
Information Management for z/OS
Guide to Integrating with Tivoli Applications
Version 7.1 SC31-8744-00

Information Management for z/OS
Guide to Integrating with Tivoli Applications
Version 7.1 SC31-8744-00

Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications

Copyright Notice

© Copyright IBM Corporation 1981, 2001. All rights reserved. May only be used pursuant to a Tivoli Systems
Software License Agreement, an IBM Software License Agreement, or Addendum for Tivoli Products to IBM Customer
or License Agreement. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any computer language, in any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual, or otherwise, without prior written permission of IBM Corporation. IBM Corporation grants
you limited permission to make hardcopy or other reproductions of any machine-readable documentation for your own
use, provided that each such reproduction shall carry the IBM Corporation copyright notice. No other rights under
copyright are granted without prior written permission of IBM Corporation. The document is not intended for
production and is furnished “as is” without warranty of any kind. All warranties on this document are hereby
disclaimed, including the warranties of merchantability and fitness for a particular purpose.

U.S. Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corporation.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States, other
countries, or both: IBM, the IBM logo, Tivoli, the Tivoli logo, AIX, CICS, CICS/ESA, DATABASE 2, DB2,
DFSMS/MVS, IBMLink, Language Environment, MVS, MVS/ESA, NetView, OS/2, OS/2 WARP, OS/390, RACF,
Redbooks, RMF, RS/6000, System/390, Tivoli Enterprise Console, TME 10, VisualAge, VTAM, z/OS.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names mentioned in this document may be trademarks or service marks of others.

Notices

References in this publication to Tivoli Systems or IBM products, programs, or services do not imply that they will be
available in all countries in which Tivoli Systems or IBM operates. Any reference to these products, programs, or
services is not intended to imply that only Tivoli Systems or IBM products, programs, or services can be used. Subject
to valid intellectual property or other legally protectable right of Tivoli Systems or IBM, any functionally equivalent
product, program, or service can be used instead of the referenced product, program, or service. The evaluation and
verification of operation in conjunction with other products, except those expressly designated by Tivoli Systems or
IBM, are the responsibility of the user. Tivoli Systems or IBM may have patents or pending patent applications
covering subject matter in this document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, North Castle
Drive, Armonk, New York 10504-1785, U.S.A.

Programming Interface Information

This publication documents intended Programming Interfaces that allow the customer to write programs to obtain the
services of Tivoli Information Management for z/OS.

© Copyright International Business Machines Corporation . All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface . xv
Who Should Read This Guide . xv

Prerequisite and Related Documentation . xv

What This Guide Contains . xvi

How Information Is Presented in This Guide . xvii

Contacting Customer Support . xvii

Part I. The NetView Bridge Adapter . 1

Chapter 1. Introducing the NetView Bridge Adapter . 3
Software Required for the NetView Bridge Adapter? . 4

How Does the NetView Bridge Adapter Work? . 4

Chapter 2. Preparing to Use the NetView Bridge Adapter. 7
Installing the NetView Bridge Adapter. 7

Setting Up the NetView Bridge Adapter. 7

Modifying the JCL Supplied with the NetView Bridge Adapter . 8

Defining the JCL Procedure. 8

The JCL Procedure Parameters . 9

Stopping a Server . 18

Creating Additional Copies of a Server . 18

Recycling the Servers . 19

Chapter 3. Performing the NetView Bridge Adapter Transactions. 21
Coding the Transactions . 21

Generating NetView Bridge Adapter Requests . 21

Receiving NetView Bridge Adapter Replies . 25

Creating a Record (IBCREATE transaction) . 27

The IBCREATE Transaction Request . 27

The IBCREATE Transaction Reply . 30

Updating a Record (IBUPDATE Transaction). 31

The IBUPDATE Transaction Request. 31

The IBUPDATE Transaction Reply . 34

Retrieving a Record by Argument (IBSEARCH Transaction) . 34

The IBSEARCH Transaction Request . 34

The IBSEARCH Transaction Reply . 37

Using Complex Parameters . 37

iiiGuide to Integrating with Tivoli Applications

TEXTLIST . 37

SEARCHLIST. 38

VERIFIER . 43

Writing User-Defined Transactions. 44

A Typical Scenario . 45

Requirements for a User-Supplied Module . 45

Identifying the User-Supplied Module . 45

Writing User-Supplied Modules . 46

NetView Return Codes . 49

Sample Code for the User-Supplied Module. 50

Calling User-Defined NetView Bridge Adapter Transactions. 51

Chapter 4. The NetView Bridge Adapter IBRPRINT Data Set 53
Contents of the IBRPRINT Data Set . 53

Chapter 5. NetView Bridge Adapter Codes. 59
Return Codes and Reason Codes . 59

Warning Codes . 62

Log Only Codes . 62

Part II. NetView AutoBridge . 63

Chapter 6. NetView AutoBridge Overview. 67
What Does Tivoli Information Management for z/OS NetView AutoBridge Do? 67

Tivoli Information Management for z/OS NetView AutoBridge Highlights . 68

Why Use Tivoli Information Management for z/OS NetView AutoBridge? . 68

Managing Network Events. 69

Interfacing with Tivoli Information Management for z/OS . 69

Invoking User Functions . 69

Network Management . 69

Automating Network Management. 70

Implementation Benefits . 71

Chapter 7. Functional Description of NetView AutoBridge. 73
AutoBridge and NetView Bridge Components . 74

NetView Bridge on the Resident Host . 75

AutoBridge on the Resident Host. 75

NetView Bridge on a Remote Host . 75

AutoBridge on a Remote Host . 76

Processing Overview . 76

iv Version 7.1

Process Invocation. 78

Database Mapping. 78

Input Record Filtering . 79

Checkpoint Management . 79

Transaction Post-Processing . 79

Chapter 8. Coding NetView AutoBridge Tables . 81
Coding the Process Table. 83

TRACE Function Syntax . 84

PARSE Function Syntax . 85

ADD_DATA Function Syntax . 86

VERIFIER Function Syntax. 87

ASSOCDATA Function Syntax . 87

User Function or Command Invocation Syntax . 88

IBCREATE Function Syntax . 89

IBUPDATE Function Syntax . 89

IBSEARCH Function Syntax . 90

Coding the Mapping Table. 92

Coding the Filter Table . 97

AutoBridge Table Examples. 98

Processing Generic Alerts . 99

Processing BNJ146I Messages . 100

Coding the Initialization Table . 101

Initialization Table Structure . 101

Initialization Table Examples . 102

Initialization Table Syntax . 104

Chapter 9. NetView AutoBridge Commands . 113
Invoking AutoBridge . 114

Handling Checkpoint Manager Transactions . 116

Starting/Stopping/Recycling AutoBridge and Its Components . 119

Using the AutoBridge Main Menu . 120

Starting/Recycling/Stopping the NetView Bridge Dispatchers or Adapters . 121

Managing Checkpoint Transactions . 121

Managing the AutoBridge Tables . 125

Setting AutoBridge Tracing On or Off . 126

Chapter 10. NetView AutoBridge Implementation Scenarios 129
BNJ146I Message Scenario . 129

vGuide to Integrating with Tivoli Applications

MSU Scenario . 131

User-Written Application Data Scenario . 133

Automated “Unalert” Notification Scenario . 135

Chapter 11. NetView AutoBridge Planning. 137
Step 1. Verify Installation of Required Hardware . 137

Step 2. Verify Installation of Required Software . 137

Step 3. Verify Required Skills and Documentation Present . 138

Step 4. Choose an Application ID and Receive a Queue Name . 138

Step 5. Plan the Initialization Table . 138

Step 6. Plan the NetView Automation Table Customization . 139

Step 7. Plan the PIDT, PIPT, and Alias Table Modifications . 139

Step 8. Plan the Process Table . 141

Step 9. Plan the Mapping Table . 141

Step 10. Plan the Filter Table. 141

Chapter 12. NetView AutoBridge Software Setup and Administration 143
Setting Up the Resident NetView. 144

Adding Operator IDs for NetView Autotasks . 145

Creating Profiles for NetView Autotasks . 146

Adding Command Model Statements to NetView . 148

Modifying the NetView Procedure JCL . 149

Modifying the JCL Supplied with the Tivoli Information Management for z/OS NetView
Bridge Adapter . 150

Allocating the Checkpoint File VSAM Data Set . 150

Customizing the DSIPARM DSIDMN Member . 151

Creating Additional Copies of a Server . 151

Customizing the PIDT, PIPT, and Alias Tables . 152

Customizing the NetView Automation Table . 152

Creating the Initialization Table . 153

Creating the Process Table for Resident NetView . 153

Creating the Mapping Table for Resident NetView . 153

Creating the Filter Table for Resident NetView . 153

Setting Up Remote NetViews. 153

Adding an Operator ID for the Dispatcher Autotask . 155

Creating NetView Bridge Dispatcher Profiles . 156

Adding NetView Bridge Command Model Statements to NetView . 156

Modifying the NetView Procedure JCL . 156

Allocating the Checkpoint File VSAM Data Set . 157

vi Version 7.1

Customizing the DSIPARM DSIDMN Member . 157

Customizing the NetView Automation Table . 157

Creating the Initialization Table for a Remote NetView . 158

Creating the Process Table for a Remote NetView . 159

Creating the Mapping Table for a Remote NetView . 159

Creating the Filter Table for a Remote NetView . 159

VTAM List . 159

Required NetView Tasks . 160

Using RMTCMD to Test Connectivity . 160

Chapter 13. Using the NetView AutoBridge PostProcessor 163
PostProcessor Overview. 163

When to Use the PostProcessor . 163

PostProcessor Function . 164

PostProcessor Example . 164

Installing the PostProcessor . 167

Step 1. Plan for the PostProcessor Panels . 168

Step 2. Update Your Tivoli Information Management for z/OS Session Member 169

Step 3. Create a TSO Background Procedure for the PostProcessor. 169

Step 4. Create Background Profiles for the PostProcessor . 170

Setting Up the PostProcessor . 173

Determining If a Record Should Be Post-Processed . 173

Determining Which Fields or Selections to Post-Process. 173

Authorizing the PostProcessor to Tivoli Information Management for z/OS. 173

Modifying the Tivoli Information Management for z/OS Profile . 174

Authorizing User Access to Mapping Reference Records . 174

Creating a Mapping Reference Record . 174

Mapping Reference Record Considerations. 176

Maintaining Mapping Reference Records . 177

Modifying AutoBridge’s Tivoli Information Management for z/OS Interface 179

Running the PostProcessor. 181

Viewing PostProcessor Messages . 181

Recovering from PostProcessor Errors . 181

Stopping the PostProcessor . 183

Mapping Reference Records Contents . 184

AutoBridge PostProcessor User Exits . 184

EYMSP010 . 184

EYMSP020 . 185

EYMSP030 . 185

viiGuide to Integrating with Tivoli Applications

EYMSP040 . 186

EYMSP041 . 187

EYMSP042 . 187

EYMSP043 . 188

EYMSP044 . 188

EYMSP045 . 189

EYMSP050 . 189

EYMSP055 . 190

Chapter 14. NetView AutoBridge Messages . 191
Messages. 191

Chapter 15. NetView AutoBridge Worksheets . 231
Initialization Table Worksheet . 231

Process Table Planning Worksheet . 233

Mapping Table Planning Worksheet . 234

Filter Table Planning Worksheet. 235

Chapter 16. NetView AutoBridge Sample Members . 237
Installation Samples. 237

Installation Verification Programs (IVPs) . 239

AutoBridge Table Samples. 239

User-written CLISTs and Panel Samples . 239

User-written Functions. 240

Chapter 17. Tivoli Information Management for z/OS to Tivoli
NetView Connection . 243

Understanding the Tivoli NetView Connection . 244

What is Tivoli NetView for AIX? . 244

What is AIX NetView Service Point?. 244

Software Requirements . 245

Purpose of the Host Connection. 245

How the Host Connection Works . 245

Advantages of Connecting Tivoli Information Management for z/OS to Tivoli NetView 246

Part III. Problem Service . 247

Chapter 18. Understanding the Problem Service Component 251
Problem Service Sessions . 251

Problem Service Operations . 252

viii Version 7.1

Unlocking a Record. 253

Locking a Record . 253

Deleting Records . 254

Propagating Records . 254

Retrieving Records . 254

Searching for a Record . 255

Transferring Records . 255

Updating Records . 256

Control Operations . 256

Automated Operations . 256

Problem Service Data Mappings . 259

Chapter 19. Problem Service Installation . 261
Planning for Problem Service Installation. 261

Tivoli Information Management for z/OS Environment. 261

HLAPI Client . 261

Installation Requirements. 262

Hardware Requirements . 262

Disk Space Requirements . 262

Software Requirements . 262

Installing Problem Service . 263

National Language Support (NLS) for Messages . 264

REGSRV2 Program (Windows NT Only) . 265

Chapter 20. Planning for Problem Service Configuration. 267
Basic HLAPI Concepts . 267

HLAPI Transactions . 267

HLAPI PDBs . 268

HLAPI Data Views . 268

HLAPI PALTs . 268

Problem Service Configuration Process . 269

Sample Configuration File . 269

Process Steps. 270

Chapter 21. Customizing Your Problem Service Configuration File 271
Customizing the HLAPI Session Information . 271

HLAPI-Related Statements . 271

HLAPI Session Statements . 274

Customizing Problem Service General Settings . 275

Customizing Problem Service Data Mappings . 281

ixGuide to Integrating with Tivoli Applications

Mapping Your Application and Tivoli Information Management for z/OS Records 282

Sample Configuration File Descriptions . 286

Mapping Records from Your Application to Tivoli Information Management for z/OS 289

Mapping Records from Tivoli Information Management for z/OS to Your Application 291

Chapter 22. Completing Problem Service Configuration 293
Preparing the HLAPI Data Views on MVS . 293

Using PIDTs and PIPTs with Uncustomized Records . 293

Preparing PIDTs and PIPTs for Customized Records . 294

Updating the Services File . 295

AIX Workstation /etc/services File . 295

Windows NT Workstation Services File . 295

Chapter 23. Running Problem Service . 297
Starting Problem Service . 297

Stopping Problem Service . 297

Logging with Problem Service . 297

Chapter 24. Problem Service Application Programming Information 299
Copying the Samples and Files . 299

Compiling and Link Editing Your Code . 299

Interface Definition Language Data Types . 300

Coding Examples for Problem Service Operations . 300

Checkin. 300

Checkout . 301

Delete . 301

Ping . 301

Propagate . 302

Retrieve . 302

Search . 303

Shutdown . 303

Transfer. 304

Update . 304

Tivoli Application Development Environment (ADE) Exceptions . 305

ExInfoGateway Exception . 305

Examples of Gateway Exceptions . 306

Chapter 25. Customizing User Exit Routines for the Problem Service
Daemon. 307

Supported Data Conversions . 307

x Version 7.1

Truncation . 307

Convert One Character to Another Character . 307

Convert Specific Field Value to Another Value . 308

Date/Time Conversion . 308

Freeform Text . 308

Default Data . 308

Field Combining (Concatenation). 308

Substring and Sub-Word . 308

Exit Routines. 308

Specifying User Exits for Conversions . 309

change. 309

fromIMDate . 310

fromIMPriority . 310

fromIMTime . 310

nullDefault . 310

stripLeading . 310

subString . 311

toIMDate. 311

toIMTime . 311

translate. 311

translateWord . 312

words . 312

Part IV. Tivoli Service Desk Bridge. 313

Chapter 26. Tivoli Service Desk Bridge Overview. 315
Problem Records and People Records . 316

The Notification Server . 317

The Listener Program . 317

Chapter 27. Tivoli Service Desk Bridge Setup. 319
Hardware Requirements . 319

Software Requirements . 319

Database Requirements . 319

Information Management Setup . 319

Setting Up the Notification Server . 321

Data Model Records . 321

Updating Panel BLG0S010 . 323

Updating Panel BLG0E090 . 331

Updating Panel BLG1A111 . 338

xiGuide to Integrating with Tivoli Applications

Copying Panel BLG1A11Z . 345

Copying BLM1B04Z. 347

Starting the Notification Server . 349

Stopping the Notification Server . 350

TSD Setup . 350

Setting Up Error Processing for the TSD Listener Program . 350

Chapter 28. Using the Tivoli Service Desk Bridge . 353
Transferring a Problem from Information Management to TSD. 353

Resume Ownership . 356

Refresh . 358

Send a Solution . 360

Tivoli Service Desk Bridge TSXs . 362

Part V. Integrating with Other Tivoli Products. 367

Chapter 29. Integrating with Tivoli Inventory . 369
Overview of Tivoli Inventory. 369

Overview of the Interface to Tivoli Inventory. 370

Components of the Interface to Tivoli Inventory. 371

Host Components . 371

Workstation Components . 372

Installing the Interface to Inventory . 372

Installing the Host Components . 373

Installing the Workstation Components. 374

Customizing the Interface to Inventory. 376

Using the Interface to Inventory. 377

Using the Interface from a Workstation . 377

Using the Interface from the Host . 381

Messages. 384

Status Messages . 384

Chapter 30. Integrating with Tivoli Enterprise Console (TEC) 387
TEC Integration Facility . 387

Installing the TEC Integration Facility . 387

Task Library . 388

Trouble Ticket . 389

Creating a Problem Record . 389

Updating a Problem Record . 389

xii Version 7.1

Deleting a Problem Record . 390

Task Status . 390

Rules. 390

Mapping Event Data to Problem Records. 391

Customizing Tasks. 392

List of Files. 394

Chapter 31. Integrating with Tivoli Software Distribution. 395
Overview of the Interface to Tivoli Software Distribution. 395

Installing the Components Used by the Interface . 395

Installing the Host Components . 396

Installing the TEC Components . 398

Software Distribution from TEC . 398

Using the Interface to Tivoli Software Distribution. 401

Example of Distributing the Tivoli Information Management for z/OS HLAPI Clients 401

Creating a Change Request Record . 402

Approving the Change Request Record . 405

Chapter 32. Tivoli Decision Support . 409
Where To Find Additional Information. 409

Part VI. Appendixes . 411

Appendix A. Relating Publications to Specific Tasks 413
Typical Tasks. 413

Appendix B. Tivoli Information Management for z/OS Courses 417
Education Offerings. 417

United States . 417

United Kingdom . 417

Appendix C. Where to Find More Information . 419
The Tivoli Information Management for z/OS Library . 419

Index . 423

xiiiGuide to Integrating with Tivoli Applications

xiv Version 7.1

Preface

This guide describes a number of Tivoli® applications that integrate with Tivoli Information
Management for z/OS. Some of these applications, such as the NetView® AutoBridge
product and the NetView Bridge Adapter, have long been associated with Tivoli Information
Management for z/OS. NetView AutoBridge, for example, can be used to build and perform
Tivoli Information Management for z/OS transactions in response to the NetView alerts,
messages, and application data that you specify. The NetView Bridge Adapter uses the
NetView Bridge function of NetView to enable NetView applications.

This guide describes the ways in which Tivoli Information Management for z/OS extends its
performance potential by providing means of integrating with a wide range of Tivoli
applications. An overview of these applications is described in “What This Guide Contains”
on page xvi.

There may be references in this publication to versions of Tivoli Information Management
for z/OS’s predecessor products. For example:

¶ TME 10™ Information/Management Version 1.1

¶ Information/Management Version 6.3, Version 6.2, Version 6.1

¶ Tivoli Service Desk for OS/390® Version 1.2

Who Should Read This Guide
This guide is intended for system integrators, network planners, and operators who are
responsible for the installation and customization of Autobridge, the Netview Bridge
Adapter, or any of the other Tivoli applications with which Tivoli Information Management
for z/OS interfaces.

Prerequisite and Related Documentation
The library for Tivoli Information Management for z/OS Version 7.1 consists of these
publications. For a description of each, see “The Tivoli Information Management for z/OS
Library” on page 419.

Tivoli Information Management for z/OS Application Program Interface Guide,
SC31-8737-00

Tivoli Information Management for z/OS Client Installation and User’s Guide,
SC31-8738-00

Tivoli Information Management for z/OS Data Reporting User’s Guide, SC31-8739-00

Tivoli Information Management for z/OS Desktop User’s Guide, SC31-8740-00

Tivoli Information Management for z/OS Diagnosis Guide, GC31-8741-00

Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications,
SC31-8744-00

Tivoli Information Management for z/OS Integration Facility Guide, SC31-8745-00

Tivoli Information Management for z/OS Licensed Program Specification, GC31-8746-00

Tivoli Information Management for z/OS Master Index, Glossary, and Bibliography,
SC31-8747-00

xvGuide to Integrating with Tivoli Applications

|

Tivoli Information Management for z/OS Messages and Codes, GC31-8748-00

Tivoli Information Management for z/OS Operation and Maintenance Reference,
SC31-8749-00

Tivoli Information Management for z/OS Panel Modification Facility Guide,
SC31-8750-00

Tivoli Information Management for z/OS Planning and Installation Guide and Reference,
GC31-8751-00

Tivoli Information Management for z/OS Problem, Change, and Configuration
Management, SC31-8752-00

Tivoli Information Management for z/OS Program Administration Guide and Reference,
SC31-8753-00

Tivoli Information Management for z/OS Reference Summary, SC31-8754-00

Tivoli Information Management for z/OS Terminal Simulator Guide and Reference,
SC31-8755-00

Tivoli Information Management for z/OS User’s Guide , SC31-8756-00

Tivoli Information Management for z/OS World Wide Web Interface Guide,
SC31-8757-00

Note: Tivoli is in the process of changing product names. Products referenced in this
manual may still be available under their old names (for example, TME 10 Enterprise
Console instead of Tivoli Enterprise Console®).

What This Guide Contains
Information in this guide can be grouped into several topics:

¶ I — The NetView Bridge Adapter, contains information about the NetView Bridge
Adapter; chapters within this part explain how to set up the NetView Bridge Adapter,
use of transaction processors, return codes, and other features of which you should be
aware.

¶ II — NetView AutoBridge, contains information about the NetView AutoBridge; the
chapters in this part describe functional elements, data flow, format and commands, and
numerous other topics.

¶ Problem Service provides distributed help desk applications with an interface to Tivoli
Information Management for z/OS. III — Problem Service, contains information about
Problem Service.

¶ Tivoli Information Management for z/OS has traditionally been a tool that is used in a
host environment; another product, Tivoli Service Desk 6.0 (TSD), provides function
similar to Tivoli Information Management for z/OS, but in a workstation environment.
IV — Tivoli Service Desk Bridge, describes how these two tools work together in an
interface called the Tivoli Service Desk Bridge.

¶ Tivoli Information Management for z/OS integrates with Tivoli’s other software products
in the area of Administration and Operations Management. V — Integrating with Other
Tivoli Products, contains chapters on several of these products:

v “Integrating with Tivoli Inventory” on page 369, describes Tivoli Information
Management for z/OS and Tivoli Inventory. Tivoli Inventory is a hardware and

Prerequisite and Related Documentation

xvi Version 7.1

software inventory-gathering application designed to help system administrators and
accounting personnel manage the complexity of PC and UNIX® systems in a
distributed client/server enterprise.

v “Integrating with Tivoli Enterprise Console (TEC)” on page 387, contains information
on the Tivoli Enterprise Console (TEC). TEC acts as a central resource that receives
information from many sources, such as systems, databases, and other applications. It
integrates with major network management platforms, and collects, processes, and
automatically initiates corrective actions to system, application, network, and database
events.

v “Integrating with Tivoli Software Distribution” on page 395, contains information on
Tivoli Software Distribution, which automates the process of distributing software to
clients and servers throughout an enterprise. It allows you to install and update
applications and software in a coordinated, consistent manner across platforms for
timely client/server application deployment. Using Tivoli Software Distribution, you
can remotely install the Tivoli Information Management for z/OS HLAPI client
programs. You can also have Tivoli Information Management for z/OS change
requests initiate the distribution of workstation software.

v “Tivoli Decision Support” on page 409 describes where to find information about
using Tivoli Decision Support with Tivoli Information Management for z/OS data.

How Information Is Presented in This Guide
The panels presented in this guide are not meant to be exact replicas of the way a panel
appears on the screen. The information on the panels is correct, but the spacing is not
always exact.

In the text of this book, selections on selection or options panels and fields on data-entry
panels appear in bold type; for example, the Return to caller field. The input you enter in
response to the fields on data-entry panels is in all capital letters; for example, Enter
CREATE in the Create/inquiry field.

Commands, such as END, CONTROL, RESUME, or FIELD, appear in all capital letters in
text. Although not commands, the user responses YES and NO also appear in capital letters.

The highlighted print on a panel indicates the selection you are to make; the highlighted
print in text is the information you enter or select while performing a task.

Contacting Customer Support
For support inside the United States, for this or any other Tivoli product, contact Tivoli
Customer Support in one of the following ways:
¶ Send e-mail to support@tivoli.com
¶ Call 1-800-TIVOLI8
¶ Navigate our Web site at http://www.support.tivoli.com

For support outside the United States, refer to your Customer Support Handbook for phone
numbers in your country. The Customer Support Handbook is available online at
http://www.support.tivoli.com.

When you contact Tivoli Customer Support, be prepared to provide identification
information for your company so that support personnel can assist you more readily.

Prerequisite and Related Documentation

xviiGuide to Integrating with Tivoli Applications

The latest downloads and fixes can be obtained at http://www.tivoli.com/infoman.

Contacting Customer Support

xviii Version 7.1

|

I — The NetView Bridge Adapter
Chapter 1. Introducing the NetView Bridge Adapter . 3
Software Required for the NetView Bridge Adapter? . 4
How Does the NetView Bridge Adapter Work? . 4

Chapter 2. Preparing to Use the NetView Bridge Adapter 7
Installing the NetView Bridge Adapter. 7
Setting Up the NetView Bridge Adapter. 7
Modifying the JCL Supplied with the NetView Bridge Adapter . 8

Defining the JCL Procedure. 8
The JCL Procedure Parameters . 9

The EXEC Statement . 9
The STEPLIB Concatenation . 10
The User-Supplied Input Data Set . 10
The User-Supplied Output Data Sets . 17

Stopping a Server . 18
Creating Additional Copies of a Server . 18
Recycling the Servers . 19

Chapter 3. Performing the NetView Bridge Adapter Transactions 21
Coding the Transactions . 21

Generating NetView Bridge Adapter Requests . 21
Header Parameters. 22
Control Parameters and Input Parameters . 22

Receiving NetView Bridge Adapter Replies . 25
Creating a Record (IBCREATE transaction) . 27

The IBCREATE Transaction Request . 27
The IBCREATE Transaction Reply . 30

Updating a Record (IBUPDATE Transaction). 31
The IBUPDATE Transaction Request. 31
The IBUPDATE Transaction Reply . 34

Retrieving a Record by Argument (IBSEARCH Transaction) . 34
The IBSEARCH Transaction Request . 34
The IBSEARCH Transaction Reply . 37

Using Complex Parameters . 37
TEXTLIST . 37
SEARCHLIST. 38

Structured Search Requests . 38
Freeform Search Requests . 39
Combined Structured and Freeform Search Requests . 43

VERIFIER . 43
Writing User-Defined Transactions. 44

A Typical Scenario . 45
Requirements for a User-Supplied Module . 45
Identifying the User-Supplied Module . 45
Writing User-Supplied Modules . 46

Calling the BLGBURC Routine . 48
Building Control and Input PDB Chains . 48
Calling the BLGBUIM Routine . 48

1Guide to Integrating with Tivoli Applications

Building a Results PDB Chain. 48
Setting the PDBAPPL Field. 49
Calling the BLGBUSN Routine . 49

NetView Return Codes . 49
Return Codes in Register 15 . 49
Return and Reason Codes in TPCA . 49
User-Supplied Module Return Codes . 50

Sample Code for the User-Supplied Module. 50
Calling User-Defined NetView Bridge Adapter Transactions. 51

The User-Defined Transaction Request. 51
The User-Defined Transaction Reply . 52

Chapter 4. The NetView Bridge Adapter IBRPRINT Data Set 53
Contents of the IBRPRINT Data Set . 53

Chapter 5. NetView Bridge Adapter Codes. 59
Return Codes and Reason Codes . 59
Warning Codes . 62
Log Only Codes . 62

2 Version 7.1

Introducing the NetView Bridge Adapter

Systems management involves both operational activities, such as monitoring and control,
and administrative activities, such as tracking and reporting. Until the development of the
NetView Bridge and the Tivoli Information Management for z/OS NetView Bridge Adapter,
these two types of activities were supported by separate products that could not be easily
interconnected under program control. Coordinating these activities required human
intervention or expensive additional programming.

