriptions, see CREATE TABLE

(Db2 SQL).

Syntax and descriptions for creating non-UTS table spaces (deprecated)

The following table summarize the options that control the resulting table space type when you issue a
CREATE TABLESPACE statement at application compatibility level V12R1M503 or lower.

Table 10. Table space types and related clauses below application compatibility level VI2RIM504

Table space type to create

Clauses to specify

Partition-by-growth

Any of the following combinations:

« MAXPARTITIONS and NUMPARTS

« MAXPARTITIONS and SEGSIZE n"1"on page 67
« MAXPARTITIONS

Partition-by-range

NUMPARTS and SEGSIZE n“1” on page 67

Segmented (non-UTS) “2”on page 67

One of the following combinations:
« SEGSIZE n'1”on page 67
« Omit MAXPARTITIONS, NUMPARTS, and SEGSIZE

Partitioned (non-UTS) 2" on page 67

NUMPARTS and SEGSIZE 0

Notes:

1. Where n is a non-zero value. The DPSEGSZ subsystem parameter determines the default value. For
more information, see DEFAULT PARTITION SEGSIZE field (DPSEGSZ subsystem parameter) (Db2

Installation and Migration).

2. Non-UTS table spaces for base tables are deprecated and likely to be unsupported in the future.

segmented-non-uts-specification

At application compatibility level VI2R1M503 or lower, segmented-non-UTS-specification hasthe

following syntax and descriptions.

L: SEGSIZE 4 :_J
SEGSIZE — integer

segmented-non-UTS-specification (deprecated)
If MAXPARTITIONS and NUMPARTS are both omitted, a segmented (non-UTS) table space is created.
It is not partitioned, and initially occupies one data set.

SEGSIZE integer

Specifies the size in pages for each segment of the table space. The integer value must be a

multiple of 4, in the range 4-64.

Because segmented (non-UTS) table spaces are not partitioned, the description of the using-block
specification also differs from the description for UTS.

Chapter 2. Implementing your database design 67

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_dpsegsz.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_dpsegsz.html

using-block (for nonpartitioned table spaces)
For nonpartitioned table spaces, the USING clause indicates whether the data set for the table space
is defined by you or by Db2. If Db2 is to define the data set, the clause also gives space allocation
parameters and an erase rule.

If you omit USING, Db2 defines the data sets using the default storage group of the database and the
defaults for PRIQTY, SECQTY, and ERASE.

VCAT catalog-name
Specifies that the first data set for the table space is managed by the user, and following data sets,
if needed, are also managed by the user.

The data sets are VSAM linear data sets cataloged in the integrated catalog facility catalog
that catalog-name identifies. For more information about catalog-name values, see Naming
conventions (Db2 SQL).

More than one Db2 subsystem can share the integrated catalog facility catalogs with the current
server. To avoid the chance of those subsystems attempting to assign the same name to different
data sets, specify a catalog-name value that is not used by the other Db2 subsystems.

VCAT must not be specified if MAXPARTITIONS is also specified.

STOGROUP stogroup-name
Specifies that Db2 will define and manage the data sets for the table space. Each data set will
be defined on a volume of the identified storage group. The values specified (or the defaults)
for PRIQTY and SECQTY determine the primary and secondary allocations for the data set. The
storage group supplies the name of a volume for the data set and the first-level qualifier for the
data set name. The first-level qualifier is also the name of, or an alias? for, the integrated catalog
facility catalog on which the data set is to be cataloged. The naming conventions for the data
set are the same as if the data set is managed by the user. As was mentioned above for VCAT,
the first-level qualifier could cause naming conflicts if the local Db2 can share integrated catalog
facility catalogs with other Db2 subsystems.

stogroup-name must identify a storage group that exists at the current server. SYSADM or
SYSCTRL authority, or the USE privilege on the storage group, is required.

The description of the storage group must include at least one volume serial number, or it must
indicate that the choice of volumes is left to Storage Management Subsystem (SMS). If volume
serial numbers appear in the description, each must identify a volume that is accessible to z/0S
for dynamic allocation of the data set, and all identified volumes must be of the same device type.

The integrated catalog facility catalog used for the storage group must not contain an entry for the
first data set of the table space. If the integrated catalog facility catalog is password protected, the
description of the storage group must include a valid password.

PRIQTY integer
Specifies the minimum primary space allocation for a Db2-managed data set. integer must be
a positive integer, or -1. In general, when you specify PRIQTY with a positive integer value, the
primary space allocation is at least n kilobytes, where n is the value of integer. However, the
following exceptions exist:

- For 4KB page sizes, if integer is greater than 0 and less than 200, n is 200.

 For 8KB page sizes, if integer is greater than 0 and less than 400, n is 400.

» For 16KB page sizes, if integer is greater than 0 and less than 800, n is 800.

- For 32KB page sizes, if integer is greater than 0 and less than 1600, n is 1600.

« For any page size, if integer is greater than 67108864, nis 67108864.

If you do not specify PRIQTY, or specify PRIQTY with a value of -1, Db2 uses a default value

for the primary space allocation; for information on how Db2 determines the default value, see
Rules for primary and secondary space allocation (Introduction to Db2 for z/0S).

1 The alias of an integrated catalog facility catalog.

68 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_primaryspaceallocation.html

If you specify PRIQTY, and do not specify a value of -1, Db2 specifies the primary space
allocation to access method services using the smallest multiple of p KB not less than n,
where p is the page size of the table space. The allocated space can be greater than the
amount of space requested by Db2. For example, it could be the smallest number of tracks
that will accommodate the request. The amount of storage space requested must be available
on some volume in the storage group based on VSAM space allocation restrictions. Otherwise,
the primary space allocation will fail. To more closely estimate the actual amount of storage,
see DEFINE CLUSTER command (DFSMS Access Method Services for Catalogs).

Executing this statement causes only one data set to be created. However, you might have
more data than this one data set can hold. Db2 automatically defines more data sets when
they are needed. Regardless of the value in PRIQTY, when a data set reaches its maximum
size, Db2 creates a new one. To enable a data set to reach its maximum size without running
out of extents, it is recommended that you allow Db2 to automatically choose the value of the
secondary space allocations for extents.

If you do choose to explicitly specify SECQTY, to avoid wasting space, use the following
formula to make sure that PRIQTY and its associated secondary extent values do not exceed
the maximum size of the data set:

PRIQTY + (number of extents x SECQTY) <= DSSIZE (implicit or explicit)

SECQTY integer
Specifies the minimum secondary space allocation for a Db2-managed data set. integer must
be a positive integer, 0, or -1. If you do not specify SECQTY, or specify SECQTY with a value of
-1, Db2 uses a formula to determine a value. For information on the actual value that is used
for secondary space allocation, whether you specify a value or not, see Rules for primary and
secondary space allocation (Introduction to Db2 for z/0S).

If you specify SECQTY, and do not specify a value of -1, Db2 specifies the secondary space
allocation to access method services using the smallest multiple of p KB not less than integer,
where p is the page size of the table space. The allocated space can be greater than the
amount of space requested by Db2. For example, it could be the smallest number of tracks
that will accommodate the request. To more closely estimate the actual amount of storage,
see DEFINE CLUSTER command (DFSMS Access Method Services for Catalogs).

ERASE
Indicates whether the Db2-managed data sets for the table space are to be erased when they
are deleted during the execution of a utility or an SQL statement that drops the table space.

NO
Does not erase the data sets. Operations involving data set deletion will perform better
than ERASE YES. However, the data is still accessible, though not through Db2. This is the
default.

YES
Erases the data sets. As a security measure, Db2 overwrites all data in the data sets with
zeros before they are deleted.

The components of the USING block are discussed separately for nonpartitioned table spaces and
partitioned table spaces. If you omit USING, the default storage group of the database must exist.

paritioned-non-UTS-specification

At application compatibility level V12R1M503 or lower, partitioned-non-UTS-specification has
the following syntax and descriptions.

Chapter 2. Implementing your database design 69

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_primaryspaceallocation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_primaryspaceallocation.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm

»— NUMPARTS — integer —»

£,

A
N/
y

A

>
» »4

— (PARTITION — integer (]) —]

using-block

free-block

gbpcache-block

COMPRESS NO
[B
L COMPRESS YES J

r TRACKMOD — imptkmod-parameter T

L J

M———TRACKMOD YES ——

~————— TRACKMODNQ —M8MM—~

2
L DSSIZE — integer — G —J

~ SEGSIZE 0 3 7

Notes:

1 Group multiple PARTITION clauses. Other clauses must not be specified more than one time.

2 Specify a power-of-two integer in the range 1-256, or accept the default value based on the NUMPARTS
value and the buffer pool page size. See the tables in "Maximum number of partitions and table space size"
in CREATE TABLESPACE (Db2 SQL).

3 SEGSIZE 0 must be specified unless the DPSEGSZ subsystem parameter value is 0. For more
information, see DPSEGSZ subsystem parameter.

partitioned-non-UTS-specification (deprecated)
Specifies a NUMPARTS value and SEGSIZE 0 to create a partitioned (non-UTS) table space.

NUMPARTS integer

The integer value specifies the number of partition schema definitions to create. Data sets are also
allocated for this many partitions, unless DEFINE NO is also specified. integer must be a value in
the range 1-4096 inclusive.

The maximum number of partitions depends on the buffer pool page size and DSSIZE. The total
table space size depends on the number of partitions and DSSIZE. See the tables in "Maximum
number of partitions and table space size" in CREATE TABLESPACE (Db2 SQL).

PARTITION integer

Specifies the partition to which the following partition-level clauses apply. integer can range from
1 to the number of partitions given by NUMPARTS.

You can specify the PARTITION clause as many times as needed. If you use the same partition
number more than once, only the last specification for that partition is used.

70 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_dpsegsz.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html

SEGSIZE 0
Specifies that the table space is a partitioned (non-UTS) table space, which does not use
segmented organization. SEGSIZE 0 must be specified unless the DPSEGSZ subsystem parameter
is 0. For more information, see DPSEGSZ subsystem parameter.

DSSSIZE integerG
When DSSIZE is specified for a partitioned (non-UTS) table space, it must be a power-of-two
integer in the range 1 G-256 G (1, 2, 4, 8, 16, 32, 64, 128, or 256). The default value depends on
the NUMPARTS value and the buffer pool page size, as shown in the following table.

Table 11. DSSIZE defaults for paritioned (non-UTS) table spaces

Page size NUMPARTS value DSSIZE default value
Any 1-16 4G

Any 17-32 2G

Any 33-64 1G

Any 65-254 4G

4K 255-4096 4G

8K 255-4096 8G

16K 255-4096 16 G

32K 255-4096 32G

The DSSIZE value affects the number of partitions that can be used. See the tables in "Maximum
number of partitions and table space size" in CREATE TABLESPACE (Db2 SQL).

For any DSSIZE value greater than 4 G, the data sets for the table space must be associated with a
DFSMS data class that is specified with extended format and extended addressability.

Related concepts
Table space types and characteristics in Db2 for z/OS

Db2 supports several different types of table spaces. The partitioning method and segmented
organization are among the main characteristics that define the table space type.

Related tasks

Converting deprecated table spaces to the UTS types

The non-UTS segmented and partitioned table space types are deprecated. That is, they remain
supported, but support might be removed eventually, and it is best to convert them to the non-deprecated
types.

Related reference

Function level 504 (activation enabled by APAR PH07672 - April 2019) (Db2 for z/OS What's New?)
CREATE TABLESPACE (Db2 SQL)

Deprecated function in Db2 12 (Db2 for z/OS What's New?)

EA-enabled table spaces and index spaces

You can enable partitioned table spaces for extended addressability (EA), a function of DFSMS. The term
for table spaces and index spaces that are enabled for extended addressability is EA-enabled.

You must use EA-enabled table spaces or index spaces if you specify a maximum partition size (DSSIZE)
that is larger than 4 GB in the CREATE TABLESPACE statement.

Partition-by-range table spaces with relative page numbers must be EA-enabled table spaces.

Both EA-enabled and non-EA-enabled partitioned table spaces can have only one table and up to 4096
partitions. The following table summarizes the differences.

Chapter 2. Implementing your database design 71

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_dpsegsz.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_deprecated.html

Table 12. Differences between EA-enabled and non-EA-enabled table spaces

EA-enabled table spaces Non-EA-enabled table spaces

Holds up to 4096 partitions with DSSIZE 64G Holds up to 4096 partitions with DSSIZE 4G
Created with any valid value of DSSIZE DSSIZE cannot exceed 4G

Data sets are managed by SMS Data sets are managed by VSAM or SMS
Requires setup No additional setup

Related tasks

Creating EA-enabled table spaces and index spaces
DFSMS has an extended-addressability function, which is necessary to create data sets that are larger
than 4 GB. Therefore, the term for page sets that are enabled for extended addressability is EA-enabled.

Creating table spaces explicitly
Db2 can create table spaces for you. However, you might also create table spaces explicitly by issuing
CREATE TABLESPACE statements if you manage your own data sets, among other reasons.

Related reference
CREATE TABLESPACE (Db2 SQL)

Implementing Db2 tables

Use the columns and rows of Db2 tables as logical structures for storing data.

Designing tables that many applications use is a critical task. Table design can be difficult because you
can represent the same information in many different ways. This information briefly describes how tables
are created and altered, and how authorization is controlled.

You create tables by using the SQL CREATE TABLE statement. At some point after you create and start
using your tables, you might need to make changes to them. The ALTER TABLE statement lets you add
and change columns, add or drop a primary key or foreign key, add or drop table check constraints, or

add and change partitions. Carefully consider design changes to avoid or reduce the disruption to your
applications.

Most organizations have naming conventions to ensure that objects are named in a consistent manner.
The table name is an identifier of up to 128 characters. You can qualify the table name with an SQL
identifier, which is a schema. When you define a table that is based directly on an entity, these factors also
apply to the table names.

If you have DBADM (database administration) authority, you probably want to control the creation of
Db2 databases and table spaces. These objects can have a big impact on the performance, storage,
and security of the entire relational database. In some cases, you also want to retain the responsibility
for creating tables. After designing the relational database, you can create the necessary tables for
application programs. You can then pass the authorization for their use to the application developers,
either directly or indirectly, by using views.

However, if you want to, you can grant the authority for creating tables to those who are responsible
for implementing the application. For example, you probably want to authorize certain application
programmers to create tables if they need temporary tables for testing purposes.

Some users in your organization might want to use Db2 with minimum assistance or control. You can
define a separate storage group and database for these users and authorize them to create whatever data
objects they need, such as tables.

Related tasks

Creating tables from application programs (Db2 Application programming and SQL)
Related reference

CREATE TABLE (Db2 SQL)

72 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createtablesapp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html

Types of tables

In Db2, you store user data in tables. Db2 supports several types of tables, each of which has its own
purpose and characteristics.

Db2 supports the following types of tables:

accelerator-only table
A table that stores rows only in the accelerator, not in Db2. The table and column definition of the
accelerator-only table is contained in Db2 catalog tables. Any queries that reference the accelerator-
only table, must be executed in the accelerator. If a query that references an accelerator-only table
is not eligible for query acceleration, an error is issued. To change the contents of an accelerator-only
table, the data change statement must be executed in the accelerator.

archive table
A table that stores rows that are deleted from another table.

archive-enabled table
A table that has an associated archive table. When rows are deleted from an archive-enabled table,
Db2 can automatically insert those rows into an archive table.

auxiliary table
A table created with the SQL statement CREATE AUXILIARY TABLE and used to hold the data for a
column that is defined in a base table.

base table
The most common type of table in Db2. You create a base table with the SQL CREATE TABLE
statement. The Db2 catalog table, SYSIBM.SYSTABLES, stores the description of the base table. The
table description and table data are persistent. All programs and users that refer to this type of table
refer to the same description of the table and to the same instance of the table.

clone table
A table that is structurally identical to a base table. You create a clone table by using an ALTER
TABLE statement for the base table that includes an ADD CLONE clause. The clone table is created
in a different instance of the same table space as the base table, is structurally identical to the
base table in every way, and has the same indexes, before triggers, and LOB objects. In the Db2
catalog, the SYSTABLESPACE table indicates that the table space has only one table in it, but
SYSTABLESPACE.CLONE indicates that a clone table exists. Clone tables can be created only in a
partition-by range or partition-by-growth table space that is managed by Db2. The base and clone
table each have separate underlying VSAM data sets (identified by their data set instance numbers)
that contain independent rows of data.

empty table
A table with zero rows.

history table
A table that is used to store historical versions of rows from the associated system-period temporal
table.

materialized query table
A table, which you define with the SQL CREATE TABLE statement, that contains materialized data
that is derived from one or more source tables. Materialized query tables are useful for complex
queries that run on large amounts of data. Db2 can precompute all or part of such queries and use
the precomputed, or materialized, results to answer the queries more efficiently. Materialized query
tables are commonly used in data warehousing and business intelligence applications.

Several Db2 catalog tables, including SYSIBM.SYSTABLES and SYSIBM.SYSVIEWS, store the
description of the materialized query table and information about its dependency on a table, view,
or function. The attributes that define a materialized query table tell Db2 whether the table is:

« System-maintained or user-maintained.

» Refreshable: All materialized tables can be updated with the REFRESH TABLE statement. Only user-
maintained materialized query tables can also be updated with the LOAD utility and the UPDATE,
INSERT, and DELETE SQL statements.

Chapter 2. Implementing your database design 73

« Enabled for query optimization: You can enable or disable the use of a materialized query table in
automatic query rewrite.

Materialized query tables can be used to improve the performance of dynamic SQL queries. If Db2
determines that a portion of a query could be resolved using a materialized query table, the query
might be rewritten by Db2 to use the materialized query table. This decision is based in part on
the settings of the CURRENT REFRESH AGE and the CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION special registers.

result table
A table that contains a set of rows that Db2 selects or generates, directly or indirectly, from one or
more base tables in response to an SQL statement. Unlike a base table or a temporary table, a result
table is not an object that you define using a CREATE statement.

sample table
One of several tables shipped with the Db2 licensed program that contains sample data. Many
examples in this information are based on sample tables.

temporal table
A table that records the period of time when a row is valid.

Db2 supports two types of periods, which are the system period (SYSTEM_TIME) and the application
period (BUSINESS_TIME). The system period consists of a pair of columns with system-maintained
values that indicates the period of time when a row is valid. The application period consists of a pair of
columns with application-maintained values that indicates the period of time when a row is valid.

system-period temporal table
A system-period temporal table is a base table that is defined with system-period data versioning.
You can modify an existing table to become a system-period temporal table by specifying the ADD
PERIOD SYSTEM_TIME clause on the ALTER TABLE statement. After creating a history table that
corresponds to the system-period temporal table, you can define system-period data versioning
on the table by issuing the ALTER TABLE ADD VERSIONING statement with the USE HISTORY
table clause.

application-period temporal table
An application-period temporal table is a base table that includes an application period
(BUSINESS_TIME). You can modify an existing table to become an application-period temporal
table by specifying the ADD PERIOD BUSINESS_TIME clause on the ALTER TABLE statement.

bitemporal table
A bitemporal table is a table that is both a system-period temporal table and an application-period
temporal table. You can use a bitemporal table to keep application period information and system-
based historical information. Therefore, you have a lot of flexibility in how you query data, based
on periods of time.

temporary table
A table that is defined by the SQL statement CREATE GLOBAL TEMPORARY TABLE or DECLARE
GLOBAL TEMPORARY TABLE to hold data temporarily. Temporary tables are especially useful when
you need to sort or query intermediate result tables that contain many rows, but you want to store
only a small subset of those rows permanently.

created global temporary table
A table that you define with the SQL CREATE GLOBAL TEMPORARY TABLE statement. The Db2
catalog table, SYSIBM.SYSTABLES, stores the description of the created temporary table. The
description of the table is persistent and shareable. However, each individual application process
that refers to a created temporary table has its own distinct instance of the table. That is, if
application process A and application process B both use a created temporary table named
TEMPTAB:

« Each application process uses the same table description.

 Neither application process has access to or knowledge of the rows in the other application
instance of TEMPTAB.

74 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

declared global temporary table
A table that you define with the SQL DECLARE GLOBAL TEMPORARY TABLE statement. The
Db2 catalog does not store a description of the declared temporary table. Therefore, the
description and the instance of the table are not persistent. Multiple application processes can
refer to the same declared temporary table by name, but they do not actually share the same
description or instance of the table. For example, assume that application process A defines
a declared temporary table named TEMP1 with 15 columns. Application process B defines a
declared temporary table named TEMP1 with five columns. Each application process uses its own
description of TEMP1; neither application process has access to or knowledge of rows in the other
application instance of TEMP1.

