
Information Management for z/OS
Terminal Simulator Guide and Reference
Version 7.1 SC31-8755-00

Information Management for z/OS
Terminal Simulator Guide and Reference
Version 7.1 SC31-8755-00

Tivoli Information Management for z/OS Terminal Simulator Guide and Reference

Copyright Notice

© Copyright IBM Corporation 1981, 2001. All rights reserved. May only be used pursuant to a Tivoli Systems
Software License Agreement, an IBM Software License Agreement, or Addendum for Tivoli Products to IBM Customer
or License Agreement. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any computer language, in any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual, or otherwise, without prior written permission of IBM Corporation. IBM Corporation grants
you limited permission to make hardcopy or other reproductions of any machine-readable documentation for your own
use, provided that each such reproduction shall carry the IBM Corporation copyright notice. No other rights under
copyright are granted without prior written permission of IBM Corporation. The document is not intended for
production and is furnished “as is” without warranty of any kind. All warranties on this document are hereby
disclaimed, including the warranties of merchantability and fitness for a particular purpose.

U.S. Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corporation.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States, other
countries, or both: IBM, the IBM logo, Tivoli, the Tivoli logo, AIX, CICS, CICS/ESA, DATABASE 2, DB2,
DFSMS/MVS, IBMLink, Language Environment, MVS, MVS/ESA, NetView, OS/2, OS/2 WARP, OS/390, RACF,
Redbooks, RMF, System/390, Tivoli Enterprise Console, TME 10, VTAM, z/OS.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names mentioned in this document may be trademarks or service marks of others.

Notices

References in this publication to Tivoli Systems or IBM products, programs, or services do not imply that they will be
available in all countries in which Tivoli Systems or IBM operates. Any reference to these products, programs, or
services is not intended to imply that only Tivoli Systems or IBM products, programs, or services can be used. Subject
to valid intellectual property or other legally protectable right of Tivoli Systems or IBM, any functionally equivalent
product, program, or service can be used instead of the referenced product, program, or service. The evaluation and
verification of operation in conjunction with other products, except those expressly designated by Tivoli Systems or
IBM, are the responsibility of the user. Tivoli Systems or IBM may have patents or pending patent applications
covering subject matter in this document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, North Castle
Drive, Armonk, New York 10504-1785, U.S.A.

Programming Interface Information

This publication documents intended Programming Interfaces that allow the customer to write programs to obtain the
services of Tivoli Information Management for z/OS.

Contents

Preface. xi
Who Should Read This Guide . xi

Prerequisite and Related Documentation . xi

What This Guide Contains . xii

Typeface Conventions . xiii

Contacting Customer Support . xiii

Chapter 1. What Is Terminal Simulation?. 1
Examples . 1

TSP and TSX Control Lines . 2

The Terminal Simulator Communications Area . 2

Should You Use a TSP or a TSX? . 3

Chapter 2. Designing and Creating a Terminal Simulator Panel (TSP) . . . 5
What Are Control Lines?. 5

Designing a Terminal Simulator Panel . 6

Creating a Terminal Simulator Panel Flow . 9

Using the Terminal Simulator Panel Update Panel (BLM8CU90) . 48

Examples: Adding or Updating Freeform Text . 49

Chapter 3. Designing and Creating a Terminal Simulator EXEC (TSX) 53
Overview . 53

TSX Control Lines . 54

Graphic Character Substitutions using REXX Variable BLGSYMB . 55

TSX Access . 56

Creating a TSX . 56

Chapter 4. Creating Terminal Simulator Control Lines 61
ADDDATA . 63

Creating an ADDDATA Control Line. 63

Supplementary Commands for ADDDATA. 66

What the Control Line Does . 67

ADDLIST . 68

The ADDLIST Control Line . 68

ADDSDATA . 71

The ADDSDATA Control Line . 71

Usage Notes and Examples . 73

iiiTerminal Simulator Guide

||

Return and Reason Codes . 74

ADDTEXT . 74

The ADDTEXT Control Line . 74

BRANCH . 76

Creating a BRANCH Control Line . 77

What the Control Line Does . 78

CLEAR. 78

Creating a CLEAR Control Line . 79

What the Control Line Does . 79

CLOSERRES . 79

CLOSESOCKET. 79

The CLOSESOCKET Control Line . 80

DELLIST . 81

The DELLIST Control Line. 81

DELSDATA . 82

The DELSDATA Control Line . 83

Usage Notes and Examples . 84

Return and Reason Codes . 84

DELTEXT. 85

The DELTEXT Control Line . 85

DEQMAIL . 86

The DEQMAIL Control Line. 86

FINDSDATA. 87

Creating a FINDSDATA Control Line . 88

What the Control Line Does . 96

The FINDSDATA TSX Control Line . 97

FINDSJRNL . 102

Creating a FINDSJRNL Control Line. 102

What the Control Line Does . 107

The FINDSJRNL TSX Control Line . 107

FINDTEXT (GETTEXT) . 110

The FINDTEXT Control Line . 110

FLATTEN . 111

Creating a FLATTEN Control Line . 112

What the Control Line Does . 114

The FLATTEN TSX Control Line . 114

GETAPIDATA. 118

The GETAPIDATA Control Line . 118

iv Version 7.1

GETLIST . 119

The GETLIST Control Line . 119

Usage Notes and Examples . 120

Return and Reason Codes . 121

GETRDATA . 122

GETSCREEN . 122

The GETSCREEN Control Line . 122

GETTEXT (FINDTEXT). 123

The GETTEXT Control Line . 123

ISPEXEC . 125

Creating an ISPEXEC Control Line . 126

What the Control Line Does . 127

LABEL . 129

Creating a LABEL Control Line . 129

What the Control Line Does . 130

LINK . 130

Creating a LINK Control Line . 131

What the Control Line Does . 132

The LINK TSX Control Line. 132

MESSAGE . 134

Creating a MESSAGE Control Line. 135

What the Control Line Does . 138

The MESSAGE TSX Control Line . 139

MOVEVAR. 143

Creating a MOVEVAR Control Line . 143

What the Control Line Does . 145

OPENRRES . 146

OPENSOCKET . 146

The OPENSOCKET Control Line . 147

PRINT . 148

Creating a PRINT Control Line . 149

What the Control Line Does . 150

The PRINT TSX Control Line . 151

PROCESS . 152

Creating a PROCESS Control Line . 152

What the Control Line Does . 154

The PROCESS TSX Control Line . 155

PUTRDATA . 158

vTerminal Simulator Guide

QMAIL. 158

The QMAIL Control Line . 158

QUERYRRES . 159

READDICT . 160

The READDICT Control Line . 160

TSCA Field Usage. 160

READSOCKET. 161

The READSOCKET Control Line . 161

RELEASERRES . 162

REPLIST . 162

The REPLIST Control Line . 163

REPTEXT. 165

The REPTEXT Control Line . 165

RETURN . 167

Creating a RETURN Control Line . 167

What the Control Line Does . 167

SETAPIDATA . 168

The SETAPIDATA Control Line . 168

SETFIELD . 169

Creating a SETFIELD Control Line . 170

What the Control Line Does . 172

SETRRES . 174

SETTSCA . 174

The SETTSCA Control Line . 174

TESTFIELD . 175

Creating a TESTFIELD Control Line. 175

What the Control Line Does . 180

TESTFLOW . 180

Creating a TESTFLOW Control Line. 181

What the Control Line Does . 183

Return and Reason Codes . 184

TSCA Field Usage. 184

TRACE. 185

Creating a TRACE Control Line . 185

What the Control Line Does . 187

TSX Considerations. 187

UNFLATTEN . 188

Creating an UNFLATTEN Control Line. 188

vi Version 7.1

What the Control Line Does . 190

The UNFLATTEN TSX Control Line . 190

USEREXIT . 193

USEREXIT Linkage Conventions . 195

Creating a USEREXIT Control Line . 195

Specifying Input Data . 196

Setting Internal Flag Fields . 201

What the Control Line Does . 206

The USEREXIT TSX Control Line . 207

WORDFIX . 207

Creating a WORDFIX Control Line. 208

Adding Data . 210

Deleting Data . 217

Changing S-Word Data . 221

WRITESOCKET . 238

The WRITESOCKET Control Line . 238

Chapter 5. Remote Data Resource Terminal Simulator Control Lines 241
CLOSERRES . 241

The CLOSERRES Control Line. 241

GETRDATA . 242

The GETRDATA Control Line. 242

OPENRRES . 244

The OPENRRES Control Line . 244

PUTRDATA . 245

The PUTRDATA Control Line . 245

QUERYRRES . 246

The QUERYRRES Control Line . 247

RELEASERRES . 247

The RELEASERRES Control Line . 247

SETRRES . 248

The SETRRES Control Line . 248

Chapter 6. Testing Terminal Simulator Panels (TSPs) and EXECS
(TSXs). 251

Using the PRINT Control Line . 251

Using the TESTFIELD Control Line . 252

Field Checking in a TSX . 252

Using the TESTFLOW Control Line . 252

viiTerminal Simulator Guide

Panel Checking in a TSX . 253

Message Checking in a TSX . 253

Syntax Checking in a TSX . 253

Using the TSP TRACE Control Line . 254

Using the TRACE Command. 254

TRACE TSX Considerations . 256

Chapter 7. Running Terminal Simulator Panels (TSPs) and Terminal
Simulator Execs (TSXs). 257

Running a TSP or a TSX from the Command Line . 257

Using the RUN Command to Run a TSP or a TSX . 257

Using a Command Alias to Run a TSP or a TSX . 257

Running a TSP or a TSX at Product Invocation . 258

Running TSPs or TSXs in a Batch Environment. 258

Running a TSP or a TSX from a Control Panel . 259

The 002B Function Code. 259

The 001B Function Code. 260

When the TSP or TSX Is Actually Started . 260

How To Locate a TSP or TSX . 261

Calling a TSP or TSX from Another TSP or TSX. 261

Message Handling during TSP and TSX Processing . 261

TSP and TSX Processing for Three Classes of Messages . 262

Chapter 8. User Exits . 263
Application Program Interface User Exits. 263

Configuration Migration User Exits . 270

Database Administration User Exits . 277

Escalation and Notification User Exits . 278

General-purpose User Exits . 279

Appendix A. Terminal Simulator Communications Fields 289
Contents of the TSCA . 289

TSCA Index . 296

Mapping of the TSCA . 299

Appendix B. Assembler Code User Exit Example. 303
User Exit Example . 303

Appendix C. Relating Publications to Specific Tasks 305

viii Version 7.1

Typical Tasks. 305

Appendix D. Tivoli Information Management for z/OS Courses 309
Education Offerings. 309

United States . 309

United Kingdom . 309

Appendix E. Where to Find More Information . 311
The Tivoli Information Management for z/OS Library . 311

Index . 315

ixTerminal Simulator Guide

x Version 7.1

Preface

The Terminal Simulator Facility of Tivoli® Information Management for z/OS enables you
to control input and output operations from either a batch or interactive environment. You
can design and build as many TSPs or TSXs as you want to meet needs unique to your
installation. You build your TSPs by using the Panel Modification Facility of Tivoli
Information Management for z/OS to create special control lines. You code your TSXs using
REXX.

A TSP or TSX can simulate an entire interactive session between you and the Tivoli
Information Management for z/OS product. Because it can run in a batch environment, a
TSP or TSX can do a great deal of work during off-shift hours, without the need for direct
user interaction with Tivoli Information Management for z/OS.

This is not only a guide to creating and using TSPs and TSXs, but it is also a reference for
control line functions. It gives you step-by-step instructions for designing, building, and
testing a sample TSP. These instructions are followed by information about the different
ways you can run TSPs and TSXs.

This publication describes Tivoli Information Management for z/OS Version 7 Release 1.
There may be references in this publication to versions of Tivoli Information Management
for z/OS’s predecessor products. For example:

¶ TME 10™ Information/Management Version 1.1

¶ Information/Management Version 6.3, Version 6.2, Version 6.1

¶ Tivoli Service Desk for OS/390® Version 1.2

Who Should Read This Guide
This guide is intended for users who are experienced in tailoring the Tivoli Information
Management for z/OS product to the needs of a data processing installation.

To use this guide effectively, you must understand structured words (s-words), prefix words
(p-words), and the format and structure of your Tivoli Information Management for z/OS
databases. You can find information about s-words and p-words in the Tivoli Information
Management for z/OS Panel Modification Facility Guide. Information about database format
and structure is in the Tivoli Information Management for z/OS Planning and Installation
Guide and Reference. In order to write TSPs, you must also be familiar with the Tivoli
Information Management for z/OS Panel Modification Facility (PMF). In order to write
TSXs, you must be familiar with REXX. You also need to understand the sequence in which
interactive panels are displayed (the panel flow) for your particular Tivoli Information
Management for z/OS installation. Information about PMF can be found in the Tivoli
Information Management for z/OS Panel Modification Facility Guide.

Prerequisite and Related Documentation
The library for Tivoli Information Management for z/OS Version 7.1 consists of these
publications. For a description of each, see “The Tivoli Information Management for z/OS
Library” on page 311.

Tivoli Information Management for z/OS Application Program Interface Guide,
SC31-8737-00

xiTerminal Simulator Guide

|

Tivoli Information Management for z/OS Client Installation and User’s Guide,
SC31-8738-00

Tivoli Information Management for z/OS Data Reporting User’s Guide, SC31-8739-00

Tivoli Information Management for z/OS Desktop User’s Guide, SC31-8740-00

Tivoli Information Management for z/OS Diagnosis Guide, GC31-8741-00

Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications,
SC31-8744-00

Tivoli Information Management for z/OS Integration Facility Guide, SC31-8745-00

Tivoli Information Management for z/OS Licensed Program Specification, GC31-8746-00

Tivoli Information Management for z/OS Master Index, Glossary, and Bibliography,
SC31-8747-00

Tivoli Information Management for z/OS Messages and Codes, GC31-8748-00

Tivoli Information Management for z/OS Operation and Maintenance Reference,
SC31-8749-00

Tivoli Information Management for z/OS Panel Modification Facility Guide,
SC31-8750-00

Tivoli Information Management for z/OS Planning and Installation Guide and Reference,
GC31-8751-00

Tivoli Information Management for z/OS Problem, Change, and Configuration
Management, SC31-8752-00

Tivoli Information Management for z/OS Program Administration Guide and Reference,
SC31-8753-00

Tivoli Information Management for z/OS Reference Summary, SC31-8754-00

Tivoli Information Management for z/OS Terminal Simulator Guide and Reference,
SC31-8755-00

Tivoli Information Management for z/OS User’s Guide , SC31-8756-00

Tivoli Information Management for z/OS World Wide Web Interface Guide,
SC31-8757-00

Note: Tivoli is in the process of changing product names. Products referenced in this
manual may still be available under their old names (for example, TME 10 Enterprise
Console instead of Tivoli Enterprise Console®).

What This Guide Contains
This guide is divided into the following sections:

¶ “What Is Terminal Simulation?” on page 1 presents basic information about TSPs and
TSXs.

¶ “Designing and Creating a Terminal Simulator Panel (TSP)” on page 5 takes you
step-by-step through task analysis, TSP design, and implementation.

¶ “Designing and Creating a Terminal Simulator EXEC (TSX)” on page 53 takes you
through the steps required to design and implement a TSX.

Prerequisite and Related Documentation

xii Version 7.1

¶ “Creating Terminal Simulator Control Lines” on page 61 presents basic information
about TSP and TSX control lines. The control lines are listed in alphabetical order.

¶ “Remote Data Resource Terminal Simulator Control Lines” on page 241 describes some
TSXs that can be used with Remote Data Resources (RDRs). A Remote Data Resource
is an area (or areas) in the BLX-SP containing strings of character data.

¶ “Testing Terminal Simulator Panels (TSPs) and EXECS (TSXs)” on page 251 suggests
several methods you can use to test your TSPs and TSXs before putting them into
production.

¶ “Running Terminal Simulator Panels (TSPs) and Terminal Simulator Execs (TSXs)” on
page 257 presents basic information about invoking TSPs and TSXs.

¶ “User Exits” on page 263 presents information about user exits that you can use in your
TSPs and TSXs.

¶ “Terminal Simulator Communications Fields” on page 289 contains detailed information
about the fields comprising the terminal simulator communications area (TSCA), a
control block defined on page 2.

¶ “Assembler Code User Exit Example” on page 303 contains information to get you
started on writing your own user exit routines.

¶ At the back of this book you will find::

v Information about other books in the Tivoli Information Management for z/OS library

v Information about classes offered by IBM® Education

v An index for this book.

Typeface Conventions
This guide uses several typeface conventions for special terms and actions. These
conventions have the following meaning:

Bold Entries that you must use literally, choices, or options that
you select is displayed in bold.

Italics Variables and values that you must provide is displayed in
italics. New terms are also displayed in italics.

Monospace Code examples appear in monospace font.

The panels as presented in this guide are not meant to be exact replicas of the way a panel
might appear on the screen. The information on the panels is correct, but the spacing is not
always exact.

Commands, such as END, CONTROL, RESUME, or DOWN, appear in all capital letters in
text. Although not commands, the user responses YES and NO also appear in capital letters.

Contacting Customer Support
For support inside the United States, for this or any other Tivoli product, contact Tivoli
Customer Support in one of the following ways:
¶ Send e-mail to support@tivoli.com
¶ Call 1-800-TIVOLI8
¶ Navigate our Web site at http://www.support.tivoli.com

What This Guide Contains

xiiiTerminal Simulator Guide

For support outside the United States, refer to your Customer Support Handbook for phone
numbers in your country. The Customer Support Handbook is available online at
http://www.support.tivoli.com.

When you contact Tivoli Customer Support, be prepared to provide identification
information for your company so that support personnel can assist you more readily.

The latest downloads and fixes can be obtained at http://www.tivoli.com/infoman

Contacting Customer Support

xiv Version 7.1

|

What Is Terminal Simulation?

Tivoli Information Management for z/OS includes two methods through which you can
control the simulation of terminal input and output. The first method involves the use of a
Terminal Simulator Panel (TSP). You use the Panel Modification Facility (PMF) to create
TSPs. The second method involves the use of a Terminal Simulator EXEC (TSX). A TSX is
a REXX EXEC, and you use an editor, such as the ISPF PDF editor, to write TSXs.

Some of the functions you can perform with TSPs and TSXs are:
¶ Create records
¶ Update a group of records that meet a particular search criteria
¶ Delete a group of records that meet a particular search criteria
¶ Automate sections of a panel flow for interactive users
¶ Prime fields in a record
¶ Cross-check values entered in multiple fields
¶ Issue a message
¶ Provide user-defined line commands
¶ Provide user-defined commands

Examples
The following examples show how you might use a TSP or a TSX.

Updating Records

In this example, suppose that an employee who analyzes Tivoli Information Management for
z/OS problem records moves to a new office and is assigned a new phone number. The open
problem records assigned to that person should be updated to reflect the employee’s new
phone number. You can build a TSP or a TSX that does a search of all open records that list
that employee as the assignee. The TSP or TSX can sequentially update each record and
change the old phone number to the new phone number. You accomplish a tedious job
without tying up an interactive user or seriously affecting other users of the system.

Managing Data

In this example, suppose that you want to remove obsolete records from the Tivoli
Information Management for z/OS database and retain a record of the data in another data
set. To do this, you can build a TSP or a TSX that transfers specific records from a database
to another storage medium, such as tape, and then delete the records from the original
database. The TSP or TSX searches all records for those that match a specific criterion, such
as “closed before 1998.”

1

1Terminal Simulator Guide

1.
W

h
at

Is
Term

in
al

S
im

u
latio

n
?

The TSP or TSX then processes each record from the search results list, creates a sequential
form of the record, and writes the sequential record to a data set. After copying all records
to the data set, the TSP or TSX sequentially deletes each record in the search results list
from the original database.

Note: Refer to “FLATTEN” on page 111 for additional information on how to create a
sequential form of a record.

Suppose then that you want to improve the performance of your remaining database. You
can build a TSP to uncognize s-words that your users rarely use in searches. For each
s-word, the TSP searches all records for those containing the target s-word. The TSP then
updates each record from the search results list, changing the data that controls cognizing.

Note: Refer to “WORDFIX” on page 207 for additional information on how to update
information in records. The change function of WORDFIX is not supported in a TSX,
so in order to perform the change function, you will need to use the LINK control
line to link to a TSP to perform WORDFIX. You can use the TSX ADDSDATA
control line (described in “ADDSDATA” on page 71) to perform WORDFIX-like add
function and the DELSDATA control line (described in “DELSDATA” on page 82) to
perform WORDFIX-like delete functions.

TSP and TSX Control Lines
To perform these functions, Tivoli Information Management for z/OS provides a set of
control lines. In a TSP, a control line is similar to a macro instruction. In a TSX, a control
line is a REXX CALL statement. Most of the control lines originally supported by TSPs are
now supported by TSXs. There are also some new control lines supported only by TSXs.
Refer to Table 1 on page 61 for additional information about which control lines are
supported by TSPs, by TSXs, or by both TSPs and TSXs.

If you want a TSP or a TSX to perform a function that cannot be done with any of the
control lines, you can write a program that interfaces directly with the TSCA (see “The
Terminal Simulator Communications Area” for additional information on the TSCA). You
call such programs (referred to as user exit routines throughout this book) by means of a
control line called USEREXIT. User exit routines pass data through the TSCA to Tivoli
Information Management for z/OS for processing. Similarly, Tivoli Information Management
for z/OS stores data in the TSCA that the user exit routines can retrieve. “USEREXIT” on
page 193 discusses the USEREXIT control line.

The Terminal Simulator Communications Area
The Terminal Simulator Communications Area (TSCA) provides the storage for retrieval of
information communicated between the Tivoli Information Management for z/OS product,
TSPs and TSXs, and user-written exit routines. The TSCA is a control block that contains
flag indicator fields, pointer fields, and data fields. When you start a TSP or a TSX, Tivoli
Information Management for z/OS initializes the control block. As the TSP or TSX runs,
data is written into or read from the TSCA. For more detailed information about the TSCA,
see “Terminal Simulator Communications Fields” on page 289.

Examples

2 Version 7.1

You can modify TSCA fields directly with a TSP. However, changes to some fields cause
problems. The tables shown in Terminal Simulator Communications Fields, indicate the
fields you must not modify with a TSP. This appendix also includes an assembler language
mapping of the TSCA.

Note: In a TSX, TSCA fields can only be modified by TSX control lines. You cannot
directly modify TSCA fields in a TSX.

Should You Use a TSP or a TSX?
Once you decide to use terminal simulation to perform a Tivoli Information Management for
z/OS task, you must decide whether to use a TSP, a TSX, or a combination of the two. You
should consider your skills. Have you ever written a REXX program? Writing a TSX is
similar to writing a REXX program. Have you ever used PMF to create a Tivoli Information
Management for z/OS panel, in particular a TSP? Writing a TSP is similar to writing a
Tivoli Information Management for z/OS Control Panel.

You must also consider the functions provided by the TSP and TSX control lines. If you
need to change existing data using WORDFIX, you must use a TSP, because while the TSX
supports the add function (ADDSDATA) and delete function (DELSDATA), it does not have
the change function that exists with the TSP. There are special TSX control lines which
make processing list processor data, freeform text, and flattened records much easier in a
TSX than in a TSP. You can perform terminal simulation using both TSPs and TSXs and use
the LINK control line to flow between separate TSPs and TSXs. Refer to “LINK” on
page 130 for additional information about the LINK control line.

TSCA

3Terminal Simulator Guide

1.
W

h
at

Is
Term

in
al

S
im

u
latio

n
?

TSP or a TSX?

4 Version 7.1

Designing and Creating a Terminal
Simulator Panel (TSP)

A TSP enables you to perform tasks using Tivoli Information Management for z/OS by
simulating interactive control. You use control lines to write a TSP. Sometimes you use
Tivoli Information Management for z/OS prefix words (p-words) and structured words
(s-words) in your control lines. The Tivoli Information Management for z/OS Panel
Modification Facility Guide contains additional information about using p-words and
s-words.

This chapter describes steps you can use to design a TSP. It also shows the panel flow that
you can use to create a TSP.

What Are Control Lines?
Control lines are macro-like terms that define functions to Tivoli Information Management
for z/OS. You use them in the TSP to define what you want to do.

Attention: If you do not use the FLATTEN, UNFLATTEN, and WORDFIX control lines
correctly, they can damage your existing databases. The Tivoli Information Management for
z/OS Planning and Installation Guide and Reference contains additional information about
how to prevent the misuse of these three control lines, and also discusses general data
integrity and security issues regarding the use of TSPs.

The control lines available to you in a TSP are:

ADDDATA Simulates data responses that you enter on the command line of a panel in
interactive mode.

BRANCH Changes the flow of the control lines.

CLEAR Discards collected data from the TSCA command line reply buffer.

FINDSDATA Extracts data from a record.

FINDSJRNL Extracts history data from the journal portion of a record.

FLATTEN Copies a record from a Tivoli Information Management for z/OS database.

ISPEXEC Calls ISPF dialog management services.

LABEL Identifies a line in the TSP for the purpose of branching. It can also be used
to add comments to a TSP.

LINK Transfers control to another TSP.

MESSAGE Generates Tivoli Information Management for z/OS and user-written
messages.

2

5Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

MOVEVAR Adds data to the variable data area of the TSCA.

PRINT Prints messages, panels, and the contents of the TSCA.

PROCESS Sends one or more responses to Tivoli Information Management for z/OS for
processing. This control line must follow an ADDDATA to process the data
response.

RETURN Exits the TSP.

SETFIELD Sets a field in the TSCA to communicate between TSPs or between a TSP
and a user exit routine.

TESTFIELD Tests fields in the TSCA.

TESTFLOW Tests for a specified panel or message ID.

TRACE Traces the flow of control lines.

UNFLATTEN
Restores a record that was previously copied from a Tivoli Information
Management for z/OS database using the FLATTEN control line.

USEREXIT Calls a user exit routine.

WORDFIX Repairs records by either deleting or changing the existing data. It can also
add new data to existing records.

The rules for using these control lines and examples for using them are explained in
“Creating Terminal Simulator Control Lines” on page 61.

Designing a Terminal Simulator Panel
Designing a TSP is similar to designing a program. You define the task, define the steps
needed to perform the task, and then translate these steps into the appropriate TSP control
lines. After designing the TSP, you use the Panel Modification Facility to create it. To help
you understand TSPs, here is an example of the TSP design process.

Define the task:

Search all problem records for problems assigned to Smith. Reassign those problems to
Jones.

Define the steps:
1. Search for all problem records containing the assignee name of Smith.
2. Request each record for updating.
3. Change the assignee name to Jones.
4. File each changed record.

Design the TSP:

Because a TSP simulates a Tivoli Information Management for z/OS session, first list how
you perform these steps interactively with Tivoli Information Management for z/OS. The
following steps accomplish the task defined previously:
1. Search problem records + PERA/SMITH.
2. Request each record in the search results list for updating, using the block line command

UU (UPDATE).

What Are Control Lines?

6 Version 7.1

3. Update the Assignee name field and file the changed record. (On the Problem Summary
panel (BLG0BU00), enter 2,1,JONES,,9)

Here is how you perform these same steps using TSP control lines:

1. To simulate the keystrokes needed to specify the search, use the ADDDATA control line.
Then use the PROCESS control line to run the search.
ADDDATA 3,2,6,1,SE + PERA/SMITH
PROCESS ERROR

2. To simulate the keystrokes needed to request a group of records in the search results list
for updating, use the ADDDATA control line. Then use the PROCESS control line to
open the records.
ADDDATA LINECMD UU,DOWN LAST,LINECMD UU
PROCESS ERROR

3. To simulate the keystrokes needed to update the assignee name field and file the record,
use the ADDDATA control line. Then use the PROCESS control line to update and file
each record.
ADDDATA 2,1,JONES,,9
PROCESS ERROR

You might find it helpful to write out your TSP on paper before you use PMF to create it.

Note: Because most data entry and display operations for date fields use external date
format, and because different users can use different external date formats, it is
recommended that you use internal date format YYYY/MM/DD for all date
processing. Use BLGIDATE to convert any date values retrieved from a record to
internal format, then perform any required processing, and then use BLGEDATE to
convert an internal date to external date format before entering the date in a field
with the PROCESS control line. The user exits BLGIDATE and BLGEDATE are
described in “General-purpose User Exits” on page 279.

Specifying the Search:

When you first create your TSP, you enter its name on the PMF Panel Name Entry panel
(BLM8CU00). Tivoli Information Management for z/OS uses this entry to automatically
create the first line of your TSP for you. It is a LABEL control line with the label name set
to the panel name you specified on panel BLM8CU00. If you named your TSP UPDATEPR,
the first line is:
LABEL UPDATEPR

You can, however, delete this line if you have no need for it.

Add the TRACE control line to verify the flow of TSP control lines as you test your TSP:
TRACE

After your TSP is ready for production use, remove TRACE from the production TSP if you
do not want users to receive the output that the TRACE control line produces. If you prefer,
you can use the TRACE command instead. The TRACE command does interactively what
the TRACE control line does in a TSP.

Add control lines to perform the search and to go to label ERROR if an error occurs at this
control line when you run the TSP:

Designing a TSP

7Terminal Simulator Guide

|
|
|
|
|
|
|
|

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

ADDDATA 3,2,6,1,SE + PERA/SMITH
PROCESS ERROR

Note: ERROR is a target label to which the TSP branches for further processing if an error
occurs at this point in your TSP. You must define ERROR in a LABEL control line
where the TSP processing is supposed to continue.

If the search finds no records, exit the TSP. You can test for this condition with a control
line to verify that message BLG19214 is issued when no records are found. The following
control line tests for this message and goes to label DONE if the message is issued:
TESTFLOW DONE

Note: DONE is a target label to which the TSP branches for further processing if an error
occurs at this point in your TSP. You must define DONE in a LABEL control line
where the TSP processing is supposed to continue.

On the TESTFLOW Specification panel (BLM8CU9K), you must enter the message name
(BLG19214) in the Verify name field and message in the Verify type field.

If the TSP finds only one record, use the U line command instead of UU to update the
single record. Add the following control lines after the TESTFLOW control line to test
whether the search finds only one record and to go to label JUSTONE if this is true:
TESTFIELD JUSTONE (test if TSCATPLC=1; if yes, go to label JUSTONE)

Note: JUSTONE is a target label to which the TSP branches if it finds only one record. You
must define JUSTONE in a LABEL control line where the TSP processing is
supposed to continue. TSCATPLC is the field that contains the number of records that
were found by the search.

Specifying How to Update the Records:

The next part of the task is to define the control lines that request each record for updating,
change the assignee name to JONES, and file each record. After filing each record, test
whether the current panel is the Problem Summary panel (BLG0BU00). If it is, go to label
UPDATE to change the next record. If the current panel is not the Problem Summary panel,
branch to label DONE. Add the following control lines to do this:
ADDDATA LINECMD UU,DOWN LAST,LINECMD UU (access records for updating)
PROCESS ERROR
LABEL UPDATE
ADDDATA 2,1,JONES,,9
PROCESS ERROR
TESTFLOW UPDATE (test if the current panel is BLG0BU00, the Problem Summary panel)
BRANCH DONE

Now add control lines to handle the case when the TESTFIELD control line finds only one
record and branches to label JUSTONE. Update the single record, change the assignee name
to JONES, then file the record:
LABEL JUSTONE
ADDDATA LINECMD U,2,1,JONES,,9
PROCESS ERROR

Add control lines for the functions you want to perform when the TSP goes to label DONE.
Because the TSP has finished running, exit the TSP:
LABEL DONE
RETURN

Designing a TSP

8 Version 7.1

Finally, add control lines for the functions you want to perform when your TSP goes to the
error routine at label ERROR. Use the PRINT control line to print the TSCA, messages, and
current panel. Then exit the TSP:
LABEL ERROR
PRINT (print the TSCA, messages, and panel)
RETURN

Your final TSP looks like this:
LABEL UPDATEPR
TRACE (trace TSP flow)
ADDDATA 3,2,6,1,SE + PERA/SMITH (problem record search)
PROCESS ERROR
TESTFLOW DONE (any records found?)
TESTFIELD JUSTONE (test if only one record found)
ADDDATA LINECMD UU,DOWN LAST,LINECMD UU (access records for updating)
PROCESS ERROR
LABEL UPDATE
ADDDATA 2,1,JONES,,9 (change record)
PROCESS ERROR
TESTFLOW UPDATE (if not last record, continue)
BRANCH DONE
LABEL JUSTONE
ADDDATA LINECMD U,2,1,JONES,,9 (only one record, update it)
PROCESS ERROR
LABEL DONE
RETURN
LABEL ERROR
PRINT (print TSCA, messages, panel)
RETURN

This TSP leaves you in the search results list. From here, you can either use the CANCEL
or INIT command to end.

Creating a Terminal Simulator Panel Flow
When you finish designing a TSP, you create it with the Panel Modification Facility (PMF).
PMF uses Tivoli Information Management for z/OS data sets called the read panel data set
and the write panel data set. Whenever you file a new or updated panel in PMF, the panel is
put into the write panel data set. While the panel remains in this data set, you can modify it.
After you complete testing of the panel and it reaches its final, production form, you must
copy it into a read panel data set so it can run in production. The Tivoli Information
Management for z/OS Planning and Installation Guide and Reference contains additional
information about these data sets.

The following panel flow begins with Tivoli Information Management for z/OS’s Primary
Options Menu for the System application (BLG0EN10). It creates a TSP named
UPDATEPR, the same example used earlier in this chapter to illustrate the design process.

The information you enter is highlighted on each panel. Information that helps you
understand the panel flow is to the left of the panel.

The panels used to collect control line information are not shown in this section. See
“Creating Terminal Simulator Control Lines” on page 61 for more information about using
the specification panels.

To create a new TSP, type 9,1 on the command line and press Enter.

Designing a TSP

9Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

BLG0EN20 --- PRIMARY OPTIONS MENU --- APPLICATION: MANAGEMENT

OPTIONS:

1. OVERVIEW.......Display general information and product enhancements.
2. PROFILE........Display or alter invocation or session defaults.
3. APPLICATION....Change application, list available applications.
4. CLASS..........Change current class, list available classes.
5. ENTRY..........Create a record.
6. INQUIRY........Search for records.
7. UTILITY........Copy, display, print, delete, and update records.
8. GLOSSARY.......Display a list of searchable words in the database.
9. PMF............Modify or create panels.

Select an option, enter a command, or type QUIT to exit.

Tivoli Information Management for z/OS Version 7 Release 1
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

===> 9,1

Creating a TSP Flow

10 Version 7.1

The Panel Name Entry panel BLM8CU00 is displayed.

BLM8CU00 PANEL NAME ENTRY UPDATE

Identify panel to be updated; cursor placement or input line entry allowed.

1. Panel name.................<R> ________
2. Data set definition label..... ________

To enter the panel update dialog, press Enter without field modifications.

===>

To create a new panel, the name you enter in the Panel name field must be a unique name.
The panels that Tivoli ships with this product start with the letters BLG, BLH, BLM, BLX,
BTN, or EYM. All panels (those from Tivoli as well as those that you create) must have
unique names. You can name your panels whatever you want, but avoid conflicting names
by reviewing the Tivoli Information Management for z/OS Panel Modification Facility Guide
for panel naming conventions.

For this example, the new TSP is UPDATEPR. Type 1,updatepr on the command line and
press Enter twice.

Creating a TSP Flow

11Terminal Simulator Guide

|
|

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

BLM8CU00 PANEL NAME ENTRY UPDATE

Identify panel to be updated; cursor placement or input line entry allowed.

1. Panel name.................<R> ________
2. Data set definition label..... ________

To enter the panel update dialog, press Enter without field modifications.

===> 1,updatepr

Creating a TSP Flow

12 Version 7.1

Because this TSP does not yet exist, you will receive the message BLM04030I advising you
that the panel you are creating cannot be found in any panel data set. The Panel Type panel
BLM8CUA0 is displayed.

To identify your panel as a TSP, type 9 and press Enter.

+ BLM8CUA0 ----------------- PANEL TYPE ------------------- 1 of 1-+
| |
| USE...Identify the type of panel that you wish to have created. |
| |
| 1.SELECTION..........Panel containing menu selections. |
| 2.OPTIONS............Panel containing dialog begin options. |
| 3.HELP...............Panel for help or tutorial information. |
| 4.MESSAGE............Panel containing message information. |
| 5.DATA ENTRY.........Panel allowing display or entry fields. |
| 6.ASSISTED ENTRY.....Panel containing value definitions. |
| 7.TABLE..............Panel allowing multiple columns or lines. |
| 8.CONTROL............Panel for testing flow, program invocation. |
| 9.TERMINAL SIMULATOR.Panel for interacting with Info/Management. |
+------------------------- SELECT ITEM ----------------------------+

BLM04030I Panel UPDATEPR was not found in any panel data set.
===> 9

You can enter text that describes the purpose of this TSP. After you do that you are ready to
modify the control data, so type control on the command line and press Enter.

Creating a TSP Flow

13Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

BLM8CU91 TERMINAL SIMULATOR PANEL UPDATE EXTERNALS

+--+
| UPDATEPR PMF |
| |
| This TSP will search the problem records for problems assigned to Smith. |
| It will then reassign these problems to Jones. |
| |
| |
| |
| |
| |
+--+

Modify textual data within the box. To modify control data, type
CONTROL on the command line. When you finish, type END to save or
CANCEL to discard any changes.

===> control

Creating a TSP Flow

14 Version 7.1

This takes you to the Function Line Summary panel BLM1TUCU, where PMF automatically
creates the LABEL control line containing the name of your TSP.

To insert a new line, type i (INSERT) in the line command column for LABEL and press
Enter.

BLM1TUCU FUNCTION LINE SUMMARY LINE 1 OF 1

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

0. ********* ******** ******************************** **** **** ********
i1. LABEL UPDATEPR
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===>

Creating a TSP Flow

15Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

The INSERT line command causes the Function Line Summary panel (BLM6FUNC) to
appear. (If you needed to, you could also have used any of the line commands (UPDATE,
DELETE, COPY, MOVE, AFTER, or REPEAT on panel BLM1TUCU to modify control
information.)

Specify the next control line. For this example, type trace and press Enter. (You can skip
this panel by entering the control line’s name on the command line of the previous panel
when you use the i (INSERT) line command.)

+ BLM6FUNC --------------- FUNCTION NAME --------------- NO PREFIX-+
| |
| USE....Enter name of function to execute for this control line. |
| |
| NOTE...Any commands issued here must be preceded by a ';'. |
| |
| ADDDATA LABEL SETFIELD |
| BRANCH LINK TESTFIELD |
| CLEAR MESSAGE TESTFLOW |
| FINDSDATA MOVEVAR TRACE |
| FINDSJRNL PRINT UNFLATTEN |
| FLATTEN PROCESS USEREXIT |
| ISPEXEC RETURN WORDFIX |
+--------------------- REPLY AS DEFINED ---------------------------+

===> trace

Creating a TSP Flow

16 Version 7.1

The Trace Specification panel (BLM8CU9N) is displayed. The responses shown are default
responses. You can change them by typing changes into the response fields and pressing
Enter. In this sample, accept the defaults for this panel by typing end and press Enter. You
will return to panel BLM1TUCU.

BLM8CU9N TRACE SPECIFICATION PANEL: UPDATEPR

Enter 'TRACE' control data; cursor placement or input line entry allowed.

1. Set TRACE on.......... YES
2. Trace LINK function... NO_

When you finish, type END to save or CANCEL to discard any changes.

===> end

Creating a TSP Flow

17Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

Use the i (INSERT) line command to add the next TSP control line, ADDDATA. To save
time, type ADDDATA on the command line and press Enter.

BLM1TUCU FUNCTION LINE SUMMARY LINE 1 OF 2

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

0. ********* ******** ******************************** **** **** ********
1. LABEL UPDATEPR
i2. TRACE
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> adddata

The ADDDATA control line puts keystroke information into the TSCA command line buffer.

On the ADDDATA SPECIFICATION panel (BLM8CU9A), you enter the keystroke
information into the Literal data field. Because the product interprets this keystroke
information as an immediate response chain (IRC), you cannot enter this information directly
from the command line. You can move the cursor to the Literal data field and type the
information, or type 3 on the command line and enter the information on the assisted-entry
panel.

Creating a TSP Flow

18 Version 7.1

For this example, enter the information directly on the Literal data field.

To specify the search, type:
3,2,6,1,se + pera/smith

in the Literal data field and press Enter.

Type end and press Enter to return to panel BLM1TUCU.

BLM8CU9A ADDDATA SPECIFICATION PANEL: UPDATEPR

Enter 'ADDDATA' control data; cursor placement or input line entry allowed.

1. Structured word index.... ____ Structured word.. __________
2. Get variable data........ NO_ Word acronym..... ______________

3. Literal data............. 3,2,6,1,SE + PERA/SMITH______

When you finish, type END to save or CANCEL to discard any changes.

===> end

Creating a TSP Flow

19Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

Add the next TSP control line, PROCESS.

BLM1TUCU FUNCTION LINE SUMMARY LINE 1 OF 3

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

0. ********* ******** ******************************** **** **** ********
1. LABEL UPDATEPR
2. TRACE
i3. ADDDATA 3,2,6,1,SE + PERA/SMITH NO
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> process

Creating a TSP Flow

20 Version 7.1

The PROCESS line is like an Enter key for the ADDDATA control line. It starts the
processing of data in the TSCA command line reply buffer, in this case, data added by the
preceding ADDDATA line.

The PROCESS Specification panel (BLM8CU9H) is displayed. The Error label name field
identifies the name of the label to which your TSP goes if an error occurs while processing
this control line.

For this example, type 1,error on the command line and press Enter. Then, type end and
press Enter to return to panel BLM1TUCU.

BLM8CU9H PROCESS SPECIFICATION PANEL: UPDATEPR

Enter 'PROCESS' control data; cursor placement or input line entry allowed.

1. Error label name......<R> ERROR___
2. Save existing messages?.. NO_

When you finish, type END to save or CANCEL to discard any changes.

===> end

Add the next TSP control line, TESTFLOW.

Creating a TSP Flow

21Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

BLM1TUCU FUNCTION LINE SUMMARY LINE 1 OF 4

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

0. ********* ******** ******************************** **** **** ********
1. LABEL UPDATEPR
2. TRACE
3. ADDDATA 3,2,6,1,SE + PERA/SMITH NO
i4. PROCESS ERROR
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> testflow

Creating a TSP Flow

22 Version 7.1

The TESTFLOW Specification panel (BLM8CU9K) is displayed. To test for message
BLG19214, type:
1,blg19214,2,message,3,done

on the command line and press Enter. Then, type end and press Enter to return to panel
BLM1TUCU.

BLM8CU9K TESTFLOW SPECIFICATION PANEL: UPDATEPR

Enter 'TESTFLOW' control data; cursor placement or input line entry allowed.

1. Verify name........... BLG19214
2. Verify type........<R> MESSAGE
3. True label.........<R> DONE
4. Get variable data..... NO_
5. Apply not logic....... NO_

When you finish, type END to save or CANCEL to discard any changes.

===> end

Add the next TSP control line, TESTFIELD.

Creating a TSP Flow

23Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

BLM1TUCU FUNCTION LINE SUMMARY LINE 1 OF 5

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

0. ********* ******** ******************************** **** **** ********
1. LABEL UPDATEPR
2. TRACE
3. ADDDATA 3,2,6,1,SE + PERA/SMITH NO
4. PROCESS ERROR
i5. TESTFLOW DONE NO NO
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> testfield

Creating a TSP Flow

24 Version 7.1

The TESTFIELD Specification panel (BLM8CU9J) is displayed. To test for only one record
found, type:
1,tscatplc,4,justone,10,1

on the command line and press Enter. Then, type end and press Enter to return to panel
BLM1TUCU.

BLM8CU9J TESTFIELD SPECIFICATION PANEL: UPDATEPR

Enter 'TESTFIELD' control data; cursor placement or input line entry allowed.

1. TSCA field name....<R> TSCATPLC
2. Get list index?.... ___
3. List index......... 0000

4. True label.........<R> JUSTONE_
5. Get variable data..... NO_
6. Find string anywhere.. NO_
7. Find exact string..... NO_
8. Apply not logic....... NO_
9. Case-sensitive........ NO
10. Test data............. 1_______________________________

When you finish, type END to save or CANCEL to discard any changes.

===> end

Add the next TSP control line, ADDDATA.

Creating a TSP Flow

25Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

BLM1TUCU FUNCTION LINE SUMMARY LINE 1 OF 6

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

0. ********* ******** ******************************** **** **** ********
1. LABEL UPDATEPR
2. TRACE
3. ADDDATA 3,2,6,1,SE + PERA/SMITH NO
4. PROCESS ERROR
5. TESTFLOW DONE NO NO
i6. TESTFIELD JUSTONE 1 NO NO TSCATPLC
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> adddata

Creating a TSP Flow

26 Version 7.1

On panel BLM8CU9A, type
linecmd uu,down last,linecmd uu

in the Literal data field.

Then, type end on the command line and press Enter to return to panel BLM1TUCU.

BLM8CU9A ADDDATA SPECIFICATION PANEL: UPDATEPR

Enter 'ADDDATA' control data; cursor placement or input line entry allowed.

1. Structured word index.... ____ Structured word.. __________
2. Get variable data........ NO_ Word acronym..... ______________

3. Literal data............. LINECMD UU,DOWN LAST,LINECMD UU_

When you finish, type END to save or CANCEL to discard any changes.

===> end

Add the next TSP control line, PROCESS.

Creating a TSP Flow

27Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

BLM1TUCU FUNCTION LINE SUMMARY LINE 1 OF 7

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

0. ********* ******** ******************************** **** **** ********
1. LABEL UPDATEPR
2. TRACE
3. ADDDATA 3,2,6,1,SE + PERA/SMITH NO
4. PROCESS ERROR
5. TESTFLOW DONE NO NO
6. TESTFIELD JUSTONE 1 NO NO TSCATPLC
i7. ADDDATA LINECMD UU,DOWN LAST,LINECMD UU NO
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> process

Creating a TSP Flow

28 Version 7.1

On panel BLM8CU9H, type 1,error on the command line and press Enter. Then, type end
and press Enter to return to panel BLM1TUCU.

BLM8CU9H PROCESS SPECIFICATION PANEL: UPDATEPR

Enter 'PROCESS' control data; cursor placement or input line entry allowed.

1. Error label name......<R> ERROR___
2. Save existing messages?.. NO_

When you finish, type END to save or CANCEL to discard any changes.

===> end

Add the next TSP control line, LABEL.

BLM1TUCU FUNCTION LINE SUMMARY LINE 1 OF 8

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

0. ********* ******** ******************************** **** **** ********
1. LABEL UPDATEPR
2. TRACE
3. ADDDATA 3,2,6,1,SE + PERA/SMITH NO
4. PROCESS ERROR
5. TESTFLOW DONE NO NO
6. TESTFIELD JUSTONE 1 NO NO TSCATPLC
7. ADDDATA LINECMD UU,DOWN LAST,LINECMD UU NO
i8. PROCESS ERROR
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> label

Creating a TSP Flow

29Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

On the Label Specification panel (BLM8CU9G) , type 1,update on the command line and
press Enter.

BLM8CU9G LABEL SPECIFICATION PANEL: UPDATEPR

Enter 'LABEL' control data; cursor placement or input line entry allowed.

1. Label name... ________
2. Literal data. ________________________________

When you finish, type END to save or CANCEL to discard any changes.

===> 1,update

Because update may be data or may be a command, the Response Type panel (BLG00100)
might appear, depending on your installation.

To indicate that update is data, type 2 and press Enter.

+ BLG00100 --------------- RESPONSE TYPE ----------------- COMMAND-+
| |
| RESPONSE TO THE PREVIOUS PANEL COULD BE A COMMAND OR DATA |
| |
| OPTIONS: |
| |
| 1. COMMAND....Treat the response as a command. |
| 2. DATA.......Treat the response as data (not a command). |
| 3. RETURN.....Return to the assisted-entry panel, |
| NOTE: Remaining replies will be ignored. |
| |
| |
| |
+------------------------ SELECT OPTION ---------------------------+

BLG03085I The assisted-entry panel response UPDATE looks like a command.
===> 2

Creating a TSP Flow

30 Version 7.1

Type end on the command line and press Enter to return to panel BLM1TUCU.

BLM8CU9G LABEL SPECIFICATION PANEL: UPDATEPR

Enter 'LABEL' control data; cursor placement or input line entry allowed.

1. Label name... UPDATE__
2. Literal data. ________________________________

When you finish, type END to save or CANCEL to discard any changes.

===> end

Add the next TSP control line, ADDDATA.

BLM1TUCU FUNCTION LINE SUMMARY LINE 1 OF 9

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

0. ********* ******** ******************************** **** **** ********
1. LABEL UPDATEPR
2. TRACE
3. ADDDATA 3,2,6,1,SE + PERA/SMITH NO
4. PROCESS ERROR
5. TESTFLOW DONE NO NO
6. TESTFIELD JUSTONE 1 NO NO TSCATPLC
7. ADDDATA LINECMD UU,DOWN LAST,LINECMD UU NO
8. PROCESS ERROR
i9. LABEL UPDATE
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> adddata

Creating a TSP Flow

31Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

On panel BLM8CU9A, type:
2,1,jones,,9

directly into the Literal data field and press Enter. Then, type end on the command line
and press Enter to return to panel BLM1TUCU.

BLM8CU9A ADDDATA SPECIFICATION PANEL: UPDATEPR

Enter 'ADDDATA' control data; cursor placement or input line entry allowed.

1. Structured word index.... ____ Structured word.. __________
2. Get variable data........ NO_ Word acronym..... ______________

3. Literal data............. 2,1,JONES,,9____________________

When you finish, type END to save or CANCEL to discard any changes.

===> end

Add the next TSP control line, PROCESS.

BLM1TUCU FUNCTION LINE SUMMARY LINE 1 OF 10

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

0. ********* ******** ******************************** **** **** ********
1. LABEL UPDATEPR
2. TRACE
3. ADDDATA 3,2,6,1,SE + PERA/SMITH NO
4. PROCESS ERROR
5. TESTFLOW DONE NO NO
6. TESTFIELD JUSTONE 1 NO NO TSCATPLC
7. ADDDATA LINECMD UU,DOWN LAST,LINECMD UU NO
8. PROCESS ERROR
9. LABEL UPDATE
i0. ADDDATA 2,1,JONES,,9 NO
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> process

Creating a TSP Flow

32 Version 7.1

On panel BLM8CU9H, type 1,error on the command line and press Enter. Then, type end
and press Enter to return to panel BLM1TUCU.

BLM8CU9H PROCESS SPECIFICATION PANEL: UPDATEPR

Enter 'PROCESS' control data; cursor placement or input line entry allowed.

1. Error label name......<R> ERROR___
2. Save existing messages?.. NO_

When you finish, type END to save or CANCEL to discard any changes.

===> end

Add the next TSP control line, TESTFLOW.

BLM1TUCU FUNCTION LINE SUMMARY LINE 1 OF 11

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

0. ********* ******** ******************************** **** **** ********
1. LABEL UPDATEPR
2. TRACE
3. ADDDATA 3,2,6,1,SE + PERA/SMITH NO
4. PROCESS ERROR
5. TESTFLOW DONE NO NO
6. TESTFIELD JUSTONE 1 NO NO TSCATPLC
7. ADDDATA LINECMD UU,DOWN LAST,LINECMD UU NO
8. PROCESS ERROR
9. LABEL UPDATE
10. ADDDATA 2,1,JONES,,9 NO
i1. PROCESS ERROR
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> testflow

Creating a TSP Flow

33Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

On panel BLM8CU9K type:
1,blg0bu00,3,update

on the command line and press Enter.

BLM8CU9K TESTFLOW SPECIFICATION PANEL: UPDATEPR

Enter 'TESTFLOW' control data; cursor placement or input line entry allowed.

1. Verify name........... ________
2. Verify type........<R> PANEL__
3. True label.........<R> ________
4. Get variable data..... NO_
5. Apply not logic....... NO_

When you finish, type END to save or CANCEL to discard any changes.

===> 1,blg0bu00,3,update

Because update is also a command, the Response Type panel (BLG00100) might appear,
depending on your installation.

To indicate that update is data, type 2 and press Enter.

Creating a TSP Flow

34 Version 7.1

+ BLG00100 --------------- RESPONSE TYPE ----------------- COMMAND-+
| |
| RESPONSE TO THE PREVIOUS PANEL COULD BE A COMMAND OR DATA |
| |
| OPTIONS: |
| |
| 1. COMMAND....Treat the response as a command. |
| 2. DATA.......Treat the response as data (not a command). |
| 3. RETURN.....Return to the assisted-entry panel, |
| NOTE: Remaining replies will be ignored. |
| |
| |
| |
+------------------------ SELECT OPTION ---------------------------+

BLG03085I The assisted-entry panel response UPDATE looks like a command.
===> 2

Creating a TSP Flow

35Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

Type end on the command line and press Enter to return to panel BLM1TUCU.

BLM8CU9K TESTFLOW SPECIFICATION PANEL: UPDATEPR

Enter 'TESTFLOW' control data; cursor placement or input line entry allowed.

1. Verify name........... BLG0BU00
2. Verify type........<R> PANEL__
3. True label.........<R> UPDATE
4. Get variable data..... NO_
5. Apply not logic....... NO_

When you finish, type END to save or CANCEL to discard any changes.

===> end

Add the next TSP control line, BRANCH.

BLM1TUCU FUNCTION LINE SUMMARY LINE 1 OF 12

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

0. ********* ******** ******************************** **** **** ********
1. LABEL UPDATEPR
2. TRACE
3. ADDDATA 3,2,6,1,SE + PERA/SMITH NO
4. PROCESS ERROR
5. TESTFLOW DONE NO NO
6. TESTFIELD JUSTONE 1 NO NO TSCATPLC
7. ADDDATA LINECMD UU,DOWN LAST,LINECMD UU NO
8. PROCESS ERROR
9. LABEL UPDATE
10. ADDDATA 2,1,JONES,,9 NO
11. PROCESS ERROR
i2. TESTFLOW UPDATE NO NO

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> branch

Creating a TSP Flow

36 Version 7.1

On the BRANCH Specification panel (BLM8CU9B), type 1,done on the command line and
press Enter to specify the branch label. Then, type end and press Enter to return to panel
BLM1TUCU.

BLM8CU9B BRANCH SPECIFICATION PANEL: UPDATEPR

Enter 'BRANCH' control data; cursor placement or input line entry allowed.

1. Label name............<R> DONE____

When you finish, type END to save or CANCEL to discard any changes.

===> end

To insert after the BRANCH control line, you must scroll down. Type down page on the
command line and press Enter.

BLM1TUCU FUNCTION LINE SUMMARY LINE 1 OF 13

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

0. ********* ******** ******************************** **** **** ********
1. LABEL UPDATEPR
2. TRACE
3. ADDDATA 3,2,6,1,SE + PERA/SMITH NO
4. PROCESS ERROR
5. TESTFLOW DONE NO NO
6. TESTFIELD JUSTONE 1 NO NO TSCATPLC
7. ADDDATA LINECMD UU,DOWN LAST,LINECMD UU NO
8. PROCESS ERROR
9. LABEL UPDATE
10. ADDDATA 2,1,JONES,,9 NO
11. PROCESS ERROR
12. TESTFLOW UPDATE NO NO

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> down page

Creating a TSP Flow

37Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

Add the next TSP control line, LABEL.

BLM1TUCU FUNCTION LINE SUMMARY LINE 13 OF 13

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

i3. BRANCH DONE
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> label

On panel BLM8CU9G, type 1,justone on the command line and press Enter. Then, type
end and press Enter to return to panel BLM1TUCU.

BLM8CU9G LABEL SPECIFICATION PANEL: UPDATEPR

Enter 'LABEL' control data; cursor placement or input line entry allowed.

1. Label name... JUSTONE_
2. Literal data. ________________________________

When you finish, type END to save or CANCEL to discard any changes.

===> end

Creating a TSP Flow

38 Version 7.1

Add the next TSP control line, ADDDATA.

BLM1TUCU FUNCTION LINE SUMMARY LINE 13 OF 14

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

13. BRANCH DONE
i4. LABEL JUSTONE
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> adddata

On panel BLM8CU9Am type
linecmd u,2,1,jones,,9

into the Literal data field and press Enter. Then, type end on the command line and press
Enter to return to panel BLM8TUCU.

BLM8CU9A ADDDATA SPECIFICATION PANEL: UPDATEPR

Enter 'ADDDATA' control data; cursor placement or input line entry allowed.

1. Structured word index.... ____ Structured word.. __________
2. Get variable data........ NO_ Word acronym..... ______________

3. Literal data............. LINECMD U,2,1,JONES,,9__________

When you finish, type END to save or CANCEL to discard any changes.

===> end

Creating a TSP Flow

39Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

Add the next TSP control line, PROCESS.

BLM1TUCU FUNCTION LINE SUMMARY LINE 13 OF 15

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

13. BRANCH DONE
14. LABEL JUSTONE
i5. ADDDATA LINECMD U,2,1,JONES,,9 NO
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> process

On panel BLM8CU9H, type 1,error on the command line and press Enter. Then, type end
and press Enter to return to panel BLM1TUCU.

BLM8CU9H PROCESS SPECIFICATION PANEL: UPDATEPR

Enter 'PROCESS' control data; cursor placement or input line entry allowed.

1. Error label name......<R> ERROR___
2. Save existing messages?.. NO_

When you finish, type END to save or CANCEL to discard any changes.

===> end

Creating a TSP Flow

40 Version 7.1

Add the next TSP control line, LABEL.

BLM1TUCU FUNCTION LINE SUMMARY LINE 13 OF 16

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

13. BRANCH DONE
14. LABEL JUSTONE
15. ADDDATA LINECMD U,2,1,JONES,,9 NO
i6. PROCESS ERROR
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> label

On panel BLM8CU9G, type 1,done on the command line and press Enter.

Then, type end and press Enter to return to panel BLM1TUCU.

BLM8CU9G LABEL SPECIFICATION PANEL: UPDATEPR

Enter 'LABEL' control data; cursor placement or input line entry allowed.

1. Label name... DONE____
2. Literal data. ________________________________

When you finish, type END to save or CANCEL to discard any changes.

===> end

Creating a TSP Flow

41Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

Add the next TSP control line, RETURN.

BLM1TUCU FUNCTION LINE SUMMARY LINE 13 OF 17

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

13. BRANCH DONE
14. LABEL JUSTONE
15. ADDDATA LINECMD U,2,1,JONES,,9 NO
16. PROCESS ERROR
i7. LABEL DONE
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> return

Because RETURN takes no parameters, no specification panel is displayed.

Add the next TSP control line, LABEL.

BLM1TUCU FUNCTION LINE SUMMARY LINE 13 OF 18

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

13. BRANCH DONE
14. LABEL JUSTONE
15. ADDDATA LINECMD U,2,1,JONES,,9 NO
16. PROCESS ERROR
17. LABEL DONE
i8. RETURN
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> label

Creating a TSP Flow

42 Version 7.1

On panel BLM8CU9G, type 1,error on the command line and press Enter.

Then, type end and press Enter to return to panel BLM1TUCU.

BLM8CU9G LABEL SPECIFICATION PANEL: UPDATEPR

Enter 'LABEL' control data; cursor placement or input line entry allowed.

1. Label name... ERROR___
2. Literal data. ________________________________

When you finish, type END to save or CANCEL to discard any changes.

===> end

Add the next TSP control line, PRINT.

BLM1TUCU FUNCTION LINE SUMMARY LINE 13 OF 19

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

13. BRANCH DONE
14. LABEL JUSTONE
15. ADDDATA LINECMD U,2,1,JONES,,9 NO
16. PROCESS ERROR
17. LABEL DONE
18. RETURN
i9. LABEL ERROR
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> print

Creating a TSP Flow

43Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

On the Print Specification panel (BLM8CU9R), type
1,yes,2,yes,3,yes

to specify that you want all information printed.

Type end and press Enter to return to panel BLM1TUCU.

BLM8CU9R PRINT SPECIFICATION PANEL: UPDATEPR

Enter 'PRINT' control data; cursor placement or input line entry allowed.

1. Print the messages........ YES
2. Print the screen.......... YES
3. Print the TSCA............ YES

When you finish, type END to save or CANCEL to discard any changes.

===> end

Add the next TSP control line, RETURN.

Creating a TSP Flow

44 Version 7.1

BLM1TUCU FUNCTION LINE SUMMARY LINE 13 OF 20

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

13. BRANCH DONE
14. LABEL JUSTONE
15. ADDDATA LINECMD U,2,1,JONES,,9 NO
16. PROCESS ERROR
17. LABEL DONE
18. RETURN
19. LABEL ERROR
i0. PRINT
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> return

Creating a TSP Flow

45Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

To complete the TSP, type end on the command line and press Enter.

BLM1TUCU FUNCTION LINE SUMMARY LINE 13 OF 21

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

13. BRANCH DONE
14. LABEL JUSTONE
15. ADDDATA LINECMD U,2,1,JONES,,9 NO
16. PROCESS ERROR
17. LABEL DONE
18. RETURN
19. LABEL ERROR
20. PRINT
21. RETURN
*** ********* ******** ******************************** **** **** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===> end

Type end and press Enter again.

BLM8CU91 TERMINAL SIMULATOR PANEL UPDATE EXTERNALS

+--+
| UPDATEPR PMF |
| |
| This TSP will search the problem records for problems assigned to Smith. |
| It will then reassign these problems to Jones. |
| |
| |
| |
| |
| |
+--+

Modify textual data within the box. To modify control data, type
CONTROL on the command line. When you finish, type END to save or
CANCEL to discard any changes.

===> end

Creating a TSP Flow

46 Version 7.1

To file the TSP, type 6 on the command line and press Enter.

This option writes the TSP to your write panel data set. For more information about this
panel, see “Using the Terminal Simulator Panel Update Panel (BLM8CU90)” on page 48.

+ BLM8CU90 ------- TERMINAL SIMULATOR PANEL UPDATE ----------- PMF-+
| |
| OPTIONS: |
| |
| 1. ABSTRACT....Modify description of this panel. |
| 2. COMMON......Modify common panel control information. |
| |
| 4. SUMMARY.....Display summary of control information. |
| 5. TEST........Process panel in test mode. |
| 6. FILE........Panel update is complete, store panel. |
| |
| |
| |
+------------------------- SELECT OPTION --------------------------+

===> 6

Creating a TSP Flow

47Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

After you file your TSP, you return to the Panel Name Entry panel where you started. The
message tells you that your TSP has been filed in your write panel data set.

To leave the panel, type end and press Enter.

BLM8CU00 PANEL NAME ENTRY UPDATE

Identify panel to be updated; cursor placement or input line entry allowed.

1. Panel name.................<R> UPDATEPR
2. Data set definition label..... ________

To enter the panel update dialog, press Enter without field modifications.

BLM04015I Panel UPDATEPR was written to the WRITE panel data set. Processing c+
===>

Copy the TSP to a read panel data set before running it. For information on copying panels,
refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide. For
information on how to run a TSP, see “Running Terminal Simulator Panels (TSPs) and
Terminal Simulator Execs (TSXs)” on page 257.

Using the Terminal Simulator Panel Update Panel (BLM8CU90)
After you exit panel BLM8CU91, panel BLM8CU90 is displayed. This panel gives you the
following options:

Abstract
To change (insert, delete, update, copy, or move) control lines in an existing TSP
and modify the descriptive text of the TSP.

Common
To limit the starting of a TSP to a single panel.

Summary
To change (delete or update) control lines in a TSP.

Test To test a TSP in an interactive environment.

File To save your TSP in your write panel data set.

Creating a TSP Flow

48 Version 7.1

Except for Option 2, Common, these options are similar in function to the options on other
Tivoli Information Management for z/OS update panels and are not discussed here. The
Tivoli Information Management for z/OS Panel Modification Facility Guide contains
additional information about these options.

You can use Common to ensure that your TSP can only be started when a specific panel is
the current panel.

Note: Be careful when using Common. Specify this option only if your TSP must only be
started from a specific panel. Do not specify a starting panel if you want to run your
TSP from more than one panel. As an alternative, you can use the TESTFLOW
control line. For more information about the TESTFLOW control line, see
“TESTFLOW” on page 180.

To specify a starting panel from panel BLM8CU90, type 2 and press Enter. On the
Common Update panel BLM8CU97, enter a panel name in the Starting panel name field.

BLM8CU97 COMMON UPDATE PANEL: ________

Enter common panel control data; cursor placement or input line entry allowed.

1. User service level....... ________ Communicating panel.. ___
2. Starting panel name...... ________ Dialog section....... __

IBM release level.... __
IBM PTF level........ __
IBM FMID/APAR level.. ________
Panel modified....... ___
Date last altered.... __________
Time last altered.... _____
User last altered.... ________

When you finish, type END to save or CANCEL to discard any changes.

===>

If the name entered in the Starting panel name field does not match that of the current
Tivoli Information Management for z/OS panel at the time you try to run the TSP, Tivoli
Information Management for z/OS issues an error message and does not start the TSP. For
more information on how a starting panel name can affect the running of a TSP, see
Running Terminal Simulator Panels (TSPs) and Terminal Simulator Execs (TSXs).

The Tivoli Information Management for z/OS Integration Facility Guide is a good source of
further examples of TSPs and TSP control line usage; it contains a list of all Integration
Facility TSPs and what they do.

Examples: Adding or Updating Freeform Text
You can use the ADDTEXT and REPTEXT TSX control lines to add or update text.

Using BLM8CU90

49Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

You can also add or update freeform text by using a combination of USEREXIT,
ADDDATA, and PROCESS control lines in your TSP:

¶ Use the USEREXIT control line to change the current table panel line field in the
TSCA.

¶ Use the ADDDATA control line to insert scroll commands, the FIND command, or the
LINECMD command into the command line reply buffer.

¶ Use the PROCESS control line to run the command that is in the reply buffer. A new
line becomes the current table panel line.

Note: If you want to add or update freeform text in a TSP, you must use the Tivoli
Information Management for z/OS editor. You must set this condition in the user
profile. For information about user profiles, refer to the Tivoli Information
Management for z/OS User’s Guide.

For example, assume that previous TSP processing brought a problem record in for update
and the current panel is the Problem Text Entry panel (BLG0B010). Here, you select the
type of freeform text that you want to enter. To ensure that the TSP uses the Tivoli
Information Management for z/OS editor to enter freeform text, the TSP sets your profile so
that the Use Info editor for SRCs and TSPs? field is YES, then it selects the type of
freeform text that you want to enter. At this point, the current panel is a table panel, and the
current line is the first line of text. The TSP then uses the ADDDATA, PROCESS, and
USEREXIT control lines to add text to the bottom of the freeform text. When it finishes, the
TSP files the problem record and resets your profile to its original values.

This example shows one way this can be written. The record must already be in update
mode. From a problem summary panel, this TSP adds a line of freeform text when it is used
with the correct user exit. The TSP can be started using the RUN command and the TSP
name (in this example, USRTSP32). You can also set up an alias name for the TSP by
adding an entry to the ALIAS record. This record correlates the alias name to the TSP. The
Tivoli Information Management for z/OS Program Administration Guide and Reference
contains additional information about the ALIAS record.
LABEL USRTSP32
ADDDATA SUS,
ADDDATA PROFILE,1,52,YES,END,9
ADDDATA RES,
PROCESS ERROR

(ABOVE SECTION SETS PROFILE TO USE THE INFO EDITOR)

ADDDATA 8,1
PROCESS ERROR

(ENTER INTO FREEFORM DESCRIPTION TEXT PANEL)

ADDDATA DO LAST,UP 1,
PROCESS ERROR

(SET CURRENT LINE FOR THE TESTFIELD THAT FOLLOWS)

LABEL LOOPTOP
TESTFIELD LOOPEND 0 TSCACTBL YES

(CHECK FOR TSCACTBL=0, IF THERE IS TEXT THEN GO TO LOOPEND)
(IF THERE IS NO TEXT THEN LOOP TILL IT FINDS TEXT)
(NOT LOGIC IS SET TO YES)

ADDDATA UP 1,
PROCESS ERROR
BRANCH LOOPTOP (UNCONDITIONAL BRANCH)

(END OF LOOP)

Adding or Updating Freeform Text

50 Version 7.1

LABEL LOOPEND
ADDDATA LINECMD I,
ADDDATA DO 1,
PROCESS ERROR
USEREXIT TBLDATA NEXT NO

(THIS SECTION ADDS THE FREEFORM TEXT)

ADDDATA END,END,PROF,8
PROCESS ERROR

(RESETS THE PROFILE TO THE LAST PERMANENTLY SAVED STATUS)

LABEL ERROR
RETURN

This example also adds freeform text to a record. In “Assembler Code User Exit Example”
on page 303, you can find a user exit routine written in assembler language that works with

this TSP. The record is already in update mode or create mode.
1 LABEL ADDFFTXT
2 ADDDATA PROFILE,1,52,YES,END,9 NO
3 PROCESS ERROR

(SET USER PROFILE TO USE INFO EDITOR)
4 ADDDATA 8,1 NO
5 PROCESS ERROR

(ENTER FREEFORM DESCRIPTION TEXT)
6 ADDDATA LINECMD I,DO 1 NO
7 PROCESS ERROR

(MOVE CURSOR TO CORRECT LINE)
8 USEREXIT TBLDATA NEXT NO NO

(CALL USEREXIT WITH DATA TO BE ADDED)
9 ADDDATA END,END,PROF,8 NO
10 PROCESS ERROR

(FILE RECORD WITH FREEFORM TEXT ADDED AND
RESET THE USER PROFILE)

11 LABEL ERROR
12 RETURN

Adding or Updating Freeform Text

51Terminal Simulator Guide

2.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

P

Adding or Updating Freeform Text

52 Version 7.1

Designing and Creating a Terminal
Simulator EXEC (TSX)

Overview
A TSX is a REXX EXEC that can be run instead of a TSP anywhere that a TSP can run.
Refer to “Running Terminal Simulator Panels (TSPs) and Terminal Simulator Execs (TSXs)”
on page 257 for additional information on all of the methods that you can use to invoke

TSPs and TSXs.