For example, when a system component detected a problem and reported it to NetView,
NetView performed its diagnosis and resolution process for that problem. Tivoli Information
Management for z/OS provided a function for tracking the problem, but there was no
simple, automatic way for NetView to enter the problem into the Tivoli Information
Management for z/OS database. Also, real-time activities performed by NetView automation
routines frequently needed access to configuration data maintained by Tivoli Information
Management for z/OS. Once again, there was no automated way to access this data from
NetView. The NetView Bridge Adapter and NetView Bridge integrate these functions into
the NetView automation platform.

The Tivoli Information Management for z/OS NetView Bridge Adapter enables the NetView
and Tivoli Information Management for z/OS products to work together. Along with the
NetView Bridge, it enables automated message-handling functions. These functions consist
of message routing and transmission within the NetView address space (the NetView
Bridge), and message processing and submission to the Tivoli Information Management for
z/OS High-Level Application Program Interface (HLAPI). The HLAPI, in turn, interfaces
with the Tivoli Information Management for z/OS Low-Level API (LLAPI), which accesses
the database.

The Adapter provides the connection between the NetView Bridge and the HLAPI. It
transforms user-written NetView automation command procedures or server requests into
HLAPI transactions and responses. Through the NetView Bridge Adapter, you can use
NetView to:

¶ Create records in a Tivoli Information Management for z/OS database

¶ Update records in a Tivoli Information Management for z/OS database in a manner that
protects the integrity of the records

¶ Retrieve a list of records or a single record from a Tivoli Information Management for
z/OS database based upon a set of search criteria

¶ Perform user-defined tasks on records in a Tivoli Information Management for z/OS
database

1

3Guide to Integrating with Tivoli Applications

1.
In

tro
d

u
cin

g
th

e
N

etV
iew

B
rid

g
e

A
d

ap
ter

For more information on the NetView Bridge, refer to the NetView Bridge Implementation
manual. The Tivoli Information Management for z/OS Application Program Interface Guide
contains additional information about the HLAPI.

Software Required for the NetView Bridge Adapter?
The software requirements for the NetView Bridge Adapter are:
¶ Tivoli Information Management for z/OS (program number 5697-SD9)
¶ NetView Version 3 for MVS/ESA™ (5655–007) or a subsequent release
¶ OS/PL1 Library, Version 2 Release 3 (5668-911) or a subsequent release; if you are

using NetView for OS/390 Version 1 Release 1 (5697–B82) or later, you must use
Language Environment® (available with OS/390 and z/OS).

How Does the NetView Bridge Adapter Work?
The NetView Bridge Adapter consists of the server address space and transaction processors.
The transaction processors enable you to manipulate the data in your Tivoli Information
Management for z/OS database. You can define your own transaction processors to perform
tasks not provided by the NetView transaction processors.

To start the NetView Bridge Adapter, you must initialize NetView, the NetView Bridge
Adapter server address space, and the Tivoli Information Management for z/OS product.
First you must initialize the NetView Bridge dispatcher autotask that resides in NetView. To
see how to do this, refer to the NetView Bridge Implementation manual. Next, you must
initialize the adapter. The adapter automatically initializes Tivoli Information Management
for z/OS after you initialize the adapter. One way to start initialization is with a JCL EXEC
called as part of NetView startup. A sample of this JCL appears as procedure BLGBSPCX in
the data set SBLMSAMP.

The adapter supports this sequential startup by interfacing with the NetView Bridge server
support API on the NetView side of the process, and by interfacing with the HLAPI on the
Tivoli Information Management for z/OS side of the process. For more details about the
NetView Bridge server support API, refer to the NetView Bridge Implementation manual.
The Tivoli Information Management for z/OS Application Program Interface Guide contains
additional information about the HLAPI.

Figure 1 on page 5 shows the interaction between a user-written command, the NetView
Bridge, the adapter, and Tivoli Information Management for z/OS. The NetView Bridge
consists of the Bridge Requester API, the Server Support API, and the bridge dispatcher.

4 Version 7.1

|

The NetView Bridge Adapter acts as the connection between the commands you write in
NetView and the database you use in Tivoli Information Management for z/OS. The
transaction specified in your NetView command is processed as follows:

1. A user-written command procedure (NetView Command List Language, Restructured
Extended Executor (REXX), or high-level language (HLL) program) sends the
transaction to the NetView Bridge Adapter server address space (also called the database
server) using the NetView Bridge Requester API.

2. The bridge dispatcher (a NetView autotask) puts this request on a NetView
program-to-program interface (PPI) queue to access the first available database server.

3. When the database server receives a request on its PPI queue, it uses the server support
API to retrieve the transaction and start the appropriate transaction processor.

4. The transaction processor starts the HLAPI to perform the function you request.

5. If this request asks the transaction processor for a reply, the processor calls the server
support API with all the data for the reply. The NetView Bridge transmits the transaction
reply back to the user-written command procedure, which uses the NetView Bridge
Requester API to extract the data for you.

NetView

Information Management for z/OS

Server Address Space

User-
Written

Commands

NetView Bridge Adapter

Transaction
Processors

Server
Support

APIs

NetView
Bridge

Transactions

High Level
API of

Information
Management

for z/OS

Information
Management

for z/OS
Database

Bridge
Requester

APIs

Figure 1. Tivoli Information Management for z/OS NetView Bridge Adapter

How Does the NetView Bridge Adapter Work?

5Guide to Integrating with Tivoli Applications

1.
In

tro
d

u
cin

g
th

e
N

etV
iew

B
rid

g
e

A
d

ap
ter

How Does the NetView Bridge Adapter Work?

6 Version 7.1

Preparing to Use the NetView Bridge
Adapter

The NetView Bridge Adapter supports automated operations and therefore does not provide
user-interactive panels, commands, or dialogs. The adapter consists of two basic parts: the
NetView Bridge Adapter address space and the transaction processors. For more detailed
information about the transactions, see “Performing the NetView Bridge Adapter
Transactions” on page 21. The adapter address space provides access to the Tivoli
Information Management for z/OS database, manages the interface with NetView using the
NetView Bridge, and provides the job control process for running under MVS™. The events
that occur during an Adapter session are:
¶ Initializing the adapter address space
¶ Controlling server processing
¶ Controlling transaction processing
¶ Recording transaction requests and replies
¶ Closing the NetView Bridge Adapter address space

Before any of the above can happen, you must install the NetView Bridge Adapter modules.
This can be done when the Tivoli Information Management for z/OS program product is
installed or later. You must then make the NetView Bridge Adapter available to the
transactions and command procedures that use it.

Installing the NetView Bridge Adapter
To install the NetView Bridge Adapter, you will use SMP/E, described in the Program
Directory for Tivoli Information Management for z/OS.

Setting Up the NetView Bridge Adapter
To make the NetView Bridge Adapter available, create the database server by following
these steps:

1. Identify the NetView installation that is to use the NetView Bridge Adapter. Tivoli
Information Management for z/OS must be installed and running on this same system.

2. Set up a NetView Bridge for the NetView Bridge Adapter by following the directions in
the NetView Bridge Implementation manual.

3. Create the data set INFOBRDS (see “The User-Supplied Input Data Set” on page 10).

4. Assign a unique program-to-program interface (PPI) receiver queue name for the server.
Refer to the NetView Application Programming Guide: Program-to-Program Interface
manual for the format of these queue names.

2

7Guide to Integrating with Tivoli Applications

2.
P

rep
arin

g
to

U
se

th
e

N
etV

iew
B

rid
g

e
A

d
ap

ter

Note: The PPI receiver queue name is the RCVQUEUE parameter of the JCL procedure.
See “Modifying the JCL Supplied with the NetView Bridge Adapter”.

5. Determine the application identifier (APPLID) for the server address space. The APPLID
is used as a high-level qualifier for any data set the NetView Bridge Adapter will
dynamically allocate and is the ID that must be in the INITCLAS parameter in
INFOBRDS. For more information, see “The EXEC Statement” on page 9.

6. Define automation logic that issues the MVS START command to start the NetView
Bridge Adapter address space. Modify the JCL procedure supplied with this product to
include the APPLID name and the PPI receiver queue name (JCL parameter
RCVQUEUE) you defined in steps 4 on page 7 and 5 above.

7. Allocate the output data sets that you reference in the modified JCL (see “The
User-Supplied Output Data Sets” on page 17).

Note: You will need one procedure for each Bridge Adapter that you want to use.

Modifying the JCL Supplied with the NetView Bridge Adapter
The Tivoli Information Management for z/OS NetView Bridge Adapter provides a sample
startup JCL procedure BLGBSPCX in the data set SBLMSAMP. This section explains what
to do with it to get the NetView Bridge Adapter working.

Defining the JCL Procedure
This is an example of a typical JCL startup procedure for a Tivoli Information Management
for z/OS NetView Bridge Adapter server address space. The example on page 11 can be
used as a model when creating data sets. You must modify the JCL EXEC that is supplied
with the adapter to fit your particular user environment. An explanation of each part of the
procedure shown in bold-faced type follows the example.
//*---* 00010000
//* * 00020000
//* Licensed Materials - Property of IBM * 00030000
//* * 00040000
//* 5697-SD9 * 00050000
//* * 00060000
//* (C) Copyright IBM Corporation, 1981, 2001. * 00070000
//* * 00080000
//* See Copyright Instructions * 00090000
//* * 00100000
//*---* 00110000
//** 00120000
//* * 00130000
//* NAME: BRIDGEPR (NETVIEW BRIDGE ADAPTER STARTUP PROCEDURE) * 00140000
//* * 00150000
//* PURPOSE: START A NETVIEW BRIDGE ADAPTER SERVER ADDRESS SPACE * 00160000
//* * 00170000
//** 00180000
//BRIDGEPR PROC 00190000
//* 00200000
//* THE PARAMETERS ON THE NEXT LINE ARE PASSED TO THE ADAPTER. 00210000
//SERVER EXEC PGM=BLGBSPC,PARM='/APPLID,RCVQUEUE',REGION=6M 00220000
//* 00230000
//* THE DATA SET NAME QUALIFIER, LOCAL, IMPLIES THAT WHERE THE 00240000
//* QUALIFIER IS USED IT IS UNIQUE TO AN ADDRESS SPACE INSTANCE. 00250000
//* 00260000
//* THE STEPLIB IS USED IF THE INFORMATION MANAGEMENT FOR Z/OS CODE 00270000
//* AND THE PL/I OR THE LE RUN TIME LIBRARIES ARE NOT IN LINKLIST. 00280000
//* TO USE LE YOU MUST HAVE THE CORRECT VERSION OF NETVIEW. 00290000
//* ALL STEPLIB DATASETS MUST BE AUTHORIZED 00300000

Setting Up the NetView Bridge Adapter

8 Version 7.1

//* 00310000
//STEPLIB DD DISP=SHR,DSN=BLM.SBLMMOD1 00320000
// DD DISP=SHR,DSN=SYS1.NETVIEW.CNMLINK 00330000
//* USE CEE.SCEERUN IN PLACE OF PLILINK AND SIBMLINK IF YOU ARE USING LE00340000
// DD DISP=SHR,DSN=SYS1.PLI.PLILINK 00350000
// DD DISP=SHR,DSN=SYS1.PLI.SIBMLINK 00360000
//INFOBRDS DD DISP=SHR,DSN=SYSTEM.BRIDGE.INFOBRDS 00370000
//IBRPRINT DD DISP=SHR,DSN=LOCAL.SERVER.IBRPRINT, 00380000
// DCB=(RECFM=F,LRECL=104,BLKSIZE=104) 00390000
//HLAPILOG DD DISP=SHR,DSN=LOCAL.SERVER.HLAPILOG 00400000
//APIPRINT DD DISP=SHR,DSN=LOCAL.SERVER.APIPRINT 00410000
//SYSPRINT DD DISP=SHR,DSN=LOCAL.SERVER.SYSPRINT 00420000
//SYSUDUMP DD DISP=SHR,DSN=LOCAL.SERVER.SYSUDUMP 00430000

In the preceding JCL example, the high-level qualifier LOCAL implies that these items are
unique for each setup of the NetView Bridge Adapter. The values for the procedure name,
APPLID, and receiver queue name, RCVQUEUE, must also be unique for each adapter
server address space. You can use the JCL in this example to start multiple copies of the
adapter as long as you modify the JCL to contain these unique parameters each time. See
“Creating Additional Copies of a Server” on page 18 for more information.

Notes:

1. The only data sets that you need to have in your STEPLIB are CNMLINK and
SBLMMOD1. The others are probably in LINKLIST.

2. The STEPLIB, INFOBRDS, IBRPRINT, and SYSPRINT DD statements are required.
HLAPILOG, SYSUDUMP, and APIPRINT are optional. To allocate these data sets, see
“The User-Supplied Output Data Sets” on page 17.

The JCL Procedure Parameters
The JCL procedure supplied with the NetView Bridge Adapter consists of three parts: the
EXEC statement, the STEPLIB concatenation, and the user-supplied data sets. Each
bold-faced word in the following section matches one in the JCL example.

The EXEC Statement
The EXEC statement of this JCL supplies several transaction input parameters. The two
EXEC parameters listed below must be unique for each copy of the server, and they must be
entered in this exact format:

The slash (/) symbol differentiates between PL/I run-time parameters and NetView Bridge
Adapter parameters. Any parameter before the slash is a PL/I run-time parameter, and any
parameter after the slash is a NetView Bridge Adapter parameter. In this JCL procedure,
both APPLID and RCVQUEUE are NetView Bridge Adapter parameters. If the slash is
omitted, the system assumes that all parameters are NetView Bridge Adapter parameters.

APPLID
The unique application identifier used with Tivoli Information Management for z/OS
for this server address space. The value specified for APPLID is used within Tivoli
Information Management for z/OS privilege class processing. This entails adding this
APPLID as an eligible user of a specific privilege class record in the Tivoli
Information Management for z/OS database. The APPLID must be an eligible user
of the privilege class specified in the initclass field (see 12). It must also be a valid
MVS high-level qualifier for data set names on your system. It can be 1 to 8
characters long. The first character must be alphanumeric. APPLID correcsponds to

’/applid,rcvqueue’

Modifying the JCL Supplied with the NetView Bridge Adapter

9Guide to Integrating with Tivoli Applications

2.
P

rep
arin

g
to

U
se

th
e

N
etV

iew
B

rid
g

e
A

d
ap

ter

the APPLICATION_ID PDB used by the HLAPI. For more information about
APPLICATION_ID, refer to the Tivoli Information Management for z/OS
Application Program Interface Guide .

RCVQUEUE
The unique NetView PPI receiver queue name identifier used by this address space
to receive incoming transactions. The identifier is 1 to 8 characters long and can
contain uppercase alphabetic (A–Z), numeric (0–9), and these special characters: $,
%, &, @, and #. For more information, refer to the NetView Application
Programming Guide: Program-to-Program Interface.

REGION
The REGION size listed in this JCL procedure is 6 megabytes. This size is best
under conditions of heavy loading. You may lower this number to 4 megabytes if
you do not experience out of memory abnormal end (abend) conditions, such as
TSD/390 user abend 804, at the lower value.

The STEPLIB Concatenation
The STEPLIB statement defines the location of the NetView Bridge Adapter load modules,
the Tivoli Information Management for z/OS load modules, and the NetView load modules.
It also specifies the concatenation order that they are to be searched in while performing the
load.

The User-Supplied Input Data Set
INFOBRDS is the DDNAME for the data set containing the parameters used to initialize the
NetView Bridge Adapter server address space. Allocate this data set using fixed blocked
record format (RECFM=FB) physical sequential organization (DSORG=PS), a record length of
80, and a block size which is a multiple of 80. This data set must not be a SYSOUT file. It
also contains some of the parameters used to initialize the Tivoli Information Management
for z/OS product. This is the only user-supplied data set into which you must put data when
you create it. A single copy of this data set can be shared by all of the adapter address
spaces. You can use the sample job EYLSJ002, supplied in SBLMSAMP, to allocate the data
sets for use by your procedure.
//EYLSJ002 JOB 'your-job-card'
//*---*
//* *
//* Licensed Materials - Property of IBM. *
//* *
//* 5697-SD9 *
//* *
//* (C) Copyright IBM Corporation, 1981, 2001. *
//* *
//* See Copyright Instructions *
//* *
//*---*
//***
//* THIS JCL WILL ALLOCATE THE NETVIEW BRIDGE ADAPTER
//* DATA SETS ALONG WITH THE POSTPROCESSOR DATA SETS.
//*
//* MODIFY ALL OCCURRENCES OF THE FOLLOWING WITH UPPERCASE TEXT:
//*
//* 1) 'your-job-card' TO SUIT YOUR SYSTEM REQUIREMENTS
//* 2) 'tvol' TO THE VOLUME TARGET DATA SETS WILL BE CREATED ON
//* 3) ANY OTHER PROC PARAMETERS, IF THE SUPPLIED
//* DEFAULT IS NOT ACCEPTABLE
//*
//* IF YOU DO NOT PLAN TO RUN THE POSTPROCESSOR THEN COMMENT OUT
//* OR DELETE THE //SYSTSIN AND //SYSTSPRT DATA SETS.
//*

Modifying the JCL Supplied with the NetView Bridge Adapter

10 Version 7.1

//***
//ALLOC PROC A='*', ** PRINT SYSOUT DEFAULT
// BLMPRFX=EYL, ** PRE-QUALIFIER FOR DATA SETS
// BLMVER=BRIDGE, ** 2ND-QUALIFIER FOR DATA SETS
// DSP=CATLG, ** DATA SET DISPOSITION
// TGVOL=tvol, ** VOLSER FOR DATA SETS
// TGUNIT=tunit ** UNIT TYPE FOR DATA SETS
//**
//PSTEP1 EXEC PGM=IEFBR14
//*
//* NETVIEW BRIDGE ADAPTER DATA SETS
//*
//SYSPRINT DD SYSOUT=&A
//HLAPILOG DD DSN=&BLMPRFX..&BLMVER..HLAPILOG,
// SPACE=(CYL,(1,1)),
// DCB=(RECFM=VBA,DSORG=PS,LRECL=125,BLKSIZE=6144),
// UNIT=&TGUNIT,VOL=SER=&TGVOL,DISP=(,&DSP)
//INFOBRDS DD DSN=&BLMPRFX..&BLMVER..INFOBRDS,
// SPACE=(TRK,(1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200,DSORG=PS),
// UNIT=&TGUNIT,VOL=SER=&TGVOL,DISP=(,&DSP)
//APIPRINT DD DSN=&BLMPRFX..&BLMVER..APIPRINT,
// SPACE=(CYL,(1,1)),
// DCB=(RECFM=VBA,DSORG=PS,LRECL=125,BLKSIZE=6144),
// UNIT=&TGUNIT,VOL=SER=&TGVOL,DISP=(,&DSP)
//IBRPRINT DD DSN=&BLMPRFX..&BLMVER..IBRPRINT,
// SPACE=(TRK,(10,1)),
// DCB=(RECFM=F,DSORG=PS,LRECL=104,BLKSIZE=104),
// UNIT=&TGUNIT,VOL=SER=&TGVOL,DISP=(,&DSP)
//SYSTSIN DD DSN=&BLMPRFX..&BLMVER..SYSTSIN,
// SPACE=(3200,1),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200,DSORG=PS),
// UNIT=&TGUNIT,VOL=SER=&TGVOL,DISP=(,&DSP)
//SYSTSPRT DD DSN=&BLMPRFX..&BLMVER..SYSTSPRT,
// SPACE=(CYL,(1,1)),
// DCB=(RECFM=VBA,LRECL=125,BLKSIZE=1632,DSORG=PS),
// UNIT=&TGUNIT,VOL=SER=&TGVOL,DISP=(,&DSP)
//PROCEND PEND
//J1ALC EXEC ALLOC
/*

Set up this data set with one line per parameter. Use the following values when you allocate
this data set:
¶ LRECL=80
¶ RECFM=FB
¶ DSORG=PS

The format of the INFOBRDS parameters is shown in this data set.
SEND_QUEUE=‘send_queue’
,INITCLAS=‘initclas’
,SESSMEMB=‘sessmemb’
[,CLASS_COUNT=class_count]
,API_MSG=‘api_msg’
,HLI_MSG=‘hli_msg’
[,TIMEOUT_INTERVAL=nnn]
[,SPOOL_INTERVAL=spool_interval]
[,ALIAS_TABLE_CNT=alias_table_cnt]
,DATABASE_ID=‘database_id’
,DEFAULT_OPTION=‘default_option’
[,DEFAULT_STORAGE=default_storage]
,IBRPRINT_OPTION=‘ibrprint_option’
[,TIINQLIM=tiinqlim]
,TRANSLATE=‘translate’
,VALIDATE=‘validate’
,BYPASS_PANEL_PROCESSING=‘YES’|‘NO’

Modifying the JCL Supplied with the NetView Bridge Adapter

11Guide to Integrating with Tivoli Applications

2.
P

rep
arin

g
to

U
se

th
e

N
etV

iew
B

rid
g

e
A

d
ap

ter

,TRANSACTION_PROCESSOR=‘program_name’
,USE_DATE_VIEW=‘YES’|‘YES’
,PRELOAD_TRAN_PROC=‘YES’|‘NO’
,DATE_CONVERSION=‘YES’|‘NO’;

This data set is a stream file that is read using a PL/I data-directed GET, and all rules
applying to the layout of data-directed input apply to this data set. If you edit this data set
with the ISPF/PDF editor, be sure that you do not have sequence numbering turned on.
Allocate this data set as fixed block (FB) with a record length of 80. Refer to the OS PL/I
Programming: Language Reference for information about PL/I routines. You must enter the
capitalized names exactly as shown, and then follow them with an equal sign. The
parameters shown in brackets [] denote optional parameters. The file must end with a
semicolon. A description of each field follows the example.

Note: The Tivoli Information Management for z/OS Application Program Interface Guide
contains additional information concerning the parameters SESSMEMB through
DEFAULT_STORAGE.

The descriptions of these fields are:

SEND_QUEUE
This is a required field. You must enter its value in single quotation marks because it
is a text field. It specifies the PPI to send the queue name used to send transactions
to NetView. This field must match the oqueue parameter of the NetView Bridge
RTRINIT command. For further information, refer to the NetView Bridge
Implementation manual.

INITCLAS
This is a required field. You must enter its value in single quotation marks because it
is a text field. It is the privilege class name that the adapter servers use to start
Tivoli Information Management for z/OS and serves as the default privilege class.
The privilege class specified here must contain an eligible user ID that is equal to
the value specified for APPLID (see page 9).

If the initialization privilege class named in this field gives you authority to perform
the transaction that you want, then you need not specify a separate privilege class
field in the transaction parameters that you send from your NetView command.

If the initialization privilege class does not provide the authority needed to perform
the transaction, then you must specify a different privilege class in the adapter
transaction parameters. The parameters CREPRIV, INQPRIV, RETRPRIV, or
UPDPRIV enable you to use a different privilege class. See Table 5 on page 29,
Table 7 on page 32, and Table 8 on page 35 for more information about these
variables. The Tivoli Information Management for z/OS Program Administration
Guide and Reference contains additional information about privilege classes.

SESSMEMB
This is a required field. You must enter its value in single quotation marks because it
is a text field. It contains the name of the Tivoli Information Management for z/OS
session-parameter member. Refer to the Tivoli Information Management for z/OS
Planning and Installation Guide and Reference for more information.

CLASS_COUNT
This is an optional field. It indicates the number of Tivoli Information Management
for z/OS privilege class records that can be maintained in storage at one time during
this Tivoli Information Management for z/OS NetView Bridge Adapter session. This

Modifying the JCL Supplied with the NetView Bridge Adapter

12 Version 7.1

saves retrieval time during the processing of transactions. Once the limit is met, a
new class record replaces the oldest class record in storage. If you do not indicate a
value, the Tivoli Information Management for z/OS session operates with one class
record in storage at a time.

API_MSG
This is an optional field. You must enter its value in single quotation marks because
it is a text field. The valid entries for this field are:

P Specifies that Tivoli Information Management for z/OS LLAPI messages are
written to the APIPRINT data set.

C Specifies that Tivoli Information Management for z/OS LLAPI messages are
returned to the Tivoli Information Management for z/OS HLAPI.

B Specifies that Tivoli Information Management for z/OS LLAPI messages are
both written to the APIPRINT data set and returned to the Tivoli Information
Management for z/OS HLAPI.

If you specify any character other than those above or if you leave this field blank,
then option C is the default.

HLI_MSG
This is an optional field. You must enter its value in single quotation marks because
it is a text field. The valid entries for this field are:

P Specifies that Tivoli Information Management for z/OS HLAPI messages are
written to the HLAPILOG data set.

C Specifies that Tivoli Information Management for z/OS HLAPI messages are
returned with each transaction reply to the requester in the messages
transaction parameter.

B Specifies that Tivoli Information Management for z/OS HLAPI messages are
both written to the HLAPILOG data set and returned from the Tivoli
Information Management for z/OS HLAPI.

If you specify any character other than those above or if you leave this field blank,
then option C is the default.

TIMEOUT_INTERVAL
This is an optional field. It specifies the interval of time in seconds that a Tivoli
Information Management for z/OS HLAPI transaction can run before a timer
interrupt occurs. If a timeout occurs, the HLAPI ends its LLAPI session and ends
the HLAPI session. You must perform another HL01 transaction before you can
perform additional transactions. If you omit this parameter, the HLAPI defaults to
300 seconds (5 minutes). If you specify an interval greater than 0, but less than 45
seconds, the interval is set to 45 seconds.

SPOOL_INTERVAL
This is an optional field. It specifies the interval of time in minutes that the Tivoli
Information Management for z/OS activity logs (APIPRINT and HLAPILOG) are
spooled when messages (see API_MSG, page 13 and HLI_MSG, page 13) are
logged. After this interval passes, rollover occurs, and the activity logs are closed
and reopened. New log information is written into the now-empty logs. If you do
not specify this parameter, the Tivoli Information Management for z/OS HLAPI does
not log messages.

Modifying the JCL Supplied with the NetView Bridge Adapter

13Guide to Integrating with Tivoli Applications

2.
P

rep
arin

g
to

U
se

th
e

N
etV

iew
B

rid
g

e
A

d
ap

ter

On a rollover, the IBRPRINT data set, which is not controlled by the spool interval,
is recycled and new log information is written starting at the top of the data set,
writing over any existing information, one record at a time. At initialization time, the
IBRPRINT data set is reformatted.

ALIAS_TABLE_CNT
This is an optional field. It defines the number of alias tables you can maintain in
storage for this Tivoli Information Management for z/OS session at one time. This
saves retrieval time during the processing of transactions. Once the limit is reached,
a new alias table replaces the oldest alias table in storage. Any number between 0
and 256 is valid for this field. If you omit the value or enter zero, no alias table
processing is done for any Tivoli Information Management for z/OS HLAPI
transactions.

DATABASE_ID
This is an optional field. You must enter its value in single quotation marks because
it is a text field. It specifies the current database’s ID. For Tivoli Information
Management for z/OS records this number is 5. If you do not specify a value, or
you enter a value that is not valid, this field’s value defaults to 5.

DEFAULT_OPTION
This is an optional field. You must enter its value in single quotation marks because
it is a text field. It specifies whether the Tivoli Information Management for z/OS
HLAPI is to perform default data response processing in this session.

When you create a record, default data response processing substitutes a default
response for a missing item whenever a transaction does not find a response item in
the set of input parameters. When alias table processing is specified, it finds the
default responses in the alias table. Valid entries for this field are:

ALL The HLAPI performs default response processing for all fields.

REQUIRED The HLAPI performs default response processing for required fields
only.

NONE The HLAPI performs no default response processing. This is the
default value for this field.

DEFAULT_STORAGE
This is an optional field. It specifies how much additional storage in bytes is to be
allocated to hold default response data when you create a record. The default value
of this parameter is 1024 bytes. The default responses are supplied by an alias table.
For more information on storage, refer to the description of the
DEFAULT_DATA_STORAGE_SIZE in the “Parameter Data Definition for PDB”
section of the Tivoli Information Management for z/OS Application Program
Interface Guide.

IBRPRINT_OPTION
This is an optional field. You must enter its value in single quotation marks because
it is a text field. The valid entries for this field are:

ALL Specifies that the transaction logs all errors, requests, and replies in
the IBRPRINT data set.

ERROR Specifies that the transaction logs errors only.

NONE Specifies that the transaction logs nothing in IBRPRINT. NONE is
the default value.

Modifying the JCL Supplied with the NetView Bridge Adapter

14 Version 7.1

DEBUG Specifies that all NetView Bridge input parameters are to be written
to the IBRPRINT data set and data tracing is to be performed by
Tivoli Information Management for z/OS APIs.