XML table
A special table that holds only XML data. When you create a table with an XML column, Db2 implicitly
creates an XML table space and an XML table to store the XML data.

These different types of tables differ in other ways that this topic does not describe.

Related concepts

Creation of materialized query tables (Introduction to Db2 for z/0S)

Db2 catalog (Introduction to Db2 for z/QS)

Archive-enabled tables and archive tables (Introduction to Db2 for z/OS)
Related tasks

Creating large objects (Introduction to Db2 for z/0S)

Related reference

Db2 sample tables (Introduction to Db2 for z/OS)

Guidelines for table names

Most organizations have naming conventions to ensure that objects are named in a consistent manner.
Consider these basic requirements for table names.

The table name is an SQL identifier of up to 128 characters. For more information, see Identifiers in SQL
(Db2 SQL).

When you define a table that is based directly on an entity, these factors also apply to the table names.

Also, the following naming conventions apply to table-name values in SQL statements.

table-name
A qualified or unqualified name that designates a table.

A fully qualified table name is a three-part name. The first part is a location name that designates
the DBMS at which the table is stored. The second part is a schema name. The third part is an SQL
identifier. A period must separate each of the parts.

A two-part table name is implicitly qualified by the location name of the current server. The first part is
a schema name. The second part is an SQL identifier. A period must separate the two parts.

A one-part or unqualified table name is an SQL identifier with two implicit qualifiers. The first

implicit qualifier is the location name of the current server. The second is a schema name, which

is determined by the rules set forth in Unqualified object name resolution (Db2 SQL). For a declared
temporary table, the qualifier (the second part in a three-part name and the first part in a two-part
name) must be SESSION. For complete details on specifying a name when a declared temporary table
is defined and then later referring to that declared temporary table in other SQL statements, see
DECLARE GLOBAL TEMPORARY TABLE (Db2 SQL).

Related concepts

Naming conventions (Db2 SQL)
Related reference

CREATE TABLE (Db2 SQL)

Chapter 2. Implementing your database design 75

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationofmqts.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_catalog.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_archivetables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationoflargeobjects.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesdescription.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sqlidentifiers.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sqlidentifiers.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_resolutionofobjnames.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_declareglobaltemptable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html

Creating base tables

When you create a table, Db2 records a definition of the table in the Db2 catalog.

Before you begin

Consider whether you want to create the table space and database for your table or let Db2 create them
for you implicitly.

For more information, see “Implementing Db2 table spaces” on page 42.

Procedure

Issue a CREATE TABLE statement that specifies the attributes of the table and its columns.

Table name
When choosing the name for the table, follow the naming conventions of your organization and the
basic requirements described in “Guidelines for table names” on page 75.

Column list
For each column, specify the name and attributes of the column, including the data type, length
attribute, and optional default values or value constraints. For more information, see Db2 table
columns (Introduction to Db2 for z/0S).

Referential or check constraints (optional)
For more information, see Check constraints (Db2 Application programming and SQL) and Referential
constraints (Db2 Application programming and SQL).

Partitioning method (optional)
Db2 uses size-based partitions by default if you do not specify how to partition the data when you
create the table. For more information, see “Partitioning data in Db2 tables” on page 77.

Table location (optional)
You can specify an existing table space and database name as the location of the new table, or you
can let Db2 create these objects for your table implicitly. For more information, see “Implementing
Db2 table spaces” on page 42.

Example

GUPI" The following CREATE TABLE statement creates the EMP table, which is in a database named MYDB
and in a table space named MYTS:

CREATE TABLE EMP

(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
DEPT CHAR(3) 0
HIREDATE DATE o
JOB CHAR(8) 0
EDL SMALLINT 5
SALARY DECIMAL(9,2) o
COMM DECIMAL (9,2) 5

PRIMARY KEY (EMPNO))
IN MYDB.MYTS;

GUPI

What to do next

Creating a table does not store the application data. You can put data into the table by using several
methods, such as the LOAD utility or the INSERT statement. For more information, see “Loading data into
Db2 tables” on page 128.

Related concepts
Db2 tables (Introduction to Db2 for z/OS)

76 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_definitionofcolumnsintable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_definitionofcolumnsintable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_checkconstraintenforcement.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_referentialconstraintsampapp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_referentialconstraintsampapp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_tables.html

Related tasks

Creating tables from application programs (Db2 Application programming and SQL)
Related reference

CREATE TABLE (Db2 SQL)

Related information

Lesson 1.2: Creating a table (Introduction to Db2 for z/0S)

Partitioning data in Db2 tables

All Db2 base tables that are created in universal table spaces use either partition-by growth or partition-
by-range data partitioning.

Before you begin

Consider whether you want to create the table space and database for your table or let Db2 create them
for you implicitly.

For more information, see “Implementing Db2 table spaces” on page 42.

About this task

Data partitions are useful because they support partition-level utility operations and parallelism
capabilities for improved performance.

Utilities and SQL statements can run concurrently on each partition. For example, a utility job can work
on part of the data while allowing other applications to concurrently access data on other partitions. In
that way, several concurrent utility jobs can, for example, load all partitions of a table space concurrently.
Because you can work on part of your data, some of your operations on the data might require less time.
Also, you can use separate jobs for mass update, delete, or insert operations instead of using one large
job; each smaller job can work on a different partition. Separating the large job into several smaller jobs
that run concurrently can reduce the elapsed time for the whole task.

You can let Db2 manage size-based table partitions based on data growth, or you can specify partitions
based on ranges of data values.

Size-based data partitions

Size-based partitions are best when the data in a table is expected to exceed 64 GB, or when a table
does not have a suitable partitioning key. Partition-by-growth table spaces can grow up to 128 TB,
depending on the buffer pool page size used, and the MAXPARTITIONS and DSSIZE values specified
when the table space is created.

If you use size-based partitions, the table resides in partition-by-growth (PBG) table space. For more
information, see “Creating partition-by-growth table spaces” on page 63.

Range-based data partitions
If you use partitions based on ranges of data values, the table resides in a partition-by-range (PBR)
table space. For more information, see “Creating partition-by-range table spaces” on page 61.

If you do not specify how to partition the data when you create a table, Db2 uses size-based partitions
and implicitly creates a partition-by-growth table space by default.
Tip:

When converting or replacing existing tables in deprecated non-UTS table spaces, the type of partitioning
to use depends on the existing table space type. For more information, see “Converting deprecated table
spaces to the UTS types” on page 187.

Procedure

GUPITo control how the data in a table is partitioned, use the following approaches in the CREATE TABLE
statement:

Chapter 2. Implementing your database design 77

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createtablesapp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_tut_createtable.html

« Specify the PARTITION BY SIZE clause to create a table with data partitioned based on data size.

If you specify the name of a table space in the IN clause, it must identify an existing PBG table space.
If you omit the table space name Db2 implicitly creates a PBG table space for the table.

The following example creates a table with partitions based on data growth, which resides in an
implicitly created partition-by-growth table space:

CREATE TABLE TS02TB
(C1 SMALLINT,
C2 DECIMAL(9,2),
C3 CHAR(4))
PARTITION BY SIZE EVERY 4G
IN DATABASE DSNDBO4;

FL 504 If you omit the PARTITION BY clause, the table is also created with size based partitions, and if
the IN clause specifies a table space name, it must identify an existing PBG table space.

- Specify a PARTITION BY RANGE clause to identify one or more columns that define the partitioning
key, and specify the limit key values in the PARTITION part-num ENDING AT clause.

If you specify the name of a table space in the IN clause, it must identify an existing PBR table space.
If you omit the table space name, Db2 implicitly creates a PBR table space for the table.

The following example creates a table with partitions based on ranges of data values in the ACCTNUM
column, which resides in an implicitly created PBR table space:

CREATE TABLE TBO1 (

ACCT_NUM INTEGER,
CUST_LAST_NM CHAR(15),
LAST_ACTIVITY_DT VARCHAR(25),
coL2 CHAR(10),
CcoL3 CHAR(25),
CcoL4 CHAR(25),
COL5 CHAR(25),
coLé CHAR(55) ,
STATE CHAR(55))
IN DBB.TSO1

PARTITION BY RANGE (ACCT_NUM)
(PARTITION 1 ENDING AT (199),
PARTITION 2 ENDING AT (299),
PARTITION 3 ENDING AT (399),
PARTITION 4 ENDING AT (MAXVALUE));

- To create a table without a naturally suitable partitioning scheme in a PBR table space, consider
creating the table with an implicitly hidden ROWID column in the partitioning key.

The ROWID column in the partitioning key guarantees a very even distribution of data across the
partitions. An implicitly-hidden ROWID column can also be transparent to applications.

For example, the following CREATE TABLE statement creates the TB02 table in a PBR table space with
16 partitions based on the implicitly-hidden ROWID column named ROW_ID.

CREATE TABLE TB02 (
CLIENT VARGRAPHIC(3) NOT NULL,
WI_ID VARGRAPHIC(12) NOT NULL,
LENGTH SMALLINT,
DATA VARCHAR(1000),
ROW_ID ROWID NOT NULL
IMPLICITLY HIDDEN GENERATED ALWAYS)

PARTITION BY (ROW_ID)

PARTITION 9 ENDING AT (X'S8FFF'),
PARTITION 10 ENDING AT (X'9FFF'),
PARTITION 11 ENDING AT (X'AFFF'),
)
) o

(PARTITION 1 ENDING AT (X'OFFF")
PARTITION 2 ENDING AT (X'1FFF')
PARTITION 3 ENDING AT (X'2FFF')
PARTITION 4 ENDING AT (X'3FFF')
PARTITION 5 ENDING AT (X'4FFF')
PARTITION 6 ENDING AT (X'5FFF')
PARTITION 7 ENDING AT (X'6FFF')
PARTITION 8 ENDING AT (X'7FFF')

)

PARTITION 12 ENDING AT (X'BFFF'
PARTITION 13 ENDING AT (X'CFFF'

78 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

PARTITION 14 ENDING AT (X'DFFF'),

PARTITION 15 ENDING AT (X'EFFF'),

PARTITION 16 ENDING AT (MAXVALUE))
CCSID UNICODE;

What to do next

You might eventually need to add or modify the data partitions. For more information, see “Adding
partitions” on page 216 and “Altering partitions” on page 221.

Related concepts

Partitioned (non-UTS) table spaces (deprecated)

A partitioned (non-UTS) table space stores data pages for a single table. Db2 divides the table space
into partitions. Non-UTS table spaces for base tables are deprecated and likely to be unsupported in the
future.

Related tasks

Creating base tables
When you create a table, Db2 records a definition of the table in the Db2 catalog.

Converting deprecated table spaces to the UTS types

The non-UTS segmented and partitioned table space types are deprecated. That is, they remain
supported, but support might be removed eventually, and it is best to convert them to the non-deprecated
types.

Converting partitioned (non-UTS) table spaces to partition-by-range universal table spaces
You can convert existing partitioned (non-UTS) table spaces, which are deprecated, to partition-by-range
table spaces.

Converting table spaces to use table-controlled partitioning

Before you can convert a partitioned (non-UTS) table space that uses index-controlled partitioning to a
partition-by-range table space, you must convert it to use table controlled partitioning. Table spaces that
use index-controlled partitioning, like all non-UTS table spaces are deprecated.

Nullable partitioning columns

Db2 lets you use nullable columns as partitioning columns. The use of nullable columns has different
implications for table-controlled partitioning than for index-controlled partitioning.

With table-controlled partitioning, Db2 can restrict the insertion of null values into a table with nullable
partitioning columns, depending on the order of the partitioning key:

« If the partitioning key is ascending, Db2 prevents the INSERT of a row with a null value for the key
column, unless a partition is created that specifies MAXVALUE, which will hold the null values.

« If the partitioning key is descending, Db2 prevents the INSERT of a row with a null value for the key
column, unless a partition is created that specifies MINVALUE, which will hold the null values.

Examples

GUPI
Example

Assume that a partitioned table space is created with the following SQL statements:

CREATE TABLESPACE TS IN DB
USING STOGROUP SG
NUMPARTS 4 BUFFERPOOL BPO;

CREATE TABLE TB (C01 CHAR(5),
C02 CHAR(5) NOT NULL,
CO3 CHAR(5) NOT NULL)
IN DB.TS
PARTITION BY (C01)
PARTITION 1 ENDING AT ('10000'),
PARTITION 2 ENDING AT ('20000'),

Chapter 2. Implementing your database design 79

PARTITION 3 ENDING AT ('30000'),
PARTITION 4 ENDING AT ('40000'));

Because the CREATE TABLE statement does not specify the order in which to put entries, Db2 puts
them in ascending order by default. Db2 subsequently prevents any INSERT into the TB table of a row
with a null value for partitioning column C01, because no partition specifies MAXVALUE. If the CREATE
TABLE statement had specified the key as descending and the first partition specified MINVALUE,

Db2 would subsequently have allowed an INSERT into the TB table of a row with a null value for
partitioning column C01. Db2 would have inserted the row into partition 1.

With index-controlled partitioning, Db2 does not restrict the insertion of null values into a value with
nullable partitioning columns.

Example
Assume that a partitioned table space is created with the following SQL statements:

CREATE TABLESPACE TS IN DB
USING STOGROUP SG
NUMPARTS 4 BUFFERPOOL BPO;

CREATE TABLE TB (CO1 CHAR(5),
C02 CHAR(5) NOT NULL,
C03 CHAR(5) NOT NULL)
IN DB.TS;

CREATE INDEX PI ON TB(CO1) CLUSTER
(PARTITION 1 ENDING AT ('10000'),
PARTITION 2 ENDING AT ('20000'),
PARTITION 3 ENDING AT ('30000'),
PARTITION 4 ENDING AT ('40000'));

Regardless of the entry order, Db2 allows an INSERT into the TB table of a row with a null value for
partitioning column CO1. If the entry order is ascending, Db2 inserts the row into partition 4; if the
entry order is descending, Db2 inserts the row into partition 1. Only if the table space is created with
the LARGE keyword does Db2 prevent the insertion of a null value into the CO1 column.

GUPI

Creating temporary tables

Temporary tables are useful when you need to sort or query intermediate result tables that contain large
numbers of rows and identify a small subset of rows to store permanently. The two types of temporary
tables are created temporary tables and declared temporary tables.

About this task

You can use temporary tables to sort large volumes of data and to query that data. Then, when you have
identified the smaller number of rows that you want to store permanently, you can store them in a base
table.

Use a created temporary table when you need a permanent, sharable description of a table, and you need
to store data only for the life of an application process. Use a declared temporary table when you need to
store data for the life of an application process, but you don't need a permanent, sharable description of
the table.

Procedure

To create a temporary table:
1. Determine the type of temporary table that you want to create.
2. Issue the appropriate SQL statement for the type of temporary table that you want to create:
« To define a created temporary table, issue the CREATE GLOBAL TEMPORARY TABLE statement.
« To define a declared temporary table, issue the DECLARE GLOBAL TEMPORARY TABLE statement.

80 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

Creating created temporary tables

If you need a permanent, sharable description of a table but need to store data only for the life of an
application process, you can define and use a created temporary table.

About this task

Db2 does not log operations that it performs on created temporary tables; therefore, SQL statements that
use created temporary tables can execute more efficiently. Each application process has its own instance
of the created temporary table.

Procedure
Issue the CREATE GLOBAL TEMPORARY TABLE statement.

Example
GUPI" The following statement defines a created temporary table that is named TEMPPROD.

CREATE GLOBAL TEMPORARY TABLE TEMPPROD
(SERIALNO CHAR(8) NOT NULL,
DESCRIPTION VARCHAR(60) NOT NULL,
MFGCOSTAMT DECIMAL(8,2)
MFGDEPTNO CHAR(3) o
MARKUPPCT SMALLINT
SALESDEPTNO CHAR(3) 0
CURDATE DATE NOT NULL);

GUPI

Related tasks

Setting default statistics for created temporary tables (Db2 Performance)
Related reference

CREATE GLOBAL TEMPORARY TABLE (Db2 SQL)

Creating declared temporary tables

If you need to store data for the life of an application process, but you don't need a permanent, sharable
description of the table, you can define and use a declared temporary table.

About this task

Unlike other Db2 DECLARE statements, DECLARE GLOBAL TEMPORARY TABLE is an executable
statement that you can embed in an application program or issue interactively. You can also dynamically
prepare the statement.

When a program in an application process issues a DECLARE GLOBAL TEMPORARY TABLE statement, Db2
creates an empty instance of the table. You can populate the declared temporary table by using INSERT
statements, modify the table by using searched or positioned UPDATE or DELETE statements, and query
the table by using SELECT statements. You can also create indexes on the declared temporary table. The
definition of the declared temporary table exists as long as the application process runs.

When you create an index on a declared global temporary table, and the specified buffer pool does not
match the default index buffer pool of the work file database, your privilege set must include the USE
privilege for the buffer pool. Similarly, when you create an index on a declared global temporary table
and the specified storage group does not match the default storage group of the work file database, your
privilege set must include the USE privilege for the storage group.

At the end of an application process that uses a declared temporary table, Db2 deletes the rows of the
table and implicitly drops the description of the table.

Chapter 2. Implementing your database design 81

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_setstatisticsfortemptables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createglobaltemptable.html

Procedure
Issue the DECLARE GLOBAL TEMPORARY TABLE statement.

Example

GUPI- The following statement defines a declared temporary table, TEMP_EMP. (This example assumes
that you have already created the WORKFILE database and corresponding table space for the temporary
table.)

DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMP_EMP
(EMPNO CHAR(6) NOT NULL,
SALARY DECIMAL(9, 2) .
COMM DECIMAL(9, 2));

If specified explicitly, the qualifier for the name of a declared temporary table, must be SESSION. If the
qualifier is not specified, it is implicitly defined to be SESSION. “GUPI

Related reference
DECLARE GLOBAL TEMPORARY TABLE (Db2 SQL)

Distinctions between Db2 base tables and temporary tables
Db2 base tables and the two types of temporary tables have several distinctions.

The following table summarizes important distinctions between base tables, created temporary tables,
and declared temporary tables.

82 Db2 12 for z/0OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_declareglobaltemptable.html

Table 13. Important distinctions between Db2 base tables and Db2 temporary tables

Area of Declared temporary tables
distinction Base tables Created temporary tables

Creation, CREATE TABLE statement CREATE GLOBAL DECLARE GLOBAL TEMPORARY
persistence, and puts a description of the TEMPORARY TABLE TABLE statement does not

ability to share
table
descriptions

table in catalog table
SYSTABLES. The table
description is persistent
and is shareable across
application processes.

The name of the table in

the CREATE statement can
be a two-part or three-part
name. If the table name is
not qualified, Db2 implicitly
qualifies the name using the
standard Db2 qualification
rules applied to the SQL
statements.

statement puts a description
of the table in catalog

table SYSTABLES. The table
description is persistent

and is shareable across
application processes.

The name of the table in

the CREATE statement can
be a two-part- or three-part
name. If the table name is
not qualified, Db2 implicitly
qualifies the name using the
standard Db2 qualification
rules applied to the SQL
statements.

The table space that is

used by created temporary
tables is reset by the
following commands: START
DB2, START DATABASE, and
START DATABASE(dbname)
SPACENAM(tsnhame), where
dbname is the name of the
database and tsname is the
name of the table space.

put a description of the table

in catalog table SYSTABLES.
The table description is not
persistent beyond the life of the
application process that issued
the DECLARE statement and the
description is known only to
that application process. Thus,
each application process could
have its own possibly unique
description of the same table.

The name of the table in the
DECLARE statement can be a
two-part or three-part name.
If the table name is qualified,
SESSION must be used as the
qualifier for the owner (the
second part in a three-part
name). If the table name is not
qualified, Db2 implicitly uses
SESSION as the qualifier.

The table space used by
declared temporary tables
is reset by the following
commands: START DB2,
START DATABASE, and
START DATABASE(dbname)
SPACENAM(tsname), where
dbname is the name of the
database and tsname is the
name of the table space.

Table
instantiation
and ability to
share data

CREATE TABLE statement
creates one empty instance
of the table, and all
application processes use
that one instance of the
table. The table and data are
persistent.

CREATE GLOBAL
TEMPORARY TABLE
statement does not create
an instance of the table.
The first implicit or explicit
reference to the table in

an OPEN, SELECT, INSERT,
or DELETE operation that is
executed by any program

in the application process
creates an empty instance
of the given table. Each
application process has its
own unique instance of the
table, and the instance is not
persistent beyond the life of
the application process.

DECLARE GLOBAL TEMPORARY
TABLE statement creates an
empty instance of the table

for the application process.
Each application process has
its own unique instance of the
table, and the instance is not
persistent beyond the life of the
application process.

