
IBM Spatial Support for Db2 for z/OS

User's Guide and Reference
Last updated: 2023-05-17

IBM

GC27-8895

Notes

Before using this information and the product it supports, be sure to read the general information under
"Notices" at the end of this information.

Subsequent editions of this PDF will not be delivered in IBM Publications Center. Always download the
latest edition from IBM Documentation.

2023-05-17 edition

This edition applies to IBM Spatial Support for DB2 12 for z/OS, part of Version 4.1 of DB2 Accessories Suite for z/OS,
product number 5697-Q05, and to any subsequent releases to IBM Spatial Support for DB2 for z/OS until otherwise
indicated in new editions. Make sure that you are using the correct edition for the level of the IBM Spatial Support for
DB2 for z/OS offering.
© Copyright International Business Machines Corporation 2007, 2023.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html

Contents

About this information.. ix
Who should read this information...ix
Db2 Utilities Suite for z/OS..ix
Terminology and citations... ix
Accessibility features for Db2 for z/OS.. x
How to send your comments about Db2 for z/OS documentation... x
How to read syntax diagrams..xi

Chapter 1. IBM Spatial Support for Db2 for z/OS...1
The purpose of IBM Spatial Support for Db2 for z/OS.. 1
How data represents geographic features.. 2

The nature of spatial data.. 3
Where spatial data comes from... 3

How features, spatial information, spatial data, and geometries fit together... 4

Chapter 2. About geometries...5
Geometries...5
Properties of geometries... 6

Types...6
Geometry coordinates..6
X and Y coordinates..7
Z coordinates.. 7
M coordinates... 7
Interior, boundary, and exterior... 7
Simple or non-simple... 7
Closed... 7
Empty or not empty.. 7
Minimum bounding rectangle (MBR)... 7
Dimension... 8
Spatial reference system identifier.. 8

Chapter 3. Getting started with IBM Spatial Support for Db2 for z/OS..................... 9
System requirements for installing IBM Spatial Support for Db2 for z/OS.. 9
Setting up and installing spatial support...9
Verifying the installation of spatial support.. 10
Inventory of resources supplied for your database..10
Enabling spatial support for the first time...11
Enabling spatial support for migration to Db2 12...12

Chapter 4. Setting up spatial resources.. 13
How to use coordinate systems.. 13

Coordinate systems..13
Geographic coordinate system.. 13
Projected coordinate systems..17
Selecting or creating coordinate systems..17

How to set up spatial reference systems.. 18
Spatial reference systems..18
Deciding whether to use a default spatial reference system or create a new system.......................19
Spatial reference systems supplied with IBM Spatial Support for Db2 for z/OS............................... 20
Creating a spatial reference system.. 21

 iii

Conversion factors that transform coordinate data into integers...22
Calculating offset values.. 24
Calculating scale factors.. 24
Determining minimum and maximum coordinates and measures...25

Chapter 5. Setting up spatial columns.. 27
Spatial columns..27

Spatial columns with viewable content... 27
Spatial data types...27

Creating spatial columns... 28
Creating inline spatial columns... 29
Registering spatial columns.. 31

Chapter 6. Populating spatial columns... 33
About importing spatial data... 33
Importing spatial data... 34

Importing shape data to a new or existing table...34

Chapter 7. Using indexes to access spatial data.. 35
Spatial indexes...35
Spatial grid indexes..35

Generation of spatial grid indexes... 35
Use of spatial functions in a query...36
How a query uses a spatial grid index... 36

Considerations for the number of grid levels and grid sizes...37
Number of grid levels... 37
Grid cell sizes..37

Creating spatial grid indexes... 39

Chapter 8. Analyzing and generating spatial information...................................... 41
Environments for performing spatial analysis.. 41
Examples of how spatial functions operate.. 41
Functions that use indexes to optimize queries... 42

Chapter 9. Stored procedures.. 45
ST_alter_coordsys.. 45
ST_alter_srs..47
ST_create_coordsys... 50
ST_create_index...51
ST_create_srs...54
ST_create_srs_2...57
ST_drop_coordsys.. 60
ST_drop_index..61
ST_drop_srs..62
ST_export_shape... 64
ST_import_shape...66
ST_register_spatial_column.. 73
ST_unregister_spatial_column.. 74

Chapter 10. Catalog views... 77
The DB2GSE.GEOMETRY_COLUMNS catalog view... 77
The DB2GSE.SPATIAL_REF_SYS catalog view..77
The DB2GSE.ST_COORDINATE_SYSTEMS catalog view...78
The DB2GSE.ST_GEOMETRY_COLUMNS catalog view..79
The DB2GSE.ST_SIZINGS catalog view.. 80
The DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view...81

iv

The DB2GSE.ST_UNITS_OF_MEASURE catalog view... 84

Chapter 11. Spatial functions: categories and uses... 85
Constructor functions.. 85

Functions that operate on data exchange formats... 85
A function that creates geometries from coordinates.. 86
Examples.. 87
Conversion to well-known text (WKT) representation.. 88
Conversion to well-known binary (WKB) representation..89
Conversion to ESRI shape representation...89
Conversion to Geography Markup Language (GML) representation... 90

Comparison functions..90
Spatial comparison functions.. 91
Functions that compare geographic features..91

Functions that check whether one geometry contains another...92
ST_Contains.. 92
ST_Within.. 93

Functions that check intersections between geometries...95
EnvelopesIntersect.. 95
ST_Intersects... 95
ST_Crosses..96
ST_Overlaps.. 97
ST_Touches...98

Function that checks whether two geometries are identical... 100
ST_Equals... 100

Functions that return coordinate and measure information.. 100
ST_Is3D.. 101
ST_IsMeasured...101
ST_IsValid...101
ST_M... 102
ST_MaxM.. 102
ST_MaxX... 102
ST_MaxY... 102
ST_MaxZ... 102
ST_MinM... 102
ST_MinX..102
ST_MinY.. 102
ST_MinZ.. 102
ST_X..102
ST_Y.. 102
ST_Z..102

Functions that return information about geometries within a geometry...102
ST_Centroid.. 103
ST_EndPoint... 103
ST_GeometryN... 103
ST_NumGeometries... 103
ST_NumPoints.. 103
ST_PointN... 103
ST_StartPoint..103

Functions that show information about boundaries, envelopes, and rings...104
Functions that return information about a geometry's dimensions...104

ST_Area.. 104
ST_Length...104

Functions that reveal whether a geometry is closed, empty, or simple.. 104
ST_IsClosed..104
ST_IsEmpty.. 104
ST_IsSimple... 105

 v

Function that identifies a geometry's spatial reference system.. 105
ST_SRID..105

Functions that generate new geometries from existing geometries..105
Function that converts one geometry to another..105
Functions that create new geometries with different space configurations....................................105
Function that derives one geometry from many... 108

Function that returns distance information.. 109
Function that returns index information... 109

Chapter 12. Spatial functions: syntax and parameters.. 111
Considerations for spatial functions... 111
EnvelopesIntersect... 111
ST_Area..113
ST_AsBinary...115
ST_AsGML.. 116
ST_AsShape... 117
ST_AsText...118
ST_Boundary..120
ST_Buffer... 121
ST_Centroid..123
ST_Contains... 124
ST_ConvexHull... 126
ST_CoordDim... 127
ST_Crosses...128
ST_Difference...129
ST_Dimension.. 131
ST_Disjoint... 132
ST_Distance... 134
ST_Endpoint...137
ST_Envelope.. 138
ST_Equals...139
ST_ExteriorRing... 140
ST_Geometry..141
ST_GeometryN... 142
ST_GeometryType..143
ST_GeomFromText...144
ST_GeomFromWKB..145
ST_GetIndexParms.. 146
ST_InteriorRingN... 147
ST_Intersection... 148
ST_Intersects...149
ST_Is3D..151
ST_IsClosed... 152
ST_IsEmpty..153
ST_IsMeasured.. 154
ST_IsRing... 155
ST_IsSimple... 156
ST_IsValid.. 157
ST_Length.. 158
ST_LineFromWKB.. 160
ST_LineString... 161
ST_LocateAlong... 162
ST_LocateBetween.. 164
ST_M...165
ST_MaxM..166
ST_MaxX...167
ST_MaxY...168

vi

ST_MaxZ...170
ST_MinM...171
ST_MinX... 172
ST_MinY..173
ST_MinZ..174
ST_MLineFromWKB... 176
ST_MPointFromWKB..177
ST_MPolyFromWKB... 178
ST_MultiLineString...179
ST_MultiPoint...181
ST_MultiPolygon.. 182
ST_NumGeometries...184
ST_NumInteriorRing..185
ST_NumPoints... 186
ST_Overlaps... 187
ST_Perimeter... 189
ST_Point... 190
ST_PointFromWKB...193
ST_PointN...194
ST_PointOnSurface..194
ST_PolyFromWKB.. 195
ST_Polygon...196
ST_Relate... 198
ST_SRID... 199
ST_StartPoint... 200
ST_SymDifference..201
ST_Touches.. 203
ST_Union.. 204
ST_UnionAggr...206
ST_Within... 207
ST_WKBToSQL... 209
ST_WKTToSQL..210
ST_X... 210
ST_Y..211
ST_Z... 212

Chapter 13. Supported data formats.. 215
Well-known text (WKT) representation.. 215
Well-known binary (WKB) representation.. 219
Shape representation.. 221
Geography Markup Language (GML) representation..221

Chapter 14. Supported coordinate systems.. 223
Coordinate systems syntax... 223
Supported linear units... 226
Supported angular units.. 226
Supported spheroids... 227
Supported prime meridians...229
Supported map projections...229

Chapter 15. The DSN5SCLP program.. 233
Commands for the DSN5SCLP program..233

alter_cs... 234
alter_srs.. 235
create_cs.. 238
create_idx...239
create_srs... 241

 vii

create_srs_2...243
disable_spatial... 246
drop_cs... 247
drop_idx..247
drop_srs..248
enable_spatial.. 248
function_level...249
import_shape... 250
register_spatial_column...256
unregister_spatial_column.. 257

Chapter 16. Identifying IBM Spatial Support for Db2 for z/OS problems.............. 259
How to interpret spatial support messages..259
Output parameters for spatial support stored procedures.. 260
Messages for spatial support stored procedures... 261
Spatial support function messages...261

Chapter 17. GSE Messages...263

Information resources for Db2 for z/OS and related products..............................303

Notices..305
Trademarks.. 306
Privacy policy considerations.. 306

Glossary.. 307

Index.. 309

viii

About this information

This documentation provides usage and reference information about IBM® Spatial Support for Db2® for
z/OS®.

Who should read this information
This information is primarily intended for information technology professionals who manage enterprise
mainframe systems and need to understand spatial data, spatial information administration, and spatial
analysis using Db2 for z/OS.

This information is also a valuable reference guide for line-of-business people and mid-level managers
who are looking to validate business plans to leverage their IT infrastructure and move distributed spatial
information and analysis to centralized systems.

Db2 Utilities Suite for z/OS
Important: Db2 Utilities Suite for z/OS is available as an optional product. You must separately order
and purchase a license to such utilities, and discussion of those utility functions in this publication is not
intended to otherwise imply that you have a license to them.

Db2 12 utilities can use the DFSORT program regardless of whether you purchased a license for DFSORT
on your system. For more information about DFSORT, see https://www.ibm.com/support/pages/dfsort.

Db2 utilities can use IBM Db2 Sort for z/OS as an alternative to DFSORT for utility SORT and MERGE
functions. Use of Db2 Sort for z/OS requires the purchase of a Db2 Sort for z/OS license. For more
information about Db2 Sort for z/OS, see Db2 Sort for z/OS documentation.

Related concepts
Db2 utilities packaging (Db2 Utilities)

Terminology and citations
When referring to a Db2 product other than Db2 for z/OS, this information uses the product's full name to
avoid ambiguity.

The following terms are used as indicated:

Db2
Represents either the Db2 licensed program or a particular Db2 subsystem.

IBM rebranded DB2® to Db2, and Db2 for z/OS is the new name of the offering that was previously
known as "DB2 for z/OS". For more information, see Revised naming for IBM Db2 family products on
IBM z/OS platform. As a result, you might sometimes still see references to the original names, such
as "DB2 for z/OS" and "DB2", in different IBM web pages and documents. If the PID, Entitlement
Entity, version, modification, and release information match, assume that they refer to the same
product.

IBM OMEGAMON® for Db2 Performance Expert on z/OS
Refers to any of the following products:

• IBM IBM OMEGAMON for Db2 Performance Expert on z/OS
• IBM Db2 Performance Monitor on z/OS
• IBM Db2 Performance Expert for Multiplatforms and Workgroups
• IBM Db2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

© Copyright IBM Corp. 2007, 2023 ix

https://www.ibm.com/support/pages/dfsort
https://www.ibm.com/docs/en/db2-sort-for-zos
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utlpackaging.html
https://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/899/ENUSLP18-0047/index.html
https://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/899/ENUSLP18-0047/index.html

CICS®
Represents CICS Transaction Server for z/OS.

IMS
Represents the IMS Database Manager or IMS Transaction Manager.

MVS™
Represents the MVS element of the z/OS operating system, which is equivalent to the Base Control
Program (BCP) component of the z/OS operating system.

RACF®
Represents the functions that are provided by the RACF component of the z/OS Security Server.

Accessibility features for Db2 for z/OS
Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in z/OS products, including Db2 for z/OS. These
features support:

• Keyboard-only operation.
• Interfaces that are commonly used by screen readers and screen magnifiers.
• Customization of display attributes such as color, contrast, and font size

Tip: IBM Documentation (which includes information for Db2 for z/OS) and its related publications are
accessibility-enabled for the IBM Home Page Reader. You can operate all features using the keyboard
instead of the mouse.

Keyboard navigation
For information about navigating the Db2 for z/OS ISPF panels using TSO/E or ISPF, refer to the z/OS
TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS ISPF User's Guide. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information

IBM and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information about the commitment
that IBM has to accessibility.

How to send your comments about Db2 for z/OS documentation
Your feedback helps IBM to provide quality documentation.

Send any comments about Db2 for z/OS and related product documentation by email to
db2zinfo@us.ibm.com.

To help us respond to your comment, include the following information in your email:

• The product name and version
• The address (URL) of the page, for comments about online documentation
• The book name and publication date, for comments about PDF manuals
• The topic or section title
• The specific text that you are commenting about and your comment

x About this information

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/home/src/tpc/db2z_12_prodhome.html
http://www.ibm.com/able
mailto:db2zinfo@us.ibm.com

Related concepts
About this information (Db2 for z/OS in IBM Documentation)
Related reference
PDF format manuals for Db2 12 for z/OS (Db2 for z/OS in IBM Documentation)

How to read syntax diagrams
Certain conventions apply to the syntax diagrams that are used in IBM documentation.

Apply the following rules when reading the syntax diagrams that are used in Db2 for z/OS documentation:

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The ►►─── symbol indicates the beginning of a statement.

The ───► symbol indicates that the statement syntax is continued on the next line.

The ►─── symbol indicates that a statement is continued from the previous line.

The ───►◄ symbol indicates the end of a statement.
• Required items appear on the horizontal line (the main path).

required_item

• Optional items appear below the main path.
required_item

optional_item

If an optional item appears above the main path, that item has no effect on the execution of the
statement and is used only for readability.

required_item

optional_item

• If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

required_item required_choice1

required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.

required_item

optional_choice1

optional_choice2

If one of the items is the default, it appears above the main path and the remaining choices are shown
below.

required_item

default_choice

optional_choice

optional_choice

• An arrow returning to the left, above the main line, indicates an item that can be repeated.

About this information xi

https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/cmn/db2z_cmn_aboutinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html

required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

required_item

,

repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.
• Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the

main syntax diagram, but the contents of the fragment should be read as if they are on the main path of
the diagram.

required_item fragment-name

fragment-name
required_item

optional_name

• For some references in syntax diagrams, you must follow any rules described in the description for that
diagram, and also rules that are described in other syntax diagrams. For example:

– For expression, you must also follow the rules described in Expressions (Db2 SQL).
– For references to fullselect, you must also follow the rules described in fullselect (Db2 SQL).
– For references to search-condition, you must also follow the rules described in Search conditions

(Db2 SQL).
• With the exception of XPath keywords, keywords appear in uppercase (for example, FROM). Keywords

must be spelled exactly as shown.
• XPath keywords are defined as lowercase names, and must be spelled exactly as shown.
• Variables appear in all lowercase letters (for example, column-name). They represent user-supplied

names or values.
• If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must

enter them as part of the syntax.

Related concepts
Commands in Db2 (Db2 Commands)
Db2 online utilities (Db2 Utilities)
Db2 stand-alone utilities (Db2 Utilities)

xii IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_expressionsintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_fullselect.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_searchconditionssql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_searchconditionssql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_aboutcommands.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_onlineutilities.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_standaloneutilities.html

Chapter 1. IBM Spatial Support for Db2 for z/OS
For many years, spatial support offerings from IBM have provided the basis for building robust spatial
applications using international and industry standard interfaces. For example, you might have experience
using Db2 Spatial Extender for Linux®, UNIX, and Windows. Now, IBM Spatial Support for Db2 for z/OS
provides Db2 for z/OS customers with the ability to enable a Db2 for z/OS subsystem for spatial support.

IBM Spatial Support for Db2 for z/OS provides a set of spatial data types that you can use to model
real-world entities, such as the locations of customers, the boundaries of parks, and the path of cable
lines. You can manipulate spatial data by using spatial functions, which you can invoke from within an SQL
statement. Also, you can create indexes on spatial data, which can be used by Db2 to optimize spatial
query performance.

The following information introduces IBM Spatial Support for Db2 for z/OS in more detail by explaining its
purpose, describing the data that it supports, and explaining how its underlying concepts fit together.

The purpose of IBM Spatial Support for Db2 for z/OS
You can use IBM Spatial Support for Db2 for z/OS to generate and analyze spatial information about
geographic features, and to store and manage the data on which this information is based.

A geographic feature (sometimes called feature in this discussion, for short) is anything in the real world
that has an identifiable location, or anything that could be imagined as existing at an identifiable location.
A feature can be:

• An object (that is, a concrete entity of any sort); for example, a river, forest, or range of mountains.
• A space; for example, a safety zone around a hazardous site, or the marketing area serviced by a

particular business.
• An event that occurs at a definable location; for example, an auto accident that occurred at a particular

intersection, or a sales transaction at a specific store.

Features exist in multiple environments. For example, the objects mentioned in the preceding list—river,
forest, mountain range—belong to the natural environment. Other objects, such as cities, buildings, and
offices, belong to the cultural environment. Still others, such as parks, zoos, and farmland, represent a
combination of the natural and cultural environments.

In this discussion, the term spatial information refers to the kind of information that IBM Spatial Support
for Db2 for z/OS makes available to its users—namely, facts and figures about the locations of geographic
features. Examples of spatial information are:

• Locations of geographic features on the map (for example, longitude and latitude values that define
where cities are situated)

• The location of geographic features with respect to one another (for example, points within a city where
hospitals and clinics are located, or the proximity of the city's residences to local earthquake zones)

• Ways in which geographic features are related to each other (for example, information that a certain
river system is enclosed within a specific region, or that certain bridges in that region cross over the
river system's tributaries)

• Measurements that apply to one or more geographic features (for example, the distance between an
office building and its lot line, or the length of a bird preserve's perimeter)

Spatial information, either by itself or in combination with traditional relational data, can help you with
such activities as defining the areas in which you provide services, and determining locations of possible
markets. For example, suppose that the manager of a county welfare district needs to verify which welfare
applicants and recipients actually live within the area that the district services. IBM Spatial Support for
Db2 for z/OS can derive this information from the serviced area's location and from the addresses of the
applicants and recipients.

© Copyright IBM Corp. 2007, 2023 1

Or suppose that the owner of a restaurant chain wants to do business in nearby cities. To determine
where to open new restaurants, the owner needs answers to such questions as: Where in these cities
are concentrations of clientele who typically frequent my restaurants? Where are the major highways?
Where is the crime rate lowest? Where are the competition's restaurants located? IBM Spatial Support for
Db2 for z/OS can produce information to answer these questions. Furthermore, front-end tools, though
not required, can play a part. For example, a visualization tool can put information produced by IBM
Spatial Support for Db2 for z/OS, such as the location of concentrations of clientele and the proximity of
major highways to proposed restaurants, in graphic form on a map. Business intelligence tools can put
associated information, like names and descriptions of competing restaurants, in report form.

How data represents geographic features
A geographic feature can be represented by one or more data items; for example, the data items in a row
of a table.

A data item is the value or values that occupy a cell of a relational table. For example, consider office
buildings and residences. In the following figure, each row of the BRANCHES table represents a branch
office of a bank. Similarly, each row of the CUSTOMERS table, taken as a whole, represents a customer
of the bank. However, a subset of each row—specifically, the data items that constitute a customer's
address—represent the customer's residence.
BRANCHES

ID NAME ADDRESS CITY POSTAL CODE STATE_PROV COUNTRY

Airzone-Multern937 92467 Airzone Blvd San Jose 95141 CA USA

CUSTOMERS

ID LAST NAME FIRST NAME ADDRESS CITY CHECKINGPOSTAL CODE STATE_PROV COUNTRY SAVINGS

San Jose A AUSA95141 CA9 Concourt CircleKriner59-6396 Endela

Figure 1. Data that represents geographic features

The tables in this figure contain data that identifies and describes the bank's branches and customers.
This discussion refers to such data as business data.

A subset of the business data—the values that denote the branches' and customers' addresses—can be
translated into values from which spatial information is generated. For example, as shown in Figure 1
on page 2, one branch office's address is 92467 Airzone Blvd., San Jose, CA 95141, USA. A customer's
address is 9 Concourt Circle, San Jose, CA 95141, USA. IBM Spatial Support for Db2 for z/OS can
construct a ST_POINT column object by using the geocoded x and y coordinate values. The next figure
shows the BRANCHES and CUSTOMERS tables with new columns that are designated to contain such
values.

Figure 2. Tables with spatial columns added

Because spatial information will be derived from the data items stored in the LOCATION column, these
data items are referred to in this discussion as spatial data.

2 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

The nature of spatial data
Spatial data is made up of coordinates that identify a location. Spatial support works with two-
dimensional coordinates specified by x (longitude) and y (latitude) values.

A coordinate is a number that denotes either:

• A position along an axis relative to an origin, given a unit of length.
• A direction relative to a base line or plane, given a unit of angular measure.

For example, latitude is a coordinate that denotes an angle relative to the equatorial plane, usually in
degrees. Longitude is a coordinate that denotes an angle relative to the Greenwich meridian, also usually
in degrees. Thus, on a map, the position of Yellowstone National Park is defined by latitude 44.45 degrees
north of the equator and longitude 110.40 degrees west of the Greenwich meridian. More precisely, these
coordinates reference the center of Yellowstone National Park in the USA.

The definitions of latitude and longitude, their points, lines, and planes of reference, units of measure,
and other associated parameters are referred to collectively as a coordinate system. Coordinate systems
can be based on values other than latitude and longitude. These coordinate systems have their own
points, lines, and planes of reference, units of measure, and additional associated parameters (such as
the projection transformation).

The simplest spatial data item consists of a single coordinate pair that defines the position of a single
geographic location. A more extensive spatial data item consists of several coordinates that define a
linear path that a road or river might form. A third kind consists of coordinates that define the boundary of
an area; for example, the boundary of a land parcel or flood plain.

Each spatial data item is an instance of a spatial data type. The data type for coordinates that mark a
single location is ST_Point; the data type for coordinates that define a linear path is ST_LineString; and the
data type for coordinates that define the boundary of an area is ST_Polygon. These types, together with
the other spatial data types, are structured types that belong to a single hierarchy.

Where spatial data comes from
You can obtain spatial data by generating it from spatial functions and importing it from external sources.

Using functions to generate spatial data
You can use spatial functions to generate spatial data from input data.

For example, suppose that the bank whose branches are defined in the BRANCHES table wants to know
how many customers are located within five miles of each branch. Before the bank can obtain this
information from the database, it needs to define the zone that lies within a specified radius around each
branch. An IBM Spatial Support for Db2 for z/OS function, ST_Buffer, can create such a definition. Using
the coordinates of each branch as input, ST_Buffer can generate the coordinates that demarcate the
perimeters of the zones. The following figure shows the BRANCHES table with information that is supplied
by ST_Buffer.
BRANCHES

ID NAME ADDRESS CITY POSTAL CODE STATE_PROVA

937 Airzone-
Multern

92467 Airzone
Blvd

San
Jose

95141 CA

COUNTRY LOCATION SALES_AREA

USA 1653 3094 1002 2001,
1192 3564,
2502 3415,
1915 3394,
1002 2001

Figure 3. Table that includes new spatial data derived from existing spatial data

In addition to the ST_Buffer function, IBM Spatial Support for Db2 for z/OS provides several other
functions that derive new spatial data from existing spatial data.

Chapter 1. IBM Spatial Support for Db2 for z/OS 3

Importing spatial data
IBM Spatial Support for Db2 for z/OS provides services to import spatial data in shape file format.

Spatial data in shape file format is available from many sources through the internet.

You can import spatial data from shape files provided by external data sources. These files typically
contain data that is applied to maps: street networks, flood plains, earthquake faults, and so on. By using
such data in combination with spatial data that you produce, you can augment the spatial information
available to you. For example, if a public works department needs to determine what hazards a residential
community is vulnerable to, it could use the ST_Buffer function to define a zone around the community.
The public works department could then import data on flood plains and earthquake faults to see which
of these problem areas overlap this zone.

How features, spatial information, spatial data, and geometries fit
together

This section summarizes several basic concepts that underlie the operations of IBM Spatial Support for
Db2 for z/OS: geographic features, spatial information, spatial data, and geometries.

IBM Spatial Support for Db2 for z/OS lets you obtain facts and figures that pertain to things that can be
defined geographically—that is, in terms of their location on earth, or within a region of the earth. The
Db2 documentation refers to such facts and figures as spatial information, and to the things as geographic
features (called features here, for short).

For example, you could use IBM Spatial Support for Db2 for z/OS to determine whether any populated
areas overlap the proposed site for a landfill. The populated areas and the proposed site are features. A
finding as to whether any overlap exists would be an example of spatial information. If overlap is found to
exist, the extent of it would also be an example of spatial information.

To produce spatial information, IBM Spatial Support for Db2 for z/OS must process data that defines the
locations of features. Such data, called spatial data, consists of coordinates that reference the locations
on a map or similar projection. For example, to determine whether one feature overlaps another, IBM
Spatial Support for Db2 for z/OS must determine where the coordinates of one of the features are situated
with respect to the coordinates of the other.

In the world of spatial information technology, it is common to think of features as being represented by
symbols called geometries. Geometries are partly visual and partly mathematical. Consider their visual
aspect. The symbol for a feature that has width and breadth, such as a park or town, is a multisided figure.
Such a geometry is called a polygon. The symbol for a linear feature, such as a river or a road, is a line.
Such a geometry is called a linestring.

A geometry has properties that correspond to facts about the feature that it represents. Most of these
properties can be expressed mathematically. For example, the coordinates for a feature collectively
constitute one of the properties of the feature's corresponding geometry. Another property, called
dimension, is a numerical value that indicates whether a feature has length or breadth.

Spatial data and certain spatial information can be viewed in terms of geometries. Consider the example,
described earlier, of the populated areas and the proposed landfill site. The spatial data for the populated
areas includes coordinates stored in a column of a table in a Db2 database. The convention is to regard
what is stored not simply as data, but as actual geometries. Because populated areas have width and
breadth, you can see that these geometries are polygons.

Like spatial data, certain spatial information is also viewed in terms of geometries. For example, to
determine whether a populated area overlaps a proposed landfill site, IBM Spatial Support for Db2 for
z/OS must compare the coordinates in the polygon that symbolizes the site with the coordinates of the
polygons that represent populated areas. The resulting information—that is, the areas of overlap—are
themselves regarded as polygons: geometries with coordinates, dimensions, and other properties.

4 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Chapter 2. About geometries
Entities of information, called geometries, consist of coordinates and represent geographic features.

Geometries
This topic provides an overview of the geometries that are supported by IBM Spatial Support for Db2 for
z/OS.

Webster's Revised Unabridged Dictionary defines geometry as "That branch of mathematics which
investigates the relations, properties, and measurement of solids, surfaces, lines, and angles; the science
which treats of the properties and relations of magnitudes; the science of the relations of space." The
word geometry has also been used to denote the geometric features that, for the past millennium or
more, cartographers have used to map the world. An abstract definition of this new meaning of geometry
is "a point or aggregate of points representing a feature on the ground."

In IBM Spatial Support for Db2 for z/OS, the operational definition of geometry is "a model of a
geographic feature." The model can be expressed in terms of the feature's coordinates. The model
conveys information; for example, the coordinates identify the position of the feature with respect to fixed
points of reference. Also, the model can be used to produce information; for example, the ST_Overlaps
function can take the coordinates of two proximate regions as input and return information as to whether
the regions overlap or not.

The coordinates of a feature that a geometry represents are regarded as properties of the geometry.
Several kinds of geometries have other properties as well; for example, area, length, and boundary.

IBM Spatial Support for Db2 for z/OS supports seven distinct geometry types. Six of these geometry types
are instantiable, and one is non-instantiable.

The instantiable geometries include:
Point

A single point. Points represent discrete features that are perceived as occupying the locus where
an east-west coordinate line (such as a parallel) intersects a north-south coordinate line (such as a
meridian). For example, suppose that the notation on a world map shows that each city on the map is
located at the intersection of a parallel and a meridian. A point could represent each city.

Linestring
A line between two or more points. It does not have to be a straight line. Linestrings represent linear
geographic features (for example, streets, canals, and pipelines).

Polygon
A polygon or surface within a polygon. Polygons represent multisided geographic features (for
example, welfare districts, forests, and wildlife habitats).

Multipoint
A multiple point geometry type. Multipoints represent multipart features whose components are
each located at the intersection of an east-west coordinate line and a north-south coordinate line
(for example, an island chain whose members are each situated at an intersection of a parallel and
meridian).

Multilinestring
A multiple curve geometry type with multiple strings. Multilinestrings represent multipart features
that are made up (for example, river systems).

Multipolygon
A multiple surface geometry type with multiple polygons. Multipolygons represent multipart features
made up of multisided units or components (for example, the collective farmlands in a specific region,
or a system of lakes).

The non-instantiable geometry type is:

© Copyright IBM Corp. 2007, 2023 5

Geometry
Geometry is an abstract data type that you can use for parameter passing in spatial functions.
Geometry does not have a corresponding constructor function; therefore, it is not supported as an
instantiable spatial data type.

Properties of geometries
This information describes the properties of geometries.

The properties of geometries are:

• The type that a geometry belongs to
• Geometry coordinates
• A geometry's interior, boundary, and exterior
• The quality of being simple or non-simple
• The quality of being empty or not empty
• A geometry's minimum bounding rectangle or envelope
• Dimension
• The identifier of the spatial reference system with which a geometry is associated

Types
IBM Spatial Support for Db2 for z/OS supports seven distinct geometry types.

Six of these geometry types are instantiable, and one is abstract. The six instantiable geometry types are
ST_Point, ST_Linestring, ST_Polygon, ST_Multipoint, ST_Multilinestring, and ST_Multipolygon. The abstract
type is ST_Geometry.

Geometry coordinates
All geometries include at least one X coordinate and one Y coordinate, unless they are empty geometries,
in which case they contain no coordinates at all.

In addition, a geometry can include one or more Z coordinates and M coordinates. X, Y, Z, and M
coordinates are represented as double–precision numbers. The following subsections explain:

• X and Y coordinates
• Z coordinates
• M coordinates

6 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

X and Y coordinates
An X coordinate value, or longitude, denotes a location that is relative to a point of reference to the east
or west. A Y coordinate value, or latitude, denotes a location that is relative to a point of reference to the
north or south.

Z coordinates
Some geometries have an associated altitude or depth. Each of the points that form the geometry of a
feature can include an optional Z coordinate that represents an altitude or depth normal to the earth's
surface.

M coordinates
An M coordinate (measure) is a value that conveys information about a geographic feature and that is
stored together with the coordinates that define the feature's location.

For example, suppose that you are representing highways in your application. If you want your application
to process values that denote linear distances or mileposts, you can store these values along with the
coordinates that define locations along the highway. M coordinates are represented as double–precision
numbers.

Interior, boundary, and exterior
All geometries occupy a position in space defined by their interiors, boundaries, and exteriors.

The exterior of a geometry is all space not occupied by the geometry. The boundary of a geometry serves
as the interface between its interior and exterior. The interior is the space occupied by the geometry.

Simple or non-simple
The values of some geometry subtypes (linestrings, multipoints, and multilinestrings) are either simple or
non-simple.

A geometry is simple if it obeys all the topological rules imposed on its subtype and non-simple if it
doesn't. A linestring is simple if it does not intersect its interior. A multipoint is simple if none of its
elements occupy the same coordinate space. Points, polygons, multipolygons, and empty geometries are
always simple.

Closed
A linestring is closed if its start and end points are the same.

A multilinestring is closed if all of its elements are closed. A ring is a simple, closed linestring.

Empty or not empty
A geometry is empty if it does not have any points.

The envelope, boundary, interior, and exterior of an empty geometry are not defined and will be
represented as null. An empty geometry is always simple. Empty polygons and multipolygons have an
area of 0.

Minimum bounding rectangle (MBR)
The minimum bounding rectangle (MBR) of a geometry is the bounding geometry formed by the minimum
and maximum (X,Y) coordinates.

Except for the following special cases, the MBRs of geometries form a boundary rectangle:

• The MBR of any point is the point itself, because its minimum and maximum X coordinates are the same
and its minimum and maximum Y coordinates are the same.

Chapter 2. About geometries 7

• The MBR of a horizontal or vertical linestring is a linestring represented by the boundary (the endpoints)
of the source linestring.

Dimension
A geometry can have a dimension of –1, 0, 1, or 2.

The dimensions are listed as follows:
–1

Is empty
0

Has no length and an area of 0 (zero)
1

Has a length larger than 0 (zero) and an area of 0 (zero)
2

Has an area that is larger than 0 (zero)

The point and multipoint subtypes have a dimension of zero. Points represent dimensional features that
can be modeled with a single tuple of coordinates, while multipoint subtypes represent data that must be
modeled with a set of points.

The linestring and multilinestring subtypes have a dimension of one. They store road segments, branching
river systems and any other features that are linear in nature.

Polygon and multipolygon subtypes have a dimension of two. Features whose perimeter encloses a
definable area, such as forests, parcels of land, and lakes, can be represented by either the polygon or
multipolygon data type.

Spatial reference system identifier
The numeric identifier for a spatial reference system determines which spatial reference system is used to
represent the geometry.

All spatial reference systems known to the database can be accessed through the
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view.

8 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Chapter 3. Getting started with IBM Spatial Support
for Db2 for z/OS

This information provides instructions for installing and configuring IBM Spatial Support for Db2 for z/OS.

System requirements for installing IBM Spatial Support for Db2 for
z/OS

Before you install IBM Spatial Support for Db2 for z/OS, ensure that your system meets all of the
operating system and software requirements.

Operating system requirements
z/OS 2.2 or later.

Software requirements
IBM Spatial Support for Db2 for z/OS requires the following software is installed and configured:

• Db2 12 for z/OS (function level 500) or later
• The WLM environment name to use for the stored procedures is specified
• The Db2 ODBC feature
• If remote client application access spacial data, Db2 Connect for your Db2 version

For more information, see the Db2 Accessories Suite for z/OS Program Directory.

Related tasks
Setting up a WLM application environment for stored procedures during installation (Db2 Installation and
Migration)

Setting up and installing spatial support
A spatial support system consists of a Db2 database system, IBM Spatial Support for Db2 for z/OS, and,
for most applications, a map viewer.

Before you begin
Before you set up IBM Spatial Support for Db2 for z/OS, you must have the following software installed:

• Db2 12 for z/OS (function level 500) or later
• The WLM environment name to use for the stored procedures is specified
• The Db2 ODBC feature
• If remote client application access spacial data, Db2 Connect for your Db2 version

About this task
A map viewer is not required but is useful for visually rendering the results of spatial queries, generally
in the form of maps. An example of an easy-to-use map viewer is ArcMap, which is included as an
application for ArcGIS and developed by ESRI. Open source map viewers are also available.

Databases enabled for spatial support are located on the server. You can use client applications to access
spatial data through the IBM Spatial Support for Db2 for z/OS stored procedures and spatial queries.

© Copyright IBM Corp. 2007, 2023 9

https://publibfp.dhe.ibm.com/epubs/pdf/i1346373.pdf
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_setupwlmenvironment.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_setupwlmenvironment.html

Procedure
To install and set up spatial support:
1. Ensure that your system meets all of the system requirements.
2. Install IBM Spatial Support for Db2 for z/OS.

Obtain the Db2 Accessories Suite for z/OS Program Directory and the IBM Spatial Support for Db2 for
z/OS product code. The program directory provides instructions for the SMP/E installation and includes
the correct service levels for all of the required software.

3. Verify the installation by issuing two SQL statements.
4. If necessary, see the troubleshooting tips in Chapter 16, “Identifying IBM Spatial Support for Db2 for

z/OS problems,” on page 259 and take appropriate actions to correct any problems.

Related information
ESRI

Verifying the installation of spatial support
You can verify the installation of IBM Spatial Support for Db2 for z/OS by issuing two SQL SELECT
statements.

Procedure
To verify the installation of spatial support:
1. Submit the following SELECT statement:

SELECT CAST(DB2GSE.ST_ASTEXT(DB2GSE.ST_POINT('POINT (1.0 1.0)', 1)) AS VARCHAR
(32)) AS POINT_DATA FROM SYSIBM.SYSDUMMY1;

The expected output is:

POINT_DATA

POINT (1.000000 1.000000)

1 record(s) selected.

2. Then, submit the following SELECT statement:

SELECT CAST(DB2GSE.ST_ASTEXT(DB2GSE.ST_POINT('POINT (Invalid SRS ID)', 99999))
AS VARCHAR(32)) AS POINT_DATA FROM SYSIBM.SYSDUMMY1;

The expected output is:

POINT_DATA

SQL0443N Routine "GSEGEOMFROMTEXT" (specific name "STCO00002GFT") has returned
an error SQLSTATE with diagnostic text "GSE3001N Invalid SRS identifier 99999.".
SQLSTATE=38SU1

Results
You verified the successful installation of IBM Spatial Support for Db2 for z/OS.

Inventory of resources supplied for your database
To enable a database for spatial support, IBM Spatial Support for Db2 for z/OS provides the database with
the required resources.

IBM Spatial Support for Db2 for z/OS provides the following resources:

• Stored procedures. When you request a spatial operation (for example, when you import spatial data),
IBM Spatial Support for Db2 for z/OS invokes one of these stored procedures to perform the operation.

10 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

https://publibfp.dhe.ibm.com/epubs/pdf/i1346373.pdf
https://www.esri.com/en-us/about/esri-partner-network/our-partners/global-alliances/ibm/overview

• Spatial data types. You must assign a spatial data type to each table or view column that is to contain
spatial data.

• Spatial catalog tables and catalog views.
• A spatial grid index, so that you can define grid indexes on spatial columns.
• Spatial functions. You use these to work with spatial data in a number of ways; for example, to

determine relationships between geometries and to generate more spatial data.
• Definitions of coordinate systems.
• Default spatial reference systems.
• Two schemas: DB2GSE and SYSPROC.

Enabling spatial support for the first time
If you are a new customer and want to start using IBM Spatial Support for Db2 for z/OS, you need to
enable your Db2 subsystem for spatial support.

Before you begin
Before you enable the Db2 subsystem for spatial support, your TSO user ID must have SYSADM authority
on the Db2 subsystem.

Procedure
To enable a Db2 subsystem for spatial support:
1. Customize and submit the DSNTIJCL job from the SDSNSAMP library.

This job binds the Db2 ODBC application plan. The prolog for the DSNTIJCL job contains instructions
for modifying the job.

2. Customize and submit the DSN5SENB job from the SDSNSAMP library.
This job creates the spatial catalog tables, catalog views, and stored procedures. In addition, this job
binds all of the spatial packages, and it invokes the DSN5SCLP program, which uses the enable_spatial
command to create the spatial user-defined functions and to populate the spatial catalog tables with
initial values.

Before you submit the DSN5SENB job, you also must customize the DSNAOINI initialization file in the
SDSNSAMP library. The prolog for the DSN5SENB job contains instructions for modifying the job.

3. Customize and submit the DSN5SBND job from the SDSNSAMP library.
The expected return code for this job is 0 (zero).

Results
The expected return codes are 0 (zero) and 4 for both the DSNTIJCL job and the DSN5SENB job.

What to do next
Now, the Db2 subsystem is enabled for spatial support. You can submit the DSN5SCMD JCL in the
SDSNSAMP library to verify that the Spatial functions are correctly enabled.
Related concepts
Db2 ODBC run time environment setup (Db2 Programming for ODBC)
“The DSN5SCLP program” on page 233
DSN5SCLP is an ODBC program that you can use to invoke IBM Spatial Support for Db2 for z/OS stored
procedures for administrative tasks.
Related reference
“enable_spatial” on page 248

Chapter 3. Getting started with IBM Spatial Support for Db2 for z/OS 11

https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_setup.html

Use the enable_spatial command to supply a Db2 subsystem with the resources that it needs to store
spatial data and support spatial operations.

Enabling spatial support for migration to Db2 12
If you are migrating from Db2 11 to Db2 12 and had spatial support enabled on Db2 11, you must enable
your Db2 subsystem for spatial support again.

Before you begin
Before you enable the Db2 subsystem for spatial support, your TSO user ID must have SYSADM authority
on the Db2 subsystem.

Procedure
To enable a Db2 subsystem for spatial support if you migrated from the previous version of Db2 for z/OS:
1. Customize and submit the DSNTIJCL job from the SDSNSAMP library.

This job binds the Db2 ODBC application plan. The prolog for the DSNTIJCL job contains instructions
for modifying the job.

2. Customize and submit the DSN5SBND job from the SDSNSAMP library.
The expected return code for the DSN5SBND job is 0 (zero).

Note: If you are migrating from DB2 10, you first need to migrate to Db2 11 and then migrate to Db2
12, then follow the above steps 1 through 2.

If you have not already done so, run the DSN5SCLP program to enable spatial support, and specify the
option '-update v10' for the enable_spatial command.

Results
The expected return codes are 0 (zero) and 4 for the DSNTIJCL job.

What to do next
Now, the Db2 subsystem is enabled for spatial support. You can submit the DSN5SCMD JCL in the
SDSNSAMP library to verify that the Spatial functions are correctly enabled.
Related concepts
Db2 ODBC run time environment setup (Db2 Programming for ODBC)
“The DSN5SCLP program” on page 233
DSN5SCLP is an ODBC program that you can use to invoke IBM Spatial Support for Db2 for z/OS stored
procedures for administrative tasks.
Related reference
“enable_spatial” on page 248
Use the enable_spatial command to supply a Db2 subsystem with the resources that it needs to store
spatial data and support spatial operations.

12 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_setup.html

Chapter 4. Setting up spatial resources
After your Db2 subsystem is enabled for spatial support, you are ready to set up the resources that you
need in order to use spatial data.

Among these resources are a coordinate system to which spatial data conforms and a spatial reference
system, which defines the extent of the geographical area that is referenced by the data. This information
discusses the nature of coordinate systems and tells how to create them. This information also explains
what spatial reference systems are and tells how to create them.

How to use coordinate systems
This discussion explains the concept of coordinate systems and introduces the tasks of selecting one to
use and creating a new one.

When you plan a project that uses spatial data, you need to determine whether the data should be based
on one of the coordinate systems that are registered to the IBM Spatial Support for Db2 for z/OS catalog.
If none of these coordinate systems meet your requirements, you can create one that does.

Coordinate systems
A coordinate system is a framework for defining the relative locations of things in a given area; for
example, an area on the earth's surface or the earth's surface as a whole.

IBM Spatial Support for Db2 for z/OS supports the following types of coordinate systems to determine the
location of a geographic feature:
Geographic coordinate system

A geographic coordinate system is a reference system that uses a three-dimensional spherical surface
to determine locations on the earth. Any location on earth can be referenced by a point with latitude
and longitude coordinates based on angular units of measure.

Projected coordinate system
A projected coordinate system is a flat, two-dimensional representation of the earth. It uses rectilinear
(Cartesian) coordinates based on linear units of measure. It is based on a spherical (or spheroidal)
earth model, and its coordinates are related to geographic coordinates by a projection transformation.

Geographic coordinate system
A geographic coordinate system uses a three-dimensional spherical surface to determine locations on the
earth.

Any location on earth can be referenced by a point with longitude and latitude coordinates. The values for
the points can have the following units of measurement:

• Linear units when the geographic coordinate system has a spatial reference system identifier (SRID)
that IBM Spatial Support for Db2 for z/OS recognizes.

• Any of the following units when the geographic coordinate system has an SRID that IBM Spatial Support
for Db2 for z/OS does not recognize:

– Decimal degrees
– Decimal minutes
– Decimal seconds
– Gradians
– Radians

For example, the following figure shows a geographic coordinate system where a location is represented
by the coordinates longitude 80 degree East and latitude 55 degree North.

© Copyright IBM Corp. 2007, 2023 13

N

W E

S

80 degrees E 55 degrees N

55 degrees Lat.

80 degrees
0 20 60 80

Longitude
La

tit
ud

e

Figure 4. A geographic coordinate system

The lines that run east and west each have a constant latitude value and are called parallels. They are
equidistant and parallel to one another, and form concentric circles around the earth. The equator is the
largest circle and divides the earth in half. It is equal in distance from each of the poles, and the value of
this latitude line is zero. Locations north of the equator have positive latitudes that range from 0 to +90
degrees, while locations south of the equator have negative latitudes that range from 0 to -90 degrees.

The following figure illustrates latitude lines.

Equator

Figure 5. Latitude lines

The lines that run north and south each have a constant longitude value and are called meridians.
They form circles of the same size around the earth, and intersect at the poles. The prime meridian is
the line of longitude that defines the origin (zero degrees) for longitude coordinates. One of the most
commonly used prime meridian locations is the line that passes through Greenwich, England. However,
other longitude lines, such as those that pass through Bern, Bogota, and Paris, have also been used as the
prime meridian. Locations east of the prime meridian up to its antipodal meridian (the continuation of the
prime meridian on the other side of the globe) have positive longitudes ranging from 0 to +180 degrees.
Locations west of the prime meridian have negative longitudes ranging from 0 to –180 degrees.

The following figure illustrates longitude lines.

14 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Prime
meridian

Figure 6. Longitude lines

The latitude and longitude lines can cover the globe to form a grid, called a graticule. The point of origin of
the graticule is (0,0), where the equator and the prime meridian intersect. The equator is the only place on
the graticule where the linear distance corresponding to one degree latitude is approximately equal the
distance corresponding to one degree longitude. Because the longitude lines converge at the poles, the
distance between two meridians is different at every parallel. Therefore, as you move closer to the poles,
the distance corresponding to one degree latitude will be much greater than that corresponding to one
degree longitude.

It is also difficult to determine the lengths of the latitude lines using the graticule. The latitude lines are
concentric circles that become smaller near the poles. They form a single point at the poles where the
meridians begin. At the equator, one degree of longitude is approximately 111.321 kilometers, while at 60
degrees of latitude, one degree of longitude is only 55.802 km (this approximation is based on the Clarke
1866 spheroid). Therefore, because there is no uniform length of degrees of latitude and longitude, the
distance between points cannot be measured accurately by using angular units of measure.

The following figure shows the different dimensions between locations on the graticule.

(one degree of longitude
at 60 degrees latitude)

(one degree of longitude
at the equator)

55.802KM

111.321KM

Figure 7. Different dimensions between locations on the graticule

A coordinate system can be defined by either a sphere or a spheroid approximation of the earth's shape.
Because the earth is not perfectly round, a spheroid can help maintain accuracy for a map, depending on
the location on the earth. A spheroid is an ellipsoid, that is based on an ellipse, whereas a sphere is based
on a circle.

The shape of the ellipse is determined by two radii. The longer radius is called the semi-major axis, and
the shorter radius is called the semi-minor axis. An ellipsoid is a three-dimensional shape formed by
rotating an ellipse around one of its axes.

Chapter 4. Setting up spatial resources 15

The following figure shows the sphere and spheroid approximations of the earth and the major and minor
axes of an ellipse.

Sphere Spheroid
(Ellipsoid)

Major Axis

Semimajor AxisSem
im

inor
Axis

M
inor Axis

The major and minor axes of an ellipse

Figure 8. Sphere and spheroid approximations

A datum is a set of values that defines the position of the spheroid relative to the center of the earth.
The datum provides a frame of reference for measuring locations and defines the origin and orientation of
latitude and longitude lines. Some datums are global and intend to provide good average accuracy around
the world. A local datum aligns its spheroid to closely fit the earth's surface in a particular area. Therefore,
the coordinate system's measurements are not be accurate if they are used with an area other than the
one that they were designed.

The following figure shows how different datums align with the earth's surface. The local datum, North
American Datum of 1927 (NAD27), more closely aligns with Earth's surface than the Earth-centered
datum, World Geodetic System 1984 (WGS84), at this particular location.

Local geographic
coordinate system

Earth-center geographic
coordinate system

Earth’s surface
Earth-centered (WGS84) datum
Local (NAD27) datum

Figure 9. Datum alignments

Whenever you change the datum, the geographic coordinate system is altered and the coordinate values
will change. For example, the coordinates in DMS of a control point in Redlands, California using the North

16 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

American Datum of 1983 (NAD 1983) are: "-117 12 57.75961 34 01 43.77884" The coordinates of the
same point on the North American Datum of 1927 (NAD 1927) are: "-117 12 54.61539 34 01 43.72995".

Projected coordinate systems
A projected coordinate system is a flat, two-dimensional representation of the Earth.

A projected coordinate system is based on a sphere or spheroid geographic coordinate system, but it uses
linear units of measure for coordinates, so that calculations of distance and area are easily done in terms
of those same units.

The latitude and longitude coordinates are converted to x, y coordinates on the flat projection. The x
coordinate is usually the eastward direction of a point, and the y coordinate is usually the northward
direction of a point. The center line that runs east and west is referred to as the x axis, and the center line
that runs north and south is referred to as the y axis.

The intersection of the x and y axes is the origin and usually has a coordinate of (0,0). The values above
the x axis are positive, and the values below the x axis are negative. The lines parallel to the x axis are
equidistant from each other. The values to the right of the y axis are positive, and the values to the left of
the y axis are negative. The lines parallel to the y axis are equidistant.

Mathematical formulas are used to convert a three-dimensional geographic coordinate system to a two-
dimensional flat projected coordinate system. The transformation is referred to as a map projection. Map
projections usually are classified by the projection surface used, such as conic, cylindrical, and planar
surfaces. Depending on the projection used, different spatial properties will appear distorted. Projections
are designed to minimize the distortion of one or two of the data's characteristics, yet the distance,
area, shape, direction, or a combination of these properties might not be accurate representations of the
data that is being modeled. There are several types of projections available. While most map projections
attempt to preserve some accuracy of the spatial properties, there are others that attempt to minimize
overall distortion instead, such as the Robinson projection. The most common types of map projections
include:
Equal area projections

These projections preserve the area of specific features. These projections distort shape, angle, and
scale. The Albers Equal Area Conic projection is an example of an equal area projection.

Conformal projections
These projections preserve local shape for small areas. These projections preserve individual angles
to describe spatial relationships by showing perpendicular graticule lines that intersect at 90 degree
angles on the map. All of the angles are preserved; however, the area of the map is distorted. The
Mercator and Lambert Conformal Conic projections are examples of conformal projections.

Equidistant projections
These projections preserve the distances between certain points by maintaining the scale of a given
data set. Some of the distances will be true distances, which are the same distances at the same scale
as the globe. If you go outside the data set, the scale will become more distorted. The Sinusoidal
projection and the Equidistant Conic projection are examples of equidistant projections.

True-direction or azimuthal projections
These projections preserve the direction from one point to all other points by maintaining some
of the great circle arcs. These projections give the directions or azimuths of all points on the map
correctly with respect to the center. Azimuthal maps can be combined with equal area, conformal, and
equidistant projections. The Lambert Equal Area Azimuthal projection and the Azimuthal Equidistant
projection are examples of azimuthal projections.

Selecting or creating coordinate systems
One of the first steps in planning a project is to determine what coordinate system to use.

Before you begin
Before you create a coordinate system, your user ID must have either SYSADM or DBADM authority on the
database that contains the spatial catalog tables.

Chapter 4. Setting up spatial resources 17

About this task
After you enable the Db2 subsystem for spatial operations, you are ready to plan projects that use spatial
data. You can use a coordinate system that is included with IBM Spatial Support for Db2 for z/OS or one
that was created elsewhere. Many coordinate systems are included with IBM Spatial Support for Db2 for
z/OS.

To find out about these coordinate systems, and to determine what other coordinate systems are included
with IBM Spatial Support for Db2 for z/OS, and what (if any) coordinate systems have been created by
other users, consult the DB2GSE.ST_COORDINATE_SYSTEMS catalog view.

Procedure
Run an application that invokes the ST_create_coordsys stored procedure.
For more information about this stored procedure, see “ST_create_coordsys” on page 50.

How to set up spatial reference systems
When you plan a project that uses spatial data, you need to determine whether any of the spatial
reference systems available to you can be used for this data.

If none of the available systems are appropriate for the data, you can create one that is. This information
explains the concept of spatial reference systems and describes the tasks of selecting which one to use
and creating one.

Spatial reference systems
This topic provides an overview of spatial reference systems.

A spatial reference system is a set of parameters that includes:

• The name of the coordinate system from which the coordinates are derived.
• The numeric identifier that uniquely identifies the spatial reference system.
• Coordinates that define the maximum possible extent of space that is referenced by a given range of

coordinates.
• Numbers that, when applied in certain mathematical operations, convert coordinates received as input

into values that can be processed with maximum efficiency.

The following sections discuss the parameter values that define an identifier, a maximum extent of space,
and conversion factors.

Spatial reference system identifier
The spatial reference system identifier (SRID) is used as an input parameter for various spatial functions.

Defining the space that encompasses coordinates stored in a spatial column
The coordinates in a spatial column typically define locations that span across part of the Earth. The
space over which the span extends—from east to west and from north to south—is called a spatial extent.
For example, consider a body of flood plains whose coordinates are stored in a spatial column. Suppose
that the westernmost and easternmost of these coordinates are latitude values of –24.556 and –19.338,
respectively, and that the northernmost and southernmost of the coordinates are longitude values of
18.819 and 15.809 degrees, respectively. The spatial extent of the flood plains is a space that extends
on a west-east plane between the two latitudes and on a north-south plane between the two longitudes.
You can include these values in a spatial reference system by assigning them to certain parameters. If the
spatial column includes Z coordinates and measures, you would need to include the highest and lowest Z
coordinates and measures in the spatial reference system as well.

The term spatial extent can refer not only to an actual span of locations, as in the previous paragraph; but
also to a potential one. Suppose that the flood plains in the preceding example were expected to broaden

18 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

over the next five years. You could estimate what the westernmost, easternmost, northernmost, and
southernmost coordinates of the planes would be at the end of the fifth year. You could then assign these
estimates, rather than the current coordinates, to the parameters for a spatial extent. That way, you could
retain the spatial reference system as the plains expand and their wider latitudes and longitudes are
added to the spatial column. Otherwise, if the spatial reference system is limited to the original latitudes
and longitudes, it would need to be altered or replaced as the flood planes grew.

Converting to values that improve performance
Typically, most coordinates in a coordinate system are decimal values; some are integers. In addition,
coordinates to the east of the origin are positive; those to the west are negative. Before being stored
by IBM Spatial Support for Db2 for z/OS, the negative coordinates are converted to positive values,
and the decimal coordinates are converted into integers. As a result, all coordinates are stored by IBM
Spatial Support for Db2 for z/OS as positive integers. The purpose is to enhance performance when the
coordinates are processed.

Certain parameters in a spatial reference system are used to make the conversions described in the
preceding paragraph. One parameter, called an offset, is subtracted from each negative coordinate, which
leaves a positive value as a remainder. Each decimal coordinate is multiplied by another parameter,
called a scale factor, which results in an integer whose precision is the same as that of the decimal
coordinate. (The offset is subtracted from positive coordinates as well as negative; and the nondecimal
coordinates, as well as the decimal coordinates, are multiplied by the scale factor. This way, all positive
and non-decimal coordinates remain commensurate with the negative and decimal ones.)

These conversions take place internally, and remain in effect only until coordinates are retrieved. Input
and query results always contain coordinates in their original, unconverted form.

Deciding whether to use a default spatial reference system or create a new
system

After you determine what coordinate system to use, you are ready to provide a spatial reference system
that suits the coordinate data that you are working with.

About this task
IBM Spatial Support for Db2 for z/OS provides five spatial reference systems for spatial data.

Procedure
Answer the following questions to determine whether you can use one of the default spatial reference
systems:
1. Does the coordinate system on which the default spatial reference system is based cover the

geographic area that you are working with? These coordinate systems are shown in “Spatial reference
systems supplied with IBM Spatial Support for Db2 for z/OS” on page 20.

2. Do the conversion factors associated with one of the default spatial reference systems work with your
coordinate data?

IBM Spatial Support for Db2 for z/OS uses offset values and scale factors to convert the coordinate
data that you provide to positive integers. To determine if your coordinate data works with the given
offset values and scale factors for one of the default spatial reference systems:

a. Review the information in “Conversion factors that transform coordinate data into integers” on page
22.

b. Look at how these factors are defined for the default spatial reference systems. If, after applying
the offset value to the minimum X and Y coordinates, these coordinates are not both greater
than 0, you must create a new spatial reference system and define the offsets yourself. For more
information about how to create a new spatial reference system, see “Creating a spatial reference
system” on page 21.

Chapter 4. Setting up spatial resources 19

3. Does the data that you are working with include height and depth coordinates (Z coordinates) or
measures (M coordinates)?
If you are working with Z or M coordinates, you might need to create a new spatial reference system
with Z or M offsets and scale factors suitable to your data.

4. If the existing spatial reference systems do not work with your data, you need to create a spatial
reference system.
For more information, see “Creating a spatial reference system” on page 21.

What to do next
After you decide which spatial reference system you need, you specify this choice to IBM Spatial Support
for Db2 for z/OS. For more information see “Spatial reference systems supplied with IBM Spatial Support
for Db2 for z/OS” on page 20.

Spatial reference systems supplied with IBM Spatial Support for Db2 for
z/OS

The spatial reference system converts the coordinate data to positive integers.

IBM Spatial Support for Db2 for z/OS provides the spatial reference systems that are shown in the
table below, along with the coordinate system on which each spatial reference system is based and
the offset values and scale factors that IBM Spatial Support for Db2 for z/OS uses to convert the
coordinate data to positive integers. You can find information about these spatial reference systems in the
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view.

If you are working with decimal-degrees, the offset values and scale factors for the default spatial
reference systems support the full range of latitude-longitude coordinates and preserve 6 decimal
positions, equivalent to approximately 10 cm.

If none of the default spatial reference systems meet your needs, you can create a new spatial reference
system.

Table 1. Spatial reference systems provided with IBM Spatial Support for Db2 for z/OS

Spatial
reference
system

SRS ID Coordinate system Offset values Scale factors When to use

DEFAULT
_SRS

0 None xOffset = 0
yOffset = 0
zOffset = 0
mOffset = 0

xScale = 1
yScale = 1
zScale = 1
mScale = 1

You can select this
system when your data
is independent of a
coordinate system or
you cannot or do not
need to specify one.

NAD83_
SRS_1

1 GCS_NORTH
_AMERICAN
_1983

xOffset = –180
yOffset = –90
zOffset = 0
mOffset = 0

xScale =
 1,000,000
yScale =
 1,000,000
zScale = 1
mScale = 1

You can select
this spatial reference
system if you plan
to use the U.S.
sample data that was
previously available
from Db2 Spatial
Extender. If the
coordinate data that
you are working
with was collected
after 1983, use this
system instead of
NAD27_SRS_1002.

20 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Table 1. Spatial reference systems provided with IBM Spatial Support for Db2 for z/OS (continued)

Spatial
reference
system

SRS ID Coordinate system Offset values Scale factors When to use

NAD27_
SRS_1002

1002 GCS_NORTH
_AMERICAN
_1927

xOffset = –180
yOffset = –90
zOffset = 0
mOffset = 0

xScale =
 5,965,232
yScale =
 5,965,232
zScale = 1
mScale = 1

You can select
this spatial reference
system if you plan
to use the U.S.
sample data that was
previously available
from Db2 Spatial
Extender. If the
coordinate data that
you are working
with was collected
before 1983, use this
system instead of
NAD83_SRS_1. This
system provides a
greater degree of
precision than the
other default spatial
reference systems.

WGS84_
SRS_1003

1003 GCS_WGS
_1984

xOffset = –180
yOffset = –90
zOffset = 0
mOffset = 0

xScale =
 5,965,232
yScale =
 5,965,232
zScale = 1
mScale = 1

You can select
this spatial reference
system if you
are working with
data outside the
U.S. (This system
handles worldwide
coordinates.)

DE_HDN
_SRS_1004

1004 GCS
_DEUTSCHES
_HAUPTDREI
ECKSNETZ

xOffset = –180
yOffset = –90
zOffset = 0
mOffset = 0

xScale =
 5,965,232
yScale =
 5,965,232
zScale = 1
mScale = 1

This spatial reference
system is based on a
coordinate system for
German addresses.

Creating a spatial reference system
Create a new spatial reference system if none of the spatial reference systems that are provided with IBM
Spatial Support for Db2 for z/OS work with your data.

About this task
You use the SYSPROC.ST_create_srs stored procedure to create a spatial reference system. This
stored procedure has two variations. The first variation, the SYSPROC.ST_create_srs stored procedure,
takes the conversion factors (offsets and scale factors) as input parameters. The second variation,
the ST_create_srs_2 stored procedure, takes the extents and the precision as input parameters and
calculates the conversion factors internally. For more information, see “ST_create_srs” on page 54 and
“ST_create_srs_2” on page 57.

Chapter 4. Setting up spatial resources 21

Procedure
To create a spatial reference system by using the SYSPROC.ST_create_srs stored procedure:
1. Specify an appropriate spatial reference system ID (SRID).

For spatial data in a flat-earth representation, specify an SRID that is not already defined.
2. Decide on the degree of precision that you want.

You can either:

• Specify the extents of the geographical area that you are working with and the scale factors that
you want to use with your coordinate data. IBM Spatial Support for Db2 for z/OS takes the extents
that you specify and calculates the offset for you. To specify the extents, provide the appropriate
parameters for the SYSPROC.ST_create_srs2 stored procedure.

• Specify both the offset values (required for IBM Spatial Support for Db2 for z/OS to convert negative
values to positive values) and scale factors (required for IBM Spatial Support for Db2 for z/OS
to convert decimal values to integers). Use this method when you need to follow strict criteria
for accuracy or precision. To specify the offset values and scale factors, provide the appropriate
parameters for the SYSPROC.ST_create_srs stored procedure.

3. Calculate the conversion information that IBM Spatial Support for Db2 for z/OS needs to convert
coordinate data to positive integers, and provide this information to the interface that you chose.

This information differs according to the method that you chose in the previous step.

• If you chose to specify the extents, you need to calculate the following information:

– Scale factors. If any of the coordinates that you are working with are decimal values, calculate
scale factors. Scale factors are numbers that, when multiplied by decimal coordinates and
measures, yields integers with at least the same number of significant digits as the original
coordinates and measures. If the coordinates are integers, the scale factors can be set to 1. If
the coordinates are decimal values, the scale factor should be set to a number that converts
the decimal portion to an integer value. For example, if the coordinate units are meters and the
accuracy of the data is 1 cm, you would need a scale factor of 100.

– Minimum and maximum values for your coordinates and measures.
• If you chose to specify the offset values and scale factors, you need to calculate the following

information:

– Offset values

If your coordinate data includes negative numbers or measures, you need to specify the offset
values that you want to use. An offset is a number that is subtracted from all coordinates, leaving
only positive values as a remainder. If you are working with positive coordinates, set all offset
values to 0. If you are not working with positive coordinates, select an offset that, when applied
against the coordinate data, results in integers that are less than the largest positive integer value
(9,007,199,254,740,992).

– Scale factors

If any of the coordinates for the locations that you are representing are decimal numbers,
determine what scale factors to use.

4. Run an application that invokes the SYSPROC.ST_create_srs stored procedure to create the spatial
reference system.

Conversion factors that transform coordinate data into integers
IBM Spatial Support for Db2 for z/OS uses offset values and scale factors to convert the coordinate data
that you provide to positive integers.

The default spatial reference systems already have offset value and scale factors associated with them.
If you are creating a new spatial reference system, determine the scale factors and, optionally, the offset
values that work best with your data.

22 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Offset values
An offset value is a number that is subtracted from all coordinates, leaving only positive values as a
remainder.

IBM Spatial Support for Db2 for z/OS converts your coordinate data using the following formulas to ensure
that all adjusted coordinate values are greater than 0.

Formula notation: In these formulas, the notation "min" represents "the minimum of all". For example,
"min(x)" means "the minimum of all x coordinates". The offset for each geographic direction is
represented as dimensionOffset. For example, xOffset is the offset value applied to all X coordinates.

min(x) – xOffset ≥ 0
min(y) – yOffset ≥ 0
min(z) – zOffset ≥ 0
min(m) – mOffset ≥ 0

Scale factors
A scale factor is a value that, when multiplied by decimal coordinates and measures, yields integers with
at least the same number of significant digits as the original coordinates and measures.

IBM Spatial Support for Db2 for z/OS converts your decimal coordinate data using the following formulas
to ensure that all adjusted coordinate values are positive integers. The converted values cannot exceed
253 (approximately 9 * 1015).

Formula notation: In these formulas, the notation "max" represents "the maximum of all". The offset
for each geographic dimension is represented as dimensionOffset (for example, xOffset is the offset
value applied to all X coordinates). The scale factor for each geographic dimension is represented as
dimensionScale (for example, xScale is the scale factor applied to X coordinates).

(max(x) – xOffset) * xScale ≤ 253
(max(y) – yOffset) * yScale ≤ 253
(max(z) – zOffset) * zScale ≤ 253
(max(m) – mOffset) * mScale ≤ 253

When you choose which scale factors work best with your coordinate data, ensure that:

• You use the same scale factor for X and Y coordinates.
• When multiplied by a decimal X coordinate or a decimal Y coordinate, the scale factor yields a value less

than 253. One common technique is to make the scale factor a power of 10. That is, the scale factor
should be 10 to the first power (10), 10 to the second power (100), 10 to the third power (1000), or, if
necessary, a larger factor.

• The scale factor is large enough to ensure that the number of significant digits in the new integer is the
same as the number of significant digits in the original decimal coordinate.

Example
Suppose that the ST_Point function is given input that consists of an X coordinate of 10.01, a Y coordinate
of 20.03, and the identifier of a spatial reference system. When ST_Point is invoked, it multiplies the value
of 10.01 and the value of 20.03 by the spatial reference system's scale factor for X and Y coordinates.
If this scale factor is 10, the resulting integers that IBM Spatial Support for Db2 for z/OS stores will be
100 and 200, respectively. Because the number of significant digits in these integers (3) is less than the
number of significant digits in the coordinates (4), IBM Spatial Support for Db2 for z/OS will not be able to
convert these integers back to the original coordinates, or to derive from them values that are consistent
with the coordinate system to which these coordinates belong. But if the scale factor is 100, the resulting
integers that IBM Spatial Support for Db2 for z/OS stores will be 1001 and 2003—values that can be
converted back to the original coordinates or from which compatible coordinates can be derived.

Chapter 4. Setting up spatial resources 23

Units for offset values and scale factors
Whether you use an existing spatial reference system or create a new one, the units for the offset values
and scale factors will vary depending on the type of coordinate system that you are using.

For example, if you are using a geographic coordinate system, the values are in angular units such as
decimal degrees; if you are using a projected coordinate system, the values are in linear units such as
meters or feet.

Calculating offset values
If you create a spatial reference system and your coordinate data includes negative numbers or
measures, you need to specify the offset values that you want to use.

About this task
An offset is a number that is subtracted from all coordinates, leaving only positive values as a remainder.
You can improve the performance of spatial operations when the coordinates are positive integers instead
of negative numbers or measures.

Procedure
To calculate the offset values for the coordinates that you are working with:
1. Determine the lowest negative X, Y, and Z coordinates within the range of coordinates for the locations

that you want to represent. If your data is to include negative measures, determine the lowest of these
measures.

2. Optional but recommended: Indicate to IBM Spatial Support for Db2 for z/OS that the domain that
encompasses the locations that you are concerned with is larger than it actually is. Thus, after you
write data about these locations to a spatial column, you can add data about locations of new features
as they are added to outer reaches of the domain, without having to replace your spatial reference
system with another one.

For each coordinate and measure that you identified in step 1, add an amount equal to five to ten
percent of the coordinate or measure. The result is referred to as an augmented value. For example, if
the lowest negative X coordinate is –100, you could add –5 to it, yielding an augmented value of –105.
Later, when you create the spatial reference system, you will indicate that the lowest X coordinate is
–105, rather than the true value of –100. IBM Spatial Support for Db2 for z/OS will then interpret –105
as the westernmost limit of your domain.

3. Find a value that, when subtracted from your augmented X value, leaves zero; this is the offset value
for X coordinates. IBM Spatial Support for Db2 for z/OS subtracts this number from all X coordinates to
produce only positive values.

For example, if the augmented X value is –105, you need to subtract –105 from it to get 0. IBM Spatial
Support for Db2 for z/OS will then subtract –105 from all X coordinates that are associated with the
features that you are representing. Because none of these coordinates is greater than –100, all the
values that result from the subtraction will be positive.

4. Repeat step 3 for the augmented Y value, augmented Z value, and augmented measure.

Calculating scale factors
Scale factors are numbers that, when multiplied by decimal coordinates and measures, yields integers
with at least the same number of significant digits as the original coordinates and measures.

About this task
If you create a spatial reference system and any of the coordinates that you are working with are decimal
values, calculate the appropriate scale factors for your coordinates and measures.

24 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

After you calculate scale factors, you need to determine the extent values. Then use the ST_create_srs
stored procedure to create a spatial reference system.

Procedure
To calculate the scale factors:
1. Determine which X and Y coordinates are, or are likely to be, decimal numbers. For example, suppose

that of the various X and Y coordinates that you will be dealing with, you determine that three of them
are decimal numbers: 1.23, 5.1235, and 6.789.

2. Find the decimal coordinate that has the longest decimal precision. Then determine by what power of
10 this coordinate can be multiplied to yield an integer of equal precision. For example, of the three
decimal coordinates in the current example, 5.1235 has the longest decimal precision. Multiplying it
by 10 to the fourth power (10000) yields the integer 51235.

3. Determine whether the integer produced by the multiplication just described is less than 2 53. 51235
is not too large. But suppose that, in addition to 1.23, 5.11235, and 6.789, your range of X and
Y coordinates includes a fourth decimal value, 10000000006.789876. Because this coordinate's
decimal precision is longer than that of the other three, you would multiply this coordinate—not
5.1235—by a power of 10. To convert it to an integer, you could multiply it by 10 to the sixth power
(1000000). But the resulting value, 10000000006789876, is greater than 2 53. If IBM Spatial Support
for Db2 for z/OS tried to store it, the results would be unpredictable.

To avoid this problem, select a power of 10 that, when multiplied by the original coordinate, yields
a decimal number that IBM Spatial Support for Db2 for z/OS can truncate to a storable integer, with
minimum loss of precision. In this case, you could select 10 to the fifth power (100000). Multiplying
100000 by 10000000006.789876 yields 1000000000678987.6. IBM Spatial Support for Db2 for
z/OS would round this number to 1000000000678988, reducing its accuracy slightly.

Determining minimum and maximum coordinates and measures
Determine minimum and maximum coordinates and measures if you decide to specify extent
transformations when you create a spatial reference system.

About this task
Use this process to determine minimum and maximum coordinates and measures if you:

• Decide to create a new spatial reference system because none of the spatial reference systems
provided with IBM Spatial Support for Db2 for z/OS work with your data.

• Decide to use extent transformations to convert your coordinates.

After you determine the extent values, if any of the coordinates are decimal values, you need to calculate
scale factors. Otherwise, use the ST_create_srs stored procedure to create a spatial reference system.

Procedure
To determine the minimum and maximum coordinates and measures of the locations that you want to
represent:
1. Determine the minimum and maximum X coordinates.

To find the minimum X coordinate, identify the X coordinate in your domain that is furthest west. (If
the location lies to the west of the point of origin, this coordinate will be a negative value.) To find the
maximum X coordinate, identify the X coordinate in your domain that is furthest east. For example,
if you are representing oil wells, and each one is defined by a pair of X and Y coordinates, the X
coordinate that indicates the location of the oil well that is furthest west is the minimum X coordinate,
and the X coordinate that indicates the location of the oil well that is furthest east is the maximum X
coordinate.

Tip: For multifeature types, such as multipolygons, ensure that you pick the furthest point on the
furthest polygon in the direction that you are calculating. For example, if you are trying to identify the

Chapter 4. Setting up spatial resources 25

minimum X coordinate, identify the westernmost X coordinate of the polygon that is furthest west in
the multipolygon.

2. Determine the minimum and maximum Y coordinates.
To find the minimum Y coordinate, identify the Y coordinate in your domain that is furthest south.
(If the location lies to the south of the point of origin, this coordinate will be a negative value.) To
determine the maximum Y coordinate, find the Y coordinate in your domain that is furthest north.

3. Determine the minimum and maximum Z coordinates.
The minimum Z coordinate is the greatest of the depth coordinates and the maximum Z coordinate is
the greatest of the height coordinates.

4. Determine the minimum and maximum measures.
If you are going to include measures in your spatial data, determine which measure has the highest
numerical value and which has the lowest.

26 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Chapter 5. Setting up spatial columns
In preparing to obtain spatial data for a project, you not only choose or create a coordinate system and
spatial reference system; you also provide one or more table columns to contain the data.

Spatial columns
This information provides an overview of spatial columns and the spatial data types that you can use.

Spatial columns with viewable content
When you use a visualization tool to query a spatial column, the tool returns results in the form of a
graphical display; for example, a map of parcel boundaries or the layout of a road system.

Some visualization tools require all rows of the column to use the same spatial reference system. The way
you enforce this constraint is to register the column with a spatial reference system.

Spatial data types
When you enable a Db2 subsystem for spatial operations, IBM Spatial Support for Db2 for z/OS provides
the database with seven distinct geometry types.

Six of these geometry types are instantiable, and one is abstract.

The six instantiable data types are ST_Point, ST_LineString, ST_Polygon, ST_MultiPoint,
ST_MultiLineString, and ST_MultiPolygon.

The data type that is abstract, or not instantiable, is ST_Geometry.

Spatial data types include support for the following:

• Data types for geographic features that can be perceived as forming a single unit; for example,
individual residences and isolated lakes.

• Data types for geographic features that are made up of multiple units or components; for example,
canal systems and groups of islands in a lake.

• A data type for geographic features of all kinds.

Data types for single-unit features
Use ST_Point, ST_LineString, and ST_Polygon to store coordinates that define the space occupied by
features that can be perceived as forming a single unit.

• Use ST_Point when you want to indicate the point in space that is occupied by a discrete geographic
feature. The feature might be a very small one, such as a water well; a very large one, such as a city;
or one of intermediate size, such as a building complex or park. In each case, the point in space can be
located at the intersection of an east-west coordinate line (for example, a parallel) and a north-south
coordinate line (for example, a meridian). An ST_Point data item includes an X coordinate and a Y
coordinate that define such an intersection. The X coordinate indicates where the intersection lies on
the east-west line; the Y coordinate indicates where the intersection lies on the north-south line.