Notes:

1. Use the DEBUG option only when you perform debugging
procedures or when you are reporting problems to the support
center.

2. For more information about what is written to the IBRPRINT
data set, see “The NetView Bridge Adapter IBRPRINT Data Set”
on page 53.

TIINQLIM
This is an optional field. It is a numeric field that specifies the number of transaction
entries that can be simultaneously queued to this server’s PPI receiver queue. The
minimum value is 5 and the maximum value is 2000. The default value of this field
is 5.

TRANSLATE
This is an optional field. You must enter its value in single quotation marks because
it is a text field. Its valid values are YES and NO. It specifies if the HLAPI
Parameter Data Block field contents are automatically translated from lowercase to
uppercase. If you do not explicitly set this field to NO, it defaults to YES.

VALIDATE
This is an optional field. You must enter its value in single quotation marks because
it is a text field. Its valid values are YES and NO. It determines if the Tivoli
Information Management for z/OS HLAPI performs data response validation when
processing input parameter data blocks (PDBs). If you do not explicitly set this field
to NO, it defaults to YES.

Note: Bypassing Tivoli Information Management for z/OS’s validation process can
cause unexpected records to appear in the Tivoli Information Management for
z/OS database. With VALIDATE set to NO it is possible to enter
nondisplayable characters into a Tivoli Information Management for z/OS
field, which can prevent interactive updates of the field. Or, if you enter two
words in a single word field, you can prevent verification using the
VERIFIER parameter during an update transaction, possibly causing you to
update the wrong records.

BYPASS_PANEL_PROCESSING
This is an optional field. Specification of YES allows data view records to be used
with the NetView Bridge Adapter. Valid values are YES and NO. The default value
is NO. If YES is specified, you must use data view records for all transactions
performed by the NetView Bridge Adapter. If NO is specified (or no value is
specified), data view records can still be used instead of PIDTs if

¶ The INFOBRDS parameter USE_DATA_VIEW is set to YES

or

¶ The input data contains a data item with the name of USE_DATA_VIEW with a
value of YES. The input data item USE_DATA_VIEW will override the
INFOBRDS keyword parameter USE_DATA_VIEW if the INFOBRDS keyword
parameter BYPASS_PANEL_PROCESSING is not set to YES.

Modifying the JCL Supplied with the NetView Bridge Adapter

15Guide to Integrating with Tivoli Applications

2.
P

rep
arin

g
to

U
se

th
e

N
etV

iew
B

rid
g

e
A

d
ap

ter

TRANSACTION_PROCESSOR
This is an optional field. You must enter its value in single quotation marks because
it is a text field. It identifies a user-defined transaction processor routine.

USE_DATA_VIEW
This is an optional field. Valid values are YES and NO. Specification of YES causes
the NetView Bridge Adapter to use data view records instead of PIDTs. This means
that the values used with CREVIEW, INQVIEW, UPDVIEW, and RETRVIEW will
be treated as data view record names instead of PIDT names. The default value is
NO. If NO is specified (or no value is specified), PIDTs are used unless the input
data contains an input item with the name of USE_DATA_VIEW with a value of
YES. The input data item will override this INFOBRDS keyword value unless
BYPASS_PANEL_PROCESSING is set to YES. If
BYPASS_PANEL_PROCESSING is set to YES, then USE_DATA_VIEW is ignored.

PRELOAD_TRAN_PROC
This is an optional field. You must enter its value in single quotation marks because
it is a text field. Its valid values are YES and NO. If you specify YES the
user-defined transaction processor is loaded into storage (but not called) during
initialization of the NetView Bridge Adapter, and it remains in storage until the
NetView Bridge Adapter ends. The user-defined transaction processor is called when
the user-defined transaction is requested. If you specify NO the user-defined
transaction processor is loaded into storage and called when the user-defined
transaction is requested. If you do not explicitly set this field to YES, it defaults to
NO.

DATE_CONVERSION
This is an optional field. You must enter its value in single quotation marks because
it is a text field. Its valid values are YES and NO.

¶ If you specify YES, the NetView Bridge Adapter will convert dates from the
NetView format (MM/DD/YY) into the external date format specified on the
DATECNV keyword of the SESSMEMB parameter in the INFOBRDS data set.
The NetView Bridge Adapter will look at each PDB it receives. If the
PDBDATA field has a length of 8, a slash / in the third position, and a slash / in
the sixth position, it assumes that the data is a date. It will then attempt to
convert the date to the external date form described above. If the conversion is
successful, the new date is placed into the input PDB. If the conversion is not
successful, the date is not altered and is passed directly to the HLAPI. When
retrieving data from Tivoli Information Management for z/OS, if the external
date format in use is MM/DD/YY or YY/MM/DD or DD/MM/YY, the date is
converted back to the NetView format of MM/DD/YY. This parameter applies
only to the IBCREATE, IBSEARCH, and IBUPDATE transactions, and does not
apply to user-written transactions.

¶ If you specify NO, no date conversion is attempted.

This is a sample entry for the data set INFOBRDS. Note the parameters that are entered
with single quotation marks around them. Because they are text fields, you must enter them
exactly as shown.
SEND_QUEUE=‘OUTPUTQ’,
INITCLAS=‘MASTER’,
SESSMEMB=‘BLGSES00’,
CLASS_COUNT=5,
API_MSG=‘B’,

Modifying the JCL Supplied with the NetView Bridge Adapter

16 Version 7.1

HLI_MSG=‘B’,
TIMEOUT_INTERVAL=300,
SPOOL_INTERVAL=10,
ALIAS_TABLE_CNT=4,
DATABASE_ID=‘5’,
DEFAULT_OPTION=‘ALL’,
DEFAULT_STORAGE=100,
IBRPRINT_OPTION=‘ALL’,
TIINQLIM=5,
TRANSLATE=‘YES’,
VALIDATE=‘YES’,
BYPASS_PANEL_PROCESSING=‘YES’,
TRANSACTION_PROCESSOR=‘BUILDREL’,
USE_DATA_VIEW=‘NO’,
PRELOAD_TRAN_PROC=‘NO’,
DATE_CONVERSION=‘NO’;

The User-Supplied Output Data Sets
When setting up your server, you must allocate the IBRPRINT and SYSPRINT output data
sets. The HLAPILOG, APIPRINT, and SYSUDUMP data sets are optional. Unlike
INFOBRDS, you do not need to create any information in them.

IBRPRINT is the DDNAME for a required data set that the NetView Bridge Adapter
logging information is written into. Note the settings for IBRPRINT in the example on page
10. To ensure data integrity, each adapter requires its own copy of this data set. If the data
set fills up, it overwrites older data, preserving the most current data. At initialization time,
the IBRPRINT data set is reformatted. The IBRPRINT_OPTION parameter in INFOBRDS
determines what gets logged in this data set. The time it takes for the NetView Bridge
Adapter to initialize is directly related to the size of this data set. Define its size to be as
small as possible for your purposes. It is suggested that you use 10 tracks or fewer. Allocate
this data set using fixed record format (RECFM=F) physical sequential organization
(DSORG=PS), a record length of 104, and a block size of 104. This data set must not be a
SYSOUT file. For information concerning what is written into this data set, see “The
NetView Bridge Adapter IBRPRINT Data Set” on page 53.

HLAPILOG is the DDNAME for an optional data set into which the Tivoli Information
Management for z/OS HLAPI records information concerning its transaction activity,
including type of transaction, time, and success or failure of the transaction. The setting of
the INFOBRDS parameter SPOOL_INTERVAL controls logging to this data set. The Tivoli
Information Management for z/OS Application Program Interface Guide contains additional
information about the HLAPILOG data set.

APIPRINT is the DDNAME for an optional data set into which the Tivoli Information
Management for z/OS LLAPI records its transaction information including type of
transaction, time, and success or failure of the transaction. The setting of the INFOBRDS
parameter SPOOL_INTERVAL controls logging to this data set. For more information about
this data set, refer to the Tivoli Information Management for z/OS Application Program
Interface Guide.

SYSPRINT is the DDNAME for a required data set that the NetView Bridge Adapter writes
error information into. If an ABEND occurs during operation of the NetView Bridge Adapter
or a PL/I on condition occurs, and you have allocated the SYSPRINT file, then the system
writes a PL/I snapshot trace into the SYSPRINT file.

When Tivoli Information Management for z/OS writes to SYSPRINT, it formats the data
using DCB information specified by the user on either a SYSPRINT DD statement (that is,

Modifying the JCL Supplied with the NetView Bridge Adapter

17Guide to Integrating with Tivoli Applications

2.
P

rep
arin

g
to

U
se

th
e

N
etV

iew
B

rid
g

e
A

d
ap

ter

LRECL or BLKSIZE) or a TSO ALLOCATE. If the user specifies an LRECL without a
BLKSIZE, Tivoli Information Management for z/OS sets the BLKSIZE to:

(14*LRECL) + 4

If the user does not specify a BLKSIZE or an LRECL, the LRECL is set to:
length of output message + 4

and the BLKSIZE is set to:
(14*LRECL) + 4

If the user specifies a BLKSIZE without an LRECL, the LRECL is set to the smaller of the
following two statements:

length of output message + 4
BLKSIZE - 4

In all cases, the LRECL must be less than or equal to BLKSIZE − 4. Otherwise, an ABEND
occurs when the data set is opened because the data attributes are inconsistent.

SYSUDUMP is the DDNAME for an optional data set that the system uses to store system
dump information in the event that the NetView Bridge Adapter code undergoes an ABEND
condition.

Stopping a Server
There are times when you want to stop running a server address space. You may want to do
this, for example, during replacement of an old server with a new one or during off-peak
hours of system use. To close a server address space, issue an MVS STOP command. The
format of the command is:
STOP jobname

or
P jobname

You can use the full command STOP or its abbreviation, P. The parameter jobname is the
name of the procedure that you use to start a particular server address space. For example, if
you start a server with the procedure NBAPROC1, you stop it with this command:
STOP NBAPROC1

Only use the STOP command to close a server address space. The STOP command brings
the server down in an orderly manner. Do not use the CANCEL command for server
termination. If you CANCEL a server address space, the logical sequence of a transaction
can be interrupted, leaving the transaction incomplete. If you do CANCEL a server, you
must ensure that no records are left in a checked out state. Refer to the Tivoli Information
Management for z/OS Application Program Interface Guide for more information.

Creating Additional Copies of a Server
Each transaction request from NetView is queued in the bridge dispatcher until the NetView
Bridge Adapter server becomes available. With a high volume of transaction traffic, your
users might experience increased response times. During high traffic times, you may want to
create more than one copy of an adapter server. Multiple copies provide greater throughput
for your transactions by giving the bridge dispatcher more than one server to send the

Modifying the JCL Supplied with the NetView Bridge Adapter

18 Version 7.1

queued requests to. Keep in mind, however, that each copy of a server costs you in terms of
storage and possible degradation of performance of both NetView and Tivoli Information
Management for z/OS.

To create an additional copy of an existing NetView Bridge Adapter server, make a separate
copy of the JCL procedure and modify the copy as follows:

1. Assign a unique receiver PPI queue name for each additional server.

2. Define a unique APPLID for each extra server.

3. Define unique output data sets for each server’s use. See “The User-Supplied Output
Data Sets” on page 17.

Note: If you want to run a second copy of the adapter with different initialization
parameters, you can modify the INFOBRDS data set or create a new copy of the
data set and point to it in the modified JCL procedure. If you want to run two
copies of the adapter with the same parameters, both can use the same
INFOBRDS data set.

4. Add automation logic to start each additional copy of the server. See step 6 in “Setting
Up the NetView Bridge Adapter” on page 7.

You do not need to change any programming of NetView commands or NetView Bridge
definitions to use the additional copies of a server.

Recycling the Servers
You must recycle the servers that you create any time that the NetView Subsystem Address
Space is recycled. The transactions that the servers are processing, which are stored in the
Subsystem Address Space, are lost whenever the address space recycles.

Creating Additional Copies of a Server

19Guide to Integrating with Tivoli Applications

2.
P

rep
arin

g
to

U
se

th
e

N
etV

iew
B

rid
g

e
A

d
ap

ter

20 Version 7.1

Performing the NetView Bridge Adapter
Transactions

The Tivoli Information Management for z/OS NetView Bridge Adapter provides three
transaction processors: Create Record, Update Record, and Retrieve Record by Argument.
You can create your own transaction processors to use information in the database. These
transactions are requested from NetView command procedures.

Each transaction type has a request form and a reply form. This section contains details that
are the same for all three NetView-provided transaction types and user-written transactions.
The first topic of this chapter explains these details. The sections following explain each
transaction type individually. Finally, the last section contains detailed information about
three complex parameters that are used by more than one transaction type.

Coding the Transactions
Two basic steps are required in a NetView command procedure to use the NetView Bridge
Adapter. First, after preparing all the input data needed to make the request, the NetView
command procedure starts the NetView Bridge Requester API to generate and transmit the
NetView Bridge Adapter transaction request. Then, if the command procedure expects a
reply, it must receive the reply before processing its contents.

You have a choice when it comes to writing a NetView command procedure. You can write
it as a High-Level Language (HLL) command (in C or PL/I), or you can write it in REXX
or NetView Command List Language. Refer to the NetView manuals NetView
Customization: Using PL/I and C and NetView Customization: Writing Command Lists for
more information on writing command procedures.

These two versions of NetView command procedures have differences in the way they
process adapter transactions. The following descriptions of generating a transaction request
and receiving a transaction reply discuss these differences. After this section, all references
to the header parameters use the command list form of the name.

Generating NetView Bridge Adapter Requests
A NetView command procedure written in one of the HLL styles performs transaction
requests by calling the NetView Bridge Requester API routine CNMSNDT. (Note that
procedures written in C language do not capitalize the entire name of any routine. For
example, CNMSNDT is Cnmsndt in the C language procedure.) If the command procedure
is written in REXX or NetView Command List Language, it calls the routine TRANSND.
You can find information about the format and usage of the parameters in each of these calls
in the NetView Bridge Implementation manual.

3

21Guide to Integrating with Tivoli Applications

3.
N

etV
iew

B
rid

g
e

A
d

ap
ter

Tran
sactio

n
s

Header Parameters
You use three types of parameters on a call to generate a transaction request: header
parameters, control parameters, and input parameters. Some header parameters are used
exclusively by the NetView Bridge and some contain specific information that the NetView
Bridge Adapter and the HLAPI use. In a call to the NetView Bridge Requester API
procedure CNMSNDT, the last parameter is a pointer to a linked list of parameter blocks.
The command list version of this command procedure, which calls TRANSND, makes the
last parameter a list of parameters.

Control Parameters and Input Parameters
For both versions of the command procedure, these parameter lists consist of the two other
types of parameters that the NetView Bridge Adapter requires: control parameters and input
parameters. The control parameters are used by the NetView Bridge Adapter and the HLAPI
to determine how to process the input parameters. The input parameters are Tivoli
Information Management for z/OS field names that contain the data that the system uses to
process database records. Each transaction requires specific control and input parameters.

Control and input parameters are processed by the NetView Bridge Adapter. Because control
parameters are transaction specific, they are described later in this chapter in the description
of each of the transaction types. In some cases the adapter translates input parameters into
LLAPI Program Interface Data Table (PIDT) names and processes them as described in the
Tivoli Information Management for z/OS Application Program Interface Guide. You must
format input parameters according to the corresponding type of Tivoli Information
Management for z/OS field. These formats include response type inputs, list type inputs, and
text type inputs. Refer to the Tivoli Information Management for z/OS Application Program
Interface Guide for more information about these inputs.

You need to understand list inputs because Tivoli Information Management for z/OS
processes some of its fields as list data. In all transaction requests you must specify a
SEPARATOR control parameter. When formatting list parameters, you define the parameter
items with that separator character between them. For example,
SEPARATOR = ’*’
S1416 = ’DEV1*DEV5*DEV8’

shows that you have defined the asterisk (*) as your separator, and listed DEV1, DEV5, and
DEV8 as your list data. For information on how to format list contents, refer to the Tivoli
Information Management for z/OS Application Program Interface Guide.

Text inputs are used for database record fields that contain descriptive text. The NetView
Bridge Adapter processes these fields on input and output as array parameters. For a more
complete discussion of array parameters, refer to the NetView Bridge Implementation
manual. On input, you must create a control parameter TEXTLIST whose value is a list of
the names of any array-type parameters in the transaction. You separate the names with a
blank. You also must provide the values of each element in the array. You can define one
correct value for TEXTLIST that all NetView commands accessing the database can use.
Include in it all s-word indexes that are defined as text fields along with their aliases. See
“TEXTLIST” on page 37 for more information about this parameter.

The following examples show how to prepare text input data. You can use C, PL/I, and
REXX, but NetView Command List Language does not support array data-entry.

REXX

Coding the Transactions

22 Version 7.1

USE_DATA_VIEW = ’YES’ /* Use Data Views */
TEXTLIST=’S0E01 S0E02’
S0E01.0 = 2
S0E01.1 = ’First line of S0E01’
S0E01.2 = ’Second line of S0E01’
S0E02.0 = 1
S0E02.1 = ’The only line of S0E02’
PARMVAR = ’USE_DATA_VIEW TEXTLIST S0E01. S0E02.’

PL/I
TEXTLIST=’S0E01 S0E02’;
alloc dsipprm set (parmlist);
parmlist -> prmname = ’S0E01’;
parmlist -> prmindex = 1;
parmlist -> prmptr = addr(parm1);

alloc dsipprm set (parmlist -> prmlink);
parmlist -> parmlist -> prmlink;
parmlist -> prmname = ’S0E01’;
parmlist -> prmindex = 2;
parmlist -> prmptr = addr(parm2);

alloc dsipprm set (parmlist -> prmlink);
parmlist -> parmlist -> prmlink;
parmlist -> prmname = ’S0E02’;
parmlist -> prmindex = 1;
parmlist -> prmptr = addr(parm3);
parmlist -> prmlink = NULL;

C
strcpy(textlist,S0E01 S0E02);
strcpy(parm1.parmname,S0E01);
parm1.prmindex := 1;
parm1.prmlink := &parm2;
prmptr := "line 1 of S0E01";

strcpy(parm2.parmname,S0E01);
parm2.prmindex := 2;
parm2.prmlink := &parm3;
prmptr := "line 2 of S0E01";

strcpy(parm1.parmname,S0E02);
parm3.prmindex := 1;
parm3.prmlink := NULL;
prmptr := "line 1 of S0E02";

Table 1 and Table 2 on page 24 show the parameters that you use to write a NetView
command procedure in one of the HLL forms. You use these parameters to call module
CNMSNDT (Cnmsndt in C language) of the NetView Bridge API. For information on how
to specify these parameters, refer to NetView Customization: Using PL/I and C.

Table 1. HLL Command Processor Header Parameters
Parameter Name Description Specified for

hlbptr Anchor pointer used by the NetView HLL API. NetView Bridge

sttransid Name of the transaction to be run. NetView Bridge
Adapter

sttrtype Type of transaction reply processing to be performed. NetView Bridge,
NetView Bridge
Adapter

Coding the Transactions

23Guide to Integrating with Tivoli Applications

3.
N

etV
iew

B
rid

g
e

A
d

ap
ter

Tran
sactio

n
s

Table 1. HLL Command Processor Header Parameters (continued)
Parameter Name Description Specified for

stvocab Name of the alias table for this transaction. If you
leave this parameter blank, the HLAPI does not
perform any alias table processing for this transaction.

HLAPI

stcorr Name of the correlation parameter that enables the
requesting command and any replies to match each
other.

NetView Bridge

stdesttask Destination task ID. This is the task ID of the
NetView autotask that accesses the NetView Bridge
Adapter servers.

NetView Bridge

stdestnet Destination network ID. If you do not specify an ID,
this parameter defaults to the local network ID.

NetView Bridge

stdestdom Destination domain ID. If you do not specify an ID,
this parameter defaults to the local domain ID.

NetView Bridge

stparms Pointer to a linked list of parameter blocks. Format of
these blocks is shown in Table 2.

NetView Bridge

Table 2. HLL Command Processor Parameter Block Format
Field Name Description Specified for

prmlink A link to the next parameter block in the chain. NetView Bridge

prmindex The index value of the parameter, if it is an array. The
only parameters processed by NetView Bridge
Adapter as arrays are those used for text fields. For
all non-array fields, the value of the prmindex is
—32 767. See “TEXTLIST” on page 37 for more
information on arrays.

NetView Bridge,
NetView Bridge
Adapter

prmname The parameter name. It can be an s-word index, a
p-word index, or an alias, if there is an active alias
table. The maximum number of characters supported
for this field is 31. The adapter cannot send or receive
32-character aliases.

NetView Bridge
Adapter

prmnaml The length of the parameter name. NetView Bridge

prmtype The type of the parameter. All NetView Bridge
Adapter data is represented in EBCDIC character
strings. This field should always be set to X’00EE’ to
indicate EBCDIC type.

NetView Bridge,
NetView Bridge
Adapter

prmptr A pointer to the value of the parameter. NetView Bridge,
NetView Bridge
Adapter

prmleng The length of the parameter value. NetView Bridge

Table 3 on page 25 shows the parameters that you use to write a NetView command
procedure in NetView Command List Language or REXX. You use these parameters to call
module TRANSND of the NetView Bridge API.

Coding the Transactions

24 Version 7.1

Table 3. Format for Header Parameters for Command Procedure Written in NetView
Command List Language or REXX
Parameter Name Description Specified for

TRANSID Name of the transaction to be run. NetView Bridge
Adapter

TRTYPE Type of transaction reply processing to be performed. NetView Bridge,
NetView Bridge
Adapter

VOCAB Name of the alias table for this transaction. If you
omit this optional parameter, the HLAPI does not
perform any alias table processing for this transaction.

HLAPI

CORR Name of the correlation parameter that enables the
requesting command and any replies to match each
other.

NetView Bridge

DESTTASK Destination task ID. This is the task ID of the
NetView autotask that accesses the NetView Bridge
Adapter servers.

NetView Bridge

DESTNET Destination network ID. If you do not specify an ID,
this parameter defaults to the local network ID.

NetView Bridge

DESTDOM Destination domain ID. If you do not specify an ID,
this parameter defaults to the local domain ID.

NetView Bridge

PARMVAR A list of names of control and input parameters
separated by blanks. The NetView Bridge treats each
name as a REXX/NetView Command List Language
variable. Refer to the NetView Bridge documentation
to see how to specify array and non-array variables.
See “TEXTLIST” on page 37 to understand how the
NetView Bridge Adapter uses array parameters.

NetView Bridge

Receiving NetView Bridge Adapter Replies
This transaction returns the reply results of the operation to the requester. The three types of
parameters returned to the requester are header parameters, output parameters, and result
parameters. For the command list type of command procedure, use the NetView Bridge
Requester API routine TRANRCV to retrieve all header, output, and result parameters. For
command procedures written in high-level languages, use the NetView Bridge Requester API
CNMGETP. Details about using these routines are located in the NetView Bridge
Implementation manual.

An additional header parameter, RESPCODE, returns information about the success or
failure of the request processing. RESPCODE contains values of return codes; these are
explained in “NetView Bridge Adapter Codes” on page 59. Either the HLAPI or the NetView
Bridge Adapter generates the value of RESPCODE, depending on the results of processing.
Its field value is right justified with the leading characters set to blanks.

The output parameters are specific to each transaction. To see which parameters apply to
which transaction type, see:
¶ “Creating a Record (IBCREATE transaction)” on page 27
¶ “Updating a Record (IBUPDATE Transaction)” on page 31
¶ “Retrieving a Record by Argument (IBSEARCH Transaction)” on page 34
¶ “Writing User-Defined Transactions” on page 44.

Coding the Transactions

25Guide to Integrating with Tivoli Applications

3.
N

etV
iew

B
rid

g
e

A
d

ap
ter

Tran
sactio

n
s

The result parameters are informational parameters that can return from any transaction type.
Table 4 shows the possible result parameters. When the parameter RESPCODE contains a
failure code, the REASONCODE parameter leads you to information that explains the
failure of the transaction. If processing detects a possible problem, but can continue to
perform, it can return a WARNING result parameter. Warnings may show up even if
processing is successful and both RESPCODE and REASONCODE have success codes in
them. Input parameters in a NetView Bridge Adapter request might have errors. The return
parameters BADPARM and ERRPARM contain information that indicates which request
parameters are not correct.

When you use the NetView Command List Language or REXX, you must use the NetView
Bridge Requester API command TRANRCV to generate return data. This command stores
the returned data into variables that are generated at run-time. Refer to the NetView Bridge
Implementation manual for information on processing the returned data. If you use an HLL
command procedure to obtain transaction reply data, the procedure differs from procedures
written in NetView Command List Language or REXX. When using the HLLs, the
command procedure obtains the values of the header parameters by calling the NetView
Bridge Requester API service routine CNMGETP (Cnmgetp in C language) using its option
H. To obtain result and output parameters, use options N or P of the routine CNMGETP.
Refer to the NetView Bridge Implementation manual for more information.

Table 4 describes possible result parameters from all transactions.

Table 4. Result Parameters from Transactions
Parameter Name Description Length

MESSAGES If the value of the field hli_msg in INFOBRDS is not
P, then Tivoli Information Management for z/OS
returns messages. Otherwise, the messages are
discarded. This parameter is an array parameter. Each
message that returns is an entry in the array. The array
element with an index value of zero returns the
number of elements in the array.

256 or less

REASONCODE This parameter contains a value explaining the success
or failure of the transaction. For specific values of
reason codes, see NetView Bridge Adapter Codes.

8

WARNING This parameter contains a value that specifies a
possible problem situation. For specific values of
warning codes see Table 19 on page 62.

8

ZEROLENGTH This parameter contains a value identifying the name
of a parameter that a NetView Bridge Adapter request
specifies. The value of the specified parameter has a
length of zero. The NetView Bridge Adapter rejects
this request.

31 or less

Coding the Transactions

26 Version 7.1

Table 4. Result Parameters from Transactions (continued)
Parameter Name Description Length

BADPARM This parameter contains a value that identifies a
parameter that a NetView Bridge Adapter request
specifies. When the HLAPI detects an error condition
for that parameter as it is anchored to the HICA input
chain field, it puts the identity of the parameter into
BADPARM. The value returns in the format htid:
c-parmname, where
¶ htid identifies the HLAPI transaction specified

when the error is found
¶ c- identifies the parameter data block code

(PDBCODE) of the parameter in error
¶ parmname identifies the parameter in error.

The BADPARM parameter is an array parameter; one
or more transaction parameters that are found to be in
error by the HLAPI can be entries in the array. The
array element with index value of zero returns the
number of elements in the array. Refer to the Tivoli
Information Management for z/OS Application
Program Interface Guide for more information.

40 or less

ERRPARM This parameter contains a value identifying a PIDT
error that the HLAPI detects as the result of a
transaction. The value returns in the format htid:
pc-pidtentry, where
¶ htid identifies the HLAPI transaction specified

when the error is found
¶ pc- identifies the PIDT code (PIDTCODE) of the

PIDT entry in error
¶ pidtentry identifies the PIDT entry in error.

The ERRPARM parameter is an array parameter;
one or more PIDT entries that are found to be in
error by the HLAPI can be entries in the array.
The array element with index value of zero
returns the number of elements in the array.

41 or less

VERIFIER Name of first verifier parameter that fails verification
during IBUPDATE transaction.

31 or less

Creating a Record (IBCREATE transaction)
The Tivoli Information Management for z/OS NetView Bridge Adapter provides the Create
Record transaction so that you can make new records in the Tivoli Information Management
for z/OS database from the NetView product. Descriptions of the two forms of this
transaction, request and reply, follow.

The IBCREATE Transaction Request
The request transaction creates a Tivoli Information Management for z/OS data record. You
can verify that a similar record does not already exist in the database. Because the NetView
Bridge Adapter does not support Tivoli Information Management for z/OS’s Add Record
Relation transaction (HL12), you cannot define relationships between records, such as
parent/child relationships using the IBCREATE transaction.

Coding the Transactions

27Guide to Integrating with Tivoli Applications

3.
N

etV
iew

B
rid

g
e

A
d

ap
ter

Tran
sactio

n
s

To create a record, the NetView command procedure calls the appropriate NetView Bridge
Requester API routine. Which routine is called depends on whether you write the command
procedure in the HLL, REXX, or NetView Command List Language style. The routine
receives header parameters, control parameters, and input parameters. The header and control
parameters contain the information that determines how the transaction creates the record.
Tivoli Information Management for z/OS treats any other parameters supplied by this
transaction as input and attempts to store them in the created record.