Chapter 2. Implementing your database design 83

Table 13. Important distinctions between Db2 base tables and Db2 temporary tables (continued)

Area of
distinction

Base tables

Created temporary tables

Declared temporary tables

References to
the table in
application
processes

References to the table
name in multiple application
processes refer to the

same single persistent table
description and to the same
instance at the current
server.

If the table name that

is being referenced is not
qualified, Db2 implicitly
qualifies the name using the
standard Db2 qualification
rules that apply to the SQL
statements. The name can
be a two-part- or three-part
name.

References to the table
name in multiple application
processes refer to the

same single persistent table
description but to a distinct
instance of the table for
each application process at
the current server.

If the table name that

is being referenced is not
qualified, Db2 implicitly
qualifies the name using the
standard Db2 qualification
rules that apply to the SQL
statements. The name can
be a two-part or three-part
name.

References to that table
name in multiple application
processes refer to a distinct
description and instance of
the table for each application
process at the current server.

References to the table name
in an SQL statement (other
than the DECLARE GLOBAL
TEMPORARY TABLE statement)
must include SESSION as the
qualifier (the first part in a two-
part table name or the second
part in a three-part name). If
the table name is not qualified
with SESSION, Db2 assumes
the reference is to a base table.

Table privileges
and
authorization

The owner implicitly has

all table privileges on the
table and the authority to
drop the table. The owner's
table privileges can be
granted and revoked, either
individually or with the ALL
clause.

Another authorization ID can
access the table only if it has
been granted appropriate
privileges for the table.

The owner implicitly has all
table privileges on the table
and the authority to drop
the table. The owner's table
privileges can be granted
and revoked, but only with
the ALL clause; individual
table privileges cannot be
granted or revoked.

Another authorization ID can
access the table only if it has
been granted ALL privileges
for the table.

PUBLIC implicitly has all table
privileges on the table without
GRANT authority and has the
authority to drop the table.
These table privileges cannot be
granted or revoked.

Any authorization ID can access
the table without a grant of any
privileges for the table.

Indexes and
other SQL
statement
support

Indexes and SQL statements
that modify data (INSERT,
UPDATE, DELETE, and so on)
are supported.

Indexes, UPDATE (searched
or positioned), and DELETE
(positioned only) are not
supported.

Indexes and SQL statements
that modify data (INSERT,
UPDATE, DELETE, and so on)
are supported.

84 Db2 12 for z/0OS: Administration Guide (Last updated: 2024-03-29)

Table 13. Important distinctions between Db2 base tables and Db2 temporary tables (continued)

Area of Declared temporary tables
distinction Base tables Created temporary tables
Locking, Locking, logging, and Locking, logging, and Some locking, logging, and

logging, and recovery do apply.
recovery

recovery do not apply. Work
files are used as the space
for the table.

limited recovery do apply. No
row or table locks are acquired.
Share-level locks on the table
space and DBD are acquired.

A segmented table lock is
acquired when all the rows are
deleted from the table or the
table is dropped. Create and
drop actions for the table are
always logged. Logging of insert,
update, and delete operations
can be disabled with the NOT
LOGGED option. Undo recovery
(rolling back changes to a
savepoint or the most recent
commit point) is supported,
but redo recovery (forward log
recovery) is not supported.

Table space and Table space and database

Table space and database

Table space and database

database operations do apply. operations do not apply. operations do apply.
operations

Table space The table can be stored The table is stored in table The table is stored in a table
requirements in implicitly created table spaces in the work file space in the work file database.

and table size spaces and databases.

limitations The table cannot span

table spaces. Therefore,

the size of the table is
limited by the table space
size (as determined by

the primary and secondary
space allocation values that
are specified for the table
space's data sets) and the
shared usage of the table
space among multiple users.
When the table space is full,
an error occurs for the SQL
operation.

database.

The table can span work file
table spaces. Therefore, the
size of the table is limited
by the number of available
work file table spaces, the
size of each table space,
and the number of data

set extents that are allowed
for the table spaces. Unlike
the other types of tables,
created temporary tables do
not reach size limitations as
easily.

The table cannot span table
spaces. Therefore, the size of
the table is limited by the

table space size (as determined
by the primary and secondary
space allocation values that are
specified for the table space's
data sets) and the shared
usage of the table space among
multiple users. When the table
space is full, an error occurs for
the SQL operation.

Related concepts

Temporary tables (Db2 Application programming and SQL)

Related tasks
Creating temporary tables

Temporary tables are useful when you need to sort or query intermediate result tables that contain large
numbers of rows and identify a small subset of rows to store permanently. The two types of temporary
tables are created temporary tables and declared temporary tables.

Setting default statistics for created temporary tables (Db2 Performance)

Related reference

CREATE GLOBAL TEMPORARY TABLE (Db2 SQL)

Chapter 2. Implementing your database design 85

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_temptable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_setstatisticsfortemptables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createglobaltemptable.html

DECLARE GLOBAL TEMPORARY TABLE (Db2 SQL)

Creating temporal tables

You can create a temporal table, which is a table that records the period of time when a row is valid.
Related information

Managing Ever-Increasing Amounts of Data with IBM Db2 for z/OS: Using Temporal Data Management,
Archive Transparency, and the IBM Db2 Analytics Accelerator for z/OS (IBM Redbooks)

Temporal tables and data versioning
A temporal table is a table that records the period of time when a row is valid.

A period is an interval of time that is defined by two datetime columns in a temporal table. A period
contains a begin column and an end column. The begin column indicates the beginning of the period, and
the end column indicates the end of the period.

Db2 supports two types of periods, which are the system period (SYSTEM_TIME) and the application
period (BUSINESS_TIME).

System-period data versioning

The system period consists of a pair of columns with system-maintained values that indicate the period
of time when a row is valid. The begin column contains the timestamp value for when a row is created.
The end column contains the timestamp value for when a row is updated or deleted. The beginning value
of the period is inclusive, but the ending value of a period is exclusive. For example, if the begin column
has a value of '01/01/1995/, that date belongs in the row. Whereas, if the end column has a value of
'03/21/1995/, that date is not part of the row.

The system period is meaningful because of system-period data versioning. System-period data
versioning specifies that old rows are archived into another table. The table that contains the current
active rows of a table is called the system-period temporal table. The table that contains the archived

rows is called the history table. You can delete the rows from the history table when those rows are no
longer needed, if you have the correct authorization. When you define a base table to use system-period
data versioning, or when you define system-period data versioning on an existing table, you must create a
history table, specify a name for the history table, and create a table space to hold that table. You define
versioning by issuing the ALTER TABLE ADD VERSIONING statement with the USE HISTORY TABLE clause.

When you update or delete a row in a system-period temporal table, Db2 inserts the previous version

of the row into the history table. The historical versions of rows are written to the history table to

record committed versions of the data in the associated system-period temporal table. Intermediate or
uncommitted versions of rows in a system-period temporal table are not normally recorded in the history
table. If a row in a system-period temporal table is updated multiple times within a single unit of work,
and then a commit occurs, only one new historical version of that row is recorded in the history table. If
arow is inserted into a system-period temporal table, and the insert is rolled back, nothing is recorded in
the history table for the insert that was never committed. You can query a system-period temporal table
with timestamp criteria to retrieve previous data values. You can specify the timestamp criteria in the
query or by using special registers.

You can use system-period data versioning instead of developing your own programs for maintaining
multiple versions of data within a database. With Db2, system-period data versioning is a more efficient
method for maintaining versioned data.

You can use system-period temporal tables to track auditing information about when data changes
occurred. If you want to track more information, such as who changed the data and the SQL operation
that changed the data, you can include non-deterministic generated expression columns in the system-
period temporal table.

Timestamps are normally recorded at the start and end of a business function. However, the start and
end times of the work units with a business function are not recorded. For a more granular record of start
and end timestamps, you can use temporal logical transactions. Temporal logical transactions allow you to

86 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_declareglobaltemptable.html
http://www.redbooks.ibm.com/abstracts/sg248316.html?Open
http://www.redbooks.ibm.com/abstracts/sg248316.html?Open

specify when a transaction starts, so that its time is recorded. For example, you can use Temporal logical
transactions to record of the start and end timestamps for each individual transaction in a batch job.

For a list of restrictions that apply to system-period temporal tables, see “Restrictions for system-period
data versioning” on page 90.

Application-period data versioning

The application period consists of a pair of columns with application-maintained values that indicate

the period of time when a row is valid. The begin column contains the value from which a row is

valid from. The end column contains the value for when a row stops being valid. A table with only an
application period is called an application-period temporal table. For application-period temporal tables,
the beginning value of the period is always inclusive. By default, the ending value of a period is exclusive.
However, you can specify that the ending value of a period be inclusive by using the INCLUSIVE keyword.

When you use the application period, determine the need for Db2 to enforce uniqueness across time. You
can create a UNIQUE index that is unique over a period of time.

Bitemporal tables

A bitemporal table is a table that is both a system-period temporal table and an application-period
temporal table. You can use a bitemporal table to keep application period information and system-based
historical information. Therefore, you have a lot of flexibility in how you query data, based on periods of
time.

Related concepts

Recovery of temporal tables with system-period data versioning

You must recover a system-period temporal table that is defined with system-period data versioning
and its corresponding history table, as a set, to a single point in time. You can recover the table spaces
individually only if you specify the VERIFYSET NO option in the RECOVER utility statement.

Related tasks

Adding a system period and system-period data versioning to an existing table
You can alter existing tables to use system-period data versioning.

Creating a system-period temporal table
You can create a temporal table that has a system period and define system-period data versioning on the
table, so that the data is versioned after insert, update, and delete operations.

Adding an application period to a table
You can alter a table to add an application period so that you maintain the beginning and ending values for
a row.

Creating an application-period temporal table

An application-period temporal table is a type of temporal table where you maintain the values that
indicate when a row is valid. The other type of temporal table is a system-period temporal table where Db2
maintains the values that indicate when a row is valid.

Creating a system-period temporal table

You can create a temporal table that has a system period and define system-period data versioning on the
table, so that the data is versioned after insert, update, and delete operations.

Before you begin

You can also alter existing tables to use system-period data versioning. For more information, see “Adding
a system period and system-period data versioning to an existing table” on page 232.

Chapter 2. Implementing your database design 87

About this task

A system period is a system-maintained period in which Db2 maintains the beginning and ending
timestamp values for a row.

The row-begin column of the system period contains the timestamp value for when a row is created. The
row-end column contains the timestamp value for when a row is removed. A transaction-start-ID column
contains a unique timestamp value that Db2 assigns per transaction, or the null value.

For a list of restrictions that apply to tables that use system-period data versioning, see “Restrictions for
system-period data versioning” on page 90.

Procedure
To create a temporal table with a system period and define system-period data versioning on the table:
1. Issue a CREATE TABLE statement with a SYSTEM_TIME clause.

The created table must have the following attributes:

« A row-begin column that is defined as TIMESTAMP(12) NOT NULL with the GENERATED ALWAYS AS
ROW BEGIN attribute.

« Arow-end column that is defined as TIMESTAMP(12) NOT NULL with the GENERATED ALWAYS AS
ROW END attribute.

« A system period (SYSTEM_TIME) defined on two timestamp columns. The first column is the row-
begin column and the second column is the row-end column.

« A transaction-start-ID column that defined as TIMESTAMP(12) NOT NULL with the GENERATED
ALWAYS AS TRANSACTION START ID attribute.

« The only table in the table space
« The table definition is complete

It cannot have clone table defined on it, and it cannot have the following attributes:

« Column masks
« Row permissions
« Security label columns

2. Issue a CREATE TABLE statement to create a history table that receives the old rows from the system-
period temporal table.

The history table must have the following attributes:
« The same number of columns as the system-period temporal table that it corresponds to

« Columns with the same names, data types, null attributes, CCSIDs, subtypes, hidden attributes,
and field procedures as the corresponding system-period temporal table. However, the history table
cannot have any GENERATED ALWAYS columns unless the system-period temporal table has a
ROWID GENERATED ALWAYS or ROWID GENERATED BY DEFAULT column. In that case, the history
table must have a corresponding ROWID GENERATED ALWAYS column. .

- The only table in the table space
« The table definition is complete

A history table cannot be a materialized query table, an archive-enabled table, or an archive table,
cannot have a clone table defined on it, and cannot have the following attributes:

« Identity columns or row change timestamp columns

« ROW BEGIN, ROW END, or TRANSACTION START ID columns
« Column masks

* Row permissions

« Security label columns

« System or application periods

88 Db2 12 for z/0OS: Administration Guide (Last updated: 2024-03-29)

3. Issue the ALTER TABLE ADD VERSIONING statement with the USE HISTORY TABLE clause to define
system-period data versioning on the table.

By defining system-period data versioning, you establish a link between the system-period temporal
table and the history table.

Example

The following examples show how you can create a temporal table with a system period, create a history
table, and then define system-period data versioning on the table. Also, a final example shows how to
insert data.

GUPI The following example shows a CREATE TABLE statement for creating a temporal table with a
SYSTEM_TIME period. In the example, the sys_start column is the row-begin column, sys_end is the
row-end column, and create_id is the transaction-start-ID column. The SYSTEM_TIME period is defined
on the ROW BEGIN and ROW END columns:

CREATE TABLE policy_info

(policy_id CHAR(20) NOT NULL,

coverage INT NOT NULL,

sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,
sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,
create_id TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION START 1ID,
PERIOD SYSTEM_TIME(sys_start,sys_end));

This example shows a CREATE TABLE statement for creating a history table:

CREATE TABLE hist_policy_info
(policy_id CHAR(10) NOT NULL,
coverage INT NOT NULL,

sys_start TIMESTAMP(12) NOT NULL,
sys_end TIMESTAMP(12) NOT NULL,
create_id TIMESTAMP(12))

To define versioning, issue the ALTER TABLE statement with the ADD VERSIONING clause and the USE
HISTORY TABLE clause, which establishes a link between the system-period temporal table and the
history table:

ALTER TABLE policy_info
ADD VERSIONING USE HISTORY TABLE hist_policy_info;

The following example shows how to insert data in the POLICY_ID and COVERAGE columns of the
POLICY_INFO table:

INSERT INTO POLICY_INFO (POLICY_ID, COVERAGE)
VALUES('A123', 12000);

If you want to use temporal tables to track auditing information, see the example in “Scenario for tracking
auditing information” on page 95.

GUPI

Related concepts

Temporal tables and data versioning
A temporal table is a table that records the period of time when a row is valid.

Related reference
CREATE TABLE (Db2 SQL)
ALTER TABLE (Db2 SQL)
Related information

Managing Ever-Increasing Amounts of Data with IBM Db2 for z/OS: Using Temporal Data Management,
Archive Transparency, and the IBM Db2 Analytics Accelerator for z/OS (IBM Redbooks)

Chapter 2. Implementing your database design 89

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertable.html
http://www.redbooks.ibm.com/abstracts/sg248316.html?Open
http://www.redbooks.ibm.com/abstracts/sg248316.html?Open

Restrictions for system-period data versioning
When a table is enabled for system-period data versioning, certain restrictions apply.

« For point-in-time recovery, to keep the data in the system-period temporal table and the data in the
history table synchronized, you must recover the table spaces for both tables as a set. You can recover
the table spaces individually only if you specify the VERIFYSET NO option in the RECOVER utility
statement.

« You cannot run a utility operation that deletes data from a system-period temporal table. These utilities
include LOAD REPLACE, REORG DISCARD, and CHECK DATA DELETE YES.

 You cannot run the CHECK DATA utility on a system-period temporal table with the following options:
SHRLEVEL REFERENCE, LOBERROR INVALIDATE, AUXERROR INVALIDATE, or XMLERROR INVALIDATE.
When these options are specified, the CHECK DATA utility fails with return code 8 and message
DSNUQ761.

« You cannot alter the schema (data type, check constraint, referential constraint, etc.) of a system-period
temporal table or history table; however, you can add a column to system-period temporal table.

« You cannot drop the history table or its table space.
You cannot define a clone table on the system-period temporal table or the history table.

You cannot create another table in table space for either the system-period temporal table or history
table.

- On the history table, you cannot use the UPDATE, DELETE, or SELECT statement syntax that specifies
the application period.

« You cannot rename a column or table name of a system-period temporal table or a history table.

Related concepts

Temporal tables and data versioning
A temporal table is a table that records the period of time when a row is valid.

Related reference
CHECK DATA (Db2 Utilities)

System-period temporal tables and the switch from daylight saving time to
standard time

You might get SQL errors if you update system-period temporal tables during the hour before the switch
to standard time.

If your system uses daylight saving time during a portion of the year, and your row-begin column, row-end
column, and transaction-start-ID column in a system-period temporal table are defined as TIMESTAMP
WITHOUT TIME ZONE, might get errors with SQLCODE -20528 when you update the temporal table
between 1:00 a.m. and 1:59 a.m. before or after the time change. The following example demonstrates
how the error can occur.

1. Suppose that you create system-period temporal table POLICY_INFO:

CREATE TABLE POLICY_INFO
(POLICY_ID CHAR(10) NOT NULL,
COVERAGE INT NOT NULL,
SYS_START TIMESTAMP(12) WITHOUT TIME ZONE
NOT NULL GENERATED ALWAYS AS ROW BEGIN,
SYS_END TIMESTAMP(12) WITHOUT TIME ZONE
NOT NULL GENERATED ALWAYS AS ROW END,
TRANS_START_ID TIMESTAMP(12) WITHOUT TIME ZONE
GENERATED ALWAYS AS TRANSACTION START 1ID,
PERIOD SYSTEM_TIME(SYS_START,SYS_END));

2. Next, you create history table HIST_POLICY_INFO, and alter table POLICY_INFO to associate history
table HIST_POLICY_INFO with POLICY_INFO:

CREATE TABLE HIST_POLICY_INFO
(POLICY_ID CHAR(10) NOT NULL,
COVERAGE INT NOT NULL,

90 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_checkdata.html

SYS_START TIMESTAMP(12) WITHOUT TIME ZONE NOT NULL,
SYS_END TIMESTAMP(12) WITHOUT TIME ZONE NOT NULL,
TRANS_START_ID TIMESTAMP(12) WITHOUT TIME ZONE);

ALTER TABLE POLICY_INFO
ADD VERSIONING USE HISTORY TABLE HIST_POLICY_INFO;

3. At 1:30 a.m. on the day on which the switch to standard time occurs, you issue this SQL statement,
which inserts a row into POLICY_INFO.

INSERT INTO POLICY_INFO (POLICY_ID, COVERAGE)
VALUES('B123', 12500);

The POLICY_ID, COVERAGE, SYS_START and SYSEND columns of POLICY_INFO contain these values:

POLICY_ID COVERAGE SYS_START SYS_END

B123 15000 2020-11-01-01.30.00.000000000000 9999-12-30-00.00.00.000000000000

4. Your system administrator switches the system to standard time at 2:00 a.m., which changes the time
to 1:00 a.m.

5. At 1:25 a.m., after the switch to standard time occurs, you issue this SQL statement, which updates
the row that you inserted in POLICY_INFO in the previous step.

UPDATE POLICY_INFO SET COVERAGE=12500
WHERE POLICY_ID='B123';

If this update operation succeeded, a record like this would be written in the HIST_POLICY_INFO
table:

POLICY_ID COVERAGE SYS_START SYS_END

B123 12500 2020-11-01-01.30.00.000000000000 2020-11-01-01.25.00.000000000000

The row-begin column would have a greater value than the row-end column. Db2 therefore does not
allow the update operation, and issues an error with SQLCODE -20528.

To avoid SQLCODE -20528 errors because of the switch to standard time, you can take one of these
actions:

« Do not do any updates to system-period temporal tables between 1:00 a.m. and 1:59 a.m. before or
after the switch from daylight saving time to standard time.

« Define the row-begin, row-end, and transaction-start-ID columns in your system-period temporal tables
and history tables as TIMESTAMP(12) WITH TIME ZONE. When the columns are defined in that way,
their data is stored in UTC, with a time zone of +00:00, so the time change cannot result in a row-begin
column with a time that is later than the row-end column time.

Related information
-20528 (Db2 Codes)

Creating an application-period temporal table

An application-period temporal table is a type of temporal table where you maintain the values that
indicate when a row is valid. The other type of temporal table is a system-period temporal table where Db2
maintains the values that indicate when a row is valid.

About this task

When you create an application-period temporal table, you define begin and end columns to indicate the
application period, or period of time when the row is valid. The begin column contains the time from
which a row is valid. The end column contains the time when a row stops being valid.