• Use ST_Linestring for coordinates that define the space that is occupied by linear features; for example,
streets, canals, and pipelines.

• Use ST_Polygon when you want to indicate the extent of space covered by a multi-sided feature;
for example, a voting district, a forest, or a wildlife habitat. An ST_Polygon data item consists of the
coordinates that define the boundary of such a feature.

In some cases, ST_Polygon and ST_Point can be used for the same feature. For example, suppose that
you need spatial information about an apartment complex. If you want to represent the point in space
where each building in the complex is located, you would use ST_Point to store the X and Y coordinates

© Copyright IBM Corp. 2007, 2023 27

that define each such point. Otherwise, if you want to represent the area occupied by the complex as a
whole, you would use ST_Polygon to store the coordinates that define the boundary of this area.

Data types for multi-unit features
Use ST_MultiPoint, ST_MultiLineString, and ST_MultiPolygon to store coordinates that define spaces
occupied by features that are made up of multiple units.

• Use ST_MultiPoint when you are representing features made up of units whose locations are each
referenced by an X coordinate and a Y coordinate. For example, consider a table whose rows represent
island chains. The X coordinate and Y coordinate for each island has been identified. If you want
the table to include these coordinates and the coordinates for each chain as a whole, define an
ST_MultiPoint column to hold these coordinates.

• Use ST_MultiLineString when you are representing features made up of linear units, and you want to
store the coordinates for the locations of these units and the location of each feature as a whole.
For example, consider a table whose rows represent river systems. If you want the table to include
coordinates for the locations of the systems and their components, define an ST_MultiLineString column
to hold these coordinates.

• Use ST_MultiPolygon when you are representing features made up of multi-sided units, and you want
to store the coordinates for the locations of these units and the location of each feature as a whole.
For example, consider a table whose rows represent rural counties and the farms in each county.
If you want the table to include coordinates for the locations of the counties and farms, define an
ST_MultiPolygon column to hold these coordinates.

Multi-unit is not meant as a collection of individual entities. Rather, multi-unit refers to an aggregate of the
parts that makes up the whole.

A data type for all features
You can use ST_Geometry when you are not sure which of the other data types to use.

An ST_Geometry column can contain the same kinds of data items that columns of the other data types
can contain.

Creating spatial columns
You must create spatial columns to store and retrieve spatial data. After you choose a coordinate system
and determine which spatial reference system to use for your data, you create a spatial column in an
existing table or import spatial data into a new table.

Before you begin
Before you create a spatial column, your user ID must hold the authorizations that are needed for the Db2
SQL CREATE TABLE statement or ALTER TABLE statement.

Procedure
Use one of the following approaches:

• For a new table, issue the CREATE TABLE statement to create the table and to include a spatial column
within that table.

• For an existing table, issue the ALTER TABLE statement to add a spatial column.
• If you are importing spatial data from a shape file, use the SYSPROC.ST_import_shape stored procedure

to create a table and to provide this table with a column to hold the data.

Example

The following example shows how to create a table with a spatial column by using the CREATE TABLE
statement:

28 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

CREATE TABLE CUSTOMERS (..., LOCATION DB2GSE.ST_POINT, ...) ;

This next example shows how to add a spatial column to an existing table by using the ALTER TABLE
statement:

ALTER TABLE BRANCHES ADD COLUMN LOCATION DB2GSE.ST_POINT;

What to do next
Next, you register the spatial column.
Related tasks
“Importing shape data to a new or existing table” on page 34
You can import shape data to an existing table or view, or you can create a table and import shape data to
it in a single operation.
“Registering spatial columns” on page 31
Registering a spatial column creates a constraint on the table, if possible, to ensure that all geometries
use the specified spatial reference system.
Related reference
ALTER TABLE (Db2 SQL)
CREATE TABLE (Db2 SQL)

Creating inline spatial columns
An inline spatial column is defined with a LOB data type, or a distinct type that is based on a LOB data
type. After you choose a coordinate system and determine which spatial reference system to use for your
data, you can create an inline spatial column in an existing table or import spatial data into a new table.

Before you begin
Before you create an inline spatial column, your user ID must hold the authorizations that are needed for
the Db2 SQL CREATE TABLE statement or ALTER TABLE statement.

About this task
You can gain performance improvements for data loading, index creation, and queries by using inline
LOB columns to store certain types of geometries. These geometry types are ST_LineString, ST_Polygon,
ST_MultiPoint, ST_MultiLineString and ST_MultiPolygon, which are based on the BLOB data type. However,
inline LOB columns use more storage for a base table space than LOB or non-LOB columns.

Procedure
Use one of the following approaches:

• If your Db2 subsystem is not enabled for spatial support, to create an inline spatial column:

a. Set the LOB_INLINE_LENGTH subsystem parameter to the appropriate value.
b. Restart Db2.
c. Enable you Db2 subsystem for spatial support.
d. Issue the CREATE TABLE statement to create a new table with a spatial column. The non-point

column is created as an inline spatial column. The length of the column is inherited from the value
of the LOB_INLINE_LENGTH subsystem parameter.

• If your Db2 subsystem is enabled for spatial support, issue the CREATE TABLE statement and specify
the INLINE LENGTH clause to specify the inline length for the column.

• For an existing table with non-point geometry columns, issue the ALTER TABLE ALTER column-
alternation statement to change the column to be an inline spatial column.

Chapter 5. Setting up spatial columns 29

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html

Tip: After changing an existing column to an inline spatial column, run the REORG TABLESPACE utility.
• For an existing table without geometry columns, issue the ALTER TABLE ADD column-definition

statement to add an inline spatial column.

Example

The following example assumes that you set the LOB_INLINE_LENGTH subsystem parameter to 1000
bytes, and then enabled spatial support for your Db2 subsystem. To create a new table with an inline
spatial column, issue the following statement:

CREATE TABLE SYSADM.REAL_ESTATE(ID INTEGER NOT NULL,
PROPERTY DB2GSE.ST_MULTIPOLYGON);

The PROPERTY column is defined as an inline spatial column with a length of 1000 bytes.

You can override the value of the LOB_INLINE_LENGTH subsystem parameter by issuing the CREATE
TABLE statement with the INLINE LENGTH clause, as in the following example:

CREATE TABLE SYSADM.REAL_ESTATE(ID INTEGER NOT NULL,
PROPERTY DB2GSE.ST_MULTIPOLYGON INLINE LENGTH 500);

The new length of the PROPERTY column is 500 bytes.

In the next example, assume you want to change a column to be an inline spatial column in an
existing table with non-point geometry columns. After you issue the following ALTER TABLE ALTER
column-alternation statement and run the REORG TABLESPACE utility, the PROPERTY column will have a
length of 700 bytes:

ALTER TABLE SYSADM.REAL_ESTATE ALTER PROPERTY SET INLINE LENGTH 700;

Finally, assume you created a table by issuing the following CREATE TABLE statement:

CREATE TABLE SYSADM.REAL_ESTATE1(ID INTEGER NOT NULL, PRICE DECIMAL(9,2));

Now you want to add an inline spatial column to this existing table that does not have geometry columns.
Issue the following ALTER TABLE ADD column-definition statement:

ALTER TABLE SYSADM.REAL_ESTATE1 ADD COLUMN PROPERTY DB2GSE.ST_MULTIPOLYGON;

By issuing this statement, the PROPERTY column inherits the inline LOB length from the
LOB_INLINE_LENGTH subsystem parameter, which is set to 1000 bytes. If you want to override the
LOB_INLINE_LENGTH subsystem parameter, issue the following statement:

ALTER TABLE SYSADM.REAL_ESTATE1 ADD COLUMN PROPERTY1
DB2GSE.ST_MULTIPOLYGON INLINE LENGTH 700;

The length of the PROPERTY column is 700 bytes.

What to do next
Next, you register the inline spatial column.
Related tasks
“Registering spatial columns” on page 31
Registering a spatial column creates a constraint on the table, if possible, to ensure that all geometries
use the specified spatial reference system.
Related reference
ALTER TABLE (Db2 SQL)
CREATE TABLE (Db2 SQL)
REORG TABLESPACE (Db2 Utilities)

30 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html

Registering spatial columns
Registering a spatial column creates a constraint on the table, if possible, to ensure that all geometries
use the specified spatial reference system.

About this task
You might want to register a spatial column in the following situations:

• Access by visualization tools

If you want certain visualization tools to generate graphical displays of the data in a spatial column, you
need to ensure the integrity of the column's data. You do this by imposing a constraint that requires all
rows of the column to use the same spatial reference system. To impose this constraint, register the
column, specifying both its name and the spatial reference system that applies to it.

• Access by spatial indexes

Use the same coordinate system for all data in a spatial column on which you want to create an index
to ensure that the spatial index returns the correct results. You register a spatial column to constrain all
data to use the same spatial reference system and, correspondingly, the same coordinate system.

Procedure
To register a spatial column:
1. Run an application that invokes the SYSPROC.ST_register_spatial_column stored procedure.

For more information about this stored procedure, see “ST_register_spatial_column” on page 73.
2. Refer to the SRS_NAME column in the DB2GSE.ST_GEOMETRY_COLUMNS view to check the spatial

reference system you chose for a particular column after you register the column.

Chapter 5. Setting up spatial columns 31

32 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Chapter 6. Populating spatial columns
After you create spatial columns, and register the ones to be accessed by these visualization tools, you
are ready to populate the columns with spatial data.

You can supply the data in the following two ways:

• Import the data
• Use spatial functions to create the data or to derive it from business data or other spatial data

About importing spatial data
You can use IBM Spatial Support for Db2 for z/OS to import spatial data from external data sources.

More precisely, you can import spatial data from external sources by transferring it to your database in
files, called data exchange files. This section suggests some of the reasons for importing spatial data, and
describes the nature of the data exchange files that IBM Spatial Support for Db2 for z/OS supports.

Reasons for importing spatial data
By importing spatial data, you can obtain a great deal of spatial information that is already available in the
industry. Consider the following scenario.

Your database contains spatial data that represents your sales offices, customers, and other business
concerns. You want to supplement this data with spatial data that represents your organization's cultural
environment—cities, streets, points of interest, and so on. The data that you want is available from a map
vendor. You can use IBM Spatial Support for Db2 for z/OS to import it from a data exchange file that the
vendor supplies. You must place the input files in an HFS directory.

Shape files
IBM Spatial Support for Db2 for z/OS supports importing shape files. The term shape file refers to a
collection of files with the same file name but different file extensions. The collection can include up to
four files. The files are:

• A file that contains spatial data in shape format, an industry-standard format developed by ESRI. Such
data is often called shape data. The extension of a file containing shape data is .shp.

• A file that contains business data that pertains to locations defined by shape data. This file's extension
is .dbf. The content of the .dbf file is ASCII data.

• A file that contains an index to shape data. This file's extension is .shx.
• A file that contains a specification of the coordinate system on which the data in a .shp file is based. This
file's extension is .prj.

When you use IBM Spatial Support for Db2 for z/OS to import shape data, you receive at least one .shp
file. In most cases, you receive one or more of the other three kinds of shape files as well.

© Copyright IBM Corp. 2007, 2023 33

Importing spatial data
This information provides an overview of the task of importing shape data to your database.

Importing shape data to a new or existing table
You can import shape data to an existing table or view, or you can create a table and import shape data to
it in a single operation.

Before you begin
Before you import shape data, your user ID must hold the following privileges:

• Privileges to access the directories where the input files and the error files are located
• Read access to the input files
• Write access to the error files

In addition, before you import shape data to an existing table or view, your user ID must hold one of the
following authorities or privileges:

• SYSADM or DBADM authority on the database that contains the table or view
• The INSERT and SELECT privilege on the table or view

Before you begin to create a table automatically and import shape data to the new table, your user ID
must hold the authorizations that are needed for the Db2 CREATE TABLE statement.

About this task
You can import shape data in the following two ways:

• You can import the shape data and attribute data to an existing table that has a spatial column and
attribute columns with the file's data. This method is the recommended way for importing shape data.

• IBM Spatial Support for Db2 for z/OS can create a table that has a spatial column and attribute columns
and load the new table's columns with the file's data. If you choose this method, you cannot create or
customize the table spaces for the resulting table.

Procedure
Run an application that calls the SYSPROC.ST_import_shape stored procedure.

34 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Chapter 7. Using indexes to access spatial data
Before you query spatial columns, you can create indexes that will facilitate access to them.

This information describes the nature of the indexes that IBM Spatial Support for Db2 for z/OS uses to
expedite access to spatial data, and explains how to create such indexes.

Spatial indexes
Good query performance is related to having efficient indexes defined on the columns of the base tables
in a database.

The performance of the query is directly related to how quickly values in the column can be found during
the query. Queries that use an index can execute more quickly and can provide a significant performance
improvement.

You can gain performance improvements for data loading, index creation, and queries by using inline
LOB columns to store certain types of geometries. These geometry types are ST_LineString, ST_Polygon,
ST_MultiPoint, ST_MultiLineString and ST_MultiPolygon, which are based on the BLOB data type. However,
inline LOB columns use more storage for a base table space than LOB or non-LOB columns.

Spatial queries are typically queries that involve two or more dimensions. For example, in a spatial query
you might want to know if a point is included within an area (polygon). Due to the multidimensional nature
of spatial queries, the Db2 native B-tree indexing is inefficient for these queries.

Spatial queries use a type of index called a spatial grid index. The indexing technology in IBM Spatial
Support for Db2 for z/OS utilizes grid indexing, which is designed to index multidimensional spatial data,
to index spatial columns. IBM Spatial Support for Db2 for z/OS provides a grid index that is optimized for
two-dimensional data on a flat projection of the Earth.

Spatial grid indexes
Indexes improve application query performance, especially when the queried table or tables contain
many rows. If you create appropriate indexes that the query optimizer chooses to run your query, you can
greatly reduce the number of rows to process.

IBM Spatial Support for Db2 for z/OS provides a grid index that is optimized for two dimensional data. The
index is created on the X and Y dimensions of a geometry.

The following aspects of a grid index are helpful to understand:

• The generation of the index
• The use of spatial functions in a query
• How a query uses a spatial grid index

Generation of spatial grid indexes
IBM Spatial Support for Db2 for z/OS generates a spatial grid index using the minimum bounding
rectangle (MBR) of a geometry.

For most geometries, the MBR is a rectangle that surrounds the geometry.

A spatial grid index divides a region into logical square grids with a fixed size that you specify when you
create the index. The spatial index is constructed on a spatial column by making one or more entries
for the intersections of each geometry's MBR with the grid cells. An index entry consists of the grid cell
identifier, the geometry MBR, and the internal identifier of the row that contains the geometry.

You can define up to three spatial index levels (grid levels). Using several grid levels is beneficial because
it allows you to optimize the index for different sizes of spatial data.

© Copyright IBM Corp. 2007, 2023 35

If a geometry intersects four or more grid cells, the geometry is promoted to the next larger level. In
general, the larger geometrys will be indexed at the larger levels. If a geometry intersects 10 or more grid
cells at the largest grid size, a system-defined overflow index level is used. This overflow level prevents
the generation of too many index entries. For best performance, define your grid sizes to avoid the use of
this overflow level.

For example, if multiple grid levels exist, the indexing algorithm attempts to use the lowest grid level
possible to provide the finest resolution for the indexed data. When a geometry intersects more than four
grid cells at a given level, it is promoted to the next higher level, (provided that there is another level).
Therefore, a spatial index that has the three grid levels of 10.0, 100.0, and 1000.0 will first intersect each
geometry with the level 10.0 grid. If a geometry intersects with more than four grid cells of size 10.0, it
is promoted and intersected with the level 100.0 grid. If more than four intersections result at the 100.0
level, the geometry is promoted to the 1000.0 level. If more than 10 intersections result at the 1000.0
level, the geometry is indexed in the overflow level.

Use of spatial functions in a query
A spatial index is used as a consideration in certain queries.

The Db2 optimizer considers a spatial index for use when a query contains one the following functions in
its WHERE clause:

• ST_Contains
• ST_Crosses
• ST_Distance
• EnvelopesIntersect
• ST_Equals
• ST_Intersects
• ST_Overlaps
• ST_Touches
• ST_Within

In addition, the expression to the right of the predicate must be equal to 1, except when ST_Distance is
the function on the left. With the ST_Distance function, the predicate must be less than the numeric value
that is on the right.

How a query uses a spatial grid index
When the query optimizer chooses a spatial grid index, the query execution uses a multiple-step filter
process.

The filter process includes the following steps:

1. Determine the grid cells that intersect the query window. The query window is the geometry that you
are interested in and that you specify as the second parameter in a spatial function (see examples
below).

2. Scan the index for entries that have matching grid cell identifiers.
3. Compare the geometry MBR values in the index entries with the query window and discard any values

that are outside the query window.
4. Perform further analysis as appropriate. The candidate set of geometries from the previous steps

might undergo further analysis to determine if they satisfy the spatial function (ST_Contains,
ST_Distance, and so on). The spatial function EnvelopesIntersect omits this step and typically has
the best performance.

The following examples of spatial queries have a spatial grid index on the column C.GEOMETRY:

SELECT name
FROM counties AS c

36 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

WHERE EnvelopesIntersect(c.geometry, -73.0, 42.0, -72.0, 43.0, 1) = 1

SELECT name
FROM counties AS c
WHERE ST_Intersects(c.geometry, :geometry2) = 1

In the first example, the four coordinate values define the query window. These coordinate values specify
the lower-left and upper-right corners (42.0 –73.0 and 43.0 –72.0) of a rectangle.

In the second example, IBM Spatial Support for Db2 for z/OS computes the MBR of the geometry
specified by the host variable :geometry2 and uses it as the query window.

When you create a spatial grid index, you should specify appropriate grid sizes for the most common
query window sizes that your spatial application is likely to use. If a grid size is larger, index entries for
geometries that are outside of the query window must be scanned because they reside in grid cells that
intersect the query window, and these extra scans degrade performance. However, a smaller grid size
might generate more index entries for each geometry and more index entries must be scanned, which
also degrades query performance.

Considerations for the number of grid levels and grid sizes
Determining the appropriate grid sizes for your spatial grid indexes is the best way to tune the indexes and
make your spatial queries most efficient.

Number of grid levels
You can have up to three grid levels.

For each grid level in a spatial grid index, a separate index search is performed during a spatial query.
Therefore, if you have more grid levels, your query is less efficient.

If the values in the spatial column are about the same relative size, use a single grid level. However, a
typical spatial column does not contain geometries of the same relative size, but geometries in a spatial
column can be grouped according to size. You should correspond your grid levels with these geometry
groupings.

For example, suppose you have a table of county land parcels with a spatial column that contains
groupings of small urban parcels surrounded by larger rural parcels. Because the sizes of the parcels can
be grouped into two groups (small urban ones and larger rural ones), you would specify two grid levels for
the spatial grid index.

Grid cell sizes
The general rule is to decrease the grid sizes as much as possible to get the finest resolution while
minimizing the number of index entries.

A small value should be used for the finest grid size to optimize the overall index for small geometries
in the column. This avoids the overhead of evaluating geometries that are not within the search area.
However, the finest grid size also produces the highest number of index entries. Consequently, the
number of index entries processed at query time increases, as does the amount of storage needed for the
index. These factors reduce overall performance.

By using larger grid sizes, the index can be optimized further for larger geometries. The larger grid sizes
produce fewer index entries for large geometries than the finest grid size would. Consequently, storage
requirements for the index are reduced, increasing overall performance.

The following figures show the effects of different grid sizes.

The first figure shows a map of land parcels, each parcel represented by a polygon geometry. The
black rectangle represents a query window. Suppose you want to find all of the geometries whose MBR
intersects the query window. This figure shows that 28 geometries (highlighted in pink) have an MBR that
intersects the query window.

Chapter 7. Using indexes to access spatial data 37

Figure 10. Land parcels in a neighborhood

The next figure shows a small grid size (25) that provides a close fit to the query window. The query
returns only the 28 geometries that are highlighted, but the query must examine and discard three
additional geometries whose MBRs intersect the query window.

This small grid size results in many index entries per geometry. During execution, the query accesses all
index entries for these 31 geometries. The figure shows 256 grid cells that overlay the query window.
However, the query execution accesses 578 index entries because many geometries are indexed with the
same grid cells. For this query window, this small grid size results in an excessive number of index entries
to scan.

Figure 11. Small grid size (25) on land parcels

Figure 12 on page 39 shows a large grid size (400®) that encompasses a considerably larger area with
many more geometries than the query window. This large grid size results in only one index entry per
geometry, but the query must examine and discard 59 additional geometries whose MBRs intersect the
grid cell.

During execution, the query accesses all index entries for the 28 geometries that intersect the query
window, plus the index entries for the 59 additional geometries, for a total of 112 index entries. For this
query window, this large grid size results in an excessive number of geometries to examine.

38 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Figure 12. Large grid size (400) on land parcels

Figure 13 on page 39 shows a medium grid size (100) that provides a close fit to the query window. The
query returns only the 28 geometries that are highlighted, but the query must examine and discard five
additional geometries whose MBRs intersect the query window.

During execution, the query accesses all index entries for the 28 geometries that intersect the query
window, plus the index entries for the 5 additional geometries, for a total of 91 index entries. For this
query window, this medium grid size is the best because it results in significantly fewer index entries than
the small grid size and the query examines fewer additional geometries than the large grid size.

Figure 13. Medium grid size (100) on land parcels

Creating spatial grid indexes
You can use the ST_create_index stored procedure to create spatial grid indexes to define two-
dimensional grid indexes on spatial columns to help optimize spatial queries.

Before you begin
Before you create a spatial grid index:

• The user ID that invokes the ST_create_index stored procedure must hold one of the following
authorities or privileges:

Chapter 7. Using indexes to access spatial data 39

– SYSADM or DBADM authority on the database that contains the table where the spatial grid index will
be used

– Ownership or INDEX privilege on the table
• You must know the values that you want to specify for the fully-qualified spatial grid index name and the

three grid sizes that the index will use.

About this task
You create spatial grid indexes to improve the performance of queries on spatial columns. When you
create a spatial grid index, you give it the following information:

• A name
• The name of the spatial column on which it is to be defined
• The combination of the three grid sizes, which helps optimize performance by minimizing the total

number of index entries and the number of index entries that need to be scanned to satisfy a query

Restriction: The Db2 LOAD utility will fail if a spatial grid index is created on the target table. Before
running this utility, you must drop the spatial grid index by using the ST_drop_index stored procedure. You
can create the spatial grid index again after running the LOAD utility.

Procedure
Invoke the ST_create_index stored procedure.
For information about this stored procedure, see “ST_create_index” on page 51.

40 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Chapter 8. Analyzing and generating spatial
information

After you populate spatial columns, you are ready to query them.

These topics describe the environments in which you can submit queries, provide examples of the various
types of spatial functions that you can invoke in a query, and provide guidelines on using spatial functions
in conjunction with spatial indexes.

Environments for performing spatial analysis
You can retrieve and analyze spatial data through various programming environments.

You can perform spatial analysis by using SQL statements and spatial functions in the following
programming environments:

• Issued interactively
• Dynamically prepared and executed
• Dynamically prepared and executed by using the Db2 ODBC function calls
• Application programs in all languages supported by Db2

Examples of how spatial functions operate
This information provides an overview of spatial functions and examples of how you can use them.

IBM Spatial Support for Db2 for z/OS provides functions that perform various operations on spatial data.
Generally speaking, these functions can be categorized according to the type of operation that they
perform. Table 2 on page 41 lists these categories, along with examples. The text following Table 2 on
page 41 shows coding for these examples.

Table 2. Spatial functions and operations

Category of function Example of operation

Returns information about
specific geometries.

Return the extent, in square miles, of the sales area of Store 10.

Makes comparisons. Determine whether the location of a customer's home lies within the
sales area of Store 10.

Derives new geometries from
existing ones.

Derive the sales area of a store from its location.

Example 1: Returns information about specific geometries
In this example, the ST_Area function returns a numeric value that represents the sales area of store 10.
The function will return the area in the same units as the units of the coordinate system that is being used
to define the area's location.

SELECT db2gse.ST_Area(sales_area)
FROM stores
WHERE id = 10

© Copyright IBM Corp. 2007, 2023 41

Example 2: Makes comparisons
In this example, the ST_Within function compares the coordinates of the geometry representing a
customer's residence with the coordinates of a geometry representing the sales area of store 10. The
function's output will signify whether the residence lies within the sales area.

SELECT c.first_name, c.last_name, db2gse.ST_Within(c.location, s.sales_area)
FROM customers as c. stores AS s
WHERE s.id = 10

Example 3: Derives new geometries from existing ones
In this example, the ST_Buffer function derives a geometry representing a store's sales area from a
geometry representing the store's location. The data type is ST_Geometry for both the store's sales area
and location.

UPDATE stores
SET sales_area = db2gse.ST_Polygon(db2gse.ST_Buffer(location, 10, 'KILOMETERS'))
WHERE id = 10

Functions that use indexes to optimize queries
A specialized group of spatial functions, called comparison functions, can improve query performance by
exploiting a spatial grid index.

Comparison functions compare two geometries with one another. If the results of the comparison meet
certain criteria, the function returns a value of 1; if the results fail to meet the criteria, the function returns
a value of 0. If the comparison cannot be performed, the function can return a null value.

For example, the function ST_Overlaps compares two geometries that have the same dimension (for
example, two linestrings or two polygons). If the geometries overlap partway, and if the space covered by
the overlap has the same dimension as the geometries, ST_Overlaps returns a value of 1.

The following list shows the comparison functions that can use a spatial grid index:

• EnvelopesIntersect
• ST_Contains
• ST_Crosses
• ST_Distance
• ST_Equals
• ST_Intersects
• ST_Overlaps
• ST_Touches
• ST_Within

Because of the time and memory required to execute a function, such execution can involve considerable
processing. Furthermore, the more complex the geometries that are being compared, the more complex
and time-intensive the comparison will be. The specialized functions listed above can complete their
operations more quickly if they can use a spatial index to locate geometries. To enable such a function to
use a spatial index, observe all of the following rules:

• The function must be specified in a WHERE clause. If it is specified in a SELECT, HAVING, or GROUP BY
clause, a spatial index cannot be used.

• The function must be the expression on the left of the predicate.

42 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

• The operator that is used in the predicate that compares the result of the function with another
expression must be an equal sign, with one exception: the ST_Distance function must use the less than
operator.

• The expression on the right of the predicate must be the constant 1, except when ST_Distance is the
function on the left.

• The ST_Distance function takes two geometries and, optionally, a unit as input parameters. The value of
the unit must be the same type of value as each geometry. For example, if you specify the values for the
geometries in degrees, you also must specify the value for the unit in degrees.

• The operation must involve a search in a spatial column on which a spatial index is defined.

For example:

SELECT c.name, c.address, c.phone
FROM customers AS c, bank_branches AS b
WHERE db2gse.ST_Distance(c.location, b.location) < 10000
 and b.branch_id = 3

If you have detailed information about your spatial data so that the selectivity of a particular query can be
estimated accurately, you can add a SELECTIVITY clause with a numeric constant in the spatial predicate
function specification. Db2 uses this value as the new filter factor for determining an access path for the
SELECT statement.

The following table shows the correct and incorrect ways of creating spatial queries to utilize a spatial
index.

Table 3. Demonstration of how spatial functions can adhere to and violate rules for utilizing a spatial
index

Queries that reference spatial functions Rules violated

SELECT *
FROM stores AS s
WHERE db2gse.ST_Contains(s.sales_zone,
 db2gse.ST_Point(-121.8,37.3, 1)) = 1

No condition is
violated in this
example.

SELECT *
FROM stores AS s
WHERE db2gse.ST_Contains(s.sales_zone,
 db2gse.ST_Point(-121.8,37.3, 1)) = 1 SELECTIVITY 0.001

No condition is
violated in this
example.

SELECT *
FROM stores AS s
WHERE db2gse.ST_Length(s.location) > 10

The spatial function
ST_Length does not
compare geometries
and cannot utilize a
spatial index.

SELECT *
FROM stores AS s
WHERE 1=db2gse.ST_Within(s.location,:BayArea)

The function must
be an expression on
the left side of the
predicate.

SELECT *
FROM stores AS s
WHERE db2gse.ST_Contains(s.sales_zone,
 db2gse.ST_Point(-121.8,37.3, 1)) <> 0

Equality comparisons
must use the integer
constant 1.

Chapter 8. Analyzing and generating spatial information 43

Table 3. Demonstration of how spatial functions can adhere to and violate rules for utilizing a spatial
index (continued)

Queries that reference spatial functions Rules violated

SELECT *
FROM stores AS s
WHERE db2gse.ST_Contains(db2gse.ST_Polygon
 ('polygon((10 10, 10 20, 20 20, 20 10, 10 10))', 1),
 db2gse.ST_Point(-121.8, 37.3, 1) = 1

No spatial index
exists on either of
the arguments for the
function, so no index
can be utilized.

44 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Chapter 9. Stored procedures
This section provides reference information about the stored procedures that you can use to set up spatial
support and create projects that use spatial data.

When you set up IBM Spatial Support for Db2 for z/OS, you invoke these stored procedures implicitly.

Alternatively, you can invoke the stored procedures explicitly in an application program.

Before invoking most IBM Spatial Support for Db2 for z/OS stored procedures on a database, you must
enable that database for spatial operations. For more information, see “Enabling spatial support for the
first time” on page 11.

After Db2 for z/OS is enabled for spatial operations, you can invoke any IBM Spatial Support for Db2 for
z/OS stored procedure, either implicitly or explicitly.

ST_alter_coordsys
Use this stored procedure to update a coordinate system definition in the database.

When this stored procedure is processed, information about the coordinate system is updated in the
DB2GSE.ST_COORDINATE_SYSTEMS catalog view.

Attention: Use care with this stored procedure. If you use this stored procedure to change the
definition of the coordinate system and you have existing spatial data that is associated with a
spatial reference system that is based on this coordinate system, you might inadvertently change
the spatial data. If spatial data is affected, you are responsible for ensuring that the changed
spatial data is still accurate and valid.

Authorization
The user ID under which the stored procedure is invoked must have either SYSADM or DBADM authority.

Syntax
sysproc.ST_alter_coordsys (coordsys_name , definition

null

,

organization

null

, organization_coordsys_id

null

, description

null

,

msg_code , msg_text)

Parameter descriptions
coordsys_name

Uniquely identifies the coordinate system. You must specify a non-null value for this parameter.

Specify the coordsys_name value in uppercase letters.

The data type of this parameter is VARCHAR(130).

definition
Defines the coordinate system. Although you must specify a value for this parameter, the value can be
null. If this parameter is null, the definition of the coordinate system is not changed.

The data type of this parameter is VARCHAR(2048).

© Copyright IBM Corp. 2007, 2023 45

organization
Identifies the organization that defined the coordinate system and provided the definition for it; for
example, "European Petroleum Survey Group (EPSG)." Although you must specify a value for this
parameter, the value can be null.

If this parameter is null, the organization of the coordinate system is not changed. If this parameter is
not null, the organization_coordsys_id parameter cannot be null; in this case, the combination of the
organization and organization_coordsys_id parameters uniquely identifies the coordinate system.

The data type of this parameter is VARCHAR(128).

organization_coordsys_id
Specifies a numeric identifier that is assigned to this coordinate system by the entity listed in the
organization parameter. Although you must specify a value for this parameter, the value can be null.

If this parameter is null, the organization parameter must also be null; in this case, the organization's
coordinate system identifier is not changed. If this parameter is not null, the organization parameter
cannot be null; in this case, the combination of the organization and organization_coordsys_id
parameters uniquely identifies the coordinate system.

The data type of this parameter is INTEGER.

description
Describes the coordinate system by explaining its application. Although you must specify a value for
this parameter, the value can be null. If this parameter is null, the description information about the
coordinate system is not changed.

The data type of this parameter is VARCHAR(256).

Output parameters
msg_code

Specifies the message code that is returned from the stored procedure. The value of this output
parameter identifies the error, success, or warning condition that was encountered during the
processing of the procedure. If this parameter value is for a success or warning condition, the
procedure finished its task. If the parameter value is for an error condition, no changes to the
database were performed.

The data type of this output parameter is INTEGER.

msg_text
Specifies the actual message text, associated with the message code, that is returned from the stored
procedure. The message text can include additional information about the success, warning, or error
condition, such as where an error was encountered.

The data type of this output parameter is VARCHAR(4096).

When the message code that is returned is 0 (zero), the message text parameter is set to null.

Example
This example shows how to use the Db2 CALL statement to invoke the ST_alter_coordsys stored
procedure. This example uses a Db2 CALL statement to update a coordinate system named
NORTH_AMERICAN_TEST. This CALL statement assigns a value of 1002 to the coordsys_id parameter:

call sysproc.ST_alter_coordsys('NORTH_AMERICAN_TEST',NULL,NULL,1002,NULL,?,?)

The two question marks at the end of this CALL statement represent the output parameters, msg_code
and msg_text. The values for these output parameters are returned after the stored procedure is called.

46 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

ST_alter_srs
Use this stored procedure to update a spatial reference system definition in the database.

When this stored procedure is processed, information about the spatial reference system is updated in
the DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view.

Restriction: You cannot alter a spatial reference system if a registered spatial column uses that spatial
reference system.

Attention: Use care with this stored procedure. If you use this stored procedure to change offset,
scale, or coordsys_name parameters of the spatial reference system, and if you have existing
spatial data that is associated with the spatial reference system, you might inadvertently change
the spatial data. If spatial data is affected, you are responsible for ensuring that the changed
spatial data is still accurate and valid.

Authorization
The user ID under which the stored procedure is invoked must have either SYSADM or DBADM authority.

Syntax
sysproc.ST_alter_srs (srs_name , srs_id

null

, x_offset

null

,

x_scale

null

, y_offset

null

, y_scale

null

, z_offset

null

,

z_scale

null

, m_offset

null

, m_scale

null

,

coordsys_name

null

, description

null

, msg_code , msg_text)

Parameter descriptions
srs_name

Identifies the spatial reference system. You must specify a non-null value for this parameter.

The srs_name value is converted to uppercase unless you enclose it in double quotation marks.

The data type of this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

srs_id
Uniquely identifies the spatial reference system. This identifier is used as an input parameter for
various spatial functions. Although you must specify a value for this parameter, the value can be null.
If this parameter is null, the numeric identifier of the spatial reference system is not changed.

The data type of this parameter is INTEGER.

x_offset
Specifies the offset for all X coordinates of geometries that are represented in this spatial reference
system. Although you must specify a value for this parameter, the value can be null. If this parameter
is null, the value for this parameter in the definition of the spatial reference system is not changed.

The offset is subtracted before the scale factor x_scale is applied when geometries are converted
from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for z/OS internal
representation. (WKT is well-known text, and WKB is well-known binary.)

Chapter 9. Stored procedures 47

The data type of this parameter is DOUBLE.

x_scale
Specifies the scale factor for all X coordinates of geometries that are represented in this spatial
reference system. Although you must specify a value for this parameter, the value can be null. If this
parameter is null, the value for this parameter in the definition of the spatial reference system is not
changed.

The scale factor is applied (multiplication) after the offset x_offset is subtracted when geometries are
converted from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for
z/OS internal representation.

The data type of this parameter is DOUBLE.

y_offset
Specifies the offset for all Y coordinates of geometries that are represented in this spatial reference
system. Although you must specify a value for this parameter, the value can be null. If this parameter
is null, the value for this parameter in the definition of the spatial reference system is not changed.

The offset is subtracted before the scale factor y_scale is applied when geometries are converted
from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for z/OS internal
representation.

The data type of this parameter is DOUBLE.

y_scale
Specifies the scale factor for all Y coordinates of geometries that are represented in this spatial
reference system. Although you must specify a value for this parameter, the value can be null. If this
parameter is null, the value for this parameter in the definition of the spatial reference system is not
changed.

The scale factor is applied (multiplication) after the offset y_offset is subtracted when geometries are
converted from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for
z/OS internal representation. This scale factor must be the same as x_scale.

The data type of this parameter is DOUBLE.

z_offset
Specifies the offset for all Z coordinates of geometries that are represented in this spatial reference
system. Although you must specify a value for this parameter, the value can be null. If this parameter
is null, the value for this parameter in the definition of the spatial reference system is not changed.

The offset is subtracted before the scale factor z_scale is applied when geometries are converted
from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for z/OS internal
representation.

The data type of this parameter is DOUBLE.

z_scale
Specifies the scale factor for all Z coordinates of geometries that are represented in this spatial
reference system. Although you must specify a value for this parameter, the value can be null. If this
parameter is null, the value for this parameter in the definition of the spatial reference system is not
changed.

The scale factor is applied (multiplication) after the offset z_offset is subtracted when geometries are
converted from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for
z/OS internal representation.

The data type of this parameter is DOUBLE.

m_offset
Specifies the offset for all M coordinates of geometries that are represented in this spatial reference
system. Although you must specify a value for this parameter, the value can be null. If this parameter
is null, the value for this parameter in the definition of the spatial reference system is not changed.

48 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

The offset is subtracted before the scale factor m_scale is applied when geometries are converted
from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for z/OS internal
representation.

The data type of this parameter is DOUBLE.

m_scale
Specifies the scale factor for all M coordinates of geometries that are represented in this spatial
reference system. Although you must specify a value for this parameter, the value can be null. If this
parameter is null, the value for this parameter in the definition of the spatial reference system is not
changed.

The scale factor is applied (multiplication) after the offset m_offset is subtracted when geometries are
converted from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for
z/OS internal representation.

The data type of this parameter is DOUBLE.

coordsys_name
Uniquely identifies the coordinate system on which this spatial reference system is based. The
coordinate system must be listed in the view ST_COORDINATE_SYSTEMS. Although you must specify
a value for this parameter, the value can be null. If this parameter is null, the coordinate system that is
used for this spatial reference system is not changed.

Specify the coordsys_name value in uppercase letters.

The data type of this parameter is VARCHAR(130).

description
Describes the spatial reference system by explaining its application. Although you must specify a
value for this parameter, the value can be null. If this parameter is null, the description information
about the spatial reference system is not changed.

The data type of this parameter is VARCHAR(256).

Output parameters
msg_code

Specifies the message code that is returned from the stored procedure. The value of this output
parameter identifies the error, success, or warning condition that was encountered during the
processing of the procedure. If this parameter value is for a success or warning condition, the
procedure finished its task. If the parameter value is for an error condition, no changes to the
database were performed.

The data type of this output parameter is INTEGER.

msg_text
Specifies the actual message text, associated with the message code, that is returned from the stored
procedure. The message text can include additional information about the success, warning, or error
condition, such as where an error was encountered.

The data type of this output parameter is VARCHAR(4096).

When the message code that is returned is 0 (zero), the message text parameter is set to null.

Example
This example shows how to use the Db2 CALL statement to invoke the ST_alter_srs stored procedure.
This example uses a Db2 CALL statement to change the description parameter value of a spatial reference
system named SRSDEMO:

call sysproc.ST_alter_srs('SRSDEMO',NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,
 NULL,NULL,'SRS for GSE Demo Program: offices table',?,?)

Chapter 9. Stored procedures 49

The two question marks at the end of this CALL statement represent the output parameters, msg_code
and msg_text. The values for these output parameters are returned after the stored procedure is called.

ST_create_coordsys
Use this stored procedure to store information in the database about a new coordinate system.

When this stored procedure is processed, information about the coordinate system is added to the
DB2GSE.ST_COORDINATE_SYSTEMS catalog view.

Authorization
The user ID under which the stored procedure is invoked must have either SYSADM or DBADM authority.

Syntax
sysproc.ST_create_coordsys (coordsys_name , definition , organization

null

, organization_coordsys_id

null

, description

null

, msg_code ,

msg_text)

Parameter descriptions
coordsys_name

Uniquely identifies the coordinate system. You must specify a non-null value for this parameter.

Specify the coordsys_name value in uppercase letters.

The data type of this parameter is VARCHAR(130).

definition
Defines the coordinate system. You must specify a non-null value for this parameter. The vendor that
supplies the coordinate system usually provides the information for this parameter.

The data type of this parameter is VARCHAR(2048).

organization
Identifies the organization that defined the coordinate system and provided the definition for it; for
example, "European Petroleum Survey Group (EPSG)." Although you must specify a value for this
parameter, the value can be null.

If this parameter is null, the organization_coordsys_id parameter must also be null. If this parameter
is not null, the organization_coordsys_id parameter cannot be null; in this case, the combination of the
organization and organization_coordsys_id parameters uniquely identifies the coordinate system.

The data type of this parameter is VARCHAR(128).

organization_coordsys_id
Specifies a numeric identifier. The entity that is specified in the organization parameter assigns this
value. This value is not necessarily unique across all coordinate systems. Although you must specify a
value for this parameter, the value can be null.

If this parameter is null, the organization parameter must also be null. If this parameter is not null,
the organization parameter cannot be null; in this case, the combination of the organization and
organization_coordsys_id parameters uniquely identifies the coordinate system.

The data type of this parameter is INTEGER.

50 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

description
Describes the coordinate system by explaining its application. Although you must specify a value for
this parameter, the value can be null. If this parameter is null, no description information about the
coordinate system is recorded.

The data type of this parameter is VARCHAR(256).

Output parameters
msg_code

Specifies the message code that is returned from the stored procedure. The value of this output
parameter identifies the error, success, or warning condition that was encountered during the
processing of the procedure. If this parameter value is for a success or warning condition, the
procedure finished its task. If the parameter value is for an error condition, no changes to the
database were performed.

The data type of this output parameter is INTEGER.

msg_text
Specifies the actual message text, associated with the message code, that is returned from the stored
procedure. The message text can include additional information about the success, warning, or error
condition, such as where an error was encountered.

The data type of this output parameter is VARCHAR(4096).

When the message code that is returned is 0 (zero), the message text parameter is set to null.

Example
This example shows how to use the Db2 CALL statement to invoke the ST_create_coordsys stored
procedure. This example uses a Db2 CALL statement to create a coordinate system with the following
parameter values:

• coordsys_name parameter: NORTH_AMERICAN_TEST
• definition parameter:

GEOGCS["GCS_North_American_1983",
DATUM["D_North_American_1983",
SPHEROID["GRS_1980",6378137.0,298.257222101]],
PRIMEM["Greenwich",0.0],
UNIT["Degree",0.0174532925199433]]

• organization parameter: EPSG
• organization_coordsys_id parameter: 1001
• description parameter: Test Coordinate Systems

call sysproc.ST_create_coordsys('NORTH_AMERICAN_TEST',
 'GEOGCS["GCS_North_American_1983",DATUM["D_North_American_1983",
 SPHEROID["GRS_1980",6378137.0,298.257222101]],
 PRIMEM["Greenwich",0.0],UNIT["Degree",
 0.0174532925199433]]','EPSG',1001,'Test Coordinate Systems',?,?)

The two question marks at the end of this CALL statement represent the output parameters, msg_code
and msg_text. The values for these output parameters are returned after the stored procedure is called.

ST_create_index
Use this stored procedure a create spatial grid index on a spatial column to help optimize spatial queries.

The column that you want to index must be a spatial data type that adheres to the following guidelines:

• The column name cannot be qualified

Chapter 9. Stored procedures 51

• If the column is not the ST_Point data type, then the LOB table space that stored the corresponding
BLOB column data must exist. Also, if the table space that contains the base table is LOGGED, then the
LOB table space must be created with LOGGED, too.

• The column cannot have any field procedure or security label defined.
• Only one spatial index is allowed on a column with a spatial data type.

Determining the correct grid size for a spatial grid index takes experience. Set the grid size in relation
to the approximate size of the object that you are indexing. A grid size that is too small or too large can
decrease performance. For example, a grid size that is set too small can affect the key to object ratio
during an index search. If a grid size is set too large, the initial index search returns a small number of
candidates and can decrease the performance during the final table scan.

Important: Because a spatial index cannot be rebuilt, create the spatial index with the COPY YES option
specified. When you specify this option, Db2 takes an image copy of the index along with an image copy of
the table. Also, you cannot alter the spatial index to change any of the options that you specified when you
invoked the ST_create_index stored procedure.

Authorization
The user ID under which the stored procedure is invoked must have one of the following authorities or
privileges:

• SYSADM or DBADM authority on the database that contains the table where the spatial grid index will be
used

• Ownership or INDEX privilege on the table

Syntax
sysproc.ST_create_index (table_schema

null

, table_name , column_name

, index_schema

null

, index_name , other_index_options

null

,

grid_size1 , grid_size2 , grid_size3 , msg_code , msg_text)

Parameter descriptions
table_schema

Identifies the schema to which the table that is specified in the table_name parameter belongs.
Although you must specify a value for this parameter, the value can be null. If this parameter is null,
the value in the CURRENT SCHEMA special register is used as the schema name for the table or view.

The data type of this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

table_name
Identifies the unqualified name of the table on which the index is to be defined. You must specify a
non-null value for this parameter.

The data type of this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

column_name
Identifies the column that contains the spatial data type for the index. You must specify a non-null
value for this parameter.

The data type of this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

52 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

index_schema
Identifies the schema to which the index that is specified in the index_name parameter belongs.
Although you must specify a value for this parameter, the value can be null. If this parameter is null,
the value in the CURRENT SCHEMA special register is used as the schema name for the table or view.

The index_schema value is converted to uppercase unless you enclose it in double quotation marks.

The data type of this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

index_name
Identifies the name of the index that is to be created. You must specify a non-null value for this
parameter.

The index_name value is converted to uppercase unless you enclose it in double quotation marks.

The data type of this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

other_index_options
Identifies one or more valid options from the CREATE INDEX statement. For example, you can specify
FREEPAGE, PCTFREE, and so on. This parameter is nullable. The following options are not valid for a
spatial index:

• CLUSTER
• PARTITIONED
• PARTITIONED BY
• DEFER YES

The data type of this parameter is VARCHAR(1024).

grid_size1
A number that indicates the granularity of the smallest index grid. You must specify a non-null value
for this parameter.

The data type of this parameter is DOUBLE.

grid_size2
A number that indicates either that there is not a second grid for this index, or the granularity of the
second index grid. You must specify a non-null value for this parameter. Specify 0, if there is not a
second grid. If you want a second grid for the index, then you must specify a grid size that is larger
than the value in grid_size1. This value is commonly two to five times larger than the prior grid size.

The data type of this parameter is DOUBLE.

grid_size3
A number that indicates either that there is not a third grid for this index, or the granularity of the third
index grid. You must specify a non-null value for this parameter. Specify 0, if there is not a third grid.
If you want a third grid for the index, then you must specify a grid size that is larger than the value in
grid_size2. This value is commonly two to five times larger than the prior grid size.

The data type of this parameter is DOUBLE.

Output parameters
msg_code

Specifies the message code that is returned from the stored procedure. The value of this output
parameter identifies the error, success, or warning condition that was encountered during the
processing of the procedure. If this parameter value is for a success or warning condition, the
procedure finished its task. If the parameter value is for an error condition, no changes to the
database were performed.

The data type of this output parameter is INTEGER.

Chapter 9. Stored procedures 53

msg_text
Specifies the actual message text, associated with the message code, that is returned from the stored
procedure. The message text can include additional information about the success, warning, or error
condition, such as where an error was encountered.

The data type of this output parameter is VARCHAR(4096).

When the message code that is returned is 0 (zero), the message text parameter is set to null.

Example
This example shows how to use a Db2 CALL statement to invoke the ST_create_index stored procedure.
This example uses a Db2 CALL statement to create a spatial index named INDEXDEMO on column
LOCATION in table OFFICE with the following grid sizes values:

• gridSize1: 10.0
• gridSize2: 20.0
• gridSize3: 35.0

call sysproc.ST_create_index(NULL,'OFFICE', 'LOCATION',NULL,'INDEXDEMO',
NULL,10.0,20.0,35.0,?,?)

The two question marks at the end of this CALL statement represent the output parameters, msg_code
and msg_text. The values for these output parameters are returned after the stored procedure is called.

ST_create_srs
Use this stored procedure to create a spatial reference system. The ST_create_srs stored procedure takes
the conversion factors (offsets and scale factors) as input parameters.

A spatial reference system is defined by the coordinate system, the precision, and the extents of
coordinates that are represented in this spatial reference system. The extents are the minimum and
maximum possible coordinate values for the X, Y, Z, and M coordinates.

This stored procedure has two variations. This variation takes the conversion factors (offsets and scale
factors) as input parameters. The second variation, the ST_create_srs_2 stored procedure, takes the
extents and the precision as input parameters and calculates the conversion factors internally.

Authorization
The user ID under which the stored procedure is invoked must have the following authorities or privileges:

• SYSADM or DBADM authority
• INSERT and SELECT privileges on the catalog table or view

Syntax
sysproc.ST_create_srs (srs_name , srs_id , x_offset

null

, x_scale

, y_offset

null

, y_scale

null

, z_offset

null

, z_scale

null

, m_offset

null

, m_scale

null

, coordsys_name ,

description

null

, msg_code , msg_text)

54 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Parameter descriptions
srs_name

Identifies the spatial reference system. You must specify a non-null value for this parameter.

The srs_name value is converted to uppercase unless you enclose it in double quotation marks.

The data type of this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

srs_id
Uniquely identifies the spatial reference system. This numeric identifier is used as an input parameter
for various spatial functions. You must specify a non-null value for this parameter.

The data type of this parameter is INTEGER.

x_offset
Specifies the offset for all X coordinates of geometries that are represented in this spatial reference
system. The offset is subtracted before the scale factor x_scale is applied when geometries are
converted from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for
z/OS internal representation. (WKT is well-known text, and WKB is well-known binary.) Although you
must specify a value for this parameter, the value can be null. If this parameter is null, a value of 0
(zero) is used.

The data type of this parameter is DOUBLE.

x_scale
Specifies the scale factor for all X coordinates of geometries that are represented in this spatial
reference system. The scale factor is applied (multiplication) after the offset x_offset is subtracted
when geometries are converted from external representations (WKT, WKB, shape) to the IBM Spatial
Support for Db2 for z/OS internal representation. You must specify a non-null value for this parameter.

The data type of this parameter is DOUBLE.

y_offset
Specifies the offset for all Y coordinates of geometries that are represented in this spatial reference
system. The offset is subtracted before the scale factor y_scale is applied when geometries are
converted from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for
z/OS internal representation. Although you must specify a value for this parameter, the value can be
null. If this parameter is the null value, a value of 0 (zero) is used.

The data type of this parameter is DOUBLE.

y_scale
Specifies the scale factor for all Y coordinates of geometries that are represented in this spatial
reference system. The scale factor is applied (multiplication) after the offset y_offset is subtracted
when geometries are converted from external representations (WKT, WKB, shape) to the IBM
Spatial Support for Db2 for z/OS internal representation. Although you must specify a value for this
parameter, the value can be null. If this parameter is null, the value of the x_scale parameter is used.
If you specify a value other than null for this parameter, the value that you specify must match the
value of the x_scale parameter.

The data type of this parameter is DOUBLE.

z_offset
Specifies the offset for all Z coordinates of geometries that are represented in this spatial reference
system. The offset is subtracted before the scale factor z_scale is applied when geometries are
converted from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for
z/OS internal representation. Although you must specify a value for this parameter, the value can be
null. If this parameter is null, a value of 0 (zero) is used.

The data type of this parameter is DOUBLE.

Chapter 9. Stored procedures 55

z_scale
Specifies the scale factor for all Z coordinates of geometries that are represented in this spatial
reference system. The scale factor is applied (multiplication) after the offset z_offset is subtracted
when geometries are converted from external representations (WKT, WKB, shape) to the IBM
Spatial Support for Db2 for z/OS internal representation. Although you must specify a value for this
parameter, the value can be null. If this parameter is null, a value of 1 is used.

The data type of this parameter is DOUBLE.

m_offset
Specifies the offset for all M coordinates of geometries that are represented in this spatial reference
system. The offset is subtracted before the scale factor m_scale is applied when geometries are
converted from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for
z/OS internal representation. Although you must specify a value for this parameter, the value can be
null. If this parameter is null, a value of 0 (zero) is used.

The data type of this parameter is DOUBLE.

m_scale
Specifies the scale factor for all M coordinates of geometries that are represented in this spatial
reference system. The scale factor is applied (multiplication) after the offset m_offset is subtracted
when geometries are converted from external representations (WKT, WKB, shape) to the IBM
Spatial Support for Db2 for z/OS internal representation. Although you must specify a value for this
parameter, the value can be null. If this parameter is null, a value of 1 is used.

The data type of this parameter is DOUBLE.

coordsys_name
Uniquely identifies the coordinate system on which this spatial reference system is based. The
coordinate system must be listed in the view ST_COORDINATE_SYSTEMS. You must supply a non-null
value for this parameter.

Specify the coordsys_name value in uppercase letters.

The data type of this parameter is VARCHAR(130).

description
Describes the spatial reference system by explaining the application's purpose. Although you must
specify a value for this parameter, the value can be null. If this parameter is null, no description
information is recorded.

The data type of this parameter is VARCHAR(256).

Output parameters
msg_code

Specifies the message code that is returned from the stored procedure. The value of this output
parameter identifies the error, success, or warning condition that was encountered during the
processing of the procedure. If this parameter value is for a success or warning condition, the
procedure finished its task. If the parameter value is for an error condition, no changes to the
database were performed.

The data type of this output parameter is INTEGER.

msg_text
Specifies the actual message text, associated with the message code, that is returned from the stored
procedure. The message text can include additional information about the success, warning, or error
condition, such as where an error was encountered.

The data type of this output parameter is VARCHAR(4096).

When the message code that is returned is 0 (zero), the message text parameter is set to null.

56 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Example
This example shows how to use a Db2 CALL statement to invoke the ST_create_srs stored procedure.
This example uses a Db2 CALL statement to create a spatial reference system named SRSDEMO with the
following parameter values:

• srs_id: 1000000
• x_offset: -180
• x_scale: 1000000
• y_offset: -90
• y_scale: 1000000

call sysproc.ST_create_srs('SRSDEMO',1000000,
 -180,1000000, -90, 1000000,
 0, 1, 0, 1,'NORTH_AMERICAN',
 'SRS for GSE Demo Program: customer table',?,?)

The two question marks at the end of this CALL statement represent the output parameters, msg_code
and msg_text. The values for these output parameters are returned after the stored procedure is called.

ST_create_srs_2
Use this stored procedure to create a spatial reference system. The ST_create_srs_2 stored procedure
takes the extents and the precision as input parameters and calculates the conversion factors internally.

A spatial reference system is defined by the coordinate system, the precision, and the extents of
coordinates that are represented in this spatial reference system. The extents are the minimum and
maximum possible coordinate values for the X, Y, Z, and M coordinates.

This stored procedure has two variations. This variation takes the extents and the precision as input
parameters and calculates the conversion factors internally. The other variation, the ST_create_srs stored
procedure, takes the conversion factors (offsets and scale factors) as input parameters.

Authorization
The user ID under which the stored procedure is invoked must have the following authorities or privileges:

• SYSADM or DBADM authority
• INSERT and SELECT privileges on the catalog table or view

Syntax
sysproc.ST_create_srs_2 (srs_name , srs_id , x_min , x_max ,

x_scale , , y_min , y_max y_scale

null

, z_min , z_max

, z_scale

null

, m_min , m_max , m_scale

null

,

coordsys_name , description

null

, msg_code , msg_text)

Chapter 9. Stored procedures 57

Parameter descriptions
srs_name

Identifies the spatial reference system. You must specify a non-null value for this parameter.

The srs_name value is converted to uppercase unless you enclose it in double quotation marks.

The data type of this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

srs_id
Uniquely identifies the spatial reference system. This numeric identifier is used as an input parameter
for various spatial functions. You must specify a non-null value for this parameter.

The data type of this parameter is INTEGER.

x_min
Specifies the minimum possible X coordinate value for all geometries that use this spatial reference
system. You must specify a non-null value for this parameter.

The data type of this parameter is DOUBLE.

x_max
Specifies the maximum possible X coordinate value for all geometries that use this spatial reference
system. You must specify a non-null value for this parameter.

Depending on the value of x_scale, the value that is shown in the view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS might be larger than the value that is specified here.
The value from the view is correct.

The data type of this parameter is DOUBLE.

x_scale
Specifies the scale factor for all X coordinates of geometries that are represented in this spatial
reference system. The scale factor is applied (multiplication) after the offset x_offset is subtracted
when geometries are converted from external representations (WKT, WKB, shape) to the IBM Spatial
Support for Db2 for z/OS internal representation. The calculation of the offset x_offset is based on the
x_min value. You must supply a non-null value for this parameter.

If both the x_scale and y_scale parameters are specified, the values must match.

The data type of this parameter is DOUBLE.

y_min
Specifies the minimum possible Y coordinate value for all geometries that use this spatial reference
system. You must supply a non-null value for this parameter.

The data type of this parameter is DOUBLE.

y_max
Specifies the maximum possible Y coordinate value for all geometries that use this spatial reference
system. You must supply a non-null value for this parameter.

Depending on the value of y_scale, the value that is shown in the view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS might be larger than the value that is specified here.
The value from the view is correct.

The data type of this parameter is DOUBLE.

y_scale
Specifies the scale factor for all Y coordinates of geometries that are represented in this spatial
reference system. The scale factor is applied (multiplication) after the offset y_offset is subtracted
when geometries are converted from external representations (WKT, WKB, shape) to the IBM Spatial
Support for Db2 for z/OS internal representation. The calculation of the offset y_offset is based on
the y_min value. Although you must specify a value for this parameter, the value can be null. If
this parameter is null, the value of the x_scale parameter is used. If both the y_scale and x_scale
parameters are specified, the values must match.

58 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

The data type of this parameter is DOUBLE.

z_min
Specifies the minimum possible Z coordinate value for all geometries that use this spatial reference
system. You must specify a non-null value for this parameter.

The data type of this parameter is DOUBLE.

z_max
Specifies the maximum possible Z coordinate value for all geometries that use this spatial reference
system. You must specify a non-null value for this parameter.

Depending on the value of z_scale, the value that is shown in the view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS might be larger than the value that is specified here.
The value from the view is correct.

The data type of this parameter is DOUBLE.

z_scale
Specifies the scale factor for all Z coordinates of geometries that are represented in this spatial
reference system. The scale factor is applied (multiplication) after the offset z_offset is subtracted
when geometries are converted from external representations (WKT, WKB, shape) to the IBM Spatial
Support for Db2 for z/OS internal representation. The calculation of the offset z_offset is based on
the z_min value. Although you must specify a value for this parameter, the value can be null. If this
parameter is null, a value of 1 is used.

The data type of this parameter is DOUBLE.

m_min
Specifies the minimum possible M coordinate value for all geometries that use this spatial reference
system. You must specify a non-null value for this parameter.

The data type of this parameter is DOUBLE.

m_max
Specifies the maximum possible M coordinate value for all geometries that use this spatial reference
system. You must specify a non-null value for this parameter.

Depending on the value of m_scale, the value that is shown in the view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS might be larger than the value that is specified here.
The value from the view is correct.

The data type of this parameter is DOUBLE.

m_scale
Specifies the scale factor for all M coordinates of geometries that are represented in this spatial
reference system. The scale factor is applied (multiplication) after the offset m_offset is subtracted
when geometries are converted from external representations (WKT, WKB, shape) to the IBM Spatial
Support for Db2 for z/OS internal representation. The calculation of the offset m_offset is based on
the m_min value. Although you must specify a value for this parameter, the value can be null. If this
parameter is null, a value of 1 is used.

The data type of this parameter is DOUBLE.

coordsys_name
Uniquely identifies the coordinate system on which this spatial reference system is based. The
coordinate system must be listed in the view ST_COORDINATE_SYSTEMS. You must specify a non-null
value for this parameter.

Specify the coordsys_name value in uppercase letters.

The data type of this parameter is VARCHAR(130).

description
Describes the spatial reference system by explaining the application's purpose. Although you must
specify a value for this parameter, the value can be null. If this parameter is null, no description
information is recorded.

Chapter 9. Stored procedures 59

The data type of this parameter is VARCHAR(256).

Output parameters
msg_code

Specifies the message code that is returned from the stored procedure. The value of this output
parameter identifies the error, success, or warning condition that was encountered during the
processing of the procedure. If this parameter value is for a success or warning condition, the
procedure finished its task. If the parameter value is for an error condition, no changes to the
database were performed.

The data type of this output parameter is INTEGER.

msg_text
Specifies the actual message text, associated with the message code, that is returned from the stored
procedure. The message text can include additional information about the success, warning, or error
condition, such as where an error was encountered.

The data type of this output parameter is VARCHAR(4096).

When the message code that is returned is 0 (zero), the message text parameter is set to null.

Example
This example shows how to use a Db2 CALL statement to invoke the ST_create_srs_2 stored procedure.
This example uses a Db2 CALL statement to create a spatial reference system named SRSDEMO with the
following parameter values:

• srs_id: 1000000
• x_offset: -180
• x_scale: 1000000
• y_offset: -90
• y_scale: 1000000

call sysproc.ST_create_srs_2('SRSDEMO',1000000, -180,1000000, -90, 1000000,
0, 1, 0, 1,'NORTH_AMERICAN', 'SRS for GSE Demo Program: customer table',?,?)

The two question marks at the end of this CALL statement represent the output parameters, msg_code
and msg_text. The values for these output parameters are returned after the stored procedure is called.

ST_drop_coordsys
Use this stored procedure to delete information about a coordinate system from the database.

When this stored procedure is processed, information about the coordinate system is removed from the
DB2GSE.ST_COORDINATE_SYSTEMS catalog view.

Restriction:

You cannot drop a coordinate system on which a spatial reference system is based.

Authorization
The user ID under which the stored procedure is invoked must have either SYSADM or DBADM authority.

Syntax
sysproc.ST_drop_coordsys (coordsys_name , msg_code , msg_text)

60 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Parameter descriptions
coordsys_name

Uniquely identifies the coordinate system. You must specify a non-null value for this parameter.

Specify the coordsys_name value in uppercase letters.

The data type of this parameter is VARCHAR(130).

Output parameters
msg_code

Specifies the message code that is returned from the stored procedure. The value of this output
parameter identifies the error, success, or warning condition that was encountered during the
processing of the procedure. If this parameter value is for a success or warning condition, the
procedure finished its task. If the parameter value is for an error condition, no changes to the
database were performed.

The data type of this output parameter is INTEGER.

msg_text
Specifies the actual message text, associated with the message code, that is returned from the stored
procedure. The message text can include additional information about the success, warning, or error
condition, such as where an error was encountered.

The data type of this output parameter is VARCHAR(4096).

When the message code that is returned is 0 (zero), the message text parameter is set to null.

Example
This example shows how to use a Db2 CALL statement to invoke the ST_drop_coordsys stored procedure.
This example uses a Db2 CALL statement to delete a coordinate system named NORTH_AMERICAN_TEST
from the database:

call sysproc.ST_drop_coordsys('NORTH_AMERICAN_TEST',?,?)

The two question marks at the end of this CALL statement represent the output parameters, msg_code
and msg_text. The values for these output parameters are returned after the stored procedure is called.

ST_drop_index
Use this stored procedure to drop a spatial index.

Authorization
The user ID under which the stored procedure is invoked must have one of the following authorities or
privileges:

• SYSADM or DBADM authority on the database that contains the table where the spatial grid index will be
used

• Ownership or INDEX privilege on the table

Syntax
sysproc.ST_drop_index (index_schema

null

, index_name , msg_code ,

msg_text)

Chapter 9. Stored procedures 61

Parameters
index_schema

Identifies the schema to which the index that is specified in the index_name parameter belongs.
Although you must specify a value for this parameter, the value can be null. If this parameter is null,
the value in the CURRENT SCHEMA special register is used as the schema name for the index.

The index_schema value is converted to uppercase unless you enclose it in double quotation marks.

The data type of this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

index_name
Identifies the name of the index that is to be dropped. You must specify a non-null value for this
parameter.

The index_name value is converted to uppercase unless you enclose it in double quotation marks.

The data type of this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

Output parameters
msg_code

Specifies the message code that is returned from the stored procedure. The value of this output
parameter identifies the error, success, or warning condition that was encountered during the
processing of the procedure. If this parameter value is for a success or warning condition, the
procedure finished its task. If the parameter value is for an error condition, no changes to the
database were performed.

The data type of this output parameter is INTEGER.

msg_text
Specifies the actual message text, associated with the message code, that is returned from the stored
procedure. The message text can include additional information about the success, warning, or error
condition, such as where an error was encountered.

The data type of this output parameter is VARCHAR(4096).

When the message code that is returned is 0 (zero), the message text parameter is set to null.

Example
This example shows how to use a Db2 CALL statement to invoke the ST_drop_index stored procedure.
This example uses a Db2 CALL statement to drop the spatial index named INDEXDEMO:

call sysproc.ST_drop_index(NULL,'INDEXDEMO',?,?)

The two question marks at the end of this CALL statement represent the output parameters, msg_code
and msg_text. The values for these output parameters are returned after the stored procedure is called.

ST_drop_srs
Use this stored procedure to drop a spatial reference system.

When this stored procedure is processed, information about the spatial reference system is removed from
the DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view.

Restriction: You cannot drop a spatial reference system if a spatial column that uses that spatial
reference system is registered.

Important:

62 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Use care when you use this stored procedure. If you use this stored procedure to drop a spatial reference
system, and if any spatial data is associated with that spatial reference system, you can no longer perform
spatial operations on the spatial data.

Authorization
The user ID under which the stored procedure is invoked must have either SYSADM or DBADM authority.

Syntax
sysproc.ST_drop_srs (srs_name , msg_code , msg_text)

Parameter descriptions
srs_name

Identifies the spatial reference system. You must specify a non-null value for this parameter.

The srs_name value is converted to uppercase unless you enclose it in double quotation marks.

The data type of this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

Output parameters
msg_code

Specifies the message code that is returned from the stored procedure. The value of this output
parameter identifies the error, success, or warning condition that was encountered during the
processing of the procedure. If this parameter value is for a success or warning condition, the
procedure finished its task. If the parameter value is for an error condition, no changes to the
database were performed.

The data type of this output parameter is INTEGER.

msg_text
Specifies the actual message text, associated with the message code, that is returned from the stored
procedure. The message text can include additional information about the success, warning, or error
condition, such as where an error was encountered.

The data type of this output parameter is VARCHAR(4096).

When the message code that is returned is 0 (zero), the message text parameter is set to null.

Example
This example shows how to use the Db2 CALL statement to invoke the ST_drop_srs stored procedure. This
example uses a Db2 CALL statement to delete a spatial reference system named SRSDEMO:

call sysproc.ST_drop_srs('SRSDEMO',?,?)

The two question marks at the end of this CALL statement represent the output parameters, msg_code
and msg_text. The values for these output parameters are returned after the stored procedure is called.

Chapter 9. Stored procedures 63

ST_export_shape
Use the ST_export_shape stored procedure to export a spatial column and its associated table to a shape
file.

Authorization
The user ID under which this stored procedure is invoked must have the necessary privileges to
successfully execute the SELECT statement from which the data is to be exported.

The stored procedure, which runs as a process that is owned by the Db2 instance owner, must have the
necessary privileges on the server machine to create or write to the shape files.

Syntax
sysproc.ST_export_shape (file_name , append_flag

null

,

output_column_names

null

, select_statement , messages_file

null

)

Notes:

Parameter descriptions
file_name

Specifies the full path name of a shape file to which the specified data is to be exported. You must
specify a non-null value for this parameter.

You can use the ST_export_shape stored procedure to export a new file or to export to an existing file
by appending the exported data to it:

• If you are exporting to a new file, you can specify the optional file extension as .shp or .SHP. If you
specify .shp or .SHP for the file extension, IBM Spatial Support for Db2 for z/OS creates the file with
the specified file_name value. If you do not specify the optional file extension, IBM Spatial Support
for Db2 for z/OS creates the file that has the name of the file_name value that you specify and with
an extension of .shp.

• If you are exporting data by appending the data to an existing file, IBM Spatial Support for Db2 for
z/OS first looks for an exact match of the name that you specify for the file_name parameter. If IBM
Spatial Support for Db2 for z/OS does not find an exact match, it looks first for a file with the .shp
extension, and then for a file with the .SHP extension.

If the value of the append_flag parameter indicates that you are not appending to an existing file, but
the file that you name in the file_name parameter already exists, IBM Spatial Support for Db2 for z/OS
returns an error and does not overwrite the file.

See Usage notes for a list of files that are written on the server machine. The stored procedure, which
runs as a process that is owned by the Db2 instance owner, must have the necessary privileges on the
server machine to create or write to the files.

The data type of this parameter is VARCHAR(256).

append_flag
Indicates whether the data that is to be exported is to be appended to an existing shape file. Although
you must specify a value for this parameter, the value can be null. Indicate whether you want to
append to an existing shape file as follows:

• If you want to append data to an existing shape file, specify any value greater than 0 (zero). In this
case, the file structure must match the exported data; otherwise, an error is returned.

• If you want to export to a new file, specify 0 (zero) or null. In this case, IBM Spatial Support for Db2
for z/OS does not overwrite any existing files.

64 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

The data type of this parameter is SMALLINT.

output_column_names
Specifies one or more column names (separated by commas) that are to be used for non-spatial
columns in the output dBASE file. Although you must specify a value for this parameter, the value can
be null. If this parameter is null, the names that are derived from the SELECT statement are used.

If you specify this parameter but do not enclose column names in double quotation marks, the
column names are converted to uppercase. The number of specified columns must match the
number of columns that are returned from the SELECT statement, as specified in the select_statement
parameter, excluding the spatial column.

The data type of this parameter is VARCHAR(32K).

select_statement
Specifies the subselect that returns the data that is to be exported. The subselect must reference
exactly one spatial column and any number of attribute columns. You must specify a non-null value
for this parameter.

The data type of this parameter is VARCHAR(32K).

messages_file
Specifies the full path name of the file (on the server machine) that is to contain messages about the
export operation. Although you must specify a value for this parameter, the value can be null. If this
parameter is null, no file for IBM Spatial Support for Db2 for z/OS messages is created.

The messages that are sent to this messages file can be:

• Informational messages, such as a summary of the export operation
• Error messages for data that could not be exported, for example because of different coordinate

systems

The stored procedure, which runs as a process that is owned by the Db2 instance owner, must have
the necessary privileges on the server to create the file.

The data type of this parameter is VARCHAR(256).

Output parameters
msg_code

Specifies the message code that is returned from the stored procedure. The value of this output
parameter identifies the error, success, or warning condition that was encountered during the
processing of the procedure. If this parameter value is for a success or warning condition, the
procedure finished its task. If the parameter value is for an error condition, no changes to the
database were performed.

The data type of this output parameter is INTEGER.

msg_text
Specifies the actual message text, associated with the message code, that is returned from the stored
procedure. The message text can include additional information about the success, warning, or error
condition, such as where an error was encountered.

The data type of this output parameter is VARCHAR(1024).

Usage notes
You can export only one spatial column at a time.

The ST_export_shape stored procedure creates or writes to the following four files:

• The main shape file (.shp extension).
• The shape index file (.shx extension).

Chapter 9. Stored procedures 65

• A dBASE file that contains data for non-spatial columns (.dbf extension). This file is created only if
attribute columns need to be exported. A dBASE file can store only columns with names that are 11
characters in length or less; otherwise, the column name will be truncated. If you have a column name
that is longer than 11 characters, you can bypass this limitation by creating a view on the column with a
name that is 11 characters in length or less.

• A projection file that specifies the coordinate system that is associated with the spatial data, if the
coordinate system is not equal to "UNSPECIFIED" (.prj extension). The coordinate system is obtained
from the first spatial record. An error occurs if subsequent records have different coordinate systems.

The following table describes how Db2 data types are stored in dBASE attribute files. All other Db2 data
types are not supported.

Table 4. Storage of Db2 data types in attribute files

SQL type .dbf type .dbf length .dbf decimals Comments

SMALLINT N 6 0

INTEGER N 11 0

BIGINT N 20 0

DECIMAL N precision+2 scale

REAL FLOAT(1)
through FLOAT(24)

F 14 6

DOUBLE FLOAT(25)
through FLOAT(53)

F 19 9

CHARACTER,
VARCHAR, LONG
VARCHAR, and
DATALINK

C len 0 length ≤ 255

DATE D 8 0

TIME C 8 0

TIMESTAMP C 26 0

All synonyms for data types and distinct types that are based on the types listed in the preceding table are
supported.

Example
This example shows how to use the Db2 command line processor to invoke the ST_export_shape stored
procedure. This example uses a Db2 CALL command to export all rows from the CUSTOMERS table to a
shape file that is to be created and named /tmp/export_file:

call sysproc.ST_export_shape('/tmp/export_file',0,NULL,
 'select * from customers','/tmp/export_msg',?,?)

The two question marks at the end of this CALL command represent the output parameters, msg_code
and msg_text. The values for these output parameters are displayed after the stored procedure runs.

ST_import_shape
Use the ST_import_shape stored procedure to import a shape file to a database that is enabled for spatial
operations.

This stored procedure can operate in either of two ways, based on the create_table_flag parameter:

66 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

• IBM Spatial Support for Db2 for z/OS can create a table that has a spatial column and attribute columns,
and it can then load the table's columns with the file's data.

• Otherwise, the shape and attribute data can be loaded into an existing table that has a spatial column
and attribute columns that match the file's data.

Important: Using a message file is optional; however, consider specifying a message file so that any
errors and informational messages are written to the message file. The import process continues even if
an error occurs on a row. If many errors occur, the import process will be much slower.

The input files must reside on the HFS file under the z/OS UNIX environment, so the binder and the user
must have read access to the given directory. Also, the message file will be generated on a valid HFS
directory under the z/OS UNIX environment if specified. Therefore, the binder and the user must have
write access to the given directory.

IBM Spatial Support for Db2 for z/OS does not support the inline_length parameter and the exception_file
parameter for this stored procedure. If you specify either of these parameters, the parameter will be
ignored.

Authorization
You must have the necessary privileges on the server machine for reading the input files and optionally
writing error files. Additional authorization requirements vary based on whether you are importing into an
existing table or into a new table.

• When importing into an existing table, the user ID under which this stored procedure is invoked must
hold INSERT authority.

• When importing into a new table, the user ID under which this stored procedure is invoked must hold
CREATE TABLE authority.

Syntax
sysproc.ST_import_shape (file_name , input_attr_columns

null

, srs_name

, table_schema

null

, table_name , table_attr_columns

null

,

create_table_flag

null

, table_creation_parameters

null

, spatial_column

, type_schema

null

, type_name

null

, inline_length

null

,

id_column

null

, id_column_is_identity

null

, restart_count

null

,

commit_scope

null

, exception_file

null

, messages_file

null

,

msg_code , msg_text)

Parameter descriptions
file_name

Specifies the full path name of the shape file that is to be imported. You must specify a non-null value
for this parameter.

Chapter 9. Stored procedures 67

If you specify the optional file extension, specify either .shp or .SHP. IBM Spatial Support for Db2 for
z/OS first looks for an exact match of the specified file name. If IBM Spatial Support for Db2 for z/OS
does not find an exact match, it looks first for a file with the .shp extension, and then for a file with
the .SHP extension.

See Usage notes for a list of required files, which must reside on the server machine. The stored
procedure, which runs as a task in the WLM environment, must have the necessary privileges on the
server to read the files.

The data type of this parameter is VARCHAR(256).

input_attr_columns
Specifies a list of attribute columns to import from the dBASE file. Although you must specify a value
for this parameter, the value can be null. If this parameter is null, all columns are imported. If the
dBASE file does not exist, this parameter must be the empty string or null.