A TSX, like a TSP, enables you to perform Tivoli Information Management for z/OS tasks.
The intent of the TSX is to allow a REXX user to customize Tivoli Information
Management for z/OS without having to learn PMF and TSP coding skills.

A callable routine, BLGTSX, is provided that the TSX can call to perform the function of
most TSP control lines. Control lines define functions to Tivoli Information Management for
z/OS. As with a TSP, you use control lines in a TSX to define what you want to do. In most
instances, control lines that are available to a TSP are available to a TSX. For example, the
control line FINDSDATA is of importance to both the TSP user and the TSX user and is
therefore made available to TSPs and TSXs. However, the control line TESTFIELD is
available only to a TSP user because a TSCA field value can be tested directly with REXX
in a TSX. Refer to “Creating Terminal Simulator Control Lines” on page 61 for a complete
list of the control lines that are available in a TSP, a TSX, or both.

TSX control lines, keyword values, and some parameter values can be entered in lower or
mixed case. To see whether a parameter can be entered in lower or mixed case, see the
specific control line in “Creating Terminal Simulator Control Lines” on page 61.

In addition, you can pass an argument to a TSX (via the RUN command or via the LINK
control line) which the TSX can parse into parameters as needed. This feature enables you to
write a single TSX that performs actions that may vary, based on the parameters, rather than
writing many similar TSXs. For example, a TSX to flatten a record can be passed the RNID
of the record to be flattened. The Tivoli Information Management for z/OS User’s Guide
contains additional information on the RUN command. For additional information on the
LINK control line, refer to “LINK” on page 130.

If you have ever written a TSP, you know that even simple tasks like using a counter to
control a loop can be difficult. With a TSX, you have all of the functions of a high level
language available to you.

3

53Terminal Simulator Guide

3.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

X

TSX Control Lines
Within a TSX, Tivoli Information Management for z/OS services (that is, control lines) are
performed by calling module BLGTSX. Parameters are provided with the call to indicate the
selected control line, options, and data. Tivoli Information Management for z/OS also sets
REXX variables with the values of the following TSCA fields when the TSX is initialized
and after each call to BLGTSX (note that the variable names are the same as the names of
the TSCA fields):

TSCACMOF Decimal

TSCACMRB Character

TSCACPNL Character

TSCACRID Character

TSCACTBL Decimal

TSCAFRES Decimal

TSCAFRET Decimal

TSCALFDB Character

TSCALFID Character

TSCAMTBL Decimal

TSCAPRIV Character

TSCARPD Character

TSCARRB Character

TSCARSD Character

TSCASDF Character

TSCASESS Character

TSCASUBP Pointer

TSCASUSP Decimal

TSCATBLL Character

TSCATLIX Decimal

TSCATPLC Decimal

TSCATPLN Decimal

TSCAUFLD Character

TSCAUPTR Pointer

TSCAVDA (contents of variable area) Character

TSCAVPH Character

Character format fields will have trailing blanks and hexadecimal zeros removed. Binary fields will be
converted to decimal in character format with no leading zeros. Pointer fields will be converted to
hexadecimal in character format.

Note: You can use the SETTSCA control line to change the values of the TSCAUFLD, TSCAUPTR, and
TSCATLIX fields. Additional information on the SETTSCA control line can be found in “SETTSCA”
on page 174. You cannot change the value of any TSCA fields by assigning values to the

corresponding REXX variables.

Upon completion of a PROCESS control line, any messages currently on the message chain will be stored in
the REXX compound variable BLG_MESSAGE. with the count of messages (TSCAMSGC) contained in
variable BLG_MESSAGE.0. Refer to “Message Checking in a TSX” on page 253 for additional information
on checking messages in a TSX.

TSX Control Lines

54 Version 7.1

If a call to BLGTSX has a parameter error (for example, a required parameter not specified), it will cause a
REXX syntax error. Messages describing syntax errors are contained in compound variable BLG_ERROR.,
with the count of errors contained in variable BLG_ERROR.0. Refer to “Syntax Checking in a TSX” on
page 253 for additional information on syntax checking in a TSX.

To perform a control line function within the TSX, call routine BLGTSX passing the control line name,
options, and data (see “Creating Terminal Simulator Control Lines” on page 61 for details). After the
processing of each control line, your routine should check the REXX variables associated with the TSCA
fields set by the control line to determine the results of the control line processing.

To verify that the TSX is starting on the correct panel (simulating the function of the Starting panel name
field in a TSP), begin your EXEC with a test of variable TSCACPNL, that contains the current panel name.
If TSCACPNL does not contain the correct panel name, code your EXEC to issue a message and exit.

Graphic Character Substitutions using REXX Variable BLGSYMB
The Graphic Character Substitutions feature of Tivoli Information Management for z/OS
enables you to use substitute characters for four of the graphic characters that Tivoli
Information Management for z/OS uses. The code points for these four characters are X'5F'
(the “not” symbol ¬), X'4F' (the “or bar” symbol |), X'5A' (the “exclamation” symbol !),
and X'7C' (the “at” symbol @), all on code page 37. If you do not use Graphic Character
Substitutions, the characters that you use are the ones that are at those code points on your
code page. Graphic Character Substitutions lets you specify other characters as substitutes, in
which case you would use the substitution characters.

TSXs that code “not” symbols or “or bar” symbols in data that they pass to Tivoli
Information Management for z/OS for processing must use the appropriate characters. Rather
than coding these characters in your TSXs, your TSXs can retrieve the characters to be used
as the “not” symbol and “or bar” symbol from the REXX variable BLGSYMB. This ensures
that your TSXs specify the proper characters for the “not” symbol and “or bar” symbol as
defined by your installation.

BLGSYMB is a REXX variable that is set when a TSX is initialized. It is a string that
contains:
1. The character to be used for the “not” symbol followed by a blank, followed by
2. the character to be used for the “or bar” symbol followed by a blank, followed by
3. the character to be used for the “exclamation” symbol followed by a blank, followed by
4. the character to be used as the “at” symbol

In general, TSXs can ignore everything beyond the “or bar” symbol because the
“exclamation” symbol and the “at” symbol do not initiate Tivoli Information Management
for z/OS processing when included in data passed from the TSX to Tivoli Information
Management for z/OS.

The following example shows how you can code your TSX to parse the “not” symbol and
the “or bar” symbol from the REXX variable BLGSYMB. In the example, the “not” symbol
and the “or bar” symbol are parsed and saved in variables called notsign and orbar. Because
the TSX does not need the “exclamation” or “at”, the rest of the data in BLGSYMB is
ignored.
parse var BLGSYMB notsign orbar . /* Get the user's not symbol and

or bar symbol from REXX variable BLGSYMB */

TSX Control Lines

55Terminal Simulator Guide

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

3.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

X

After parsing BLGSYMB, your TSX should code the variable that contains the parsed “not”
symbol in data being passed to Tivoli Information Management for z/OS for processing
rather than coding the “not” symbol in that data. Likewise, your TSX should do the same for
the “or bar” symbol. This example builds a response that subsequently will be passed to
Tivoli Information Management for z/OS for processing. It uses the “not” symbol to remove
the data from the fourth column on a list processor table panel. Previously you may have
coded the “not” symbol in the response:
irc='LINECMD L4,¬'

Instead of coding the “not” symbol, which might not be the character to use for “not”
symbol processing (depending on your installation), you should code the variable containing
the “not” symbol that was parsed from BLGSYMB:
irc='LINECMD L4,'notsign

You could also do the same for the “or bar” variable. For example:
irc='LINECMD L4,'orbar

API applications can call the HLAPI extension BLGTSPCH to retrieve the characters to be
used as the “not” symbol and the “or bar” symbol in data being passed to Tivoli Information
Management for z/OS for processing. For a description of this TSX, refer to the Tivoli
Information Management for z/OS Application Program Interface Guide.

TSX Access
In order to invoke a TSX, you must allocate a DD statement BLGTSX that points to the
data set that contains your REXX EXECs before logging onto Tivoli Information
Management for z/OS. Data set BLM.SBLMTSX is shipped with Tivoli Information
Management for z/OS, and this data set contains the TSXs used by immediate notification.
Therefore, the BLGTSX DD should allocate data set BLM.SBLMTSX.

Note: You may need to substitute the data set name used at your installation for the
BLM.SBLMTSX data set name given above.

You can also concatenate multiple data sets to the BLGTSX DD. Create another data set for
user modified or created TSXs, and add it to the BLGTSX DD concatenation. Refer to the
Tivoli Information Management for z/OS Planning and Installation Guide and Reference for
more information on starting Tivoli Information Management for z/OS and allocating the
BLGTSX data set where your TSX REXX EXECs reside.

Creating a TSX
This section will walk you through the steps required to create and run a sample TSX. The
sample describes how to call BLGTSX with the necessary parameters for the MESSAGE,
READDICT, PROCESS, and GETLIST control lines. The sample TSX will show you how
the output from the TSX READDICT control line is used as input to the TSX GETLIST
control line. You will also see how EXECIO can be used to copy information from your
TSX REXX compound variables to a data set. The TSX even takes care of allocating and
freeing the output data set so that the contents of the data set can be displayed to the user
when the TSX ends. This section also provides some TSX error handling techniques.

Note: Because most data entry and display operations on date fields use external date
format, and because different users can use different external date formats, it is

Graphic Character Substitution

56 Version 7.1

|
|
|
|
|
|
|

|

|
|
|

|

|

|

|
|
|
|

|

|

|
|

|
|

recommended that you use internal date format YYYY/MM/DD for all date
processing. Use BLGIDATE to convert any date values retrieved from a record to
internal format, then perform any required processing, and then use BLGEDATE to
convert an internal date to external date format before entering the date in a field
with the PROCESS control line. The user exits BLGIDATE and BLGEDATE are
described in “General-purpose User Exits” on page 279.

TSX Objective: A user would like to be able to write the list processor data associated with
s-word index S1416 from any given problem record to a data set. The user wants to browse
the data set from Tivoli Information Management for z/OS once the list processor data has
been written.

You can create a TSX that is passed the RNID of the record that contains the list processor
data. The TSX will use the GETLIST control line to retrieve the list processor data. Once
GETLIST has retrieved the list processor data, you can use EXECIO to write the list
processor data to a data set. The REPORT command has a PRINT/BROWSE facility that
will allow the TSX to display the data set which contains the list processor data to the user
once the TSX has finished running.

1. Allocate the BLGTSX DD:
TSO ALLOC FI(BLGTSX) DA('my.tsx.execs''BLM.SBLMTSX') SHR REUSE

2. Create a member called PRTLPTSX in your TSX EXEC data set.

3. Type in the sample contained in 58.

4. Create or update the ALIAS record so that it contains an entry for the sample TSX, and
then file the ALIAS record. In the example below, the alias name is LP.

Note: This step is optional. You do not have to create an entry for the TSX in the
ALIAS record.

===>

BLGLALIS ALIAS NAME ENTRY LINE 1 OF 22

USE....List alias name, actual name, and type (panel or REXX EXEC).
RECORD: ALIAS

ALIAS ACTUAL ALIAS ACTUAL
NAME NAME TYPE NAME NAME TYPE

'' LP______ PRTLPTSX X ''''' ________ ________ _
'' ________ ________ _ ''''' ________ ________ _
'' ________ ________ _ ''''' ________ ________ _
'' ________ ________ _ ''''' ________ ________ _
'' ________ ________ _ ''''' ________ ________ _
'' ________ ________ _ ''''' ________ ________ _
'' ________ ________ _ ''''' ________ ________ _
'' ________ ________ _ ''''' ________ ________ _
'' ________ ________ _ ''''' ________ ________ _
'' ________ ________ _ ''''' ________ ________ _
'' ________ ________ _ ''''' ________ ________ _

Line Cmds: A=After B=Before C=Copy D=Delete E=Erase I=Insert
L=Line entry M=Move R=Repeat

Type DOWN, UP, LEFT, or RIGHT to scroll the panel, or type END to exit.

Creating a TSX

57Terminal Simulator Guide

|
|
|
|
|
|

| 3.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

X

5. Verify that the REXX variable PNLNAME in the sample in 58 is assigned the name of
your problem record summary panel. The default is BLG0BU00.

6. Allocate the data set that you specify for the variable MYDSNAME in the sample in 58.
The default is MARYANN.TSX.OUTPUT.

7. Create a record on your database that contains list processor data that is associated with
s-word index S1416. If you choose, you may use a different s-word index in the sample.
Also, remember the RNID of the record. For this example, assume that the RNID is 46.

Note: S-word index S1416 is associated with problem record symptom data, specifically
with device names. The list processor panel is BLGLDEVL, and the assisted-entry
panel is BLG6DEVL. From the problem record summary panel, BLG0BU00,
choose selection 4. Symptom data to flow to the problem symptom data panel,
BLG0B402, and then choose selection 2. Device names to flow to the list
processor panel, BLGLDEVL.

8. In step 4, it was suggested that you create an ALIAS record for the member PRTLPTSX.
If you did so, run the TSX passing the RNID of the record that you created in step 7.
Type RUN LP 46 on the Tivoli Information Management for z/OS command line,
passing parameter 46, the RNID of the record that you created in step 7. (If you chose
not to create an ALIAS record, type RUN PRTLPTSX 46 on the command line to pass
parameter 46.)

9. The list processor data will be displayed to the user in a data set in BROWSE mode.
When the user exits the data set, the panel from which the TSX was run is displayed.

This TSX retrieves list processor data associated with a record and writes it to a data set.
/***/
/* This TSX is passed an RNID on invocation. The TSX then uses */
/* the GETLIST control line to retrieve the List Processor data */
/* associated with the record. If the retrieve is successful, EXECIO*/
/* is used to print the List Processor data to a data set. */
/***/
SIGNAL ON SYNTAX /* Call SYNRTN if any syntax or TSX*/

exec_fmid='HOYB100' /* Set current maintenance level */
parse source . . execname . /* Get exec name */
if blgtrace=1 then /* TSP/TSX tracing requested? */

do /* Enable tracing */
say '**** Entering' left(execname,8) '(level='exec_fmid') ****'
trace_option='Results' /* Set trace option */

end /* Enable tracing */
else /* TSP/TSX tracing not requested */

trace_option='Normal' /* Use default trace option */
trace (trace_option) /* Use requested trace option */

parse var BLGSYMB notsign orbar . /* Get local not sign/or bar */

PARSE SOURCE . . EXECNAME . /* Get EXEC name. */

MYDSNAME="'MARYANN.TSX.OUTPUT'"; /* The output data set name. */

PARSE ARG RNID . /* Get the RNID passed on the RUN command */

IF RNID='' THEN, /* Is there an RNID? */
DO;

MSGTEXT='This TSX requires an RNID on the RUN command.';
CALL BLGTSX 'MESSAGE',,MSGTEXT;
EXIT;

END;

Creating a TSX

58 Version 7.1

RESPONSE=';UPDATE R' RNID; /* RESPONSE contains the command to */
/* UPDATE the RNID. */

CALL BLGTSX 'PROCESS',RESPONSE,'DISCARD'; /* UPDATE the record and */
/* DISCARD messages. */

IF TSCAFRET/=0 THEN, /* Was the problem record successfully */
/* updated? */

DO;
EXIT;

END;

PNLNAME='BLG0BU00';
IF TSCACPNL=PNLNAME THEN, /* The RNID was successfully updated, */

/* and the record is a problem record. */
DO;

SWORD='S1416';
CALL BLGTSX 'READDICT',SWORD; /* Get s-word from dictionary */
/* The s-word will be stored in TSCARSD. */
ROOTSWORD=TSCARSD; /* The root s-word of the LP data.*/
BLG_LIST. = ''; /* Initialize the array. */
BLG_LIST.0 = 0; /* Initialize the # of array elements. */
CALL BLGTSX 'GETLIST',ROOTSWORD;
/* The LP data is stored in REXX compound variable BLG_LIST. */
/* The number of elements in the array is stored in BLG_LIST.0.*/

END;
ELSE

DO;
RESPONSE=';CANCEL'; /* CANCEL out of the record. */
CALL BLGTSX 'PROCESS',RESPONSE,'DISCARD';
MSGTEXT='The summary panel is not' PNLNAME'.';
CALL BLGTSX 'MESSAGE',,MSGTEXT;
EXIT;

END;

IF TSCAFRET=0 & TSCAFRES=0 THEN, /* GETLIST successful */
DO;
/* Write the list data to a data set. The data set is defined as */
/* RECFM=VB */

"ALLOC FI(MYDD) DA("MYDSNAME")";
'EXECIO * DISKW' MYDD '(FINIS STEM BLG_LIST.)'
"FREE FI(MYDD)";
DSNAME=STRIP(MYDSNAME,'B',"'"); /* Get rid of quotes. */
/* Browse the LP data. */
RESPONSE=';CANCEL,;REPORT,10,1,'DSNAME',2,BROWSE,3,NO,,';
CALL BLGTSX 'PROCESS',RESPONSE,'DISCARD';

END;
ELSE

DO;
RESPONSE=';CANCEL'; /* Put the user back on the

panel that they started on. */
CALL BLGTSX 'PROCESS',RESPONSE,'DISCARD';
MSGTEXT='The record does not contain LP data for S1416.';
CALL BLGTSX 'MESSAGE',,MSGTEXT;

END;

if blgtrace=1 then /* TSP/TSX tracing requiested? */
say '**** Leaving ' left(execname,8 '(level='exec_fmid') ****'

EXIT

/* Subroutine to issue a message */
/* arg(1)=Message Type, arg(2)=Message ID, arg(3..n)=message inserts */
issuemsg:

if arg(1)='SAY' then /* If message type is SAY */

Creating a TSX

59Terminal Simulator Guide

3.
D

esig
n

in
g

an
d

C
reatin

g
a

T
S

X

msgtype='BUILD' /* treat as BUILD for ctl line */
else /* A message type other than SAY */

msgtype=arg(1) /* Arg 1 is message type */
insert.1=execname /* Use TSX name as parameter 1 */
inscnt=1 /* TSX name is insert number 1 */
do argno=3 to arg() /* Copy args to insert. stem */
do argno=3 to arg() /* Copy args to insert. stem */

inscnt=inscnt+1 /* Increment insert count */
insert.inscnt=arg(argno) /* Copy next arg to insert. var */

end /* Set insert. stem values */
CALL BLGTSX 'MESSAGE',arg(2),,msgtype,,'INSERT.',inscnt
if arg(1)='SAY' then /* If message type is SAY */

say tscavda /* Output the message */
return

/* Subroutine to display helpful information in the event of a syntax */
/* or TSX control line parameter error */
syntax:

errsigl=sigl /* Save failing line number */
call issuemsg 'SAY',20200,sigl /* Show failing line number */
say strip(SourceLine(errsigl),'T') /* and the line source */
if symbol('BLG_ERROR.0')='VAR' then /* Control line errors? */

do i = 1 to BLG_ERROR.0 /* Loop through the messages */
say BLG_ERROR.i /* Display error message */

end
/* If API active then set syntax error reason code */
if blgapi=1 then

do
Call BLGTSX 'SetAPIData','HICARETC',12
Call BLGTSX 'SetAPIData','HICAREAS',165

end
exit 8

Creating a TSX

60 Version 7.1

Creating Terminal Simulator Control Lines

This chapter describes the TSP and TSX control lines. This table shows which control lines
are supported by TSPs, which control lines are supported by TSXs, and which control lines
are supported by both TSPs and TSXs. When a TSP control line is not available in a TSX,
an explanation is provided.

Table 1. Summary of TSP and TSX control lines

Control Line TSP TSX
Additional Explanation of

TSX Availability

ADDDATA X Note 2

ADDLIST X

ADDSDATA X

ADDTEXT X

BRANCH X Note 1

CLEAR X Note 1

CLOSERRES X Note 5

CLOSESOCKET X

DELLIST X

DELSDATA X

DELTEXT X

DEQMAIL X

FINDSDATA X X

FINDSJRNL X X

FINDTEXT X

FLATTEN X X

GETAPIDATA X

GETLIST X

GETRDATA X Note 5

GETSCREEN X

GETTEXT X

ISPEXEC X Note 1

LABEL X Note 1

LINK X X

MESSAGE X X

MOVEVAR X Note 1

OPENRRES X Note 5

4

61Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Table 1. Summary of TSP and TSX control lines (continued)

Control Line TSP TSX
Additional Explanation of

TSX Availability

OPENSOCKET X

PRINT X X

PROCESS X X

PUTRDATA X Note 5

QUERYRRES X Note 5

QMAIL X

READDICT X

READSOCKET X

RELEASERRES X Note 5

REPLIST X

REPTEXT X

RETURN X Note 1

SETAPIDATA X

SETFIELD X Note 1

SETRRES X Note 5

SETTSCA X

TESTFIELD X Note 1

TESTFLOW X Note 1

TRACE X Note 1

UNFLATTEN X X

USEREXIT X X Note 4

WORDFIX X Note 3

WRITESOCKET X

Note: Explanation Details:

1 Function available with standard program flow controls in the REXX programming
language.

2 Incorporated into PROCESS control line.

3 The TSX ADDSDATA control line can be used to perform the WORDFIX-like add function
and the DELSDATA can be used to perform the WORDFIX-like delete function. The
change function of WORDFIX is not supported in a TSX, so in order to perform the change
function, you will need to use the LINK control line to link to a TSP to perform
WORDFIX.

4 Supports user exits that do not require that information be passed on the TSP USEREXIT
control line panels (BLM8CU9P, BLM8CU9Q).

5 Used in Remote Data Resource Service. These TSXs are described in “Remote Data
Resource Terminal Simulator Control Lines” on page 241.

62 Version 7.1

ADDDATA
This control line simulates data responses that you enter on the command line of a panel in
interactive mode. When creating the ADDDATA control line, you can specify the responses
you want to enter. When the TSP is run, the responses that you specified earlier are chained
in the TSCA command line reply buffer (TSCACMRB). When you have data from one or
more ADDDATA control lines chained in the command line reply buffer, you need a
PROCESS control line following the ADDDATA control lines to act as the Enter key.

In TSX usage, the PROCESS control line provides the function of the combination of the
TSP control lines ADDDATA and PROCESS. Refer to “The PROCESS TSX Control Line”
on page 155 for additional information on how to perform TSP ADDDATA functions in a

TSX.

The ADDDATA control line has many uses. The phone number example described in
“Examples” on page 1 is one way you could use it. (Your employee in charge of analyzing
problem records has moved and received a new phone number.) Assume that the person who
moved is uniquely identified in the problem database by the assignee name of Smith. With
this information you can develop an immediate response chain (IRC) that locates all the
records that require a phone number change. This is an example of how to use an
ADDDATA control line to put this IRC into the command line reply buffer:
LABEL UPDATEPR
ADDDATA 6,1,SE + PERA/SMITH STAC/OPEN (Entered in literal data field)
PROCESS ERROR...

RETURN

Several variations for creating the ADDDATA control line for this IRC are given later in this
section.

Creating an ADDDATA Control Line
Use the following ADDDATA SPECIFICATION panel to create an ADDDATA control line.

ADDDATA

63Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

General Rules
You must enter information in either the Structured word index field or the Literal data
field, or enter YES in the Get variable data field.

Field Descriptions
1. Structured word index

Valid reply
The index key of an s-word in the dictionary data set or no reply.

An entry in this field indicates that you want the s-word associated with the index
added to the data in the command line reply buffer.

Default
No reply.

2. Get variable data

Valid reply
YES, NO, or no reply.

When you enter NO or make no reply, this field has no effect. When you enter
YES, it indicates that you want the variable data added to the data in the command
line reply buffer. If you put YES in the Get variable data field when entering data
in either Structured word index or Literal data, the s-word or literal data is added
to the command line reply buffer first, followed by the variable data.

Default
NO

Restrictions
This field has no restrictions on specifying a value when you create the panel.
However, if this field is set to YES, a user exit routine must move data into the

BLM8CU9A ADDDATA SPECIFICATION PANEL: ________

Enter 'ADDDATA' control data; cursor placement or input line entry allowed.

1. Structured word index.... ____ Structured word.. ______________
2. Get variable data........ NO_ Word acronym..... ______________

3. Literal data............. 6,1,SE + PERA/SMITH STAC/OPEN___

When you finish, type END to save or CANCEL to discard any changes.

===>

ADDDATA

64 Version 7.1

variable data area and set the variable data length, or the MOVEVAR control line
must move data into the variable data area before processing the ADDDATA control
line.

The TSCA contains fields for a pointer to the variable data area (TSCAVDAP) and
for the length of that data (TSCAVDAL). The pointer field contains the address of a
512-character variable data area that is allocated when the TSP environment is
initialized. Your user exit routine must not modify this pointer.

3. Literal data

Valid reply
A string of 1 to 32 characters of data.

A valid entry in this field indicates that you want the character string added to the
data in the command line reply buffer. You enter the data, including any required
commas, exactly as you want it added to the command line reply buffer. The data
that is entered in this field is collected in the case entered by the user.

Default
No reply.

Restrictions
If the data contains an SBCS comma, you must enter the data in the Literal data
field, not on the command input line. When an SBCS comma is required as the first
or only character of the Literal data field, precede the comma with an SBCS space
character.

Structured word

If you enter an s-word index when you create the control line, this field is filled in
automatically. It displays the actual s-word from the dictionary.

Word acronym

If you enter an s-word index when you create the control line, this field is filled in
automatically. It is part of the s-word entry in the dictionary. This field could be blank if a
word acronym does not exist for the entry.

Usage Notes and Examples
You can implement several variations to the example on the preceding pages. For instance,
suppose you want to create an ADDDATA control line to locate records for people other
than Smith. You can define their names in a data set and use the Get variable data field in
conjunction with a user exit routine. For now, assume that a user exit routine moves a name
from the data set to the variable data area and sets the variable data length properly. You
now have an ADDDATA control line that contains 6,1,SE + PERA/ in the Literal data
field. You also set the Get variable data field to YES to add the name. Remember that the
literal data is added to the command line reply buffer first. Then you have another
ADDDATA control line that adds the search argument, STAC/OPEN, to the command line
reply buffer by using the Literal data field. You can insert the space character that separates
PERA/name and STAC/OPEN after the name in the user exit routine or before STAC/OPEN
in the Literal data field.

See “USEREXIT” on page 193 for a discussion of creating user exit routines for a TSP.

ADDDATA

65Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Another variation to this example safeguards against someone changing the selection
numbers on the Tivoli Information Management for z/OS Primary Options Menu. You want
your TSP to work without modification, even after the changes are made. To do this, use the
Structured word index field to specify the selection from the Primary Options Menu rather
than selection number 6. First, create an ADDDATA control line by specifying 002C (the
s-word index for the Inquiry selection) in the Structured word index field on the
ADDDATA Specification panel.

Next, create an ADDDATA control line that has the search argument space,1,SE + PERA/
in the Literal data field. (When an SBCS comma is required as the first, or only, character
of the Literal data field, you must precede the comma with an SBCS space.) Be sure to set
the Get variable data field to YES to add the name. Then create another ADDDATA
control line to add the search argument, STAC/OPEN, to the command line reply buffer by
using the Literal data field. Precede STAC/OPEN with a space to separate PERA/name and
STAC/OPEN.

You can put up to 512 characters of data in the command line reply buffer. Also, you can
enter this data using multiple ADDDATA control lines. However, attempting to store more
than 512 characters produces an error condition, and Tivoli Information Management for
z/OS does not move any of the data.

For other examples of ADDDATA lines, use PMF to look at TSPs BTNTACLS and
BTNTAC1R.

Supplementary Commands for ADDDATA
With the following commands and the control line functions described in this chapter, you
can create TSPs that simulate any Tivoli Information Management for z/OS interactive
functions:

DOWN LAST
This command scrolls the last data line of a table panel to the top of the screen. The
last line becomes the current line of the table panel. For a table panel that contains
only display information (such as help panels), the last data line is the line preceding
the BOTTOM OF DATA line. For all other table panels, this line is the last line on
which you can enter data. You can use this command along with the LINECMD
command to perform block operations on all records of a search results list.

LINECMD cmd
The operand cmd can be replaced by any line command that is valid for the current
table panel. For example, valid line commands on the Tivoli Information
Management for z/OS search results list would be U, D, P, S, and C. You can
specify block line commands when they are enabled. The LINECMD command
inserts the operand into the line command area of the current line on the table panel.
From that point, normal line command processing occurs. You can use this command
to process multiple entries on a table panel. For example, when updating all records
on a search results list, enter linecmd uu,down last,linecmd uu. The LINECMD
command is not valid when the current panel is not a table panel, or when the table
panel does not have a line command area.

By combining the Tivoli-supplied control lines with user exit routines, you can extend the
functions of Tivoli Information Management for z/OS to meet the unique requirements of
your installation.

ADDDATA

66 Version 7.1

What the Control Line Does
When the TSP is run, the data to be added to the command line reply buffer is extracted
either from the control line itself or from the variable data area, or from both. The data is
added to the command line reply buffer in the TSCA (TSCACMRB) in this order: s-word,
literal data, variable data area (depending on which fields you specify in the control line). It
is held there until a PROCESS or CLEAR control line is run. The PROCESS control line
causes Tivoli Information Management for z/OS to process whatever is in the command line
reply buffer. The CLEAR control line causes Tivoli Information Management for z/OS to
discard whatever is in the command line reply buffer. In either case, a subsequent
ADDDATA control line begins with a clear command line reply buffer. For more
information on these control lines, see “PROCESS” on page 152 and “CLEAR” on page 78.

Return and Reason Codes
After an ADDDATA control line is run, the TSCA return code (TSCAFRET) and reason
code (TSCAFRES) fields are set to indicate what happened. These codes are listed in
Table 2.

Table 2. ADDDATA Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Successful completion.

8 4 Data movement would cause the command line reply
buffer to overflow. The data was not moved.

Your TSP has attempted to put more than 512 characters
of data into the command line reply buffer since the last
PROCESS or CLEAR control line was processed. You
cannot construct an IRC greater than 512 characters. To
correct the problem, update your TSP to add a PROCESS
control line at a convenient point before the ADDDATA
control line that produced the unexpected return code.

8 8 Get variable data is specified in the control line but the
length field for the variable data area is zero. The data
was not moved.

Your TSP has not set the length of the variable data field
properly. You must set up the variable data area and its
length before using an ADDDATA control line that has
YES in the Get variable data field. The variable data
area is set by calling a user exit routine that sets the
variable data area length and moves data into it, or by
using the MOVEVAR control line.

Check your TSP to make sure there is a USEREXIT or
MOVEVAR control line in the processing path before the
ADDDATA control line that resulted in the unexpected
return code. If the TSP has a USEREXIT control line,
check the exit routine’s code to make sure it sets the field
length properly.

8 12 An internal logic error occurred in National Language
Support. Contact your Tivoli representative.

ADDDATA

67Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Table 2. ADDDATA Return and Reason Codes (continued)
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

8 16 The user data is not a valid mixed string. Check the data
and make the changes required to ensure you specify valid
mixed data.

You can use the TESTFIELD control line to test for these return and reason codes. See
“TESTFIELD” on page 175 for information on how to do this.

TSCA Field Usage
Tivoli Information Management for z/OS sets the following TSCA fields after an ADDDATA
control line is run. For more information about these fields, see “Terminal Simulator
Communications Fields” on page 289.

TSCAFRES
Function reason code

TSCAFRET
Function return code

TSCACMRB
Command line reply buffer

TSCACMOF
Accumulated data length.

If you enter YES in the Get variable data field and you set the length of the variable data
with a user exit routine, the user exit routine must set the length of the variable data in the
following TSCA field:
TSCAVDAL

Current user variable data length.

If you set the variable data with the MOVEVAR control line, the MOVEVAR control line
sets the field length of TSCAVDAL for you.

ADDLIST
This control line enables you to add one line or a block of lines in a list processor list.

This control line can be called only from a TSX.

The ADDLIST Control Line
The format of the ADDLIST control line is:
CALL BLGTSX 'ADDLIST',listsword,stemname,startln,count,panel

Parameter Descriptions
1. listsword

Valid reply
The root s-word of the list to which items are to be added. The root s-word includes
the hexadecimal watermark character; therefore, it is recommended that you use the

ADDDATA

68 Version 7.1

TSX READDICT control line to get the root s-word that you will pass to ADDLIST.
Refer to “READDICT” on page 160 for more information on the READDICT
control line.

Default
None

Required

2. stemname

Valid reply
The name of a REXX compound variable (including a separator character, such as a
period) for the compound variable containing the new items. By convention, the
variable name should end with a period. The length is limited to 58 characters,
including the period.

Default
BLG_LIST

Optional

3. startln

Valid reply
The line number where the new items should begin. For example, if the value 3 is
specified, the items will be inserted after line 2 of the current list. Valid values are 1
to 19274 or LAST (insert the items after the last item in the current list).

Default
LAST

Optional

4. count

Valid reply
The number of items to be added. Valid values are 1 to 19274.

Default
1

Optional

5. panel

Valid reply
The name of the assisted-entry panel or data attribute record used to validate the
new items.

Default
None

Required if there are no existing items for the listsword in the record; otherwise, the
panel name in the current list is used.

ADDLIST

69Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

CAUTION:
The list processor data that the TSX ADDLIST control line retrieves must be in the
internal format introduced in Version 5.1 (or in Version 4 by APARs OY47188 and
OY47893). Lists which were stored prior to the internal format change will not be
retrieved accurately by ADDLIST. Those lists can be converted to the new internal
format by updating them in Version 7.1, repeating the first line, deleting the first line,
and filing the record. The data will be unchanged, but it will be stored in the correct
format.

Usage Notes and Examples
This is an example of using an ADDLIST control line in a TSX to add two entries at the
end of the list of device names.
index='S1416';
CALL BLGTSX 'READDICT',index; /* Get the s-word. */
sword=TSCARSD; /* The s-word of the device name list */
newitem.1='Device1'
newitem.2='Device6'
CALL BLGTSX 'ADDLIST',sword,NEWITEM.,'LAST',2

This is an example of using an ADDLIST control line in a TSX to insert two items in the
list of device names after the third item in the current list.
index='S1416';
CALL BLGTSX 'READDICT',index; /* Get the s-word. */
sword=TSCARSD; /* The s-word of the device name list */
newitem.1='Device1'
newitem.2='Device6'
/* Add 2 devices at position 4 (after the third existing item) */
CALL BLGTSX 'ADDLIST',sword,NEWITEM.,4,2

This is an example of using an ADDLIST control line in a TSX to add a blank entry within
a list of device names.
index='S1416';
CALL BLGTSX 'READDICT',index; /* Get the s-word. */
sword=TSCARSD; /* The s-word of the device name list */
newitem.1='Device1'
newitem.2=' ' /* A space between the single quotes to signify a blank entry */
newitem.3='Device3'
CALL BLGTSX 'ADDLIST',sword,NEWITEM.,1,3

Return and Reason Codes
After the ADDLIST control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 3.

Table 3. ADDLIST Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Items were added successfully; one or more lines existed
in the list prior to the add.

0 8 Items were added successfully; one or more blank lines
was added between the end of the previous list and the
beginning of the new items.

0 12 Items were added successfully; no items existed prior to
the add.

ADDLIST

70 Version 7.1

|
|

|
|
|
|
|
|
|

|

Table 3. ADDLIST Return and Reason Codes (continued)
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 16 No items existed prior to the add and all listed items were
empty rows; therefore, no list was created.

8 4 The function could not be completed because it would
cause the list to exceed the maximum allowed size
(19274) for a list; items were added up to line 19274.

8 8 The value of a list item failed validation checking. The list
is updated and the specified number of lines are added,
but the data for the line that failed validation and all
subsequent lines is set to blanks. TSCATLIX contains the
index of the first item which failed validation.

8 12 An assisted-entry panel name is required when no items
exist in the list prior to the add.

8 16 The panel name specified on the control line could not be
found.

8 20 The panel name specified on the control line must be an
assisted-entry panel or a data attribute record.

8 24 The s-word index specified on the control line does not
match the s-word index defined in the panel parameter.

12 4 The control line function failed. This control line cannot
be run while the list processor is active.

ADDSDATA
This control line provides the ability to add data to a record. It is the TSX equivalent of the
add function of the TSP WORDFIX, described in “Adding Data” on page 210.

Note: The ADDSDATA function should be used only by someone who is very
knowledgeable about Tivoli Information Management for z/OS. Care must be taken to
ensure that you do not damage your database when using the ADDSDATA function.

This control line can be called only from a TSX.

The ADDSDATA Control Line
The format of the ADDSDATA control line is:
CALL BLGTSX 'ADDSDATA',swindex,sword,pfxdata,panel,options

Parameter Descriptions
1. swindex

Valid reply
The structured word index for the item to be added (the letter S followed by a
four-character EBCDIC value, for example, ’S0BEE’).

Default
None

Required if sword is specified. If sword is not specified, this parameter is not required
and anything specified for this parameter is ignored.

ADDLIST

71Terminal Simulator Guide

|||
|

|
|
|

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

2. sword

Valid reply
The structured word for the item to be added. This can be obtained from the
dictionary earlier in the TSX using the READDICT control line.

Note: Both the s-word index and the actual s-word must be specified when adding
data which contains an s-word. For performance reasons, ADDSDATA does
not read the dictionary to retrieve the s-word based on the index. The s-word
can be obtained earlier in the TSX using the READDICT control line.

Default
None

Required if pfxdata is not specified. If this parameter is not specified, the new data item
will not have a structured word.

3. pfxdata

Valid reply
The data (with optional prefix) for the item to be added.

Default
None

This parameter is required if sword is not specified. If this parameter is not specified,
the new data item will contain no data.

4. panel

Valid reply
The panel name to be associated with the data item to be added.

Default
BLGTXADD.

Optional. If not specified, a name of BLGTXADD will be associated with the item.

5. options

Valid reply
Options to be associated with the data item to be added. Multiple options can be
coded, each as a separate parameter. Supported options are:

COGNIZE|COGPWORD|NOCOGNIZE

¶ COGNIZE indicates that both the s-word and p-word are to be
cognized.

¶ COGPWORD indicates that only the p-word is to be cognized.

¶ NOCOGNIZE indicates that neither the s-word nor the p-word are to be
cognized.

If none of these options is specified, the default is COGNIZE. If more than
one is specified, the last one is used.

HISTORY|HISTFIRST|NOHISTORY
Additional information about history data is contained in the Tivoli
Information Management for z/OS Panel Modification Facility Guide, with
some detail about the meaning of ORDER and FIRST.

ADDSDATA

72 Version 7.1

¶ HISTORY indicates that history data for this item is collected in order.

¶ HISTFIRST indicates that history data for this item is to be placed first.

¶ NOHISTORY indicates that no history data is collected.

If none of these options is specified, the default is HISTORY. If more than
one is specified, the last one is used.

STRING
Indicates that the data portion of the item is string data. If this option is not
specified, the data is treated as structured data.

NOPREFIX
Indicates that the data item does not contain a prefix and any slash / or
underscore _ characters are part of the data. If this option is not specified
and the data item begins with characters that represent a valid prefix, the
data item is treated as a prefix and data.

NOREPLACE
Indicates that new data for this field does not replace the previous value, but
is added to the previous value. If this option is not specified, the new value
replaces the existing value.

COGMIXED
Indicates that the data should be cognized in mixed case. If not specified and
the data is being cognized, it is cognized in all uppercase. For most types of
data, COGMIXED should not be specified. This option is ignored if
NOCOGNIZE is specified.

COGUNPARSED
Indicates that all of the words are cognized as a single string.

Usage Notes and Examples
This is an example of using an ADDSDATA control line in a TSX to add the reporter’s
phone number, cognize only the p-word, and not keep history data.
index='S0B2D';
CALL BLGTSX 'READDICT',index; /* Get the s-word. */
sword=TSCARSD; /* The s-word of the reporter's phone */
data='PH/123-4567'
CALL BLGTSX 'ADDSDATA',index,sword,data,,'COGPWORD','NOHISTORY'

Note: When using ADDSDATA to add date data, the p-word being added to the record must
begin with the characters DAT.

Beginning with Version 7.1, you can include nulls in the list of options when invoking
ADDSDATA.
if fldtype='S' then

stropt='STRING'
else stropt=''
CALL BLGTSX 'ADDSDATA',index,sword,data,,'NOHISTORY',stropt,'COGPWORD'

In previous versions you would have had to code separate calls to ADDSDATA: one with
the STRING option and one without the STRING option because the coding in the
preceding example would result in an error when stropt was null.

ADDSDATA

73Terminal Simulator Guide

|
|

|
|

|
|
|
|

|
|
|

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Return and Reason Codes
After an ADDSDATA control line is run, the TSCA return code (TSCAFRET) and reason
code (TSCAFRES) fields are set to indicate what happened. These codes are listed in
Table 4.

Table 4. ADDSDATA Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 Successful completion.

8 4 The requested function was not performed. Your TSX tried
to create a data item that was longer than the maximum
length accepted by Tivoli Information Management for
z/OS. The maximum length for collected data from a
response (the s-word, prefixes, and all data associated with
those prefixes and control information in the entry) is 256
characters.

8 8 There was not enough storage to process the ADDSDATA
control line. Contact your system administrator to increase
your region size.

8 16 An internal logic error has occurred. Contact your Tivoli
representative.

8 20 An internal logic error occurred in a DBCS function.
Contact your Tivoli representative.

8 24 The user data is not a valid mixed string. Check the data
and make the changes required to ensure you specify a
valid mixed data string.

8 28 The requested data would not be valid Tivoli Information
Management for z/OS data. Either the pfxdata parameter
does not specify any data, or else you specified the
REPLACE option but did not specify either a prefix or an
s-word.

ADDTEXT
This control line enables you to add lines of new text.

This control line can be called only from a TSX.

The ADDTEXT Control Line
The format of the ADDTEXT control line is:
CALL BLGTSX 'ADDTEXT',sword,stemname,startln,count

Parameter Descriptions
1. sword

Valid reply
The structured word associated with the text to be added. This can be obtained from
the dictionary earlier in the TSX using the READDICT control line.

Default
None

ADDSDATA

74 Version 7.1

Required

2. stemname

Valid reply
The stem name (including a separator character, such as a period) for the compound
variable containing the new items.

Default
BLG_TEXT.

Optional.

3. startln

Valid reply
The line number where the new text should begin. For example, if the value 3 is
specified, the items will be inserted after line 2 of the current text. Valid values are 1
to 99999 or LAST (insert the text after the last line of the current text).

Note: A specification of LAST or a specification of a number which is higher than
the highest line number in the existing text causes ADDTEXT to append data
to the file; a specification of a number which is less than or equal to the
highest line number in the existing text causes ADDTEXT to insert data into
the file.

Default
LAST

Optional

4. count

Valid reply
The number of lines of text to be added. Valid values are 1 to 99999.

Default
1

Optional

Usage Notes and Examples
This is an example of using an ADDTEXT control line in a TSX to append two lines of text
to the bottom of the problem description text.
index='S0E01';
CALL BLGTSX 'READDICT',index; /* Get the s-word. */
sword=TSCARSD; /* The s-word of the text data. */
newtext.1='First new line'
newtext.2='Second new line'
CALL BLGTSX 'ADDTEXT',sword,'newtext.','LAST',2

This is an example of using an ADDTEXT control line in a TSX to insert three lines of text
following the first line of problem description text.
index='S0E01';
CALL BLGTSX 'READDICT',index; /* Get the s-word. */
sword=TSCARSD; /* The s-word of the text data. */
newtext.1='First new line'
newtext.2='Second new line'

ADDTEXT

75Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

newtext.3='Third new line'
/* Add 3 lines starting at line 2 (after existing line 1) */
CALL BLGTSX 'ADDTEXT',sword,'newtext.',2,3

Note: You can use the REXX STRIP() function to remove any trailing blanks that might
exist in the text prior to processing the ADDTEXT control line.

Return and Reason Codes
After the ADDTEXT control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 5.

Note: If you are using the Tivoli Information Management for z/OS freeform text editor,
you should be aware that this editor adds additional blank lines to a record in order to
present a full screen for editing. As a result, the reason code will, in some cases, be
different according to whether you do ADDTEXT from within the editor or do
ADDTEXT when you are not in the editor.

Table 5. ADDTEXT Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Text was added successfully; one or more lines existed in
the text prior to the add.

0 8 Text was added successfully; one or more blank lines were
added between the end of the previous text and the
beginning of the new text.

0 12 Text was added successfully; no text existed prior to the
add.

8 4 The length of one or more input text lines exceeds the
maximum allowable line length of 132. No text is
updated.

BRANCH
This control line enables you to unconditionally change the flow of the control lines within
the TSP.

The function provided by the TSP BRANCH control line is available in a TSX using the
standard program flow controls available in the REXX programming language.

You can use this control line to return control from an error-handling portion of the TSP or
to simulate a loop when similar processing is done for many records. If you use the
BRANCH control line to create a loop, be sure your loop has an ending. You can create the
ending by including the target label of a PROCESS, TESTFIELD, or TESTFLOW control
line, or with another BRANCH control line that exists outside your loop. This is an example
of the BRANCH control line used to simulate a loop.
LABEL TSP...

LABEL LOOP...

TESTFIELD OUTLOOP (if TSCAFRET is nonzero, exit the loop)

ADDTEXT

76 Version 7.1

|
|

PROCESS ERROR
BRANCH LOOP
LABEL OUTLOOP...

Creating a BRANCH Control Line
Use the following BRANCH Specification panel to create a BRANCH control line:

General Rules
The BRANCH control line requires that a target label name, identified with the LABEL
control line, exists in the same TSP as the BRANCH control line.

Field Descriptions
1. Label name

Valid reply
A mixed string of 1 to 8 characters, beginning with an SBCS alphanumeric or
national character, or an SO character. This field is required.

Default
None.

Restrictions
The label name entered in this field must be a valid name that is identified through
the LABEL control line. The LABEL control line cannot immediately precede the
BRANCH control line. Also, the name must exist in the same TSP as the BRANCH
control line. Tivoli Information Management for z/OS validates this when the TSP is
filed.

Usage Notes
The BRANCH control line provides for unconditional branching only. You can use the
PROCESS, TESTFIELD, and TESTFLOW control lines for conditional branching.

BLM8CU9B BRANCH SPECIFICATION PANEL: ________

Enter 'BRANCH' control data; cursor placement or input line entry allowed.

1. Label name............<R> LOOP____

When you finish, type END to save or CANCEL to discard any changes.

===>

BRANCH

77Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

When you add this control line to a TSP, Tivoli Information Management for z/OS checks
for a label name when the TSP is filed. However, no check is made at the time you run the
TSP to prevent you from creating an infinite loop. You must verify that the target label name
is outside your loop. For examples of TSPs using BRANCH, see TSPs BTNTACLS and
BTNTCA21 in PMF.

What the Control Line Does
When the TSP is run, Tivoli Information Management for z/OS resumes processing at the
LABEL control line whose name was specified in the BRANCH control line.

Return and Reason Codes
Running a BRANCH control line does not change the TSCA return (TSCAFRET) or reason
code (TSCAFRES) fields.

TSCA Field Usage
No TSCA fields are set when the TSP is run.

CLEAR
This control line clears all the data collected in the command-line reply buffer
(TSCACMRB) of the TSCA by setting the length of the data stored in the command-line
reply buffer to zero (TSCACMOF to X'00000000'). Since the TSP ADDDATA control line
stores data in the command-line reply buffer, the TSP CLEAR control line can be used to
negate the actions of the TSP ADDDATA control line prior to a TSP PROCESS control line.
Once a TSP PROCESS control line processes, the data in the command-line reply buffer is
used or is moved to the residual reply buffer (TSCARRB) when the PROCESS encounters
an error condition.

Because a TSX accumulates responses to be processed in a REXX variable rather than with
ADDDATA control lines, the CLEAR control line is not needed for a TSX. Simply setting
the variable to the null string will clear any collected responses.

Assume that you are adding information to the command-line reply buffer. Before the data is
processed you want to verify that the current panel name is correct. If it is incorrect, you
want your TSP to clear the buffer and then refill the command line reply buffer using an
ADDDATA control line. This is an example using the CLEAR control line to clear the
command-line reply buffer.

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

0. ********* ******** ******************************* **** **** *******
1. LABEL TESTTSPP
2. ADDDATA 6,1,SE + PERA/SMITH NO
3. TESTFIELD ERROR BLG0EN20 NO YES TSCACPNL
4. PROCESS EXIT
5. RETURN
6. LABEL ERROR
7. CLEAR TSCACMOF
8. ADDDATA ;IN,3,2,6,1,SE +PERA/SMITH NO
9. PROCESS EXIT
10. LABEL EXIT
11. RETURN

BRANCH

78 Version 7.1

Creating a CLEAR Control Line
This control line does not collect any input data and, therefore, does not have a specification
panel. When you create the CLEAR control line from the Function Name panel, you return
to the updated Function Line Summary panel.

Example
For an example of a TSP using the CLEAR control line, use PMF to look at TSP
BTNTHS03 in your base panel data set.

What the Control Line Does
When the TSP is run, the accumulated data length for the command-line reply buffer and the
return and reason codes are reset to zero. This clears any previous responses from the
command-line reply buffer. Processing continues with the next control line in the TSP.

Return and Reason Codes
After a CLEAR control line is run, Tivoli Information Management for z/OS sets the TSCA
return (TSCAFRET) and reason (TSCAFRES) code fields to zero. (See Table 6.)

Table 6. CLEAR Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Successful completion.

TSCA Field Usage
Tivoli Information Management for z/OS sets the following TSCA fields after a CLEAR is
run. For more information about these fields, see “Terminal Simulator Communications
Fields” on page 289.
TSCAFRET

Function return code
TSCAFRES

Function reason code
TSCACMOF

Accumulated data length.

CLOSERRES
This Remote Data Resource TSX control line is described in “CLOSERRES” on page 241.

CLOSESOCKET
This control line closes a TCP/IP socket that had been opened. It uses the assembler callable
services to invoke the OS/390 UNIX® System Services version of the TCP/IP product
installed. If a callable service does not complete successfully, the name of the service called
is returned in the NETFUNC REXX variable, the return code is returned in the NETRETC
REXX variable, and the reason code is returned in the NETREAC REXX variable. The user
should refer to the OS/390 UNIX System Services Messages and Codes manual and the
OS/390 UNIX System Services Assembler Callable Services manual for a description of the
returned values.

CLEAR

79Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

More than one TCP/IP connection can be established with a TSX concurrently. A socket
identifier is returned from OPENSOCKET and is used to specify the connection to be
accessed. When the TSX ends, any TCP/IP connections remaining open are closed.

This control line can be called only from a TSX. An ISPF or TSO environment is not
required in order to use CLOSESOCKET.

The CLOSESOCKET Control Line
The format of the CLOSESOCKET control line is:
CALL BLGTSX 'CLOSESOCKET',socketid

Parameter Description
1. socketid

Valid reply
The socket identification for this TCP/IP connection. This value was initially
returned from the OPENSOCKET control line in the NETSOCKET REXX variable.

Default
None

Required

Usage Notes and Examples
This is an example of using a CLOSESOCKET control line to close the TCP/IP connection.
CALL BLGTSX 'CLOSESOCKET',SaveSocket

Note: Six REXX variables have been defined to return information from the
CLOSESOCKET control line. These variables (NETSOCKET, NETDATA,
NETBYTECOUNT, NETFUNC, NETRETC, and NETREAC) are reset during the
processing of CLOSESOCKET. It is the responsibility of the TSX to save any data
needed for processing.

Return and Reason Codes
After the CLOSESOCKET control line is run, Tivoli Information Management for z/OS sets
the TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 7.

Table 7. CLOSESOCKET Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Successful completion.

CLOSESOCKET

80 Version 7.1

Table 7. CLOSESOCKET Return and Reason Codes (continued)
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

8 4 The TCP/IP service did not complete successfully. Refer to
the OS/390 UNIX System Services Messages and Codes
manual and the OS/390 UNIX System Services Assembler
Callable Services manual for a description of the
following return codes. These REXX variables contain the
diagnostic information:

NETFUNC
The name of the Assembler Callable Service
being invoked.

NETRETC
The value of the Return_code parameter returned
by the service.

NETREAC
The value of the Reason_code parameter returned
by the service.

DELLIST
This control line enables you to delete one line or a block of lines in a list processor list.

This control line can be called only from a TSX.

The DELLIST Control Line
The format of the DELLIST control line is:
CALL BLGTSX 'DELLIST',listsword,startln,count

Parameter Descriptions
1. listsword

Valid reply
The root s-word of the list from which items are to be deleted. The root s-word
includes the hexadecimal watermark character; therefore, it is recommended that you
use the TSX READDICT control line to get the root s-word that you will pass to
DELLIST. Refer to “READDICT” on page 160 for more information on the
READDICT control line.

Default
None

Required

2. startln

Valid reply
The line number of the first line to be deleted. Valid values are 1 to 19274.

Default
None

Required

CLOSESOCKET

81Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

3. count

Valid reply
The number of items to be deleted. Valid values are 1 to 19274 or ALL.

Default
1

Optional

CAUTION:
The list processor data that the TSX DELLIST control line retrieves must be in the
internal format introduced in Version 5.1 (or in Version 4 by APARs OY47188 and
OY47893). Lists which were stored prior to the internal format change will not be
retrieved accurately by DELLIST. Those lists can be converted to the new internal
format by updating them in Version 7.1, repeating the first line, deleting the first line,
and filing the record. The data will be unchanged, but it will be stored in the correct
format.

Usage Notes and Examples
This is an example of using a DELLIST control line in a TSX to delete items 8 and 9 in the
list of device names.
index='S1416';
CALL BLGTSX 'READDICT',index; /* Get the s-word. */
sword=TSCARSD; /* The s-word of the device name list */
CALL BLGTSX 'DELLIST',sword,8,2

Return and Reason Codes
After the DELLIST control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 8.

Table 8. DELLIST Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 The specified range of list items was deleted successfully.

0 4 The specified range of list items was deleted successfully;
the range extended beyond the end of the list.

0 8 The control line completed, but had no effect; no list items
exist in the specified range.

0 12 The control line completed, but had no effect; no list items
of the specified type exist.

12 4 The control line function failed. This control line cannot
be run while the list processor is active.

DELSDATA
This control line provides the ability to delete data from a record. It is the TSX equivalent
of the delete function of the TSP WORDFIX, described in “Deleting Data” on page 217, but
also provides the ability to delete an entire SDE (s-word XRFI and all p-word XRFIs) with
a single control line call.

DELLIST

82 Version 7.1

|

Notes:

1. The DELSDATA function should be used only by someone who is very knowledgeable
about Tivoli Information Management for z/OS. Care must be taken to ensure that you
do not damage your database when using the DELSDATA function.

2. DELSDATA does not support s-words that use asterisks as a position ignore character.
You cannot use an s-word with asterisks on a DELSDATA control line in order to delete
multiple s-word entries at one time. You must specify one DELSDATA control line for
each distinct s-word.

This control line can be called only from a TSX.

The DELSDATA Control Line
The format of the DELSDATA control line is:
CALL BLGTSX 'DELSDATA',swindex,sword,pfxdata,panel,options

Parameter Descriptions
1. swindex

Valid reply
The structured word index for the item to be deleted (the letter S followed by a
four-character EBCDIC value); for example, ’S0BEE’.

Default
None

Conditionally required
If sword is specified, a value must also be specified for swindex. If sword is not
specified, any specification for swindex is ignored.

2. sword

Valid reply
The structured word for the item to be deleted. This can be obtained from the
dictionary earlier in the TSX using the READDICT control line.

Note: Both the s-word index and the actual s-word must be specified when deleting
data which contains an s-word. For performance reasons, DELSDATA does
not read the dictionary to retrieve the s-word based on the index. The s-word
can be obtained earlier in the TSX using the READDICT control line.

Default
None

Conditionally required
Required if pfxdata is not specified. If a value is not specified for sword, the
structured word will not be used to identify the items to delete.

3. pfxdata

Valid reply
The data (with optional prefix) for the item to be deleted.

Default
None

DELSDATA

83Terminal Simulator Guide

|
|
|
|

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Conditionally required
A value must be specified for pfxdata if sword is not specified. If no value is
specified for pfxdata, the data value is not used to identify the items to delete.

4. panel

Valid reply
The panel name to be associated with the data items to be deleted.

Default
None

Optional
If not specified, the panel name is not used to identify the items to delete.

5. options

Valid reply
Options to be associated with locating and deleting the data item. Multiple options
can be coded, each as a separate parameter. Supported options are:

STRING
Indicates that pfxdata is string data. If STRING is omitted, the data is
treated as structured data. If pfxdata is not specified, STRING is ignored.

SWORD|DATA|ENTRY

¶ SWORD indicates that only the s-word is to be deleted from the entries,
leaving any data. If an entry has no data, the entire entry is deleted.

¶ DATA indicates only the data specified by pfxdata is to be deleted,
leaving the s-word and any other data. If pfxdata is not specified, all
data is deleted from the entries, leaving only the s-word. If an entry has
no s-word and no data which is not deleted, the entire entry is deleted.

¶ ENTRY indicates that the entire entry, the s-word and all of the data, is
to be deleted.

If none of these options is specified, the default is ENTRY. If more than
one is specified, the last one is used.

Usage Notes and Examples
This is an example of using a DELSDATA control line in a TSX to delete the reporter’s
phone number (both s-word and p-word).
index='S0B2D';
CALL BLGTSX 'READDICT',index; /* Get the s-word. */
sword=TSCARSD; /* The s-word of the reporter's phone */
CALL BLGTSX 'DELSDATA',index,sword

Return and Reason Codes
After a DELSDATA control line is run, the TSCA return code (TSCAFRET) and reason
code (TSCAFRES) fields are set to indicate what happened. These codes are listed in
Table 9.

Table 9. DELSDATA Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 Successful completion.

DELSDATA

84 Version 7.1

Table 9. DELSDATA Return and Reason Codes (continued)
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

4 4 The current record did not have a match for the specified
argument. No data was changed.

Use the VIEW INTERNALS command to see if what you
are trying to locate is in the record. If you are using a
p-word search, make sure the argument is complete
(prefix/data).

8 8 There was not enough storage to process the DELSDATA
control line. Contact your system administrator to increase
your region size.

8 20 An internal logic error occurred in a DBCS function.
Contact your Tivoli representative.

8 24 The user data is not a valid mixed string. Check the data
and make the changes required to ensure you specify a
valid mixed data string.

DELTEXT
This control line enables you to delete lines of text.

This control line can be called only from a TSX.

The DELTEXT Control Line
The format of the DELTEXT control line is:
CALL BLGTSX 'DELTEXT',sword,startln,count

Parameter Descriptions
1. sword

Valid reply
The structured word associated with the text to be deleted.

Default
None

Required

2. startln

Valid reply
The line number of the first line to be deleted. Valid values are 1 to 99999.

Default
None

Required

3. count

Valid reply
The number of lines of text to be deleted. Valid values are 1 to 99999 or ALL.

DELSDATA

85Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Default
1

Optional

Usage Notes and Examples
This is an example of using a DELTEXT control line in a TSX to delete lines 10–13 of the
problem description text.
index='S0E01';
CALL BLGTSX 'READDICT',index; /* Get the s-word. */
sword=TSCARSD; /* The s-word of the text data. */
CALL BLGTSX 'DELTEXT',sword,10,4

Return and Reason Codes
After the DELTEXT control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 10.

Note: If you are using the Tivoli Information Management for z/OS freeform text editor,
you should be aware that this editor adds additional blank lines to a record in order to
present a full screen for editing. As a result, the reason code will, in some cases, be
different according to whether you do DELTEXT from within the editor or do
DELTEXT when you are not in the editor.

Table 10. DELTEXT Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 The specified range of text lines was deleted successfully.

0 4 The specified range of text lines was deleted successfully;
the range extended beyond the end of the text.

0 8 The control line completed, but had no effect, because no
text exists in the specified range.

0 12 The control line completed, but had no effect, because no
text of the specified type exists.

DEQMAIL
This control line is used to dequeue or retrieve a notification mail message from a BLX-SP.

This control line can be called only from a TSX. Also, it is a special purpose control line for
handling mail and is not generally useful for writing TSXs.

The DEQMAIL Control Line
The format of the DEQMAIL control line is:
CALL BLGTSX 'DEQMAIL',queuename,stemname

Parameter Descriptions
1. queuename

Valid reply
The name of the BLX-SP queue from which to retrieve mail.

DELTEXT

86 Version 7.1

Refer to “Defining BLX-SP Parameters Members” in the Tivoli Information
Management for z/OS Planning and Installation Guide and Reference for
instructions on how to define the queue name.

Default
MAILQ1

Optional

2. stemname

Valid reply
The name of a REXX compound variable (including a separator character, such as a
period) that the freeform mail message will be written to. The number of lines
written to the compound variable is contained in stemname.0.

Default
BLG_DEQMAIL.

Optional

Usage Notes and Examples
This is an example of using a DEQMAIL control line in a TSX. Mail is read from the
default queue and stored in the compound variable DEQMAIL.
CALL BLGTSX 'DEQMAIL'; /* Get mail from default queue */

This is another example of using a DEQMAIL control line in a TSX. Mail is read from the
default queue and stored in the compound variable MSG.
CALL BLGTSX 'DEQMAIL',,'MSG.' /* Get mail from default queue */

Return and Reason Codes
After the DEQMAIL control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 11.

Table 11. DEQMAIL Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Processing successful. Mail is dequeued from the BLX-SP

0 4 Processing successful; however, the queue is empty.

8 8 Processing unsuccessful. Unable to obtain storage in the
user’s address space.

12 4 Processing unsuccessful. The specified queue has been
closed.

12 8 Processing unsuccessful. The specified queue name does
not exist.

FINDSDATA
This control line extracts data that is associated with an s-word or a p-word from the current
record, or locates entries associated with a panel. The data being extracted was added by the
prompting sequence panels during the record create or update process.

DEQMAIL

87Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Refer to “The FINDSDATA TSX Control Line” on page 97 for information about using the
FINDSDATA control line in a TSX.

This is an example of using the FINDSDATA control line in a TSP that deletes all problems
closed during 2000. For this TSP, assume that the database has at least two records that
represent closed problems.

Note: Note that in Version 7.1, dates and times are stored in internal format, but are
returned to the user in the external format specified by the user. In this example, the
DATR/ reflects the internal format. For additional information about BLGEDATE and
BLGIDATE, two users exits provided to enable a TSX or TSP to support a variety of
external date formats, see “General-purpose User Exits” on page 279.

LABEL DELOLDRC
ADDDATA 3,2,6,1,SE +STAC/CLOSED (do a search)
PROCESS ERROR2
ADDDATA LINECMD SS,DOWN LAST,LINECMD SS (look at all records)
PROCESS ERROR2
LABEL NEXT
TESTFLOW DONE (if at panel BLG1TSRL, then go to

label DONE)
FINDSDATA DATR/2000. (look for date)
TESTFIELD ERROR (if TSCAFRET does not equal 0,

go to label ERROR)
ADDDATA 10,4,2,END,END (delete record)
PROCESS ERROR
BRANCH NEXT (process next record)
LABEL ERROR (error occurred)
TESTFIELD ERROR2 (if TSCAFRES does not equal 4,

go to label ERROR2)
ADDDATA ;CANCEL (end process of record not closed
PROCESS ERROR2 during 2000)

BRANCH NEXT (if TSCAFRES equals 4, no data found)
LABEL DONE
RETURN
LABEL ERROR2
PRINT
RETURN

Creating a FINDSDATA Control Line
You use the following FINDSDATA Specification panel to create a FINDSDATA control
line:

FINDSDATA

88 Version 7.1

|
|
|
|
|

|

BLM8CU9F FINDSDATA SPECIFICATION PANEL: ________

Enter 'FINDSDATA' control data; cursor placement or input line entry allowed.

1. Structured word index.... ____ Structured word.. _________
2. Get list index?....... NO__ Word acronym..... _____________
3. List index............ 0000

4. Prefix index............. ____ Prefix........... ______
5. Panel name............... ________ Validation....... ______________
6. Get variable data........ NO_
7. Word occurrence.......<R> NEXT_
8. Treat as string data..... NO_
9. Case-sensitive find?..... NO_

10. Literal data............. DATR/2000.______________________

When you finish, type END to save or CANCEL to discard any changes.

===>

General Rules
You can enter any valid s-word, p-word, or panel name. You can use SBCS and DBCS
asterisk (*) and period (.) characters, in accordance with the Tivoli Information Management
for z/OS rules, to do a generic search.

Field Descriptions
1. Structured word index

Valid reply
The index key of an s-word in the dictionary data set, or no reply.

An entry in this field causes the FIRST, NEXT, LAST, or PREVIOUS occurrence of
the associated s-word in the structured data portion of the current record to be
located. You specify the order of location in the Word occurrence field described
later. Because the watermark characters X'BA', X'BB', X'BC' X'BD', X'BE', or X'BF'
that start each s-word cannot be entered, you must use this field to search on an
s-word.

Default
No reply.

Restrictions
You cannot specify this field when you enter information in the Prefix index field,
the Panel name field, or the Literal data field, or if you enter YES in the Get
variable data field.

2. Get list index?

Valid reply
YES, NO, or no reply.

This field indicates whether to append the value of TSCA field TSCATLIX to the
s-word that corresponds to the value in the Structured word index field. When this

FINDSDATA

89Terminal Simulator Guide

|

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

field is set to YES, any value entered in the List index field is assumed to be a
hexadecimal value and is not treated as a search operator.

3. List index

Valid reply
A 1- to 2-byte hexadecimal value.

This field indicates that the data to be found was collected with the list processor
and that the value in this field should be added to the s-word that corresponds to the
value in the Structured word index field.

If you specify YES in the Get list index? field and specify a value for List index,
the value in TSCATLIX is added to the value in the List index field, and the result
is appended to the s-word. The resulting sum is treated as a hexadecimal value and
not as a search operator. In other words, if the resulting sum is 5C5C, Tivoli
Information Management for z/OS treats this value as a specific value and not **.

If you specify NO in the Get list index? field and specify a value for List index,
the List index field value is appended to the s-word, and the value of TSCATLIX is
ignored. If the List index field contains a X'5C' or X'4B' (SBCS asterisk and period
respectively) then these are treated as search operators. If X'4Bxx' is entered, then
the last byte is ignored (xx is any valid hexadecimal value).

4. Prefix index

Valid reply
The index key of a p-word in the dictionary data set or no reply.

If you specify this field by itself, you must refer to a p-word that has a literal
validation pattern and possibly a prefix. The validation pattern must be enclosed in
delimiter symbols (<>), indicating literal data. You can also specify a prefix index
that refers to a prefix without any associated validation pattern. When you do this,
you must also enter YES in the Get variable data field to have variable data from
the TSCA added after the prefix, or you can specify a value in the Literal data field
to be added after the prefix.

An entry in this field causes the FIRST, NEXT, PREVIOUS, or LAST occurrence of
the complete p-word/data combination in the structured data portion of the current
record to be located. You specify the order of location in the Word occurrence
field, described below.

Default
No reply.

Restrictions
A prefix that has a nonliteral data validation pattern (such as AAV3 or <S>NR4) is
not valid. If you use the Prefix index field and the associated p-word does not
contain a validation pattern, then you must either enter YES in the Get variable
data field or enter data in the Literal data field. You cannot use this field if you
entered data in the Structured word index field or in the Panel name field.

5. Panel name

Valid reply
The name of a panel to be located in the structured data portion of the record or no
reply.

FINDSDATA

90 Version 7.1

If you specify this field, the FIRST, NEXT, LAST, or PREVIOUS occurrence of the
panel name in the structured data portion of the current record is located. You
specify the order of location in the Word occurrence field, described later.