Chapter 2. Implementing your database design 91

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/n20528.html

Procedure

Issue a CREATE TABLE statement with the following items:

Two columns to define the application period. These columns are the begin and end columns. They
must be type TIMESTAMP(6) WITHOUT TIME ZONE NOT NULL or DATE NOT NULL, and they must be the
same type. The data type cannot be a user-defined type.

The BUSINESS_TIME clause.

Examples

GUPI

Example of creating an application-period temporal table

The following example SQL statements create a table with an application period and a unique index:

CREATE TABLE policy_info

(policy_id CHAR(4) NOT NULL,

coverage INT NOT NULL,

bus_start DATE NOT NULL,

bus_end DATE NOT NULL,

PERIOD BUSINESS_TIME(bus_start, bus_end));

CREATE UNIQUE INDEX ix_policy
ON policy_info (policy_id, BUSINESS_TIME WITHOUT OVERLAPS);

The specified application period means that a row is valid from bus-start, including the bus-start value,
to bus-end, but not including the bus-end value. This type of period is called an inclusive-exclusive
period and is the default behavior for application periods.

Example of creating an application-period temporal table with an inclusive-inclusive period of data
type DATE

The following example CREATE TABLE statement contains the INCLUSIVE keyword in the definition of
the application period to indicate an inclusive-inclusive period:

CREATE TABLE policy_info (policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,

bus_start DATE NOT NULL,

bus_end DATE NOT NULL,

PERIOD BUSINESS_TIME (bus_start, bus_end INCLUSIVE));

The inclusive-inclusive period means that a row is valid from bus-start, including the bus-start value,
to bus-end, including the bus-end value. In this case, the data type of these columns is DATE.

Suppose that you issue the following INSERT statement:
INSERT INTO policy_info VALUES('A123', 12000, '2008-01-01', '2008-06-30')

The policy_info table then contains the following data:

policy_id coverage bus-start bus_end

Al123 12000 2008-01-01 2008-06-30

Suppose that you then issue the following update statement to change the coverage amount for policy
A123 between May 1, 2008 and May 31, 2008.

UPDATE policy_info FOR PORTION OF BUSINESS_TIME
BETWEEN

'2008-05-01"

AND

'2008-05-31"

SET coverage = 14000

WHERE policy_id = 'A123';

The policy_info table then contains the following rows:

92 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

policy_id coverage bus-start bus_end

A123 12000 2008-01-01 2008-04-30
A123 14000 2008-05-01 2008-05-31
A123 12000 2008-06-01 2008-06-30

The middle row shows the updated values for the specified period of time. In addition, two rows were
inserted to represent the part of the row that was not affected by the UPDATE statement.

Example of creating an application-period temporal table with an inclusive-inclusive period of data

type TIMESTAMP

The following example CREATE TABLE statement creates a table with an inclusive-inclusive

application period with type TIMESTAMP(6).

CREATE TABLE policy_info (policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,

bus_start TIMESTAMP(6) NOT NULL,

bus_end TIMESTAMP(6) NOT NULL,

PERIOD BUSINESS_TIME (bus_start, bus_end INCLUSIVE));

Suppose that you issue the following INSERT statement:

INSERT INTO policy_info VALUES('A123', 12000,
'2008-06-30 17:30:00.000000") ;

The policy_info table then contains the following data:

'2008-01-01 08:30:00.000000",

policy_id coverage bus-start bus_end
A123 12000 2008-01-01-08.30.00.00 2008-06-30-17.30.00.00
0000 0000

Suppose that you then issue the following update statement to change the coverage amount for policy

A123 between the indicated TIMESTAMP values:

UPDATE policy_info FOR PORTION OF BUSINESS_TIME
BETWEEN

'2008-05-01 09:30:00.000001"'

AND

'2008-05-31 18:30:00.999999'

SET coverage = 14000

WHERE policy_id = 'Al123';

The policy_info table then contains the following rows:

policy_id coverage bus-start bus_end

Al123 12000 2008-01-01-08.30.00.00 2008-05-01-09.30.00.00
0000 0000

A123 14000 2008-05-01-09.30.00.00 2008-05-31-18.30.00.99
0001 9999

A123 12000 2008-05-31-18.30.01.00 2008-06-30-17.30.00.00
0000 0000

GUPI

Related concepts
Temporal tables and data versioning

A temporal table is a table that records the period of time when a row is valid.

Related reference
CREATE TABLE (Db2 SQL)

Chapter 2. Implementing your database design 93

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html

CREATE INDEX (Db2 SQL)

Creating bitemporal tables

You can create a bitemporal table that maintains both system-based historical information and
application period information.

About this task

You maintain system-based historical information by adding a system period to a table, and you maintain
application period information by adding an application period to the table.

For a list of restrictions that apply to tables that use system-period data versioning, see “Restrictions for
system-period data versioning” on page 90.

Procedure

To create a bitemporal table and define system-period data versioning on the table:
1. Issue a CREATE TABLE statement with both the SYSTEM_TIME clause and the BUSINESS_TIME clause.

For more information about the requirements for the history table, see “Creating a system-period
temporal table” on page 87 and “Creating an application-period temporal table” on page 91.

2. Issue a CREATE TABLE statement to create a history table that receives the old rows from the
bitemporal table.

3. Issue the ALTER TABLE ADD VERSIONING statement with the USE HISTORY TABLE clause to define
system-period data versioning and establish a link between the bitemporal table and the history table.

Example

The following examples show how you can create a bitemporal table, create a history table, and then
define system-period data versioning.

GUPI This example shows a CREATE TABLE statement with the SYSTEM_TIME and BUSINESS_TIME
clauses for creating a bitemporal table:

CREATE TABLE policy_info

(policy_id CHAR(4) NOT NULL,

coverage INT NOT NULL,

bus_start DATE NOT NULL,

bus_end DATE NOT NULL,

sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,
sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,
create_id TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION START 1ID,
PERIOD BUSINESS_TIME (bus_start, bus_end),

PERIOD SYSTEM_TIME(sys_start, sys_end));

This example shows a CREATE TABLE statement for creating a history table:

CREATE TABLE hist_policy_info
(policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,

bus_start DATE NOT NULL,

bus_end DATE NOT NULL,

sys_start TIMESTAMP(12) NOT NULL,
sys_end TIMESTAMP(12) NOT NULL,
create_id TIMESTAMP(12));

This example shows the ALTER TABLE ADD VERSIONING statement with the USE HISTORY TABLE clause
that establishes a link between the bitemporal table and the history table to enable system-period data
versioning. Also, a unique index is added to the bitemporal table.

ALTER TABLE policy_info
ADD VERSIONING USE HISTORY TABLE hist_policy_info;

94 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html

CREATE UNIQUE INDEX ix_policy
ON policy_info (policy_id, BUSINESS_TIME WITHOUT OVERLAPS);

GUPI

Related concepts

Temporal tables and data versioning

A temporal table is a table that records the period of time when a row is valid.
Related tasks

Adding a system period and system-period data versioning to an existing table
You can alter existing tables to use system-period data versioning.

Adding an application period to a table
You can alter a table to add an application period so that you maintain the beginning and ending values for
a row.

Related reference
CREATE TABLE (Db2 SQL)
ALTER TABLE (Db2 SQL)

Scenario for tracking auditing information

Db2 can track some basic auditing information for you. Db2 can track when the data was modified, who
modified the data, and the SQL operation that modified the data.

To track when the data was modified, define your table as a system-period temporal table. When data in
a system-period temporal table is modified, information about the changes is recorded in its associated
history table.

To track who and what SQL statement modified the data, you can use non-deterministic generated
expression columns. These columns can contain values that are helpful for auditing purposes, such as
the value of the CURRENT SQLID special register at the time that the data was modified. You can define
several variations of generated expression columns by using the appropriate CREATE TABLE or ALTER
TABLE syntax. Each variation of generated expression column results in a different type of generated
values.

In the following scenario, a system-period temporal table is created with non-deterministic generated
expression columns to track auditing information.

Suppose that you issue the following statement to create a system-period temporal table called STT:

CREATE TABLE STT (balance INT,
user_id VARCHAR(128) GENERATED ALWAYS AS (SESSION_USER) ,
op_code CHAR(1)
GENERATED ALWAYS AS (DATA CHANGE OPERATION)
. SYSTEM PERIOD (SYS_START, SYS_END));

The user_id column is to store who modified the data. This column is defined as a non-deterministic
generated expression column that will contain the value of the SESSION_USER special register at the time
of a data change operation.

The op_code column is to store the SQL operation that modified that data. This column is also defined as a
non-deterministic generated expression column.

Suppose that you then issue the following statements to create a history table for STT and to associate
that history table with STT:

CREATE TABLE STT_HISTORY (balance INT, user_id VARCHAR(128) , op_code CHAR(1) ...);

ALTER TABLE STT ADD VERSIONING
USE HISTORY TABLE STT_HISTORY ON DELETE ADD EXTRA ROW;

In the ALTER TABLE statement, the ON DELETE ADD EXTRA ROW clause indicates that when a row is
deleted from STT, an extra row is to be inserted into the history table. This extra row in the history table

Chapter 2. Implementing your database design 95

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertable.html

is to contain values for the non-deterministic generated expression columns (user_id and op_code) at the
time of the delete operation.

Now, consider what happens as the STT table is modified. For simplicity, date values are used instead of
time stamps for the period columns in this scenario.

Assume that on 15 June 2010, user KWAN issues the following statement to insert a row into STT:
INSERT INTO STT (balance) VALUES (1)

After the insert, the tables contain the following data.

Table 14. Data after insert
Table Data (balance, user_id, op_code, sys_start, sys_end)

STT (1, '"KWAN', ‘I", 2010-06-15, 9999-12-30)

STT_HISTORY Empty

Later, on 1 December 2011, user HAAS issues the following statement to update the row:
UPDATE STT SET balance = balance + 9;

This update results in the following data in the tables:

Table 15. Data after update

Table Data

STT (10, 'HAAS', 'U', 2011-12-01, 9999-12-30)

STT_HISTORY T (1, 'KWAN', 'I', 2010-06-15, 2011-12-01)

On 20 December 2013, user THOMPSON issues the following statement to delete the row:

DELETE FROM STT;

This deletion results in the following data in the tables:

Table 16. Data after deletion

Table Data
STT Empty

STT_HISTORY (1, 'KWAN', 'I', 2010-06-15, 2011-12-01)
(10, 'HAAS', 'U', 2011-12-01, 2013-12-20)
(10, 'THOMPSON', 'D', 2013-12-20, 2013-12-20)

The rows in STT_HISTORY contain the following information:

Row 1
Row 1 records the history that resulted from the update statement that was issued by HAAS and

reflects the values of the row in the system-period temporal table before HAAS issued the update
statement: user KWAN issued an insert statement (‘I’) on 15 June 2010 that set balance=1. This row
was valid until 1 December 2011, which is the date that user HAAS issued the update statement that

supplanted KWAN’s insert statement.

96 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

Row 2

Row 2 records the history that resulted from the delete statement that was issued by THOMPSON
and reflects the values of the row in the system-period temporal table before THOMPSON issued
the delete statement: user HAAS issued an update statement (‘U’) on 1 December 2011 that set
balance=10. This row was valid until 20 December 2013, which is the date that THOMPSON issued
the statement that deleted the row.

Row 3
Because the ON DELETE ADD EXTRA ROW clause was specified in the definition of the system-period
temporal table, row 3 was added to record information about the delete operation itself. Row 3
indicates that THOMPSON issued a delete statement (‘D’) on 20 December 2013 and that balance=10
at the time the row was deleted.

Row 2 and row 3 are identical for user data (the value of the balance column). The difference is the
auditing columns: the new generated expression columns that record who initiated the action and which
data change operation the row represents.

A SELECT statement with explicit or implicit FOR SYSTEM_TIME period specifications can transparently
access historical data (or a combination of current and historical data). For this type of query, the third row
in the history table is not included in the result.

Related concepts

Temporal tables and data versioning
A temporal table is a table that records the period of time when a row is valid.

Related reference
CREATE TABLE (Db2 SQL)
ALTER TABLE (Db2 SQL)

Finding the name of a history table

A history table is a base table that is associated with a system-period temporal table. A history table
is used by Db2 to store the historical versions of the rows from the associated system-period temporal
table.

About this task

If you know the name of the system-period temporal table, you can find the name of the corresponding
history table.

Procedure

Issue a SELECT statement, such as:

SELECT VERSIONING_SCHEMA, VERSIONING_TABLE FROM SYSIBM.SYSTABLES WHERE
NAME = 'table-name' AND CREATOR = 'creator-name'

GUPI

Querying temporal tables

You can query a temporal table to retrieve data, based on the time criteria that you specify.

About this task

A temporal table that includes a system period (SYSTEM_TIME) and is defined with system-period
data versioning is a system-period temporal table. A temporal table that includes an application period
(BUSINESS_PERIOD) is an application-period temporal table.

Chapter 2. Implementing your database design 97

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertable.html

Procedure

To query a temporal table, use one of the following methods:

Specify the time criteria in the query: Issue a SELECT statement, and in the table-reference of the
FROM clause, specify a period-specification.

A period-specification consists of the following clauses:

— FOR SYSTEM TIME or FOR BUSINESS TIME to indicate whether you want to query a system-period
temporal table or an application-period temporal table

— AS OF, FROM, or BETWEEN to indicate the time criteria for which you want data
GUPI

The following example shows how you can request data, based on time criteria from a system-period
temporal table.

SELECT policy_id, coverage FROM policy_info
FOR SYSTEM_TIME AS OF '2009-01-08-00.00.00.000000000000";

Likewise, the following example shows how you can request data, based on time criteria from an
application-period temporal table.

SELECT policy_id, coverage FROM policy_info
FOR BUSINESS_TIME AS OF '2008-06-01';

GUPI
If you are requesting historical data from a system-period temporal table that is defined with system-
period data versioning, Db2 rewrites the query to include data from the history table.
Specify the time criteria by using special registers:

The advantage of this method is that you can change the time criteria later and not have to modify the
SQL and then rebind the application.

a) Write the SELECT statement without any time criteria specified.
b) When you bind the application, ensure that the appropriate bind options are set as follows:

— If you are querying a system-period temporal table, ensure that SYSTIMESENSITIVE is set to
YES.

— If you are querying an application-period temporal table, ensure that BUSTIMESENSITIVE is set
to YES.

¢) Before you call the application, set the appropriate special registers to the timestamp value for
which you want to query data:

— If you are querying a system-period temporal table, set CURRENT TEMPORAL SYSTEM_TIME.

— If you are querying an application-period temporal table, set CURRENT TEMPORAL
BUSINESS_TIME.

GUPL For example, assume that you have system-period temporal table STT with the column
POLICY_ID and you want to retrieve data from one year ago. You can set the CURRENT TEMPORAL
SYSTEM_TIME period as follows:

SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP - 1 YEAR ;
Then you can issue the SELECT statement:

SELECT * FROM STT
WHERE POLICY_ID = 123 ;

98 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

Db2 interprets this SELECT statement as follows:

SELECT * FROM STT
FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME
WHERE POLICY_ID = 123 ;

GUPI

Related concepts

Temporal tables and data versioning
A temporal table is a table that records the period of time when a row is valid.

Related reference

from-clause (Db2 SQL)

table-reference (Db2 SQL)

BIND and REBIND options for packages, plans, and services (Db2 Commands)
CURRENT TEMPORAL BUSINESS_TIME special register (Db2 SQL)

CURRENT TEMPORAL SYSTEM_TIME special register (Db2 SQL)

Creating materialized query tables

Materialized query tables improve the performance of complex queries that operate on very large
amounts of data. Use the CREATE TABLE statement to create a materialized query table.

About this task

Db2 uses a materialized query table to precompute the results of data that is derived from one or more
tables. When you submit a query, Db2 can use the results that are stored in a materialized query table
rather than compute the results from the underlying source tables on which the materialized query table
is defined.If the rewritten query is less costly, Db2 chooses to optimize the query by using the rewritten
query, a process called automatic query rewrite.

To take advantage of automatic query rewrite, you must define, populate, and periodically refresh the
materialized query table.

Procedure
Issue the CREATE TABLE statement.

Example

GUPI" The following CREATE TABLE statement defines a materialized query table named TRANSCNT.
TRANSCNT summarizes the number of transactions in table TRANS by account, location, and year.

CREATE TABLE TRANSCNT (ACCTID, LOCID, YEAR, CNT) AS
(SELECT ACCOUNTID, LOCATIONID, YEAR, COUNT (%)
FROM TRANS
GROUP BY ACCOUNTID, LOCATIONID, YEAR)
DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY SYSTEM
ENABLE QUERY OPTIMIZATION;

The fullselect, together with the DATA INITIALLY DEFERRED clause and the REFRESH DEFERRED clause,
defines the table as a materialized query table. “GUPI

Related tasks

Using materialized query tables to improve SQL performance (Db2 Performance)

Creating a materialized query table (Db2 Performance)
Registering an existing table as a materialized query table (Db2 Performance)

Chapter 2. Implementing your database design 99

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_fromclause.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_tablereference.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_currenttemporalbusinesstime.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_currenttemporalsystemtime.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_usemqtimprovesqlperf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_createmqt.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_altersummarytable2mqt.html

Creating a clone table

You can create a clone table on an existing base table at the current server by using the ALTER TABLE
statement.

Before you begin

Although the ALTER TABLE syntax is used to create a clone table, the authorization that is granted as part
of the clone creation process is the same as you would get during regular CREATE TABLE processing. The
schema for the clone table is the same as for the base table.

The base table must meet the following requirements:

« Be a universal table space

» Reside in a Db2-managed table space

« Be the only table in the table space

« Not already have a clone table defined on it

« Not be part of any referential constraints

« Not be defined with any AFTER triggers

« Not be a materialized query table

» Not be a created global temporary table or a declared global temporary table

« Not have any data sets that still need to be created. For example, you cannot create a clone table on a
base table that resides in a table space that was created by using the DEFINE NO option and that has
VSAM data sets that still need to be created.

« Not have any pending definition changes.

« Not have in-use table space versions or index versions. The OLDEST_VERSION and CURRENT_VERSION
column values in the SYSIBM.SYSTABLESPACE or SYSIBM.SYSIDEXES catalog tables must be identical.
For information about how to remove in-use versions, see “Removing in-use table space versions” on
page 207 and “Recycling index version numbers” on page 210.

« Not have an incomplete definition
Also, consider the following restrictions that apply to clone tables:

« A clone table uses the statistics from the base table. RUNSTATS does not collect statistics on a clone
table, and Access Path Selection (APS) does not use RUNSTATS statistics when accessing a clone table.
This is in contrast to real-time statistics, which keeps statistics for both the base and clone objects.
Also, autonomic statistics are not collected on a clone table.

« Catalog and directory tables cannot be cloned.

« Indexes cannot be created on a clone table. Indexes can be created on the base table but not on the
clone table. Indexes that are created on the base table apply to both the base and clone tables.

- BEFORE triggers can be created on the base table but not on the clone table. BEFORE triggers that are
created on the base table apply to both the base and clone tables.

« You cannot rename a base table that has a clone relationship.
« You cannot clone an RTS table.
 You cannot drop an AUX table or an AUX index on an object that is involved in cloning.

« You cannot alter any table, or column attributes of a base table or clone table when the objects are
involved with cloning.

« The maximum number of partitions cannot be altered when a clone table resides in a partition-by-
growth table space.

Procedure
Issue the ALTER TABLE statement with the ADD CLONE option.

100 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

Creating or dropping a clone table does not impact applications that are accessing base table data. No
base object quiesce is necessary, and this process does not invalidate packages or the dynamic statement
cache.

Example

The following example shows how to create a clone table by issuing the ALTER TABLE statement with the
ADD CLONE option:

ALTER TABLE base-table-name ADD CLONE clone-table-name

GUPI
Related tasks

Exchanging data between a base table and clone table
You can exchange table data and index data between the base table and clone table by using the
EXCHANGE statement.

Related reference
ALTER TABLE (Db2 SQL)

Exchanging data between a base table and clone table

You can exchange table data and index data between the base table and clone table by using the
EXCHANGE statement.

Procedure

GUPIL" To exchange data between the base table and clone table, complete the following steps:

1. Issue an EXCHANGE statement with the DATA BETWEEN TABLE table-namel AND table-name2
syntax.

EXCHANGE DATA BETWEEN TABLE table-namel AND table-name2

2. Issue a COMMIT statement.

An error might be returned if you access the tables or issue another EXCHANGE statement before
issuing a COMMIT statement.