For information on the header parameters that the transaction passes in its call to the
NetView Bridge API routines, see “Header Parameters” on page 22. In addition, you need
the following header parameter information specifically for a Create Record transaction.

TRANSID
The value of this field is IBCREATE.

TRTYPE
This parameter indicates the reply processing that the transaction performs. The
values for IBCREATE are:

QERR
Return only error response data to the requesting task.

QALL
Return all operational response data to the requesting task.

QNON
Return no responses of either type to the requesting task.

VOCAB
The name of VOCAB is an 8-byte field that specifies the name of the alias table
used for this transaction. If this parameter is all blanks (or omitted in a REXX or
Command List Language call), the Tivoli Information Management for z/OS HLAPI
does not perform any alias table processing.

Note: INFOBRDS parameter alias_table_cnt is required if you want to use alias
table processing.

Table 5 on page 29 contains the control parameters used to issue an IBCREATE request. The
NetView Bridge Adapter converts some of the parameters in this table into Tivoli
Information Management for z/OS HLAPI control items. For more information, refer to the
Tivoli Information Management for z/OS Application Program Interface Guide. The Tivoli
Information Management for z/OS HLAPI creates the record in the Tivoli Information
Management for z/OS database. If you request a reply and the create is successful, the
record ID of the created record and a return code specifying a successful creation return to
the caller.

To perform the optional verification, you must have the NetView command procedure pass a
list of search arguments to the routine along with the record information. The adapter
initiates a record search. If the search finds one or more records to match all of the search
arguments, you receive a list of INQRESULTs listing the records and a reason code that
specifies that the record you want to create is not unique. If the search finds no match, the
API creates the record in the database and issues a return code indicating a successful
creation.

Creating a Record (IBCREATE transaction)

28 Version 7.1

Table 5. Control Parameters for Create Record
Parameter Name Description Length

INQPRIV The NetView Bridge Adapter translates this parameter
into the Tivoli Information Management for z/OS
HLAPI control name PRIVILEGE_CLASS, which is
used in an HLAPI transaction that performs an inquiry
on a Tivoli Information Management for z/OS
database. This parameter is not necessary if
performing an unconditional create. If you omit this
parameter, the HLAPI transaction uses the
initialization privilege (initclas in INFOBRDS) class.

8

CREPRIV The NetView Bridge Adapter translates this parameter
into the Tivoli Information Management for z/OS
HLAPI control name PRIVILEGE_CLASS, which is
used in an HLAPI transaction that creates a record in
the Tivoli Information Management for z/OS database.
If you omit this parameter, the HLAPI transaction
uses the initialization privilege (initclas in
INFOBRDS) class.

8

INQVIEW The NetView Bridge Adapter translates this parameter
into the Tivoli Information Management for z/OS
HLAPI control name PIDT_NAME, which is used in
an HLAPI transaction that performs an inquiry on a
Tivoli Information Management for z/OS database.
The name specified by INQVIEW defines the record
type for the inquiry. This parameter is required only
when verifying uniqueness. If
BYPASS_PANEL_PROCESSING=YES in
INFOBRDS, then the INQVIEW value will be used
as a DATA_VIEW_NAME. If
BYPASS_PANEL_PROCESSING=NO is used in
INFOBRDS, then INQVIEW will be treated as a
DATA_VIEW_NAME if the INFOBRDS keyword
USE_DATA_VIEW value is YES or an input data
item USE_DATA_VIEW is used that has the value of
YES.

8

CREVIEW This is a required field. The NetView Bridge Adapter
translates this parameter into the Tivoli Information
Management for z/OS HLAPI control name
PIDT_NAME, which is used in a HLAPI transaction
that creates a record in the Tivoli Information
Management for z/OS database. The name specified
by CREVIEW defines the record type for the record
created. If BYPASS_PANEL_PROCESSING=YES is
specified in INFOBRDS, then the CREVIEW value
will be used as a DATA_VIEW_NAME. If
BYPASS_PANEL_PROCESSING=NO is specified in
INFOBRDS, then CREVIEW will be treated as a
DATA_VIEW_NAME if the INFOBRDS keyword
USE_DATA_VIEW is YES or an input data item
USE_DATA_VIEW is used that has the value of YES.

8

Creating a Record (IBCREATE transaction)

29Guide to Integrating with Tivoli Applications

3.
N

etV
iew

B
rid

g
e

A
d

ap
ter

Tran
sactio

n
s

Table 5. Control Parameters for Create Record (continued)
Parameter Name Description Length

ASSOCDATA The NetView Bridge Adapter translates this parameter
into the Tivoli Information Management for z/OS
HLAPI control name ASSOCIATED_DATA, which is
used in an HLAPI transaction that performs an inquiry
on a Tivoli Information Management for z/OS
database. This parameter identifies the name of a field
in a matched database record whose contents are
returned to the requester as a part of the output
parameter INQRESULT.

31

TEXTLIST This parameter identifies the input parameter names
that correspond to Tivoli Information Management for
z/OS text type fields. A more in-depth description of
this parameter appears in “TEXTLIST” on page 37.
This parameter is required only when creating a
record with text field data.

variable

SEPARATOR The NetView Bridge Adapter translates this parameter
into the Tivoli Information Management for z/OS
HLAPI control name SEPARATOR_CHARACTER,
which is used in an HLAPI transaction that performs
an inquiry on a Tivoli Information Management for
z/OS database and in an HLAPI transaction that
creates a record. This parameter identifies the
character field value that separates data items in a list.

1

The IBCREATE Transaction Reply
This transaction returns the reply results of the creation operation to the requester. This reply
can return result parameters, which are explained in “Receiving NetView Bridge Adapter
Replies” on page 25, as well as those specific output parameters shown in Table 6.

Table 6. Output Parameters for Create Record
Parameter Name Description Length

RECORDID Produces a return only if a record is created. This
parameter contains the record ID of the created
record.

8

INQRESULT Produces a return only if a Create Unique Record
search finds matching records in the database. The
value of this parameter is the same as the
INQUIRY_RESULT parameter of the Tivoli
Information Management for z/OS HLAPI. This
parameter is treated as an array where each element of
the array is a separate INQRESULT that matched the
search conditions. Thus, three matches produce three
instances of the parameter INQRESULT, each with a
different parameter index value. An additional
INQRESULT instance with a parameter index value of
zero returns the number of elements in the array. For
more information, refer to the Tivoli Information
Management for z/OS Application Program Interface
Guide.

87

Creating a Record (IBCREATE transaction)

30 Version 7.1

Updating a Record (IBUPDATE Transaction)
The Tivoli Information Management for z/OS NetView Bridge Adapter provides the Update
Record Transaction so you can change data in an existing Tivoli Information Management
for z/OS record.

The IBUPDATE Transaction Request
This request transaction updates a Tivoli Information Management for z/OS data record. You
can verify that the record to be updated contains the data you expect to find.

To update a record, the NetView command procedure calls the appropriate NetView Bridge
Requester API routine. Which routine is called depends on whether you write the command
procedure in the HLL, REXX, or NetView Command List Language style. The routine
receives header parameters, control parameters, and input parameters. The header and control
parameters contain the information that determines how the transaction updates the record.
To update a list of items in the record, you must include all items in the list. If no error
occurs during processing, Tivoli Information Management for z/OS stores all input
parameters in the record and issues a return code indicating successful update.

To perform the optional verification, the transaction sends an additional parameter that
contains the names of the fields to be verified, and their expected contents, to the routine.
The Tivoli Information Management for z/OS HLAPI compares the contents of these fields
to the contents of the record to ensure that they match. If the verification fails, the update
does not occur, and the system sets the return and reason codes to indicate failure. If the
verification is successful and the update is not, then the return code tells you the update was
not successful and the reason code tells you why the update failed. If verification and update
are both successful, the transaction updates the record and issues a return code indicating
success.

For information on the complete set of header parameters that the transaction passes in its
call to the NetView Bridge API routines, see “Generating NetView Bridge Adapter
Requests” on page 21. In addition, an Update Record transaction needs the following specific
header parameter information:

TRANSID
The value of this field is IBUPDATE.

TRTYPE
This parameter indicates the transaction reply processing that is performed. The
values for IBUPDATE are:

QERR
Return only error response data to the requesting task.

QALL
Return all operational response data to the requesting task.

QNON
Return no responses of either type to the requesting task.

VOCAB
The name of VOCAB is an 8-byte field that specifies the name of the alias table
used for this transaction. If this parameter is all blanks (or omitted in a REXX or
Command List Language call), the Tivoli Information Management for z/OS HLAPI
does not perform any alias table processing.

Updating a Record (IBUPDATE Transaction)

31Guide to Integrating with Tivoli Applications

3.
N

etV
iew

B
rid

g
e

A
d

ap
ter

Tran
sactio

n
s

Note: INFOBRDS parameter alias_table_cnt is required if you want to use alias
table processing.

Table 7 contains the control parameters you use to issue an IBUPDATE request. The
NetView Bridge Adapter translates some of the parameters in this table into Tivoli
Information Management for z/OS HLAPI control items. For more information, refer to the
Tivoli Information Management for z/OS Application Program Interface Guide.

Table 7. Control Parameters for Update Record
Parameter Name Description Length

RECORDID This is a required parameter. This parameter is
the identifier for the specific Tivoli Information
Management for z/OS database record that is
updated. The NetView Bridge Adapter translates
this parameter into the Tivoli Information
Management for z/OS HLAPI control name
RNID_SYMBOL, which is used in HLAPI
transactions that check out, retrieve, and update a
record in the database.

8

UPDPRIV The NetView Bridge Adapter translates this
parameter into the Tivoli Information
Management for z/OS HLAPI control name
PRIVILEGE_CLASS, which is used in HLAPI
transactions that check out, retrieve, and update a
record in the database. If you omit this
parameter, the HLAPI transaction uses the
initialization privilege (initclas in INFOBRDS)
class.

8

RETRVIEW The NetView Bridge Adapter translates this
parameter into the Tivoli Information
Management for z/OS HLAPI control name
PIDT_NAME, which is used in an HLAPI
transaction to retrieve a record in the database
for verification. The name specified by
RETRVIEW defines the record type for the
retrieval. This parameter is required only when
you perform an update with verification. If
BYPASS_PANEL_PROCESSING=YES in
INFOBRDS, then the RETRVIEW value will be
used as a DATA_VIEW_NAME. If
BYPASS_PANEL_PROCESSING=NO is used in
INFOBRDS, then RETRVIEW will be treated as
a DATA_VIEW_NAME if the INFOBRDS
keyword USE_DATA_VIEW value is YES or an
input data item USE_DATA_VIEW is used that
has the value of YES.

8

Updating a Record (IBUPDATE Transaction)

32 Version 7.1

Table 7. Control Parameters for Update Record (continued)
Parameter Name Description Length

UPDVIEW This is a required parameter. The NetView
Bridge Adapter translates this parameter into the
Tivoli Information Management for z/OS HLAPI
control name PIDT_NAME. It is used in an
HLAPI transaction that updates a record in the
database. The name specified by UPDVIEW
defines the record type for the update. If
BYPASS_PANEL_PROCESSING=YES in
INFOBRDS, then the RETRVIEW value will be
used as a DATA_VIEW_NAME. If
BYPASS_PANEL_PROCESSING=NO is used in
INFOBRDS, then RETRVIEW will be treated as
a DATA_VIEW_NAME if the INFOBRDS
keyword USE_DATA_VIEW value is YES or an
input data item USE_DATA_VIEW is used that
has the value of YES.

7

TEXTLIST This parameter identifies the input parameter
names that correspond to Tivoli Information
Management for z/OS text type fields. A more
in-depth description of this field appears in
“TEXTLIST” on page 37. This field is required
only when updating text fields.

variable

REPLACE_TEXT_DATA This is an optional parameter. The NetView
Bridge Adapter adds this parameter to the HLAPI
as a control name. A value of YES will cause
existing text data in the record to be replaced.
Any other value is ignored and text data will be
appended to existing data.

3

SEPARATOR This is a required parameter. The NetView
Bridge Adapter translates this parameter into the
Tivoli Information Management for z/OS HLAPI
control name SEPARATOR_CHARACTER,
which is used in the HLAPI transaction that
updates a record in a database. This parameter
identifies the character field value that separates
data items in a list.

A single separator character in this field indicates
that the response item in the record is to be
deleted. See Figure 2 on page 34 for an example.
Note: The INFOBRDS parameter VALIDATE
must be set to NO if you want to delete response
items.

1

VERIFIER This parameter contains arguments needed to
verify that a Tivoli Information Management for
z/OS database record contains the expected data.
More discussion of this field appears in
“VERIFIER” on page 43.

variable

Updating a Record (IBUPDATE Transaction)

33Guide to Integrating with Tivoli Applications

3.
N

etV
iew

B
rid

g
e

A
d

ap
ter

Tran
sactio

n
s

Figure 2 shows three update transactions updating an existing list of routine names. For each
transaction, the figure shows: the list before the transaction on the left, the response buffer
segment used to update the list, and the results of the update.

A single separator character as a response for a nonlist item indicates that this response item
in the record is to be deleted.

The IBUPDATE Transaction Reply
This transaction returns the reply results of the update operation. “Receiving NetView Bridge
Adapter Replies” on page 25 tells about result parameters that can be returned with this
reply. For the Update Record transaction, no transaction-specific output parameters exist.

Retrieving a Record by Argument (IBSEARCH Transaction)
The Tivoli Information Management for z/OS NetView Bridge Adapter provides the Retrieve
Record by Argument transaction so you can search a Tivoli Information Management for
z/OS database for one or more specific records.

The IBSEARCH Transaction Request
This request transaction retrieves a Tivoli Information Management for z/OS data record by
search arguments. If you give a specific RECORDID as a search argument, then the
transaction retrieves that specific record and no search occurs. In this instance, you must
specify the RECORDID in the SEARCHLIST as RECORDID=rnid, where RNID can be
mixed data. In all other cases the transaction performs a search using the search arguments

List Before Response Buffer List After Action Per-
Update Segment Update formed

ADD ',,,' -------- Deleted first 3
BUILD1 -------- items on list
DELITEM --------
COPY COPY
-------- --------
CHECK CHECK
INIT INIT

ADD 'ADD,BUILD1,,COPY' ADD Deleted third
BUILD1 BUILD1 item on list
DELITEM --------
COPY COPY
-------- --------
CHECK CHECK
INIT INIT

ADD ' , , , , , ,' ADD Deleted seventh
BUILD1 BUILD1 item on list
DELITEM DELITEM
COPY COPY
-------- --------
CHECK CHECK
INIT --------

Figure 2. List Item Update Example

Updating a Record (IBUPDATE Transaction)

34 Version 7.1

you specify with SEARCHLIST. The transaction uses the input parameters you specify to
identify the chosen record fields that the search returns to you.

If the search finds a single match, the system returns the RECORDID and the requested
contents of the matching record. Only those fields you specify as input parameters have their
data returned to you. But, if you do not identify specific fields in your request, the
transaction returns the contents of the record as specified by the parameter RETRVIEW. If
the search finds more than one match, the transaction returns an array of INQRESULTs. If
no matches occur, the transaction returns a failure return code.

Note: You cannot request the specific retrieval of text type fields. Any field that you request
that is not found, or is of type text, returns in the parameter BADPARM.

For information on the header parameters that the transaction passes in its call to the
NetView Bridge Requester API routines, see “Header Parameters” on page 22. In addition,
the Retrieve Record transaction needs the following specific header parameter information:

TRANSID The value of this field is IBSEARCH.

TRTYPE This parameter indicates the transaction processing that is performed. The
only valid value for this transaction is QALL. QALL specifies that the
transaction return all operational response data to the requesting task.

VOCAB The name of VOCAB is an 8-byte field that specifies the name of the alias
table that is used for this transaction. If this parameter is all blanks (or
omitted in a REXX or Command List Language call), the HLAPI does not
perform any alias table processing.

Note: INFOBRDS parameter alias_table_cnt is required if you use alias
table processing.

Table 8 contains the control parameters used to issue an IBSEARCH request. The HLAPI
uses any other parameters supplied by this transaction to identify the selected parameters
that are returned to the requester. The NetView Bridge Adapter translates some of the
parameters in this table into HLAPI control items. For more information, refer to the Tivoli
Information Management for z/OS Application Program Interface Guide.

Table 8. Control Parameters for Retrieve Record by Argument
Parameter Name Description Length

INQPRIV The NetView Bridge Adapter translates this parameter
into the HLAPI control name PRIVILEGE_CLASS,
which is used in an HLAPI transaction that performs
an inquiry on a database. This parameter is not
necessary if you are performing a retrieval of a
specific record by RECORDID. If you omit this
parameter, the HLAPI transaction uses the
initialization privilege (init_class in INFOBRDS)
class.

8

RETRPRIV The NetView Bridge Adapter translates this parameter
into the HLAPI control name PRIVILEGE_CLASS,
which is used in an HLAPI transaction that retrieves a
record in the database. If you omit this parameter, the
HLAPI transaction uses the initialization privilege
(initclas in INFOBRDS) class.

8

Retrieving a Record by Argument (IBSEARCH Transaction)

35Guide to Integrating with Tivoli Applications

3.
N

etV
iew

B
rid

g
e

A
d

ap
ter

Tran
sactio

n
s

Table 8. Control Parameters for Retrieve Record by Argument (continued)
Parameter Name Description Length

INQVIEW The NetView Bridge Adapter translates this parameter
into the HLAPI control name PIDT_NAME, which is
used in an HLAPI transaction that performs an inquiry
on a database. The name that INQVIEW specifies
defines the record type for the inquiry. This parameter
is not necessary if you are performing a retrieval of a
specific record by RECORDID. If
BYPASS_PANEL_PROCESSING=YES in
INFOBRDS, then the INQVIEW value will be used
as a DATA_VIEW_NAME. If
BYPASS_PANEL_PROCESSING=NO is used in
INFOBRDS, then INQVIEW will be treated as a
DATA_VIEW_NAME if the INFOBRDS keyword
USE_DATA_VIEW value is YES or an input data
item USE_DATA_VIEW is used that has the value of
YES.

8

RETRVIEW This is a required parameter. The NetView Bridge
Adapter translates this parameter into the HLAPI
control name PIDT_NAME, which is used in an
HLAPI transaction that retrieves a record in the
database. The name that RETRVIEW specifies defines
the record type for the retrieval. If
BYPASS_PANEL_PROCESSING=YES in
INFOBRDS, then the RETRVIEW value will be used
as a DATA_VIEW_NAME. If
BYPASS_PANEL_PROCESSING=NO is used in
INFOBRDS, then RETRVIEW will be treated as a
DATA_VIEW_NAME if the INFOBRDS keyword
USE_DATA_VIEW value is YES or an input data
item USE_DATA_VIEW is used that has the value of
YES.

8

ASSOCDATA The NetView Bridge Adapter translates this parameter
into the HLAPI control name ASSOCIATED_DATA,
which is used in an HLAPI transaction that performs
an inquiry on a database. This parameter identifies the
name of a field in the database record whose contents
are returned to the requester along with the record
identifier as a part of the output field INQRESULT.

31

SEPARATOR This is a required parameter. The NetView Bridge
Adapter translates this parameter into the HLAPI
control name SEPARATOR_CHARACTER, which is
used in the HLAPI transaction that performs an
inquiry on a database. This parameter identifies the
character field value that is used to separate data
items in a list.

1

SEARCHLIST This is a required parameter. This string contains
search arguments that identify a specific database
record. A more in-depth description of this parameter
appears in “SEARCHLIST” on page 38.

variable

Retrieving a Record by Argument (IBSEARCH Transaction)

36 Version 7.1

The IBSEARCH Transaction Reply
This reply transaction returns the results of the retrieve transaction. “Receiving NetView
Bridge Adapter Replies” on page 25 explains the result parameters that can be returned with
this reply. Also, this transaction can return those specific output parameters shown in
Table 9.

Table 9 shows the output parameters that are specific to the transaction Retrieve Record by
Argument.

Table 9. Output Parameters for Retrieve Record by Argument
Parameter Name Description Length

INQRESULT Provides results only if the transaction does not
specify a RECORDID in the SEARCHLIST parameter
and the search finds matching records. The value for
this parameter matches the value in the HLAPI
parameter INQUIRY_RESULT. The NetView Bridge
Adapter treats this parameter as an array where each
element of the array is a separate INQRESULT that
matches the search conditions. Thus, three matches
produce three instances of the parameter
INQRESULT, each with a different parameter index
value. An additional INQRESULT instance with a
parameter index value of zero returns the number of
elements in the array. For more information, refer to
the Tivoli Information Management for z/OS
Application Program Interface Guide.

87

SEPARATOR The NetView Bridge Adapter translates this parameter
from the output HLAPI parameter name
SEPARATOR_CHARACTER, which identifies the
character the transaction uses to separate each of the
data responses in a list of items.

1

Using Complex Parameters
Each of the following complex parameters appears in more than one of the transactions that
the Tivoli Information Management for z/OS NetView Bridge Adapter supplies. To see
which parameter applies to which transaction, see:
¶ “Creating a Record (IBCREATE transaction)” on page 27
¶ “Updating a Record (IBUPDATE Transaction)” on page 31
¶ “Retrieving a Record by Argument (IBSEARCH Transaction)” on page 34.

TEXTLIST
The parameter TEXTLIST identifies to the NetView Bridge Adapter transaction processors
which parameter names are text fields in the Tivoli Information Management for z/OS
database records. Unlike other fields that contain a relatively small (fewer than 120) number
of characters, text data fields consist of large numbers of lines of variable format containing
from 0 to 132 characters per line. The transaction passes each line of text to the NetView
Bridge Adapter separately as an element of an array with a parameter name that is found in
the TEXTLIST parameter. If you write programs in the NetView Command List Language
or REXX that call a transaction, the program must set the zero element of the array to the
number of lines of text sent to NetView. The Adapter gathers these lines together and passes
them to the HLAPI, which stores them with the rest of the data in the Tivoli Information

Retrieving a Record by Argument (IBSEARCH Transaction)

37Guide to Integrating with Tivoli Applications

3.
N

etV
iew

B
rid

g
e

A
d

ap
ter

Tran
sactio

n
s

Management for z/OS record. When the program receives lines of freeform text from
NetView, NetView places the freeform text into an array with a parameter name that is
found in the TEXTLIST parameter. NetView places each line of freeform text into a separate
element of the array. The value in the zero element of the array is the number of lines of
freeform text that NetView sends to the program. For more information, refer to the
TRANSND and TRANRCV commands in the NetView Bridge Implementation manual.

The NetView Bridge Adapter cannot access either the alias table information or the
information that identifies s-word or p-word indexes that correspond to text data items.
Therefore, you must identify those fields that contain text data so the NetView Bridge
Adapter can handle them properly. The TEXTLIST parameter allows you to do this.

TEXTLIST is a list of parameter names; each one represents a text data field. Each name is
followed by one or more blanks to separate it from its successor. It does not include array
indexing information because the NetView Bridge Adapter processes all elements of an array
that is sent as part of a transaction. This list can contain more parameter names than the
transaction requested uses, so a fixed TEXTLIST parameter can be used by many
transactions.

Parameter names for text fields are identified by taking the parameter name in the
transaction and finding that name in the TEXTLIST parameter before any alias processing,
so the parameter names passed in the transaction must be identical to those in TEXTLIST. If
the parameter you use in the transaction is an alias name, then you must use the alias name
in the TEXTLIST. If you use an s-word index in the transaction, then the TEXTLIST name
must be the s-word index. In other words, if you want to fill a text field with your
transaction, the text field name must appear in TEXTLIST.

SEARCHLIST
A SEARCHLIST consists of a series of search words; each word defines a search condition.
You enter each search word in a SEARCHLIST as a series of characters with no imbedded
blanks. These search words are similar to the specification of Tivoli Information
Management for z/OS search arguments using the terminal interface. The Tivoli Information
Management for z/OS User’s Guide describes three methods of searching (structured,
freeform, and combined) and three types of search words (structured, prefixed, and
freeform). The NetView Bridge Adapter uses search types similar to those in the Tivoli
Information Management for z/OS, and the HLAPI adds the ability to create alias s-word
and p-word indexes.

The following sections of this chapter tell you about the three search methods you can
perform and give examples of how to use the various search words involved with each
method.

Structured Search Requests
For a structured search request, you use structured search words. The structure’s format is:
keyword=value.

keyword
This part of the search word identifies which field in the Tivoli Information
Management for z/OS database to compare to the value field in this search word.
The four ways to define keyword in this case are s-word index, s-word index alias,
p-word index, and p-word index alias.

Using Complex Parameters

38 Version 7.1

s-word index
Use the s-word index that Tivoli Information Management for z/OS PIDT
defines for this field.

p-word index
Use the p-word index that Tivoli Information Management for z/OS PIDT
defines for this field.

s-word/p-word index
Use the s-word or p-word index that Tivoli Information Management for
z/OS PIDT defines for this field.

alias Use the alias keywords to identify the field to be searched. The alias table
identified with this transaction defines these words.

= The equal sign means to process this search word as a structured inquiry.

value This field specifies the value to use in the comparison for each record to determine
whether an inquiry returns that record. This value can be:

Mixed data
SBCS data (excluding SO/SI characters)
DBCS data

The abbreviated keyword character (.) and the position ignore character (*) are not
treated as special characters when used in value as part of a structured search word.

Some examples of valid SBCS structured search words are:

¶ S0B59=JONES

This is an s-word that retrieves all records that have the value JONES in the field that
the s-word index S0B59 identifies.

¶ ABC=def

Assuming that ABC is an alias keyword of S0B59, this is an s-word that retrieves all
records that have the value def in the field that the s-word index S0B59 identifies.

For a structured search response, the words are not processed in the sequence in which they
appear in the SEARCHLIST, but in the order in which they appear in the Tivoli Information
Management for z/OS PIDT that you identify with the INQVIEW parameter. Because
structured searches use only implied logical ANDs, the order of processing is important only
because it may affect the sequence in which multiple results return.

Freeform Search Requests
You can do a freeform search request with two types of search words: prefixed and
freeform.

Prefixed Search Word
The format for a prefixed search word is +#keyword/value.

+ When the SBCS plus character (+) appears in the first position of a search word, the
remainder of the word is used as the search word. You must use this character when
you do not specify keyword as a prefix alias.

The search operator field. This is an optional field. If you omit this field, the
SEARCHLIST treats the condition this word specifies as a logical AND with the
other search conditions. This field is one of the following:

Using Complex Parameters

39Guide to Integrating with Tivoli Applications

3.
N

etV
iew

B
rid

g
e

A
d

ap
ter

Tran
sactio

n
s

| Use the SBCS vertical bar when this search condition is a logical OR in
context with the other conditions of this SEARCHLIST. You cannot use this
operator on the first freeform word in a SEARCHLIST.

 Use the SBCS logical not symbol when a record with this field is to be
included in the inquiry results list, but only when the specified value does
not match the value of the field in the record.

- Use the SBCS hyphen when the value of this field is the end of a range for
the previous reference to this field. Do not use this in the first freeform word
in a SEARCHLIST.

Note: SEARCHLIST handles the absence of this search operator (#) by
treating the condition this word specifies as a logical AND with other
search words.

keyword
This part of the search word identifies which field in the Tivoli Information
Management for z/OS database to compare to the value field in this search word. It
must be an SBCS string. Keyword may be defined as either a p-word or an alias
defined for either a p-word or a prefix index.

p-word Use the Tivoli Information Management for z/OS-defined p-word for
this field. This field is the only place in the NetView Bridge Adapter
that supports prefix keywords. You can use a position ignore
character (*) in the prefix. The plus character (+) should always
begin a prefix search word. For information on how prefix keywords
can affect a search, refer to the Tivoli Information Management for
z/OS User’s Guide.

prefix alias Use the alias name that you define in the alias table specified by
VOCAB to be equivalent to a prefix keyword or prefix index for this
field.

/ Use the SBCS slash symbol when you want to process this search word as a
freeform request. It is optional for prefixed search words if you omit the value field.

value This field specifies the value to use in the comparison for each record to determine
if an inquiry returns that record. This value can be:

Mixed data
SBCS data (excluding SO/SI characters)
DBCS data

The abbreviated keyword character (.) and the position ignore character (*) are
supported in this method of searching.

Some examples of valid SBCS prefixed search words are:

¶ ABC/def

If ABC is a prefix alias of P01AC, which in turn is an index to PERS/, then the search
word is converted to PERS/def, and it retrieves all records that contain PERS/def.

¶ PERSO/JONES

If PERSO is an alias of the prefix PERS/, this is a freeform word that retrieves all
records that contain PERS/JONES. If PERSO is not an alias or alias prefix, this
argument is not valid and causes an error.