To specify a non-null value for this parameter, use one of the following specifications:

• List the attribute column names. The following example shows how to specify a list of the names
of the attribute columns that are to be imported from the dBASE file:

N(COLUMN1,COLUMN5,COLUMN3,COLUMN7)

If a column name is not enclosed in double quotation marks, it is converted to uppercase. Each
name in the list must be separated by a comma. The resulting names must exactly match the
column names in the dBASE file.

• List the attribute column numbers. The following example shows how to specify a list of the
numbers of the attribute columns that are to be imported from the dBASE file:

P(1,5,3,7)

Columns are numbered beginning with 1. Each number in the list must be separated by a comma.
• Indicate that no attribute data is to be imported. Specify "", which is an empty string that

explicitly specifies that IBM Spatial Support for Db2 for z/OS is to import no attribute data.

The data type of this parameter is VARCHAR(32K).

srs_name
Identifies the spatial reference system that is to be used for the geometries that are imported into the
spatial column. You must specify a non-null value for this parameter.

The spatial column will not be registered. The spatial reference system (SRS) must exist before the
data is imported. The import process does not implicitly create the SRS, but it does compare the
coordinate system of the SRS with the coordinate system that is specified in the .prj file (if available
with the shape file). The import process also verifies that the extents of the data in the shape file
can be represented in the given spatial reference system. That is, the import process verifies that the
extents lie within the minimum and maximum possible X, Y, Z, and M coordinates of the SRS.

The srs_name value is converted to uppercase unless you enclose it in double quotation marks.

The data type for this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

table_schema
Identifies the schema to which the table that is specified in the table_name parameter belongs.
Although you must specify a value for this parameter, the value can be null. If this parameter is null,
the value in the CURRENT SCHEMA special register is used as the schema name for the table or view.

The data type for this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

68 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

table_name
Identifies the unqualified name of the table into which the imported shape file is to be loaded. You
must specify a non-null value for this parameter.

The data type for this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

table_attr_columns
Specifies the table column names where attribute data from the dBASE file is to be stored. Although
you must specify a value for this parameter, the value can be null. If this parameter is null, the names
of the columns in the dBASE file are used.

If this parameter is specified, the number of names must match the number of columns that are
imported from the dBASE file. If the table exists, the column definitions must match the incoming
data. See Usage notes for an explanation of how attribute data types are mapped to Db2 data types.

The data type of this parameter is VARCHAR(32K).

create_table_flag
Specifies whether the import process is to create a new table. Although you must specify a value for
this parameter, the value can be null. If this parameter is null or any other value other than 0 (zero), a
new table is created. (If the table already exists, an error is returned.) If this parameter is 0 (zero), no
table is created, and the table must already exist.

If you want to create a target table in a separate table space, first create the table, and then create
the LOB table space, auxiliary table, and index for the target table before using the import shape
operation.

After creating the required LOB table space, auxiliary table, and index for the target table, specify
0 (zero) for the create_table_flag option to import shape data and attributes data to the table. The
import shape operation does not create a LOB table space, an auxiliary table, or an index for the LOB
column.

The data type of this parameter is SMALLINT.

table_creation_parameters
Specifies any options that are to be added to the CREATE TABLE statement that creates a table into
which data is to be imported. Although you must specify a value for this parameter, the value can be
null. If this parameter is null, no options are added to the CREATE TABLE statement.

To specify any CREATE TABLE options, use the syntax of the Db2 CREATE TABLE statement. For
example, to specify a database and Unicode option for character columns, specify:

IN dbName CCSID UNICODE

The data type of this parameter is VARCHAR(32K).

spatial_column
Identifies the spatial column in the table into which the shape data is to be loaded. You must specify a
non-null value for this parameter.

For a new table, this parameter specifies the name of the new spatial column that is to be created.
Otherwise, this parameter specifies the name of an existing spatial column in the table.

The spatial_column value is converted to uppercase unless you enclose it in double quotation marks.

The data type for this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

type_schema
This parameter is not supported and always will be null. If you specify this parameter, the parameter
is ignored.

Chapter 9. Stored procedures 69

type_name
Identifies the data type that is to be used for the spatial values. Although you must specify a
value for this parameter, the value can be null. The valid data types are ST_Point, ST_MultiPoint,
ST_MultiLineString, ST_MultiPolygon, or ST_Geometry.

If this parameter is null, the data type is determined by the shape file and is one of the following
types:

• ST_Point
• ST_MultiPoint
• ST_MultiLineString
• ST_MultiPolygon

Note that shape files, by definition, allow a distinction between only points and multipoints, but not
between polygons and multipolygons or between linestrings and multilinestrings.

If you are importing into a table that does not yet exist, this data type is also used for the data type of
the spatial column.

The type_name value is converted to uppercase unless you enclose it in double quotation marks.

The data type for this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

inline_length
This parameter is not supported and always will be null. If you specify this parameter, the parameter
is ignored.

id_column
Identifies a column that is to be created to contain a unique number for each row of data. The unique
values for that column are generated automatically during the import process. Although you must
specify a value for this parameter, the value can be null if no column (with a unique ID in each row)
exists in the table or if you are not adding such a column to a newly created table. If this parameter is
null, no column is created or populated with unique numbers.

Restriction: You cannot specify an id_column name that matches the name of any column in the
dBASE file.

The requirements and effect of this parameter depend on whether the table already exists.

• For an existing table, the data type of the id_column parameter can be any integer type (INTEGER,
SMALLINT, or BIGINT).

• For a new table that is to be created, the column is added to the table when the stored procedure
creates it. The column will be defined as follows:

INTEGER NOT NULL PRIMARY KEY

If the value of the id_column_is_identity parameter is not null and not 0 (zero), the definition is
expanded as follows:

INTEGER NOT NULL PRIMARY KEY GENERATED ALWAYS AS IDENTITY
(START WITH 1 INCREMENT BY 1)

The id_column value is converted to uppercase unless you enclose it in double quotation marks.

The data type for this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

id_column_is_identity
Indicates whether the specified id_column is to be created using the IDENTITY clause. Although you
must specify a value for this parameter, the value can be null. If this parameter is 0 (zero) or null, the

70 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

column is not created as the identity column. If the parameter is any value other than 0 or null, the
column is created as the identity column. This parameter is ignored for tables that already exist.

The data type of this parameter is SMALLINT.

restart_count
Specifies that an import operation is to be started at record n + 1. The first n records are skipped.
Although you must specify a value for this parameter, the value can be null. If this parameter is null,
all records (starting with record number 1) are imported.

The data type of this parameter is INTEGER.

commit_scope
Specifies that a COMMIT is to be performed after at least n records are imported. Although you must
specify a value for this parameter, the value can be null. If this parameter is null, a value of 0 (zero) is
used, and no records are committed.

The data type of this parameter is INTEGER.

exception_file
This parameter is not supported and always will be null. If you specify this parameter, the parameter
is ignored.

messages_file
Specifies the full path name of the file (on the server machine) that is to contain messages about the
import operation. Although you must specify a value for this parameter, the value can be null. If the
parameter is null, no file for IBM Spatial Support for Db2 for z/OS messages is created.

The messages that are written to the messages file can be:

• Informational messages, such as a summary of the import operation
• Error messages for data that could not be imported, for example because of different coordinate

systems

The user who runs the job that calls the stored procedure must have the necessary privileges on the
server to create the file. If the file already exists, the file will be overwritten.

The data type of this parameter is VARCHAR(256).

Output parameters
msg_code

Specifies the message code that is returned from the stored procedure. The value of this output
parameter identifies the error, success, or warning condition that was encountered during the
processing of the procedure. If this parameter value is for a success or warning condition, the
procedure finished its task. If the parameter value is for an error condition, no changes to the
database were performed.

The data type of this output parameter is INTEGER.

msg_text
Specifies the actual message text, associated with the message code, that is returned from the stored
procedure. The message text can include additional information about the success, warning, or error
condition, such as where an error was encountered.

The data type of this output parameter is VARCHAR(4096).

When the message code that is returned is 0 (zero), the message text parameter is set to null.

Usage notes
The ST_import_shape stored procedure uses from one to four files:

• The main shape file (.shp extension). This file is required.
• The shape index file (.shx extension). This file is optional.

Chapter 9. Stored procedures 71

• A dBASE file that contains attribute data (.dbf extension). This file is required only if attribute data is to
be imported.

• The projection file that specifies the coordinate system of the shape data (.prj extension). This file
is optional. If this file is present, the coordinate system that is defined in it is compared with the
coordinate system of the spatial reference system that is specified by the srs_id parameter.

The following table describes how dBASE attribute data types are mapped to Db2 data types. All other
attribute data types are not supported.

Table 5. Relationship between Db2 data types and dBASE attribute data types

.dbf type .dbf length␢ (See
note)

.dbf decimals␢ (See
note)

SQL type Comments

N < 5 0 SMALLINT

N < 10 0 INTEGER

N < 20 0 BIGINT

N len dec DECIMAL(len,dec) len<32

F len dec REAL len + dec < 7

F len dec DOUBLE

C len CHAR(len)

L CHAR(1)

D DATE

Note: This table includes the following variables, both of which are defined in the header of the dBASE
file:

• len, which represents the total length of the column in the dBASE file. IBM Spatial Support for Db2 for
z/OS uses this value for two purposes:

– To define the precision for the SQL data type DECIMAL or the length for the SQL data type CHAR
– To determine which of the integer or floating-point types is to be used

• dec, which represents the maximum number of digits to the right of the decimal point of the column in
the dBASE file. IBM Spatial Support for Db2 for z/OS uses this value to define the scale for the SQL data
type DECIMAL.

For example, assume that the dBASE file contains a column of data whose length (len) is defined as 20.
Assume that the number of digits to the right of the decimal point (dec) is defined as 5. When IBM Spatial
Support for Db2 for z/OS imports data from that column, it uses the values of len and dec to derive the
following SQL data type: DECIMAL(20,5).

Example
This example shows how to use a Db2 CALL statement to invoke the ST_import_shape stored procedure.
This example uses a Db2 CALL statement to import a shape file named /tmp/officesShape into the table
named OFFICES:

call sysproc.ST_import_shape('/tmp/officesShape',NULL,'USA_SRS_1',NULL,
'OFFICES',NULL,0,NULL,'LOCATION',NULL,NULL,NULL,NULL, NULL,NULL,NULL,NULL,'
/tmp/import_msg',?,?)

The two question marks at the end of this CALL statement represent the output parameters, msg_code
and msg_text. The values for these output parameters are returned after the stored procedure is called.

Related reference
CREATE TABLE (Db2 SQL)

72 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html

INSERT (Db2 SQL)

ST_register_spatial_column
Use this stored procedure to register a spatial column and to associate a spatial reference system (SRS)
with it.

When this stored procedure is processed, information about the spatial column that is being registered
is added to the DB2GSE.ST_GEOMETRY_COLUMNS catalog view. Registering a spatial column creates a
constraint on the table, if possible, to ensure that all geometries use the specified SRS.

Authorization
The user ID under which this stored procedure is invoked must hold one of the following authorities or
privileges:

• SYSADM or DBADM authority on the database that contains the table to which the spatial column that is
being registered belongs

• All table or view privileges on this table

Syntax
sysproc.ST_register_spatial_column (table_schema

null

, table_name ,

column_name , srs_name , msg_code , msg_text)

Parameter descriptions
table_schema

Identifies the schema to which the table or view that is specified in the table_name parameter
belongs. Although you must specify a value for this parameter, the value can be null. If this parameter
is null, the value in the CURRENT SCHEMA special register is used as the schema name for the table
or view.

The data type of this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

table_name
Identifies the unqualified name of the table or view that contains the column that is being registered.
You must specify a non-null value for this parameter.

The data type of this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

column_name
Identifies the column that is being registered. You must specify a non-null value for this parameter.

The data type of this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

srs_name
Identifies the spatial reference system that is to be used for this spatial column. You must specify a
non-null value for this parameter.

The srs_name value is converted to uppercase unless you enclose it in double quotation marks.

The data type of this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

Chapter 9. Stored procedures 73

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_insert.html

Output parameters
msg_code

Specifies the message code that is returned from the stored procedure. The value of this output
parameter identifies the error, success, or warning condition that was encountered during the
processing of the procedure. If this parameter value is for a success or warning condition, the
procedure finished its task. If the parameter value is for an error condition, no changes to the
database were performed.

The data type of this output parameter is INTEGER.

msg_text
Specifies the actual message text, associated with the message code, that is returned from the stored
procedure. The message text can include additional information about the success, warning, or error
condition, such as where an error was encountered.

The data type of this output parameter is VARCHAR(4096).

When the message code that is returned is 0 (zero), the message text parameter is set to null.

Example
This example shows how to use the Db2 CALL statement to invoke the ST_register_spatial_column stored
procedure. This example uses a Db2 CALL statement to register the spatial column named LOCATION
in the table named CUSTOMERS. This CALL statement specifies the srs_name parameter value as
USA_SRS_1:

call sysproc.ST_register_spatial_column(NULL,'CUSTOMERS','LOCATION',
 'USA_SRS_1',?,?)

The two question marks at the end of this CALL statement represent the output parameters, msg_code
and msg_text. The values for these output parameters are returned after the stored procedure is called.

ST_unregister_spatial_column
Use this stored procedure to remove the registration of a spatial column.

The stored procedure removes the registration by:

• Removing association of the spatial reference system with the spatial column. The
DB2GSE.ST_GEOMETRY_COLUMNS catalog view continues to contain the spatial column, but the
column is no longer associated with any spatial reference system.

• For a base table, dropping the triggers that IBM Spatial Support for Db2 for z/OS placed on this table to
ensure that the geometry values in this spatial column are all represented in the same spatial reference
system.

If you drop the table that contains the spatial column before calling the ST_unregister_spatial_column
stored procedure, then the triggers are still dropped but an error is returned that the table does not exist.

Authorization
The user ID under which this stored procedure is invoked must hold one of the following authorities or
privileges:

• SYSADM or DBADM authority
• All table or view privileges on this table

74 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Syntax
sysproc.ST_unregister_spatial_column (table_schema

null

, table_name ,

column_name , msg_code , msg_text)

Parameter descriptions
table_schema

Identifies the schema to which the table that is specified in the table_name parameter belongs.
Although you must specify a value for this parameter, the value can be null. If this parameter is null,
the value in the CURRENT SCHEMA special register is used as the schema name for the table or view.

The data type of this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

table_name
Identifies the unqualified name of the table that contains the column that is specified in the
column_name parameter. You must specify a non-null value for this parameter.

The data type of this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

column_name
Identifies the spatial column that you want to unregister. You must specify a non-null value for this
parameter.

The data type of this parameter is VARCHAR(128) or, if you enclose the value in double quotation
marks, VARCHAR(130).

Output parameters
msg_code

Specifies the message code that is returned from the stored procedure. The value of this output
parameter identifies the error, success, or warning condition that was encountered during the
processing of the procedure. If this parameter value is for a success or warning condition, the
procedure finished its task. If the parameter value is for an error condition, no changes to the
database were performed.

The data type of this output parameter is INTEGER.

msg_text
Specifies the actual message text, associated with the message code, that is returned from the stored
procedure. The message text can include additional information about the success, warning, or error
condition, such as where an error was encountered.

The data type of this output parameter is VARCHAR(4096).

When the message code that is returned is 0 (zero), the message text parameter is set to null.

Example
This example shows how to use the Db2 CALL statement to invoke the ST_unregister_spatial_column
stored procedure. This example uses a Db2 CALL statement to unregister the spatial column named
LOCATION in the table named CUSTOMERS:

call sysproc.ST_unregister_spatial_column(NULL,'CUSTOMERS','LOCATION',?,?)

The two question marks at the end of this CALL statement represent the output parameters, msg_code
and msg_text. The values for these output parameters are returned after the stored procedure is called.

Chapter 9. Stored procedures 75

76 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Chapter 10. Catalog views
The catalog views in IBM Spatial Support for Db2 for z/OS give useful information.

Catalog views contain information about:

• Coordinate systems that you can use
• Spatial columns that you can populate or update
• Allowable maximum lengths of values that you can assign to variables
• Spatial reference systems that you can use
• The units of measure (meters, miles, feet, and so on) in which distances generated by spatial functions

can be expressed

The DB2GSE.GEOMETRY_COLUMNS catalog view
This catalog view shows selected columns of the catalog table that contains information about layers.

When you create a layer, IBM Spatial Support for Db2 for z/OS registers it by recording its identifier
and information relating to it in a catalog table. Selected columns from the catalog table comprise the
DB2GSE.GEOMETRY_COLUMNS catalog view, which is described in the following table.

Table 6. Columns in the DB2GSE.GEOMETRY_COLUMNS catalog view

Name Data Type Nullable? Content

LAYER_CATALOG VARCHAR(30) Yes NULL. There is no concept of LAYER_CATALOG in
IBM Spatial Support for Db2 for z/OS.

LAYER_SCHEMA VARCHAR(30) No Schema of the table or view that contains the
column that was registered as this layer.

LAYER_TABLE VARCHAR(128) No Name of the table or view that contains the
column that was registered as this layer.

LAYER_COLUMN VARCHAR(128) No Name of the column that was registered as this
layer.

GEOMETRY_TYPE INTEGER Yes Data type of the column that was registered
as this layer. If the column has a user-defined
subtype of any of the geometry types defined by
spatial support, then this value will be null.

SRID INTEGER No Identifier of the spatial reference system used for
the values in the column that was registered as
this layer.

STORAGE_TYPE INTEGER Yes This field is not being used. The value always will
be null.

The DB2GSE.SPATIAL_REF_SYS catalog view
Query the DB2GSE.SPATIAL_REF_SYS catalog view to retrieve information about spatial reference
systems.

When you create a spatial reference system, IBM Spatial Support for Db2 for z/OS registers it by recording
its identifier and information related to it in a catalog table.

The following table describes the columns from the catalog table that comprise the
DB2GSE.SPATIAL_REF_SYS catalog view.

© Copyright IBM Corp. 2007, 2023 77

Table 7. Columns in the DB2GSE.SPATIAL_REF_SYS catalog view

Name Data Type Nullable? Content

SRID INTEGER No User-defined identifier for this spatial reference
system.

SR_NAME VARCHAR(128) No Name of this spatial reference system.

CSID INTEGER No Numeric identifier for the coordinate system that
underlies this spatial reference system.

CS_NAME VARCHAR(128) No Name of the coordinate system that underlies this
spatial reference system.

AUTH_NAME VARCHAR(128) Yes Name of the organization that sets the standards
for this spatial reference system.

AUTH_SRID INTEGER Yes The identifier that the organization specified in
the AUTH_NAME column assigns to this spatial
reference system.

SRTEXT VARCHAR(2048) No Annotation text for this spatial reference system.

FALSEX DOUBLE No A number that, when subtracted from a negative
X coordinate value, leaves a non-negative number
(that is, a positive number or a zero).

FALSEY DOUBLE No A number that, when subtracted from a negative
Y coordinate value, leaves a non-negative number
(that is, a positive number or a zero).

XYUNITS DOUBLE No A number that, when multiplied by a decimal X
coordinate or a decimal Y coordinate, yields an
integer that can be stored as a 32–bit data item.

FALSEZ DOUBLE No A number that, when subtracted from a negative
Z coordinate value, leaves a non-negative number
(that is, a positive number or a zero).

ZUNITS DOUBLE No A number that, when multiplied by a decimal Z
coordinate, yields an integer that can be stored as
a 32–bit data item.

FALSEM DOUBLE No A number that, when subtracted from a negative
measure, leaves a non-negative number (that is, a
positive number or a zero).

MUNITS DOUBLE No A number that, when multiplied by a decimal
measure, yields an integer that can be stored as
a 32–bit data item.

The DB2GSE.ST_COORDINATE_SYSTEMS catalog view
Query the DB2GSE.ST_COORDINATE_SYSTEMS catalog view to retrieve information about registered
coordinate systems.

IBM Spatial Support for Db2 for z/OS automatically registers coordinate systems in the IBM Spatial
Support for Db2 for z/OS catalog at the following times:

• When you enable a database for spatial operations.
• When users define additional coordinate systems to the database.

For a description of columns in this view, see the following table.

78 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Table 8. Columns in the DB2GSE.ST_COORDINATE_SYSTEMS catalog view

Name Data type Nullable? Content

COORDSYS_NAME VARCHAR(128) No Name of this coordinate system. The name is
unique within the database.

COORDSYS_TYPE VARCHAR(128) No Type of this coordinate system:
PROJECTED

Two-dimensional.
GEOGRAPHIC

Three-dimensional. Uses X and Y coordinates.
GEOCENTRIC

Three-dimensional. Uses X, Y, and Z
coordinates.

UNSPECIFIED
Abstract or non-real world coordinate system.

The value for this column is obtained from the
DEFINITION column.

DEFINITION VARCHAR(2048) No Well-known text representation of the definition
of this coordinate system.

ORGANIZATION VARCHAR(128) Yes Name of the organization (for example, a
standards body such as the European Petrol
Survey Group, or ESPG) that defined this
coordinate system.

This column is null if the
ORGANIZATION_COORDSYS_ID column is null.

ORGANIZATION_
COORDSYS_ID

INTEGER Yes Numeric identifier assigned to this coordinate
system by the organization that defined the
coordinate system. This identifier and the value in
the ORGANIZATION column uniquely identify the
coordinate system unless the identifier and the
value are both null.

If the ORGANIZATION column is null, then the
ORGANIZATION_COORDSYS_ID column is also
null.

DESCRIPTION VARCHAR(256) Yes Description of the coordinate system that
indicates its application.

The DB2GSE.ST_GEOMETRY_COLUMNS catalog view
Use the DB2GSE.ST_GEOMETRY_COLUMNS catalog view to find information about all spatial columns in
all tables that contain spatial data in the database.

If a spatial column was registered in association with a spatial reference system, you can also use the
view to find out the spatial reference system's name and numeric identifier. For additional information
about spatial columns, query the Db2 SYSIBM.SYSCOLUMNS catalog table.

For a description of the DB2GSE.ST_GEOMETRY_COLUMNS catalog view, see the following table.

Chapter 10. Catalog views 79

Table 9. Columns in the DB2GSE.ST_GEOMETRY_COLUMNS catalog view

Name Data type Nullable? Content

TABLE_SCHEMA VARCHAR(128) No Name of the schema to which the table that
contains this spatial column belongs.

TABLE_NAME VARCHAR(128) No Unqualified name of the table that contains this
spatial column.

COLUMN_NAME VARCHAR(128) No Name of this spatial column.

The combination of TABLE_SCHEMA,
TABLE_NAME, and COLUMN_NAME uniquely
identifies the column.

TYPE_SCHEMA VARCHAR(128) No Name of the schema to which the declared data
type of this spatial column belongs. This name is
obtained from the Db2 catalog.

TYPE_NAME VARCHAR(128) No Unqualified name of the declared data type of this
spatial column. This name is obtained from the
Db2 catalog.

SRS_NAME VARCHAR(128) Yes Name of the spatial reference system that is
associated with this spatial column. If no spatial
reference system is associated with the column,
then SRS_NAME is null.

SRS_ID INTEGER Yes Numeric identifier of the spatial reference system
that is associated with this spatial column. If no
spatial reference system is associated with the
column, then SRS_ID is null.

The DB2GSE.ST_SIZINGS catalog view
The DB2GSE.ST_SIZINGS catalog view contains information about the allowable maximum lengths of
values that you can assign to variables.

Use the DB2GSE.ST_SIZINGS catalog view to retrieve:

• All the variables supported by IBM Spatial Support for Db2 for z/OS; for example, coordinate system
name, geocoder name, and variables to which well-known text representations of spatial data can be
assigned.

• The allowable maximum length, if known, of values assigned to these variables (for example, the
maximum allowable lengths of names of coordinate systems, of names of geocoders, and of well-known
text representations of spatial data).

For a description of the columns in this view, see the following table.

Table 10. Columns in the DB2GSE.ST_SIZINGS catalog view

Name Data type Nullable? Content

VARIABLE_NAME VARCHAR(128) No Term that denotes a variable. The term is unique
within the database.

80 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Table 10. Columns in the DB2GSE.ST_SIZINGS catalog view (continued)

Name Data type Nullable? Content

SUPPORTED_VALUE INTEGER Yes Allowable maximum length of the values
assigned to the variable shown in the
VARIABLE_NAME column. Possible values in the
SUPPORTED_VALUE column are:
A numeric value other than 0

The allowable maximum length of values
assigned to this variable.

0
Either any length is allowed, or the allowable
length cannot be determined.

NULL
IBM Spatial Support for Db2 for z/OS does not
support this variable.

DESCRIPTION VARCHAR(256) Yes Description of this variable.

The DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view
Query the DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view to retrieve information about
registered spatial reference systems.

Spatial reference systems are automatically registered in the IBM Spatial Support for Db2 for z/OS catalog
at the following times:

• When you enable a database for spatial operations (registering five default spatial reference systems)
• When users create additional spatial reference systems

To get full value from the DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view, you need to
understand that each spatial reference system is associated with a coordinate system. The spatial
reference system is designed partly to convert coordinates derived from the coordinate system into values
that Db2 can process with maximum efficiency, and partly to define the maximum possible extent of
space that these coordinates can reference.

To find out the name and type of the coordinate system associated with a given
spatial reference system, query the COORDSYS_NAME and COORDSYS_TYPE columns of the
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view. For more information about the coordinate
system, query the DB2GSE.ST_COORDINATE_SYSTEMS catalog view.

Table 11. Columns in the DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view

Name Data type Nullable? Content

SRS_NAME VARCHAR(128) No Name of the spatial reference system. This name
is unique within the database.

SRS_ID INTEGER No Numerical identifier of the spatial reference
system. Each spatial reference system has a
unique numerical identifier.

Spatial functions specify spatial reference
systems by their numerical identifiers rather than
by their names.

Chapter 10. Catalog views 81

Table 11. Columns in the DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view (continued)

Name Data type Nullable? Content

X_OFFSET DOUBLE No Offset to be subtracted from all X coordinates
of a geometry. The subtraction is a step in the
process of converting the geometry's coordinates
into values that Db2 can process with maximum
efficiency. A subsequent step is to multiply the
figure resulting from the subtraction by the scale
factor shown in the X_SCALE column.

X_SCALE DOUBLE No Scale factor by which to multiply the figure that
results when an offset is subtracted from an X
coordinate. This factor is identical to the value
shown in the Y_SCALE column.

Y_OFFSET DOUBLE No Offset to be subtracted from all Y coordinates
of a geometry. The subtraction is a step in the
process of converting the geometry's coordinates
into values that Db2 can process with maximum
efficiency. A subsequent step is to multiply the
figure resulting from the subtraction by the scale
factor shown in the Y_SCALE column.

Y_SCALE DOUBLE No Scale factor by which to multiply the figure that
results when an offset is subtracted from a Y
coordinate. This factor is identical to the value
shown in the X_SCALE column.

Z_OFFSET DOUBLE No Offset to be subtracted from all Z coordinates
of a geometry. The subtraction is a step in the
process of converting the geometry's coordinates
into values that Db2 can process with maximum
efficiency. A subsequent step is to multiply the
figure resulting from the subtraction by the scale
factor shown in the Z_SCALE column.

Z_SCALE DOUBLE No Scale factor by which to multiply the figure that
results when an offset is subtracted from a Z
coordinate.

M_OFFSET DOUBLE No Offset to be subtracted from all measures
associated with a geometry. The subtraction is a
step in the process of converting the measures
into values that Db2 can process with maximum
efficiency. A subsequent step is to multiply the
figure resulting from the subtraction by the scale
factor shown in the M_SCALE column.

M_SCALE DOUBLE No Scale factor by which to multiply the figure that
results when an offset is subtracted from a
measure.

MIN_X DOUBLE No Minimum possible value for X coordinates in the
geometries to which this spatial reference system
applies. This value is derived from the values in
the X_OFFSET and X_SCALE columns.

82 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Table 11. Columns in the DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view (continued)

Name Data type Nullable? Content

MAX_X DOUBLE No Maximum possible value for X coordinates in the
geometries to which this spatial reference system
applies. This value is derived from the values in
the X_OFFSET and X_SCALE columns.

MIN_Y DOUBLE No Minimum possible value for Y coordinates in the
geometries to which this spatial reference system
applies. This value is derived from the values in
the Y_OFFSET and Y_SCALE columns.

MAX_Y DOUBLE No Maximum possible value for Y coordinates in the
geometries to which this spatial reference system
applies. This value is derived from the values in
the Y_OFFSET and Y_SCALE columns.

MIN_Z DOUBLE No Minimum possible value for Z coordinates in
geometries to which this spatial reference system
applies This value is derived from the values in the
Z_OFFSET and Z_SCALE columns.

MAX_Z DOUBLE No Maximum possible value for Z coordinates in
geometries to which this spatial reference system
applies. This value is derived from the values in
the Z_OFFSET and Z_SCALE columns.

MIN_M DOUBLE No Minimum possible value for measures that can
be stored with geometries to which this spatial
reference system applies. This value is derived
from the values in the M_OFFSET and M_SCALE
columns.

MAX_M DOUBLE No Maximum possible value for measures that can
be stored with geometries to which this spatial
reference system applies. This value is derived
from the values in the M_OFFSET and M_SCALE
columns.

COORDSYS_NAME VARCHAR(128) No Identifying name of the coordinate system on
which this spatial reference system is based.

COORDSYS_TYPE VARCHAR(128) No Type of the coordinate system on which this
spatial reference system is based.

ORGANIZATION VARCHAR(128) Yes Name of the organization (for example, a
standards body) that defined the coordinate
system on which this spatial reference
system is based. ORGANIZATION is null if
ORGANIZATION_COORSYS_ID is null.

ORGANIZATION_
COORDSYS_ID

INTEGER Yes Name of the organization (for example, a
standards body) that defined the coordinate
system on which this spatial reference system is
based. ORGANIZATION_COORDSYS_ID is null if
ORGANIZATION is null.

DEFINITION VARCHAR(2048) No Well-known text representation of the definition
of the coordinate system.

DESCRIPTION VARCHAR(256) Yes Description of the spatial reference system.

Chapter 10. Catalog views 83

The DB2GSE.ST_UNITS_OF_MEASURE catalog view
Consult the DB2GSE.ST_UNITS_OF_MEASURE catalog view to see what units of measure are available.

Certain spatial functions accept or return values that denote a specific distance. In some cases,
you can choose what unit of measure the distance is to be expressed in. For example, ST_Distance
returns the minimum distance between two specified geometries. On one occasion you might require
ST_Distance to return the distance in terms of miles; on another, you might require a distance
expressed in terms of meters. To find out what units of measure you can choose from, consult the
DB2GSE.ST_UNITS_OF_MEASURE catalog view.

Table 12. Columns in the DB2GSE.ST_UNITS_OF_MEASURE catalog view

Name Data type Nullable? Content

UNIT_NAME VARCHAR(128) No Name of the unit of measure. This name is unique
in the database.

UNIT_TYPE VARCHAR(128) No Type of the unit of measure. Possible values are:
LINEAR

The unit of measure is linear.
ANGULAR

The unit of measure is angular.

CONVERSION_FACTOR DOUBLE No Numeric value used to convert this unit of
measure to its base unit. The base unit for linear
units of measure is METER; the base unit for
angular units of measure is RADIAN.

The base unit itself has a conversion factor of 1.0.

DESCRIPTION VARCHAR(256) Yes Description of the unit of measure.

84 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Chapter 11. Spatial functions: categories and uses
This information introduces all of the spatial functions that IBM Spatial Support for Db2 for z/OS provides,
organizing them by category.

IBM Spatial Support for Db2 for z/OS provides functions that:

• Convert geometries to and from various data exchange formats. These functions are called constructor
functions.

• Compare geometries for boundaries, intersections, and other information. These functions are called
comparison functions.

• Return information about properties of geometries, such as coordinates and measures within
geometries, relationships between geometries, and boundary and other information.

• Generate new geometries from existing geometries.
• Measure the shortest distance between points in geometries.
• Provide information about index parameters.
• Provide projections and conversions between different coordinate systems.

Constructor functions
Constructor functions are spatial functions that you can use to build spatial objects from the following
input formats: well-known text (WKT) representation, well-known binary (WKB) representation, ESRI
shape representation, and Geography Markup Language (GML).

Constructor functions have the same name as the geometry data type of the column into which the data
will be inserted. These functions operate consistently on each of the input data exchange formats.

Spatial support includes the following constructor functions:

• ST_POINT
• ST_LINESTRING
• ST_POLYGON
• ST_MULTIPOINT
• ST_MULTILINESTRING
• ST_MULTIPOLYGON

The ST_Point function also takes X, Y, Z, and M coordinate values as input.

Functions that operate on data exchange formats
This section provides the syntax for calling functions that operate on data exchange formats, describes
the input parameters for the functions, and identifies the type of geometry that these functions return.

Syntax

db2gse.

geometry_type (wkt

wkb

shape

gml

, srs_id)

© Copyright IBM Corp. 2007, 2023 85

Parameters and other elements of syntax
db2gse

Name of the schema to which the spatial data types supplied by IBM Spatial Support for Db2 for z/OS
belong.

geometry_type
One of the following constructor functions:

• ST_Point
• ST_LineString
• ST_Polygon
• ST_MultiPoint
• ST_MultiLineString
• ST_MultiPolygon

wkt
A value of type CLOB(8M) that contains the well-known text representation of the geometry.

wkb
A value of type BLOB(4M) that contains the well-known binary representation of the resulting
linestring. If the well-known binary representation is null, then null is returned.

shape
A value of type BLOB(4M) that contains the shape representation of the resulting linestring. If the
shape representation is null, then null is returned.

gml
A value of type CLOB(8M) that contains the GML representation of the geometry.

srs_id
A value of type INTEGER that identifies the spatial reference system for the resulting geometry.

Return Type
geometry_type

If geometry_type is ST_Geometry, the dynamic type of the returned geometry type corresponds to the
geometry indicated by the input value.

If geometry_type is any other type, the dynamic type of the returned geometry type corresponds to
the function name. If the geometry indicated by the input value does not match the function name or the
name of one of its subtypes, an error is returned.

A function that creates geometries from coordinates
The ST_Point function creates geometries not only from data exchange formats, but also from numeric
coordinate values—a very useful capability if your location data is already stored in your database.

Syntax
db2gse.ST_Point (coordinates , srs_id)

coordinates
x_coordinate , y_coordinate

, z_coordinate

, m_coordinate

86 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Parameters
x_coordinate

A value of type DOUBLE that specifies the X coordinate for the resulting point.
y_coordinate

A value of type DOUBLE that specifies the Y coordinate for the resulting point.
z_coordinate

A value of type DOUBLE that specifies the Z coordinate for the resulting point.

If the z_coordinate parameter is omitted, the resulting point will not have a Z coordinate.

m_coordinate
A value of type DOUBLE that specifies the M coordinate for the resulting point.

If the m_coordinate parameter is omitted, the resulting point will not have a measure.

srs_id
A value of type INTEGER that identifies the spatial reference system for the resulting point.

If srs_id does not identify a spatial reference system listed in the catalog view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, an exception condition is raised.

Return type
db2gse.ST_Point

Examples
This topic provides examples of code for invoking constructor functions, code for creating tables to
contain the output of constructor functions, and code for retrieving the output.

The following example inserts a row into the SAMPLE_GEOMETRY table with ID 100 and a point value
with an X coordinate of 30, a Y coordinate of 40, and in spatial reference system 1 using the coordinate
representation and well-known text (WKT) representation. It then inserts another row with ID 200 and a
linestring value with the coordinates indicated.

CREATE TABLE sample_geometry (id INT, geom db2gse.ST_Geometry);

INSERT INTO sample_geometry(id, geom)
 VALUES(100,db2gse.ST_Geometry(db2gse.ST_Point('POINT(30 40)',1)));

INSERT INTO sample_geometry(id, geom)
 VALUES(200,db2gse.ST_Geometry(db2gse.ST_Linestring('linestring(50 50,
 100 100)', 1)));

If you know that the spatial column can only contain ST_Point values, you can use the following example,
which inserts two points. Attempting to insert a linestring or any other type which is not a point results
in an SQL error. The first insert creates a point geometry from the well-known-text representation (WKT).
The second insert creates a point geometry from numeric coordinate values. These input values could
also be selected from existing table columns.

CREATE TABLE sample_points (id INT, geom db2gse.ST_Point);

INSERT INTO sample_points(id, geom)
 VALUES(100,db2gse.ST_Point('point(30 40)', 1));

INSERT INTO sample_points(id, geom)
 VALUES(101,db2gse.ST_Point(50, 50, 1));

The following example uses embedded SQL and assumes that the application fills the data areas with the
appropriate values.

Chapter 11. Spatial functions: categories and uses 87

EXEC SQL BEGIN DECLARE SECTION;
 sqlint32 id = 0;
 SQL TYPE IS CLOB(10000) wkt_buffer;
 SQL TYPE IS BLOB(10000) wkb_buffer;
 SQL TYPE IS BLOB(10000) shape_buffer;
EXEC SQL END DECLARE SECTION;

// * Application logic to read into buffers goes here */

EXEC SQL INSERT INTO sample_geometry(id, geom)
 VALUES(:id, db2gse.ST_Geometry(:wkt_buffer,1));

EXEC SQL INSERT INTO sample_geometry(id, geom)
 VALUES:id, db2gse.ST_Geometry(:wkb_buffer,1));

EXEC SQL INSERT INTO sample_geometry(id, geom)
 VALUES(:id, db2gse.ST_Geometry(:shape_buffer,1));

The following sample Java™ code uses JDBC to insert point geometries using the WKT representation to
specify the geometry and using the X, Y numeric coordinate values to specify the geometries.

String ins1 = "INSERT into sample_geometry (id, geom)
 VALUES(?, db2gse.ST_Point(CAST(?
 as VARCHAR(128)), 1))";
PreparedStatement pstmt = con.prepareStatement(ins1);
pstmt.setInt(1, 100); // id value
pstmt.setString(2, "point(32.4 50.7)"); // wkt value
int rc = pstmt.executeUpdate();

String ins2 = "INSERT into sample_geometry (id, geom)
 VALUES(?, db2gse.ST_Point(CAST(? as double),
 CAST(? as double), 1))";
pstmt = con.prepareStatement(ins2);
pstmt.setInt(1, 200); // id value
pstmt.setDouble(2, 40.3); // lat
pstmt.setDouble(3, -72.5); // long
rc = pstmt.executeUpdate();

Conversion to well-known text (WKT) representation
Text representations are CLOB values representing ASCII character strings. They allow geometries to be
exchanged in ASCII text form.

The ST_AsText function converts a geometry value stored in a table to a WKT string. The following
example uses a simple command-line query to select the values that were previously inserted into the
SAMPLE_GEOMETRY table. (This example returns SQL code 445, because the data has been truncated.)

SELECT id, VARCHAR(db2gse.ST_AsText(geom), 50) AS WKTGEOM
FROM sample_geometry;

ID WKTGEOM
------ --------------------------------
 100 POINT (30.00000000 40.00000000)
 200 LINESTRING (50.00000000 50.00000000, 100.00000000 100.00000000)

The following example uses embedded SQL to select the values that were previously inserted into the
SAMPLE_GEOMETRY table.

 EXEC SQL BEGIN DECLARE SECTION;
 sqlint32 id = 0;
 SQL TYPE IS CLOB(10000) wkt_buffer;
 short wkt_buffer_ind = -1;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL
 SELECT id, db2gse.ST_AsText(geom)
 INTO :id, :wkt_buffer :wkt_buffer_ind

88 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

 FROM sample_geometry
 WHERE id = 100;

In addition, IBM Spatial Support for Db2 for z/OS provides other functions that convert geometries to and
from well-known text representations. The following additional functions implement the Open Geospatial
Consortium (OGC) standard Simple Features SQL and the ISO standard SQL multimedia and application
packages - Part 3: Spatial:

• ST_GeomFromText
• ST_WKTToSQL

Conversion to well-known binary (WKB) representation
The WKB representation consists of binary data structures that must be BLOB values.

These BLOB values represent binary data structures that must be managed by an application program
written in a programming language that Db2 supports and for which Db2 has a language binding.

The ST_AsBinary function converts a geometry value stored in a table to the well-known binary (WKB)
representation, which can be fetched into a BLOB variable in program storage. The following example
uses embedded SQL to select the values that were previously inserted into the SAMPLE_GEOMETRY
table.

EXEC SQL BEGIN DECLARE SECTION;
 sqlint32 id = 0;
 SQL TYPE IS BLOB(10000) wkb_buffer;
 short wkb_buffer_ind = -1;
EXEC SQL END DECLARE SECTION;

EXEC SQL
 SELECT id, db2gse.ST_AsBinary(geom)
 INTO :id, :wkb_buffer :wkb_buffer_ind
 FROM sample_geometry
 WHERE id = 200;

In addition, IBM Spatial Support for Db2 for z/OS provides other functions that convert geometries to
and from well-known binary representations. The following additional functions implement the Open
Geospatial Consortium (OGC) standard Simple Features SQL and the ISO standard SQL multimedia and
application packages - Part 3: Spatial:

• ST_GeomFromWKB
• ST_WKBToSQL

Conversion to ESRI shape representation
The ESRI shape representation consists of binary data structures that must be managed by an application
program written in a supported language.

The ST_AsShape function converts a geometry value stored in a table to the ESRI shape representation,
which can be fetched into a BLOB variable in program storage. The following example uses embedded
SQL to select the values that were previously inserted into the SAMPLE_GEOMETRY table.

EXEC SQL BEGIN DECLARE SECTION;
 sqlint32 id;
 SQL TYPE IS BLOB(10000) shape_buffer;
EXEC SQL END DECLARE SECTION;

EXEC SQL
 SELECT id, db2gse.ST_AsShape(geom)
 INTO :id, :shape_buffer
 FROM sample_geometry;

Chapter 11. Spatial functions: categories and uses 89

http://www.opengeospatial.org/standards/sfs
https://www.iso.org/standard/53698.html
https://www.iso.org/standard/53698.html
http://www.opengeospatial.org/standards/sfs
https://www.iso.org/standard/53698.html
https://www.iso.org/standard/53698.html

Conversion to Geography Markup Language (GML) representation
Geography Markup Language (GML) representations are ASCII strings. GML representations allow
geometries to be exchanged in ASCII text format.

The ST_AsGML function converts a geometry value that is stored in a table to a GML text string. The
following example selects the values that were previously inserted into the SAMPLE_GEOMETRY table.
The results shown in the example are reformatted for readability. The spacing in your results might vary
according to your online display.

SELECT id, VARCHAR(db2gse.ST_AsGML(geom, 'EPSG', 4269), 500) AS GMLGEOM
FROM sample_geometry;

ID GMLGEOM
----------- --
 100 <gml:Point srsName="EPSG:4269">
 <gml:coord><gml:X>30</gml:X><gml:Y>40</gml:Y></gml:coord>
 </gml:Point>
 200 <gml:LineString srsName="EPSG:4269">
 <gml:coord><gml:X>50</gml:X><gml:Y>50</gml:Y></gml:coord>
 <gml:coord><gml:X>100</gml:X><gml:Y>100</gml:Y></gml:coord>
 </gml:LineString>

Comparison functions
You can use comparison functions to compare two geometries with one another.

Comparison functions return a value of 1 (one) if a comparison meets certain criteria, a value of 0 (zero)
if a comparison fails to meet the criteria, and a null value if the comparison could not be performed.
Comparisons cannot be performed if the comparison operation has not been defined for the input
parameters, or if either of the parameters is null. Comparisons can be performed if geometries with
different data types or dimensions are assigned to the parameters.

The Dimensionally Extended 9 Intersection Model (DE-9IM) is a mathematical approach that defines
the pair-wise spatial relationship between geometries of different types and dimensions. This model
expresses spatial relationships between all types of geometries as pair-wise intersections of their
interiors, boundaries, and exteriors, with consideration for the dimension of the resulting intersections.

Given geometries a and b: I(a), B(a), and E(a) represent the interior, boundary, and exterior of a,
respectively. And, I(b), B(b), and E(b) represent the interior, boundary, and exterior of b. The intersections
of I(a), B(a), and E(a) with I(b), B(b), and E(b) produce a 3–by–3 matrix. Each intersection can result
in geometries of different dimensions. For example, the intersection of the boundaries of two polygons
consists of a point and a linestring, in which case the dim function returns the maximum dimension of 1.

The dim function returns a value of –1, 0, 1 or 2. The –1 corresponds to the null set or dim(null), which is
returned when no intersection was found.

Results returned by comparison functions can be understood or verified by comparing the results
returned by a comparison function with a pattern matrix that represents the acceptable values for the
DE-9IM.

The pattern matrix contains the acceptable values for each of the intersection matrix cells. The possible
pattern values are:
T

An intersection must exist; dim = 0, 1, or 2.
F

An intersection must not exist; dim = -1.
*

It does not matter if an intersection exists; dim = -1, 0, 1, or 2.
0

An intersection must exist and its exact dimension must be 0; dim = 0.

90 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

1
An intersection must exist and its maximum dimension must be 1; dim = 1.

2
An intersection must exist and its maximum dimension must be 2; dim = 2.

For example, the following pattern matrix for the ST_Within function includes the values T, F, and *.

Table 13. Matrix for ST_Within. The pattern matrix of the ST_Within function for geometry combinations.

Geometry b Interior Geometry b Boundary Geometry b Exterior

Geometry a Interior T * F

Geometry a Boundary * * F

Geometry a Exterior * * *

The ST_Within function returns a value of 1 when the interiors of both geometries intersect and when the
interior or boundary of a does not intersect the exterior of b. All other conditions do not matter.

Each function has at least one pattern matrix, but some require more than one to describe the
relationships of various geometry type combinations.

The DE-9IM was developed by Clementini and Felice, who dimensionally extended the 9 Intersection
Model of Egenhofer and Herring. The DE-9IM is a collaboration of four authors (Clementini, Eliseo, Di
Felice, and van Osstrom) who published the model in "A Small Set of Formal Topological Relationships
Suitable for End-User Interaction," D. Abel and B.C. Ooi (Ed.), Advances in Spatial Database—Third
International Symposium. SSD '93. LNCS 692. Pp. 277-295. The 9 Intersection model by M. J. Egenhofer
and J. Herring (Springer-Verlag Singapore [1993]) was published in "Categorizing binary topological
relationships between regions, lines, and points in geographic databases," Tech. Report, Department of
Surveying Engineering, University of Maine, Orono, ME 1991.

Spatial comparison functions
Spatial comparison functions compare two geometries with one another.

The comparison functions are:

• EnvelopesIntersect
• ST_Contains
• ST_Crosses
• ST_Disjoint
• ST_Equals
• ST_Intersects
• ST_Overlaps
• ST_Relate
• ST_Touches
• ST_Within

Functions that compare geographic features
You can use comparison functions to compare geographic features.

Certain spatial functions return information about ways in which geographic features relate to one
another or compare with one another. Other spatial functions return information as to whether two
definitions of coordinate systems or two spatial reference systems are the same. In all cases, the

Chapter 11. Spatial functions: categories and uses 91

information returned is a result of a comparison between geometries, between definitions of coordinate
systems, or between spatial reference systems.

Table 14. Comparison functions by purpose

Purpose Functions

Determines whether the interior of one geometry
intersects the interior of another.

• ST_Contains
• ST_Within

Returns information about intersections of
geometries.

• ST_Crosses
• ST_Disjoint
• ST_Intersects
• ST_Overlaps
• ST_Touches

Determines whether the smallest rectangle that
encloses one geometry intersects with the smallest
rectangle that encloses another geometry.

• EnvelopesIntersect

Determines whether two objects are identical. • ST_Equals

Determines the shortest distance between any
point in the first geometry to any point in the
second geometry.

• ST_Distance

Determines whether the geometries that are being
compared meet the conditions of the DE-9IM
pattern matrix string.

• ST_Relate

Functions that check whether one geometry contains another
ST_Contains and ST_Within both take two geometries as input and determine whether the interior of one
intersects the interior of the other.

In colloquial terms, ST_Contains determines whether the first geometry given to it encloses the second
geometry (whether the first contains the second). ST_Within determines whether the first geometry is
completely inside the second (whether the first is within the second).

ST_Contains
Use ST_Contains to determine whether one geometry is completely contained by another geometry.

ST_Contains returns a value of 1 (one) if the second geometry is completely contained by the first
geometry. The ST_Contains function returns the exact opposite result of the ST_Within function.

Figure 14 on page 93 shows examples of ST_Contains:

• A multipoint geometry contains a point or multipoint geometries when all of the points are within the
first geometry.

• A polygon geometry contains a multipoint geometry when all of the points are either on the boundary of
the polygon or in the interior of the polygon.

• A linestring geometry contains a point, multipoint, or linestring geometries when all of the points are
within the first geometry.

• A polygon geometry contains a point, linestring or polygon geometries when the second geometry is in
the interior of the polygon.

92 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

multipoint / point linestring / point polygon / point

polygon / polygonpolygon / multipoint

linestring / multipoint

linestring / linestring

multipoint / multipoint polygon / linestring

Figure 14. ST_Contains

The pattern matrix of the ST_Contains function states that the interiors of both geometries must intersect
and that the interior or boundary of the secondary (geometry b) must not intersect the exterior of the
primary (geometry a). The asterisk (*) indicates that it does not matter if an intersection exists between
these parts of the geometries.

Table 15. Matrix for ST_Contains

Geometry b Interior Geometry b Boundary Geometry b Exterior

Geometry a Interior T * *

Geometry a Boundary * * *

Geometry a Exterior F F *

ST_Within
Use ST_Within to determine whether one geometry is completely within another geometry.

ST_Within returns a value of 1 (one) if the first geometry is completely within the second geometry.
ST_Within returns the exact opposite result of ST_Contains.

Chapter 11. Spatial functions: categories and uses 93

point / multipoint point / polygon

polygon / polygonmultipoint / polygon

multipoint / multipoint

point / linestring

multipoint / linestring linestring / polygon

linestring / linestring

Figure 15. ST_Within

The ST_Within function pattern matrix states that the interiors of both geometries must intersect, and
that the interior or boundary of the primary geometry (geometry a) must not intersect the exterior of the
secondary (geometry b). The asterisk (*) indicates that all other intersections do not matter.

Table 16. Matrix for ST_Within

Geometry b Interior Geometry b Boundary Geometry b Exterior

Geometry a Interior T * F

Geometry a Boundary * * F

Geometry a Exterior * * *

Figure 15 on page 94 shows examples of ST_Within:

• A point geometry is within a multipoint geometry when its interior intersects one of the points in the
second geometry.

• A multipoint geometry is within a multipoint geometry when the interiors of all points intersect the
second geometry.

• A multipoint geometry is within a polygon geometry when all of the points are either on the boundary of
the polygon or in the interior of the polygon.

• A point geometry is within a linestring geometry when all of the points are within the second geometry.
In Figure 15 on page 94, the point is not within the linestring because its interior does not intersect the
linestring; however, the multipoint geometry is within the linestring because all of its points intersect
the interior of the linestring.

• A linestring geometry is within another linestring geometries when all of its points intersect the second
geometry.

• A point geometry is not within a polygon geometry because its interior does not intersect the boundary
or interior of the polygon.

• A linestring geometry is within a polygon geometry when all of its points intersect either the boundary or
interior of the polygon.

94 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

• A polygon geometry is within a polygon geometry when all of its points intersect either the boundary or
interior of the polygon.

Functions that check intersections between geometries
The EnvelopesIntersect, ST_Intersects, ST_Crosses, ST_Overlaps, and ST_Touches functions all determine
whether one geometry intersects another.

These functions differ mainly as to the scope of intersection that they test for.

The EnvelopesIntersect function determines if the minimum bounding rectangles of two geometries
intersect.

The ST_Intersects function tests to determine whether the two geometries given to it meet one of four
conditions: that the geometries' interiors intersect, that their boundaries intersect, that the boundary of
the first geometry intersects with the interior of the second, or that the interior of the first geometry
intersects with the boundary of the second.

The ST_Crosses function is used to analyze the intersection of geometries of different dimensions, with
one exception: it can also analyze the intersection of linestrings. In all cases, the place of intersection is
itself considered a geometry; and ST_Crosses requires that this geometry be of a lesser dimension than
the greater of the intersecting geometries (or, if both are linestrings, that the place of intersection be of
a lesser dimension than a linestring). For example, the dimensions of a linestring and polygon are 1 and
2, respectively. If two such geometries intersect, and if the place of intersection is linear (the linestring's
path along the polygon), then that place can itself be considered a linestring. And because a linestring's
dimension (1) is lesser than a polygon's (2), ST_Crosses, after analyzing the intersection, would return a
value of 1.

The geometries given to the ST_Overlaps function as input must be of the same dimension. ST_Overlaps
requires that these geometries overlap part-way, forming a new geometry (the region of overlap) that is
the same dimension as they are.

The ST_Touches function determines whether the boundaries of two geometries intersect.

EnvelopesIntersect
Use the EnvelopesIntersect spatial function to determine if the minimum bounding rectangles of two
geometries intersect.

The EnvelopesIntersect function accepts two types of input parameters:

• Two geometries

EnvelopesIntersect returns 1 if the envelope of the first geometry intersects the envelope of the second
geometry. Otherwise, 0 (zero) is returned.

• A geometry, four type DOUBLE coordinate values that define the lower-left and upper-right corners of a
rectangular window, and the spatial reference system identifier.

EnvelopesIntersect returns 1 if the envelope of the first geometry intersects with the envelope defined
by the four type DOUBLE values. Otherwise, 0 (zero) is returned.

If one of the input geometries is empty or null, null is returned.

ST_Intersects
Use ST_Intersects to determine whether two geometries intersect.

ST_Intersects returns a value of 1 (one) if the intersection does not result in an empty set.

The ST_Intersects function returns 1 (one) if the conditions of any of the following pattern matrices
returns TRUE.

Chapter 11. Spatial functions: categories and uses 95

Table 17. Matrix for ST_Intersects (1). The ST_Intersects function returns 1 (one) if the interiors of both
geometries intersect.

Geometry b Interior Geometry b Boundary Geometry b Exterior

Geometry a Boundary * * *

Geometry a Interior T * *

Geometry a Exterior * * *

Table 18. Matrix for ST_Intersects (2). The ST_Intersects function returns 1 (one) if the boundary of the
first geometry intersects the boundary of the second geometry.

Geometry b Interior Geometry b Boundary Geometry b Exterior

Geometry a Boundary * * *

Geometry a Interior * T *

Geometry a Exterior * * *

Table 19. Matrix for ST_Intersects (3). The ST_Intersects function returns 1 (one) if the boundary of the
first geometry intersects the interior of the second.

Geometry b Interior Geometry b Boundary Geometry b Exterior

Geometry a Boundary T * *

Geometry a Interior * * *

Geometry a Exterior * * *

Table 20. Matrix for ST_Intersects (4). The ST_Intersects function returns 1 (one) if the boundaries of
either geometry intersect.

Geometry b Interior Geometry b Boundary Geometry b Exterior

Geometry a Boundary * T *

Geometry a Interior * * *

Geometry a Exterior * * *

ST_Crosses
Use ST_Crosses to determine whether one geometry crosses another.

ST_Crosses takes two geometries and returns a value of 1 (one) if:

• The intersection results in a geometry whose dimension is less than the maximum dimension of the
source geometries.

• The intersection set is interior to both source geometries.

ST_Crosses returns a null if the first geometry is a polygon or multipolygon or if the second geometry is a
point or multipoint. For all other combinations, ST_Crosses returns either a value of 1 (indicating that the
two geometries cross) or a value of 0 (indicating that they do not cross).

The following figure illustrates multipoints crossing linestring, linestring crossing linestring, multiple
points crossing a polygon, and linestring crossing a polygon. In three of the four cases, geometry b
crosses geometry a. In the fourth case geometry a is a multipoint which does not cross the line, but does
touch the area inside the geometry b polygon.

96 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

The dark geometries represent geometry a; the gray geometries represent geometry b.

multipoint/linestring linestring/linestring

linestring/polygonmultipoint/polygon

Figure 16. ST_Crosses

The pattern matrix in the following table applies if the first geometry is a point or multipoint, or if the first
geometry is a linestring or multilinestring, and the second geometry is a polygon. The matrix states that
the interiors must intersect and that the interior of the primary (geometry a) must intersect the exterior of
the secondary (geometry b).

Table 21. Matrix for ST_Crosses (1)

Geometry b Interior Geometry b Boundary Geometry b Exterior

Geometry a Boundary * * *

Geometry a Interior T * T

Geometry a Exterior * * *

The pattern matrix in the following table applies if the first and second geometries are both linestrings
or multilinestrings. The 0 indicates that the intersection of the interiors must be a point (dimension 0). If
the dimension of this intersection is 1 (intersect at a linestring), the ST_Crosses function returns a value
of 0 (indicating that the geometries do not cross); however, the ST_Overlaps function returns a value of 1
(indicating that the geometries overlap).

Table 22. Matrix for ST_Crosses (2)

Geometry b Interior Geometry b Boundary Geometry b Exterior

Geometry a Boundary * * *

Geometry a Interior 0 * *

Geometry a Exterior * * *

ST_Overlaps
Use ST_Overlaps to determine whether two geometries of the same dimension overlap.

ST_Overlaps compares two geometries of the same dimension. It returns a value of 1 (one) if their
intersection set results in a geometry that is different from both, but that has the same dimension.

The dark geometries represent geometry a; the gray geometries represent geometry b. In all cases, both
geometries have the same dimension, and one overlaps the other partway. The area of overlap is a new
geometry; it has the same dimension as geometries a and b.

The following figure illustrates overlaps in geometries. The three examples show overlaps with points,
linestrings, and polygons. With points the actual points overlap. With linestrings, a portion of the line
overlaps. With polygons a portion of the area overlaps.

Chapter 11. Spatial functions: categories and uses 97

multipoint/multipoint polygon/polygonlinestring/linestring

Figure 17. ST_Overlaps

The pattern matrix in Table 23 on page 98 applies if the first and second geometries are both either
points, multipoints, polygons, or multipolygons. ST_Overlaps returns a value of 1 if the interior of each
geometry intersects the other geometry's interior and exterior.

Table 23. Matrix for ST_Overlaps (1)

Geometry b Interior Geometry b Boundary Geometry b Exterior

Geometry a Boundary * * *

Geometry a Interior T * T

Geometry a Exterior T * *

The pattern matrix in Table 24 on page 98 applies if the first and second geometries are both linestrings
or multilinestrings. In this case, the intersection of the geometries must result in a geometry that has a
dimension of 1 (another linestring). If the dimension of the intersection of the interiors is 0, ST_Overlaps
returns a value of 0 (indicating that the geometries do not overlap); however the ST_Crosses function
would return a value of 1 (indicating that the geometries cross).

Table 24. Matrix for ST_Overlaps (2)

Geometry b Interior Geometry b Boundary Geometry b Exterior

Geometry a Boundary * * *

Geometry a Interior 1 * T

Geometry a Exterior T * *

ST_Touches
Use ST_Touches to determine whether the boundaries of two geometries intersect.

ST_Touches returns a value of 1 (one) if all the points common to both geometries can be found only on
the boundaries. The interiors of the geometries must not intersect one another. At least one geometry
must be a linestring, polygon, multilinestring, or multipolygon.

The dark geometries represent geometry a; the gray geometries represent geometry b. In all cases,
the boundary of geometry b intersects geometry a. The interior of geometry b remains separate from
geometry a.

The following figure shows examples of touching with types of geometries, such as point and linestring,
linestring and linestring, point and polygon, multipoint and polygon, and linestring and polygon.

98 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Figure 18. ST_Touches

The pattern matrices show that the ST_Touches function returns 1 (one) when the interiors of the
geometry do not intersect, and the boundary of either geometry intersects the other's interior or its
boundary.

Table 25. Matrix for ST_Touches (1)

Geometry b Interior Geometry b Boundary Geometry b Exterior

Geometry a Boundary * * *

Geometry a Interior F T *

Geometry a Exterior * * *

Table 26. Matrix for ST_Touches (2)

Geometry b Interior Geometry b Boundary Geometry b Exterior

Geometry a Boundary T * *

Geometry a Interior F * *

Geometry a Exterior * * *

Table 27. Matrix for ST_Touches (3)

Geometry b Interior Geometry b Boundary Geometry b Exterior

Geometry a Boundary * T *

Geometry a Interior F * *

Geometry a Exterior * * *

Chapter 11. Spatial functions: categories and uses 99

Function that checks whether two geometries are identical
You can use the ST_Equals comparison function to check whether two geometries are identical.

ST_Equals
Use ST_Equals to determine if two geometries are identical.

ST_Equals returns a value of 1 (one) if two geometries are identical. The order of the points used to define
the geometries is not relevant to the test of equality.

In the six examples (point, multipoint, linestring, multistring, polygon, and multipolygon) geometry a and
geometry b are the same.

point / point linestring/linestring polygon / polygon

multipolygon/multipolygonmultistring/multistringmultipoint / multipoint

Figure 19. ST_Equals

Table 28. Matrix for equality. The DE-9IM pattern matrix for equality ensures that the interiors intersect
and that no part interior or boundary of either geometry intersects the exterior of the other.

Geometry b Interior Geometry b Boundary Geometry b Exterior

Geometry a Boundary * * F

Geometry a Interior T * F

Geometry a Exterior F F *

Functions that return coordinate and measure information
You can use certain functions to return information about the coordinates and measures within a
geometry.

For example, ST_X can return the X coordinate within a specified point, ST_MaxX returns the highest X
coordinate within a geometry, and ST_MinX returns the lowest X coordinate within a geometry.

These functions are:

• ST_Is3D
• ST_IsMeasured
• ST_IsValid
• ST_M
• ST_MaxM
• ST_MaxX

100 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

• ST_MaxY
• ST_MaxZ
• ST_MinM
• ST_MinX
• ST_MinY
• ST_MinZ
• ST_X
• ST_Y
• ST_Z

ST_Is3D
ST_Is3D takes a geometry as an input parameter and returns 1 if the given geometry has Z coordinates.
Otherwise, 0 (zero) is returned.
Related reference
“ST_Is3D” on page 151
ST_Is3D takes a geometry as an input parameter and returns 1 if the given geometry has Z coordinates.
Otherwise, 0 (zero) is returned.

ST_IsMeasured
ST_IsMeasured takes a geometry as an input parameter and returns 1 if the given geometry has M
coordinates (measures). Otherwise 0 (zero) is returned.
Related reference
“ST_IsMeasured” on page 154
ST_IsMeasured takes a geometry as an input parameter and returns 1 if the given geometry has M
coordinates (measures). Otherwise 0 (zero) is returned.

ST_IsValid
ST_IsValid takes a geometry as an input parameter and returns 1 if it is valid. Otherwise 0 (zero) is
returned.

A geometry is valid only if all of the attributes in the structured type are consistent with the internal
representation of geometry data, and if the internal representation is not corrupted.

Related reference
“ST_IsValid” on page 157

Chapter 11. Spatial functions: categories and uses 101

ST_IsValid takes a geometry as an input parameter and returns 1 if it is valid. Otherwise 0 (zero) is
returned.

ST_M
If a measure is stored with a given point, ST_M can take the point as an input parameter and return the
measure.

ST_MaxM
ST_MaxM takes a geometry as an input parameter and returns its maximum measure.

ST_MaxX
ST_MaxX takes a geometry as an input parameter and returns its maximum X coordinate.

ST_MaxY
ST_MaxY takes a geometry as an input parameter and returns its maximum Y coordinate.

ST_MaxZ
ST_MaxZ takes a geometry as an input parameter and returns its maximum Z coordinate.

ST_MinM
ST_MinM takes a geometry as an input parameter and returns its minimum measure.

ST_MinX
ST_MinX takes a geometry as an input parameter and returns its minimum X coordinate.

ST_MinY
ST_MinY takes a geometry as an input parameter and returns its minimum Y coordinate.

ST_MinZ
ST_MinY takes a geometry as an input parameter and returns its minimum Z coordinate.

ST_X
ST_X can take a point as an input parameter and return the point's X coordinate.

ST_Y
ST_Y can take a point as an input parameter and return the point's Y coordinate.

ST_Z
If a Z coordinate is stored with a given point, ST_Z can take the point as an input parameter and return the
Z coordinate.

Functions that return information about geometries within a
geometry

The following functions return information about geometries within a geometry.

102 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

ST_Centroid
ST_Centroid takes a geometry as an input parameter and returns the geometric center, which is the center
of the minimum bounding rectangle of the given geometry, as a point.

The resulting point is represented in the spatial reference system of the given geometry. If the given
geometry is null, then null is returned.

ST_EndPoint
ST_EndPoint takes a linestring as an input parameter and returns the point that is the last point of the
linestring.

The resulting point is represented in the spatial reference system of the given linestring. If the given
linestring is null or empty, then null is returned.

ST_GeometryN
ST_GeometryN takes a geometry collection and an index as input parameters and returns the geometry in
the collection that is identified by the index.

The resulting geometry is represented in the spatial reference system of the given geometry collection. If
the given geometry is null or is empty, then null is returned.

ST_NumGeometries
ST_NumGeometries takes a geometry collection as an input parameter and returns the number of
geometries in the collection.

If the given geometry collection is null or empty, then null is returned.

ST_NumPoints
ST_NumPoints takes a geometry as an input parameter and returns the number of points that were used
to define that geometry.

For example, if the geometry is a polygon and five points were used to define that polygon, then the
returned number is 5.

ST_PointN
ST_PointN takes a linestring or a multipoint and an index as input parameters and returns that point in
the linestring or multipoint that is identified by the index. The resulting point is represented in the spatial
reference system of the given linestring or multipoint.

If the given linestring or multipoint is null or is empty, then null is returned. If the index is smaller than 1
or larger than the number of points in the linestring or multipoint, then null is returned and a warning is
returned.

ST_StartPoint
ST_StartPoint takes a linestring as an input parameter and returns the point that is the first point of the
linestring.

The resulting point is represented in the spatial reference system of the given linestring. This result is
equivalent to the function call ST_PointN(linestring, 1). If the given linestring is null or empty, then null is
returned.

Chapter 11. Spatial functions: categories and uses 103

Functions that show information about boundaries, envelopes, and
rings

You can use certain functions to return information about demarcations that divide an inner part of a
geometry from an outer part, or that divide the geometry itself from the space external to it.

For example, ST_Boundary returns a geometry's boundary in the form of a curve.

The following functions show information about boundaries, envelopes, and rings:

• ST_Boundary
• ST_Envelope
• ST_ExteriorRing
• ST_InteriorRingN
• ST_NumInteriorRing
• ST_Perimeter

Functions that return information about a geometry's dimensions
The ST_Area function and the ST_Length function return information about the dimension of a geometry.
For example, ST_Area reports how much area a given geometry covers.

ST_Area
ST_Area takes a geometry and, optionally, a unit as input parameters and returns the area covered by the
given geometry in the given unit of measure.

ST_Length
ST_Length takes a linestring or multilinestring and, optionally, a unit as input parameters and returns the
length of the given linestring or multilinestring in the given unit of measure.

Functions that reveal whether a geometry is closed, empty, or
simple

ST_IsClosed shows whether a given linestring or multilinestring is closed. ST_IsEmpty shows whether a
given geometry is empty, and ST_IsSimple shows whether a geometry is simple.

A linestring is closed if the start point and end point of the linestring are the same. A geometry is empty
when it is devoid of points, and a geometry is simple when its configuration is typical.

ST_IsClosed
ST_IsClosed takes a linestring or multilinestring as an input parameter and returns 1 if the given linestring
or multilinestring is closed. Otherwise, 0 (zero) is returned.

A linestring is closed if the start point and end point are equal. If the linestring has Z coordinates, the
Z coordinates of the start point and end point must be equal. Otherwise, the points are not considered
equal, and the linestring is not closed. A multilinestring is closed if each of its linestrings are closed.

ST_IsEmpty
ST_IsEmpty takes a geometry as an input parameter and returns 1 if the given geometry is empty.
Otherwise 0 (zero) is returned.

A geometry is empty if it does not have any points that define it.

104 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

ST_IsSimple
ST_IsSimple takes a geometry as an input parameter and returns 1 if the given geometry is simple.
Otherwise, 0 (zero) is returned.

Points, polygons, and multipolygons are always simple. A linestring is simple if it does not pass through
the same point twice. A multipoint is simple if it does not contain two equal points, and a multilinestring is
simple if all of its linestrings are simple and the only intersections occur at points that are on the boundary
of the linestrings in the multilinestring.

Function that identifies a geometry's spatial reference system
The function ST_SRID returns values that identify the spatial reference system that is associated with the
geometry.

ST_SRID
ST_SRID takes a geometry as the input parameter and returns the spatial reference system identifier from
the geometry.

Functions that generate new geometries from existing geometries
Spatial support provides a category of functions that derive new geometries from existing ones.

This category does not include functions that derive geometries that represent properties of other
geometries. Rather, it is for functions that:

• Convert geometries into other geometries
• Create geometries that represent configurations of space
• Derive individual geometries from multiple geometries
• Create modifications of geometries

Function that converts one geometry to another
ST_Polygon constructs a polygon from a closed linestring.

ST_Polygon
ST_Polygon can construct a polygon from a closed linestring.

The linestring will define the exterior ring of the polygon.

Functions that create new geometries with different space configurations
Using existing geometries as a starting point, the following functions create new geometries that
represent circular areas or other configurations of space.

For example, given a point that represents the center of a proposed airport, ST_Buffer can create a
surface that represents, in circular form, the proposed extent of the airport.

ST_Buffer
The ST_Buffer function can generate a new geometry that extends outward from an existing geometry by
a specified radius.

The new geometry is a surface when the existing geometry is buffered or whenever the elements of a
collection are so close that the buffers around the single elements of the collection overlap. However,
when the buffers are separate, individual buffer surfaces result, in which case ST_Buffer returns a
multisurface.

Chapter 11. Spatial functions: categories and uses 105

The following figure illustrates the buffer around single and overlapped elements.

Buffering a point Buffering a multipoint

Buffering a lineststring Buffering a polygonygon with
one internior ring

Figure 20. ST_Buffer

The ST_Buffer function accepts both positive and negative distance; however, only geometries with a
dimension of two (surfaces and multisurfaces) apply a negative buffer. The absolute value of the buffer
distance is used whenever the dimension of the source geometry is less than 2 (all geometries that are
not surfaces or multisurfaces).

In general, for exterior rings, positive buffer distances generate surface rings that are away from the
center of the source geometry; negative buffer distances generate surface or multisurface rings toward
the center. For interior rings of a surface or multisurface, a positive buffer distance generates a buffer ring
toward the center, and a negative buffer distance generates a buffer ring away from the center.

The buffering process merges surfaces that overlap. Negative distances greater than one half the
maximum interior width of a polygon result in an empty geometry.

ST_ConvexHull
The ST_ConvexHull function returns the convex hull of any geometry that has at least three vertices
forming a convex.

Vertices are the pairs of X and Y coordinates within geometries. A convex hull is the smallest convex
polygon that can be formed by all vertices within a given set of vertices.

The following illustration shows four examples of convex hull. In the first example, an irregular shape
resembling the letter c has been drawn. The c is closed by the convex hull. In the fourth example, there
are four points with lines in a zig-zag pattern. The convex line goes between points four and two on one
side and three and one on the other side.

Figure 21. ST_ConvexHull

ST_Difference
ST_Difference takes two geometries of the same dimension as input and returns that portion of the first
geometry that is not intersected by the second geometry.

This operation is the spatial equivalent of the logical operator AND NOT. The portion of geometry returned
by ST_Difference is itself a geometry—a collection that has the same dimension as the geometries taken
as input. If these two geometries are equal—that is, if they occupy the same space— the returned
geometry is empty.

To the left of each arrow are two geometries that are given to ST_Difference as input. To the right of each
arrow is the output of ST_Difference. If part of the first geometry is intersected by the second, the output

106 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

is that part of the first geometry that is not intersected. If the geometries given as input are equal, the
output is an empty geometry (denoted by the term nil)

This figure illustrates input and output for ST_Difference. For example, if input is points, and point A
and point B are the same, the output is null. If point A and point B are different, the output is a new
point between the two. If the input is a polygon for Band a smaller but identical polygon for geometry A
inside the first, the outcome is null. If the polygons are overlapping, the output is the outer edges of the
combined polygons.

point / point nil point / point multipoint point / multipoint multipoint

multipoint / multipoint multipoint / multipointnil multipoint linestring / linestring multilinestring

linedtring / linestring nil nilpolygon / polygon polygon / polygon polygon

Figure 22. ST_Difference

ST_Intersection
The ST_Intersection function returns a set of points, represented as a geometry, that define the
intersection of two given geometries.

If the geometries given to ST_Intersection as input do not intersect, or if they do intersect and the
dimension of their intersection is less than the geometries' dimensions, ST_Intersection returns an empty
geometry.

This figure illustrates ten examples of output for ST_Intersection, which returns information on where
given geometries intersect. To the left of each arrow are two intersecting geometries that are given to
ST_Intersection as input. To the right of each arrow is the output of ST_Intersection, which is a geometry
that represents the intersection created by the geometries at the left.

For example, if B is a linestring and geometry A is a point on the line, the output is the multipoint where
geometry A and geometry B converge. If geometry A and geometry B are overlapping polygons, the output
is a new multipolygon of only that portion that overlaps.

Chapter 11. Spatial functions: categories and uses 107

point / point multipoint point / multipoint multipoint

multipoint / multipoint multipoint point / linestring multipoint

multipoint / linestring multipoint linestring / linestring multilinestring

point / polygon multipoint multipoint / polygon multipoint

linestring / polygon multilinestring polygon / polygon multipolygon

Figure 23. ST_Intersection

ST_SymDifference
The ST_SymDifference function returns the symmetric difference (the spatial equivalent of the logical XOR
operation) of two intersecting geometries that have the same dimension.

If these geometries are equal, ST_SymDifference returns an empty geometry. If they are not equal, then a
portion of one or both of them lies outside the area of intersection.

Function that derives one geometry from many
Use the ST_Union function to derive individual geometries from multiple geometries. ST_Union combines
two geometries into a single geometry.

ST_Union
The ST_Union function returns the union set of two geometries.

This operation is the spatial equivalent of the logical operator OR. The two geometries must be of the
same dimension. ST_Union always returns the result as a collection.

point / point multipoint point / point multipoint point / multipoint multipoint

multipoint / multipoint multipoint multipoint / multipoint multipoint linestring mulitlinestring

linestring / linestring multilinestring polygon / polygon mutipolygon polygon / polygon multipolygon

Figure 24. ST_Union

108 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

ST_UnionAggr
The ST_UnionAggr function is a union aggregate function that works as a scalar function. This function
returns a result for each row.

The result is the union of the geometry on that row and all of the geometries of the previous rows. The
result of the final row is the union of all the geometries of that column.

Function that returns distance information
The ST_Distance function takes two geometries and, optionally, a unit as input parameters and returns the
shortest distance between any point in the first geometry to any point in the second geometry, measured
in the given units.

If the second geometry is not represented in the same spatial reference system as the first geometry, it
will be converted to the other spatial reference system.

If any of the two given geometries is null or is empty, then null is returned.

For example, ST_Distance could report the shortest distance an aircraft must travel between two
locations. The following figure illustrates this information.

The figure shows a map of the United States with a straight line between points labeled Los Angeles and
Chicago.

minimum distance

Los Angeles

Chicago

Figure 25. Minimum distance between two cities

Function that returns index information
ST_GetIndexParms takes either the identifier for a spatial index or for a spatial column as an input
parameter and returns the parameters used to define the index or the index on the spatial column.

If an additional parameter number is specified, only the parameter identified by the number is returned.

Chapter 11. Spatial functions: categories and uses 109

110 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Chapter 12. Spatial functions: syntax and parameters
This information introduces the spatial functions and discusses certain factors that are common to all or
most spatial functions. The functions are documented in alphabetical order.