Results

After a data exchange, the base and clone table names remain the same as they were prior to the data
exchange. No data movement actually takes place. The instance numbers in the underlying VSAM data set
names for the objects (tables and indexes) in a clone relationship toggle between 1 and 2. For example,
suppose that a base table exists with the data set name *I0001.*. When the table is cloned, the clone's
data set is initially named *10002.*. After an exchange, the base objects are named *.10002.* and the
clones are named *I0001.*. Each time that an exchange happens, the instance numbers that represent
the base and the clone objects change.

GUPI

What to do next

Exchanging data between the base table and the clone table does not invalidate packages. However, Db2
writes VALID='A" in the SYSIBM.SYSPACKAGE catalog table rows for packages that reference the tables to
indicate that a rebind might be needed before the package can use the exchanged data.

Related tasks

Creating a clone table

Chapter 2. Implementing your database design 101

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertable.html

You can create a clone table on an existing base table at the current server by using the ALTER TABLE
statement.

Related reference

EXCHANGE (Db2 SQL)

Changes that might require package rebinds (Db2 Application programming and SQL)

Creating an archive table

You can create an archive table to manage historical data for an existing table. An archive table stores
deleted rows from another table. That base table is called an archive-enabled table.

Before you begin
Check that the table for which you want to create an archive table meets the requirements that are
specified in the description of the ENABLE ARCHIVE clause in ALTER TABLE (Db2 SQL).

About this task

Db2 can automatically store rows that are deleted from an archive-enabled table in an associated archive
table. When you query an archive-enabled table, you can specify whether you want those queries to
include data from the archive table.

Archive tables have the following advantages:

« Db2 can manage historical data for you. You do not have to manually move data to a separate table.

« Because rows that are infrequently accessed are stored in a separate table, you can potentially improve
the performance of queries against the archive-enabled table.

 You can modify queries to include or exclude archive table data without having to change the SQL
statement and prepare the application again. Instead, you can control the scope of the query with a
built-in global variable.

« You can store archive tables on a lower-cost device to reduce operating costs.

When you query an archive-enabled table, you can specify whether you want the query to consider rows
in the archive table. You do not have to modify the SQL. Instead, you can control the scope of the query by
using the SYSIBMADM.GET_ARCHIVE built-in global variable and the ARCHIVESENSITIVE bind option. To

retrieve data from an archive able, set SYSIBMADM.GET_ARCHIVE to Y and bind the plan or package with
ARCHIVESENSITIVE(YES).

The ARCHIVESENSITIVE bind option has no affect on the SYSIBMADM.MOVE_TO_ARCHIVE value.

Procedure

To create an archive table:
1. Create a table with the same columns as the table for which you want to archive data.

For a complete list of requirements for archive tables, see the information about the ENABLE ARCHIVE
clause in ALTER TABLE (Db2 SQL).

2. Designate the original table as an archive-enabled table by issuing an ALTER TABLE statement with the
ENABLE ARCHIVE clause. In that clause, specify the table that you created in the previous step as the
archive table.

3. If you want rows to be automatically archived, set the built-in global variable
SYSIBMADM.MOVE_TO_ARCHIVE to Y or E.

When this built-in global variable is set to Y or E, Db2 automatically moves deleted rows to the archive
table.

4. If you want to remove the relationship between the archive-enabled table and the archive table, issue
the ALTER TABLE statement for the archive-enabled table and specify the DISABLE ARCHIVE clause.

Both tables will still exist, but the relationship is removed.

102 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_exchange.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesmightrequirerebind.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertable.html

Related concepts

Archive-enabled tables and archive tables (Introduction to Db2 for z/0S)
Related reference

GET_ARCHIVE (Db2 SQL)

Implementing Db2 views

When you design your database, you might need to give users access to only certain pieces of data. You
can give users access by designing and using views.

Use the CREATE VIEW statement to define and name a view. Unless you specifically list different column
names after the view name, the column names of the view are the same as the column names of

the underlying table. When you create different column names for your view, remember the naming
conventions that you established when designing the relational database.

A SELECT statement describes the information in the view. The SELECT statement can name other views
and tables, and it can use the WHERE, GROUP BY, and HAVING clauses. It cannot use the ORDER BY
clause or name a host variable.

You can use views to perform the following tasks:

« Control access to a table
Make data easier to use

Simplify authorization by granting access to a view without granting access to the table

Show only portions of data in the table
« Show summary data for a given table

Combine two or more tables in meaningful ways

Creating Db2 views

You can create a view on tables or on other views at the current server.

Before you begin
Before you create different column names for your view, remember the naming conventions that you
established when designing the relational database.

Procedure
Issue the CREATE VIEW SQL statement.

Unless you specifically list different column names after the view name, the column names of the view are
the same as those of the underlying table. GUPI

Example

Example of defining a view on a single table: Assume that you want to create a view on the DEPT table.
Of the four columns in the table, the view needs only three: DEPTNO, DEPTNAME, and MGRNO. The order
of the columns that you specify in the SELECT clause is the order in which they appear in the view:

GUPI

CREATE VIEW MYVIEW AS
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DEPT;

GUPI

Chapter 2. Implementing your database design 103

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_archivetables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bigv_getarchive.html

In this example, no column list follows the view name, MYVIEW. Therefore, the columns of the view have
the same names as those of the DEPT table on which it is based. You can execute the following SELECT
statement to see the view contents:

GUPI
SELECT * FROM MYVIEW;

GUPI

The result table looks like this:

DEPTNO DEPTNAME MGRNO
AOO CHAIRMANS OFFICE 000010
BO1 PLANNING 000020

co1 INFORMATION CENTER 000030
D11 MANUFACTURING SYSTEMS 000060
E21 SOFTWARE SUPPORT ------

Example of defining a view that combines information from several tables: You can create a view that
contains a union of more than one table. Db2 provides two types of joins—an outer join and an inner join.
An outer join includes rows in which the values in the join columns don't match, and rows in which the

values match. An inner join includes only rows in which matching values in the join columns are returned.

The following example is an inner join of columns from the DEPT and EMP tables. The WHERE clause
limits the view to just those columns in which the MGRNO in the DEPT table matches the EMPNO in the
EMP table:

GUPI

CREATE VIEW MYVIEW AS
SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT
FROM DEPT, EMP
WHERE EMP.EMPNO = DEPT.MGRNO;

The result of executing this CREATE VIEW statement is an inner join view of two tables, which is shown
below:

DEPTNO MGRNO LASTNAME ADMRDEPT

AQO 000010 HAAS AOO
BO1 000020 THOMPSON AGOG
co1 000030 KWAN AOO

D11 000060 STERN D11

If you want to include only those departments that report to department AOO and want to use a different
set of column names. Use the following CREATE VIEW statement:

CREATE VIEW MYVIEWAOGO
(DEPARTMENT, MANAGER, EMPLOYEE_NAME, REPORT_TO_NAME)
AS
SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT
FROM EMP, DEPT
WHERE EMP.EMPNO = DEPT.MGRNO
AND ADMRDEPT = 'AGO';

You can execute the following SELECT statement to see the view contents:
SELECT % FROM MYVIEWAQO;

When you execute this SELECT statement, the result is a view of a subset of the same data, but with
different column names, as follows:

DEPARTMENT MANAGER EMPLOYEE_NAME REPORT_TO_NAME

AGO 000010 HAAS AOO

104 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

BO1 000020 THOMPSON AOO

co1 000030 KWAN AOO
GUPI

Related tasks

Altering Db2 views

To alter a view, you must drop the view and create a new view with your modified specifications.

Dropping Db2 views
You can drop a Db2 view by removing the view at the current server.

Related reference
CREATE VIEW (Db2 SQL)

Guidelines for view names
The name for a view is an identifier of up to 128 characters.
The following example shows a view name:

Object
Name
View
MYVIEW
Use the CREATE VIEW statement to define and name a view. Unless you specifically list different column
names after the view name, the column names of the view are the same as those of the underlying

table. When you create different column names for your view, remember the naming conventions that you
established when designing the relational database.

Querying views that reference temporal tables

When you query a view that references a temporal table, you can specify a point in time or time range for
a system period, an application period, or both.

About this task

A period specification that is after the name of a view in a table reference applies to all of the applicable
table references in the fullselect of the definition of that view. If the view does not access any temporal
tables, the period specification has no effect on the result table of the view.

Restriction: The following restrictions apply:

« Aview reference followed by a period specification must not include any user-defined functions.
« The definition of the view must not include a period specification.

Procedure

To query a view that references a temporal table, use one of the following methods:

« Specify a period specification (either a SYSTEM_TIME period or BUSINESS_TIME period) following the
name of a view in the FROM clause of a query.

« Use the CURRENT TEMPORAL SYSTEM_TIME or CURRENT TEMPORAL BUSINESS_TIME special
registers. In this case, you do not need to include a period specification in the query. For instructions
on how to use these special registers instead of a period specification, see “Querying temporal tables”
on page 97.

Example

GUPI

Chapter 2. Implementing your database design 105

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createview.html

The following example shows how you can create a view that references a system-period temporal table
(stt), a bitemporal table (btt), and a regular base table (rt). Then you can query the view based on a point
in time.

CREATE VIEW vO (coll, col2, col3)
AS SELECT stt.coverage, rt.id, btt.bus_end
FROM stt, rt, btt WHERE stt.id = rt.id AND rt.id = btt.id;

SELECT * FROM vO
FOR SYSTEM_TIME AS OF TIMESTAMP ‘2013-01-10 10:00:00';

GUPI

How Db2 inserts and updates data through views

After you define a view, you can refer to the name of a view in an INSERT, UPDATE, or DELETE statement.
If the view is complex or involves multiple tables, you must define an INSTEAD OF trigger before that view
can be referenced in an INSERT, UPDATE, MERGE, or DELETE statement. This information explains how
the simple case is dealt with, where Db2 makes an insert or update to the base table.

GUPITo ensure that the insert or update conforms to the view definition, specify the WITH CHECK
OPTION clause. The following example illustrates some undesirable results of omitting that check.

Example 1: Suppose that you define a view, V1, as follows:

CREATE VIEW V1 AS
SELECT * FROM EMP
WHERE DEPT LIKE ‘D%';

A user with the SELECT privilege on view V1 can see the information from the EMP table for employees
in departments whose IDs begin with D. The EMP table has only one department (D11) with an ID that
satisfies the condition.

Assume that a user has the INSERT privilege on view V1. A user with both SELECT and INSERT privileges
can insert a row for department EOQ1, perhaps erroneously, but cannot select the row that was just
inserted.

The following example shows an alternative way to define view V1.

Example 2: You can avoid the situation in which a value that does not match the view definition is
inserted into the base table. To do this, instead define view V1 to include the WITH CHECK OPTION
clause:

CREATE VIEW V1 AS SELECT * FROM EMP
WHERE DEPT LIKE ‘D%' WITH CHECK OPTION;

With the new definition, any insert or update to view V1 must satisfy the predicate that is contained in
the WHERE clause: DEPT LIKE ‘D%'. The check can be valuable, but it also carries a processing cost; each
potential insert or update must be checked against the view definition. Therefore, you must weigh the

advantage of protecting data integrity against the disadvantage of performance degradation. “GUPI

Dropping Db2 views

You can drop a Db2 view by removing the view at the current server.

Procedure
Issue the DROP VIEW statement.

Related tasks

Altering Db2 views
To alter a view, you must drop the view and create a new view with your modified specifications.

Creating Db2 views

106 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

You can create a view on tables or on other views at the current server.

Related reference
DROP (Db2 SQL)

Implementing Db2 indexes

Indexes provide efficient access to table data, but can require additional processing when you modify
datain a table.

Db2 uses indexes for a variety of reasons. Db2 indexes enforce uniqueness on column values, as in the
case of parent keys. Db2 indexes are also used to cluster data, to partition tables, to provide access paths
to data, and to order retrieved data without a sort. You can also choose to use indexes because of access
requirements.

Using indexes involves a trade-off. A greater number of indexes can simultaneously improve the
performance of a certain transaction and require additional processing for inserting, updating, and
deleting index keys.

After you create an index, Db2 maintains the index, but you can perform necessary maintenance, such as
reorganizing it or recovering it, as necessary.

Related concepts

Indexes on table columns

If you are involved in the physical design of a database, you will be working with other designers to
determine what columns you should index.

Creation of indexes (Introduction to Db2 for z/OS)

Indexes that are padded or not padded
The NOT PADDED and PADDED options of the CREATE INDEX and ALTER INDEX statements specify how
varying-length string columns are stored in an index.

Assignment of table spaces and index spaces to physical storage

You can store table spaces and index spaces in user-managed storage, SMS-managed storage, or in
Db2-managed storage groups. (A storage group is a set of disk volumes.)

Related tasks

Designing indexes for performance (Db2 Performance)

Compressing indexes (Db2 Performance)

Types of indexes

In Db2 for z/OS, you can create a number of different types of indexes. Carefully consider which type or
types best suit your data and applications.

All of the index types are listed in the following tables. These index types are not necessarily mutually
exclusive. For example, a unique index can also be a clustering index. Restrictions are noted.

The following table lists the types of indexes that you can create on any table.

Chapter 2. Implementing your database design 107

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_drop.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationofindexes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_evaluateindexesperf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_compressindexes.html

Table 17. Index types that are applicable to any table type

More
Type Description SQL syntax information
Unique index Anindex that ensures that the valueina CREATE INDEX... UNIQUE... “Unique
particular column or set of columns is unique. indexes”
on page
115
“Nonuniqu
e indexes”
on page
116
Primary index A unique index on the primary key of the table. No keywords are required in Defining a
. . the CREATE INDEX statement. parent key
A primary key is column or set of columns T C—
! . o and unique
that uniquely identifies one row of a table. You Anindexis a primary index TSR T
. i . . 4 index (Db2
define a primary key when you create or alter if the index key that is Aoplication
a table; specify PRIMARY KEY in the CREATE specified in the CREATE 72)" et
TABLE statement or ALTER TABLE statement. INDEX statement matches the P oramming g g
. . . and SQL)
Primary keys are optional. primary key of the table. —
If you define a primary key on a table, you
must define a primary index on that key.
Otherwise, if the table does not have a primary
key, it cannot have a primary index.
Each table can have only one primary index.
However, the table can have additional unique
indexes.
Secondary An index that is not a primary index. No keywords are required in None
index In the context of a partitioned table, a the CREATE INDEX statement.
secondary index can also mean an index that A secondary index is any index
is not a partitioning index. See Table 18 on that is not a primary index or
page 109. partitioning index.
Clustering An index that ensures a logical grouping. When “Clustering
index data is inserted into the table, the clustering CREATE INDEX... CLUSTER... indexes” on
index attempts to maintain the clustering or page 117
sequence within the partition.
Each table can have only one clustering index. ALTER INDEX... CLUSTER...
Expression- An index that is based on a general expression. Inthe CREATE INDEX or “Expression-
based index Use expression-based indexes when you want ALTER INDEX statement, the based
an efficient evaluation of queries that involve a index key is defined as an indexes” on
column-expression. expression rather than a page 119

column or set of columns.

The following table lists the types of indexes that you can create on partitioned tables. These indexes
apply to partition-by-range table spaces. They do not apply to partition-by-growth table spaces.

108 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_defineparentkeyuniqueindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_defineparentkeyuniqueindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_defineparentkeyuniqueindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_defineparentkeyuniqueindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_defineparentkeyuniqueindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_defineparentkeyuniqueindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_defineparentkeyuniqueindex.html

Table 18. Index types that are applicable to only partitioned tables

More
Type Description SQL syntax information
:;e:jr:)’iloned An index that is physically partitioned. CREATE THEEG. %
A partitioned index consists of multiple data L. . pi,,
sets. Each data set corresponds to a table tables” on
partition. page 121
Partitioning An index that corresponds to the columns that No keywords are required in ~ “Indexes on
index (PI) partition the table. These columns are called the CREATE INDEX statement. partitioned
the partitioning key and are specified in the An index is a partitioning index tables” on
PARTITION BY clause of the CREATE TABLE . . P g page 121
if the index key matches the ===—==
statement. S
partitioning key.
Agri)iilir(::go(jnlng indexes must also be To confirm that an index is
P) partitioning index, check the
Partitioning indexes are not required. SYSIBM.SYSINDEXES catalog
table. The INDEXTYPE column
for that index contains a P
if the index is a partitioning
index.
Secondary Depending on the context, a secondary index No keywords are required in “Indexes on
index can mean one of the following two things: the CREATE INDEX statement. partitioned
« Anindex that is not a partitioning index. A secondary index is any index E?;ng:%
« Anindex that is not a primary index. thatis not a primary index or ====—==
partitioning index.
Datr:} . A partitioned index that is not a partitioning CREATE THEEG. “Ind.e.xes on
partitioned index. PARTITIONED. .. partitioned
secondary These indexes are also called partitioned tables” on
index (DPSI) P Also, the specified index page 121

secondary indexes (PSIs). key must not match the

partitioning key.

Nonpartitione An index that is not partitioned or partitioning. The CREATE INDEX statement “Indexes on
d secondary These indexes are also called nonpartitioned does not include the partitioned
index (NPSI) indexes (NPLs) PARTITIONED keyword. Also, tables” on
’ the index key does not match page 121
the partitioning key.

Multi-piece A nonpartitioned index that has multiple data None
. CREATE INDEX...
index sets. The data sets do not correspond to data PIECESIZE ...

partitions.

S : or
Use a multi-piece index to spread a large index
across multiple data sets and thus reduce the AL TER INDEX...
physical I/O contention on the index. PIECESIZE ...

The following table lists the XML index type.

Chapter 2. Implementing your database design 109

Table 19. Index types that are applicable to only tables with XML columns

More
Type Description SQL syntax information
XML index An index that uses a particular XML pattern “XML index
. . . CREATE INDEX... "

expression to index paths and values in XML GENERATE KEY attributes” on

documents that are stored in a single XML USING XMLPATTERN page 120

column.

or

CREATE INDEX...
GENERATE KEYS
USING XMLPATTERN

Additionally, when you create any of these types of indexes, you can define whether they have the
following characteristics:

Table 20. General index characteristics

Characteristic Description SQL syntax More information
Padded Any vary|_ng-len_gth string T Indexes that ?re padded
columns in the index are PADDED . .. or not padded” on page
padded with the default 118
pad character to their or

maximum length.
ALTER INDEX...

PADDED. . .
Compressed The data is compressed T “Compression of indexes”
to reduce the size of the COMPRESS YES. . . on page 119
index on disk.

or

ALTER INDEX...
COMPRESS YES. ..

Related concepts

Index keys

The usefulness of an index depends on the design of its key, which you define at the time that you create
the index.

Implementing Db2 indexes
Indexes provide efficient access to table data, but can require additional processing when you modify
datain a table.

Related reference
ALTER INDEX (Db2 SQL)
CREATE INDEX (Db2 SQL)

Creating Db2 indexes

When you define an index, Db2 builds and maintains an ordered set of pointers to rows of a base table or
an auxiliary table.

Before you begin
Before you define an index, you need to define the table.

110 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_alterindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html

Procedure
Issue the CREATE INDEX statement, and specify an index key.

Example

The following example creates a unique index on the EMPPROJACT table. A composite key is defined on
two columns, PROINO and STDATE.

CREATE UNIQUE INDEX XPROJAC1
ON EMPPROJACT
(PROJINO ASC,
STDATE ASC)
INCLUDE (EMPNO, FIRSTNAME)

The INCLUDE clause, which is applicable only on unique indexes, specifies additional columns that you
want appended to the set of index key columns. Any columns that are included with this clause are not
used to enforce uniqueness. These included columns might improve the performance of some queries
through index only access. Using this option might eliminate the need to access data pages for more
queries and might eliminate redundant indexes.

If you issue SELECT PROJNO, STDATE, EMPNO, and FIRSTNAME to the table on which this index
resides, all of the required data can be retrieved from the index without reading data pages. This option
might improve performance.

GUPI
Related tasks

Dropping and redefining a Db2 index

Dropping an index does not cause Db2 to drop any other objects. The consequence of dropping indexes

is that Db2 invalidates packages that use the index and automatically rebinds them when they are next
used.

Related reference
CREATE INDEX (Db2 SQL)

How indexes can help to avoid sorts
Db2 can use indexes to avoid sorts when processing queries with the ORDER BY clause.

When a query contains an ORDER BY clause, Db2 looks for indexes that satisfy the order in the query. For
Db2 to be able to use an index to access ordered data, you must define an index on the same columns as
specified in the ORDER BY clause.

Forward index scan
For Db2 to use a forward index scan, the ordering must be exactly the same as in the ORDER BY
clause.

Backward index scan
For Db2 to use a backward index scan, the ordering must be exactly the opposite of what is requested
in the ORDER BY clause.

In addition to forward and backward scans, you have the option to create indexes with a pseudo-random
order. This ordering option is useful when ascending insertions or hotspots cause contention within the
indexes. Indexes created with the RANDOM option do not support range scans. They do support equality
lookups.