Using Complex Parameters

40 Version 7.1

¶ +PERS/JONES

Assuming that PERS/ is a prefix, this is a prefixed search word that returns any records
that contain PERS/JONES.

¶ PERSON_OPEN_PROBLEM/JONES

Assuming that PERSON_OPEN_PROBLEM is an alias prefix of P01AC, which in turn
is an index to PERS/, this prefixed search word returns the same records as
+PERS/JONES.

¶ +PER*/JONES

This prefixed search word returns any record with the value JONES that has a
4-character prefix field starting with PER, such as PERA/, PERS/, PERR/, but not PER/.

¶ +MIS

This prefixed search word returns any record that has a prefix field starting with MIS,
such as MISB/JONES, MISX/JONES, and MISCELLANEOUS_PROBLEM/SMITH.

¶ +PERS/*ONES

This is a prefixed search word that finds records with data 5 characters long ending in
ONES, with a prefix of PERS/. Examples are PERS/BONES, PERS/CONES, and
PERS/JONES.

¶ +PH/444-.

This is a prefixed search word that finds records with a prefix of PH/ that start with
444-. Examples are PH/444-4158, PH/444-7126ALTERNATE, and PH/444-6.

¶ +¬PERS/JONES

This is a prefixed search word that returns any records that do not contain the prefix
field PERS/JONES.

¶ +RNID/00000000 +-RNID/00000100

This is a prefixed search word that retrieves all records whose record IDs fall between
0000 and 0100.

¶ +PERS/JONES +|PERS/SMITH

This is a prefixed search word that retrieves all records that have either JONES or
SMITH values in PERS.

Freeform Search Word
The second type of search word that you can use in a freeform search request is the
freeform search word. The format for a freeform search word is #/value

The search operator field. This is an optional field. If you omit this field, the
SEARCHLIST treats the condition this word specifies as a logical AND with the
other search conditions. This field is one of the following:

| Use the SBCS vertical bar when this search condition is a logical OR in
context with the other conditions of this SEARCHLIST. You cannot use this
operator on the first freeform word in a SEARCHLIST.

 Use the SBCS logical not symbol when a record with this field is to be
included in the inquiry results list, but only when the specified value does
not match the value of the field in the record.

Using Complex Parameters

41Guide to Integrating with Tivoli Applications

3.
N

etV
iew

B
rid

g
e

A
d

ap
ter

Tran
sactio

n
s

Note: The SEARCHLIST handles the absence of this search operator (#) by
treating the condition this word specifies as a logical AND with other
search words.

no keyword entry
A freeform search is done using the string you specify in the value part of the search
word to check description fields and abstract fields for the data. Thus, no keyword is
needed. This is equivalent to using freeform words in an interactive search.

/ Use the SBCS slash symbol when you want to process this search word as a
freeform request. It is optional for freeform search words.

value This field specifies the value to use in the comparison for each record to determine
if an inquiry returns that record. This value can be:

Mixed data
SBCS data (excluding SO/SI characters)
DBCS data

The abbreviated keyword character (.) and the position ignore character (*) are
supported in this method of searching.

Some examples of valid SBCS freeform search words are:

¶ ¬abc

This is a freeform search word that retrieves all records that do not have abc in any
non-prefixed field. For example, text fields are non-prefixed fields.

¶ abc

This is a freeform search word that retrieves all records that have abc in any
non-prefixed field.

¶ /abc

This is a freeform search word that retrieves all records that have abc in any
non-prefixed field.

¶ /pink ¬blue

This freeform search word retrieves the records that have pink but do not have blue in
any non-prefixed field.

¶ pink ¬/blue

This freeform search word retrieves the records that have pink but do not have blue in
any non-prefixed field.

¶ blue |/p*nk

This freeform search word retrieves the records that have blue or 4-character data
beginning with p and ending with nk in any non-prefixed field. This search returns, for
example, pink, punk, and ponk.

For a freeform search response, the words are processed in the sequence that they appear in
the SEARCHLIST (from left to right). This may be significant to the results of a search
because the results depend upon the sequence of application of logical ANDs, ORs, and
NOTs.

Note: Because the search does not permit parentheses, this sequence must be made carefully
to achieve the results you expect.

Using Complex Parameters

42 Version 7.1

Combined Structured and Freeform Search Requests
You may combine structured and freeform search words in a single SEARCHLIST.

An example of a valid combined search word is:

¶ S0B59=JONES +RNID/00000050 -00000100

These are combined structured and freeform search words that find records with the
field S0B59 having a value of JONES within the record number range of 50 to 100.

For a combined search response, all s-words in the SEARCHLIST are processed first. The
remaining words in the SEARCHLIST are appended to the s-word list and the HLAPI
performs the search.

The HLAPI is the primary performer of SEARCHLIST processing. The NetView Bridge
Adapter takes the input string value of SEARCHLIST and converts it into the format
expected as input by the HLAPI. The HLAPI translates the parameter names based upon the
specified VOCAB parameter before performing the Tivoli Information Management for z/OS
database inquiry.

The NetView Bridge parameter VOCAB and its counterpart the ALIAS_TABLE PDB in the
HLAPI identify an alias table that the HLAPI uses in all searches for records that it retrieves
from the database. Each database input parameter that the HLAPI processes is put through
this table. If the input parameter does not match an entry in the PIDT or alias table, an error
returns to the requester.

VERIFIER
The VERIFIER parameter consists of a series of verifier words separated by blanks. Each
verifier word is a character string that defines a verification condition. A successful
verification requires that each word that the VERIFIER parameter specifies must be
satisfied. A string can contain blanks if the value is delimited by single quotation mark or
double quotation mark characters. The format of the verifier word is parmname=value.

parmname This required field identifies the Tivoli Information Management for z/OS
database field that the HLAPI compares to the value part of this condition.
This field must be defined consistently with the alias table referenced with
this transaction. You can perform verification against fields of data type
blank, data type date, or data type list only. For the list data type, the search
examines each item in the list. If it finds a match, the search ends with a
successful verification. Other types of fields, such as string, phrase, text, and
direct add fields, fail verification.

= The equal sign is required in the format of this word.

value This field specifies the value to use in the comparison to determine if a
record meets the verification conditions. This value can be:

Mixed data
SBCS data (excluding SO/SI characters)
DBCS data

The abbreviated keyword (.) and the position ignore (*) characters receive
no special consideration during verification. They appear as any other
character.

If you want to verify that a field is null, mark the value portion of the
verifier word with empty quotation marks. For example,

Using Complex Parameters

43Guide to Integrating with Tivoli Applications

3.
N

etV
iew

B
rid

g
e

A
d

ap
ter

Tran
sactio

n
s

VERIFIER=’S0C3D=“”’

or
VERIFIER=“S0C3D=’’”

verifies that the record has no value in field S0C3D.

If this field begins with a single quotation mark or a double quotation mark
character, the next appearance of the quotation mark must be at the end of
the field and a blank must follow it, or it must be the last item in the verifier
word. You cannot imbed quotation mark characters within the value field if
they are the same type of quotation mark characters that you use to start the
field. So, in the examples above the empty quotation marks are the opposite
of those used to delimit the contents of the VERIFIER word itself.

Writing User-Defined Transactions
The Tivoli Information Management for z/OS NetView Bridge Adapter supports three
transactions to create, update and retrieve records in the Tivoli Information Management for
z/OS database. Sometimes you may want to perform other operations on this data. For
example, you may want to define relationships between records, such as parent/child
relationships. The Tivoli Information Management for z/OS NetView Bridge Adapter
provides support to enable you to define and use your own NetView Bridge Adapter
transactions. A user-defined transaction is a set of tasks that the user defines to be
performed on records in a centralized Tivoli Information Management for z/OS database.
User-defined transactions can use all API functions in the HLAPI except the HLAPI
transactions Initialize Tivoli Information Management for z/OS (HL01) and Terminate Tivoli
Information Management for z/OS (HL02).

A user-supplied module is a user-written routine that implements one or more user-defined
transactions. When the NetView Bridge Adapter reads a transaction identifier that it does not
recognize and you have specified a user-supplied module to NetView, the NetView Bridge
Adapter calls that module to process the transaction.

The user-supplied module calls three NetView Bridge Adapter routines to access the
NetView Bridge Adapter interface services. These routines and the tasks they perform are:

BLGBURC Retrieves NetView transaction data through the NetView Bridge Adapter and
builds a chain of PDBs for use by the HLAPI

BLGBUIM Calls the Tivoli Information Management for z/OS HLAPI for processing
user-defined transactions contained in the user-supplied module

BLGBUSN Sends response data through the NetView Bridge Adapter to NetView using
a chain of PDBs.

These routines are packaged together in one module, BLGBUSR, which is link-edited in the
target library when you install the NetView Bridge Adapter. See “Installing the NetView
Bridge Adapter” on page 7 for information on installing the NetView Bridge Adapter.

The user-supplied module uses Tivoli Information Management for z/OS HLAPI Parameter
Data Blocks (PDBs), not NetView Message Parameter Blocks (MPBs). The NetView Bridge

Using Complex Parameters

44 Version 7.1

Adapter routine BLGBURC converts MPBs into PDBs, and the NetView Bridge Adapter
routine BLGBUSN converts PDBs into MPBs to move information between NetView and
Tivoli Information Management for z/OS.

A Typical Scenario
A typical scenario in using this support follows.

1. An application programmer writes a re-entrant C-language routine (a user-supplied
module) that receives information from the NetView application and returns information
to the NetView application. The module includes calls to the NetView Bridge Adapter
interface services and defines codes to be returned to the NetView Bridge Adapter at
exit.

2. In NetView, the programmer writes an application to enable NetView to send information
to the user-supplied module through the NetView Bridge Adapter. The application
interprets the information returned by the user-supplied module.

3. In Tivoli Information Management for z/OS, the programmer compiles the user-supplied
module and link-edits it with BLGBUSR into the target library. The programmer also
adds the module name to the INFOBRDS transaction_processor parameter. To improve
performance, the programmer sets the INFOBRDS parameter preload_tran_proc
parameter to YES.

4. When the NetView Bridge Adapter is initialized, the user-supplied module is loaded into
storage because the preload_tran_proc parameter has been set to YES.

5. At the appropriate time, NetView sends the transaction request to the Tivoli Information
Management for z/OS NetView Bridge Adapter.

6. The NetView Bridge Adapter processes the transaction request through the Tivoli
Information Management for z/OS HLAPI.

7. The HLAPI returns a response to the NetView Bridge Adapter, which processes the
information according to the user-supplied module and sends it back to NetView.

Requirements for a User-Supplied Module
The following sections describe the requirements for writing a user-supplied module and the
two forms of the transactions that it can support, request and reply.

The NetView Bridge Adapter can call a user-supplied module that has the following
characteristics:

¶ Can process one or more transactions.

¶ Written in PL/I, C, or assembler language.

¶ Reside in a load library accessible to the MVS LINK macro.

¶ Link-edited with the BLGBUSR module.

¶ Before ending, this module must release all storage it obtains, and any storage obtained
at its request such as the PDB chain received from BLGBURC.

If the user-supplied module is re-entrant it is not refreshed between calls, and any changes
made to it are not in effect until the NetView Bridge Adapter is stopped and restarted.

Identifying the User-Supplied Module
The INFOBRDS data set has two parameters that refer to the user-supplied module:

Writing User-Defined Transactions

45Guide to Integrating with Tivoli Applications

3.
N

etV
iew

B
rid

g
e

A
d

ap
ter

Tran
sactio

n
s

transaction_processor Indicates to the NetView Bridge Adapter that a user-supplied
module exists. You must specify the name of the
user-supplied module on this parameter.

preload_tran_proc Indicates when to load the user-supplied module into storage.

YES The user-supplied module is loaded into storage (but
not called) when the NetView Bridge Adapter is
initialized. The module must be re-entrant because it
remains in storage until the NetView Bridge Adapter
is stopped.

NO The user-supplied module is loaded into storage and
deleted each time it is called. This method can result
in significant system overhead, but the module does
not have to be re-entrant. The default value for
preload_tran_proc is NO.

Refer to the “The User-Supplied Input Data Set” on page 10 for more information on
specifying these parameters.

The user-supplied module is called only when both of the following conditions are met:

¶ The name of the module is specified in the INFOBRDS transaction_processor parameter.

¶ The NetView Bridge Adapter receives a transaction identifier that is not IBCREATE,
IBSEARCH or IBUPDATE.

If the NetView Bridge Adapter reads an unknown transaction identifier and a module name
has not been specified in the INFOBRDS data set, the NetView Bridge Adapter returns the
return code and reason code for an unknown transaction identifier.

Writing User-Supplied Modules
User-supplied modules pass data between NetView and Tivoli Information Management for
z/OS using a Transaction Processor Communication Area control block (TPCA) that contains
the fields listed below. The user-supplied module can change any field in the TPCA that is
in the following list.

Table 10. Transaction Processor Communications Area (TPCA)
Field Label Offset

DEC(HEX)
Length
DEC

Type Description Set by

BLGBTPCA 0(0) 128 STRUCTURE Transaction Processor
Communication Area

--

TPCAID 0(0) 4 CHARACTER Control block identifier User-supplied module

TPCALEN 4(4) 4 SIGNED Control block length User-supplied module

TPCATRID 8(8) 8 CHARACTER Transaction identifier from
NetView

Caller

TPCARETC 16(10) 4 SIGNED Transaction return code NetView Bridge Adapter
interface services

TPCAREAC 20(14) 4 SIGNED Transaction reason code NetView Bridge Adapter
interface services

TPCAHLRC 24(18) 4 SIGNED Tivoli Information
Management for z/OS HLAPI
return code

Tivoli Information
Management for z/OS HLAPI

Writing User-Defined Transactions

46 Version 7.1

Table 10. Transaction Processor Communications Area (TPCA) (continued)
Field Label Offset

DEC(HEX)
Length
DEC

Type Description Set by

TPCAHLRS 28(1C) 4 SIGNED Tivoli Information
Management for z/OS HLAPI
reason code

Tivoli Information
Management for z/OS HLAPI

TPCACTLP 32(20) 4 ADDRESS Address of the first control
PDB

User-supplied module

TPCAINP 36(24) 4 ADDRESS Address of the first input
PDB

User-supplied module

TCPAOUTP 40(28) 4 ADDRESS First results PDB BLGBUIM

TCPAMSGP 44(2C) 4 ADDRESS First message PDB BLGBUIM

TPCAERRP 48(30) 4 ADDRESS First error PDB BLGBUIM

TPCAAPPL 52(34) 8 CHARACTER Application ID User-supplied module,
NetView Bridge Adapter

TPCAPRCL 60(3C) 8 CHARACTER Privilege class from
INFOBRDS

NetView Bridge Adapter

TPCAOPT 68(44) 8 CHARACTER IBRPRINT option from
INFOBRDS

NetView Bridge Adapter

TPCAJOBN 76(4C) 8 CHARACTER Bridge server job name NetView Bridge Adapter

TPCARESP 84(54) 8 CHARACTER Transaction response code User-supplied module

TPCAIUO 92(5C) 36 CHARACTER Reserved --

The NetView Bridge Adapter interface services builds a parameter list that contains the
address of the TPCA. The address of the parameter list is passed to the user-supplied module
in register 1.

The user-supplied module must perform the following steps:

1. Call the BLGBURC routine to retrieve information sent by the NetView application.

2. Build two PDB chains: one for control PDBs and one for input PDBs for calling the
HLAPI transactions.

3. Call the BLGBUIM routine to perform the appropriate HLAPI transactions. Refer to the
Tivoli Information Management for z/OS Application Program Interface Guide for
information on using HLAPI transactions.

4. Build one PDB chain from the PDB chains returned from BLGBUIM in the previous
step and from any PDBs that contain information that the user-supplied module might
need to return to the caller.

5. If the module sends several PDBs with the same name to NetView, the module must set
the PDBAPPL field in each of these PDBs to a unique index value.

6. Call the BLGBUSN routine to send a reply to the NetView application.

7. Release all storage this module obtains and all storage obtained for this module,
including the PDB chain received from the BLGBURC module.

Information on performing these steps follows.

Writing User-Defined Transactions

47Guide to Integrating with Tivoli Applications

3.
N

etV
iew

B
rid

g
e

A
d

ap
ter

Tran
sactio

n
s

Calling the BLGBURC Routine
The BLGBURC routine retrieves request data through the NetView Bridge Adapter and
builds a chain of PDBs for use by the HLAPI. It also sets a pointer variable to locate the
first PDB in the chain.

The user-supplied module specifies two parameters when it calls the BLGBURC routine. For
example, the following code segment calls this routine:
BLGBURC(TPCA_ADDRESS, PDB_ADDRESS)

where TPCA_address is the address of the TPCA passed to the user-supplied module by the
NetView Bridge Adapter interface services, and PDB_address identifies the first PDB in a
chain of PDBs created by the BLGBURC routine. The BLGBURC routine sets the
PDB_address parameter for use later in the user-supplied module; the module does not
initialize it.

Building Control and Input PDB Chains
The PDB chain created by the BLGBURC routine cannot be processed directly by the
HLAPI. After calling the BLGBURC routine, code in the user-supplied module must use the
PDBs returned by the BLGBURC to build separate control and input PDB chains for use by
the BLGBUIM routine. The contents of the PDBs in each PDB chain depends on the request
parameters sent from the NetView application.

Note: The user-supplied module must identify the type of each PDB returned from the
BLGBURC routine to correctly build the PDB chains for the BLGBUIM routine.
These PDBs are either control or input PDBs.

After the user-supplied module builds the two PDB chains, it places the address of the first
control PDB in the TPCA field TPCACTLP, and places the address of the first input PDB in
the TPCA field TPCAINP.

Calling the BLGBUIM Routine
The BLGBUIM routine calls the HLAPI for processing information in the Tivoli Information
Management for z/OS database. The user-supplied module specifies one parameter when
calling the BLGBUIM routine: the address of a TPCA. The TCPA contains:
¶ The address of the first PDB of a control PDB chain
¶ The address of the first PDB of an input PDB chain.

For example, the following code segment calls this routine:
BLGBUIM(TPCA_ADDRESS)

where TPCA_address is the address of the TPCA passed to the user-supplied module by the
NetView Bridge Adapter interface services.

Upon return from BLGBUIM, the TPCA contains the following:
¶ A return code and reason code set by the HLAPI
¶ Addresses of the first PDBs in three PDB chains: the message, error, and output PDB

chains.

Building a Results PDB Chain
The user-supplied module receives three PDB chains from the BLGBUIM routine. The
user-supplied module uses these PDB chains to build one PDB chain for use by the
BLGBUSN routine. The user-supplied module can add PDBs to this results PDB chain in
addition to selecting any PDBs returned from the BLGBUIM routine.

Writing User-Defined Transactions

48 Version 7.1

Note: The user-supplied module must ensure that the PDB chains returned from the
BLGBUIM routine remain intact. The next HLAPI transaction to run frees storage for
these PDBs, but if they have been modified, unpredictable results can occur.

Setting the PDBAPPL Field
PDBs with the same name contain the same value in the PDBNAME field. These PDBs
must contain a unique value in the PDBAPPL field. The user-supplied module sets
consecutive values in this field starting at zero.

Calling the BLGBUSN Routine
The BLGBUSN routine sends response data through the NetView Bridge Adapter to
NetView. Before calling this routine, the user-supplied module must set a value in the
TPCARESP field in the TPCA. The user-supplied module specifies two parameters when it
calls the BLGBUSN routine. For example, the following code segment calls this routine:
BLGBUSN(TPCA_address, PDB_address)

where TPCA_address is the address of the TPCA passed to the module by the NetView
Bridge Adapter interface services and PDB_address identifies the first PDB in a valid, intact
PDB chain containing PDBs returned from the BLGBUIM routine. It can also contain PDBs
built by the user-supplied module.

NetView Return Codes
The user-supplied module receives return codes from the NetView Bridge Adapter in register
15 and in the TPCA. Both must be examined by the module to determine the status of
processing. In addition, the module receives reason codes from the BLGBUIM routine in the
TPCA. Descriptions of these return codes and reason codes follow.

Return Codes in Register 15
When the NetView Bridge Adapter returns control to the user-supplied module, it passes a
return code in register 15. These return codes and their meaning are:
0 The transaction was successful. Continue with the next transaction.
12 The address of the TPCA is less than 4096.
16 The first 4 characters in the TPCA are not TPCA.

Return and Reason Codes in TPCA
When the user-supplied module calls a NetView Bridge Adapter service, that service passes
a return code and a reason code to the user-supplied module in the TPCA. These return
codes and reason codes are described below.
¶ Return codes from BLGBURC:

0 The service was performed as requested.
8 CNMEGTP completed with an unexpected return code indicating a possible

NetView error. The TPCA contains a NetView reason code.
¶ Return codes from BLGBUIM:

0 The service was performed as requested.
4 The service was performed as requested, but the HLAPI issued a nonzero return

code.
8 The requested HLAPI transaction is not supported.

¶ Reason codes from BLGBUIM:
0 The service was performed as requested.
4 The HLAPI transaction HL01 is not supported.
8 The HLAPI transaction HL02 is not supported.

¶ Return codes from BLGBUSN:

Writing User-Defined Transactions

49Guide to Integrating with Tivoli Applications

3.
N

etV
iew

B
rid

g
e

A
d

ap
ter

Tran
sactio

n
s

0 The service was performed as requested.
8 CNMESTR completed with an unexpected return code indicating a possible

NetView error. The TPCA contains a NetView reason code.

User-Supplied Module Return Codes
When all processing in the module is completed, you must pass a return code to the
NetView Bridge Adapter in the TPCA that indicates the success or failure of processing. The
allowable values for this return code and their meaning are:
0 The transaction was successful. Continue with the next transaction.
4 The transaction code is unknown. Continue with the next transaction.
8 The transaction failed. Stop further NetView Bridge Adapter processing.

Sample Code for the User-Supplied Module
The following section describes sample panel and code parts that demonstrate how to create
and run a user-supplied module. The Tivoli Information Management for z/OS SAMPLIB
(MVS data set SBLMSAMP) contains these parts. You can print these parts just as you
would any file on MVS. The parts are listed and described in Table 11.

Table 11. Sample parts in SAMPLIB
Part Name Description
BLGNBREX A REXX EXEC that starts the user-supplied module. It

runs under NetView.

BLGCCHK BLGCCRT BLGCRET NetView panels that pass information to the
BLGCINQ BLGCOBT BLGCTRAN user-supplied module.
BLGCTSP BLGCUPD BLGHFCRT
BLGHFDEL BLGHFFFT BLGHFINQ
BLGHFLDA BLGHFLDB BLGHFLD1
BLGHFLD2 BLGHFOBT BLGHFRET
BLGHFTSP BLGHFUPD BLGHMAIN
BLGHPCRT BLGHPINQ BLGHPMSG
BLGHPORT BLGHPPF1 BLGHPPF2
BLGHPREC BLGHPRET BLGHPSTA
BLGHPUPD BLGICRT BLGIFFT
BLGIINQ BLGIRET BLGISTAT
BLGIUPD BLGOFFT BLGOMSG
BLGORECS BLGORET

BLGNBSRC Source code for the user-supplied module.

BLGCTPCA BLGCPDB C language macros to define the TPCA and PDB
structures.

BLGNBLNK JCL to link-edit the user-supplied module with the
BLGBUSR module.

After you start the NetView Bridge Adapter, perform the following steps to use the
user-supplied module:

1. Place the REXX EXEC BLGNBREX in a command list library that is listed in the
DSICLD DD statement in your NetView procedure CNMPROC.

Writing User-Defined Transactions

50 Version 7.1

2. Place the NetView panels in a library that is listed in the CNMPNL1 DD statement in
your NetView procedure CNMPROC.

3. Modify the BLGNBREX REXX EXEC as follows:
a. Find DESTTASK.
b. Change BRIDGE1 to the name of the NetView Bridge that is defined in the

DSIPARM NetView data set.
c. Save your changes.

4. Modify the BLGNBLNK JCL as follows:
a. Provide valid information on the JOB card.
b. Reference the appropriate data sets on your system.
c. Provide on the SYSLMOD DD statement the name of a data set listed in the

STEPLIB DD statement of the started task JCL for the Tivoli Information
Management for z/OS NetView Bridge Adapter.

5. Modify the INFOBRDS data set to include the following lines:
TRANSACTION_PROCESSOR='NVBACSMP'
PRELOAD_TRAN_PROC='NO'

6. Stop and restart the NetView Bridge Adapter.

7. Logon to NetView.

8. Type BLGNBREX on the NetView command line and press Enter to start the
user-supplied module.

Calling User-Defined NetView Bridge Adapter Transactions
The Tivoli Information Management for z/OS NetView Bridge Adapter provides support for
calling your own transactions. Descriptions of the two forms of calling user-defined
transactions, request and reply, follow.

The User-Defined Transaction Request
The request transaction manipulates the Tivoli Information Management for z/OS database
as specified in the transaction module.

To perform the work, the NetView command procedure calls the appropriate user-supplied
module. Which module is called depends on whether you write the command procedure in
the HLL, REXX, or NetView Command List Language style. The module receives header
parameters, input parameters, and user-defined control parameters. The header parameters
contain the information that determines how the information is processed. You must
communicate with the transaction programmer to find out what other parameters must be
supplied for this transaction, including user-defined control parameters.

The following header parameter information is specifically required for a user-defined
transaction.

TRANSID The value of this field is the name of the user-defined transaction.

TRTYPE This parameter indicates the reply processing that the transaction performs.
The values for user-defined transactions are:
QERR

Return only error response data to the requesting task.
QALL

Return all operational response data to the requesting task.
QNON

Return no responses of either type to the requesting task.

Writing User-Defined Transactions

51Guide to Integrating with Tivoli Applications

3.
N

etV
iew

B
rid

g
e

A
d

ap
ter

Tran
sactio

n
s

VOCAB An 8-byte field that contains a user-defined value that is used for this
transaction. If this parameter is all blanks (or omitted in a REXX or
Command List Language call), the Tivoli Information Management for z/OS
HLAPI does not perform any alias table processing.

Note: INFOBRDS parameter alias_table_cnt is required if you want to use
alias table processing.

Most of the header parameters that are required for a user-defined transaction are also
required by the IBCREATE, IBUPDATE, and IBSEARCH transactions. The VOCAB
parameter can contain any value for a user-defined transaction. The NetView Bridge Adapter
considers all other parameters on a user-defined transaction to be input parameters. They are
passed as elements in a PDB chain via the PDB input and output services between NetView
and the user-defined transaction. The NetView Bridge Adapter does not examine input
parameters. The user-defined transaction can specify which input parameters are used as
control parameters.

The User-Defined Transaction Reply
This reply transaction returns the results of the user-defined transaction to the requester. The
results are returned in the results PDB chain. The user-supplied module builds the results
PDB chain from the error and message PDB chains returned to it, and any PDBs built by
the user-supplied module, to pass other information back to the requester.

Writing User-Defined Transactions

52 Version 7.1

The NetView Bridge Adapter IBRPRINT
Data Set

Contents of the IBRPRINT Data Set
The data set with the DDNAME of IBRPRINT stores the information that you specify about
NetView Bridge Adapter transactions.

You determine what is stored in this data set at the initialization of the NetView Bridge
Adapter by setting the variable IBRPRINT_OPTION in the data set INFOBRDS. If you set
the variable to ALL, then the system uses IBRPRINT to record transaction requests, replies,
and errors. If you set the variable to ERROR, then IBRPRINT will show only error data. If
you set the IBRPRINT_OPTION to NONE, then the system records no transaction data.

Each record in IBRPRINT has a 32-byte header containing control information followed by
72 bytes of input data. The header format is the same for each record, and it consists of the
type of record (request, reply, error, or data set error), the date and time, and the application
identifier (APPLID). The format of the 72 bytes of input information depends on the type of
record. The following tables show the header format and the format for each of the record
types.

Table 12. IBRPRINT Record Header Format
Field Name Description Length Value

RECTYPE Type of record. Either request (REQST),
reply (REPLY), error (ERROR), or data set
error (DSERR).

5 Input

BLANK Single blank to separate fields. 1

DATE Date record was made. Character string of
year, month, day.

6 yymmdd

BLANK Single blank to separate fields. 1

TIME Time record was made. Character string of
hours, minutes, seconds, and milliseconds.

9 hhmmssttt

BLANK Single blank to separate fields. 1

APPLID Application identifier. Character string. 8 Input

BLANK Single blank to separate fields. 1

Table 13 shows the format of the 72 bytes of input data in an IBRPRINT transaction request
record.

4

53Guide to Integrating with Tivoli Applications

4.
T

h
e

IB
R

P
R

IN
T

D
ata

S
et

Table 13. IBRPRINT Transaction Request Record Format
Field Name Description Length Value

TRANSID Transaction identifier of the request.
Character string.