Default
No reply.

Restrictions
You cannot use this field if you entered data in the Structured word index field,
the Prefix index field, or the Literal data field, or if you entered YES in the Get
variable data field.

6. Get variable data

Valid reply
YES, NO, or no reply.

When you enter NO or make no reply, this field has no effect. When you enter YES
it indicates that you want data in the variable data area to be added to a prefix, if
one was specified, or that the variable data area contains the entire search argument.

Default
NO

Restrictions
If you specify an index for a prefix without an associated validation pattern, you
must either enter YES in this field or fill in the Literal data field. You cannot use
this field if you entered data in the Structured word index field, the Panel name
field, or the Literal data field.

If the FINDSDATA control line has YES in this field, a user exit routine must move
data into the variable data area and set the variable data length, or the MOVEVAR
control line must move data into the variable area before the FINDSDATA control
line is processed. The TSCA contains fields for a pointer to the variable data area
(TSCAVDAP) and for the length of that data (TSCAVDAL). The pointer field
contains the address of a variable data area that is allocated when the TSP
environment is initialized. Your exit routine must not modify this pointer.

7. Word occurrence

This field indicates how to search for an entry in the structured data portion of the current
record. An entry is usually located through a search word, which can be specified in the
Structured word index, Prefix index, Literal data, or Panel name field, or as variable
data. This field is required.

Valid reply
A reply of FIRST indicates that the first occurrence of the search word is to be
located. If no search word is specified, the first data item in the record is returned.

A reply of NEXT indicates that the next data item or occurrence of the search word
is to be located. The search starts at the entry following the data item last found. An
internal pointer to a current data item is maintained. Each time a FINDSDATA
operation is performed, this pointer is updated to point to the item that was located.

The first time the FINDSDATA function is used for a record, NEXT causes the
search to start with the first data item in the record. If no search word is specified,

FINDSDATA

91Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

the next data item is returned. When a PROCESS control line is run, the internal
pointer is reset. NEXT, specified without a search argument, is a good way of
stepping through the entries of a record.

When coding multiple FINDSDATA statements in a TSP without resetting the
current line pointer, either always specify a search argument or never specify a
search argument. Results are unpredictable if you use FINDSDATA NEXT without a
search argument after a FINDSDATA with a search argument.

A reply of LAST indicates that the last occurrence of the search word is to be
located. If no search word is specified, the last data item in the record is returned.
Use LAST without a search word to find data most recently added to a record. Use
LAST with a search word to find the most recent occurrence of that search word in
a record.

A reply of PREV indicates that the previous occurrence of the search word is to be
located. This allows a backwards search. If you specify no search word, the previous
data item is returned.

Default
NEXT

Restrictions
None.

8. Treat as string data

Valid reply
YES, NO, or no reply.

A reply of YES indicates that the control line should treat the search word as string
data so only string data fields in the record are found. A string data field is treated
as a single-character string during data-entry, rather than as multiple words, and can
therefore contain special characters.

For example, the Description abstract field of a problem record can contain several
words. However, when this field is designated as a string data field (that is, the
Collect as string field on the associated assisted-entry panel is set to YES), the
entire field, including words and spaces between, is treated as one character string.

If you use YES, the entire string must be specified. If you are using non-Latin
translation tables, no global characters (* .) can be used to search for string data.

If you use NO, only nonstring data is searched for.

Default
NO

Restrictions
None.

9. Case-sensitive find?

Valid reply
YES, NO, or no reply.

A reply of YES in this field indicates that you want the character string specified in
the Literal data field to be used as a case-sensitive argument. A reply of NO in this

FINDSDATA

92 Version 7.1

field indicates that the case of a character should be ignored when locating data
which matches the value specified in the Literal data field.

Default
NO

Restriction
The capability of using case-sensitive input data depends on whether the Latin
translate table BLGPTRTB or the non-Latin translate table BLGPTRTK was
specified when Tivoli Information Management for z/OS was installed. For more
information on translate tables, refer to the Tivoli Information Management for z/OS
Planning and Installation Guide and Reference.

10. Literal data

Valid reply
A string of 1 to 32 characters of data, or no reply.

A valid entry in this field indicates that you want the character string to be added to
a prefix specified in the Prefix index field. If no prefix index is specified, the literal
data is treated as the actual search word. If you specified YES in the Case-sensitive
find? field above, the search argument that you enter here will be searched sensitive
to the case in which you entered the data.

Default
No reply.

Restriction
If you specify a Prefix index field that does not contain an associated validation
pattern, you must either enter YES in the Get variable data field or enter data in
this field. You cannot specify this field if data is entered in the Structured word
index field or the Panel name field, or if you enter YES in the Get variable data
field.

Structured word

If you enter an s-word index when you create the control line, this field is filled in
automatically. It displays the actual s-word found in the dictionary.

Word acronym

If you enter an s-word index when you create the control line, this field is filled in
automatically. It is part of the s-word entry in the dictionary. This field could be blank if a
word acronym does not exist for the entry.

Prefix

If you enter a prefix index when you create the control line, this field is filled in
automatically. It displays the actual p-word found in the dictionary. Check this entry to make
sure it is the information you expect to locate. If the dictionary entry was changed between
the time that the original data was collected and the time that the TSP was written, Tivoli
Information Management for z/OS might not find the expected information.

Validation

FINDSDATA

93Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

If you enter a prefix index when you create the control line, this field is filled in
automatically. It displays the validation pattern associated with the prefix index.

Usage Notes and Examples
The results of a FINDSDATA search are returned in the same sequence as shown in a View
Internal Data panel. Figure 1 shows an example for a problem record that is being created.

If you want to find the problem type for this record, you must use FINDSDATA specifying
LAST with the TYPE/. search word to find the current problem type value. Using
FINDSDATA specifying TYPE/SOFTWARE does not give valid results in this example
because the record type was changed from software to hardware, as shown on the last line
of the View Internal Data panel. Similarly, specifying FIRST with a search word of TYPE/.
also yields results that are not valid. LAST gives a valid result in this example because it
locates the most recent occurrence of the search word.

Figure 2 on page 95 shows an example of View Internal Data panels for a previously created
problem record.

BLG1TVID VIEW INTERNAL DATA LINE 1 OF 9

PANEL PANEL REL COG- FLAGS SWORD STRUCTURED PREFIX WORD OR
NAME TYP/RSP LEV NIZE F M D INDEX WORD VISIBLE PHRASE

BLG0EN20 D/ 5 06 B/ 18/00/88 S002C BA //S/TSI ENTRY
BLG00000 S/ 1 06 B/ 18/04/08 S0032 BA //S/TXS RECS=PROBLEM
BLG0B001 S/ 1 06 B/ 19/00/80 S0CFC BC IMDIAENT0 REPORTER
BLG0B100 D/ 1 06 N/ 41/00/08 S0B59
BLG6REQN A/ 2 06 B/U 0D/04/00 S0B59 BC IM0I0PS00 PERS/POWELL
BLG0B100 D/14 06 N/ 41/00/00 S0BEE
BLG6STAT A/ 2 06 B/U 0D/04/00 S0BEE BC IMS0SSC00 STAC/OPEN
BLG0B100 D/25 06 N/ 41/00/00 S0E0F
BLG6DSAB A/ 2 06 B/ 0D/04/00 S0E0F BC IM0TXCA00 TEST PROBLEM
*** BOTTOM OF DATA ***

Type DOWN or UP to scroll the panel, or type END to exit the panel.

===>

Figure 1. View Internal Data Panel Showing a Record That Has Never Been Filed. The data listed under the
headings PANEL NAME, STRUCTURED WORD, and PREFIX WORD OR VISIBLE PHRASE is what FINDSDATA examines.

FINDSDATA

94 Version 7.1

If you want to step through the structured description entries of a record, use FINDSDATA
specifying FIRST as a parameter with no search argument, followed by FINDSDATA NEXT
in a loop. Using the above problem record, the data returned in the TSCA is as follows:
FIRST

S-Word X'BA' //S/TSI in TSCARSD. Visible phrase ENTRY is in TSCAVPH
NEXT

S-Word X'BA' //S/TXS in TSCARSD. Visible phrase RECS=PROBLEM is in TSCAVPH
NEXT

S-Word X'BC' IMDIAENT0 in TSCARSD. Visible phrase REPORTER is in TSCAVPH

BLG1TVID VIEW INTERNAL DATA LINE 1 OF 24

PANEL PANEL REL COG- FLAGS SWORD STRUCTURED PREFIX WORD OR
NAME TYP/RSP LEV NIZE F M D INDEX WORD VISIBLE PHRASE

BLG0EN20 D/ 5 06 B/ 18/00/88 S002C BA //S/TSI ENTRY
SDDSROOT C/ 00 N/ 12/04/10 S0000 00000EBE
BLG00000 S/ 1 06 B/ 18/04/08 S0032 BA //S/TXS RECS=PROBLEM
BLG0B001 S/ 1 06 B/ 19/00/00 S0CFC BC IMDIAENT0 REPORTER
BLG0B100 D/ 1 06 N/ 41/00/08 S0B59
BLG6REQN A/ 2 06 B/U 0D/04/00 S0B59 BC IM0I0PS00 PERS/POWELL
BLG0B100 D/14 06 N/ 41/00/00 S0BEE
BLG6STAT A/ 2 06 B/U 0D/04/00 S0BEE BC IMS0SSC00 STAC/OPEN
BLG0B100 D/25 06 N/ 41/00/00 S0E0F
BLG6DSAB A/ 2 06 B/ 0D/04/00 S0E0F BC IM0TXCA00 TEST PROBLEM
BLG0B100 D/ E 06 N/ 01/00/0C S000B
BLGSDBCP D/ 9 06 N/ 19/00/5C S0CF1 BC ISSCPN009 File record
BLG1A111 C/ 2 06 B/U 0C/00/00 S0C34 BC IM00SDC00 DATE/05/21/2000 DATE/05

21/2000
BLG1A111 C/ 2 06 B/U 0C/00/00 S0C61 BC IM00STC00 TIME/17:52 TIME/17:52

===>

BLG1TVID VIEW INTERNAL DATA LINE 15 OF 24

PANEL PANEL REL COG- FLAGS SWORD STRUCTURED PREFIX WORD OR
NAME TYP/RSP LEV NIZE F M D INDEX WORD VISIBLE PHRASE

BLG1A111 C/ 2 06 B/U 0C/00/00 S0BB1 BC IM0I0CCS0 CLAE/MASTER
BLG1A111 C/ 2 06 B/U 0D/00/00 S0C35 BC IM00SDM00 DATM/05/21/2000 DATM/05

21/2000
BLG1A111 C/ 2 06 B/U 0D/00/00 S0C62 BC IM00STM00 TIMM/17:52 TIMM/17:52
BLG1A111 C/ 2 06 B/U 0D/00/00 S0B5E BC IM0I0PM00 USER/GSWOOD
BLG1A111 C/ 2 06 B/U 0D/00/00 S0D90 BC PROBN0D90 ESCL/1
BLG1A115 C/ 2 00 N/ 0D/04/10 S0000 BC ISRAC3010 5
BLGCFILE S/ 00 B/ 99/04/10 S0000 BC ISSCPR002 MANAGEMENT
BLGCFILE C/ 2 00 N/ 8D/04/10 S0000 BC IM00SST00 AEB1886271D72215
BLGCFILE C/ 2 00 N/ 8D/04/10 S0000 BC IM00SST01 AEB1886271D72215
BLGCADRN A/ 2 00 B/U 8D/04/10 S0000 BC IM00NR001 RNID/00000008
*** BOTTOM OF DATA ***

Type DOWN or UP to scroll the panel, or type END to exit the panel.

===>

Figure 2. View Internal Data Panels Showing a Record That Was Filed Previously

FINDSDATA

95Terminal Simulator Guide

|
|
|

|
|
|

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

NEXT
TSCAFRES=4, because there is no data associated with this entry....

NEXT
Return code 8 in TSCAFRET and reason code 4 in TSCAFRES, indicating the end
of the record.

Using this same record, if you request the last occurrence of panel BLG0B100, Tivoli
Information Management for z/OS sets the return code field to 0 and the reason code field
to 0, indicating that it found the panel. Follow this control line with another FINDSDATA
specifying the NEXT parameter with no search argument. Tivoli Information Management
for z/OS returns the s-word, X'BC' ISSCPN009, in TSCARSD and the visible phrase, File
record, in TSCAVPH.

Another example using this record is to request the first occurrence of the prefix CLAE/. in
the data. Tivoli Information Management for z/OS returns both the s-word and p-word for
that entry and sets the current position to that entry. Now you want to locate the first
occurrence of the prefix DATE/. in the data.

If you request a FINDSDATA FIRST or FINDSDATA LAST for DATE/., Tivoli Information
Management for z/OS finds it because a request of FIRST resets the current position to the
top of the record. If you request a FINDSDATA NEXT for DATE/. after having located the
prefix CLAE/., Tivoli Information Management for z/OS does not find it, because the
DATE/. entry precedes the current position. For more examples, use PMF to look at TSPs
BTNTAPRV and BTNTAC1R in the base panel data set.

If you want to code multiple FINDSDATA control lines in a TSP, you should either always
or never specify a search argument. Do not code some FINDSDATA control lines with a
search argument and some without, or you will get unpredictable results.

What the Control Line Does
The first FINDSDATA request establishes the current position in the record. The current
position is updated for each successful FINDSDATA request until a PROCESS control line
is found, at which point the current position is cleared. If a FINDSDATA request fails, the
current position is not updated. The first FINDSDATA request that occurs after a PROCESS
control line starts from the beginning of the current record, and the current position is
reestablished.

When a FINDSDATA runs successfully, the data (if any) is stored in fields in the TSCA.

¶ If you specify a search by s-word index, the following fields are set:
TSCARSD

The located s-word
TSCARSDL

The length of the located s-word
TSCARPD

If any, the prefix associated with the found item
TSCARPDL

The length of the associated prefix
TSCASDF

If any, the validation data associated with the found item

FINDSDATA

96 Version 7.1

TSCASDFL
The length of the associated data

TSCAVPH
If any, the visible phrase associated with the found item

TSCAVPHL
The length of the visible phrase.

¶ If you specify a search by p-word, the following fields are set:
TSCARPD

The located prefix
TSCARPDL

The length of the located prefix
TSCASDF

The validation data associated with the found item
TSCASDFL

The length of the associated data
TSCARSD

If any, the s-word associated with the found item
TSCARSDL

The length of the associated s-word.

¶ If you specify a panel, a position is established in the current record for that data item,
but no data is returned.

The FINDSDATA TSX Control Line
The format of the FINDSDATA control line is:
CALL BLGTSX 'FINDSDATA',searchword,searchtype,occurrence,date/time form

Parameter Descriptions
1. searchword

Valid reply
The string to be searched for. Valid values for searchword vary based on the search
type.

DATA 1 to 256 characters

CSDATA
1 to 256 characters

PANEL
8 characters (panel name)

STRING
1 to 256 characters

CSSTRING
1 to 256 characters

SWORD
2 to 10 characters, with the first between X'BA' and X'BF'. The TSX
READDICT control line can be used to get the s-word from the dictionary.
Refer to “READDICT” on page 160 for more information on the
READDICT control line.

Note: Refer to “GETLIST” on page 119 for information on how to retrieve
list processor data from a record using a TSX.

FINDSDATA

97Terminal Simulator Guide

|

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Default
None

If omitted, any item will match the search.

Optional

2. searchtype

Valid reply
The type of search.

DATA Search for a data field containing the indicated prefix/data or unprefixed
data.

Note: The DATA searchtype can also be used to locate the user’s local form
of a date.

CSDATA
A case-sensitive search for a data field containing the indicated prefix/data or
unprefixed data.

PANEL
Search for data entries collected from the specified panel name.

STRING
Search for a string data field with the specified data (equivalent to DATA,
but with the ″Treat as string data″ field specified in a TSP set to YES
instead of NO).

CSSTRING
A case-sensitive search for a string data field with the specified data. In the
TSP version of FINDSDATA, there is a TREAT AS STRING DATA field
(on page 92) with which you can indicate that the data you are looking for
is string data. CSSTRING performs a find like you would get in a TSP if
you specified both TREAT AS STRING DATA=YES and CASE
SENSITIVE FIND?=YES in the TSP.

SWORD
Search for a data field with the specified s-word.

UT Search for a Universal Time date or time argument. When UT is specified,
only the universal time value for each field is checked for a matching value.

Note: Universal time values are in internal format: YYYY/MM/DD.

OLOCAL
Search for a Local Time date or time argument. When OLOCAL is
specified, only the original local time value (the local time of the user who
last changed the data) for each field is checked for a matching value.

Note: Local time values are in internal format: YYYY/MM/DD.

Default
DATA

Optional

3. occurrence

FINDSDATA

98 Version 7.1

|
|

|
|

||
|

|

|

Valid reply
Which item to search for.

FIRST
The first item in the record containing the searchword.

LAST The last item in the record containing the searchword.

NEXT
The next item (following the item last found) containing the searchword.

PREV The previous item (before the item last found) containing the searchword.

Default
NEXT

Optional

4. date/time form

Valid reply
Which item to search for.

UT Return the universal time date or time (internal format).

OLOCAL
Return the original local date or time (internal format).

ULOCAL
Return the date or time in the current user’s local time zone and external
date format.

Default
ULOCAL

Optional

Usage Notes and Examples
This is an example of using a FINDSDATA control line in a TSX. The first occurrence of
the assignee name is located in the record.
CALL BLGTSX 'FINDSDATA','PERA/.','DATA','FIRST';

The arguments used to locate data must be in the proper format for the selected form. For
example, FINDSDATA control lines with ULOCAL of DATA must specify the user’s local
form of the date or time. If the user’s date format is DD-MM-YYYY and you want to
perform a FINDSDATA for any dates occurring in May 2000, you must use an argument of
DATO/**-05–2000. A FINDSDATA specifying the ULOCAL or DATA searchtype will not
find any UT or original local date values, even if the argument matches the data. UT or
OLOCAL arguments must be in internal format (YYYY/MM/DD or HH:MM).

Return and Reason Codes
After a FINDSDATA control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 12 on page 100.

FINDSDATA

99Terminal Simulator Guide

|

|
|

||

|
|

|
|
|

|
|

|

|

|
|
|
|
|
|
|

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Table 12. FINDSDATA Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Successful completion.

0 4 The control line ran successfully, but no structured data
exists for this entry.

0 8 Data was found, but it is flagged for deletion when the
current record is filed.

The field was filled in and then blanked out. If the found
item is a list processor item, then the item is eliminated
when the current list processor call ends. This return and
reason code combination applies only to data marked for
deletion, not to data that will be replaced later by data
with the same p-word, s-word, or both.

0 12 List item data was found. TSCATLIX is updated with the
index.

8 4 The requested item was not found. If the data is supposed
to be in the record, verify that your TSP is building a
correct search argument. You can also view internals to
see if what you are searching for is in the record. The
current position might be past the data because of a
previous FINDSDATA. When you use the FIRST
parameter, the internal pointer is reset to the beginning of
the record.

8 8 Get variable data is specified in the control line, but the
length field for the variable data area is zero. Your TSP
must set up the variable data area and its length before the
FINDSDATA control line can be run. You can either call a
user exit routine that sets the variable data area length and
moves data into it, or use the MOVEVAR control line.

Check your TSP to make sure a USEREXIT or
MOVEVAR control line appears in the processing path
before the FINDSDATA control line that resulted in the
unexpected return code. If USEREXIT control line is in
the TSP, check the exit routine’s code to make sure that it
sets the length field properly.

8 10 The sum of the lengths of the list index and the s-word to
be searched on exceeds the length of the s-word field in
the TSCA.

8 12 An internal logic error occurred. Contact your Tivoli
representative.

8 16 The data being used to build the search argument is too
long. The maximum length of the search argument is 252
characters. To correct the problem, either update your TSP
with a search argument that is no more than 252
characters long, or check to make sure that your variable
data does not cause the search argument to be exceeded.

8 20 The sum of the lengths of the list index and the s-word to
be searched on exceeds the length of the s-word field in
the TSCA.

FINDSDATA

100 Version 7.1

Table 12. FINDSDATA Return and Reason Codes (continued)
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

8 24 An internal logic error occurred in National Language
Support. Contact your Tivoli representative.

8 28 The user data is not a valid mixed string. Check the data
and make the changes required to ensure you specify valid
mixed data.

You can use the TESTFIELD control line to test for these return and reason codes. See
“TESTFIELD” on page 175 for information on how to do this.

TSCA Field Usage
Tivoli Information Management for z/OS sets the following TSCA fields after a
FINDSDATA control line is run. For more information about these fields, see “Terminal
Simulator Communications Fields” on page 289.
TSCAFRET

Function return code
TSCAFRES

Function reason code
TSCAVPHL

Visible phrase length
TSCAVPH

Visible phrase
TSCARSDL

S-Word length
TSCARSD

S-Word
TSCARPDL

P-Word length
TSCARPD

P-Word
TSCASDFL

Data field length
TSCASDF

Structured data field
TSCATLIX

List index field.

In a TSP if you enter YES in the Get variable data field and you set the variable data with
a user exit routine, the user exit routine must set the length of the variable data in the
following TSCA field:
TSCAVDAL

Current user variable data length

If you set the variable data with the TSP MOVEVAR control line, the MOVEVAR control
line sets field TSCAVDAL for you.

FINDSDATA

101Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

FINDSJRNL
This control line extracts history data associated with an s-word or a p-word from the
journal portion of the current record.

Refer to “The FINDSJRNL TSX Control Line” on page 107 for information about using the
FINDSJRNL control line in a TSX.

Creating a FINDSJRNL Control Line
Use the following FINDSJRNL Specification panel to create a FINDSJRNL control line:

General Rules
The specified s-word or p-word can identify data entered during the record create or update
process or control data added by the system. You can use SBCS and DBCS asterisk (*) and
period (.) characters to do a generic search, in accordance with the Tivoli Information
Management for z/OS User’s Guide description of Tivoli Information Management for z/OS
rules.

Field Descriptions
1. Structured word index

Valid reply
The index key of an s-word in the dictionary or no reply.

An entry in this field causes the NEWEST, OLDER, or OLDEST occurrence of the
associated s-word to be located in the journal portion of the current record. You
specify the order of location in the Word occurrence field.

Default
No reply.

BLM8CU9E FINDSJRNL SPECIFICATION PANEL: ________

Enter 'FINDSJRNL' control data; cursor placement or input line entry allowed.

1. Structured word index.... ____ Structured word.. ______________
2. Prefix index............. ____ Word acronym..... ______________
3. Get variable data........ NO_ Prefix........... ______
4. Data occurrence.......<R> OLDER_ Validation....... ______________
5. Case-sensitive find?..... NO_

6. Literal data............. DATM/.__________________________

When you finish, type END to save or CANCEL to discard any changes.

===>

FINDSJRNL

102 Version 7.1

Restrictions
You cannot specify this field if you enter information in the Prefix index field or the
Literal data field, or if you enter YES in the Get variable data field.

2. Prefix index

Valid reply
The index key of a prefix in the dictionary data set or no reply.

If you specify this field only, you must refer to a p-word that has a literal validation
pattern and possibly a prefix. The validation pattern must be enclosed in delimiter
symbols (<>), indicating literal data. You can specify a prefix index that refers to a
prefix without any associated validation pattern. When you do this, either you must
specify the Get variable data field as YES, so variable data from the TSCA is
added after the prefix, or you must specify after the prefix a value to be added in the
Literal data field. An entry in this field causes the NEWEST, OLDER, or OLDEST
occurrence of the complete prefix and data combination to be located in the journal
portion of the current record. You specify the order of location in the Data
occurrence field.

Default
No reply.

Restrictions
A nonliteral data validation pattern (such as AAV3 or <S>NR4) is not valid. If you
use the Prefix index field and the associated p-word does not contain a validation
pattern, you must either enter YES in the Get variable data field or enter data in
the Literal data field. You cannot use this field if you entered data in the
Structured word index field.

3. Get variable data

Valid reply
YES, NO, or no reply.

When you enter NO or make no reply, this field has no effect. When you enter
YES, it indicates that you want data in the variable data area to be added to a prefix
(if one was specified) or that the variable data area contains the entire search
argument.

Default
NO

Restrictions
If you specify a prefix index for a prefix without an associated validation pattern,
you must either enter YES in this field or fill in the Literal data field. You cannot
use this field if you enter data in the Structured word index field or the Literal
data field.

If the FINDSJRNL control line has YES in this field, a user exit routine must move
data into the variable data area and set the variable data length, or the MOVEVAR
control line must move data into the variable data area before processing the
FINDSJRNL control line. The TSCA contains fields for a pointer to the variable data
area (TSCAVDAP) and for the length of that data (TSCAVDAL). The pointer field
contains the address of a variable data area that is allocated when the TSP
environment is initialized. Your exit routine must not modify this pointer.

FINDSJRNL

103Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

4. Data occurrence

This field indicates how to search for an entry in the journal portion of the record. An entry
is usually located through a search word, which can be specified in the Structured word
index field, Prefix index field, Literal data field, or as variable data. This field is required.

Valid replies
A reply of NEWEST indicates that the most recent occurrence of the search word is
to be located. If no search word is specified, the newest entry in the journal is
returned.

A reply of OLDER indicates that an older occurrence of the search word is to be
located. The search starts at the next older entry following the data item last found.
An internal pointer to a current journal entry is maintained. Each time a
FINDSJRNL operation is performed, this pointer is updated to point to the item
located. The first time the FINDSJRNL control line is used for a record, OLDER
causes the search to start with the first data item in the record. If no search word is
specified, the newest entry in the journal is returned. Whenever a PROCESS control
line is run, the internal pointer is reset. OLDER, specified without a search
argument, is a good way of stepping through the entries in the journal.

A reply of OLDEST indicates that the oldest occurrence of the search word is to be
located. If no search word is specified, the oldest entry in the journal is returned.

Default
OLDER

Restrictions
None.

5. Case-sensitive find?

Valid reply
YES, NO, or no reply.

A reply of YES in this field indicates that you want the character string specified in
the Literal data field to be used as a case-sensitive argument. A reply of NO in this
field indicates that the case of a character should be ignored when locating data
which matches the value specified in the Literal data field.

Default
NO

Restriction
The capability of using case-sensitive input data is dependent on whether the Latin
translate table or the non-Latin translate table was specified when Tivoli Information
Management for z/OS was installed. The Tivoli Information Management for z/OS
Planning and Installation Guide and Reference contains additional information
regarding translate tables.

6. Literal data

Valid reply
This depends upon how your SDIDS key length is set:

¶ A string of 1 to 32 characters or no reply. However, if the prefix index field is
filled in, the sum of the bytes in the prefix index field and in the literal data
field cannot exceed 32 bytes.

FINDSJRNL

104 Version 7.1

Note: The length of the character string is not dependent on the SDIDS key
length.

A valid entry in this field indicates that you want the character string to be added to
a prefix specified in the Prefix index field. If no prefix index is specified, the literal
data is treated as the actual search word. If you specified YES in the
CASE-SENSITIVE FIND? field above, the search argument that you enter here will
be searched sensitive to the case in which you entered the data.

Default
No reply.

Restrictions
If you specify a Prefix index field that does not contain an associated validation
pattern, you must enter YES in the Get variable data field, or enter data in this
field. You cannot specify this field if the Structured word index field has data or if
you enter YES in the Get variable data field.

When an SBCS comma is required as the first, or only, character of the Literal data
field, you must precede the comma with an SBCS space character.

Structured word

If you enter an s-word index when you create the control line, this field is filled in
automatically. It displays the actual s-word found in the dictionary.

Word acronym

If you enter an s-word index. when you create the control line, this field is filled in
automatically. It is part of the s-word entry in the dictionary. This field could be blank if a
word acronym does not exist for the entry.

Prefix

If you enter a prefix index when you create the control line, this field is filled in
automatically. It displays the actual prefix found in the dictionary. Check this entry to make
sure it is the information you expect to locate. If the dictionary entry was changed between
the time that the original data was collected and the time that the TSP was written, Tivoli
Information Management for z/OS might not find the expected information.

Validation

If you enter a prefix index when you create the control line, this field is filled in
automatically. It displays the validation pattern associated with the prefix index.

Usage Notes
The FINDSJRNL control line examines the journal data in a record. A journal entry is
created each time you update a history (<H>) field in a record. The new data and control
information are recorded in the journal entry. To help you better understand how
FINDSJRNL works, look at the History Display panel shown in Figure 3 on page 106.

FINDSJRNL

105Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

If you want to step through the entries in the journal, you can use FINDSJRNL, specifying
NEWEST as a parameter with no search argument, followed by FINDSJRNL OLDER in a
loop. Using the history record at the beginning of this section, the data returned in the TSCA
is as follows:
NEWEST

S-Word associated with STAC/CLOSED in TSCARSD
P-Word STAC/ in TSCARPD and structured data CLOSED in TSCASDF

OLDER
S-Word associated with USER/B123456 in TSCARSD
P-Word USER/ in TSCARPD and structured data B123456 in TSCARSD

OLDER
S-Word associated with TIMM/09:11 in TSCARSD
P-Word TIMM/ in TSCARPD and structured data 09:11 in TSCASDF

OLDER
S-Word associated with DATM/04/19/2000 in TSCARSD
P-Word DATM/ in TSCARPD and structured data 04/19/2000 in TSCASDF...

OLDER
P-Word DATM in TSCARPD and structured data 04/04/2000 in TSCASDF

OLDER
Return code 8 in TSCAFRET and reason code 4 in TSCAFRES, indicating end of
the journaled data.

You can use the FINDSJRNL control line to locate the dates when the status was changed
by first using FINDSJRNL NEWEST with a search argument of STAC/. to find the most
recent status entry. FINDSJRNL OLDER with a search argument of DATM/. locates the date
of the status entry. Using the two FINDSJRNL OLDER control lines to alternately search on
STAC/. and DATM/., you can step through the record until all occurrences are found.

BLG1TDHD HISTORY DISPLAY LINE 1 OF 9

DATE TIME USERID JOURNALIZED HISTORY DATA
ALTERED ALTERED

04/04/2000 13:26 B123456 CLAO/PSMITH DATA/04/04/2000 GROA/ABC
GROC/DEF MISB/NO NASY/SYSTEM
PERA/SMITH PERC/JONES PRII/2
PRIO/2 STAC/OPEN TIMA/16:05

04/17/2000 15:16 CODC/PERE
04/18/2000 07:20 B789543 CLAT/CJONES PERA/CJONES

08:04 CLAO/CJONES CODC/PERN
09:20

04/19/2000 09:11 B123456 STAC/CLOSED

===>

Figure 3. History Display Panel Example

FINDSJRNL

106 Version 7.1

Note: If Universal Time processing has been enabled for your application, a Date Modified
history entry is only built if the local date of the user making the change is different
than it was for the previous change. Therefore, a U.S. Pacific Time user who makes a
change at 18:00 on 2/20/01 and another change at 23:00 the same night will not have
a second Date Modified entry generated for the second change. However, to a U.S.
Eastern Time user, the history data for the Pacific Time user’s changes will appear as
follows:
02/20/2001 21:00

02:00

The date for the second change, when viewed in U.S. Eastern Time, should be
02/21/2001; but because the Pacific Time user’s date did not turn between changes,
the Eastern Time user’s view does not display a date change either. However, because
history entries are always listed in chronological order, you can tell when a date
change should occur when viewing histories of records originating in another time
zone.

What the Control Line Does
The first FINDSJRNL request establishes the current position in the record. The current
position is updated for each additional FINDSJRNL request until a PROCESS control line is
found, at which point the current position is cleared. If a FINDSJRNL request fails, the
current position is not updated. The first FINDSJRNL request that occurs after a PROCESS
control line starts at the newest journaled data of the current record, and the current position
is reestablished.

When a FINDSJRNL control line is run successfully, the data, if any, is stored in fields in
the TSCA as follows:

¶ If you specify a search for an s-word, the s-word data is stored in TSCARSD and
TSCARSDL and the visible phrase is stored in TSCAVPH and TSCAVPHL.

¶ If you specify a p-word search, the prefix is stored in TSCARPD and TSCARPDL and
the data associated with the prefix is stored in TSCASDF and TSCASDFL. If an s-word
is associated with the found item, its data is stored in the fields noted earlier.

The FINDSJRNL TSX Control Line
The format of the FINDSJRNL control line is:
CALL BLGTSX 'FINDSJRNL',searchword,searchtype,occurrence

Parameter Descriptions
1. searchword

Valid reply
The string to be searched for. Valid values for searchword vary based on the search
type.

DATA 1 to 32 characters

SWORD
2 to 10 characters, with the first between X'BA' and X'BF'. The TSX
READDICT control line can be used to get the s-word from the dictionary.
Refer to “READDICT” on page 160 for more information on the TSX
READDICT control line.

CSDATA
1 to 32 characters

FINDSJRNL

107Terminal Simulator Guide

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Default
None

If omitted, any item will match the search.

Optional

2. searchtype

Valid reply
The type of search.

DATA Search for a history data field containing the indicated prefix/data or
unprefixed data.

CSDATA
A case-sensitive search for a history data field containing the indicated
prefix/data or unprefixed data.

SWORD
Search for a history data field with the specified s-word.

Default
DATA

Optional

3. occurrence

Valid reply
Which item to search for.

NEWEST
The most recent history item containing the searchword.

OLDER
The next older entry (following the item last found) containing the
searchword.

OLDEST
The oldest history item containing the searchword.

Default
OLDER

Optional

Usage Notes and Examples
This is an example of using a FINDSJRNL control line in a TSX. The oldest occurrence of
the assignee name is located in the history data of the record.
CALL BLGTSX 'FINDSJRNL','PERA/.','DATA','OLDEST';

Return and Reason Codes
After the FINDSJRNL control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 13 on page 109.

FINDSJRNL

108 Version 7.1

Table 13. FINDSJRNL Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 Successful completion.

0 12 List item history data was found. TSCATLIX is updated
with the index of the located item.

8 4 The requested item was not found.

8 8 Get variable data was specified in the control line but the
length field for the variable data area is zero.

You must set up the variable data area and its length
before processing a FINDSJRNL control line that has YES
in the Get variable data field. The TSP must either call a
user exit routine that sets the variable data area length and
moves data into it, or include a MOVEVAR control line.

Check your TSP to make sure a USEREXIT or
MOVEVAR control line appears in the processing path
before the FINDSJRNL control line that resulted in the
unexpected return code. If a USEREXIT control line is in
the TSP, check the exit routine’s code to make sure it sets
the length field properly.

8 10 The sum of the lengths of the list index and the s-word to
be located exceeds the length of the s-word field in the
TSCA.

8 12 An internal logic error occurred. Contact your Tivoli
representative.

8 16 The data being used to build the search argument is too
long. The maximum length of the search argument is 32
characters. To correct the problem, update your TSP and
make sure that the search argument is no longer than 32
characters.

8 24 The user data is not a valid mixed string. Check the data
and make the changes required to ensure that you specify
valid mixed data.

8 28 An internal logic error occurred in National Language
Support. Contact your Tivoli representative.

You can use the TESTFIELD control line to test for these return and reason codes. You can
also use TESTFIELD to examine the returned data. See “TESTFIELD” on page 175 for
information on how to do this.

TSCA Field Usage
Tivoli Information Management for z/OS sets the following TSCA fields after a
FINDSJRNL control line is run. For more information about these fields, see “Terminal
Simulator Communications Fields” on page 289.
TSCAFRET

Function return code
TSCAFRES

Function reason code

FINDSJRNL

109Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

TSCAVPHL
Visible phrase length

TSCAVPH
Visible phrase

TSCARSDL
S-Word length

TSCARSD
S-Word

TSCARPDL
P-Word length

TSCARPD
P-Word

TSCASDFL
Data field length

TSCASDF
Structured data field

TSCATLIX
List index field.

In a TSP if you enter YES in the Get variable data field and you set the variable data with
a user exit routine, the user exit routine must set the length of the variable data in the
following TSCA field:
TSCAVDAL

Current user variable data length

If you set the variable data with the TSP MOVEVAR control line, the MOVEVAR control
line sets the field length of TSCAVDAL for you.

FINDTEXT (GETTEXT)
This control line enables you to locate freeform text in the current record using a specified
s-word. The text is written to a compound variable. FINDTEXT and GETTEXT provide
identical function and have identical parameters. Information on GETTEXT and the
GETTEXT control line can be found in “GETTEXT (FINDTEXT)” on page 123.

This control line, like the GETTEXT control line, can be called only from a TSX.

The FINDTEXT Control Line
The format of the FINDTEXT control line is:
CALL BLGTSX 'FINDTEXT',sword,stemname

Parameter Descriptions
The Parameter Descriptions for the FINDTEXT control line are identical to the Parameter
Descriptions for the GETTEXT control line, described in “The GETTEXT Control Line” on
page 123.

Return and Reason Codes
The Return and Reason Codes for the FINDTEXT control line are identical to the Return
and Reason Codes for the GETTEXT control line, described in “Return and Reason Codes”
on page 125.

FINDSJRNL

110 Version 7.1

FLATTEN
This control line enables you to selectively copy records to a buffer from a Tivoli
Information Management for z/OS database or a user database that has the same format as a
Tivoli Information Management for z/OS database. Copying does not modify the data in the
original record. The database identified in your user profile is searched for the record that
you want flattened. For more information about user profiles, refer to the Tivoli Information
Management for z/OS User’s Guide.

CAUTION:
If you do not use the FLATTEN control line correctly, it could damage your existing
databases. You may want to take precautions against its unauthorized use. For
information on the security measures you can use to protect against its misuse, refer to
the discussion in the Tivoli Information Management for z/OS Planning and Installation
Guide and Reference regarding data integrity and security using TSPs and TSXs .

Refer to “The FLATTEN TSX Control Line” on page 114 for information about using the
FLATTEN control line in a TSX.

After Tivoli Information Management for z/OS copies the flattened record to the buffer, you
must call your exit routine to take that record and write it to auxiliary storage. Tivoli
Information Management for z/OS cannot access the record that is in auxiliary storage. If
you need to access the flattened record, you must restore it to a Tivoli Information
Management for z/OS database using the UNFLATTEN control line. See “UNFLATTEN” on
page 188 for more information on using the UNFLATTEN control line.

After a record is stored outside the original Tivoli Information Management for z/OS
database, you can delete the original record to give you more space in your database.

Before using this control line, read about the security measures you can use to protect
against the misuse of this control line. Refer to the Tivoli Information Management for z/OS
Planning and Installation Guide and Reference for a discussion of data integrity and security
using TSPs.

This is an example of using a FLATTEN control line in a TSP that copies from a database
all problem records that have been closed before a specified date.
USEREXIT OPENSEQF
ADDDATA 6,1,SE + STAC/CLOSED (Entered in literal field)
ADDDATA DATR/2001/01/01 -2001/10/01 (Entered in literal field - if there

was no space before DATR, the search
would result in STAC/CLOSEDDATR...)

PROCESS ERROR
LABEL ERROR
TESTFLOW ALLDONE (If no records found, message BLG19214,

take TRUE branch to ALLDONE)
TESTFIELD JUSTONE (If TSCATPLC =1, take TRUE branch to JUSTONE)

ADDDATA LINECMD SS,DOWN LAST,LINECMD SS (Entered in literal field)
PROCESS ERROR
BRANCH NEXT
LABEL JUSTONE
ADDDATA LINECMD S (Entered in literal field)
PROCESS ERROR
LABEL NEXT
TESTFIELD ERROR (If TSCAFRET ¬=0, take TRUE branch to ERROR)
FLATTEN
USEREXIT WRITFLAT

FLATTEN

111Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

TESTFIELD ERROR (If TSCAFRET ¬=0, take TRUE branch to ERROR)
ADDDATA ;END (Entered in literal field)
PROCESS ERROR
TESTFLOW NEXT (If panel is BLG0S010, take TRUE branch to NEXT)
LABEL ALLDONE
USEREXIT CLOSSEQF
RETURN
LABEL ERROR
PRINT (Print messages, panel, and TSCA)
BRANCH ALLDONE

Creating a FLATTEN Control Line
You use the following FLATTEN Specification panel to create a FLATTEN control line.

General Rules
Because of the USEREXIT considerations listed in “USEREXIT” on page 193, use
assembler language to write exit routines to perform the file operations associated with the
FLATTEN control line.

Field Descriptions
1. Use ID of current record

Valid reply
YES, NO, or no reply.

A reply of YES indicates that the ID of the record to be taken from the database and
flattened is that of the current record. If you enter NO or make no reply, some other
record ID (specified in one of the other fields on this panel) is used.

Default
YES

BLM8CU9Z FLATTEN SPECIFICATION PANEL: ________

Enter 'FLATTEN' control data; cursor placement or input line entry allowed.

1. Use id of current record...... YES
2. Use id of last record filed... NO_
3. Get variable data............. NO_
4. Literal data.................. ________________________________

When you finish, type END to save or CANCEL to discard any changes.

===>

FLATTEN

112 Version 7.1

Restrictions
To have a current record ID, you must access a record before processing this control
line.

If you enter YES in this field, you must enter NO or make no reply to the other
fields on this panel.

2. Use ID of last record filed

Valid reply
YES, NO, or no reply.

A reply of YES indicates that the ID of the record to be taken from the database and
flattened is that of the last record filed. If you enter NO or make no reply, some
other record ID (specified in one of the other fields on this panel) is used.

Default
NO

Restrictions
To have a record in this field, you must file a record before processing this control
line. If you enter YES in this field, you must enter NO or make no reply to the
other fields on this panel.

3. Get variable data

Valid reply
YES, NO, or no reply.

A reply of YES indicates that you want the ID of the record to be flattened taken
from the variable data area in the TSCA. If you enter NO or make no reply, some
other record ID (specified in one of the other fields on this panel) is used.

Default
NO

Restrictions
If the FLATTEN control line has YES in this field, a user exit routine must move
data into the variable data area and set the variable data length or the MOVEVAR
control line must move data into the variable data area before processing the
FLATTEN control line. If you enter YES in this field, you must enter NO or make
no reply in the other fields on this panel.

If the FLATTEN control line has YES in this field, a record ID must be moved into
the first 8 bytes of the variable data area and set the variable data length before
processing a FLATTEN control line. The TSCA contains fields for a pointer to the
variable data area (TSCAVDAP) and for the length of that data (TSCAVDAL). The
pointer field contains the address of a variable data area that is allocated when the
TSP environment is initialized. Your exit routine must not modify this pointer.

4. Literal data

Valid reply
A string of 1 to 32 characters or no reply.

This field specifies the ID of the record to be taken from the database and flattened.
Any other reply indicates that some other record ID (specified in one of the other
fields on this panel) is used.

FLATTEN

113Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Default
No reply.

Restrictions
If you enter data in this field, you must enter NO or make no reply in the other
fields on this panel. You must enter the record ID in the first 8 positions of the field.

Usage Notes
The FLATTEN control line operates only on the single record you identify. If you are
copying a set of parent and child records or related records (such as change and related
activity records), a separate FLATTEN control line, followed by a user exit routine, must be
issued for each record.

Each record must have a unique record ID (RNID/). Using the FLATTEN control line on a
record ID that is not unique could cause an ABEND code to be returned.

The FLATTEN control line always reads the record to be flattened from the database, not
from current storage. If you want to change the record before it is flattened, your TSP must
change the record and file it before the FLATTEN control line is run. If not, the unchanged
record is copied.

What the Control Line Does
When the TSP is run, the record ID is obtained from the area you indicated on the
FLATTEN Specification panel. The record is read from the Tivoli Information Management
for z/OS database. Tivoli Information Management for z/OS obtains a buffer to hold the
flattened form of the record, and the flatten buffer pointer (TSCAFBP) and length
(TSCAFBL) fields in the TSCA are set. After these fields are set, subsequent USEREXIT
control lines in the TSP can call exit routines that access this information.

To access your information in this buffer, you must determine the length of the data to be
processed. The flatten buffer is a variable length data field. You must extract from this buffer
the value in the full word located at offset 24 (X'18'). Add 14 (X'E') to that value to get the
length of all variable length data from the beginning of the buffer to the end of the data.
This is the length of the data that must be processed by a user exit that receives the flattened
buffer.

Note: The length of the data will exceed 32K (32 767) bytes in some cases. If it does, your
FLATTEN exit routine must segment the data into multiple records in the flattened
file. The corresponding UNFLATTEN exit routine must reassemble the segmented
flattened records into the unflatten buffer.

The FLATTEN TSX Control Line
The format of the FLATTEN control line is:
CALL BLGTSX 'FLATTEN',rnid,stemname,linelen,options

Parameter Descriptions
1. rnid

Valid Reply
The RNID of the record to be flattened.

Default
None

Required

FLATTEN

114 Version 7.1

2. stemname

Valid reply
The stem of a REXX compound variable that the flattened record will be written to.
The number of lines written to the compound variable is contained in stemname.0.
EXECIO can be used to write the data stored in the compound variable to a file.

Default
BLG_FLATTEN.

Optional

3. linelen

Valid reply
Indicates the maximum number of bytes of the flattened record to be stored in a
single variable. It should be the record length of the file to which you will be
writing the data and cannot exceed 32752.

Default
255

Optional

4. options

Valid reply
Options associated with the record to be flattened. You can specify both
NOHISTORY and NOTEXT, in either order, separated by a comma.

NOHISTORY
Indicates that the history data for this record is not copied when the flattened
record is written to the buffer. The default (no value) is to copy the history
data with the record.

NOTEXT
Indicates that the freeform text data for this record is not copied when the
flattened record is written to the buffer. The default (no value) is to copy the
freeform text with the record.

no value specified
History data is copied with the record and freeform text is copied with the
record.

Default
No value specified

Optional

Usage Notes and Examples
CAUTION:
Do not modify the contents of the compound variable that the flattened record is stored
in if you intend to use the UNFLATTEN control line to unflatten the record.

This is an example of using a FLATTEN control line in a TSX. Also refer to the BLGFLAT
data set member of the SBLMTSX data set.

rnid='00003168'
member='R0003168'

FLATTEN

115Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

/* Flatten record using the default stem with 133-byte lines */
CALL BLGTSX 'FLATTEN',rnid,,133

if (tscafret=0) then do /* If FLATTEN succeeded */
/* Allocate PDS member and write the flattened record into it */
'ALLOC FI(FLATPDS) DA('BLM.FLATPDS('member')'') SHR'
'EXECIO' BLG_FLATTEN.0 'DISKW FLATPDS (FINIS STEM BLG_FLATTEN.'
if rc=0 then do /* If write successful, set message */

message='Record' rnid 'flattened successfully.'
CALL BLGTSX 'MESSAGE',,message /* Issue message */
end /* End PDS write successful */

'FREE FI(FLATPDS)' /* Free PDS member */
end /* End flatten successful */

Return and Reason Codes
After a FLATTEN control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 14.

Table 14. FLATTEN Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Successful completion.

8 4 The record cannot be read from the indicated database
because of an I/O error. Contact your system programmer.

8 8 The record ID cannot be found in the indicated database.

Tivoli Information Management for z/OS attempts to read
the specified record from the default database. If you did
not specify a default database in your profile, Tivoli
Information Management for z/OS attempts to read the
record from the Tivoli Information Management for z/OS
database. Make sure your profile is set to select the correct
database for the record ID you want to flatten and that
you use the correct session member.

8 12 The length of the record ID is 0.

If you want the current record flattened, your TSP must
access the record before running this control line. If you
want to flatten the last record filed, your TSP must file the
record before running this control line.

If you entered YES in the Get variable data field, check
to see if your TSP uses the variable data area length field
properly and that it moved data into the variable data area.
You must set up the variable data area and its length
before running this control line. You can call a user exit
routine that sets the variable data area length and moves
data into it or use a MOVEVAR control line.

8 16 The storage available is not sufficient to flatten the record.
Increase the region size and try again.

FLATTEN

116 Version 7.1

Table 14. FLATTEN Return and Reason Codes (continued)
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

8 20 The record ID supplied in the variable data area or the
Literal data field was longer than 8 characters.

If you created the control line using literal data, check the
Literal data field on the FLATTEN Specification panel to
make sure it contains 8 or fewer characters. If you entered
YES in the Get variable data field, check your exit
routine to see if the current user variable data length field
(TSCAVDAL) is set properly.

8 24 Your TSP attempted to flatten a record in
Information/MVS format. MVS™ records are read-only
records and cannot be unflattened. The FLATTEN control
line does not accept MVS records to be flattened.

8 28 The record that you want to flatten is being used and
cannot be flattened now. Try again later when the record is
not in use.

8 32 An internal logic error occurred in National Language
Support. Contact your Tivoli representative.

8 36 The user data is not a valid mixed string. Check the data
and make the changes required to ensure you specify valid
mixed data.

You can use the TESTFIELD control line to test for these return and reason codes. See
“TESTFIELD” on page 175 for information on how to do this.

TSCA Field Usage
Tivoli Information Management for z/OS sets the following TSCA fields after a FLATTEN
control line is run. For more information about these fields, see “Terminal Simulator
Communications Fields” on page 289

.
TSCAFRET

Function return code
TSCAFRES

Function reason code
TSCAFBL

Flatten buffer length
TSCAFBP

Pointer to flattened record

If you enter YES in the Get variable data field and you set the variable data with a user
exit routine, the user exit routine must set the length of the variable data in the following
TSCA field:
TSCAVDAL

Current user variable data length.

If you set the variable data with the MOVEVAR control line, the MOVEVAR control line
sets field TSCAVDAL for you.

FLATTEN

117Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

GETAPIDATA
This control line can be used in a TSX to receive parameters that were passed as input
PDBs via HLAPI transaction HL14 (Start User TSP or TSX). The HL14 transaction starts a
user TSP or TSX and passes a parameter to it.

If the HL14 starts a TSX, the invoked TSX can use the GETAPIDATA control line to access
the data specified in any of the three reserved input PDBs that the HL14 accepts. The
reserved input PDBs that an HL14 accepts are TSP_NAME, USER_PARAMETER, and
USER_PARAMETER_DATA. These PDBs will not be passed to the TSX. For example,
USER_PARAMETER_DATA can be used to pass a parameter to a TSX. You can also use
GETAPIDATA to pass other data to the TSX; these input PDBs can be named whatever you
choose. If the PDB name is found, the PDB data is returned in a REXX stem variable. The
Tivoli Information Management for z/OS Application Program Interface Guide contains
additional information about the HLAPI and PDBs.

Each call to GETAPIDATA causes the input PDB chain to be searched for the specified
PDB name. If the PDB name is found, the PDB data is returned in a REXX stem variable.
If the PDB name appears in the input chain multiple times (for example,
USE_AS_IS_ARGUMENT), the data from all the found PDBs will be returned in the same
stem variable. Trailing blanks will be removed when data is returned in the stem variable.
Thus, each element in the stem variable can have a different length.

This control line can be called only from a TSX and is valid only in an API environment.
LLAPI applications using the T111 transaction will not be able to pass input PDBs to a
TSX.

The GETAPIDATA Control Line
The format of the GETAPIDATA control line is:
CALL BLGTSX 'GETAPIDATA',pdbname,stemname

Parameter Descriptions
1. pdbname

Valid reply
The name of the PDB to search for in the input PDB chain. Maximum length is 32
characters.

Default
None

Required

2. stemname

Valid reply
The name of a REXX compound variable that will contain the data read from
PDBDATA. By convention, the variable name should end with a period. The length
is limited to 58 characters, including the period.

Default
BLG_GETAPIDATA.

Optional

GETAPIDATA

118 Version 7.1

Usage Notes and Examples
If the input PDB contains a single string (PIXDDATW = 0 and PIXDDATL > 0), then
PIXDDATL must be less than or equal to 32767. If the string is longer than 32767, the data
will be truncated and both TSCAFRET and TSCAFRES will be set to 4.

If the input PDB contains a series of text lines (PIXDDATW > 0 and PIXDDATL > 0), then
PIXDDATW must be less than or equal to 255. However, PIXDDATL can be greater than
32767 in this case. If any text line is longer than 255, the data will be truncated and both
TSCAFRET and TSCAFRES will be set to 4.

This is an example of using a GETAPIDATA control line in a TSX using an s-word as a
pdbname.
CALL BLGTSX 'GETAPIDATA','S0B59','MYARRAY.'

This is an example of using a GETAPIDATA control line in a TSX using a user-named
pdbname.
CALL BLGTSX 'GETAPIDATA','INPUTFIELD','MYARRAY.'

Return and Reason Codes
After the GETAPIDATA control line is run, Tivoli Information Management for z/OS sets
the TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 15.

Table 15. GETAPIDATA Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Processing successful. Data was copied from the input
PDB into the REXX stem variable.

4 4 Processing successful. Data was copied from the input
PDB into the REXX stem variable but was truncated.

8 4 The specified PDB name was not found in the input PDB
chain.

8 8 Data could not be copied to the REXX stem variable.

8 12 API not active.

GETLIST
This control line retrieves all or part of a list processor list into a REXX compound variable.

This control line can be called only from a TSX.

The GETLIST Control Line
The format of the GETLIST control line is:
Call BLGTSX 'GETLIST',listsword,stemname,startln,lastln

Parameter Descriptions
1. listsword

Valid reply
The list s-word (or root s-word) of the list to be retrieved. The list s-word includes
the hexadecimal watermark character; therefore, it is recommended that you use the

GETAPIDATA

119Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

TSX READDICT control line to get the root s-word that you will pass to GETLIST.
Refer to “READDICT” on page 160 for more information on the READDICT
control line.

Default
None

Required

2. stemname

Valid reply
The stem of a REXX compound variable that the list data will be written to. The
index of the highest list index is contained in stemname.0 whether or not you
retrieve the entire list. EXECIO can be used to write the data stored in the
compound variable to a file.

Default
BLG_LIST.

Optional

3. startln

Valid reply
A decimal number between 1 and 19274 representing the first item to be retrieved.

Default
An index of 1

Optional

4. lastln

Valid reply
A decimal number between 1 and 19274 representing the last item to be retrieved.

Default
None

If omitted, all items from startln to the last non-blank item in the list will be
retrieved.

Optional

Usage Notes and Examples

CAUTION:
The list processor data that the TSX GETLIST control line retrieves must be in the
internal format introduced in Version 5.1 (or in Version 4 by APARs OY47188 and
OY47893). Lists which were stored prior to the internal format change will not be
retrieved accurately by GETLIST. Those lists can be converted to the new internal
format by updating them in Version 7.1, repeating the first line, deleting the first line,
and filing the record. The data will be unchanged, but it will be stored in the correct
format.

This is an example of using a GETLIST control line in a TSX.

GETLIST

120 Version 7.1

|

sword='S1416';
CALL BLGTSX 'READDICT',SWORD; /* Get the s-word. */
rootsword=TSCARSD; /* The root s-word of the LP data. */
BLG_LIST. = '';
BLG_LIST.0 = 0;
CALL BLGTSX 'GETLIST',ROOTSWORD;
/* The LP data is stored in REXX compound variable BLG_LIST. */
/* The index of the highest list entry is stored in BLG_LIST.0.*/

This is another example of using a GETLIST control line in a TSX. The first two list entries
for the root s-word identified by s-word index X'1416' will be read into compound variable
MY_LIST.
sword='S1416';
CALL BLGTSX 'READDICT',SWORD; /* Get the s-word. */
rootsword=TSCARSD; /* The root s-word of the LP data. */
MY_LIST. = '';
MY_LIST.0 = 0;
CALL BLGTSX 'GETLIST',ROOTSWORD,'MY_LIST.',1,2;
/* The LP data is stored in REXX compound variable MY_LIST . */
/* The index of the highest list entry is stored in MY_LIST.0. */

The stemname.0 for the compound variable will be set with the highest index of any item in
the list, or to 0 if there are no items in the list.

For a request to retrieve the entire list, the stem is initialized to null before processing; for
partial list retrieval requests, it is the responsibility of the TSX writer to initialize the stem if
desired. The GETLIST control line only sets variables for non-blank list items. Therefore,
for partial list retrieval requests, variables for blank list items will retain the value they had
prior to calling GETLIST which could be ″uninitialized″ or even a value set by a previous
GETLIST, so it is important for your TSX to ensure that the stem is initialized prior to the
first call to GETLIST for a given list.

Note: GETLIST will retrieve items from the modified list if the current panel is a list
processor table panel which contains the list being retrieved. This means that calling
GETLIST if the current panel is an assisted-entry panel or help panel will retrieve the
“saved” list, even if an update session for the list is active.

This is an example of how to initialize the stem prior to the first call to GETLIST.
BLG_LIST.='';

Return and Reason Codes
After the GETLIST control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened.

Using GETLIST is very much like using an enhanced FINDSDATA (see “FINDSDATA” on
page 87). The return and reason codes for GETLIST are the same as the return and reason
codes for FINDSDATA. Refer to Table 16 for exceptions and modifications.

Table 16. GETLIST Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Processing successful - one or more non-blank items
found in specified range of list.

GETLIST

121Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Table 16. GETLIST Return and Reason Codes (continued)
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 4 Processing successful - list exists, but there are no
non-blank items in the specified range. Stemname.0 is set.

8 4 No list items exist for the specified root s-word.
Stemname.0 is set to 0.

GETRDATA
This Remote Data Resource TSX control line is described in “GETRDATA” on page 242.

GETSCREEN
This control line can be used in a TSX to retrieve data from any Tivoli Information
Management for z/OS screen that can be displayed. For example, you might use
GETSCREEN to capture screens from a Search Results List and return columns of data to a
HLAPI. A call to GETSCREEN will return the contents of a single screen.

This control line can be called only from a TSX. An ISPF or TSO environment is not
required for using GETSCREEN.

The GETSCREEN Control Line
The format of the GETSCREEN control line is:
CALL BLGTSX 'GETSCREEN',stemname

Parameter Descriptions
1. stemname

Valid reply
The name of a REXX compound variable (including a separator character, such as a
period). By convention, the variable name should end with a period. The length is
limited to 58 characters, including the period. On return from GETSCREEN, each
stem_name.N variable returned will contain the data from the Nth line of the screen,
where N is the value 1 to the value returned in stem_name.0.

Default
BLG_SCREEN.

Optional

Usage Notes and Examples
This is an example of using a GETSCREEN control line with no parameters in a TSX. The
default stem variable BLG_SCREEN. contains the current screen. BLG_SCREEN.0 is the
number of lines of the currently displayed screen and each BLG_SCREEN.n variable
corresponds to the physical line number of the Tivoli Information Management for z/OS
screen, including the command line when the command line is located at the top. Screen
attributes are translated to blanks (X'40').
CALL BLGTSX 'GETSCREEN'

This is an example of using a GETSCREEN control line and specifying MYSTEM. as a
stem variable. If you ran this example while viewing the PMF panel list BLM1TPDS, the
TSX would show the list of panel data sets. The stem variable MYSTEM. contains the

GETLIST

122 Version 7.1

current screen. MYSTEM.0 is the number of lines of the currently displayed screen,
including the command line when the command line is located at the top and each
MYSTEM.n variable corresponds to the physical line number of the Tivoli Information
Management for z/OS screen. Screen attributes are translated to blanks (X'40').
CALL BLGTSX 'GETSCREEN','MYSTEM.'

Note: The ISPF areas (the Menu bar when using the enhanced panels, the PFKEY area, and
any split part of the screen for the other split screen session) are not included in the
stem variable. The last two lines of the screen, which are reserved, are not included
in the stem variable. This is identical to the way that the TSX/TSP PRINT line works.

Return and Reason Codes
After the GETSCREEN control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields. For the
GETSCREEN command line, these are always returned as 0. If GETSCREEN fails, the
REXX syntax exception will be set.

GETTEXT (FINDTEXT)
This control line enables you to locate freeform text in the current record using a specified
s-word. The text is written to a compound variable. GETTEXT and FINDTEXT provide
identical function and have identical parameters.

This control line can be called only from a TSX.

The GETTEXT Control Line
The format of the GETTEXT control line is:
CALL BLGTSX 'GETTEXT',sword,stemname,startln,lastln

Parameter Descriptions
1. sword

Valid reply
2 to 10 characters, with the first between X'BA' and X'BF'. The TSX READDICT
control line can be used to get the s-word from the dictionary. Refer to
“READDICT” on page 160 for more information on the TSX READDICT control
line.

Default
None

Required

2. stemname

Valid reply
The stem of a REXX compound variable that the freeform text will be written to.
The number of lines written to the compound variable is contained in stemname.0.
EXECIO can be used to write the data stored in the compound variable to a file.

Default
BLG_TEXT.

Optional

3. startln

GETSCREEN

123Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Valid reply
The value specified indicates the line number of the first line of text to retrieve.
Valid values are 1 to 999999.

Default
1

Optional

4. lastln

Valid reply
The value specified indicates the line number of the last line of text to retrieve.
Valid values are 1 to 999999.

Default
999999

Optional

Usage Notes and Examples
This is an example of using a GETTEXT control line in a TSX.
sword='S0E01';
CALL BLGTSX 'READDICT',sword; /* Get the s-word. */
textsword=TSCARSD; /* The s-word of the text data. */
BLG_TEXT. = '';
BLG_TEXT.0 = 0;
CALL BLGTSX 'GETTEXT',textsword;
/* The text is stored in REXX compound variable BLG_TEXT. */
/* The number of elements in the array is stored in BLG_TEXT.0.*/

Note: For a request to retrieve all text lines, the control line initializes the stem to null
before processing; for partial text retrieval requests, it is the responsibility of the TSX
writer to initialize the stem. The GETTEXT control line only sets variables for
non-blank text lines. Therefore, for partial text retrieval requests, variables for blank
text lines will retain the value they had prior to calling GETTEXT. This variable
could be uninitialized, or could be a value set by a previous GETTEXT, so it is
important for your TSX to ensure that the stem is initialized before the first call to
GETTEXT for a given type of text.

The s-word parameter specified is for freeform text. An optional start line parameter first can
be specified after the output stem name and an optional end line parameter last can be
specified after the start line number to limit the lines of text retrieved.

When the GETTEXT control line is called from the Tivoli Information Management for
z/OS freeform text editor screen for the specified text type, the current text from that edit
session will be retrieved even if it has not yet been saved.

Note: GETTEXT will retrieve modified text only if the current panel is a freeform text table
panel which contains the text being retrieved. If the current panel is anything else,
such as an assisted-entry panel or a help panel, calling GETTEXT will retrieve the
saved text, even if an edit session for the text is active.

This shows another example of using a GETTEXT control line in a TSX.
sword='S0E01';
CALL BLGTSX 'READDICT',SWORD; /* Get the s-word. */
textsword=TSCARSD; /* The s-word of the text data. */

GETTEXT (FINDTEXT)

124 Version 7.1

MY_TEXT. = '';
MY_TEXT.0 = 0;
CALL BLGTSX 'GETTEXT',TEXTSWORD,'MY_TEXT.',1,5;
/* The text is stored in REXX compound variable MY_TEXT. */
/* The number of elements in the array is stored in MY_TEXT.0. */
/* This will retrieve the first five lines of text */
/* The first line of text is stored in MY_TEXT.1 */
/* The second line of text is stored in MY_TEXT.2, etc. */

Return and Reason Codes
After the GETTEXT control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 17.

Table 17. GETTEXT Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Processing is successful. Freeform text is written to the
compound variable.

0 4 Processing is successful. There is text for the specified
s-word, but none exists in the specified range. No text
lines are retrieved, but stem.0 is set to the total number of
lines of text for the s-word.

8 4 The freeform text was not found. The compound variable
is unchanged.

ISPEXEC
This control line enables you to call ISPF dialog management services from within a TSP.
You can use ISPEXEC to run CLISTs or to call ISPF applications that could otherwise not
be run in a TSP environment.

The functions provided by the TSP ISPEXEC control line are available in a TSX using the
standard program flow controls available in the REXX programming language. Please note,
however, that you cannot perform ISPF variable services from within a TSX. In order to
perform ISPF variable services from a TSX, you must call another EXEC to perform the
services. An example call:

/* A REXX TSX*/
Say '---- Call ISPEXEC SELECT CMD()'
address ISPEXEC 'SELECT CMD(EX 'DEWRIG.TSX(ISPFSERV)'' ''A B C'')'
say 'rc='rc
exit

You can also use the USEREXIT control line and user exits BLGSPFGT and BLGSPFPT.
Refer to “User Exits” on page 263 for more information on the BLGSPFGT and BLGSPFPT
user exits.

For more syntax information on ISPF services, refer to the ISPF Dialog Management
Services manual.

If you want to display the ISPF primary options menu, specify:
SELECT PANEL(ISR@PRIM)

GETTEXT (FINDTEXT)

125Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

The ISPEXEC control line generates the call to ISPF module ISPEXEC and passes the data
to ISPF without verifying that the ISPF function specified is valid.

Creating an ISPEXEC Control Line
Use the following ISPEXEC Specification panel to create an ISPEXEC control line:

General Rules
You must enter YES in the Get variable data field or enter information in the Literal data
field.

Field Descriptions
1. Get variable data

Valid reply
YES or NO

This field indicates whether you want this control line to use variable data extracted
from the TSCA.

Default
NO

Restrictions
The TSCA contains fields for a pointer to the variable data area (TSCAVDAP) and
the length of that data (TSCAVDAL). These fields must be set before the processing
of a control line with Get variable data set to YES. If the ISPEXEC control line
has YES in this field, a user exit routine must move data into the variable data area
and set the variable data length, or a MOVEVAR control line must move data into
the variable data area before processing the ISPEXEC control line.

You cannot enter YES in this field if you enter data into the Literal data field.

BLM8CU9I ISPEXEC SPECIFICATION PANEL: ________

Enter 'ISPEXEC' control data; cursor placement or input line entry allowed.

1. Get variable data............. NO_
2. Literal data.................. SELECT PANEL (ISR@PRIM)_________

When you finish, type END to save or CANCEL to discard any changes.

===>

ISPEXEC

126 Version 7.1

For examples of TSPs using the ISPEXEC control line, use PMF to look at TSPs
BTNTCN01 and BTNTPN01 in the base panel data set.

2. Literal data

Valid reply
A string of 1 to 32 characters or no reply.

This field specifies the static data to be passed to the ISPF dialog manager. You can
use any valid call invocation syntax from ISPF dialog management services to
specify data in this field.

Default
No reply.

Restrictions
You cannot specify data in this field if you enter YES in the Get variable data
field.

Usage Notes
When using a CLIST, specify any data, whether from the variable data area or the literal
data area, with valid syntax for the ISPF dialog management service, leaving off the leading
ISPEXEC. This data is converted to a buffer and passed with the calculated length to
ISPEXEC.

What the Control Line Does
When the TSP is run, the data to be passed to ISPF is extracted from the control line or
from the variable data area. The length of the data is calculated, and a call to ISPF’s
ISPRXEC dialog management services is made with the buffer and the buffer length
parameters specified.

Note: The ISPEXEC control line cannot be used in TSPs that are running under one of the
application program interfaces because the ISPF environment has not been
established.

Return and Reason Codes
After the ISPEXEC control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 18.

Table 18. ISPEXEC Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 Successful completion.

ISPEXEC

127Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Table 18. ISPEXEC Return and Reason Codes (continued)
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

8 8 Get variable data is specified in the control line, but the
length for the variable data area (TSCAVDAL) is zero.
Your TSP must set up the variable data area and its length
before you can run an ISPEXEC control line that has YES
in the Get variable data field. You can set the variable
data area and its length by calling a user exit routine that
sets the variable data area length and moves data into the
variable data area, or by using a MOVEVAR control line.

Check your TSP to make sure a USEREXIT or
MOVEVAR control line appears in the processing path
before the ISPEXEC control line that caused the
unexpected return code. If a USEREXIT control line is in
the TSP, check the exit routine’s code to make sure that it
sets the length field properly.

If you set the variable data area using the MOVEVAR
control line, add the TESTFIELD control line after the
MOVEVAR control line to verify that the return code is 0
before you continue.

8 12 An internal logic error occurred in National Language
Support. Contact your Tivoli representative.

8 16 The user data is not a valid mixed string. Check the data
and make the changes required to ensure that you specify
valid mixed data.

12 The ISPEXEC function failed. The reason code is set to
the return code from the ISPF dialog management service
that was called. Refer to the description of the service that
you want to use in the ISPF Dialog Management Services
manual.

You can use the TESTFIELD control line to test for these return and reason codes. See
“TESTFIELD” on page 175 for information on how to do this.

TSCA Field Usage
The following TSCA fields are set by Tivoli Information Management for z/OS when an
ISPEXEC control line is processed. For more information about these fields, see “Terminal
Simulator Communications Fields” on page 289.
TSCAFRET

Function return code
TSCAFRES

Function reason code.

If you enter YES in the Get variable data field and you set the variable data with a user
exit routine, the user exit routine must set the length of the variable data in the following
TSCA field:
TSCAVDAL

Current user variable data length.

ISPEXEC

128 Version 7.1

If you set the variable data with the MOVEVAR control line, the MOVEVAR control line
sets field TSCAVDAL for you.