Considerations for spatial functions
When you code spatial functions, you must specify the schema to which the spatial functions belong.

Before a spatial function can be called, its name must be qualified by the name of the schema to which
the spatial functions belong. This schema is DB2GSE. One way to do this is to explicitly specify the
schema in the SQL statement that references the function, as in the following example:

CREATE TABLE CUSTOMERS (..., LOCATION DB2GSE.ST_POINT, ...) ;
ALTER TABLE BRANCHES ADD COLUMN LOCATION DB2GSE.ST_POINT;

Alternatively, to avoid specifying the schema each time a function is to be called, you can add DB2GSE
to the CURRENT PATH special register. To obtain the current settings for this special register, use the
following SQL statement:

 SELECT CURRENT PATH FROM SYSIBM.SYSDUMMY1;

To update the CURRENT PATH special register with DB2GSE, use the following SQL statement:

set CURRENT PATH = CURRENT PATH, db2gse;

EnvelopesIntersect
The EnvelopesIntersect spatial function accepts two types of input parameters to determine if the
minimum bounding rectangles of two geometries intersect.

This function accepts the following two types of input parameters:

• Two geometries

EnvelopesIntersect returns 1 if the envelope of the first geometry intersects the envelope of the second
geometry. Otherwise, 0 (zero) is returned.

• A geometry, four type DOUBLE coordinate values that define the lower-left and upper-right corners of a
rectangular window, and the spatial reference system identifier.

EnvelopesIntersect returns 1 if the envelope of the first geometry intersects with the envelope defined
by the four type DOUBLE values. Otherwise, 0 (zero) is returned.

If one of the input geometries is empty or null, null is returned.

Syntax
db2gse.EnvelopesIntersect (geometry1 , geometry2

mbr

)

mbr
x_min , y_min , x_max , y_max , srs_id

© Copyright IBM Corp. 2007, 2023 111

Parameters
geometry1

One of the seven distinct spatial data types that represents the geometry whose envelope is to be
tested for intersection with the envelope of either geometry2 or the minimum bounding rectangle
(MBR) defined by the four type DOUBLE values.

geometry2
One of the seven distinct spatial data types that represents the geometry whose envelope is to be
tested for intersection with the envelope of geometry1.

x_min
Specifies the minimum X coordinate value for the envelope. You must specify a non-null value for this
parameter.

The data type of this parameter is DOUBLE.

y_min
Specifies the minimum Y coordinate value for the envelope. You must specify a non-null value for this
parameter.

The data type of this parameter is DOUBLE.

x_max
Specifies the maximum X coordinate value for the envelope. You must specify a non-null value for this
parameter.

The data type of this parameter is DOUBLE.

y_max
Specifies the maximum Y coordinate value for the envelope. You must specify a non-null value for this
parameter.

The data type of this parameter is DOUBLE.

srs_id
Uniquely identifies the spatial reference system. The spatial reference system identifier must match
the spatial reference system identifier of the geometry parameter. You must specify a non-null value
for this parameter.

The data type of this parameter is INTEGER.

Return type
INTEGER

Example
This example creates two polygons that represent counties and then determines if any of them intersect a
geographic area specified by the four type DOUBLE values.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE counties (id INTEGER, name CHAR(20), geometry ST_Polygon);

INSERT INTO counties VALUES
 (1, 'County_1', ST_Polygon('polygon((0 0, 30 0, 40 30, 40 35,
 5 35, 5 10, 20 10, 20 5, 0 0))' ,0));

INSERT INTO counties VALUES
 (2, 'County_2', ST_Polygon('polygon((15 15, 15 20, 60 20, 60 15,
 15 15))' ,0));

INSERT INTO counties VALUES
 (3, 'County_3', ST_Polygon('polygon((115 15, 115 20, 160 20, 160 15,
 115 15))' ,0));

SELECT name

112 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

FROM counties as c
WHERE EnvelopesIntersect(c.geometry, 15, 15, 60, 20, 0) =1;

Results:

Name

County_1
County_2

ST_Area
ST_Area takes a geometry and, optionally, a unit as input parameters and returns the area covered by the
geometry in either the default or given unit of measure.

If the geometry is a polygon or multipolygon, then the area covered by the geometry is returned. The area
of points, linestrings, multipoints, and multilinestrings is 0 (zero).

If the geometry is null or is an empty geometry, null is returned.

Syntax
db2gse.ST_Area (geometry

, unit

)

Parameters
geometry

A value of one of the seven distinct spatial data types that represents the geometry that determines
the area.

unit
A VARCHAR(128) value that identifies the units in which the area is measured. The supported units of
measure are listed in the DB2GSE.ST_UNITS_OF_MEASURE catalog view.

If the unit parameter is omitted, the following rules are used to determine the unit in which the area is
measured:

• If geometry is in a projected or geocentric coordinate system, the linear unit associated with this
coordinate system is used.

• If geometry is in a geographic coordinate system, the angular unit associated with this coordinate
system is used.

Restrictions on unit conversions: An error (SQLSTATE 38SU4) is returned if any of the following
conditions occur:

• The geometry is in an unspecified coordinate system and the unit parameter is specified.
• The geometry is in a projected coordinate system and an angular unit is specified.
• The geometry is in a geographic coordinate system, and a linear unit is specified.

Return type
DOUBLE

Examples
Example 1

Chapter 12. Spatial functions: syntax and parameters 113

The spatial analyst needs a list of the area covered by each sales region. The sales region polygons are
stored in the SAMPLE_POLYGONS table. The area is calculated by applying the ST_Area function to the
geometry column.

DSN5SCLP /create_srs STLEC1 -srsId 4000 -srsName new_york1983 -xOffset 0
 -yOffset 0 -xScale 1 -yScale 1
 -coordsysName NAD_1983_StatePlane_New_York_East_FIPS_3101_Feet

SET current path db2gse;
CREATE TABLE sample_polygons (id INTEGER, geometry ST_POLYGON);

INSERT INTO sample_polygons (id, geometry)
VALUES
 (1, ST_Polygon('polygon((0 0, 0 10, 10 10, 10 0, 0 0))', 4000));

INSERT INTO sample_polygons (id, geometry)
VALUES
 (2, ST_Polygon('polygon((20 0, 30 20, 40 0, 20 0))', 4000));

INSERT INTO sample_polygons (id, geometry)
VALUES
 (3, ST_Polygon('polygon((20 30, 25 35, 30 30, 20 30))', 4000));

The following SELECT statement retrieves the sales region ID and area:

SELECT id, ST_Area(geometry) AS area
FROM sample_polygons;

Results:

ID AREA
-------- ------------------------
 1 +1.00000000000000E+002
 2 +2.00000000000000E+002
 3 +2.50000000000000E+001

Example 2

The following SELECT statement retrieves the sales region ID and area in various units:

SELECT id,
 ST_Area(geometry) square_feet,
 ST_Area(geometry, 'METER') square_meters,
 ST_Area(geometry, 'STATUTE MILE') square_miles
FROM sample_polygons;

Results:

ID SQUARE_FEET SQUARE_METERS SQUARE_MILES
--- ------------------------ ------------------------ ------------------------
 1 +1.00000000000000E+002 +9.29034116132748E+000 +3.58702077598427E-006
 2 +2.00000000000000E+002 +1.85806823226550E+001 +7.17404155196855E-006
 3 +2.50000000000000E+001 +2.32258529033187E+000 +8.96755193996069E-007

Example 3

This example finds the area of a polygon defined in State Plane coordinates.

The State Plane spatial reference system with an ID of 3 is created with the following command:

DSN5SCLP /create_srs SAMP_DB -srsId 3 -srsName z3101a -xOffset 0

114 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

 -yOffset 0 -xScale 1 -yScale 1
 -coordsysName NAD_1983_StatePlane_New_York_East_FIPS_3101_Feet

The following SQL statements add the polygon, in spatial reference system 3, to the table and determines
the area in square feet, square meters, and square miles.

SET current path db2gse;
 CREATE TABLE Sample_Poly3 (id integer, geometry ST_Polygon);
 INSERT into Sample_Poly3 VALUES
 (1, ST_Polygon('polygon((567176.0 1166411.0,
 567176.0 1177640.0,
 637948.0 1177640.0,
 637948.0 1166411.0,
 567176.0 1166411.0))', 3));
 SELECT id, ST_Area(geometry) "Square Feet",
 ST_Area(geometry, 'METER') "Square Meters",
 ST_Area(geometry, 'STATUTE MILE') "Square Miles"
 FROM Sample_Poly3;

Results:

ID Square Feet Square Meters Square Miles
--- ------------------------ ------------------------ ------------------------
 1 +7.94698788000000E+008 +7.38302286101346E+007 +2.85060106320552E+001

ST_AsBinary
ST_AsBinary takes a geometry as an input parameter and returns its well-known binary representation.
The Z and M coordinates are discarded and will not be represented in the well-known binary
representation.

If the given geometry is null, then null is returned.

Syntax
db2gse.ST_AsBinary (geometry)

Parameter
geometry

A value of one of the seven distinct spatial data types to be converted to the corresponding well-
known binary representation.

Return type
BLOB(4M)

Examples
Example 1

The following code illustrates how to use the ST_AsBinary function to convert the points in the geometry
columns of the SAMPLE_POINTS table into well-known binary (WKB) representation in the BLOB column.

SET CURRENT PATH = CURRENT PATH, db2gse;

CREATE TABLE SAMPLE_POINTS (id integer, geometry ST_POINT, wkb BLOB(32K));

INSERT INTO SAMPLE_POINTS (id, geometry)
VALUES
 (1100, ST_Point(10, 20, 1));

Chapter 12. Spatial functions: syntax and parameters 115

Example 2

This example populates the WKB column, with an ID of 1111, from the GEOMETRY column, with an ID of
1100.

INSERT INTO sample_points(id, wkb)
VALUES (1111,
 (SELECT ST_AsBinary(geometry)
 FROM sample_points
 WHERE id = 1100));

SELECT id, cast(ST_AsText(ST_Point(wkb,1)) AS varchar(35)) AS point
FROM sample_points
WHERE id = 1111;

Results:

ID Point
----------- -----------------------------------
 1111 POINT (10.00000000 20.00000000)

Example 3

This example displays the WKB binary representation.

SELECT id, HEX(substr(ST_AsBinary(geometry), 1, 21)) AS point_wkb
FROM sample_points
WHERE id = 1100;

Results:

ID POINT_WKB
------ ---
 1100 000000000140240000000000004034000000000000

ST_AsGML
ST_AsGML takes a geometry as an input parameter and returns its representation using the Geography
Markup Language (GML).

If the given geometry is null, then null is returned.

Syntax
db2gse.ST_AsGML (geometry

, gmlLevel

, orgName , orgID

)

Parameter
geometry

A value of one of the seven distinct spatial data types that represents the geometry that is to be
converted to the corresponding GML representation.

116 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

gmlLevel
Specifies an integer that represents the GML level that is being used. The supported values are 2 and
3.

orgName
Specifies the organization name for the coordinate system that is being used.

orgID
Specifies the organization ID for the coordinate system that is being used.

Return type
CLOB(8M)

Example
In the following example, the lines of results have been reformatted for readability. The spacing in your
results will vary according to your online display.

The following code fragment illustrates how to use the ST_AsGML function to view the GML fragment. This
example populates the GML column, from the geometry column, with an ID of 2222.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE SAMPLE_POINTS (id integer, geometry ST_POINT, gml CLOB(32K))

INSERT INTO SAMPLE_POINTS (id, geometry)
VALUES
 (1100, ST_Point(10, 20, 1))

INSERT INTO sample_points(id, gml)
VALUES (2222,
 (SELECT ST_AsGML(geometry, 'EPSG', 4269)
 FROM sample_points
 WHERE id = 1100))

The following SELECT statement lists the ID and the GML representation of the geometries. The geometry
is converted to a GML fragment by the ST_AsGML function.

SELECT id, cast(ST_AsGML(geometry, 'EPSG', 4269)
AS varchar(110)) AS gml_fragment
FROM sample_points
WHERE id = 1100

Results:

The SELECT statement returns the following result set:

ID GML_FRAGMENT

----------- --
 1100 <gml:Point srsName="EPSG:4269"><gml:coord>
 <gml:X>10</gml:X><gml:Y>20</gml:Y>
 </gml:coord></gml:Point>

ST_AsShape
St_AsShape takes a geometry as an input parameter and returns its ESRI shape representation.

If the given geometry is null, then null is returned.

Chapter 12. Spatial functions: syntax and parameters 117

Syntax
db2gse.ST_AsShape (geometry)

Parameter
geometry

A value of one of the seven distinct spatial data types to be converted to the corresponding ESRI
shape representation.

Return type
BLOB(4M)

Example
The following code fragment illustrates how to use the ST_AsShape function to convert the points
in the geometry column of the SAMPLE_POINTS table into shape binary representation in the shape
BLOB column. This example populates the shape column from the geometry column. The shape binary
representation is used to display the geometries in geobrowsers, which require geometries to comply with
the ESRI shapefile format, or to construct the geometries for the *.SHP file of the shape file.

SET CURRENT PATH = CURRENT PATH, db2gse;

CREATE TABLE SAMPLE_POINTS (id integer, geometry ST_POINT, shape BLOB(32K));

INSERT INTO SAMPLE_POINTS (id, geometry)
VALUES
 (1100, ST_Point(10, 20, 1));

INSERT INTO sample_points(id, shape)
VALUES (2222,
 (SELECT ST_AsShape(geometry)
 FROM sample_points
 WHERE id = 1100));

SELECT id, HEX(substr(ST_AsShape(geometry), 1, 20)) AS shape
FROM sample_points
WHERE id = 1100;

Returns:

ID SHAPE

------ ---
 1100 0100000000000000000024400000000000003440

ST_AsText
ST_AsText takes a geometry as an input parameter and returns its well-known text representation.

If the given geometry is null, then null is returned.

Syntax
db2gse.ST_AsText (geometry)

118 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Parameter
geometry

A value of one of the seven distinct spatial data types to be converted to the corresponding well-
known text representation.

Return type
CLOB(8M)

Example
In the following example, the lines of results have been reformatted for readability.

After capturing and inserting the data into the SAMPLE_GEOMETRIES table, an analyst wants to verify that
the values inserted are correct by looking at the well-known text representation of the geometries.

SET CURRENT PATH = CURRENT PATH, db2gse;

CREATE TABLE sample_geometries(id SMALLINT, spatial_type varchar(18),
 geometry ST_GEOMETRY);

INSERT INTO sample_geometries(id, spatial_type, geometry)
VALUES
 (1, 'st_point', ST_GEOMETRY(ST_Point(50,50,1)));

INSERT INTO sample_geometries(id, spatial_type, geometry)
VALUES
 (2, 'st_linestring', ST_GEOMETRY(ST_LineString('linestring
 (200 100, 210 130, 220 140)', 1)));

INSERT INTO sample_geometries(id, spatial_type, geometry)
VALUES
 (3, 'st_polygon', ST_GEOMETRY(ST_Polygon('polygon((110 120, 110 140,
 130 140, 130 120, 110 120))', 1)));

The following SELECT statement lists the spatial type and the WKT representation of the geometries. The
geometry is converted to text by the ST_AsText function. It is then cast to a varchar(150), because the
default output of the ST_AsText function is CLOB(8M).

SELECT id, spatial_type, cast(ST_AsText(geometry)
 AS varchar(150)) AS wkt
FROM sample_geometries

Results:

ID SPATIAL_TYPE WKT
------ ------------------ --
 1 st_point POINT (50.000000 50.000000)

 2 st_linestring LINESTRING (200.000000 100.000000,
 210.000000 130.000000, 220.000000
 140.000000)

 3 st_polygon POLYGON ((110.000000 120.000000,
 130.000000 120.000000, 130.000000
 140.000000, 110.000000 140.000000,
 110.000000 120.000000))

Chapter 12. Spatial functions: syntax and parameters 119

ST_Boundary
ST_Boundary takes a geometry as an input parameter and returns its boundary as a new geometry. The
resulting geometry is represented in the spatial reference system of the given geometry.

If the given geometry is a point, multipoint, closed linestring, or closed multilinestring, or if it is empty,
then the result is an empty geometry of type ST_Point. For linestrings or multilinestrings that are not
closed, the start points and end points of the linestrings are returned as an ST_MultiPoint value, unless
such a point is the start or end point of an even number of linestrings. For polygons and multipolygons,
the linestring defining the boundary of the given geometry is returned, either as an ST_LineString or an
ST_MultiLineString value. If the given geometry is null, then null is returned.

If possible, the specific type of the returned geometry will be ST_Point, ST_LineString, or ST_Polygon. For
example, the boundary of a polygon with no holes is a single linestring, represented as ST_LineString.
The boundary of a polygon with one or more holes consists of multiple linestrings, represented as
ST_MultiLineString.

Syntax
db2gse.ST_Boundary (geometry)

Parameter
geometry

A value of one of the seven distinct spatial data types that represents the geometry. The boundary of
this geometry is returned.

Return type
db2gse.ST_Geometry

Example
In the following example, the lines of results have been reformatted for readability. The spacing in your
results will vary according to your online display.

This example creates several geometries and determines the boundary of each geometry.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES
 (1, ST_Polygon('polygon((40 120, 90 120, 90 150, 40 150, 40 120))', 0))

INSERT INTO sample_geoms VALUES
 (2, ST_Polygon('polygon((40 120, 90 120, 90 150, 40 150, 40 120),
 (70 130, 80 130, 80 140, 70 140, 70 130))' ,0))

INSERT INTO sample_geoms VALUES
 (3, ST_Geometry('linestring(60 60, 65 60, 65 70, 70 70)' ,0))

INSERT INTO sample_geoms VALUES
 (4, ST_Geometry('multilinestring((60 60, 65 60, 65 70, 70 70),
 (80 80, 85 80, 85 90, 90 90),
 (50 50, 55 50, 55 60, 60 60))' ,0))

INSERT INTO sample_geoms VALUES
 (5, ST_Geometry('point(30 30)' ,0))

SELECT id, CAST(ST_AsText(ST_Boundary(geometry)) as VARCHAR(320)) Boundary
FROM sample_geoms

Results
ID BOUNDARY
------- --
 1 LINESTRING (40.00000000 120.00000000, 90.00000000 120.00000000,

120 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

 90.00000000 150.00000000, 40.00000000 150.00000000, 40.00000000
 120.00000000)

 2 MULTILINESTRING ((40.00000000 120.00000000, 90.00000000 120.00000000,
 90.00000000 150.00000000, 40.00000000 150.00000000, 40.00000000
 120.00000000),(70.00000000 130.00000000, 70.00000000 140.00000000,
 80.00000000 140.00000000, 80.00000000 130.00000000, 70.00000000
 130.00000000))

 3 MULTIPOINT (60.00000000 60.00000000, 70.00000000 70.00000000)

 4 MULTIPOINT (50.00000000 50.00000000, 70.00000000 70.00000000,
 80.00000000 80.00000000, 90.00000000 90.00000000)

 5 POINT EMPTY

ST_Buffer
ST_Buffer takes a geometry, a distance, and, optionally, a unit as input parameters and returns the
geometry that surrounds the given geometry by the specified distance, measured in the given unit.

Each point on the boundary of the resulting geometry is the specified distance away from the given
geometry. The resulting geometry is represented in the spatial reference system of the given geometry.

Any circular curve in the boundary of the resulting geometry is approximated by linear strings. For
example, the buffer around a point, which would result in a circular region, is approximated by a polygon
whose boundary is a linestring.

If the given geometry is null or is empty, null will be returned.

Note: After you apply APAR PM92224, the results that are returned by the ST_Buffer function might be
different than before the APAR was applied.

Syntax
db2gse.ST_Buffer (geometry , distance

, unit

)

Parameter
geometry

A value of one of the seven distinct spatial data types that represents the geometry to create the
buffer around.

distance
A DOUBLE PRECISION value that specifies the distance to be used for the buffer around geometry.

unit
A VARCHAR(128) value that identifies the unit in which distance is measured. The supported units of
measure are listed in the DB2GSE.ST_UNITS_OF_MEASURE catalog view.

If the unit parameter is omitted, the following rules are used to determine the unit of measure that is used
for distance:

• If geometry is in a projected or geocentric coordinate system, the linear unit associated with this
coordinate system is the default.

• If geometry is in a geographic coordinate system, the angular unit associated with this coordinate
system is the default.

• If geometry is in a geographic coordinate system, and a linear unit is specified, the geometry type must
be ST_Point. If the distance is shorter than 1 meter, ST_Buffer regards the distance as 1 meter.

Restrictions on unit conversions: An error (SQLSTATE 38SU4) is returned if any of the following
conditions occur:

Chapter 12. Spatial functions: syntax and parameters 121

• The geometry is in an unspecified coordinate system and the unit parameter is specified.
• The geometry is in a projected coordinate system and an angular unit is specified.
• The geometry in the geographic coordinate system is not ST_Point, and a linear unit is specified.

Return type
db2gse.ST_Geometry

Examples
In the following examples, the results have been reformatted for readability.

Example 1

The following code creates a spatial reference system, creates the SAMPLE_GEOMETRIES table, and
populates it.

DSN5SCLP /create_srs STLEC1 -srsId 4000 -srsName new_york1983
 -xOffset 0 -yOffset 0 -xScale 1 -yScale 1
 -coordsysName NAD_1983_StatePlane_New_York_East_FIPS_3101_Feet

SET CURRENT PATH = CURRENT PATH, db2gse;

CREATE TABLE
 sample_geometries (id INTEGER, spatial_type varchar(18),
 geometry ST_GEOMETRY);

INSERT INTO sample_geometries(id, spatial_type, geometry)
VALUES
 (1, 'st_point', ST_GEOMETRY(ST_Point(50, 50, 4000)));

INSERT INTO sample_geometries(id, spatial_type, geometry)
VALUES
 (2, 'st_linestring',
 ST_GEOMETRY(ST_LineString('linestring(200 100, 210 130,
 220 140)', 4000)));

INSERT INTO sample_geometries(id, spatial_type, geometry)
VALUES
 (3, 'st_polygon',
 ST_GEOMETRY(ST_Polygon('polygon((110 120, 110 140, 130 140,
 130 120, 110 120))',4000)));

INSERT INTO sample_geometries(id, spatial_type, geometry)
VALUES
 (4, 'st_multipolygon',
 ST_GEOMETRY(ST_MultiPolygon('multipolygon(((30 30, 30 40,
 35 40, 35 30, 30 30),(35 30, 35 40, 45 40,
 45 30, 35 30)))', 4000)));

Example 2

The following SELECT statement uses the ST_Buffer function to apply a buffer of 10.

SELECT id, spatial_type,
 cast(ST_AsText(ST_Buffer(geometry, 10)) AS varchar(470)) AS buffer_10
FROM sample_geometries

Results:

ID SPATIAL_TYPE BUFFER_10
----------- ------------------ --
1 st_point POLYGON ((60 50, 59 55, 54 59, 49
 60, 44 58, 41 53, 40 48, 42 43, 47 41, 52 40, 57 42, 60 50))

2 st_linestring POLYGON ((230 140, 229 145, 224 149,
 219 150, 213 147, 203 137, 201 133, 191 103, 191 99, 192 95,
 196 91, 200 91, 204 91, 209 97, 218 124, 227 133, 230 140))

122 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

3 st_polygon POLYGON ((140 120, 140 140, 139 145,
 130 150, 110 150, 105 149, 100 140, 100 120, 101 115, 110 110,
 130 110, 135 111, 140 120))

4 st_multipolygon POLYGON ((55 30, 55 40, 54 45, 45
 50, 30 50, 25 49, 20 40, 20 30, 21 25, 30 20, 45 20, 50 21, 55 30))

Example 3

The following SELECT statement uses the ST_Buffer function to apply a negative buffer of 5.

SELECT id, spatial_type,
 cast(ST_AsText(ST_Buffer(geometry, -5)) AS varchar(150))
 AS buffer_negative_5
FROM sample_geometries
WHERE id = 3

Results:

ID SPATIAL_TYPE BUFFER_NEGATIVE_5
----------- ------------------ --------------------------------------
3 st_polygon POLYGON ((115 125, 125 125, 125 135,
 115 135, 115 125))

Example 4

The following SELECT statement shows the result of applying a buffer with the unit parameter specified.

SELECT id, spatial_type,
 cast(ST_AsText(ST_Buffer(geometry, 10, 'METER')) AS varchar(680))
 AS buffer_10_meter
FROM sample_geometries
WHERE id = 3

Results:

ID SPATIAL_TYPE BUFFER_10_METER
----------- ------------------ --------------------------------------
3 st_polygon POLYGON ((163 120, 163 140, 162 149,
 159 157, 152 165, 143 170, 130 173, 110 173, 101 172, 92 167,
 84 160, 79 151, 77 140, 77 120, 78 111, 83 102, 90 94, 99 89,
 110 87, 130 87, 139 88, 147 91, 155 98, 160 107, 163 120))

ST_Centroid
ST_Centroid takes a geometry as an input parameter and returns the geometric center, which is the center
of the minimum bounding rectangle of the given geometry, as a point. The resulting point is represented in
the spatial reference system of the given geometry.

If the given geometry is null or is empty, then null is returned.

Syntax
db2gse.ST_Centroid (geometry)

Chapter 12. Spatial functions: syntax and parameters 123

Parameter
geometry

A value of one of the seven distinct spatial data types that represents the geometry to determine the
geometric center.

Return type
db2gse.ST_Point

Example
This example creates two geometries and finds the centroid of them.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES
 (1, ST_Polygon('polygon
 ((40 120, 90 120, 90 150, 40 150, 40 120),
 (50 130, 80 130, 80 140, 50 140, 50 130))',0))

INSERT INTO sample_geoms VALUES
 (2, ST_MultiPoint('multipoint(10 10, 50 10, 10 30)' ,0))

SELECT id, CAST(ST_AsText(ST_Centroid(geometry))
 as VARCHAR(40)) Centroid
FROM sample_geoms

Results:

ID CENTROID
----------- --
 1 POINT (65.00000000 135.00000000)
 2 POINT (30.00000000 20.00000000)

ST_Contains
ST_Contains takes two geometries as input parameter and returns 1 if the first geometry completely
contains the second; otherwise it returns 0 (zero) to indicate that the first geometry does not completely
contain the second.

If any of the given geometries is null or is empty, then null is returned.

If the second geometry is not represented in the same spatial reference system as the first geometry, it
will be converted to the other spatial reference system.

Syntax
db2gse.ST_Contains (geometry1 , geometry2)

Parameter
geometry1

A value of one of the seven distinct spatial data types that represents the geometry that is to be tested
to completely contain geometry2.

geometry2
A value of one of the seven distinct spatial data types that represents the geometry that is to be tested
to be completely within geometry1.

124 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Return type
INTEGER

Examples
Example 1

The following code creates and populates these tables.

SET CURRENT PATH = CURRENT PATH, db2gse;

CREATE TABLE sample_points(id SMALLINT, geometry ST_POINT);

CREATE TABLE sample_lines(id SMALLINT, geometry ST_LINESTRING);

CREATE TABLE sample_polygons(id SMALLINT, geometry ST_POLYGON);

INSERT INTO sample_points (id, geometry)
VALUES
 (1, ST_Point(10, 20, 1));

INSERT INTO sample_points (id, geometry)
VALUES
 (2, ST_Point('point(41 41)', 1));

INSERT INTO sample_lines (id, geometry)
VALUES
 (10, ST_LineString('linestring (1 10, 3 12, 10 10)', 1));

INSERT INTO sample_lines (id, geometry)
VALUES
 (20, ST_LineString('linestring (50 10, 50 12, 45 10)', 1));

INSERT INTO sample_polygons(id, geometry)
VALUES
 (100, ST_Polygon('polygon((0 0, 0 40, 40 40, 40 0, 0 0))', 1));

Example 2

The following code fragment uses the ST_Contains function to determine which points are contained by a
particular polygon.

SELECT poly.id AS polygon_id,
 CASE ST_Contains(poly.geometry, pts.geometry)
 WHEN 0 THEN 'does not contain'
 WHEN 1 THEN 'does contain'
 END AS contains,
 pts.id AS point_id
FROM sample_points pts, sample_polygons poly;

Results:

POLYGON_ID CONTAINS POINT_ID
---------- ---------------- --------
 100 does contain 1
 100 does not contain 2

Example 3

The following code fragment uses the ST_Contains function to determine which lines are contained by a
particular polygon.

SELECT poly.id AS polygon_id,
 CASE ST_Contains(poly.geometry, line.geometry)
 WHEN 0 THEN 'does not contain'
 WHEN 1 THEN 'does contain'

Chapter 12. Spatial functions: syntax and parameters 125

 END AS contains,
 line.id AS line_id
FROM sample_lines line, sample_polygons poly;

Results:

POLYGON_ID CONTAINS LINE_ID
---------- ---------------- -------
 100 does contain 10
 100 does not contain 20

ST_ConvexHull
ST_ConvexHull takes a geometry as an input parameter and returns the convex hull of it.

The resulting geometry is represented in the spatial reference system of the given geometry.

If possible, the specific type of the returned geometry will be ST_Point, ST_LineString, or ST_Polygon. For
example, the boundary of a polygon with no holes is a single linestring, represented as ST_LineString.
The boundary of a polygon with one or more holes consists of multiple linestrings, represented as
ST_MultiLineString.

If the given geometry is null or is empty, then null is returned.

Syntax

db2gse.ST_ConvexHull (geometry)

Parameter
geometry

A value of one of the seven distinct spatial data types that represents the geometry to compute the
convex hull.

Return type
db2gse.ST_Geometry

Example
In the following example, the lines of results have been reformatted for readability. The spacing in your
results will vary according to your online display.

The following code creates and populates the SAMPLE_GEOMETRIES table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries(id INTEGER, spatial_type varchar(18),
 geometry ST_GEOMETRY)

INSERT INTO sample_geometries(id, spatial_type, geometry)
 VALUES (1, 'ST_LineString', ST_LineString
 ('linestring(20 20, 30 30, 20 40, 30 50)', 0)),
INSERT INTO sample_geometries(id, spatial_type, geometry)
 VALUES (2, 'ST_Polygon', ST_Polygon('polygon
 ((110 120, 110 140, 120 130, 110 120))', 0)),
INSERT INTO sample_geometries(id, spatial_type, geometry)
 VALUES (3, 'ST_Polygon', ST_Polygon('polygon((30 30, 25 35, 15 50,
 35 80, 40 85, 80 90,70 75, 65 70, 55 50, 75 40, 60 30,
 30 30))', 0)),
INSERT INTO sample_geometries(id, spatial_type, geometry)
 VALUES (4, 'ST_MultiPoint', ST_MultiPoint('multipoint(20 20, 30 30,

126 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

 20 40, 30 50)', 1))

The following SELECT statement calculates the convex hull for all of the geometries that are constructed
above and displays the result.

SELECT id, spatial_type, cast(ST_AsText(ST_ConvexHull(g))
AS varchar(300)) "convexhull"
FROM sample_geometries

Results:

ID SPATIAL_TYPE CONVEXHULL
----- ------------------ --
 1 ST_LineString POLYGON ((20.00000000 40.00000000,
 20.00000000 20.00000000, 30.00000000
 30.00000000, 30.00000000 50.00000000,
 20.00000000 40.00000000))

 2 ST_Polygon POLYGON ((110.00000000 140.00000000,
 110.00000000 120.00000000, 120.00000000
 130.00000000, 110.00000000 140.00000000))

 3 ST_Polygon POLYGON ((15.00000000 50.00000000,
 25.00000000 35.00000000, 30.00000000
 30.00000000, 60.00000000 30.00000000,
 75.00000000 40.00000000, 80.00000000
 90.00000000, 40.00000000 85.00000000,
 35.00000000 80.00000000, 15.00000000
 50.00000000))

 4 ST_MultiPoint POLYGON ((20.00000000 40.00000000,
 20.00000000 20.00000000, 30.00000000
 30.00000000, 30.00000000 50.00000000,
 20.00000000 40.00000000))

ST_CoordDim
ST_CoordDim takes a geometry as an input parameter and returns the dimensionality of its coordinates.

If the given geometry does not have Z and M coordinates, the dimensionality is 2. If the given
geometry has Z coordinates and no M coordinates, or if it has M coordinates and no Z coordinates, the
dimensionality is 3. If it has Z and M coordinates, the dimensionality is 4. If the geometry is null, then null
is returned.

Syntax
db2gse.ST_CoordDim (geometry)

Parameter
geometry

A value of one of the seven distinct spatial data types that represents the geometry to retrieve the
dimensionality from.

Return type
INTEGER

Example
The following example creates several geometries and then determines the dimensionality of their
coordinates.

Chapter 12. Spatial functions: syntax and parameters 127

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_geoms (id CHARACTER(15), geometry ST_Geometry)

INSERT INTO sample_geoms VALUES
 ('Empty Point', ST_Geometry('point EMPTY',0))

INSERT INTO sample_geoms VALUES
 ('Linestring', ST_Geometry('linestring (10 10, 15 20)',0))

INSERT INTO sample_geoms VALUES
 ('Polygon', ST_Geometry('polygon((40 120, 90 120, 90 150,
 40 150, 40 120))' ,0))

INSERT INTO sample_geoms VALUES
 ('Multipoint M', ST_Geometry('multipoint m (10 10 5, 50 10
 6, 10 30 8)' ,0))

INSERT INTO sample_geoms VALUES
 ('Multipoint Z', ST_Geometry('multipoint z (47 34 295,
 23 45 678)' ,0))

INSERT INTO sample_geoms VALUES
 ('Point ZM', ST_Geometry('point zm (10 10 16 30)' ,0))

SELECT id, ST_CoordDim(geometry) COORDDIM
FROM sample_geoms

Results:

ID COORDDIM
--------------- -----------
Empty Point 2
Linestring 2
Polygon 2
Multipoint M 3
Multipoint Z 3
Point ZM 4

ST_Crosses
ST_Crosses takes two geometries as input parameters and returns 1 if the first geometry crosses the
second. Otherwise, 0 (zero) is returned.

If the second geometry is not represented in the same spatial reference system as the first geometry, it
will be converted to the other spatial reference system.

If the first geometry is a polygon or a multipolygon, or if the second geometry is a point or multipoint,
or if any of the geometries is null value or is empty, then null is returned. If the intersection of the two
geometries results in a geometry that has a dimension that is one less than the maximum dimension of
the two given geometries, and if the resulting geometry is not equal any of the two given geometries, then
1 is returned. Otherwise, the result is 0 (zero).

Syntax
db2gse.ST_Crosses (geometry1 , geometry2)

Parameter
geometry1

A value of one of the seven distinct spatial data types that represents the geometry that is to be tested
for crossing geometry2.

128 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

geometry2
A value of one of the seven distinct spatial data types that represents the geometry that is to be tested
to determine if it is crossed by geometry1.

Return Type
INTEGER

Example
This code determines if the constructed geometries cross each other.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry);

INSERT INTO sample_geoms VALUES
 (1, ST_Geometry(ST_Polygon('polygon((30 30, 30 50, 50 50, 50 30,
 30 30))' ,0)));

INSERT INTO sample_geoms VALUES
 (2, ST_Geometry(ST_Linestring('linestring(40 50, 50 40)' ,0)));

INSERT INTO sample_geoms VALUES
 (3, ST_Geometry(ST_Linestring('linestring(20 20, 60 60)' ,0)));

SELECT a.id, b.id, ST_Crosses(a.geometry, b.geometry) Crosses
FROM sample_geoms a, sample_geoms b;

Results:

ID ID CROSSES
----------- ----------- -----------
 1 1 -
 2 1 0
 3 1 1
 1 2 -
 2 2 0
 3 2 1
 1 3 -
 2 3 1
 3 3 0

ST_Difference
ST_Difference takes two geometries as input parameters and returns the part of the first geometry that
does not intersect with the second geometry.

Both geometries must be of the same dimension. If either geometry is null, null is returned. If the first
geometry is empty, an empty geometry of type ST_Point is returned. If the second geometry is empty,
then the first geometry is returned unchanged.

If the second geometry is not represented in the same spatial reference system as the first geometry, it
will be converted to the other spatial reference system.

Syntax
db2gse.ST_Difference (geometry1 , geometry2)

Chapter 12. Spatial functions: syntax and parameters 129

Parameter
geometry1

A value of one of the seven distinct spatial data types that represents the first geometry to use to
compute the difference to geometry2.

geometry2
A value of one of the seven distinct spatial data types that represents the second geometry that is
used to compute the difference to geometry1.

Return type
db2gse.ST_Geometry

The dimension of the returned geometry is the same as that of the input geometries.

Examples
In the following examples, the results have been reformatted for readability. The spacing in your results
will vary according to your display.

Example 1

The following example creates and populates the SAMPLE_GEOMETRIES table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES
 (1, ST_Geometry('polygon((10 10, 10 20, 20 20, 20 10, 10 10))' ,0))

INSERT INTO sample_geoms VALUES
 (2, ST_Geometry('polygon((30 30, 30 50, 50 50, 50 30, 30 30))' ,0))

INSERT INTO sample_geoms VALUES
 (3, ST_Geometry('polygon((40 40, 40 60, 60 60, 60 40, 40 40))' ,0))

INSERT INTO sample_geoms VALUES
 (4, ST_Geometry('linestring(70 70, 80 80)' ,0))

INSERT INTO sample_geoms VALUES
 (5, ST_Geometry('linestring(75 75, 90 90)' ,0))

Example 2

This example finds the difference between two disjoint polygons.

SELECT a.id, b.id, CAST(ST_AsText(ST_Difference(a.geometry, b.geometry))
 as VARCHAR(200)) Difference
FROM sample_geoms a, sample_geoms b
WHERE a.id = 1 and b.id = 2

Results:

ID ID DIFFERENCE
-------- -------- --
 1 2 POLYGON ((10.00000000 10.00000000, 20.00000000
 10.00000000, 20.00000000 20.00000000,
 10.00000000 20.00000000, 10.00000000 10.00000000))

Example 3

This example finds the difference between two intersecting polygons.

130 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

SELECT a.id, b.id, CAST(ST_AsText(ST_Difference(a.geometry, b.geometry))
 as VARCHAR(200)) Difference
FROM sample_geoms a, sample_geoms b
WHERE a.id = 2 and b.id = 3

Results:

ID ID DIFFERENCE
-------- -------- ---
 2 3 POLYGON ((30.00000000 30.00000000, 50.00000000
 30.00000000, 50.00000000 40.00000000, 40.00000000
 40.00000000, 40.00000000 50.00000000, 30.00000000
 50.00000000, 30.00000000 30.00000000))

Example 4

This example finds the difference between two overlapping linestrings.

SELECT a.id, b.id, CAST(ST_AsText(ST_Difference(a.geometry, b.geometry))
 as VARCHAR(100)) Difference
FROM sample_geoms a, sample_geoms b
WHERE a.id = 4 and b.id = 5

Results:

ID ID DIFFERENCE
-------- -------- --
 4 5 LINESTRING (70.00000000 70.00000000, 75.00000000
 75.00000000)

ST_Dimension
ST_Dimension takes a geometry as an input parameter and returns its dimension.

If the given geometry is empty, then -1 is returned. For points and multipoints, the dimension is 0 (zero);
for linestrings and multilinestrings, the dimension is 1; and for polygons and multipolygons, the dimension
is 2. If the given geometry is null, then null is returned.

Syntax
db2gse.ST_Dimension (geometry)

Parameter
geometry

A value of one of the seven distinct spatial data types that represents the geometry for which the
dimension is returned.

Return type
INTEGER

Example
The following example creates several different geometries and finds their dimensions.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

Chapter 12. Spatial functions: syntax and parameters 131

CREATE TABLE sample_geoms (id char(15), geometry ST_Geometry)

INSERT INTO sample_geoms VALUES
 ('Empty Point', ST_Geometry('point EMPTY',0))

INSERT INTO sample_geoms VALUES
 ('Point ZM', ST_Geometry('point zm (10 10 16 30)' ,0))

INSERT INTO sample_geoms VALUES
 ('MultiPoint M', ST_Geometry('multipoint m (10 10 5,
 50 10 6, 10 30 8)' ,0))

INSERT INTO sample_geoms VALUES
 ('LineString', ST_Geometry('linestring (10 10, 15 20)',0))

INSERT INTO sample_geoms VALUES
 ('Polygon', ST_Geometry('polygon((40 120, 90 120, 90 150,
 40 150, 40 120))' ,0))

SELECT id, ST_Dimension(geometry) Dimension
FROM sample_geoms

Results:

ID DIMENSION
--------------- -----------
Empty Point -1
Point ZM 0
MultiPoint M 0
LineString 1
Polygon 2

ST_Disjoint
ST_Disjoint takes two geometries as input parameters and returns 1 if the given geometries do not
intersect. If the geometries do intersect, then 0 (zero) is returned.

If the second geometry is not represented in the same spatial reference system as the first geometry, it
will be converted to the other spatial reference system.

If any of the two geometries is null or is empty, then null value is returned.

Syntax
db2gse.ST_Disjoint (geometry1 , geometry2)

Parameter
geometry1

A value of one of the seven distinct spatial data types that represents the geometry that is tested to be
disjoint with geometry2.

geometry2
A value of one of the seven distinct spatial data types that represents the geometry that is tested to be
disjoint with geometry1.

Return type
INTEGER

Examples
Example 1

132 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

This code creates several geometries in the SAMPLE_GEOMETRIES table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES
 (1, ST_Geometry(ST_Polygon('polygon((20 30, 30 30, 30 40, 20 40, 20 30))',
 0)))

INSERT INTO sample_geoms VALUES
 (2, ST_Geometry(ST_Polygon('polygon((30 30, 30 50, 50 50, 50 30, 30 30))',
 0)))

INSERT INTO sample_geoms VALUES
 (3, ST_Geometry(ST_Polygon('polygon((40 40, 40 60, 60 60, 60 40, 40 40))',
 0)))

INSERT INTO sample_geoms VALUES
 (4, ST_Geometry(ST_Linestring('linestring(60 60, 70 70)' ,0)))

INSERT INTO sample_geoms VALUES
 (5, ST_Geometry(ST_Linestring('linestring(30 30, 40 40)' ,0)))

Example 2

This example determines if the first polygon is disjoint from any of the geometries.

SELECT a.id, b.id, ST_Disjoint(a.geometry, b.geometry) DisJoint
FROM sample_geoms a, sample_geoms b
WHERE a.id = 1

Results:

ID ID DISJOINT
----------- ----------- -----------
 1 1 0
 1 2 0
 1 3 1
 1 4 1
 1 5 0

Example 3

This example determines if the third polygon is disjoint from any of the geometries.

SELECT a.id, b.id, ST_Disjoint(a.geometry, b.geometry) DisJoint
FROM sample_geoms a, sample_geoms b
WHERE a.id = 3

Results:

ID ID DISJOINT
----------- ----------- -----------
 3 1 1
 3 2 0
 3 3 0
 3 4 0
 3 5 0

Example 4

This example determines if the second linestring is disjoint from any of the geometries.

SELECT a.id, b.id, ST_Disjoint(a.geometry, b.geometry) DisJoint

Chapter 12. Spatial functions: syntax and parameters 133

FROM sample_geoms a, sample_geoms b
WHERE a.id = 5

Results:

ID ID DISJOINT
----------- ----------- -----------
 5 1 0
 5 2 0
 5 3 0
 5 4 1
 5 5 0

ST_Distance
ST_Distance takes two geometries and, optionally, a unit as input parameters and returns the shortest
distance between any point in the first geometry to any point in the second geometry, measured in the
default or given units.

If any of the two geometries is null or is empty, null is returned.

If the second geometry is not represented in the same spatial reference system as the first geometry, it
will be converted to the other spatial reference system.

Note: After you apply APAR PM92224, the results that are returned by the ST_Distance function might be
different than before the APAR was applied, unless the function uses point data exclusively.

Syntax
db2gse.ST_Distance (geometry1 , geometry2

, unit

)

Parameter
geometry1

A value of one of the seven distinct spatial data types that represents the geometry that is used to
compute the distance to geometry2.

geometry2
A value of one of the seven distinct spatial data types that represents the geometry that is used to
compute the distance to geometry1.

unit
VARCHAR(128) value that identifies the unit in which the result is measured. The supported units of
measure are listed in the DB2GSE.ST_UNITS_OF_MEASURE catalog view.

If the unit parameter is omitted, the following rules are used to determine the unit of measure used for
the result:

• If geometry1 is in a projected or geocentric coordinate system, the linear unit associated with this
coordinate system is the default.

• If geometry1 is in a geographic coordinate system, the angular unit associated with this coordinate
system is the default.

If the geometry is in a geographic coordinate system, you can specify a linear unit as the value.

Restrictions on unit conversions: An error (SQLSTATE 38SU4) is returned if any of the following
conditions occur:

• The geometry is in an unspecified coordinate system and the unit parameter is specified.
• The geometry is in a projected coordinate system and an angular unit is specified.

134 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Return type
DOUBLE

Examples
Example 1

The following SQL statements create and populate the SAMPLE_GEOMETRIES1 and
SAMPLE_GEOMETRIES2 tables.

SET CURRENT PATH = CURRENT PATH, db2gse;

CREATE TABLE sample_geometries1(id SMALLINT, spatial_type varchar(13),
 geometry ST_GEOMETRY);

CREATE TABLE sample_geometries2(id SMALLINT, spatial_type varchar(13),
 geometry ST_GEOMETRY);

INSERT INTO sample_geometries1(id, spatial_type, geometry)
VALUES
 (1, 'ST_Point', ST_GEOMETRY(ST_Point('point(100 100)', 1)));

INSERT INTO sample_geometries1(id, spatial_type, geometry)
VALUES
 (10, 'ST_LineString', ST_GEOMETRY(ST_LineString('linestring(125 125,
 125 175)', 1)));

INSERT INTO sample_geometries1(id, spatial_type, geometry)
VALUES
 (20, 'ST_Polygon', ST_GEOMETRY(ST_Polygon('polygon
 ((50 50, 50 150, 150 150, 150 50, 50 50))', 1)));

INSERT INTO sample_geometries2(id, spatial_type, geometry)
VALUES
 (101, 'ST_Point', ST_GEOMETRY(ST_Point('point(200 200)', 1)));

INSERT INTO sample_geometries2(id, spatial_type, geometry)
VALUES
 (102, 'ST_Point', ST_GEOMETRY(ST_Point('point(200 300)', 1)));

INSERT INTO sample_geometries2(id, spatial_type, geometry)
VALUES
 (103, 'ST_Point', ST_GEOMETRY(ST_Point('point(200 0)', 1)));

INSERT INTO sample_geometries2(id, spatial_type, geometry)
VALUES
 (110, 'ST_LineString', ST_GEOMETRY(ST_LineString('linestring(200 100,
 200 200)', 1)));

INSERT INTO sample_geometries2(id, spatial_type, geometry)
VALUES
 (120, 'ST_Polygon', ST_GEOMETRY(ST_Polygon('polygon
 ((200 0, 200 200, 300 200, 300 0, 200 0))', 1)));

Example 2

The following SELECT statement calculates the distance between the various geometries in the
SAMPLE_GEOMETRIES1 and SAMPLE_GEOMETRIES2 tables.

SELECT sg1.id AS sg1_id, sg1.spatial_type AS sg1_type,
 sg2.id AS sg1_id, sg2.spatial_type AS sg2_type,
 cast(ST_Distance(sg1.geometry, sg2.geometry)
 AS Decimal(8, 4)) AS distance
FROM sample_geometries1 sg1, sample_geometries2 sg2
ORDER BY sg1.id;

Results:

SG1_ID SG1_TYPE SG1_ID SG2_TYPE DISTANCE
------ ------------- ------ ------------- ----------

Chapter 12. Spatial functions: syntax and parameters 135

 1 ST_Point 101 ST_Point 141.4213
 1 ST_Point 102 ST_Point 223.6067
 1 ST_Point 103 ST_Point 141.4213
 1 ST_Point 110 ST_LineString 100.0000
 1 ST_Point 120 ST_Polygon 100.0000
 10 ST_LineString 101 ST_Point 79.0569
 10 ST_LineString 102 ST_Point 145.7737
 10 ST_LineString 103 ST_Point 145.7737
 10 ST_LineString 110 ST_LineString 75.0000
 10 ST_LineString 120 ST_Polygon 75.0000
 20 ST_Polygon 101 ST_Point 70.7106
 20 ST_Polygon 102 ST_Point 158.1138
 20 ST_Polygon 103 ST_Point 70.7106
 20 ST_Polygon 110 ST_LineString 50.0000
 20 ST_Polygon 120 ST_Polygon 50.0000

Example 3

The following SELECT statement illustrates how to find all the geometries that are within a distance of
100 of each other.

SELECT sg1.id AS sg1_id, sg1.spatial_type AS sg1_type,
 sg2.id AS sg1_id, sg2.spatial_type AS sg2_type,
 cast(ST_Distance(sg1.geometry, sg2.geometry)
 AS Decimal(8, 4)) AS distance
FROM sample_geometries1 sg1, sample_geometries2 sg2
WHERE ST_Distance(sg1.geometry, sg2.geometry) <= 100;

Results:

SG1_ID SG1_TYPE SG1_ID SG2_TYPE DISTANCE
------ ------------- ------ ------------- ----------
 1 ST_Point 110 ST_LineString 100.0000
 1 ST_Point 120 ST_Polygon 100.0000
 10 ST_LineString 101 ST_Point 79.0569
 10 ST_LineString 110 ST_LineString 75.0000
 10 ST_LineString 120 ST_Polygon 75.0000
 20 ST_Polygon 101 ST_Point 70.7106
 20 ST_Polygon 103 ST_Point 70.7106
 20 ST_Polygon 110 ST_LineString 50.0000
 20 ST_Polygon 120 ST_Polygon 50.0000

Example 4

The following SELECT statement calculates the distance in kilometers between the various geometries.

SAMPLE_GEOMETRIES1 and SAMPLE_GEOMETRIES2 tables.
SELECT sg1.id AS sg1_id, sg1.spatial_type AS sg1_type,
 sg2.id AS sg1_id, sg2.spatial_type AS sg2_type,
 cast(ST_Distance(sg1.geometry, sg2.geometry, 'KILOMETER')
 AS DECIMAL(10, 4)) AS distance
FROM sample_geometries1 sg1, sample_geometries2 sg2
ORDER BY sg1.id;

Results:

SG1_ID SG1_TYPE SG1_ID SG2_TYPE DISTANCE
------ ------------- ------ ------------- ------------
 1 ST_Point 101 ST_Point 12373.2168
 1 ST_Point 102 ST_Point 16311.3816
 1 ST_Point 103 ST_Point 9809.4713
 1 ST_Point 110 ST_LineString 1707.4463
 1 ST_Point 120 ST_Polygon 12373.2168
 10 ST_LineString 101 ST_Point 8648.2333
 10 ST_LineString 102 ST_Point 11317.3934
 10 ST_LineString 103 ST_Point 10959.7313
 10 ST_LineString 110 ST_LineString 3753.5862
 10 ST_LineString 120 ST_Polygon 10891.1254

136 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

 20 ST_Polygon 101 ST_Point 7700.5333
 20 ST_Polygon 102 ST_Point 15039.8109
 20 ST_Polygon 103 ST_Point 7284.8552
 20 ST_Polygon 110 ST_LineString 6001.8407
 20 ST_Polygon 120 ST_Polygon 14515.8872

ST_Endpoint
ST_Endpoint takes a linestring as an input parameter and returns the point that is the last point of the
linestring. The resulting point is represented in the spatial reference system of the given linestring.

If the given linestring is null or is empty, then null is returned.

Syntax
db2gse.ST_EndPoint (linestring)

Parameter
linestring

A value of type ST_Linestring that represents the geometry from which the last point is returned.

Return type
db2gse.ST_Point

Example
The SELECT statement finds the endpoint of each of the geometries in the SAMPLE_LINES table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_lines(id INTEGER, line ST_Linestring)

INSERT INTO sample_lines VALUES
 (1, ST_LineString('linestring (10 10, 5 5, 0 0, 10 0, 5 5, 0 10)', 0))

INSERT INTO sample_lines VALUES
 (2, ST_LineString('linestring z (0 0 4, 5 5 5, 10 10 6, 5 5 7)', 0))

SELECT id, CAST(ST_AsText(ST_EndPoint(line)) as VARCHAR(50)) Endpoint
FROM sample_lines

Results:

ID ENDPOINT
----------- --
 1 POINT (0.00000000 10.00000000)
 2 POINT Z (5.00000000 5.00000000 7.00000000)

Chapter 12. Spatial functions: syntax and parameters 137

ST_Envelope
ST_Envelope takes a geometry as an input parameter and returns an envelope around the geometry. The
envelope is a rectangle that is represented as a polygon.

If the given geometry is a point, a horizontal linestring, or a vertical linestring, then a rectangle, which is
slightly larger than the given geometry, is returned. Otherwise, the minimum bounding rectangle of the
geometry is returned as the envelope.

If the given geometry is null or is empty, then null is returned.

Syntax
db2gse.ST_Envelope (geometry)

Parameter
geometry

A value of one of the seven distinct spatial data types that represents the geometry to return the
envelope for.

Return type
db2gse.ST_Polygon

Example
In the following examples, the lines of results have been reformatted for readability.

This example creates several geometries and then determines their envelopes. For the non-empty point
and the linestring (which is horizontal), the envelope is a rectangle that is slightly larger than the
geometry.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry);

INSERT INTO sample_geoms VALUES
 (1, ST_Geometry(ST_Point('point EMPTY',0)));

INSERT INTO sample_geoms VALUES
 (2, ST_Geometry(ST_Point('point zm (10 10 16 30)' ,0)));

INSERT INTO sample_geoms VALUES
 (3, ST_Geometry(ST_Multipoint('multipoint m (10 10 5, 50 10 6,
 10 30 8)' ,0)));

INSERT INTO sample_geoms VALUES
 (4, ST_Geometry(ST_Linestring('linestring (10 10, 20 10)',0)));

INSERT INTO sample_geoms VALUES
 (5, ST_Geometry(ST_Polygon('polygon((40 120, 90 120, 90 150,
 40 150, 40 120))',0)));

SELECT id, CAST(ST_AsText(ST_Envelope(geometry)) as VARCHAR(160)) Envelope
FROM sample_geoms;

Results:

ID ENVELOPE
----------- ---
 1 -

 2 POLYGON ((9 9, 11 9, 11 11, 9 11, 9 9))

138 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

 3 POLYGON ((10 10, 50 10, 50 30, 10 30, 10 10))

 4 POLYGON ((10 9, 20 9, 20 11, 10 11, 10 9))

 5 POLYGON ((40 120, 90 120, 90 150, 40 150, 40 120))

ST_Equals
ST_Equals takes two geometries as input parameters and returns 1 if the geometries are equal. Otherwise
0 (zero) is returned. The order of the points used to define the geometry is not relevant for the test for
equality.

If the second geometry is not represented in the same spatial reference system as the first geometry, it
will be converted to the other spatial reference system.

If any of the two given geometries is null, then null is returned. If both of the geometries are empty, then 1
is returned. If one out of the two given geometries is empty, then 0 (zero) is returned.

Syntax
db2gse.ST_Equals (geometry1 , geometry2)

Parameter
geometry1

A value of one of the seven distinct spatial data types that represents the geometry that is to be
compared with geometry2.

geometry2
A value of one of the seven distinct spatial data types that represents the geometry that is to be
compared with geometry1.

Return type
INTEGER

Examples
Example 1

This example creates two polygons that have their coordinates in a different order. ST_Equal is used to
show that these polygons are considered equal.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry);

INSERT INTO sample_geoms VALUES
 (1, ST_Geometry(ST_Polygon('polygon((50 30, 30 30, 30 50, 50 50,
 50 30))' ,0)));

INSERT INTO sample_geoms VALUES
 (2, ST_Geometry(ST_Polygon('polygon((50 30, 50 50, 30 50, 30 30,
 50 30))' ,0)));

SELECT a.id, b.id, ST_Equals(a.geometry, b.geometry) Equals
FROM sample_geoms a, sample_geoms b
WHERE a.id = 1 and b.id = 2;

Results:

Chapter 12. Spatial functions: syntax and parameters 139

ID ID EQUALS
----------- ----------- -----------
 1 2 1

Example 2

In this example, two geometries are created with the same X and Y coordinates, but different M
coordinates (measures). When the geometries are compared with the ST_Equal function, a 0 (zero) is
returned to indicate that these geometries are not equal.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry);

INSERT INTO sample_geoms VALUES
 (3, ST_Geometry(ST_MultiPoint('multipoint m(80 80 6, 90 90 7)' ,0)));

INSERT INTO sample_geoms VALUES
 (4, ST_Geometry(ST_MultiPoint('multipoint m(80 80 6, 90 90 4)' ,0)));

SELECT a.id, b.id, ST_Equals(a.geometry, b.geometry) Equals
FROM sample_geoms a, sample_geoms b
WHERE a.id = 3 and b.id = 4;

Results:

ID ID EQUALS
----------- ----------- -----------
 3 4 0

Example 3

In this example, two geometries are created with a different set of coordinates, but both represent the
same geometry. ST_Equal compares the geometries and indicates that both geometries are indeed equal.

SET current path = current path, db2gse;
CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry);

INSERT INTO sample_geoms VALUES
 (5, ST_GEOMETRY(ST_LineString('linestring (10 10, 40 40)', 0)));

INSERT INTO sample_geoms VALUES
 (6, ST_GEOMETRY(ST_LineString('linestring (10 10, 20 20, 40 40)', 0)));

SELECT a.id, b.id, ST_Equals(a.geometry, b.geometry) Equals
FROM sample_geoms a, sample_geoms b
WHERE a.id = 5 AND b.id = 6;

Results:

ID ID EQUALS
----------- ----------- -----------
 5 6 1

ST_ExteriorRing
ST_ExteriorRing takes a polygon as an input parameter and returns its exterior ring as a linestring. The
resulting linestring is represented in the spatial reference system of the given polygon.

If the given polygon is null or is empty, then null is returned. If the polygon does not have any interior
rings, the returned exterior ring is identical to the boundary of the polygon.

140 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Syntax
db2gse.ST_ExteriorRing (polygon)

Parameter
polygon

A value of type ST_Polygon that represents the polygon for which the exterior ring is to be returned.

Return type
db2gse.ST_Linestring

Example
In the following examples, the lines of results have been reformatted for readability. The spacing in your
results will vary according to your online display.

This example creates two polygons, one with two interior rings and one with no interior rings, then it
determines their exterior rings.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys VALUES
 (1, ST_Polygon('polygon((40 120, 90 120, 90 150, 40 150, 40 120),
 (50 130, 60 130, 60 140, 50 140, 50 130),
 (70 130, 80 130, 80 140, 70 140, 70 130))' ,0))

INSERT INTO sample_polys VALUES
 (2, ST_Polygon('polygon((10 10, 50 10, 10 30, 10 10))' ,0))

SELECT id, CAST(ST_AsText(ST_ExteriorRing(geometry))
 AS VARCHAR(180)) Exterior_Ring
FROM sample_polys

Results:

ID EXTERIOR_RING
----------- --
 1 LINESTRING (40.00000000 120.00000000, 90.00000000
 120.00000000, 90.00000000 150.00000000, 40.00000000 150.00000000,
 40.00000000 120.00000000)

 2 LINESTRING (10.00000000 10.00000000, 50.00000000
 10.00000000, 10.00000000 30.00000000, 10.00000000 10.00000000)

ST_Geometry
The ST_Geometry function takes a geometry as an input parameter and casts the output type to
ST_Geometry.

If the given geometry is null, then null is returned.

Syntax
db2gse.ST_Geometry (geometry)

Chapter 12. Spatial functions: syntax and parameters 141

Parameter
geometry

A value of one of the seven distinct spatial data types.

Return type
db2gse.ST_Geometry

Examples
The following code example shows how you can use the ST_Geometry function to recast any spatial data
type.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_geometries(id INTEGER, geometry ST_GEOMETRY)
INSERT INTO sample_geometries(id, geometry)
 VALUES (7001, ST_Geometry(ST_point (point(1 2), 1))
INSERT INTO sample_geometries(id, geometry)
 VALUES (7002, ST_Geometry(ST_line string (linestring(33 2, 34 3,
 35 6), 1))
INSERT INTO sample_geometries(id, geometry)
 VALUES (7003, ST_Geometry(ST_polygon (polygon((3 3, 4 6, 5 3,
 3 3)), 1)))
SELECT id, cast(ST_AsText (geometry) AS varchar(120))
 AS geometry FROM sample_geometries

Results:

 ID GEOMETRY
----------- ----------------------
 7001 POINT (1.00000000 2.00000000)
 7002 LINESTRING (33.00000000 2.00000000, 34.00000000 3.00000000,
 35.00000000 6.00000000)
 7003 POLYGON ((3.00000000 3.00000000, 5.00000000 3.00000000,
 4.00000000 6.00000000, 3.00000000 3.00000000))

ST_GeometryN
ST_GeometryN takes a geometry type and an index as input parameters and returns the geometry in the
type that is identified by the index. The resulting geometry is represented in the spatial reference system
of the given geometry type.

If the given geometry is null or is empty, then null is returned.

Syntax
db2gse.ST_GeometryN (geometry , index)

Parameter
geometry

A value of type ST_MultiLineString, ST_MultiPolygon, or ST_MultiPoint that represents the geometry
type to locate the nth geometry within.

index
A value of type INTEGER that identifies the nth geometry that is to be returned from geometry.

If index is smaller than 1 or larger than the number of geometries in the collection, then null is
returned and a warning is returned (SQLSTATE 01HS0).

Return type
db2gse.ST_Geometry

142 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Example
The following code illustrates how to choose the second geometry inside a geometry type.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geomcollections (id INTEGER,
 geometry ST_Geometry)

INSERT INTO sample_geomcollections(id, geometry)
VALUES
 (4001, ST_Geometry(ST_MultiPoint('multipoint(1 2, 4 3)', 1))),
INSERT INTO sample_geomcollections(id, geometry)
VALUES
 (4002, ST_Geometry(ST_MultiLineString('multilinestring(
 (33 2, 34 3, 35 6),
 (28 4, 29 5, 31 8, 43 12),
 (39 3, 37 4, 36 7))', 1))),
INSERT INTO sample_geomcollections(id, geometry)
VALUES
 (4003, ST_Geometry(ST_MultiPolygon('multipolygon(((3 3, 4 6, 5 3, 3 3),
 (8 24, 9 25, 1 28, 8 24),
 (13 33, 7 36, 1 40, 10 43, 13 33)))', 1)))

SELECT id, cast(ST_AsText(ST_GeometryN(geometry, 2)) AS varchar(110))
 second_geometry
FROM sample_geomcollections

Results:

ID SECOND_GEOMETRY
----------- --
 4001 POINT (4.00000000 3.00000000)

 4002 LINESTRING (28.00000000 4.00000000, 29.00000000 5.00000000,
 31.00000000 8.00000000, 43.00000000 12.00000000)

 4003 POLYGON ((8.00000000 24.00000000, 9.00000000 25.00000000,
 1.00000000 28.00000000, 8.00000000 24.00000000))

ST_GeometryType
ST_GeometryType takes a geometry as the input parameter and returns the fully qualified type name of
the dynamic type of that geometry.

Syntax
db2gse.ST_GeometryType (geometry)

Parameter
geometry

A value of one of the seven distinct spatial data types for which the geometry type is to be returned.

Return type
CHAR(32)

Examples
The following code illustrates how to determine the type of a geometry.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

Chapter 12. Spatial functions: syntax and parameters 143

CREATE TABLE sample_geometries (id INTEGER, geometry ST_GEOMETRY)

INSERT INTO sample_geometries(id, geometry)
VALUES
 (7101, ST_Geometry('point(1 2)', 1)),
 (7102, ST_Geometry('linestring(33 2, 34 3, 35 6)', 1)),
 (7103, ST_Geometry('polygon((3 3, 4 6, 5 3, 3 3))', 1)),
 (7104, ST_Geometry('multipoint(1 2, 4 3)', 1))

SELECT id, geometry..ST_GeometryType AS geometry_type
FROM sample_geometries

Results:

ID GEOMETRY_TYPE
----------- -------------------------------
 7101 DB2GSE.ST_POINT
 7102 DB2GSE.ST_LINESTRING
 7103 DB2GSE.ST_POLYGON
 7104 DB2GSE.ST_MULTIPOINT

ST_GeomFromText
ST_GeomFromText takes a well-known text representation of a geometry and a spatial reference system
identifier as input parameters and returns the corresponding geometry.

If the given well-known text representation is null, then null is returned.

Syntax
db2gse.ST_GeomFromText (wkt

, srs_id

)

Parameter
wkt

A value of type CLOB(8M) that contains the well-known text representation of the resulting geometry.
If the well-known text representation is null, null is returned.

srs_id
A value of type INTEGER that identifies the spatial reference system for the resulting geometry. This
parameter is required.

If srs_id does not identify a spatial reference system that is listed in the catalog view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, an error is returned (SQLSTATE 38SU1).

Return type
db2gse.ST_Geometry

Example
In this example the ST_GeomFromText function is used to create and insert a geometry from a well known
text (WKT) point representation.

The following code inserts rows into the SAMPLE_POINTS table with IDs and geometries in spatial
reference system 1 using WKT representation.

SET CURRENT PATH = CURRENT PATH, db2gse

CREATE TABLE sample_geometries(id INTEGER, geometry ST_GEOMETRY)

144 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

INSERT INTO sample_geometries(id, geometry)
VALUES
 (1251, ST_GeomFromText('point(1 2)', 1)),
 (1252, ST_GeomFromText('linestring(33 2, 34 3, 35 6)', 1)),
 (1253, ST_GeomFromText('polygon((3 3, 4 6, 5 3, 3 3))', 1))

The following SELECT statement will return the ID and GEOMETRIES from the SAMPLE_GEOMETRIES
table.

SELECT id, cast(DB2GSE.ST_AsText(geometry) AS varchar(105))
 AS geometry
FROM sample_geometries

Results:

ID GEOMETRY
----------- ---
 1251 POINT (1.00000000 2.00000000)

 1252 LINESTRING (33.00000000 2.00000000, 34.00000000 3.00000000,
 35.00000000 6.00000000)

 1253 POLYGON ((3.00000000 3.00000000, 5.00000000 3.00000000,
 4.00000000 6.00000000, 3.00000000 3.00000000))

ST_GeomFromWKB
ST_GeomFromWKB takes a well-known binary representation of a geometry and a spatial reference
system identifier as input parameters and returns the corresponding geometry.

If the given well-known binary representation is null, null is returned.

Syntax
db2gse.ST_GeomFromWKB (wkb

, srs_id

)

Parameter
wkb

A value of type BLOB(4M) that contains the well-known binary representation of the resulting
geometry. If the well-known binary representation is null, null is returned.

srs_id
A value of type INTEGER that identifies the spatial reference system for the resulting geometry. This
parameter is required.

If the specified srs_id parameter does not identify a spatial reference system that is listed in the catalog
view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, an error is returned (SQLSTATE 38SU1).

Return type
db2gse.ST_Geometry

Examples
The following code illustrates how the ST_GeomFromWKB function can be used to create and insert a
geometry from a well-known binary (WKB) line representation.

Chapter 12. Spatial functions: syntax and parameters 145

The following example inserts a record into the SAMPLE_GEOMETRIES table with an ID and a geometry in
spatial reference system 1 in a WKB representation.

SET CURRENT PATH = CURRENT PATH, db2gse

CREATE TABLE sample_geometries (id INTEGER, geometry ST_GEOMETRY,
 wkb BLOB(32K))

INSERT INTO sample_geometries(id, geometry)
VALUES
 (1901, ST_GeomFromText('point(1 2)', 1)),
 (1902, ST_GeomFromText('linestring(33 2, 34 3, 35 6)', 1)),
 (1903, ST_GeomFromText('polygon((3 3, 4 6, 5 3, 3 3))', 1))

UPDATE sample_geometries AS temp_correlated
SET wkb = DB2GSE.ST_AsBinary(geometry)
WHERE id = temp_correlated.id

SELECT id, cast(DB2GSE.ST_AsText(ST_GeomFromWKB(wkb)) AS varchar(190))
 AS geometry
FROM sample_geometries

Results:

 ID
GEOMETRY
 ----------- --
1901 POINT (1.00000000 2.00000000)

1902 LINESTRING (33.00000000 2.00000000, 34.00000000
 3.00000000, 35.00000000 6.00000000)

1903 POLYGON ((3.00000000 3.00000000, 5.00000000 3.00000000,
 4.00000000 6.00000000, 3.00000000 3.00000000))

ST_GetIndexParms
ST_GetIndexParms takes the index schema, index name, and grid level value for a spatial index as input
parameters and returns the grid size that was used to define the index on the spatial column.

If there is no match found for the given input parameters, then null is returned.

Syntax
db2gse.ST_GetIndexParms (index_schema

null

, index_name , grid_level

)

Parameter
index_schema

A value of type VARCHAR(128) that identifies the schema in which the spatial index with the
unqualified name index_name is in.

If this parameter is null, then the value of the CURRENT SCHEMA special register is used as the
schema name for the spatial index.

index_name
A value of type VARCHAR(128) that contains the unqualified name of the spatial index for which the
index parameters are returned.

146 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

grid_level
An INTEGER value that identifies the parameter whose value or values are to be returned. If this value
is smaller than 1 or larger than 3, then an error is raised (SQLSTATE 38SQ1).

Return type
DOUBLE

Example
After creating a spatial index, you can use the following code example to return the grid size that was
used to define the index on the spatial column.

SELECT DB2GSE.ST_GETINDEXPARMS('schema', 'PT_IDX', 1)
FROM schema.DUMMY;

ST_InteriorRingN
ST_InteriorRingN takes a polygon and an index as input parameters and returns the interior ring identified
by the given index as a linestring. The interior rings are organized according to the rules defined by the
internal geometry verification routines.

If the given polygon is null or is empty, or if it does not have any interior rings, then null is returned.

Syntax
db2gse.ST_InteriorRingN (polygon , index)

Parameter
polygon

A value of type ST_Polygon that represents the geometry from which the interior ring identified by
index is returned.

index
A value of type INTEGER that identifies the nth interior ring that is returned. If there is no interior ring
identified by index, then a warning is returned (01HS1).

Return type
db2gse.ST_LineString

Example
In this example, a polygon is created with two interior rings. The ST_InteriorRingN call is then used to
retrieve the second interior ring.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys VALUES
 (1, ST_Polygon('polygon((40 120, 90 120, 90 150, 40 150, 40 120),
 (50 130, 60 130, 60 140, 50 140, 50 130),
 (70 130, 80 130, 80 140, 70 140, 70 130))' ,0))

SELECT id, CAST(ST_AsText(ST_InteriorRingN(geometry, 2)) as VARCHAR(180))
 Interior_Ring
FROM sample_polys

Results:

Chapter 12. Spatial functions: syntax and parameters 147

ID INTERIOR_RING
----------- --
 1 LINESTRING (70.00000000 130.00000000, 70.00000000 140.00000000,
80.00000000 140.00000000, 80.00000000 130.00000000, 70.00000000 130.00000000)

ST_Intersection
ST_Intersection takes two geometries as input parameters and returns the geometry that is the
intersection of the two given geometries. The intersection is the common part of the first geometry and
the second geometry. The resulting geometry is represented in the spatial reference system of the first
geometry.

If possible, the specific type of the returned geometry will be ST_Point, ST_LineString, or ST_Polygon.
For example, the intersection of a point and a polygon is either empty or a single point, represented as
ST_MultiPoint.

If any of the two geometries is null, null is returned.

If the second geometry is not represented in the same spatial reference system as the first geometry, it
will be converted to the other spatial reference system.

Syntax
db2gse.ST_Intersection (geometry1 , geometry2)

Parameter
geometry1

A value of one of the seven distinct spatial data types that represents the first geometry to compute
the intersection with geometry2.

geometry2
A value of one of the seven distinct spatial data types that represents the second geometry to
compute the intersection with geometry1.

Return type
db2gse.ST_Geometry

The dimension of the returned geometry is that of the input with the lower dimension.

Example
In the following example, the results have been reformatted for readability. The spacing in your results
will vary according to your display.

This example creates several different geometries and then determines the intersection (if any) with the
first one.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms
 VALUES (1, ST_Geometry(ST_Polygon('polygon((30 30, 30 50, 50 50,
 50 30, 30 30))' ,0)))

INSERT INTO sample_geoms
 VALUES (2, ST_Geometry(ST_Polygon('polygon((20 30, 30 30, 30 40,
 20 40, 20 30))' ,0)))

148 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

INSERT INTO sample_geoms
 VALUES (3, ST_Geometry(ST_Polygon('polygon((40 40, 40 60, 60 60,
 60 40, 40 40))' ,0)))

INSERT INTO sample_geoms
 VALUES (4, ST_Geometry(ST_LineString('linestring(60 60, 70 70)' ,0)))

INSERT INTO sample_geoms VALUES
 (5, ST_Geometry(ST_LineString('linestring(30 30, 60 60)' ,0)))

SELECT a.id, b.id, CAST(ST_AsText(ST_Intersection(a.geometry, b.geometry))
 as VARCHAR(150)) Intersection
FROM sample_geoms a, sample_geoms b
WHERE a.id = 1

Results:

ID ID INTERSECTION
----------- ----------- --
 1 1 POLYGON ((30.00000000 30.00000000, 50.00000000
30.00000000, 50.00000000 50.00000000, 30.00000000 50.00000000, 30.00000000
30.00000000))

 1 2 LINESTRING (30.00000000 40.00000000, 30.00000000
30.00000000)

 1 3 POLYGON ((40.00000000 40.00000000, 50.00000000
40.00000000, 50.00000000 50.00000000, 40.00000000 50.00000000, 40.00000000
40.00000000))

 1 4 POINT EMPTY

 1 5 LINESTRING (30.00000000 30.00000000, 50.00000000
50.00000000)

 5 record(s) selected.

ST_Intersects
ST_Intersects takes two geometries as input parameters and returns 1 if the given geometries intersect.
If the geometries do not intersect, 0 (zero) is returned.

If any of the two geometries is null or is empty, null is returned.

If the second geometry is not represented in the same spatial reference system as the first geometry, it
will be converted to the other spatial reference system.

Syntax
db2gse.ST_Intersects (geometry1 , geometry2)

Parameter
geometry1

A value of one of the seven distinct spatial data types that represents the geometry to test for
intersection with geometry2.

geometry2
A value of one of the seven distinct spatial data types that represents the geometry to test for
intersection with geometry1.

Return type
INTEGER

Chapter 12. Spatial functions: syntax and parameters 149

Example
The following statements create and populate the SAMPLE_GEOMETRIES1 and SAMPLE_GEOMETRIES2
tables.