8 Input

BLANK Single blank to separate fields. 1

ORIGDOM Originating domain of the request. Character
string.

8 Input

BLANK Single blank to separate fields. 1

ORIGTASK Originating task of the request. Character
string.

8 Input

BLANK Single blank to separate fields. 1

ORIGNET Originating network identifier of the request.
Character string.

8 Input

BLANK Single blank to separate fields. 1

CORRELATOR Character string that relates request to reply. 8 Input

BLANK Single blank to separate fields. 1

TRANSTYPE Transaction type of the request. Character
string.

4 Input

BLANK Single blank to separate fields. 1

ALIAS Alias table name from the request. Character
string.

8 Input

BLANK Single blank to separate fields. 1

GPCURSOR The returned value of DSINBEG’s gpcursor. 8 Input

FILLER Blank filler area to maintain log size of 104
bytes.

5

Table 14 shows the format of the 72 bytes of input data in an IBRPRINT transaction reply
record.

Table 14. IBRPRINT Transaction Reply Record Format
Field Name Description Length Value

TRANSID Transaction identifier of the reply. Character
string.

8 Input

BLANK Single blank to separate fields. 1

DESTDOM Destination domain of the reply. Character
string.

8 Input

BLANK Single blank to separate fields. 1

DESTASK Destination task of the reply. Character string. 8 Input

BLANK Single blank to separate fields. 1

DESTNET Destination network identifier of the reply.
Character string.

8 Input

BLANK Single blank to separate fields. 1

CORRELATOR Character string that relates reply to request. 8 Input

BLANK Single blank to separate fields. 1

Contents of the IBRPRINT Data Set

54 Version 7.1

Table 14. IBRPRINT Transaction Reply Record Format (continued)
Field Name Description Length Value

RESPONSE Response code for the reply. Blank if the
IBRPRINT REASON field contains a
warning code.

4 Input

BLANK Single blank to separate fields. 1

REASON Reason code or warning code for the reply. 8 Input

BLANK Single blank to separate fields. 1

RESERVED Reserved. 8 Reserved

FILLER Blank filler area to maintain log size of 104
bytes.

5

Table 15 shows the format of the 72 bytes of input data in an IBRPRINT transaction error
record.

Table 15. IBRPRINT Transaction Error Record Format
Field Name Description Length Value

TRANSID Transaction identifier of the transaction
request being processed when the error
occurs. Character string.

8 Input

BLANK Single blank to separate fields. 1

ORIGDOM Originating domain of the transaction request.
Character string.

8 Input

BLANK Single blank to separate fields. 1

ORIGTASK Originating task of the transaction request.
Character string.

8 Input

BLANK Single blank to separate fields. 1

ORIGNET Originating network identifier of the
transaction request. Character string.

8 Input

BLANK Single blank to separate fields. 1

CORRELATOR Correlator from the transaction request.
Character string.

8 Input

BLANK Single blank to separate fields. 1

FAILEDID Character string that identifies the Adapter
module that returned an error or caused the
Adapter to detect an error.

8 Input

BLANK Single blank to separate fields. 1

ERRCODE Numeric error code. 4 Input

BLANK Single blank to separate fields. 1

REASON Numeric reason code. 8 Reserved

FILLER Blank filler area to maintain log size of 104
bytes.

5

Table 16 shows the format of the 72 bytes of input data in an IBRPRINT transaction data set
allocation error record.

Contents of the IBRPRINT Data Set

55Guide to Integrating with Tivoli Applications

4.
T

h
e

IB
R

P
R

IN
T

D
ata

S
et

Table 16. IBRPRINT Transaction Data Set Allocation Error Record Format
Field Name Description Length Value

DSNAME Character string that gives the DSNAME of
the data set where the error occurred.

44 Input

BLANK Single blank to separate fields. 1

RESERVED Reserved. 4 Reserved

BLANK Single blank to separate fields. 1

FAILEDID Character string that identifies the Adapter
module that returned an error or caused the
Adapter to detect an error.

8 Input

BLANK Single blank to separate fields. 1

ERRCODE Numeric error code. 4 Input

BLANK Single blank to separate fields. 1

REASON Numeric reason code. 8 Input

These are examples of request, error, and reply records that can appear in the IBRPRINT
data set. Each record is 104 bytes long and appears as a single line on the terminal screen
when you look at it.
'REQST 901231 120340619 TEMP IBSEARCH CNM01 OPERATOR NETA

18120340 QALL ALIAS003 35674814 '

'ERROR 901231 120341011 TEMP IBSEARCH CNM01 OPERATOR NETA
18120340 HLL 12 40 '

'REPLY 901231 120341023 TEMP IBSEARCH CNM01 BRIGOPER NETA
18120340 12 40 '

Table 17 shows the format of the 72 bytes of input data in an IBRPRINT transaction trace
record.

Table 17. IBRPRINT Transaction Data Set Trace Record Format
Field Name Description Length Value

TRACED
PARAMETER

Name of the function being traced.
Note: Currently only the input
parameters are traced.

13 Fixed value. Example:
‘INPUT-CNMGETP’

BLANK Single blank to separate fields. 1

TRACER
IDENTIFIER

Name of the module tracing when
recording a parameter value.

8 Fixed character name of
CSECT

BLANK Single blank to separate fields. 1

PARAMETER ID Identifier of the parameter being
recorded.

31 Input

BLANK Single blank to separate fields. 1

PARAMETER
VALUE

Value of the parameter data being
recorded.
Note: Only 45 characters of data are
displayed because of the way the
IBRPRINT data set is recorded.

45 (max) Input

BLANK Single blank to separate fields. 1

REASON Numeric reason code. 8 Input

Contents of the IBRPRINT Data Set

56 Version 7.1

These are examples of trace entries that you can use in the IBRPRINT data set.
INPUT-CNMGETP BLGBEXT CRVIEW BLGYPR
INPUT-CNMGETP BLGBEXT TEXTLIST S0E01
INPUT-CNMGETP BLGBEXT SEPARATOR ,
INPUT-CNMGETP BLGBEXT S0B59 BROWNJ
INPUT-CNMGETP BLGBEXT S0BEE INITIAL
INPUT-CNMGETP BLGBEXT S0E0F This is a test
INPUT-CNMGETP BLGBEXT S0E01 First line of text

Contents of the IBRPRINT Data Set

57Guide to Integrating with Tivoli Applications

4.
T

h
e

IB
R

P
R

IN
T

D
ata

S
et

Contents of the IBRPRINT Data Set

58 Version 7.1

NetView Bridge Adapter Codes

Return Codes and Reason Codes
Table 18 defines the return codes and reason codes that the NetView Bridge Adapter sends
to the NetView requester (if it requests a reply) and records in the log (if you have set one
up). These codes can be generated by the Adapter, NetView, and the Tivoli Information
Management for z/OS HLAPI. For more information on NetView and Tivoli Information
Management for z/OS HLAPI codes, refer to the NetView Bridge Implementation and Tivoli
Information Management for z/OS Application Program Interface Guide.

Table 18. NetView Bridge Adapter Return Codes and Reason Codes
Return Code
(RESPCODE)

Reason
Code

Description

0 00 Successful completion.

2 all codes Transaction completed normally, but results were
unsuccessful.

20 More than one record matched the search criteria.

21 Record not found in the database using search arguments
specified in the SEARCHLIST control parameter.

22 Verification failed. Database field value does not match
verifier field value.

23 One or more records found matching the create unique
search criteria.

24 Verification word name not found in RETRVIEW table or in
the alias table. For more information on verification, see
“VERIFIER” on page 43.

4 all codes Warning was detected in Tivoli Information Management for
z/OS HLAPI. Refer to the Tivoli Information Management
for z/OS Application Program Interface Guide.

8 all codes Validation error was detected in Tivoli Information
Management for z/OS HLAPI. Refer to the Tivoli
Information Management for z/OS Application Program
Interface Guide.

5

59Guide to Integrating with Tivoli Applications

5.
N

etV
iew

B
rid

g
e

A
d

ap
ter

C
o

d
es

Table 18. NetView Bridge Adapter Return Codes and Reason Codes (continued)
Return Code
(RESPCODE)

Reason
Code

Description

10 all codes Error was detected in NetView Bridge Adapter. Stop the
transaction.

30 Required control parameter CREVIEW is missing.

31 Required control parameter INQVIEW is missing.

32 Required control parameter RETRVIEW is missing.

33 Error was detected in the search list.

34 Required control parameter SEARCHLIST is missing.

35 Required control parameter SEPARATOR is missing.

36 TRTYPE is not set to QALL for retrieve.

37 TRANSID specified by requester is not known.

38 Required control parameter UPDVIEW is missing.

39 Text data length greater than 132 characters.

40 A transaction parameter was received with no parameter
name.

41 Input data parameter has a length field equal to zero.

42 Binary data was received from NetView Bridge.

43 Nonzero processing code was returned in
INQUIRY_RESULT data block.

44 Required control parameter RNID_SYMBOL is missing.

45 Verification was not performed because verifier word name
is a nonverifiable field.

46 No data in string given for verification.

47 Verifier word in verification string not valid, lacks = sign.

48 Incorrect mixed data in parameter data extracted from
NetView Server Support API.

11 all codes Error was detected in NetView Bridge. Stop the transaction.
Refer to the NetView Bridge Implementation manual.

12 all codes Error was detected in Tivoli Information Management for
z/OS HLAPI or LLAPI. Refer to the Tivoli Information
Management for z/OS Application Program Interface Guide.

16 all codes Error was detected in Tivoli Information Management for
z/OS HLAPI. Refer to the Tivoli Information Management
for z/OS Application Program Interface Guide.

Return Codes and Reason Codes

60 Version 7.1

Table 18. NetView Bridge Adapter Return Codes and Reason Codes (continued)
Return Code
(RESPCODE)

Reason
Code

Description

18 all codes Severe NetView Bridge Adapter error was detected. Close
the address space.

60 Allocation of the working data set APPLID.TEXTnnnn for
the TEXTLIST parameter failed.

61 Data set allocation failed.

62 Reserved for system use.

63 Extract Macro failed on ECB address fetch.

64 Error occurred in freeing an adapter PDB.

65 Error occurred in freeing an MPB.

66 Parameter list on call to HLAPI not valid.

67 Error in opening the data set with DDNAME INFOBRDS.

68 Error in reading the data set with DDNAME INFOBRDS.

69 Required INFOBRDS parameter INITCLAS is missing.

70 JCL EXEC parameter has jobname that is not valid.

71 Load of Tivoli Information Management for z/OS translate
table failed.

72 Required INFOBRDS parameter SEND_QUEUE is missing.

73 Required INFOBRDS parameter SESSMEMB is missing.

74 Register 15 error occurred in call to NetView.

75 Reserved for system use.

76 Reserved for system use.

77 Trying to create a data set, but all data sets are in use. More
than 9 text working data sets have been allocated.

78 NetView Bridge Adapter has shut down all processing in an
orderly manner.

79 Could not link to the Tivoli Information Management for
z/OS HLAPI.

18 80 The session member specified in the NVBA INFOBRDS
data set could not be loaded. Make sure that the session
member is in a data set in the STEPLIB concatenation for
the NVBA.

81 The date exit specified in the session member cannot be
loaded. Make sure that the date exit exists in one of the
libraries specified in the STEPLIB concatenation for the
NVBA.

≥1000 Subtract 1000. Look up resulting value in the NetView
Application Programming Guide: Program-to-Program
Interface

20 all codes Severe NetView Bridge error was detected. Close the address
space. Refer to the NetView Bridge Implementation manual.

Return Codes and Reason Codes

61Guide to Integrating with Tivoli Applications

5.
N

etV
iew

B
rid

g
e

A
d

ap
ter

C
o

d
es

Warning Codes
Table 19 shows the warning codes that the NetView Bridge Adapter generates, returns to the
requester, and records in the IBRPRINT data set. Like reason codes, these codes return as
result parameters in the transaction reply.

Table 19. NetView Bridge Adapter Warning Codes
Warning
Code

Description

15 Superfluous search criteria was specified with RECORDID.

25 Some requested parameters could not be retrieved. Check BADPARMs.

71 Maximum number of inquiry results was exceeded. Available memory exhausted.

Log Only Codes
Table 20 shows the log only codes that the NetView Bridge Adapter generates and records in
the log data set. Unlike the other codes, these codes are only recorded in the log; they do
not return to the requester.

Table 20. NetView Bridge Adapter Log Only Codes
Recorded
Code

Description

01 Error occurred opening the data set with DDNAME IBRPRINT.

02 Error occurred opening DSNAME.

03 Error occurred in reading DSNAME.

04 Error occurred in writing DSNAME.

05 Error occurred in unallocating DSNAME.

Warning Codes

62 Version 7.1

II — NetView AutoBridge
Chapter 6. NetView AutoBridge Overview. 67
What Does Tivoli Information Management for z/OS NetView AutoBridge Do? . 67
Tivoli Information Management for z/OS NetView AutoBridge Highlights . 68
Why Use Tivoli Information Management for z/OS NetView AutoBridge? . 68

Managing Network Events. 69
Interfacing with Tivoli Information Management for z/OS . 69
Invoking User Functions . 69

Network Management . 69
Automating Network Management. 70
Implementation Benefits . 71

Chapter 7. Functional Description of NetView AutoBridge. 73
AutoBridge and NetView Bridge Components . 74

NetView Bridge on the Resident Host . 75
AutoBridge on the Resident Host. 75
NetView Bridge on a Remote Host . 75
AutoBridge on a Remote Host . 76

Processing Overview . 76
Process Invocation. 78
Database Mapping. 78
Input Record Filtering . 79
Checkpoint Management . 79
Transaction Post-Processing . 79

Chapter 8. Coding NetView AutoBridge Tables . 81
Coding the Process Table. 83

TRACE Function Syntax . 84
PARSE Function Syntax . 85
ADD_DATA Function Syntax . 86
VERIFIER Function Syntax. 87
ASSOCDATA Function Syntax . 87
User Function or Command Invocation Syntax . 88
IBCREATE Function Syntax . 89
IBUPDATE Function Syntax . 89
IBSEARCH Function Syntax . 90

Coding the Mapping Table. 92
Coding the Filter Table . 97
AutoBridge Table Examples. 98

Processing Generic Alerts . 99
Processing BNJ146I Messages . 100

Coding the Initialization Table . 101
Initialization Table Structure . 101
Initialization Table Examples . 102
Initialization Table Syntax . 104

Common Values . 105
Dispatcher Segment . 106
Database Segment . 107
Record Segment. 111

63Guide to Integrating with Tivoli Applications

Chapter 9. NetView AutoBridge Commands . 113
Invoking AutoBridge . 114
Handling Checkpoint Manager Transactions . 116
Starting/Stopping/Recycling AutoBridge and Its Components . 119
Using the AutoBridge Main Menu . 120
Starting/Recycling/Stopping the NetView Bridge Dispatchers or Adapters . 121
Managing Checkpoint Transactions . 121
Managing the AutoBridge Tables . 125
Setting AutoBridge Tracing On or Off . 126

Chapter 10. NetView AutoBridge Implementation Scenarios 129
BNJ146I Message Scenario . 129
MSU Scenario . 131
User-Written Application Data Scenario . 133
Automated “Unalert” Notification Scenario . 135

Chapter 11. NetView AutoBridge Planning. 137
Step 1. Verify Installation of Required Hardware . 137
Step 2. Verify Installation of Required Software . 137
Step 3. Verify Required Skills and Documentation Present . 138
Step 4. Choose an Application ID and Receive a Queue Name . 138
Step 5. Plan the Initialization Table . 138
Step 6. Plan the NetView Automation Table Customization . 139
Step 7. Plan the PIDT, PIPT, and Alias Table Modifications . 139
Step 8. Plan the Process Table . 141
Step 9. Plan the Mapping Table . 141
Step 10. Plan the Filter Table. 141

Chapter 12. NetView AutoBridge Software Setup and Administration 143
Setting Up the Resident NetView. 144

Adding Operator IDs for NetView Autotasks . 145
Creating Profiles for NetView Autotasks . 146

RTRINIT Command . 147
REMOTEBR Command . 147

Adding Command Model Statements to NetView . 148
Modifying the NetView Procedure JCL . 149
Modifying the JCL Supplied with the Tivoli Information Management for z/OS NetView Bridge
Adapter . 150
Allocating the Checkpoint File VSAM Data Set . 150
Customizing the DSIPARM DSIDMN Member . 151
Creating Additional Copies of a Server . 151
Customizing the PIDT, PIPT, and Alias Tables . 152
Customizing the NetView Automation Table . 152
Creating the Initialization Table . 153
Creating the Process Table for Resident NetView . 153
Creating the Mapping Table for Resident NetView . 153
Creating the Filter Table for Resident NetView . 153

Setting Up Remote NetViews. 153
Adding an Operator ID for the Dispatcher Autotask . 155
Creating NetView Bridge Dispatcher Profiles . 156
Adding NetView Bridge Command Model Statements to NetView . 156

64 Version 7.1

Modifying the NetView Procedure JCL . 156
Allocating the Checkpoint File VSAM Data Set . 157
Customizing the DSIPARM DSIDMN Member . 157
Customizing the NetView Automation Table . 157
Creating the Initialization Table for a Remote NetView . 158
Creating the Process Table for a Remote NetView . 159
Creating the Mapping Table for a Remote NetView . 159
Creating the Filter Table for a Remote NetView . 159

VTAM List . 159
Required NetView Tasks . 160
Using RMTCMD to Test Connectivity . 160

Chapter 13. Using the NetView AutoBridge PostProcessor 163
PostProcessor Overview. 163

When to Use the PostProcessor . 163
PostProcessor Function . 164
PostProcessor Example . 164

Installing the PostProcessor . 167
Step 1. Plan for the PostProcessor Panels . 168
Step 2. Update Your Tivoli Information Management for z/OS Session Member 169
Step 3. Create a TSO Background Procedure for the PostProcessor. 169
Step 4. Create Background Profiles for the PostProcessor . 170

Modifying Panel BLGAPI00 . 171
Setting Up the PostProcessor . 173

Determining If a Record Should Be Post-Processed . 173
Determining Which Fields or Selections to Post-Process. 173
Authorizing the PostProcessor to Tivoli Information Management for z/OS. 173
Modifying the Tivoli Information Management for z/OS Profile . 174
Authorizing User Access to Mapping Reference Records . 174
Creating a Mapping Reference Record . 174
Mapping Reference Record Considerations. 176
Maintaining Mapping Reference Records . 177

Modifying Mapping Reference Records . 177
Locating Mapping Reference Records . 177
Using Updated Mapping Reference Records. 179

Modifying AutoBridge’s Tivoli Information Management for z/OS Interface . 179
PIDT Modifications . 179
Alias Table Modifications . 180
Record File TSP Modifications . 180

Running the PostProcessor. 181
Viewing PostProcessor Messages . 181
Recovering from PostProcessor Errors . 181

Error Notification . 182
SNAP Macro Data. 183
Reprocessing Records in Error . 183

Stopping the PostProcessor . 183
Mapping Reference Records Contents . 184
AutoBridge PostProcessor User Exits . 184

EYMSP010 . 184
EYMSP020 . 185
EYMSP030 . 185

65Guide to Integrating with Tivoli Applications

EYMSP040 . 186
EYMSP041 . 187
EYMSP042 . 187
EYMSP043 . 188
EYMSP044 . 188
EYMSP045 . 189
EYMSP050 . 189
EYMSP055 . 190

Chapter 14. NetView AutoBridge Messages . 191
Messages. 191

Chapter 15. NetView AutoBridge Worksheets . 231
Initialization Table Worksheet . 231
Process Table Planning Worksheet . 233
Mapping Table Planning Worksheet . 234
Filter Table Planning Worksheet. 235

Chapter 16. NetView AutoBridge Sample Members . 237
Installation Samples. 237
Installation Verification Programs (IVPs) . 239
AutoBridge Table Samples. 239
User-written CLISTs and Panel Samples . 239
User-written Functions. 240

Chapter 17. Tivoli Information Management for z/OS to Tivoli
NetView Connection . 243
Understanding the Tivoli NetView Connection . 244

What is Tivoli NetView for AIX? . 244
What is AIX NetView Service Point?. 244
Software Requirements . 245
Purpose of the Host Connection. 245
How the Host Connection Works . 245

Advantages of Connecting Tivoli Information Management for z/OS to Tivoli NetView 246

66 Version 7.1

NetView AutoBridge Overview

Tivoli Information Management for z/OS NetView AutoBridge is a set of routines, panels,
and tables that serve as an application enabler for the Tivoli Information Management for
z/OS NetView Bridge Adapter. AutoBridge receives data from specific alerts, messages, and
other applications via its application programming interface (API) and then uses this data to
build and perform Tivoli Information Management for z/OS transactions.

AutoBridge is an open, modular, expandable, and flexible application interface. AutoBridge
builds transactions from the data it receives according to instructions you supply in its
process and mapping tables. AutoBridge’s functionality, data input, and record output can be
customized by system integrators and users.

Note: The Tivoli Information Management for z/OS NetView AutoBridge should not be
confused with the NetView Bridge Adapter. The NetView Bridge Adapter provides a
connection between the NetView Bridge and the Tivoli Information Management for
z/OS High-Level Application Program Interface (HLAPI) to access the database; the
NetView Bridge Adapter has been a component of Tivoli Information Management
for z/OS since Information/Management Version 4.2.2.

The Tivoli Information Management for z/OS NetView AutoBridge provides a different
function, as described in the following section. The Tivoli Information Management for z/OS
NetView AutoBridge was previously released as a standalone product, and was incorporated
into Tivoli Information Management for z/OS only as of Information/Management Version 6
Release 2 Modification 1 (6.2.1).

What Does Tivoli Information Management for z/OS NetView
AutoBridge Do?

Tivoli Information Management for z/OS NetView AutoBridge lets you use the Tivoli
Information Management for z/OS NetView Bridge Adapter to automate database operations.
With AutoBridge you can automatically create, update, or search database records using data
from the following:
¶ Messages accessible to NetView (VTAM, JES)
¶ Management services units (MSUs)
¶ Data from other applications.

AutoBridge uses instructions that you specify to generate a transaction record from captured
messages, MSUs, or application data. Depending on the data, AutoBridge will create, search,
or update records in a Tivoli Information Management for z/OS database on a local or
remote NetView. AutoBridge saves a record of each transaction, so that those that are
unsuccessful can be retried. AutoBridge can also post-process transactions to supplement or

6

67Guide to Integrating with Tivoli Applications

6.
N

etV
iew

A
u

to
B

rid
g

e
O

verview

modify the transaction data as would occur if it were entered by an operator using the Tivoli
Information Management for z/OS entry panels.

Tivoli Information Management for z/OS NetView AutoBridge
Highlights

AutoBridge exploits the features of the NetView Bridge in the following ways:

¶ It creates, updates, and searches records in a Tivoli Information Management for z/OS
database.

¶ It can access database servers that reside on remote hosts.

¶ It allows access to multiple database servers.

¶ It returns messages to the originating user or task.

AutoBridge provides the following functions:

¶ It dispatches records based on priority, resource type, and other user specifications.

¶ A process table lets you define how different types of input data are processed by
specifying a step-by-step list of functions to be performed such as PARSE, TRACE, and
CREATE. It can also process user command functions and NetView commands.

The process table allows input data to be uniquely identified; for example, alerts,
messages, and application data can be mapped according to their source of origin.

¶ A mapping table lets you specify how input data is mapped to alias names, identify
search and update fields, and specify additional commands to be run. Segments of this
mapping table can include definitions for:
v Management Services Units (MSUs)
v Alert messages (BNJ146I)
v Other messages
v Application-generated data, such as Automated Operations Network/MVS

(AON/MVS) control file information and vital product data

¶ A filter table allows filtering of input records based on field values that you specify.

¶ AutoBridge provides a panel interface for loading/replacing, verifying, and displaying
AutoBridge’s tables.

¶ AutoBridge’s checkpoint-manager automatically copies records to a file for
retransmission when a transaction fails.

¶ AutoBridge’s PostProcessor facility simulates operator entry of AutoBridge-created
records to allow terminal simulator panel (TSP) and exit program invocation.

Why Use Tivoli Information Management for z/OS NetView
AutoBridge?

AutoBridge can help automate network management tasks such as:
¶ Monitoring the network for specific events
¶ Creating and updating Tivoli Information Management for z/OS records
¶ Searching for duplicate records
¶ Notifying vendors of the status of their products.

What Does Tivoli Information Management for z/OS NetView AutoBridge Do?

68 Version 7.1

Managing Network Events
Network management can be described as the process of identifying and responding to
events that occur on the network. An event, used in this context, is the change in status of
any element of the network. Because this book uses the term network to include a digital
communications network and all systems connected to it, network events can include such
things as:
¶ A loss of connection
¶ A hardware failure
¶ A modem time-out
¶ A printer running out of paper.

Network events are displayed to NetView operators as alerts, messages, or data from other
applications. Without automation, network operators must manually enter records of these
events in the Tivoli Information Management for z/OS database.

AutoBridge automates network monitoring and record creation, so that network information
can be entered quickly and accurately into Tivoli Information Management for z/OS. This
automation can improve tracking of network events and reduce the amount of monitoring
network operators must perform.

Interfacing with Tivoli Information Management for z/OS
AutoBridge uses the Tivoli Information Management for z/OS NetView Bridge Adapter to
send requests to Tivoli Information Management for z/OS. Requests go from the NetView
Bridge dispatcher to a database server for the target database. AutoBridge uses tables to
identify the data that will go in the records it passes to Tivoli Information Management for
z/OS. You specify the data and its format using AutoBridge’s process and mapping tables.

AutoBridge also employs a PostProcessor facility that fills Tivoli Information Management
for z/OS records with data not supplied in the alerts, messages, or application data used to
create or update the records. The PostProcessor submits the AutoBridge-created records to
the same processes (Tivoli Information Management for z/OS user exits, control panels,
TSPs, and user-written exit programs) as those records that operators enter using the Tivoli
Information Management for z/OS panels at your site.

Invoking User Functions
AutoBridge can invoke user-written functions as part of its processing. User-written
functions can modify or supplement the record data that AutoBridge sends to Tivoli
Information Management for z/OS.

Network Management
Network management includes the tasks that allow an installation to identify, respond to, and
track one or more network events simultaneously. Network operators monitor and control the
elements of a network by viewing or using resources such as the NetView program and
individual network management systems.

Tivoli Information Management for z/OS records are created as the result of someone
reporting a failure, or of resource monitoring by the network operators. Network operators
use the Tivoli Information Management for z/OS database to track events from their
identification to resolution. Accurate information in the network management system is
required to evaluate the level of service provided to users and to initiate preventive
maintenance based on trend analysis.

Why Use Tivoli Information Management for z/OS NetView AutoBridge?

69Guide to Integrating with Tivoli Applications

6.
N

etV
iew

A
u

to
B

rid
g

e
O

verview

The tasks of network management are complicated by the following conditions:

¶ Manual entry of Tivoli Information Management for z/OS records introduces the
possibility of input errors.

¶ Because it takes longer to enter records manually, personnel have less time to actually
respond to the network events.

¶ When the information entered into Tivoli Information Management for z/OS is delayed
or inaccurate, duplicate events are less likely to be identified. Efficiency and productivity
are reduced when several support personnel respond to the same event.

¶ When monitoring multiple systems, there is the question of which system to monitor
first. Also, it is not always clear who might be responding to each event. Again, this can
reduce efficiency because more than one person might respond to the same event.

¶ When several events are reported on a network, they are not always entered in Tivoli
Information Management for z/OS. For those events that are entered, the time period
recorded for identifying and resolving the events might not be accurate. Correct time
information is necessary for understanding the number of events occurring in the
network and the time required to respond to these events. Without correct time
information, you cannot ensure that user needs are being met.

The following sections describe how implementing AutoBridge can help you solve these
problems.

Automating Network Management
AutoBridge can automatically create or update Tivoli Information Management for z/OS
records from NetView alerts, messages, and application data. AutoBridge replaces the human
action required to detect and enter problems into Tivoli Information Management for z/OS.
With AutoBridge, you can customize the record data to meet your operational requirements.

AutoBridge performs some of the network management activities that network operators
traditionally perform. These activities include:
¶ Monitoring for specific alerts, messages, and application data
¶ Searching for duplicate events
¶ Creating or updating Tivoli Information Management for z/OS records.

AutoBridge eliminates the administrative time required to perform these activities. Also,
because manual actions are eliminated, the record always contains accurate and timely data.