LABEL
This control line enables you to identify the target of another control line such as BRANCH,
TESTFIELD, or PROCESS. It also enables you to make notes or comments about the TSP.

The function provided by the TSP LABEL control line is available in a TSX using the
standard program flow controls available in the REXX programming language.

You can use a LABEL control line to separate control lines of the TSP into subsections, or
to provide unique checkpoint identifiers to use when you review output from the TRACE
function.

This is an example of the LABEL control line used as a checkpoint identifier:
LABEL BEGIN THIS IS THE BEGINNING
TRACE
LABEL SETUP...

LABEL UPDATE UPDATE THE CURRENT RECORD...

LABEL CLEANUP...

Whenever you see label names in your trace output, you know what set of control lines was
being processed.

Creating a LABEL Control Line
Use the following LABEL Specification panel to create a LABEL control line:

BLM8CU9G LABEL SPECIFICATION PANEL: ________

Enter 'LABEL' control data; cursor placement or input line entry allowed.

1. Label name... BEGIN
2. Literal data. THIS IS THE BEGINNING

When you finish, type END to save or CANCEL to discard any changes.

===>

ISPEXEC

129Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Field Descriptions
1. Label name

Valid reply
A mixed string of 1 to 8 characters, beginning with an SBCS alphanumeric, national
character, or an SO character.

This field identifies the name of this control line. A LABEL control line is usually
the target of another control line, such as PROCESS or BRANCH.

Default
None.

Restrictions
The first character cannot be numeric. The label name must be unique for this TSP.

2. Literal data

This field is not used to process TSPs. It only exists for you to make notes or comments
about the TSP.

Usage Notes
You can use the LABEL control line as a target marker for other control lines that perform
branching functions if you specify the Label name field. When a TSP is filed, the line index
of a referenced label is reflected in the control line that references the label.

What the Control Line Does
When the TSP is run, the LABEL line is ignored. The one exception to this is its entry in
the TRACE report.

Return and Reason Codes
Running a LABEL control line does not change the TSCA return and reason codes.

LINK
This control line allows you to transfer control to another TSP by naming the TSP to be
called when the control line is run.

You can also use the LINK control line to call a terminal simulator EXEC. You may wish to
store parameters in the variable data area (VDA) by using the MOVEVAR control line in a
TSP (described in “MOVEVAR” on page 143) prior to invoking the LINK control line. The
contents of the VDA are passed as a single argument to the TSX when it is started. Refer to
“The LINK TSX Control Line” on page 132 for additional information on using the LINK
control line within a TSX.

This is an example of using the LINK control line to call a second TSP to include a set of
control lines that is repeated several times in the first TSP. Each time the first TSP needs to
run the repetitive control lines, it links to the second TSP.

The calling TSP:
LABEL TSP00001...

LINK TSP00002...

LABEL

130 Version 7.1

LINK TSP00002...

LINK TSP00002...

LABEL ENDTSP1

The linked-to TSP:
LABEL TSP00002...

RETURN

Creating a LINK Control Line
Refer to Figure 4 for an example of the Specification panel used to create a TSP LINK
control line:

Field Descriptions
1. Terminal simulator name

Valid reply
An 8-character TSP name or a 1- to 8-character TSX or alias name. The name must
be an SBCS alphanumeric string beginning with an alphabetic character. This field is
required.

This entry specifies the TSP or TSX you want to call.

Default
None.

BLM8CU9D LINK SPECIFICATION PANEL: TSP00001

Enter 'LINK' control data; cursor placement or input line entry allowed.

1. Terminal simulator name....<R> TSP00002

When you finish, type END to save or CANCEL to discard any changes.

===>

Figure 4. LINK Specification panel

LINK

131Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Restrictions
The TSP or TSX must exist when the control line is run. Make sure that the
BLGTSX DD is allocated so that your TSXs are accessible. Also make sure that you
use PMF to copy your TSPs to the appropriate panel data set.

Usage Notes
The LINK control line sets the return and reason codes. Do not link to a TSP or TSX that
analyzes return and reason codes from other functions, because these codes are always zero
when the linked-to TSP or TSX receives control. Other data in the TSCA, such as s-word
and p-word data, is not changed unless the linked-to TSP or TSX changes it.

If you are using TRACE in your TSPs or TSXs, specify YES in the Trace LINK function
field on the TRACE Specification panel to ensure that tracing continues in the linked-to
TSPs or TSXs.

Note: It is the responsibility of the TSX REXX code to test the value stored in the
BLGTRACE variable and to issue the desired REXX TRACE statement. Refer to
“TRACE” on page 185 for additional information on how to use the BLGTRACE
variable to turn tracing on and off in a TSX.

A TSP can communicate with a linked-to TSP using the SETFIELD control line. The calling
TSP can examine the data entered in the TSCA by the linked-to TSP. The calling TSP can
also pass data to the linked-to TSP using SETFIELD. For instance, you might have one TSP
that handles an error routine and is called by several TSPs. When a TSP links to this error
TSP, it must identify itself through a SETFIELD control line. The error TSP can then handle
the error as specified by the calling TSP, such as issuing a particular message. When
returning to a TSP from a linked-to TSP, the TSCATLIX is reset to the value it had in the
original TSP, unless that value is zero. If TSCATLIX was zero in the original TSP, the
TSCATLIX retains the value set by the linked-to TSP.

For examples, use PMF to look at TSPs BTNTA121 and BTNTCA21 in the base panel data
set.

What the Control Line Does
When the TSP or TSX is run, the following occurs:

If all steps are successful, processing continues at the first line of the linked-to TSP or TSX.
When a RETURN control line is found in the linked-to TSP or after the last line of that TSP
is run, or an EXIT is found in the REXX code of the linked-to TSX or after the last line of
the TSX is run, processing resumes at the control line following LINK in the calling TSP or
at the EXEC statement following LINK in the calling TSX.

The LINK TSX Control Line
The format of the LINK control line is:
CALL BLGTSX 'LINK',name,parm1

Parameter Descriptions
1. name

Valid reply
The name of the TSP or TSX to be linked to. This may also be an alias name.

Default
None

LINK

132 Version 7.1

Required

2. parm1

Valid reply
An argument that is passed to the ″called″ TSX which that TSX can parse as
needed. The data for parm1 is put into the TSCAVDA where a TSP can find it.

Default
None

Optional

Usage Notes and Examples
This is an example of using a LINK control line in a TSX. The TSX MYTSX is ″called″
from the current TSX.
CALL BLGTSX 'LINK','MYTSX';

Return and Reason Codes
After the LINK control line is run, Tivoli Information Management for z/OS sets the TSCA
return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what happened.
These codes are listed in Table 19.

Table 19. LINK Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 Successful completion.

8 4 The name you entered in the Starting panel name field
of the Common Update panel (BLM8CU97) does not
match the current Tivoli Information Management for
z/OS panel. When you specify this field, Tivoli
Information Management for z/OS assumes that proper
processing of the TSP is based on that panel being the
current panel when the TSP is started.

When the starting panel and current panel do not match,
the TSP cannot run. Make sure that the starting panel
name specified on the Common Update panel is the name
of the current Tivoli Information Management for z/OS
panel that you require to be current when this TSP is
started. If it is, trace the steps leading up to the TSP call
to determine why the dialog was not on the expected
panel when the TSP was started.

8 8 The TSP name was not found in any read panel data sets.
Check to see if you specified the name correctly.

If the name is correct, maybe the TSP does not exist in
your read panel data sets. When you create the LINK
control line, Tivoli Information Management for z/OS does
not check for the existence of the TSP. As with all other
panels, a TSP is initially filed in the write panel data set
and must be copied to the read panel data set before
running. Also check that the session member includes the
name of the proper read panel data set.

LINK

133Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Table 19. LINK Return and Reason Codes (continued)
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

8 12 The TSP name entered on the LINK Specification panel
was not loaded because of an I/O error. Retry the TSP. If
another I/O failure occurs and your TSP appears to be
correct, contact your system programmer.

8 16 Not enough storage existed to obtain one of the necessary
buffers or control blocks. Use successive BACK or
CANCEL commands to end some functions. If you are
into several levels of suspension, use successive RESUME
commands to end some functions. If you are in split
screen, return to a single screen. If you still do not have
available storage, contact your system programmer to see
if your region size should be increased.

8 20 The name entered on the LINK Specification panel is a
valid panel but not a TSP. Correct the name using panel
update. If you are not sure of the name, request a panel
list of your read panel data sets. Refer to the Tivoli
Information Management for z/OS Panel Modification
Facility Guide for information on listing panels.

You can use the TESTFIELD control line to test for these return and reason codes. See
“TESTFIELD” on page 175 for information on how to do this.

TSCA Field Usage
Tivoli Information Management for z/OS sets the following TSCA fields after a LINK
control line is run. For more information about these fields, see “Terminal Simulator
Communications Fields” on page 289.
TSCAFRET

Function return code
TSCAFRES

Function reason code.

MESSAGE
This control line enables you to include your own single-line message or an existing Tivoli
Information Management for z/OS message in the TSP process.

Refer to “The MESSAGE TSX Control Line” on page 139 for information about using the
MESSAGE control line in a TSX.

The message panel name is not required. When it is omitted, message text is taken from the
variable data area or the literal data area. You can have a message added to the current
messages or saved for display after the TSP session completes. For information on creating
message panels, see the Tivoli Information Management for z/OS Panel Modification Facility
Guide. See “Message Handling during TSP and TSX Processing” on page 261 for a
discussion of how messages are processed in a TSP environment.

This is an example using the MESSAGE control line to indicate the success or failure of an
exit routine:

LINK

134 Version 7.1

...

USEREXIT READRECS (Readrecs sets TSCAFRET to 0 if successful;
to nonzero if failure)

TESTFIELD SUCCESS (If the return code is zero, go to label SUCCESS)
MESSAGE FAILPANL (Otherwise, issue a failure message panel)
RETURN
LABEL SUCCESS (Exit routine completes processing)
MESSAGE USR9E001 (Issue USR9E001 message panel)...

Creating a MESSAGE Control Line
Use the following MESSAGE Specification panel to create a MESSAGE control line:

Field Descriptions
1. Message panel name

Valid reply
An 8-character message panel name. It is an SBCS alphanumeric string, beginning
with an alphabetic character.

This entry specifies the message panel name for the message you want added to the
current message chain or saved for display after the TSP finishes running.

Default
None.

Restrictions
The name of a message panel that contains message text must exist at the time you
start the TSP. If you leave this field blank, literal data must be present, or the
variable data area must contain data and you must specify Get variable data equal
to YES.

2. Save generated message

BLM8CU9T MESSAGE SPECIFICATION PANEL: ________

Enter 'MESSAGE' control data; cursor placement or input line entry allowed.

1. Message panel name............ FAILPANL
2. Save generated message........ YES
3. Insert data type.............. CHAR
4. Get variable data............. NO_
5. Literal data.................. ________________________________

When you finish, type END to save or CANCEL to discard any changes.

===>

MESSAGE

135Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Valid reply
YES, NO, or no reply.

A reply of YES in this field indicates that you want the specified message saved for
display after the TSP finishes. Any other reply indicates that you want the message
to be added to the current message chain, which is available for use while the TSP is
running.

Default
YES

Restrictions
A reply of YES moves this message and any other messages from the current
message chain to a saved message chain. The message is returned to the user when
the TSP finishes. If you want to see whether a message exists on the saved message
chain, use the TESTFLOW control line and look for the return code and reason code
combination 4/4. This combination indicates that the message is on the saved chain.

3. Insert data type

Valid reply
CHAR, HEX, or no reply.

This field specifies that you want the data inserted into the message in either
character (CHAR) or hexadecimal (HEX) format. The insert data is taken from the
Literal data field (if used) or from the variable data area if you entered YES in the
Get variable data field. If there is no insert data for this message, do not reply to
this field.

Default
CHAR

Restrictions
You cannot enter HEX in this field if you enter data in the Literal data field.

4. Get variable data

Valid reply
YES, NO, or no reply.

A reply of YES indicates that you want variable data inserted into the message.

Default
NO

Restrictions
If the MESSAGE control line has YES in this field, a user exit routine must move
data into the variable data area and set the variable data length, or the MOVEVAR
control line must move data into the variable data area before processing the
MESSAGE control line. If you entered YES in this field, you cannot enter data in
the Literal data field.

The TSCA contains fields for a pointer to the variable data area (TSCAVDAP) and
for the length of that data (TSCAVDAL). The pointer field contains the address of a
variable data area that is allocated when the TSP environment is initialized. Your
exit routine must not modify this pointer.

If you use the variable data area, you must specify a string of characters as long as
the number of underscores you put in the message line, or 4 bytes of HEX data that

MESSAGE

136 Version 7.1

you want inserted into the message. If you add too much data to the variable data
area for your message insert, the data is right truncated. For more information about
inserts, see “Usage Notes”.

The maximum number of characters that is possible in a message varies. You can
determine the maximum number of characters enabled for a specific message by
checking the message panel.

5. Literal data

Valid reply
A string of up to 32 characters, or no reply.

An entry in this field indicates that you want the entry inserted as character data.
The data that is entered in this field is collected in the case entered by the user.

Default
No reply.

Restrictions
The maximum number of characters that is possible for a message varies. You can
determine the maximum number of characters enabled for a specific message by
checking the message panel.

If you enter data in this field, you cannot enter YES in the Get variable data field.
The Insert data type must be CHAR.

Usage Notes
Unless you request it, a TSP does not display a message when it finishes. You can use the
MESSAGE control line to display meaningful messages about how the TSP is running. For
instance, you can end the TSP with a message that indicates a successful completion or
display a message in an error routine that indicates the return code for the TSP.

If you want to insert data into a message (either from the variable data area or as literal
data), build the message panel to include underscore characters in the message line. The
underscores indicate where the data should be inserted.

The number of underscores must equal the maximum number of characters you anticipate
for the insert data. For example, if you are using the insert field to contain a record ID, use
8 underscore characters because 8 characters is the maximum length of a record ID. If the
data you insert is shorter than the number of underscores, the data is left-justified in the
insert field, and trailing blanks are removed. The amount of inserted data is the smaller of
the specified data and the number of underscore characters in the message panel. If you
want more than 32 characters in the message, either break the message into two MOVEVAR
control lines, or use a user exit routine to put the insert data into the variable data area, and
then specify YES in the Get variable data field.

How long the message can be depends upon how you specify it. If you use the variable data
area to enter the entire message text, the maximum length is 254 bytes. If you use a
message panel for any part of the message, the maximum length is 148 bytes, including the
message ID. For several examples of how to specify messages, use PMF to look at TSP
BTNTAPRV in the base panel data set.

MESSAGE

137Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Enabling Help for Messages
Frequently, a single-line message does not give the user enough information on which to act,
so you might want to supply a help panel that the user can see by issuing the HELP
command. For HELP to work, you must maintain a relationship between the message panel
name, message number, and help panel. Refer to the Tivoli Information Management for
z/OS Panel Modification Facility Guide for how to create a help panel. For examples of how
to enable HELP, use PMF to look at TSPs BTNTAM01 and BTNTCEA2 in the base panel
data set.

Table 20. Relating Messages to Help Panels
Message panel
name

xxx9ynnn xxx is any 3 digits that make up the beginning of a valid
panel name.

y is an alphabetic character.

nnn is numeric.

Message number xxxzznnn xxx and nnn match the corresponding parts of the message
panel name.

zz is the position in the alphabet occupied by y, described
previously.

Suppose that the message panel name is XXX9C111. C is the
third letter of the alphabet, so the corresponding message
number is XXX03111.

Help panel xxx4ynnn xxx, y, and nnn are the same as above.

What the Control Line Does
The MESSAGE control line can be used to load a panel or to convey information to another
user.

¶ If you are using this control line to load a panel, Tivoli Information Management for
z/OS loads the named panel and extracts the single-line message from the panel. If you
specified an insertion, Tivoli Information Management for z/OS extracts the insert data
from the control line or the variable data area, does any necessary data conversion, and
merges the insert into the message. If you specify YES for the Save generated message
field in the TSP (or specify the SAVE option in the TSX control line), the message is
added to the saved message chain, which includes any messages that were pending at
the time the TSP environment began.

If you did not specify YES for the Save generated message field (or specify the
DISCARD option in the TSX control line), the message is added to the current message
chain and the TSCAMSGC field is incremented. You can then print the messages on the
current message chain using the PRINT control line which is described in “PRINT” on
page 148. You can also test for the messages on either the current or saved message
chains using the TESTFLOW control line, described in “TESTFLOW” on page 180.
When the TSP environment ends, the chain containing the saved messages merges with
the current message chain, making the messages available to you.

¶ In addition to the functions provided with the TSP, you can also use the TSX control
line (described in “The MESSAGE TSX Control Line” on page 139) to send a message
to another user on the same system. In order to do this, you must specify message text,
the keyword NOTIFY, and the name of the userid to whom you are conveying the
message.

MESSAGE

138 Version 7.1

The MESSAGE TSX Control Line
The format of the MESSAGE control line is:
CALL BLGTSX 'MESSAGE',msgid,text,option,userid,stem,insertcount

Parameter Descriptions
1. msgid

Valid reply
This can be an optional Tivoli Information Management for z/OS message panel
name or the numeric part of the assembler label of a message defined in CSECT
BLGTMSGS.

Default
None

Optional

2. text

Valid reply
If msgid is specified, this is a single value to be inserted into the message. If msgid
is not specified, this is the 1- to 255-character text to be used as the message. If
there are no insert values or the values are specified via a REXX stem variable, this
value must be omitted.

If you specify msgid, you can insert data for the message either as a single value in
text or as one or more values in a compound variable, with the stem specified in
stem and the count specified in insertcount.

Default
None

Optional

3. option

Valid reply
Options associated with the message that is to be sent. Valid options are:

SAVE|DISCARD|NOTIFY|BUILD

¶ SAVE indicates that the message should be saved for display after the
TSX finishes.

¶ DISCARD indicates that the message should not be saved for display
after the TSX finishes.

¶ NOTIFY indicates that the message is sent to the user specified in
userid. If NOTIFY is specified, you must also specify a userid.

¶ BUILD causes the message to be returned to the TSX in variable
TSCAVDA. The text is returned to the TSX without any processing.

Default
If none of these options is specified, the default option used is SAVE.

Optional

MESSAGE

139Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

4. userid

Valid reply
This can be any valid Tivoli Information Management for z/OS user ID or
application ID (APPLID) for an API user. This parameter is required if NOTIFY is
specified; if any other other option is specified, this parameter must be omitted.

Default
None

Conditionally required.

5. stem

Valid reply
This is the stem name of a REXX compound variable containing the values to be
inserted into the message.

Default
If a value is specified for insertcount but no value is specified for stem, a value of
BLG_INSERT is used.

Optional

6. insertcount

Valid reply
This is the number of insert values included in the compound (stem) variable. If an
insert value is specified in the text parameter, no value should be specified for the
insertcount parameter.

Default
None

Optional

Usage Notes and Examples
There are three ways to specify message text:

¶ Panel name in msgid

¶ Message label in msgid

¶ Literal text in text

All TSX MESSAGE control lines return the complete message text in variable TSCAVDA.
If any option other than BUILD is specified, other processing is also done.

This is an example of using a MESSAGE control line in a TSX to issue a message from a
message panel with one inserted value. The message reason code is supplied by the text
variable retreascode.
CALL BLGTSX 'MESSAGE','BLG9N003',retreascode,'SAVE';

This is an example of using a MESSAGE control line in a TSX to send a literal string
message to another user. The contents of the text string is sent to the specified user ID. Note
that the panel name is omitted.

MESSAGE

140 Version 7.1

CALL BLGTSX 'MESSAGE',,'I have assigned problem N990047 to you','NOTIFY',mapman;

This is an example of using a MESSAGE control line in a TSX to build BLGTMSGS
CSECT message with label 10123, inserting VAL1, VAL2, and VAL3, and returning the
message created to the TSX in TSCAVDA. When the TSX is run, the TSCAVDA gets set to
USR10123I This message has a first insert VAL1, a second insert VAL2, and a
third insert VAL3.
INS.1='VAL1'
INS.2='VAL2'
INS.3='VAL3'
CALL BLGTSX 'MESSAGE','10123',,'BUILD',,'INS.',3;

Additional considerations:

¶ If you pass the wrong number of inserts with a panel message, the message will contain
blanks or the extras will be ignored.

¶ If you pass the wrong number of inserts with a CSECT message, ABEND U803 will
result.

¶ Do not use 20xxx numbers in labels in BLGTMSGS; these are reserved for future
product-supplied messages.

Return and Reason Codes
After the MESSAGE control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 21.

Table 21. MESSAGE Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 Successful completion.

8 4 The message panel you specified cannot be loaded. Check
to see if you specified the name correctly. If the name is
correct, check to see if the message panel is in the read
panel data set. If not, copy the message panel from your
write panel data set.

When you create the MESSAGE control line, Tivoli
Information Management for z/OS does not check for the
existence of the named message panel. If the name is
correct and the panel exists, maybe you did not copy the
panel to a read panel data set.

All panels are initially filed in the write panel data set and
must be copied to the read panel data set before
processing. Also check that the session member includes
the name of the read panel data set where the panel
resides. If you still cannot resolve the problem, request a
panel list of your read panel data sets and verify the panel
name. Refer to the Tivoli Information Management for
z/OS Panel Modification Facility Guide for information on
listing panels.

MESSAGE

141Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Table 21. MESSAGE Return and Reason Codes (continued)
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

8 8 The message panel you specified has no message text.
Refer to the Tivoli Information Management for z/OS
Panel Modification Facility Guide for instructions on
creating a message panel.

8 12 The panel you specified is not a message panel. If you
specify a penal, it must be a message panel. Verify that
the name you entered on the MESSAGE Specification
panel is the name of a message panel. If it is not, correct
the name using panel update. If you are not sure of the
name, request a panel list of your read panel data sets.
Refer to the Tivoli Information Management for z/OS
Panel Modification Facility Guide for information on
listing panels.

8 16 An internal logic error occurred in National Language
Support. Contact your Tivoli representative.

8 20 The user data is not a valid mixed string. Check the data
and make the changes required to ensure that you specify
valid mixed data.

8 24 The MESSAGE control line specified that variable data
was to be used (Get variable data was set to YES), but
the length of the data was 0. You must set up the variable
data area and its length field before running a TSP
containing a MESSAGE control line that specifies variable
data. To set up the variable data area, call a user exit
routine that sets the variable data area length and moves
data into it or use the MOVEVAR control line.

Check your TSP to make sure that a USEREXIT or
MOVEVAR control line appears before the MESSAGE
control line that caused this reason code. If a USEREXIT
control line appears before the MESSAGE line, check that
the routine sets the length field correctly.

8 28 The message you specified is too long. Rewrite it to be
less than 254 characters.

You can use the TESTFIELD control line to test for these return and reason codes. See
“TESTFIELD” on page 175 for information on how to do this.

TSCA Field Usage
Tivoli Information Management for z/OS sets the TSCA fields TSCAFRET (function return
code) and TSCAFRES (function reason code) after a MESSAGE control line is run. For
more information about these fields, see “Terminal Simulator Communications Fields” on
page 289.

If you do not enter YES in the Save generated message field for a TSP or else specify the
DISCARD option for a TSX, Tivoli Information Management for z/OS increments the
TSCA field TSCAMSGC (total messages).

¶ For a TSP:

MESSAGE

142 Version 7.1

If you enter YES in the Get variable data field and you set the variable data with a
user exit routine, the user exit routine must set the length of the variable data in the
TSCA field TSCAVDAL (current user variable data length).

If you set the variable data with the MOVEVAR control line, the MOVEVAR control
line sets field TSCAVDAL for you.

If you specify a TSCA field that contains data in hexadecimal format, the data is not
translated into EBCDIC for display. Attempts to display this data fail.

¶ For a TSX, the message is returned in variable TSCAVDA.

MOVEVAR
This control line enables you to add data to the variable data area of the TSCA control
block. You can use the MOVEVAR control line to specify a string of data or a TSCA field
that you want added to the TSCA control block. You can also use the MOVEVAR control
line to replace data that is currently in the variable data area.

You can also use the MOVEVAR control line to store parameters in the variable data area
(VDA) which can be passed to a terminal simulator EXEC (TSX) as one argument, which
the TSX can then parse as needed. You can then use the TSP LINK control line to pass this
argument to the TSX.

The function provided by the TSP MOVEVAR control line is available in a TSX using the
standard program flow controls available in the REXX programming language.

Creating a MOVEVAR Control Line
Use the following MOVEVAR Specification panel to create a MOVEVAR control line:

BLM8CU9O MOVEVAR SPECIFICATION PANEL:

Enter 'MOVEVAR' control data; cursor placement or input line entry allowed.

1. TSCA Field Name............... ________
2. Literal Data.................. ________________________________
3. Replace data.................. NO_
4. Data conversion............... NO_

When you finish, type END to save or CANCEL to discard any changes.

===>

MESSAGE

143Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Field Descriptions
1. TSCA Field Name

This field enables you to specify data to add to the variable data area.

Valid reply
The name of any existing TSCA field or no reply.

Default
No reply.

Restrictions
The length of the data to be moved is equal to the length of the TSCA field from
which you want the data taken, with the exception of those fields that have
associated length fields (such as TSCASDF and TSCACMRB). In the case of those
fields, the value in the associated length field determines how much data to move.

If you enter no data in this field, enter no data in the Literal Data field, and set the
Replace data field to YES, an SBCS blank is moved to the beginning of the
variable data area.

If you enter no data in this field, enter no data in the Literal Data field, and set the
Replace data field to NO, an SBCS blank is moved to the end of the variable data
area.

If you enter data in this field and in the Literal Data field, the literal data is added
to the variable data area first, followed by the value in this field.

2. Literal Data

This field enables you to specify literal data to be moved to the variable data area.

Valid reply
A string of 1 to 32 characters, or no reply.

Default
No reply.

Restrictions
When you require an SBCS comma as the first, or only, character of the Literal
data field, you must precede the SBCS comma with an SBCS space character.

The data that is entered in this field is collected in the case entered by the user.

If you enter data in this field and in the TSCA Field Name field, the literal data is
added to the variable data area first, followed by the TSCA field name.

If you enter no data in this field and no TSCA field name and the Replace data
field is set to YES, an SBCS blank is moved to the beginning of the variable data
area.

If you enter no data in this field and no TSCA field name and the Replace data
field is set to NO, an SBCS blank is moved to the end of the existing variable data
area.

3. Replace data

This field specifies whether you want the data being moved to replace any data that might
already exist in the variable data area.

MOVEVAR

144 Version 7.1

Valid reply
YES, NO, or no reply. A reply of YES in this field indicates that you want the
existing data replaced. A reply of NO indicates that you want the data to be
appended to any existing data.

Default
NO

4. Data conversion

This field specifies whether the data being moved is to be converted, and the type of
conversion to be performed on it.

Valid reply
DEC, HEX, BIN, or NO.

A reply of DEC indicates that you want to convert binary data to printable decimal
values and suppress leading zeros.

A reply of HEX indicates that you want to convert binary data to printable
hexadecimal values and suppress leading zeros.

A reply of BIN indicates that you want to convert character data to binary data.

A reply of NO indicates that you do not want to convert data.

If you enter DEC or HEX in this field, leading zeros are removed before the data is
moved. If the data is 0, a single 0 is moved.

Default
NO

Restrictions
If the data conversion type is HEX or DEC, the data can be no longer than 4 bytes.
If the conversion type is BIN, the data can be no longer than 8 bytes.

Usage Notes
Depending on the data you specify, the variable data area can contain new or appended data
whose source is either a TSCA field, user-specified literal data, or both. The length of the
variable data area is 512 bytes.

For examples of how to use this control line, use PMF to look at TSPs BTNTAC1R and
BTNTAPRV in the base panel data set.

What the Control Line Does
When the TSP is run, Tivoli Information Management for z/OS extracts the data to be
moved to the variable data area from either the control line or from the specified TSCA
field. The extracted data is then added to the end of the existing data in the variable data
area if you put NO in the Replace data field. If you put YES in the Replace data field, the
extracted data is placed at the beginning of the buffer. The length of the used part of the
variable data area (TSCAVDAL) is calculated.

Return and Reason Codes
After a MOVEVAR control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 22 on page 146.

MOVEVAR

145Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Table 22. MOVEVAR Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Successful completion.

4 The Replace data field was specified as YES, but there
was no data to replace. The requested data was moved.

8 4 The length of the data to be moved is not valid. No data
was moved, and the contents of the variable data area
remain unchanged. If the data conversion choice is BIN,
the input must be 8 bytes or fewer. If the data conversion
is HEX or DEC, the input must be 4 bytes or fewer.

8 8 The data to be moved is longer than 512 characters and is
too long to fit in the variable data area. No data was
moved, and the contents of the variable data area remain
unchanged.

8 12 The data conversion to binary was not performed because
the input data is not numeric. No data was moved.

You can use the TESTFIELD control line to test for these return and reason codes. See
“TESTFIELD” on page 175 for information on how to do this.

TSCA Field Usage
The following TSCA fields are set by Tivoli Information Management for z/OS when
processing a MOVEVAR control line. For more information about these fields, see
“Terminal Simulator Communications Fields” on page 289.
TSCAFRET

Function return code
TSCAFRES

Function reason code
TSCAVDAL

Variable data area length and the buffer pointed to by TSCAVDAP.

OPENRRES
This Remote Data Resource TSX control line is described in “OPENRRES” on page 244.

OPENSOCKET
This control line opens a TCP/IP socket and establishes a connection with a waiting server.
It uses the assembler callable services to invoke the OS/390 UNIX System Services version
of the TCP/IP product installed. If a callable service does not complete successfully, the
name of the service called is returned in the NETFUNC REXX variable, the return code is
returned in the NETRETC REXX variable, and the reason code is returned in the
NETREAC REXX variable. The user should refer to the OS/390 UNIX System Services
Messages and Codes manual and the OS/390 UNIX System Services Assembler Callable
Services manual for a description of the returned values. OPENSOCKET also sets the value
8 in TSCAFRET.

More than one TCP/IP connection can be established with a TSX concurrently. A socket
identifier is returned from OPENSOCKET and is used to specify the connection to be
accessed. When the TSX ends, any TCP/IP connections remaining open are closed.

MOVEVAR

146 Version 7.1

This control line can be called only from a TSX. An ISPF or TSO environment is not
required in order to use OPENSOCKET.

The OPENSOCKET Control Line
The format of the OPENSOCKET control line is:
CALL BLGTSX 'OPENSOCKET',ipaddress,portnumber

Parameter Descriptions
1. ipaddress

Valid reply
The internet or IP address of the host server to be connected. It is specified in dotted
decimal format. This consists of four numbers with valid values from 0 to 255,
separated by periods.

Default
None

Required

2. portnumber

Valid reply
The port number of the host server to be connected. It is specified by a single
integer; the value of this integer can be any value of 1 to 65535.

Default
None

Required

Usage Notes and Examples
This is an example of using an OPENSOCKET control line in a TSX.
CALL BLGTSX 'OPENSOCKET','9.18.153.2','1234'

When the control line completes successfully, the NETSOCKET REXX variable contains the
socket ID of the TCP/IP connection just established. It should be saved in a variable and
used as an input parameter to the WRITESOCKET, READSOCKET, and CLOSESOCKET
control lines.

Note: Six REXX variables have been defined to return information from the
OPENSOCKET control line. These variables (NETSOCKET, NETDATA,
NETBYTECOUNT, NETFUNC, NETRETC, and NETREAC) are reset during the
processing of OPENSOCKET. It is the responsibility of the TSX to save any data
needed for processing.

Return and Reason Codes
After the OPENSOCKET control line is run, Tivoli Information Management for z/OS sets
the TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 23.

Table 23. OPENSOCKET Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Successful completion.

OPENSOCKET

147Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Table 23. OPENSOCKET Return and Reason Codes (continued)
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

8 4 The TCP/IP service did not complete successfully. Refer to
the OS/390 UNIX System Services Messages and Codes
manual and the OS/390 UNIX System Services Assembler
Callable Services manual for a description of the
following return codes. These REXX variables contain the
diagnostic information:

NETFUNC
The name of the Assembler Callable Service
being invoked.

NETRETC
The value of the Return_code parameter returned
by the service.

NETREAC
The value of the Reason_code parameter returned
by the service.

PRINT
This control line enables you to print the following kinds of information:

¶ Messages (saved and current)

¶ Current panel that would have been displayed in the corresponding interactive session

¶ Contents of the TSCA (in hexadecimal) through the residual reply buffer (TSCARRB).

Refer to “The PRINT TSX Control Line” on page 151 for information about using the
PRINT control line in a TSX.

If you want to see what messages have been generated by a portion of your TSP, enter a
PRINT control line. Using a PRINT control line in an error routine can help you determine
why your TSP branched to the error routine.

This example uses a PRINT control line to print messages before data is sent to Tivoli
Information Management for z/OS by a PROCESS control line.
PROCESS...

ADDDATA
PRINT (Print messages generated from the previous

PROCESS control line and any saved messages)
PROCESS
ADDDATA
USEREXIT
PRINT (Print messages generated from the previous

PROCESS control line, USEREXIT control line,
and any saved messages)

OPENSOCKET

148 Version 7.1

PROCESS...

Creating a PRINT Control Line
Use the following PRINT Specification panel to create a PRINT control line:

Field Descriptions
1. Print the messages

Valid reply
YES, NO, or no reply.

If you enter YES in this field, a copy of the current message chain and the saved
message chain are written to the output destination you defined on the SYSPRINT
DD statement. Any other valid reply results in the messages not being printed.

Default
YES

Restrictions
None

2. Print the screen

Valid reply
YES, NO, or no reply.

If you enter YES in this field, a copy of the current panel is printed to the output
destination you defined on the SYSPRINT DD statement. Any other valid reply
results in the current panel not being printed.

Default
NO

BLM8CU9R PRINT SPECIFICATION PANEL: ________

Enter 'PRINT' control data; cursor placement or input line entry allowed.

1. Print the messages........ YES
2. Print the screen.......... NO_
3. Print the TSCA............ NO_

When you finish, type END to save or CANCEL to discard any changes.

===>

PRINT

149Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Restrictions
None

3. Print the TSCA

Valid reply
YES, NO, or no reply.

If you enter YES in this field, a copy of the current TSCA is printed to the output
destination you defined on the SYSPRINT DD statement. Any other valid reply
results in the TSCA not being printed.

Default
NO

Restrictions
None.

Usage Notes
Use the PRINT control line in your error routines to help you determine the cause of errors.
For more information on using PRINT to test your TSPs, see “Using the PRINT Control
Line” on page 251. Also, for examples, use PMF to look at TSPs BTNTARPP and
BTNTARUP in your base panel data set.

If Print the messages is YES, current and saved messages are printed. Current messages are
messages created since the last PROCESS or MESSAGE control line ran. Saved messages
are messages that:
¶ Existed on the message chain where the TSP is started
¶ Are saved by using the Save existing messages option on a Process control line
¶ Are saved by using Save generated message on a MESSAGE control line.

For more information about TSP messages, see “Message Handling during TSP and TSX
Processing” on page 261.

What the Control Line Does
When the TSP is run, the information that is printed is sent to the destination you defined on
the SYSPRINT DD statement, to the SYSOUT device, or to another output data set. If you
direct the output to another data set, the DCB information for the output data set must
include RECFM=VBA.The LRECL default is set to 137. You can change this length when
you define the data set. However, if an output line is longer than the specified LRECL, it is
split across as many print lines as necessary to print the line.

You must allocate the SYSPRINT DD statement before calling the TSP, whether a DD
statement processed at the time Tivoli Information Management for z/OS is called or ISPF
‘TSO ALLOCATE...’ is issued during a Tivoli Information Management for z/OS session.

When Tivoli Information Management for z/OS writes to SYSPRINT, it formats the data
using DCB information that was specified on either a SYSPRINT DD statement (that is,
LRECL or BLKSIZE) or a TSO ALLOCATE statement. If LRECL was specified without
BLKSIZE, Tivoli Information Management for z/OS sets BLKSIZE to:

(14 * LRECL) + 4

If neither BLKSIZE or LRECL, was specified, LRECL is set to:
(length of output message) + 4

PRINT

150 Version 7.1

and BLKSIZE is set to:
(14 * LRECL) + 4

If BLKSIZE is specified without LRECL, LRECL is set to the smaller of the following
statements:

(length of output message) + 4

or
BLKSIZE - 4

In all cases, LRECL must be less than or equal to (BLKSIZE - 4). If this is not the case, an
ABEND occurs when the data set is opened, because the data attributes are inconsistent.

Refer to the TSO Extensions V2 CLISTs manual for additional information on allocating data
sets.

The PRINT TSX Control Line
The format of the PRINT control line is:
CALL BLGTSX 'PRINT',item1,item2,item3

Parameter Descriptions
1. item1, item2, and item3

Valid reply
The type of information to be printed.

MESSAGES
Print the messages on the current message chain and the saved message
chain.

SCREEN
Print a copy of the current screen (panel).

TSCA Print the contents of the current TSCA.

The values can be specified in any order.

Default
None

Required/Optional
Item1 is required. Item2 and item3 are optional.

Usage Notes and Examples
This is an example of using a PRINT control line in a TSX. The current messages, screen,
and the contents of the TSCA will be printed.
CALL BLGTSX 'PRINT','MESSAGES','SCREEN','TSCA';

Return and Reason Codes
After a PRINT control line is run, Tivoli Information Management for z/OS sets the TSCA
return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what happened.
These codes are listed in Table 24 on page 152.

PRINT

151Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Table 24. PRINT Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 All requested areas were printed.

8 4 An internal logic error occurred. Nothing was printed.
Contact your Tivoli representative.

8 8 Data set attributes are not valid for the output device. See
“What the Control Line Does” on page 150 for the correct
data set attributes.

8 12 Permanent I/O error, or data set is full. Define a larger
print data set. Nothing was printed.

You can use the TESTFIELD control line to test for these return and reason codes. See
“TESTFIELD” on page 175 for information on how to do this.

TSCA Field Usage
After a PRINT control line is run, Tivoli Information Management for z/OS sets the
following TSCA fields. For more information about these fields, see “Terminal Simulator
Communications Fields” on page 289.
TSCAFRET

Function return code
TSCAFRES

Function reason code.

PROCESS
In a TSP, this control line acts as an Enter key, sending the responses accumulated in the
TSCA command line reply buffer (TSCACMRB) to Tivoli Information Management for
z/OS for processing. In a TSX the responses are passed as a parameter on the PROCESS
control line.

You can use a PROCESS control line with no data in the command line reply buffer to
simulate a null reply in a TSP. Similarly, a PROCESS control line in a TSX that is not
passed the ’response parameter’ will also simulate a null reply.

Refer to “The PROCESS TSX Control Line” on page 155 for information about using the
PROCESS control line in a TSX.

This example uses a PROCESS control line to send data to Tivoli Information Management
for z/OS:
ADDDATA 3,2,6,1,SE + PERA/SMITH
PROCESS ERROR (sends above IRC to Tivoli Information Management for z/OS for processing.

if there is a problem, branch to the ERROR label)...

LABEL ERROR

Creating a PROCESS Control Line
Use the following PROCESS Specification panel to create a PROCESS control line:

PRINT

152 Version 7.1

Field Descriptions
1. Error label name

This field indicates the name of a label that identifies a control line in the current TSP
where processing resumes if the return code for the PROCESS control line is 8. This field is
required.

Valid reply
A mixed string of 1 to 8 characters, beginning with an SBCS alphanumeric or
national character or an SO character.

Default
None.

Restrictions
The label name you enter in this field must be a valid name that is identified
through the LABEL control line. Also, the name must exist in the same TSP as the
PROCESS control line.

2. Save Existing Messages?

This field is used to specify what happens to any messages that might exist on the current
message chain when the PROCESS function is started.

Valid reply
A value of YES in this field indicates that messages on the current message chain
are to be saved. These messages are added to the saved message chain. The saved
message chain might also contain messages that already existed there at the time the
TSP was started. If your TSP contains MESSAGE control lines with the Save
generated message field set to YES, any generated messages also exist on the saved
message chain.

BLM8CU9H PROCESS SPECIFICATION PANEL: ________

Enter 'PROCESS' control data; cursor placement or input line entry allowed.

1. Error label name.........<R> ERROR___
2. Save existing messages?......NO_

When you finish, type END to save or CANCEL to discard any changes.

===>

PROCESS

153Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

A value of NO in this field indicates that messages on the current message chain are
to be deleted.

You can use TESTFLOW to query messages on either the current or saved message
chain. Use the return code and reason code combination (4/4) to verify messages on
the saved message chain.

Default
NO

Usage Notes
Entering a PROCESS control line with NO in the Save existing messages field and nothing
in the reply buffer is like entering a null reply. You can use this method to clear messages
generated since the TSP was started. For example, if your TSP is updating records from a
large search results list, your TSP ends with the Record filed successfully message repeated
many times. To avoid this situation, do a TESTFLOW for that message after each
PROCESS. If the message is located, do another PROCESS to clear the message.

Note: When entering dates and times, be sure to pass them in the external format which the
user is currently using. Use BLGEDATE to convert an internal date to external date
format. The user exit BLGEDATE is described in “General-purpose User Exits” on
page 279.

For examples, use PMF to look at TSPs BTNTACLS and BTNTAC1R in your base panel
data set.

It is recommended that you check for return codes before processing another control line
(such as TESTFLOW) that resets the return and reason codes.

What the Control Line Does
If the return code for the PROCESS control line is 0 or 8, the data has been successfully
transmitted to Tivoli Information Management for z/OS for processing. Upon return, the
command line reply buffer is cleared. When an error is found before the data in the
command line reply buffer is sent, the command line reply buffer is not cleared, and
processing continues at the next control line. If the return code is 8 after the command line
reply buffer is processed, a branch is made to the error target you specified on the
PROCESS Specification panel.

When this control line is run, the TSCAMSGC field is first set to 0, regardless of the setting
in the Save existing messages field. If the processing of the control line generates more
messages, the TSCAMSGC field is incremented as needed. TSCAMSGC is reset even if
messages were previously saved on the chain.

Table Panel Processing
There are restrictions on processing a table panel with a TSP:

¶ The table panel must be one that you can update.

¶ Unless it is used by the list processor (program exit BLG01396), the table panel must
contain only one input data area, excluding the line command area. If the table panel
contains no input data area (such as a search results list), or if it contains more than one
input data area (such as a dictionary update panel) and is not a list processor table panel,
the table is not processed.

PROCESS

154 Version 7.1

|
|
|
|

¶ A maximum of 32 767 lines can be displayed in table panels (including search results
lists). Your TSP could exceed this maximum if it requests a search that returns a large
number of records found. If the number of records found is greater than this maximum,
the search results list contains only that maximum number of records that can be
displayed. The actual number of records found appears in the upper right corner of the
search results list.

Because this maximum value is customizable, the maximum for your installation could
be less than 32 767. This value is set during installation in the SORTPFX session
parameter. For more information about SORTPFX, refer to the Tivoli Information
Management for z/OS Planning and Installation Guide and Reference.

If the table panel meets these criteria, Tivoli Information Management for z/OS copies the
data into the TSCA field TSCATBLL (current table display line) and sets the TSCACTBL
(current table panel line length), TSCATPLC (total line count), TSCATPLN (current line
number), and TSCAMTBL (maximum table panel line length) fields. If the table panel does
not meet these criteria, no data is copied, and TSCAMTBL is set to zero.

You must write a user exit routine that manipulates the data in the current table display line
and sets the current line length to the correct value. If the table panel is used by the list
processor, you can manipulate the fields using the line entry line command.

When the PROCESS control line is run, the data in TSCATBLL replaces the contents of the
current line of the table panel. Any data in the command line reply buffer is processed after
the table panel’s current line is updated.

You update the table panel lines by coding a combination of USEREXIT, ADDDATA, and
PROCESS control lines in your TSP. See “Examples: Adding or Updating Freeform Text” on
page 49 for more information about updating table panel lines.

The PROCESS TSX Control Line
This control line performs the TSP functions ADDDATA and PROCESS. Instead of
collecting the responses in the TSCA field TSCACMRB (command line reply buffer), the
responses are passed as a parameter on the invocation of the TSX PROCESS control line.

The format of the PROCESS control line is:
CALL BLGTSX 'PROCESS',responses,save

Parameter Descriptions
1. responses

Valid reply
The response string to be processed up to 512 bytes.

Default
None

Optional

2. save

Valid reply
Indicates whether messages on the current message chain are to be saved or
discarded.

SAVE Save the messages on the current message chain.

PROCESS

155Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

DISCARD
Discard the messages on the current message chain.

Default
DISCARD

Optional

Usage Notes and Examples
This example shows an example of using a PROCESS control line in a TSX. The record
with RNID USERS is displayed.
CALL BLGTSX 'PROCESS',';DISPLAY R USERS','SAVE';

Upon completion of the TSX PROCESS control line, any messages currently on the message
chain will be in the REXX compound variable BLG_MESSAGE, with the count of
messages (TSCAMSGC) contained in variable BLG_MESSAGE.0.

Return and Reason Codes
After a PROCESS control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 25.

Since the TSX PROCESS control line performs both TSP ADDDATA and PROCESS
functions, you will need to refer to both the TSP ADDDATA and PROCESS return and
reason codes. If the TSXPROCESS TSCAFRES reason code has a 1000 added to it, refer to
the ADDDATA return and reason codes. Otherwise, refer to the PROCESS return and reason
codes.

Table 25. PROCESS Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 The reply was successfully processed. No messages were
received.

0 4 The reply was successfully processed. Informational
messages were received.

4 4 Tivoli Information Management for z/OS found errors
before it could process the responses in the command line
reply buffer. The buffer was not cleared.

The data length of the current table panel line
(TSCATBLL) is greater than the maximum allowed
(TSCAMTBL). Processing continues at the next sequential
control line.

Your TSP attempted to put too many characters in the
current table panel line. Your user exit routine needs to
check the maximum length of TSCA field TSCAMTBL
before entering data. Printing the TSCA will help you
resolve the problem.

PROCESS

156 Version 7.1

Table 25. PROCESS Return and Reason Codes (continued)
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

8 8 Tivoli Information Management for z/OS generated
warning messages. Any residual data that was not
processed by Tivoli Information Management for z/OS is
returned in the TSCA residual-reply buffer.

If the TSP is running under an API session, a severe error
might have occurred and messages have been issued. If a
severe error occurred, the command line reply buffer is
cleared, and the current dialog is ended. The severe error
message panel does not appear.

If you anticipate warning messages at this point, you can
design your TSP to recover from them. If not, you can
update your TSP to go to an error routine and print the
messages before returning.

8 12 Tivoli Information Management for z/OS detected a severe
error and issued one or more messages. Any residual data
that was not processed by Tivoli Information Management
for z/OS is returned in the TSCA residual-reply buffer.
When this occurs, the only valid Tivoli Information
Management for z/OS responses are BACK, CANCEL,
INIT, QUIT, and HELP. You can design your TSP to go
to an error routine before ending. The error routine could
have the following sequence of control lines: PRINT
(panel, messages), ADDDATA (;HELP), PROCESS,
PRINT (panel). This would print the HELP messages.

You can use the TESTFIELD control line to test for these return and reason codes. See
“TESTFIELD” on page 175 for information on how to do this.

TSCA Field Usage
Tivoli Information Management for z/OS sets the following TSCA fields after a PROCESS
control line is run. For more information about these fields, see “Terminal Simulator
Communications Fields” on page 289.
TSCAFRET

Function return code
TSCAFRES

Function reason code
TSCACMOF

Offset in command line reply buffer
TSCARRB

Residual reply buffer
TSCARRBL

Length of residual reply buffer
TSCATPLC

Lines in the current table panel
TSCATPLN

Current line number of table panel
TSCAMTBL

Maximum data length for current table panel line

PROCESS

157Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

TSCACTBL
Current length of data in current table panel line

TSCATBLL
Current table panel line

TSCAMSGC
Total messages.

PUTRDATA
This Remote Data Resource TSX control line is described in “PUTRDATA” on page 245.

QMAIL
This control line is used to send a constructed notification mail message to a BLX-SP.

This control line can be called only from a TSX. Also, it is a special purpose control line for
handling mail and is not generally useful for writing TSXs.

The QMAIL Control Line
The format of the QMAIL control line is:
CALL BLGTSX 'QMAIL',numberoflines,queuename,maxlinelength,stemname

Parameter Descriptions
1. numberoflines

Valid reply
The number of the elements in the input compound variable.

Default
None

Required

2. queuename

Valid reply
The name of the BLX-SP queue to put the mail on.

Default
MAILQ1

Optional

3. maxlinelength

Valid reply
The length of the longest line in the message. Lines are read from the compound
variable. If a line is longer than the specified maximum length, it is truncated.

Valid values can be between 1 and 255 inclusive. If the value is greater than 255,
the system sets it to 255. If the value is 0, it is set to 1.

Default
80

Optional

4. stemname

PROCESS

158 Version 7.1

Valid reply
The name of a REXX compound variable (including a separator character, such as a
period) that contains the mail message.

Default
BLG_QMAIL.

Optional

Usage Notes and Examples
This example shows how to use a QMAIL control line in a TSX. Mail is placed on the
default queue.
CALL BLGTSX 'QMAIL',BLG_QMAIL.0;

This is another example, showing how to use a QMAIL control line in a TSX. Mail is
placed on the default queue.
CALL BLGTSX 'QMAIL',MSG.0,,,'MSG.';

Return and Reason Codes
After the QMAIL control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 26.

Table 26. QMAIL Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Processing successful. The mail is queued to the BLX-SP.

0 4 Processing successful. The mail is mail queued to the
BLX-SP. However, the warning limit set by either the
MAILQ BLXPRM keyword or the MAILQ operator
command was exceeded.

8 4 Processing unsuccessful. The mail is not queued to the
BLX-SP. The maximum limit set by either the MAILQ
BLXPRM keyword or the MAILQ operator command was
exceeded.

8 8 Processing unsuccessful. The mail is not queued to the
BLX-SP. Unable to obtain storage in the BLX-SP to hold
the new mail item.

12 4 Processing unsuccessful. The mail is not queued to the
BLX-SP. The queue has been closed.

12 8 Processing unsuccessful. The mail is not queued to the
BLX-SP. The queue name specified on the call to
BLGTSX does not exist.

QUERYRRES
This Remote Data Resource TSX control line is described in “QUERYRRES” on page 246.

QMAIL

159Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

READDICT
This control line enables you to read the dictionary. Typically, you use the results from this
control line as input to another control line. For example, the TSX GETLIST control line
requires an s-word. You can use the READDICT control line to get the s-word using the
s-word index.

This control line can be called only from a TSX.

The READDICT Control Line
The format of the READDICT control line is:
CALL BLGTSX 'READDICT',index

Parameter Descriptions
1. index

Valid reply
The index of the dictionary entry to be read. Valid values are an S (for s-words) or P
(for p-words) followed by four hexadecimal characters (for example, S0BEE). If an
s-word if read, it is stored in TSCARSD; if a p-word is read, the prefix (if any) is
stored in TSCARPD and the validation (if any) is stored in TSCASDF.

Default
None

Required

Usage Notes and Examples
This example uses a READDICT control line in a TSX. The s-word for s-word index
X'0BEE' is stored in TSCARSD.
CALL BLGTSX 'READDICT','S0BEE'; /* GET S-WORD FOR STATUS */

Return and Reason Codes
After the READDICT control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 27.

Table 27. READDICT Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Processing successful.

0 4 Processing successful; dictionary entry is blank.

8 8 Processing unsuccessful; dictionary entry not found or
could not be read.

TSCA Field Usage
The following TSCA fields are set by Tivoli Information Management for z/OS when an
READDICT control line is processed. For more information about these fields, see
“Terminal Simulator Communications Fields” on page 289.
TSCAFRET

Function return code.
TSCAFRES

Function reason code.

READDICT

160 Version 7.1

TSCARSD
S-word associated with the specified s-word index.

TSCARPD
P-word associated with the specified p-word index.

TSCASDF
Data associated with the specified p-word index.

READSOCKET
This control line receives data sent from a server over a previously opened TCP/IP
connection. This is a non-blocking operation, so that control is returned to the caller of
READSOCKET immediately after the data has been given to TCP/IP. The
NETBYTECOUNT field gives the length of the data returned by the TCP/IP service in the
NETDATA field. The length value may be from zero up to the datalen value specified on the
READSOCKET invocation. If a callable service does not complete successfully, the name of
the service called is returned in the NETFUNC REXX variable, the return code is returned
in the NETRETC REXX variable, and the reason code is returned in the NETREAC REXX
variable. The user should refer to the OS/390 UNIX System Services Messages and Codes
manual and the OS/390 UNIX System Services Assembler Callable Services manual for a
description of the returned values.

This control line can be called only from a TSX. An ISPF or TSO environment is not
required in order to use READSOCKET.

The READSOCKET Control Line
The format of the READSOCKET control line is:
CALL BLGTSX 'READSOCKET',socketid,datalen

Parameter Descriptions
1. socketid

Valid reply
The socket identification for this TCP/IP connection. This value was initially
returned from the OPENSOCKET control line in the NETSOCKET REXX variable.

Default
None

Required

2. datalen

Valid reply
The length of the data to be received. The value specified must be greater than 0.

Default
None

Required

Usage Notes and Examples
This is an example of using a READSOCKET control line to read data from a server. When
the control line completes successfully, the NETBYTECOUNT REXX variable contains the
count of the number of bytes received. If this count is less than the amount expected,
READSOCKET should be invoked in a loop until the total bytes expected are received. The
data read is returned in the NETDATA REXX variable.

READDICT

161Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Note: Six REXX variables have been defined to return information from the
READSOCKET control line. These variables (NETSOCKET, NETDATA,
NETBYTECOUNT, NETFUNC, NETRETC, and NETREAC) are reset during the
processing of READSOCKET. It is the responsibility of the TSX to save any data
needed for processing.

Expected = 10
Received = 0
Data = ''
DO WHILE Expected > Received

CALL BLGTSX 'READSOCKET',SaveSocket,Expected-Received
IF NETBYTECOUNT > 0 THEN

Data = Data NETDATA
Received = Received + NETBYTECOUNT

END

Return and Reason Codes
After the READSOCKET control line is run, Tivoli Information Management for z/OS sets
the TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 28.

Table 28. READSOCKET Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Successful completion.

8 4 The TCP/IP service did not complete successfully. Refer to
the OS/390 UNIX System Services Messages and Codes
manual and the OS/390 UNIX System Services Assembler
Callable Services manual for a description of the
following return codes. These REXX variables contain the
diagnostic information:

NETFUNC
The name of the Assembler Callable Service
being invoked.

NETRETC
The value of the Return_code parameter returned
by the service.

NETREAC
The value of the Reason_code parameter returned
by the service.

RELEASERRES
This Remote Data Resource TSX control line is described in “RELEASERRES” on
page 247.

REPLIST
This control line enables you to replace one line or a block of lines in a list processor list.

This control line can be called only from a TSX.

READSOCKET

162 Version 7.1

The REPLIST Control Line
The format of the REPLIST control line is:
CALL BLGTSX 'REPLIST',listsword,stemname,startln,oldcount,newcount

Parameter Descriptions
1. listsword

Valid reply
The root s-word of the list in which items are to be replaced. The root s-word
includes the hexadecimal watermark character; therefore, it is recommended that you
use the TSX READDICT control line to get the root s-word that you will pass to
REPLIST. Refer to “READDICT” on page 160 for more information on the
READDICT control line.

Default
None

Required

2. stemname

Valid reply
The name of a REXX compound variable (including a separator character, such as a
period) for the compound variable containing the new items.

Default
BLG_LIST.

Optional

3. startln

Valid reply
The line number of the first line to be replaced. Valid values are 1 to 19274.

Default
None

Required

4. oldcount

Valid reply
The number of items to be removed from the original text. Valid values are 0 to
19274 or ALL. If 0 is specified, REPLIST simply inserts items prior to the line
specified by startln. If ALL is specified, REPLIST replaces all lines from startln to
the end of the list.

Default
1

Optional

5. newcount

Valid reply
The number of new items. Valid values are 0 to 19274. If 0 is specified, REPLIST
replaces the specified block of lines with nothing, which is the same function as a
DELETE.

REPLIST

163Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Default
The value of oldcount.

Required if ALL is specified for oldcount; if ALL is not specified for oldcount, then this
parameter is Optional.

CAUTION:
The list processor data that the TSX REPLIST control line retrieves must be in the
internal format introduced in Version 5.1 (or in Version 4 by APARs OY47188 and
OY47893). Lists which were stored prior to the internal format change will not be
retrieved accurately by REPLIST. Those lists can be converted to the new internal
format by updating them in Version 7.1, repeating the first line, deleting the first line,
and filing the record. The data will be unchanged, but it will be stored in the correct
format.

Usage Notes and Examples
This is an example of using a REPLIST control line in a TSX to replace the fifth item in the
device name list.
index='S1416';
CALL BLGTSX 'READDICT',index; /* Get the s-word. */
sword=TSCARSD; /* The s-word of the device name list */
moditem.1='DEVICE7'
CALL BLGTSX 'REPLIST',sword,'moditem.',5

Return and Reason Codes
After the REPLIST control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 29.

Table 29. REPLIST Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 The specified items were replaced.

0 4 The specified items were replaced; the specified range
extended beyond the end of the list.

0 8 The specified range was beyond the end of the list; the
new items were added, with blank lines added, if
necessary, between the end of the previous list and the
beginning of the new items.

8 4 The function could not be completed because it would
cause the list to exceed the maximum allowed size
(19274) for a list; items were added up to line 19274.

8 8 The value of a list item failed validation checking. The list
is updated and the specified number of lines are replaced,
but the data for the line that failed validation and all
subsequent lines is set to blanks. TSCATLIX contains the
index of the first item which failed validation.

8 12 No list of the specified type existed; no new list items
were added to the record. Use the ADDLIST TSX control
line to add new list items.

12 4 The control line function failed. This control line cannot
be run while the list processor is active.

REPLIST

164 Version 7.1

|

REPTEXT
This control line enables you to replace an existing block of text with new lines of text.

This control line can be called only from a TSX.

The REPTEXT Control Line
The format of the REPTEXT control line is:
CALL BLGTSX 'REPTEXT',sword,stemname,startln,oldcount,newcount

Parameter Descriptions
1. sword

Valid reply
The structured word associated with the text to be replaced.

Default
None

Required

2. stemname

Valid reply
The stem name (including any separator character such as a period) for the
compound variable containing the new text.

Default
BLG_TEXT.

Optional. If this parameter is omitted, the stem BLG_TEXT. is used.

3. startln

Valid reply
The line number of the first line to be replaced. Valid values are 1 to 999999.

Default
None

Required

4. oldcount

Valid reply
The number of lines to be removed from the original text. Valid values are 0 to
99999 or ALL. When 0 is specified, REPTEXT simply inserts text prior to the line
specified by firstln. When ALL is specified, REPTEXT replaces all lines from startln
to the end of the file.

Default
1

Optional

5. newcount

REPTEXT

165Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Valid reply
The number of new text lines. Valid values are 0 to 99999. When 0 is specified,
REPTEXT replaces the specified block of text with nothing, which is the same as a
DELETE function.

Default
1

Required if ALL is specified for oldcount. If omitted, the value specified for oldcount is
used.

Usage Notes and Examples
Following is an example of using a REPTEXT control line in a TSX to replace the fifth line
of problem description text.
index='S0E01';
CALL BLGTSX 'READDICT',index; /* Get the s-word. */
sword=TSCARSD; /* The s-word of the text data. */
modtext.1='Modified text line'
CALL BLGTSX 'REPTEXT',sword,'modtext.',5

This example uses a REPTEXT control line in a TSX to replace lines 7 through 9 of
problem description text with a single line of modified text.
index='S0E01';
CALL BLGTSX 'READDICT',index; /* Get the s-word. */
sword=TSCARSD; /* The s-word of the text data. */
modtext.1='Modified text line'
/* Replace 3 lines starting at line 7 with one modified line */
CALL BLGTSX 'REPTEXT',sword,'modtext.',7,3,1

Note: You can use the REXX STRIP() function to remove any trailing blanks that might
exist in the text prior to processing the REPTEXT control line.

Return and Reason Codes
After the REPTEXT control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 30.

Note: If you are using the Tivoli Information Management for z/OS freeform text editor,
you should be aware that this editor adds additional blank lines to a record in order to
present a full screen for editing. As a result, the reason code will, in some cases, be
different according to whether you do REPTEXT from within the editor or do
REPTEXT when you are not in the editor.

Table 30. REPTEXT Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 The specified text was replaced.

0 4 The specified text was replaced; the specified range
extended beyond the end of the text.

0 8 The specified text range was beyond the end of the text;
the new text was added, with one or more blank lines
added between the end of the previous text and the
beginning of the new text.

REPTEXT

166 Version 7.1

|
|

Table 30. REPTEXT Return and Reason Codes (continued)
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 12 No text of the specified type existed; the new lines were
added in the specified range with blank lines added, if
necessary, prior to the beginning of the new lines.

8 4 The length of one or more input text lines exceeds the
maximum allowable line length of 132. No text is
updated.

RETURN
This control line provides an exit from a TSP. The REXX ″exit″ statement provides
equivalent function for a TSX. However, any information returned is ignored.

This example uses a RETURN control line to exit the TSP when processing completes.
PROCESS ERROR
LABEL DONE...

RETURN (Return at this point to avoid
processing your error routine)

LABEL ERROR

Creating a RETURN Control Line
Because this control line does not collect any input data, it does not have a specification
panel. After you create the RETURN control line from the Function Name panel, you are
returned to the updated Function Line Summary panel.

Usage Notes
Although not necessary, it is helpful if you use a RETURN control line at the end of each
TSP. The one exception to this is when you run a TSP in the batch environment. Using an
ADDDATA control line with ;QUIT in the Literal data field will cause the TSP to exit
Tivoli Information Management for z/OS when it completes. In this way you can avoid
unnecessary messages.

What the Control Line Does
If the current TSP received control because a previous TSP issued a LINK control line,
processing resumes with the control line following the LINK control line in the previous
TSP.

If this TSP was started by the 002B function code, the 001B function code, the RUN
command, or the TSP parameter, processing returns to the point in the Tivoli Information
Management for z/OS environment where the TSP was when it ended its processing.

Return and Reason Codes
After a RETURN control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to zero. (See Table 31
on page 168.)

REPTEXT

167Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Table 31. RETURN Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Successful completion.

SETAPIDATA
This control line is used to return information to an application that invoked the High-Level
Application Program Interface (HLAPI). In other words, SETAPIDATA provides a means of
using a TSX to create an output parameter data block (PDB) for a HLAPI application. The
HL14 (Start User TSP) transaction is issued to explicitly invoke a TSP or TSX. TSXs
invoked during the processing of the HL05 (Check In Record), HL08 (Create Record), and
HL09 (Update Record) transactions can also return data as output PDBs using
SETAPIDATA. These output PDBs will follow any output PDBs generated by HLAPI
processing. Each call to SETAPIDATA causes an output PDB to be constructed and chained
to any previously built output PDBs. LLAPI applications using the T111 (Start User TSP)
transaction will not have access to the returned data. The Tivoli Information Management for
z/OS Application Program Interface Guide contains additional information about the HLAPI
and PDBs.

If SETAPIDATA receives a single string of data, the length of the data must be less than
32767. If SETAPIDATA receive a stem variable, the length of each line in the stem must be
less than 255.

This control line can be called only from a TSX and is valid only in an API environment.

The SETAPIDATA Control Line
The format of the SETAPIDATA control line is:
CALL BLGTSX 'SETAPIDATA',pdbname,data,numberoflines,maxlinelength

Parameter Descriptions
1. pdbname

Valid reply
The name to assign to the resulting output PDB. Maximum length is 32 characters.

Default
None

Required

2. data (or stemname)

Valid reply
If numberoflines is not specified, this value is put into PDBDATA and the
PDBDATW value is set to 0. If numberoflines is specified, this value is treated as
the stem of a REXX compound variable that will provide the data for PDBDATA.
Data from each segment of the compound variable will be truncated or padded with
blanks to the length of maxlinelength and PDBDATW is set to the maxlinelength.

Default
None

Required

RETURN

168 Version 7.1

3. numberoflines

Valid reply
The number of elements in the input compound variable. If specified, the value
specified in the data or stemname parameter is treated as a compound variable stem.
If not specified, the value specified in the data or stemname parameter is treated as a
string.

Default
None

Optional
If specified, maxlinelength is required.

4. maxlinelength

Valid reply
The length of the longest line in the specified compound variable. This value cannot
be greater than 255. Lines are read from the compound variable. If a line is longer
than the specified maximum length, it is truncated. If a line is shorter than the
specified maximum length, it is padded with blanks when put into PDBDATA. The
PDBDATW of the resulting output PDB is set to this maxlinelength.

Default
None

Optional
If specified, numberoflines must be specified.

Usage Notes and Examples
This is a simple example of using an SETAPIDATA control line in a TSX.
CALL BLGTSX 'SETAPIDATA','OUTPUT1','DATA1'

This is a slightly more complex example of using the SETAPIDATA control line in a TSX.
STEM2.1='First line of output data'
STEM2.2='Second line of output data'
STEM2.3='This is the last line of output data'
CALL BLGTSX 'SETAPIDATA','OUTPUT2','STEM2',3,36

Return and Reason Codes
After the SETAPIDATA control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 32.

Table 32. SETAPIDATA Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Processing successful. An element is constructed that the
HLAPI will use to build an output PDB.

8 4 API not active.

SETFIELD
This control line enables you to set a field (TSCAUFLD or TSCATLIX) in the TSCA that
you can use for communication within a TSP or between several TSPs or user routines.

SETAPIDATA

169Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

The TSP SETFIELD function is available in a TSX using standard program operators
available in the REXX programming language. Although you cannot directly set TSCA
fields in a TSX, TSX control lines provide parameters that allow you to pass information
necessary to complete the control line functions. Therefore, you do not need the SETFIELD
control line a TSX.

You can use this control line in several ways. For instance, you might have a TSP that is
called by several TSPs. You want the called TSP to do different processing depending on
which TSP calls it. You can have the calling TSP add information to its call using a
SETFIELD control line. The called TSP first tests this field to determine what function to
perform.

As shown in this example, you can have a user exit routine control the processing flow of
your TSP.
SETFIELD TSCAUFLD=0
LABEL LOOP
USEREXIT PROGRAM1 (Sets TSCAUFLD to nonzero

when it completes processing)
TESTFIELD DONE (If TSCAUFLD is not =0, processing

is complete)...

BRANCH LOOP
LABEL DONE
RETURN

Creating a SETFIELD Control Line
Use the following SETFIELD Specification panel to create a SETFIELD control line:

General Rules
If you do not specify user data or variable data on this panel and you specify TSCAUFLD
in the Field name field, the TSCAUFLD field of the TSCA is reset to blanks (X'40').

BLM8CU9S SETFIELD SPECIFICATION PANEL: ________

Enter 'SETFIELD' control data; cursor placement or input line entry allowed.

1. User data............. 0_______
2. Get variable data..... NO_
3. Field name............ TSCAUFLD

When you finish, type END to save or CANCEL to discard any changes.

===>

SETFIELD

170 Version 7.1

If you do not specify user data or variable data on this panel and you specify TSCATLIX in
the Field name field, the TSCATLIX field of the TSCA is reset to zeros (X'00').

If you specify neither TSCA field name, the default is TSCAUFLD.

Field Descriptions
1. User data

This field indicates the literal data that you want placed in either the TSCAUFLD field or
the TSCATLIX field of the TSCA. The data that is entered in this field is collected in the
case entered by the user. You can use this data to control the flow within a TSP, or between
several TSPs or user exit routines. A user exit routine can access this data.

Valid reply
A mixed string of 1 to 8 characters, or no reply.

Default
No reply.

Restrictions
If you enter data in this field, you must enter NO or make no reply in the Get
variable data field.

2. Get variable data

This field indicates whether you want variable data placed in the TSCA field, TSCAUFLD
or TSCATLIX.

Valid reply
YES, NO, or no reply.

Default
NO

Restriction
If you enter YES in this field, you must not enter data in the User data field. If the
SETFIELD control line has YES in this field, a user exit routine must move data
into the variable data area and set the variable data length or the MOVEVAR control
line must move data into the variable data area before processing a SETFIELD
control line. The TSCA contains fields for a pointer to the variable data area
(TSCAVDAP) and for the length of that data (TSCAVDAL). The pointer field
contains the address of a variable data area that is allocated when the TSP
environment is initialized. Your exit routine must not modify this pointer.

3. Field name

This field identifies the TSCA field where you want the user data or contents of the variable
data area moved.

Valid reply
TSCATLIX, TSCAUFLD, or blank.