SET CURRENT PATH = CURRENT PATH, db2gse;

CREATE TABLE sample_geometries1(id SMALLINT, spatial_type varchar(13),
 geometry ST_GEOMETRY);
CREATE TABLE sample_geometries2(id SMALLINT, spatial_type varchar(13),
 geometry ST_GEOMETRY);

INSERT INTO sample_geometries1(id, spatial_type, geometry)
VALUES
 (1, 'ST_Point', ST_GEOMETRY(ST_Point('point(550 150)', 1)));

INSERT INTO sample_geometries1(id, spatial_type, geometry)
VALUES
 (10, 'ST_LineString', ST_GEOMETRY(ST_LineString('linestring(800 800,
 900 800)', 1)));

INSERT INTO sample_geometries1(id, spatial_type, geometry)
VALUES
 (20, 'ST_Polygon', ST_GEOMETRY(ST_Polygon('polygon((500 100, 500 200, 700 200,
 700 100, 500 100))', 1)));

INSERT INTO sample_geometries2(id, spatial_type, geometry)
VALUES
 (101, 'ST_Point', ST_GEOMETRY(ST_Point('point(550 150)', 1)));

INSERT INTO sample_geometries2(id, spatial_type, geometry)
VALUES
 (102, 'ST_Point', ST_GEOMETRY(ST_Point('point(650 200)', 1)));

INSERT INTO sample_geometries2(id, spatial_type, geometry)
VALUES
 (103, 'ST_Point', ST_GEOMETRY(ST_Point('point(800 800)', 1)));

INSERT INTO sample_geometries2(id, spatial_type, geometry)
VALUES
 (110, 'ST_LineString', ST_GEOMETRY(ST_LineString('linestring(850 250,
 850 850)', 1)));

INSERT INTO sample_geometries2(id, spatial_type, geometry)
VALUES
 (120, 'ST_Polygon', ST_GEOMETRY(ST_Polygon('polygon((650 50, 650 150, 800 150,
 800 50, 650 50))', 1)));

INSERT INTO sample_geometries2(id, spatial_type, geometry)
VALUES
 (121, 'ST_Polygon', ST_GEOMETRY(ST_Polygon('polygon((20 20, 20 40, 40 40,
 40 20, 20 20))', 1)));

The following SELECT statement determines whether the various geometries in the
SAMPLE_GEOMETRIES1 and SAMPLE_GEOMETRIES2 tables intersect.

SELECT sg1.id AS sg1_id, sg1.spatial_type AS sg1_type,
 sg2.id AS sg2_id, sg2.spatial_type AS sg2_type,
 CASE ST_Intersects(sg1.geometry, sg2.geometry)
 WHEN 0 THEN 'Geometries do not intersect'
 WHEN 1 THEN 'Geometries intersect'
 END AS intersects
FROM sample_geometries1 sg1, sample_geometries2 sg2
ORDER BY sg1.id;

Results:

SG1_ID SG1_TYPE SG2_ID SG2_TYPE INTERSECTS
------ ------------- ------ ------------- ---------------------------
 1 ST_Point 101 ST_Point Geometries intersect
 1 ST_Point 102 ST_Point Geometries do not intersect
 1 ST_Point 103 ST_Point Geometries do not intersect

150 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

 1 ST_Point 110 ST_LineString Geometries do not intersect
 1 ST_Point 120 ST_Polygon Geometries do not intersect
 1 ST_Point 121 ST_Polygon Geometries do not intersect
 10 ST_LineString 101 ST_Point Geometries do not intersect
 10 ST_LineString 102 ST_Point Geometries do not intersect
 10 ST_LineString 103 ST_Point Geometries intersect
 10 ST_LineString 110 ST_LineString Geometries intersect
 10 ST_LineString 120 ST_Polygon Geometries do not intersect
 10 ST_LineString 121 ST_Polygon Geometries do not intersect
 20 ST_Polygon 101 ST_Point Geometries intersect
 20 ST_Polygon 102 ST_Point Geometries intersect
 20 ST_Polygon 103 ST_Point Geometries do not intersect
 20 ST_Polygon 110 ST_LineString Geometries do not intersect
 20 ST_Polygon 120 ST_Polygon Geometries intersect
 20 ST_Polygon 121 ST_Polygon Geometries do not intersect

ST_Is3D
ST_Is3D takes a geometry as an input parameter and returns 1 if the given geometry has Z coordinates.
Otherwise, 0 (zero) is returned.

If the given geometry is null or is empty, null is returned.

Syntax
db2gse.ST_Is3D (geometry)

Parameter
geometry

A value of one of the seven distinct spatial data types that represents the geometry that is to be tested
for the existence of Z coordinates.

Return type
INTEGER

Example
In this example, several geometries are created with and without Z coordinates and M coordinates
(measures). ST_Is3D is then used to determine which of them contain Z coordinates.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES
 (1, ST_Geometry(ST_Point('point EMPTY',0)))

INSERT INTO sample_geoms VALUES
 (2, ST_Geometry(ST_Polygon('polygon((40 120, 90 120, 90 150, 40 150, 40 120))' ,0)))

INSERT INTO sample_geoms VALUES
 (3, ST_Geometry(ST_Multipoint('multipoint m (10 10 5, 50 10 6, 10 30 8)' ,0)))

INSERT INTO sample_geoms VALUES
 (4, ST_Geometry(ST_Linestring('linestring z (10 10 166, 20 10 168)',0)))

INSERT INTO sample_geoms VALUES
 (5, ST_Geometry(ST_Point('point zm (10 10 16 30)' ,0)))

SELECT id, ST_Is3d(geometry) Is_3D
FROM sample_geoms

Results:

Chapter 12. Spatial functions: syntax and parameters 151

ID IS_3D
----------- -----------
 1 0
 2 0
 3 0
 4 1
 5 1

ST_IsClosed
ST_IsClosed takes a linestring or a multilinestring as an input parameter and returns 1 if the given
linestring or multilinestring is closed. Otherwise, 0 (zero) is returned.

A linestring is closed if the start point and end point are equal. If the linestring has Z coordinates, the
Z coordinates of the start point and end point must be equal. Otherwise, the points are not considered
equal, and the linestring is not closed. A multilinestring is closed if each of its linestrings are closed.

If the given linestring or multilinestring is empty, then 0 (zero) is returned. If the geometry is null, then
null is returned.

Syntax
db2gse.ST_IsClosed (geometry)

Parameter
geometry

A value of type ST_LineString or ST_MultiLineString that represents the linestring or multilinestring
that is to be tested.

Return type
INTEGER

Examples
Example 1

This example creates several linestrings. The last two linestrings have the same X and Y coordinates, but
one linestring contains varying Z coordinates that cause the linestring to not be closed, and the other
linestring contains varying M coordinates (measures) that do not affect whether the linestring is closed.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_lines (id INTEGER, geometry ST_Linestring)

INSERT INTO sample_lines VALUES
 (1, ST_Linestring('linestring EMPTY',0))

INSERT INTO sample_lines VALUES
 (2, ST_Linestring('linestring(10 10, 20 10, 20 20)' ,0))

INSERT INTO sample_lines VALUES
 (3, ST_Linestring('linestring(10 10, 20 10, 20 20, 10 10)' ,0))

INSERT INTO sample_lines VALUES
 (4, ST_Linestring('linestring m(10 10 1, 20 10 2, 20 20 3,
 10 10 4)' ,0))

INSERT INTO sample_lines VALUES
 (5, ST_Linestring('linestring z(10 10 5, 20 10 6, 20 20 7,
 10 10 8)' ,0))

152 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

SELECT id, ST_IsClosed(geometry) Is_Closed
FROM sample_lines

Results:

ID IS_CLOSED
----------- -----------
 1 0
 2 0
 3 1
 4 1
 5 0

Example 2

In this example, two multilinestrings are created. ST_IsClosed is used to determine if the multilinestrings
are closed. The first one is not closed, even though all of the curves together form a complete closed loop.
This is because each curve itself is not closed.

The second multilinestring is closed because each curve itself is closed.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_mlines (id INTEGER, geometry ST_MultiLinestring)
INSERT INTO sample_mlines VALUES
 (6, ST_MultiLinestring('multilinestring((10 10, 20 10, 20 20),
 (20 20, 30 20, 30 30),
 (30 30, 10 30, 10 10))',0))

INSERT INTO sample_mlines VALUES
 (7, ST_MultiLinestring('multilinestring((10 10, 20 10, 20 20, 10 10),
 (30 30, 50 30, 50 50,
 30 30))',0))

SELECT id, ST_IsClosed(geometry) Is_Closed
FROM sample_mlines

Results:

ID IS_CLOSED
----------- -----------
 6 0
 7 1

ST_IsEmpty
ST_IsEmpty takes a geometry as an input parameter and returns 1 if the given geometry is empty.
Otherwise 0 (zero) is returned.

A geometry is empty if it does not have any points that define it.

If the given geometry is null, then null is returned.

Syntax
db2gse.ST_IsEmpty (geometry)

Chapter 12. Spatial functions: syntax and parameters 153

Parameter
geometry

A value of one of the seven distinct spatial data types that represents the geometry that is to be
tested.

Return type
INTEGER

Example
The following example creates three geometries, and then determines if the geometries are empty.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES
 (1, ST_Geometry(ST_Point('point EMPTY',0)))

INSERT INTO sample_geoms VALUES
 (2, ST_Geometry(ST_Polygon('polygon((40 120, 90 120, 90 150,
 40 150, 40 120))' ,0)))

INSERT INTO sample_geoms VALUES
 (3, ST_Geometry(ST_MultiPoint('multipoint m (10 10 5, 50 10 6,
 10 30 8)' ,0)))

INSERT INTO sample_geoms VALUES
 (4, ST_Geometry(ST_LineString('linestring z (10 10 166,
 20 10 168)',0)))

INSERT INTO sample_geoms VALUES
 (5, ST_Geometry(ST_Point('point zm (10 10 16 30)' ,0)))

SELECT id, ST_IsEmpty(geometry) Is_Empty
FROM sample_geoms

Results:

ID IS_EMPTY
----------- -----------
 1 1
 2 0
 3 0
 4 0
 5 0

ST_IsMeasured
ST_IsMeasured takes a geometry as an input parameter and returns 1 if the given geometry has M
coordinates (measures). Otherwise 0 (zero) is returned.

If the given geometry is null or is empty, null is returned.

Syntax
db2gse.ST_IsMeasured (geometry)

154 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Parameter
geometry

A value of one of the seven distinct spatial data types that represents the geometry to be tested for
the existence of M coordinates (measures).

Return type
INTEGER

Example
In this example, several geometries are created with and without Z coordinates and M coordinates
(measures). ST_IsMeasured is then used to determine which of them contained measures.

SET CURRENT PATH = CURRENT PATH, db2gse
CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES
 (1, ST_Geometry(ST_Point('point EMPTY',0)))

INSERT INTO sample_geoms VALUES
 (2, ST_Geometry(ST_Polygon('polygon((40 120, 90 120, 90 150, 40 150, 40 120))' ,0)))

INSERT INTO sample_geoms VALUES
 (3, ST_Geometry(ST_Multipoint('multipoint m (10 10 5, 50 10 6, 10 30 8)' ,0)))

INSERT INTO sample_geoms VALUES
 (4, ST_Geometry(ST_Linestring('linestring z (10 10 166, 20 10 168)',0)))

INSERT INTO sample_geoms VALUES
 (5, ST_Geometry(ST_Point('point zm (10 10 16 30)' ,0)))

SELECT id, ST_IsMeasured(geometry) Is_Measured
FROM sample_geoms

Results:

ID IS_MEASURED
----------- -----------
 1 0
 2 0
 3 1
 4 0
 5 1

ST_IsRing
ST_IsRing takes a linestring as an input parameter and returns 1 if it is a ring. Otherwise, 0 (zero) is
returned. A linestring is a ring if it is simple and closed.

If the given linestring is empty, then 0 (zero) is returned. If the linestring is null, then null is returned.

Syntax
db2gse.ST_IsRing (linestring)

Parameter
linestring

A value of type ST_LineString that represents the linestring that is to be tested.

Chapter 12. Spatial functions: syntax and parameters 155

Return type
INTEGER

Examples
In this example, four linestrings are created. ST_IsRing is used to check if they are rings. The last one is
not considered a ring even though it is closed, because the path crosses over itself.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_lines (id INTEGER, geometry ST_Linestring)

INSERT INTO sample_lines VALUES
 (1, ST_Linestring('linestring EMPTY',0))

INSERT INTO sample_lines VALUES
 (2, ST_Linestring('linestring(10 10, 20 10, 20 20)' ,0))

INSERT INTO sample_lines VALUES
 (3, ST_Linestring('linestring(10 10, 20 10, 20 20, 10 10)' ,0))

INSERT INTO sample_lines VALUES
 (4, ST_Linestring('linestring(10 10, 20 10, 10 20, 20 20, 10 10)' ,0))

SELECT id, ST_IsClosed(geometry) Is_Closed, ST_IsRing(geometry) Is_Ring
FROM sample_lines

Results:

ID IS_CLOSED IS_RING
----------- ----------- -----------
 1 1 0
 2 0 0
 3 1 1
 4 1 0

ST_IsSimple
ST_IsSimple takes a geometry as an input parameter and returns 1 if the given geometry is simple.
Otherwise, 0 (zero) is returned.

Points, polygons, and multipolygons are always simple. A linestring is simple if it does not pass through
the same point twice; a multipoint is simple if it does not contain two equal points; and a multilinestring is
simple if all of its linestrings are simple and the only intersections occur at points that are on the boundary
of the linestrings in the multilinestring.

If the given geometry is empty, then 1 is returned. If the geometry is null, null is returned.

Syntax
db2gse.ST_IsSimple (geometry)

Parameter
geometry

A value of one of the seven distinct spatial data types that represents the geometry that is to be
tested.

156 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Return type
INTEGER

Examples
In this example, several geometries are created and checked if they are simple. The geometry with an ID
of 4 is not considered simple because it contains more than one point that is the same. The geometry with
an ID of 6 is not considered simple, because the linestring crosses over itself.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES
 (1, ST_Geometry(ST_Point('point EMPTY' ,0)))

INSERT INTO sample_geoms VALUES
 (2, ST_Geometry(ST_Point('point (21 33)' ,0)))

INSERT INTO sample_geoms VALUES
 (3, ST_Geometry(ST_MultiPoint('multipoint(10 10, 20 20, 30 30)' ,0)))

INSERT INTO sample_geoms VALUES
 (4, ST_Geometry(ST_MultiPoint('multipoint(10 10, 20 20, 30 30,
 20 20)' ,0)))

INSERT INTO sample_geoms VALUES
 (5, ST_Geometry(ST_LineString('linestring(60 60, 70 60, 70 70)' ,0)))

INSERT INTO sample_geoms VALUES
 (6, ST_Geometry(ST_LineString('linestring(20 20, 30 30, 30 20,
 20 30)' ,0))

INSERT INTO sample_geoms VALUES
 (7, ST_Geometry(ST_Polygon('polygon((40 40, 50 40, 50 50,
 40 40))' ,0)))

SELECT id, ST_IsSimple(geometry) Is_Simple
FROM sample_geoms

Results:

ID IS_SIMPLE
----------- -----------
 1 1
 2 1
 3 1
 4 0
 5 1
 6 0
 7 1

ST_IsValid
ST_IsValid takes a geometry as an input parameter and returns 1 if it is valid. Otherwise 0 (zero) is
returned.

A geometry is valid only if all of the attributes in the structured type are consistent with the internal
representation of geometry data, and if the internal representation is not corrupted.

If the given geometry is null, null is returned.

Chapter 12. Spatial functions: syntax and parameters 157

Syntax
db2gse.ST_IsValid (geometry)

Parameter
geometry

A value of one of the seven distinct spatial data types that represents the geometry that is to be
tested.

Return type
INTEGER

Example
This example creates several geometries and uses ST_IsValid to check if they are valid. All of the
geometries are valid because the constructor routines, such as ST_Geometry, do not allow invalid
geometries to be constructed.

SET CURRENT PATH = CURRENT PATH, db2gse
CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES
 (1, ST_Geometry(ST_Point('point EMPTY',0)))

INSERT INTO sample_geoms VALUES
 (2, ST_Geometry(ST_Polygon('polygon((40 120, 90 120, 90 150, 40 150, 40 120))' ,0)))

INSERT INTO sample_geoms VALUES
 (3, ST_Geometry(ST_Multipoint('multipoint m (10 10 5, 50 10 6, 10 30 8)' ,0)))

INSERT INTO sample_geoms VALUES
 (4, ST_Geometry(ST_Linestring('linestring z (10 10 166, 20 10 168)',0)))

INSERT INTO sample_geoms VALUES
 (5, ST_Geometry(ST_Point('point zm (10 10 16 30)' ,0)))

SELECT id, ST_IsValid(geometry) Is_Valid
FROM sample_geoms

Results:

ID IS_VALID
----------- -----------
 1 1
 2 1
 3 1
 4 1
 5 1

ST_Length
ST_Length takes a geometry of type ST_LineString or ST_MultiLineString and, optionally, a unit as input
parameters and returns the length of the given geometry either in the default or given unit of measure.

If the given geometry is null or empty, null is returned.

158 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Syntax
db2gse.ST_Length (geometry

, unit

)

Parameter
geometry

A value of type ST_Linestring or ST_MultiLineString that represents the geometry for which the length
is returned.

unit
A VARCHAR(128) value that identifies the units in which the length of the curve is measured. The
supported units of measure are listed in the DB2GSE.ST_UNITS_OF_MEASURE catalog view.

If the unit parameter is omitted, the following rules are used to determine the unit in which the area is
measured:

• If geometry is in a projected or geocentric coordinate system, the linear unit associated with this
coordinate system is used.

• If geometry is in a geographic coordinate system, the angular unit associated with this coordinate
system is used.

Restrictions on unit conversions: An error (SQLSTATE 38SU4) is returned if any of the following
conditions occur:

• The geometry is in an unspecified coordinate system and the unit parameter is specified.
• The geometry is in a projected coordinate system and an angular unit is specified.
• The geometry is in a geographic coordinate system, and a linear unit is specified.

Return type
DOUBLE

Examples
Example 1

The following SQL statements create the SAMPLE_GEOMETRIES table and insert a line and a multiline
into the table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_geometries(id SMALLINT, spatial_type varchar(20),
 geometry ST_GEOMETRY)
INSERT INTO sample_geometries(id, spatial_type, geometry)
VALUES (1110, 'ST_LineString', ST_Geometry(ST_LineString
 ('linestring(50 10, 50 20)', 1))),
INSERT INTO sample_geometries(id, spatial_type, geometry)
VALUES (1111, 'ST_MultiLineString', ST_Geometry(ST_MultiLineString
 ('multilinestring((33 2, 34 3, 35 6),
 (28 4, 29 5, 31 8, 43 12),
 (39 3, 37 4, 36 7))', 1)))

Example 2

The following SELECT statement calculates the length of the line in the SAMPLE_GEOMETRIES table.

SELECT id, spatial_type, cast(ST_Length(geometry)
 AS DECIMAL(7, 2)) AS "Line Length"
FROM sample_geometries
WHERE id = 1110

Example 3

The following SELECT statement calculates the length of the multiline in the SAMPLE_GEOMETRIES table.

Chapter 12. Spatial functions: syntax and parameters 159

SELECT id, spatial_type, ST_Length(geometry)
 AS "multiline_length"
FROM sample_geometries
WHERE id = 1111

Results:

 ID SPATIAL_TYPE MULTILINE_LENGTH
------ -------------------- ------------------------
 1111 ST_MultiLineString +2.76437123387202E+001

ST_LineFromWKB
ST_LineFromWKB takes a well-known binary representation of a linestring and a spatial reference system
identifier as input parameters and returns the corresponding linestring.

If the given well-known binary representation is null, then null is returned.

The preferred version for this functionality is ST_LineString.

Syntax
db2gse.ST_LineFromWKB (+ wkb + , srs_id)

Parameter
wkb

A value of type BLOB(4M) that contains the well-known binary representation of the resulting
linestring.

srs_id
A value of type INTEGER that identifies the spatial reference system for the resulting linestring.

Return type
db2gse.ST_LineString

Example
In the following example, the lines of results have been reformatted for readability. The spacing in your
results will vary according to your online display.

The following code uses the ST_LineFromWKB function to create and insert a line from a well-known
binary representation. The row is inserted into the SAMPLE_LINES table with an ID and a line in spatial
reference system 1 in WKB representation.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_lines(id SMALLINT, geometry ST_LineString, wkb BLOB(32k))

INSERT INTO sample_lines(id, geometry)
VALUES
 (1901, ST_LineString('linestring(850 250, 850 850)', 1)),
INSERT INTO sample_lines(id, geometry)
VALUES
 (1902, ST_LineString('linestring(33 2, 34 3, 35 6)', 1))

UPDATE sample_lines AS temp_correlated
SET wkb = ST_AsBinary(geometry)
WHERE id = temp_correlated.id

SELECT id, cast(ST_AsText (ST_LineFromWKB(wkb)) AS varchar(90)) line
FROM sample_lines

160 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Results:

ID LINE
------ --
 1901 LINESTRING (850.00000000 250.00000000, 850.00000000 850.00000000)

 1902 LINESTRING (33.00000000 2.00000000, 34.00000000 3.00000000,
35.00000000 6.00000000)

ST_LineString
The ST_LineString function has two variations.

In the first variation, ST_LineString constructs a linestring from a well-known text representation, a
well-known binary representation, an ESRI shape representation, or a Geography Markup Language (GML)
representation. A spatial reference system identifier can be provided optionally to identify the spatial
reference system that the resulting linestring is in.

In the second variation, ST_LineString takes ST_Geometry as an input parameter and casts the output
type to ST_LineString. If the given geometry is null, then null is returned.

Syntax
Variation 1

db2gse.ST_LineString (wkt

wkb

shape

gml

, srs_id)

Parameters
wkt

A value of type CLOB(8M) that contains the well-known text representation of the resulting linestring.
If the well-known text representation is null, then null is returned.

wkb
A value of type BLOB(4M) that contains the well-known binary representation of the resulting
linestring. If the well-known binary representation is null, then null is returned.

shape
A value of type BLOB(4M) that contains the shape representation of the resulting linestring. If the
shape representation is null, then null is returned.

gml
A value of type CLOB(8M) that contains the GML representation of the geometry. If the GML
representation is null, then null is returned.

srs_id
A value of type INTEGER that identifies the spatial reference system for the resulting linestring.

If srs_id does not identify a spatial reference system listed in the catalog view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, an error is returned (SQLSTATE 38SU1).

Return type
db2gse.ST_LineString

Chapter 12. Spatial functions: syntax and parameters 161

Syntax
Variation 2

db2gse.ST_LineString (geometry)

Parameter
geometry

A value of type ST_Geometry.

Return type
ST_LineString

Example
The following example uses the ST_LineString function to create linestrings from WKT and GML
representations and inserts two rows into the sample_lines table with an ID and line in spatial reference
system 1.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_lines(id SMALLINT, geometry ST_LineString)
INSERT INTO sample_lines(id, geometry)
VALUES
 (1110, ST_LineString('linestring(850 250, 850 850)', 1)),
 (1111, ST_LineString('<gml:LineString srsName=";EPSG:4269";><gml:coord>
 <gml:X>90</gml:X><gml:Y>90</gml:Y>
 <gml:coord><gml:coord><gml:X>100</gml:X>
 <gml:Y>100</gml:Y><gml:coord>
 <gml:LineString>', 1))
SELECT id, cast(geometry..ST_AsText AS varchar(75)) AS linestring
FROM sample_lines

Results:

ID LINESTRING
------ --
1110 LINESTRING (850.00000000 250.00000000, 850.00000000 850.00000000)
1111 LINESTRING (90.00000000 90.00000000, 100.00000000 100.00000000)

ST_LocateAlong
ST_LocateAlong takes a geometry and a measure as input parameters and returns a multipoint or
multilinestring of that part of the given geometry that has exactly the specified measure of the given
geometry that contains the specified measure.

For points and multipoints, all the points with the specified measure are returned. For linestrings,
multilinestrings, polygons, and multipolygons, interpolation is performed to compute the result. The
computation for polygons and multipolygons is performed on the boundary of the geometry.

For points and multipoints, if the given measure is not found, then an empty geometry is returned. For all
other geometries, if the given measure is lower than the lowest measure in the geometry or higher than
the highest measure in the geometry, then an empty geometry is returned.

If the given geometry is null, then null is returned.

Syntax
db2gse.ST_LocateAlong (geometry , measure)

162 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Parameters
geometry

A value of one of the seven distinct spatial data types that represents the geometry.
measure

A value of type DOUBLE that is the measure that the parts of geometry that must be included in the
result.

Return type
db2gse.ST_Geometry

Examples
Example 1

The following CREATE TABLE statement creates the SAMPLE_GEOMETRIES table. The
SAMPLE_GEOMETRIES table has two columns. The ID column uniquely identifies each row, and the
GEOMETRY column ST_Geometry stores sample geometry.

CREATE TABLE sample_geometries(id SMALLINT, geometry ST_GEOMETRY)

The following INSERT statements insert two rows. The first is a linestring, and the second is a multipoint.

INSERT INTO sample_geometries(id, geometry)
 VALUES (1, ST_Geometry(ST_LineString('linestring m (2 2 3, 3 5 3, 3 3 6,
 4 4 8)', 1))),
INSERT INTO sample_geometries(id, geometry)
 VALUES (2, ST_Geometry(ST_MultiPoint('multipoint m (2 2 3, 3 5 3, 3 3 6,
 4 4 6, 5 5 6, 6 6 8)', 1)))

Example 2

In the following SELECT statement and the corresponding result set, the ST_LocateAlong function finds
points with a measure of 7. The first row returns a point, and the second row returns an empty point.
For linear features (a geometry with a dimension that is greater than 0), the ST_LocateAlong function can
interpolate the point; however, for multipoints the target measure must match exactly.

SELECT id, cast(ST_AsText(ST_LocateAlong(geometry, 7))
AS varchar(45)) AS measure_7
FROM sample_geometries

Results:

 ID MEASURE_7
--------- ------------------------------
 1 POINT M (3.50000000 3.50000000 7.00000000)
 2 POINT EMPTY

Example 3

In the following SELECT statement and the corresponding result set, the ST_LocateAlong function returns
a point and a multipoint. The target measure of 6 matches the measures in both the ST_LocateAlong and
the multipoint source data.

SELECT id, cast(ST_AsText(ST_LocateAlong(geometry, 6))
AS varchar(120)) AS measure_6
FROM sample_geometries

Results:

 ID MEASURE_6
--------- ------------------------------
 1 POINT M (3.00000000 3.00000000 6.00000000)
 2 MULTIPOINT M (3.00000000 3.00000000 6.00000000,

Chapter 12. Spatial functions: syntax and parameters 163

 4.00000000 4.00000000 6.00000000,
 5.00000000 5.00000000 6.00000000)

ST_LocateBetween
ST_LocateBetween takes a geometry and two M coordinates (measures) as input parameters and returns
that part of the given geometry that represents the set of disconnected paths or points between the two
M coordinates.

For linestrings, multilinestrings, polygons, and multipolygons, interpolation is performed to compute the
result. The resulting geometry is represented in the spatial reference system of the given geometry. If
the given geometry is a polygon or multipolygon, then ST_LOCATEBETWEEN is applied to the exterior and
interior rings of the geometry.

If none of the parts of the given geometry are in the interval defined by the given M coordinates, then an
empty geometry is returned. If the given geometry is null , then null is returned.

The resulting geometry is represented in the most appropriate spatial type. If it can be represented as a
point, linestring, or polygon, then one of those types is used. Otherwise, the multipoint, multilinestring, or
multipolygon type is used.

Syntax
db2gse.ST_LocateBetween (geometry , startM , endM)

Parameters
geometry

A value of one of the seven distinct spatial data types that represents the geometry.
startM

A value of type DOUBLE that represents the lower bound of the measure interval. If this value is null,
no lower bound is applied.

endM
A value of type DOUBLE that represents the upper bound of the measure interval. If this value is null,
no upper bound is applied.

Return type
db2gse.ST_Geometry

Example
In this example, a researcher uses the M coordinate to record data that she collects about pH values. The
researcher collects the pH values of the soil at specific locations along a highway. She records the X and Y
coordinates of each location and the pH value of the soil.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_lines (id INTEGER, geometry ST_LineString)
INSERT INTO sample_lines
 VALUES (1, ST_Geometry(ST_LineString ('linestring m (2 2 3, 3 5 3, 3 3 6,
 4 4 6, 5 5 6, 6 6 8)', 1)))

To find the path where the acidity of the soil varies between 4 and 6, the researcher uses the following
SELECT statement:

SELECT id, CAST(ST_AsText(ST_LocateBetween(geometry, 4, 6))
AS VARCHAR(150)) MEAS_BETWEEN_4_AND_6
FROM sample_lines

Results:

164 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

 ID MEAS_BETWEEN_4_AND_6
--------- ------------------------------
 1 LINESTRING M (3.00000000 4.33333300 4.00000000,
 3.00000000 3.00000000 6.00000000,
 4.00000000 4.00000000 6.00000000,
 5.00000000 5.00000000 6.00000000)

ST_M
The ST_M function takes a point as an input parameter and return its M (measure) coordinate.

If the specified point is null or is empty, then null is returned.

Syntax
db2gse.ST_M (point)

Parameters
point

A value of type ST_Point for which the M coordinate is returned or modified.

Return type
DOUBLE

Examples
Example 1

This example illustrates the use of the ST_M function. Three points are created and inserted into the
SAMPLE_POINTS table. They are all in the spatial reference system that has an ID of 1.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_points (id INTEGER, geometry ST_Point);

INSERT INTO sample_points
 VALUES (1, ST_Point (2, 3, 32, 5, 1));

INSERT INTO sample_points
 VALUES (2, ST_Point (4, 5, 20, 4, 1));

INSERT INTO sample_points
 VALUES (3, ST_Point (3, 8, 23, 7, 1));

Example 2

This example finds the M coordinate of the points in the SAMPLE_POINTS table.

SELECT id, ST_M (geometry) M_COORD
 FROM sample_points;

Results:

ID M_COORD
----------- ------------------------
 1 +5.00000000000000E+000
 2 +4.00000000000000E+000
 3 +7.00000000000000E+000

Chapter 12. Spatial functions: syntax and parameters 165

ST_MaxM
ST_MaxM takes a geometry as an input parameter and returns its maximum M coordinate.

If the given geometry is null or is empty, or if it does not have M coordinates, then null is returned.

Syntax

db2gse.ST_MaxM (geometry)

Parameter
geometry

A value of one of the seven distinct spatial data types for which the maximum M coordinate is
returned.

Return type
DOUBLE

Examples
Example 1

This example illustrates the use of the ST_MaxM function. Three polygons are created and inserted into
the SAMPLE_POLYS table.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon);

INSERT INTO sample_polys
 VALUES (1, ST_Polygon('polygon zm ((110 120 20 3,
 110 140 22 3,
 120 130 26 4,
 110 120 20 3))', 0));

INSERT INTO sample_polys
 VALUES (2, ST_Polygon('polygon zm ((0 0 40 7,
 0 4 35 9,
 5 4 32 12,
 5 0 31 5,
 0 0 40 7))', 0));

INSERT INTO sample_polys
 VALUES (3, ST_Polygon('polygon zm ((12 13 10 16,
 8 4 10 12,
 9 4 12 11,
 12 13 10 16))', 0));

Example 2

This example finds the maximum M coordinate of each polygon in SAMPLE_POLYS.

SELECT id, CAST (ST_MaxM(geometry) AS INTEGER) MAX_M
 FROM sample_polys;

Results:

ID MAX_M
----------- ------------
 1 4
 2 12
 3 16

Example 3

166 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

This example finds the maximum M coordinate that exists for all polygons in the GEOMETRY column.

SELECT CAST (MAX (ST_MaxM(geometry)) AS INTEGER) OVERALL_MAX_M
 FROM sample_polys;

Results:

OVERALL_MAX_M

 16

ST_MaxX
ST_MaxX takes a geometry as an input parameter and returns its maximum X coordinate.

If the given geometry is null or is empty, then null is returned.

Syntax
db2gse.ST_MaxX (geometry)

Parameter
geometry

A value of one of the seven distinct data types for which the maximum X coordinate is returned.

Return type
DOUBLE

Examples
Example 1

This example illustrates the use of the ST_MaxX function. Three polygons are created and inserted into
the SAMPLE_POLYS table. The third example illustrates how you can use all of the functions that return
the maximum and minimum coordinate values to assess the spatial range of the geometries that are
stored in a particular spatial column.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon);

INSERT INTO sample_polys
 VALUES (1, ST_Polygon('polygon zm ((110 120 20 3,
 110 140 22 3,
 120 130 26 4,
 110 120 20 3))', 0));

INSERT INTO sample_polys
 VALUES (2, ST_Polygon('polygon zm ((0 0 40 7,
 0 4 35 9,
 5 4 32 12,
 5 0 31 5,
 0 0 40 7))', 0));

INSERT INTO sample_polys
 VALUES (3, ST_Polygon('polygon zm ((12 13 10 16,
 8 4 10 12,
 9 4 12 11,
 12 13 10 16))', 0));

Example 2

This example finds the maximum X coordinate of each polygon in SAMPLE_POLYS.

Chapter 12. Spatial functions: syntax and parameters 167

SELECT id, CAST (ST_MaxX(geometry) AS INTEGER) MAX_X_COORD
 FROM sample_polys;

Results:

ID MAX_X_COORD
----------- ------------
 1 120
 2 5
 3 12

Example 3

This example finds the maximum X coordinate that exists for all polygons in the GEOMETRY column.

SELECT CAST (MAX (ST_MaxX(geometry)) AS INTEGER) OVERALL_MAX_X
 FROM sample_polys;

Results:

OVERALL_MAX_X

 120

Example 4

This example finds the spatial extent (overall minimum to overall maximum) of all the polygons in the
SAMPLE_POLYS table. This calculation is typically used to compare the actual spatial extent of the
geometries to the spatial extent of the spatial reference system associated with the data to determine if
the data has room to grow.

SELECT CAST (MIN (ST_MinX (geometry)) AS INTEGER) MIN_X,
 CAST (MIN (ST_MinY (geometry)) AS INTEGER) MIN_Y,
 CAST (MIN (ST_MinZ (geometry)) AS INTEGER) MIN_Z,
 CAST (MIN (ST_MinM (geometry)) AS INTEGER) MIN_M,
 CAST (MAX (ST_MaxX (geometry)) AS INTEGER) MAX_X,
 CAST (MAX (ST_MaxY (geometry)) AS INTEGER) MAX_Y,
 CAST (MAX (ST_MaxZ (geometry)) AS INTEGER) MAX_Z,
 CAST (MAX (ST_MaxM (geometry)) AS INTEGER) MAX_M,
 FROM sample_polys;

Results:

MIN_X MIN_Y MIN_Z MIN_M MAX_X MAX_Y MAX_Z MAX_M
--------- --------- --------- --------- --------- --------- --------- ----------
 0 0 10 3 120 140 40 16

ST_MaxY
ST_MaxY takes a geometry as an input parameter and returns its maximum Y coordinate.

If the given geometry is null or is empty, then null is returned.

Syntax
db2gse.ST_MaxY (geometry)

168 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Parameter
geometry

A value of one of the seven distinct spatial data types for which the maximum Y coordinate is
returned.

Return type
DOUBLE

Examples
Example 1

This example illustrates the use of the ST_MaxY function. Three polygons are created and inserted into
the SAMPLE_POLYS table.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon);

INSERT INTO sample_polys
 VALUES (1, ST_Polygon('polygon zm ((110 120 20 3,
 110 140 22 3,
 120 130 26 4,
 110 120 20 3))', 0));

INSERT INTO sample_polys
 VALUES (2, ST_Polygon('polygon zm ((0 0 40 7,
 0 4 35 9,
 5 4 32 12,
 5 0 31 5,
 0 0 40 7))', 0));

INSERT INTO sample_polys
 VALUES (3, ST_Polygon('polygon zm ((12 13 10 16,
 8 4 10 12,
 9 4 12 11,
 12 13 10 16))', 0));

Example 2

This example finds the maximum Y coordinate of each polygon in SAMPLE_POLYS.

SELECT id, CAST (ST_MaxY(geometry) AS INTEGER) MAX_Y
 FROM sample_polys;

Results:

ID MAX_Y
----------- ------------
 1 140
 2 4
 3 13

Example 3

This example finds the maximum Y coordinate that exists for all polygons in the GEOMETRY column.

SELECT CAST (MAX (ST_MaxY(geometry)) AS INTEGER) OVERALL_MAX_Y
 FROM sample_polys;

Results:

OVERALL_MAX_Y

 140

Chapter 12. Spatial functions: syntax and parameters 169

ST_MaxZ
ST_MaxZ takes a geometry as an input parameter and returns its maximum Z coordinate.

If the given geometry is null or is empty, or if it does not have Z coordinates, then null is returned.

Syntax
db2gse.ST_MaxZ (geometry)

Parameter
geometry

A value of one of the seven distinct spatial data types for which the maximum Z coordinate is
returned.

Return type
DOUBLE

Examples
Example 1

This example illustrates the use of the ST_MaxZ function. Three polygons are created and inserted into
the SAMPLE_POLYS table.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon);

INSERT INTO sample_polys
 VALUES (1, ST_Polygon('polygon zm ((110 120 20 3,
 110 140 22 3,
 120 130 26 4,
 110 120 20 3))', 0));

INSERT INTO sample_polys
 VALUES (2, ST_Polygon('polygon zm ((0 0 40 7,
 0 4 35 9,
 5 4 32 12,
 5 0 31 5,
 0 0 40 7))', 0));

INSERT INTO sample_polys
 VALUES (3, ST_Polygon('polygon zm ((12 13 10 16,
 8 4 10 12,
 9 4 12 11,
 12 13 10 16))', 0));

Example 2

This example finds the maximum Z coordinate of each polygon in SAMPLE_POLYS.

SELECT id, CAST (ST_MaxZ(geometry) AS INTEGER) MAX_Z
 FROM sample_polys;

Results:

ID MAX_Z
----------- ------------
 1 26
 2 40
 3 12

Example 3

170 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

This example finds the maximum Z coordinate that exists for all polygons in the GEOMETRY column.

SELECT CAST (MAX (ST_MaxZ(geometry)) AS INTEGER) OVERALL_MAX_Z
 FROM sample_polys;

Results:

OVERALL_MAX_Z

 40

ST_MinM
ST_MinM takes a geometry as an input parameter and returns its minimum M coordinate.

If the given geometry is null or is empty, or if it does not have M coordinates, then null is returned.

Syntax
db2gse.ST_MinM (geometry)

Parameter
geometry

A value of one of the seven distinct spatial data types for which the minimum M coordinate is
returned.

Return type
DOUBLE

Examples
Example 1

This example illustrates the use of the ST_MinM function. Three polygons are created and inserted into
the SAMPLE_POLYS table.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon);

INSERT INTO sample_polys
 VALUES (1, ST_Polygon('polygon zm ((110 120 20 3,
 110 140 22 3,
 120 130 26 4,
 110 120 20 3))', 0));

INSERT INTO sample_polys
 VALUES (2, ST_Polygon('polygon zm ((0 0 40 7,
 0 4 35 9,
 5 4 32 12,
 5 0 31 5,
 0 0 40 7))', 0));

INSERT INTO sample_polys
 VALUES (3, ST_Polygon('polygon zm ((12 13 10 16,
 8 4 10 12,
 9 4 12 11,
 12 13 10 16))', 0));

Example 2

This example finds the minimum M coordinate of each polygon in SAMPLE_POLYS.

Chapter 12. Spatial functions: syntax and parameters 171

SELECT id, CAST (ST_MinM(geometry) AS INTEGER) MIN_M
 FROM sample_polys;

Results:

ID MIN_M
----------- ------------
 1 3
 2 5
 3 11

Example 3

This example finds the minimum M coordinate that exists for all polygons in the GEOMETRY column.

SELECT CAST (MIN (ST_MinM(geometry)) AS INTEGER) OVERALL_MIN_M
 FROM sample_polys;

Results:

OVERALL_MIN_M

 3

ST_MinX
ST_MinX takes a geometry as an input parameter and returns its minimum X coordinate.

If the given geometry is null or is empty, then null is returned.

Syntax
db2gse.ST_MinX (geometry)

Parameter
geometry

A value of one of the seven distinct spatial data types for which the minimum X coordinate is returned.

Return type
DOUBLE

Examples
Example 1

This example illustrates the use of the ST_MinX function. Three polygons are created and inserted into the
SAMPLE_POLYS table.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon);

INSERT INTO sample_polys
 VALUES (1, ST_Polygon('polygon zm ((110 120 20 3,
 110 140 22 3,
 120 130 26 4,
 110 120 20 3))', 0));

INSERT INTO sample_polys
 VALUES (2, ST_Polygon('polygon zm ((0 0 40 7,
 0 4 35 9,

172 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

 5 4 32 12,
 5 0 31 5,
 0 0 40 7))', 0));

INSERT INTO sample_polys
 VALUES (3, ST_Polygon('polygon zm ((12 13 10 16,
 8 4 10 12,
 9 4 12 11,
 12 13 10 16))', 0));

Example 2

This example finds the minimum X coordinate of each polygon in SAMPLE_POLYS.

SELECT id, CAST (ST_MinX(geometry) AS INTEGER) MIN_X
 FROM sample_polys;

Results:

ID MIN_X
----------- ------------
 1 110
 2 0
 3 8

Example 3

This example finds the minimum X coordinate that exists for all polygons in the GEOMETRY column.

SELECT CAST (MIN (ST_MinX(geometry)) AS INTEGER) OVERALL_MIN_X
 FROM sample_polys;

Results:

OVERALL_MIN_X

 0

ST_MinY
ST_MinY takes a geometry as an input parameter and returns its minimum Y coordinate.

If the given geometry is null or is empty, then null is returned.

Syntax
db2gse.ST_MinY (geometry)

Parameter
geometry

A value of one of the seven distinct spatial data types for which the minimum Y coordinate is returned.

Return type
DOUBLE

Examples
Example 1

Chapter 12. Spatial functions: syntax and parameters 173

This example illustrates the use of the ST_MinY function. Three polygons are created and inserted into the
SAMPLE_POLYS table.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon);

INSERT INTO sample_polys
 VALUES (1, ST_Polygon('polygon zm ((110 120 20 3,
 110 140 22 3,
 120 130 26 4,
 110 120 20 3))', 0));

INSERT INTO sample_polys
 VALUES (2, ST_Polygon('polygon zm ((0 0 40 7,
 0 4 35 9,
 5 4 32 12,
 5 0 31 5,
 0 0 40 7))', 0));

INSERT INTO sample_polys
 VALUES (3, ST_Polygon('polygon zm ((12 13 10 16,
 8 4 10 12,
 9 4 12 11,
 12 13 10 16))', 0));

Example 2

This example finds the minimum Y coordinate of each polygon in SAMPLE_POLYS.

SELECT id, CAST (ST_MinY(geometry) AS INTEGER) MIN_Y
 FROM sample_polys;

Results:

ID MIN_Y
----------- ------------
 1 120
 2 0
 3 4

Example 3

This example finds the minimum Y coordinate that exists for all polygons in the GEOMETRY column.

SELECT CAST (MIN (ST_MinY(geometry)) AS INTEGER) OVERALL_MIN_Y
 FROM sample_polys;

Results:

OVERALL_MIN_Y

 0

ST_MinZ
ST_MinZ takes a geometry as an input parameter and returns its minimum Z coordinate.

If the given geometry is null or is empty, or if it does not have Z coordinates, then null is returned.

Syntax
db2gse.ST_MinZ (geometry)

174 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Parameter
geometry

A value of one of the seven distinct spatial data types for which the minimum Z coordinate is returned.

Return type
DOUBLE

Examples
Example 1

This example illustrates the use of the ST_MinZ function. Three polygons are created and inserted into the
SAMPLE_POLYS table.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon);

INSERT INTO sample_polys
 VALUES (1, ST_Polygon('polygon zm ((110 120 20 3,
 110 140 22 3,
 120 130 26 4,
 110 120 20 3))', 0));

INSERT INTO sample_polys
 VALUES (2, ST_Polygon('polygon zm ((0 0 40 7,
 0 4 35 9,
 5 4 32 12,
 5 0 31 5,
 0 0 40 7))', 0));

INSERT INTO sample_polys
 VALUES (3, ST_Polygon('polygon zm ((12 13 10 16,
 8 4 10 12,
 9 4 12 11,
 12 13 10 16))', 0));

Example 2

This example finds the minimum Z coordinate of each polygon in SAMPLE_POLYS.

SELECT id, CAST (ST_MinZ(geometry) AS INTEGER) MIN_Z
 FROM sample_polys;

Results:

ID MIN_Z
----------- ------------
 1 20
 2 31
 3 10

Example 3

This example finds the minimum Z coordinate that exists for all polygons in the GEOMETRY column.

SELECT CAST (MIN (ST_MinZ(geometry)) AS INTEGER) OVERALL_MIN_Z
 FROM sample_polys;

Results:

OVERALL_MIN_Z

 10

Chapter 12. Spatial functions: syntax and parameters 175

ST_MLineFromWKB
ST_MLineFromWKB takes a well-known binary representation of a multilinestring and a spatial reference
system identifier as input parameters and returns the corresponding multilinestring.

If the given well-known binary representation is null, then null is returned.

Syntax
db2gse.ST_MLineFromWKB (+ wkb + , srs_id)

Parameters
wkb

A value of type BLOB(4M) that contains the well-known binary representation of the resulting
multilinestring.

srs_id
A value of type INTEGER that identifies the spatial reference system for the resulting multilinestring.

Return type
db2gse.ST_MultiLineString

Example
In the following example, the lines of results have been reformatted for readability. The spacing in your
results will vary according to your online display.

This example illustrates how ST_MLineFromWKB can be used to create a multilinestring from its well-
known binary representation. The geometry is a multilinestring in spatial reference system 1. In this
example, the multilinestring gets stored with ID = 10 in the GEOMETRY column of the SAMPLE_MLINES
table, and then the WKB column is updated with its well-known binary representation (using the
ST_AsBinary function). Finally, the ST_MLineFromWKB function is used to return the multilinestring from
the WKB column. The X and Y coordinates for this geometry are:

• Line 1: (61, 2) (64, 3) (65, 6)
• Line 2: (58, 4) (59, 5) (61, 8)
• Line 3: (69, 3) (67, 4) (66, 7) (68, 9)

The SAMPLE_MLINES table has a GEOMETRY column, where the multilinestring is stored, and a WKB
column, where the multilinestring's well-known binary representation is stored.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_mlines (id INTEGER, geometry ST_MultiLineString,
 wkb BLOB(32K))

INSERT INTO sample_mlines
 VALUES (10, ST_MultiLineString ('multilinestring
 ((61 2, 64 3, 65 6),
 (58 4, 59 5, 61 8),
 (69 3, 67 4, 66 7, 68 9))', 1))

UPDATE sample_mlines AS temporary_correlated
 SET wkb = ST_AsBinary(geometry)
 WHERE id = temporary_correlated.id

In the following SELECT statement, the ST_MLineFromWKB function is used to retrieve the multilinestring
from the WKB column.

SELECT id, CAST(ST_AsText(ST_MLineFromWKB (wkb))
 AS VARCHAR(280)) MULTI_LINE_STRING

176 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

 FROM sample_mlines
 WHERE id = 10

Results:

ID MULTI_LINE_STRING
---------- --
 10 MULTILINESTRING ((61.00000000 2.00000000, 64.00000000 3.00000000,
 65.00000000 6.00000000),
 (58.00000000 4.00000000, 59.00000000 5.00000000,
 61.00000000 8.0000000),
 (69.00000000 3.00000000, 67.00000000 4.00000000,
 66.00000000 7.00000000, 68.00000000 9.00000000))

ST_MPointFromWKB
ST_MPointFromWKB takes a well-known binary representation of a multipoint and a spatial reference
system identifier as input parameters and returns the corresponding multipoint.

If the given well-known binary representation is null, then null is returned.

Syntax
db2gse.ST_MPointFromWKB (+ wkb + , srs_id)

Parameters
wkb

A value of type BLOB(4M) that contains the well-known binary representation of the resulting
multipoint.

srs_id
A value of type INTEGER that identifies the spatial reference system for the resulting multipoint.

Return type
db2gse.ST_MultiPoint

Example
In the following example, the lines of results have been reformatted for readability. The spacing in your
results will vary according to your online display.

This example illustrates how ST_MPointFromWKB can be used to create a multipoint from its well-known
binary representation. The geometry is a multipoint in spatial reference system 1. In this example, the
multipoint gets stored with ID = 10 in the GEOMETRY column of the SAMPLE_MPOINTS table, and then
the WKB column is updated with its well-known binary representation (using the ST_AsBinary function).
Finally, the ST_MPointFromWKB function is used to return the multipoint from the WKB column. The X and
Y coordinates for this geometry are: (44, 14) (35, 16) (24, 13).

The SAMPLE_MPOINTS table has a GEOMETRY column, where the multipoint is stored, and a WKB
column, where the multipoint's well-known binary representation is stored.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_mpoints (id INTEGER, geometry ST_MultiPoint,
 wkb BLOB(32K))

INSERT INTO sample_mpoints
 VALUES (10, ST_MultiPoint ('multipoint (4 14, 35 16, 24 13)', 1))

UPDATE sample_mpoints AS temporary_correlated
 SET wkb = ST_AsBinary(geometry)

Chapter 12. Spatial functions: syntax and parameters 177

 WHERE id = temporary_correlated.id

In the following SELECT statement, the ST_MPointFromWKB function is used to retrieve the multipoint
from the WKB column.

SELECT id, CAST(ST_AsText(ST_MPointFromWKB (wkb)) AS VARCHAR(100)) MULTIPOINT
 FROM sample_mpoints
 WHERE id = 10

Results:

ID MULTIPOINT
---------- --
 10 MULTIPOINT (44.00000000 14.00000000, 35.00000000
 16.00000000, 24.00000000 13.00000000)

ST_MPolyFromWKB
ST_MPolyFromWKB takes a well-known binary representation of a multipolygon and a spatial reference
system identifier as input parameters and returns the corresponding multipolygon.

If the given well-known binary representation is null, then null is returned.

Syntax
db2gse.ST_MPolyFromWKB (+ wkb + , srs_id)

Parameters
wkb

A value of type BLOB(4M) that contains the well-known binary representation of the resulting
multipolygon.

srs_id
A value of type INTEGER that identifies the spatial reference system for the resulting multipolygon.

Return type
db2gse.ST_MultiPolygon

Example
In the following example, the lines of results have been reformatted for readability. The spacing in your
results will vary according to your online display.

This example illustrates how ST_MPolyFromWKB can be used to create a multipolygon from its well-
known binary representation. The geometry is a multipolygon in spatial reference system 1. In this
example, the multipolygon gets stored with ID = 10 in the GEOMETRY column of the SAMPLE_MPOLYS
table, and then the WKB column is updated with its well-known binary representation (using the
ST_AsBinary function). Finally, the ST_MPolyFromWKB function is used to return the multipolygon from
the WKB column. The X and Y coordinates for this geometry are:

• Polygon 1: (1, 72) (4, 79) (5, 76) (1, 72)
• Polygon 2: (10, 20) (10, 40) (30, 41) (10, 20)
• Polygon 3: (9, 43) (7, 44) (6, 47) (9, 43)

The SAMPLE_MPOLYS table has a GEOMETRY column, where the multipolygon is stored, and a WKB
column, where the multipolygon's well-known binary representation is stored.

178 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_mpolys (id INTEGER,
 geometry ST_MultiPolygon, wkb BLOB(32K))

INSERT INTO sample_mpolys
 VALUES (10, ST_MultiPolygon ('multipolygon
 (((1 72, 4 79, 5 76, 1 72),
 (10 20, 10 40, 30 41, 10 20),
 (9 43, 7 44, 6 47, 9 43)))', 1))

UPDATE sample_mpolys AS temporary_correlated
 SET wkb = ST_AsBinary(geometry)
 WHERE id = temporary_correlated.id

In the following SELECT statement, the ST_MPolyFromWKB function is used to retrieve the multipolygon
from the WKB column.

SELECT id, CAST(ST_AsText(ST_MPolyFromWKB (wkb))
 AS VARCHAR(320)) MULTIPOLYGON
 FROM sample_mpolys
 WHERE id = 10

Results:

ID MULTIPOLYGON
---------- --
 10 MULTIPOLYGON (((10.00000000 20.00000000, 30.00000000
 41.00000000, 10.00000000 40.00000000, 10.00000000
 20.00000000)),
 (1.00000000 72.00000000, 5.00000000
 76.00000000, 4.00000000 79.0000000, 1.00000000
 72,00000000)),
 (9.00000000 43.00000000, 6.00000000
 47.00000000, 7.00000000 44.00000000, 9.00000000
 43.00000000)))

ST_MultiLineString
The ST_MultiLineString function has two variations.

In the first variation, ST_MultiLineString constructs a multilinestring from a well-known text
representation, a well-known binary representation, an ESRI shape representation, or a Geography
Markup Language (GML) representation. An optional spatial reference system identifier can be specified
to identify the spatial reference system that the resulting multilinestring is in.

In the second variation, ST_MultiLineString takes ST_Geometry as an input parameter and casts the
output type to ST_MultiLineString. If the given geometry is null, then null is returned.

Syntax
Variation 1

db2gse.ST_MultiLineString (wkt

wkb

shape

gml

, srs_id)

Chapter 12. Spatial functions: syntax and parameters 179

Parameters
wkt

A value of type CLOB(8M) that contains the well-known text representation of the resulting
multilinestring. If the well-known text representation is null, then null is returned.

wkb
A value of type BLOB(4M) that contains the well-known binary representation of the resulting
multilinestring. If the well-known binary representation is null, then null is returned.

shape
A value of type BLOB(4M) that contains the shape representation of the resulting multilinestring. If the
shape representation is null, then null is returned.

gml
A value of type CLOB(8M) that contains the GML representation of the geometry. If the GML
representation is null, then null is returned.

srs_id
A value of type INTEGER that identifies the spatial reference system for the resulting multilinestring.

If srs_id does not identify a spatial reference system listed in the catalog view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, an error is returned (SQLSTATE 38SU1).

Return type
db2gse.ST_MultiLineString

Syntax
Variation 2

db2gse.ST_MultiLineString (geometry)

Parameter
geometry

A value of type ST_Geometry.

Return type
ST_MultiLineString

Example
In the following example, the lines of results have been reformatted for readability.

This example illustrates how ST_MultiLineString can be used to create and insert a multilinestring from
its well-known text representation. The record that is inserted has ID = 1110, and the geometry is a
multilinestring in spatial reference system 1. The multilinestring is in the well-known text representation
of a multilinestring. The X and Y coordinates for this geometry are:

• Line 1: (33, 2) (34, 3) (35, 6)
• Line 2: (28, 4) (29, 5) (31, 8) (43, 12)
• Line 3: (39, 3) (37, 4) (36, 7)

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_mlines (id INTEGER,
 geometry ST_MultiLineString);

INSERT INTO sample_mlines
 VALUES (1110,

180 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

 ST_MultiLineString ('multilinestring ((33 2, 34 3, 35 6),
 (28 4, 29 5, 31 8, 43 12),
 (39 3, 37 4, 36 7))', 1));

The following SELECT statement returns the multilinestring that was recorded in the table:

SELECT id,
 CAST(ST_AsText(geometry) AS VARCHAR(280))
 MULTI_LINE_STRING
 FROM sample_mlines
 WHERE id = 1110;

Results:

ID MULTI_LINE_STRING
------- --
 1110 MULTILINESTRING ((33.000000 2.000000, 34.000000 3.000000,
 35.000000 6.000000),
 (28.000000 4.000000, 29.000000 5.000000,
 31.000000 8.000000, 43.000000 12.000000),
 (39.000000 3.000000, 37.000000 4.000000,
 36.000000 7.000000))

ST_MultiPoint
The ST_MultiPoint function has two variations.

In the first variation, ST_MultiPoint constructs a multipoint from a well-known text representation, a
well-known binary representation, or an ESRI shape representation. An optional spatial reference system
identifier can be specified to indicate the spatial reference system the resulting multipoint is in.

In the second variation, ST_MultiPoint takes ST_Geometry as an input parameter and casts the output
type to ST_MultiPoint. If the given geometry is null, then null is returned.

Syntax
Variation 1

db2gse.ST_MultiPoint (wkt

wkb

shape

gml

, srs_id)

Parameters
wkt

A value of type CLOB(8M) that contains the well-known text representation of the resulting multipoint.
If the well-known text representation is null, then null is returned.

wkb
A value of type BLOB(4M) that contains the well-known binary representation of the resulting
multipoint. If the well-known binary representation is null, then null is returned.

shape
A value of type BLOB(4M) that contains the shape representation of the resulting multipoint. If the
shape representation is null, then null is returned.

gml
A value of type CLOB(8M) that contains the GML representation of the geometry. If the GML
representation is null, then null is returned.

Chapter 12. Spatial functions: syntax and parameters 181

srs_id
A value of type INTEGER that identifies the spatial reference system for the resulting multipoint.

If srs_id does not identify a spatial reference system listed in the catalog view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, an error is returned (SQLSTATE 38SU1).

Return type
db2gse.ST_MultiPoint

Syntax
Variation 2

db2gse.ST_MultiPoint (geometry)

Parameter
geometry

A value of type ST_Geometry.

Return type
ST_MultiPoint

Example
In the following example, the lines of results have been reformatted for readability.

This example illustrates how ST_MultiPoint can be used to create and insert a multipoint from its well-
known text representation. The record that is inserted has ID = 1110, and the geometry is a multipoint in
spatial reference system 1. The multipoint is in the well-known text representation of a multipoint. The X
and Y coordinates for this geometry are: (1, 2) (4, 3) (5, 6).

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_mpoints (id INTEGER, geometry ST_MultiPoint);

INSERT INTO sample_mpoints
 VALUES (1110, ST_MultiPoint ('multipoint (1 2, 4 3, 5 6)', 1));

The following SELECT statement returns the multipoint that was recorded in the table:

SELECT id, CAST(ST_AsText(geometry) AS VARCHAR(90)) MULTIPOINT
 FROM sample_mpoints
 WHERE id = 1110;

Results:

ID MULTIPOINT
---------- ---
 1110 MULTIPOINT (1.000000 2.000000, 4.000000
 3.000000, 5.000000 6.000000)

ST_MultiPolygon
The ST_MultiPolygon function has two variations.

In the first variation, ST_MultiPolygon constructs a multipolygon from a well-known text representation, a
well-known binary representation, an ESRI shape representation, or a Geography Markup Language (GML)

182 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

representation. An optional spatial reference system identifier can be specified to identify the spatial
reference system that the resulting multipolygon is in.

In the second variation, ST_MultiPolygon takes ST_Geometry as an input parameter and casts the output
type to ST_MultiPolygon. If the given geometry is null, then null is returned.

Syntax
Variation 1

db2gse.ST_MultiPolygon ? wkt

wkb

shape

gml

, srs_id)

Parameters
wkt

A value of type CLOB(8M) that contains the well-known text representation of the resulting
multipolygon. If the well-known text representation is null, then null is returned.

wkb
A value of type BLOB(4M) that contains the well-known binary representation of the resulting
multipolygon. If the well-known binary representation is null, then null is returned.

shape
A value of type BLOB(4M) that contains the shape representation of the resulting multipolygon. If the
shape representation is null, then null is returned.

gml
A value of type CLOB(8M) that contains the GML representation of the geometry. If the GML
representation is null, then null is returned.

srs_id
A value of type INTEGER that identifies the spatial reference system for the resulting multipolygon.

If srs_id does not identify a spatial reference system listed in the catalog view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, an error is returned (SQLSTATE 38SU1).

Return type
db2gse.ST_MultiPolygon

Syntax
Variation 2

db2gse.ST_MultiPolygon (geometry)

Parameter
geometry

A value of type ST_Geometry.

Return type
ST_MultiPolygon

Chapter 12. Spatial functions: syntax and parameters 183

Example
In the following example, the lines of results have been reformatted for readability.

This example illustrates how ST_MultiPolygon can be used to create and insert a multipolygon from
its well-known text representation. The record that is inserted has ID = 1110, and the geometry is a
multipolygon in spatial reference system 1. The multipolygon is in the well-known text representation of a
multipolygon. The X and Y coordinates for this geometry are:

• Polygon 1: (3, 3) (4, 6) (5, 3) (3, 3)
• Polygon 2: (8, 24) (9, 25) (1, 28) (8, 24)
• Polygon 3: (13, 33) (7, 36) (1, 40) (10, 43) (13, 33)

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_mpolys (id INTEGER, geometry ST_MultiPolygon);

INSERT INTO sample_mpolys
 VALUES (1110,
 ST_MultiPolygon ('multipolygon (((3 3, 4 6, 5 3, 3 3),
 (8 24, 9 25, 1 28, 8 24),
 (13 33, 7 36, 1 40, 10 43, 13 33)))', 1));

The following SELECT statement returns the multipolygon that was recorded in the table:

SELECT id, CAST(ST_AsText(geometry) AS VARCHAR(350)) MULTI_POLYGON
 FROM sample_mpolys
 WHERE id = 1110;

Results:

ID MULTI_POLYGON
------- --
 1110 MULTIPOLYGON (((13.000000 33.000000, 10.000000 43.000000,
 1.000000 40.000000, 7.000000 36.000000,
 13.000000 33.000000)),
 ((8.000000 24.000000, 9.000000 25.000000,
 1.000000 28.00000, 8.000000 24.000000)),
 ((3.000000 3.000000, 5.000000 3.000000,
 4.000000 6.000000, 3.000000 3.000000)))

ST_NumGeometries
ST_NumGeometries takes a geometry type as an input parameter and returns the number of geometries
in the collection.

If the given geometry type is null or is empty, then null is returned.

Syntax
db2gse.ST_NumGeometries (geometry)

Parameter
geometry

A value of type ST_MultiPoint, ST_MultiLineString, or ST_MultiPolygon that represents the geometry
type for which the number of geometries is returned.

Return Type
INTEGER

184 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Example
Two geometry types are stored in the SAMPLE_GEOMCOLL table. One is a multipolygon, and the other is a
multipoint. The ST_NumGeometries function determines how many individual geometries are within each
geometry type.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_geomcoll (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geomcoll
 VALUES (1, ST_Geometry(ST_MultiPolygon
 ('multipolygon (((3 3, 4 6, 5 3, 3 3),
 (8 24, 9 25, 1 28, 8 24),
 (13 33, 7 36, 1 40, 10 43, 13 33)))', 1)))

INSERT INTO sample_geomcoll
 VALUES (2, ST_Geometry(ST_MultiPoint
 ('multipoint (1 2, 4 3, 5 6, 7 6, 8 8)', 1)))

SELECT id, ST_NumGeometries (geometry) NUM_GEOMS_IN_COLL
 FROM sample_geomcoll

Results:

ID NUM_GEOMS_IN_COLL
----------- -----------------
 1 3
 2 5

ST_NumInteriorRing
ST_NumInteriorRing takes a polygon as an input parameter and returns the number of its interior rings.

If the given polygon is null or is empty, then null is returned.

If the polygon has no interior rings, then 0 (zero) is returned.

Syntax

db2gse.ST_NumInteriorRing (polygon)

Parameter
polygon

A value of type ST_Polygon that represents the polygon for which the number of interior rings is
returned.

Return type
INTEGER

Example
The following example creates two polygons:

• One with two interior rings
• One without any interior rings

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys
 VALUES (1, ST_Polygon('polygon

Chapter 12. Spatial functions: syntax and parameters 185

 ((40 120, 90 120, 90 150, 40 150, 40 120),
 (50 130, 60 130, 60 140, 50 140, 50 130),
 (70 130, 80 130, 80 140, 70 140, 70 130))' , 0))

INSERT INTO sample_polys
 VALUES (2, ST_Polygon('polygon ((5 15, 50 15, 50 105, 5 15))' , 0))

The ST_NumInteriorRing function is used to return the number of rings in the geometries in the table:

SELECT id, ST_NumInteriorRing(geometry) NUM_RINGS
FROM sample_polys

Results:

ID NUM_RINGS
---------- ---------------
 1 2
 2 0

ST_NumPoints
ST_NumPoints takes a geometry as an input parameter and returns the number of points that were used
to define that geometry.

For example, if the geometry is a polygon and five points were used to define that polygon, then the
returned number is 5.

If the given geometry is null or is empty, then null is returned.

Syntax
db2gse.ST_NumPoints (geometry)

Parameter
geometry

A value of one of the seven distinct spatial data types that represents the geometry for which the
number of points is returned.

Return type
INTEGER

Example
A variety of geometries are stored in the table. The ST_NumPoints function determines how many points
are within each geometry in the SAMPLE_GEOMETRIES table.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_geometries (spatial_type VARCHAR(18), geometry ST_Geometry);

INSERT INTO sample_geometries
 VALUES ('st_point',
 ST_GEOMETRY(ST_Point (2, 3, 0)));

INSERT INTO sample_geometries
 VALUES ('st_linestring',
 ST_GEOMETRY(ST_LineString ('linestring (2 5, 21 3, 23 10)', 0)));

INSERT INTO sample_geometries
 VALUES ('st_polygon',

186 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

 ST_GEOMETRY(ST_Polygon ('polygon ((110 120, 110 140, 120 130,
 110 120))', 0)));

SELECT spatial_type, ST_NumPoints (geometry) NUM_POINTS
 FROM sample_geometries;

Results:

SPATIAL_TYPE NUM_POINTS
--------------- ----------
st_point 1
st_linestring 3
st_polygon 4

ST_Overlaps
The ST_Overlaps function takes two geometries as input parameters and returns 1 if the intersection
of the geometries results in a geometry of the same dimension but is not equal to either of the given
geometries. Otherwise, 0 (zero) is returned.

If any of the two geometries is null or is empty, then null is returned.

If the second geometry is not represented in the same spatial reference system as the first geometry, it
will be converted to the other spatial reference system.

Syntax
db2gse.ST_Overlaps (geometry1 , geometry2)

Parameters
geometry1

A value of one of the seven distinct spatial data types that represents the geometry that is tested to
overlap with geometry2.

geometry2
A value of one of the seven distinct spatial data types that represents the geometry that is tested to
overlap with geometry1.

Return type
INTEGER

Examples
Example 1

This example illustrates the use of ST_Overlaps. Various geometries are created and inserted into the
SAMPLE_GEOMETRIES table

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_geometries (id INTEGER, geometry ST_Geometry);

INSERT INTO sample_geometries
 VALUES
 (1, ST_GEOMETRY(ST_Point (10, 20, 1)));

INSERT INTO sample_geometries
 VALUES
 (2, ST_GEOMETRY(ST_Point ('point (41 41)', 1)));

INSERT INTO sample_geometries
 VALUES
 (10, ST_GEOMETRY(ST_LineString ('linestring (1 10, 3 12, 10 10)', 1)));

Chapter 12. Spatial functions: syntax and parameters 187

INSERT INTO sample_geometries
 VALUES
 (20, ST_GEOMETRY(ST_LineString ('linestring (50 10, 50 12, 45 10)', 1)));

INSERT INTO sample_geometries
 VALUES
 (30, ST_GEOMETRY(ST_LineString ('linestring (50 12, 50 10, 60 8)', 1)));

INSERT INTO sample_geometries
 VALUES
 (100, ST_GEOMETRY(ST_Polygon ('polygon ((0 0, 0 40, 40 40, 40 0,
 0 0))', 1)));

INSERT INTO sample_geometries
 VALUES
 (110, ST_GEOMETRY(ST_Polygon ('polygon ((30 10, 30 30, 50 30, 50 10,
 30 10))', 1)));

INSERT INTO sample_geometries
 VALUES
 (120, ST_GEOMETRY(ST_Polygon ('polygon ((0 50, 0 60, 40 60, 40 60,
 0 50))', 1)));

Example 2

This example finds the IDs of points that overlap.

SELECT sg1.id, sg2.id
 CASE ST_Overlaps (sg1.geometry, sg2.geometry)
 WHEN 0 THEN 'Points_do_not_overlap'
 WHEN 1 THEN 'Points_overlap'
 END
 AS OVERLAP
 FROM sample_geometries sg1, sample_geometries sg2
 WHERE sg1.id < 10 AND sg2.id < 10 AND sg1.id >= sg2.id;

Results:

ID ID OVERLAP
----------- ---------- ------------------------
 1 1 Points_do_not_overlap
 2 1 Points_do_not_overlap
 2 2 Points_do_not_overlap

Example 3

This example finds the IDs of lines that overlap.

SELECT sg1.id, sg2.id
 CASE ST_Overlaps (sg1.geometry, sg2.geometry)
 WHEN 0 THEN 'Lines_do_not_overlap'
 WHEN 1 THEN 'Lines_overlap'
 END
 AS OVERLAP
 FROM sample_geometries sg1, sample_geometries sg2
 WHERE sg1.id >= 10 AND sg1.id < 100
 AND sg2.id >= 10 AND sg2.id < 100
 AND sg1.id >= sg2.id;

Results:

ID ID OVERLAP
----------- ---------- ------------------------
 10 10 Lines_do_not_overlap
 20 10 Lines_do_not_overlap
 30 10 Lines_do_not_overlap
 20 20 Lines_do_not_overlap
 30 20 Lines_overlap
 30 30 Lines_do_not_overlap

Example 4

188 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

This example finds the IDs of polygons that overlap.

SELECT sg1.id, sg2.id
 CASE ST_Overlaps (sg1.geometry, sg2.geometry)
 WHEN 0 THEN 'Polygons_do_not_overlap'
 WHEN 1 THEN 'Polygons_overlap'
 END
 AS OVERLAP
 FROM sample_geometries sg1, sample_geometries sg2
 WHERE sg1.id >= 100 AND sg2.id >= 100 AND sg1.id >= sg2.id;

Results:

ID ID OVERLAP
----------- ---------- ------------------------
 100 100 Polygons_do_not_overlap
 110 100 Polygons_overlap
 120 100 Polygons_do_not_overlap
 110 110 Polygons_do_not_overlap
 120 110 Polygons_do_not_overlap
 120 120 Polygons_do_not_overlap

ST_Perimeter
ST_Perimeter takes a geometry type of polygon or multipolygon, and optionally, a unit as input parameters
and returns the perimeter of the polygon or multipolygon. The perimeter is the length of its boundary as
measured in the given units.

If the given polygon or multipolygon is null or is empty, null is returned.

Syntax
db2gse.ST_Perimeter (geometry

, unit

)

Parameters
geometry

A value of type ST_polygon or ST_Multipolygon for which the perimeter is returned.
unit

A VARCHAR(128) value that identifies the units in which the perimeter is measured. The supported
units of measure are listed in the DB2GSE.ST_UNITS_OF_MEASURE catalog view.

If the unit parameter is omitted, the following rules are used to determine the unit in which the
perimeter is measured:

• If geometry is in a projected or geocentric coordinate system, the linear unit associated with this
coordinate system is used.

• If geometry is in a geographic coordinate system, the angular unit associated with this coordinate
system is used.

Restrictions on unit conversions: An error (SQLSTATE 38SU4) is returned if any of the following
conditions occur:

• The geometry is in an unspecified coordinate system and the unit parameter is specified.
• The geometry is in a projected coordinate system and an angular unit is specified.
• The geometry is in a geographic coordinate system and a linear unit is specified.

Check for an error case if the result is an overflow.

Chapter 12. Spatial functions: syntax and parameters 189

Return type
DOUBLE

Examples
The following examples illustrate the use of the ST_Perimeter function. These examples assume that you
created a SAMPLE_POLYS table to hold a geometry with a perimeter of 18.

SET CURRENT PATH = CURRENT PATH, db2gse

CREATE TABLE sample_polys (id SMALLINT, geometry ST_Polygon)

INSERT INTO sample_polys
 VALUES (1, ST_Polygon ('polygon ((0 0, 0 4, 5 4, 5 0, 0 0))', 1))

Example 1

This example lists the ID and perimeter of the polygon.

SELECT id, ST_Perimeter (geometry) AS PERIMETER
 FROM sample_polys

Results:

ID PERIMETER
----------- ------------------------
 1 +1.80000000000000E+001

Example 2

This example lists the ID and perimeter of the polygon with the perimeter measured in meters.

SELECT id, ST_Perimeter (geometry, 'METER') AS PERIMETER_METER
 FROM sample_polys

Results:

ID PERIMETER_METER
----------- ------------------------
 1 +5.48641097282195E+000

ST_Point
The ST_Point function has two variations.

In the first variation, ST_Point constructs a point from one of the following inputs:

• A set of coordinates
• A well-known text representation
• A well-known binary representation
• An ESRI shape representation
• A Geography Markup Language (GML) representation

An optional spatial reference system identifier can be specified to indicate the spatial reference system
that the resulting point is in.

If the point is constructed from coordinates, and if the X or Y coordinate is null, then an exception
condition is raised (SQLSTATE 38SUP). If the Z or M coordinate is null, then the resulting point will not
have a Z or M coordinate, respectively. If the point is constructed from its well-known text representation,
and if the representation is null, then null is returned.

190 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

In the second variation, ST_Point takes ST_Geometry as an input parameter and casts the output type to
ST_Point. If the given geometry is null, then null is returned.

Syntax
Variation 1

db2gse.ST_Point (coordinates

wkt

wkb

shape

gml

, srs_id)

coordinates
x_coordinate , y_coordinate

, z_coordinate

, m_coordinate

Parameters
wkt

A value of type CLOB(8M) that contains the well-known text representation of the resulting point. If
the well-known text representation is null, then null is returned.

wkb
A value of type BLOB(4M) that contains the well-known binary representation of the resulting point. If
the well-known binary representation is null, then null is returned.

shape
A value of type BLOB(4M) that contains the shape representation of the resulting point. If the shape
representation is null, then null is returned.

gml
A value of type CLOB(8M) that contains the GML representation of the geometry. If the GML
representation is null, then null is returned.

srs_id
A value of type INTEGER that identifies the spatial reference system for the resulting point. This
parameter is required.

If srs_id does not identify a spatial reference system listed in the catalog view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, an error is returned (SQLSTATE 38SU1).

x_coordinate
A value of type DOUBLE that specifies the X coordinate for the resulting point.

y_coordinate
A value of type DOUBLE that specifies the Y coordinate for the resulting point.

z_coordinate
A value of type DOUBLE that specifies the Z coordinate for the resulting point.

If the z_coordinate parameter is omitted, the resulting point will not have a Z coordinate.

m_coordinate
A value of type DOUBLE that specifies the M coordinate for the resulting point.

If the m_coordinate parameter is omitted, the resulting point will not have a measure.

Chapter 12. Spatial functions: syntax and parameters 191

Return type
db2gse.ST_Point

Syntax
Variation 2

db2gse.ST_Point (geometry)

Parameter
geometry

A value of type ST_Geometry.

Return type
ST_Point

Example
In the following examples, the lines of results have been reformatted for readability.

Example 1

This example illustrates how ST_Point can be used to create and insert points. The first point is created
using a set of X and Y coordinates. The second point is created using its well-known text representation.
Both points are geometries in spatial reference system 1.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_points (id INTEGER, geometry ST_Point);

INSERT INTO sample_points
 VALUES (1100, ST_Point (10, 20, 1));

INSERT INTO sample_points
 VALUES (1101, ST_Point ('point (30 40)', 1));

The following SELECT statement returns the points that were recorded in the table:

SELECT id, CAST(ST_AsText(geometry) AS VARCHAR(90)) POINTS
 FROM sample_points;

Results:

ID POINTS
---------- ------------------------------------
 1110 POINT (10.000000 20.000000)
 1101 POINT (30.000000 40.000000)

Example 2

This example inserts a record into the SAMPLE_POINTS table with ID 1103 and a point value with an X
coordinate of 120, a Y coordinate of 358, an M coordinate of 34, but no Z coordinate.

INSERT INTO SAMPLE_POINTS(ID, GEOMETRY)
 VALUES(1103, db2gse.ST_Point(120, 358, CAST(NULL AS DOUBLE), 34, 1));

SELECT id, CAST(ST_AsText(geometry) AS VARCHAR(90)) POINTS
 FROM sample_points;

Results:

192 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

ID POINTS
 ---------- --
 1100 POINT (10.000000 20.000000)
 1101 POINT (30.000000 40.000000)
 1103 POINT M (120.00000 358.00000 34)

ST_PointFromWKB
ST_PointFromWKB takes a well-known binary representation of a point and a spatial reference system
identifier as input parameters and returns the corresponding point.

If the given well-known binary representation is null, then null is returned.