After a record is opened in Tivoli Information Management for z/OS, it can be assigned to a
particular individual using the functions of Tivoli Information Management for z/OS, thereby
preventing the inefficiency of having several people respond to the same event. Tivoli
Information Management for z/OS also allows you to display events by priority, to notify
interested parties, and to escalate an event.

AutoBridge eliminates the need to have operators monitor NetView for network events.
However, once the event has been identified to the network operator through Tivoli
Information Management for z/OS, the operator might need to access NetView to obtain
status information, perform network operator functions, and review historical data for
additional problem determination.

Network Management

70 Version 7.1

Implementation Benefits
The benefits of implementing AutoBridge include:

¶ Unattended operation. In the normal daily activities of a control center, AutoBridge
runs unattended. AutoBridge’s checkpoint-manager task enables recovery and retry of
failed Tivoli Information Management for z/OS transactions, so there is no need to
monitor its functioning.

If you automate procedures, make sure to document those procedures in the operational
procedures manual for the site. The operator needs to be aware of automated procedures
to prevent duplicating efforts.

¶ Eliminates administrative time spent copying information from NetView to Tivoli
Information Management for z/OS. Because data is entered automatically from
NetView into Tivoli Information Management for z/OS, network operators do not have
to spend time copying this information from one system to the next. AutoBridge also
ensures that the data entered is accurate, complete, and timely.

¶ Improves management tracking of network activity. AutoBridge ensures that events
identified by NetView are tracked in Tivoli Information Management for z/OS.
Maintaining an accurate history of outages helps you identify unstable areas within the
network. The result is increased resource efficiency because recurring problems are
identified and actions taken to eliminate them. Also, you can track the service you
provide, which helps in providing the desired service level.

¶ Reduces resources needed to monitor NetView. AutoBridge sends data directly to
Tivoli Information Management for z/OS and identifies any duplicate events. You are
provided with one work queue rather than many. Therefore, you no longer need to
monitor NetView closely.

¶ Reduces down time. Users should find a higher level of availability in the system as a
result of AutoBridge implementation. Alerts, messages, and application data that have
been identified to create Tivoli Information Management for z/OS records are passed
immediately to Tivoli Information Management for z/OS. The operators begin
responding to events immediately rather than waiting for a user to call. Even if the
network operators monitor NetView, AutoBridge ensures that all events are identified
and tracked.

¶ Consistent with manual entry. AutoBridge’s PostProcessor facility allows Tivoli
Information Management for z/OS TSPs and exit programs to run in the same manner as
they do for records entered manually by operators.

Other less measurable productivity enhancements from implementing AutoBridge include the
capability to:
¶ Prioritize the workload more efficiently
¶ Estimate future workload needs more accurately based on a complete history of network

activity.

AutoBridge allows for a more organized working environment. Events can be displayed in a
work queue in priority order so that no confusion exists over which event to respond to next.
Also, events can be assigned to specific individuals, further reducing confusion and
eliminating duplicate effort. Finally, enough historical data is present in Tivoli Information
Management for z/OS to determine when problems occur most often.

Implementation Benefits

71Guide to Integrating with Tivoli Applications

6.
N

etV
iew

A
u

to
B

rid
g

e
O

verview

Implementation Benefits

72 Version 7.1

Functional Description of NetView
AutoBridge

This chapter describes the various components of AutoBridge and how they interact with
each other, with the NetView Bridge, and with the Tivoli Information Management for z/OS
NetView Bridge Adapter. NetView Bridge and AutoBridge components include the
following:

NetView Bridge
A set of APIs that allow the connection of an MVS NetView to external databases or
transaction processors. Remote access to the NetView Bridge is also available from
the OS/390 system via the remote dispatcher.

Tivoli Information Management for z/OS NetView Bridge adapter
An MVS-started task that provides the connection between the NetView Bridge and
the Tivoli Information Management for z/OS database. The Tivoli Information
Management for z/OS NetView Bridge Adapter works with the NetView Bridge to
allow automated transaction-handling functions. The transaction-handling functions
consist of message routing and transmission within the Tivoli Information
Management for z/OS NetView Bridge Adapter address space and message
processing and submission to the Tivoli Information Management for z/OS database.
Also known as the database server adapter.

Bridge dispatcher
A NetView autotask that enables transactions to be passed between a NetView
application and a resident database server.

Remote dispatcher (Optional)
A NetView autotask that enables transactions to be passed between a command
procedure on a remote host and an external database on the resident OS/390 host.
Two remote dispatchers are required, one on the resident OS/390 host and one on
the remote system.

Checkpoint task
An autotask provided by AutoBridge that logs each AutoBridge transaction along
with a code indicating its current status (waiting, ready for resend, failed, or flagged
for deletion) to prevent the loss of transactions and to allow retries of failed
transactions.

PostProcessor tasks (Optional)
AutoBridge’s PostProcessor facility resides on the system as a set of background
tasks, one for each Tivoli Information Management for z/OS NetView Bridge
Adapter. There can be as many as 16 PostProcessor tasks on the resident NetView.
When a PostProcessor task detects an AutoBridge transaction occurring on its

7

73Guide to Integrating with Tivoli Applications

7.
F

u
n

ctio
n

al
D

escrip
tio

n
o

f
N

etV
iew

A
u

to
B

rid
g

e

associated adapter, it initiates post-processing of AutoBridge-created records in the
Tivoli Information Management for z/OS database.

AutoBridge and NetView Bridge Components
AutoBridge resides in the resident NetView and, optionally, in remote NetViews. The
resident NetView is the OS/390 host with the Tivoli Information Management for z/OS
NetView Bridge Adapter and the target database. To AutoBridge, all NetViews that are not
co-resident with the target database are considered remote.

Figure 3 shows a diagram of the NetView Bridge and AutoBridge components on both
remote and resident NetViews.

The following sections explain the numbered paths in Figure 3. The numbers in the figures
show NetView Bridge actions, while the letters show AutoBridge actions.

Remote NetView Resident NetView Information
Management

for z/OS

Information
Management

for z/OS
Database

Remote Dispatcher Remote Dispatcher

Server Support
API

Server Support
API

Transaction
Processor

Transaction
Processor

Remote Dispatcher

NetView Bridge
Requester API

NetView Bridge
Requester API

Automation Table
- MSU/BNJ146I
- System Messages
- Etc Etc

Automation Table
- MSU/BNJ146I
- System Messages
- Etc Etc

Automation Data
- ANO/AOC
- Solutions
- User Applications

Automation Data
- ANO/AOC
- Solutions
- User Applications

NetView AutoBridge
- Parse/Format Data
- Filter
- Checkpoint Record
- Search/Create/Update

NetView AutoBridge
- Parse/Format Data
- Filter
- Checkpoint Record
- Search/Create/Update

PostProcessor

B B

C C
5C 51A 1

1B

5A

2

2

4

4
3

3

5B
1C

A A
D

Figure 3. Interaction of NetView Bridge and AutoBridge components

74 Version 7.1

NetView Bridge on the Resident Host
�1� AutoBridge uses the NetView Bridge Requester API to request that a search, create,

or update transaction request be sent to a database server.

�2� The bridge dispatcher passes this request to an available database server.

�3� The Tivoli Information Management for z/OS NetView Bridge Adapter is a database
server which uses the server support API to retrieve the transaction. The server
performs the requested transaction by invoking the HLAPI, which works directly
with the Tivoli Information Management for z/OS database.

�4� The Tivoli Information Management for z/OS NetView Bridge Adapter creates a
reply for this request. It uses the server support API to pass the reply back to
AutoBridge through the bridge dispatcher in the form of a message.

�5� AutoBridge uses the NetView Bridge Requester API to extract the reply data from
the message.

AutoBridge on the Resident Host
�A� An application running in NetView invokes AutoBridge to retrieve or send a record

to the Tivoli Information Management for z/OS database.

�B� An MSU or message causes the NetView automation table to invoke AutoBridge to
retrieve or send a record to the Tivoli Information Management for z/OS database.

�C� The input parameters specify what processing is required. This can include parsing
and filtering of the input data and record retrieval or create/update.

�D� Once the record has been created, it may be post-processed to cause all user-selected
TSPs and exits to execute.

NetView Bridge on a Remote Host
�1A� AutoBridge uses the NetView Bridge Requestor API to request that a search, create,

or update transaction request be sent to the remote dispatcher.

�1B� The high performance transport API acts as an interface between the remote
NetView and the resident NetView to send the request to the remote dispatcher in
the resident NetView.

�1C� The remote dispatcher sends the request to the bridge dispatcher running in the
resident NetView.

�3� The bridge dispatcher passes this request to an available database server.

�3� The Tivoli Information Management for z/OS NetView Bridge Adapter is a database
server which uses the server support API to retrieve the transaction. The server
performs the requested transaction by invoking the HLAPI, which works directly
with the Tivoli Information Management for z/OS database.

�4� The Tivoli Information Management for z/OS NetView Bridge Adapter creates a
reply for this request, it uses the server support API to pass the reply back to
AutoBridge through the bridge dispatcher in the form of a message.

�5A� The bridge dispatcher uses the high performance transport API to send the reply to
the remote dispatcher on the remote NetView system.

�5B� The remote dispatcher sends the reply to the NetView Bridge Requester API.

AutoBridge and NetView Bridge Components

75Guide to Integrating with Tivoli Applications

7.
F

u
n

ctio
n

al
D

escrip
tio

n
o

f
N

etV
iew

A
u

to
B

rid
g

e

�5C� AutoBridge uses the NetView Bridge Requestor API to extract the reply data from
the message.

AutoBridge on a Remote Host
�A� An application running in NetView invokes AutoBridge to retrieve or send a record

to the Tivoli Information Management for z/OS database.

�B� An MSU or message causes the NetView automation table to invoke AutoBridge to
retrieve or send a record to the Tivoli Information Management for z/OS database.

�C� The input parameters specify what processing is required. This may include parsing
and filtering of the input data and record retrieval or create/update.

Processing Overview
AutoBridge is invoked in one of two ways:

¶ The NetView automation table invokes AutoBridge in response to certain alerts and
messages.

¶ Other applications, routines, or command processors request the NetView Bridge via
AutoBridge.

AutoBridge receives input records from the NetView automation table as parameters in the
form of MSUs, system messages, and other application messages. Application programs can
pass data to AutoBridge in the form of a parameter list.

Figure 4 on page 77 shows a diagram of the major tasks performed by AutoBridge to process
a transaction record. An explanation of this process follows the figure.

AutoBridge and NetView Bridge Components

76 Version 7.1

The major processing tasks of AutoBridge are:

1. Entries in the NetView automation table that respond to MSUs or messages can drive
AutoBridge, or an application program (such as an automation or expert system) can
pass data to AutoBridge in the form of a parameter list. When the NetView automation
table entry or application invokes AutoBridge, the process table name, NetView Bridge
dispatcher name, and input data name are passed as parameters.

2. The steps specified in the process table are performed including parsing input data with a
mapping table to form a transaction record.

3. Any additional processing or data gathering is performed.

4. The transaction record is saved in the checkpoint file on the current NetView. This
allows for error recovery retries.

Remote or resident

Convert input
to alias names

(build search, update flags)

Filter by resource, code point,
or other method

Additional data/processing

Dispatcher on
resident NetView

Database server
update/createDispatcher on

remote NetView

Checkpoint
file

MSU
BNJ146I message
Application data
Other messages

TSP processing
(re-create)

Information
Management

for z/OS
database

Process table

Mapping table

Filter table

Resident

Figure 4. AutoBridge process flow

Processing Overview

77Guide to Integrating with Tivoli Applications

7.
F

u
n

ctio
n

al
D

escrip
tio

n
o

f
N

etV
iew

A
u

to
B

rid
g

e

5. The transaction record is forwarded to a Tivoli Information Management for z/OS
NetView Bridge Adapter database server on the resident NetView. If coming from a
remote NetView, the transaction passes through a remote NetView Bridge dispatcher.

6. The Tivoli Information Management for z/OS NetView Bridge Adapter database server
performs the transaction (create, update, or search).

7. The transaction record in the checkpoint file is marked successful or unsuccessful. If
successful, the transaction record is deleted from the checkpoint file.

8. If unsuccessful, the transaction is retried periodically until the retry count specified in the
initialization table is exhausted.

9. The record can be post-processed on the resident NetView to fill Tivoli Information
Management for z/OS fields with data not supplied in the transaction record.

Process Invocation
When AutoBridge receives an input record, it can invoke functions in response to that record
as specified in its process table. The process table is stored in the EYLATPRO member of
the DSIPARM data set.

The process table is divided into sections called process segments. Each segment is uniquely
named and contains the set of AutoBridge, user, and NetView commands required to process
the specified input record. These functions can be any of those defined in AutoBridge (such
as those that create, update, and retrieve records in Tivoli Information Management for
z/OS), or they can be user-defined functions.

In addition to input data, calls to AutoBridge include a parameter that specifies the process
table segment containing the steps to be performed with that data. When invoked,
AutoBridge retrieves this specific segment and steps through the statements in it, executing
the function or procedure specified on each statement.

Process segments that call AutoBridge’s PARSE function use AutoBridge’s mapping table
and, optionally, filter table. These tables are described in the following sections.

For more information on the process table, see “Coding the Process Table” on page 83.

Database Mapping
AutoBridge’s mapping table enables you to map the contents of input records captured by
AutoBridge to specific fields in the Tivoli Information Management for z/OS database. The
mapping table is stored in the EYLATMAP member of the DSIPARM data set.

The mapping table’s primary function is to parse the input data. As in the process table,
mapping table statements are grouped into unique and identifiable segments. The process
table’s PARSE function specifies a segment in the mapping table that contains the statements
required to map the input from specific alerts, messages, or application data to specific fields
in the Tivoli Information Management for z/OS database.

Because each process table segment can contain multiple parsing statements, each segment
can use multiple segments in the mapping table to parse the input data.

For more information on the mapping table, see “Coding the Mapping Table” on page 92.

Processing Overview

78 Version 7.1

Input Record Filtering
AutoBridge’s filter table enables AutoBridge to filter input records. AutoBridge can invoke
this internal filtering on the PARSE statement in the process table, so that input records can
be filtered after parsing. When this filtering is specified, AutoBridge compares the parsed
input record against user-specified filter values to determine whether it should be passed on
or blocked from further processing.

The filter table has a default value that can be set to PASS or BLOCK, allowing you to
specify whether input records that match the filter values are passed or blocked. The filter
table is stored in the EYLATFIL member of the DSIPARM data set.

See “Coding the Filter Table” on page 97 for more information.

Checkpoint Management
AutoBridge provides transaction logging and recovery through its checkpoint manager
function, which provides the ability to retry failed or incomplete AutoBridge transactions.

Each AutoBridge transaction is logged by a specific checkpoint manager associated with the
dispatcher specified on AutoBridge invocation. In the event of failure (such as a record is in
use–being updated– by another Tivoli Information Management for z/OS user), the
transaction is retrieved by the checkpoint manager and retransmitted. The time interval
between retransmissions is specified on the initialization table’s RETRYINT setting.
AutoBridge will retry the transmission as many times as is specified on the initialization
table’s RETRYNUM setting. If none of these retry attempts are successful, AutoBridge will
flag the transaction as failed, place a transaction failed message in the NetView log, and
make no further attempts to resend the transaction.

Most failed transactions are caused by incompatibility of the transaction data with Tivoli
Information Management for z/OS. For example, transaction records containing incorrect
alias names, unsuccessful verifier matches, or logic errors will fail to update Tivoli
Information Management for z/OS; therefore, the checkpoint manager will mark such
transactions as failed.

The checkpoint manager compensates for one type of transaction error. If a conditional
create transaction fails because a duplicate record already exists in Tivoli Information
Management for z/OS, the checkpoint manager will convert the transaction to an update
transaction and submit it in place of the failed create transaction.

When a transaction completes successfully, the checkpoint manager processes the transaction
response from the NetView dispatcher and returns this response to the submitter in the form
of a multiline message.

Transaction Post-Processing
AutoBridge’s PostProcessor facility locates and processes AutoBridge-created records in the
Tivoli Information Management for z/OS database. The PostProcessor subjects these records
to the same processes (Tivoli Information Management for z/OS user exits, control panels,
TSPs and user-written exit programs) as those records that are manually entered by operators
through Tivoli Information Management for z/OS panels supplied by IBM® and other
vendors and those modified at your site. This post-processing is necessary because the
records created by AutoBridge do not flow through the interactive fields and selections that

Input Record Filtering

79Guide to Integrating with Tivoli Applications

7.
F

u
n

ctio
n

al
D

escrip
tio

n
o

f
N

etV
iew

A
u

to
B

rid
g

e

trigger these additional processes, many of which supplement or modify the record data.
Figure 5 shows a representation of the data flow in PostProcessor record processing.

The PostProcessor has two major functions. Its first function is to detect the creation of a
record by AutoBridge. Its second function is to perform the actual processing of the record.

When the PostProcessor finds a record created by AutoBridge, it processes the record based
on customer-defined parameters specified in a new type of Tivoli Information Management
for z/OS record called a mapping reference record. The mapping reference record contains
entries corresponding to the Tivoli Information Management for z/OS panel items that cause
modification of the record data. Using the mapping reference record, the PostProcessor
performs the same actions as would occur if an operator entered the data manually. After the
record is successfully completed and filed, the original AutoBridge-created record is deleted.

Use of the PostProcessor is optional. For more information on the PostProcessor, see “Using
the NetView AutoBridge PostProcessor” on page 163.

Figure 5. PostProcessor record processing

Transaction Post-Processing

80 Version 7.1

Coding NetView AutoBridge Tables

This chapter provides the following information on coding AutoBridge’s various tables:
¶ “Coding the Process Table” on page 83
¶ “Coding the Filter Table” on page 97
¶ “Coding the Mapping Table” on page 92
¶ “Coding the Initialization Table” on page 101.

“AutoBridge Table Examples” on page 98 provides examples of AutoBridge’s process,
mapping, and filter tables and describes how they respond and relate to AutoBridge API
invocations for processing generic alerts and BNJ146I messages.

Figure 6 on page 82 shows how AutoBridge uses the process and mapping tables to assign
input data to a panel field.

An example of the initialization table is shown in Figure 8 on page 103.

8

81Guide to Integrating with Tivoli Applications

8.
C

o
d

in
g

N
etV

iew
A

u
to

B
rid

g
e

Tab
les

The Tivoli Information Management for z/OS API defines the data it handles using Program
Interface Data Tables (PIDTs) and Program Interface Alias Tables (PALTs, better known as
alias tables). PIDTs are required to define the data that is passed to the Tivoli Information
Management for z/OS API. In a PIDT, panel fields are defined in terms of their structured
word (s-word) and prefix word (p-word) indexing and by whether the field is required.
Additional information on PIDTs, PALTs, and data view records can be found in the Tivoli
Information Management for z/OS Application Program Interface Guide.

The alias table assigns identifying names, or alias names, to the s-word definitions of the
fields specified in the PIDTs. A field’s alias definition in the alias table includes an alias
name (usually describing the contents of the field), the associated s-word specified in the
PIDT, and may also have a default value that the field will contain if no input is provided.

NetView

Information Management
for z/OS

Bridge adapter

(Information Management for z/OS
High Level API)

S0B59=ABRIDGE
SOBEE=INITIAL
SOBE6=4

AutoBridge

REPORTER_NAME=ABRIDGE
PROBLEM_STATUS=INITIAL
INITIAL_PRIORITY=4
DESCRIPTION=TOKEN RING INOPERATIVE
DATE_OCCURRED=09/23/92
DEVICE_NAME=RING0001

API record

DSIPARM
data set

Process table fragment
ADD_DATA ‘ABRIDGE’,REPORTER_NAME;
ADD_DATA ‘INITIAL’,PROBLEM_STATUS;
ADD_DATA ‘4’,INITIAL PRIORITY;

Mapping table fragment
MSUSEG(00000,93,3,2)’DESCRIPTION,DECODE,TEXT,UPDATE;
MSUSEG(0000,01,10,3,3) DATE_OCCURRED,EYLEFCDT(DATE_OCCURRED);
HIER(3) DEVICE_NAME,SEARCH;

BLGFMT
data set

FIELD PANEL(BLG0BU00) INDEX (S0CFC);
FIELD PANEL(BLG6REQN) INDEX(S0B59)

REQUIRED(Y);
FIELD PANEL(BLG6OCCD) INDEX(S0C3D);
FIELD PANEL(BLG6DEVN) INDEX(S0CA9);
FIELD PANEL(BLG6STAT) INDEX(S0BEE)

REQUIRED(Y);
FIELD PANEL(BLG6PRII) INDEX(S0BE6);
FIELD PANEL(BLG6DSAB) INDEX(S0E0F)

REQUIRED(Y);

PIDT table fragment

Alias table fragment
TABLE NAME(EYLCREAT) USE(ALIAS);
ALIAS NAME(REPORTER_NAME)

FIELD(S0B59)
DEFAULT(ABRIDGE);

ALIAS NAME(DATE_OCCURRED)
FIELD(S0C3D);

ALIAS NAME(DEVICE_NAME)
FIELD(S0CA9);

ALIAS NAME(PROBLEM_STATUS)
FIELD(S0BEE)
DEFAULT(ASSIGNED);

ALIAS NAME(INITIAL_PRIORITY)
FIELD(S0BE6);

ALIAS NAME(DESCRIPTION)
FIELD(S0E0F)
DEFAULT(NETWORK PROBLEM RECORD);

ALIAS NAME(PROBLEM_CREATE_TABLE)
TABLE(TS0032C);

Figure 6. Data mapping from AutoBridge to Tivoli Information Management for z/OS

82 Version 7.1

Once these tables are defined, the Tivoli Information Management for z/OS NetView Bridge
Adapter uses them as its interface to the database.

In the process, mapping, and filter tables, the value in each to_name parameter is the alias
name or s-word of the field that is the destination of the input data.

Coding the Process Table
The process table consists of statements that are grouped into segments. Each segment is
delimited by a BEGIN and an END statement. Statements that are not in a segment cannot
be referenced and therefore will never be processed.

This is an example of a process table segment.
**** PROCESS TABLE SEGMENT FOR BNJ146I MESSAGE: NON-NMVT(R) FORMAT
*
BEGIN PROCESS_BNJ146R;
ADD_DATA 'INITIAL',PROBLEM_STATUS;
ADD_DATA 'NETVIEW',REPORTER_NAME;
ADD_DATA 'D15A',REPORTER_DEPT;
ADD_DATA '3',INITIAL_PRIORITY;
ADD_DATA '555-5430',REPORTER_PHONE;
ADD_DATA 'AUTOBRG',PROGRAM_NAME;
PARSE MAPPING=MAP_BNJ146R,FILTER;
IBCREATE 'INFONETW','PROBLEM';
END PROCESS_BNJ146R;
*
*

Comments in the process table cannot share a line with other statements and must be
prefixed by one or more asterisks (*) beginning in column one. All non-comment lines must
end with a semicolon (;).

The process table resides in the EYLATPRO member of the DSIPARM data set. Process
table segments must reside either in the EYLATPRO member or in another member of
DSIPARM that is referred to from the process table by an %INCLUDE statement.

The functions supported in process table statements are described in the following sections.
You may extend the capabilities of the process table by developing and adding your own
functions to AutoBridge.

The general format of the process table statement is:

YY BEGIN segment_name ; Z

;

TRACE
PARSE
ADD_DATA
VERIFIER
ASSOCDATA
user_function
IBCREATE
IBUPDATE
IBSEARCH

; END segment_name ; Y[

where:

83Guide to Integrating with Tivoli Applications

8.
C

o
d

in
g

N
etV

iew
A

u
to

B
rid

g
e

Tab
les

BEGIN
Marks the beginning of a segment within the process table.

segment_name
Identifies the segment and must be present for each segment in the process table. The
segment name must be identified on a segment’s BEGIN and END statements. The
segment name can be 1—32 characters.

END
Marks the end of a segment within the process table. Each segment must end with an
END statement.

The following sections describe each of the process table functions.

TRACE Function Syntax

YY TRACE ON
OFF

,
MOD
DATA
REXX
ALL

, Z

ALL
,

function_name
; Y[

where:

TRACE
Invokes AutoBridge’s tracing function.

ON
Starts tracing from the point of invocation.

OFF
Stops tracing if it was active.

MOD
Enables or disables trace statements for entry to and exit from the named functions. If
no function name is specified, entry and exit tracing is enabled or disabled for all
functions. MOD is the default.

DATA
Enables or disables the tracing of transaction data through one or more functional
components.

REXX
Enables or disables the REXX language TRACE intermediate instruction. This option
applies only to REXX program modules.

ALL
Enables or disables all active or inactive trace options. For example, consider the
following TRACE command:
TRACE OFF,ALL

If one or more trace options were active, this command turns off all tracing for all
functions.

function_name
Sets tracing for the named function. One or more functions may be specified.

Coding the Process Table

84 Version 7.1

The following function abbreviations are supported for this command:

TM Table manager
PT Process table
API AutoBridge API

CP Checkpoint manager
HLM High level manager

ALL
Indicates that tracing will be set for all AutoBridge functions. This is the default.

Following are examples of TRACE statements:
TRACE ON,MOD,TM,CP;

This trace statement causes module entry and exit tracing to be invoked for the table
manager and checkpoint manager functions.

TRACE ON,DATA,ALL;

This trace statement causes DATA level tracing to be invoked for all traceable functions in
AutoBridge, including the table manager, process table, API, checkpoint manager, and
high-level manager functions.

PARSE Function Syntax
YY PARSE MAPPING=segment_name ;

,FILTER
Y[

where:

PARSE
Parses the input using the specified segment from the mapping table. The parsing
instructions specified in the segment are performed in sequence.

MAPPING=segment_name
Is the name of the segment in the mapping table that is to be used to parse the input
record. One or more statements may be contained in a mapping table segment.

FILTER
Specifies that AutoBridge filtering is to be performed after the mapping segment is
processed.

Note: For best performance, you should filter input records before invoking AutoBridge.
If, however, you choose to use AutoBridge’s filtering capability, then you should
note that filtering for a specific PARSE statement is not performed until all
statements in the specified mapping table segment have processed. Use separate
PARSE statements to parse data that is being filtered to avoid unnecessary parsing
of data that will be blocked by the filter table.

Use the following conventions in process table segments containing multiple
PARSE statements:

¶ Structure multiple PARSE statements in your process table segments so that
the data that you are filtering is parsed first.

¶ Specify the FILTER option before parsing any non-filtered data to prevent
unnecessary processing.

Coding the Process Table

85Guide to Integrating with Tivoli Applications

8.
C

o
d

in
g

N
etV

iew
A

u
to

B
rid

g
e

Tab
les

The following is an example of a PARSE statement:
PARSE MAPPING=MAP_GENALERT1,FILTER;

The mapping keyword identifies the mapping table segment (MAP_GENALERT1) used to
parse the input data. The FILTER keyword invokes AutoBridge filtering.

ADD_DATA Function Syntax

YY ADD_DATA from_field , to_name , Z

,

TEXT
SEARCH
UPDATE

; Y[

where:

ADD_DATA
Allows data that is not part of the input to be added to the transaction record.

from_field
Specifies the source of the data that is to become part of the transaction. This field may
be a variable, a literal string (enclosed in quotes), or a function that will create the data
as its result.

The from_field parameter may be defined in different ways as illustrated below:

¶ As a literal string: ADD_DATA 'OPEN',PROBLEM_STATUS;

¶ As a NetView task global variable: ADD_DATA STATUS,PROBLEM_STATUS;

The variable STATUS is retrieved and its value assigned to PROBLEM_STATUS.

¶ As a NetView task global stemmed variable: ADD_DATA
SER_ADDR,ADDRESS_TEXT,TEXT;

Data must be passed in a stemmed variable if the data is more than 255 characters.

¶ As a REXX built-in or user-written function. The result of the function is saved in
the alias name or s-word. Here are two examples of the exec_name parameter:
ADD_DATA DATE(U),DATE_OCCURRED,UPDATE;
ADD_DATA NVID(),NETWORK_NAME;

If the from_field value represents a stemmed variable containing freeform text that is to
be added to the TEXTLIST parameter for creation or update, the following restrictions
apply:

¶ The from_field.0 value must be numeric. It represents the number of stemmed
variables or lines that make up the text.

¶ The stem tail must be numeric and in ascending order, with the first stem
(from_field.1) being the first line of the text, from_field.2 the second line, and so on.

¶ Text may be added to a previously created stemmed variable that has been added to
the TEXTLIST parameter for a create or update transaction.

See page 114 for a description of stemmed variables.

Coding the Process Table

86 Version 7.1

to_name
Is the alias name or s-word assigned to the field in the transaction record where the
input data is to be stored.