Default
TSCAUFLD

SETFIELD

171Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Usage Notes
When entering variable data, make sure the variable data length field does not exceed 8
characters when you specify the TSCAUFLD field, or 4 characters when you specify the
TSCATLIX field.

For examples, use PMF to look at TSPs BLGTSPPE or BTNTCEAE in your base panel data
set.

What the Control Line Does
Tivoli Information Management for z/OS sets the TSCA field TSCAUFLD or TSCATLIX to
the specified value. TSCAUFLD is not changed until another SETFIELD control line is
processed or the field is modified by a user exit routine. TSCATLIX can be modified by
FINDSDATA, another SETFIELD, or a user exit routine.

Another use for the SETFIELD control line is to prevent recursive calls to your TSP. For
example, suppose that you modified all your name panels to allow two words. You notice
that you have problems searching for some of the names. Further investigation reveals that
users who enter = into the name fields have their names collected together with one prefix
(for example, PERA/JOHN SMITH) while users who enter the actual names have one prefix
for each name (for example, PERA/JOHN PERA/SMITH). Rather than restrict the use of the
=, you can write a TSP to correct the data. This TSP is run after the assisted-entry panel
collects the name.
FINDSDATA PERA/. LAST To find the assignee name just entered
MOVEVAR TSCASDF To move the name
ADDDATA 1, get variable data=yes To re-enter the name you just entered
PROCESS EXIT To process your responses
LABEL EXIT
RETURN

When your TSP enters the data again, this TSP is processed again. To resolve the problem of
this recursive call, you can start the TSP with:
TESTFIELD TSCAUFLD = XYZ if true, branch to exit (it will never

be true the first time)
SETFIELD TSCAUFLD to XYZ (you would only get here if it was the first

time this TSP ran)

Return and Reason Codes
After the SETFIELD control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. Table 33 lists those codes.

Table 33. SETFIELD Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 Successful completion.

SETFIELD

172 Version 7.1

Table 33. SETFIELD Return and Reason Codes (continued)
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

8 4 The Get variable data field was specified in the control
line but the length of the variable data was zero. The
function did not end successfully.

Your TSP must set up the variable data area and its length
before running a SETFIELD control line that specifies
variable data. You can do this by calling a user exit
routine that sets the variable data length and moves data
into it, or by using the MOVEVAR control line.

Check your TSP to make sure a USEREXIT or
MOVEVAR control line appears in the processing path
before the SETFIELD control line that caused the
unexpected return code. Add a TRACE control line to
your TSP or issue the TRACE command before starting
your TSP.

If there is a USEREXIT control line in the TSP, check the
exit routine’s code to make sure it sets the length field
properly.

8 8 The user data is longer than the length of the field you
want to set. The data was not moved into the field you
specified.

If you specified field name TSCAUFLD or blanks, only 8
characters can be moved. If you specified field name
TSCATLIX, only 4 characters can be moved.

If you are using variable data to set these fields, correct
your MOVEVAR control line or exit routine’s code and
make sure that you use the correct amount of data, and set
the correct length.

8 12 An internal logic error occurred in National Language
Support. Contact your Tivoli representative.

8 16 The user data is not a valid mixed string. Check the data
and make the changes required to ensure that you specify
valid mixed data.

You can use the TESTFIELD control line to test for these return and reason codes. See
“TESTFIELD” on page 175 for information on how to do this.

TSCA Field Usage
Tivoli Information Management for z/OS sets the following TSCA fields after a SETFIELD
control line is run. For more information about these fields, see “Terminal Simulator
Communications Fields” on page 289.
TSCAFRET

Function return code
TSCAFRES

Function reason code

SETFIELD

173Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

TSCAUFLD
User field

TSCATLIX
List index value.

If you enter YES in the Get variable data field and you put data in the variable data field
with a user exit routine, the user exit must set the length of the variable data in the
following TSCA field:

TSCAVDAL
Current user variable data length.

If you set the variable data with the MOVEVAR control line, the MOVEVAR control line
sets field TSCAVDAL for you.

SETRRES
This Remote Data Resource TSX control line is described in “SETRRES” on page 248.

SETTSCA
This control line allows a TSX to set selected fields in the TSCA control block for
communications with TSPs and other TSXs.

The SETTSCA Control Line
The format of the SETTSCA control line is:
CALL BLGTSX 'SETTSCA','fldname1','fldval1','fldname2','fldval2',...

Parameter Descriptions
fldname1

Valid reply
The name of a field to be set. Valid values are

TLIX Used to set TSCATLIX

UFLD Used to set TSCAUFLD

UPTR Used to set TSCAUPTR

VDA Used to set VDA (the Variable Data Area)

fldval

Valid reply
New values for the field. Valid values are dependent on the field being set.

TLIX a number between 0 and 65535

UFLD 0 to 8 characters

UPTR 0 to 4 characters

VDA 0 to 512 characters

Usage Notes and Examples
The SETTSCA control line allows a TSX to set selected fields in the TSCA control block. If
the control line is entered with no field names, or a field name is specified with no

SETFIELD

174 Version 7.1

associated value, message BLG20011E is issued. If the same field is specified more than
once, the last value specified is the one used. The SETTSCA control line does not set the
TSCAFRET and TSCAFRES fields.

This is an example of using a SETTSCA control line in a TSX. The field TSCAUFLD is set
to the value TEST99.
CALL BLGTSX 'SETTSCA','UFLD','TEST99'

TESTFIELD
This control line enables you to test any numeric or character field in the TSCA against
literal or variable data. Use this control line to test a field in the TSCA to see if it contains
the correct data before processing the next control line.

The function provided by the TSP TESTFIELD control line is available in a TSX using
conditional program flow controls (if, do, while, etc.) available in the REXX programming
language. You can test the values of the TSCA equivalent REXX variables directly. (for
example, TSCACPNL). Refer to “TSX Control Lines” on page 54 for more information on
the TSCA fields supported by TSX equivalent REXX variables.

This example uses a TESTFIELD control line to test the return code from an exit routine.
...

USEREXIT WRITRECS
TESTFIELD ERROR (If return code TSCAFRET is ¬=0,

branch to ERROR)...

LABEL ERROR...

Creating a TESTFIELD Control Line
Use the following TESTFIELD Specification panel to create a TESTFIELD control line:

SETTSCA

175Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

General Rules
You must specify a LABEL control line within the TSP that identifies the target.

Field Descriptions
1. Field name

This field identifies the field in the TSCA that you want to have tested for the existence of a
value. If the result of the test is TRUE, a branch is taken to the control line named in the
True label field. Otherwise, processing continues with the next control line. This field is
required.

Valid reply
A TSCA field name consisting of a string of 1 to 8 SBCS characters.

Default
None.

Restrictions
You must enter the valid name of a TSCA field. See “Terminal Simulator
Communications Fields” on page 289 for a list of the field names. You cannot
specify a TSCA bit field.

2. Get list index?

This field indicates whether to append the contents of TSCA field TSCATLIX to the
contents of TSCARSD. When this field is YES, any value entered in the List index field is
assumed to be a hexadecimal value and is not treated as a search operator. This field can
only be used when the Field name field is TSCARSD.

3. List index

BLM8CU9J TESTFIELD SPECIFICATION PANEL: ________

Enter 'TESTFIELD' control data; cursor placement or input line entry allowed.

1. Field name.........<R> TSCAFRET
2. Get list index?.... NO_
3. List index......... 0000

4. True label.........<R> ERROR___
5. Get variable data..... NO_
6. Find string anywhere.. NO_
7. Find exact length..... NO_
8. Apply not logic....... YES
9. Case-sensitive........ NO
10. Test data............. 0_______________________________

When you finish, type END to save or CANCEL to discard any changes.

===>

TESTFIELD

176 Version 7.1

This field indicates that the found data was collected with the list processor and that the
value in this field should be added to the contents of TSCARSD index in the Field name
field. The contents of the Get list index? field can only be used when the Field name field
is TSCARSD.

Valid reply
A 1- to 4-byte hexadecimal value.

If you specify YES in the Get list index? field and specify a value for List index, the value
in TSCATLIX is added to the value in the List index field and the result is appended to the
s-word. The resulting sum is treated as a hexadecimal value and not as a search operator.

If you specify NO in the Get list index? field and specify a value for List index, the List
index field value is appended to the s-word and the value of TSCATLIX is ignored.

4. True label

This field indicates the name of a control line in the current TSP where processing is to
resume if the result of the test is TRUE. If the result of the test is FALSE, processing
continues with the line following this control line. This field is required.

Valid reply
A mixed string of 1 to 8 characters, beginning with an SBCS alphanumeric or
national character or an SO character.

Default
None.

Restrictions
You must enter in this field a valid label name that is identified using a LABEL
control line within the current TSP.

5. Get variable data

Valid reply
YES, NO, or no reply.

Enter YES when you want the TSCA field identified in the Field name field
compared to the value pointed to by the TSCAVDAP field. When you enter NO or
make no reply, this field has no effect.

Default
NO

Restrictions
You cannot use this field if you use the Test data field.

If the TESTFIELD control line has YES in this field, a user exit routine must move
data into the variable data area and set the variable data length or the MOVEVAR
control line must move data into the variable data area before processing a
TESTFIELD control line. The TSCA contains fields for a pointer to the variable data
area (TSCAVDAP) and for the length of that data (TSCAVDAL). The pointer field
contains the address of a variable data area that is allocated when the TSP
environment is initialized. Your exit routine must not modify this pointer.

6. Find string anywhere

TESTFIELD

177Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

This field is used to specify the method of comparing a character field in the TSCA against
a specified value. For either response to this field, the test data must match the data in the
TSCA field exactly for the length of the test data. If the response to this field is NO, the test
data must begin in the first position of the TSCA field to result in a TRUE condition. If the
response is YES, the test data may exist anywhere in the TSCA field for a TRUE condition.

Valid reply
YES, NO, or no reply.

Default
NO

Restrictions
You can specify this field as YES only if the TSCA field is a character field.

7. Find exact length

This field specifies the type of test to be used on data in a TSCA character string field.

Valid reply
YES, NO, or no reply.

If you enter YES, the test result is TRUE only if the test argument exactly matches
(in value and length) the field that is being tested.

¶ If the TSCA field is TSCATBLL, TSCASDF, TSCARPD, TSCARSD, or
TSCACMRB, the length of the field data is equal to the value in the associated
TSCA length field.

¶ Otherwise, the length of the field data is considered to be that of the field data
with trailing blanks and hexadecimal zeros removed.

If you enter NO, the test result is TRUE if the test argument appears anywhere in
the field that is being tested.

Default
NO

Restrictions
None.

8. Apply not logic

Valid reply
YES, NO, or no reply.

If you enter YES, it indicates that you want the results of the test inverted. In other
words, if the result of the test is FALSE, a branch is taken to the True label field; if
the test is TRUE, processing continues with the next control line.

Default
NO

Restrictions
None.

9. Case-sensitive

Valid reply
YES, NO, or no reply.

TESTFIELD

178 Version 7.1

A reply of YES in this field indicates that you want the character string specified in
the Test data field to be used as a case-sensitive argument. A reply of NO in this
field indicates that the case of a character should be ignored when locating data
which matches the value specified in the Literal data field.

Default
NO

Restrictions
None.

10. Test data

This field indicates the literal data that you want compared against the contents of the TSCA
field specified in the Field name field.

Valid reply
The valid reply depends on the field type that is being tested:

Numeric field – If you name a TSCA numeric field in the Field name field, you
can enter values containing the digits 0 though 9. The number is translated to its
internal representation (binary) when the control line is processed. A TRUE
condition exists when the two values are equal. If you enter YES in the Apply not
logic field, a TRUE condition exists when the two values are not equal.

Character field – If you name a TSCA character field in the Field name field, you
can enter any string of characters up to the maximum length of the field. The
character field named in the Field name field is compared against this character
string, based on the value in the Find string anywhere field. A TRUE condition
exists when the test string is found. If you enter YES in the Apply not logic field, a
TRUE condition exists when the test string is not found.

Default
No reply.

Restrictions
You cannot use this field if you put YES in the Get variable data field.

When an SBCS comma is required as the first, or only, character of this field, you
must precede the SBCS comma with an SBCS space character.

Usage Notes
The TESTFIELD control line provides for conditional branching. You can use the BRANCH
control line for unconditional branching.

For examples, use PMF to look at TSPs BTNTAPRV and BTNTA112 in your base panel
data set.

If you want to use literal data for the test, enter the data in the Test data field. If you want
to use variable data, you must design your TSP to put data into the variable data area before
processing the TESTFIELD control line. This can be done with either a USEREXIT or a
MOVEVAR control line.

You cannot include the s-word watermark characters X'BA', X'BB', X'BC', X'BD', X'BE', or
X'BF' as literal or variable data when building a search argument. Therefore, when using the
TESTFIELD control line to test for a returned s-word, the input field should contain the

TESTFIELD

179Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

s-word without the watermark character and you should enter YES in the Find string
anywhere field. You can use Get list index? and List index fields to allow you to test for
specific s-words added by the list processor program exit.

All but 2 character fields in the TSCA are set to blanks (X'40') when the TSP environment is
initialized. TSCARRB, TSCACMRB, and TSCAVDAL are set to binary zeros. If you want
to check whether a field has been used, specify the appropriate characters (blanks or binary
zeros) in the variable data area as the comparison data. Any blanks specified in the literal
data area are stripped out when the control line processes.

When you use TESTFIELD to test the results from a FINDSDATA control line that looked
for any occurrence of a prefix (for example, look for an assignee name in the record by
specifying PERA/.), note that the return code is zero, even if the user has blanked out this
field. Therefore, a more accurate test would be against TSCASDFL, the length of the
returned data, rather than against TSCAFRET.

What the Control Line Does
If the TESTFIELD control line results in a true condition, a branch is taken to the target you
specified in the control line. If not logic is used, the branch is taken when the result of the
test is false.

Return and Reason Codes
Running a TESTFIELD control line does not change the setting of the TSCA return or
reason codes.

TSCA Field Usage
Tivoli Information Management for z/OS sets the following TSCA fields after a TESTFIELD
control line is run. For more information about these fields, see “Terminal Simulator
Communications Fields” on page 289.
TSCACPOS

Byte number where string is found

If you enter YES in the Get variable data field and you put data in the variable data area
with a user exit routine, the user exit must set the length of the variable data in the
following TSCA field:

TSCAVDAL
Current user variable data length

If you set the variable data with the MOVEVAR control line, the MOVEVAR control line
sets field TSCAVDAL for you.

TESTFLOW
This control line enables you to test for the panel or message ID identified within the
control line.

When you are ready to process an IRC using a TSP, be sure that it is entered from the
correct panel. You can use TESTFLOW to verify that the current panel name in the TSCA is
correct before you process any data for that panel. As shown in the following example, you
can also use TESTFLOW as the first line of your TSP to test for the panel that called the
TSP.

TESTFIELD

180 Version 7.1

The function provided by the TSP TESTFLOW control line is available in a TSX using
conditional program flow controls available in the REXX programming language. You can
test the values of the TSCA equivalent REXX variables directly (for example, TSCACPNL).
Refer to “TSX Control Lines” on page 54 for more information on the TSCA fields
supported by TSX equivalent REXX variables. You can also test for messages by examining
compound variable BLG_MESSAGE. Refer to “Testing Terminal Simulator Panels (TSPs)
and EXECS (TSXs)” on page 251 for more information on TSP and TSX debugging
techniques.

In this example, the TESTFLOW control line at the beginning of the TSP tests whether the
current panel is the System application Primary Options Menu.
TESTFLOW SYSTEM (Test for BLG0EN10, System application

If yes, branch to label SYSTEM)
ADDDATA 6,1,SE + PERA/SMITH (Otherwise, you are in

Management.)
BRANCH NEXT
LABEL SYSTEM
ADDDATA 3,2,6,1,SE + PERA/SMITH (3,2 puts you at the

management panel)
LABEL NEXT...

You can also use this control line to test which path an IRC used. For example, if you delete
a record, one of two panels will appear, depending on whether the record was found. You
can use TESTFLOW to check which path you took. If your TSP creates a record, you might
want to use TESTFLOW to check for the Record filed successfully message.

Creating a TESTFLOW Control Line
Use the following TESTFLOW Specification panel to create a TESTFLOW control line:

BLM8CU9K TESTFLOW SPECIFICATION PANEL: ________

Enter 'TESTFLOW' control data; cursor placement or input line entry allowed.

1. Verify name........... BLG0EN10
2. Verify type........<R> PANEL__
3. True label.........<R> SYSTEM__
4. Get variable data..... NO_
5. Apply not logic....... NO_

When you finish, type END to save or CANCEL to discard any changes.

===>

TESTFLOW

181Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

General Rules
You must specify a LABEL control line within the TSP that identifies the target of the True
label field.

Field Descriptions
1. Verify name

Valid reply
An 8-character name of a panel created through PMF or one of the base panels
shipped with Tivoli Information Management for z/OS, a Tivoli Information
Management for z/OS message ID, or no reply.

This is the name you want to test for when this control line is processed. If the
result of the test is TRUE, a branch is taken to the control line named in the True
label field. Otherwise, processing continues with the next control line.

Default
No reply.

Restrictions
You cannot use this field if you enter YES in the Get variable data field.

The panel name must consist of SBCS characters only.

2. Verify type

This field indicates whether the test value is a panel name or a message ID. If you specify
PANEL, a true condition exists when the currently displayed panel matches the test value. If
you enter MESSAGE, a true condition exists when the test value is a message ID on the
current message chain, a false condition exists when the test value is a message ID on the
saved message chain or the message ID does not exist on either message chain. This field is
required.

Valid reply
PANEL or MESSAGE

Default
PANEL

Restrictions
None.

3. True label

This field contains the name of a control line in the current TSP where processing resumes
if the result of the test is true. If the result of the test is false, processing continues with the
line following this control line. This field is required.

Valid reply
A mixed string of 1 to 8 characters, beginning with an SBCS alphanumeric or
national character or an SO character.

Default
None.

Restrictions
You must enter a valid label name that is identified by a LABEL control line within
the current TSP.

TESTFLOW

182 Version 7.1

4. Get variable data

Valid reply
YES, NO, or no reply.

A reply of YES indicates that the panel name or message ID you want to test for
should be taken from the variable data area. When you enter NO or make no reply,
this field has no effect.

Default
NO

Restrictions
You cannot use this field if you enter data in the Verify name field.

If the TESTFLOW control line has YES in this field, a user exit routine must move
data into the variable data area and set the variable data length or the MOVEVAR
control line must move data into the variable data area before processing the
TESTFLOW control line. The TSCA contains fields for a pointer to the variable data
area (TSCAVDAP) and for the length of that data (TSCAVDAL). The pointer field
contains the address of a variable data area that is allocated when the TSP
environment is initialized. Your exit routine must not modify this pointer.

5. Apply not logic

Valid reply
YES, NO, or no reply.

If you enter YES in this field, it indicates that you want the results of the test
inverted. In other words, if the result of the test is TRUE, it is treated as FALSE;
and if the result is FALSE, it is treated as TRUE.

Default
NO

Restrictions
None.

Usage Notes
The TESTFLOW control line provides for conditional branching. You can use the BRANCH
control line for unconditional branching.

This control line sets return and reason codes based upon its results. Because of this, it
recommended that you check the results of a PROCESS control line before using
TESTFLOW.

When testing for help panels, be aware that the current panel name (TSCACPNL) for help
panels is always set to BLG1T007.

For examples, use PMF to look at TSPs BTNTAM01 and BTNTARUP in your base panel
data set.

What the Control Line Does
If you enter a message ID in the Verify name field, it is compared to every message ID on
the current message chain to see if a match exists. If there is a match, a true condition is set.
If the message ID exists on the saved message chain or does not exist on either message

TESTFLOW

183Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

chain, then the test is false. If the message ID exists on the saved message chain, then
TSCAFRET is set to 4 and TSCAFRES is also set to 4.

If you enter a panel name in the VERIFY NAME field, it is compared to the current Tivoli
Information Management for z/OS panel. If the panel name matches the current panel, a
TRUE condition is set; if not, the test returns FALSE.

If the TESTFLOW control line results in a TRUE condition, a branch is taken to the target.
You must specify a target in a LABEL control line within the same TSP. If not logic is used,
the branch is taken when the result of the test is FALSE.

Return and Reason Codes
After a TESTFLOW control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 34.

Table 34. TESTFLOW Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 Successful completion.

0 4 The requested operation was successful, but an abnormal
condition occurred. The variable data is not valid for a
message or panel name. Check your user exit routine’s
code to make sure the length of the data is no more than 8
characters and that the message ID or panel name starts
with an alphabetic character. You can have your TSP print
the TSCA to see what your user exit routine is actually
entering.

4 4 The message was found, but it is on the saved chain rather
than on the current chain. Either the message could have
been on the saved message chain when the TSP began, or
it could have been moved from the current chain to the
saved chain by a PROCESS or MESSAGE control line.

TSCA Field Usage
Tivoli Information Management for z/OS sets the following TSCA fields after a TESTFLOW
control line is run. For more information about these fields, see “Terminal Simulator
Communications Fields” on page 289.
TSCAFRET

Function return code
TSCAFRES

Function reason code.

If you enter YES in the Get variable data field and you set the variable data with a user
exit routine, the user exit routine must set the length of the variable data in the following
TSCA field:

TSCAVDAL
Current user variable data length

If you set the variable data with the MOVEVAR control line, the MOVEVAR control line
sets the field TSCAVDAL for you.

TESTFLOW

184 Version 7.1

TRACE
This control line traces the flow of the control lines being processed by one or more TSPs.
It can also be used to initiate REXX tracing in a TSX if Trace LINK function is set to YES
on the TSP TRACE control line and the TSX is coded to support tracing (the TSX checks
the value of variable BLGTRACE). You can turn TRACE on or off at any point in a TSP. It
can trace some or all of the control lines processed in a single TSP, and can include control
lines of any other TSP that is processed with the LINK control line or the 002B function
code. (See “The 002B Function Code” on page 259 for more information on starting a TSP
using the 002B function code.)

Refer to “TSX Considerations” on page 187 for information about using the TRACE control
line in a TSX.

You can use TRACE to check the flow of your TSP. Say, for instance, the length field for
the variable data area was not set properly before an ADDDATA control line was processed.
A TRACE report shows if a USEREXIT or MOVEVAR control line, which sets this field,
was processed before the ADDDATA.

This example uses a TRACE control line to produce a listing of certain control lines in a
TSP.
LABEL TSP00001 LABEL TSP00002
TRACE TRACE=YES .

LINK=YES .
LINK TSP00002 RETURN...

LINK TSP00003 LABEL TSP00003
. .
. .
. RETURN
TRACE TRACE=NO
LINK TSP00004...

This example produces a listing of the control lines that were run. Suppose that TSP00004
does not contain a TRACE control line. This listing would include all control lines run by
TSP00002 and TSP00003, but only the control lines run by TSP00001 up to the LINK
TSP00004 control line.

Creating a TRACE Control Line
Use the following TRACE Specification panel to create a TRACE control line:

TRACE

185Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Field Descriptions
1. Set TRACE on

This field sets control line tracing on or off. When control line tracing is on, all control lines
that are processed in the current TSP are formatted and written to a specified output
destination. When tracing is off, control lines are not written to the output destination. You
can use any number of TRACE control lines to turn tracing on or off.

Valid reply
YES, NO, or no reply.

Default
YES

Restrictions
When a TSP is exited (either by processing the last control line or by processing a
RETURN control line), tracing returns to its former setting.

2. Trace LINK function

Valid reply
YES, NO, or no reply.

If you enter YES in this field, control lines in all of the subsequent linked-to TSPs
are traced until tracing is set off or you enter NO in this field. If you enter NO, only
control lines in the current TSP are traced.

Default
NO

BLM8CU9N TRACE SPECIFICATION PANEL: TSP00001

Enter 'TRACE' control data; cursor placement or input line entry allowed.

1. Set TRACE on.......... YES
2. Trace LINK function... YES

When you finish, type END to save or CANCEL to discard any changes.

===>

TRACE

186 Version 7.1

Restrictions
If you enter YES in this field, you must also enter YES in the Set TRACE on field.
When a TSP ends (either by running the last control line or a RETURN control
line), tracing returns to its former setting.

Usage Notes
See “Using the TSP TRACE Control Line” on page 254 for information on how to use
TRACE to help you analyze a TSP’s flow.

The TRACE command provides the same capability as the TRACE control line, except that
you specify the trace on the command line at the time you run the TSP, not in the TSP.
Therefore, you need not update your TSP to remove the TRACE control line when you are
ready to go to production. For more information on the TRACE command, refer to the Tivoli
Information Management for z/OS User’s Guide.

What the Control Line Does
TRACE creates a report that follows the processing path of a TSP. The report consists of a
description of each control line in the TSP. An example of this report is shown in Figure 6
on page 255.

The output from the TSP TRACE control line is sent to the destination LRECL
parameter.you defined on the BLGTRACE DD statement, to the SYSOUT device or to
another output data set. You must allocate the BLGTRACE DD statement before calling the
TSP. If you direct the output to another data set, the DCB information for the output data set
must include RECFM=VBA and LRECL=137. See the TSO/E Command Reference manual
for additional information on allocation.

Note: TSX output goes to the destination determined by REXX.

Note: Running traces on multiple sessions concurrently can produce unexpected results.
This applies to the TRACE command as well as the TRACE control line.

The completeness of the trace depends upon the output destination specified in the
BLGTRACE DD statement. If the output destination is a data set, trace information
for some sessions might not be recorded. If the output destination is a SYSOUT
device, trace information for all sessions is recorded completely.

TSX Considerations
The variable BLGTRACE will be set to 1 when a TSX is started if the TRACE command
was used to turn tracing on or if the TSX was started via the TSP LINK control line with
Trace LINK Function set to YES. It is the responsibility of your TSX to check the value of
BLGTRACE and specify the desired REXX TRACE parameters you prefer. Example REXX
code:
IF BLGTRACE=1 THEN, /* TSP/TSX Tracing Active? */

TRACE RESULTS /* Start REXX trace with desired options */

Return and Reason Codes
Running a TRACE control line does not change the setting of the TSCA return or reason
codes.

TSCA Field Usage
The TRACE control line does not use any TSCA fields.

TRACE

187Terminal Simulator Guide

|
|
|

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

UNFLATTEN
This control line takes a record that was previously extracted from a database by the
FLATTEN control line, and stores the record in a database that is equivalent to the one from
which it was originally obtained.

CAUTION:
You can damage your existing database if you do not use this control line correctly. For
information on the security measures you can use to protect against its misuse, see the
discussion of data integrity and security using TSPs and TSXs in the Tivoli Information
Management for z/OS Planning and Installation Guide and Reference.

Refer to “The UNFLATTEN TSX Control Line” on page 190 for information about using the
UNFLATTEN control line in a TSX.

This example uses an UNFLATTEN control line in a TSP that returns records to a system
application database.
LABEL RESREC
USEREXIT OPENSEQF (Opens sequential data set and

obtains buffer)
LABEL NEXT
USEREXIT READFLAT (Reads flattened record)
TESTFIELD TSCAFRET = 4 (If true, branch to label ALLDONE)
UNFLATTEN
TESTFIELD TSCAFRET ¬=0 (If true, branch to label ERROR)
BRANCH NEXT
LABEL ALLDONE
USEREXIT CLOSSEQF (Closes sequential data set and

releases buffer)
RETURN
LABEL ERROR
PRINT (Print messages, panel, and TSCA fields)
BRANCH ALLDONE

Creating an UNFLATTEN Control Line
Use the following UNFLATTEN Specification panel to create an UNFLATTEN control line:

UNFLATTEN

188 Version 7.1

General Rules
Because of the USEREXIT considerations listed on 194, use assembler language to write
user exit routines to perform the file operations associated with UNFLATTEN.

Field Descriptions
1. Retain record ID

Valid reply
YES or NO

A reply of YES indicates that the system-assigned ID that exists in the record is to
be used for the unflattened record, or that the record has a user-assigned ID. A reply
of NO indicates that a new record ID is to be assigned by the system when the
record is unflattened. This field is required.

Default
YES

Restrictions
This field is ignored if the record being unflattened has a user-assigned record ID,
which is always retained.

Usage Notes
You are responsible for acquiring storage and releasing storage to use as a buffer for
UNFLATTEN. You are also responsible for sequentially moving records from where they
were moved during FLATTEN processing to the UNFLATTEN buffer. Before processing an
UNFLATTEN control line, you must set the TSCAUFBL field to the length of this buffer.
Additionally, you must set the TSCAUFBP field to the storage address where the flattened
record resides. This is done with a USEREXIT control line calling a user-written exit
routine.

BLM8CU9X UNFLATTEN SPECIFICATION PANEL: ________

Enter 'UNFLATTEN' control data; cursor placement or input line entry allowed.

1. Retain record id.......<R> YES

When you finish, type END to save or CANCEL to discard any changes.

===>

UNFLATTEN

189Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

To maintain the relationships between records, you should retain record IDs when records
are unflattened. It is your responsibility to make sure that all related records are unflattened.
Failure to maintain the relationships between records can damage the database. The database
into which records are unflattened should only be used for that purpose. You must not mix
records from different databases.

The UNFLATTEN control line updates the variable data area and the variable data area
length. If later in your TSP you are going to use the information that is in the variable data
area, save the information before the UNFLATTEN control line is processed and restore it
before it is needed. If you only need to see the information, print it using a PRINT control
line before UNFLATTEN is processed.

Logically Partitioned Database Considerations
If you are using logically partitioned databases (described in the Tivoli Information
Management for z/OS Program Administration Guide and Reference), caution must be
exercised when unflattening records with system-assigned (numeric) record ids (RNIDs). The
UNFLATTEN control line does not modify the last entry number for the partition, so it is
possible to unflatten a record containing an RNID that is higher than the last entry number.
If new records are subsequently created, they may have the same RNID (obtained from the
last entry number value) as one of the records that was unflattened.

If the database into which records are unflattened is logically partitioned and the active
privilege class has Universal Partition Access authority, the records that are unflattend retain
the Owning Partition Name of the partition from which they were flattened. Appropriate
checks are made to avoid duplicate RNIDs in the target logical partition.

If the database into which records are unflattened is logically partitioned and the active
privilege class does not have Universal Partition Access authority, the Primary Partition
Name from the privilege class of the user performing the UNFLATTEN becomes the
Owning Partition Name of the unflattened records. If that user’s privilege class does not
contain a Primary Partition Name, the unflattened records will not be assigned an Owning
Partition Name.

What the Control Line Does
When UNFLATTEN runs successfully, the ID of the record is stored in the variable data
area pointed to by the TSCA, and the variable data length field in the TSCA is set to the
length of the record ID. If you entered NO in the Retain record id field, this may not be
the same as the record ID of the record prior to unflattening. User-assigned record IDs are
always retained.

The UNFLATTEN TSX Control Line
The format of the UNFLATTEN control line is:
CALL BLGTSX 'UNFLATTEN',segcnt,segsize,stemname,options

Parameter Descriptions
1. segcnt

Valid reply
The number of segments (elements) the flattened record is broken into.

Default
None

Required

UNFLATTEN

190 Version 7.1

2. segsize

Valid reply
The size of each segment.

Default
None

Required

3. stemname

Valid reply
The stem of a REXX compound variable which contains the flattened record.

Default
BLG_FLATTEN.

Optional

4. options

Valid reply
Options associated with the record to be unflattened. You can specify multiple
options in any order, separating each parameter with a comma.

ORIGINAL|ASSIGN
ORIGINAL indicates that the unflattened record should have the same
system-assigned RNID as the flattened record; ASSIGN indicates that the
unflattened record should be assigned a new system-assigned RNID.

NOHISTORY
Indicates that the history data for this record is not copied when the flattened
record is written to the buffer. The default (no value) is to copy the history
data with the record.

NOTEXT
Indicates that the freeform text data for this record is not copied when the
flattened record is written to the buffer. The default (no value) is to copy the
freeform text with the record.

REPLACE
Indicates that the unflattened record should replace an existing record in the
database when the unflattened record has the same RNID as an existing
record. This keyword is ignored if ASSIGN is specified for the
system-assigned RNIDs.

no value specified
See Default.

Default
ORIGINAL is the default for the ORIGINAL|ASSIGN option; the default for the
other parameters is that history data is copied with the record and freeform text is
copied with the record.

Optional

UNFLATTEN

191Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Usage Notes and Examples
This example uses an UNFLATTEN control line in a TSX. Also refer to the BLGUNFLT
data set member of the SBLMTSX data set.

member='R0003168'

'ALLOC FI(FLATPDS) DA('BLM.FLATPDS('member')'') SHR'
'EXECIO * DISKR FLATPDS (FINIS STEM FLAT.'

if rc=0 then do
/* Unflatten the record. Assign a new record ID if necessary */
CALL BLGTSX 'UNFLATTEN',FLAT.0,LENGTH(FLAT.1),'FLAT.','ASSIGN'

if tscafret=0 then /* FLATTEN successful? */
msgtext='Unflattened record' tscavda 'created successfully'

else
msgtext='Unflatten failed. Return code=('tscafret','tscafres')'

CALL BLGTSX 'MESSAGE',,msgtext,'SAVE'
end

'FREE FI(FLATPDS)'

Return and Reason Codes
After an UNFLATTEN control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 35.

Table 35. UNFLATTEN Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 Successful completion.

4 4 Successful completion, but the variable data area was not
empty when the record ID was stored.

8 4 The UNFLATTEN buffer pointer in the TSCA was zero.
The record was not restored.

You must run a user exit routine to get a buffer, set the
pointer field (TSCAUFBP) in the TSCA to point to the
address of the unflattened record, and set the length of the
unflattened record (TSCAUFBL).

8 8 The UNFLATTEN buffer was not in the expected format.
The record was not restored.

Verify that your user exit routine moved a flattened record
into the unflatten buffer prior to processing the
UNFLATTEN control line. If the flattened record was
modified, it might not be in the proper format, so it cannot
be unflattened.

8 12 The record ID already exists in the target database. The ID
of the current record is returned in the variable data area.
Variable data that already exists in the variable data area
was lost. The record was not restored.

If the record ID is a system-assigned ID, consider retrying
the unflatten process, but do not retain the record ID. If
the record ID is a user-assigned ID, consider copying the
existing record, then change the ID, and retry the unflatten
process.

UNFLATTEN

192 Version 7.1

Table 35. UNFLATTEN Return and Reason Codes (continued)
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

8 16 There is not enough storage available to complete the
function. The record was not restored. Increase the region
size and try again.

8 20 Tivoli Information Management for z/OS could not file the
record. Make sure that your database is not damaged. If it
is, try again. Check with your system programmer; you
might have an I/O error. If the problem continues, notify
your Tivoli representative.

8 24 An internal logic error occurred in National Language
Support. Contact your Tivoli representative.

8 28 The record contains mixed data that is not valid. Check
the data and make the changes required to ensure that the
record contains only valid mixed data.

8 32 The record ID could not be REPLACEd in the database.
You must have DELETE authority to use the REPLACE
option for this record. If you do have DELETE authority
for this record, then check with your system programmer;
you might have an I/O error.

You can use the TESTFIELD control line to test for these return and reason codes. See
“TESTFIELD” on page 175 for information on how to do this.

TSCA Field Usage
Tivoli Information Management for z/OS sets the following TSCA fields after an
UNFLATTEN control line is run. For more information about these fields, see “Terminal
Simulator Communications Fields” on page 289.
TSCAFRET

Function return code
TSCAFRES

Function reason code
TSCAVDAL

Current user variable data length.

A user exit routine must set the following TSCA fields:
TSCAUFBP

Pointer to unflattened record
TSCAUFBL

Size of the unflatten buffer.

USEREXIT
A USEREXIT control line provides a communication link between Tivoli Information
Management for z/OS and a user exit routine.

Refer to “The USEREXIT TSX Control Line” on page 207 for information about using the
USEREXIT control line in a TSX.

UNFLATTEN

193Terminal Simulator Guide

|||
|
|
|
|

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

It allows you to start a user exit routine that retrieves data stored in the TSCA. The TSCA is
the single parameter passed to the user exit routine. In this way, a routine has access to all
the data collected by the control line.

Before writing a user exit routine, you must be familiar with the contents of the TSCA. The
TSCA is divided into two sections. The first section contains fields that are set when a
control line is run, such as return and reason codes, data found by FINDSDATA, and pointer
fields. The fields in the second section contain the data you entered when creating the
USEREXIT control line, such as s-word information, bit flag data (flag fields), and TSCA
field names. You can use as many fields in this section as necessary for input to your user
exit routine. Your user exit routine can then interpret these fields in any way.

You can change the data in the TSCA fields. However, modifying some fields (the variable
data area pointer field, for example) causes problems. The table in “Terminal Simulator
Communications Fields” on page 289 describes each field in the TSCA and shows which
fields you must not modify. This appendix also contains an assembler language mapping of
the TSCA, which you need for your user exit routine.

Note: User exit routines can be run in storage above 24-bit addressing.

You can write a TSP exit routine using assembler, PL/I or VS COBOL II. Consider the
following when writing a user exit routine.

¶ PL/I and VS COBOL II initialize the processing environment each time the user exit
routine is called and end the environment each time control returns to the TSP. This
overhead may significantly degrade performance if the user exit routine is called many
times, as it would be within a loop.

¶ User-exit routines written in PL/I and VS COBOL II initiate and end any kind of file
operation (that is, the file is opened, processed, and closed each time the user exit is
used).

¶ When you write a user exit routine in assembler language, you can leave a file, and it
remains open when control is returned to the TSP. You can retain the DCB address in
the TSCA and incorporate logic in the user exit routine to determine when to close the
file. For this reason, if you plan to use a user exit routine that repeatedly accesses a file
by multiple invocations of a USEREXIT control line, it is recommended that you use
assembler language.

If you write your user exit routine in PL/I, you need to be aware of the following:

¶ You must compile the subprogram with the MAIN option.

¶ You must call the subprogram using entry point PLICALLA (specify ENTRY
PLICALLA when link editing).

¶ If the subprogram is receiving a control block as a parameter, use the following sample
code to avoid the possibility of PL/I locators or descriptors adding another level of
indirection and an 0C4 ABEND code.
TSP: PROC(PARM) OPTIONS(MAIN);
DCL PARM FIXED, (length of TSCA)

PTR POINTER,
1 TSCA BASED(PTR),
2 TSCAACRN CHAR(4),
.
.
.

USEREXIT

194 Version 7.1

........;
/* End of declarations. Begin executable code */
PTR=ADDR(PARM);
/* TSCA is now usable at this point */...

END TSP;

¶ PL/I processes numeric data in packed decimal format. Declare control block areas that
receive numeric data as fixed binary so that a true binary value is received, not packed
decimal data.

USEREXIT Linkage Conventions
Tivoli Information Management for z/OS uses standard linkage conventions and sets up a
parameter list for calling a user-written exit routine. The contents of the general purpose
registers upon entry to a user exit routine follow:
Register

Content
0 Unpredictable
1 Address of a 1-word input parameter - TSCA
2-12 Unpredictable
13 Address of a 72-byte register save area
14 Return address
15 Module entry-point address

This is the parameter list (PLIST) as it appears to an assembler language routine.

Creating a USEREXIT Control Line
Use the following Control Line Summary panel to create a USEREXIT control line:

Figure 5. USEREXIT Linkage Structure

USEREXIT

195Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

The fields at the top of the panel represent a summary of information contained in the
control line and are display-only fields. This information is added to the panel after you
create the control line. For more information on Data field specification, see “Specifying
Input Data”; for more information on Flag field specification, see “Setting Internal Flag
Fields” on page 201.

Specifying Input Data
The following panel is displayed when you select option 1, Data field specification, from
the Control Line Summary panel:

BLM8CU9L CONTROL LINE SUMMARY PANEL: ________

Label name.............. ________ S-word index............. ____
TSCA field name......... ________ Structured word.......... __________
Apply not logic......... ___ Prefix word index........ ____
Get variable data....... ___ P-word................... ______
Panel name.............. ________ Validation............... __________
Find string anywhere.... ___ Function exit............ ________

Select one of the choices, or type END to save or CANCEL to discard changes.

1. Data field specification.
2. Flag field specification.

===>

BLM8CU9P DATA FIELD SPECIFICATION PANEL: ________

Enter 'USEREXIT' data fields; cursor placement or input line entry allowed.

1. Function exit...........<R> ________ Structured word...... __________
2. Structured word index...... ____ Word acronym......... __________
3. Prefix index............... ____ Prefix............... ______
4. Label name................. ________ Validation........... __________
5. Panel name................. ________ New structured word.. __________
6. Verify name................ ________ New word acronym..... __________
7. TSCA field name............ ________ New prefix........... ______
8. New structured word index.. ____ New validation....... __________
9. New prefix index........... ____
10. User data.................. ________
11. List index................. _____
12. Literal/Test data.......... ________________________________

13. New data................... ________________________________

When you finish, type END to save or CANCEL to discard any changes.

===>

USEREXIT

196 Version 7.1

General Rules for Panel BLM8CU9P
The following definitions describe the fields as they are normally used in a TSP. As
mentioned earlier, you can give other meanings to these fields for this control line.

The following field descriptions name the TSCA field where the data is stored. This is
provided so you can associate the fields on the specification panel to your user exit routines.
The only field that is required is the Function exit field, which is the name of your user exit
routine.

These fields are set only during processing of the called user exit routine. The next control
line in your TSP modifies these fields.

Field Descriptions for Panel BLM8CU9P
1. Function exit

This field indicates the name of the user exit routine that receives control when this control
line is run. This field is required.

Valid reply
The name of a user exit routine that is 1 to 8 alphanumeric SBCS characters long.

TSCA field
TSCAFUEX

Default
None.

Restrictions
The function exit name must refer to an executable load module.

2. Structured word index

Valid reply
The index of an s-word in the dictionary data set or no reply.

TSCA fields
TSCASIX, TSCASWDL, TSCASWD

Default
No reply.

Restrictions
None.

3. Prefix index

Valid reply
The index key of a p-word in the dictionary data set, or no reply.

TSCA fields
TSCAPIX, TSCAPFXL, TSCAPFX

Default
No reply.

Restrictions
None.

4. Label name

USEREXIT

197Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Valid reply
A mixed string of 1 to 8 characters, beginning with an SBCS alphanumeric or
national character or an SO character.

TSCA fields
TSCALABL, TSCATNUM

Default
No reply.

Restrictions
The name is not validated as a true TSP label name.

5. Panel name

Valid reply
An 8-character panel name or no reply.

TSCA field
TSCAPANL

Default
No reply.

Restrictions
The panel name must consist of SBCS characters only.

6. Verify name

Valid reply
A string of 8 characters or no reply.

TSCA field
TSCAVNAM

Default
No reply.

Restrictions
None.

7. TSCA field name

Valid reply
A valid TSCA field name or no reply.

TSCA field
TSCAFLD

Default
No reply.

Restrictions
None.

8. New structured word index

Valid reply
The index of a new s-word in the dictionary data set, or no reply.

USEREXIT

198 Version 7.1

TSCA fields
TSCANSIX, TSCANSDL, TSCANSWD

Default
No reply.

Restrictions
None.

9. New prefix index

Valid reply
The index key of a new p-word that exists in the dictionary data set, or no reply.

TSCA fields
TSCANPIX, TSCANPFL, TSCANPFX

Default
No reply.

Restrictions
None.

10. User data

This field indicates to the SETFIELD control line the static data that is to be used.

Valid reply
A string of 1 to 8 characters or no reply.

TSCA fields
TSCAIFLD, TSCAIFLL

Default
No reply.

Restrictions
None.

11. List index

Valid reply
A 1- to 4-byte hexadecimal value.

12. Literal/Test data

Valid reply
A string of 1 to 32 characters, or no reply.

TSCA fields
TSCALIT, TSCALITL

Default
No reply.

Restrictions
When an SBCS comma is required as the first, or only, character of the Literal data
field, you must precede the SBCS comma with an SBCS space character.

13. New data

USEREXIT

199Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Valid reply
A string of 1 to 32 characters, or no reply.

TSCA fields
TSCANDAT, TSCANDAL

Default
No reply.

Restrictions
None.

Structured word

If you enter an s-word index when you create the control line, this field is filled in
automatically. It displays the actual s-word found in the dictionary.

Word acronym

If you enter an s-word index when you create the control line, this field is filled in
automatically. It is part of the s-word entry in the dictionary. This field could be blank if a
word acronym does not exist for the entry.

Prefix

If you enter a prefix index when you create the control line, this field is filled in
automatically. It displays the actual prefix found in the dictionary.

Validation

If you enter a p-word index when you create the control line, this field is filled in
automatically. It displays the validation pattern associated with the prefix index.

New structured word

If you enter a new s-word index when you create the control line, this field is filled in
automatically.

New word acronym

If you enter a new s-word index when you create the control line, this field is filled in
automatically. It is part of the s-word entry in the dictionary. This field could be blank if a
word acronym does not exist for the entry.

New prefix

If you enter a new prefix index when you create the control line, this field is filled in
automatically. It displays the actual prefix obtained from the dictionary.

New validation

If you enter a new prefix index when you create the control line, this field is filled in
automatically. It displays the validation pattern associated with the p-word index.

USEREXIT

200 Version 7.1

Setting Internal Flag Fields
Flag fields are available as input to your user exit routines. By themselves, these flags do
not cause any actions to occur; they are merely bits that can be set to indicate processing
conditions. For example, setting the Print the messages flag bit to ON does not cause
messages to be printed, but your user exit routine can detect that the flag bit is on, and it
can use that information according to your design.

The following panel is displayed when you select option 2, Flag field specification, from
the Control Line Summary panel.

General Rules for Panel BLM8CU9Q
The following definitions describe the fields as they are normally used in a TSP. You can
give other meanings to these fields for this control line. The only requirement is that the
data you enter must meet the validation criteria.

The following field descriptions name the TSCA field where the data is stored. This is
provided so you can associate the fields on the specification panel to your user exit routines.

These fields are set only during processing of the called user exit routine. The next control
line in your TSP resets these fields.

Field Descriptions for Panel BLM8CU9Q
1. Verify type

Valid reply
PANEL, MESSAGE or no reply.

Your reply to this field results in a bit in the control line being set on or off. If the
reply is MESSAGE, the bit is set on; otherwise, the bit is set off.

TSCA field
TSCA0FLO

BLM8CU9Q FLAG FIELD SPECIFICATION PANEL: ________

Enter 'USEREXIT' flag fields; cursor placement or input line entry allowed.

1. Verify type............. _______ 12. Use id of current record..... ___
2. Word occurrence......... _____ 13. Use id of last record filed.. ___
3. Apply not logic......... ___ 14. Retain record id............. ___
4. Get variable data....... ___ 15. Save generated message....... ___
5. Treat as string data.... ___ 16. Insert data type............. ____
6. Find string anywhere.... ___ 17. Replace data?................ ___
7. Set TRACE on............ ___ 18. Get list index?.............. ___
8. Trace LINK function..... ___
9. Print the messages...... ___
10. Print the screen........ ___
11. Print the TSCA.......... ___

When you finish, type END to save or CANCEL to discard any changes.

===>

USEREXIT

201Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Default
No reply.

Restrictions
None.

2. Word occurrence

Valid reply
FIRST, NEXT, LAST, PREV, or no reply.

The valid replies to this field are FIRST, NEXT, LAST, and PREV. Three bits in the
control line indicate your response and determine the setting of this command.

If you enter FIRST, one bit is on; if you enter LAST, another bit is on; and if you
enter NEXT or make no reply, both bits are off. If you enter PREV, the third bit is
on; otherwise for NEXT, all three bits are off. A control panel, which is the target of
the Word occurrence field assisted-entry panel, adds the necessary structured
description entries to ensure the proper bits are set on or off.

TSCA fields
TSCA0FST, TSCA0LST, TSCA2PRV

Default
No reply.

Restrictions
None.

3. Apply not logic

Valid reply
YES, NO, or no reply.

Your reply to this field results in a bit in the control line being set on or off. If you
enter YES, the bit is set on. If you enter NO or make no reply, the bit is set off.

TSCA field
TSCA1ANL

Default
No reply.

Restrictions
None.

4. Get variable data

Valid reply
YES, NO, or no reply.

Your reply to this field results in a bit in the control line being set on or off. If you
enter YES, the bit is set on. If you enter NO or make no reply, the bit is set off.

TSCA field
TSCA0VAR

Default
No reply.

USEREXIT

202 Version 7.1

Restrictions
None.

5. Treat as string data

Valid reply
YES, NO, or no reply.

Your reply to this field results in a bit in the control line being set on or off. If you
enter YES, the bit is set on. If you enter NO or make no reply, the bit is set off.

TSCA field
TSCA1STG

Default
No reply.

Restrictions
None.

6. Find string anywhere

Valid reply
YES, NO, or no reply.

Your reply to this field results in a bit in the control line being set on or off. If you
enter YES, the bit is set on. If you enter NO or make no reply, the bit is set off.

TSCA field
TSCA0FND

Default
No reply.

Restrictions
None.

7. Set TRACE on

Valid reply
YES, NO, or no reply.

Your reply to this field results in a bit in the control line being set on or off. If you
enter YES, the bit is set on. If you enter NO or make no reply, the bit is set off.

TSCA field
TSCA0TRO

Default
No reply.

Restrictions
None.

8. Trace LINK function

Valid reply
YES, NO, or no reply.

Your reply to this field results in a bit in the control line being set on or off. If you
enter YES, the bit is set on. If you enter NO or make no reply, the bit is set off.

USEREXIT

203Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

TSCA field
TSCA0TRL

Default
No reply.

Restrictions
None.

9. Print the messages

Valid reply
YES, NO, or no reply.

Your reply to this field results in a bit in the control line being set on or off. If you
enter YES, the bit is set on. If you enter NO or make no reply, the bit is set off.

TSCA field
TSCA1MSG

Default
No reply.

Restrictions
None.

10. Print the screen

Valid reply
YES, NO, or no reply.

Your reply to this field results in a bit in the control line being set on or off. If you
enter YES, the bit is set on. If you enter NO or make no reply, the bit is set off.

TSCA field
TSCA1PNL

Default
No reply.

Restrictions
None.

11. Print the TSCA

Valid reply
YES, NO, or no reply.

Your reply to this field results in a bit in the control line being set on or off. If you
enter YES, the bit is set on. If you enter NO or make no reply, the bit is set off.

TSCA field
TSCA1TSC

Default
No reply.

Restrictions
None.

12. Use ID of current record

USEREXIT

204 Version 7.1

Valid reply
YES, NO, or no reply.

Your reply to this field results in a bit in the control line being set on or off. If you
enter YES, the bit is set on. If you enter NO or make no reply, the bit is set off.

TSCA field
TSCA1CRD

Default
No reply.

Restrictions
None.

13. Use ID of last record filed

Valid reply
YES, NO, or no reply.

Your reply to this field results in a bit in the control line being set on or off. If you
enter YES, the bit is set on. If you enter NO or make no reply, the bit is set off.

TSCA field
TSCA1LRD

Default
No reply.

Restrictions
None.

14. Retain record ID

Valid reply
YES, NO, or no reply.

Your reply to this field results in a bit in the control line being set on or off. If you
enter YES, the bit is set on. If you enter NO or make no reply, the bit is set off.

TSCA field
TSCA1RET

Default
No reply.

Restrictions
None.

15. Save generated message

Valid reply
YES, NO, or no reply.

Your reply to this field results in a bit in the control line being set on or off. If you
enter YES, the bit is set on. If you enter NO or make no reply, the bit is set off.

TSCA field
TSCA2SGM

Default
No reply.

USEREXIT

205Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Restrictions
None.

16. Insert data type

Valid reply
HEX, CHAR, or no reply.

Your reply to this field results in a bit in the control line being set on or off. If you
enter HEX, the bit is set on. If you enter CHAR or make no reply, the bit is set off.

TSCA field
TSCA2ITD

Default
No reply.

Restrictions
None.

17. Replace data?

Valid reply
YES, NO, or no reply

Your reply to this field results in a bit in the control line being set on or off. If you
enter YES, the bit is set on. If you enter NO or make no reply, the bit is set off.

Default
NO

18. Get list index?

Valid reply
YES, NO, or no reply

Your reply to this field results in a bit in the control line being set on or off. If you
enter YES, the bit is set on. If you enter NO or make no reply, the bit is set off.

Usage Notes
User exit routines are loaded and deleted every time they are called. If your user exit routine
is called from a TSP loop and performs I/O or maintains counts, you can load and delete it
outside the loop to avoid losing data and to improve performance. You can also use several
routines: one routine to perform the open, save the information, and count data in a save
area; a second routine to do the I/O; and a final user exit routine to perform the close.

You must store your user exit routines in a load library in LINKLIB or your ISPLLIB
concatenation.

For examples, use PMF to look at TSPs BTNTAPRV and BTNTASPT in your base panel
data set.

What the Control Line Does
When the TSP is run, the named user exit routine is loaded and called. Any variables you
specified on the data or flag field specification panels are available for your user exit’s use
in their appropriate TSCA fields. These values are reset when your user exit routine ends.
The TSCA is the single parameter that is passed to the routine. Upon completion, the routine
is deleted.

USEREXIT

206 Version 7.1

The USEREXIT TSX Control Line
The format of the USEREXIT control line is:
CALL BLGTSX 'USEREXIT',name,argument

Note: User exits which require that information be specified on the TSP USEREXIT control
line panels (BLM8CU9P,BLM8CU9Q) cannot be run from a TSX. Refer to the
Environment section of each of the user exits in “User Exits” on page 263 to
determine whether the user exit can be run from a TSX.

Parameter Descriptions
1. name

Valid reply
The 1- to 8-character name of the user exit module.

Default
None

Required

2. argument

Valid reply
A string up to 512 bytes long. The string is loaded into the variable data area (VDA)
where the user exit can access it.

Default
None

Optional

Usage Notes and Examples
This is an example of using a USEREXIT control line in a TSX. User exit BLGUSERS is
called and parameter BLGUSERS_PARM is passed.
CALL BLGTSX 'USEREXIT','BLGUSERS',BLGUSERS_PARM;

Return and Reason Codes
The USEREXIT control line does not modify return codes. Therefore, you can code your
user exit routine to set the TSCAFRET and TSCAFRES field to any value to communicate
with the TSP.

If the user exit routine is not found, Tivoli Information Management for z/OS ABENDs with
an 806 ABEND code.

WORDFIX
This control line enables you to repair your database. It can be used for correcting data as
well as for manipulating the data for installation-specific purposes. Depending on the
information you supply to this control line, you can do any of the following:

¶ Add an s-word, p-word, or both

¶ Delete an s-word or p-word

¶ Change an s-word or p-word

¶ Change a prefix but not the associated data

USEREXIT

207Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

¶ Change the data for a p-word but not the prefix

¶ Change control information for existing entries. This control data consists of:

v Whether to cognize the entry

v Whether and how to perform journaling

v Replace previous reply setting

v The panel name collected with the data item.

Note: WORDFIX functions are only supported in a TSP. However, the TSX ADDSDATA
control line can be used to perform the WORDFIX-like add function and the
DELSDATA can be used to perform the WORDFIX-like delete function. In order to
perform functions similar to the WORDFIX change data functions in a TSX, the TSX
must use the LINK control line to link to a TSP which does the WORDFIX.

Creating a WORDFIX Control Line
You use the following WORDFIX Specification panel to identify the type of change you
want to make:

The fields at the top of the panel represent a summary of information contained in the
control line and are display-only fields. This information is added to the panel after you
create the control line.

¶ For more information on adding data, see “Adding Data” on page 210.

¶ For more information on deleting data, see “Deleting Data” on page 217.

¶ For more information on changing s-word data, see “Changing S-Word Data” on
page 221.

¶ For more information on changing p-word data, see “Changing P-Word Data” on
page 225.

BLM8CU9M WORDFIX CONTROL LINE SUMMARY PANEL:

Locate structured word.. __________ Locate prefix........... ______
Locate word acronym..... __________ Locate validation....... __________
New structured word..... __________ New prefix.............. ______
New word acronym........ __________ New validation.......... __________

Literal data............ ________________________________
New data................ ________________________________
Use control data........ NO
Cognize response........ YES
Cognize only p-word..... NO

Select one of the choices, or type END to save or CANCEL to discard changes.

1. Add entries.
2. Delete entries.
3. Change s-word.
4. Change prefix and/or data.

===>

WORDFIX

208 Version 7.1

General Rules
CAUTION:
You can damage your existing database if you do not use this control line correctly. For
information on the security measures you can use to protect against its misuse, refer to
the discussion of data integrity and security using TSPs in the Tivoli Information
Management for z/OS Planning and Installation Guide and Reference.

Do not specify more than one operation in a single WORDFIX control line. If you do,
your data could be lost or damaged.

When specifying more than one WORDFIX control line, insert a new line every time. If
you copy previously existing WORDFIX control lines, you can inadvertently carry over
information that can cause your new data to be lost.

Do not use the WORDFIX control line to change information (s-word, prefix, or data)
collected using the list processor (program exit BLG01396).

The WORDFIX control line is very powerful; use it with caution.The WORDFIX control
line validates most changes when the TSP is created. If any of your entries are not valid
(such as a nonexistent p-word index), you cannot file the panel. However, some changes do
not produce an error, such as changing the s-word for a problem record to a change record.

¶ The WORDFIX control line works on a single record. You can, however, set up a TSP
to loop through multiple records.

¶ The WORDFIX control line changes or deletes all occurrences of the located data in a
record. You can limit this for cases where the data was collected into the record from
different panels. When creating the WORDFIX control line, specify a value for the
Locate panel name field in addition to an s-word or p-word.

¶ If a located p-word or s-word is marked for deletion, the WORDFIX control line ignores
it.

¶ The WORDFIX control line changes the record in memory, but it does not file the
record. You must be in update mode and file the record after the WORDFIX if you want
your changes saved in the record.

¶ When you specify a p-word to be changed or deleted, the value of the Treat as string
data field must be the same on the specification panel and in the target record.
Otherwise, the p-word is not found when the TSP is run.

¶ When changing an s-word or p-word, unless you specify the Use control data field as
YES, the existing journal, cognize, replace previous reply, and panel name settings are
copied from the original entry.

¶ When using WORDFIX to add date data, the p-word being added to the record must
begin with the characters DAT.

¶ Set the Skip validation field to YES if you want to make the change without having to
consider how the p-word was originally collected or if the user running the TSP has
enough authority to have the TSP perform the WORDFIX. Set Skip validation to NO
only if you want to use the assisted-entry panel processor.

¶ Whenever you want to use variable data, you must specify Get variable data as YES.
If you set the Use variable data for output to YES, variable data is used as output;
otherwise, it is used as the WORDFIX search argument. You cannot use variable data
for input and output on the same WORDFIX control line.

WORDFIX

209Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

¶ If you want to specify a prefix in the variable data area or New data field, set the Data
may contain a prefix field to YES. If you don’t set this field, Tivoli Information
Management for z/OS interprets the contents of the variable data area or New data field
as data only.

¶ Refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide
for rules regarding prefix restrictions. If you modify prefixes using WORDFIX, the new
prefixes must follow these rules.

Adding Data
The following panel is displayed when you select option 1, Add entries, from the
WORDFIX Specification panel:

Field Descriptions for Panel BLM8CU9U
1. New structured word index

This field indicates the s-word that you want to be added.

Valid reply
The index of an s-word in the dictionary data set, or no reply.

Default
No reply.

2. New prefix index

This field indicates the p-word that you want to add. You can specify the prefix index alone,
with variable data obtained from the TSCA, or with the New data field.

Prefix index only

BLM8CU9U WORDFIX ADD SPECIFICATION PANEL:

Enter 'WORDFIX' add data; cursor placement or input line entry allowed.

Structured Word Data New structured word..... __________
1. New structured word index..... ____ New word acronym........ __________

Prefix Word Data
2. New prefix index.............. ____ New prefix.............. ______
3. Treat as string data.......... NO_ New validation.......... __________
4. Get variable data............. NO_
5. Use variable data for output.. NO_
6. Data may contain prefix....... ___
7. New data...................... ________________________________

Control Data
8. Use control data...... NO_ 11. Cognize response........ YES
9. New panel name........ ________ 12. Cognize only p-word..... NO_
10. Replace previous reply YES 13. Journal reply........... YES

14. Journal sequence........ ORDER___
15. Cognize in mixed case?.. NO_

When you finish, type END to save or CANCEL to discard any changes.

===>

WORDFIX

210 Version 7.1

If you enter only the Prefix index field, it must refer to a prefix that has a literal
validation pattern (enclosed by <> delimiters).

Prefix index with variable data

If you specify Get variable data as YES, it must refer to a p-word that has no
validation pattern associated with it. A user exit routine or a MOVEVAR control line
must set up the variable data area and the variable data length prior to processing a
WORDFIX control line that specifies this field as YES.

Prefix index with literal data

If you enter a prefix index that refers to a p-word without an associated validation
pattern, you can specify data in the New data field to be added after the prefix.

Valid reply
The index of a p-word that exists in the dictionary data set, or no reply.

Default
No reply.

3. Treat as string data

Valid reply
YES, NO, or no reply.

A reply of YES indicates that you want the added p-word entry treated as string
data. A string data field is treated as a single-character string during data-entry,
rather than as multiple words, and can therefore contain special characters.

For example, the Description abstract field of a problem record can contain several
words. However, when the Description abstract field is designated as a string data
field (that is, the Collect as string field on the associated assisted-entry panel is set
to YES), the entire field, including words and spaces between, is treated as one
character string.

If you use YES, the p-word entry is added as string data.

If you use NO, the p-word entry is added as nonstring data.

Default
No reply.

Restrictions
You can use this field only when adding a p-word.

4. Get variable data

This field indicates whether you want this control line to use variable data extracted from
the TSCA. The variable data can be additional data added after a prefix if you fill in the
New prefix index field.

Valid reply
YES, NO, or no reply.

Default
NO

Restrictions
If you enter a prefix index without an associated validation pattern, you must either

WORDFIX–Adding Data

211Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

enter YES in this field or enter data in the New data field. If the WORDFIX control
line has YES in this field, a user exit routine must move data into the variable data
area and set the variable data length, or the MOVEVAR control line must move data
into the variable data area before processing the WORDFIX control line.

The TSCA contains fields for a pointer to the variable data area (TSCAVDAP) and
for the length of that data (TSCAVDAL). The pointer field contains the address of a
variable data area that is allocated when the TSP environment is initialized. Your
user exit routine must not modify this pointer.

5. Use variable data for output

This field indicates whether you want data in the variable data area to be used for input or
output to the WORDFIX control line.

Valid reply
YES, NO, or no reply.

A reply of YES indicates that you want data in the variable data area to be used as
output.

A reply of NO indicates that you want data in the variable data area to be used as
input for a search argument.

Default
NO

Restrictions
If you set this field to YES, you cannot use the New data field.

The Get variable data field must be set to YES. If Get variable data is set to NO,
this field is ignored.

6. Data may contain prefix

This field indicates whether either the variable data area or New data field contains a prefix.

Valid reply
YES, NO, or no reply.

If this field is set to YES and the data contains a slash (/) or underscore (_)
character in the first six positions, then the data is assumed to contain a prefix.

If this field is set to NO, the data is assumed to contain only prefix data (no prefix).

Default
NO

Restrictions
If you set this field to YES, you must specify either of the following:

¶ Set Get variable data to YES and set Use variable data for output to YES.

You must also have set up the variable data area and moved data into it before
this control line is run. You can do this earlier in your TSP by calling a user exit
routine that sets the appropriate TSCA fields or by using a MOVEVAR control
line.

¶ Enter data in the New data field.

WORDFIX–Adding Data

212 Version 7.1

7. New data

This field indicates the data that you want to associate with the prefix. The data that is
entered in this field is collected in the case entered by the user.

Valid reply
A string of 1 to 32 characters or no reply.

Default
No reply.

Restrictions
If you enter data in this field, you cannot set the Use variable data for output field
to YES.

When an SBCS comma is required as the first, or only, character of this field, you
must precede the SBCS comma with an SBCS space character.

8. Use control data

The value of this field is ignored on this panel. When you add data, control data is always
used.

9. New panel name

Valid reply
An 8-character panel name, or no reply.

A reply in this field indicates that you want the name of a panel associated with the
added data.

Default
No reply.

Restrictions
The panel name must consist of SBCS characters only.

10. Replace previous reply

Valid reply
YES, NO, or no reply.

A reply of YES indicates that you want duplicate entries for the same field to be
replaced in the record before it is filed.

A reply of NO indicates that you want to preserve duplicate entries for the same
field. This is useful for panels that collect open-ended lists of information.

Default
YES

11. Cognize response

Valid reply
YES, NO, or no reply.

A reply of YES indicates that you want the data to become searchable in the
database.

A reply of NO means that users cannot search for this information.

WORDFIX–Adding Data

213Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Default
YES

12. Cognize only p-word

Valid reply
YES, NO, or no reply.

A reply of YES indicates that you want only p-words to become searchable in the
database.

A reply of NO indicates that you want both p-words and s-words to become
searchable.

Default
NO

Restrictions
The Cognize response field must be set to YES. This field is ignored if the Cognize
response field is set to NO.

13. Journal reply

Valid reply
YES, NO, or no reply.

A reply of YES indicates that you want the value of the added data (p-word or data)
recorded in the database history when the record is filed. If multiple values are
assigned to the same p-word or s-word before the record is filed, only the last value
assigned is recorded.

A reply of NO indicates that you do not want added data recorded in the database
history.

Default
NO

Restrictions
If you set this field to YES, you must also set the Cognize response field to YES.

14. Journal sequence

Valid reply
FIRST, ORDER, or no reply.

A reply of FIRST indicates that you want the entry to appear first in the history for
a given update.

A reply of ORDER indicates that you want the entry to appear in the order it which
it occurs in the record.

Default
ORDER

15. Cognize in mixed case?

Valid reply
YES, NO, or no reply.

This defines how the data is cognized, that is, stored in the SDIDS for searching.

WORDFIX–Adding Data

214 Version 7.1

A reply of YES indicates that the data is cognized exactly as it is stored in the
database; to find this record, a search argument must be case-specific and both the
letter and the case must match. For example, Open will find only Open, but neither
OPEN nor open.

A reply of NO indicates that the data is cognized in all uppercase; to find this
record, a case-insensitive search argument can have letters in any case. For example,
Open will find Open, OPEN, open, oPeN, OpEn, and so forth.

Default
NO

New structured word

If you enter data in the New structured word index field when you create the control line,
this field is filled in automatically.

New word acronym

If you enter data in the New structured word index field when you create the control line,
this field is filled in automatically. It is part of the s-word entry in the dictionary. However,
this information is not used. This field could be blank if a word acronym does not exist for
the entry.

New prefix

If you enter data in the New prefix index field when you create the control line, this field is
filled in automatically. It displays the prefix found in the dictionary.

New validation

If you enter data in the New prefix index field when you create the control line, this field is
filled in automatically. It displays the validation pattern associated with the prefix index.

What This Selection Does
This selection is functionally equivalent to an ADD control line in a control panel. You can
add an s-word, p-word, or both, depending upon the needs of your installation. The
advantages that this selection has over control panels is that you can specify variable data
and that you do not necessarily have to add an entry to your dictionary.

To add an s-word, specify the index of the s-word in the New structured word index field
and change any control data settings that you do not want (only Cognize reply and New
panel name apply to s-words).

To add a p-word, you can specify data in any of several ways. Assuming you want a prefix,
you can specify any of the following:

¶ Prefix index only. If you want to add a p-word that is in the dictionary and you have its
index, specify a value for New prefix index.

¶ Literal data only. If you have no index for, or don’t want to bother looking for, a
dictionary entry for the p-word you want to add, enter the complete p-word into the
New data field and set Data may contain prefix to YES.

WORDFIX–Adding Data

215Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

¶ Variable data only. If your TSP puts p-word information into the variable data area, set
Get variable data to YES, Use variable data for output to YES, and Data may
contain prefix to YES. A user exit routine or a MOVEVAR control line must set up the
variable data area and the variable data length before this WORDFIX control line can be
processed.

¶ Prefix with literal data specified separately. Enter the prefix part of the p-word into the
New prefix index field, and put the p-word value into the New data field.

¶ Prefix with variable data specified separately. Enter the prefix part of the p-word into the
New prefix index field, and get the p-word value from the variable data area. (Your
TSP must have previously put this value into the variable data area.)

You must also set the control data fields the way you want them added to your record.
Regardless of how the Use control data field is set, the control data fields are always used.

Examples of Using WORDFIX to Add Data
Suppose you decide to start using the Integration Facility, but you want to continue using
your existing privilege class records. You can add the s-word that identifies the special
Integration Facility privilege class to your own privilege class records. This example uses
the Problem Controller privilege class. The s-word index is 7D34.

1. Write a one-line TSP that contains a WORDFIX control line with the following fields
filled in:

¶ New structured word index set to 7D34

¶ New prefix index set to 0072 (AUTH/YES). Alternatively, you could specify
AUTH/YES in the New data field.