Examples

GUPI

Example 1
For example, if you define an index by specifying DATE DESC, TIME ASC as the column names and
order, Db2 can use this same index for both of the following ORDER BY clauses:

Chapter 2. Implementing your database design 111

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html

« Forward scan for ORDER BY DATE DESC, TIME ASC
« Backward scan for ORDER BY DATE ASC, TIME DESC

You do not need to create two indexes for the two ORDER BY clauses. Db2 can use the same index for
both forward index scan and backward index scan.

Example 2
Suppose that the query includes a WHERE clause with a predicate of the form COL=constant. For
example:

WHERE CODE = 'A’
ORDER BY CODE, DATE DESC, TIME ASC
Db2 can use any of the following index keys to satisfy the ordering:
« CODE, DATE DESC, TIME ASC
- CODE, DATE ASC, TIME DESC
« DATE DESC, TIME ASC
« DATE ASC, TIME DESC

Db2 can ignore the CODE column in the ORDER BY clause and the index because the value of the
CODE column in the result table of the query has no effect on the order of the data. If the CODE
column is included, it can be in any position in the ORDER BY clause and in the index.

GUPI

Related reference
order-by-clause (Db2 SQL)

Index keys

The usefulness of an index depends on the design of its key, which you define at the time that you create
the index.

An index key is a column, an ordered collection of columns, or an expression on which you define an
index. Db2 uses an index key to determine the order of index entries. Good candidates for index keys are
columns or expressions that you use frequently in operations that select, join, group, and order data.

All index keys do not need to be unique. For example, an index on the SALARY column of the sample EMP
table allows duplicates because several employees can earn the same salary.

A composite key is an index key that is built on 2 or more columns. An index key can contain up to 64
columns.

GUPI

For example, the following SQL statement creates a unique index on the EMPPROJACT table. A composite
key is defined on two columns, PROJNO and STDATE.

CREATE UNIQUE INDEX XPROJAC1
ON EMPPROJACT
(PROJINO ASC,
STDATE ASC)

This composite key is useful when you need to find project information by start date. Consider a SELECT
statement that has the following WHERE clause:

WHERE PROJNO='MA2100' AND STDATE='2004-01-01'

This SELECT statement can execute more efficiently than if separate indexes are defined on PROJNO and
on STDATE.

GUPI

112 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_orderbyclause.html

In general, try to create an index that is selective, because the more selective an index is, the more
efficient it is. An efficient index contains multiple columns, is ordered in the same sequence as the SQL
statement, and is used often in SQL statements. To create an efficient index, consider the following
recommendations when you create an index and define the index keys:

- Define as few indexes as possible on a column that is updated frequently because every change to the
column data must be reflected in each index.

« Consider using a composite key, which might be more useful than a key on a single column when the
comparison is for equality. A single multicolumn index is more efficient when the comparison is for
equality and the initial columns are available. However, for more general comparisons, such as A > value
AND B > value, multiple indexes might be more efficient.

Related concepts
Query and application performance analysis (Introduction to Db2 for z/0S)

Index names and guidelines

By following certain guidelines, you can successfully work with indexes.

Index names

The name for an index is an SQL identifier of up to 128 characters. You can qualify this name with
an identifier, or schema, of up to 128 characters. An example index names is MYINDEX. For more
information, see Identifiers in SQL (Db2 SQL).

The following rules apply to index names:

index-name
A qualified or unqualified name that designates an index.

A qualified index name is an authorization ID or schema name followed by a period and an SQL
identifier.

An unqualified index name is an SQL identifier with an implicit qualifier. The implicit qualifier is
an authorization ID, which is determined by the context in which the unqualified name appears as
described by the rules in Unqualified object name resolution (Db2 SQL).

For an index on a declared temporary table, the qualifier must be SESSION.

The index space name is an eight-character name, which must be unique among names of all index
spaces and table spaces in the database.

Sequence of index entries

The sequence of the index entries can be in ascending order or descending order. The ASC and DESC
keywords of the CREATE INDEX statement indicate ascending and descending order. ASC is the default.

Indexes on tables with large objects

You can use indexes on tables with LOBs the same way that you use them on other tables, but consider
the following facts:

« A LOB column cannot be a column in an index.

« An auxiliary table can have only one index. (An auxiliary table, which you create by using the SQL
CREATE AUXILIARY TABLE statement, holds the data for a column that a base table defines.

 Indexes on auxiliary tables are different than indexes on base tables.

Creation of an index

If the table that you are indexing is empty, Db2 creates the index. However, Db2 does not actually create
index entries until the table is loaded or rows are inserted. If the table is not empty, you can choose to

Chapter 2. Implementing your database design 113

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_queryandapplicationperformanceanalysis.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sqlidentifiers.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_resolutionofobjnames.html

have Db2 build the index when the CREATE INDEX statement is executed. Alternatively, you can defer
the index build until later. Optimally, you should create the indexes on a table before loading the table.
However, if your table already has data, choosing the DEFER option is preferred; you can build the index
later by using the REBUILD INDEX utility.

Copies of an index

If your index is fairly large and needs the benefit of high availability, consider copying it for faster recovery.
Specify the COPY YES clause on a CREATE INDEX or ALTER INDEX statement to allow the indexes to be
copied. Db2 can then track the ranges of log records to apply during recovery, after the image copy of the
index is restored. (The alternative to copying the index is to use the REBUILD INDEX utility, which might
increase the amount of time that the index is unavailable to applications.)

Deferred allocation of index space data sets

When you execute a CREATE INDEX statement with the USING STOGROUP clause, Db2 generally defines
the necessary VSAM data sets for the index space. In some cases, however, you might want to define an
index without immediately allocating the data sets for the index space.

For example, you might be installing a software program that requires creation of many indexes, but your
company might not need some of those indexes. You might prefer not to allocate data sets for indexes
that you do not plan to use.

To defer the physical allocation of Db2-managed data sets, use the DEFINE NO clause of the CREATE
INDEX statement. When you specify the DEFINE NO clause, Db2 defines the index but defers the
allocation of data sets. The Db2 catalog table contains a record of the created index and an indication that
the data sets are not yet allocated. Db2 allocates the data sets for the index space as needed when rows
are inserted into the table on which the index is defined.

Related concepts

Naming conventions (Db2 SQL)
Related reference

CREATE INDEX (Db2 SQL)

General index attributes

You typically determine which type of index you need to define after you define a table space. An index
can have many different attributes.

Index attributes fall into two broad categories: general attributes that apply to indexes on all tables and
specific attributes that apply to indexes on partitioned tables only. The following table summarizes these
categories.

Table 21. Index attributes

Table or table space type Index attribute

Any » Unique or nonunique
 Clustering or nonclustering
» Padded or not padded
« Exclude nulls

Partitioned - Partitioning

» Secondary

This topic explains the types of indexes that apply to all tables. Indexes that apply to partitioned tables
only are covered separately.

114 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html

Related concepts

Indexes on partitioned tables

The following types of indexes apply to only partitioned tables: partitioned indexes, partitioning indexes
(PIs), data-partitioned secondary indexes (DPSIs), and nonpartitioned secondary indexes (NPIs or
NPSIs).

Unique indexes
Db2 uses unique indexes to ensure that no identical key values are stored in a table.

When you create a table that contains a primary key or a unique constraint, you must create a unique
index for the primary key and for each unique constraint. Db2 marks the table definition as incomplete
until the explicit creation of the required enforcing indexes, which can be created implicitly depending on
whether the table space was created implicitly, the schema processor, or the CURRENT RULES special
register. If the required indexes are created implicitly, the table definition is not marked as incomplete.

Restrict access with unique indexes

You can also use indexes to meet access requirements.

Example

A good candidate for a unique index is the EMPNO column of the EMP table. The following figure shows a
small set of rows from the EMP table and illustrates the unique index on EMPNO.

Indexin

EMP table EMP table

EMPNO Page Row EMPNO LASTNAMEJOB DEPT
1 000220 LUTZ DES D11

1000030 1 2 000330 LEE FLD E21

‘000060 i 3 000030 KWAN MGR CO1

»000140\

1000200\ 1 200140 NATZ ANL CO1

1000220 2 2 000320 RAMLAL FLD E21

:000330 N 3 000200 BROWN DES D11

200140

5000320): 1 200340 ALONZO FLD E21

200340 \ 3 2 000140 NICHOLLS SLS CO1

: 3 000060 STERN MGR D11

Figure 16. A unique index on the EMPNO column

Db2 uses this index to prevent the insertion of a row to the EMP table if its EMPNO value matches that of
an existing row. The preceding figure illustrates the relationship between each EMPNO value in the index
and the corresponding page number and row. Db2 uses the index to locate the row for employee 000030,
for example, in row 3 of page 1.

If you do not want duplicate values in the key column, create a unique index by using the UNIQUE clause
of the CREATE INDEX statement.
Example

GUPI The DEPT table does not allow duplicate department IDs. Creating a unique index, as the following
example shows, prevents duplicate values.

CREATE UNIQUE INDEX MYINDEX
ON DEPT (DEPTNO);

The index name is MYINDEX, and the indexed column is DEPTNO.

If a table has a primary key (as the DEPT table has), its entries must be unique. Db2 enforces this
uniqueness by defining a unique index on the primary key columns, with the index columns in the same
order as the primary key columns.

Chapter 2. Implementing your database design 115

GUPI

Before you create a unique index on a table that already contains data, ensure that no pair of rows has the
same key value. If Db2 finds a duplicate value in a set of key columns for a unique index, Db2 issues an
error message and does not create the index.

If an index key allows nulls for some of its column values, you can use the WHERE NOT NULL clause to
ensure that the non-null values of the index key are unique.

Unique indexes are an important part of implementing referential constraints among the tables in your
Db2 database. You cannot define a foreign key unless the corresponding primary key already exists and
has a unique index defined on it.

When not to use a unique index

In some cases you might not want to use a unique index. You can improve the performance of data access
when the values of the columns in the index are not necessarily unique by creating a default index.

When you create a default index, Db2 allows you to enter duplicate values in a key column.

For example, assume that more than one employee is named David Brown. Consider an index that is
defined on the FIRSTNME and LASTNAME columns of the EMP table.

GUPI
CREATE INDEX EMPNAME ON EMP (FIRSTNME, LASTNAME);

GUPI

This is an example of an index that can contain duplicate entries.

Tip: Do not create this type of index on very small tables because scans of the tables are more efficient
than using indexes.

INCLUDE columns

Unique indexes can include additional columns that are not part of a unique constraint. Those columns
are called INCLUDE columns. When you specify INCLUDE columns in a unique index, queries can use the
unique index for index-only access. Including these columns can eliminate the need to maintain extra
indexes that are used solely to enable index-only access.

Related reference
CREATE INDEX (Db2 SQL)

Nonunique indexes

You can use nonunique indexes to improve the performance of data access when the values of the
columns in the index are not necessarily unique.

Recommendation: Do not create nonunique indexes on very small tables, because scans of the tables are
more efficient than using indexes.

To create nonunique indexes, use the SQL CREATE INDEX statement. For nonunique indexes, Db2 allows
users and programs to enter duplicate values in a key column.

Example

GUPI- Assume that more than one employee is named David Brown. Consider an index that is defined on
the FIRSTNME and LASTNAME columns of the EMP table.

CREATE INDEX EMPNAME
ON EMP (FIRSTNME, LASTNAME);

This index is an example of a nonunique index that can contain duplicate entries.

116 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html

GUPI
Related tasks
Designing indexes for performance (Db2 Performance)
Related reference
CREATE INDEX (Db2 SQL)

Clustering indexes

A clustering index determines how rows are physically ordered (clustered) in a table space. Clustering
indexes provide significant performance advantages in some operations, particularly those that involve
many records. Examples of operations that benefit from clustering indexes include grouping operations,
ordering operations, and comparisons other than equal.

Any index, except for an expression-based index or an XML index, can be a clustering index. You can
define only one clustering index on a table.

You can define a clustering index on a partitioned table space or on a segmented table space. On a
partitioned table space, a clustering index can be a partitioning index or a secondary index. If a clustering
index on a partitioned table is not a partitioning index, the rows are ordered in cluster sequence within
each data partition instead of spanning partitions. (Prior to Version 8 of Db2 UDB for z/0S, the partitioning
index was required to be the clustering index.)

Restriction: An expression based index or an XML index cannot be a clustering index.

When a table has a clustering index, an INSERT statement causes Db2 to insert the records as nearly as
possible in the order of their index values. The first index that you define on the table serves implicitly

as the clustering index unless you explicitly specify CLUSTER when you create or alter another index. For
example, if you first define a unique index on the EMPNO column of the EMP table, Db2 inserts rows into
the EMP table in the order of the employee identification number unless you explicitly define another
index to be the clustering index.

Although a table can have several indexes, only one index can be a clustering index. If you do not define
a clustering index for a table, Db2 recognizes the first index that is created on the table as the implicit
clustering index when it orders data rows.

Tip:

« Always define a clustering index. Otherwise, Db2 might not choose the key that you would prefer for the
index.

- Define the sequence of a clustering index to support high-volume processing of data.

You use the CLUSTER clause of the CREATE INDEX or ALTER INDEX statement to define a clustering
index.

Example

GUPI Assume that you often need to gather employee information by department. In the EMP table, you
can create a clustering index on the DEPTNO column.

CREATE INDEX DEPT_IX
ON EMP
(DEPTNO ASC)
CLUSTER;

As a result, all rows for the same department are probably close together. Db2 can generally access all
the rows for that department in a single read. (Using a clustering index does not guarantee that all rows
for the same department are stored on the same page. The actual storage of rows depends on the size of
the rows, the number of rows, and the amount of available free space. Likewise, some pages may contain
rows for more than one department.)

GUPI

Chapter 2. Implementing your database design 117

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_evaluateindexesperf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html

The following figure shows a clustering index on the DEPT column of the EMP table; only a subset of the
rows is shown.

Index on

EMPtable EMPtable

DEPT "Page Row DEPT EMPNO LASTNAME JOB

' : : 1 1 CO01 000030 KWAN MGR
2 CO1 000140 NICHOLLS SLS
3 co1

1 D11 000060 STERN MGR
D11 000200 BROWN DES
3 D11 000220 LUTZ DES

' E21 000330 LEE FLD
' E21 000320 RAMLAL FLD
3 E21 200340 ALONZO FLD

Figure 17. A clustering index on the EMP table

Suppose that you subsequently create a clustering index on the same table. In this case, Db2 identifies

it as the clustering index but does not rearrange the data that is already in the table. The organization

of the data remains as it was with the original nonclustering index that you created. However, when the
REORG utility reorganizes the table space, Db2 clusters the data according to the sequence of the new
clustering index. Therefore, if you know that you want a clustering index, you should define the clustering
index before you load the table. If that is not possible, you must define the index and then reorganize the
table. If you create or drop and re-create a clustering index after loading the table, those changes take
effect after a subsequent reorganization.

Related reference
Employee table (DSN8C10.EMP) (Introduction to Db2 for z/0OS)
CREATE INDEX (Db2 SQL)

Indexes that exclude NULL keys

You can exclude NULL keys from an index to reduce the size of an index and improve the performance of
an index.

Some table values are never used in queries and are unnecessary in an index. NULL key columns add
to index size and can reduce the performance of index scans. If you exclude NULL key columns from an
index, Db2 only creates index entries for key columns that are not null. You can specify that an index
excludes null keys when you create an index with the CREATE INDEX statement.

A NULL key in an index is not the same as a null foreign key.

Related reference
CREATE INDEX (Db2 SQL)

Indexes that are padded or not padded

The NOT PADDED and PADDED options of the CREATE INDEX and ALTER INDEX statements specify how
varying-length string columns are stored in an index.

You can choose not to pad varying-length string columns in the index to their maximum length (the
default), or you can choose to pad them.

118 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesemployeemain.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html

GUPI Tf you specify the NOT PADDED clause on a CREATE INDEX statement, any varying-length columns
in the index key are not padded to their maximum length. If an existing index key includes varying-length
columns, you can consider altering the index to use the NOT PADDED clause. However, using the NOT

PADDED clause on the ALTER INDEX statement to change the padding places the index in the REBUILD-

pending (RBDP) state. You should rebuild the index to remove the RBDP state.” GUPI
Using the NOT PADDED clause has the following advantages:

- Db2 can use index-only access for the varying-length columns within the index key, which enhances
performance.

- Db2 stores only actual data, which reduces the storage requirements for the index key.
However, using the NOT PADDED clause might also have the following disadvantages:

« Index key comparisons are slower because Db2 must compare each pair of corresponding varying-
length columns individually instead of comparing the entire key when the columns are padded to their
maximum length.

« Db2 stores an additional 2-byte length field for each varying-length column. Therefore, if the length of
the padding (to the maximum length) is less than or equal to 2 bytes, the storage requirements could
actually be greater for varying-length columns that are not padded.

Tip: Use the NOT PADDED clause to implement index-only access if your application typically accesses
varying-length columns.

To control whether varying length columns are padded by default, use the PAD INDEXES BY DEFAULT
option on installation panel DSNTIPE.

Related reference
CREATE INDEX (Db2 SQL)

Expression-based indexes

By using the expression-based index capability of Db2, you can create an index that is based on a general
expression. You can enhance query performance if Db2 chooses the expression-based index.

Use expression-based indexes when you want an efficient evaluation of queries that involve a column-
expression. In contrast to simple indexes, where index keys consist of a concatenation of one or more
table columns that you specify, the index key values are not the same as values in the table columns. The
values have been transformed by the expressions that you specify.

You can create the index by using the CREATE INDEX statement, and specifying an expression, rather
than a column name. If an index is created with the UNIQUE option, the uniqueness is enforced against
the values that are stored in the index, not against the original column values.

Db2 does not use expression-based indexes for queries that use sensitive static scrollable cursors.

Related concepts

Expressions (Db2 SQL)

Index keys

The usefulness of an index depends on the design of its key, which you define at the time that you create
the index.

Related reference
CREATE INDEX (Db2 SQL)

Compression of indexes
You can reduce the amount of space that an index occupies on disk by compressing the index.

The COMPRESS YES/NO clause of the ALTER INDEX and CREATE INDEX statements allows you to
compress the data in an index and reduce the size of the index on disk. However, index compression

is heavily data-dependent, and some indexes might contain data that does not yield significant space
savings. Compressed indexes might also use more real and virtual storage than non-compressed indexes.

Chapter 2. Implementing your database design 119

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_expressionsintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html

The amount of additional real and virtual storage that is required depends on the compression ratio that is
used for the compressed keys, the amount of free space, and the amount of space that is used by the key
map.

You can choose 8 KB, 16 KB, and 32 KB buffer pool page sizes for the index. Use the DSN1COMP utility
on existing indexes to estimate the appropriate page size for new indexes. Choosing a 32 KB buffer pool
instead of a 16 KB or an 8 KB buffer pool accommodates a potentially higher compression ratio, but
this choice also increases the potential to use more storage. Estimates for index space savings from the
DSN1COMP utility, either on the true index data or some similar index data, are not exact.

If I/O is needed to read an index, the CPU degradation for a index scan is probably relatively small, but the
CPU degradation for random access is likely to be very significant.

CPU degradation for deletes and updates is significant even if no read I/0O is necessary.

Related reference
ALTER INDEX (Db2 SQL)
CREATE INDEX (Db2 SQL)

XML index attributes

You can create an index on an XML column for efficient evaluation of XQuery expressions to improve
performance for queries on XML documents.

In simple relational indexes, index keys are composed of one or more table columns that you specified.
However, an XML index uses a particular XML pattern expression to index paths and values in XML
documents that are stored in a single XML column.

In an XML index, only the attribute nodes, text nodes, or element nodes that match the XML pattern
expression are indexed. An XML index only indexes the nodes that match the specific XML pattern and
not the document itself. Two more key fields are added to the index to form the composite index key. The
extra key fields, which identify the XML document and the node position within the document, are stored
in the catalog. These fields are not involved in uniqueness checking for unique indexes.

Use the CREATE INDEX statement with the XMLPATTERN keyword to create an XML index. You must also
specify the XML path to be indexed. An index key is formed by concatenating the values that are extracted
from the nodes in the XML document that satisfy the specified XML path with the document and node ID.

You specify a data type for every XML index. XML indexes support the following data types:
VARCHAR
DECFLOAT

TIMESTAMP(12)
- DATE

You can use the following clauses to control whether Db2 inserts values into a table that are not
compatible with the index data type:

« IGNORE INVALID VALUES
« REJECT INVALID VALUES

When you index an XML column with XMLPATTERN, only the parts of the document that satisfy the XML
pattern expression are indexed. Multiple parts of the document might satisfy the XML pattern that you
specified in the XMLPATTERN. Therefore, more than one index key entry might be generated and inserted
into the index for the insertion of a single document.