Syntax
db2gse.ST_PointFromWKB (+ wkb + , srs_id)

Parameters
wkb

A value of type BLOB(4M) that contains the well-known binary representation of the resulting point.
srs_id

A value of type INTEGER that identifies the spatial reference system for the resulting point.

Return type
db2gse.ST_Point

Example
This example illustrates how ST_PointFromWKB can be used to create a point from its well-known binary
representation. The geometries are points in spatial reference system 1. In this example, the points get
stored in the GEOMETRY column of the SAMPLE_POLYS table, and then the WKB column is updated with
their well-known binary representations (using the ST_AsBinary function). Finally, the ST_PointFromWKB
function is used to return the points from the WKB column.

The SAMPLE_POINTS table has a GEOMETRY column, where the points are stored, and a WKB column,
where the points' well-known binary representations are stored.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_points (id INTEGER, geometry ST_Point, wkb BLOB(32K))

INSERT INTO sample_points
 VALUES (10, ST_Point ('point (44 14)', 1)),
INSERT INTO sample_points
 VALUES (11, ST_Point ('point (24 13)', 1))

UPDATE sample_points AS temporary_correlated
 SET wkb = ST_AsBinary(geometry)
 WHERE id = temporary_correlated.id

In the following SELECT statement, the ST_PointFromWKB function is used to retrieve the points from the
WKB column.

SELECT id, CAST(ST_AsText(ST_PointFromWKB (wkb)) AS VARCHAR(35)) POINTS
 FROM sample_points

Results:

Chapter 12. Spatial functions: syntax and parameters 193

ID POINTS
---------- -----------------------------------
 10 POINT (44.00000000 14.00000000)
 11 POINT (24.00000000 13.00000000)

ST_PointN
ST_PointN takes a linestring or a multipoint and an index as input parameters and returns that point in
the linestring or multipoint that is identified by the index. The resulting point is represented in the spatial
reference system of the given linestring or multipoint.

If the given linestring or multipoint is null or is empty, then null is returned.

Syntax
db2gse.ST_PointN (geometry , index)

Parameters
geometry

A value of type ST_LineString or ST_MultiPoint that represents the geometry from which the point that
is identified by index is returned.

index
A value of type INTEGER that identifies the nth point that is to be returned from geometry. If the
index is smaller than 1 or larger than the number of points in the linestring or multipoint, then null is
returned and a warning is returned (SQLSTATE 01HS2).

Return type
db2gse.ST_Point

Example
The following example shows the use of ST_PointN:

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_lines (id INTEGER, line ST_LineString)

INSERT INTO sample_lines
 VALUES (1, ST_LineString ('linestring (10 10, 5 5, 0 0, 10 0, 5 5, 0 10)', 0))

SELECT id, CAST (ST_AsText (ST_PointN (line, 2)) AS VARCHAR(60)) SECOND_INDEX
 FROM sample_lines

Results:

ID SECOND_INDEX
--------- --------------------------------
 1 POINT (5.00000000 5.00000000)

ST_PointOnSurface
ST_PointOnSurface takes a polygon or a multipolygon as an input parameter and returns a point that
is guaranteed to be in the interior of the polygon or multipolygon. This point is the paracentroid of the
polygon.

The resulting point is represented in the spatial reference system of the given polygon or multipolygon.

194 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

If the given polygon or multipolygon is null or is empty, then null is returned.

Syntax
db2gse.ST_PointOnSurface (geometry)

Parameter
geometry

A value of type ST_Polygon or ST_MultiPolygon that represents the geometry for which a point is
returned.

Return type
db2gse.ST_Point

Example
In the following example, two polygons are created and then ST_PointOnSurface is used. One of the
polygons has a hole in its center. The returned points are on the surface of the polygons. They are not
necessarily at the exact center of the polygons.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys
 VALUES (1,
 ST_Polygon ('polygon ((40 120, 90 120, 90 150, 40 150, 40 120) ,
 (50 130, 80 130, 80 140, 50 140, 50 130))' ,0))
INSERT INTO sample_polys
 VALUES (2,
 ST_Polygon ('polygon ((10 10, 50 10, 10 30, 10 10))', 0))

SELECT id, CAST (ST_AsText (ST_PointOnSurface (geometry)) AS VARCHAR(80))
 POINT_ON_SURFACE
 FROM sample_polys

Results:

ID POINT_ON_SURFACE
----------- ------------------------------------
 1 POINT (65.00000000 125.00000000)
 2 POINT (30.00000000 15.00000000)

ST_PolyFromWKB
ST_PolyFromWKB takes a well-known binary representation of a polygon and a spatial reference system
identifier as input parameters and returns the corresponding polygon.

If the given well-known binary representation is null, then null is returned.

Syntax
db2gse.ST_PolyFromWKB (+ wkb + , srs_id)

Chapter 12. Spatial functions: syntax and parameters 195

Parameters
wkb

A value of type BLOB(4M) that contains the well-known binary representation of the resulting polygon.
srs_id

A value of type INTEGER that identifies the spatial reference system for the resulting polygon.

Return type
db2gse.ST_Polygon

Example
In the following example, the lines of results have been reformatted for readability. The spacing in your
results will vary according to your online display.

This example illustrates how ST_PolyFromWKB can be used to create a polygon from its well-known
binary representation. The geometry is a polygon in spatial reference system 1. In this example, the
polygon gets stored with ID = 1115 in the GEOMETRY column of the SAMPLE_POLYS table, and then
the WKB column is updated with its well-known binary representation (using the ST_AsBinary function).
Finally, the ST_PolyFromWKB function is used to return the multipolygon from the WKB column. The X and
Y coordinates for this geometry are: (50, 20) (50, 40) (70, 30).

The SAMPLE_POLYS table has a GEOMETRY column, where the polygon is stored, and a WKB column,
where the polygon's well-known binary representation is stored.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon,
 wkb BLOB(32K))

INSERT INTO sample_polys
 VALUES (10, ST_Polygon ('polygon ((50 20, 50 40, 70 30, 50 20))', 1))

UPDATE sample_polys AS temporary_correlated
 SET wkb = ST_AsBinary(geometry)
 WHERE id = temporary_correlated.id

In the following SELECT statement, the ST_PolyFromWKB function is used to retrieve the polygon from
the WKB column.

SELECT id, CAST(ST_AsText(ST_PolyFromWKB (wkb))
 AS VARCHAR(120)) POLYGON
 FROM sample_polys
 WHERE id = 1115

Results:

ID POLYGON
---------- --
 1115 POLYGON ((50.00000000 20.00000000, 70.00000000
 30.00000000,50.00000000 40.00000000, 50.00000000
 20.00000000))

ST_Polygon
The ST_Polygon function has two variations.

In the first variation, ST_Polygon constructs a polygon from a well-known text representation, a well-
known binary representation, an ESRI shape representation, or a Geography Markup Language (GML)
representation. An optional spatial reference system identifier can be specified to identify the spatial
reference system that the resulting polygon is in.

196 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

In the second variation, ST_Polygon takes ST_Geometry as an input parameter and casts the output type
to ST_Polygon. If the given geometry is null, then null is returned.

Syntax
Variation 1

db2gse.ST_Polygon (wkt

wkb

shape

gml

, srs_id)

Parameters
wkt

A value of type CLOB(8M) that contains the well-known text representation of the resulting polygon. If
the well-known text representation is null, then null is returned.

wkb
A value of type BLOB(4M) that contains the well-known binary representation of the resulting polygon.
If the well-known binary representation is null, then null is returned.

shape
A value of type BLOB(4M) that contains the shape representation of the resulting polygon. If the shape
representation is null, then null is returned.

gml
A value of type CLOB(8M) that contains the GML representation of the geometry. If the GML
representation is null, then null is returned.

srs_id
A value of type INTEGER that identifies the spatial reference system for the resulting polygon.

If srs_id does not identify a spatial reference system listed in the catalog view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, an error is returned (SQLSTATE 38SU1).

Return type
db2gse.ST_Polygon

Syntax
Variation 2

db2gse.ST_Polygon (geometry)

Parameter
geometry

A value of type ST_Geometry.

Return type
ST_Polygon

Example
In the following example, the lines of results have been reformatted for readability.

Chapter 12. Spatial functions: syntax and parameters 197

This example illustrates how ST_Polygon can be used to create and insert a polygon. This polygon is
created using its well-known text representation. The X and Y coordinates for this polygon are: (110, 120)
(110, 140) (120, 130). The geometry is in spatial reference system 1.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon);

INSERT INTO sample_polys
 VALUES (1101,
 ST_Polygon ('polygon
 ((110 120, 110 140, 120 130, 110 120))', 1));

The following SELECT statement returns the polygon that was recorded in the table:

SELECT id, CAST(ST_AsText(geometry) AS VARCHAR(120)) POLYGONS
 FROM sample_polys;

Results:

ID POLYGONS
------- --
 1101 POLYGON ((110.000000 120.000000, 120.000000 130.000000,
 110.000000 140.000000, 110.000000 120.000000))

ST_Relate
ST_Relate takes two geometries and a Dimensionally Extended 9 Intersection Model (DE-9IM) matrix
as input parameters and returns 1 if the given geometries meet the conditions specified by the matrix.
Otherwise, 0 (zero) is returned.

If any of the given geometries is null or empty, then null is returned.

If the second geometry is not represented in the same spatial reference system as the first geometry, the
second geometry will be converted to the other spatial reference system.

Syntax
db2gse.ST_Relate (geometry1 , geometry2 , matrix)

Parameters
geometry1

A value of one of the seven distinct spatial data types that represents the geometry that is tested
against geometry2.

geometry2
A value of one of the seven distinct spatial data types that represents the geometry that is tested
against geometry1.

matrix
A value of CHAR(9) that represents the DE-9IM matrix that is to be used for the test of geometry1 and
geometry2.

Return type
INTEGER

198 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Example
The following example creates two separate polygons. Then, the ST_Relate function is used to determine
several relationships between the two polygons. For example, whether the two polygons overlap.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys
 VALUES (1,
 ST_Polygon('polygon ((40 120, 90 120, 90 150, 40 150, 40 120))', 0))
INSERT INTO sample_polys
 VALUES (2,
 ST_Polygon('polygon ((30 110, 50 110, 50 130, 30 130, 30 110))', 0))

SELECT ST_Relate(a.geometry, b.geometry, CHAR('T*T***T**') "Overlaps ",
 ST_Relate(a.geometry, b.geometry, CHAR('T*T***FF*') "Contains ",
 ST_Relate(a.geometry, b.geometry, CHAR('T*F**F***') "Within "
 ST_Relate(a.geometry, b.geometry, CHAR('T********') "Intersects",
 ST_Relate(a.geometry, b.geometry, CHAR('T*F**FFF2') "Equals "
 FROM sample_polys a, sample_polys b
 WHERE a.id = 1 AND b.id = 2

Results:

Overlaps Contains Within Intersects Equals
----------- ----------- ----------- ----------- -----------
 1 0 0 1 0

ST_SRID
The ST_SRID function takes a geometry as the input parameter and returns the spatial reference system
identifier from the geometry.

If the given geometry is null, then null is returned.

Syntax
db2gse.ST_SRID (geometry)

Parameters
geometry

A value of one of the seven distinct spatial data types that represents the geometry for which the
spatial reference system identifier is to be set or returned.

Return types
INTEGER

Example
In the following example, two points are created in two different spatial reference systems. You can use
the ST_SRID function to find the ID of the spatial reference system that is associated with each point.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_points (id INTEGER, geometry ST_Point)
INSERT INTO sample_points
 VALUES (1, ST_Point(point (80 180), 0))
INSERT INTO sample_points
 VALUES (2, ST_Point(point (-74.21450127 + 42.03415094), 1))
SELECT id, ST_SRID (geometry) SRID FROM sample_points

Chapter 12. Spatial functions: syntax and parameters 199

Results:

 ID SRID
------ ---------
 1 0
 2 1

ST_StartPoint
ST_StartPoint takes a linestring as an input parameter and returns the point that is the first point of the
linestring. The resulting point is represented in the spatial reference system of the given linestring.

This result is equivalent to the function call ST_PointN(linestring, 1).

If the given curve is null or is empty, then null is returned.

Syntax
db2gse.ST_StartPoint (linestring)

Parameters
linestring

A value of type ST_LineString that represents the geometry from which the first point is returned.

Return type
db2gse.ST_Point

Example
In the following example, two linestrings are added to the SAMPLE_LINES table. The first one is a
linestring with X and Y coordinates. The second one is a linestring with X, Y, and Z coordinates. The
ST_StartPoint function is used to return the first point in each linestring.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_lines (id INTEGER, line ST_LineString)

INSERT INTO sample_lines
 VALUES (1, ST_LineString ('linestring
 (10 10, 5 5, 0 0, 10 0, 5 5, 0 10)', 0))

INSERT INTO sample_lines
 VALUES (1, ST_LineString ('linestring z
 (0 0 4, 5 5 5, 10 10 6, 5 5 7, 0 0 8)', 0))

SELECT id, CAST(ST_AsText(ST_StartPoint(line)) AS VARCHAR(80))
 START_POINT
 FROM sample_lines

Results:

ID START_POINT
----------- --
 1 POINT (10.00000000 10.00000000)
 2 POINT Z (0.00000000 0.00000000 4.00000000)

200 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

ST_SymDifference
ST_SymDifference takes two geometries as input parameters and returns the geometry that is the
symmetrical difference of the two geometries.

The symmetrical difference is the non-intersecting part of the two given geometries. The resulting
geometry is represented in the spatial reference system of the first geometry. The dimension of the
returned geometry is the same as that of the input geometries. Both geometries must be of the same
dimension.

If the second geometry is not represented in the same spatial reference system as the first geometry, the
second geometry is converted to the other spatial reference system.

If the geometries are equal, an empty geometry of type ST_Point is returned. If either geometry is null,
then null is returned.

The resulting geometry is represented in the most appropriate spatial type. If it can be represented as a
point, linestring, or polygon, then one of those types is used. Otherwise, the multipoint, multilinestring, or
multipolygon type is used.

Syntax
db2gse.ST_SymDifference (geometry1 , geometry2)

Parameters
geometry1

A value of one of the seven distinct spatial data types that represents the first geometry to compute
the symmetrical difference with geometry2.

geometry2
A value of one of the seven distinct spatial data types that represents the second geometry to
compute the symmetrical difference with geometry1.

Return type
db2gse.ST_Geometry

Examples
Example 1

This example shows the use of the ST_SymDifference function. The geometries are stored in the
SAMPLE_GEOMS table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms
 VALUES (1,
 ST_Geometry (ST_Polygon('polygon ((10 10, 10 20, 20 20,
 20 10, 10 10))', 0)))

INSERT INTO sample_geoms
 VALUES
 (2, ST_Geometry (ST_Polygon('polygon ((30 30, 30 50, 50 50,
 50 30, 30 30))', 0)))

INSERT INTO sample_geoms
 VALUES
 (3,ST_Geometry (ST_Polygon('polygon ((40 40, 40 60, 60 60,
 60 40, 40 40))', 0)))

INSERT INTO sample_geoms
 VALUES
 (4, ST_Geometry (ST_LineString('linestring (70 70, 80 80)' , 0)))

Chapter 12. Spatial functions: syntax and parameters 201

INSERT INTO sample_geoms
 VALUES
 (5, ST_Geometry(ST_LineString('linestring(75 75, 90 90)' ,0)));

In the following examples, the results have been reformatted for readability. Your results will vary
according to your display.

Example 2

This example uses ST_SymDifference to return the symmetric difference of two disjoint polygons in the
SAMPLE_GEOMS table.

SELECT a.id, b.id,
 CAST (ST_AsText (ST_SymDifference (a.geometry, b.geometry))
 AS VARCHAR(350)) SYM_DIFF
 FROM sample_geoms a, sample_geoms b
 WHERE a.id = 1 AND b.id = 2

Results:

ID ID SYM_DIFF
----- ----- ---
 1 2 MULTIPOLYGON (((10.00000000 10.00000000, 20.00000000 10.00000000,
 20.00000000 20.00000000, 10.00000000 20.00000000,
 10.00000000 10.00000000)),
 ((30.00000000 30.00000000, 50.00000000 30.00000000,
 50.00000000 50.00000000, 30.00000000 50.00000000,
 30.00000000 30.00000000)))

Example 3

This example uses ST_SymDifference to return the symmetric difference of two intersecting polygons in
the SAMPLE_GEOMS table.

SELECT a.id, b.id,
 CAST (ST_AsText (ST_SymDifference (a.geometry, b.geometry))
 AS VARCHAR(500)) SYM_DIFF
 FROM sample_geoms a, sample_geoms b
 WHERE a.id = 2 AND b.id = 3

Results:

ID ID SYM_DIFF
--- --- ---
 2 3 MULTIPOLYGON (((40.00000000 50.00000000, 50.00000000 50.00000000,
 50.00000000 40.00000000, 60.00000000 40.00000000,
 60.00000000 60.00000000, 40.00000000 60.00000000,
 40.00000000 50.00000000)),
 ((30.00000000 30.00000000, 50.00000000 30.00000000,
 50.00000000 40.00000000, 40.00000000 40.00000000,
 40.00000000 50.00000000, 30.00000000 50.00000000,
 30.00000000 30.00000000)))

Example 4

This example uses ST_SymDifference to return the symmetric difference of two intersecting linestrings in
the SAMPLE_GEOMS table.

SELECT a.id, b.id,
 CAST (ST_AsText (ST_SymDifference (a.geometry, b.geometry))
 AS VARCHAR(350)) SYM_DIFF
 FROM sample_geoms a, sample_geoms b
 WHERE a.id = 4 AND b.id = 5

Results:

202 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

ID ID SYM_DIFF
---- --- ---
 4 5 MULTILINESTRING ((70.00000000 70.00000000, 75.00000000 75.00000000),
 (80.00000000 80.00000000, 90.00000000 90.00000000))

ST_Touches
ST_Touches takes two geometries as input parameters and returns 1 if the given geometries spatially
touch. Otherwise, 0 (zero) is returned.

Two geometries touch if the interiors of both geometries do not intersect, but the boundary of one of the
geometries intersects with either the boundary or the interior of the other geometry.

If the second geometry is not represented in the same spatial reference system as the first geometry, it
will be converted to the other spatial reference system.

If both of the given geometries are points or multipoints, or if any of the given geometries is null or empty,
then null is returned.

Syntax
db2gse.ST_Touches (geometry1 , geometry2)

Parameters
geometry1

A value of one of the seven distinct spatial data types that represents the geometry that is to be tested
to touch geometry2.

geometry2
A value of one of the seven distinct spatial data types that represents the geometry that is to be tested
to touch geometry1.

Return type
INTEGER

Example
Several geometries are added to the SAMPLE_GEOMS table. The ST_Touches function is then used to
determine which geometries touch each other.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry);

INSERT INTO sample_geoms
 VALUES (1, ST_Geometry(ST_Polygon ('polygon ((20 30, 30 30, 30 40, 20 40,
 20 30))' , 0)));

INSERT INTO sample_geoms
 VALUES (2, ST_Geometry(ST_Polygon ('polygon ((30 30, 30 50, 50 50, 50 30,
 30 30))' ,0)));

INSERT INTO sample_geoms
 VALUES (3, ST_Geometry(ST_Polygon ('polygon ((40 40, 40 60, 60 60, 60 40,
 40 40))' , 0)));

INSERT INTO sample_geoms
 VALUES (4, ST_Geometry(ST_Linestring ('linestring(60 60, 70 70)' , 0)));

INSERT INTO sample_geoms
 VALUES (5, ST_Geometry(ST_Linestring ('linestring(30 30, 60 60)' , 0)));

SELECT a.id, b.id, ST_Touches (a.geometry, b.geometry) TOUCHES

Chapter 12. Spatial functions: syntax and parameters 203

 FROM sample_geoms a, sample_geoms b
 WHERE b.id >= a.id;

Results:

 ID ID TOUCHES
 ----------- ----------- -----------
 1 1 0
 1 2 1
 1 3 0
 1 4 0
 1 5 1
 2 2 0
 2 3 0
 2 4 0
 2 5 0
 3 3 0
 3 4 1
 3 5 0
 4 4 0
 4 5 1
 5 5 0

ST_Union
ST_Union takes two geometries as input parameters and returns the geometry that is the union of the
given geometries. The resulting geometry is represented in the spatial reference system of the first
geometry.

Both geometries must be of the same dimension. If any of the two given geometries is null, null is
returned.

If the second geometry is not represented in the same spatial reference system as the first geometry, the
second geometry is converted to the other spatial reference system.

The resulting geometry is represented in the most appropriate spatial type. If it can be represented as a
point, linestring, or polygon, then one of those types is used. Otherwise, the multipoint, multilinestring, or
multipolygon type is used.

Syntax
db2gse.ST_Union (geometry1 , geometry2)

Parameters
geometry1

A value of one of the seven distinct spatial data types that is combined with geometry2.
geometry2

A value of one of the seven distinct spatial data types that is combined with geometry1.

Return type
db2gse.ST_Geometry

Examples
Example 1

The following SQL statements create and populate the SAMPLE_GEOMS table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

204 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

INSERT INTO sample_geoms
 VALUES (1, ST_Geometry(ST_Polygon ('polygon
 ((10 10, 10 20, 20 20, 20 10, 10 10))', 0)))

INSERT INTO sample_geoms
 VALUES (2, ST_Geometry(ST_Polygon ('polygon
 ((30 30, 30 50, 50 50, 50 30, 30 30))', 0)))

INSERT INTO sample_geoms
 VALUES (3, ST_Geometry(ST_Polygon ('polygon
 ((40 40, 40 60, 60 60, 60 40, 40 40))', 0)))

INSERT INTO sample_geoms
 VALUES (4, ST_Geometry(ST_LineString ('linestring (70 70, 80 80)', 0)))

INSERT INTO sample_geoms
 VALUES (5, ST_Geometry(ST_LineString ('linestring (80 80, 100 70)', 0)))

In the following examples, the results have been reformatted for readability. Your results will vary
according to your display.

Example 2

This example finds the union of two disjoint polygons.

SELECT a.id, b.id, CAST (ST_AsText(ST_Union(a.geometry, b.geometry))
 AS VARCHAR (350)) UNION
 FROM sample_geoms a, sample_geoms b
 WHERE a.id = 1 AND b.id = 2

Results:

ID ID UNION
----- ----- ---
 1 2 MULTIPOLYGON (((10.00000000 10.00000000, 20.00000000
 10.00000000, 20.00000000 20.00000000, 10.00000000
 20.00000000, 10.00000000 10.00000000))
 ((30.00000000 30.00000000, 50.00000000
 30.00000000,50.00000000 50.00000000, 30.00000000
 50.00000000,30.00000000 30.00000000)))

Example 3

This example finds the union of two intersecting polygons.

SELECT a.id, b.id, CAST (ST_AsText(ST_Union(a.geometry, b.geometry))
 AS VARCHAR (250)) UNION
 FROM sample_geoms a, sample_geoms b
 WHERE a.id = 2 AND b.id = 3

Results:

ID ID UNION
----- ----- --
 2 3 POLYGON ((30.00000000 30.00000000, 50.00000000
 30.00000000,50.00000000 40.00000000, 60.00000000
 40.00000000,60.00000000 60.00000000, 40.00000000
 60.00000000 40.00000000 50.00000000, 30.00000000
 50.00000000, 30.00000000 30.00000000))

Example 4

Find the union of two linestrings.

SELECT a.id, b.id, CAST (ST_AsText(ST_Union(a.geometry, b.geometry))
 AS VARCHAR (250)) UNION

Chapter 12. Spatial functions: syntax and parameters 205

 FROM sample_geoms a, sample_geoms b
 WHERE a.id = 4 AND b.id = 5

Results:

ID ID UNION
----- ----- ---
 4 5 MULTILINESTRING ((70.00000000 70.00000000, 80.00000000 80.00000000),
 (80.00000000 80.00000000, 100.00000000 70.00000000))

ST_UnionAggr
The ST_UnionAggr function is a union aggregate function that works as a scalar function. This function
returns a result for each row.

The result is the union of the geometry on that row and all of the geometries of the previous rows. The
result of the final row is the union of all the geometries of that column.

If all of the geometries to be combined in the union are null, then null is returned for each row. If each
of the geometries to be combined in the union are either null or are empty, an empty geometry of type
ST_Point is returned.

Syntax
db2sge.ST_UnionAggr (geometries)

Parameters
geometries

A column in a table that has a type of one of the seven distinct spatial data types. The geometries of
the column are combined into a union.

Return type
db2gse.ST_Geometry

Examples
In the following examples, the lines of results have been reformatted for readability. The spacing in your
results will vary according to your online display.

Example 1: This example illustrates how you can use a union aggregate function to combine a set
of points into multipoints. Several points are added to the SAMPLE_POINTS table. The ST_UnionAggr
function is used to construct the union of the points for each row.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse
CREATE TABLE SYSADM.SAMPLE_POINTS (id INTEGER, geometry ST_Point)

INSERT INTO SYSADM.SAMPLE_POINTS
 VALUES (1, ST_Point (2, 3, 1))
INSERT INTO SYSADM.SAMPLE_POINTS
 VALUES (2, ST_Point (4, 5, 1))
INSERT INTO SYSADM.SAMPLE_POINTS
 VALUES (3, ST_Point (13, 15, 1))
INSERT INTO SYSADM.SAMPLE_POINTS
 VALUES (4, ST_Point (12, 5, 1))
INSERT INTO SYSADM.SAMPLE_POINTS
 VALUES (5, ST_Point (23, 2, 1))
INSERT INTO SYSADM.SAMPLE_POINTS
 VALUES (6, ST_Point (11, 4, 1))

SELECT CAST (ST_AsText(ST_UNIONAGGR(geometry))

206 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

 AS VARCHAR(160)) POINT_AGGREGATE
 FROM SYSADM.SAMPLE_POINTS

Results:

POINT_AGGREGATE
--
POINT (2.000000 3.000000)
MULTIPOINT (2.000000 3.000000, 4.000000 5.000000)
MULTIPOINT (2.000000 3.000000, 4.000000 5.000000, 13.000000 15.000000)
MULTIPOINT (2.000000 3.000000, 4.000000 5.000000, 12.000000 5.000000,
 13.000000 15.000000)
MULTIPOINT (2.000000 3.000000, 4.000000 5.000000, 12.000000 5.000000,
 13.000000 15.000000, 23.000000 2.000000)
MULTIPOINT (2.000000 3.000000, 4.000000 5.000000, 11.000000 4.000000,
 12.000000 5.000000, 13.000000 15.000000, 23.000000 2.000000)

Example 2: The following examples shows how you can return the last row of the result set from the
ST_UnionAggr function.

 EXEC SQL BEGIN DECLARE SECTION;

/* User Defined Variables */

 struct
 { short len;
 char data(256);

 } HOSTVAR;
 short I_HOSTVAR;
 EXEC SQL END DECLARE SECTION;

/* Declare static scroll cursor*/
 EXEC SQL DECLARE C1 SENSITIVE STATIC SCROLL
 CURSOR FOR SELECT
 CAST(DB2GSE.ST_ASTEXT(DB2GSE.ST_UNIONAGGR(GEOMETRY)) AS VARCHAR(256))
 FROM SYSADM.SYSADM.SAMPLE_POINTS;
.
.
.
/* open cursor*/
 EXEC SQL OPEN C1;

/* Fetch the last row to HOSTVAR */
 EXEC SQL
 FETCH ABSOLUTE -1 C1
 INTO :HOSTVAR:I_HOSTVAR;

/* Close the cursor*/
 EXEC SQL
 CLOSE C1 ;

ST_Within
ST_Within takes two geometries as input parameters and returns 1 if the first geometry is completely
within the second geometry. Otherwise, 0 (zero) is returned.

If any of the given geometries is null or is empty, null is returned.

If the second geometry is not represented in the same spatial reference system as the first geometry, it
will be converted to the other spatial reference system.

ST_Within performs the same logical operation that ST_Contains performs with the parameters reversed.

Syntax
db2gse.ST_Within (geometry1 , geometry2)

Chapter 12. Spatial functions: syntax and parameters 207

Parameters
geometry1

A value of one of the seven distinct spatial data types that is to be tested to be fully within geometry2.
geometry2

A value of one of the seven distinct spatial data types that is to be tested to be fully within geometry1.

Return type
INTEGER

Examples
Example 1

This example illustrates use of the ST_Within function. Geometries are created and inserted into three
tables, SAMPLE_POINTS, SAMPLE_LINES, and SAMPLE_POLYGONS.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_points (id INTEGER, geometry ST_Point);
CREATE TABLE sample_lines (id INTEGER, line ST_LineString);
CREATE TABLE sample_polygons (id INTEGER, geometry ST_Polygon);

INSERT INTO sample_points (id, geometry)
 VALUES (1, ST_Point (10, 20, 1));

INSERT INTO sample_points (id, geometry)
 VALUES (2, ST_Point ('point (41 41)', 1));

INSERT INTO sample_lines (id, line)
 VALUES (10, ST_LineString ('linestring (1 10, 3 12, 10 10)', 1));

INSERT INTO sample_lines (id, line)
 VALUES (20, ST_LineString ('linestring (50 10, 50 12, 45 10)', 1));

INSERT INTO sample_polygons (id, geometry)
 VALUES (100, ST_Polygon ('polygon ((0 0, 0 40, 40 40, 40 0, 0 0))', 1));

Example 2

This example finds points from the SAMPLE_POINTS table that are in the polygons in the
SAMPLE_POLYGONS table.

SELECT a.id POINT_ID_WITHIN_POLYGONS
 FROM sample_points a, sample_polygons b
 WHERE ST_Within(a.geometry, b.geometry) = 1;

Results:

POINT_ID_WITHIN_POLYGONS

1
2

Example 3

This example finds linestrings from the SAMPLE_LINES table that are in the polygons in the
SAMPLE_POLYGONS table.

SELECT a.id LINE_ID_WITHIN_POLYGONS
 FROM sample_lines a, sample_polygons b
 WHERE ST_Within(a.line, b.geometry) = 1;

Results:

208 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

LINE_ID_WITHIN_POLYGONS

10
20

ST_WKBToSQL
ST_WKBToSQL takes a well-known binary representation of a geometry and returns the corresponding
geometry. The spatial reference system with the identifier 0 (zero) is used for the resulting geometry.

If the given well-known binary representation is null, null is returned.

Syntax
db2gse.ST_WKBToSQL (wkb)

Parameter
wkb

A value of type BLOB(4M) that contains the well-known binary representation of the resulting
geometry. If the well-known binary representation is null, null is returned.

Return type
db2gse.ST_Geometry

Example
This example illustrates use of the ST_WKBToSQL function. First, geometries are stored in the
SAMPLE_GEOMETRIES table in its GEOMETRY column. Then, their well-known binary representations
are stored in the WKB column using the ST_AsBinary function in the UPDATE statement. Finally, the
ST_WKBToSQL function is used to return the coordinates of the geometries in the WKB column.

SET CURRENT PATH = CURRENT PATH, db2gse
CREATE TABLE sample_geometries
 (id INTEGER, geometry ST_Geometry, wkb BLOB(32K))

INSERT INTO sample_geometries (id, geometry)
 VALUES (10, ST_Point ('point (44 14)', 0)),
 (11, ST_Point ('point (24 13)', 0)),
 (12, ST_Polygon ('polygon ((50 20, 50 40, 70 30, 50 20))', 0))
UPDATE sample_geometries AS temp_correlated
 SET wkb = ST_AsBinary(geometry)
 WHERE id = temp_correlated.id

Use this SELECT statement to see the geometries in the WKB column.

SELECT id, CAST(ST_AsText(ST_WKBToSQL(wkb)) AS VARCHAR(120)) GEOMETRIES
 FROM sample_geometries

Results:

ID GEOMETRIES
----------- ---
 10 POINT (44.00000000 14.00000000)
 11 POINT (24.00000000 13.00000000)
 12 POLYGON ((50.00000000 20.00000000, 70.00000000 30.00000000,
 50.00000000 40.00000000, 50.00000000 20.00000000))

Chapter 12. Spatial functions: syntax and parameters 209

ST_WKTToSQL
ST_WKTToSQL takes a well-known text representation of a geometry and returns the corresponding
geometry. The spatial reference system with the identifier 0 (zero) is used for the resulting geometry.

If the given well-known text representation is null, null is returned.

Syntax
db2gse.ST_WKTToSQL (wkt)

Parameter
wkt

A value of type CLOB(8M) that contains the well-known text representation of the resulting geometry.
If the well-known text representation is null, null is returned.

Return type
db2gse.ST_Geometry

Example
This example illustrates how ST_WKTToSQL can create and insert geometries using their well-known text
representations.

SET CURRENT PATH = CURRENT PATH, db2gse
CREATE TABLE sample_geometries (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geometries
 VALUES (10, ST_WKTToSQL('point (44 14)')),
 (11, ST_WKTToSQL('point (24 13)')),
 (12, ST_WKTToSQL ('polygon ((50 20, 50 40, 70 30, 50 20))'))

This SELECT statement returns the geometries that have been inserted.

SELECT id, CAST(ST_AsText(geometry) AS VARCHAR(120)) GEOMETRIES
 FROM sample_geometries

Results:

ID GEOMETRIES
----------- ---
 10 POINT (44.00000000 14.00000000)
 11 POINT (24.00000000 13.00000000)
 12 POLYGON ((50.00000000 20.00000000, 70.00000000 30.00000000,
 50.00000000 40.00000000, 50.00000000 20.00000000))

ST_X
The function ST_X takes a point as an input parameter and returns its X coordinate.

If the given point is null or is empty, then null is returned.

Syntax
db2gse.ST_X (point)

210 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Parameters
point

A value of type ST_Point for which the X coordinate is returned or modified.

Return types
DOUBLE

Examples
Example 1

This example illustrates use of the ST_X function. Geometries are created and inserted into the
SAMPLE_POINTS table.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_points (id INTEGER, geometry ST_Point);

INSERT INTO sample_points (id, geometry)
 VALUES (1, ST_Point (2, 3, 32, 5, 1));

INSERT INTO sample_points (id, geometry)
 VALUES (2, ST_Point (4, 5, 20, 4, 1));

INSERT INTO sample_points (id, geometry)
 VALUES (3, ST_Point (3, 8, 23, 7, 1));

Example 2

This example finds the X coordinates of the points in the table.

SELECT id, ST_X (geometry) X_COORD
 FROM sample_points;

Results:

ID X_COORD
---------- ----------------------
 1 +2.00000000000000E+000
 2 +4.00000000000000E+000
 3 +3.00000000000000E+000

ST_Y
The ST_Y function takes a point as an input parameter and returns its Y coordinate.

If the given point is null or is empty, then null is returned.

Syntax
db2gse.ST_Y (point)

Parameters
point

A value of type ST_Point for which the Y coordinate is returned or modified.

Return types
DOUBLE

Chapter 12. Spatial functions: syntax and parameters 211

Examples
Example 1

This example illustrates use of the ST_Y function. Geometries are created and inserted into the
SAMPLE_POINTS table.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_points (id INTEGER, geometry ST_Point);

INSERT INTO sample_points (id, geometry)
 VALUES (1, ST_Point (2, 3, 32, 5, 1));

INSERT INTO sample_points (id, geometry)
 VALUES (2, ST_Point (4, 5, 20, 4, 1));

INSERT INTO sample_points (id, geometry)
 VALUES (3, ST_Point (3, 8, 23, 7, 1));

Example 2

This example finds the Y coordinates of the points in the table.

SELECT id, ST_Y (geometry) Y_COORD
 FROM sample_points;

Results:

ID Y_COORD
---------- ----------------------
 1 +3.00000000000000E+000
 2 +5.00000000000000E+000
 3 +8.00000000000000E+000

ST_Z
The ST_Z function takes a point as an input parameter and returns its Z coordinate.

If the specified point is null or empty, then null is returned.

Syntax
db2gse.ST_Z (point)

Parameters
point

A value of type ST_Point for which the Z coordinate is returned or modified.

Return types
DOUBLE

Examples
Example 1

This example illustrates use of the ST_Z function. Geometries are created and inserted into the
SAMPLE_POINTS table.

SET CURRENT PATH = CURRENT PATH, db2gse;
CREATE TABLE sample_points (id INTEGER, geometry ST_Point);

212 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

INSERT INTO sample_points (id, geometry)
 VALUES (1, ST_Point (2, 3, 32, 5, 1));

INSERT INTO sample_points (id, geometry)
 VALUES (2, ST_Point (4, 5, 20, 4, 1));

INSERT INTO sample_points (id, geometry)
 VALUES (3, ST_Point (3, 8, 23, 7, 1));

Example 2

This example finds the Z coordinates of the points in the table.

SELECT id, ST_Z (geometry) Z_COORD
 FROM sample_points;

Results:

ID Z_COORD
---------- ----------------------
 1 +3.20000000000000E+001
 2 +2.00000000000000E+001
 3 +2.30000000000000E+001

Chapter 12. Spatial functions: syntax and parameters 213

214 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Chapter 13. Supported data formats
IBM Spatial Support for Db2 for z/OS supports several industry standard spatial data formats, such as
well-known text representation, well-known binary representation, shape representation, and Geography
Markup Language (GML) representation.

Well-known text (WKT) representation
The OpenGIS Consortium "Simple Features for SQL" specification defines the well-known text
representation to exchange geometry data in ASCII format. This representation is also referenced by
the ISO "SQL/MM Part: 3 Spatial" standard.

The well-known text representation of a geometry is defined as follows:

POINT

LINESTRING

POLYGON

MULTIPOINT

MULTILINESTRING

MULTIPOLYGON

point-tagged-text

linestring-tagged text

polygon-tagged-text

multipoint-tagged-text

multilinestring-tagged-text

multipolygon-tagged-text

point-tagged-text
? EMPTY

(point-coordinates)

Z EMPTY

(point-z-coordinates)

M EMPTY

(point-m-coordinates)

ZM EMPTY

(point-zm-coordinates)

linestring-tagged-text
? EMPTY

(linestring-points)

Z EMPTY

(linestring-z-points)

M EMPTY

(linestring-m-points)

ZM EMPTY

(linestring-zm-points)

polygon-tagged-text

© Copyright IBM Corp. 2007, 2023 215

? EMPTY

(polygon-rings)

Z EMPTY

(polygon-z-rings)

M EMPTY

(polygon-m-rings)

ZM EMPTY

(polygon-zm-rings)

multipoint-tagged-text
? EMPTY

(multipoint-parts)

Z EMPTY

(multipoint-z-parts)

M EMPTY

(multipoint-m-parts)

ZM EMPTY

(multipoint-zm-parts)

multilinestring-tagged-text
? EMPTY

(multilinestring-parts)

Z EMPTY

(multilinestring-z-parts)

M EMPTY

(multilinestring-m-parts)

ZM EMPTY

(multilinestring-zm-parts)

multipolygon-tagged-text
? EMPTY

(multipolygon-parts)

Z EMPTY

(multipolygon-z-parts)

M EMPTY

(multipolygon-m-parts)

ZM EMPTY

(multipolygon-zm-parts)

point-coordinates
x_coord y_coord

point-z-coordinates
point-coordinates y_coord

216 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

point-m-coordinates
point-coordinates m_coord

point-zm-coordinates
point-coordinates y_coord m_coord

linestring-points

? point-coordinates ,

,

point-coordinates ?

linestring-z-points

? point-z-coordinates ,

,

point-z-coordinates ?

linestring-m-points

? point-m-coordinates ,

,

point-m-coordinates ?

linestring-zm-points

? point-zm-coordinates ,

,

point-zm-coordinates ?

polygon-rings
,

(linestring-points linestring-points)

polygon-z-rings
,

(linestring-z-points linestring-z-points)

polygon-m-rings
,

(linestring-m-points linestring-m-points)

polygon-zm-rings
,

(linestring-zm-points linestring-zm-points)

multipoint-parts
,

? point-coordinates ?

multipoint-z-parts
,

? point-z-coordinates ?

Chapter 13. Supported data formats 217

multipoint-m-parts
,

? point-m-coordinates ?

multipoint-zm-parts
,

? point-zm-coordinates ?

multilinestring-parts
,

(linestring-points)

multilinestring-z-parts
,

(linestring-z-points)

multilinestring-m-parts
,

(linestring-m-points)

multilinestring-zm-parts
,

(linestring-zm-points)

multipolygon-parts
,

(polygon-rings)

multipolygon-z-parts
,

(polygon-z-rings)

multipolygon-m-parts
,

(polygon-m-rings)

multipolygon-zm-parts
,

(polygon-zm-rings)

Parameters
x_coord

A numerical value (fixed, integer, or floating point), which represents the X coordinate of a point.

y_coord

218 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

A numerical value (fixed, integer, or floating point), which represents the Y coordinate of a point.

z_coord

A numerical value (fixed, integer, or floating point), which represents the Z coordinate of a point.

m_coord

A numerical value (fixed, integer, or floating point), which represents the M coordinate (measure) of a
point.

If the geometry is empty, then the keyword EMPTY is to be specified instead of the coordinate list. The
EMPTY keyword must not be embedded within the coordinate list

The following table provides some examples of possible text representations.

Table 29. Geometry types and their text representations

Geometry type WKT representation Comment

point POINT EMPTY empty point

point POINT (10.05 10.28) point

point POINT Z(10.05 10.28 2.51) point with Z coordinate

point POINT M(10.05 10.28 4.72) point with M coordinate

point POINT ZM(10.05 10.28 2.51
4.72)

point with Z coordinate and M
coordinate

linestring LINESTRING EMPTY empty linestring

polygon POLYGON ((10 10, 10 20, 20 20,
20 15, 10 10))

polygon

multipoint MULTIPOINT Z(10 10 2, 20 20 3) multipoint with Z coordinates

multilinestring MULTILINESTRING M((310 30 1,
40 30 20, 50 20 10)(10 10 0, 20
20 1))

multilinestring with M
coordinates

multipolygon MULTIPOLYGON ZM(((1 1 1 1, 1
2 3 4, 2 2 5 6, 2 1 7 8, 1 1 1 1)))

multipolygon with Z coordinates
and M coordinates

Well-known binary (WKB) representation
The OpenGIS Consortium "Simple Features for SQL" specification defines the well-known binary
representation for geometries.

This representation is also defined by the International Organization for Standardization (ISO) "SQL/MM
Part: 3 Spatial" standard. See the related reference section at the end of this topic for information on
functions that accept and produce the WKB.

The basic building block for well-known binary representations is the byte stream for a point, which
consists of two double values. The byte streams for other geometries are built using the byte streams for
geometries that are already defined.

The following example illustrates the basic building block for well-known binary representations.

Chapter 13. Supported data formats 219

// Basic Type definitions
// byte : 1 byte
// uint32 : 32 bit unsigned integer (4 bytes)
// double : double precision number (8 bytes)

// Building Blocks : Point, LinearRing

Point {
 double x;
 double y;
};
LinearRing {
 uint32 numPoints;
 Point points[numPoints];
};
enum wkbGeometryType {
 wkbPoint = 1,
 wkbLineString = 2,
 wkbPolygon = 3,
 wkbMultiPoint = 4,
 wkbMultiLineString = 5,
 wkbMultiPolygon = 6
};
enum wkbByteOrder {
 wkbXDR = 0, // Big Endian
 wkbNDR = 1 // Little Endian
};
WKBPoint {
 byte byteOrder;
 uint32 wkbType; // 1=wkbPoint
 Point point;
};
WKBLineString {
 byte byteOrder;
 uint32 wkbType; // 2=wkbLineString
 uint32 numPoints;
 Point points[numPoints];
};

WKBPolygon {
 byte byteOrder;
 uint32 wkbType; // 3=wkbPolygon
 uint32 numRings;
 LinearRing rings[numRings];
};
WKBMultiPoint {
 byte byteOrder;
 uint32 wkbType; // 4=wkbMultipoint
 uint32 num_wkbPoints;
 WKBPoint WKBPoints[num_wkbPoints];
};
WKBMultiLineString {
 byte byteOrder;
 uint32 wkbType; // 5=wkbMultiLineString
 uint32 num_wkbLineStrings;
 WKBLineString WKBLineStrings[num_wkbLineStrings];
};

wkbMultiPolygon {
 byte byteOrder;
 uint32 wkbType; // 6=wkbMultiPolygon
 uint32 num_wkbPolygons;
 WKBPolygon wkbPolygons[num_wkbPolygons];
};

WKBGeometry {
 union {
 WKBPoint point;
 WKBLineString linestring;
 WKBPolygon polygon;
 WKBMultiPoint mpoint;
 WKBMultiLineString mlinestring;
 WKBMultiPolygon mpolygon;
 }
};

The following figure shows an example of a geometry in well-known binary representation using NDR
coding.

220 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

WKB
Polygon

Ring1 Ring2

B=1 T=3 X1 Y1 X2 Y2 X3 Y3 Y3X1 Y1 X2 Y2 X3NR=
2

NP=
3

NP=
3

Figure 26. Geometry representation in NDR format

Shape representation
Shape representation is a widely used industry standard defined by ESRI.

For a full description of shape representation, see the ESRI website at http://www.esri.com/library/
whitepapers/pdfs/shapefile.pdf.

Geography Markup Language (GML) representation
IBM Spatial Support for Db2 for z/OS has several functions that generate geometries from
representations in Geography Markup Language representation.

The Geography Markup Language (GML) is an XML encoding for geographic information that is defined
by the OpenGIS Consortium "Geography Markup Language V2" specification. This OpenGIS Consortium
specification can be found at http://www.opengis.org/techno/implementation.htm.

Chapter 13. Supported data formats 221

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.opengis.org/techno/implementation.htm

222 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Chapter 14. Supported coordinate systems
This information provides an explanation of coordinate systems syntax and lists the coordinate system
values that are supported by IBM Spatial Support for Db2 for z/OS.

Coordinate systems syntax
The well-known text (WKT) representation of spatial reference systems provides a standard textual
representation for coordinate system information.

The definitions of the well-known text representation are defined by the OpenGIS Consortium "Simple
Features for SQL" specification and the ISO "SQL/MM Part 3: Spatial" standard.

A coordinate system is a geographic (latitude-longitude) coordinate system, or a projected (X,Y)
coordinate system. A coordinate system is composed of several objects. Each object has a keyword (for
example, DATUM or UNIT) that is followed by a comma-delimited list of the parameters that define the
object. The list is enclosed in brackets. Some objects are composed of other objects, so the result is a
nested structure.

Note: IBM Spatial Support for Db2 for z/OS also accepts standard brackets () in the place of square
brackets []. Keywords are not case-sensitive.

Syntax
geographic coordsys

projected coordsys

projected coordsys:
PROJCS [" projcs_name " , geographic coordsys , PROJECTION [

" projection_name "] ,

,

PARAMETER [" parameter_name " , parameter_value] ,

UNIT [" linear_unit_name " , conversion_factor]]

geographic coordsys:
GEOGCS [" geogcs_name " , DATUM [" datum_name " ,

spheroid] , PRIMEM [" primem_name " , longitude] ,

UNIT [" angular_unit_name " , conversion_factor]]

spheroid:
SPHEROID [" spheroid_name " , semi_major_axis , inverse_flattening

]

Parameters
The type of coordinate system is identified by the first keyword used in the WKT string. This section
describes the parameters for each type of coordinate system.

© Copyright IBM Corp. 2007, 2023 223

PROJCS
A geometry's coordinate system is identified by the PROJCS keyword if the coordinate values are
projected.

All projected coordinate systems are based on a geographic coordinate system. The PROJCS keyword
is followed by all of the components that define the projected coordinate system. Several objects
follow the projected coordinate system name: the geographic coordinate system, the map projection,
one or more parameters for the projection, and the linear unit of measure that is applicable to the
projected coordinate system.

PROJECTION "projection_name"
Specifies the name of the projection algorithm that is to be used for the conversion from the
underlying geographic coordinate system to the projected coordinate system. The algorithm for
reverse projections is also implied.

For more information about supported projection algorithms, see “Supported map projections” on
page 229.

PARAMETER "parameter_name", parameter_value
Defines a single parameter for the projected coordinate system. The parameter is identified by its
name and a value.

The semantics and units of measure for the parameter and its value are dependent on the
parameter itself. For example, a projected coordinate system might require the specification for
the longitude of the central meridian and additional offsets and scale factors for the projected
coordinate values.

UNIT "unit_name", conversion_factor
Defines the linear unit for the projected coordinate system. For example, the unit in which
the distance between two coordinate values is measured. The base unit is METER, and the
conversion_factor specifies how many meters represent a single unit in the projected coordinate
system.

For more information about supported units of measure, see “Supported linear units” on page
226.

GEOGCS
A geometry's coordinate system is identified by the GEOGCS keyword if the coordinate values are
geographic coordinates.

The name of the geographic coordinate system and several objects are needed to define a geographic
coordinate system object: the datum, the prime meridian, and the angular unit of measure that is
applicable to the geographic coordinate system.

DATUM "datum_name", spheroid
The datum, based on a spheroid, defines the shape and position of the spheroid that is used to
approximate the Earth's surface.

The datum_name uniquely identifies the datum. For more information about datums, see
“Geographic coordinate system” on page 13.

SPHEROID "spheroid_name", semi_major_axis, inverse_flattening
Defines the shape that is used to approximate the Earth's surface. The semi_major_axis variable
specifies the radius of the spheroid at its equator. This value is measured in meters and
must be greater than 0 (zero). The minor axis is calculated based on the major axis and the
inverse_flattening. The inverse flattening variable if gives the proportion of the semi-minor axis
minor to the semi-major axis major and is calculated using the following formula:

if = major / (major - minor)

An inverse flattening value of 0 (zero) is a special case, which implies that the semi-minor axis is
equal to the semi-major axis, and therefore, the spheroid is actually a sphere.

224 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

PRIMEM "primem_name", longitude
Defines the prime meridian, which means the meridian that has a longitude of 0 (zero) assigned to
it in the geographic coordinate system. All longitude values are measured relative to that meridian.
For example, all points on the prime meridian have a longitude of 0 (zero).

The longitude of the prime meridian is specified relative to the Greenwich meridian and measured
in degrees. Greenwich is often chosen as the prime meridian; however, this is not mandatory. A
positive value for longitude places the prime meridian to the east of Greenwich, and a negative
value for longitude places the prime meridian to the west of Greenwich.

For more information about supported prime meridians, see “Supported prime meridians” on
page 229.

UNIT "angular_unit_name", conversion_factor
Defines the angular unit for the geographic coordinate system. For example, the unit in which
the distance between latitude values or longitude values is measured. The base unit is RADIAN,
and the conversion_factor specifies how many radians represent a single unit in the geographic
coordinate system. The conversion factor must be greater than 0 (zero).

For more information about supported angular units of measure, see “Supported angular units” on
page 226.

Examples
The following WKT representation, known as GCS_North_American_1983, shows a geographic coordinate
system that uses the spheroid GRS_1980 and the datum D_North_American_1983. The spheroid has a
semi-major axis of 6378.137 kilometers and a semi-minor axis of 6356.752 kilometers. That results in an
inverse flattening of 298.257222101. The primary meridian is placed at Greenwich (longitude 0), and the
units are measured in degrees.

GEOGCS["GCS_North_American_1983",
 DATUM["D_North_American_1983",
 SPHEROID["GRS_1980", 6378137, 298.257222101]],
 PRIMEM["Greenwich", 0],
 UNIT["Degree", 0.0174532925199433]]

In the following example, UTM zone 10N is a projected coordinate system that is based on the above
geographic coordinate system, which used datum NAD83. The Transverse Mercator projection algorithm
is used to calculate the projected coordinates from the geographic (latitude-longitude) coordinates for
each geometry. The resulting projected coordinate systems are shifted by 50 kilometers to the east, as
the parameter named "False_Easting" indicates. Other parameters for the projected coordinate system
define the central meridian and a scale factor, for example. All units are measured in meters in the
projected coordinate system.

PROJCS["NAD_1983_UTM_Zone_10N",
 GEOGCS["GCS_North_American_1983",
 DATUM["D_North_American_1983",
 SPHEROID["GRS_1980", 6378137, 298.257222101]],
 PRIMEM["Greenwich", 0],
 UNIT["Degree", 0.0174532925199433]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["False_Easting", 500000.0],
 PARAMETER["False_Northing", 0.0],
 PARAMETER["Central_Meridian", -123.0],
 PARAMETER["Scale_Factor", 0.9996],
 PARAMETER["Latitude_of_Origin", 0.0],
 UNIT["Meter", 1.0]]

Chapter 14. Supported coordinate systems 225

Supported linear units
This table shows the supported linear units.

Table 30. Supported linear units

Unit Conversion factor

Meter 1.0

Foot (International) 0.3048

U.S. Foot 12/39.37

Modified American Foot 12.0004584/39.37

Clarke's Foot 12/39.370432

Indian Foot 12/39.370141

Link 7.92/39.370432

Link (Benoit) 7.92/39.370113

Link (Sears) 7.92/39.370147

Chain (Benoit) 792/39.370113

Chain (Sears) 792/39.370147

Yard (Indian) 36/39.370141

Yard (Sears) 36/39.370147

Fathom 1.8288

Nautical Mile 1852.0

Supported angular units
This table shows the supported angular units.

Table 31. Supported angular units

Unit Valid range for latitude Valid range for
longitude

Conversion factor

Radian –pi/2 and pi/2 radians
(inclusive)

–pi and pi radians
(inclusive)

1.0

Decimal Degree –90 and 90 degrees
(inclusive)

–180 and 180 degrees
(inclusive)

pi/180

Decimal Minute –5400 and 5400
minutes (inclusive)

–10800 and 10800
minutes (inclusive)

(pi/180)/60

226 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Table 31. Supported angular units (continued)

Unit Valid range for latitude Valid range for
longitude

Conversion factor

Decimal Second –324000 and 324000
seconds (inclusive)

–648000 and 648000
seconds (inclusive)

(pi/180)*3600

Gon –100 and 100 gradians
(inclusive)

–200 and 200 gradians
(inclusive)

pi/200

Grad –100 and 100 gradians
(inclusive)

–200 and 200 gradians
(inclusive)

pi/200

Supported spheroids
This table shows the supported spheroids.

Table 32. Supported spheroids

Name Semi-major axis Inverse flattening

Airy 1830 6377563.396 299.3249646

Airy Modified 1849 6377340.189 299.3249646

Average Terrestrial System 1977 6378135.0 298.257

Australian National Spheroid 6378160.0 298.25

Bessel 1841 6377397.155 299.1528128

Bessel Modified 6377492.018 299.1528128

Bessel Namibia 6377483.865 299.1528128

Clarke 1858 6378293.639 294.260676369

Clarke 1866 6378206.4 294.9786982

Clarke 1866 (Michigan) 6378450.047 294.978684677

Clarke 1880 6378249.138 293.466307656

Clarke 1880 (Arc) 6378249.145 293.466307656

Clarke 1880 (Benoit) 6378300.79 293.466234571

Clarke 1880 (IGN) 6378249.2 293.46602

Clarke 1880 (RGS) 6378249.145 293.465

Clarke 1880 (SGA 1922) 6378249.2 293.46598

Everest (1830 Definition) 6377299.36 300.8017

Chapter 14. Supported coordinate systems 227

Table 32. Supported spheroids (continued)

Name Semi-major axis Inverse flattening

Everest 1830 Modified 6377304.063 300.8017

Everest Adjustment 1937 6377276.345 300.8017

Everest 1830 (1962 Definition) 6377301.243 300.8017255

Everest 1830 (1967 Definition) 6377298.556 300.8017

Everest 1830 (1975 Definition) 6377299.151 300.8017255

Everest 1969 Modified 6377295.664 300.8017

Fischer 1960 6378166.0 298.3

Fischer 1968 6378150 .0 298.3

Modified Fischer 6378155 .0 298.3

GEM 10C 6378137.0 298.257222101

GRS 1967 6378160.0 298.247167427

GRS 1967 Truncated 6378160.0 298.25

GRS 1980 6378137.0 298.257222101

Helmert 1906 6378200.0 298.3

Hough 1960 6378270.0 297.0

Indonesian National Spheroid 6378160.0 298.247

International 1924 6378388.0 297.0

International 1967 6378160.0 298.25

Krassowsky 1940 6378245.0 298.3

NWL 9D 6378145.0 298.25

NWL 10D 6378135.0 298.26

OSU 86F 6378136.2 298.25722

OSU 91A 6378136.3 298.25722

Plessis 1817 6376523.0 308.64

Sphere 6371000.0 0.0

Sphere (ArcInfo) 6370997.0 0.0

228 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Table 32. Supported spheroids (continued)

Name Semi-major axis Inverse flattening

Struve 1860 6378298.3 294.73

Walbeck 6376896.0 302.78

War Office 6378300.0 296.0

WGS 1966 6378145.0 298.25

WGS 1972 6378135.0 298.26

WGS 1984 6378137.0 298.257223563

Supported prime meridians
This table shows the supported prime meridians.

Table 33. Supported prime meridians

Location Coordinates

Greenwich 0° 0' 0"

Bern 7° 26' 22.5" E

Bogota 74° 4' 51.3" W

Brussels 4° 22' 4.71" E

Ferro 17° 40' 0" W

Jakarta 106° 48' 27.79" E

Lisbon 9° 7' 54.862" W

Madrid 3° 41' 16.58" W

Paris 2° 20' 14.025" E

Rome 12° 27' 8.4" E

Stockholm 18° 3' 29" E

Supported map projections
These tables show the supported map projections, which include cylindrical projections, conic
projections, and the map projection parameters.

Table 34. Cylindrical projections

Cylindrical projections Pseudocylindrical projections

Behrmann Craster parabolic

Chapter 14. Supported coordinate systems 229

Table 34. Cylindrical projections (continued)

Cylindrical projections Pseudocylindrical projections

Cassini Eckert I

Cylindrical equal area Eckert II

Equirectangular Eckert III

Gall's stereographic Eckert IV

Gauss-Kruger Eckert V

Mercator Eckert VI

Miller cylindrical McBryde-Thomas flat polar quartic

Oblique Mercator (Hotine) Mollweide

Plate-Carée Robinson

Times Sinusoidal (Sansom-Flamsteed)

Transverse Mercator Winkel I

Table 35. Conic projections

Name Conic projection

Albers conic equal-area Chamberlin trimetric

Bipolar oblique conformal conic Two-point equidistant

Bonne Hammer-Aitoff equal-area

Equidistant conic Van der Grinten I

Lambert conformal conic Miscellaneous

Polyconic Alaska series E

Simple conic Alaska Grid (Modified-Stereographic by Snyder)

Table 36. Map projection parameters

Parameter Description

central_meridian The line of longitude chosen as the origin of x-
coordinates.

scale_factor Scale_factor is used generally to reduce the
amount of distortion in a map projection.

standard_parallel_1 A line of latitude that has no distortion generally.
Also used for "latitude of true scale."

230 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Table 36. Map projection parameters (continued)

Parameter Description

standard_parallel_2 A line of longitude that has no distortion generally.

longitude_of_center The longitude that defines the center point of the
map projection.

latitude_of_center The latitude that defines the center point of the
map projection.

longitude_of_origin The longitude chosen as the origin of x-
coordinates.

latitude_of_origin The latitude chosen as the origin of y-coordinates.

false_easting A value added to x-coordinates so that all x-
coordinate values are positive.

false_northing A value added to y-coordinates so that all y-
coordinates are positive.

azimuth The angle east of north that defines the center line
of an oblique projection.

longitude_of_point_1 The longitude of the first point needed for a map
projection.

latitude_of_point_1 The latitude of the first point needed for a map
projection.

longitude_of_point_2 The longitude of the second point needed for a map
projection.

latitude_of_point_2 The latitude of the second point needed for a map
projection.

longitude_of_point_3 The longitude of the third point needed for a map
projection.

latitude_of_point_3 The latitude of the third point needed for a map
projection.

landsat_number The number of a Landsat satellite.

path_number The orbital path number for a particular satellite.

perspective_point_height The height above the earth of the perspective point
of the map projection.

fipszone State Plane Coordinate System zone number.

zone UTM zone number.

Chapter 14. Supported coordinate systems 231

232 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Chapter 15. The DSN5SCLP program
DSN5SCLP is an ODBC program that you can use to invoke IBM Spatial Support for Db2 for z/OS stored
procedures for administrative tasks.

DSN5SCLP is located in the SDSNLOAD library. You can run the DSN5SCLP program using JCL
job DSN5SCMD, which is located in the SDSNSAMP library. Before you run DSN5SCMD, follow the
customization instructions in the job prolog.

Results are returned in the system log. If the job runs without errors, then a return code of 0 is returned.
For example:
GSE0000I The operation was completed successfully.

Otherwise, a return code of 8 and a description of the error is returned. For example:
GSE1040N A spatial reference system with the numeric identifier 9999
already exists.

A return code of 4 might be returned, indicating that the job completed but with a warning. For example:
GSE3010W Invalid ring number 2.

If the value of a parameter is broken by a space, surround the value in quotations marks. For example,
“COORDSYS 1”.

Use the plus sign (+) to wrap text to another line. For example:

-xMin 23 +
-yMin 0

If you use the plus sign within quotation marks, all of the white space before the plus sign is preserved.
For example:

“COORDSYS NUMBER +
ONE” => COORDSYS NUMBER ONE
“COORDSYS NUMBER+
ONE” => COORDSYS NUMBERONE

To use quotation marks within quotation marks, use the backslash symbol (\) with the inner quotation
marks. For example:

“\”Coordsys 1\””

To use a left bracket ([) and a right bracket (]) in the definition of a coordinate system, you must use
the correct hex value for each bracket. The hex value for a left bracket is 0xAD. The hex value for a right
bracket is 0xBD.

Commands for the DSN5SCLP program
These topics provide descriptions, parameters, and examples for each command that you can use with
the DSN5SCLP program.

You can use the following commands with the DSN5SCLP program:

• alter_cs
• alter_srs
• create_cs
• create_idx
• create_srs
• create_srs_2
• disable_spatial

© Copyright IBM Corp. 2007, 2023 233

• drop_cs
• drop_idx
• drop_srs
• enable_spatial
• function_level
• import_shape
• register_spatial_column
• unregister_spatial_column

You can run all of these commands only in the JCL DSN5SCMD job. The SUBSYSLOC value in each
command is the Db2 location name.

You can find additional information about the descriptions of parameters in the topics for the
corresponding stored procedures. For more information, see Chapter 9, “Stored procedures,” on page
45.

alter_cs
Use the alter_cs command to update a coordinate system definition in the database.

When this command is processed, information about the coordinate system is updated in the
DB2GSE.ST_COORDINATE_SYSTEMS catalog view.

Attention: Use care with this command. If you use this command to change the definition of the
coordinate system and you have existing spatial data that is associated with a spatial reference
system that is based on this coordinate system, you might inadvertently change the spatial data.
If spatial data is affected, you are responsible for ensuring that the changed spatial data is still
accurate and valid.

Authorization
The user ID under which the command is invoked must have either SYSADM or DBADM authority.

Command syntax
DSN5SCLP /alter_cs DALLAS
 -coordsysName cs_name
 [-definition def_string]
 [-organization org_name]
 [-organizationCoordsysId org_cs_id]
 [-description description_string]

Parameter descriptions
All parameters are required and case-sensitive unless otherwise indicated.

-coordsysName
Uniquely identifies the coordinate system. You must specify a non-empty value for this parameter.

-definition
Defines the coordinate system. This parameter is optional.

If you do not specify this parameter, the definition of the coordinate system is not changed.

-organization
Identifies the organization that defined the coordinate system and provided the definition for it; for
example, "European Petroleum Survey Group (EPSG)." This parameter is optional.

If you do not specify this parameter, the organization of the coordinate system is not changed.
If you specify this parameter, then you must also specify the -organizationCoordsysId parameter.

234 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

The combination of the -organization and -organizationCoordsysId parameters uniquely identifies the
coordinate system.

-organizationCoordsysId
Specifies a numeric identifier that is assigned to this coordinate system by the entity listed in the
organization parameter. This parameter is optional.

If this parameter is not specified, the -organization parameter must also be unspecified; in this case,
the organization's coordinate system identifier is not changed. If this parameter is specified, the
-organization parameter must be specified; in this case, the combination of the -organization and
-organizationCoordsysId parameters uniquely identifies the coordinate system.

-description
Describes the coordinate system by explaining its application. This parameter is optional.

If this parameter is not specified, the description information about the coordinate system is not
changed.

Example

This example shows the alter_cs command with all of the parameters specified.

DSN5SCLP /alter_cs DALLAS +
-coordsysName COORD_SYS1 +
-definition GEOGCS[\"GCS_Swiss_TRF_1996\",DATUM[+
\"D_Swiss_TRF_1995\",SPHEROID[GRS_1980,+
6378137,298.257222101]],PRIMEM[\"Greenwich\",0],+\
UNIT[\"Degree\",0.0174532925199432955]] +
-organization ESRIX -organizationCoordsysId 56029 +
-description Camp_Area_AstroX

alter_srs
Use the alter_srs command to update a spatial reference system definition in the database.

When this command is processed, information about the spatial reference system is updated in the
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view.

Restriction: You cannot alter a spatial reference system if a registered spatial column uses that spatial
reference system.

Attention: Use care with this stored procedure. If you use this stored procedure to change offset,
scale, or coordinate system name parameters of the spatial reference system, and if you have
existing spatial data that is associated with the spatial reference system, you might inadvertently
change the spatial data. If spatial data is affected, you are responsible for ensuring that the
changed spatial data is still accurate and valid.

Authorization
The user ID under which the command is invoked must have either SYSADM or DBADM authority.

Command syntax
DSN5SCLP /alter_srs SUBSYSLOC
 -srsName srs_name
 [-srsId srs_id]
 [-xOffset x_offset]
 [-xScale x_scale]
 [-yOffset y_offset]
 [-yScale y_scale]
 [-zOffset z_offset]
 [-zScale z_scale]
 [-mOffset m_offset]
 [-mScale m_scale]
 [-coordsysName cs_name]
 [-description description_string]

Chapter 15. The DSN5SCLP program 235

Parameter descriptions
All parameters are required and case-sensitive unless otherwise indicated.

-srsName
Identifies the name of the spatial reference system. You must specify a non-empty value for this
parameter.

-srsId
Uniquely identifies the spatial reference system. This parameter is optional.

This numeric identifier is used as an input parameter for various spatial functions. If you do not
specify this parameter, the numeric identifier of the spatial reference system is not changed.

-xOffset
Specifies the offset for all X coordinates of geometries that are represented in this spatial reference
system. This parameter is optional.

If you do not specify this parameter, the value for this parameter in the definition of the spatial
reference system is not changed.

The offset is subtracted before the scale factor -xScale is applied when geometries are converted
from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for z/OS internal
representation. (WKT is well-known text, and WKB is well-known binary.)

-xScale
Specifies the scale factor for all X coordinates of geometries that are represented in this spatial
reference system. This parameter is optional.

If this parameter is not specified, the value for this parameter in the definition of the spatial reference
system is not changed.

The scale factor is applied (multiplication) after the offset -xOffset is subtracted when geometries are
converted from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for
z/OS internal representation.

-yOffset
Specifies the offset for all Y coordinates of geometries that are represented in this spatial reference
system. This parameter is optional.

If this parameter is not specified, the value for this parameter in the definition of the spatial reference
system is not changed.

The offset is subtracted before the scale factor -yScale is applied when geometries are converted
from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for z/OS internal
representation.

-yScale
Specifies the scale factor for all Y coordinates of geometries that are represented in this spatial
reference system. This parameter is optional.

If this parameter is not specified, the value for this parameter in the definition of the spatial reference
system is not changed.

The scale factor is applied (multiplication) after the offset -yOffset is subtracted when geometries are
converted from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for
z/OS internal representation. This scale factor must be the same as -xScale.

-zOffset
Specifies the offset for all Z coordinates of geometries that are represented in this spatial reference
system. This parameter is optional.

If this parameter is not specified, the value for this parameter in the definition of the spatial reference
system is not changed.

236 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

The offset is subtracted before the scale factor -zScale is applied when geometries are converted
from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for z/OS internal
representation.

-zScale
Specifies the scale factor for all Z coordinates of geometries that are represented in this spatial
reference system. This parameter is optional.

If this parameter is not specified, the value for this parameter in the definition of the spatial reference
system is not changed.

The scale factor is applied (multiplication) after the offset -zOffset is subtracted when geometries are
converted from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for
z/OS internal representation.

-mOffset
Specifies the offset for all M coordinates of geometries that are represented in this spatial reference
system. This parameter is optional.

If this parameter is not specified, the value for this parameter in the definition of the spatial reference
system is not changed.

The offset is subtracted before the scale factor -mScale is applied when geometries are converted
from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for z/OS internal
representation.

-mScale
Specifies the scale factor for all M coordinates of geometries that are represented in this spatial
reference system. This parameter is optional.

If this parameter is not specified, the value for this parameter in the definition of the spatial reference
system is not changed.

The scale factor is applied (multiplication) after the offset -mOffset is subtracted when geometries are
converted from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for
z/OS internal representation.

-coordsysName
Uniquely identifies the coordinate system on which this spatial reference system is based. This
parameter is optional.

If this parameter is not specified, the coordinate system that is used for the spatial reference system
is not changed.

The coordinate system must be listed in the view DB2GSE.ST_COORDINATE_SYSTEMS.

-description
Describes the spatial reference system by explaining its application. This parameter is optional.

If this parameter is not specified, the description information about the spatial reference system is not
changed.

Example

This example shows the alter_srs command with all of the parameters specified.

DSN5SCLP alter_srs SUBSYSLOC +
-srsName NEW_SRS_2006 -srsId 2002 -xOffset -180 +
-xScale 5000000 -yOffset -90 -yScale 5000000 +
-zOffset 0 -zScale 1 -mOffset 0 -mScale 1 +
-coordsysName COORD_SYS1 -description NEW_SRS_2006v2

Chapter 15. The DSN5SCLP program 237

create_cs
Use the create_cs command to store information in the database about a new coordinate system.

When this command is processed, information about the coordinate system is added to the
DB2GSE.ST_COORDINATE_SYSTEMS catalog view.

Authorization
The user ID under which the command is invoked must have either SYSADM or DBADM authority.

Command syntax
DSN5SCLP /create_cs DALLAS
 -coordsysName cs_name
 -definition define_string
 [-organization organization]
 [-organizationCoordsysId org_cs_id]
 [-description description_string]

Parameter descriptions
All parameters are required and case-sensitive unless otherwise indicated.

-coordsys_name
Uniquely identifies the coordinate system. You must specify a non-empty value for this parameter.

-definition
Defines the coordinate system. You must specify a non-empty value for this parameter. The vendor
that supplies the coordinate system usually provides the information for this parameter.

You must surround the definition with quotation marks. If you use quotation marks within the
definition, you must combine the quotation mark with a backslash. You can use additional symbols for
concatenation. For example:

-definition "GEOGCS[\"GCS_Swiss_TRF_1995\",+
DATUM[\"D_Swiss_TRF_1995\",SPHEROID[\"GRS_1980\",+
6378137,298.257222101]],PRIMEM[\"Greenwich\",0],+
UNIT[\"Degree\",0.0174532925199432955]] " +
-organization DB2

-organization
Identifies the organization that defined the coordinate system and provided the definition for it; for
example, "European Petroleum Survey Group (EPSG)." This parameter is optional.

If this parameter is not specified, the -organizationCoordsysId parameter must also be unspecified.
If this parameter is specified, the -organizationCoordsysId parameter must be specified; in this case,
the combination of the -organization and -organizationCoordsysId parameters uniquely identifies the
coordinate system.

-organizationCoordsysId
Specifies a numeric identifier. The entity that is specified in the organization parameter assigns this
value. This value is not necessarily unique across all coordinate systems. This parameter is optional.

If this parameter is not specified, the -organization parameter must also be unspecified. If this
parameter is specified, the -organization parameter must be specified; in this case, the combination of
the -organization and -organizationCoordsysId parameters uniquely identifies the coordinate system.

-description
Describes the coordinate system by explaining its application. This parameter is optional.

Example

This example shows the create_cs command with all of the parameters specified.

238 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

DSN5SCLP /create_cs DALLAS +
-coordsysName "COORD_SYS2" +
-definition "GEOGCS[\"GCS_Swiss_TRF_1995\",+
DATUM[\"D_Swiss_TRF_1995\",SPHEROID[\"GRS_1980\",+
6378137,298.257222101]],PRIMEM[\"Greenwich\",0],+
UNIT[\"Degree\",0.0174532925199432955]] " +
-organization DB2 -organizationCoordsysId 5601 +
-description Camp_Area_Astro

create_idx
Use the create_idx command to create a spatial grid index on a spatial column to help optimize spatial
queries.

The column that you want to index must be a spatial data type that adheres to the following guidelines:

• The column name cannot be qualified
• If the column is not the ST_Point data type, then the LOB table space that stored the corresponding

BLOB column data must exist. Also, if the table space that contains the base table is LOG YES, then the
LOB table space must be created with LOG YES, too.

• The column cannot have any field procedure or security label defined.
• Only one spatial index is allowed on a column with a spatial data type.

Determining the correct grid size for a spatial grid index takes experience. Set the grid size in relation
to the approximate size of the object that you are indexing. A grid size that is too small or too large can
decrease performance. For example, a grid size that is set too small can affect the key to object ratio
during an index search. If a grid size is set too large, the initial index search returns a small number of
candidates and can decrease the performance during the final table scan.

Important: Because a spatial index cannot be rebuilt, create the spatial index with the COPY YES option
specified. When you specify this option, Db2 takes an image copy of the index along with an image copy of
the table. Also, you cannot alter the spatial index to change any of the options that you specified when you
invoked the create_idx command.

Authorization
The user ID under which the command is invoked must have one of the following authorities or privileges:

• SYSADM or DBADM authority on the database that contains the table where the spatial grid index will be
used

• Ownership or INDEX privilege on the table

Command syntax
DSN5SCLP /create_idx DALLAS
 [-tableSchema tab_schema]
 -tableName tab_name
 -columnName col_name
 [-indexSchema idx_schema]
 -indexName idx_name
 [-otherIdxOpts other_idx_opts]
 -gridSize1 gsize1
 -gridSize2 gsize2
 -gridSize3 gsize3

Parameter descriptions
All parameters are required and case-sensitive unless otherwise indicated.

-tableSchema
Identifies the schema to which the table that is specified in the -tableName parameter belongs. This
parameter is optional.

Chapter 15. The DSN5SCLP program 239

If you specify this parameter, then a value must be present. If you do not specify this parameter, the
CURRENT SCHEMA special register is used as the schema name for the table.

-tableName
Identifies the unqualified name of the table on which the index is to be defined. You must specify a
non-empty value for this parameter.

-columnName
Identifies the column that contains the spatial data type for the index. You must specify a non-empty
value for this parameter.

-indexSchema
Identifies the schema to which the index that is specified in the index_name parameter belongs. This
parameter is optional.

If you specify this parameter, then a value must be present. If you do not specify this parameter, the
CURRENT SCHEMA special register is used as the schema name for the index.

-indexName
Identifies the name of the index that is to be created. You must specify a non-empty value for this
parameter.

-otherIdxOpts
Identifies one or more valid options from the CREATE INDEX statement. This parameter is optional.

For example, you can specify FREEPAGE, PCTFREE, and so on. If you specify a value for this
parameter, the value must be non-empty. The following options are not valid for a spatial index:

• CLUSTER
• PARTITIONED
• PARTITION BY
• DEFER YES

The value of this parameter is not case-sensitive.

-gridSize1
A number that indicates the granularity of the smallest index grid. You must specify a non-empty
value for this parameter.

-gridSize2
A number that indicates either that there is not a second grid for this index, or the granularity of the
second index grid. You must specify a non-empty value for this parameter.