2. Issue the UPDATE command to update your privilege class record.

3. Issue the RUN command, specifying the name of the TSP you just created.

4. Issue the VIEW INTERNALS command to verify that the data actually got added to the
record.

5. File the record to permanently save the data you just added to the record.

Suppose your users tell you that when a record is closed as a duplicate of another record,
they want the record ID of the duplicate record added into the record that was identified as
being the original problem. You can run a job every night in the Master privilege class that
does a TSP search for all closed records that were last updated on that day and have a
closing code of DUP. Your TSP can also do a block display of all records in the search
results list and perform the following processing:

1. MOVEVAR TSCACRID with Replace data set to YES to move the ID of the current
record into the variable data area

2. SETFIELD TSCAUFLD with Get variable data set to YES

3. FINDSDATA of RNPD/. to find the original problem number

4. ADDDATA of UPDATE R (the command for updating a record)

5. MOVEVAR TSCASDF with Replace data set to YES to move the record ID that
FINDSDATA found

6. ADDDATA with Get variable data set to YES to move the update request into the
command line reply buffer

WORDFIX–Adding Data

216 Version 7.1

7. PROCESS to actually perform the update

8. MOVEVAR TSCAUFLD with Replace data set to YES

9. WORDFIX with:

¶ New structured word index set to 8000 (an s-word you added for duplicate record
IDs)

¶ New prefix index set to 8000 (a p-word you added that has a prefix of DUP/ and
no data)

¶ Get variable data set to YES (the record ID for the record closed as DUP)

¶ Use variable data for output set to YES.

10. ADDDATA with Literal data set to 9 (or whatever selection files the record)

11. PROCESS to actually file the record.

Deleting Data
The following panel is displayed when you select option 2, Delete entries, from the
WORDFIX Specification panel:

Note: Do not use the WORDFIX control line to delete any information collected using the
list processor (program exit BLG01396).

Field Descriptions for Panel BLM8CU9V
1. Locate structured word index

This field indicates the structured description entries that you want deleted. If you enter the
s-word index, all structured description entries in the current record that contain the
associated s-word become candidates for deletion.

Valid reply
The index key of an s-word in the dictionary data set, or no reply.

BLM8CU9V WORDFIX DELETE SPECIFICATION PANEL:

Enter 'WORDFIX' delete data; cursor placement or input line entry allowed.

Structured Word Data
1. Locate structured word index.. ____ Locate structured word.. __________

Locate word acronym..... __________
Prefix Word Data

2. Locate prefix index........... ____ Locate prefix........... ______
Locate validation....... __________

3. Literal data.................. ________________________________
4. Treat as string data.......... NO_
5. Get variable data............. NO_
6. Skip validation............... NO_

When you finish, type END to save or CANCEL to discard any changes.

===>

WORDFIX–Adding Data

217Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Default
No reply.

Restrictions
If you fill in this field, you cannot use the Locate prefix index field, set Get
variable data to YES, or specify a value for the Literal data field.

2. Locate prefix index

This field indicates the index of the p-word you want deleted. You can use the prefix index
alone, with variable data obtained from the TSCA, or with the Literal data field. A list of
conditions for using this field follows.

Prefix index only

If you enter only the Prefix index field, it must refer to a prefix that has a literal
validation pattern (enclosed by <> delimiters).

Prefix index with variable data

If you specify Get variable data as YES, it must refer to a p-word that has no
validation pattern associated with it. A user exit routine or a MOVEVAR control line
must set up the variable data area and the variable data length before processing a
WORDFIX control line that specifies this field as YES. The resulting p-word is the
search word used to locate an entry in the record.

Prefix index with literal data

If you enter a prefix index that refers to a p-word without an associated validation
pattern, you can specify data in the Literal data field to be added after the prefix.
The resulting p-word is the search word used to locate an entry in the record.

If you enter the prefix index, all SDEs in the current record that contain the complete prefix
become candidates for deletion.

Valid reply
The index key of a p-word in the dictionary data set, or no reply.

Default
No reply.

Restrictions
If you use this field, you cannot use the Locate structured word index field.

3. Literal data

Valid reply
A string of 1 to 32 characters, or no reply.

The data in this field is used to locate an entry. You can enter data to be used with
the Locate prefix index field to specify a p-word, or you can enter the entire
p-word search word (for example, PERS/NEWDATA). The data that is entered in
this field is collected in the case entered by the user.

Default
No reply.

Restrictions
If you specify a Locate prefix index field that does not contain an associated

WORDFIX–Deleting Data

218 Version 7.1

validation pattern, you must either enter YES in the Get variable data field, or this
field must contain data. You cannot fill in this field if data is entered in the Locate
structured word index field or if you entered YES in the Get variable data field.

When an SBCS comma is required as the first, or only, character of the Literal data
field, you must precede the SBCS comma with an SBCS space character.

4. Treat as string data

Valid reply
YES, NO, or no reply.

A reply of YES indicates that you want the search word treated as string data, so
only string data fields in the record are found. A string data field is treated as a
single-character string during data-entry, rather than as multiple words, and can
therefore contain special characters.

For example, the Description abstract field of a problem record can contain several
words. However, when this field is designated as a string data field (that is, the
Collect as string field on the associated assisted-entry panel is set to YES), the
entire field, including words and spaces between, is treated as one character string.

If you use YES, the entire string must be specified. If you are using non-Latin
translation tables, no global characters (* .) can be used to search for string data.

If you use NO, only nonstring data is searched for.

Default
No reply.

Restrictions
You can use this field only when the locate argument is a p-word.

5. Get variable data

This field indicates whether you want this control line to use variable data extracted from
the TSCA. The variable data can be data added after a prefix if you have set the Locate
prefix index field, or the actual prefix search word used to locate data items to be changed.

Valid reply
YES, NO, or no reply.

Default
NO

Restrictions
If you enter a prefix index without an associated validation pattern, you must either
enter YES in this field or enter data in the Literal data field. You cannot use this
field if you use the Locate structured word index field. If the WORDFIX control
line has YES in this field, a user exit routine must move data into the variable data
area and set the variable data length, or the MOVEVAR control line must move data
into the variable data area before processing the WORDFIX control line.

The TSCA contains fields for a pointer to the variable data area (TSCAVDAP) and
for the length of that data (TSCAVDAL). The pointer field contains the address of a
variable data area that is allocated when the TSP environment is initialized. Your
user exit routine must not modify this pointer.

WORDFIX–Deleting Data

219Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

6. Skip validation

Set this field to YES to delete data. If this field is set to NO or left blank, Tivoli
Information Management for z/OS processes this control line as a change if the located data
was originally collected by an assisted-entry panel.

Locate structured word

If you enter data in the Locate structured word index field when you create the control
line, this field is filled in automatically. It displays the s-word found in the dictionary.

Locate word acronym

If you enter data in the Locate structured word index field when you create the control
line, this field is filled in automatically. It is part of the s-word entry in the dictionary.
However, this field is not used. This field could be blank if a word acronym does not exist
for the entry.

Locate prefix

If you enter data in the Locate prefix index field when you create the control line, this field
is filled in automatically. It displays the prefix found in the dictionary.

Locate validation

If you enter data in the Locate prefix index field when you create the control line, this field
is filled in automatically. It displays the validation pattern associated with the prefix index.

What This Selection Does
This selection is used to delete data you no longer want in your record. Maybe you decided
that a field is unnecessary or maybe you needed to add something temporarily but you don’t
want it filed with the record. In either case, you can delete any s-word or p-word that you
want.

Note: If you want to delete the s-word and p-word for a single data item, you need two
WORDFIX control lines. Delete the p-word first, then delete the s-word. If you delete
a data item containing an s-word, Tivoli Information Management for z/OS checks
the data item immediately preceding the one being deleted to determine if it can also
be deleted.

To delete an s-word, specify a value for Locate structured word index.

For deleting a p-word, you have a choice. Assuming the item has a prefix, you can specify
any of the following:

¶ Prefix index only. If you know the prefix index, specify Locate prefix index.

¶ Literal data only. If you don’t have, or don’t want to bother looking for, a dictionary
entry for the p-word to be deleted, specify a value for the Literal data field. This field
is especially useful because you can specify the truncation character (.) for the data. So,
for example, if you want to delete the Reporter department field from the record, you
can specify GROS/. in this field.

WORDFIX–Deleting Data

220 Version 7.1

¶ Variable data only. If your TSP builds the search argument in the variable data area, set
Get variable data to YES.

¶ Prefix index and literal data specified separately. Set the Locate prefix index field to
the prefix index, and set the Literal data field to the data part of the p-word.

¶ Prefix index and variable data specified separately. Set the Locate prefix index field to
the prefix index. Your TSP must set up the variable data area and variable data length
and move data into the variable data area. This can be done either with a user exit
routine or with a MOVEVAR control, but it must occur before this WORDFIX control
line is run.

Note: Be sure to create a new WORDFIX control line when you want to delete data. If the
Use control data field remains set to YES on another WORDFIX specification panel,
Tivoli Information Management for z/OS changes the control data in the located entry
instead of deleting it.

Examples of Using WORDFIX to Delete Data
Suppose you find out that your users mostly perform freeform searches. To minimize the
size of the SDIDS, you decide to delete entries for the selections your users make from the
Problem Summary panel (Reporter data, Status data, and so on). You change panel
BLG0BU00 to collect function code index 000A for each of the selections, and now you
want to delete the corresponding information in your database.

Write a TSP to search for all problem records and do a block update of all records on the
search results list. Then add the following control lines:

1. WORDFIX with Locate structured word index set to 0CFC (Reporter data)

2. ADDDATA with Literal data set to 9 (or whatever selection files a record from the
Problem Summary panel)

3. PROCESS to actually file the record.

Suppose you have deleted the Reporter department field from all your panels, and now
you want to delete all entries in this field from your database. Write a TSP to search for all
the problem records containing a reporter department (GROS/.) and to do a block update of
all the records on the search results list. Then add the following control lines:

1. WORDFIX with Literal data set to GROS/. and Skip validation set to YES to delete
the p-word

2. WORDFIX with Locate structured word index set to 0B9B to delete the s-word

3. ADDDATA with Literal data set to 9 (or whatever selection files a record from the
Problem Summary panel)

4. PROCESS to actually file the record.

Changing S-Word Data
The following panel is displayed when you select option 3, Change s-word, from the
WORDFIX Specification panel:

WORDFIX–Deleting Data

221Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

General Rule
Do not use the WORDFIX control line to change s-words collected using the list processor
(program exit BLG01396).

Field Descriptions for Panel BLM8CU9W
1. Locate structured word index

This field indicates the structured description entries (SDEs) that you want changed. If you
enter the s-word index, all SDEs in the current record that contain the associated s-word
become candidates for replacement.

Valid reply
The index of an s-word in the dictionary data set, or no reply.

Default
No reply.

2. New structured word index

This field indicates an s-word that replaces the s-word in the located data items. If you enter
the s-word index, all occurrences of the associated s-word word replace all occurrences of
the old s-word in the record. You can use the Locate panel name field to limit the data
items that are changed.

Valid reply
The index of an s-word in the dictionary data set, or no reply.

Default
No reply.

BLM8CU9W WORDFIX S-WORD SPECIFICATION PANEL:

Enter 'WORDFIX' S-word data; cursor placement or input line entry allowed.

Structured Word Data
1. Locate structured word index.. ____ Locate structured word.. __________

Locate word acronym..... __________
2. New structured word index..... ____ New structured word..... __________

New word acronym........ __________

3. Locate panel name............. ________

Control data
4. Use control data...... NO_ 7. Cognize response........ YES
5. New panel name........ ________ 8. Cognize only p-word..... NO_
6. Replace previous reply YES

When you finish, type END to save or CANCEL to discard any changes.

===>

WORDFIX–Changing S-Words

222 Version 7.1

Restrictions
If you fill in this field, you must also fill in the Locate structured word index
field.

3. Locate panel name

Valid reply
An 8-character panel name or no reply.

Default
No reply.

Restrictions
The panel name must consist of SBCS characters only.

4. Use control data

Valid reply
YES or NO.

A reply of YES indicates that you want the values in the following fields:
New panel name
Replace previous reply
Cognize response
Cognize only p-word

to be associated with the data being changed.

Default
NO

Restrictions
None.

5. New panel name

Valid reply
An 8-character panel name or no reply. A reply in this field indicates that you want
the name of a panel associated with the changed data.

Default
No reply.

Restrictions
The panel name must consist of SBCS characters only.

6. Replace previous reply

Valid reply
YES, NO, or no reply.

A reply of YES indicates that you want duplicate entries for the same field to be
replaced in the record before it is filed.

A reply of NO indicates that you want to preserve duplicate entries for the same
field. This is useful for panels that collect open-ended lists of information.

Default
YES

WORDFIX–Changing S-Words

223Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

7. Cognize response

Valid reply
YES, NO, or no reply.

A reply of YES indicates that you want the data to become searchable in the
database.

A reply of NO means that users cannot search for this information.

Default
YES

8. Cognize only p-word

Valid reply
YES, NO, or no reply.

A reply of YES indicates that you want only p-words to become searchable in the
database.

A reply of NO indicates that you want both p-words and s-words to be searchable.

Default
NO

Restrictions
The Cognize response field must be set to YES. This field is ignored if the Cognize
response field is set to NO.

Locate structured word

If you enter data in the Locate structured word index field when you create the control
line, this field is filled in automatically. It displays the s-word found in the dictionary.

Locate word acronym

If you enter data in the Locate structured word index field when you create the control
line, this field is filled in automatically. It is part of the s-word entry in the dictionary.
However, it is not used for the search.

New structured word

If you enter data in the New structured word index field when you create the control line,
this field is filled in automatically.

New word acronym

If you enter data in the New structured word index field when you create the control line,
this field is filled in automatically. It is part of the s-word entry in the dictionary. However,
it is not used for the search. This field could be blank if a word acronym does not exist for
the entry.

What This Selection Does
This function is used to change one s-word to another, to change control information
associated with an s-word, or both.

WORDFIX–Changing S-Words

224 Version 7.1

To change an s-word, specify the index of the s-word you want changed in the Locate
structured word index field. Specify the index to which you want it changed in the New
structured word index field.

To change control data without changing an s-word, specify the index of the s-word whose
control data you want changed. Then specify YES for Use control data and update the
appropriate control data.

Note: Only New panel name, Replace previous reply, and Cognize reply are valid for
s-word changes. Any other control data you change is ignored.

To change both an s-word and control data, specify the index of the s-word you want
changed in the Locate structured word index field. Specify the index to which you want it
changed in the New structured word index field. Then specify YES for Use control data,
and update the appropriate control data.

Note: Only New panel name, Replace previous reply, and Cognize reply are valid for
s-word changes. Any other control data you change is ignored.

Examples of Using WORDFIX to Change S-Words or Control Data
Suppose you decide to uncognize some of your selections to improve database performance.
You decide to start with resolver data for problem records.

Write a TSP to find all problem records. Add control lines to do a block update of all the
records on the search results list. Then add the following control lines:

1. WORDFIX with the following:

¶ Locate structured word index set to 0C5E (the s-word for resolver data)

¶ Use control data set to YES (so you can change the cognize setting)

¶ Cognize reply set to NO

2. ADDDATA with Literal data set to 9 (or whatever selection files the record)

3. PROCESS to actually file the record.

Changing P-Word Data
The following panel is displayed when you select option 4, Change prefix and/or data,
from the WORDFIX Specification panel:

WORDFIX–Changing S-Words

225Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

General Rule
Do not use the WORDFIX control line to change p-words collected using the list processor
(program exit BLG01396).

When changing data for a date or time field, remember that date and time values are stored
in the record in both internal format and external format. In addition, if the field is a
Universal Time field, the date or time is also stored in UT, though with a slightly different
prefix. To properly change the value using WORDFIX, you must change ALL of the
formats. It is strongly recommended that you use validation when changing the data because
the validation process will update all forms of the date or time. If you choose not to
validate, you will usually need multiple WORDFIX control lines, one control line for each
form of the value.

When changing only the prefix for a date or time value which is defined as a Universal
Time field, you must change the special Universal Time prefix as well. This will require a
second WORDFIX control line. If you do not do this, the date or time value might be
processed incorrectly in later operations.

Field Descriptions for Panel BLM8CU9Y
1. Locate prefix index

This field indicates the index of the p-word you want changed. You can use the prefix index
alone, with variable data obtained from the TSCA, or with the Literal data field.

Prefix index only

If you enter only the Prefix index field, it must refer to a prefix that has a literal
validation pattern (enclosed by <> delimiters).

Prefix index with variable data

BLM8CU9Y WORDFIX P-WORD SPECIFICATION PANEL:

Enter 'WORDFIX' P-word data; cursor placement or input line entry allowed.

Locate data
1. Locate prefix index........... ____ Locate prefix........... ______
2. Get variable data............. NO_ Locate validation....... __________
3. Literal data.................. ________________________________
4. Locate panel name............. ________
5. Treat as string data.......... NO_

New data
6. New prefix index.............. ____ New prefix.............. ______
7. Use variable data for output.. NO_ New validation.......... __________
8. Data may contain prefix....... ___
9. Skip validation............... NO_
10. New data...................... ________________________________

Control Data
11. Use control data...... NO_ 14. Cognize response........ YES
12. New panel name........ ________ 15. Cognize only p-word..... NO_
13. Replace previous reply YES 16. Journal reply........... YES

17. Journal sequence........ ORDER___
18. Cognize in mixed case?.. NO_

When you finish, type END to save or CANCEL to discard any changes.

===>

WORDFIX–Changing P-Words

226 Version 7.1

|
|
|
|
|
|
|
|

|
|
|
|

If you specify Get variable data as YES, it must refer to a p-word that has no
validation pattern associated with it. A user exit routine or a MOVEVAR control line
must set up the variable data area and the variable data length prior to processing a
WORDFIX control line that specifies this field as YES. The resulting p-word is the
search word used to locate an entry in the record.

Prefix index with literal data

If you enter a prefix index that refers to a p-word without an associated validation
pattern, you can specify data in the Literal data field to be added after the prefix.
The resulting p-word is the search word used to locate an entry in the record.

If you enter the prefix index, all SDEs in the current record that contain the complete prefix
become candidates for replacement or deletion. You can use the Panel name field to limit
the data items that are to be replaced or deleted.

Valid reply
The index key of a p-word in the dictionary data set, or no reply.

Default
No reply.

2. Get variable data

This field indicates whether you want this control line to use variable data extracted from
the TSCA. The variable data can be additional data added after a prefix if you fill in the
Locate prefix index field, or the actual prefix search word used to locate data items to be
changed.

Valid reply
YES, NO, or no reply.

Default
NO

Restrictions
If you enter a prefix index without an associated validation pattern, you must either
enter YES in this field or enter data in the Literal data field. If the WORDFIX
control line has YES in this field, a user exit routine must move data into the
variable data area and set the variable data length or the MOVEVAR control line
must move data into the variable data area before processing the WORDFIX control
line.

The TSCA contains fields for a pointer to the variable data area (TSCAVDAP) and
for the length of that data (TSCAVDAL). The pointer field contains the address of a
variable data area that is allocated when the TSP environment is initialized. Your
user exit routine must not modify this pointer.

3. Literal data

Valid reply
A string of 1 to 32 characters, or no reply.

The data entered in this field is used to locate an entry to be replaced. You can enter
data that you want added after a prefix, specified by the Locate prefix index field,
or enter the entire p-word search word. The data that is entered in this field is
collected in the case entered by the user.

WORDFIX–Changing P-Words

227Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Default
No reply.

Restrictions
If you specify a Locate prefix index field that does not contain an associated
validation pattern, you must either enter YES in the Get variable data field or enter
data in this field. You cannot fill in this field if you set the Get variable data field
to YES and Use variable data for output to NO.

If you want to enter an SBCS comma as the first, or only, character in the Literal
data field, you must precede the SBCS comma with an SBCS space character.

4. Locate panel name

Valid reply
An 8-character panel name or no reply.

Default
No reply.

Restrictions
The panel name must consist of SBCS characters only.

5. Treat as string data

Valid reply
YES, NO, or no reply.

A reply of YES indicates that you want the search word treated as string data, so
only string data fields in the record are found. A string data field is treated as a
single character string during data-entry, rather than as multiple words, and can
therefore contain special characters.

For example, the Description abstract field of a problem record can contain several
words. However, when this field is designated as a string data field (that is, the
Collect as string field on the associated assisted-entry panel is set to YES), the
entire field, including words and spaces between, is treated as one character string.

If you use YES, the entire string must be specified. If you are using non-Latin
translation tables, no global characters (* .) can be used to search for string data.

If you use NO, only nonstring data is searched for.

Default
No reply.

Restrictions
None.

6. New prefix index

If the data that you are trying to locate was collected other than by an assisted-entry panel
or if Skip validation is set to YES, this field indicates the index of a p-word that is to
replace the prefix entered in the Locate prefix index field. Enter a value in this field if you
want to change the current prefix to a new prefix.

If the new prefix index has a validation pattern that is completely enclosed by delimiter
symbols (<>), the data between the symbols replaces the data associated with the old prefix.

WORDFIX–Changing P-Words

228 Version 7.1

If the new prefix index does not have a validation pattern or its validation pattern has a
literal validation pattern, the data associated with the new prefix is the same as the data
associated with the old prefix.

Valid reply
The index of a p-word that exists in the dictionary data set, or no reply.

Default
No reply.

Restrictions
If the located data was collected by an assisted-entry panel or if Skip validation is
set to NO, this field is ignored.

7. Use variable data for output

This field indicates whether you want data in the variable data area to be used for input or
output to the WORDFIX control line.

Valid reply
YES, NO, or no reply.

A reply of YES indicates that you want data in the variable data area to be used as
output.

A reply of NO indicates that you want data in the variable data area to be used as
input.

Default
NO

Restrictions
If this field is set to YES, you cannot use the New data field. The Get variable
data field must be set to YES. If Get variable data is set to NO, this field is
ignored.

8. Data may contain prefix

This field indicates whether either the variable data area or New data field contains a prefix.

Valid reply
YES, NO, or no reply.

If this field is set to YES and the data contains a slash (/) or underscore (_)
character in the first six positions, then the data is assumed to contain a prefix.

If this field is set to NO, the data is assumed to contain only prefix data (no prefix).

Default
NO

Restrictions
If you set this field to YES, you must specify either of the following:

¶ Set Get variable data to YES and set Use variable data for output to YES.

You must also have set up the variable data area and moved data into it before
this control line is run. You can do this earlier in your TSP by calling a user exit
routine that sets the appropriate TSCA fields or by using a MOVEVAR control
line.

WORDFIX–Changing P-Words

229Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

¶ Enter data in the New data field.

9. Skip validation

This field indicates whether you want data to be validated through the assisted-entry panel
before it is changed.

Valid reply
YES, NO, or no reply.

A reply of YES indicates that you do not want data validated before it is changed.

A reply of NO indicates that you want data validated. However, the control data on
the assisted-entry panel is used for the change, not any control information on the
WORDFIX control line.

Default
NO

Restrictions
If the data to be changed was collected by a panel type other than assisted-entry, this
field is ignored.

10. New data

This field indicates the data that you want to replace the existing data presently located in
the SDEs. Enter data exactly as it is to be processed by the panel in the located data items.
This data is a response to an assisted-entry panel if Skip validation is set to NO. If you do
not fill in the New data field, the current response in the data item is used to reply to the
panel and to subsequently replace the located entry. Use this field to change multiple records
when they contain the same field, such as a person’s phone number or department.

Valid reply
A string of 1 to 32 characters or no reply.

Default
No reply.

Restrictions
If you want to enter an SBCS comma as the first, or only, character in this field, you
must precede the SBCS comma with an SBCS space character.

If you use this field, you cannot set Get variable data to YES or Use variable data
for output to YES.

11. Use control data

Valid reply
YES or NO.

A reply of YES indicates that you want the values in the following fields:
Treat as string data
New panel name
Replace previous reply
Cognize response
Cognize only p-word
Journal reply
Journal sequence

WORDFIX–Changing P-Words

230 Version 7.1

to be associated with the data being added.

Default
NO

12. New panel name

Valid reply
An 8-character panel name or no reply. A reply in this field indicates that you want
the name of a panel associated with the added data.

Default
BLGTSADD

Restrictions
The panel name must consist of SBCS characters only.

13. Replace previous reply

Valid reply
YES, NO, or no reply.

A reply of YES indicates that you want duplicate entries for the same field to be
replaced in the record before it is filed.

A reply of NO indicates that you want to preserve duplicate entries for the same
field. This is useful for panels that collect open-ended lists of information.

Default
YES

14. Cognize response

Valid reply
YES, NO, or no reply.

A reply of YES indicates that you want the data to become searchable in the
database.

¶ If the Cognize only p-word field is set to NO, both the s-word and p-word are
cognized.

¶ If the Cognize only p-word field is set to YES, the s-word is uncognized, but
the p-word stays cognized.

A reply of NO means that you do not want users to be able to search for this
information. Neither the s-word nor the p-word is cognized.

Default
YES

15. Cognize only p-word

Valid reply
YES, NO, or no reply.

A reply of YES indicates that you want only p-words to become searchable in the
database.

A reply of NO indicates that you want both p-words and s-words to become
searchable.

WORDFIX–Changing P-Words

231Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Default
NO

Restrictions
The Cognize response field must be set to YES. This field is ignored if the Cognize
response field is set to NO.

16. Journal reply

Valid reply
YES, NO, or no reply.

A reply of YES indicates that you want the value of the added data (p-word or
p-word) recorded in the database history when the record is filed. If multiple values
are assigned to the same p-word or s-word before the record is filed, only the last
value assigned is recorded.

A reply of NO indicates that you do not want added data recorded in the database
history.

Default
NO

Restrictions
If you set this field to YES, you must also set the Cognize response field to YES.

17. Journal sequence

Valid reply
FIRST, ORDER, or no reply.

A reply of FIRST indicates that you want the entry to appear first in the history for
a given update.

A reply of ORDER indicates that you want the entry to appear in the order it which
it occurs in the record.

Default
ORDER

18. Cognize in mixed case?

Valid reply
YES, NO, or no reply.

This defines how the data is cognized, that is, stored in the SDIDS for searching.

A reply of YES indicates that the data is cognized exactly as it is stored in the
database; to find this record, a search argument must be case-specific and both the
letter and the case must match. For example, Open will find only Open, but neither
OPEN nor open.

A reply of NO indicates that the data is cognized in all uppercase; to find this
record, a case-insensitive search argument can have letters in any case. For example,
Open will find Open, OPEN, open, oPeN, OpEn, and so forth.

Default
NO

Locate prefix

WORDFIX–Changing P-Words

232 Version 7.1

If you enter data in the Locate prefix index field when you create the control line, this field
is filled in automatically. It displays the prefix found in the dictionary.

Locate validation

If you enter data in the Locate prefix index field when you create the control line, this field
is filled in automatically. It displays the validation pattern associated with the prefix index.

New prefix

If you enter data in the New prefix index field when you create the control line, this field is
filled in automatically. It displays the prefix found in the dictionary.

New validation

If you enter data in the New prefix index field when you create the control line, this field is
filled in automatically. It displays the validation pattern associated with the prefix index.

What This Selection Does
This function is used for several purposes. You can:

¶ Change a prefix, but not the associated data

¶ Change the data, but not the prefix

¶ Change both prefix and data

¶ Change control data for a p-word.

Note: If you set Skip validation to NO, Tivoli Information Management for z/OS drives
your change through the assisted-entry panel processor. Because of this, you cannot
change the prefix or the control data with WORDFIX; you must do it by changing
the panel itself in PMF.

To change a p-word, you can specify what you want changed in any of several ways:

¶ Prefix index only. If you know the prefix index in the dictionary, specify Locate prefix
index.

¶ Literal data only. If you don’t have, or don’t want to bother looking for, a dictionary
entry for the p-word to be changed, specify both prefix and data in the Literal data
field.

¶ Variable data only. If your TSP builds the search argument in the variable data area, set
Get variable data to YES.

¶ Prefix index and literal data specified separately. Set the Locate prefix index field to
the prefix index and the Literal data field to the data part of the p-word.

¶ Prefix index and variable data specified separately. Set the Locate prefix index field to
the prefix index. Your TSP must set up the variable data area and variable data length
and move data into the variable data area. This can be done either by user exit routine
or with a MOVEVAR control, but it must occur before this WORDFIX control line is
run.

You must also specify new values. How to do this depends upon what you want changed.

WORDFIX–Changing P-Words

233Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Changing Prefixes Only

¶ With prefix index only. If you know the prefix index in the dictionary, specify a value for
the New prefix index field.

¶ With literal data only. If you don’t have, or don’t want to bother looking for, a dictionary
entry for the new p-word, specify a value for the New data field and set the Data may
contain prefix field to YES.

¶ With variable data only. If your TSP loads the new prefix into the variable data area, set Get
variable data to YES, set Use variable data for output to YES, and set Data may
contain prefix to YES.

Changing Data Only
In this case, the New prefix index field must point to a p-word containing validation data
but no prefix. As an alternative, you could set this field to 0000. Then, specify the new data
in one of the following ways:

¶ With literal data. Enter the changed data into the New data field. Set Use variable data
for output to NO.

¶ With variable data. Set Get variable data to YES and Use variable data for output to
YES.

Changing Both Prefix and Data

¶ With prefix index only. Set New prefix index to point to a p-word with both prefix and
validation data. Make sure Use variable data for output is set to NO. Make sure New data
is blank.

¶ With literal data only. Set New prefix index to 0000. Make sure Use variable data for
output is set to NO. Enter both prefix and validation data into the New data field and set
Data may contain prefix to YES.

¶ With variable data only. Set Get variable data to YES. Set New prefix index to 0000. Set
Use variable data for output to YES. Set Data may contain prefix to YES. Make sure
that New data is blank.

Your TSP must set up the variable data area and variable data length and have both prefix
and validation data values loaded into the variable data area. This can be done either with a
user exit routine or a MOVEVAR control line, but it must be done before this WORDFIX
control line is run.

¶ With prefix index and literal data. Set New prefix index to point to a p-word that contains
only a prefix. Enter the validation data into the New data field. Make sure that Use
variable data for output is set to NO.

¶ With prefix index and variable data. Set New prefix index to point to a p-word that contains
only a prefix. Set Get variable data to YES and Use variable data for output to YES.
Make sure New data is blank.

Your TSP must set up the variable data area and variable data length and have the validation
data value loaded into the variable data area. This can be done either with a user exit routine
or a MOVEVAR control line, but it must be done before this WORDFIX control line is run.

WORDFIX–Changing P-Words

234 Version 7.1

Changing Control Data
To change control data without changing a p-word, specify the p-word for which you want
the control information changed. Then, set Use control data to YES and change the
appropriate control data. Set Skip validation to YES so that the control information you
specified is used.

To change a p-word and its control data at the same time, specify both p-words as described
previously. Set Use control data to YES and update the appropriate control information. Set
Skip validation to YES so that the control information you specified is used.

Examples of Using WORDFIX to Change P-Words or Control Data

Changing Prefixes Only
Suppose you decide to create a new status for change records called CSTAC/. You have
existing change records that use the STAC/ prefix.

Update your change panel flow to go to a new assisted-entry panel when the user enters a
status on a data-entry panel. To do this, add new dictionary entries for your new prefix as
well as add an entry for CSTAC/ with no validation data. Suppose the p-word index for this
is 8001.

Write a TSP to find all change records. Add control lines to do a block update of all the
records on the search results list. Then add the following:

1. WORDFIX with:

¶ Literal data set to STAC/. (to find any status)

¶ New prefix index set to 8001

¶ Skip validation set to YES

2. ADDDATA with Literal data set to 9 (or whatever selection files the record)

3. PROCESS to actually file the record.

Because you want the prefix changed but the data left alone, the WORDFIX control line is
built with a new prefix but no new data. This signals Tivoli Information Management for
z/OS to use the data from the located p-word.

Changing Data Only
Suppose you decide to create a new status for problem records that have been fixed but not
yet closed. Update the dictionary and problem status assisted-entry panel to contain
STAC/FIXED.

Write a TSP to find all problem records with a status of OPEN that contain resolution data.
Add control lines to do a block update of all the records on the search results list. Then add
the following:

1. WORDFIX with:

¶ Literal data set to STAC/. (to find any status)

¶ Skip validation set to YES

¶ New data set to FIXED

2. ADDDATA with Literal data set to 9 (or whatever selection files the record)

WORDFIX–Changing P-Words

235Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

3. PROCESS to actually file the record.

Because you want the data changed but the prefix left alone, the WORDFIX control line is
built with new validation data but no new prefix. This signals Tivoli Information
Management for z/OS to use the prefix from the located p-word.

Usage Notes
When using the WORDFIX control line to repair a record, you must use the UPDATE
command to make the record current so Tivoli Information Management for z/OS can file
the record. However, when you are testing a TSP that uses a WORDFIX control line, you
can use the DISPLAY command to change the record.

After the WORDFIX control line is run, you can use the VIEW INTERNAL command to
see the results. If WORDFIX worked correctly, you find the items you fixed and don’t find
the items you deleted. If not, you might have set up the wrong search or entered the data
incorrectly. When you are satisfied that WORDFIX is working correctly, change the TSP to
update rather than display the record. Be sure to test the TSP again to make sure the record
is being filed properly.

When fixing assisted-entry panel entries, always use a prefix to locate the data, not an
s-word. Even if you are changing the only s-word on the panel, your margin of error is
smaller when you use a path that is processed in the same way the data was originally
collected.

Unlike FINDSDATA, WORDFIX fixes all occurrences of the search argument that it finds in
a record. Therefore, it is not necessary to step through the record.

For examples, use PMF to look at TSPs BTNTCEF2 and BTNTCST1 in your base panel
data set.

The TSX control lines ADDSDATA (described in “ADDSDATA” on page 71) and
DELSDATA (described in “DELSDATA” on page 82) can be used to provide
WORDFIX-like functions in a TSX.

Return and Reason Codes
After a WORDFIX control line is run, the TSCA return code (TSCAFRET) and reason code
(TSCAFRES) fields are set to indicate what happened. These codes are listed in Table 36.

Table 36. WORDFIX Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 Successful completion.

4 4 The current record did not have a match for the specified
argument. No data was changed.

Use the VIEW INTERNALS command to see if what you
are trying to locate is in the record. If you are using a
p-word search, make sure the argument is complete
(prefix/data).

WORDFIX–Changing P-Words

236 Version 7.1

Table 36. WORDFIX Return and Reason Codes (continued)
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

4 16 An attempt to change some p-word-related data (the data,
the prefix, or both) was made, but the assisted-entry panel
from which the data was to be collected could not be
found or loaded. The WORDFIX was performed, but the
validation for that panel was not carried out.

Verify that the session member includes the name of the
read panel data set where the panel resides. If this panel is
supposed to exist but does not, report this to the person at
your location who is in charge of panels.

8 4 The requested function was not performed. Your TSP tried
to create a data item that was longer than the maximum
length accepted by Tivoli Information Management for
z/OS. The maximum length for collected data from a
response (the s-word, prefixes, and all data associated with
those prefixes and control information in the entry) is 256
characters.

8 8 There was not enough storage to process the WORDFIX
control line. Contact your system administrator to increase
your region size.

8 12 Your response did not meet the validation criteria for the
assisted-entry panel. Use PMF to view the assisted-entry
panel or check the dictionary for the validation pattern.
Refer to the Tivoli Information Management for z/OS
Panel Modification Facility Guide for more information.

8 16 The WORDFIX control line specified that variable data
was to be used (Get variable data was set to YES), but
the length of the data was zero. You must set up the
variable data area and its length before running a TSP
with a WORDFIX control line that has YES in the Get
variable data field. You can call a user exit routine that
sets the variable data area length and moves data into it,
or use the MOVEVAR control line.

Check your TSP to make sure a USEREXIT or
MOVEVAR control line appears in the processing path
before the WORDFIX control line that caused the
unexpected return code. If a USEREXIT control line is in
the TSP, check the user exit routine’s code to make sure it
sets the length field properly.

8 20 An internal logic error occurred in a DBCS function.
Contact your Tivoli representative.

8 24 The user data is not a valid mixed string. Check the data
and make the changes required to ensure you specify a
valid mixed data string.

8 28 The requested data would not be valid Tivoli Information
Management for z/OS data. Either no validation data
exists in the p-word, or you set Replace previous reply to
YES but did not specify a prefix or s-word.

WORDFIX–Changing P-Words

237Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Table 36. WORDFIX Return and Reason Codes (continued)
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

8 32 A prefix was specified as new data, but the located p-word
had no prefix.

You can use the TESTFIELD control line to test for these return and reason codes. See
“TESTFIELD” on page 175 for how to do this.

TSCA Field Usage
Tivoli Information Management for z/OS sets the following TSCA fields after a WORDFIX
control line is run. For more information about these fields, see “Terminal Simulator
Communications Fields” on page 289.
TSCAFRET

Function return code
TSCAFRES

Function reason code.

If you enter YES in the Get variable data field and you set the variable data with a user
exit routine, the user exit routine must set the length of the variable data in the following
TSCA field:
TSCAVDAL

Current user variable data length

If you set the variable data with the MOVEVAR control line, the MOVEVAR control line
sets field TSCAVDAL for you.

WRITESOCKET
This control line sends data over a previously established TCP/IP connection. This is a
non-blocking operation, so that control is returned to the caller immediately after the data
has been given to TCP/IP. If a callable service does not complete successfully, the name of
the service called is returned in the NETFUNC REXX variable, the return code is returned
in the NETRETC REXX variable, and the reason code is returned in the NETREAC REXX
variable. The user should refer to the OS/390 UNIX System Services Messages and Codes
manual and the OS/390 UNIX System Services Assembler Callable Services manual for a
description of the returned values.

This control line can be called only from a TSX. An ISPF or TSO environment is not
required in order to use WRITESOCKET.

The WRITESOCKET Control Line
The format of the WRITEOCKET control line is:
CALL BLGTSX 'WRITESOCKET',socketid,datalen,data

Parameter Descriptions
1. socketid

Valid reply
The socket identification for this TCP/IP connection. This value was initially
returned from the OPENSOCKET control line in the NETSOCKET REXX variable.

WORDFIX–Changing P-Words

238 Version 7.1

Default
None

Required

2. datalen

Valid reply
The length of the data to be sent. The value specified must be greater than 0.

Default
None

Required

3. data

Valid reply
The string data to be sent.

Default
None

Required

Usage Notes and Examples
This is an example of using a WRITESOCKET control line to send data to a waiting server.

Note: Six REXX variables have been defined to return information from the
WRITESOCKET control line. These variables (NETSOCKET, NETDATA,
NETBYTECOUNT, NETFUNC, NETRETC, and NETREAC) are reset during the
processing of WRITESOCKET. It is the responsibility of the TSX to save any data
needed for processing.

CALL BLGTSX 'WRITESOCKET',SaveSocket,'21','The string to be sent'

Return and Reason Codes
After the WRITESOCKET control line is run, Tivoli Information Management for z/OS sets
the TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 37.

Table 37. WRITESOCKET Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Successful completion.

4 4 Not all of the data has been sent. The NETBYTECOUNT
REXX variable contains the count of the number of bytes
sent. The remaining data bytes must be resent.

WRITESOCKET

239Terminal Simulator Guide

4.
C

reatin
g

Term
in

al
S

im
u

lato
r

C
o

n
tro

l
L

in
es

Table 37. WRITESOCKET Return and Reason Codes (continued)
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

8 4 The TCP/IP service did not complete successfully. Refer to
the OS/390 UNIX System Services Messages and Codes
manual and the OS/390 UNIX System Services Assembler
Callable Services manual for a description of the
following return codes. These REXX variables contain the
diagnostic information:

NETFUNC
The name of the Assembler Callable Service
being invoked.

NETRETC
The value of the Return_code parameter returned
by the service.

NETREAC
The value of the Reason_code parameter returned
by the service.

WRITESOCKET

240 Version 7.1

Remote Data Resource Terminal Simulator
Control Lines

A remote data resource is an area in the BLX-SP identified by a unique name. Each
resource contains a number of character strings, limited only by the amount of storage
available to the BLX-SP address space. This chapter describes some of the terminal
simulator control lines that provide functions specific to remote data resources. The Tivoli
Information Management for z/OS Program Administration Guide and Reference contains
some additional information about remote data resources.

Note: The remote data resource control lines listed in this chapter are supported only by
TSXs; they are not supported by TSPs.

CLOSERRES
The CLOSERRES control line prevents any more items from being added to a resource.

The state of the specified resource is modified such that new items cannot be added. If the
FLUSH option is specified, all existing items are discarded. If the DRAIN option is
specified, existing items are not discarded; any existing items can be removed by a TSX via
GETRDATA.

This control line can be called only from a TSX.

The CLOSERRES Control Line
The format of the CLOSERRES control line is:
CALL BLGTSX 'CLOSERRES','resname',options

Parameter Description
1. resname

Valid reply
The name of a remote data resource. It can be from one to eight characters in length,
and must contain only alphabetic or numeric characters. It identifies which remote
data resource is to be acted upon. The value specified must be enclosed in single
quotation marks.

Default
None

Required

2. options

5

241Terminal Simulator Guide

5.
R

em
o

te
D

ata
R

eso
u

rce
C

o
n

tro
l

L
in

es

Valid reply
Supported options are:

FLUSH|DRAIN

¶ FLUSH indicates that all existing items are to be discarded.

¶ DRAIN indicates that existing items are not discarded and can be
removed by using the GETRDATA TSX.

If neither of these options is specified, the default is FLUSH.

Default
FLUSH

Optional

Usage Notes and Examples
This is an example of using a CLOSERRES control line to close a resource and prevent any
other items from being added.
CALL BLGTSX 'CLOSERRES','resource1','FLUSH'

Return and Reason Codes
After the CLOSERRES control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 38.

Table 38. CLOSERRES Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Function completed normally.

4 8 The resource is either already in the process of
closing or is already closed.

4 12 The resource does not exist.

GETRDATA
The GETRDATA control line is used to remove an item from a resource. If the specified
resource is not defined, it is created with the default limit values. An ENQ for the specified
resource name is obtained. An item is retrieved from the resource. If none are available and
the WAIT option is specified, execution is suspended until either one becomes available,
control of the resource is released, or the resource is closed. Retrieved data is placed in the
TSCAVDA variable. The ENQ is released. If the attempt to obtain the ENQ fails, no data is
retrieved. If the WAIT option is specified, ownership of the resource is obtained, and held
until either the TSX terminates or the resource is released or closed.

The QNAME for the ENQ is BLGRDRS and the RNAME consists of a string containing
the subsystem name for the target BLX-SP and the resource name.

This control line can be called only from a TSX.

The GETRDATA Control Line
The format of the GETRDATA control line is:
CALL BLGTSX 'GETRDATA','resname',options

CLOSERRES

242 Version 7.1

Parameter Description
1. resname

Valid reply
The name of a remote data resource. It can be from one to eight characters in length,
and must contain only alphabetic or numeric characters. It identifies which remote
data resource is to be acted upon. The value specified must be enclosed in single
quotation marks.

Default
None

Required

2. options

Valid reply
Supported options are:

seconds|WAIT

¶ seconds indicates the number of seconds to wait for data.

¶ WAIT indicates that the TSX is to be suspended until an item can be
returned. A specification of WAIT requires ownership of the resource. If
the resource is unowned, ownership is assigned to the current TSX. If
another TSX issues a GETTRES with WAIT, it will fail.

Default
None

Optional
However, if no value, neither seconds nor WAIT, is specified for the options, data is
returned if available, but execution is not suspended.

Usage Notes and Examples
This is an example of using a GETRDATA control line to remove data from a resource.
CALL BLGTSX 'GETRDATA','resource1','WAIT'

Return and Reason Codes
After the GETRDATA control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 39.

Table 39. GETRDATA Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Function completed normally; TSCAVDA
variable contains item.

0 4 The number of seconds specified has elapsed but
there is no data to return.

4 4 The resource is empty.

4 8 The resource is empty and items cannot be
added.

4 12 Could not obtain ENQ.

4 16 The resource is already owned by another TSX.

GETRDATA

243Terminal Simulator Guide

5.
R

em
o

te
D

ata
R

eso
u

rce
C

o
n

tro
l

L
in

es

OPENRRES
The OPENRRES TSX control line is used to create a controlled resource. It enables a TSX
to specify the resource limits at the time the resource is created.

This control line can be called only from a TSX.

The OPENRRES Control Line
The format of the OPENRRES control line is:
CALL BLGTSX 'OPENRRES','resname',resetcount,warncount,maxcount

Parameter Description
1. resname

Valid reply
The name of a remote data resource. It can be from one to eight characters in length,
and must contain only alphabetic or numeric characters. It identifies which remote
data resource is to be acted upon. The value specified must be enclosed in single
quotation marks.

Default
None

Required

2. resetcount

Valid reply
A numeric value that indicates the number of items in the resource that will enable
new items to be added once the maximum has been reached. The resetcount must be
greater than zero and less than the value specified for maxcount. The value specified
cannot exceed 999 999 999. If resetcount is specified, values must also be specified
for warncount and maxcount.

Default
512

Optional

3. warncount

Valid reply
A numeric value that indicates that a warning message is to be issued when the
resource contains the specified number of items. Once a warning message has been
issued, another message will not be issued until the current item count first reaches
the resetcount, then returns to the warning item count. The warning item count must
be either zero (in which case a message is never issued) or greater than or equal to
the resetcount and less than or equal to the maxcount. The value specified may not
exceed 999 999 999. If warncount is specified, values must also be specified for
resetcount and maxcount.

Default
768

Optional

GETRDATA

244 Version 7.1

4. maxcount

Valid reply
A numeric value that indicates the maximum number of items that can be added to a
resource. Once the current item count reaches the maximum allowed item count,
new items cannot be added until the current item count returns to the resetcount. The
value specified for maxcount must be greater than the value specified for resetcount
and must be equal to or greater than the warncount. The value specified may not
exceed 999 999 999. If maxcount is specified, values must also be specified for
resetcount and warncount.

Default
1024

Optional

Usage Notes and Examples
This is an example of using an OPENRRES control line to create a controlled resource.
CALL BLGTSX 'OPENRRES','resource1',1000,2000,3000

Return and Reason Codes
After the OPENRRES control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 40.

Table 40. OPENRRES Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Function completed normally.

4 8 Invalid resource limit values specified.

4 12 Could not obtain ENQ for resource.

4 16 Resource already owned by another TSX.

PUTRDATA
The PUTRDATA control line is used to add an item to a resource. The specified data string
is added to the specified resource.

This control line can be called only from a TSX.

The PUTRDATA Control Line
The format of the PUTRDATA control line is:
CALL BLGTSX 'PUTRDATA','resname',data

Parameter Description
1. resname

Valid reply
The name of a remote data resource. It can be from one to eight characters in length,
and must contain only alphabetic or numeric characters. It identifies which remote
data resource is to be acted upon. The value specified must be enclosed in single
quotation marks.

OPENRRES

245Terminal Simulator Guide

5.
R

em
o

te
D

ata
R

eso
u

rce
C

o
n

tro
l

L
in

es

Default
None

Required

2. data

Valid reply
A character string not greater than 512 characters.

Default
None

Required

Usage Notes and Examples
This example uses a PUTRDATA control line to put data into a resource.
CALL BLGTSX 'PUTRDATA','resource1',data

Return and Reason Codes
After the PUTRDATA control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 41.

Table 41. PUTRDATA Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Function completed normally; item was added to
resource.

4 8 Resource is not accepting new items.

4 12 The resource does not exist.

QUERYRRES
The QUERYRRES control line is used to obtain information about a resource. The following
information is returned in the TSCAVDA variable:

¶ Resource ownership

UNOWNED
The specified resource is not controlled by any TSX.

OWNED
The specified resource is controlled by another TSX.

OWNER
The specified resource is controlled by the current TSX.

¶ Resource state

OPENED
Items can be added or removed from the specified resource.

CLOSED
The resource exists and is empty; no data can be added to it.

PUTRDATA

246 Version 7.1

DRAINING
Items can only be removed from the resource.

RELEASED
Items are not being removed from the resource.

UNDEFINED
The resource does not exist.

¶ Current item count

¶ Total number of items processed since the resource was created.

¶ Limits for resetcount, warncount, and maxcount.

An example of the contents of the TSCAVDA variable is:
UNOWNED OPENED 10 20 10 20 30

This control line can be called only from a TSX.

The QUERYRRES Control Line
The format of the QUERYRRES control line is:
CALL BLGTSX 'QUERYRRES','resname'

Parameter Description
1. resname

Valid reply
The name of a remote data resource. It can be from one to eight characters in length,
and must contain only alphabetic or numeric characters. It identifies which remote
data resource is to be acted upon. The value specified must be enclosed in single
quotation marks.

Default
None

Required

Usage Notes and Examples
This example uses a QUERYRRES control line to obtain information about a resource.
CALL BLGTSX 'QUERYRRES','resource1'

RELEASERRES
The RELEASERRES control line is used to release control of a resource. Control of a
specified resource is released, and is left in a state in which new items can be added until
the maximum allowed item count is reached.

This control line can be called only from a TSX.

The RELEASERRES Control Line
The format of the RELEASERRES control line is:
CALL BLGTSX 'RELEASERRES','resname'

Parameter Description
1. resname

QUERYRRES

247Terminal Simulator Guide

5.
R

em
o

te
D

ata
R

eso
u

rce
C

o
n

tro
l

L
in

es

Valid reply
The name of a remote data resource. It can be from one to eight characters in length,
and must contain only alphabetic or numeric characters. It identifies which remote
data resource is to be acted upon. The value specified must be enclosed in single
quotation marks.

Default
None

Required

Usage Notes and Examples
This example uses a RELEASERRES control line to release control of a resource.
CALL BLGTSX 'RELEASERRES','resource1'

Return and Reason Codes
After the RELEASERRES control line is run, Tivoli Information Management for z/OS sets
the TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 42.

Table 42. RELEASERRES Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Function completed normally; resource was
released.

4 8 Resource is in the process of being released.

4 12 The resource does not exist.

SETRRES
The SETRRES control line is used to set limits for a resource.

This control line can be called only from a TSX.

The SETRRES Control Line
The format of the SETRRES control line is:
CALL BLGTSX 'SETRRES','resname',resetcount,warncount,maxcount

Parameter Description
1. resname

Valid reply
The name of a remote data resource. It can be from one to eight characters in length,
and must contain only alphabetic or numeric characters. It identifies which remote
data resource is to be acted upon. The value specified must be enclosed in single
quotation marks.

Default
None

Required

2. resetcount

RELEASERRES

248 Version 7.1

Valid reply
A numeric value that indicates the number of items in the resource that will enable
new items to be added once the maximum has been reached. The resetcount must be
greater than zero and less than the value specified for maxcount. The value specified
cannot exceed 999 999 999. If resetcount is specified, values must also be specified
for warncount and maxcount.

Default
512

Optional

3. warncount

Valid reply
A numeric value that indicates that a warning message is to be issued when the
resource contains the specified number of items. Once a warning message has been
issued, another message will not be issued until the current item count first reaches
the resetcount, then returns to the warning item count. The warning item count must
be either zero (in which case a message is never issued) or greater than or equal to
the resetcount and less than or equal to the maxcount. The value specified may not
exceed 999 999 999. If warncount is specified, values must also be specified for
resetcount and maxcount.

Default
768

Optional

4. maxcount

Valid reply
A numeric value that indicates the maximum number of items that can be added to a
resource. Once the current item count reaches the maximum allowed item count,
new items cannot be added until the current item count returns to the resetcount. The
value specified for maxcount must be greater than the value specified for resetcount
and must be equal to or greater than the warncount. The value specified may not
exceed 999 999 999. If maxcount is specified, values must also be specified for
resetcount and warncount.

Default
1024

Optional

Usage Notes and Examples
This example uses a SETRRES control line to set limits for a controlled resource.
CALL BLGTSX 'SETRRES','resource1',1000,2000,3000

Return and Reason Codes
After the SETRRRES control line is run, Tivoli Information Management for z/OS sets the
TSCA return code (TSCAFRET) and reason code (TSCAFRES) fields to indicate what
happened. These codes are listed in Table 43 on page 250.

SETRRES

249Terminal Simulator Guide

5.
R

em
o

te
D

ata
R

eso
u

rce
C

o
n

tro
l

L
in

es

Table 43. SETRRES Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Function completed normally.

4 8 Invalid resource limit values specified.

4 12 Resource not found.

SETRRES

250 Version 7.1

Testing Terminal Simulator Panels (TSPs)
and EXECS (TSXs)

This chapter discusses the tools you can use to test the accuracy of TSPs and TSXs. Tivoli
Information Management for z/OS does not check for correct panels or field values; it only
supplies you with the tools to do so. The tools discussed here are four of the control lines
described in Creating Terminal Simulator Control Lines: PRINT, TESTFIELD, TESTFLOW,
and TRACE. Only PRINT and TRACE are applicable to a TSX. The functions of the TSP
TESTFIELD and TESTFLOW control lines can be done in a TSX using conditional program
flow controls (if, do, while, etc.) available in the REXX programming language.

When you create TSPs and TSXs, you must keep in mind that some control lines, especially
WORDFIX, FLATTEN, UNFLATTEN, ADDSDATA, and DELSDATA can do considerable
damage to your database if they are used incorrectly.

Because of the flexibility of Tivoli Information Management for z/OS, it is important that
you incorporate built-in testing in your TSP or TSX. If a panel is removed or data, such as a
selection number, is changed, your TSP or TSX should perform certain tests to make sure
that those changes do not affect the TSP or TSX. A TSX could perform a similar test by
checking the panel name using TSCA field TSCACPNL.

Using the PRINT Control Line
The PRINT control line is valid in a TSP and a TSX, and it enables you to print current and
saved messages, the current panel, and the TSCA so that you can check the field values. If
your TSP or TSX branches to an error routine, you can find out why by including the
PRINT control line.

For example, in a TSP, assume that data was put in the command line reply buffer by an
ADDDATA control line. When the PROCESS control line runs, you do not get the results
you expected. You can set up the following error handling routine to take control:

TESTFLOW ADD (branch if correct panel)
PRINT (TSCA, messages, panel)
LABEL ADD
RETURN

Similarly, in a TSX, if you do not get the results you expected after a PROCESS control line
(the TSCAFRET and TSCAFRES REXX equivalent variables are not both 0), your REXX
code can invoke the PRINT control line:
IF TSCAFRET|=0 | TSCAFRET|=0 THEN,

CALL BLGTSX 'PRINT','MESSAGES','SCREEN','TSCA';

6

251Terminal Simulator Guide

6.
Testin

g
T

S
P

s
an

d
T

S
X

s

Using the TESTFIELD Control Line
The TSP TESTFIELD control line enables you to test for expected character or numeric
values in any TSCA field. You can test for the return and reason codes that most control
lines set. For example, assume that a FINDSDATA control line is processed. Before you do
anything with the data that was returned from that control line, you enter a TESTFIELD
control line to test the return code. If TESTFIELD finds a return code of zero, the next
control line is processed. If the code is not zero, the FINDSDATA did not work as expected
and a branch is taken to the error label specified on the TSP TESTFIELD control line.

Even after a TSP is in production, continue to use this control line to check critical field
values, because system changes can affect the processing result of the TSP.

Refer to “Field Checking in a TSX” for information on how to handle field checking in a
TSX.

Field Checking in a TSX
You can perform field checking within a TSX directly using the standard program flow
controls available in the REXX programming language. For example, assume that a
FINDSDATA control line is processed. Before you do anything with the data that was
returned from that control line, you should check the TSCA REXX equivalent variable
TSCASDF. The TSCASDF contains the data found by FINDSDATA. If the length of the
data is zero, then FINDSDATA did not locate the desired data. Example REXX code:
CALL BLGTSX 'FINDSDATA','PERA/.',,'LAST';
IF LENGTH(TSCASDF)=0 THEN,

DO;
MSGTXT='PLEASE ENTER AN ASSIGNEE NAME.'
CALL BLGTSX 'MESSAGE',,MSGTXT,'SAVE';

END;

Of course, you also have the option of testing the values of the TSCAFRET and TSCAFRES
REXX equivalent variables to determine the success or failure of a TSX control line.
Example REXX code:
SWORD='S0E01'; /* Description text */
CALL BLGTSX 'READDICT',SWORD; /* Get s-word */
CALL BLGTSX 'FINDTEXT',TSCARSD; /* Get text */
IF TSCAFRET=0 & TSCAFRES=0 THEN, /* Successful? */

DO;
MSGTXT='Record text successfully retrieved.';
CALL BLGTSX 'MESSAGE',,MSGTXT,'SAVE';

END;

Using the TESTFLOW Control Line
The TSP TESTFLOW control line enables you to check for panel flow. This control line is
similar to TESTFIELD, but instead of testing for field values, it tests to see whether the
current panel is the expected one.

When you use ADDDATA and PROCESS control lines in a TSP, you expect to reach a
certain panel. When you use Tivoli Information Management for z/OS interactively, that
panel appears on your screen. When processing an IRC from within a TSP, especially in
batch mode, you do not know if you have reached the correct panel. The panel flow might
have changed since the TSP was created.

Using the TESTFIELD Control Line

252 Version 7.1

To test for the correct panel, you can use a TESTFLOW control line before you add any
information to the panel. Or, instead of using TESTFLOW, you can include a user exit
routine that tests for the current panel, which is identified in the TSCA field TSCACPNL.

You can also use TESTFLOW to test for the presence of messages. For example, when your
TSP files a record, you might check to be sure you get the Record successfully filed
message.

As with TESTFIELD, it is recommended that you continue to use this control line even after
a TSP is in production, so that the panel flow and messages are always checked.

Refer to “Panel Checking in a TSX” and “Message Checking in a TSX” for information on
how to handle panel and message checking in a TSX.

Panel Checking in a TSX
You can test the current panel within a TSX directly using conditional program flow controls
(if, do, while, etc.) available in the REXX programming language. Before a TSX chooses a
selection on a data entry panel, the TSX should confirm the current panel. For example,
before entering in an assignee name into a problem record, the TSX should verify that the
current panel is BLG0B200. Example REXX code:
IF TSCACPNL='BLG0B200' THEN,

DO;
REPLY='1,DOE/JOHN';
CALL BLGTSX 'PROCESS',REPLY;

END;
ELSE

EXIT;

Message Checking in a TSX
If a TSX control line generates messages, the message numbers along with their text will be
stored in the REXX compound variable BLG_MESSAGE. and the total number of messages
will be stored in BLG_MESSAGE.0. To scan for a particular message, refer to the example
code below:
found=0
do i=1 to BLG_MESSAGE.0 while (found=0)

if substr(BLG_MESSAGE.I,1,8)='BLG03058' then do
/* Code to do anything you want to do here */
found=1

end
end

Since a TSX has access to the message text (a TSP only has access to the message number),
a TSX can extract data from a message such as the RNID of the record that just filed
successfully.

Syntax Checking in a TSX
If a call to a TSX control line has a parameter error (for example, a required parameter is
not specified), it will cause a REXX syntax error. Messages describing the syntax error are
stored in the REXX compound variable BLG_ERROR. The total number of syntax errors is
stored in BLG_ERROR.0. Normally, an EXEC will end when it has a syntax error, and you
would never get a chance to see what’s in BLG_ERROR. In order to see what’s there, you
can do the following:

Using the TESTFLOW Control Line

253Terminal Simulator Guide

6.
Testin

g
T

S
P

s
an

d
T

S
X

s

¶ At the top of the TSX, code the following:
signal on syntax name synrtn
parse source . . execname . /* Get exec name */

This tells REXX to call a subroutine named ’synrtn’ if any syntax errors occur. The
name of the TSX is also saved for use by the syntax routine.

¶ Somewhere in your TSX, include the following subroutine which will print out the line
number in error with the name of the TSX that had the syntax error along with the
messages issued by Tivoli Information Management for z/OS.
synrtn:
say 'Syntax error at line' sigl 'in TSX' execname /* Print location*/
if BLG_ERROR.0/='BLG_ERROR.0' then /* Have control line errors? */
do i = 1 to BLG_ERROR.0 /* Loop through the messages */
say '>'BLG_ERROR.i'<' /* Display error message */
end

exit

Refer to the member BLGFLAT in the SBLMTSX data set to see an example of a TSX that
uses this technique to handle syntax errors.

Using the TSP TRACE Control Line
For a TSP, TRACE produces a report that shows you how the TSP was processed. It
indicates which control lines were processed, the return and reason codes for those control
lines, the order in which the control lines were processed, which branches were taken, and
which other TSPs or TSXs were linked to for processing. In other words, TRACE lets you
analyze the flow of a TSP and evaluate the results of an operation.

To see the complete flow of the TSP, enter TRACE as your first control line. If the
beginning of the TSP only builds a command line reply buffer and you don’t want to follow
that flow, enter the TRACE control line just before you process the reply buffer. If the TSP
branches to an error routine, you will know that you did not build the command line reply
buffer correctly.

You probably will want to remove the TRACE control line after you determine that the
TSP’s flow is correct, especially if you continue to use TESTFLOW and TESTFIELD to
check for correct panels and field values.

An example of the TRACE output is shown in Figure 6 on page 255. This example shows
the flow of the TSP created in Chapter 2, “Creating a Terminal Simulator Panel Flow” on
page 9.

Using the TRACE Command
If you prefer, you can use the TRACE command instead of the TRACE control line. This
command provides the same capability as the TRACE control line, except that you specify
the trace interactively on the command line before you run your TSP or TSX. In this case,
you do not need to update your TSP to include a TRACE control line. Each TSP that is
processed will be traced until you use the TRACE command to turn tracing back off.

Note: It is the responsibility of your TSX to check the value of BLGTRACE and specify
the desired REXX TRACE parameters you prefer. Also, TSX REXX TRACE

Syntax Checking in a TSX

254 Version 7.1

information does not go to the output destination specified in the BLGTRACE DD
statement. REXX controls the output destination, and typically the destination is the
terminal.

For more information on the TRACE command, refer to the Tivoli Information Management
for z/OS User’s Guide .

Running traces on multiple sessions concurrently can produce unexpected results. This
applies to the TRACE command as well as the trace control line. The completeness of the
trace depends upon the output destination specified in the BLGTRACE DD statement. If the
output destination is a data set, trace information for some sessions might not be recorded. If
the output destination is a SYSOUT device, trace information for all sessions is recorded
completely.

Column Description

LN# The line number of the TSP control line being processed

Function Name
The function specified on the current control line

Panel Name
The panel name of the current TSP

Literal/User Data
Literal or user data entered for the control line being processed (a maximum of 15
bytes of the data appears on each line of the report)

Figure 6. Example of TRACE Output

Using the TRACE Command

255Terminal Simulator Guide

6.
Testin

g
T

S
P

s
an

d
T

S
X

s

TSCA Flag Fields
The TSCA fields, TSCA0FLG, TSCA1FLG, TSCA2FLG, and TSCA3FLG in
hexadecimal format

S-Word Index Word
The s-word index and s-word entered for the control line being processed

Prefix index Word
The prefix index and p-word entered for the control line being processed

Field Name
The name of the TSCA field entered on a TESTFIELD control line as the field to
test

New Data, S-Word, or P-Word
The replacement data for a WORDFIX control line (a maximum of 15 bytes of the
data appears on each line of the report)

Label/Target
The label name in a LABEL control line, or the target label of a BRANCH control
line

Argument Panel/Msg
The panel name or message identifier entered as an argument for a control line

Function Exit
The routine name specified as an exit routine or a TSP function exit.

TRACE TSX Considerations
In a TSX, variable BLGTRACE will be set to 1 when you use the TRACE command to
activate TSP and TSX tracing. BLGTRACE will also be set to 1 when you specify YES for
Trace LINK function on the TSP TRACE control line. It is the responsibility of your REXX
code to test the value stored in the BLGTRACE variable and to issue the corresponding
desired REXX TRACE statement. Example REXX code:
IF BLGTRACE=1 THEN, /* TSP/TSX Tracing Active? */

TRACE RESULTS /* Start REXX trace with desired options */

This keeps you from having to update your TSXs with trace statements. If you specify those
statements at the beginning of your TSX, the entire TSX will be traced. You might choose to
specify those statements at other locations in the TSX or even to turn REXX tracing off.

Note: TSX REXX TRACE information does not go to the output destination specified in
the BLGTRACE DD statement. REXX controls the output destination, and typically
the destination is the terminal.

Using the TRACE Command

256 Version 7.1

Running Terminal Simulator Panels (TSPs)
and Terminal Simulator Execs (TSXs)

You can run Terminal Simulator Programs (TSPs) in batch mode, at product invocation,
while you are interactively using Tivoli Information Management for z/OS, or from other
TSPs. The same is true for terminal simulator EXECs (TSXs); you can run a TSX anywhere
that you can run a TSP. You can even use the LINK control line to call a TSX from a TSP
or to call a TSP from a TSX. This chapter describes the procedures for starting a TSP or a
TSX.

Note: Before you try to run a TSX, make sure that you have allocated the DD BLGTSX to
the library that contains your TSX REXX EXECs.

Running a TSP or a TSX from the Command Line
You can run a TSP or a TSX from the command line using the following techniques:

¶ With the RUN command

¶ With a command alias in the COMMAND record

Using the RUN Command to Run a TSP or a TSX
Issue the RUN command with an operand specifying which TSP or TSX you want to run.
The operand can be a tspname, tsxname, or aliasname. If the name or alias is for a TSX,
you can also enter additional operands that will be passed as an argument to the TSX. This
shows the syntax of the RUN command.
RUN tspname
RUN tsxname
RUN tsxname argument
RUN aliasname
RUN aliasname argument /* If aliasname is for a TSX */

The Tivoli Information Management for z/OS User’s Guide contains additional information
about the RUN command.

Using a Command Alias to Run a TSP or a TSX
A command alias can be used to make it easier to run a TSP or a TSX from the command
line.

In order to define a command alias to run a TSP or a TSX, add an entry to the COMMAND
record with the desired Command Alias name and the RUN command (with any operands)
as the Actual Command String. This example contains several entries defining a command
alias for the RUN command.

7

257Terminal Simulator Guide

7.
R

u
n

n
in

g
T

S
P

s
an

d
T

S
X

s

Command Alias Actual Command String
OPEN RUN OPENPROB /* TSP OPENPROB is run */
CLOSE RUN CLSPTSX /* TSX CLSPTSX is run */
CLSLATE RUN CLSPTSX LATE /* TSX CLSPTSX is run.

Argument LATE is passed. */
OC RUN OC /* The TSP or TSX associated

with aliasname OC is run. */

To use a command alias, simply enter it as you would a command. Operands specified with
the command alias are added to the end of the Actual Command String. For example, if
you entered:
CLSLATE 4

the actual command entered on the command line would be:
RUN CLSPTSX LATE 4

The string LATE 4 will be passed to TSX CLSPTSX as a single argument which the TSX
can parse as needed.

The Tivoli Information Management for z/OS Program Administration Guide and Reference
contains additional information about setting up a command alias in the COMMAND
record.

Running a TSP or a TSX at Product Invocation
You can run a TSP or a TSX at product invocation using the ISPSTART statement. The
ISPSTART statement accepts a TSP parameter, an IRC parameter, or an SRC parameter. If
you specify the IRC or SRC parameters on the ISPSTART statement along with the TSP
parameter, the TSP parameter is processed first after the product proprietary panel appears
and the user returns from it. These are some examples of the ISPSTART statement syntax
for the TSP parameter.
ISPSTART PGM(BLGINIT) PARM(TSP(tspname))
or PARM(TSP(tsxname))
or PARM(TSP(aliasname))

You can use the IRC parameter to run a TSP or a TSX using the RUN command or a
command alias. These are some examples of the ISPSTART statement syntax for the IRC
parameter.
ISPSTART PGM(BLGINIT) PARM(IRC(RUN tspname))
or PARM(IRC(RUN tsxname))
or PARM(IRC(RUN tsxname argument))
or PARM(IRC(RUN aliasname))
or PARM(IRC(commandalias))

Refer to the Tivoli Information Management for z/OS Planning and Installation Guide and
Reference for more information on the ISPSTART statement and how it is used to invoke
Tivoli Information Management for z/OS.

Running TSPs or TSXs in a Batch Environment
You run a TSP or a TSX in batch mode the same way that you run a TSP or a TSX at
product invocation using the ISPSTART statement. The examples contained in “Running a
TSP or a TSX at Product Invocation” show how the ISPSTART statement can be used to run
a TSP or a TSX in a batch environment.

Running from the Command Line

258 Version 7.1

If you specify the IRC or SRC parameters on the ISPSTART statement along with the TSP
parameter, the TSP parameter is processed first.

Note: In order for a Tivoli Information Management for z/OS batch job to terminate cleanly
(RC=X'0'), the batch job must end due to the Tivoli Information Management for
z/OS QUIT command.