Only one XML index specification is allowed per CREATE INDEX statement. However, you can create an
XML index with multiple keys, or create multiple XML indexes on an XML column.

Restriction: Partitioned XML indexes are not supported

120 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_alterindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html

Examples

Example 1

GUPL Assume that you must search for a specific employee's surname (name/last) on the employee
elements. You can use the following CREATE INDEX statement to create an index on the '/
department/emp/name/last' XML pattern expression:

CREATE INDEX EMPINDEX ON DEPARTMENT (DEPTDOCS)
GENERATE KEYS USING XMLPATTERN '/department/emp/name/last'
AS SQL VARCHAR(20)

After the EMPINDEX index is created successfully, several entries are populated in the catalog tables.
GUPI

Example 2
You can create two XML indexes with the same pattern expression by using different data types
for each. You can use the different indexes to choose how you want to interpret the result of the
expression as multiple data types. For example, the value '12345' has a character representation but
it can also be interpreted as the number 12,345. For example, assume that you want to index the path
'/department/emp/@id"' as both a character string and a number. You must create two indexes,
one for the VARCHAR data type and one for the DECFLOAT data type. The values in the document are
cast to the specified data type for each index.

Related concepts

Storage structure for XML data (Db2 Programming for XML)

Processing XML data with Db2 pureXML (Introduction to Db2 for z/0OS)

XML data indexing (Db2 Programming for XML)

Pattern expressions (Db2 Programming for XML)

Best practices for XML performance in Db2 (Db2 Performance)

Related reference

XMLEXISTS predicate (Db2 SQL)

CREATE INDEX (Db2 SQL)

Indexes on partitioned tables

The following types of indexes apply to only partitioned tables: partitioned indexes, partitioning indexes
(PIs), data-partitioned secondary indexes (DPSIs), and nonpartitioned secondary indexes (NPIs or
NPSIs).

Partitioned index

A partitioned index is an index that is physically partitioned. Any index on a partitioned table, except for an
XML index, can be physically partitioned.

To create a partitioned index, specify PARTITIONED in the CREATE INDEX statement.

A partitioned index consists of multiple data sets. Each data set corresponds to a table partition. The
following figure illustrates the difference between a partitioned index and a nonpartitioned index.

Chapter 2. Implementing your database design 121

https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_xmlstoragestruct.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_xmlintroduction.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_indexxml.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_patternexpression.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_bestpractice4xmlperf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_xmlexistspredicate.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html

Partitioned index Partitioned table Non-partitioned index

310
321
323
351

P2

407
408
430
415

P3

510
P4 512
530
561

Figure 18. Comparison of partitioned and nonpartitioned index

Partitioning index

A partitioning index is an index on the column or columns that partition the table. Partitioning indexes are
generally not required because Db2 uses table-controlled partitioning, where the partitioning scheme (the
partitioning key and limit key values) are already defined in the table definition.

The CREATE INDEX statement does not have a specific SQL keyword that designates an index as a
partitioning index. Instead, an index is a partitioning index if the index key that is specified in the CREATE
INDEX statement matches the partitioning key. The partitioning key is the column or columns that are
specified in the PARTITION BY clause of the CREATE TABLE statement. Those columns partition the table.
An index key matches the partitioning key if it has the same leftmost columns and collating sequence
(ASC/DESC) as the columns in the partitioning key.

A partitioning key is different from the limit key values. A partitioning key defines the columns on which
the table is partitioned. The limit key values define which values belong in each partition. Specifically, a
limit key value is the value of the partitioning key that defines the partition boundary. It is the highest
value of the partitioning key for an ascending index, or the lowest value for a descending index. Limit

key values are specified in the PARTITION... ENDING AT clause of a CREATE TABLE statement or ALTER
TABLE statement. The specified ranges partition the table space and the corresponding partitioning index
space.

Remember: Partitioning is different from clustering. Whereas, partitioning guarantees that rows are
grouped into certain partitions based on value ranges defined partition limit key, clustering controls how
rows are physically ordered in a partition or table space. Clustering is controlled by a clustering index and
can apply to any type of table space. For more information, see “Clustering indexes” on page 117.

Tables created in earlier Db2 releases might still use index-controlled partitioning, where the partitioning
scheme was not defined as part of the table definition. In this case, a partitioning index is required to
specify the partitioning scheme. (The partitioning key and the limit key values were specified in the PART
VALUES clause of the CREATE INDEX statement.)

Deprecated function: Db2 12 can still process range-partitioned tables and indexes that use index-
controlled partitioning. However, such tables and indexes are deprecated. For best results, convert them
to use table-controlled partitioning (and a PBR table space) as soon as possible. For more information,
see “Converting table spaces to use table-controlled partitioning” on page 193.

122 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

Example partitioning index

GUPL For example, assume that you created an AREA_CODES table that contains area codes by state by
issuing the following CREATE TABLE statement.

CREATE TABLE AREA_CODES
(AREACODE_NO

STATE

PARTITION BY

(PARTITION
PARTITION
PARTITION
PARTITION
PARTITION
PARTITION
PARTITION
PARTITION

1
2
3
4
5
6
7
8

INTEGER NOT NULL,
CHAR (2) NOT NULL)

RANGE (

ENDING
ENDING
ENDING
ENDING
ENDING
ENDING
ENDING
ENDING

ARE
AT
AT
AT
AT
AT
AT

AT
AT

ACODE_NO)

(299),
(399),
(499),
(599),
(699),
(799),
(899),
(MAXVALUE)) ;

Optionally, you can issue the following CREATE INDEX statement to create a partitioning index on
the example AREA_CODES table. This index is not required because the partitioning scheme of the
AREA_CODES table is defined in its CREATE TABLE statement, and AREA_CODES uses table -controlled

partitioning.

CREATE INDEX AREACODE_IX1 ON AREA_CODES (AREACODE_NO)
CLUSTER PARTITIONED;

Tip: If you use a partitioning index for clustering, the data rows can be physically ordered across the

entire table space.

GUPI

The following figure illustrates the partitioning index on the AREA_CODES table.

T

AREA CODE_IX AREA CODES table

310 ——
320 —mM
323 —m
350 ——

P2

407 @——»
408 ——m
430 ——
415 ——m

P3

510 —»
512 ——m
530 ——
561 ——

P4

310CA
321FL
323 CA
351 MA

407 FL
408 CA
430 TX
415 CA

510 CA
512 TX
530 CA
561 FL

Ty

Figure 19. Partitioning index on the AREA_CODES table

Related information

“Partitioning data in Db2 tables” on page 77

Creation of a table with table-controlled partitioning (Introduction to Db2 for z/0OS)

“Changing the boundary between partitions” on page 221

“Clustering indexes” on page 117

“Converting table spaces to use table-controlled partitioning” on page 193

Chapter 2. Implementing your database design 123

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationoftablecontrolledpartitioning.html

Nonpartitioning index (secondary index)

An index that is not a partitioning index is a nonparitioning index or secondary index. You can create a
secondary index on a table to enforce a unique constraint, to cluster data, or to provide access paths to
data for queries.

The usefulness of an index depends on the columns in its key and the cardinality of the key. Columns

that you frequently select, join, group, or order are good candidates for keys. In addition, the number of
distinct values in an index key for a large table must be sufficient for Db2 to use the index to retrieve data.
Otherwise, Db2 might choose to do a table space scan.

You can create two types of secondary indexes: those that are partitioned (called data-partitioned
secondary indexes) and those that are nonpartitioned (called nonpartitioned secondary indexes).

Data-partitioned secondary index (DPSI)
A data-partitioned secondary index (DPSI) is a nonpartitioning index that is physically partitioned
according to the partitioning scheme of the underlying data.

A DPSI has as many partitions as the number of partitions in the table space. Each DPSI partition
contains keys for the rows of the corresponding table space partition only. For example, if the table
space has three partitions, the keys in DPSI partition 1 reference only the rows in table space partition
1; the keys in DPSI partition 2 reference only the rows in table space partition 2, and so on.

Restrictions:

» You can create a DPSI only on a table in a partitioned table space.
 You cannot create a DPSI for a partition-by-growth table space.
« An XML index cannot be a DPSI.

To define a DPSI, use the PARTITIONED keyword in the CREATE INDEX statement and specify an
index key that does not match the partitioning key columns. If the leftmost columns of the index that
you specify with the PARTITIONED keyword match the partitioning key, Db2 creates the index as a
DPSI only if the collating sequence of the matching columns is different.

The use of DPSIs promotes partition independence and therefore provides the following performance
advantages, among others:

- Eliminates contention between parallel LOAD utility jobs with the PART option that target different
partitions of a table space

- Facilitates partition-level operations such as adding a partition or rotating a partition to be the last
partition

« Improves the recovery time of secondary indexes on partitioned table spaces

However, the use of DPSIs does not always improve the performance of queries. For example, for
queries with predicates that reference only the columns in the key of the DPSI, Db2 must probe each
partition of the index for values that satisfy the predicate.

DPSIs provide performance advantages for queries that meet all of the following criteria:

« The query has predicates on the DPSI columns.

« The query contains additional predicates on the partitioning columns of the table that limit the
query to a subset of the partitions in the table.

Nonpartitioned secondary index (NPI or NPSI)
A nonpartitioned secondary index (NPI or NPSI) is any index that is not defined as a partitioning
index or a partitioned index. An NPI index has one index space that contains keys for the rows of all
partitions of the table space.

You can create an NPI on a table in a partitioned table space. These indexes do not apply to
nonpartitioned table spaces.

NPIs provide performance advantages for queries that meet the following criteria:

124 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

- The query does not contain predicates on the partitioning columns of the table that limit the query
to a small subset of the partitions in the table.

« The query qualifications match the index columns.
« The SELECT list columns are included in the index (for index-only access).

Examples of DPSI and NPI advantages

GUPI

To understand the advantages of using DPSIs and NPIs, consider the following example indexes on the
AREA_CODES table:

A data partitioned secondary index (DPSI) on the STATE column
Assuming that the AREA_CODES table not partitioned on the STATE column, the following CREATE
INDEX statement creates a DPSI on the AREA_CODES table.

CREATE INDEX DPSIIX2 ON AREA_CODES (STATE) PARTITIONED;

The following example query can make efficient use of the example DPSI. The number of key values
that need to be searched is limited to just the key values of the qualifying partitions, which are only
those with partitioning key values that are less than or equal to 300.

SELECT STATE FROM AREA_CODES
WHERE AREACODE_NO <= 300 AND STATE = 'CA‘;

A nonpartitioned index (NPI) on the STATE column
Assuming that the AREA_CODES table not partitioned on the STATE column, the following CREATE
INDEX statement creates an NPI on the AREA_CODES table.

CREATE INDEX NPSIIX3 ON AREA_CODES (STATE);

The following query can make efficient use of the example NPI. The number of key values that need to
be searched is limited to scanning the index key values that are greater than 'CA"

SELECT STATE FROM AREA_CODES
WHERE STATE > 'CA';

The following figure illustrates the structure of the example indexes.

N

DPSIIX2 AREA CODES table NPSIX3
CA g 310CA
321FL CA
FL
P2 MA 323CA
351 MA

FL

cA Pt
P3| R 430TX
LR 415CA MA

510 CA
CcA
pa 512 TX ™
FL 530CA
TX 561 FL

Figure 20. DPSI and NPI on the AREA_CODES table

GUPI

Chapter 2. Implementing your database design 125

DPSIs provide advantages over NPIs for utility processing. For example, utilities such as COPY, REBUILD
INDEX, and RECOVER INDEX can operate on physical partitions rather than logical partitions because the
keys for a data partition reside in a single DPSI partition. This method can provide greater availability.

Related concepts

Page range screening (PAGE_RANGE='Y") (Db2 Performance)

Efficient queries for tables with data-partitioned secondary indexes (Db2 Performance)
Table space scan access (ACCESSTYPE='R' and PREFETCH='S") (Db2 Performance)
Related tasks

Designing indexes for performance (Db2 Performance)

How Db2 implicitly creates an index

In certain circumstances, Db2 implicitly creates the unique indexes that are used to enforce the
uniqueness of the primary keys or unique keys.

These circumstances include:

- When the PRIMARY KEY or UNIQUE clause is specified in the CREATE TABLE statement and the CREATE
TABLE statement is processed by the schema processor

« When the table space that contains the table is implicitly created

When a ROWID column is defined as GENERATED BY DEFAULT in the CREATE TABLE statement, and the

CREATE TABLE statement is processed by SET CURRENT RULES ='STD/, or the table space that contains

the table is implicitly created, Db2 implicitly creates the unique indexes used to enforce the uniqueness

of the ROWID column. The privilege set must include the USE privilege of the buffer pool. Each index is
created as if the following CREATE INDEX statement were issued:

CREATE UNIQUE INDEX xxx ON table-name (columni,...)

Where:

« xxx is the name of the index that Db2 generates.
« table-name is the name of the table that is specified in the CREATE TABLE statement.

« (columni,...) is the list of column names that were specified in the UNIQUE or PRIMARY KEY clause
of the CREATE TABLE statement, or the column is a ROWID column that is defined as GENERATED BY
DEFAULT.

In addition, if the table space that contains the table is implicitly created, Db2 will check the DEFINE
DATA SET subsystem parameter to determine whether to define the underlying data set for the index
space of the implicitly created index on the base table.

If DEFINE DATA SET is NO, the index is created as if the following CREATE INDEX statement is issued:

CREATE UNIQUE INDEX xxx ON table-name (columni,...) DEFINE NO

When you create a table and specify the organization-clause of the CREATE TABLE statement, Db2
implicitly creates an index for hash overflow rows. This index contains index entries for overflow rows

that do not fit in the fixed hash space. If the hash space that is specified in the organization-clause is
adequate, the hash overflow index should have no entries, or very few entries. The hash overflow index for
a table in a partition-by-range table space is a partitioned index. The hash overflow index for a table in a
partition-by-growth table space is a non-partitioned index.

Db2 determines how much space to allocate for the hash overflow index. Because this index will be
sparsely populated, the size is relatively small compared to a normal index.

126 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_scanlimit2parts.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_writequery4dpsitable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_tablespacescanaccess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_evaluateindexesperf.html

Implementing Db2 schemas

Use schemas to provide a logical classification of objects in the database.

Creating a schema by using the schema processor

Schemas provide a logical classification of objects in the database. You can use the schema processor to
create a schema.

About this task
Creating a schema by using the CREATE SCHEMA statement is also supported for compliance testing.

GUPI CREATE SCHEMA statements cannot be embedded in a host program or executed interactively. To
process the CREATE SCHEMA statement, you must use the schema processor. The ability to process
schema definitions is provided for conformance to ISO/ANSI standards. The result of processing a
schema definition is identical to the result of executing the SQL statements without a schema definition.

Outside of the schema processor, the order of statements is important. They must be arranged so that
all referenced objects have been previously created. This restriction is relaxed when the statements are
processed by the schema processor if the object table is created within the same CREATE SCHEMA.
The requirement that all referenced objects have been previously created is not checked until all of the
statements have been processed. For example, within the context of the schema processor, you can
define a constraint that references a table that does not exist yet or GRANT an authorization on a table
that does not exist yet.

Procedure

To create a schema:
1. Write a CREATE SCHEMA statement.
2. Use the schema processor to execute the statement.

Example

The following example shows schema processor input that includes the definition of a schema.

CREATE SCHEMA AUTHORIZATION SMITH

CREATE TABLE TESTSTUFF
(TESTNO CHAR(4),
RESULT CHAR(4),
TESTTYPE CHAR(3))

CREATE TABLE STAFF
(EMPNUM CHAR(3) NOT NULL,
EMPNAME CHAR(20),
GRADE DECIMAL(4),
CITY CHAR(15))

CREATE VIEW STAFFV1
AS SELECT x FROM STAFF
WHERE GRADE >= 12
GRANT INSERT ON TESTSTUFF TO PUBLIC

GRANT ALL PRIVILEGES ON STAFF
TO PUBLIC

GUPI

Chapter 2. Implementing your database design 127

Processing schema definitions

You must use the schema processor to process CREATE SCHEMA statements.

Before you begin

The schema processor sets the current SQLID to the value of the schema authorization ID before
executing any of the statements in the schema definition. Therefore, that ID must have SYSADM or
SYSCTRL authority, or it must be the primary or one of the secondary authorization IDs of the process that
executes the schema processor. The same ID must have all the privileges that are needed to execute all
the statements in the schema definition.

Procedure

To process schema definitions:

1. Run the schema processor (DSNHSP) as a batch job. Use the sample JCL provided in member
DSNTEJ1S of the SDSNSAMP library.

The schema processor accepts only one schema definition in a single job. No statements that are
outside the schema definition are accepted. Only SQL comments can precede the CREATE SCHEMA
statement; the end of input ends the schema definition. SQL comments can also be used within and
between SQL statements.

The processor takes the SQL from CREATE SCHEMA (the SYSIN data set), dynamically executes it, and
prints the results in the SYSPRINT data set.

2. Optional: If a statement in the schema definition has an error, the schema processor processes the
remaining statements but rolls back all the work at the end. In this case, you need to fix the statement
in error and resubmit the entire schema definition.

Loading data into Db2 tables

You can use several methods to load data into Db2 tables.

The most common method for loading data into most of your tables is to use the LOAD utility. This utility
loads data into Db2 persistent tables from sequential data sets by using BSAM. You can also use a cursor
that is declared with an EXEC SQL utility control statement to load data from another SQL table with the
Db2 UDB family cross-loader function. The LOAD utility cannot be used to load data into Db2 temporary
tables or system-maintained materialized query tables.

When loading tables with indexes, referential constraints, or table check constraints, LOAD can perform
several checks on the validity of data. If errors are found, the table space that is being loaded, its index
spaces, and even other table spaces might be left in a restricted status. LOAD does not check the validity
of informational referential constraints. Plan to make necessary corrections and remove restrictions after
any LOAD job.

You can also use an SQL INSERT statement to copy all or selected rows of another table, in any of the
following methods:

« Using the INSERT statement in an application program
« Interactively through SPUFI
« With the command line processor

To reformat data from IMS DL/I databases and VSAM and SAM loading for the LOAD utility, use Db2
DataPropagator.

128 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

Loading data with the LOAD utility

Use the LOAD utility to load one or more tables of a table space. If you are loading a large number of rows,
use the LOAD utility rather than inserting the rows by using the INSERT statement.

Before you begin
Before using the LOAD utility, make sure that you complete all of the prerequisite activities for your
situation.

Procedure

Run the LOAD utility control statement with the options that you need.

What to do next
Reset the restricted status of the table space that contains the loaded data.
Related concepts

Before running LOAD (Db2 Utilities)

Row format conversion for table spaces

The row format of a table space is converted when you run the LOAD REPLACE or REORG TABLESPACE
utilities.

Related tasks

Collecting statistics by using Db2 utilities (Db2 Performance)

Related reference

LOAD (Db2 Utilities)

How the LOAD utility loads Db2 tables

Use the LOAD utility to load one or more persistent tables of a table space, or one or more partitions of
a table space. The LOAD utility operates on a table space, so you must have authority for all tables in the
table space when you run LOAD.

The LOAD utility loads records into the tables and builds or extends any indexes defined on them. If the
table space already contains data, you can choose whether you want to add the new data to the existing
data or replace the existing data.

Additionally, you can use the LOAD utility to do the following:

« Compress data and build a compression dictionary
« Convert data between compatible data types and between encoding schemes
« Load multiple tables in a single table space

Delimited input and output files

The LOAD and UNLOAD utilities can accept or produce a delimited file, which is a sequential BSAM file
with row delimiters and column delimiters. You can unload data from other systems into one or more files
that use a delimited file format and then use these delimited files as input for the LOAD utility. You can
also unload Db2 data into delimited files by using the UNLOAD utility and then use these files as input into
another Db2 database.

INCURSOR option

The INCURSOR option of the LOAD utility specifies a cursor for the input data set. Use the EXEC SQL utility
control statement to declare the cursor before running the LOAD utility. You define the cursor so that it
selects data from another Db2 table. The column names in the SELECT statement must be identical to

the column names of the table that is being loaded. The INCURSOR option uses the Db2 cross-loader
function.