Specify 0, if there is not a second grid. If you want a second grid for the index, then you must specify a
grid size that is larger than the value in -gridSize1. This value is commonly two to five times larger than
the prior grid size.

-gridSize3
A number that indicates either that there is not a third grid for this index, or the granularity of the third
index grid. You must specify a non-empty value for this parameter. Specify 0, if there is not a third
grid. If you want a third grid for the index, then you must specify a grid size that is larger than the value
in -gridSize2. This value is commonly two to five times larger than the prior grid size.

Examples

Example 1

This example shows the create_idx command with only the required parameters specified.

DSN5SCLP /create_idx DALLAS +
-tableName POINTS -columnName P +
-indexName P_IDX +
-gridSize1 10.0 -gridSize2 20.0 -gridSize3 35.0

240 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Example 2

This example shows the create_idx command with all of the parameters specified.

DSN5SCLP /create_idx DALLAS +
-tableSchema DB2GSE -tableName POINTS -columnName P +
-indexSchema DB2GSE -indexName P_IDX2 +
-otherIdxOpts "FREEPAGE 0" +
-gridSize1 10.0 -gridSize2 20.0 -gridSize3 35.0

create_srs
Use the create_srs command to create a spatial reference system. This command takes the conversion
factors (offsets and scale factors) as input parameters.

A spatial reference system is defined by the coordinate system, the precision, and the extents of
coordinates that are represented in this spatial reference system. The extents are the minimum and
maximum possible coordinate values for the X, Y, Z, and M coordinates.

This command has two variations. This variation takes the conversion factors (offsets and scale factors)
as input parameters. The second variation, the create_srs_2 command, takes the extents and the
precision as input parameters and calculates the conversion factors internally.

Authorization
The user ID under which the command is invoked must have the following authorities or privileges:

• SYSADM or DBADM authority
• INSERT and SELECT privileges on the catalog table or view

Command syntax
DSN5SCLP /create_srs DALLAS
 -srsName srs_name
 -srsId srs_id
 [-xOffset xoffset]
 -xScale xscale
 [-yOffset xoffset]
 [-yScale xscale]
 [-zOffset xoffset]
 [-zScale xscale]
 [-mOffset xoffset]
 [-mScale xscale]
 -coordsysName cs_name
 [-description description_string]

Parameter descriptions
All parameters are required and case-sensitive unless otherwise indicated.

-srsName
Identifies the spatial reference system. You must specify a non-empty value for this parameter.

-srsId
Uniquely identifies the spatial reference system.

This numeric identifier is used as an input parameter for various spatial functions. You must specify a
non-empty value for this parameter.

-xOffset
Specifies the offset for all X coordinates of geometries that are represented in this spatial reference
system. This parameter is optional.

The offset is subtracted before the scale factor -xScale is applied when geometries are converted
from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for z/OS internal

Chapter 15. The DSN5SCLP program 241

representation. (WKT is well-known text, and WKB is well-known binary.) If this parameter is not
specified, a value of 0 (zero) is used.

-xScale
Specifies the scale factor for all X coordinates of geometries that are represented in this spatial
reference system. The scale factor is applied (multiplication) after the offset -xOffset is subtracted
when geometries are converted from external representations (WKT, WKB, shape) to the IBM Spatial
Support for Db2 for z/OS internal representation. Either the -xOffset value is specified explicitly, or a
default -xOffset value of 0 is used. You must specify a non-empty value for this parameter.

The data type of this parameter is DOUBLE.

-yOffset
Specifies the offset for all Y coordinates of geometries that are represented in this spatial reference
system. This parameter is optional.

The offset is subtracted before the scale factor -yScale is applied when geometries are converted
from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for z/OS internal
representation. If this parameter is not specified, a value of 0 (zero) is used.

-yScale
Specifies the scale factor for all Y coordinates of geometries that are represented in this spatial
reference system. This parameter is optional.

The scale factor is applied (multiplication) after the offset -yOffset is subtracted when geometries
are converted from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2
for z/OS internal representation. Either the -yOffset value is specified explicitly, or a default -yOffset
value of 0 is used. If this parameter is not specified, the value of the -xScale parameter is used. If
you specify a value for this parameter, the value that you specify must match the value of the -xScale
parameter.

-zOffset
Specifies the offset for all Z coordinates of geometries that are represented in this spatial reference
system. This parameter is optional.

The offset is subtracted before the scale factor -zScale is applied when geometries are converted
from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for z/OS internal
representation. If this parameter is not specified, a value of 0 (zero) is used.

-zScale
Specifies the scale factor for all Z coordinates of geometries that are represented in this spatial
reference system. This parameter is optional.

The scale factor is applied (multiplication) after the offset -zOffset is subtracted when geometries are
converted from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for
z/OS internal representation. Either the -zOffset value is specified explicitly, or a default -zOffset value
of 0 is used. If this parameter is not specified, a value of 1 is used.

-mOffset
Specifies the offset for all M coordinates of geometries that are represented in this spatial reference
system. This parameter is optional.

The offset is subtracted before the scale factor -mScale is applied when geometries are converted
from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for z/OS internal
representation. If this parameter is not specified, a value of 0 (zero) is used.

-mScale
Specifies the scale factor for all M coordinates of geometries that are represented in this spatial
reference system. This parameter is optional.

The scale factor is applied (multiplication) after the offset -mOffset is subtracted when geometries
are converted from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2
for z/OS internal representation. Either the -mOffset value is specified explicitly, or a default -mOffset
value of 0 is used. If this parameter is not specified, a value of 1 is used.

242 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

-coordsysName
Uniquely identifies the coordinate system on which this spatial reference system is based.

The coordinate system must be listed in the view DB2GSE.ST_COORDINATE_SYSTEMS. You must
supply a non-empty value for this parameter.

-description
Describes the spatial reference system by explaining the application's purpose. This parameter is
optional.

If this parameter is not specified, no description information is recorded.

Example

This example shows the create_srs command with all of the parameters specified.

DSN5SCLP /create_srs DALLAS +
-srsName MAX -coordsysName UNSPECIFIED -srsId 107 +
-xscale 100 -xoffset 1 -yscale 100 -yoffset 2 -zscale 300 +
-zoffset 400 -mscale 500 -moffset 600 -description ALL_PARMS

create_srs_2
Use the create_srs_2 command to create a spatial reference system. This command takes the extents and
the precision as input parameters and calculates the conversion factors internally.

A spatial reference system is defined by the coordinate system, the precision, and the extents of
coordinates that are represented in this spatial reference system. The extents are the minimum and
maximum possible coordinate values for the X, Y, Z, and M coordinates.

This command has two variations. This variation takes the extents and the precision as input parameters
and calculates the conversion factors internally. The other variation, the create_srs command, takes the
conversion factors (offsets and scale factors) as input parameters.

Authorization
The user ID under which the command is invoked must have the following authorities or privileges:

• SYSADM or DBADM authority
• INSERT and SELECT privileges on the catalog table or view

Command syntax
DSN5SCLP /create_srs_2 DALLAS
 -srsName srs_name
 -srsId srs_id
 -xMin x_min
 -xMax x_max
 -xScale x_scale
 -yMin y_min
 -yMax y_max
 [-yScale y_scale]
 -zMin z_min
 -zMax z_max
 [-zScale z_scale]
 -mMin m_min
 -mMax m_max
 [-mScale m_scale]
 -coordsysName cs_name
 [-description description_string]

Parameter descriptions
All parameters are required and case-sensitive unless otherwise indicated.

Chapter 15. The DSN5SCLP program 243

-srsName
Identifies the spatial reference system. You must specify a non-empty value for this parameter.

-srsId
Uniquely identifies the spatial reference system. This numeric identifier is used as an input parameter
for various spatial functions. You must specify a non-empty value for this parameter.

The data type of this parameter is INTEGER.

-xMin
Specifies the minimum possible X coordinate value for all geometries that use this spatial reference
system. You must specify a non-empty value for this parameter.

-xMax
Specifies the maximum possible X coordinate value for all geometries that use this spatial reference
system. You must specify a non-empty value for this parameter.

Depending on the value of -xScale, the value that is shown in the view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS might be larger than the value that is specified here.
The value from the view is correct.

-xScale
Specifies the scale factor for all X coordinates of geometries that are represented in this spatial
reference system.

The scale factor is applied (multiplication) after the offset -xOffset is subtracted when geometries are
converted from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for
z/OS internal representation. The calculation of the offset -xOffset is based on the -xMin value. You
must supply a non-empty value for this parameter.

-yMin
Specifies the minimum possible Y coordinate value for all geometries that use this spatial reference
system. You must supply a non-empty value for this parameter.

-yMax
Specifies the maximum possible Y coordinate value for all geometries that use this spatial reference
system. You must supply a non-empty value for this parameter.

Depending on the value of -yScale, the value that is shown in the view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS might be larger than the value that is specified here.
The value from the view is correct.

-yScale
Specifies the scale factor for all Y coordinates of geometries that are represented in this spatial
reference system. This parameter is optional.

The scale factor is applied (multiplication) after the offset -yOffset is subtracted when geometries are
converted from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for
z/OS internal representation. The calculation of the offset -yOffset is based on the -yMin value.

If you do not specify this parameter, the value of the -xScale parameter is used. If you specify a value
for this parameter, the value that you specify must match the value of the -xScale parameter.

-zMin
Specifies the minimum possible Z coordinate value for all geometries that use this spatial reference
system. You must specify a non-empty value for this parameter.

The data type of this parameter is DOUBLE.

-zMax
Specifies the maximum possible Z coordinate value for all geometries that use this spatial reference
system. You must specify a non-empty value for this parameter.

244 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Depending on the value of -zScale, the value that is shown in the view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS might be larger than the value that is specified here.
The value from the view is correct.

-zScale
Specifies the scale factor for all Z coordinates of geometries that are represented in this spatial
reference system. This parameter is optional.

The scale factor is applied (multiplication) after the offset -zOffset is subtracted when geometries are
converted from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for
z/OS internal representation. The calculation of the offset -zOffset is based on the -zMin value. If this
parameter is not specified, a value of 1 is used.

-mMin
Specifies the minimum possible M coordinate value for all geometries that use this spatial reference
system. You must specify a non-empty value for this parameter.

The data type of this parameter is DOUBLE.

-mMax
Specifies the maximum possible M coordinate value for all geometries that use this spatial reference
system. You must specify a non-empty value for this parameter.

Depending on the value of -mScale, the value that is shown in the view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS might be larger than the value that is specified here.
The value from the view is correct.

-mScale
Specifies the scale factor for all M coordinates of geometries that are represented in this spatial
reference system. This parameter is optional.

The scale factor is applied (multiplication) after the offset -mOffset is subtracted when geometries are
converted from external representations (WKT, WKB, shape) to the IBM Spatial Support for Db2 for
z/OS internal representation. The calculation of the offset -mOffset is based on the -mMin value.

If this parameter is not specified, a value of 1 is used.

-coordsysName
Uniquely identifies the coordinate system on which this spatial reference system is based.

The coordinate system must be listed in the view DB2GSE.ST_COORDINATE_SYSTEMS. You must
specify a non-empty value for this parameter.

-description
Describes the spatial reference system by explaining the application's purpose. This parameter is
optional.

If this parameter is not specified, no description information is recorded.

Example

This example shows the create_srs_2 command with all of the parameters specified.

DSN5SCLP /create_srs_2 DALLAS +
-srsName MAX14 +
-coordsysName UNSPECIFIED -srsId 10714 -xmin 310 -xmax 310 +
-xscale 310 -ymin 310 -ymax 310 -yscale 310 +
-zmin 10 -zmax 10 -zscale 10 -mmin 10 -mmax 10 -mscale 300 +
-description ALL_PARMS

Chapter 15. The DSN5SCLP program 245

disable_spatial
Use the disable_spatial command to remove all resources that enable IBM Spatial Support for Db2 for
z/OS to store spatial data and support operations that are performed on this data.

If you did not define any spatial columns or import any spatial data, you can invoke this command
to remove all spatial resources from the subsystem. Because of the interdependency between spatial
columns and type definitions, you cannot drop the type definitions if columns of those types exist. If you
already defined spatial columns and still want to disable the subsystem, you must specify a value other
than 0 (zero) for the -force parameter to remove all spatial resources in the subsystem that do not have
dependencies on them.

Important: Running this command will disable IBM Spatial Support for Db2 for z/OS for the entire Db2
subsystem.

Authorization
The user ID under which the command is invoked must have SYSADM authority.

Command syntax
DSN5SCLP /disable_spatial DALLAS
 [-force force]

Parameter descriptions
-force

Specifies that you want to disable a subsystem for spatial operations, even though you might have
database objects that are dependent on the spatial types or spatial functions. This parameter is
optional.

If you specify a value other than 0 (zero) for the -force parameter, the subsystem is disabled and all
resources for IBM Spatial Support for Db2 for z/OS are removed (if possible). If you specify 0 (zero),
or do not specify this parameter, the subsystem is not disabled if any database objects are dependent
on spatial types or spatial functions. Database objects that might have dependencies include tables,
views, constraints, triggers, generated columns, methods, functions, procedures, and other data types
(subtypes or structured types with a spatial attribute).

Example

Example 1

This example shows the disable_spatial command with the -force parameter specified as 0 (zero), which
does not disable the subsystem if any database objects are dependent on spatial types or spatial
functions.

DSN5SCLP /drop_spatial DALLAS +
-force 0

Example 2

This example shows the disable_spatial command with the -force parameter specified as 1, which
disables the subsystem and removes all IBM Spatial Support for Db2 for z/OS resources.

DSN5SCLP /drop_spatial DALLAS +
-force 1

246 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

drop_cs
Use the drop_cs command to delete information about a coordinate system from the database.

When this command is processed, information about the coordinate system is removed from the
DB2GSE.ST_COORDINATE_SYSTEMS catalog view.

Restriction: You cannot drop a coordinate system on which a spatial reference system is based.

Authorization
The user ID under which the command is invoked must have either SYSADM or DBADM authority.

Command syntax
DSN5SCLP /drop_cs DALLAS
 -coordsysName cs_name

Parameter descriptions
All parameters are required and case-sensitive unless otherwise indicated.

-coordsysName
Uniquely identifies the coordinate system. You must specify a non-empty value for this parameter.

Example

This example shows how you can use the drop_cs command to delete information about a coordinate
system.

DSN5SCLP /drop_cs DALLAS +
-coordsysName "COORD_SYS2"

drop_idx
Use the drop_idx command to drop a spatial index.

Authorization
The user ID under which the command is invoked must have one of the following authorities and
privileges:

• SYSADM or DBADM authority on the database that contains the table where the spatial grid index is
used

• Ownership or INDEX privilege on the table

Command syntax
DSN5SCLP /drop_idx DALLAS
 [-indexSchema idx_schema]
 -indexName idx_name

Parameter descriptions
All parameters are required and case-sensitive unless otherwise indicated.

-indexSchema
Identifies the schema to which the index that is specified in the -indexName parameter belongs. This
parameter is optional.

Chapter 15. The DSN5SCLP program 247

If this parameter is not specified, the value in the CURRENT SCHEMA special register is used as the
schema name for the index.

-indexName
Identifies the name of the index that is to be dropped. You must specify a non-empty value for this
parameter.

Example

This example shows how you can use the drop_idx command to drop the spatial index named LOCIDX
from the DB2GSE schema.

DSN5SCLP /drop_idx DALLAS +
-indexSchema DB2GSE -indexName LOCIDX

drop_srs
Use the drop_srs command to drop a spatial reference system.

When this command is processed, information about the spatial reference system is removed from the
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view.

Restriction: You cannot drop a spatial reference system if a spatial column that uses that spatial
reference system is registered.

Important: Use care when you use this command. If you use this command to drop a spatial reference
system, and if any spatial data is associated with that spatial reference system, you can no longer perform
spatial operations on the spatial data.

Authorization
The user ID under which the command is invoked must have either SYSADM or DBADM authority.

Command syntax
DSN5SCLP /drop_srs DALLAS
 -srsName srs_name

Parameter descriptions
All parameters are required and case-sensitive unless otherwise indicated.

-srsName
Uniquely identifies the name of the index to be dropped. You must specify a non-empty value for this
parameter.

Example

This example shows how you can use the drop_srs command to drop the NEWSRS2006B spatial
reference system.

DSN5SCLP /drop_srs DALLAS +
-srsName NEWSRS2006B

enable_spatial
Use the enable_spatial command to supply a Db2 subsystem with the resources that it needs to store
spatial data and support spatial operations.

These resources include spatial data types, spatial index types, catalog views, supplied functions, and
stored procedures.

248 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Authorization
The user ID under which the command is invoked must have SYSADM authority.

Command syntax
DSN5SCLP /enable_spatial DALLAS
 -wlmName wlm_name [-update update_mode]

Parameter descriptions
All parameters are case-sensitive unless otherwise indicated.

-wlmName
Identifies the name of the Workload Manager (WLM) in which the stored procedures will run. This
parameter is required.

-update
Specifies when you need to install the latest spatial support functions for Db2 for z/OS. Do not use this
parameter if you are installing IBM Spatial Support for Db2 for z/OS for the first time. The value of this
parameter is v10.

Example 1: The following example shows how you can use the enable_spatial command to enable spatial
support for the first time.

DSN5SCLP /enable_spatial DALLAS +
-wlmName WLMENV3

Example 2: The following example shows how you can use the enable_spatial command during migration
(if you need to migrate) to enable spatial support and install the latest spatial support functions.

DSN5SCLP /enable_spatial DALLAS +
-wlmName WLMENV3 -update v10

Related tasks
“Enabling spatial support for the first time” on page 11
If you are a new customer and want to start using IBM Spatial Support for Db2 for z/OS, you need to
enable your Db2 subsystem for spatial support.
“Enabling spatial support for migration to Db2 12” on page 12
If you are migrating from Db2 11 to Db2 12 and had spatial support enabled on Db2 11, you must enable
your Db2 subsystem for spatial support again.

function_level
Use the function_level command to report the spatial functions that are installed on a Db2 subsystem.

Authorization
The user ID under which the command is invoked must have DBADM authority.

Command syntax
DSN5SCLP /function_level SUBSYSTEM -REPORT filename

Parameter descriptions
All parameters are required and case-sensitive unless otherwise indicated.

Chapter 15. The DSN5SCLP program 249

filename
Identifies the name of the file or data set where the report output will be written. You can specify an
absolute file name, or 'D'.

If you specify an absolute file name, the report is written to a text file in UNIX System Services (USS).
If you specify 'D', the report is written to the data set that is specified for the DD name FUNCLVL.

Examples

Example 1: The following example shows how to specify an absolute file name and have the output of the
function_level command written to a text file:

DSN5SCLP /function_level DALLAS -REPORT /tmp/functionlevel.txt

Example 2: The following example shows how to have the output of the function_level command written
to the data set that is specified for DD name FUNCLVL. First, you must allocate a sequential, fixed-block
80 record format data set. Then, to the job that invokes the DSN5SCLP program, add the DD name
FUNCLVL and specify the data set name.

In this example, assume that you allocated data set 'USER.SPATIAL.REPORT' for DD name FUNCLVL:

//FUNCLVL DD DSN=USER.SPATIAL.REPORT, DISP=SHR

 Invoke DSN5SCLP with the option REPORT = D

 DSN5SCLP /function_level DALLAS -REPORT D

The following output shows a sample of the report:

STOB00088ZMB: 1
ST_UNIONAGGR7: 1
STCV00055GMV: 1
DB2GSE.DSN5SK48: 0
DB2GSE.DSN5SK30: 0
SDE, TYPE = P: 0
SDE, TYPE = F: 0
Count DB2GSE: 1244
Count SYSPROC: 13

LIST ALL DB2GSE FUNCTIONS NAMESSCHEMAS,SPECIFICNAMES AS BELLOW
NAME SCHEMA SPECIFICNAME
-------------------- ---------- ------------------------------
BLOB DB2GSE BLOB
BLOB DB2GSE BLODRMWKFJFPSIF
...

LIST ALL STORED PROCEDURES NAMESSTART WITH 'ST_'
NAME
--
ST_ALTER_COORDSYS
ST_ALTER_SRS
ST_CREATE_COORDSYS
ST_CREATE_INDEX
ST_CREATE_SRS
ST_CREATE_SRS_2
ST_DROP_COORDSYS
ST_DROP_INDEX
ST_DROP_SRS
ST_EXPORT_SHAPE
ST_IMPORT_SHAPE
ST_REGISTER_SPATIAL_COLUMN
ST_UNREGISTER_SPATIAL_COLUMN

import_shape
Use the import_shape command to import a shape file to a database that is enabled for spatial
operations.

This command can operate in either of two ways, based on the -createTableFlag parameter:

250 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

• IBM Spatial Support for Db2 for z/OS can create a table that has a spatial column and attribute columns,
and it can then load the table's columns with the file's data.

• Otherwise, the shape and attribute data can be loaded into an existing table that has a spatial column
and attribute columns that match the file's data.

Important: Using a message file is optional; however, consider specifying a message file so that any
errors and informational messages are written to the message file. The import process continues even if
an error occurs on a row. If many errors occur, the import process will be much slower.

The input files must reside on the HFS file under the z/OS UNIX environment, so the binder and the user
must have read access to the given directory. Also, the message file will be generated on a valid HFS
directory under the z/OS UNIX environment if specified. Therefore, the binder and the user must have
write access to the given directory.

IBM Spatial Support for Db2 for z/OS does not support the -inlineLength parameter and the -exceptionFile
parameter for this command. If you specify either of these parameters, the parameter will be ignored.

Authorization
The user ID must have the necessary privileges for reading the input files and optionally writing error files.
Additional authorization requirements vary based on whether you are importing into an existing table or
into a new table.

• When importing shape data to an existing table, your user ID must hold one of the following authorities
and privileges:

– SYSADM or DBADM authority on the database that contains the table or view
– INSERT and SELECT privilege on the table or view

• When creating a table automatically and importing shape data to the new table, your user ID under
must hold the authorizations that are needed for the CREATE TABLE statement.

Command syntax
DSN5SCLP /import_shape DALLAS
 -fileName file_name
 [-inputAttrColumns input_columns]
 -srsName srs_name
 [-tableSchema table_schema]
 -tableName table_name
 [-tableAttrColumns attr_columns]
 [-createTableFlag create_flag]
 [-tableCreationParameters tc_params]
 -spatialColumn spatial_column
 [-typeSchema type_schema]
 [-typeName type_name]
 [-inlineLength length]
 [-idColumn id_column]
 [-idColumnIsIdentity id_flag]
 [-restartCount rs_count]
 [-commitScope commit_count]
 [-exceptionFile efile_name]
 [-messagesFile mfile_name]
 [-client client_flag]

Parameter descriptions
All parameters are required and case-sensitive unless otherwise indicated.

-fileName
Specifies the full path name of the shape file that is to be imported. You must specify a non-empty
value for this parameter.

If you specify the optional file extension, specify either .shp or .SHP. IBM Spatial Support for Db2 for
z/OS first looks for an exact match of the specified file name. If IBM Spatial Support for Db2 for z/OS

Chapter 15. The DSN5SCLP program 251

does not find an exact match, it looks first for a file with the .shp extension, and then for a file with
the .SHP extension.

See Usage notes for a list of required files, which must reside on the HFS file under the z/OS UNIX
environment.

-inputAttrColumns
Specifies a list of attribute columns to import from the dBASE file. This parameter is optional.

If this parameter is not specified, all columns are imported. If the dBASE file does not exist, this
parameter must not be specified.

To specify a non-empty value for this parameter, use one of the following specifications:

• List the attribute column names. The following example shows how to specify a list of the names
of the attribute columns that are to be imported from the dBASE file:

N(COLUMN1,COLUMN5,COLUMN3,COLUMN7)

If a column name is not enclosed in double quotation marks, it is converted to uppercase. Each
name in the list must be separated by a comma. The resulting names must exactly match the
column names in the dBASE file.

• List the attribute column numbers. The following example shows how to specify a list of the
numbers of the attribute columns that are to be imported from the dBASE file:

P(1,5,3,7)

Columns are numbered beginning with 1. Each number in the list must be separated by a comma.
• Indicate that no attribute data is to be imported. Specify "", which is an empty string that

explicitly specifies that IBM Spatial Support for Db2 for z/OS is to import no attribute data.

This parameter is not case-sensitive.

-srsName
Identifies the spatial reference system that is to be used for the geometries that are imported into the
spatial column. You must specify a non-empty value for this parameter.

The spatial column will not be registered. The spatial reference system (SRS) must exist before the
data is imported. The import process does not implicitly create the SRS, but it does compare the
coordinate system of the SRS with the coordinate system that is specified in the .prj file (if available
with the shape file). The import process also verifies that the extents of the data in the shape file
can be represented in the given spatial reference system. That is, the import process verifies that the
extents lie within the minimum and maximum possible X, Y, Z, and M coordinates of the SRS.

-tableSchema
Identifies the schema to which the table that is specified in the -tableName parameter belongs. This
parameter is optional.

If this parameter is not specified, the value in the CURRENT SCHEMA special register is used as the
schema name for the table.

-tableName
Identifies the unqualified name of the table into which the imported shape file is to be loaded. You
must specify a non-empty value for this parameter.

-tableAttrColumns
Specifies the table column names where attribute data from the dBASE file is to be stored. This
parameter is optional.

If this parameter is not specified, the names of the columns in the dBASE file are used.

252 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

If this parameter is specified, the number of names must match the number of columns that are
imported from the dBASE file. If the table exists, the column definitions must match the incoming
data. See Usage notes for an explanation of how attribute data types are mapped to Db2 data types.

This parameter is not case-sensitive.

-createTableFlag
Specifies whether the import process is to create a new table. This parameter is optional.

If this parameter is not specified, or is any value other than 0 (zero), a new table is created. (If the
table already exists, an error is returned.) If this parameter is 0 (zero), no table is created, and the
table must already exist.

If you want to create a target table in a separate table space, first create the table, and then create
the LOB table space, auxiliary table, and index for the target table before using the import shape
operation.

After creating the required LOB table space, auxiliary table, and index for the target table, specify 0
(zero) for the -createTableFlag option to import shape data and attributes data to the table. The import
shape operation does not create a LOB table space, an auxiliary table, or an index for the LOB column.

-tableCreationParameters
Specifies any options that are to be added to the CREATE TABLE statement that creates a table into
which data is to be imported. This parameter is optional.

If this parameter is not specified, no options are added to the CREATE TABLE statement.

To specify any CREATE TABLE options, use the syntax of the Db2 CREATE TABLE statement. For
example, to specify a database and Unicode option for character columns, specify:

IN dbName CCSID UNICODE

This parameter is not case-sensitive.

-spatialColumn
Identifies the spatial column in the table into which the shape data is to be loaded. You must specify a
non-empty value for this parameter.

For a new table, this parameter specifies the name of the new spatial column that is to be created.
Otherwise, this parameter specifies the name of an existing spatial column in the table.

-typeSchema
Specifies the schema name of the spatial data type (specified by the -typeName parameter) that is to
be used when creating a spatial column in a new table. This parameter is optional.

If this parameter is not specified, a value of DB2GSE is used.

-typeName
Identifies the data type that is to be used for the spatial values. This parameter is optional. The valid
data types are ST_Point, ST_MultiPoint, ST_MultiLineString, ST_MultiPolygon, or ST_Geometry.

If this parameter is not specified, the data type is determined by the shape file and is one of the
following types:

• ST_Point
• ST_MultiPoint
• ST_MultiLineString
• ST_MultiPolygon

Note that shape files, by definition, allow a distinction between only points and multipoints, but not
between polygons and multipolygons or between linestrings and multilinestrings.

If you are importing into a table that does not yet exist, this data type is also used for the data type of
the spatial column.

This parameter is not case-sensitive.

Chapter 15. The DSN5SCLP program 253

-inlineLength
This parameter is not supported and always will be null. If you specify this parameter, the parameter
is ignored.

-idColumn
Identifies a column that is to be created to contain a unique number for each row of data. The unique
values for that column are generated automatically during the import process. This parameter is
optional.

If this parameter is not specified, no column is created or populated with unique numbers.

Restriction: You cannot specify an -idColumn name that matches the name of any column in the
dBASE file.

The requirements and effect of this parameter depend on whether the table already exists.

• For an existing table, the data type of the -idColumn parameter can be any integer type (INTEGER,
SMALLINT, or BIGINT).

• For a new table that is to be created, the column is added to the table when the stored procedure
creates it. The column will be defined as follows:

INTEGER NOT NULL PRIMARY KEY

If the value of the -idColumnIsIdentity parameter is not null and not 0 (zero), the definition is
expanded as follows:

INTEGER NOT NULL PRIMARY KEY GENERATED ALWAYS AS IDENTITY
(START WITH 1 INCREMENT BY 1)

-idColumnIsIdentity
Indicates whether the specified id_column is to be created using the IDENTITY clause. This parameter
is optional.

If this parameter is 0 (zero) or not specified, the column is not created as the identity column. If the
parameter is any value other than 0, the column is created as the identity column. This parameter is
ignored for tables that already exist.

-restartCount
Specifies that an import operation is to be started at record n + 1. The first n records are skipped. This
parameter is optional.

If this parameter is not specified, all records (starting with record number 1) are imported.

-commitScope
Specifies that a COMMIT is to be performed after at least n records are imported. This parameter is
optional.

If this parameter is not specified, a value of 0 (zero) is used, and no records are committed.

-exceptionFile
This parameter is not supported and always will be null. If you specify this parameter, the parameter
is ignored.

-messagesFile
Specifies the full path name of the file (HFS file under the z/OS UNIX environment) that is to contain
messages about the import operation. This parameter is optional.

If the parameter is not specified, no file for IBM Spatial Support for Db2 for z/OS messages is created.

The messages that are written to the messages file can be:

• Informational messages, such as a summary of the import operation

254 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

• Error messages for data that could not be imported, for example because of different coordinate
systems

The user who runs the job that calls the command must have the necessary privileges on the server to
create the file. If the file already exists, the file will be overwritten.

Usage notes
The import_shape command uses from one to four files:

• The main shape file (.shp extension). This file is required.
• The shape index file (.shx extension). This file is optional.
• A dBASE file that contains attribute data (.dbf extension). This file is required only if attribute data is to

be imported.
• The projection file that specifies the coordinate system of the shape data (.prj extension). This file

is optional. If this file is present, the coordinate system that is defined in it is compared with the
coordinate system of the spatial reference system that is specified by the -srsId parameter.

The following table describes how dBASE attribute data types are mapped to Db2 data types. All other
attribute data types are not supported.

Table 37. Relationship between Db2 data types and dBASE attribute data types

.dbf type .dbf length␢ (See
note)

.dbf decimals␢ (See
note)

SQL type Comments

N < 5 0 SMALLINT

N < 10 0 INTEGER

N < 20 0 BIGINT

N len dec DECIMAL(len,dec) len<32

F len dec REAL len + dec < 7

F len dec DOUBLE

C len CHAR(len)

L CHAR(1)

D DATE

Note: This table includes the following variables, both of which are defined in the header of the dBASE
file:

• len, which represents the total length of the column in the dBASE file. IBM Spatial Support for Db2 for
z/OS uses this value for two purposes:

– To define the precision for the SQL data type DECIMAL or the length for the SQL data type CHAR
– To determine which of the integer or floating-point types is to be used

• dec, which represents the maximum number of digits to the right of the decimal point of the column in
the dBASE file. IBM Spatial Support for Db2 for z/OS uses this value to define the scale for the SQL data
type DECIMAL.

For example, assume that the dBASE file contains a column of data whose length (len) is defined as 20.
Assume that the number of digits to the right of the decimal point (dec) is defined as 5. When IBM Spatial
Support for Db2 for z/OS imports data from that column, it uses the values of len and dec to derive the
following SQL data type: DECIMAL(20,5).

Chapter 15. The DSN5SCLP program 255

Example

This example shows how you can use the import_shape command to import a shape file.

DSN5SCLP /import_shape DALLAS +
-fileName /tmp/shapes/zipcode.shp +
-createTableFlag 1 +
-inputAttrColumns "N (AREA, ZIPCODE)" +
-srsName SANDIEGO +
-tableSchema NEWTON -tableName TABLE11 +
-tableCreationParameters "IN DATABASE TMP" +
-typeSchema DB2GSE -typeName ST_MULTIPOLYGON +
-spatialColumn "loc" +
-messagesFile /tmp/shapes/ut07_msg

Related reference
CREATE TABLE (Db2 SQL)

register_spatial_column
Use the register_spatial_column command to register a spatial column and to associate a spatial
reference system (SRS) with it.

When this command is processed, information about the spatial column that is being registered is added
to the DB2GSE.ST_GEOMETRY_COLUMNS catalog view. Registering a spatial column creates a constraint
on the table, if possible, to ensure that all geometries use the specified SRS.

Note: Even if you drop the table that was used to register the spatial column, you must still run the
unregister_spatial_column command to remove the entry for the spatial column. Otherwise, if you create
the table again and use the register_spatial_column command to register the same spatial column, error
GSE1003N will occur. For more information about this message, see “GSE1003N” on page 271.

Authorization
The user ID under which this command is invoked must hold one of the following authorities or privileges:

• SYSADM or DBADM authority on the database that contains the table to which the spatial column that is
being registered belongs

• All table or view privileges on this table

Command syntax
DSN5SCLP /register_spatial_column DALLAS
 [-tableSchema schema]
 -tableName table_name
 -columnName column_name
 -srsName srs_name

Parameter descriptions
All parameters are required and case-sensitive unless otherwise indicated.

-tableSchema
Identifies the schema to which the table or view that is specified in the -tableName parameter
belongs. This parameter is optional.

If this parameter is not specified, the value in the CURRENT SCHEMA special register is used as the
schema name for the table or view.

-tableName
Identifies the unqualified name of the table or view that contains the column that is being registered.
You must specify a non-empty value for this parameter.

256 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html

-columnName
Identifies the column that is being registered. You must specify a non-empty value for this parameter.

-srsName
Identifies the spatial reference system that is to be used for this spatial column. You must specify a
non-empty value for this parameter.

Example

This example shows the register_spatial_column command with all of the parameters specified.

DSN5SCLP /register_spatial_column DALLAS +
-tableSchema DB2GSE -tableName TABLE2 -columnName SPATIALCOL +
-srsName NAD83_SRS_1

unregister_spatial_column
Use the unregister_spatial_column command to remove the registration of a spatial column.

This command removes the registration by:

• Removing association of the spatial reference system with the spatial column. The
DB2GSE.ST_GEOMETRY_COLUMNS catalog view continues to contain the spatial column, but the
column is no longer associated with any spatial reference system.

• For a base table, dropping the triggers that IBM Spatial Support for Db2 for z/OS placed on this table to
ensure that the geometry values in this spatial column are all represented in the same spatial reference
system.

Note: If you drop the table that contains the spatial column before unregistering the spatial
column, the triggers are still dropped. However, the entry for the spatial column will still exist in
the DB2GSE.ST_GEOMETRY_COLUMNS catalog view. You must still run the unregister_spatial_column
command to remove the entry for the spatial column.

Authorization
The user ID under which this command is invoked must hold one of the following authorities or privileges:

• SYSADM or DBADM authority
• All table or view privileges on this table

Command syntax
DSN5SCLP /unregister_spatial_column DALLAS
 [-tableSchema schema]
 -tableName table_name
 -columnName column_name

Parameter descriptions
All parameters are required and case-sensitive unless otherwise indicated.

-tableSchema
Identifies the schema to which the table that is specified in the -tableName parameter belongs. This
parameter is optional.

If this parameter is not specified, the value in the CURRENT SCHEMA special register is used as the
schema name for the table or view.

-tableName
Identifies the unqualified name of the table that contains the column that is specified in the
-columnName parameter. You must specify a non-empty value for this parameter.

Chapter 15. The DSN5SCLP program 257

-columnName
Identifies the spatial column that you want to unregister. You must specify a non-empty value for this
parameter.

Example

This example shows the unregister_spatial_column command with all of the parameters specified.

DSN5SCLP /unregister_spatial_column DALLAS +
-tableSchema DB2GSE -tableName TABLE2 -columnName SPATIALCOL +

258 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Chapter 16. Identifying IBM Spatial Support for Db2
for z/OS problems

If you encounter a problem working with IBM Spatial Support for Db2 for z/OS, you need to determine the
cause of the problem.

You can troubleshoot problems in the following ways:

• You can use message information to diagnose the problem.
• When working with spatial support stored procedures and functions, Db2 returns information about the

success or failure of the stored procedure or function. The information returned will be a message code
(in the form of an integer), message text, or both depending on the interface that you use to work with
IBM Spatial Support for Db2 for z/OS.

• If you have a recurring and reproducible problem, an IBM customer support representative might ask
you to use the Db2 trace facility, as provided by the Db2 instrumentation facility component (ICF), to
help them diagnose the problem.

How to interpret spatial support messages
This topic explains how to interpret the IBM Spatial Support for Db2 for z/OS messages.

You can work with spatial support through several different interfaces:

• IBM Spatial Support for Db2 for z/OS stored procedures
• IBM Spatial Support for Db2 for z/OS functions

These interfaces return messages to help you determine whether the spatial operation that you requested
completed successfully or resulted in an error.

The following table explains each part of this sample message text:

GSE0000I: The operation was completed successfully.

Table 38. The parts of the IBM Spatial Support for Db2 for z/OS message text

Message text part Description

GSE The message identifier. All IBM Spatial Support for Db2 for z/OS
messages begin with the three-letter prefix GSE.

0000 The message number. A four digit number that ranges from 0000
through 9999.

I The message type. A single letter that indicates the severity of
message:
C

Critical error messages
N

Non-critical error messages
W

Warning messages
I

Informational messages

The operation was completed
successfully.

The message explanation.

© Copyright IBM Corp. 2007, 2023 259

The explanation that appears in the message text is the brief explanation. To obtain additional information
about the message, which includes the detailed explanation and suggestions to avoid or correct the
problem, see Chapter 17, “GSE Messages,” on page 263.

Output parameters for spatial support stored procedures
You can use stored procedure output parameters to diagnose problems when IBM Spatial Support for Db2
for z/OS stored procedures are invoked explicitly in application programs.

You can invoke IBM Spatial Support for Db2 for z/OS stored procedures explicitly in an application
program or from a remote DB2 Connect client command line processor. To diagnose stored procedures
that are invoked implicitly, use the messages that are returned by IBM Spatial Support for Db2 for z/OS.

IBM Spatial Support for Db2 for z/OS stored procedures have two output parameters: the message code
(msg_code) and the message text (msg_text). The parameter values indicate the success or failure of a
stored procedure.
msg_code

The msg_code parameter is an integer, which can be positive, negative, or zero (0). Positive numbers
are used for warnings, negative numbers are used for errors (both critical and non-critical), and zero
(0) is used for informational messages.

The absolute value of the msg_code is included in the msg_text as the message number. For example

• If the msg_code is 0, the message number is 0000.
• If the msg_code is –219 , the message number is 0219. The negative msg_code indicates that the

message is a critical or non-critical error.
• If the msg_code is +1036, the message number is 1036. The positive msg_code number indicates

that the message is a warning.

The msg_code numbers for IBM Spatial Support for Db2 for z/OS stored procedures are divided into
the three categories shown in the following table:

Table 39. Stored procedure message codes

Codes Category

0000 – 0999 Common messages

1000 – 1999 Administrative messages

2000 – 2999 Import and export messages

msg_text
The msg_text parameter is comprised of the message identifier, the message number, the message
type, and the explanation. An example of a stored procedure msg_text value is:

GSE0219N An EXECUTE IMMEDIATE statement
 failed. SQLERROR = "<sql-error>".

The explanation that appears in the msg_text parameter is the brief explanation. You can retrieve
additional information about the message that includes the detailed explanation and suggestions to
avoid or correct the problem.

For a detailed explanation of the parts of the msg_text parameter, and information on how to retrieve
additional information about the message, see “How to interpret spatial support messages” on page
259.

Working with stored procedures in applications
When you call a IBM Spatial Support for Db2 for z/OS stored procedure from an application, you will
receive the msg_code and msg_text as output parameters. You can:

260 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

• Program your application to return the output parameter values to the application user.
• Perform some action based on the type of msg_code value returned.

Messages for spatial support stored procedures
Most of the messages returned through IBM Spatial Support for Db2 for z/OS are for stored procedures.

When a stored procedure is invoked implicitly, you receive message text that indicates the success or
failure of the stored procedure.

The message text is comprised of the message identifier, the message number, the message type, and
the explanation. For example, if you enable a database by using the DSN5SCLP program and specify the
parameters as enable_spatial TESTDB -wlmName WLMENV1, the following message text is returned:

GSE0000I The operation was completed successfully.

Likewise, the same message is returned if you disable the database (disable_spatial TESTDB).

The explanation that appears in the message text is the brief explanation. You can retrieve additional
information about the message that includes the detailed explanation and suggestions to avoid or correct
the problem. The steps to retrieve this information, and a detailed explanation of how to interpret the
parts of the message text, are discussed in a separate topic.

Spatial support function messages
The messages returned by IBM Spatial Support for Db2 for z/OS functions are typically embedded in an
SQL message.

The SQLCODE returned in the message indicates if an error occurred with the function or that a warning is
associated with the function. For example:

• The SQLCODE –443 (message number SQL0443) indicates that an error occurred with the function.
• The SQLCODE +462 (message number SQL0462) indicates that a warning is associated with the

function.

The following table explains the significant parts of this sample message:

DB21034E The command was processed as an SQL statement because it was
not a valid Command Line Processor command. During SQL processing it
returned: SQL0443N Routine "DB2GSE.GSEGEOMFROMWKT"
(specific name "GSEGEOMWKT1") has returned an error
SQLSTATE with diagnostic text "GSE3421N Polygon is not closed.".
SQLSTATE=38SSL

Table 40. The significant parts of IBM Spatial Support for Db2 for z/OS function messages

Message part Description

SQL0443N The SQLCODE indicates the type of problem.

GSE3421N The IBM Spatial Support for Db2 for z/OS message number and
message type.

The message numbers for functions range from GSE3000 to GSE3999.
Additionally, common messages can be returned when you work with
IBM Spatial Support for Db2 for z/OS functions. The message numbers
for common messages range from GSE0001 to GSE0999.

Polygon is not closed The message explanation.

Chapter 16. Identifying IBM Spatial Support for Db2 for z/OS problems 261

Table 40. The significant parts of IBM Spatial Support for Db2 for z/OS function messages (continued)

Message part Description

SQLSTATE=38SSL An SQLSTATE code that further identifies the error. An SQLSTATE code
is returned for each statement or row.

• The SQLSTATE codes for spatial support function errors are 38Sxx,
where each x is a character letter or number.

• The SQLSTATE codes for spatial support function warnings are
01HSx, where the x is a character letter or number.

An example of an SQL0443 error message
Suppose that you attempt to insert the values for a polygon into the table POLYGON_TABLE, as shown
below:

INSERT INTO polygon_table (geometry)
VALUES (ST_Polygon ('polygon ((0 0, 0 2, 2 2, 1 2)) '))

This results in an error message because you did not provide the end value to close the polygon. The error
message returned is:

DB21034E The command was processed as an SQL statement because it was
not a valid Command Line Processor command. During SQL processing it
returned: SQL0443N Routine "DB2GSE.GSEGEOMFROMWKT"
(specific name "GSEGEOMWKT1") has returned an error
SQLSTATE with diagnostic text "GSE3421N Polygon is not closed.".
SQLSTATE=38SSL

The SQL message number SQL0443N indicates that an error occurred and the message includes the
message text GSE3421N Polygon is not closed.

When you receive this type of message, locate the GSE message number within the Db2 or SQL error
message. The message is repeated, along with a detailed explanation and recommended user response.

262 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Chapter 17. GSE Messages

This section contains the messages for IBM Spatial Support for Db2 for z/OS. The messages are listed in
numeric sequence.

GSE0001C An internal error occurred.

Explanation
IBM Spatial Support for Db2 for z/OS encountered an
unexpected internal error.

User response
Repeat the command. If the problem persists, contact
IBM Software Support.

msgcode: -1

sqlstate: 38S01

GSE0002C IBM Spatial Support for Db2 for
z/OS could not access its memory
pool. Reason code = reason-code.

Explanation
IBM Spatial Support for Db2 for z/OS tried
unsuccessfully to access its memory pool.

User response
Note the reason code reason-code and contact IBM
Software Support.

msgcode: -2

sqlstate: 38S02

GSE0003N IBM Spatial Support for DB2 for
z/OS could not allocate number
bytes of memory.

Explanation
Not enough memory was available. Possible reasons
are that the supply of memory was too low, or that
memory was being used by other applications.

User response
Resolve the memory shortage and repeat the
command.

msgcode: -3

sqlstate: 38S03

GSE0004C An internal parameter error
occurred.

Explanation
IBM Spatial Support for Db2 for z/OS encountered
an unexpected error in a parameter passed to an
internal function. The operation cannot be completed
successfully.

User response
Repeat the command. If the problem persists, contact
IBM Software Support.

msgcode: -4

sqlstate: 38S04

GSE0006N An internal string error occurred.

Explanation
IBM Spatial Support for Db2 for z/OS encountered an
unexpected error in an internal string operation. The
operation cannot be completed successfully.

User response
Repeat the command. If the problem persists, contact
IBM Software Support.

msgcode: -6

sqlstate: 38S06

GSE0007N The string string is missing either a
closing quotation mark or a closing
pair of quotation marks.

Explanation
This string lacks a closing delimiter and therefore is
not terminated correctly.

User response
Terminate the string correctly. If it starts with a
quotation mark, close it with a quotation mark. If it
starts with a pair of quotation marks, close it with a
pair of quotation marks.

msgcode: -7

sqlstate: 38S07

GSE0008N An invalid error code error-code
was used to raise an error.

© Copyright IBM Corp. 2007, 2023 263

Explanation
There was an attempt to raise an error identified by an
invalid error-code.

User response
Contact IBM Software Support.

msgcode: -8

sqlstate: 38S08

GSE0100N IBM Spatial Support for DB2 for
z/OS could not open a file named
file-name. Reason code = reason-
code.

Explanation
Reasons why a file cannot be opened, preceded by
their reason codes, are as follows:
111

Permission is denied.
112

The resource is temporarily unavailable.
117

The file exists.
119

The file is too large.
122

An I/O error occurred.
123

The file specified is a directory.
126

The file name specified is too long.
129

No such file or directory exists.
132

Not enough space is available.
141

The specified file system is read-only.
162

HFS encountered a system error.

All other reason codes indicate an internal error.

User response
Verify the authorization for the file and the directories,
then repeat the command.

If a reason code that indicates an internal error was
encountered, contact IBM Software Support.

msgcode: -100

sqlstate: 38S10

GSE0101N An I/O error occurred while a
file named file-name was being
processed. Reason code = reason-
code.

Explanation
Reasons why an I/O error can occur during file
processing, preceded by their reason codes, are as
follows:
111

Permission is denied.
112

The resource is temporarily unavailable.
119

The file is too large.
162

HFS encountered a system error.

All other reason codes indicate an internal error.

User response
Verify that the file exists, that you have the appropriate
access to the file, and that the file is not in use by
another process.

If a reason code that indicates an internal error was
encountered, contact IBM Software Support.

msgcode: -101

sqlstate: 38S11

GSE0102N IBM Spatial Support for DB2 for
z/OS could not close a file named
file-name. Reason code = reason-
code.

Explanation
Reasons why an error can occur during an attempt to
close a file, preceded by their reason codes, are as
follows:
122

An I/O error occurred.
162

HFS encountered a system error.

All other reason codes indicate an internal error.

User response
Verify that the file system is in fully working condition
and that enough disk space is available.

If a reason code that indicates an internal error was
encountered, contact IBM Software Support.

264 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

msgcode: -102

sqlstate: 38S12

GSE0103N IBM Spatial Support for DB2 for
z/OS could not delete a file named
file-name. Reason code = reason-
code.

Explanation
Reasons why an error can occur during an attempt to
delete a file, preceded by their reason codes, are as
follows:
111

Permission is denied.
112

The resource is temporarily unavailable.
122

An I/O error occurred.
126

The file name specified is too long.
129

No such file or directory exists.
141

The specified file system is read-only.
162

HFS encountered a system error.

All other reason codes indicate an internal error.

User response
Verify the authorization for the file and the directories,
then repeat the command.

If a reason code that indicates an internal error was
encountered, contact IBM Software Support.

msgcode: -103

sqlstate: 38S13

GSE0200N An attempt to connect to the
database failed. SQLERROR = sql-
error.

Explanation
IBM Spatial Support for Db2 for z/OS was not able to
connect to the database. Db2 returned sql-error.

User response
Refer to the description of sql-error.

msgcode: -200

sqlstate: 38S20

GSE0201W An attempt to disconnect from the
database failed. SQLERROR = sql-
error.

Explanation
IBM Spatial Support for Db2 for z/OS was not able to
disconnect from the database. Db2 returned sql-error.

User response
Refer to the description of sql-error.

msgcode: +201

sqlstate: 38S21

GSE0202N No connection to a database
exists.

Explanation
IBM Spatial Support for Db2 for z/OS cannot connect
to a database. The command cannot be executed
successfully.

User response
Verify the IBM Spatial Support for Db2 for z/OS and
database setup. Make sure that a connection to the
database can be established.

msgcode: -202

sqlstate: 38S22

GSE0203W IBM Spatial Support for DB2 for
z/OS was already connected to
database database-name.

Explanation
IBM Spatial Support for Db2 for z/OS tried to connect
to the database database-name but was already
connected to it.

User response
Contact IBM Software Support.

msgcode: +203

sqlstate: 38S23

GSE0204N An attempt to commit a
transaction failed. SQLERROR =
sql-error.

Chapter 17. GSE Messages 265

Explanation
IBM Spatial Support for Db2 for z/OS could not commit
the current transaction successfully. Db2 returned sql-
error.

User response
Refer to the description of sql-error.

msgcode: -204

sqlstate: 38S24

GSE0205W An attempt to roll back a
transaction failed. SQLERROR =
sql-error.

Explanation
IBM Spatial Support for Db2 for z/OS could not roll
back the current transaction. Db2 returned sql-error.

User response
Refer to the description of sql-error.

msgcode: +205

sqlstate: 38S25

GSE0206N A SELECT statement failed.
SQLERROR = sql-error.

Explanation
IBM Spatial Support for Db2 for z/OS could not
execute a SELECT statement successfully. Db2
returned sql-error.

User response
Refer to the description of sql-error.

msgcode: -206

sqlstate: 38S26

GSE0207N A VALUES statement failed.
SQLERROR = sql-error.

Explanation
IBM Spatial Support for Db2 for z/OS could not
execute a VALUES statement successfully. Db2
returned sql-error.

User response
Refer to the description of sql-error.

msgcode: -207

sqlstate: 38S27

GSE0208N A PREPARE statement failed.
SQLERROR = sql-error.

Explanation
IBM Spatial Support for Db2 for z/OS could not
prepare an SQL statement successfully. Db2 returned
sql-error.

User response
Refer to the description of sql-error.

msgcode: -208

sqlstate: 38S28

GSE0209N An attempt to open an SQL cursor
failed. SQLERROR = sql-error.

Explanation
IBM Spatial Support for Db2 for z/OS could not open
a cursor over a result set successfully. Db2 returned
sql-error.

User response
Refer to the description of sql-error.

msgcode: -209

sqlstate: 38S29

GSE0210W An attempt to close an SQL cursor
failed. SQLERROR = sql-error.

Explanation
IBM Spatial Support for Db2 for z/OS could not close
a cursor over a result set successfully. Db2 returned
sql-error.

User response
Refer to the description of sql-error.

msgcode: +210

sqlstate: 38S2A

GSE0211N A fetch from an SQL cursor failed.
SQLERROR = sql-error.

Explanation
IBM Spatial Support for Db2 for z/OS could not fetch
a result from a cursor successfully. Db2 returned sql-
error.

266 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

User response
Refer to the description of sql-error.

msgcode: -211

sqlstate: 38S2B

GSE0212N An attempt to drop an object
failed. SQLERROR = sql-error.

Explanation
IBM Spatial Support for Db2 for z/OS could not drop
the specified database object. Db2 returned sql-error.

User response
Refer to the description of sql-error.

msgcode: -212

sqlstate: 38S2C

GSE0214N An INSERT statement failed.
SQLERROR = sql-error.

Explanation
IBM Spatial Support for Db2 for z/OS could not
execute an INSERT statement successfully. Db2
returned sql-error.

User response
Refer to the description of sql-error.

msgcode: -214

sqlstate: 38S2E

GSE0215N An UPDATE statement failed.
SQLERROR = sql-error.

Explanation
IBM Spatial Support for Db2 for z/OS could not
execute an UPDATE statement successfully. Db2
returned sql-error.

User response
Refer to the description of sql-error.

msgcode: -215

sqlstate: 38S2F

GSE0216N A DELETE statement failed.
SQLERROR = sql-error.

Explanation
IBM Spatial Support for Db2 for z/OS could not
execute a DELETE statement successfully. Db2
returned sql-error.

User response
Refer to the description of sql-error.

msgcode: -216

sqlstate: 38S2G

GSE0217N A LOCK TABLE statement failed.
SQLERROR = sql-error.

Explanation
IBM Spatial Support for Db2 for z/OS could not
execute a LOCK TABLE statement successfully. Db2
returned sql-error.

User response
Refer to the description of sql-error.

msgcode: -217

sqlstate: 38S2H

GSE0218N A DECLARE GLOBAL TEMPORARY
TABLE statement failed.
SQLERROR = sql-error.

Explanation
IBM Spatial Support for Db2 for z/OS could not
execute a DECLARE GLOBAL TEMPORARY TABLE
statement successfully. Db2 returned sql-error.

User response
Refer to the description of sql-error.

msgcode: -218

sqlstate: 38S2I

GSE0219N An EXECUTE IMMEDIATE
statement failed. SQLERROR = sql-
error.

Explanation
IBM Spatial Support for Db2 for z/OS could
not execute an EXECUTE IMMEDIATE statement
successfully. Db2 returned sql-error.

User response
Refer to the description of sql-error.

Chapter 17. GSE Messages 267

msgcode: -219

sqlstate: 38S2J

GSE0220N The setting of a savepoint failed.
SQLERROR = sql-error.

Explanation
IBM Spatial Support for Db2 for z/OS could not set a
savepoint successfully. Db2 returned sql-error.

User response
Refer to the description of sql-error.

msgcode: -220

sqlstate: 38S2K

GSE0221N No database name was specified.

Explanation
IBM Spatial Support for Db2 for z/OS could not
connect to a database because the name of the
database was not specified.

User response
Specify a database name.

msgcode: -221

sqlstate: 38S2L

GSE0222N An attempt to retrieve the
authorization list from DB2 failed.
SQLERROR = sql-error.

Explanation
IBM Spatial Support for Db2 for z/OS could not retrieve
the authorization list for the current user. Db2 returned
sql-error.

User response
Refer to the description of sql-error.

msgcode: -222

sqlstate: 38S2M

GSE0223N An attempt to quiesce a table
space failed. SQLERROR = sql-
error.

Explanation
IBM Spatial Support for Db2 for z/OS could not quiesce
a table space successfully. Db2 returned sql-error.

User response
Refer to the description of sql-error.

msgcode: -223

sqlstate: 38S2N

GSE0224N An attempt to import data into
a table failed. SQLERROR = sql-
error.

Explanation
IBM Spatial Support for Db2 for z/OS could not import
data into a table successfully. Db2 returned sql-error.

User response
Refer to the description of sql-error.

msgcode: -224

sqlstate: 38S2O

GSE0226N An attempt to create a trigger
failed. SQLERROR = sql-error.

Explanation
IBM Spatial Support for Db2 for z/OS could not create
a trigger successfully. Db2 returned sql-error.

User response
Refer to the description of sql-error.

msgcode: -226

sqlstate: 38S2Q

GSE0227N An ALTER TABLE statement failed.
SQLERROR = sql-error.

Explanation
IBM Spatial Support for Db2 for z/OS could not
execute an ALTER TABLE statement successfully. Db2
returned sql-error.

User response
Refer to the description of sql-error.

msgcode: -227

sqlstate: 38S2R

GSE0228N An attempt to retrieve the
message for error gse-error and
SQLCODE = sqlcode from the IBM
Spatial Support for Db2 for z/OS
message catalog failed.

268 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Explanation
IBM Spatial Support for Db2 for z/OS could not
retrieve the message for error gse-error and SQLCODE
= sqlcode successfully.

User response
Verify the installation of IBM Spatial Support for Db2
for z/OS. Verify also that the message catalog in the
language that you want to use is installed.

msgcode: -228

sqlstate: 38S2S

GSE0230N The system catalog could not be
updated.

Explanation
IBM Spatial Support for Db2 for z/OS encountered
an error while attempting to use the Db2 service to
update the system catalog.

User response
Contact IBM Software Support.

msgcode: -230

sqlstate: 38S2U

GSE0231N A PREPARE statement
encountered a warning condition.
SQLWARNING = sql-warning.

Explanation
IBM Spatial Support for Db2 for z/OS encountered a
warning condition when preparing an SQL statement.
Db2 returned sql-warning. The PREPARE statement
was completed successfully.

User response
Refer to the description of sql-warning.

msgcode: -231

sqlstate: 38S2V

GSE0300N The specified password is too
long.

Explanation
The password used in your attempt to connect to the
database is too long.

User response
Verify that the password you specified is correct. If it
is the correct password, then shorten it and try the
operation again.

msgcode: -300

sqlstate: 38S40

GSE0301N The specified schema name,
schema-name, is too long.

Explanation
The requested operation cannot be completed
successfully because the length of the schema name
exceeds the limit for schema names in Db2.

User response
Specify a valid, shorter schema name. For more
information on the schema name length limit, refer to
IBM Spatial Support for Db2 for z/OS User's Guide and
Reference and try the operation again.

msgcode: -301

sqlstate: 38S41

GSE0302N The specified table name, table-
name, is too long.

Explanation
The requested operation cannot be completed
successfully because the length of the table name
exceedslimit for table names in Db2.

User response
Specify a valid, shorter table name.

For more information on the table name length limit,
refer to IBM Spatial Support for Db2 for z/OS User's
Guide and Reference, and then try the operation again.

msgcode: -302

sqlstate: 38S42

GSE0303N The specified column name,
column-name, is too long.

Explanation
The requested operation cannot be completed
successfully because the length of the column name
exceeds the limit for column names in Db2.

User response
Specify a valid, shorter column name.

Chapter 17. GSE Messages 269

For more information on the column name length limit,
refer to IBM Spatial Support for Db2 for z/OS User's
Guide and Reference, and then try the operation again.

msgcode: -303

sqlstate: 38S43

GSE0304N The specified index name, index-
name, is too long.

Explanation
The requested operation cannot be completed
successfully because the length of the index name
exceeds limit for index names in Db2.

User response
Specify a valid, shorter index name. For more
information on the index name length limit, refer to
IBM Spatial Support for Db2 for z/OS User's Guide and
Reference, and then try the operation again.

msgcode: -304

sqlstate: 38S44

GSE0305N The specified data type name,
type-name, is too long.

Explanation
The requested operation cannot be completed
successfully because the length of the data type name
exceeds limit for data type names in Db2.

User response
Specify a valid, shorter type name. For more
information on the data type name length limit, refer
to IBM Spatial Support for Db2 for z/OS User's Guide
and Reference, and then try the operation again.

msgcode: -305

sqlstate: 38S45

GSE0306N A complete path that starts with
path would exceed the acceptable
limit of limit bytes.

Explanation
The file in a path that starts with path cannot be
accessed because the length of the complete path
would exceed the limit of limit bytes. As a result,
the statement that you submitted cannot be executed
successfully.

User response
Change the location of the file to be accessed so that
it can be found using a shorter path and re-submit
the statement that you specified. On UNIX systems,
symbolic links can be used to establish a shorter path
name.

msgcode: -306

sqlstate: 38S46

GSE0307N The length of a dynamic SQL
statement statement-length would
exceed the acceptable limit of limit
bytes.

Explanation
The statement cannot be constructed because it
would be too long.

User response
If the statement is constructed in the context of a
stored procedure, verify that the WHERE clause is not
too long. If necessary, shorten the WHERE clause and
retry the operation. If the problem persists, contact
IBM Software Support.

msgcode: -307

sqlstate: 38S47

GSE0308N The string, string, exceeds the
limit of limit bytes.

Explanation
The requested operation cannot be completed
successfully because the string, string, is too long.

User response
Specify a shorter string. If necessary, contact IBM
Software Support.

msgcode: -308

sqlstate: 38S48

GSE1000N IBM Spatial Support for DB2
for z/OS could not perform an
operation operation-name that
was requested under user id user-
id.

Explanation
You requested this operation under a user id that
does not hold the privilege or authority to perform the
operation.

270 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

User response
Consult the IBM Spatial Support for Db2 for z/OS
User's Guide and Reference to find out what the
required authorization for the operation is.

msgcode: -1000

sqlstate: 38S50

GSE1001N The specified value, value, is
not valid for the argument-name
argument.

Explanation
The value value that you entered for argument
argument-name was incorrect or misspelled.

User response
Consult the IBM Spatial Support for Db2 for z/OS
User's Guide and Reference to find out what value or
range of values you need to specify.

msgcode: -1001

sqlstate: 38S51

GSE1002N A required argument, argument-
name, was not specified.

Explanation
The requested operation cannot be completed
successfully because an argument that it requires was
not specified.

User response
Specify argument argument-name with the value that
you want; then request the operation again.

msgcode: -1002

sqlstate: 38S52

GSE1003N The spatial column, schema-
name.table-name.column-name,
could not be registered with the
spatial reference system srs-name
because it is already registered
with another spatial reference
system.

Explanation
A spatial reference system is already registered with
the spatial column. It cannot be registered again
unless it is unregistered first.

User response
Either unregister the spatial column and then register
it with the spatial reference system you want or do not
attempt to register it again.

msgcode: -1003

sqlstate: 38S53

GSE1006N The spatial column schema-
name.table-name.column-name is
not registered.

Explanation
This spatial column was not registered with a
spatial reference system. Therefore, it cannot be
unregistered.

User response
Specify a spatial column that is already registered, or
do not attempt to unregister the column.

msgcode: -1006

sqlstate: 38S56

GSE1009N A table named schema-
name.table-name does not exist.

Explanation
The requested operation cannot be completed
successfully because the table schema-name.table-
name does not exist.

User response
Specify a valid table name and retry the operation.

msgcode: -1009

sqlstate: 38S59

GSE1010N A spatial column named schema-
name.table-name.column-name
does not exist.

Explanation
The requested operation cannot be
completed successfully because schema-name.table-
name.column-name does not identify an existing
column.

User response
Specify a valid spatial column name and retry the
operation.

msgcode: -1010

Chapter 17. GSE Messages 271

sqlstate: 38S5A

GSE1011N A data type named schema-
name.type-name does not exist.

Explanation
The requested operation cannot be completed
successfully because a data type schema-name.type-
name does not exist.

User response
Specify a valid data type name and retry the operation.

msgcode: -1011

sqlstate: 38S5B

GSE1012N The database has not been
enabled for spatial operations.

Explanation
The requested operation cannot be completed
successfully because the database has not been
enabled for spatial operations and, therefore, a IBM
Spatial Support for Db2 for z/OS catalog has not been
created.

User response
Enable the database for spatial operations.

msgcode: -1012

sqlstate: 38S5C

GSE1013N The database is already enabled
for spatial operations.

Explanation
The database is already enabled for spatial operations.
It cannot be enabled again.

User response
Verify that the database has been enabled as you
expected. If necessary, disable the database.

msgcode: -1013

sqlstate: 38S5D

GSE1014N IBM Spatial Support for DB2
for z/OS was unable to
register a column named schema-
name.table-name.column-name
because it is not a spatial column.

Explanation
Either this column does not have a spatial data type, or
it does not belong to a local table.

User response
Define a spatial data type for column schema-
name.table-name.column-name, or specify a column
with a spatial data type as declared type.

msgcode: -1014

sqlstate: 38S5E

GSE1015N A spatial reference system named
srs-name does not exist.

Explanation
The requested operation cannot be completed
successfully because a spatial reference system with
the name srs-name does not exist.

User response
Specify an existing spatial reference system and retry
the operation.

msgcode: -1015

sqlstate: 38S5F

GSE1016N A spatial reference system whose
numeric identifier is srs-id does
not exist.

Explanation
The requested operation could not be completed
successfully because a spatial reference system with
the specified numeric identifier srs-id does not exist.

User response
Specify an existing spatial reference system identifier
and retry the operation.

msgcode: -1016

sqlstate: 38S5G

GSE1017N A coordinate system named
coordsys-name already exists.

Explanation
A coordinate system named coordsys-name already
exists. Another coordinate system with the same name
cannot be created.

272 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

User response
Specify a unique name for the new coordinate system.

msgcode: -1017

sqlstate: 38S5H

GSE1018N A coordinate system named
coordsys-name does not exist.

Explanation
The requested operation cannot be completed
successfully because a coordinate system with the
name coordsys-name does not exist.

User response
Specify the name of an existing coordinate system.

msgcode: -1018

sqlstate: 38S5I

GSE1019N No values of the spatial
coordinate system coordsys-name
are specified.

Explanation
You attempted to alter the coordinate system
coordsys-name, but did not specify any new values.

User response
Specify at least one new value for the coordinate
system.

msgcode: -1019

sqlstate: 38S5J

GSE1020N A spatial reference system named
srs-name already exists.

Explanation
A spatial reference system named srs-name already
exists. Another spatial reference system with the same
name cannot be created.

User response
Specify a unique name for the spatial reference system
to be created and retry the operation.

msgcode: -1020

sqlstate: 38S5K

GSE1021N A spatial reference system named
srs-name does not exist.

Explanation
The requested operation cannot be completed
successfully because a spatial reference system with
the name srs-name does not exist.

User response
Specify a name of an existing spatial reference system
and retry the operation.

msgcode: -1021

sqlstate: 38S5L

GSE1022N A spatial reference system whose
numeric identifier is srs-id does
not exist.

Explanation
The requested operation cannot be completed
successfully because a spatial reference system with
the numeric identifier srs-id does not exist.

User response
Specify an existing numeric identifier for the spatial
reference system.

msgcode: -1022

sqlstate: 38S5M

GSE1023N A coordinate system whose
numeric identifier is coordsys-id
does not exist.

Explanation
The requested operation cannot be completed
successfully because a coordinate system with the
numeric identifier coordsys-id does not exist.

User response
Specify an existing numeric identifier for the
coordinate system and retry the operation.

msgcode: -1023

sqlstate: 38S5N

GSE1024N No values of the spatial reference
system srs-name are specified.

Explanation
You attempted to alter the spatial reference system
srs-name, but did not specify any new values.

Chapter 17. GSE Messages 273

User response
Specify at least one new value for the spatial reference
system and then try the operation again.

msgcode: -1024

sqlstate: 38S5O

GSE1025N A geocoder whose function name
is schema-name.function-name
could not be found in the
database.

Explanation
The requested operation cannot be completed
successfully because IBM Spatial Support for Db2
for z/OS could not locate a function named schema-
name.function-name for the geocoder.

User response
Specify a geocoder with an existing function name or
create the function, then try the operation again.

msgcode: -1025

sqlstate: 38S5P

GSE1034N The parameters passed to the
stored procedure do not include a
parameter parameter-name.

Explanation
The SQLDA that was passed to the stored procedure is
too small. It does not contain an entry for parameter
parameter-name.

User response
Correct the parameters that are being passed to the
stored procedure.

msgcode: -1034

sqlstate: 38S5Y

GSE1035N The parameter-name parameter,
which is being passed to the
stored procedure, has an incorrect
data type.

Explanation
The data type for parameter parameter-name that is
passed to the stored procedure is not correct.

User response
Correct the parameters that are being passed to the
stored procedure.

msgcode: -1035

sqlstate: 38S5Z

GSE1037N The definition of the specified
coordinate system named
coordsys-name is invalid.

Explanation
A coordinate system named coordsys-name cannot be
created because the definition given for it is invalid.

User response
Specify a correct definition for the coordinate system.

The function ST_EqualCoordsys can be used to verify
the definition by comparing the coordinate system
with itself.

msgcode: -1037

sqlstate: 38S61

GSE1038N The WHERE clause specified for
the geocoder named geocoder-
name is invalid. When IBM
Spatial Support for Db2 for z/OS
attempted to verify the clause, it
encountered SQL error sql-error.

Explanation
The geocoding that you requested cannot be
completed successfully because the where clause that
determines which rows are to be geocoded is invalid.

User response
Specify a syntactically correct WHERE clause.

msgcode: -1038

sqlstate: 38S62

GSE1039N A coordinate system identified
by the specified identifier
organization-coordsys-id in
combination with the specified
organization organization already
exists.

Explanation
Your request to create a coordinate system could not
be met because the combination of identifiers that
you specified for the coordinate system (the name

274 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

of the organization that defined the system and a
number that this organization assigned to it) was not
unique. Either these two values must be unique in
combination, or they must be null.

User response
Specify a unique set of values for organization and
organization-coordsys-id, or choose null values for
both.

msgcode: -1039

sqlstate: 38S63

GSE1040N A spatial reference system with
the numeric identifier srs-id
already exists.

Explanation
Your request to create a spatial reference system
could not be met because the numeric identifier srs-
id that you assigned to it already identifies another
spatial reference system. A spatial reference system's
identifier must be unique.

User response
Specify a unique numeric identifier for the spatial
reference system.

msgcode: -1040

sqlstate: 38S64

GSE1041N A coordinate system with the
numeric identifier coordsys-id
already exists.

Explanation
Your request to create a coordinate system could not
be met because the numeric identifier coordsys-id that
you assigned to it already identifies another spatial
coordinate system. A spatial coordinate system's
identifier must be unique.

User response
Specify a unique value coordsys-id for the coordinate
system.

msgcode: -1041

sqlstate: 38S65

GSE1043N The specified grid index schema-
name.index-name already exists.

Explanation
This index already exists. It must be dropped before
an index with the same name can be created.

User response
Specify a name for the index that does not yet exist, or
drop the existing index and retry the operation.

msgcode: -1043

sqlstate: 38S67

GSE1044N The specified coordinate system
coordsys-name cannot be dropped
because an existing spatial
reference system is based on this
coordinate system.

Explanation
At least one spatial reference system exists that is
based on the specified coordinate system coordsys-
name. The coordinate system cannot be dropped.

User response
Drop all spatial reference systems that are based on
the specified coordinate system. Then try to drop the
coordinate system again.

msgcode: -1044

sqlstate: 38S68

GSE1045N The specified spatial reference
system srs-name cannot be
dropped because a spatial column
is registered with this spatial
reference system.

Explanation
At least one spatial column exists that is associated
with the specified spatial reference system srs-name.
The spatial reference system cannot be dropped.

User response
Unregister all spatial columns that are associated with
the specified spatial reference system. Then try to
drop the spatial reference system again.

msgcode: -1045

sqlstate: 38S69

GSE1048N The spatial reference system
with numeric identifier srs-id is
a predefined geodetic spatial

Chapter 17. GSE Messages 275

reference system and cannot be
altered.

Explanation
The spatial reference system was not altered. Spatial
reference systems with numeric identifiers in the
range 2000000000 to 2000000317 are predefined
geodetic spatial reference systems and cannot be
altered.

User response
Do not attempt to alter this spatial reference system.
If a geodetic spatial reference system with a different
definition is needed, you can create a new geodetic
spatial reference system with the numeric identifier in
the range 2000000318 to 2000001000.

msgcode: -1048

sqlstate: 38SP3

GSE1049N The spatial reference system
with numeric identifier srs-id is
a predefined geodetic spatial
reference system and cannot be
dropped.

Explanation
The spatial reference system was not altered. Spatial
reference systems with numeric identifiers in the
range 2000000000 to 2000000317 are predefined
geodetic spatial reference systems and cannot be
dropped.

User response
Do not attempt to drop this spatial reference system.
If a geodetic spatial reference system with a different
definition is needed, you can create a new geodetic
spatial reference system with the numeric identifier in
the range 2000000318 to 2000001000.

msgcode: -1049

sqlstate: 38SP4

GSE2100N The number of attribute columns
being imported (input-columns
columns) does not match the
number of attribute columns in
the target table (table-columns
columns).

Explanation
If you are importing columns that contain attribute
data, you have the choice of either specifying or not
specifying which attribute columns are being imported

and which columns are in the target table. If you
specify these values, this error occurs when the
specified number of attribute columns being imported
differs from the specified number of columns in the
target table. If you do not specify these values, this
error occurs when the actual number of columns being
imported differs from the actual number of attribute
columns in the target table.

User response
Make sure that the number of specified or actual
attribute columns being imported matches the number
of specified or actual columns in the target table.

msgcode: -2100

sqlstate: 38S70

GSE2101N The data type schema-name.type-
name to be used during import is
unknown to DB2.

Explanation
The spatial data type schema-name.type-name cannot
be used during the import of spatial data because it
does not exist in the database.

User response
Create the data type in the database or use a data type
that exists.

msgcode: -2101

sqlstate: 38S71

GSE2102N The table specified for import,
schema-name.table-name, does
not exist.

Explanation
A table named schema-name.table-name does not
exist in the database. Also, IBM Spatial Support for
Db2 for z/OS was not asked to create a table to hold
the data that is to be imported. The data was not
imported.

User response
If the table is to be created by IBM Spatial Support for
Db2 for z/OS, specify the appropriate flag. Otherwise,
create the table and retry the operation.

msgcode: -2102

sqlstate: 38S72

276 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

GSE2103N The table specified for import
schema-name.table-name already
exists.

Explanation
IBM Spatial Support for Db2 for z/OS was asked to
create a table named schema-name.table-name for
the imported data, but a table with that name already
exists in the database. No data was imported.

User response
If the table is not to be created by IBM Spatial Support
for Db2 for z/OS, do not indicate that the table is to be
created. Otherwise, specify the name for a table which
does not yet exist in the database.

msgcode: -2103

sqlstate: 38S73

GSE2104N The column schema-name.table-
name.column-name to import data
into does not exist.

Explanation
The column into which you want to import data
column-name does not exist in the table schema-
name.table-name. No data can be imported into it.

User response
Correct the column name or create the column in the
table that is to be imported, or correct the table name.

msgcode: -2104

sqlstate: 38S74

GSE2105W The import operation completed
successfully but not all records
from the file were imported.

Explanation
The import operation completed successfully but not
all records from the file were imported. The exception
file contains the records that could not be imported,
and the messages file the contains information why
those records were not imported.

User response
Consult the messages file for the reason why not
all records were imported, correct the problem and
repeat the operation with the original file or the
exception file.

msgcode: +2105

sqlstate: 38S75

GSE2106N The data type of
the column schema-name.table-
name.column-name is column-
type, which does not match the
expected type expected-type for
the data to be imported from file.

Explanation
The column column-name in the table schema-
name.table-name to import data into has a declared
type column-type. column-type does not match the
type name expected-type for the data to be imported
from the file. No data can be imported.

User response
Verify the definition of the table with the structure of
the file to be imported.

msgcode: -2106

sqlstate: 38S76

GSE2107N The table to import data into could
not be created due to error sql-
error.

Explanation
IBM Spatial Support for Db2 for z/OS was asked to
create a table to import data into, but the table could
not be created successfully. Db2 returned sql-error.

User response
Refer to the description of this sql-error.

msgcode: -2107

sqlstate: 38S77

GSE2108N The method specification method
to identify the attribute columns
to be imported from the file is not
correct.

Explanation
Either no method specification was given or method is
not a valid method specification. Only 'N' and 'P' are
supported method specifications for importing spatial
data from a file.

User response
Correct the method specification and try the method
again.

msgcode: -2108

Chapter 17. GSE Messages 277

sqlstate: 38S78

GSE2109N A character found-char was found
when a character expected-char
was expected.