Refer to the Tivoli Information Management for z/OS Planning and Installation Guide and
Reference for more information on the ISPSTART statement and how it is used to invoke
Tivoli Information Management for z/OS in batch mode.

Running a TSP or a TSX from a Control Panel

The 002B Function Code
You can also call a TSP or a TSX from a control panel during an interactive or batch
session. At the point in the control panel where you want the TSP or TSX initialized, specify
the following on a FLOW control line:

¶ The 002B function code

¶ The name or alias of the TSP or TSX you want to run

¶ Optionally, a target panel for the control panel

The target panel is the panel from which the TSP or TSX actually begins to run. If you do
not specify a target panel, the TSP or TSX will run on the next displayable panel. (This is
the same as entering 000B on a control line, except that a TSP or TSX is started rather than
a program exit.)

For example, after you enter the priority for a problem record, you could run a TSP or a
TSX that calculates a fixed target date and then automatically enters the date into the record.

You will need to make these changes:

1. Update panel BLG6CPRI, the assisted-entry panel for current priority:
Create target = The control panel that calls the TSP or TSX
Inquiry target = BLG0E201, or the name of the panel from which

BLG6CPRI was called
Return to caller = NO

2. Create a control panel with the name specified as the create target for panel BLG6CPRI:
Control line type = FLOW
Function code index = 002B
True target panel = BLG0B100, or the name of the panel from which

BLG6CPRI was called
Program exit/TSP name = name or alias of the TSP or TSX to run

The TSP or TSX is initialized at the time the FLOW control line is run, but the TSP or TSX
is not actually started until the panel flow reaches an interactive (displayable) panel. If the
002B control line contains a true target, flow passes to that panel; otherwise, processing of
the control panel continues until it completes and flow passes to another panel. In either
case, if the next panel is an interactive (displayable) panel, the TSP/TSX will run on that
panel. However, if the next panel is another control panel, that panel and any subsequent
control panels will be processed until the flow eventually reaches an interactive panel, at
which time the TSP/TSX will run.

Running a TSP or a TSX at Product Invocation

259Terminal Simulator Guide

7.
R

u
n

n
in

g
T

S
P

s
an

d
T

S
X

s

You can determine which panel a TSP/TSX is running on by checking the TSCACPNL field
at the start of the TSP/TSX.

If a 002B control line is used within a multiple test begin and end group, subsequent control
lines are skipped and processing resumes with the first line after the multiple test ends.

The 001B Function Code
You can also schedule that a TSP or TSX be run when a record is filed by specifying the
following on a FLOW control line:

¶ The 001B function code

¶ The name or alias of the TSP or TSX you want to run

Typically, a FLOW with a 001B function code would be specified on a record type file time
control panel. If the record is not filed, the TSPs and TSXs are never run. If the record is
filed, the TSPs and TSXs are initialized and run in last-in, first-out order. The TSP, TSX,
and alias names remain connected to the record until it is filed or the entry is canceled.

Note: For both the 001B and the 002B function codes, the FLOW line must be on a control
panel that Tivoli Information Management for z/OS processes rather than on a control
panel that contains only information that Tivoli Information Management for z/OS
uses.

When the TSP or TSX Is Actually Started
A TSP or TSX initialized with the 002B function code is not actually started until the panel
flow reaches an interactive panel. For example, suppose you want to call a TSP or a TSX
upon leaving panel A on the way to panel B. Also, assume that the control panel (created to
call the TSP or TSX) has a FLOW control line with a target of panel B. What you expect to
happen is:
Panel A----> Control Panel----> TSP or TSX----> Panel B

However, if panel B is the type of interactive panel that end users can see, the following is
the actual flow:
Panel A----> Control Panel----> Panel A----> TSP or TSX----> Panel B

Because TSPs and TSXs are actually started after a displayable panel is reached, the TSP or
TSX is not started until the panel flow reaches panel B. If the TSP or TSX does not change
the panel flow, panel B appears after the TSP or TSX ends. If the TSP or TSX issues
commands to change the panel flow, the panel that you see is based on the new flow.

Suppose that you are building a search argument. You make a panel selection that calls a
control panel to start a TSP or a TSX and that also performs a function code 0008
(INITIALIZE). In this case, Tivoli Information Management for z/OS clears your search
argument and diverts the panel flow to the Primary Options Menu (BLG0EN20) before
starting your TSP or TSX.

In another example, suppose that you want a TSP or a TSX to process a record whenever
you make a panel selection to file it. In this case, the next panel that accepts a user reply is
the panel from which you started the record create or update. By that time, the record has
already been filed and is no longer available for the TSP or TSX to process. However, there
is a way to do this. The RNID/ of the last record filed is in the TSCA. You can use that to
update the record just filed, display the record to get data out of it, or perform a search.

Running a TSP or a TSX from a Control Panel

260 Version 7.1

How To Locate a TSP or TSX
A TSP and a TSX can have the same name. So can a TSP and an alias name or a TSX and
an alias name. Tivoli Information Management for z/OS uses the following guidelines to
determine the TSP, TSX, or aliasname to use:

¶ The ALIAS record is checked to see if the name is defined.

v If so, the ″real name″ and type (TSP, TSX or undefined) is obtained.

v If not, the name is assumed to be a real name and the type is undefined.

¶ If the type is TSP or undefined, an attempt is made to load the TSP.

v If no panel is found and the type is defined as TSP, an error message is issued.

v If no panel is found and the type is undefined, call REXX to load/run the TSX.
REXX issues a message if it cannot load the EXEC.

Calling a TSP or TSX from Another TSP or TSX
You can call a TSP or TSX from within another TSP or TSX by using the LINK control
line. When the linked-to TSP or TSX completes processing, control is returned to the calling
TSP or TSX. If you specify a starting panel name in the Starting panel name field of a TSP
panel, Tivoli Information Management for z/OS verifies that the name matches the current
panel before initializing the linked-to TSP. If the name entered in the Starting panel name
field of the TSP does not match the current panel, Tivoli Information Management for z/OS
cannot initialize the TSP and issues an error message. In a TSX, it is the responsibility of
the TSX to check the contents of the TSX variable TSCACPNL to verify the starting panel
if desired. For more information about the LINK control line, see “LINK” on page 130.

You can indirectly call a TSP from within another TSP when one or more ADDDATA
control lines, followed by a PROCESS control line, pass control to a control panel that
contains a control line with a 002B or a 001B function code index. Also, you can directly
call a TSP from within another TSP by using an ADDDATA control line that contains the
RUN command. The same is true for a TSX except that the ADDDATA and PROCESS
functions are combined in the PROCESS control line for a TSX.

Be aware that having several TSPs or TSXs running at the same time causes TSCA fields to
be shared. Examine the panel flow to verify that sharing these fields does not cause
unexpected data to be used by another TSP or TSX that is either linked to by the first one or
started by the first one by a response to a panel.

Message Handling during TSP and TSX Processing
Because TSPs and TSXs can run in batch mode and during an interactive session, you must
consider both modes for message-handling purposes. Tivoli Information Management for
z/OS saves any messages that exist before processing a TSP or TSX. You can display these
messages after the processing of the TSP or TSX is complete, unless the TSP or TSX issues
the QUIT command. Depending on which mode you use, messages that are pending after a
TSP or TSX completes are returned differently. If a TSP or TSX is running during an
interactive session, the messages are displayed automatically. If a TSP or TSX is running in
batch mode, the messages are sent to the destination specified by the SYSPRINT DD
statement.

How To Locate a TSP or TSX

261Terminal Simulator Guide

7.
R

u
n

n
in

g
T

S
P

s
an

d
T

S
X

s

If Tivoli Information Management for z/OS processes a QUIT command in either mode, it
discards all pending messages and ends. If you do not want to lose these messages, include
a PRINT control line before the control line that processes the QUIT command.

While the TSP or TSX is running, Tivoli Information Management for z/OS handles
message processing in the same manner for each mode. Tivoli Information Management for
z/OS generates messages whenever it processes a MESSAGE control line. The PROCESS
control line can also generate messages. A null PROCESS control line that occurs when the
command-line reply buffer is empty causes the deletion of messages from the current
message chain. If you want to record these messages before they are deleted, you must enter
a PRINT control line before the PROCESS control line. If you want these messages to be
saved in a TSP, you must add them to the saved message chain by specifying YES for the
Save existing messages field on the PROCESS control line. If you want these messages to
be saved in a TSX, you must specify SAVE for the save parameter on the TSX PROCESS
control line.

TSP and TSX Processing for Three Classes of Messages
The three classes of messages are informational, warning, and severe. The following
describes the processing associated with each message class:

Informational. Tivoli Information Management for z/OS always treats messages generated
using the MESSAGE control line as informational messages. When you set the Save
generated message field to YES, Tivoli Information Management for z/OS unconditionally
saves these messages and restores them to the current message chain when TSP processing
completes, regardless of other processing that occurs within the TSP. The same is true when
you specify SAVE for the save parameter on the TSX PROCESS control line. Tivoli
Information Management for z/OS can also generate informational messages as a result of a
PROCESS control line. Informational messages do not affect processing.

Warning. A TSP or TSX will not run if warning messages occur. For both TSP keyword and
function code 002B and 001B calls to a TSP or TSX, Tivoli Information Management for
z/OS can generate a warning message between the time that the TSP or TSX is initialized
and the time that it actually runs. If this occurs, the TSP or TSX ends without processing
any control lines. If warning messages are generated in response to a PROCESS control line,
Tivoli Information Management for z/OS returns control to the TSP or TSX that contains the
control line. Any TSPs or TSXs that were called as a result of the control line end, and
processing resumes at the error label for the TSP PROCESS control line or after the TSX
PROCESS control line in the REXX code. The TSX must check the TSCAFRES and
TSCAFRET to determine what action to take next.

Severe. A TSP or TSX does not run if severe messages exist. If TSP or TSX initialization
results in a severe error, Tivoli Information Management for z/OS generates an error
message and the TSP or TSX ends. If severe messages are generated as a result of a
PROCESS control line, Tivoli Information Management for z/OS returns control to the TSP
or TSX that contains the control line. Any TSPs or TSXs that were called as a result of the
control line end, and processing resumes at the TSP error label for the control line or after
the TSX PROCESS control line is in the REXX code. The TSX must check the values of
the TSCAFRET and TSCAFRES to determine what action to take next. In the error routine,
evaluate whether the operation is to be retried, or an error message is to be generated and
the TSP or TSX ended. The reply buffer is not restored when a severe message is found
during processing.

Message Handling

262 Version 7.1

User Exits

This chapter describes the user exits supplied with Tivoli Information Management for z/OS.
After you understand how these user exits function, you can use them in your TSPs. You
can also replace them with user exits of your own design to conform to your own special
purposes.

Read “USEREXIT” on page 193 before writing any user exit routines. It gives you hints
about writing routines and discusses points to remember when writing routines in PL/I,
Assembler, or VS COBOL II.

The user exits in this chapter are presented as follows:

¶ “Application Program Interface User Exits”

¶ “Configuration Migration User Exits” on page 270

¶ “Database Administration User Exits” on page 277

¶ “Escalation and Notification User Exits” on page 278

¶ “General-purpose User Exits” on page 279

These user exits require various types of data as input:

¶ Fields in the TSCA that are expected to be set before this exit runs. The input is
described by using the TSCA field name.

¶ Data that should be entered when the USEREXIT control line is used in a TSP. The
field name on the USEREXIT panel is specified.

¶ The variable data area, which does not have a TSCA name.

Note: User exits which require that information be specified on the TSP USEREXIT control
line panels (BLM8CU9P, BLG8CU9Q) cannot be run from a TSX. Refer to the
Environment section of each of the user exits in this chapter to determine whether the
user exit can be run from a TSX.

Application Program Interface User Exits
Most application program interface (API) user exits can be used only within the API
environment. In most cases, if an exit is operating outside the API environment, Tivoli
Information Management for z/OS stops with ABEND code 700, reason code 32.

You can use the following exits outside the API environment: BLGEXDEL, BLGJAUTH,
and BLGTSAPI.

BLGEXDEL–Delete Unusable Record

8

263Terminal Simulator Guide

8.
U

ser
E

xits

CAUTION:
User exit BLGEXDEL deletes the root VSAM key without checking for
authority. To protect your database, have the TSP that calls this user exit check
for authorization.

User exit BLGEXDEL deletes a record using the root VSAM key, which is passed
in the TSCA variable data area.

Even though the record is deleted, it is still cognized. The record might show as
deleted on a search results list. To prevent this, run the SDIDS build utility
(BLGUT1) after calling this user exit.

For an example of how BLGEXDEL can be used, use PMF to look at API TSP
BLGAPI10 in your base panel data set. The Tivoli Information Management for z/OS
Application Program Interface Guide has additional information about this user exit.

This user exit can be used outside the API environment.

Input Root VSAM key (in character format) in the TSCA variable data area.

The database number:

¶ If the exit is used in the API environment, the database number is taken
from field PICADBID.

¶ If the exit is used outside the API environment, the database number is
taken from the user’s profile. If the profile does not contain a database
number, database 5 is used.

Output
Return and reason codes as listed in Table 44.

Environment
TSP and TSX

Table 44. BLGEXDEL Return and Reason Codes
Return Code (TSCAFRET) Reason Code (TSCAFRES) Description

0 0 Successful completion. The
record was deleted.

0 4 A storage allocation error
occurred. Some records were
deleted.

0 8 A database access error
occurred. Some records were
deleted.

4 4 The variable data length
(TSCAVDAL) is not equal to 8.

4 8 The database was not found.

4 12 The database is not read/write.

4 16 Enqueuing the record on the
root VSAM key was not
successful.

8 4 A storage allocation error
occurred.

API User Exits

264 Version 7.1

Table 44. BLGEXDEL Return and Reason Codes (continued)
Return Code (TSCAFRET) Reason Code (TSCAFRES) Description

8 8 A database access error
occurred.

8 12 The record was not found.

8 16 You cannot delete root VSAM
key X'00000000'.

16 4 Internal control blocks were not
found.

BLGJAUTH–Check for Authorization

User exit BLGJAUTH determines whether the user’s privilege class has the
authorization for Tivoli Information Management for z/OS to perform the requested
function. This user exit can be used outside the API environment.

Input A 4-character authorization code in the TSCA variable data area.

Output
Return and reason codes as listed in Table 45.

Environment
TSP and TSX

Table 45. BLGJAUTH Return and Reason Codes
Return Code (TSCAFRET) Reason Code (TSCAFRES) Description

0 0 The user is authorized to
perform the requested action.

4 0 The user is not authorized to
perform the requested action.

8 0 The variable data length
(TSCAVDAL) is not equal to 4.

16 0 Internal control blocks were not
found.

BLGTSAPI–Test for API Environment

User exit BLGTSAPI determines if the API environment is active. This user exit can
be used outside the API environment.

Input None.

Output
TSCA return code field TSCAFRET.

Environment
TSP and TSX

Possible return codes are listed in Table 46.

Table 46. BLGTSAPI Return Codes
Return Code (TSCAFRET) Description

0 The API environment is active.

API User Exits

265Terminal Simulator Guide

8.
U

ser
E

xits

Table 46. BLGTSAPI Return Codes (continued)
Return Code (TSCAFRET) Description

4 The API environment is not active.

BLGYAPBR–API Record Build Processor

Retrieves data stored in API data structures and converts it to Tivoli Information
Management for z/OS internal record form ready to be stored in the database. Create
(T102), update (T105), and add record relation (T109) transactions use this exit.

Input API data structures.

Output
Internal form of record. Possible return codes are listed in Table 47.

Environment
TSP and TSX

Table 47. BLGYAPBR Return Codes
Return Code (TSCAFRET) Description

0 Successful completion.

4 A processing error occurred.

BLGYAPBU–API Retrieve Record ID

Retrieves the record ID or root VSAM key specified in PICA field PICARNID.

¶ If a record ID is retrieved, it is appended to the TSCA variable data area.

¶ If a root VSAM key is retrieved, it is converted to a record ID, and the record
ID is appended to the TSCA variable data area.

Update (T105), add record relation (T109), and delete (T100) transactions use this
exit.

Input PICA field PICARNID

Output
TSCA variable data area. Possible return and reason codes are listed in
Table 48.

Environment
TSP and TSX

Table 48. BLGYAPBU Return and Reason Codes
Return Code (TSCAFRET) Reason Code (TSCAFRES) Description

0 0 Successful completion. The
record ID was placed in the
TSCA variable data area.

4 0 An overflow occurred in the
variable data area. The data was
not added to the TSCA variable
data area.

API User Exits

266 Version 7.1

Table 48. BLGYAPBU Return and Reason Codes (continued)
Return Code (TSCAFRET) Reason Code (TSCAFRES) Description

4 8 The root VSAM key was placed
in the TSCA variable data area.
An error occurred in displaying
the record.

4 16 The root VSAM key was placed
in the TSCA variable data area,
but the root VSAM key is not
valid.

BLGYAPCP–API Control Processor

With TSP BLGAPI00, user exit BLGYAPCP performs some routing and control
processing for the LLAPI. BLGYAPCP processes many transactions within code
segments. When a transaction is implemented through a TSP, BLGYAPCP copies the
transaction code stored in PICA field PICATRAN left justified to TSCA field
TSCAUFLD. BLGYAPCP then returns to TSP BLGAPI00 to complete transaction
processing by linking to a transaction TSP. Linking is performed by testing the
transaction code passed in TSCAUFLD.

Input None

Output
Transaction code stored in TSCA field TSCAUFLD.

Environment
TSP and TSX

BLGYAPGP–API Retrieve Panel Name and Check for Special Processing

Retrieves the name of a summary panel for use in record create or update
processing. BLGYAPGP also checks fields PIDTUSEF, PICATSAU, and PICAHIST
to determine whether dynamic PIDT, text audit data, or history data processing was
requested. The exit then sets a return and reason code in the TSCA to indicate which
functions were requested.

Summary panel names are stored in API record processing control panels
BLG1AACP and BLG1AAUP. The value stored in PIDT field PIDTUSEF
determines which control panel to use. Each control line of these panels specifies an
s-word and a target summary panel name. The record type s-word that was specified
in the PIDT used to perform the transaction is used as a scan search argument. This
search argument is compared with each control line s-word in the control panel until
a match is found. When the control line is found, BLGYAPGP extracts the target
panel name, stores it in the TSCA variable data area, and sets the variable data area
length TSCAVDAL.

Create (T102), update (T105), and add record relation (T109) transactions use this
exit.

Input None

Output
Panel name stored in the TSCA variable data area. Possible return and
reason codes are listed in Table 49 on page 268.

API User Exits

267Terminal Simulator Guide

8.
U

ser
E

xits

Environment
TSP and TSX

Table 49. BLGYAPGP Return and Reason Codes
Return Code (TSCAFRET) Reason Code (TSCAFRES) Description

0 0 Successful completion.
PIDTUSER≠D, PICATXAU≠Y,
PICAHIST≠Y.

4 0 A summary panel s-word was
not found, or the application is
not authorized to perform the
function.

4 1 Successful completion.
PIDTUSER≠D, PICATXAU≠Y,
PICAHIST=Y.

4 2 Successful completion.
PIDTUSER≠D, PICATXAU=Y,
PICAHIST≠Y.

4 3 Successful completion.
PIDTUSER≠D, PICATXAU=Y,
PICAHIST=Y.

4 4 Successful completion.
PIDTUSER=D, PICATXAU≠Y,
PICAHIST≠Y.

4 5 Successful completion.
PIDTUSER=D, PICATXAU≠Y,
PICAHIST=Y.

4 6 Successful completion.
PIDTUSER=D, PICATXAU=Y,
PICAHIST≠Y.

4 7 Successful completion.
PIDTUSER=D, PICATXAU=Y,
PICAHIST=Y.

BLGYAPSR–API Set Interface Reason Code

Retrieves data from the TSCA variable data area and converts it to a reason code
that is passed back in PICA field PICAREAS.

Input TSCA variable data area. If the variable data is 4, the data is converted and
put into PICAREAS. If the variable data length is anything but 4, the first 2
characters of the data are converted and put into PICAREAS.

Output
PICA field PICAREAS. The possible return code is listed in Table 50.

Environment
TSP and TSX

Table 50. BLGYAPSR Return Codes
Return Code (TSCAFRET) Description

0 Completion.

API User Exits

268 Version 7.1

BLGYAPUP–Verify Record Update

User exit BLGYAPUP verifies that the record specified to the interface is being
updated. Update (T105) and add record relation (T109) transactions use this exit.

Input None.

Output
TSCA return code field TSCAFRET. Possible return codes are listed in
Table 51.

Environment
TSP and TSX

Table 51. BLGYAPUP Return Codes
Return Code (TSCAFRET) Description

0 The specified record is being updated.

4 The specified record is not being updated.

BLGYITSP–Invoke a TSP or TSX

User exit BLGYITSP can be used in an API environment to invoke a TSP or TSX.
The name of the TSP or TSX is contained in the LLAPI control block field
PICAUTSP. PICAUTSP is set by the HLAPI with the value of the input PDB name
TSP_NAME on the HL14 transaction. A single string of parameter data can also be
passed to the TSP or TSX. PICAPARL contains the length of the data pointed to by
PICAPARM. If PICAPARL is non-zero and PICAPARM is non-zero, the data
pointed to by PICAPARM is passed to a TSP using the variable data area or to a
TSX as an argument. The value of PICAPARL must not exceed 255. If PICAUTSP
is not set, no TSP or TSX is invoked. With the HLAPI using HL14, you can pass
input data to an invoked TSX and get data back from the TSX in the form of output
PDBs. The TSX uses GETAPIDATA to access input data and uses SETAPIDATA to
return data to the requesting application.

Input None.

Output
TSCA return code field TSCAFRET. Possible return codes are listed in
Table 52.

Environment
TSP and TSX

Table 52. BLGYITSP Return Codes
TSCAFRET TSCAFRES PICAREAS Description

0 0 0 Processing successful. The TSP or
TSX was invoked successfully.

4 4 n/a Processing successful. No TSP or TSX
specified to invoke (PICAUTSP not
specified).

8 4 n/a Not in API environment. TSP or TSX
not invoked.

8 8 164 Error invoking the TSX. The most
likely cause is that the TSX cannot be
found.

API User Exits

269Terminal Simulator Guide

8.
U

ser
E

xits

Table 52. BLGYITSP Return Codes (continued)
TSCAFRET TSCAFRES PICAREAS Description

12 4 163 The PICAPARL value is too large.

16 4 164 Error invoking the TSP or TSX. The
TSP or TSX starting panel and the
current panel are not the same.

16 8 164 Error invoking the TSP or TSX. The
TSP or TSX could not be found.

16 12 164 Error invoking the TSP or TSX. The
TSP or TSX could not be loaded,

16 16 164 Error invoking the TSP or TSX.
Storage error.

16 20 164 Error invoking the TSP. The specified
panel is not a TSP.

16 24 164 Error invoking the TSP or TSX.

Configuration Migration User Exits
The following user exits are provided with the configuration migration TSPs. If you are a
Version 2 user and have modified your configuration panels, you can use these user exits to
modify the TSPs provided with this version.

BLMMIGAE–Add Data Entry

BLMMIGAE adds to the current record a structured data-entry (SDE) that cannot be
added using the TSP ADDDATA and PROCESS control lines. Use BLMMIGAE
only when you cannot collect the requested entry using normal record processing,
such as an entry that is automatically collected only when a record is created.

You can specify the structured word index, the prefix index, or both in the Data
Field Specification panel (BLM8CU9P) of the USEREXIT control line.

¶ Specify the structured word index if the s-word is included in the SDE being
added to the record.

¶ Specify the prefix index if the prefix is included in the SDE being added to the
record. You specify the prefixed data as literal data for the SDE added to the
record. If no prefix index is specified, the literal data is added to the SDE
without a prefix.

Note: Failure to add the entry does not end processing of the record by the
migration utility.

Input The information entered in one of the following fields on the Data Field
Specification panel:

¶ Structured word index

¶ Prefix index

¶ Literal/Test data.

Output
An SDE added to the current record. Possible return codes are listed in
Table 53 on page 271.

API User Exits

270 Version 7.1

Environment
TSP only

Table 53. BLMMIGAE Return Codes
Return Code (TSCAFRET) Description

0 Successful completion.

4 An error was detected. Message BLM13004 is
written.

16 An internal error occurred. Contact your IBM
representative.

The BLGMIG21 and BLGMIG39 TSPs contain examples of this user exit.

BLMMIGDD–Delete Dialog

BLMMIGDD deletes from the current record the dialog located by the last
FINDSDATA function. The FINDSDATA function must specify the s-word index
that begins the dialog to be deleted. Any dialogs embedded in the selected dialog are
also deleted.

The dialog is not deleted under the following conditions:
¶ The TSCA does not contain an s-word (FINDSDATA not processed).
¶ The record does not contain the s-word.
¶ The s-word does not begin a dialog.
¶ There is a dialog structure begin/end mismatch.

You normally use BLMMIGDD after the recursive running of BLMMIGMD, which
moves all pertinent responses to another dialog.

Note: Failure to delete the dialog does not end processing of the record by the
migration utility.

Input A FINDSDATA processed with a TSCA return code of zero to locate the
s-word index of the SDE containing the dialog begin for the dialog to be
deleted.

Output
Deletion of the dialog. Possible return codes are listed in Table 54.

Environment
TSP and TSX

Table 54. BLMMIGDD Return Codes
Return Code (TSCAFRET) Description

0 Successful completion.

4 An error was detected. Message BLM13005 is
written.

16 An internal error occurred. Contact your IBM
representative.

The BLGMIG3E TSP provides an example of using this user exit.

BLMMIGDE–Delete Data Entry

Configuration Migration User Exits

271Terminal Simulator Guide

8.
U

ser
E

xits

BLMMIGDE deletes from the current record the SDE located by the last
FINDSDATA control line. You usually use BLMMIGDE after BLMMIGMD
processing to delete an SDE that is moved to another dialog.

Note: Failure to delete the entry does not end processing of the record by the
migration utility.

Input A FINDSDATA control line processed with a return code of zero.

Output
Deletion of the SDE. Possible return codes are listed in Table 55.

Environment
TSP and TSX

Table 55. BLMMIGDE Return Codes
Return Code (TSCAFRET) Description

0 Successful completion.

4 An error was detected.

16 An internal error occurred. Contact your Tivoli
representative.

The BLGMIG3D TSP provides an example of this user exit.

BLMMIGEC–Check Error Flag

BLMMIGEC checks both the migration error status for the current record and the
termination status for the migration utility.

When a linked TSP returns control to the calling TSP, the TSCAFRET field is
usually checked to determine if migration of the current record should continue. If
the TSCAFRET field is zero, migration of the current record continues. If the
TSCAFRET field is not zero, no further processing of the current record is
attempted, and error recovery procedures are initiated to cancel processing the
current record. If the TSCAFRET field is not zero after record error recovery is
completed, migration stops.

Input None.

Output
A return code, as listed in Table 56.

Environment
TSP and TSX

Table 56. BLMMIGEC Return Codes
Return Code (TSCAFRET) Description

0 No error status or termination was set.

4 Record error status/termination error status was
set.

The migration utility panel BLGMIG21 provides an example of this user exit.

BLMMIGFC–Passed/Failed Record Count

Configuration Migration User Exits

272 Version 7.1

BLMMIGFC either clears the consecutive record error counter or increments and
tests the consecutive record error counter. This counter is used to control detection
of a permanent error condition found by the migration utility.

To clear the record error counter and increment the number of records migrated:

Input PASSED in the Literal/Test data field of the Data Field Specification panel
of the USEREXIT control line calling this user exit.

Output
Error counter is set to zero; records-migrated counter is incremented by 1.

Environment
TSP only

To check the record error counter:

Input FAILED in the Literal/Test data field of the Data Field Specification panel of the
USEREXIT control line calling this user exit.

Output
Error counter is incremented and checked; migration utility termination status is set
if the value of the error counter is greater than the specified threshold.

Environment
TSP only

To reset the record error counter:

Input YES in the New data field of the Data Field Specification panel of the USEREXIT
control line calling this user exit.

Output
Consecutive error counter is initialized to zero.

Environment
TSP only

Possible return codes are listed in Table 57.

Table 57. BLMMIGFC Return Codes
Return Code
(TSCAFRET) Description

0 Successful completion.

4 An internal error occurred. Contact your Tivoli representative.

8 Internal error threshold was reached. Message BLM13003 was written.

16 An internal error occurred. Contact your Tivoli representative.

The migration utility panels BLGMIG21 and BLGMIG91 show examples of this user exit.

BLMMIGFS–Free Migration Environment

BLMMIGFS closes the environment of the migration utility. It must be the last
action in the migration utility. After the BLMMIGFS exit is processed, no other
migration utility user exit can be processed.

Input None.

Configuration Migration User Exits

273Terminal Simulator Guide

8.
U

ser
E

xits

Output
The migration utility environment no longer exists. Possible return codes are
listed in Table 58.

Environment
TSP and TSX

Table 58. BLMMIGFS Return Codes
Return Code (TSCAFRET) Description

0 Successful completion.

4 An internal error occurred. Contact your Tivoli
representative.

16 An internal error occurred. Contact your Tivoli
representative.

BLMMIGGS–Set Up Migration Environment

BLMMIGGS sets up the environment for the migration utility. All of the migration
utility user exits depend upon the environment established by this exit. This exit also
determines the consecutive error threshold value.

To set up environment:

Input None.

Output
Environment for migration utility.

Environment
TSP and TSX

To establish the value for consecutive error threshold:

Input The contents of the New data field on the Data Field Specification panel of the
USEREXIT control line calling this exit.

Output
Error threshold is set; a threshold of 3 is used if the value specified for the New
data field is not valid or has been omitted.

Possible return codes are listed in Table 59.

Environment
TSP only

Table 59. BLMMIGGS Return Codes
Return Code
(TSCAFRET)

Description

0 Successful completion.

8 An out of storage condition occurred.

BLMMIGLC–Error Routine Loop Counter

BLMMIGLC either clears the current record processing counter or increments and
tests the current record processing counter. This counter is used during record error

Configuration Migration User Exits

274 Version 7.1

recovery processing. If the current record cannot be canceled within 10 tries, both
record error recovery processing and migration utility processing stop.

To clear the loop counter:

Input YES in the New data field on the Data Field Specification panel of the
USEREXIT control line calling this exit.

Output
Loop counter set to zero.

Environment
TSP only

To increment and test the loop counter:

Input A blank or anything other than YES in the New data field of the Data Field
Specification panel of the USEREXIT control line calling this exit.

Output
Loop counter is incremented and checked. If the value of the loop counter is
greater than 10, migration utility termination status is set.

Environment
TSP only

Possible return codes are listed in Table 60.

Table 60. BLMMIGLC Return Codes
Return Code (TSCAFRET) Description

0 Successful completion.

4 An internal error occurred. Contact your Tivoli
representative.

8 The internal error threshold was reached.
Message BLM13001 was written.

16 An internal error occurred. Contact your Tivoli
representative.

The migration utility panel BLGMIG91 provides an example of this user exit.

BLMMIGMD–Move Variable Data

BLMMIGMD adds a section of an IRC to the end of the TSCA variable data area.
You can use it to move a collected response from one dialog to another or to clear
the TSCA variable data area before building an IRC.

To move a collected response to a new dialog, you must first use the FINDSDATA
control line to determine if the response is in the current record. Then determine the
panel selection number in the new dialog that collects the response. Enter this
number in the Literal/Test data field on the Data Field Specification panel
(BLG8CU9P) of the USEREXIT control line calling this exit. You can precede the
selection number in the Literal/Test data field with additional data to add to the
IRC. The trailing comma after the selection number is added by the user exit and is
not specified in the Literal/Test data field.

Configuration Migration User Exits

275Terminal Simulator Guide

8.
U

ser
E

xits

Input The contents of the Literal/Test data field on the Data Field Specification
panel of the USEREXIT control line calling this exit.

Output
A response is moved to a new dialog. The possible return code is listed in
Table 61.

Environment
TSP only

Table 61. BLMMIGMD Return Codes for Moving a Collected Response
Return Code (TSCAFRET) Description

0 Successful completion.

After a response is moved to the IRC, you can remove it from the current dialog with either
the BLMMIGDE or BLMMIGDD user exit. When the old dialog is maintained in the
record, use BLMMIGDE to delete the response from the old dialog as each response is
moved. When the old dialog is no longer part of the new record, use BLMMIGDD to delete
the response.

After the IRC is constructed, you must specify Get variable data as YES in the ADDDATA
control line, then use a PROCESS control line.

To clear the TSCA variable data area:

Input YES in the New data field on the Data Field Specification panel of the USEREXIT
control line calling this exit.

Output
No other processing. The possible return code is listed in Table 62.

Environment
TSP only

Table 62. BLMMIGMD Return Codes for Clearing the TSCA Variable Data Area
Return Code
(TSCAFRET) Description

0 Successful completion.

The BLGMIG3D TSP provides an example of this user exit.

BLMMIGSA–Search Argument

BLMMIGSA sets the SEARCH command and additional search criteria in the TSCA
variable data area to exclude configuration records already migrated to or created in
Versions 3 or 4. The search argument MIGR/. is added. Data in the TSCA variable
data area is lost.

Input None.

Output
The variable data area containing SEARCH command criteria is set to
exclude Versions 3 or 4 migrated/created records. The possible return code is
listed in Table 63 on page 277.

Configuration Migration User Exits

276 Version 7.1

Environment
TSP and TSX

Table 63. BLMMIGSA Return Codes
Return Code (TSCAFRET) Description

0 Successful completion.

The migration utility panel BLGMIG11 provides an example of this user exit.

BLMMIGSE–Set Error Flag

BLMMIGSE sets or clears the record migration error status. The retention of error
status is required for later use by the migration TSPs. The TSCA return code field
(TSCAFRET) cannot be used because it is normally cleared after each TSP control
line is processed. Use the BLMMIGEC user exit to check error status.

Error status is controlled by the value specified in the Literal/Test data field on the
Data Field Specification panel of the USEREXIT control line. Error status is set
when ON is specified. Error status is cleared when OFF is specified. Error status is
set whenever a condition is detected that prevents migration of the current record.
Setting this status cancels processing for the current record. After processing of the
current record is canceled, the error status is cleared.

Migration utility panels BLGMIG4A and BLGMIG91 provide examples of this user
exit.

Input The contents of the Literal/Test data field in the Data Field Specification
panel of the USEREXIT control line calling this exit.

ON To set error status.

OFF To clear error status.

Output
Record migration error status is set or cleared. Possible return codes are
listed in Table 64.

Environment
TSP only

Table 64. BLMMIGSE Return Codes
Return Code (TSCAFRET) Description

0 Successful completion.

4 Migration utility termination status was set.

Database Administration User Exits
The following user exits are used by the Automatic Log Save Facility and the DB2® Extract
Facility. Refer to the Tivoli Information Management for z/OS Program Administration
Guide and Reference for details on these user exits.

BLGUT3EX–Recovery
Loads the Tivoli Information Management for z/OS database with records that were
off-loaded by the BLGUT4EX user exit.

Configuration Migration User Exits

277Terminal Simulator Guide

8.
U

ser
E

xits

BLGUT3WT–Initialize for Receive
Initializes the TSCAVDA and waits for the interval specified in the LOGSAVE
record.

BLGUT4EX–Offload a Recovery Data Set
Off-loads the recovery data set (SDLDS) into a sequential data set.

BLGUT4WT–Initialize for Send
Initializes the TSCAVDA and waits for the interval specified in the LOGSAVE
record.

BLMSSGEN–SQL Setup, Extract, and Cleanup
Converts Tivoli Information Management for z/OS records to SQL statements for
loading into a DB2 database. The user exit has three modes: Setup, Extract, and
Cleanup.

Escalation and Notification User Exits
The following user exits are used by the escalation facility and immediate notification. Refer
to the Tivoli Information Management for z/OS Program Administration Guide and
Reference for details on these user exits.

BLGESADD–Increment Counter
Adds 1 to the value in TSCAUFLD.

BLGESCCL–Escalation Cleanup
Deletes the escalation load modules and frees the temporary data set.

BLGESCKE–Check escalation
Checks to see if an escalation job is in process.

BLGESCLR–Clear Control Block
Resets the ESCB fields to binary zeros.

BLGESDAT–Date and Time
Puts the system date and time into the TSCA variable data area.

BLGESDUR–Duration
Locates the date and time fields and determines whether the duration (1, 2, or 3
depending on TSCAUFLD) specified by the current rules record is met for notifying
a user ID. A problem record must be in update mode, and the escalation control
block must contain the appropriate duration.

BLGESFCB–Free Control Block
Frees the escalation control block. This must be the last user exit processed in the
escalation function.

BLGESGCB–Get Control Block Storage
Gets storage for the ESCB and anchors it in the TSCA. This user exit must be called
before any other escalation user exit is called.

BLGESGET–Get Control Block Field
Gets a field stored by BLGESPUT, BLGESPUV, or a user-written user exit from the
ESCB and stores it in the TSCA variable data area.

BLGESINI–Initialize
Loads the escalation user exits and allocates a temporary data set that you can use
with the BLGESNOT user exit to send the escalation message.

Database Administration User Exits

278 Version 7.1

BLGESLVL–Level Increment
Increases the escalation level by 1 in the current problem record ESCB, if possible.

BLGESNOT–Notify
Builds the command that notifies a user about a problem record. The command is
built and stored in the TSCA variable data area, overlaying what was there.

BLGESPRI–Priority Update
Increments the value associated with an input prefix by the priority adjust amount in
the escalation control block. The record must be in update mode.

BLGESPUT–Put TSCA Data in Control Block
Gets data from the TSCA and stores it in the escalation control block. This data can
be retrieved by user-exit BLGESGET or a user-written exit routine.

BLGESPUV–Put Variable Data
Gets data from the variable data area or literal data and stores it in the ESCB.

BLGESSCT–Store Criteria
Scans the current rules record for an occurrence of escalation criteria (s-word index
0121) and stores its associated prefix in the next available spot in the ESCB.

BLGESSEA–Get Escalation Criteria
Scans the current rules record for an occurrence of data for each escalation criterion,
and adds any criteria found to the variable data area as part of a search argument.
The search argument locates problem records that meet the escalation criteria in the
rules record.

BLGNSYAL–Allocate Data Set to SYSOUT
Dynamically allocates a data set to SYSOUT with a user-specified destination
(TCP/IP SMTP node and ID).

BLGNSYFR–Free SYSOUT Data Set
Frees the SYSOUT data set allocated by user exit BLGNSYAL.

BLGUSERS–Extract Mail Address from USERS Record
Extracts the mail addresses from the USERS record that match an input name or
mail alias.

General-purpose User Exits
BLGCURDT–Return Current Date, Current Time, and Current Time Zone

The BLGCURDT user exit returns the current date in external format, the current
time in external form, and the current time zone (if UT processing is enabled) in the
variable data area. For TSXs, this is the variable TSCAVDA. The values that are
returned are separated by blanks.

Input None

Output
The external date, the external time, and the external time zone are returned
in the TSCA variable data area (TSP) or in the TSCAVDA variable (TSX).

Environment
TSP and TSX

How to call BLGCURDT from a TSX
You can call user exit BLGCURDT from a TSX using the following syntax:

Escalation and Notification User Exits

279Terminal Simulator Guide

|
|
|
|
|

||

|
|
|

|
|

|
|

8.
U

ser
E

xits

CALL BLGTSX 'USEREXIT','BLGCURDT'

How to call BLGCURDT from a TSP
You can call user exit BLGCURDT from a TSP by calling the USEREXIT
control line.

BLGEDATE–Convert Internal Date to External Date
The BLGEDATE user exit and the BLGIDATE user exit are provided to enable a
TSX or TSP to support a variety of external date formats. Users can specify a
preferred external date format from a variety of supported external date formats. You
can use these user exits to convert dates to and from the correct format as necessary.

The BLGEDATE user exit converts dates in internal date format (YYYY/MM/DD)
to the current user’s external date format. The current user is the user currently
viewing or working with the record. The current user’s external date format is
derived from the user’s profile. Users can specify an external date preference in the
User’s date format field in the user profile (in “User and database defaults”). If no
preference is specified in the user profile, the external date format used for
conversion is the external date format specified on the BLGPARMS DATEFMT
keyword for the user’s session.

The internal date is passed as a parameter from a TSX or in the variable data area
from a TSP.

The user exit does not confirm that a date is valid; it only confirms that the format
is valid. For example, an internal date of 2001/05/35 will be successfully converted
to external format 05/35/2001, even though the date is not valid.

Input For TSPs, put the internal date to be converted into the TSCA variable data
area, then call the USEREXIT control line to invoke this user exit. For
TSXs, specify the internal date format as a parameter when calling this user
exit.

Output
The external date is returned in the TSCA variable data area (TSP) or in the
TSCAVDA variable (TSX).

Environment
TSP and TSX

How to call BLGEDATE from a TSX
You can call user exit BLGEDATE from a TSX using the following syntax:

CALL BLGTSX 'USEREXIT','BLGEDATE',intdate

Parameter Descriptions:
1. intdate

Valid reply
The date in internal format.

Default
None

Required

How to call BLGEDATE from a TSP
You can call user exit BLGEDATE from a TSP by entering the date to be
converted in the variable data area, and then calling the USEREXIT control
line.

General-purpose User Exits

280 Version 7.1

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

||
|
|
|

|
|
|

|
|

|
|

|

|
|

|
|

|
|

|

|
|
|
|

Table 65. BLGEDATE Return and Reason Codes
Return Code (TSCAFRET) Reason Code (TSCAFRES) Description

0 0 The date was successfully
converted.

8 8 A conversion failure occurred.

BLGIDATE–Convert External Date to Internal Date
The BLGIDATE user exit converts dates in the current user’s external date format to
10-character internal date format (YYYY/MM/DD). For a description of the “current
user’s” date format, see the description of the BLGEDATE user exit.

The external date is passed as a parameter from a TSX or in the variable data area
from a TSP.

The user exit does not confirm that a date is valid; it only confirms that the format
is valid. For example, an internal date of 2001/05/35 will be successfully converted
to external format 05/35/2001, even though the date is not valid.

Input For TSPs, put the internal date to be converted into the TSCA variable data
area, then call the USEREXIT control line to invoke this user exit. For
TSXs, specify the internal date format as a parameter when calling this user
exit.

Output
The internal date is returned in the TSCA variable data area (TSP) or in the
TSCAVDA variable (TSX).

Environment
TSP and TSX

How to call BLGIDATE from a TSX
You can call user exit BLGIDATE from a TSX using the following syntax:

CALL BLGTSX 'USEREXIT','BLGIDATE',extdate

Parameter Descriptions:
1. extdate

Valid reply
The date in external format.

Default
None

Required

How to call BLGIDATE from a TSP
You can call user exit BLGIDATE from a TSP by entering the date to be
converted in the variable data area, and then calling the USEREXIT control
line.

Table 66. BLGIDATE Return and Reason Codes
Return Code (TSCAFRET) Reason Code (TSCAFRES) Description

0 0 The date was successfully
converted.

8 8 A conversion failure occurred.

General-purpose User Exits

281Terminal Simulator Guide

||

|||

|||
|

|||
|

|
|
|
|

|
|

|
|
|

||
|
|
|

|
|
|

|
|

|
|

|

|
|

|
|

|
|

|

|
|
|
|

||

|||

|||
|

|||
|

8.
U

ser
E

xits

BLGJSKIP–Skip Transfer-to or Owning Class Processing
Disables or enables the updating of the owning privilege class when a record is
filed. When Apply not logic is set to NO, updating of the owning class is disabled.
When Apply not logic is set to YES, updating of the owning class is enabled.

Input TSCA1ANL, set on or off.

Output
Transfer-to or Owning privilege class processing is disabled or enabled.
Possible return and reason codes are listed in Table 67.

Environment
TSP only

Table 67. BLGJSKIP Return and Reason Codes
Return Code (TSCAFRET) Reason Code (TSCAFRES) Description

0 0 Successful completion.

8 8 A serious processing error
occurred.

The BTNTTOTT TSP provides an example of using this user exit.

BLGSPFGT–Retrieve Variable from an ISPF Pool

Copies data from an ISPF pool to the TSCA variable data area. BLGSPFGT first
searches the function pool for the variable, then the shared pool, and finally the
profile pool.

Input The Label name field in the Data Specification Panel of the USEREXIT
control line contains the name of the ISPF variable to retrieve.

The Replace data? field in the Flag Field Specification Panel of the
USEREXIT control line is YES if you want to replace any existing data in
the variable data area with the value of the ISPF variable. If this field is NO,
any existing data is appended with the value of the ISPF variable.

Output
The variable is retrieved from one of the ISPF profile pools (searched in the
order of function pool, shared pool, and finally, profile pool). Possible return
and reason codes are listed in Table 68 on page 283.

Environment
TSP and TSX

How to call BLGSPFGT from a TSX
You can call user exit BLGSPFGT from a TSX using the following syntax:

CALL BLGTSX 'USEREXIT','BLGSPFGT',varname

Parameter Descriptions:
1. varname

Valid reply
The name of the ISPF variable that you wish to get. The value of
″varname″ is stored in the variable data area (VDA).

Note: The contents of the variable data area are replaced with the
results from BLGSPFGT.

General-purpose User Exits

282 Version 7.1

|

Default
None

Required

Table 68. BLGSPFGT Return and Reason Codes
Return Code (TSCAFRET) Reason Code (TSCAFRES) Description

0 0 The ISPF variable was
successfully copied to the TSCA
variable data area.

0 4 The ISPF variable was found
but was empty.

8 4 Insufficient space exists in the
variable data area for the
variable contents.

8 8 The ISPF VCOPY service did
not retrieve the variable because
the Label name field does not
contain a valid ISPF variable
name. TSCAFRES is set to the
return code from VCOPY (refer
to Dialog Management Services
for the meaning of the return
codes).

12 The ISPF VCOPY service did
not retrieve the variable.
TSCAFRES is set to the return
code from VCOPY (refer to
Dialog Management Services for
the meaning of the return
codes).

The BLGTPSET TSP provides an example of using this user exit.

BLGSPFPT–Update Variable in the ISPF Profile Pool

Copies data from the literal or variable data field to the ISPF profile pool. If a
variable of the same name exists in the profile pool, it is updated. If it does not exist
in the pool, it is created.

Note: The user exit BLGSPFPT only does a VPUT to the profile pool. Any other
instances of the variable that exist in either the function pool or the shared
pool are left unchanged.

Input The Label name field in the Data Specification Panel of the USEREXIT
control line containing the name of the ISPF variable to be created or
updated.

¶ If you want to get the data from the variable data area, the Get variable
data field in the Flag Field Specification Panel of the USEREXIT
control line set to YES.

¶ If you want to use literal data, the Literal/test data field in the Data
Specification Panel of the USEREXIT control line containing a value.

General-purpose User Exits

283Terminal Simulator Guide

8.
U

ser
E

xits

¶ If you want to clear out the variable, the Get variable data field set to
NO. The Literal/test data field should be blank.

Output
The ISPF variable is set to the specified value. Possible return and reason
codes are listed in Table 69.

Environment
TSP and TSX

How to call BLGSPFPT from a TSX
You can call user exit BLGSPFPT from a TSX using the following syntax:

CALL BLGTSX 'USEREXIT','BLGSPFPT',varname,value

Parameter Descriptions:
1. varname

Valid reply
The name of the ISPF variable that you wish to set.

Default
None

Required

2. value

Valid reply
The value that you want to set the variable to.

Default
None

Required

Table 69. BLGSPFPT Return and Reason Codes
Return Code (TSCAFRET) Reason Code (TSCAFRES) Description

0 0 The profile pool was
successfully updated.

8 4 Literal/test data cannot be
specified when Get variable
data is set to YES.

8 8 The Label field does not
contain a variable.

12 The ISPF VPUT service did not
end successfully. TSCAFRES
was set to the return code from
VPUT (refer to Dialog
Management Services for the
meaning of the return codes).

The BLGTPSET TSP provides an example of using this user exit.

BLMXSPRM–Provide Values of Session Parameters

This user exit copies data from the TPCB, DCDT, and DSAT control blocks into the
TSCA variable data area. It returns the values of these session parameters:

General-purpose User Exits

284 Version 7.1

|

|
|

¶ Default external date format (DATEFMT keyword)

¶ Default time zone (TIMEZONE keyword)

¶ Date conversion routine name (DATECNV keyword)

¶ Time conversion routine name (TIMECNV keyword)

¶ Data model database ID and trigger character (MODELDB keyword)

¶ Start panel name (PANEL keyword)

¶ “Old record” external date form (ODATEFMT keyword)

¶ “Old record” time zone (OTIMEZON keyword)

¶ Session member suffix (the last two characters of the session member name)

¶ Date and time the session member was last assembled

¶ Subsystem name (CAS keyword)

¶ Sort routine name (SORT keyword)

¶ Type of sort used for search results sorting (EXTSORT keyword)

¶ Attention key status (ATTNKEY keyword)

¶ Search/sort record limits (SORTPFX keyword)

¶ Trigger character for multi-cluster SDDS/SDIDS (BLGCLUST TRIGGER
keyword)

¶ Data set name of the dictionary data set

¶ Data set name or DDNAME of the RFT data set, or both

¶ Number of SDDS clusters and data set name of the first cluster

¶ Number of SDIDS clusters and data set name of the first cluster

¶ Data set name of the SDLDS, if any

¶ Label, data set name, and access type (read-only or write) of up to seven red
panel data sets

These values are returned in a fixed format in the variable data area (TSCAVDA
variable).

The Desktop calls the BLMXSPRM user exit from TSX BLGTDFDT to access
default date and time formats. To see an example of this, view TSX BLGTDFDT in
the TSX dataset.

Note: The BLMXSPRM user exit provides a function similar to that of the
BLGTSESS TSX. The difference is that the BLMXSPRM user exit puts
values in the variable data area and the BLGTSESS TSX uses REXX SAY
statements to show the session member values on the user’s screen.

Input To use the BLMXSPRM user exit, issue a TSX USEREXIT control line.
Optionally, you can include a parameter to indicate what type of data to
retrieve. Then parse the value returned in the TSCAVDA variable to access
the desired values.

Output
The output from user exit BLMXSPRM is a single character string that

General-purpose User Exits

285Terminal Simulator Guide

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|
|

|
|

|
|
|

|
|
|
|

||
|
|
|

|
|

8.
U

ser
E

xits

varies in format depending on whether you choose the GENERAL option or
the PANELS option. The following structure occurs when you specify the
GENERAL option:

Name Length Macro Keyword Description
-------- ------ -------- -------- ------------------------
DFLTDFMT 10 BLGPARMS DATEFMT Default date format
DFLTTZON 8 BLGPARMS TIMEZONE Default time zone
DATERTN 8 BLGPARMS DATECNV Date conversion routine
TIMERTN 8 BLGPARMS TIMECNV Time conversion routine
DMDLDB 1 BLGPARMS MODELDB Data model database ID
DMDLTRIG 1 BLGPARMS MODELDB Data model trigger char
STARTPNL 8 BLGPARMS PANEL Start panel
ORECDFMT 10 BLGPARMS ODATEFMT "Old record" date format
ORECTZON 8 BLGPARMS OTIMEZON "Old record" time zone
SESSID 2 Session member suffix
ASMDATE 8 Assembly date
ASMTIME 5 Assembly time (HH:MM)
SUBSYS 4 BLGPARMS CAS Subsystem ID of BLX-SP
SORTRTN 8 BLGPARMS SORT Sort routine name
SRCHSORT 1 BLGPARMS EXTSORT Sort routine for search

E=External, I=Internal
ATTNKEY 1 BLGPARMS ATTNKEY Attention key setting

D=Disabled, E=Enabled
SORTPFX1 10 BLGPARMS SORTPFX Sort prefix #1 value
SORTPFX2 10 BLGPARMS SORTPFX Sort prefix #2 value
SORTPFX3 10 BLGPARMS SORTPFX Sort prefix #3 value
DICTDSN 44 BLGCLDSN DSN Dictionary data set name
RFTDSN 44 BLGCLDSN DSN RFT data set name
RFTDDN 8 BLGCLDSN FILE RFT DD name
DBTRIG 1 BLGCLUST TRIGGER Database trigger char
SDDSCNT 3 BLGCLUST TRIGGER Number of SDDSs
SDDSDSN 44 BLGCLDSN DSN SDDS #1 data set name
SDIDSCNT 3 BLGCLUST TRIGGER Number of SDIDSs
SDIDSDSN 44 BLGCLDSN DSN SDIDS #1 data set name
SDLDSDSN 44 BLGCLDSN DSN SDLDS data set name

The following structure occurs when you specify the PANELS option:
Name Length Macro Keyword Description
-------- ------ -------- -------- ------------------------
WRITELBL 8 BLGCLDSN (label) Write panel data set label
WRITEDSN 44 BLGCLDSN DSN Write panel data set name
* 10 Reserved for expansion
READCNT 2 # of read panel data sets
(The following is repeated for up to 7 read panel data sets.)
READLBL 8 BLGCLDSN (label) Read panel data set label
READACC 1 BLGCLDSN RDONLY Read panel data set access (R or W)
READDSN 44 BLGCLDSN DSN Read panel data set name
* 11 Reserved for expansion

Note: The values in the Name columns above are the session parm
keywords these values are associated with.

Environment
TSX

How to call BLMXSPRM from a TSX
You can call user exit BLMXSPRM from a TSX using the following syntax:

CALL BLGTSX 'USEREXIT','BLMXSPRM',option

Parameter Descriptions:
1. option

General-purpose User Exits

286 Version 7.1

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|

|
|

Valid reply
Specify GENERAL for all information except panel data sets.
Specify PANELS for panel data set information.

Default
None

Required

General-purpose User Exits

287Terminal Simulator Guide

|
|
|

|
|

|

|

8.
U

ser
E

xits

General-purpose User Exits

288 Version 7.1

Terminal Simulator Communications
Fields

The Terminal Simulator Communications Area (TSCA) is a control block that contains flag
indicator fields and data fields. Tivoli Information Management for z/OS initializes this
control block when a TSP is called.

The TSCA is shipped with the product and is an assembler DSECT named BLGUTSCA.
You can use the assembler copy or build your own.

You can also modify TSCA fields. However, some fields, such as the variable data area
pointer field, cause problems if they are modified. The tables in this section show which
fields not to modify.

Table 70 and Table 71 on page 294 describe the contents of the control block, including the
field lengths and the offset of each field into the record. The last three columns of the tables
indicate the following:
ASU The field is automatically updated when control returns to the TSP.
NUS Do not change the field using an exit routine.
US You can change the field using an exit routine.

Contents of the TSCA
Part of the SBLMMACS data set that is shipped with Tivoli Information Management for
z/OS is an assembler DSECT of the TSCA. Its member name is BLGUTSCA. Table 70
describes the fields in BLGUTSCA that are set by Tivoli Information Management for z/OS
or a user exit when a control line is processed.

Table 70. Contents of the TSCA
Field Name Description Field

Length
(bytes)

Hex Offset ASU NUS US

TSCAACRN -
Acronym

TSCA 4 0 X

TSCAFRET -
Function return
code

Set by TSP control lines to
show processing results.

4 4 X X

TSCAFRES -
Function reason
code

Set by TSP control lines to
show processing results.

4 8 X X

A

289Terminal Simulator Guide

A
.

Term
in

al
S

im
u

lato
r

C
o

m
m

u
n

icatio
n

s
F

ield
s

Table 70. Contents of the TSCA (continued)
Field Name Description Field

Length
(bytes)

Hex Offset ASU NUS US

TSCACPNL -
Current panel
name

Name of the Tivoli
Information Management for
z/OS panel currently being
processed. For help panels,
this field is set to BLG1T007.

8 C X X

TSCALFID -
Last filed record
ID

Record ID of the most
recently filed record. This
field contains blanks if no
record has been filed.

8 14 X X

TSCACRID -
Current record ID

Record ID of the record
currently being accessed. This
field contains blanks if no
record has been accessed.

8 1C X X

TSCAUFLD -
User field

Set when a SETFIELD or
USEREXIT control line is
processed.

8 24 X

TSCAMSGC -
Total messages

Total number of messages on
the current or system message
chain. This number includes
any messages generated by the
previous PROCESS control
line or by a MESSAGE
control line run since the last
PROCESS control line when
the Save generated message
field was not set to YES.

4 2C X X

TSCACPOS -
Find string
location

Byte number of the position at
which a string is found when
a find-string-anywhere
operation is performed for a
TESTFIELD.

4 30 X

TSCACTPL Current table panel line. 272 34

TSCATPLC -
Total line count

Number of lines on the
current table panel.

4 34 X X

TSCATPLN -
Current line
number

Number (relative to 1) of the
current line on the current
table panel.

4 38 X X

TSCAMTBL -
Maximum table
panel line length

Longest line length that is
allowed for the current line of
the current table panel.

4 3C X X

TSCACTBL -
Current table
panel line length

Amount of data that is in the
current table panel line.

4 40 X

Contents of the TSCA

290 Version 7.1

Table 70. Contents of the TSCA (continued)
Field Name Description Field

Length
(bytes)

Hex Offset ASU NUS US

TSCATBLL -
Current table
panel line

Data to be entered on the
current line of the current
table panel. When a
PROCESS control line runs,
the current line of the table
panel is processed. The data in
this field becomes the current
line, and Tivoli Information
Management for z/OS copies
the next line of data into this
field.

256 44 X X

TSCAVDA Variable data area. 12 144

TSCAVDAM -
Maximum user
variable data
length

Set at TSP initialization. The
length of the buffer obtained
is equal to the length of the
command-line reply buffer.
This field should be checked
by an exit routine that is
modifying the user
variable-data area to verify
that TSCAVDAL does not
exceed its length.

4 144 X

TSCAVDAL -
Current user
variable data
length

Contains the length of the data
currently in the user
variable-data area. Several
functions use this field to
determine how much data
from the user variable-data
area is to be used. Set by a
USEREXIT control line.

4 148 X

TSCAVDAP -
User variable data
area pointer

Set at TSP initialization and
released when the TSP ends.
Exit routines are responsible
for moving data into this data
area for get-variable-data
operations.

4 14C X

TSCAFB Flatten buffer information. 8 150

TSCAFBL -
Flatten buffer
length

Length of the flatten buffer as
specified by TSCAFBP.

4 150 X

TSCAFBP -
Pointer to
flattened record

Address of the area containing
the flattened record produced
by the FLATTEN control line.
The first 2 bytes of the record
contain the length of the
flattened record, including the
length field itself.

4 154 X

TSCAUFB Unflatten buffer information. 8 158

Contents of the TSCA

291Terminal Simulator Guide

A
.

Term
in

al
S

im
u

lato
r

C
o

m
m

u
n

icatio
n

s
F

ield
s

Table 70. Contents of the TSCA (continued)
Field Name Description Field

Length
(bytes)

Hex Offset ASU NUS US

TSCAUFBL -
Unflatten buffer
length

Contains the length of the
unflatten buffer specified by
TSCAUFBP.

4 158 X

TSCAUFBP -
Pointer to
unflattened record

Contains the address of the
area containing the unflattened
record retrieved by a user
program for the UNFLATTEN
control line. The first 2 bytes
of the record contain the
length of the flattened record
(the record to be unflattened),
including the length field
itself.

4 15C X

TSCAUPTR -
User anchor field

Full-word pointer field
reserved for the user. You can
use this field to point to a user
GETMAINed control block. A
user exit can also set this field
to a value that it or another
user exit can interpret.

4 160 X

TSCAVPHR FINDSDATA and
FINDSJRNL information.

20 164

TSCAVPHL -
Visible phrase
length

Length of the visible phrase
specified by TSCAVPH. This
field is set by the
FINDSDATA control line.

4 164 X

TSCAVPH -
Visible phrase

Visible phrase associated with
the item found by the
FINDSDATA control line,
such as RECS=PROBLEM.
This field has a value only
when the found data was
collected from a selection
panel, an options panel, or a
data-entry panel.

16 168 X

TSCARSWD S-Word information for
FINDSDATA and
FINDSJRNL.

14 178

TSCARSDL -
S-Word length

Length of the s-word specified
by TSCARSD. This field is
set by either the FINDSDATA
or FINDSJRNL control line.

4 178 X

TSCARSD -
S-Word

S-Word associated with the
item found by the
FINDSDATA, FINDSJRNL,
or READDICT control line.

10 17C X

TSCARRBL Data length of the residual
reply buffer.

2 186 X X

Contents of the TSCA

292 Version 7.1

Table 70. Contents of the TSCA (continued)
Field Name Description Field

Length
(bytes)

Hex Offset ASU NUS US

TSCARPWD Prefix information for
FINDSDATA and
FINDSJRNL.

14 188

TSCARPDL -
Prefix length

Length of the prefix
associated with the item found
by the FINDSDATA or
FINDSJRNL control line, up
to and including the / or _
delimiters.

4 188 X

TSCARPD -
Prefix

Prefix associated with the item
found by the FINDSDATA,
FINDSJRNL, or READDICT
control line. For example, AB/
(the prefix for ABEND code).

10 18C X

TSCASESS Current session member
suffix.

2 196 X

TSCASDFL -
Data field length

Length of the data found
during the processing of a
FINDSDATA or FINDSJRNL
control line.

4 198 X

TSCASDF -
Structured data
field

Data associated with a prefix
for FINDSDATA,
FINDSJRNL, or READDICT.

220 19C X

TSCASUSP Suspension level of the
current session.

2 278 X X

TSCAPRIV Name of the current privilege
class.

8 27A X X

TSCATLIX Last used or found index
value.

2 282 X X

TSCARSV9 Reserved 8 284 X

TSCAMALP Tivoli control block 4 28C X X

TSCASUBP Pointer to SUB. 4 290 X

TSCAIPTR Tivoli control block 4 294 X X

TSCARSVA Reserved 3 298 X

TSCALFDB Database ID of the last filed
record when TSCALFID (last
filed record ID) is updated.

1 29B X X

TSCACMOF -
Accumulated data
length

Current length of the data in
the command-line reply buffer.

4 29C X X

TSCACMRB -
Command-line
reply buffer

Where data is accumulated to
be passed to Tivoli
Information Management for
z/OS for processing.

512 2A0 X

Contents of the TSCA

293Terminal Simulator Guide

A
.

Term
in

al
S

im
u

lato
r

C
o

m
m

u
n

icatio
n

s
F

ield
s

Table 70. Contents of the TSCA (continued)
Field Name Description Field

Length
(bytes)

Hex Offset ASU NUS US

TSCARRB -
Residual reply
buffer

Area containing the current
contents of the Tivoli
Information Management for
z/OS reply buffer. Under
normal conditions, this area
contains blanks. When Tivoli
Information Management for
z/OS finds an error (after a
PROCESS control line), the
response that is in error, and
all unprocessed data from the
Tivoli Information
Management for z/OS reply
buffer, are in this field.

512 4A0 X X

TSCACLIN This area contains fields that
contain the current control-line
information. If no data exists
for a field, it is either blank or
set to zero. Table 71 shows
each of the fields in
TSCACLIN.

278 6A0 X

Table 71 describes the portion of the TSCA control block (TSCACLIN) that contains the
information for each data item collected by the TSP control lines. When a control line is
called, and before it is processed, the data from the TSP control line is copied into these
fields. A field is either blank or zero if no data exists for it. These fields are for internal TSP
processing; none of them should be set by the exit routines.

Table 71. TSCA Control Block and TSP Control Lines
Field Name Description Field

Length
(bytes)

Hex Offset ASU NUS US

TSCAFUNC Function name 10 6A0 X X

TSCA0FLG
TSCA0VAR
TSCA0FST
TSCA0LST
TSCA0FLO
TSCA0FND
TSCA0TRO
TSCA0TRL
TSCAMODL

Get variable data
Find data - first occurrence
Find data - last occurrence
Test panel or message
Find string anywhere
Trace control lines
Trace link function
Tivoli or user exit routine

1
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit

6AA
6AA.0
6AA.1
6AA.2
6AA.3
6AA.4
6AA.5
6AA.6
6AA.7

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

Contents of the TSCA

294 Version 7.1

Table 71. TSCA Control Block and TSP Control Lines (continued)
Field Name Description Field

Length
(bytes)

Hex Offset ASU NUS US

TSCA1FLG
TSCA1ANL
TSCA1STG
TSCA1PNL
TSCA1MSG
TSCA1TSC
TSCA1CRD
TSCA1LRD
TSCA1RET

Apply not logic
Treat as string data
Print current panel
Print message chain
Print TSCA
Flatten current record
Flatten last record filed
Unflatten, retain record ID

1
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit

6AB
6AB.0
6AB.1
6AB.2
6AB.3
6AB.4
6AB.5
6AB.6
6AB.7

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

TSCA2FLG
TSCA2UMS
TSCA2SGM
TSCA2IDT
TSCA2REP
TSCA2GLX
TSCA2PRV
TSCA2CSS
TSCA2RGM

User Notify type message
Save generated message
Insert data type
Replace data
Indicates list item field
Find previous occurrence
Mixed case search
Return generated message

1
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit

6AC
6AC.0
6AC.1
6AC.2
6AC.3
6AC.4
6AC.5
6AC.6
6AC.7

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

TSCA3FLG 1 6AD X X

TSCASHDR
TSCASIX
TSCASWDL
TSCASWD

S-word information
S-word index
S-word data length
S-word data

13
2
1

10

6AE
6AE
6B0
6B1

X
X
X
X

X
X
X
X

TSCARSV1 1 6BB X X

TSCAPHDR
TSCAPIX
TSCAPFXL
TSCAPFX

P-word index
Prefix data length
Prefix data

9
2
1
6

6BC
6BC
6BE
6BF

X
X
X
X

X
X
X
X

TSCARSV2 Reserved 1 6C5 X X

TSCAVHDR
TSCAVALL
TSCAVAL

Validation data length
Validation data

33
1

32

6C6
6C6
6C7

X
X
X

X
X
X

TSCARSV3 Reserved 1 6E7 X X

TSCANHDR
TSCANSIX
TSCANSDL
TSCANSWD

New s-word index
New s-word data length
New s-word data

13
2
1

10

6E8
6E8
6EA
6EB

X
X
X
X

X
X
X
X

TSCARSV4 1 6F5 X X

TSCATFLD
TSCAFLD
TSCAATTR
TSCAMASK
TSCAFLEN
TSCAOFFS

TSCA field name
TSCA field attribute
TSCA field name
TSCA field length
TSCA field offset

14
8
1
1
2
2

6F6
6F6
6FE
6FF
700
702

X
X
X
X
X
X

X
X
X
X
X
X

Contents of the TSCA

295Terminal Simulator Guide

A
.

Term
in

al
S

im
u

lato
r

C
o

m
m

u
n

icatio
n

s
F

ield
s

Table 71. TSCA Control Block and TSP Control Lines (continued)
Field Name Description Field

Length
(bytes)

Hex Offset ASU NUS US

TSCA5FLG
TSCAVDAO
TSCASVAL
TSCAUCTL
TSCAPCGZ
TSCACGNZ
TSCAAHEA
TSCAAHEF
TSCAXLEN

Use variable data for output
Skip assisted-entry validation
Use specified control data
Only cognize p-word data
Cognize data
Journal data
Journal sequence
TESTFIELD length match

1
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit

704
704.0
704.1
704.2
704.3
704.4
704.5
704.6
704.7

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

TSCAIFLL User data length 1 705 X X

TSCALHDR
TSCALITL
TSCALIT

Literal/test data length
Literal/test data

33
1

32

706
706
707

X
X
X

X
X
X

TSCANLHD
TSCANDAL
TSCANDAT

New data length
New data

33
1

32

727
727
728

X
X
X

X
X
X

TSCALABE
TSCATNUM
TSCALABL

Target control line of branch
Label name

10
2
8

748
748
74A

X
X
X

X
X
X

TSCAPANL Panel name 8 752 X X

TSCAFUEX Function exit 8 75A X X

TSCAVNAM Verify name 8 762 X X

TSCAIFLD User data 8 76A X X

TSCANPHD
TSCANPIX
TSCANPFL
TSCANPFX

New prefix index
New prefix length
New prefix data

9
2
1
6

772
772
774
775

X
X
X
X

X
X
X
X

TSCA6FLG
TSCABCON
TSCADCON
TSCAHCON
TSCAPNEW
TSCADELS
TSCADELD
TSCAFFTX
TSCARSV7

Convert to binary
Convert to decimal
Convert to hex
Prefix in new data
Delete s-word
Delete data
Text option
Reserved

1
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit

77B
77B.0
77B.1
77B.2
77B.3
77B.4
77B.5
77B.6
77B.7

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

TSCANVHD
TSCANVLL
TSCANVAL

New validation data length
New validation data

33
1

32

77C
77C
77D

X
X
X

X
X
X

TSCARSV6 Reserved 1 79D X X

TSCALIX List index value 2 79E X X

TSCAPTCH Reserved 22 7A0 X X

TSCA Index
The following is an alphabetical list of TSCA fields with their corresponding hex offsets.
TSCA 0

Contents of the TSCA

296 Version 7.1

TSCAACRN 0
TSCAAHEA 704.5
TSCAAHEF 704.6
TSCAATTR 6FE
TSCABCON 77B.0
TSCACGNZ 704.4
TSCACLIN 6A0
TSCACMOF 29C
TSCACMRB 2A0
TSCACONV 77B
TSCACPNL C
TSCACPOS 30
TSCACRID 1C
TSCACTBL 40
TSCACTPL 34
TSCADCON 77B.1
TSCADELD 77B.5
TSCADELS 77B.4
TSCAFB 150
TSCAFBL 150
TSCAFBP 154
TSCAFFTX 77B.6
TSCAFLD 6F6
TSCAFLEN 700
TSCAFRES 8
TSCAFRET 4
TSCAFUEX 75A
TSCAFUNC 6A0
TSCAHCON 77B.2
TSCAIFLD 76A
TSCAIFLL 705
TSCAIPTR 294
TSCALABE 748
TSCALABL 74A
TSCALFDB 29B
TSCALFID 14
TSCALHDR 706
TSCALIT 707
TSCALITL 706
TSCALIX 79E
TSCAMALP 28C
TSCAMASK 6FF
TSCAMODL 6AA.7
TSCAMSGC 2C
TSCAMTBL 3C
TSCANDAL 727
TSCANDAT 728
TSCANHDR 6E8
TSCANLHD 727
TSCANPFL 774
TSCANPFX 775
TSCANPHD 772

Contents of the TSCA

297Terminal Simulator Guide

A
.