Chapter 2. Implementing your database design 129

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_beforerunningload.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_beforerunningload.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_restrictafterload.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_beforerunningload.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_collectstatsutilities.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_load.html

CCSID option

You can load input data into ASCII, EBCDIC, or Unicode tables. The ASCII, EBCDIC, and UNICODE options
on the LOAD utility statement let you specify whether the format of the data in the input file is ASCII,
EBCDIC, or Unicode. The CCSID option of the LOAD utility statement lets you specify the CCSIDs of the
data in the input file. If the CCSID of the input data does not match the CCSID of the table space, the input
fields are converted to the CCSID of the table space before they are loaded.

Availability during load

For nonpartitioned table spaces, data for other tables in the table space that is not part of the table that
is being loaded is unavailable to other application programs during the load operation with the exception
of LOAD SHRLEVEL CHANGE. For partitioned table spaces, data that is in the table space that is being
loaded is also unavailable to other application programs during the load operation with the exception of
LOAD SHRLEVEL CHANGE. In addition, some SQL statements, such as CREATE, DROP, and ALTER, might
experience contention when they run against another table space in the same Db2 database while the
table is being loaded.

Default values for columns

When you load a table and do not supply a value for one or more of the columns, the action Db2 takes
depends on the circumstances.

« If the column is not a ROWID or identity column, Db2 loads the default value of the column, which is
specified by the DEFAULT clause of the CREATE or ALTER TABLE statement.

« If the column is a ROWID column that uses the GENERATED BY DEFAULT option, Db2 generates a
unique value.

« If the column is an identity column that uses the GENERATED BY DEFAULT option, Db2 provides a
specified value.

« With XML columns, if there is an implicitly created DOCID column in the table, it is created with the
GENERATED ALWAYS attribute.

For ROWID or identity columns that use the GENERATED ALWAYS option, you cannot supply a value
because this option means that Db2 always provides a value.

XML columns

You can load XML documents from input records if the total input record length is less than 32 KB. For
input record length greater than 32 KB, you must load the data from a separate file. (You can also use a
separate file if the input record length is less than 32 KB.)

When the XML data is to be loaded from the input record, specify XML as the input field type. The

target column must be an XML column. The LOAD utility treats XML columns as varying-length data when
loading XML directly from input records and expects a two-byte length field preceding the actual XML
value.

The XML tables are loaded when the base table is loaded. You cannot specify the name of the auxiliary
XML table to load.

XML documents must be well formed in order to be loaded.

LOB columns

The LOAD utility treats LOB columns as varying-length data. The length value for a LOB column must be
4 bytes. The LOAD utility can be used to load LOB data if the length of the row, including the length of
the LOB data, does not exceed 32 KB. The auxiliary tables are loaded when the base table is loaded. You
cannot specify the name of the auxiliary table to load.

130 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

Replacement or addition of data

You can use LOAD REPLACE to replace data in a single-table table space or in a multiple-table table
space. You can replace all the data in a table space (using the REPLACE option), or you can load new
records into a table space without destroying the rows that are already there (using the RESUME option).

Loading data by using the INSERT statement
You can load data into tables is by using the INSERT statement.

Procedure

Issue an INSERT statement, and insert single or multiple rows.

What to do next

You can issue the statement interactively or embed it in an application program.
Related tasks

Inserting multiple rows

You can use a form of INSERT that copies rows from another table.

Inserting a single row
The simplest form of the INSERT statement inserts a single row of data. In this form of the statement, you
specify the table name, the columns into which the data is to be inserted, and the data itself.

Changing the logging attribute for a table space
You can use the ALTER TABLESPACE statement to set the logging attribute of a table space.

Related reference
INSERT (Db2 SQL)

Inserting a single row

The simplest form of the INSERT statement inserts a single row of data. In this form of the statement, you
specify the table name, the columns into which the data is to be inserted, and the data itself.

Procedure

GUPITo insert a single row:
1. Issue an INSERT INTO statement.
2. Specify the table name, the columns into which the data is to be inserted, and the data itself.

Example

For example, suppose that you create a test table, TEMPDEPT, with the same characteristics as the
department table:

CREATE TABLE SMITH.TEMPDEPT
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) NOT NULL,
ADMRDEPT CHAR(3) NOT NULL)

IN DSN8D91A.DSN8S91D;

To now add a row to table TEMPDEPT, you can enter:

INSERT INTO SMITH.TEMPDEPT
VALUES ('X®5', 'EDUCATION', '000631', 'A01");

Chapter 2. Implementing your database design 131

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_insert.html

What to do next
If you write an application program to load data into tables, you use that form of INSERT, probably with

host variables instead of the actual values shown in this example. “GUPI
Related concepts

Implications of using an INSERT statement to load tables
If you plan to use the INSERT statement to load tables, you should consider some of the implications.
Related tasks

Inserting multiple rows
You can use a form of INSERT that copies rows from another table.

Inserting multiple rows

You can use a form of INSERT that copies rows from another table.

Procedure

GUPIL To add multiple rows to a table:

1. Issue an INSERT INTO statement.
For example, the following statement loads TEMPDEPT with data from the department table about all
departments that report to department DO1.

INSERT INTO SMITH.TEMPDEPT
SELECT DEPTNO,DEPTNAME,MGRNO, ADMRDEPT
FROM DSN8910.DEPT
WHERE ADMRDEPT='DO1"';

2. Optional: Embed the INSERT statement in an application program to insert multiple rows into a table
from the values that are provided in host-variable arrays.

a) Specify the table name, the columns into which the data is to be inserted, and the arrays that
contain the data.
Each array corresponds to a column.

For example, you can load TEMPDEPT with the number of rows in the host variable num-rows by using
the following embedded INSERT statement:

EXEC SQL
INSERT INTO SMITH.TEMPDEPT
FOR :num-rows ROWS
VALUES (:hval, :hva2, :hva3, :hva4d);

Assume that the host-variable arrays hval, hva2, hva3, and hva4 are populated with the values that
are to be inserted. The number of rows to insert must be less than or equal to the dimension of each

host-variable array. < GUPI

Related concepts

Implications of using an INSERT statement to load tables

If you plan to use the INSERT statement to load tables, you should consider some of the implications.
Related tasks

Inserting a single row
The simplest form of the INSERT statement inserts a single row of data. In this form of the statement, you
specify the table name, the columns into which the data is to be inserted, and the data itself.

Implications of using an INSERT statement to load tables
If you plan to use the INSERT statement to load tables, you should consider some of the implications.

- If you are inserting a large number of rows, you can use the LOAD utility. Alternatively, use multiple
INSERT statements with predicates that isolate the data that is to be loaded, and then commit after
each insert operation.

132 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

- When a table, whose indexes are already defined, is populated by using the INSERT statement, both the
FREEPAGE and the PCTFREE parameters are ignored. FREEPAGE and PCTFREE are in effect only during
a LOAD or REORG operation.

« Set the NOT LOGGED attribute for table spaces when large volumes of data are being inserted with
parallel INSERT processes. If the data in the table space is lost or damaged, it can be reinserted from its
original source.

« You can load a value for a ROWID column with an INSERT and fullselect only if the ROWID column
is defined as GENERATED BY DEFAULT. If you have a table with a column that is defined as ROWID
GENERATED ALWAYS, you can propagate non-ROWID columns from a table with the same definition.

« You cannot use an INSERT statement on system-maintained materialized query tables.

« REBUILD-pending (RBDP) status is set on a data-partitioned secondary index if you create the index
after you insert a row into a table. In addition, the last partition of the table space is set to REORG-
pending (REORP) restrictive status.

« When you insert a row into a table that resides in a partitioned table space and the value of the first
column of the limit key is null, the result of the INSERT depends on whether Db2 enforces the limit key
of the last partition:

— When Db2 enforces the limit key of the last partition, the INSERT fails (if the first column is
ascending).

— When Db2 enforces the limit key of the last partition, the rows are inserted into the first partition (if
the first column is descending).

— When Db2 does not enforce the limit key of the last partition, the rows are inserted into the last
partition (if the first column is ascending) or the first partition (if the first column is descending).

Db2 enforces the limit key of the last partition for the following table spaces:

— Table spaces using table-controlled or index-controlled partitioning that are large (DSSIZE greater
than, or equal to, 4 GB)

— Tables spaces using table-controlled partitioning that are large or non-large (any DSSIZE)

Related tasks

Inserting a single row
The simplest form of the INSERT statement inserts a single row of data. In this form of the statement, you
specify the table name, the columns into which the data is to be inserted, and the data itself.

Inserting multiple rows
You can use a form of INSERT that copies rows from another table.

Loading data with DRDA fast load (zLoad)

DRDA fast load, which is also known as zLoad, enables quick and easy loading of data from files that
reside on distributed clients.

Before you begin

Before using DRDA fast load, you must bind the DSNUT121 package at each location from which you want
to load data. The following example binds the DSNUT121 package at a remote location:

BIND PACKAGE (location.DSNUT121)
MEMBER (DSNUGSQL) -
ACTION(ADD) ISOLATION(CS) ENCODING(EBCDIC) -
VALIDATE (BIND) CURRENTDATA(NO) -
LIBRARY ('prefix.SDSNDBRM')

About this task

The Db2 for Linux®, UNIX, and Windows Call Level Interface (CLI) APIs, JDBC APIs, and the Command
Line Processor (CLP) support remote loading of data to Db2 for z/OS.

Chapter 2. Implementing your database design 133

Procedure
- Forinformation about how to invoke DRDA fast load, see the following topics:

CLP ZLOAD command
Loading a Db2 for z/OS table by using an IBM Data Server Driver for JDBC and SQLJ method
“Loading a Db2 for z/OS table by using a client CLI program” on page 134

Loading a Db2 for z/0S table by using a client CLI program

The DRDA fast LOAD process, which is also known as zLoad, can be used to execute a Db2 for z/OS LOAD
utility statement from a client program. You can write a client CLI program to do that.

Procedure

To load a Db2 for z/OS from a client CLI application, follow these steps:
1. Invoke the SQLSetStmtAttr function to set values for the following attributes:

SQL_ATTR_DB2ZLOAD_LOADSTMT
The text of the LOAD control statement.

SQL_ATTR_DB2ZLOAD_UTILITYID
The utility ID, which is a unique identifier that you can set so that you can identify a particular LOAD
statement invocation. Setting this attribute is optional.
2. Allocate a buffer for the data that is to be loaded.
3. Invoke the SQLSetStmtAttr function to set the SQL_ATTR_DB2ZLOAD_BEGIN attribute to indicate to
the CLI driver that the LOAD operation is to begin.
4. Invoke the SQLPutData function one or more times to send the data that is to be loaded to the CLI
driver.
5. When all the data has been sent to the driver, invoke the SQLSetStmtAttr function to set the
SQL_ATTR_DB2ZLOAD_END attribute. That attribute indicates to the CLI driver that the LOAD
operation is complete.

Example

The following code fragment demonstrates using the DRDA fast load process to load data from file
customer.data into table MYID.CUSTOMER_DATA.

This code fragment uses the STMT_HANDLE_CHECK macro. STMT_HANDLE_CHECK is in utilcli.h, which is
shipped with Db2 for Linux, UNIX, and Windows. For information on STMT_HANDLE_CHECK and the utility
functions that it invokes, see the following topics:

Declarations of utility functions used by DB2 CLI samples
Utility functions used by DB2 CLI samples

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sqlclil.h>

#include "utilcli.h" /* Header file for CLI sample code x/
#include <sqlca.h>

int main(int argc, char % argv[])

SQLRETURN cliRC = SQL_SUCCESS;
int rc = 0;

SQLHANDLE henv; /* Environment handle =*/
SQLHANDLE hdbc; /* Connection handle */
SQLHANDLE hstmt; /* Statement handle */
SQLCHAR loadStmt[2000]; /* LOAD statement text */

SQLINTEGER loadStmtLen = 0; /* LOAD statement length x/
SQLCHAR loadFileName[200] = "customer.data";
/* Name of file with data =*/
/* to be loaded */
FILEx pFile; /* File handle for LOAD input =*/

134 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

https://www.ibm.com/docs/en/db2/11.5?topic=commands-zload
https://www.ibm.com/docs/en/db2/11.5?topic=jap-loading-db2-zos-table-by-using-data-server-driver-jdbc-sqlj-method
https://www.ibm.com/docs/en/db2/11.5?topic=SSEPGG_11.5.0/com.ibm.db2.luw.apdv.sample.doc/doc/cli/s-utilcli-h.html
https://www.ibm.com/docs/en/db2/11.5?topic=SSEPGG_11.5.0/com.ibm.db2.luw.apdv.sample.doc/doc/cli/s-utilcli-c.html

size_t 1Size = 0; /* Input file size */
SQLLEN iPutDataSize = 0; /* LOAD input buffer size */
SQLCHAR *pBuffer = NULL; /% LOAD input buffer pointer */
SQLINTEGER Retcode = 0;

SQLSMALLINT iStrlLen = 0;

SQLCHAR Msgbuff[3000]; /* LOAD messages buffer */
|| /
/* Allocate a statement handle. */
AR SRR SRR AR SRR SRR A SR ARSI S AR ISR AR /
cliRC = SQLAllocHandle(SQL_HANDLE_STMT, hdbc,&hstmt);
DBC_HANDLE_CHECK (hdbc, cliRC);
e /
/* Assign the LOAD control statement to the loadStmt */
/* variable. */
|| /

/

sprintf((char*)loadStmt,
(charx)"TEMPLATE SORTIN DSN &JO..&ST..SORTIN.T&TIME. " +
"SPACE(10,10) CYL DISP(NEW,DELETE,DELETE) TEMPLATE SORTOUT " +
"DSN &JO..&ST..SORTOUT.T&TIME. SPACE(10,10) CYL " +
"DISP(NEW,DELETE,DELETE) LOAD DATA INDDN SYSCLIEN " +
"WORKDDN (SORTIN,SORTOUT) REPLACE PREFORMAT LOG(NO) " +
"REUSE NOCOPYPEND FORMAT DELIMITED EBCDIC " +
"INTO TABLE MYID.CUSTOMER_DATA NUMRECS 30000");

loadStmtLen = strlen((charx)loadStmt);

/* Open file block.cust.del, which contains the data to %/
/* be loaded, and associate it with file handle pfile. */
R e s /
pFile = fopen((charx)loadFileName, "rb");

if (pFile == NULL)

printf("Exrror allocating LOAD input file\n");
return -1;

/**/
/* Set the pointer to the end of the file. */

/
cliRC = fseek(pFile , O , SEEK_END);
if (cliRC)

printf("Cannot set the file pointer to the end of the file\n");
return -1;

/**/
/* Get the current position in the file, which is the */
/* file size. */
/**/
1Size = ftell (pFile);

if (1Size <= 0)

printf("Cannot get the size of the file\n");
return -1;

/

/* Set the pointer to the beginning of the file. */
[*kkkkkkkkkkok sk kok ok k ok sk kok ok sk ko ok ok k ok ok ok ok ko ko ok ok ok k ok ko k ok ok k ok ok ok /
cliRC = fseek(pFile, OL, SEEK_SET);

if (cliRC)
printf("Cannot set the file pointer to the beginning of the file\n");
return -1;

[AR SRS A AFEFAFEFA RS S A AFAFAFIFE TSRS AFAFAFA TR /

/* Allocate an input buffer. For this example, the */

/* buffer size is half the file size. */

[HRERH A AFAFAFA TR RIS A A TR TR SRR AAFAFAR AR /

iPutDataSize = (1Size / 2);

pBuffer = (SQLCHAR*)malloc((iPutDataSize+1));
e /
/* Read a block of data from the file into the buffer. =*/
/**/
fread(pBuffer, 1, iPutDataSize, pFile);

|| /
/* Set attributes for doing a zLoad operation. */

|| /
e L /
/* Set statement attribute SQL_ATTR_DB2ZLOAD_LOADSTMT x/
/* to a pointer to the loadStmt variable. */
R S b T et /

cliRC = SQLSetStmtAttr(hstmt,
(SQLINTEGER)SQL_ATTR_DB2ZLOAD_LOADSTMT,

Chapter 2. Implementing your database design 135

(SQLPOINTER)loadStmt, (SQLINTEGER)loadStmtLen);
STMT_HANDLE_CHECK (hstmt, hdbc, cliRC); /* Check result =*/
/**/
/* Set statement attribute SQL_ATTR_DB2ZLOAD_BEGIN to */
/* SQL_TRUE, to indicate that loading data is to start. */
/**/
cliRC = SQLSetStmtAttr(hstmt,

(SQLINTEGER)SQL_ATTR_DB2ZLOAD_BEGIN,

(SQLPOINTER)SQL_TRUE, SQL_IS_INTEGER);

STMT_HANDLE_CHECK (hstmt, hdbc, cliRC); /* Check result =«/

/
cliRC = SQLPutData(hstmt, pBuffer, iPutDataSize);
STMT_HANDLE_CHECK (hstmt, hdbc, cliRC); /* Check result =/

o L S T e /
/* Move the input file pointer to the next block of */
/* data */

|| /

/
if (1Size % 2 == 1)
i
iPutDataSize = iPutDataSize +1;

/**/

/* Read the other half of the data. */
|| /

fread(pBuffer, 1, iPutDataSize, pFile);
|| /

/* Send the remaining data to the CLI driver. */

/**/
cliRC = SQLPutData(hstmt, pBuffer, iPutDataSize);
STMT_HANDLE_CHECK (hstmt, hdbc, cliRC);
/**/
/* Set the statement attribute to SQL_TRUE, to indicate */
/* that loading data is to end. */
/**/
cliRC = SQLSetStmtAttr(hstmt,
(SQLINTEGER)SQL_ATTR_DB2ZLOAD_END,
(SQLPOINTER)SQL_TRUE, SQL_IS_INTEGER);
STMT_HANDLE_CHECK (hstmt, hdbc, cliRC); /* Check result =«/

/* Close the input file */
[HRERE S I AFHFE R SRS AAFAFAFI R RS SRS A TR /
fclose(pFile);

/**/
/* Retrieve the return code from the zLoad. */

/
cliRC = SQLGetDiagField(SQL_HANDLE_STMT, hstmt, 1,
SQL_DIAG_DB2ZLOAD_RETCODE, &Retcode,
SQL_IS_INTEGER, NULL);
/**/
/* Retrieve the messages from the zlLoad. */

cliRC = SQLGetDiagField(SQL_HANDLE_STMT, hstmt, 1,
SQL_DIAG_DB2ZLOAD_LOAD_MSGS, (SQLPOINTER)Msgbuff, 3000,
&iStrLen);

Loading data from DL/I

You might want to convert data in IMS DL/I databases from a hierarchical structure to a relational
structure so that it can be loaded into Db2 tables.

Procedure
Use the DataRefresher licensed program.

Related concepts
Tools for moving Db2 data

136 Db2 12 for z/OS: Administration Guide (Last updated: 2024-03-29)

Moving Db2 data can be complicated. Fortunately, several tools exist that can help to simplify the process.

Implementing Db2 stored procedures

You might choose to use stored procedures for code that is used repeatedly. Other benefits of using
stored procedures include reducing network traffic, returning result sets to an application, or allowing
access to data without granting the privileges to the applications.

About this task
Introductory concepts
Procedures (Introduction to Db2 for z/OS)

A stored procedure is a compiled program that can execute SQL statements and is stored at a local or
remote Db2 server. You can invoke a stored procedure from an application program or from the command
line processor. A single call to a stored procedure from a client application can access the database at the
server several times.

A typical stored procedure contains two or more SQL statements and some manipulative or logical
processing in a host language or SQL procedure statements. You can call stored procedures from other
applications or from the command line. Db2 provides some stored procedures, but you can also create
your own.

Procedure
See Implementing Db2 stored procedures.

Related tasks

Creating external stored procedures (Db2 Application programming and SQL)

Creating external SQL procedures (deprecated) (Db2 Application programming and SQL)
Creating native SQL procedures (Db2 Application programming and SQL)

Related reference

Procedures that are supplied with Db2 (Db2 SQL)

Creating stored procedures

The process that you follow to create a stored procedure depends on the type of stored procedure that
you want to create.

Before you begin

You must complete some configuration tasks for the Db2 environment before you can use any of the
following types of procedures:

« External stored procedures
« Native SQL procedures that satisfy any of the following conditions:
— Calls at least one external stored procedure, external SQL procedure, or user-defined function.
— Defined with ALLOW DEBUG MODE or DISALLOW DEBUG MODE.
« External SQL procedures (deprecated)
« Db2-supplied stored procedures
For instructions, see Installation step 21: Configure Db2 for running stored procedures and user-defined

functions (Db2 Installation and Migration) or Migration step 23: Configure Db2 for running stored
procedures and user-defined functions (optional) (Db2 Installation and Migration).

Chapter 2. Implementing your database design 137

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_procedures.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sproc/src/tpc/db2z_implementstoredprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createexternalsp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createexternalsqlproc.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/s