Explanation
An unexpected character found-char was found
in the string that identifies the attribute columns
to be imported from the file but expected-char
was expected. The statement cannot be processed
successfully.

User response
Correct the string that identifies the attribute columns
to be imported from the file.

msgcode: -2109

sqlstate: 38S79

GSE2110N The column position identifier
position in the string string is
invalid.

Explanation
The column position identifier position specified in the
string starting with string is not in the valid range. Only
values greater than 0 (zero) and less than or equal
to the number of columns in the file to be imported
can be specified. The statement cannot be processed
successfully.

User response
Correct the column position identifier.

msgcode: -2110

sqlstate: 38S7A

GSE2111N A column named dbf-column-name
in the dBASE file is too long.

Explanation
The name of column dbf-column-name in the dBASE
file (.dbf) exceeds the limit for column names in Db2.

User response
Specify a dbf-column-name that does not exceed the
Db2 length limit.

msgcode: -2111

sqlstate: 38S7B

GSE2112N The column dbf-column-name
cannot be found in the dBASE file.

Explanation
The name dbf-column-name does not identify an
existing attribute column in the dBASE file (.dbf). The
operation cannot be completed successfully.

User response
Specify a column name that exists in the dBASE file.

msgcode: -2112

sqlstate: 38S7C

GSE2113N The dBASE file data type dbf-data-
type for the column dbf-column-
name in the dBASE file is not
supported.

Explanation
The dBASE file data type dbf-data-type for the
attribute column dbf-column-name in the dBASE file
(.dbf) cannot be mapped to a data type in the Db2
database. The shape file cannot be imported.

User response
Exclude the column from the column list.

msgcode: -2113

sqlstate: 38S7D

GSE2114N The column position position is out
of range. The dBASE file contains
dbf-column-number columns.

Explanation
The specified column position position must be a value
within the valid range. A valid value must greater than
0 (zero) and less than or equal to the dbf-column-
number.

User response
Specify a valid position.

msgcode: -2114

sqlstate: 38S7E

GSE2115N A spatial reference system whose
numeric identifier is srs-id does
not exist.

278 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Explanation
A spatial reference system whose numeric identifier is
srs-id does not exist. The data cannot be imported.

User response
Either specify an existing spatial reference system, or
create the spatial reference system before attempting
the import operation.

msgcode: -2115

sqlstate: 38S7F

GSE2116N The coordinate system definition
coordsys-def is too long.

Explanation
The coordinate system definition coordsys-def used for
the spatial data to be imported is too long. It could not
be verified with the coordinate system that underlies
the spatial reference system that is to be used for the
imported data.

User response
Verify that the coordinate system defined in the
projection file (.prj) is correct. To skip the verification
step, do not supply the projection file.

msgcode: -2116

sqlstate: 38S7G

GSE2117N The coordinate system definition
coordsys-def does not match
the coordinate system definition
on which the spatial reference
system srs-id is based.

Explanation
The coordinate system coordsys-def does not match
the coordinate system on which the spatial reference
system srs-id is based. Both coordinate systems must
be semantically identical.

User response
Verify that the coordinate system defined in the
projection file (.prj) matches the coordinate system of
the spatial reference system. To skip the verification
step, do not supply the projection file.

msgcode: -2117

sqlstate: 38S7H

GSE2118N The spatial data does not fit into
the spatial reference system with
the numeric identifier srs-id.

Explanation
The spatial data covers an area that exceeds the
minimum and maximum coordinates of the spatial
reference system with the numeric identifier srs-id.

User response
Specify a spatial reference system which may fully
contain the spatial data to be imported. Refer to the
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog
view for the minimum and maximum coordinate values
applicable for the spatial reference system.

msgcode: -2118

sqlstate: 38S7I

GSE2119N The imported data's spatial
reference system, whose
numerical identifier is srs-id1,
does not match the target
column's spatial reference system,
whose numeric identifier is
srs-id2. The target column's
name is schema-name.table-
name.column-name.

Explanation
The spatial column schema-name.table-name.column-
name was registered with a spatial reference system
srs-id2 assigned to it. This spatial reference system
does not match the spatial reference system srs-id1,
which is used for the spatial data to be imported into
that column. The data cannot be imported.

User response
Either unregister the spatial column, or specify the
same spatial reference system for the data to be
imported that the column uses.

msgcode: -2119

sqlstate: 38S7J

GSE2120N No data was imported.

Explanation
None of the shape data could be imported. All rows
were rejected and written to the exception file.

Chapter 17. GSE Messages 279

User response
Consult the message file for the reasons why all the
spatial data was rejected.

msgcode: -2120

sqlstate: 38S7K

GSE2121N The value restart-count specifying
the record to restart the operation
is out of range. The shape file
contains record-count records.

Explanation
The specified restartCount restart-count must be a
greater than or equal to 0 (zero), and less than or equal
to record-count.

User response
Specify a valid number for restartCount, or specify a
null value for the restartCount.

msgcode: -2121

sqlstate: 38S7L

GSE2122N The SQL statement used to import
the shape data does not fit into the
internal buffer.

Explanation
The SQL statement used to import the shape data
into the table does not fit into the internal buffer. A
possible reason for this might be too many columns
are in the file.

User response
Import a smaller set of the attribute columns in the
shape file.

msgcode: -2122

sqlstate: 38S7M

GSE2123N A buffer to hold the data for row-
count rows cannot be allocated.

Explanation
IBM Spatial Support for Db2 for z/OS tried to use a
single INSERT statement to import at least row-count
rows, but a buffer to hold the data for these rows could
not be allocated. Too much memory was required.

User response
Specify a commit count for the import that is less
than row-count. Or, specify a smaller set of columns to
be imported. This will reduce the amount of memory
required.

msgcode: -2123

sqlstate: 38S7N

GSE2124N An invalid type identifier type-id
was found in the header of the
shape file to be imported.

Explanation
The data in the shape file does not appear to have
a valid spatial data type. The shape file is possibly
corrupted. The data was not imported.

User response
Verify that the shape file is valid.

msgcode: -2124

sqlstate: 38S7O

GSE2125N A column in the shape file has an
unsupported data type type.

Explanation
The shape file contains a column whose data type
is not supported by IBM Spatial Support for Db2 for
z/OS. The shape file could not be imported.

User response
Import only a smaller set of the columns of the shape
file and omit the column with the unsupported data
type.

msgcode: -2125

sqlstate: 38S7P

GSE2126N The header of the shape file
shape-file is invalid.

Explanation
The header of the shape file shape-file is invalid. The
shape file cannot be imported.

The extension of the file name shape-file indicates in
which part of the shape file the error was encountered.
The file extensions include:
.shp

main file

280 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

.shx
index file

.dbf
dBASE file

.pri
projection file

User response
Verify and correct the header of the shape file.

msgcode: -2126

sqlstate: 38S7Q

GSE2127N The offset offset for the record
record-number in the shape index
file shx-file is invalid.

Explanation
The offset offset for the record record-number in the
index file (.shx) shx-file is invalid. The offset must be
greater than or equal to 50 and less than the total
length of the main file (.shp) of the shape file. The
offset is measured in 16 bit words.

User response
Verify and correct the shape file.

msgcode: -2127

sqlstate: 38S7R

GSE2128N The length of the shape in record
record-number of the shape index
file shx-file is too short.

Explanation
The length of the shape in record record-number found
in the shape index file shx-file is too short. Each shape
must consist of at least 4 bytes (two 16 bit words).

User response
Verify and correct the shape file.

msgcode: -2128

sqlstate: 38S7S

GSE2129N IBM Spatial Support for DB2 for
z/OS found an incorrect record
number record-number in the
shape file shp-file when expecting
record number expected-number.

Explanation
IBM Spatial Support for Db2 for z/OS found an
incorrect record number record-number in the shape
file shp-file when expecting record number expected-
number.

User response
Verify and correct the shape file.

msgcode: -2129

sqlstate: 38S7T

GSE2130N The size of the shape data record-
size indicated in the shape file
shp-file does not match the size
indicated in the shape index file
index-size.

Explanation
The size of the shape data record-size indicated in the
shape file shp-file does not match the size indicated in
the shape index file index-size.

The main file of the shape file (.shp) is not consistent
with the index file (.shx) and cannot be processed
further.

User response
Verify and correct the shape file.

msgcode: -2130

sqlstate: 38S7U

GSE2131N The data for record record-number
in the dBASE file dbf-file is invalid.

Explanation
The data for record record-number in the dBASE
file dbf-file that contains the attribute information
associated with the geometries in the shape file is
invalid.

Possible explanations are:

• The first byte of the record is neither an asterisk ('*')
nor a space (' ').

• The sum of all lengths of the columns in the dBASE
file (.dbf) must be equal to the record size indicated
in the header of the file.

User response
Verify and correct the dBASE file.

msgcode: -2131

Chapter 17. GSE Messages 281

sqlstate: 38S7V

GSE2132N The data in shape file shape-file is
invalid.

Explanation
The data in shape file shape-file is corrupted. This
shape file cannot be imported.

The file name shape-file indicates in which part of the
shape file the error was encountered.

User response
Verify and correct the shape file.

msgcode: -2132

sqlstate: 38S7W

GSE2133N The import operation failed
because the column schema-
name.table-name.column-name is
not nullable.

Explanation
The definition of the column column-name in the
existing table schema-name.table-name indicates that
the column may not contain nulls. The column is not
included in the list of columns to be imported and Db2
would not produce the values for that column by any
other means like default values, a generated column
definition or any triggers.

The import operation cannot be completed
successfully.

User response
Include the column in the list of columns to be
imported, identify the column as id-column, or define
an alternate way for Db2 to generate the values for
that column during the import operation.

msgcode: -2133

sqlstate: 38S7X

GSE2134N The spatial reference system
associated with the data to be
imported is not identical with the
spatial reference system with the
numeric identifier srs-id.

Explanation
The spatial data in the file to be imported uses a
spatial reference system with different offsets and
scale factors than the spatial reference system with

the numeric identifier srs-id. The data cannot be
imported successfully.

User response
Specify a spatial reference system which has the same
definition as the spatial reference system required
by the data in the file to be imported. Refer to the
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog
view for the minimum and maximum coordinate values
and the offsets and scale factors applicable for the
spatial reference system.

msgcode: -2134

sqlstate: 38S7Y

GSE2299N The shape file file-name has an
invalid file size.

Explanation
Shape file file-name has an invalid file size. Shape files
have a file size that is a multiple of 16-bit words.
Therefore, their size is always even. The shape file
might be corrupt. It cannot be used.

User response
Verify and correct the shape file.

msgcode: -2299

sqlstate: 38S9H

GSE3000N Null SRS identifier.

Explanation
A null value was passed to the function or method
instead of a numeric spatial reference system
identifier.

User response
Specify a numeric spatial reference system identifier
for an existing spatial reference system. Refer to the
IBM Spatial Support for Db2 for z/OS catalog view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS for the
defined spatial reference systems.

msgcode: -3000

sqlstate: 38SU0

GSE3001N Invalid SRS identifier srs-id.

Explanation
The spatial reference system identifier srs-id that was
provided to the spatial function or method does not
identify an existing spatial reference system.

282 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

User response
Specify an existing numeric spatial reference
system identifier that is defined in the IBM
Spatial Support for Db2 for z/OS catalog
view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, or
create a spatial reference system that is identified by
srs-id.

msgcode: -3001

sqlstate: 38SU1

GSE3002N Null unit name.

Explanation
A null was specified as a unit of measure. The
specification for a unit of measure must be the unit
itself (for example, “meter”). It cannot be a null.

User response
Either omit the unit of measure when calling
the spatial function or method, or specify an
existing unit of measure. Consult the IBM
Spatial Support for Db2 for z/OS catalog view
DB2GSE.ST_UNITS_OF_MEASURE for supported units.

msgcode: -3002

sqlstate: 38SU2

GSE3003N Unknown unit unit-name.

Explanation
The unit unit-name that was provided to the spatial
function or method does not identify an existing unit of
measure.

User response
Either omit the unit of measure when calling
the spatial function or method, or specify an
existing unit of measure. Consult the IBM
Spatial Support for Db2 for z/OS catalog view
DB2GSE.ST_UNITS_OF_MEASURE for supported units.

msgcode: -3003

sqlstate: 38SU3

GSE3004N Unsupported conversion to unit
unit-name.

Explanation
The conversion to the unit unit-name is not supported.

The functions ST_Area, ST_Buffer, ST_Length, and
ST_Perimeter cannot accept a linear unit of measure

if the given geometry is not in a projected coordinate
system.

User response
Use one of the following methods:

• Omit the unit of measure when calling the spatial
function or method.

• Specify an angular unit of measure.
• Project the geometry into a projected coordinate

system using the ST_Transform function. Consult
the IBM Spatial Support for Db2 for z/OS catalog
view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS
for applicable spatial reference system.

msgcode: -3004

sqlstate: 38SU4

GSE3005N No unit in SRS.

Explanation
The spatial reference system for the geometry does
not have an associated linear or angular unit. The
operation cannot be performed in the requested unit
of measure.

User response
Either represent the geometry in a correct spatial
reference system, which does have an associated
linear or angular unit of measure, or omit the unit
parameter when you request the operation.

msgcode: -3005

sqlstate: 38SU5

GSE3006N Invalid internal type id.

Explanation
The internal data type identifier for this geometry is a
null value and therefore invalid.

This error can occur if the internal representation of
the geometry is corrupted, or if the geometry was
not constructed by one of the supported constructor
functions or methods.

User response
Construct the geometry again by using one of the
supported constructor functions or methods.

msgcode: -3006

sqlstate: 38SU6

GSE3007N Unknown internal type id type-id.

Chapter 17. GSE Messages 283

Explanation
The value of the internal type identifier type-id for the
geometry is not valid.

This error can occur if the internal representation of
the geometry is corrupted, or if the geometry was
not constructed by one of the supported constructor
functions or methods.

User response
Construct the geometry again by using one of the
supported constructor functions or methods.

msgcode: -3007

sqlstate: 38SU7

GSE3008N Internal type id mismatch (type-
id1, type-id2).

Explanation
A mismatch of internal data type identifiers was found.
IBM Spatial Support for Db2 for z/OS expected to
retrieve a geometry whose internal data type identifier
is type-id2, but instead retrieved a geometry whose
internal data type identifier is type-id1.

This error can occur if the internal representation of
the geometry is corrupted, or if the geometry was
not constructed by one of the supported constructor
functions or methods.

User response
Construct the geometry again by using one of the
supported constructor functions or methods.

msgcode: -3008

sqlstate: 38SU8

GSE3009W Invalid part number part-number.

Explanation
The specified part number part-number is not valid. A
null value was returned.

User response
If the geometry is not empty, then specify a valid part
number, which should be greater than 0 (zero) and less
then or equal to the maximum number of parts in the
geometry type.

You can use the ST_NumGeometries function to
determine the number of parts of the geometry type.

If the geometry is empty, the method should not be
applied.

msgcode: +3009

sqlstate: 01HS0

GSE3010W Invalid ring number ring-number.

Explanation
The specified number ring-number for an internal ring
is not valid. A null value was returned.

User response
If the polygon value is not empty, then specify a valid
ring number, which should be greater than or equal to
1 (one) and less than or equal to the maximum number
of interior rings in the polygon.

If the polygon is empty, the function or method
should not be applied. You can use the function
ST_NumInteriorRings to determine the number of
interior rings of the polygon.

msgcode: +3010

sqlstate: 01HS1

GSE3011W Invalid point number point-
number.

Explanation
The specified point number point-number is not valid.
A null value was returned.

User response
If the curve value is not empty, then specify a valid
point number, which should be greater than 0 (zero)
and less than or equal to the maximum number of
points in the curve. If the curve is empty, the function
or method should not be applied.

You can use the ST_NumPoints function to determine
the number of points used to define the curve.

msgcode: +3011

sqlstate: 01HS2

GSE3012N Invalid DE9-IM matrix.

Explanation
The intersection matrix matrix specified for the
ST_Relate function is not valid. The matrix must be
exactly 9 characters long, and each character in the
matrix must be one of the following: 'T', 'F', '0', '1', '2',
or '*'.

User response
Specify a valid intersection matrix.

284 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

msgcode: -3012

sqlstate: 38SU9

GSE3013N Exterior ring is no ring.

Explanation
The linestring that is to to serve as the new exterior
ring for the polygon is not a ring. To be a ring, the
linestring must be both simple and closed. One or both
of these two conditions is not met.

User response
Specify a simple and closed linestring for the new
exterior ring of the polygon.

msgcode: -3013

sqlstate: 38SUA

GSE3014N Interior ring is no ring.

Explanation
The linestring that is to serve as a new interior ring for
the polygon is not a ring. To be a ring, the linestring
must be both simple and closed. At least one of these
two conditions is not met.

User response
Specify a simple and closed linestring for the new
interior ring of the polygon.

msgcode: -3014

sqlstate: 38SUB

GSE3015N Reason code = reason-code.
Transformation to SRS srs-id
failed.

Explanation
The geometry could not be transformed from the
spatial reference system it is represented into the
spatial reference system with the numeric identifier
srs-id. The transform failed with reason code reason-
code.

The reason codes have the following meanings:
-2008

The geometry is invalid.
-2018

Not enough memory is available to successfully
complete the transformation.

-2020
The spatial reference systems are not compatible.
Both spatial reference systems must be based

directly or indirectly on the same geographic
coordinate system.

-2021
One or more points of the resulting geometry
would be outside the maximum possible extent
for the new spatial reference system. The resulting
geometry cannot be represented in the new spatial
reference system.

-2025
The definition of the new spatial reference system
is not valid.

-2026
An internal error occurred during the projection of
the geometry.

User response
Represent the geometry in a spatial reference system
that can be transformed into the spatial reference
system identified by srs-id, or specify a different
spatial reference system identifier to transform the
geometry into.

msgcode: -3015

sqlstate: 38SUC

GSE3016N Unsupported cast type-id1, type-
id2.

Explanation
The attempted cast operation from the data type
with the internal type identifier type-id1 to the data
type with the internal type identifier type-id2 is not
supported. The geometry cannot be processed further.

User response
Specify a supported cast operation. For more
information, refer to the IBM Db2 SQL Reference for
the supported cast functions.

msgcode: -3016

sqlstate: 38SUD

GSE3020N Invalid Z coordinate and measure
combination.

Explanation
The geometries that are to be processed by the
function or method are not represented using the
same dimensions with respect to their Z coordinates
and measures.

All the geometries must either contain Z coordinates
or contain no Z coordinates. All the geometries must
either contain measures or contain no measures.

Chapter 17. GSE Messages 285

User response
Provide geometries to the function or method that are
represented using the same dimensions with respect
to their Z coordinates and measures.

msgcode: -3020

sqlstate: 38SUH

GSE3021N Reason code =reason-code.
Locator failure.

Explanation
An internal error occurred when a spatial function or
method operated on a LOB locator. The reason code
reason-code was returned by a locator function.

User response
Refer to the Db2 Application Development Guide to
determine the meaning of reason-code returned from
the LOB locator operation and correct the problem. If
the problem persists, contact IBM Software Support.

msgcode: -3021

sqlstate: 38SUI

GSE3022N Representation too long (append-
length vs. written-length bytes).

Explanation
The representation of the geometry in Geographic
Markup Language (GML), well-known text (WKT), well-
known binary (WKB), or the shape representation
would be too long. From append-length bytes, only
written-length bytes could be appended to the
encoding. A representation of the geometry cannot be
created.

User response
Simplify the geometry by omitting points that
are not essential for the geometry. You can
use the ST_Generalize function for this procedure.
Alternatively, break down the geometry into several
smaller geometries.

msgcode: -3022

sqlstate: 38SUJ

GSE3023N Representation too short (length
bytes).

Explanation
The representation of the geometry in well-
known binary (WKB) representation or the shape

representation is only length bytes long. It
needs to have at least 4 bytes for the shape
representation, exactly 5 bytes for the well-known
binary representation for empty geometries, and at
least 9 bytes for the well-known binary representation
for non-empty geometries. The binary representation
must also be long enough to contain all of the
geometry points.

User response
Provide a valid well-known binary representation or
shape representation to the function or method.

msgcode: -3023

sqlstate: 38SUK

GSE3024N Internal geometry too short.

Explanation
The internal representation of the geometry is too
short. It could not be processed further.

This error can occur if the internal representation of
the geometry is corrupted, or if the geometry was
not constructed by one of the supported constructor
functions or methods.

User response
Construct the geometry again using one of the
supported constructor functions or methods.

msgcode: -3024

sqlstate: 38SUL

GSE3025N Geometry inconsistent.

Explanation
The geometry value is inconsistent and cannot be
processed any further.

User response
Recreate the geometry from a valid binary or text
representation.

msgcode: -3025

sqlstate: 38SUM

GSE3026N Inconsistent no. of points
(indicated-number vs. data-
number).

Explanation
An internal parameter of the geometry indicates that
the geometry data contains indicated-number points.

286 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

But the actual geometry data contains data-number
points. Because of this inconsistency, the geometry
will not be used further in the processing.

This error can occur if the internal representation of
the geometry is corrupted, or if the geometry was
not constructed by one of the supported constructor
functions or methods.

User response
Recreate the geometry using the functions or methods
supported by IBM Spatial Support for Db2 for z/OS.

msgcode: -3026

sqlstate: 38SUN

GSE3027N Point is empty.

Explanation
It is invalid to specify an X coordinate, Y coordinate, Z
coordinate, or measure for an empty point.

If the point is constructed by the constructor function
ST_Point, the point's X and Y coordinates must both be
null. Furthermore, no Z coordinate or measure should
be specified unless it is a null value.

If the mutators ST_X, ST_Y, ST_Z, or ST_M are used to
modify an empty point, the point's X and Y coordinates
must both be null. No Z coordinate or measure should
be specified unless it is null.

User response
Use mutators ST_X, ST_Y, ST_Z, or ST_M to modify
points that are not empty, or construct the point by
specifying both X and Y coordinates with values that
are not null.

msgcode: -3027

sqlstate: 38SUO

GSE3028N Inconsistent coordinates.

Explanation
If a new point is constructed, both the X and Y
coordinates must be specified. Both coordinates must
be either null or not null.

If both coordinate values are null, the resulting point
will be empty. In that case, no Z coordinate or measure
should be specified unless it is null.

User response
Specify null values for both the X and Y coordinates, or
specify values that are not null for both coordinates.

msgcode: -3028

sqlstate: 38SUP

GSE3029N Invalid byte order byte-order.

Explanation
The byte order in the binary representation of the
geometry must be either 0 (zero) or 1 (one), but it is
byte-order.

In the well-known binary representation, a byte order
of 0 (zero) indicates big endian format, and a byte
order of 1 (one) indicates little endian format.

User response
Correct the byte order in the binary representation so
that it is either 0 (zero) or 1 (one).

msgcode: -3029

sqlstate: 38SUQ

GSE3030N Invalid number of points num-
points in geometry.

Explanation
The geometry has an invalid number of points num-
points. This number must be greater than or equal to 0
(zero).

If the geometry is not empty, then the following
conditions must be met:
point

The geometry must have exactly one point.
linestring

The geometry must have 2 or more points defining
it.

polygon
The geometry must have 3 or more points defining
it.

User response
Construct the geometry by using the functions or
methods supported by IBM Spatial Support for Db2 for
z/OS.

msgcode: -3030

sqlstate: 38SUR

GSE3031N Invalid extent (min-coord vs. max-
coord) in geometry.

Chapter 17. GSE Messages 287

Explanation
The extent of the geometry in one of the dimensions
is invalid. The minimum coordinate min-coord must
be less than or equal to the maximum coordinate max-
coord for all dimensions of the geometry.

User response
Construct the geometry by using the functions or
methods supported by IBM Spatial Support for Db2 for
z/OS.

msgcode: -3031

sqlstate: 38SUS

GSE3032N Aggregation failure.

Explanation
A mismatch between internal identifiers was
encountered for the computation of a spatial
aggregate.

Aggregate functions are not supported if used in any of
the following situations:

• In the partitioned environment.
• A GROUP BY clause is used in the query that

contains the spatial aggregate.
• Any function other than the Db2 aggregate function

MAX is used.
• The aggregate function is not used in the correct

context.

User response
Make sure that you use the aggregate function in a way
that is supported by IBM Spatial Support for Db2 for
z/OS.

msgcode: -3032

sqlstate: 38SUT

GSE3033N Invalid binary data (type ids type-
id1, type-id2).

Explanation
A binary representation that is passed as input to
this spatial function or method has to represent a
geometry whose data type identifier is type-id2. But
the representation that was actually passed to the
function or method represents a geometry whose
data type identifier is type-id1. No geometry could be
constructed.

User response
Either call the correct function or method which
constructs geometries of type type-id2 or correct the
binary representation to represent a geometry of type-
id1.

msgcode: -3033

sqlstate: 38SUU

GSE3034N Invalid text data (type ids type-
id1, type-id2).

Explanation
A text representation that is passed as input to
this spatial function or method has to represent
a geometry whose data type identifier is type-id2.
But the representation that was actually passed
to the function represents a geometry whose data
type identifier is type-id1. No geometry could be
constructed.

User response
Either call the correct function which constructs
geometries of type type-id1 or correct the text
representation to represent a geometry of type-id2.

msgcode: -3034

sqlstate: 38SUV

GSE3035W Curve not changed.

Explanation
The curve was not changed because the specified
point to be appended to the curve was empty.

User response
Append a point that is not empty to the curve.

msgcode: +3035

sqlstate: 01HS3

GSE3036W Geometry not accurate.

Explanation
The resulting geometry could not be represented
accurately in the spatial reference system. One of the
scale factors is too small and does not allow for a high
enough precision to represent each point that defines
the resulting geometry.

For example, consider a linestring with a well-known
text representation of 'linestring m (10 10 8, 10 11
12)' represented in a spatial reference system that
includes a scale factor of 1 (one) for X coordinates

288 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

and a scale factor of 1 (one) also for Y coordinates.
If the function ST_MeasureBetween is applied to
that linestring, and the upper and lower bounds
for the measures are 9 and 10, respectively, the
resulting linestring, represented in its well-known
text representation, would have to be 'linestring m
(10 10.25 9, 10 10.50 10)'. However, the scale
factor of 1 (one) for the Y coordinates prevents the
representation of fractions. The coordinates 10.25 and
10.50 cannot be represented without rounding that
would produce an incorrect result. Such coordinates
will be removed from the geometry.

User response
Represent the geometry in a spatial reference system
that uses larger scale factors. Alternatively, choose
different parameters that influence the resulting
geometry.

msgcode: +3036

sqlstate: 01HS4

GSE3037N Invalid GML, expecting char
instead of string at position
position.

Explanation
A character char was expected in the Geography
Markup Language of the geometry, but the text
string was found instead at position position. The
GML representation is not valid. IBM Spatial Support
for Db2 for z/OS cannot construct the geometry
successfully.

User response
Correct the GML representation and construct the
geometry again.

msgcode: -3037

sqlstate: 38SUW

GSE3038N Invalid GML, expecting expected-
tag instead of given-tag at position
position.

Explanation
The tag given-tag was found in the Geography
Markup Language of the geometry at position position,
but a tag expected-tag was expected. The GML
representation is not valid. IBM Spatial Support
for Db2 for z/OS cannot construct the geometry
successfully.

User response
Correct the GML representation and construct the
geometry again.

msgcode: -3038

sqlstate: 38SUX

GSE3039N Invalid GML, expecting number
instead of text at position position.

Explanation
Unexpected text text was found in the Geography
Markup Language of the geometry at position position.
A number representing a coordinate was expected
instead. The GML representation is not valid. IBM
Spatial Support for Db2 for z/OS cannot construct the
geometry successfully.

User response
Correct the GML representation and construct the
geometry again.

msgcode: -3039

sqlstate: 38SUY

GSE3040N Invalid GML type type.

Explanation
An unknown type type was specified in the Geography
Markup Language of the geometry. The GML
supports points, linestrings, polygons, multipoints,
multilinestrings, and multipolygons. IBM Spatial
Support for Db2 for z/OS cannot construct the
geometry successfully.

User response
Correct the GML representation and construct the
geometry again.

msgcode: -3040

sqlstate: 38SUZ

GSE3041N GML point has been incorrectly
specified.

Explanation
The problem occurred due to one of the following
reasons:

• A point, represented using the Geography Markup
Language, can only have one set of coordinates. The
given point had either no set of coordinates or more
than one set.

Chapter 17. GSE Messages 289

• The set of coordinates is not enclosed by
corresponding <gml:coord> or <gml:coordinates>
tags.

The GML representation is not valid. IBM Spatial
Support for Db2 for z/OS cannot construct the
geometry successfully.

User response
Correct the GML representation and construct the
geometry again.

msgcode: -3041

sqlstate: 38SV0

GSE3042N Could not read number-bytes bytes
from locator at offset offset. Total
length of data is length.

Explanation
An attempt was made to read number-bytes bytes
from the locator, starting at the offset offset. This
exceeds the total length of the data length that
is referenced by the locator. The data might be
truncated.

For binary representations of a geometry, the
binary representation might indicate an invalid binary
encoding. The encoded geometry has fewer points
than the header indicates.

User response
Verify and correct the representation of the geometry.
Make sure that the binary or textual representation
does not get truncated before it is passed to the IBM
Spatial Support for Db2 for z/OS function.

msgcode: -3042

sqlstate: 38SV1

GSE3043N Invalid number of parts number-
parts.

Explanation
The number of parts number-parts indicated in the
binary representation of the geometry is invalid. The
number of parts must be larger than 0 (zero) and
match the actual number of parts supplied in the
encoding.

User response
Specify the correct number of parts or supply all parts
for the geometry.

msgcode: -3043

sqlstate: 38SV2

GSE3044N Invalid number of rings number-
rings.

Explanation
The number of rings number-rings indicated in the
binary representation of the polygon or multipolygon
is invalid. The number of rings must be larger than 0
(zero) and match the actual number of parts supplied
in the encoding.

User response
Specify the correct number of rings or supply all rings
for the geometry.

msgcode: -3044

sqlstate: 38SV3

GSE3045N Invalid part offset part-offset in
shape.

Explanation
An invalid offset part-offset for a part in the shape
representation of the geometry was encountered. A
part offset must be larger than or equal to 0 (zero),
and each part offset must be larger than the preceding
one. The shape representation is not valid. IBM
Spatial Support for Db2 for z/OS cannot construct the
geometry successfully.

User response
Correct the shape representation and construct the
geometry again.

msgcode: -3045

sqlstate: 38SV4

GSE3046N Invalid type ID type-id in shape.

Explanation
The shape representation of the geometry contains
an invalid type identifier type-id. The shape data is
possibly corrupted. IBM Spatial Support for Db2 for
z/OS cannot construct the geometry successfully.

User response
Verify and correct the shape representation of the
geometry.

msgcode: -3046

sqlstate: 38SV5

290 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

GSE3047N Invalid length shape-length of
shape encoding for type type,
expecting only expected-length
bytes.

Explanation
The shape encoding contains shape-length bytes,
which is too long. To encode a geometry of the
specified type type, only expected-length bytes are
required. The shape data is possibly corrupted. IBM
Spatial Support for Db2 for z/OS cannot construct the
geometry successfully.

User response
Verify and correct the shape representation of the
geometry.

msgcode: -3047

sqlstate: 38SV6

GSE3048N Invalid WKT format, expecting
char instead of string.

Explanation
A character char was expected in the well-known text
representation of the geometry, but the text string was
found instead. The well-known text representation is
not valid. IBM Spatial Support for Db2 for z/OS cannot
construct the geometry successfully.

User response
Correct the well-known text representation and
construct the geometry again.

msgcode: -3048

sqlstate: 38SV7

GSE3049N Invalid WKT format, expecting a
number instead of text.

Explanation
An unexpected text text was found in the well-
known text representation of the geometry. A number
representing a coordinate was expected instead. The
well-known text representation is not valid. IBM
Spatial Support for Db2 for z/OS cannot construct the
geometry successfully.

User response
Correct the well-known text representation and
construct the geometry again.

msgcode: -3049

sqlstate: 38SV8

GSE3050N Unexpected parenthesis in WKT
format at text.

Explanation
An unexpected opening or closing parenthesis was
found in the well-known text representation of the
geometry at text. The well-known text representation
is not valid. IBM Spatial Support for Db2 for z/OS
cannot construct the geometry successfully.

User response
Correct the well-known text representation and
construct the geometry again.

msgcode: -3050

sqlstate: 38SV9

GSE3051N Parenthesis mismatch in WKT
format, expecting parenthesis.

Explanation
The end of the well-known text representation was
reached unexpectedly. A parenthesis parenthesis was
expected. The well-known text representation is not
valid. IBM Spatial Support for Db2 for z/OS cannot
construct the geometry successfully.

User response
Correct the well-known text representation and
construct the geometry again.

msgcode: -3051

sqlstate: 38SVA

GSE3052N Unknown type type in WKT.

Explanation
The well-known text representation of the geometry
contains an unknown type name of type. The well-
known text representation is not valid. IBM Spatial
Support for Db2 for z/OS cannot construct the
geometry successfully.

User response
Correct the well-known text representation and
construct the geometry again.

msgcode: -3052

sqlstate: 38SVB

GSE3053N Invalid type id type-id in WKB.

Chapter 17. GSE Messages 291

Explanation
The well-known binary representation of the geometry
contains an invalid type identifier type-id. The data is
possibly corrupted. IBM Spatial Support for Db2 for
z/OS cannot construct the geometry successfully.

The type identifiers of separate parts in a geometry
type (multipoint, multilinestring, or multipolygon) must
have the same indicators for the Z and M coordinates
as the geometry type itself.

User response
Verify and correct the well-known binary
representation of the geometry.

msgcode: -3053

sqlstate: 38SVC

GSE3300N Invalid grid size grid-size-number.

Explanation
The grid size identified by its position grid-size-number
is invalid. One of the following invalid specifications
was made when the grid index was created with the
CREATE INDEX statement:

• A number less than 0 (zero) was specified as the grid
size for the first, second, or third grid level.

• 0 (zero) was specified as the grid size for the first
grid level.

• The grid size specified for the second grid level is
less than the grid size of the first grid level but it is
not 0 (zero).

• The grid size specified for the third grid level is less
than the grid size of the second grid level but it is not
0 (zero).

• The grid size specified for the third grid level is
greater than 0 (zero) but the grid size specified for
the second grid level is 0 (zero).

The function ST_GetIndexParms can be used to
retrieve the values used for the parameters specified
when the index was created.

User response
Drop the grid index and create a new grid index using
valid grid sizes only.

msgcode: -3300

sqlstate: 38SI0

GSE3301N Invalid z-order parameter
parameter-number.

Explanation
The parameter identified by its position parameter-
number for a Z-Order index contains an invalid value.
One of the following invalid specifications was made in
the CREATE INDEX statement that was used to create
the index to which the geometry is to be added:

• A null value was specified for the parameter.
• A negative number was specified for a scale factor

(this rule applies to parameter numbers 2 and 4
only).

The function ST_GetIndexParms can be used to
retrieve the values used for the parameters specified
when the index was created.

User response
Drop the spatial z-order index and create a new index
using only valid parameters.

msgcode: -3301

sqlstate: 38SI1

GSE3302N No point to be indexed.

Explanation
The geometry to be indexed using a Z-Order index is
not a point. The Z-Order index supports only points,
and the index entry cannot be generated.

User response
Do not insert a geometry that is not a point into a
column that has a Z-Order index defined on it. Either
drop the index or do not insert the geometry.

msgcode: -3302

sqlstate: 38SI2

GSE3303N Invalid quad tree parameter
parameter-number.

Explanation
An invalid parameter was specified when the quad tree
index was created. The parameter is identified by its
position grid-size-number.

One of the following invalid specifications was made:

• A null value was specified for the parameter.
• A negative number was specified for a scale factor

(this rule applies to parameter numbers 3 and 5
only).

• A value less than 1 (one) was specified for the first
parameter.

292 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

The function ST_GetIndexParms can be used to
retrieve the values used for the parameters specified
when the index was created.

User response
Drop the spatial quad tree index and create a new
index using only valid parameters.

msgcode: -3303

sqlstate: 38SI3

GSE3400C Unknown error error-code.

Explanation
An internal error with code error-code was
encountered when a geometry was processed.

User response
Note the error and contact IBM Software Support.

msgcode: -3400

sqlstate: 38SS0

GSE3402C Insufficient memory.

Explanation
Not enough memory was available for the spatial
function or method that you invoked.

User response
Make more memory available to the Db2 process that
executes the function or method.

msgcode: -3402

sqlstate: 38SS2

GSE3403N Invalid geometry type.

Explanation
An invalid type of geometry was passed to the function
or method that you invoked.

User response
Specify a valid geometry. For more information, refer
to the IBM Spatial Support for Db2 for z/OS User's
Guide and Reference.

msgcode: -3403

sqlstate: 38SS3

GSE3405N Too many parts specified.

Explanation
The number of parts indicated in the binary or text
representation of the geometry is greater than the
actual number of parts supplied. Either the number
of parts indicated is too high or not all the parts were
supplied.

User response
Specify the correct number of parts or supply all parts
for the geometry.

msgcode: -3405

sqlstate: 38SS5

GSE3406N Incorrect geometry type.

Explanation
The wrong type of geometry was passed to the
function or method that you invoked. For example,
a linestring might have been passed to a function or
method that takes only polygons as input.

User response
Either pass to the function or method a type of
geometry that it can process, or use a function or
method that accepts the type of geometry that you
want to pass.

msgcode: -3406

sqlstate: 38SS6

GSE3407N Text is too long.

Explanation
The geometry contains too much detail to be
converted to its well-known text representation. The
well-known text representation exceeds the maximum
allowable length (2 gigabytes).

User response
Simplify the geometry - for example, by using the
ST_Generalize function - or convert the geometry to
its well-known binary representation.

msgcode: -3407

sqlstate: 38SS7

GSE3408N Invalid parameter value.

Explanation
An invalid parameter was encountered.

Chapter 17. GSE Messages 293

User response
Refer to the IBM Spatial Support for Db2 for z/OS
User's Guide and Reference for the function's correct
syntax and retry the operation. If the problem persists,
contact IBM Software Support.

msgcode: -3408

sqlstate: 38SS8

GSE3409N Invalid geometry produced.

Explanation
The parameters provided for the function or method
have produced an invalid geometry; for example, an
invalid shape representation. An invalid geometry is
one that violates a geometry property.

User response
Construct the geometry again from a valid
representation.

msgcode: -3409

sqlstate: 38SS9

GSE3410N Incompatible geometries.

Explanation
The function or method expected two geometries of
a certain type and did not receive them. For example,
the ST_AddPoint function expects two geometries, one
a representation and the other a point.

User response
Specify geometries that the function or method
accepts as valid input. To determine what types of
geometries are valid for this function or method, refer
to the IBM Spatial Support for Db2 for z/OS User's
Guide and Reference.

msgcode: -3410

sqlstate: 38SSA

GSE3411N Invalid geometry.

Explanation
The function or method cannot process the geometry
passed to it because one or more properties of the
geometry violate the geometry's integrity.

User response
Use the ST_IsValid function to validate the geometry.
Construct the geometry again from a correct
representation if it is not valid.

msgcode: -3411

sqlstate: 38SSB

GSE3412N Too many points.

Explanation
The construction of a geometry has exceeded the 1-
megabyte storage limit; the geometry has too many
points.

User response
Construct a geometry that contains fewer points. Or,
if possible, remove some points. For performance and
storage considerations, include only those points that
are needed to render a geometry.

msgcode: -3412

sqlstate: 38SSC

GSE3413N Geometry too small.

Explanation
The geometry returned by the ST_Difference,
ST_Intersection, ST_SymDifference, or ST_Union
function is too small to be represented accurately in
the current spatial reference system.

For example, this can happen if the internal
computation constructs a very thin polygon, but the
scale factor of the spatial reference system is so low
that the geometry would collapse to a linestring if
it were to be represented in this spatial reference
system. It would lose its property as a polygon.

User response
Use a spatial reference system for the calculation
which allows for a higher resolution. The ST_Transform
function can be used to convert a geometry from one
spatial reference system into another.

msgcode: -3413

sqlstate: 38SSD

GSE3414N Buffer out of bounds.

Explanation
The ST_Buffer function has created a buffer around
the provided geometry that is outside the range of

294 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

the coordinates to which the spatial reference system
applies.

Refer to the IBM Spatial Support
for Db2 for z/OS catalog view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS to
determine the minimum and maximum absolute
values for each of the dimensions. These values must
not be exceeded by the calculated buffer.

User response
Either reduce the distance to be used for the buffer
calculation, or change the spatial reference system
in which the calculation is done. The ST_Transform
function can be used to convert geometries from one
spatial reference system into another.

msgcode: -3414

sqlstate: 38SSE

GSE3415N Invalid scale factor.

Explanation
A scale factor for any of the four dimensions (X, Y, Z,
and M) must be greater than or equal to 1 (one).

User response
Use a correctly defined spatial reference system to
represent the geometry.

msgcode: -3415

sqlstate: 38SSF

GSE3416N Coordinate out of bounds.

Explanation
A coordinate cannot be represented in the spatial
reference system because, in at least one dimension, it
exceeds the possible minimum or maximum absolute
value within the system's range of values.

Refer to the IBM Spatial Support
for Db2 for z/OS catalog view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS to
determine the minimum and maximum absolute
values for each of the dimensions.

User response
Determine whether the coordinate is correct.
If it is, determine whether it fits within
the extent of the spatial reference system
that you are using. For information about
this spatial reference system, consult the
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog
view.

msgcode: -3416

sqlstate: 38SSG

GSE3417N Invalid coordsys definition.

Explanation
There are one or more errors in the text representation
of the definition of the coordinate system on which
the geometry's spatial reference system is based.
The representation cannot be converted into a valid
projection.

User response
Verify the coordinate system definition of the
spatial reference system. Alternatively, construct
the geometry in a spatial reference system that
is associated with a valid coordinate system. The
ST_EqualCoordsys function can be used to verify the
coordinate system definition by comparing it with
itself.

msgcode: -3417

sqlstate: 38SSH

GSE3418N Projection error.

Explanation
An error occurred during an attempt to project a
geometry to another spatial reference system.

User response
Make sure that the geometry is within the legal domain
of the projection.

msgcode: -3418

sqlstate: 38SSI

GSE3419N Polygon rings overlap.

Explanation
The rings of a polygon overlap. By definition, the inner
and outer rings of a polygon must not overlap. They
can intersect only at a tangent, which means the rings
can only touch but not cross each other.

User response
Specify the coordinates for the polygon that will not
produce overlapping rings. Note that the scale factors
of the spatial reference system for the geometry have
an influence on the precision.

msgcode: -3419

sqlstate: 38SSJ

Chapter 17. GSE Messages 295

GSE3420N Too few points.

Explanation
The error is a result of one of the following:

• Linestrings must consist of at least two points, and
polygons must consist of at least four points.

• The geometry cannot be constructed from the points
that you have specified.

Note that if the geometry to be constructed is empty,
these rules do not apply.

User response
Construct the geometry again from a valid set of
points.

msgcode: -3420

sqlstate: 38SSK

GSE3421N Polygon is not closed.

Explanation
The inner and outer rings that define the polygon
must be closed. A ring is closed if the start and end
points are identical in the X and Y dimensions. If the
polygon has Z coordinates, then the start and end
points must also be identical to the Z coordinates.
Note that this rule does not apply to measures, which
can be different for the start and end points.

User response
Specify inner and outer rings for the polygon that have
the same points for the start and end points in the X
and Y dimension. If the polygon has Z coordinates, the
start and end points of the Z coordinate points also
have to be identical. If the polygon has measures, the
start and end points can be different.

msgcode: -3421

sqlstate: 38SSL

GSE3422N Invalid exterior ring.

Explanation
The exterior ring of the polygon is not valid.

The exterior ring of a polygon must enclose all interior
rings of the polygon. All interior rings have to be
completely inside the area that is defined by the outer
ring and must not cross the exterior ring.

User response
Specify a geometry that consists of a valid set of
interior and exterior rings, where the interior rings lie
fully within the area that is enclosed by the exterior
ring to represent it.

If the geometry has multiple polygons, use a
multipolygon.

msgcode: -3422

sqlstate: 38SSM

GSE3423N Polygon has no area.

Explanation
The specified polygon lacks an interior that covers
an area that is not the empty set in the X and Y
dimensions.

A geometry is a polygon only if its coordinates span
two dimensions in the 2-dimensional space defined by
the X and Y coordinates.

User response
Specify a polygon that encloses an area that is not
empty. If the polygon is empty, construct an empty
polygon.

msgcode: -3423

sqlstate: 38SSN

GSE3424N Exterior rings overlap.

Explanation
The exterior rings of distinct polygons in a
multipolygon overlap. Distinct polygons in a
multipolygon must not overlap, and the boundaries
must touch only at a finite number of points. That
means the polygons must not share line segments.

The scale factors of the spatial reference system that
is used to represent the geometry influences the
precision that applies to the coordinates. Rounding
operations performed when the geometry is converted
to the representation in the spatial reference system
might cause a loss in precision and, subsequently, this
error.

User response
Specify coordinates for the polygon that will not
produce overlapping rings.

Note that the scale factors of the spatial reference
system have an influence on precision.

296 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Refer to the IBM Spatial Support
for Db2 for z/OS catalog view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS for the
scale factor used for the spatial reference system in
which the geometry will be represented.

msgcode: -3424

sqlstate: 38SSO

GSE3425N Polygon intersects itself.

Explanation
A ring of a polygon cannot intersect itself. The start
and end points on each ring of the polygon must
be reached twice when traversing the ring. All other
points must only be reached once. This holds true
also for the line segments that define the rings of the
polygon.

The scale factors of the spatial reference system that
is used to represent the geometry influences the
precision that applies to the coordinates. Rounding
operations performed when the geometry is converted
to the representation in the spatial reference system
might cause a loss in precision and, subsequently, this
error.

User response
Construct a valid polygon in which the rings do not
intersect themselves.

Refer to the IBM Spatial Support
for Db2 for z/OS catalog view
DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS for the
scale factor used for the spatial reference system in
which the geometry will be represented.

msgcode: -3425

sqlstate: 38SSP

GSE3426N Invalid number of parts.

Explanation
The number of parts indicated in the binary or text
representation of the geometry is not equal to the
actual number of parts supplied. Either the number
is too low or too many parts were supplied to the
function or method.

User response
Specify the correct number of parts or supply all parts
for the geometry.

msgcode: -3426

sqlstate: 38SSQ

GSE3427N Incompatible SRSs.

Explanation
The two spatial reference systems are not compatible.
They cannot be transformed into or compared with
one another. The operation cannot be completed
successfully.

User response
Specify two compatible spatial reference systems.

msgcode: -3427

sqlstate: 38SSR

GSE3428N BLOB too small.

Explanation
The number of bytes in the specified binary
representation of the geometry is too small.

User response
Specify a valid binary representation of the geometry.

msgcode: -3428

sqlstate: 38SSS

GSE3429N Invalid geometry type.

Explanation
An invalid internal geometry type was encountered.
The geometry is not valid and will not be processed
any further.

User response
Construct the geometry again from a valid binary or
text representation.

msgcode: -3429

sqlstate: 38SST

GSE3430N Invalid byte order.

Explanation
The byte order in the binary representation of the
geometry has an invalid value. The byte order must
be 0 (zero) or 1 (one).

In the well-known binary representation, a byte order
of 0 (zero) indicates big endianess, and a byte order of
1 (one) indicates little endianess.

Chapter 17. GSE Messages 297

User response
Specify a valid byte order in the binary representation
for the geometry.

msgcode: -3430

sqlstate: 38SSU

GSE3431N Empty geometry.

Explanation
An empty geometry was passed to the ST_AsBinary
function, even though it is not allowed as input.

User response
Edit the SQL statement that you submitted so that
only non-empty geometries will be passed to the
ST_AsBinary function. For example, you can use the
ST_IsEmpty function in the WHERE clause to exclude
empty geometries.

msgcode: -3431

sqlstate: 38SSV

GSE3432N Invalid end point.

Explanation
The specified point is intended to be appended to the
curve, but it is not valid.

User response
Specify a valid point to be appended.

msgcode: -3432

sqlstate: 38SSW

GSE3433N Point not found.

Explanation
The specified point is intended to be changed or
removed, but it does not exist in the curve.

User response
Specify a point that does exist in the curve.

msgcode: -3433

sqlstate: 38SSX

GSE3600N No index specified.

Explanation
No valid index was specified. The index schema
parameter, the index name parameter, or both, are
null. The index parameter values cannot be derived.

User response
Specify a valid spatial index to retrieve the parameter
information.

msgcode: -3600

sqlstate: 38SQ0

GSE3601N Invalid spatial index name
schema-name.index-name.

Explanation
The specified name of the index for which you want
parameter information retrieved does not exist or
does not identify a spatial index. This name is schema-
name.index-name.

User response
Specify an existing spatial index to retrieve the
parameter information.

msgcode: -3601

sqlstate: 38SQ1

GSE3602N Invalid parameter number number
specified.

Explanation
The parameter number number is not valid for the
specified spatial index.

The following limits apply for the different types of
spatial indexes:
grid index

Parameter numbers between 1 (one) and 3.
z-order index

Parameter numbers between 1 (one) and 4.
quad-tree index

Parameter numbers between 1 (one) and 5.

User response
Specify a valid parameter number for the spatial index.
Consult the Db2 system catalog for the type of the
spatial index.

msgcode: -3602

sqlstate: 38SQ2

GSE3603N Invalid column name.

298 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Explanation
The specified column does not exist in the table. At
least one of the following - table schema, table name,
or column name - is a null value. The index parameter
for an index on a column cannot be derived.

User response
Specify an existing column which has a spatial index
defined on it.

msgcode: -3603

sqlstate: 38SQ3

GSE4000N Required parameter parameter-
name is missing.

Explanation
The required parameter was not found.

User response
Specify the required parameter and try to execute the
command again.

msgcode: -4000

sqlstate: 38SB0

GSE4001N An error occurred while IBM
Spatial Support for DB2 for z/OS
was allocating an environment
handle.

Explanation
An environment handle could not be allocated using
the Call Level Interface (CLI). The operation cannot be
completed successfully.

User response
Verify the CLI configuration. If the source of the
problem cannot be found and corrected, contact IBM
Software Support.

msgcode: -4001

sqlstate: 38SB1

GSE4002N An error occurred while IBM
Spatial Support for DB2 for
z/OS was allocating a connection
handle. CLI error cli-error and
native error code = native-error-
code.

Explanation
An unexpected error cli-error with native error code =
native-error-code occurred while IBM Spatial Support
for Db2 for z/OS was allocating a connection handle.

User response
Look up the detailed error message cli-error. Correct
the error and execute the command again. If the
problem persists, contact IBM Software Support.

msgcode: -4002

sqlstate: 38SB2

GSE4003N An error occurred while IBM
Spatial Support for DB2 for z/OS
was connecting to the database.
CLI error cli-error and native error
code = native-error-code.

Explanation
An unexpected error cli-error with native error code =
native-error-code occurred while IBM Spatial Support
for Db2 for z/OS was connecting to the database.

User response
Look up the detailed error message cli-error. Correct
the error and execute the command again. If the
problem persists, contact IBM Software Support.

msgcode: -4003

sqlstate: 38SB3

GSE4004N An error occurred while IBM
Spatial Support for DB2 for z/OS
was allocating a statement handle.
CLI error cli-error and native error
code = native-error-code.

Explanation
An unexpected error cli-error with native error code =
native-error-code occurred while IBM Spatial Support
for Db2 for z/OS was allocating a statement handle.

User response
Look up the detailed error message cli-error. Correct
the error and execute the command again. If the
problem persists, contact IBM Software Support.

msgcode: -4004

sqlstate: 38SB4

GSE4005N An error occurred while an SQL
statement was being prepared.

Chapter 17. GSE Messages 299

CLI error cli-error and native error
code = native-error-code.

Explanation
An unexpected error cli-error with native error code =
native-error-code occurred while IBM Spatial Support
for Db2 for z/OS was preparing an SQL statement.

User response
Look up the detailed error message cli-error. Correct
the error and execute the command again. If the
problem persists, contact IBM Software Support.

msgcode: -4005

sqlstate: 38SB5

GSE4006N An error occurred while IBM
Spatial Support for DB2 for z/OS
was binding parameters to an SQL
statement. CLI error cli-error and
native error code = native-error-
code.

Explanation
An unexpected error cli-error with native error code =
native-error-code occurred while IBM Spatial Support
for Db2 for z/OS was binding parameters to an SQL
statement.

User response
Look up the detailed error message cli-error. Correct
the error and execute the command again. If the
problem persists, contact IBM Software Support.

msgcode: -4006

sqlstate: 38SB6

GSE4007N An error occurred while IBM
Spatial Support for DB2 for z/OS
was executing an SQL statement.
CLI error cli-error and native error
code = native-error-code.

Explanation
An unexpected error cli-error with native error code =
native-error-code occurred while IBM Spatial Support
for Db2 for z/OS was executing an SQL statement.

User response
Look up the detailed error message cli-error. Correct
the error and execute the command again. If the
problem persists, contact IBM Software Support.

msgcode: -4007

sqlstate: 38SB7

GSE4008N An error occurred while IBM
Spatial Support for DB2 for z/OS
was ending a transaction. CLI
error cli-error and native error
code = native-error-code.

Explanation
An unexpected error cli-error with native error code =
native-error-code occurred while IBM Spatial Support
for Db2 for z/OS was ending a transaction.

User response
Look up the detailed error message cli-error. Correct
the error and execute the command again. If the
problem persists, contact IBM Software Support.

msgcode: -4008

sqlstate: 38SB8

GSE4009N The option, option, is invalid.

Explanation
The specified option, option, is invalid.

User response
Specify a valid option and repeat the command.

msgcode: -4009

sqlstate: 38SB9

GSE9990C An internal error occurred: error-
text.

Explanation
IBM Spatial Support for Db2 for z/OS encountered an
unexpected internal error with the text error-text.

User response
Read the given error-text. If the problem cannot be
resolved, contact IBM Software Support.

msgcode: -9990

sqlstate: 38SZY

GSE9999C Internal message failure.

Explanation
An internal failure occurred while IBM Spatial Support
for Db2 for z/OS was retrieving an error message.

300 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

User response
Contact IBM Software Support.

msgcode: -9999

sqlstate: 38SZZ

Chapter 17. GSE Messages 301

302 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Information resources for Db2 for z/OS and related
products

You can find the online product documentation for Db2 12 for z/OS and related products in IBM
Documentation.

For all online product documentation for Db2 12 for z/OS, see IBM Documentation (https://
www.ibm.com/docs/en/db2-for-zos/12).

For other PDF manuals, see PDF format manuals for Db2 12 for z/OS (https://www.ibm.com/docs/en/
db2-for-zos/12?topic=zos-pdf-format-manuals-db2-12).

© Copyright IBM Corp. 2007, 2023 303

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/home/src/tpc/db2z_12_prodhome.html
https://www.ibm.com/docs/en/db2-for-zos/12
https://www.ibm.com/docs/en/db2-for-zos/12
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/db2-for-zos/12?topic=zos-pdf-format-manuals-db2-12
https://www.ibm.com/docs/en/db2-for-zos/12?topic=zos-pdf-format-manuals-db2-12

304 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785 US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

© Copyright IBM Corp. 2007, 2023 305

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as shown below:

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. (enter the year or years).

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered marks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at: http://www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies”
and the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

306 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy

Glossary

The glossary is available in IBM Documentation

For definitions of Db2 for z/OS terms, see Db2 glossary (Db2 Glossary).

© Copyright IBM Corp. 2007, 2023 307

https://www.ibm.com/docs/en/SSEPEK_12.0.0/glossary/src/gloss/db2z_gloss.html

308 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

Index

A
accessibility

keyboard x
shortcut keys x

alter_cs command 234
alter_srs command 235
angular units

coordinate systems 223
supported 226

azimuthal projections 17

C
catalog views

DB2GSE.GEOMETRY_COLUMNS 77
DB2GSE.SPATIAL_REF_SYS 77
ST_COORDINATE_ SYSTEMS 78
ST_GEOMETRY_ COLUMNS 79
ST_SIZINGS 80
ST_SPATIAL_ REFERENCE_SYSTEMS 81
ST_UNITS_OF_ MEASURE 84

commands
alter_cs 234
alter_srs 235
create_cs 238
create_idx 239
create_srs 241
create_srs_2 243
disable_spatial 246
drop_cs 247
drop_idx 247
drop_srs 248
enable_spatial 248
for DSN5SCLP 233
function_level 249
import_shape 250
register_spatial_column 256
unregister_spatial_column 257

comparison functions
container relationships 92
identical geometries 100
intersections between geometries 95
overview 90, 91
values 90

conformal projections 17
constructor functions

coding
examples 87

ESRI shape representation 89
Geography Markup Language (GML) representation 90
well-known binary representation 89
well-known text representation 88

coordinate systems
creating 17
selecting 17
ST_COORDINATE_ SYSTEMS catalog view 78

coordinate systems (continued)
ST_SPATIAL_ REFERENCE_SYSTEMS catalog view 81
supported 13
syntax 223

coordinates
improving performance 22
maximum

determining 25
minimum

determining 25
obtaining 100
spatial reference system

converting 18
spatial reference systems 18

create_cs command 238
create_idx command 239
create_srs command 241
create_srs_2 command 243
creating

inline spatial columns 29
spatial columns 28
spatial grid indexes 39

D
data formats

Geography Markup Language (GML) 221
shape representation 221
well-known binary (WKB) representation 219
well-known text (WKT) representation 215

data types
choosing 28

databases
spatial support

enabling 10
DB2GSE.GEOMETRY_COLUMNS catalog view 77
DB2GSE.SPATIAL_REF_SYS catalog view 77
DE_HDN _SRS_1004

spatial reference system 20
DEFAULT _SRS

spatial reference system 20
dimensions 8
disability x
disable_spatial command 246
distance information

obtaining
ST_Distance function 134

drop_cs command 247
drop_idx command 247
drop_srs command 248
DSN5SCLP program

commands 233

E
enable_spatial command 248
enabling

Index 309

enabling (continued)
spatial support 10–12

equal-area projections 17
equidistant projections 17

F
function_level command 249
functions

messages 261
spatial

data exchange format conversions 85

G
GCS_NORTH _AMERICAN _1927

coordinate system 20
GCS_NORTH _AMERICAN _1983

coordinate system 20
GCS_WGS _1984

coordinate system 20
GCSW _DEUTSCHE _HAUPTDREIECKSNETZ

coordinate system 20
geocoders

ST_SIZINGS catalog view 80
geocoding

formulas 22
geographic coordinate system 13
geographic features

description 1, 2
Geographic Markup Language (GML)

data format 221
geometries

boundary 7
converting 22, 105
distance information 109
empty 7
exterior 7
generating

one from many 108
space configurations 105

indexes 109
interior 7
not empty 7
properties

boundary information 104
configuration information 104
coordinate information 100
dimensional information 104
geometries within a geometry 102
measure information 100
spatial reference system 105

spatial data 4
geometry coordinates 6
geometry subtypes

non-simple 7
simple 7

geometry types 6
grid cells 37
grid indexes 35
grid levels 37
grid sizes 37

I
IBM Spatial Support for Db2 for

z/OS
getting started 9
installing 9
messages 263
overview 1
setting up 9

IBM Spatial Support for DB2 for
z/OS

overview 1
spatial reference systems 20

import_shape command 250
importing

shape data 34
spatial data 4, 34

indexes
spatial grid indexes 35

inline spatial columns
creating 29

installation
verifying 10

installing
IBM Spatial Support for Db2 for

z/OS
system requirements 9

L
linear units

coordinate systems 223
supported 226

linestrings
closed 7

M
M coordinates 7
map projections

coordinate systems 223
supported 229

map viewers 9
MBR (minimum bounding rectangle)

definition 6
spatial grid indexes 35

measure information
obtaining 100

measures
maximum

determining 25
minimum

determining 25
messages

functions 261
GSE 263
parts 259
stored procedures 260, 261

minimum bounding rectangle (MBR)
definition 6
spatial grid indexes 35

multilinestrings 5
multipliers

310 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

multipliers (continued)
processing coordinates 22

multipoints 5
multipolygons 5

N
NAD27_ SRS_1002

spatial reference system 20
NAD83_ SRS_1

spatial reference system 20

O
offset values

calculating 24
units 22, 24

operating system requirements
IBM Spatial Support for Db2 for z/OS
9

P
performance

coordinate data conversions 22
points 5
polygons

geometry type 5
prime meridians

coordinate systems 223
supported 229

problems
identifying 259

projected coordinate systems 13, 17

Q
queries

performing
spatial functions 41

spatial indexes 42
submitting 41

R
register_spatial_column command 256
registering

spatial columns 31
requirements

operating system 9
software 9
system 9

rings 6

S
scale factors

calculating 24
units 22, 24

setting up
IBM Spatial Support for Db2 for z/OS
9

shape data
importing 34

shape files 4
shape representation 221
shortcut keys

keyboard x
software requirements

IBM Spatial Support for Db2 for z/OS
9

spatial columns
creating 28
populating 33
registering 31
viewing 27

spatial data
analyzing

functions 41
indexes 42
interfaces 41

columns 27
data types 27
generating 3
importing 4, 33, 34
obtaining 3
retrieving

functions 41
indexes 42
interfaces 41

ST_GEOMETRY_ COLUMNS 79
spatial data formats

supported 215
spatial data types

multi-unit features 28
single-unit features 27

spatial extents 18
spatial functions

comparing geometries
container relationships 92
identical geometries 100
intersections 95

converting geometries 85
data exchange format conversions

ESRI shape representation 89
Geography Markup Language (GML) representation
90
overview 85
well-known binary representation 89
well-known text representation 88

data exchange formats 85
distance information 109
EnvelopesIntersect 95, 111
examples 41
generating geometries

converting 105
one from many 108
space configurations 105

geometries
generating 105

index information 109
parameters 111
properties of geometries

boundary information 104
configuration information 104
coordinate information 100

Index 311

spatial functions (continued)
properties of geometries (continued)

dimensional information 104
geometries within a geometry 102
measure information 100
spatial reference system 105

queries 36
spatial indexes 42
ST_Area 104, 113
ST_AsBinary 115
ST_AsGML 116
ST_AsShape 117
ST_AsText 118
ST_Boundary 120
ST_Buffer 121
ST_Centroid 123
ST_Contains 92, 124
ST_ConvexHull 126
ST_CoordDim 127
ST_Crosses 96, 128
ST_Difference 129
ST_Dimension 131
ST_Disjoint 132
ST_Distance 134
ST_Endpoint 137
ST_Envelope 138
ST_Equals 100, 139
ST_ExteriorRing 140
ST_Geometry 141
ST_GeometryN 142
ST_GeometryType 143
ST_GeomFromText 144
ST_GeomFromWKB 145
ST_GetIndexParms 146
ST_InteriorRingN 147
ST_Intersection 148
ST_Intersects 95, 149
ST_Is3D 101, 151
ST_IsClosed 152
ST_IsEmpty 153
ST_IsMeasured 101, 154
ST_IsRing 155
ST_IsSimple 156
ST_IsValid 101, 157
ST_Length 104, 158
ST_LineFromWKB 160
ST_LineString 161
ST_LocateAlong 162
ST_LocateBetween 164
ST_M 102, 165
ST_MaxM 102, 166
ST_MaxX 102, 167
ST_MaxY 102, 168
ST_MaxZ 102, 170
ST_MinM 102, 171
ST_MinX 102, 172
ST_MinY 102, 173
ST_MinZ 102, 174
ST_MLineFromWKB 176
ST_MPointFromWKB 177
ST_MPolyFromWKB 178
ST_MultiLineString 179
ST_MultiPoint 181
ST_MultiPolygon 182

spatial functions (continued)
ST_NumGeometries 184
ST_NumInteriorRing 185
ST_NumPoints 103, 186
ST_Overlaps 97, 187
ST_Perimeter 189
ST_Point 86, 190
ST_PointFromWKB 193
ST_PointN 194
ST_PointOnSurface 194
ST_PolyFromWKB 195
ST_Polygon 105, 196
ST_Relate 198
ST_SRID 105, 199
ST_StartPoint 200
ST_SymDifference 201
ST_Touches 98, 203
ST_Union 204
ST_UnionAggr 109, 206
ST_Within 93, 207
ST_WKBToSQL 209
ST_WKTToSQL 210
ST_X 102, 210
ST_Y 102, 211
ST_Z 102, 212
syntax 111

spatial grid indexes
creating 39
exploiting 42
generating 35
grid levels 35, 37
grid sizes 35, 37
queries 36

spatial indexes 35
spatial information

analyzing 41
generating 41

spatial reference systems
creating 19, 21, 54, 57
DB2-supplied 20
default 19
NAD27_ SRS_1002 20
NAD83_ SRS_1 20
WGS84_ SRS_1003 20

spatial resources
setting up 13

spatial support
enabling 11, 12
messages 263
overview 1

spheroids
coordinate systems 223
supported 227

ST_alter_coordsys stored procedure 45
ST_alter_srs stored procedure 47
ST_Buffer 105
ST_Centroid 103
ST_ConvexHull 106
ST_COORDINATE_ SYSTEMS 78
ST_create_coordsys stored procedure 50
ST_create_index stored procedure 39, 51
ST_create_srs stored procedure 54, 57
ST_Difference 106
ST_Distance 134

312 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

ST_drop_coordsys stored procedure 60
ST_drop_index stored procedure 61
ST_drop_srs stored procedure 62
ST_EndPoint 103
ST_export_shape stored procedure 64
ST_GEOMETRY_ COLUMNS 79
ST_GeometryN 103
ST_import_shape stored procedure 66
ST_Intersection 107
ST_IsClosed 104
ST_IsEmpty 104
ST_IsSimple 105
ST_NumGeometries 103
ST_PointN 103
ST_register_spatial_column stored procedure 73
ST_SIZINGS 80
ST_SPATIAL_ REFERENCE_SYSTEMS 81
ST_SRID 105
ST_StartPoint 103
ST_SymDifference 108
ST_Union 108
ST_UNITS_OF_ MEASURE 84
ST_UNITS_OF_ MEASURE catalog view 84
ST_unregister_spatial_column stored procedure 74
stored procedures

messages 260, 261
ST_alter_coordsys 45
ST_alter_srs 47
ST_create_coordsys 50
ST_create_index 51
ST_create_srs 54, 57
ST_drop_coordsys 60
ST_drop_index 61
ST_drop_srs 62
ST_export_shape 64
ST_import_shape 66
ST_register_spatial_column 73
ST_unregister_spatial_ column 74

syntax diagram
how to read xi

system requirements
IBM Spatial Support for Db2 for z/OS
9

T
troubleshooting

functions 261
messages 259
stored procedures 260

U
union aggregate function 109, 206
unregister_spatial_column command 257

V
views 35
visualization tools 27

W
well-known binary (WKB) representation 219
well-known text (WKT) representation 215
WGS84_ SRS_1003

spatial reference system 20

X
X and Y coordinates 7

Z
Z coordinates 7

Index 313

314 IBM Spatial Support for Db2 for z/OS: User's Guide and Reference (Last updated: 2023-05-17)

IBM®

Product Number: 5697-Q05

GC27-8895

	Contents
	About this information
	Who should read this information
	Db2 Utilities Suite for z/OS
	Terminology and citations
	Accessibility features for Db2 for z/OS
	How to send your comments about Db2 for z/OS documentation
	How to read syntax diagrams

	Chapter 1. IBM Spatial Support for Db2 for z/OS
	The purpose of IBM Spatial Support for Db2 for z/OS
	How data represents geographic features
	The nature of spatial data
	Where spatial data comes from
	Using functions to generate spatial data
	Importing spatial data

	How features, spatial information, spatial data, and geometries fit together

	Chapter 2. About geometries
	Geometries
	Properties of geometries
	Types
	Geometry coordinates
	X and Y coordinates
	Z coordinates
	M coordinates
	Interior, boundary, and exterior
	Simple or non-simple
	Closed
	Empty or not empty
	Minimum bounding rectangle (MBR)
	Dimension
	Spatial reference system identifier

	Chapter 3. Getting started with IBM Spatial Support for Db2 for z/OS
	System requirements for installing IBM Spatial Support for Db2 for z/OS
	Setting up and installing spatial support
	Verifying the installation of spatial support
	Inventory of resources supplied for your database
	Enabling spatial support for the first time
	Enabling spatial support for migration to Db2 12

	Chapter 4. Setting up spatial resources
	How to use coordinate systems
	Coordinate systems
	Geographic coordinate system
	Projected coordinate systems
	Selecting or creating coordinate systems

	How to set up spatial reference systems
	Spatial reference systems
	Deciding whether to use a default spatial reference system or create a new system
	Spatial reference systems supplied with IBM Spatial Support for Db2 for z/OS
	Creating a spatial reference system
	Conversion factors that transform coordinate data into integers
	Offset values
	Scale factors
	Units for offset values and scale factors

	Calculating offset values
	Calculating scale factors
	Determining minimum and maximum coordinates and measures

	Chapter 5. Setting up spatial columns
	Spatial columns
	Spatial columns with viewable content
	Spatial data types
	Data types for single-unit features
	Data types for multi-unit features
	A data type for all features

	Creating spatial columns
	Creating inline spatial columns
	Registering spatial columns

	Chapter 6. Populating spatial columns
	About importing spatial data
	Importing spatial data
	Importing shape data to a new or existing table

	Chapter 7. Using indexes to access spatial data
	Spatial indexes
	Spatial grid indexes
	Generation of spatial grid indexes
	Use of spatial functions in a query
	How a query uses a spatial grid index

	Considerations for the number of grid levels and grid sizes
	Number of grid levels
	Grid cell sizes

	Creating spatial grid indexes

	Chapter 8. Analyzing and generating spatial information
	Environments for performing spatial analysis
	Examples of how spatial functions operate
	Functions that use indexes to optimize queries

	Chapter 9. Stored procedures
	ST_alter_coordsys
	ST_alter_srs
	ST_create_coordsys
	ST_create_index
	ST_create_srs
	ST_create_srs_2
	ST_drop_coordsys
	ST_drop_index
	ST_drop_srs
	ST_export_shape
	ST_import_shape
	ST_register_spatial_column
	ST_unregister_spatial_column

	Chapter 10. Catalog views
	The DB2GSE.GEOMETRY_COLUMNS catalog view
	The DB2GSE.SPATIAL_REF_SYS catalog view
	The DB2GSE.ST_COORDINATE_SYSTEMS catalog view
	The DB2GSE.ST_GEOMETRY_COLUMNS catalog view
	The DB2GSE.ST_SIZINGS catalog view
	The DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view
	The DB2GSE.ST_UNITS_OF_MEASURE catalog view

	Chapter 11. Spatial functions: categories and uses
	Constructor functions
	Functions that operate on data exchange formats
	A function that creates geometries from coordinates
	Examples
	Conversion to well-known text (WKT) representation
	Conversion to well-known binary (WKB) representation
	Conversion to ESRI shape representation
	Conversion to Geography Markup Language (GML) representation

	Comparison functions
	Spatial comparison functions
	Functions that compare geographic features

	Functions that check whether one geometry contains another
	ST_Contains
	ST_Within

	Functions that check intersections between geometries
	EnvelopesIntersect
	ST_Intersects
	ST_Crosses
	ST_Overlaps
	ST_Touches

	Function that checks whether two geometries are identical
	ST_Equals

	Functions that return coordinate and measure information
	ST_Is3D
	ST_IsMeasured
	ST_IsValid
	ST_M
	ST_MaxM
	ST_MaxX
	ST_MaxY
	ST_MaxZ
	ST_MinM
	ST_MinX
	ST_MinY
	ST_MinZ
	ST_X
	ST_Y
	ST_Z

	Functions that return information about geometries within a geometry
	ST_Centroid
	ST_EndPoint
	ST_GeometryN
	ST_NumGeometries
	ST_NumPoints
	ST_PointN
	ST_StartPoint

	Functions that show information about boundaries, envelopes, and rings
	Functions that return information about a geometry's dimensions
	ST_Area
	ST_Length

	Functions that reveal whether a geometry is closed, empty, or simple
	ST_IsClosed
	ST_IsEmpty
	ST_IsSimple

	Function that identifies a geometry's spatial reference system
	ST_SRID

	Functions that generate new geometries from existing geometries
	Function that converts one geometry to another
	ST_Polygon

	Functions that create new geometries with different space configurations
	ST_Buffer
	ST_ConvexHull
	ST_Difference
	ST_Intersection
	ST_SymDifference

	Function that derives one geometry from many
	ST_Union
	ST_UnionAggr

	Function that returns distance information
	Function that returns index information

	Chapter 12. Spatial functions: syntax and parameters
	Considerations for spatial functions
	EnvelopesIntersect
	ST_Area
	ST_AsBinary
	ST_AsGML
	ST_AsShape
	ST_AsText
	ST_Boundary
	ST_Buffer
	ST_Centroid
	ST_Contains
	ST_ConvexHull
	ST_CoordDim
	ST_Crosses
	ST_Difference
	ST_Dimension
	ST_Disjoint
	ST_Distance
	ST_Endpoint
	ST_Envelope
	ST_Equals
	ST_ExteriorRing
	ST_Geometry
	ST_GeometryN
	ST_GeometryType
	ST_GeomFromText
	ST_GeomFromWKB
	ST_GetIndexParms
	ST_InteriorRingN
	ST_Intersection
	ST_Intersects
	ST_Is3D
	ST_IsClosed
	ST_IsEmpty
	ST_IsMeasured
	ST_IsRing
	ST_IsSimple
	ST_IsValid
	ST_Length
	ST_LineFromWKB
	ST_LineString
	ST_LocateAlong
	ST_LocateBetween
	ST_M
	ST_MaxM
	ST_MaxX
	ST_MaxY
	ST_MaxZ
	ST_MinM
	ST_MinX
	ST_MinY
	ST_MinZ
	ST_MLineFromWKB
	ST_MPointFromWKB
	ST_MPolyFromWKB
	ST_MultiLineString
	ST_MultiPoint
	ST_MultiPolygon
	ST_NumGeometries
	ST_NumInteriorRing
	ST_NumPoints
	ST_Overlaps
	ST_Perimeter
	ST_Point
	ST_PointFromWKB
	ST_PointN
	ST_PointOnSurface
	ST_PolyFromWKB
	ST_Polygon
	ST_Relate
	ST_SRID
	ST_StartPoint
	ST_SymDifference
	ST_Touches
	ST_Union
	ST_UnionAggr
	ST_Within
	ST_WKBToSQL
	ST_WKTToSQL
	ST_X
	ST_Y
	ST_Z

	Chapter 13. Supported data formats
	Well-known text (WKT) representation
	Well-known binary (WKB) representation
	Shape representation
	Geography Markup Language (GML) representation

	Chapter 14. Supported coordinate systems
	Coordinate systems syntax
	Supported linear units
	Supported angular units
	Supported spheroids
	Supported prime meridians
	Supported map projections

	Chapter 15. The DSN5SCLP program
	Commands for the DSN5SCLP program
	alter_cs
	alter_srs
	create_cs
	create_idx
	create_srs
	create_srs_2
	disable_spatial
	drop_cs
	drop_idx
	drop_srs
	enable_spatial
	function_level
	import_shape
	register_spatial_column
	unregister_spatial_column

	Chapter 16. Identifying IBM Spatial Support for Db2 for z/OS problems
	How to interpret spatial support messages
	Output parameters for spatial support stored procedures
	Messages for spatial support stored procedures
	Spatial support function messages

	Chapter 17. GSE Messages
	Information resources for Db2 for z/OS and related products
	Notices
	Trademarks
	Privacy policy considerations

	Glossary
	Index
	A
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