Term
in

al
S

im
u

lato
r

C
o

m
m

u
n

icatio
n

s
F

ield
s

TSCANPIX 772
TSCANSDL 6EA
TSCANSIX 6E8
TSCANSWD 6EB
TSCANVAL 77D
TSCANVHD 77C
TSCANVLL 77C
TSCAOFFS 702
TSCAPANL 752
TSCAPCGZ 704.3
TSCAPFX 6BF
TSCAPFXL 6BE
TSCAPHDR 6BC
TSCAPIX 6BC
TSCAPNEW 77B.3
TSCAPRIV 27A
TSCAPTCH 79E
TSCARPD 18C
TSCARPDL 188
TSCARPWD 188
TSCARRB 4A0
TSCARRBL 186
TSCARSD 17C
TSCARSDL 178
TSCARSV1 6BB
TSCARSV2 6C5
TSCARSV3 6E7
TSCARSV4 6F5
TSCARSV5 704
TSCARSV6 79D
TSCARSV7 77B.7
TSCARSV9 284
TSCARSVA 298
TSCARSWD 178
TSCASDF 19C
TSCASDFL 198
TSCASESS 196
TSCASHDR 6AE
TSCASIX 6AE
TSCASUBP 290
TSCASUSP 278
TSCASVAL 704.1
TSCASWD 6B1
TSCASWDL 6B0
TSCATBLL 44
TSCATFLD 6F6
TSCATLIX 282
TSCATNUM 748
TSCATPLC 34
TSCATPLN 38
TSCAUCTL 704.2
TSCAUFB 158

Contents of the TSCA

298 Version 7.1

TSCAUFBL 158
TSCAUFBP 15C
TSCAUFLD 24
TSCAUPTR 160
TSCAVAL 6C7
TSCAVALL 6C6
TSCAVDA 144
TSCAVDAL 148
TSCAVDAM 144
TSCAVDAO 704.0
TSCAVDAP 14C
TSCAVHDR 6C6
TSCAVNAM 762
TSCAVPH 168
TSCAVPHL 164
TSCAVPHR 164
TSCAXLEN 704.7
TSCA0FLG 6AA
TSCA0FLO 6AA.3
TSCA0FND 6AA.4
TSCA0FST 6AA.1
TSCA0LST 6AA.2
TSCA0TRL 6AA.6
TSCA0TRO 6AA.5
TSCA0VAR 6AA.0
TSCA1ANL 6AB.0
TSCA1CRD 6AB.5
TSCA1FLG 6AB
TSCA1LRD 6AB.6
TSCA1MSG 6AB.3
TSCA1PNL 6AB.2
TSCA1RET 6AB.7
TSCA1STG 6AB.1
TSCA1TSC 6AB.4
TSCA2CSS 6AC.6
TSCA2FLG 6AC
TSCA2GLX 6AC.4
TSCA2IDT 6AC.2
TSCA2PRV 6AC.5
TSCA2REP 6AC.3
TSCA2RGM 6AC.7
TSCA2SGM 6AC.1
TSCA2UMS 6AC.0
TSCA3FLG 6AD

Mapping of the TSCA
The following is an assembler language mapping of the terminal simulator communications
area (TSCA). This macro is shipped under the name BLGUTSCA. You can use this
mapping, or create your own.

Contents of the TSCA

299Terminal Simulator Guide

A
.

Term
in

al
S

im
u

lato
r

C
o

m
m

u
n

icatio
n

s
F

ield
s

*
* TERMINAL SIMULATOR COMMUNICATIONS AREA
*

TSCA DSECT * TERMINAL SIMULATOR COMM AREA

DS 0F
TSCAACRN DS CL4 * TSCA ACRONYM
TSCAFRET DS F * FUNCTION RETURN CODE
TSCAFRES DS F * FUNCTION REASON CODE
TSCACPNL DS CL8 * THE CURRENT PANEL NAME
TSCALFID DS CL8 * THE RECORD ID OF LAST FILED RECORD
TSCACRID DS CL8 * THE RECORD ID OF CURRENT RECORD
TSCAUFLD DS CL8 * USER-DEFINABLE FIELD
TSCAMSGC DS F * THE # OF MESSAGES ON MESSAGE CHAIN
TSCACPOS DS F * BYTE # OF STRING FOUND IN TESTFIELD
TSCACTPL DS 0CL272 * CURRENT TABLE-PANEL LINE INFORMATION
TSCATPLC DS F * # OF LINES ON THE CURRENT TABLE PANEL
TSCATPLN DS F * LINE # OF CURRENT LINE ON TABLE PANEL
TSCAMTBL DS F * MAX. DATA LENGTH ALLOWED FOR TSCATBLL
TSCACTBL DS F * CURRENT LENGTH OF DATA IN TSCATBLL
TSCATBLL DS CL256 * CURRENT TABLE PANEL LINE
TSCAVDA DS 0CL12 * VARIABLE DATA AREA
TSCAVDAM DS F * MAX. LENGTH OF VARIABLE DATA AREA
TSCAVDAL DS F * CURRENT LENGTH OF VARIABLE DATA AREA
TSCAVDAP DS A * ADDRESS OF THE VARIABLE DATA AREA
TSCAFB DS 0CL8 * FLATTEN BUFFER INFORMATION
TSCAFBL DS F * SIZE OF THE FLATTEN BUFFER
TSCAFBP DS A * POINTER TO FLATTEN BUFFER
TSCAUFB DS 0CL8 * UNFLATTEN BUFFER INFORMATION
TSCAUFBL DS F * SIZE OF THE UNFLATTEN BUFFER
TSCAUFBP DS A * POINTER TO UNFLATTEN BUFFER
TSCAUPTR DS A * FULL-WORD POINTER RESERVED FOR USER

*
* FIELDS TSCAVPHR, TSCARSWD, TSCARPWD, TSCASDFL, AND TSCASDF
* ARE USED BY THE FINDSJRNL AND FINDSDATA FUNCTIONS
*

TSCAVPHR DS 0CL20 * VISIBLE PHRASE RETURNED BY FSD, FSJ
TSCAVPHL DS F * LENGTH OF THE VISIBLE PHRASE
TSCAVPH DS CL16 * THE ASSOCIATED VISIBLE PHRASE
TSCARSWD DS 0CL14 * S-WORD RETURNED BY FINDSDATA, FINDSJRNL
TSCARSDL DS F * ACTUAL RETURNED S-WORD LENGTH
TSCARSD DS CL10 * ACTUAL RETURNED S-WORD VALUE
TSCARRBL DS H * LENGTH OF RESIDUAL-REPLY BUFFER
TSCARPWD DS 0CL14 * P-WORD RET. BY FINDSDATA, FINDSJRNL
TSCARPDL DS F * ACTUAL RETURNED P-WORD LENGTH
TSCARPD DS CL10 * ACTUAL RETURNED P-WORD VALUE
TSCASESS DS CL2 * CURRENT SESSION MEMBER SUFFIX
TSCASDFL DS F * LENGTH OF STRUCTURED DATA
TSCASDF DS CL220 * STRUCTURED DATA TEXT OR S/PWORD DATA
TSCASUSP DS CL2 * SUSPENSION LEVEL
TSCAPRIV DS CL8 * CURRENT PRIVILEGE CLASS
TSCATLIX DS CL2 * LIST INDEX VALUE
TSCARSV9 DS CL8 * RESERVED
TSCAMALP DS A * TIVOLI CONTROL BLOCK POINTER
TSCASUBP DS A * POINTER TO SEARCH USER BLOCK
TSCAIPTR DS A * TIVOLI CONTROL BLOCK POINTER
TSCARSVA DS CL3 * RESERVED
TSCALFDB DS CL1 * DATABASE OF LAST FILED RECORD
TSCACMOF DS F * OFFSET IN COMMAND BUFFER NEXT BYTE
TSCACMRB DS 2CL256 * COMMAND LINE REPLY BUFFER
TSCARRB DS 2CL256 * RESIDUAL REPLY BUFFER

Mapping of the TSCA

300 Version 7.1

*
* TERMINAL SIMULATION CONTROL
*

TSCACLIN DS 0CL278 * CONTROL LINES
TSCAFUNC DS CL10 * FUNCTION NAME
TSCA0FLG DS XL1 * CONTROL FLAG “0”
TSCA0VAR EQU X'80' * A: GET VARIABLE DATA
TSCA0FST EQU X'40' * B: FIND FIRST OR NEWEST OCC FSD, FJR
TSCA0LST EQU X'20' * C: FIND LAST OR OLDEST OCC FSD, FJR
TSCA0FLO EQU X'10' * D: TESTFLOW: 0=PANEL 1=MESSAGE
TSCA0FND EQU X'08' * E: FIND STRING ANYWHERE
TSCA0TRO EQU X'04' * F: TRACE CONTROL LINES
TSCA0TRL EQU X'02' * G: TRACE LINK FUNCTION
TSCAMODL EQU X'01' * H: WHEN SET USER ELSE TIVOLI EXIT
TSCA1FLG DS XL1 * CONTROL FLAG “1”
TSCA1ANL EQU X'80' * I: APPLY NOT LOGIC
TSCA1STG EQU X'40' * J: TREAT AS STRING DATA
TSCA1PNL EQU X'20' * K: PRINT THE CURRENT PANEL
TSCA1MSG EQU X'10' * L: PRINT THE MESSAGE CHAIN
TSCA1TSC EQU X'08' * M: PRINT THE TSCA
TSCA1CRD EQU X'04' * N: FLATTEN CURRENT RECORD
TSCA1LRD EQU X'02' * O: FLATTEN LAST RECORD FILED
TSCA1RET EQU X'01' * P: UNFLATTEN RETAIN RECORD ID
TSCA2FLG DS XL1 * CONTROL FLAG “2” - RESERVED
TSCA2RS1 EQU X'80' * RESERVED
TSCA2SGM EQU X'40' * R: SAVE GENERATED MESSAGE
TSCA2IDT EQU X'20' * S: INSERT DATA TYPE, HEX=ON
TSCA2REP EQU X'10' * REPLACE DATA
TSCA2GLX EQU X'08' * GET LIST INDEX
TSCA2PRV EQU X'04' * FIND PREVIOUS (FINDSDATA)
TSCA2CSS EQU X'02' * MIXED CASE SEARCH?
TSCA2RSV EQU X'01' * RESERVED
TSCA3FLG DS XL1 * CONTROL FLAG “3” - RESERVED
TSCASHDR DS 0CL13 * S-WORD INFORMATION
TSCASIX DS H * S-WORD INDEX
TSCASWDL DS XL1 * S-WORD DATA LENGTH
TSCASWD DS CL10 * S-WORD DATA
TSCARSV1 DS XL1 * RESERVED
TSCAPHDR DS 0CL9 * P-WORD INFORMATION
TSCAPIX DS H * P-WORD INDEX
TSCAPFXL DS XL1 * PREFIX LENGTH
TSCAPFX DS CL6 * ACTUAL PREFIX
TSCARSV2 DS XL1 * RESERVED
TSCAVHDR DS 0CL33 * VALIDATION DATA INFORMATION
TSCAVALL DS XL1 * VALIDATION DATA LENGTH
TSCAVAL DS CL32 * VALIDATION DATA
TSCARSV3 DS XL1 * RESERVED
TSCANHDR DS 0CL13 * NEW S-WORD INFORMATION
TSCANSIX DS H * NEW S-WORD INDEX
TSCANSDL DS XL1 * NEW S-WORD DATA LENGTH
TSCANSWD DS CL10 * NEW S-WORD DATA
TSCARSV4 DS XL1 * RESERVED
TSCATFLD DS 0CL14 * TSCA FIELD INFORMATION
TSCAFLD DS CL8 * TSCA FIELD NAME
TSCAATTR DS XL1 * FIELD ATTRIBUTE - SEE CONSTANT
TSCAMASK DS XL1 * MASK OFFSET TO TSCA BIT
TSCAFLEN DS H * TSCA FIELD LENGTH
TSCAOFFS DS H * OFFSET TO TSCA FIELD
TSCA5FLG DS XL1 * CONTROL FLAG “5”
TSCAVDAO EQU X'80' * USE VARIABLE DATA FOR OUTPUT
TSCASVAL EQU X'40' * SKIP VALIDATION FOR ASSISTED-ENTRY PANEL
TSCAUCTL EQU X'20' * USE CONTROL DATA
TSCAPCGZ EQU X'10' * COGNIZE ONLY P-WORD
TSCACGNZ EQU X'08' * COGNIZE THE DATA
TSCAAHEA EQU X'04' * JOURNAL THIS ITEM

Mapping of the TSCA

301Terminal Simulator Guide

A
.

Term
in

al
S

im
u

lato
r

C
o

m
m

u
n

icatio
n

s
F

ield
s

TSCAAHEF EQU X'02' * JOURNAL THIS ITEM FIRST
TSCAXLEN EQU X'01' * TESTFIELD MATCH EXACT LENGTH
TSCAIFLL DS XL1 * SETFIELD FIELD LENGTH
TSCALHDR DS 0CL33 * LITERAL/TEST DATA INFORMATION
TSCALITL DS XL1 * LITERAL/TEST DATA LENGTH
TSCALIT DS CL32 * LITERAL/TEST DATA
TSCANLHD DS 0CL33 * NEW DATA INFORMATION
TSCANDAL DS XL1 * NEW DATA LENGTH
TSCANDAT DS CL32 * NEW DATA
TSCALABE DS 0CL10 * CONTROL LINE LABEL INFORMATION
TSCATNUM DS H * TARGET CONTROL LINE OF BRANCH
TSCALABL DS CL8 * LABEL NAME
TSCAPANL DS CL8 * PANEL NAME/MESSAGE ID
TSCAFUEX DS CL8 * FUNCTION EXIT NAME
TSCAVNAM DS CL8 * VERIFY NAME
TSCAIFLD DS CL8 * PANEL INPUT FROM SETFIELD
TSCANPHD DS 0CL9 * NEW P-WORD INFORMATION
TSCANPIX DS XL2 * NEW P-WORD INDEX
TSCANPFL DS XL1 * NEW P-WORD LENGTH
TSCANPFX DS CL6 * ACTUAL NEW PREFIX
TSCACONV DS XL1 * DATA CONVERSION
TSCABCON EQU X'80' * CONVERT TO BINARY (MOVEVAR)
TSCADCON EQU X'40' * CONVERT TO DECIMAL (MOVEVAR)
TSCAHCON EQU X'20' * CONVERT TO HEX (MOVEVAR)
TSCAPNEW EQU X'10' * PREFIX IN NEW DATA
TSCARSV7 EQU X'0F' * RESERVED
TSCANVHD DS 0CL33 * NEW VALIDATION DATA INFORMATION
TSCANVLL DS XL1 * NEW VALIDATION DATA LENGTH
TSCANVAL DS CL32 * NEW VALIDATION DATA
TSCARSV6 DS XL1 * RESERVED
TSCALIX DS CL2 * LIST INDEX VALUE
TSCAPTCH DS CL22 * EXPANSION AREA

*
* THE FOLLOWING ARE CONSTANTS USED FOR THE ATTRIBUTE OF THE TSCA
* FIELDS. THEY ARE THE ONLY VALID SETTINGS FOR THE TSCA ATTR.
*

TSCACHAR EQU X'01' * ATTRIBUTE IS CHARACTER
TSCAFIXD EQU X'02' * ATTRIBUTE IS FIXED
TSCABIT EQU X'03' * ATTRIBUTE IS BIT
TSCAPOIN EQU X'04' * ATTRIBUTE IS POINTER
TSCAACRY EQU C'TSCA' * TSCA ACRONYM

Mapping of the TSCA

302 Version 7.1

Assembler Code User Exit Example

The following user exit routine adds freeform text to a record when used with the TSP on
page 51. This routine also adds one line of freeform text to a record that is already in update
mode or create mode.

User Exit Example
TBLDATA CSECT

USING TBLDATA,R15
STM R14,R12,12(R13) SAVE THE CALLERS REGISTERS
B START BRANCH AROUND EYECATCHER
DC CL8'TBLDATA ' EYECATCHER

START EQU *
LR R12,R15 USE OUR EPA FOR A BASE ADDRESS
DROP R15
USING TBLDATA,R12 TELL ASSEMBLE OUR BASE REG
L R8,0(R1) POINT REG1 TO THE TSCA
USING TSCA,R8 TELL ASSEMBLE ABOUT THE TSCA
ST R13,SAVEAREA+4 PUT CALLER SAVE AREA IN OURS
LA R15,SAVEAREA POINT TO OUR SAVE AREA
ST R15,8(R13) TELL CALLER WHERE OUR SAVEAREA IS
LR R13,R15 SET UP OUR SA IN CASE NEEDED

* PLACE YOUR CODE BELOW* *
* REG13= OUR SAVE AREA REG12= OUR BASE REG REG8= PTR TO TSCA *

LA R6,TSCATBLL TARGET OF MVC
MVC 0(20,R6),TEXTDATA MOVE 20 BYTE FROM DATAONE TO REG6
LA R6,TSCACTBL
MVC 0(04,R6),TXLENGTH

* ALL DONE NOW *
* SET RC0 INT REG15 AND TSCA. THEN RESTORE REGS AND RETURN TO CALLER *

LA R15,0 SIGNAL RETURN CODE FOR OPERATION
ST 15,TSCAFRET RETURN CODE = REG 15
ST 15,TSCAFRES REASON CODE = REG 15
B EXIT RETURN TO CALLER

EXIT EQU *
L R13,SAVEAREA+4 RESTORE SAVE AREA POINTER
L R14,12(R13) RESTORE REGISTER 14
LM R0,R12,20(R13) RESTORE CALLERS REGISTERS
BR R14
EJECT

**
* CONSTANT AREA *
**

SPACE 1
SAVEAREA DC 18F'0'
TEXTDATA DC C'TEXT ADDED VIA A TSP AND USEREXIT.'
TXLENGTH DC X'00000022'

SPACE 2

B

303Terminal Simulator Guide

B
.

A
ssem

b
ler

C
o

d
e

U
ser

E
xit

E
xam

p
le

**
* REGISTER EQUATES *
**

SPACE 1
R0 EQU 00
R1 EQU 01
R2 EQU 02
R3 EQU 03
R4 EQU 04
R5 EQU 05
R6 EQU 06
R7 EQU 07
R8 EQU 08
R9 EQU 09
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

SPACE 2
**
* TSCA CONTROL BLOCK *
**
CNTBLK DS C

SPACE 2
BLGUTSCA
END

User Exit Example

304 Version 7.1

Relating Publications to Specific Tasks

Your data processing organization can have many different users performing many different
tasks. The books in the Tivoli Information Management for z/OS library contain
task-oriented scenarios to teach users how to perform the duties specific to their jobs.

The following table describes the typical tasks in a data processing organization and
identifies the Tivoli Information Management for z/OS publication that supports those tasks.
See “The Tivoli Information Management for z/OS Library” on page 311 for more
information about each book.

Typical Tasks

Table 72. Relating Publications to Specific Tasks
If You Are: And You Do This: Read This:

Planning to Use Tivoli
Information Management for
z/OS

Identify the hardware and software
requirements of Tivoli Information
Management for z/OS. Identify the
prerequisite and corequisite products.
Plan and implement a test system.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Installing Tivoli Information
Management for z/OS

Install Tivoli Information Management
for z/OS. Define and initialize data
sets. Create session-parameters
members.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Tivoli Information
Management for z/OS
Integration Facility Guide

Define and create multiple Tivoli
Information Management for z/OS
BLX-SPs.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Define and create APPC transaction
programs for clients.

Tivoli Information
Management for z/OS Client
Installation and User’s Guide

Define coupling facility structures for
sysplex data sharing.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Diagnosing problems Diagnose problems encountered while
using Tivoli Information Management
for z/OS

Tivoli Information
Management for z/OS
Diagnosis Guide

C

305Terminal Simulator Guide

|
|

C
.

R
elatin

g
P

u
b

licatio
n

s
to

S
p

ecific
Tasks

Table 72. Relating Publications to Specific Tasks (continued)
If You Are: And You Do This: Read This:

Administering Tivoli
Information Management for
z/OS

Manage user profiles and passwords.
Define and maintain privilege class
records. Define and maintain rules
records.

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Tivoli Information
Management for z/OS
Integration Facility Guide

Define and maintain USERS record.
Define and maintain ALIAS record.
Implement GUI interface. Define and
maintain command aliases and
authorizations.

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Implement and administer Notification
Management. Create user-defined line
commands. Define logical database
partitioning.

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Create or modify GUI workstation
applications that can interact with
Tivoli Information Management for
z/OS. Install the Tivoli Information
Management for z/OS Desktop on user
workstations.

Tivoli Information
Management for z/OS
Desktop User’s Guide

Maintaining Tivoli
Information Management for
z/OS

Set up access to the data sets. Maintain
the databases. Define and maintain
privilege class records.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Define and maintain the BLX-SP. Run
the utility programs.

Tivoli Information
Management for z/OS
Operation and Maintenance
Reference

Programming applications Use the application program interfaces. Tivoli Information
Management for z/OS
Application Program
Interface Guide

Use the application program interfaces
for Tivoli Information Management for
z/OS clients.

Tivoli Information
Management for z/OS Client
Installation and User’s Guide

Create Web applications using or
accessing Tivoli Information
Management for z/OS data.

Tivoli Information
Management for z/OS World
Wide Web Interface Guide

Typical Tasks

306 Version 7.1

Table 72. Relating Publications to Specific Tasks (continued)
If You Are: And You Do This: Read This:

Customizing Tivoli
Information Management for
z/OS

Design and implement a Change
Management system. Design and
implement a Configuration
Management system. Design and
implement a Problem Management
system.

Tivoli Information
Management for z/OS
Problem, Change, and
Configuration Management

Design, create, and test terminal
simulator panels or terminal simulator
EXECs. Customize panels and panel
flow.

Tivoli Information
Management for z/OS
Terminal Simulator Guide
and Reference

Tivoli Information
Management for z/OS Panel
Modification Facility Guide

Design, create, and test Tivoli
Information Management for z/OS
formatted reports.

Tivoli Information
Management for z/OS Data
Reporting User’s Guide

Create a bridge between NetView® and
Tivoli Information Management for
z/OS applications. Integrate Tivoli
Information Management for z/OS
with Tivoli distributed products.

Tivoli Information
Management for z/OS Guide
to Integrating with Tivoli
Applications

Assisting Users Create, search, update, and close
change, configuration, or problem
records. Browse or print Change,
Configuration, or Problem
Management reports.

Tivoli Information
Management for z/OS
Problem, Change, and
Configuration Management

Use the Tivoli Information
Management for z/OS Integration
Facility.

Tivoli Information
Management for z/OS
Integration Facility Guide

Using Tivoli Information
Management for z/OS

Learn about the Tivoli Information
Management for z/OS panel types,
record types, and commands. Change a
user profile.

Tivoli Information
Management for z/OS User’s
Guide

Learn about Problem, Change, and
Configuration Management records.

Tivoli Information
Management for z/OS
Problem, Change, and
Configuration Management

Receive and respond to Tivoli
Information Management for z/OS
messages.

Tivoli Information
Management for z/OS
Messages and Codes

Design and create reports. Tivoli Information
Management for z/OS Data
Reporting User’s Guide

Typical Tasks

307Terminal Simulator Guide

C
.

R
elatin

g
P

u
b

licatio
n

s
to

S
p

ecific
Tasks

Typical Tasks

308 Version 7.1

Tivoli Information Management for z/OS
Courses

Education Offerings
Tivoli Information Management for z/OS classes are available in the United States and in
the United Kingdom. For information about classes outside the U.S. and U.K., contact your
local IBM representative or visit http://www.training.ibm.com on the World Wide Web.

United States
IBM Education classes can help your users and administrators learn how to get the most out
of Tivoli Information Management for z/OS. IBM Education classes are offered in many
locations in the United States and at your own company location.

For a current schedule of available classes or to enroll, call 1-800-IBM TEACh
(1-800-426-8322). On the World Wide Web, visit:

http://www.training.ibm.com

to see the latest course offerings.

United Kingdom
In Europe, the following public courses are held in IBM’s central London education centre
at the South Bank at regular intervals. On-site courses can also be arranged.

For course schedules and to enroll, call Enrollments Administration on 0345 581329, or send
an e-mail note to:

contact_educ_uk@vnet.ibm.com

On the World Wide Web, visit:

http://www.europe.ibm.com/education-uk

to see the latest course offerings.

D

309Terminal Simulator Guide

D
.

E
d

u
catio

n
al

C
o

u
rses

310 Version 7.1

Where to Find More Information

The Tivoli Information Management for z/OS library is an integral part of Tivoli Information
Management for z/OS. The books are written with particular audiences in mind. Each book
covers specific tasks.

The Tivoli Information Management for z/OS Library
The publications shipped automatically with each Tivoli Information Management for z/OS
Version 7.1 licensed program are:
¶ Tivoli Information Management for z/OS Application Program Interface Guide
¶ Tivoli Information Management for z/OS Client Installation and User’s Guide *
¶ Tivoli Information Management for z/OS Data Reporting User’s Guide *
¶ Tivoli Information Management for z/OS Desktop User’s Guide
¶ Tivoli Information Management for z/OS Diagnosis Guide *
¶ Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications *
¶ Tivoli Information Management for z/OS Integration Facility Guide *
¶ Tivoli Information Management for z/OS Licensed Program Specification
¶ Tivoli Information Management for z/OS Master Index, Glossary, and Bibliography
¶ Tivoli Information Management for z/OS Messages and Codes
¶ Tivoli Information Management for z/OS Operation and Maintenance Reference
¶ Tivoli Information Management for z/OS Panel Modification Facility Guide
¶ Tivoli Information Management for z/OS Planning and Installation Guide and Reference
¶ Tivoli Information Management for z/OS Program Administration Guide and Reference
¶ Tivoli Information Management for z/OS Problem, Change, and Configuration

Management*
¶ Tivoli Information Management for z/OS Reference Summary
¶ Tivoli Information Management for z/OS Terminal Simulator Guide and Reference
¶ Tivoli Information Management for z/OS User’s Guide
¶ Tivoli Information Management for z/OS World Wide Web Interface Guide

Note: Publications marked with an asterisk (*) are shipped in softcopy format only.

Also included is the Product Kit, which includes the complete online library on CD-ROM.

To order a set of publications, specify order number SBOF-7028-00.

Additional copies of these items are available for a fee.

Publications can be requested from your Tivoli or IBM representative or the branch office
serving your location. Or, in the U.S., you can call the IBM Publications order line directly
by dialing 1-800-879-2755.

E

311Terminal Simulator Guide

|

E
.

W
h

ere
to

F
in

d
M

o
re

In
fo

rm
atio

n

The following descriptions summarize all the books in the Tivoli Information Management
for z/OS library.

Tivoli Information Management for z/OS Application Program Interface Guide,
SC31-8737-00, explains how to use the low-level API, the high-level API, and the REXX
interface to the high-level API. This book is written for application and system programmers
who write applications that use these program interfaces.

Tivoli Information Management for z/OS Client Installation and User’s Guide,
SC31-8738-00, describes and illustrates the setup and use of Tivoli Information Management
for z/OS’s remote clients. This book shows you how to use Tivoli Information Management
for z/OS functions in the AIX®, CICS®, HP-UX, OS/2®, Sun Solaris, Windows NT®, and
OS/390 UNIX System Services environments. Also included in this book is complete
information about using the Tivoli Information Management for z/OS servers.

Tivoli Information Management for z/OS Data Reporting User’s Guide, SC31-8739-00,
describes various methods available to produce reports using Tivoli Information Management
for z/OS data. It describes Tivoli Decision Support for Information Management (a
Discovery Guide for Tivoli Decision Support), the Open Database Connectivity (ODBC)
Driver for Tivoli Information Management for z/OS, and the Report Format Facility. A
description of how to use the Report Format Facility to modify the standard reports provided
with Tivoli Information Management for z/OS is provided. The book also illustrates the
syntax of report format tables (RFTs) used to define the output from the Tivoli Information
Management for z/OS REPORT and PRINT commands. It also includes several examples of
modified RFTs.

Tivoli Information Management for z/OS Desktop User’s Guide, SC31-8740-00, describes
how to install and use the sample application provided with the Tivoli Information
Management for z/OS Desktop. The Tivoli Information Management for z/OS Desktop is a
Java-based graphical user interface for Tivoli Information Management for z/OS. Information
on how to set up data model records to support the interface and instructions on using the
Desktop Toolkit to develop your own Desktop application are also provided.

Tivoli Information Management for z/OS Diagnosis Guide, GC31-8741-00, explains how to
identify a problem, analyze its symptoms, and resolve it. This book includes tools and
information that are helpful in solving problems you might encounter when you use Tivoli
Information Management for z/OS.

Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications,
SC31-8744-00, describes the steps to follow to make an automatic connection between
NetView and Tivoli Information Management for z/OS applications. It also explains how to
customize the application interface which serves as an application enabler for the NetView
Bridge and discusses the Tivoli Information Management for z/OS NetView AutoBridge.
Information on interfacing Tivoli Information Management for z/OS with other Tivoli
management software products or components is provided for Tivoli Enterprise Console,
Tivoli Global Enterprise Manager, Tivoli Inventory, Tivoli Problem Management, Tivoli
Software Distribution, and Problem Service.

Tivoli Information Management for z/OS Integration Facility Guide, SC31-8745-00,
explains the concepts and structure of the Integration Facility. The Integration Facility
provides a task-oriented interface to Tivoli Information Management for z/OS that makes the

The Tivoli Information Management for z/OS Library

312 Version 7.1

Tivoli Information Management for z/OS applications easier to use. This book also explains
how to use the panels and panel flows in your change and problem management system.

Tivoli Information Management for z/OS Master Index, Glossary, and Bibliography,
SC31-8747-00, combines the indexes from each hardcopy book in the Tivoli Information
Management for z/OS library for Version 7.1. Also included is a complete glossary and
bibliography for the product.

Tivoli Information Management for z/OS Messages and Codes, GC31-8748-00, contains
the messages and completion codes issued by the various Tivoli Information Management
for z/OS applications. Each entry includes an explanation of the message or code and
recommends actions for users and system programmers.

Tivoli Information Management for z/OS Operation and Maintenance Reference,
SC31-8749-00, describes and illustrates the BLX-SP commands for use by the operator. It
describes the utilities for defining and maintaining data sets required for using the Tivoli
Information Management for z/OS licensed program, Version 7.1.

Tivoli Information Management for z/OS Panel Modification Facility Guide,
SC31-8750-00, gives detailed instructions for creating and modifying Tivoli Information
Management for z/OS panels. It provides detailed checklists for the common panel
modification tasks, and it provides reference information useful to those who design and
modify panels.

Tivoli Information Management for z/OS Planning and Installation Guide and Reference,
GC31-8751-00, describes the tasks required for installing Tivoli Information Management for
z/OS. This book provides an overview of the functions and optional features of Tivoli
Information Management for z/OS to help you plan for installation. It also describes the
tasks necessary to install, migrate, tailor, and start Tivoli Information Management for z/OS.

Tivoli Information Management for z/OS Problem, Change, and Configuration
Management, SC31-8752-00, helps you learn how to use Problem, Change, and
Configuration Management through a series of training exercises. After you finish the
exercises in this book, you should be ready to use other books in the library that apply more
directly to the programs you use and the tasks you perform every day.

Tivoli Information Management for z/OS Program Administration Guide and Reference,
SC31-8753-00, provides detailed information about Tivoli Information Management for z/OS
program administration tasks, such as defining user profiles and privilege classes and
enabling the GUI user interface.

Tivoli Information Management for z/OS Reference Summary, SC31-8754-00, is a
reference booklet containing Tivoli Information Management for z/OS commands, a list of
p-words and s-words, summary information for PMF, and other information you need when
you use Tivoli Information Management for z/OS.

Tivoli Information Management for z/OS Terminal Simulator Guide and Reference,
SC31-8755-00, explains how to use terminal simulator panels (TSPs) and EXECs (TSXs)
that let you simulate an entire interactive session with a Tivoli Information Management for
z/OS program. This book gives instructions for designing, building, and testing TSPs and
TSXs, followed by information on the different ways you can use TSPs and TSXs.

The Tivoli Information Management for z/OS Library

313Terminal Simulator Guide

E
.

W
h

ere
to

F
in

d
M

o
re

In
fo

rm
atio

n

Tivoli Information Management for z/OS User’s Guide, SC31-8756-00, provides a general
introduction to Tivoli Information Management for z/OS and databases. This book has a
series of step-by-step exercises to show beginning users how to copy, update, print, create,
and delete records, and how to search a database. It also contains Tivoli Information
Management for z/OS command syntax and descriptions and other reference information.

Tivoli Information Management for z/OS World Wide Web Interface Guide, SC31-8757-00,
explains how to install and operate the features available with Tivoli Information
Management for z/OS that enable you to access a Tivoli Information Management for z/OS
database using a Web browser as a client.

Other related publications include the following:

Tivoli Decision Support: Using the Information Management Guide is an online book (in
portable document format) that can be viewed with the Adobe Acrobat Reader. This book is
provided with Tivoli Decision Support for Information Management (5697-IMG), which is a
product that enables you to use Tivoli Information Management for z/OS data with Tivoli
Decision Support. This book describes the views and reports provided with the Information
Management Guide.

IBM Redbooks™ published by IBM’s International Technical Support Organization are also
available. For a list of redbooks related to Tivoli Information Management for z/OS and
access to online redbooks, visit Web site http://www.redbooks.ibm.com or
http://www.support.tivoli.com

The Tivoli Information Management for z/OS Library

314 Version 7.1

Index

A
add data entry user exit 270
ADDDATA control line

description 63
example 63
general rule 64
processing 67
return code table 67
specification panel description 64
TSCA field usage 68
usage note 65

adding
data to a record, using WORDFIX 210

ADDLIST control line
description 68
example 70
return code table 70
usage note 70

ADDSDATA control line
description 71
example 73
return code table 74
usage note 73

ADDTEXT control line
description 74
example 75
return code table 76
usage note 75

API (application program interface)
control processor user exit 267
record build processor user exit 266
retrieve panel name user exit 267
retrieve record ID user exit 266
set interface reason code user exit 268

archiving a record 111
assembler

example of user exit routine 303
FLATTEN control line usage 112
UNFLATTEN control line usage 189
writing user exit routine 194

assembly mapping, TSCA 300, 303

B
BLG00100, Response Type 30
BLG01396, common program exit 154
BLG1TDHD, History Display 105
BLG1TVID, View Internal Data 94
BLGCURDT, return current date, time, and time zone 279
BLGEDATE, convert internal date to external date 280
BLGESADD, increment counter user exit 278
BLGESCCL, escalation cleanup user exit 278

BLGESCKE, check escalation user exit 278
BLGESCLR, clear control block user exit 278
BLGESDAT, date and time user exit 278
BLGESDUR, duration user exit 278
BLGESFCB, free control block user exit 278
BLGESGCB, get control block storage user exit 278
BLGESGET, get control block field user exit 278
BLGESINI, initialize user exit 278
BLGESLVL, level increment user exit 279
BLGESNOT, notify user exit 279
BLGESPRI, priority update user exit 279
BLGESPUT, put TSCA data in control block user exit 279
BLGESPUV, put variable data user exit 279
BLGESSCT, store criteria user exit 279
BLGESSEA, get escalation criteria user exit 279
BLGEXDEL, delete unusable record user exit 263
BLGIDATE, convert external date to internal date 281
BLGJAUTH, check for authorization user exit 265
BLGJSKIP, skip transfer-to or owning class processing user

exit 282
BLGNSYAL, allocate data set to SYSOUT 279
BLGNSYFR, free SYSOUT data set 279
BLGSPFGT, retrieve variable from an ISPF pool user exit 282
BLGSPFPT, update variable in the profile pool user exit 283
BLGSYMB, graphic character substitutions 55
BLGTDFDT TSX 285
BLGTRACE DD statement 187
BLGTSAPI, test for API environment user exit 265
BLGTSESS TSX 285
BLGUSERS, extract mail address from USERS record 279
BLGUT3EX, recovery user exit 277
BLGUT3WT, initialize for receive user exit 278
BLGUT4EX, off-load a recovery data set user exit 278
BLGUT4WT, initialize for send user exit 278
BLGYAPBR, API record build processor user exit 266
BLGYAPBU, API retrieve record ID user exit 266
BLGYAPCP, API control processor user exit 267
BLGYAPGP, API retrieve panel name user exit 267
BLGYAPSR, API set interface reason code user exit 268
BLGYAPUP, verify record update user exit 269
BLGYITSP, invoke a TSP or TSX 269
BLKSIZE parameter 150
BLM1TUCU, Function Line Summary 15
BLM6FUNC, Function Name 16
BLM8CU00, Panel Name Entry 11
BLM8CU90, Terminal Simulator Panel Update 48
BLM8CU91, Terminal Simulator Panel Update 14
BLM8CU97, Common Update 49
BLM8CU9A, ADDDATA Specification 64
BLM8CU9B, BRANCH Specification 77
BLM8CU9D, LINK Specification 131
BLM8CU9E, FINDSJRNL Specification 102
BLM8CU9F, FINDSDATA Specification 89
BLM8CU9G, LABEL Specification 130
BLM8CU9H, PROCESS Specification 153

315Terminal Simulator Guide

In
d

ex

BLM8CU9I, ISPEXEC Specification 126
BLM8CU9J, TESTFIELD Specification 176
BLM8CU9K, TESTFLOW Specification 182
BLM8CU9L, Control Line Summary 196
BLM8CU9M, WORDFIX Control Line Summary 208
BLM8CU9N, TRACE Specification 186
BLM8CU9O, MOVEVAR Specification 144
BLM8CU9P, Data Field Specification 197
BLM8CU9Q, Flag Field Specification 201
BLM8CU9R, PRINT Specification 149
BLM8CU9S, SETFIELD Specification 171
BLM8CU9T, MESSAGE Specification 135
BLM8CU9U, WORDFIX Add Specification 210
BLM8CU9V, WORDFIX Delete Specification 217
BLM8CU9W, WORDFIX S-Word Specification 222
BLM8CU9X, UNFLATTEN Specification 189
BLM8CU9Y, WORDFIX P-Word Specification 226
BLM8CU9Z, FLATTEN Specification 112
BLM8CUA0, Panel Type 13
BLMMIGAE, add data entry user exit 270
BLMMIGDD, delete dialog user exit 271
BLMMIGDE, delete data entry user exit 271
BLMMIGEC, check error flag user exit 272
BLMMIGFC, passed/failed record count user exit 272
BLMMIGFS, free migration environment user exit 273
BLMMIGGS, set up migration environment user exit 274
BLMMIGLC, error routine loop counter user exit 274
BLMMIGMD, move variable data user exit 275
BLMMIGSA, search argument user exit 276
BLMMIGSE, set error flag user exit 277
BLMSSGEN, SQL setup, extract, and cleanup user exit 278
BLMXSPRM, provide values of session parameters 284
BRANCH control line

description 76
example 76
general rule 77
processing 78
return code table 78
specification panel description 77
usage note 77

branching
conditional 179, 183
unconditional 77

C
calling

terminal simulator EXEC (TSX) 257
terminal simulator panel (TSP) 257
TSP from a TSX 261
TSP from another TSP 261
TSX from a TSP 261
TSX from another TSX 261

changing
control data in a record, using WORDFIX 225
p-word data in a record, using WORDFIX 225
s-word data, using WORDFIX 221
terminal simulator (TSP) panel flow 76

character substitutions 55

check error flag user exit 272
check escalation user exit 278
check for authorization user exit 265
clear control block user exit 278
CLEAR control line

example 78
processing 79
TSCA field usage 79

clearing
command line reply buffer 78

CLOSERRES control line
description 241
example 242
return code table 242
usage note 242

CLOSESOCKET control line
description 79
example 80
return code table 80
usage note 80

command
DOWN LAST 66
DOWN PAGE 37
LINECMD 66

command line reply buffer
chaining response 63
clearing 78
length 66
sending response 152

Common Update panel 49
conditional branching 179, 183
control line

ADDDATA 63
ADDLIST 68
ADDSDATA 71
ADDTEXT 74
BRANCH 76
CLEAR 78
CLOSERRES 79, 241
CLOSESOCKET 79
definition 5
DELLIST 81
DELSDATA 82
DELTEXT 85
DEQMAIL 86
FINDSDATA 87
FINDSJRNL 102
FINDTEXT 110, 123
FLATTEN 111
GETAPIDATA 118
GETLIST 119
GETRDATA 122, 242
GETSCREEN 122
GETTEXT 123
ISPEXEC 125
LABEL 129
LINK 130
list 5
MESSAGE 134
MOVEVAR 143
OPENRRES 146, 244

316 Version 7.1

control line (continued)
OPENSOCKET 146
PRINT 148
PROCESS 152
PUTRDATA 158, 245
QMAIL 158
QUERYRRES 159, 246
READDICT 160
READSOCKET 161
RELEASERRES 162, 247
REPLIST 162
REPTEXT 165
RETURN 167
SETAPIDATA 168
SETFIELD 169
SETRRES 174, 248
SETTSCA 174
TESTFIELD 175
TESTFLOW 180
TRACE 185
UNFLATTEN 188
USEREXIT 193
WORDFIX 207
WRITESOCKET 238

Control Line Summary panel 196
convert external date to internal date 281
convert internal date to external date 280
copying

record 111
creating

terminal simulator panel (TSP) flow 9

D
Data Field Specification panel 197
data security

using FLATTEN 111
using UNFLATTEN 188
using WORDFIX 209

date and time user exit 278
delete data entry user exit 271
delete dialog user exit 271
delete unusable record user exit 263
deleting

data from a record, using WORDFIX 217
DELLIST control line

description 81
example 82
return code table 82
usage note 82

DELSDATA control line
description 82
example 84
return code table 84
usage note 84

DELTEXT control line
description 85
example 86
return code table 86

DELTEXT control line (continued)
usage note 86

DEQMAIL control line
description 86
example 87
return code table 87
usage note 87

DOWN LAST command 66
DOWN PAGE command 37
duration user exit 278

E
error routine loop counter user exit 274
escalation cleanup user exit 278
example

ADDDATA control line 63
adding or updating freeform text 49
ADDLIST control line 70
ADDSDATA control line 73
ADDTEXT control line 75
BRANCH control line 76
changing control data using WORDFIX 225
CLEAR control line 78
CLOSERRES control line 242
DELLIST control line 82
DELSDATA control line 84
DELTEXT control line 86
FINDSDATA control line 88
FLATTEN control line 111
GETRDATA control line 243
LABEL control line 129
LINK control line 130
MESSAGE control line 135
OPENRRES control line 245
PRINT control line 148
PROCESS control line 152
PUTRDATA control line 246
QUERYRRES control line 247
RELEASERRES control line 248
REPLIST control line 164
REPTEXT control line 166
RETURN control line 167
searching for records in a TSP 7
SETFIELD control line 170
SETRRES control line 249
TESTFIELD control line 175
TESTFLOW control line 181
TRACE control line 185
UNFLATTEN control line 188
updating records in a TSP 8
user exit routine 303
WORDFIX control line 216, 221, 235

exiting
terminal simulator panel (TSP) 167

317Terminal Simulator Guide

In
d

ex

F
FINDSDATA control line

description 87
example 88
general rule 89
panel 88
processing 96
return code table 99
specification panel description 89
TSCA field usage 101
usage note 94

FINDSJRNL control line
description 102
general rule 102
processing 107
return code table 108
specification panel description 102
TSCA field usage 109
usage note 105

FINDTEXT control line
description 110, 123
example 124
return code table 110, 125
usage note 124

Flag Field Specification panel 201
FLATTEN control line

buffer format 114
description 111
example 111
processing 114
return code table 116
specification panel description 112
TSCA field usage 117
usage note 114
warning 5, 111

free control block user exit 278
free migration environment user exit 273
freeform text

adding or updating 49
control lines used 49
terminal simulator panel (TSP) example 50
user exit routine for adding 50

Function Line Summary panel 15
Function Name panel 16

G
get control block field user exit 278
get control block storage user exit 278
get escalation criteria user exit 279
GETAPIDATA control line

description 118
example 119
return code table 119
usage note 119

GETLIST control line
description 119
example 120
return code table 121

GETLIST control line (continued)
usage note 120
warning 120

GETRDATA control line
description 242
example 243
return code table 243
usage note 243

GETSCREEN control line
description 122
example 122
return codes 123
usage note 122

GETTEXT control line
GETTEXT 123

graphic character substitutions 55

H
help facility

enabling for messages 138
History Display panel 105

I
increment counter user exit 278
informational message

terminal simulator EXEC (TSX) 262
terminal simulator panel (TSP) 262

initialize
for receive user exit 278
for send user exit 278
user exit 278

invoke a TSP or TSX user exit 269
ISPEXEC control line

description 125
general rule 126
processing 125
return code table 127
specification panel description 126
TSCA field usage 128
usage note 127

ISPF (Interactive System Productivity Facility)
calling in TSP 125
user exit BLGSPFGT 282
user exit BLGSPFPT 283
user exit BLMXSPRM 284
VCOPY service 283
VPUT service 284

ISPSTART keyword 258

L
LABEL control line

description 129

318 Version 7.1

LABEL control line (continued)
example 129
processing 130
return code table 130
specification panel example 130
usage note 130

languages supported in user exit routine 194
level increment user exit 279
line command

insert 15
use on Function Line Summary panel 15

LINECMD command 66
LINK control line

description 130
example 130
processing 132
return code table 133
specification panel description 131
TSCA field usage 134
usage note 132

linkage convention, user exit routine 195
list processor

restriction on WORDFIX control line 209
usage in TSP 154

LRECL parameter 150

M
mapping of TSCA 300, 303
message

class
informational 262
severe 262
warning 262

enabling help 138
issuing 134
printing 148
processing of batch and interactive modes 261

MESSAGE control line
description 134
example 135
processing 138
return code table 141
specification panel description 135
TSCA field usage 142
usage note 137

move variable data user exit 275
MOVEVAR control line

description 143
processing 145
return code table 145
specification panel description 144
TSCA field usage 146
usage note 145

N
naming

terminal simulator panel (TSP) 10
notify user exit 279
null reply simulation 152

O
off-load a recovery data set user exit 278
OPENRRES control line

description 244
example 245
return code table 245
usage note 245

OPENSOCKET control line
description 146
example 147
return code table 147
usage note 147

P
panel

BLG00100, Response Type 30
BLG1TVID, View Internal Data 94
BLM1TUCU, Function Line Summary 15
BLM6FUNC, Function Name 16
BLM8CU00, Panel Name Entry 11
BLM8CU91, Terminal Simulator Panel Update 14
BLM8CU97, Common Update 49
BLM8CU9L, Control Line Summary 196
BLM8CU9N, TRACE Specification 186
BLM8CU9P, Data Field Specification 197
BLM8CU9Q, Flag Field Specification 201
BLM8CU9U, WORDFIX Add Specification 210
BLM8CU9V, WORDFIX Delete Specification 217
BLM8CU9W, WORDFIX S-Word Specification 222
BLM8CU9X, UNFLATTEN Specification 189
BLM8CU9Y, WORDFIX P-Word Specification 226
BLM8CUA0, Panel Type 13

Panel Name Entry panel 11
Panel Type panel 13
parameter

BLKSIZE 150
LRECL 150, 187
RECFM 150, 187

passed/failed record count user exit 272
PL/I, writing user exit routine 194
Primary Options Menu

Management application 9
PRINT control line

description 148
example 148
processing 150
return code table 151
specification panel description 149

319Terminal Simulator Guide

In
d

ex

PRINT control line (continued)
TSCA field usage 152
usage in testing 251
usage note 150

print data set, defining 150
printing

current panel 148
defining print data set 150
message 148
TSCA field 148

priority update user exit 279
PROCESS control line

description 152
example 152
processing 154
return code table 156
sending response 152
specification panel description 153
table panel restriction 154
TSCA field usage 157
usage note 154

programming interface information
product-sensitive 289

provide values of session parameters 284
put TSCA data in control block user exit 279
put variable data user exit 279
PUTRDATA control line

description 245
example 246
return code table 246
usage note 246

Q
QMAIL control line

description 158
example 159
return code table 159
usage note 159

QUERYRRES control line
description 246
example 247
usage note 247

R
READDICT control line

description 160
example 160
return code table 160
TSCA field usage 160
usage note 160

READSOCKET control line
description 161
example 161
return code table 162
usage note 161

RECFM parameter 150, 187
recovery user exit 277
register content, user exit routine 195
RELEASERRES control line

description 247
example 248
return code table 248
usage note 248

remote data resources 241
CLOSERRES control line 241
GETRDATA control line 242
OPENRRES control line 244
PUTRDATA control line 245
QUERYRRES control line 246
RELEASERRES control line 247
SETRRES control line 248

REPLIST control line
description 162
example 164
return code table 164
usage note 164

REPTEXT control line
description 165
example 166
return code table 166
usage note 166

Response Type panel 30
retrieve variable from an ISPF pool user exit 282
return code table

ADDDATA control line 67
ADDLIST control line 70
ADDSDATA control line 74
ADDTEXT control line 76
BLGEDATE user exit 281
BLGEXDEL user exit 264
BLGIDATE user exit 281
BLGJAUTH user exit 265
BLGJSKIP user exit 282
BLGSPFGT user exit 283
BLGSPFPT user exit 284
BLGTSAPI user exit 265
BLGYAPBR user exit 266
BLGYAPBU user exit 266
BLGYAPGP user exit 268
BLGYAPSR user exit 268
BLGYAPUP user exit 269
BLGYITSP user exit 269
BLMMIGAE user exit 271
BLMMIGDD user exit 271
BLMMIGDE user exit 272
BLMMIGEC user exit 272
BLMMIGFC user exit 273
BLMMIGFS user exit 274
BLMMIGGS user exit 274
BLMMIGLC user exit 275
BLMMIGMD user exit 276
BLMMIGSA user exit 277
BLMMIGSE user exit 277
CLEAR control line 79
CLOSERRES control line 242
CLOSESOCKET control line 80

320 Version 7.1

return code table (continued)
DELLIST control line 82
DELSDATA control line 84
DELTEXT control line 86
DEQMAIL control line 87
FINDSDATA control line 99
FINDSJRNL control line 108
FINDTEXT control line 110
FLATTEN control line 116
GETAPIDATA control line 119
GETLIST control line 121
GETRDATA control line 243
GETSCREEN control line 123
GETTEXT control line 125
ISPEXEC control line 127
LABEL control line 130
LINK control line 133
MESSAGE control line 141
MOVEVAR control line 145
OPENRRES control line 245
OPENSOCKET control line 147
PRINT control line 151
PROCESS control line 156
PUTRDATA control line 246
READSOCKET control line 162
RELEASERRES control line 248
REPLIST control line 164
REPTEXT control line 166
RETURN control line 167
SETAPIDATA control line 169
SETFIELD control line 172
SETRRES control line 249
TESTFIELD control line 180
TESTFLOW control line 184
UNFLATTEN control line 192
USEREXIT control line 207
WORDFIX control line 236
WRITESOCKET control line 239

RETURN control line
description 167
example 167
processing 167
return code table 167
usage note 167

return current data, time, and time zone 279

S
search argument user exit 276
set error flag user exit 277
set up migration environment user exit 274
SETAPIDATA control line

description 168
example 169
return code table 169
usage note 169

SETFIELD control line
description 169
example 170

SETFIELD control line (continued)
general rule 170
processing 172
return code table 172
specification panel description 171
TSCA field usage 173
usage note 172

SETRRES control line
description 248
example 249
return code table 249
usage note 249

SETTSCA control line
description 174
usage note 174

severe message
terminal simulator EXEC (TSX) 262
terminal simulator panel (TSP) 262

skip transfer-to or owning class processing user exit 282
SQL setup, extract, and cleanup user exit 278
starting panel name 49
store criteria user exit 279
SYSPRINT DD statement 150

T
table panel

processing in TSP 154
Terminal Simulator Panel Update panel 14
test for API environment user exit 265
TESTFIELD control line

description 175
example 175
general rule 176
processing 180
return code table 180
specification panel description 176
TSCA field usage 180
usage in testing 252
usage note 179

TESTFLOW control line
description 180
example 181
general rule 182
processing 183
return code table 184
specification panel description 182
TSCA field usage 184
usage in testing 252
usage note 183

testing
correct panel 180
message 180
terminal simulator panel (TSP)

PRINT control line 251
rationale 251
TESTFIELD control line 252
TESTFLOW control line 252
TRACE control line 254

321Terminal Simulator Guide

In
d

ex

testing (continued)
TSCA field 175

TRACE control line
defining report data set 187
description 185
example 185
output example 254
processing 187
report example 255
return code 187
specification panel description 186
TSCA field usage 187
usage in testing 254
usage note 187

trace report, example 255
tracing

control line flow 185
TSCA (terminal simulator communications area)

assembly mapping 300, 303
caution, field modification 289
caution message 3
content 289
description 2
index 296
testing fields 175

TSP (terminal simulator panel)
calling 257
calling from another TSP 261
creating 9
deciding when to use 3
description 1
designing, example 6
example 1, 9, 88, 111
panel creation 10
panel flow 9
panel naming convention 10
parameter on ISPSTART 258
testing

PRINT control line 251
rationale 251
TESTFIELD control line 252
TESTFLOW control line 252
TRACE control line 254

update panel description 48
using a command alias 257
using the update panel 48
when started 260

TSX (terminal simulator EXEC)
allocating DD statement 56
calling 257
calling from another TSX 261
creating 53
deciding when to use 3
designing 53
graphic character substitutions 55
invoking 56
parameter on ISPSTART 258
sample 58
using a command alias 257
when started 260

U
unconditional branching 77
UNFLATTEN control line

description 188
example 188
processing 190
return code table 192
specification panel description 189
TSCA field usage 193
usage note 189
warning 5, 188

update variable in the profile pool user exit 283
user exit

BLGCURDT, return current date, time, and time zone 279
BLGEDATE, convert internal date to external date 280
BLGESADD, increment counter 278
BLGESCCL, escalation cleanup 278
BLGESCKE, check escalation 278
BLGESCLR, clear control block 278
BLGESDAT, date and time 278
BLGESDUR, duration 278
BLGESFCB, free control block 278
BLGESGCB, get control block storage 278
BLGESGET, get control block field 278
BLGESINI, initialize 278
BLGESLVL, level increment 279
BLGESNOT, notify 279
BLGESPRI, priority update 279
BLGESPUT, put TSCA data in control block 279
BLGESPUV, put variable data 279
BLGESSCT, store criteria 279
BLGESSEA, get escalation criteria 279
BLGEXDEL, delete unusable record 263
BLGIDATE, convert external date to internal date 281
BLGJAUTH, check for authorization 265
BLGJSKIP, skip transfer-to or owning class processing 282
BLGNSYAL, allocate data set to SYSOUT 279
BLGNSYAL, free SYSOUT data set 279
BLGSPFGT, retrieve variable from an ISPF pool 282
BLGSPFPT, update variable in the profile pool 283
BLGTSAPI, test for API environment 265
BLGUSERS, extract mail address from USERS record 279
BLGUT3EX, recovery 277
BLGUT3WT, initialize for receive 278
BLGUT4EX, off-load a recovery data set 278
BLGUT4WT, initialize for send 278
BLGYAPBR, API record build processor 266
BLGYAPBU, API retrieve record ID 266
BLGYAPCP, API control processor 267
BLGYAPGP, API retrieve panel name 267
BLGYAPSR, API set interface reason code 268
BLGYAPUP, verify record update 269
BLGYITSP, invoke a TSP or TSX 269
BLMMIGAE, add data entry 270
BLMMIGDD, delete dialog 271
BLMMIGDE, delete data entry 271
BLMMIGEC, check error flag 272
BLMMIGFC, passed/failed record count 272
BLMMIGFS, free migration environment 273
BLMMIGGS, set up migration environment 274
BLMMIGLC, error routine loop counter 274

322 Version 7.1

user exit (continued)
BLMMIGMD, move variable data 275
BLMMIGSA, search argument 276
BLMMIGSE, set error flag 277
BLMSSGEN, SQL setup, extract, and cleanup 278
BLMXSPRM, provide values of session parameters 284
languages supported 194
linkage convention 195
register content 195

user exits
languages supported 194

USEREXIT control line
Data Field Specification panel description 197
description 193
flag field, setting 201
Flag Field Specification panel description 201
general rule 197, 201
interfacing with TSCA 2
processing 206
register content 195
return code table 207
summary panel description 196

V
verify record update user exit 269
View Internal Data panel 94
VS COBOL II, writing user exit routine 194

W
warning message

terminal simulator EXEC (TSX) 262
terminal simulator panel (TSP) 262

watermark character
restriction 89
used in search 179

WORDFIX control line
Add Specification panel description 210
Delete Specification panel description 217
description 207
example

adding data 216
changing control data 225
changing p-word data 235
deleting data 221

P-Word Specification panel description 226
return code table 236
S-Word Specification panel description 222
summary panel description 208
TSCA field usage 238
usage note 236
warning 5, 209

WRITESOCKET control line
description 238
example 239
return code table 239

WRITESOCKET control line (continued)
usage note 239

323Terminal Simulator Guide

In
d

ex

324 Version 7.1

File Number: S370/30xx/4300
Program Number: 5697-SD9

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC31-8755-00

	Contents
	Preface
	Who Should Read This Guide
	Prerequisite and Related Documentation
	What This Guide Contains
	Typeface Conventions
	Contacting Customer Support

	What Is Terminal Simulation?
	Examples
	TSP and TSX Control Lines
	The Terminal Simulator Communications Area
	Should You Use a TSP or a TSX?

	Designing and Creating a Terminal Simulator Panel (TSP)
	What Are Control Lines?
	Designing a Terminal Simulator Panel
	Creating a Terminal Simulator Panel Flow
	Using the Terminal Simulator Panel Update Panel (BLM8CU90)
	Examples: Adding or Updating Freeform Text

	Designing and Creating a Terminal Simulator EXEC (TSX)
	Overview
	TSX Control Lines
	Graphic Character Substitutions using REXX Variable BLGSYMB
	TSX Access
	Creating a TSX

	Creating Terminal Simulator Control Lines
	ADDDATA
	Creating an ADDDATA Control Line
	General Rules
	Field Descriptions
	Usage Notes and Examples

	Supplementary Commands for ADDDATA
	What the Control Line Does
	Return and Reason Codes
	TSCA Field Usage

	ADDLIST
	The ADDLIST Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes

	ADDSDATA
	The ADDSDATA Control Line
	Parameter Descriptions

	Usage Notes and Examples
	Return and Reason Codes

	ADDTEXT
	The ADDTEXT Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes

	BRANCH
	Creating a BRANCH Control Line
	General Rules
	Field Descriptions
	Usage Notes

	What the Control Line Does
	Return and Reason Codes
	TSCA Field Usage

	CLEAR
	Creating a CLEAR Control Line
	Example

	What the Control Line Does
	Return and Reason Codes
	TSCA Field Usage

	CLOSERRES
	CLOSESOCKET
	The CLOSESOCKET Control Line
	Parameter Description
	Usage Notes and Examples
	Return and Reason Codes

	DELLIST
	The DELLIST Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes

	DELSDATA
	The DELSDATA Control Line
	Parameter Descriptions

	Usage Notes and Examples
	Return and Reason Codes

	DELTEXT
	The DELTEXT Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes

	DEQMAIL
	The DEQMAIL Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes

	FINDSDATA
	Creating a FINDSDATA Control Line
	General Rules
	Field Descriptions
	Usage Notes and Examples

	What the Control Line Does
	The FINDSDATA TSX Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes
	TSCA Field Usage

	FINDSJRNL
	Creating a FINDSJRNL Control Line
	General Rules
	Field Descriptions
	Usage Notes

	What the Control Line Does
	The FINDSJRNL TSX Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes
	TSCA Field Usage

	FINDTEXT (GETTEXT)
	The FINDTEXT Control Line
	Parameter Descriptions
	Return and Reason Codes

	FLATTEN
	Creating a FLATTEN Control Line
	General Rules
	Field Descriptions
	Usage Notes

	What the Control Line Does
	The FLATTEN TSX Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes
	TSCA Field Usage

	GETAPIDATA
	The GETAPIDATA Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes

	GETLIST
	The GETLIST Control Line
	Parameter Descriptions

	Usage Notes and Examples
	Return and Reason Codes

	GETRDATA
	GETSCREEN
	The GETSCREEN Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes

	GETTEXT (FINDTEXT)
	The GETTEXT Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes

	ISPEXEC
	Creating an ISPEXEC Control Line
	General Rules
	Field Descriptions
	Usage Notes

	What the Control Line Does
	Return and Reason Codes
	TSCA Field Usage

	LABEL
	Creating a LABEL Control Line
	Field Descriptions
	Usage Notes

	What the Control Line Does
	Return and Reason Codes

	LINK
	Creating a LINK Control Line
	Field Descriptions
	Usage Notes

	What the Control Line Does
	The LINK TSX Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes
	TSCA Field Usage

	MESSAGE
	Creating a MESSAGE Control Line
	Field Descriptions
	Usage Notes
	Enabling Help for Messages

	What the Control Line Does
	The MESSAGE TSX Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes
	TSCA Field Usage

	MOVEVAR
	Creating a MOVEVAR Control Line
	Field Descriptions
	Usage Notes

	What the Control Line Does
	Return and Reason Codes
	TSCA Field Usage

	OPENRRES
	OPENSOCKET
	The OPENSOCKET Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes

	PRINT
	Creating a PRINT Control Line
	Field Descriptions
	Usage Notes

	What the Control Line Does
	The PRINT TSX Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes
	TSCA Field Usage

	PROCESS
	Creating a PROCESS Control Line
	Field Descriptions
	Usage Notes

	What the Control Line Does
	Table Panel Processing

	The PROCESS TSX Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes
	TSCA Field Usage

	PUTRDATA
	QMAIL
	The QMAIL Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes

	QUERYRRES
	READDICT
	The READDICT Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes

	TSCA Field Usage

	READSOCKET
	The READSOCKET Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes

	RELEASERRES
	REPLIST
	The REPLIST Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes

	REPTEXT
	The REPTEXT Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes

	RETURN
	Creating a RETURN Control Line
	Usage Notes

	What the Control Line Does
	Return and Reason Codes

	SETAPIDATA
	The SETAPIDATA Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes

	SETFIELD
	Creating a SETFIELD Control Line
	General Rules
	Field Descriptions
	Usage Notes

	What the Control Line Does
	Return and Reason Codes
	TSCA Field Usage

	SETRRES
	SETTSCA
	The SETTSCA Control Line
	Parameter Descriptions
	Usage Notes and Examples

	TESTFIELD
	Creating a TESTFIELD Control Line
	General Rules
	Field Descriptions
	Usage Notes

	What the Control Line Does
	Return and Reason Codes
	TSCA Field Usage

	TESTFLOW
	Creating a TESTFLOW Control Line
	General Rules
	Field Descriptions
	Usage Notes

	What the Control Line Does
	Return and Reason Codes
	TSCA Field Usage

	TRACE
	Creating a TRACE Control Line
	Field Descriptions
	Usage Notes

	What the Control Line Does
	TSX Considerations
	Return and Reason Codes
	TSCA Field Usage

	UNFLATTEN
	Creating an UNFLATTEN Control Line
	General Rules
	Field Descriptions
	Usage Notes

	What the Control Line Does
	The UNFLATTEN TSX Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes
	TSCA Field Usage

	USEREXIT
	USEREXIT Linkage Conventions
	Creating a USEREXIT Control Line
	Specifying Input Data
	General Rules for Panel BLM8CU9P
	Field Descriptions for Panel BLM8CU9P

	Setting Internal Flag Fields
	General Rules for Panel BLM8CU9Q
	Field Descriptions for Panel BLM8CU9Q
	Usage Notes

	What the Control Line Does
	The USEREXIT TSX Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes

	WORDFIX
	Creating a WORDFIX Control Line
	General Rules

	Adding Data
	Field Descriptions for Panel BLM8CU9U
	What This Selection Does
	Examples of Using WORDFIX to Add Data

	Deleting Data
	Field Descriptions for Panel BLM8CU9V
	What This Selection Does
	Examples of Using WORDFIX to Delete Data

	Changing S-Word Data
	General Rule
	Field Descriptions for Panel BLM8CU9W
	What This Selection Does
	Examples of Using WORDFIX to Change S-Words or Control Data
	Changing P-Word Data
	General Rule
	Field Descriptions for Panel BLM8CU9Y
	What This Selection Does
	Examples of Using WORDFIX to Change P-Words or Control Data
	Usage Notes
	Return and Reason Codes
	TSCA Field Usage

	WRITESOCKET
	The WRITESOCKET Control Line
	Parameter Descriptions
	Usage Notes and Examples
	Return and Reason Codes

	Remote Data Resource Terminal Simulator Control Lines
	CLOSERRES
	The CLOSERRES Control Line
	Parameter Description
	Usage Notes and Examples
	Return and Reason Codes

	GETRDATA
	The GETRDATA Control Line
	Parameter Description
	Usage Notes and Examples
	Return and Reason Codes

	OPENRRES
	The OPENRRES Control Line
	Parameter Description
	Usage Notes and Examples
	Return and Reason Codes

	PUTRDATA
	The PUTRDATA Control Line
	Parameter Description
	Usage Notes and Examples
	Return and Reason Codes

	QUERYRRES
	The QUERYRRES Control Line
	Parameter Description
	Usage Notes and Examples

	RELEASERRES
	The RELEASERRES Control Line
	Parameter Description
	Usage Notes and Examples
	Return and Reason Codes

	SETRRES
	The SETRRES Control Line
	Parameter Description
	Usage Notes and Examples
	Return and Reason Codes

	Testing Terminal Simulator Panels (TSPs) and EXECS (TSXs)
	Using the PRINT Control Line
	Using the TESTFIELD Control Line
	Field Checking in a TSX
	Using the TESTFLOW Control Line
	Panel Checking in a TSX
	Message Checking in a TSX
	Syntax Checking in a TSX
	Using the TSP TRACE Control Line
	Using the TRACE Command
	TRACE TSX Considerations

	Running Terminal Simulator Panels (TSPs) and Terminal Simulator Execs (TSXs)
	Running a TSP or a TSX from the Command Line
	Using the RUN Command to Run a TSP or a TSX
	Using a Command Alias to Run a TSP or a TSX

	Running a TSP or a TSX at Product Invocation
	Running TSPs or TSXs in a Batch Environment
	Running a TSP or a TSX from a Control Panel
	The 002B Function Code
	The 001B Function Code
	When the TSP or TSX Is Actually Started

	How To Locate a TSP or TSX
	Calling a TSP or TSX from Another TSP or TSX
	Message Handling during TSP and TSX Processing
	TSP and TSX Processing for Three Classes of Messages

	User Exits
	Application Program Interface User Exits
	Configuration Migration User Exits
	Database Administration User Exits
	Escalation and Notification User Exits
	General-purpose User Exits

	Terminal Simulator Communications Fields
	Contents of the TSCA
	TSCA Index

	Mapping of the TSCA

	Assembler Code User Exit Example
	User Exit Example

	Relating Publications to Specific Tasks
	Typical Tasks

	Tivoli Information Management for z/OS Courses
	Education Offerings
	United States
	United Kingdom

	Where to Find More Information
	The Tivoli Information Management for z/OS Library

	Index