TEXT
Indicates that the to_name variable is to be appended to the variable TEXTLIST of the
transaction record as freeform text.

See “Coding the Mapping Table” on page 92 for more information on the function of
this parameter.

SEARCH
Indicates that the to_name variable is added to the search list of any search transaction
that may be created for this input record.

See “Coding the Mapping Table” on page 92 for more information on the function of
this parameter.

UPDATE
Indicates that the to_name variable is appended to the update list of the update
transaction.

See “Coding the Mapping Table” on page 92 for more information on the function of
this parameter.

VERIFIER Function Syntax
YY VERIFIER parm=value ;

,parm=value,...,parm=value
Y[

where:

VERIFIER
Is the NetView Bridge keyword that is used in an update transaction to verify the record
being updated.

parm=value
Identifies one or more field/value pairs that must be checked against the matching
database record as a means of verification prior to updating the record.

The following is an example of a VERIFIER statement:
VERIFIER REPORTER_NAME=AUTOBRIDGE,PROBLEM_STATUS=INITIAL;

The two entries on this statement, REPORTER_NAME and PROBLEM_STATUS, are used
to perform a verification on the record selected for update. That is, the value of
REPORTER_NAME must be AUTOBRIDGE and that of PROBLEM_STATUS must be
INITIAL or the record will not be updated.

ASSOCDATA Function Syntax
YY ASSOCDATA = name Y[

where:

Coding the Process Table

87Guide to Integrating with Tivoli Applications

8.
C

o
d

in
g

N
etV

iew
A

u
to

B
rid

g
e

Tab
les

ASSOCDATA
Is the NetView Bridge keyword that is used in a create, conditional update, or search
transaction to identify an alias name to contain additional data returned with the search
data.

name
Is the alias name or s-word of the field in a database record whose contents are returned
if the record matches the search criteria.

The value of this field is returned on each of the EYL553I messages that result from a
transaction that performs a search, along with the record numbers located by the search.

User Function or Command Invocation Syntax
YY target_var= function_name()

parm,...,parm
; Y[

or

YY command ; Y[

where:

target_var
Is the variable to contain the results of the function.

function_name
Is the built-in REXX function or user-written function to be called.

(parm,...,parm)
Are the parameters passed to the function. Depending on the function, there may be no
parameters. If there are no parameters, use empty parentheses to specify a null entry.

command
Is the name of any valid command, command list, or command processor. The command
value is invoked as if entered on the command line.

The following is an example of the syntax for invoking functions:
ADD_DATA SUBSTR(TIME(),1,5),TIME_OCCURRED;

In this example, the target variable TIME_OCCURRED is set to characters 1 to 5 of the
function TIME and so will return a value in the format HH:MM such as 12:36.

Here are two examples of the invocation syntax for issuing commands:
GLOBALV GETC RECID;
ADD_DATA recid,RECORDID;

-- or --
MSG MYID,I AM DEBUGGING PROCESS LIST 12

In the first example, the NetView GLOBALV command is called to return a common global
value of RECID, which is then added to the transaction as RECORDID.

In the second example, the NetView MSG command is called to issue a message to operator
MYID with the text “I AM DEBUGGING PROCESS LIST 12”.

Coding the Process Table

88 Version 7.1

IBCREATE Function Syntax
YY IBCREATE target_database , record_type ; Y[

where:

IBCREATE
Identifies the TRANSID of the transaction that is to be generated. The IBCREATE
function causes a transaction to be built that creates a new record in the target database.
The IBCREATE function is conditional if any of the mapping table statements used to
parse this data contain the keyword SEARCH. If the SEARCH keyword is used and a
record already exists in the database having field values matching those of the
transaction record, then a new record is not created. Instead, the existing record is
updated. If two or more records are found, the update is performed on the record with
the highest record value on the results list returned by Tivoli Information Management
for z/OS. If the ASSOCDATA keyword is specified in the process table, the value of the
alias name or s-word specified in the ASSOCDATA statement is also returned.

target_database
Is a literal or variable containing the label of the database (as defined in the supplied
initialization table) where the transaction is to be sent. In the initialization table, the
Tivoli Information Management for z/OS database is registered as INFONETW.

record_type
Is a literal or variable containing the label for this type of record as defined in the
initialization table.

The following is an example of an IBCREATE statement:
IBCREATE 'INFONETW','PROBLEM';

This statement results in a create transaction of type PROBLEM being sent over the
NetView Bridge to the Tivoli Information Management for z/OS database INFONETW. The
initialization table can have more than one registered database; each database must have a
unique name.

If you would like to use data view records with the IBCREATE, specify in the process table
ADD_DATA 'YES',USE_DATA_VIEW;

IBUPDATE Function Syntax
YY IBUPDATE target_database , record_type ; Y[

where:

IBUPDATE
Identifies the TRANSID of the transaction that is to be generated. IBUPDATE causes a
transaction to be built that will update a specified record in the target database. If the
VERIFIER keyword is specified in the process table, then the update is only performed
when each VERIFIER statement has been satisfied.

Coding the Process Table

89Guide to Integrating with Tivoli Applications

8.
C

o
d

in
g

N
etV

iew
A

u
to

B
rid

g
e

Tab
les

target_database
Is a literal or variable containing the label of the database (as defined in the initialization
table) where the transaction is to be sent.

record_type
Is a literal or variable containing the label for this type of record as defined in the
initialization table.

If you know the ID of the record you want to update, specify the RECORDID in the process
or mapping table. The checkpoint manager will send the update request to the bridge
adapter. Specify it in the process table as:

ADD_DATA my_rec_id,RECORDID; my_rec_id is a task global = a recid
-- or --
ADD_DATA '00347001',RECORDID;

or specify it in the mapping table as:
my_rec_id(1,1) RECORDID;

If you don’t know the ID of the record to be updated, you can call the AutoBridge API
without a RECORDID. However, search arguments must be defined in the process or
mapping table statements (that is, one or more statements must include ’,SEARCH’). The
checkpoint manager will process the request as an IBSEARCH, and update the record with
the highest RECORDID value retrieved. If no records are found that meet search criteria, no
record is updated and the transaction is deleted.

The following is an example of an IBUPDATE statement:
IBUPDATE 'INFONETW','PROBLEM';

This statement results in an update transaction of type PROBLEM being sent over the
NetView Bridge to the Tivoli Information Management for z/OS database INFONETW.

If you would like to replace existing freeform text using IBUPDATE, specify in the process
table
ADD_DATA 'YES',REPLACE_TEXT_DATA;

If you would like to use data view records with the IBUPDATE, specify in the process table
ADD_DATA 'YES',USE_DATA_VIEW;

IBSEARCH Function Syntax
YY IBSEARCH target_database , record-type ; Y[

where:

IBSEARCH
Identifies the TRANSID of the transaction to be generated. IBSEARCH causes a
transaction to be built that will search for one or more records in the target database.
This transaction ID requires that the fields to be searched be listed in the NetView
Bridge control variable SEARCHLIST. Do this by using the SEARCH keyword on an
ADD_DATA function in the process table or on an entry in the mapping table.

Coding the Process Table

90 Version 7.1

target_database
Is a literal or variable containing the label of the database (as defined in the initialization
table) where the transaction is to be sent.

record_type
Is a literal or variable containing the label for this type of record as defined in the
initialization table.

The following is an example of an IBSEARCH statement:
IBSEARCH 'INFONETW','PROBLEM';

This statement results in a search transaction of type PROBLEM being sent over the
NetView Bridge to the target Tivoli Information Management for z/OS database
INFONETW.

There are three types of search transactions, which specify the following types of search:

Search with record id
Parmvar contains the record id only. For example,

ADD_DATA '00347001',RECORDID,SEARCH;

The fields defined in the Tivoli Information Management for z/OS Retrieve PIDT for
the specified record are returned. EYL553I is returned in the form:
EYL553I alias|s-word IS value

EYL567I TRANSACTION IBSEARCH ABR10@D3 COMPLETED SUCCESSFULLY
EYL553I S0032 IS RECS=PROBLEM
EYL553I S0CFC IS Reporter data
EYL553I REPORTER_NAME IS KATHERINE
EYL553I NETWORK_NAME IS CNM01
EYL553I DEVICE_NAME IS LANB01E2
EYL553I PROBLEM_TYPE IS HARDWARE
EYL553I PROBLEM_STATUS IS OPEN
EYL553I INITIAL_PRIORITY IS 04
EYL553I DESCRIPTION IS LINK CONNECTION FAILED
EYL553I S0CFD IS Status data
EYL553I ASSIGNEE_NAME IS PFDOWNING
EYL553I S0C0B IS INPROG
EYL553I CURRENT_PRIORITY IS 02

.

.

.
EYL554I END OF DATA

When using a search with RECORDID, a retrieve (but not a search) is performed;
any ASSOCDATA is ignored.

Search with arguments
Parmvar contains aliases or s-words with search arguments.

For example, if the mapping table contains:
MSUSEG(0000.92,5,1) PROBLEM_TYPE,DECODE,SEARCH;
HIER() DEVICE_NAME,EYLEXHIR(N,L,DEVICE_NAME),SEARCH;

and the process table contains:

ADD_DATA 'OPEN',PROBLEM_STATUS,SEARCH;
IBSEARCH 'INFONETW','PROBLEM';

Coding the Process Table

91Guide to Integrating with Tivoli Applications

8.
C

o
d

in
g

N
etV

iew
A

u
to

B
rid

g
e

Tab
les

-- or --

ADD_DATA 'OPEN',PROBLEM_STATUS,SEARCH;
VERIFIER REPORTER_NAME=BRIDGE,PROBLEM_STATUS=ASSIGNED;
IBSEARCH 'INFONETW','PROBLEM';

Assume PROBLEM_TYPE is decoded to ’COMMUNICATIONS’ and
DEVICE_NAME is ’RING001’ and the alias names are the default s-words. The
search argument is passed to Tivoli Information Management for z/OS as:
SEARCH S0C09=COMMUNICATIONS,S0CA9=RING001,S0BEE=OPEN

An array of one or more record ids is returned in the form:
EYL553I RESULT IS recordid record_s-word assocdata code

EYL567I TRANSACTION IBSEARCH CNM01@X1 COMPLETED SUCCESSFULLY
EYL553I RESULT IS 00045678 S0032 00
EYL554I END OF DATA

Search with arguments and associated data
Parmvar contains aliases or s-words with search arguments and one ASSOCDATA
parameter. For example,
ASSOCDATA=REPORTER_NAME

An array of one or more record ids and associated data is returned. EYL553I is
returned in the form:
EYL553I RESULT IS recordid record_s-word assocdata code

EYL567I TRANSACTION IBSEARCH CNM01@X2 COMPLETED SUCCESSFULLY
EYL553I RESULT IS 00045678 S0032 AUTOBRIDGE 00
EYL553I RESULT IS 00045679 S0032 KGSANDERS 00
EYL553I RESULT IS 00045680 S0032 MAHANEY 00
EYL553I RESULT IS 00059999 S0032 LAPOINTE 00
EYL554I END OF DATA

The “code” value is defined as follows:
00 No error detected.
01 The record encountered a read error.
02 The record was not found.
03 The record was not currently available.
04 The record was currently busy.
05 Not enough storage to read in the record.
06 Unknown problem when reading record.

Search using data views
If you would like to use data view records with the IBSEARCH, specify in the
process table
ADD_DATA 'YES',USE_DATA_VIEW;

Coding the Mapping Table
The mapping table consists of statements that are grouped into segments. Each segment is
delimited by a BEGIN and an END statement. Statements that are not in a segment cannot
be referenced and therefore will never be executed.

This is an example of a mapping table segment.

Coding the Process Table

92 Version 7.1

***** MAPPING SEGMENT FOR MSU FROM LAN MANAGER ****************
BEGIN LANMGR1;
MSUSEG(0000.92,5,1) DESCRIPTION,DECODE,UPDATE;
MSUSEG(0000.93,3,2) PROBABLE_CAUSE,DECODE,SEARCH;
MSUSEG(0000.01.10,3,3) DATE_OCCURRED,EYLEXCDT('DATE_OCCURRED'X);
MSUSEG(0000.01.10,6,3) TIME_OCCURRED,EYLEXCTM('TIME_OCCURRED'X);
HIER(4) DEVICE_NAME,EYLEXNAM(DEVICE_NAME),SEARCH;
MSUSEG(0000.94.01,3,2) DESCRIPTION_TEXT,DECODE,TEXT;
MSUSEG(0000.94.81,3,2) DESCRIPTION_TEXT,DECODE,TEXT;
MSUSEG(0000.94.81,5,2) DESCRIPTION_TEXT,DECODE,TEXT;
MSUSEG(0000.95.01,3,2) DESCRIPTION_TEXT,DECODE,TEXT;
MSUSEG(0000.96.01,3,2) DESCRIPTION_TEXT,DECODE,TEXT;
MSUSEG(0000.31.30,3) DESCRIPTION_TEXT,TEXT;
MSUSEG(0000.10(1).11(2).06,3) PRODUCT_NAME,UPDATE;
END LANMGR1;
***** END OF MSU MAPPING SEGMENT *****************************

Comments in the mapping table cannot share a line with other statements and must be
prefixed by one or more asterisks (*) beginning in column one. All non-comment lines must
end with a semicolon (;).

The mapping table resides in the EYLATMAP member of the DSIPARM data set. Mapping
table segments must reside either in the EYLATMAP member or in another member of
DSIPARM that is referred to from the mapping table by an %INCLUDE statement.

The general format of the mapping table statement is:

YY from_input (loc
,offset

,length

) to_name , function_name Y

Y
,parm,...,parm

; Y[

where:

from_input
Identifies the type, location, and length of the input data field that is mapped to an alias
name or s-word. The type is dependent on the input specified. If the input is MSUSEG,
the type is either MSUSEG or HIER. If the input is MSG, the type is either a
keyword=field within the message or the NetView REXX function MSGSTR. Examples
of the MSG input are:

¶ Using keyword=field if input is MSG:
MAJ(1,1) DESCRIPTION_TEXT,TEXT,DECODE;

would get the MAJ= code point value.

BNJ146I 09/16 11:00 R BKID=FE2 ACT=55 MIN=04 MAJ=03 ...

¶ Using MSGSTR if input is MSG:
MSGSTR(2,1) TIME_OCCURRED;

would get the second word of the message string.

Coding the Mapping Table

93Guide to Integrating with Tivoli Applications

8.
C

o
d

in
g

N
etV

iew
A

u
to

B
rid

g
e

Tab
les

BNJ146I 09/16 11:00 R BKID=FE2 ACT=55 MIN=04 MAJ=03 ...

If the input is application data, the type is a keyword within the input. For example,
MYDATA(1,*) DESCRIPTION_TEXT,TEXT;

The type identifier is followed immediately by parentheses containing the following
parameters:

loc This parameter references a subset of information within the input record, such as a
generic alert subvector. The convention used in the NetView MSUSEG function is
adopted here. For example, MSUSEG(0000.93) locates the probable-cause subvector
on the alert.

offset Is the offset from the start of the input data where data mapping is to begin. If the
input is an MSU, then the offset is expressed as a decimal that specifies the number
of bytes from the start on the MSU. All other offsets are expressed as word counts
from the beginning of the input data.

length If the input data is an MSU then the length is the number of bytes in decimal
starting from the byte position that is to be returned. Otherwise, the length is the
number of words to be extracted from the input data.

If you omit this parameter, the entire contents of the input data field will be mapped
to the alias name and will be concatenated into 132-character lines. To indicate that
you want the entire input data field without this concatenation, specify an asterisk
(*) as this parameter.

An asterisk used as the length parameter specifies that the entire input data field will
be mapped to the alias name or s-word, and the formatting that currently exists in
the input will be kept. Use the asterisk when mapping columnar input data fields or
for any input that you want to map as a whole without concatenation.

Note: For more information on the MSUSEG and HIER functions, refer to NetView
Customization: Writing Command Lists.

to_name
Is the alias name or s-word as defined in a Tivoli Information Management for z/OS
alias table or PIDT.

function_name
Command procedures used to modify input data must be written as a function and must
do the following:

¶ Accept the to_name value as an input parameter to the function

¶ Return a value (that replaces the current to_name value).

The following syntax must be used to specify a command procedure on a mapping
statement:

YY function_name(parm)
,parm,...,parm

Y[

parm
Gives one of the following optional parameters:

Coding the Mapping Table

94 Version 7.1

As an example of how the function_name parameter works, consider the following
mapping segment statement used to process a generic alert routed through the NetView
automation table:

MSUSEG(0000.01.10,3,3) DATE_OCCURRED,EYLEXCDT('DATE_OCCURRED'X);

This statement causes the hexadecimal value for the date to be extracted from subfield
10 of subvector 01 (the date/time subvector) and assigned to the DATE_OCCURRED
field for this record. If the hexadecimal data was X'5C051B' then that is the value
assigned to DATE_OCCURRED. However, the EYLEXCDT function specified on this
statement causes modification of the DATE_OCCURRED value. EYLEXCDT converts
and formats the hexadecimal date value to return the value ‘05/27/92’ and assigns it as
the new value of DATE_OCCURRED.

Note: The EYLEXCDT function is present in the AutoBridge sample data set along
with EYLEXCTM, which converts hexadecimal time values.

TEXT
Indicates that the to_name variable is to be appended to the variable TEXTLIST of the
transaction record. These text data fields can consist of large numbers of lines of
variable format containing from 1 to 132 characters per line. Consider the following
example:
MSUSEG(0000.31.30,3) DESCRIPTION_TEXT,TEXT;

In this example, the self-defining text message transported in subvector 31 is added to
the freeform text in the record. In the following example, the results of decoding the
probable-cause code point (transported in subvector 93) and the user-causes code point
(transported in subvector 94) are added to the freeform text in the record:

MSUSEG(0000.93.01,3,2) DESCRIPTION_TEXT,DECODE,TEXT;
MSUSEG(0000.94.01,3,2) DESCRIPTION_TEXT,DECODE,TEXT;

SEARCH
Indicates that the to_name variable is to be added to the search list of any search
transaction created for this input record. The SEARCH keyword allows you to define a
conditional create or update request. When the IBCREATE or IBUPDATE command is
processed, these fields are searched. In the case of the IBCREATE command if no
records are returned, a new record is created. In the case of the IBUPDATE command if
no records are returned, the update request is deleted. In either case, if one or more
records are returned, the record with the highest RECORDID value is updated.
Additionally, if the VERIFIER parameter is specified in the process table for an
IBUPDATE request, the field values specified by the VERIFIER statement must match
exactly to process an update.

Table 21. Using SEARCH arguments in IBCREATE or IBUPDATE transactions
Transaction Search results Action

IBCREATE No hits A new record is created

IBCREATE One or more hits Highest record id is updated

IBUPDATE No hits AutoBridge transaction deleted

IBUPDATE One or more hits Highest record id is updated

UPDATE
Appends the to_name variable to the update list of the update transaction. This only

Coding the Mapping Table

95Guide to Integrating with Tivoli Applications

8.
C

o
d

in
g

N
etV

iew
A

u
to

B
rid

g
e

Tab
les

occurs during a conditional create or update (IBCREATE/IBUPDATE with SEARCH
keywords) that results in an update. If UPDATE is not specified, that field in the record
retains its original value.

In the following MSUSEG statement, the product name transported in subvector 10
replaces the value saved in the field mapped by PRODUCT_NAME:

MSUSEG('0000.10(1).11(2).06,3') PRODUCT_NAME,UPDATE;

In another example:
MSUSEG(0000.92,6,2) DESCRIPTION,DECODE,UPDATE,TEXT;

the text string resulting from the description code point transported in subvector 92 is
appended to the updated record’s freeform text.

DECODE
Specifies that the code points in the input data are to be translated into text strings.
These text strings are read from NetView and user code point tables.

Table 22 on page 97 summarizes this information.

Code point translation
NetView receives code points through network management vector transports
(NMVTs) and record formatted maintenance statistics (RECFMS) data records from
entry point- and service point-attached devices. AutoBridge provides the facilities to
translate these code points into text strings so that the target Tivoli Information
Management for z/OS record data is clearer and easier to use.

Generic and nongeneric alert code points
MSUs and BNJ146I messages may contain alert code points. The following message
fragments contain data designated as CPL that represent the code point location:

¶ BNJ146I generic alert message fragment
BNJ146I G TYPE=PERM DESC=CPL PC=CPL,CPL,CPL ACTS=CPL,CPL,CPL

¶ BNJ146I nongeneric alert message fragment
BNJ146I N PRID=3174 MAJ=CPL MIN=CPL ACT=CPL

¶ BNJ146I RECFMS message fragment
BNJ146I R BKID=048 ACT=CPL MIN=CPL MAJ=CPL

Here are several MSU fields containing code points:

¶ MSUSEG subvectors containing code points
MSUSEG(0000.92,5,1) <Subvector 92 contains the Alert

Description>
MSUSEG(0000.93,3,2) <Subvector 93 contains one or more

probable cause codes>
MSUSEG(0000.94.01,3,2) <Subvector 94, Subfield 01 contains

the User Causes codes>
MSUSEG(0000.94.81,3,2) <Subvector 94, Subfield 81 contains
MSUSEG(0000.94.81,5,2) the Recommended Actions codes>

Code point tables
For generic alerts, the name of the table containing the text is based on the
subvector or subfield (NMVT data) where the code originated. For RECFMS, the
text associated with an ACT code point is retrieved from an IBM table whose name
is based on the block ID prefixed with BNJVM. For example, if the BKID=048, the
table name is BNJVM048.

Coding the Mapping Table

96 Version 7.1

For nongeneric alerts, AutoBridge creates a block ID from the BNJ146I N
nongeneric alert based on the PRID.

In the case of BNJ146I generic alert, the subvector/subfield is calculated from the
keyword. In the case of MSUs, the subvector/subfield is specified as
MSUSEG(0000.SV.SF.offset,length).

Table 22. Generic alert BNJ146I message
BNJ146I
keyword

MSUSEG
SV;SF Table name Description

DESC SV92 BNJ92TBL/BNJ92UTB Alert description

PC SV93 BNJ93TBL/BNJ93UTB Probable cause

ACTS SV81 BNJ97TBL/BNJ97UTB Undetermined cause

USER SV94;SF81 BNJ94TBL/BNJ94UTB
BNJ81TBL/BNJ81UTB

User cause; recommended
action

FAIL SV96;SF81 BNJ96TBL/BNJ96UTB
BNJ81TBL/BNJ81UTB

Failure cause; recommended
action

INST SV95;SF81 BNJ95TBL/BNJ95UTB
BNJ81TBL/BNJ81UTB

User cause; recommended
action

ACT BNJVM+BKID (BKID may be
produced from PSID)

Action code (see note)

Note: If ACT is specified with the DECODE option, AutoBridge retrieves the BKID or PSID and
performs the translation to text.

Coding the Filter Table
The filter table provides AutoBridge with the ability to further specify what records are to be
processed and when processing is started or stopped.

The filter table must reside in the EYLATFIL member of the DSIPARM data set.

All statements in the filter table should begin on column one of each line (comment lines
must have an asterisk (*) in column one). The following is a description of the general
format for statements:

YY DEFAULT
BLOCK

PASS
; Z

;

name=value ; Y[

where:

DEFAULT
Indicates the default option for filtering.

BLOCK
Indicates that all input records are blocked and are not processed unless subsequent filter
statements cause them to be passed. BLOCK is the default.

PASS
Indicates that all inputs are processed unless blocked by subsequent filtering.

Coding the Mapping Table

97Guide to Integrating with Tivoli Applications

8.
C

o
d

in
g

N
etV

iew
A

u
to

B
rid

g
e

Tab
les

name=value
Identifies one or more field/value pairs that are checked. name is the alias name or
s-word of a field in the transaction record. value is the actual value that is used in the
comparison of the corresponding to_name value parsed from the input data.

One or more name=value statements can be combined using the AND (&) or the OR (|)
operators to perform a comprehensive filtering function. The standard rules of REXX
precedence apply. Use parentheses to ensure that sub-expressions are evaluated in the
desired order.

A wild card feature is supported that will resolve partial names with a trailing asterisk
(*), meaning that any name where the characters precede the asterisk forms a match. For
example, “NY1*” means any name starting with the character string ‘NY1’.

This is an example of the filter table.
***** Filter table ***********************************
**
*
*
DEFAULT BLOCK;

(DOMAIN_ID=CNM01) & (DEVICE_NAME=NY1* | DEVICE_NAME=LA* | DEVICE_NAME=SF*)
& (PRODUCT_SET=PAT);
(EMS_NAME=GTESPAN) & (DEVICE_NAME=VPL* & DESCRIPTION=2*);
(DEVICE_NAME=LAN*) & (LOC_HHMM > 0730 & LOC_HHMM < 1730);
*
*

The example is interpreted as follows:

If the DOMAIN_ID = CNM01
and DEVICE_NAME = any value starting with ‘NY1’
or DEVICE_NAME = any value starting with ‘LA’
or DEVICE_NAME = any value starting with ‘SF’
and PRODUCT_SET = PAT

or
if EMS_NAME=GTESPAN

and DEVICE_NAME = any value starting with ‘VPL’
and DESCRIPTION = any value starting with ‘2’

or
if DEVICE_NAME = any value starting with ‘LAN’

and LOC_HHMM greater than 07:30
and LOC_HHMM less than 17:30

then
process the input record

else
block the input record from processing

AutoBridge Table Examples
The following sections provide examples to illustrate how you can use AutoBridge to
process generic alerts and BNJ146I messages that are trapped by the NetView automation
table. Each example shows a NetView automation table statement and the process, mapping,
and filter table segments that correspond to it.

Coding the Filter Table

98 Version 7.1

Processing Generic Alerts
This section uses examples to show the relationships between an API invocation statement
and the associated AutoBridge table segments for processing generic alerts.

The following example shows a statement coded in the NetView automation table for
invoking AutoBridge with parameters for processing a generic alert:

IF MSUSEG(0000) |= '' THEN
EXEC (CMD('ABAPI PROCESS_GENALERT BRGDHIPR MSUSEG')
ROUTE (ONE AUTO1));

The call to AutoBridge contains the following parameters:

¶ PROCESS_GENALERT identifies the name of the process table segment to be used.

¶ BRGDHIPR is the name of the high priority dispatcher over which the generated
transaction will be sent.

¶ MSUSEG is the AutoBridge keyword that identifies the type of input being processed.

The PROCESS_GENALERT segment of the process table could be coded as follows:
****** PROCESS TABLE SEGMENT FOR GENERIC ALERTS *********************
*
BEGIN PROCESS_GENALERT;
PARSE MAPPING=MAP_GENALERT1,FILTER;
ADD_DATA 'OPEN',PROBLEM_STATUS;
ADD_DATA 'NETVIEW',REPORTER_NAME,SEARCH;
ADD_DATA 'D15A',REPORTER_DEPT;
ADD_DATA '3',INITIAL_PRIORITY;
ADD_DATA '555-3454',REPORTER_PHONE;
GLOBALV GETT USER_APPL;
ADD_DATA USER_APPL,PROGRAM_NAME,SEARCH;
IBCREATE 'INFONETW','PROBLEM';
END PROCESS_GENALERT;

For this example, note the following:

¶ The segment name is the same on both the BEGIN and END statements.

¶ The PARSE statement identifies the mapping statement to be used for extracting data
fields from the alert. It also invokes filtering via the AutoBridge filter table.

¶ The from_field parameter of the ADD_DATA statements (except the last one) contains a
literal value. The GLOBALV statement retrieves the task global variable USER_APPL,
the value of which is assigned to PROGRAM_NAME in the next ADD_DATA
statement.

¶ The ADD_DATA statements used to add data to the REPORTER_NAME and
PROGRAM_NAME fields contain the SEARCH keyword. This makes the IBCREATE
function conditional based on the values of these fields. If a record is found that has
identical values in these fields, AutoBridge will update this record instead of creating a
new record.

¶ The IBCREATE statement identifies the target database as the Tivoli Information
Management for z/OS database and the record type as a PROBLEM record.

The mapping table segment identified on the PARSE statement could be coded as follows:
****** THIS IS A MAPPING SEGMENT FOR GENERIC ALERTS *******************
BEGIN MAP_GENALERT1;
MSUSEG(0000.01.10,3,3) DATE_OCCURRED,EYLEXCDT('DATE_OCCURRED'X);
MSUSEG(0000.01.10,6,3) TIME_OCCURRED,EYLEXCTM('TIME_OCCURRED'X);

AutoBridge Table Examples

99Guide to Integrating with Tivoli Applications

8.
C

o
d

in
g

N
etV

iew
A

u
to

B
rid

g
e

Tab
les

MSUSEG(0000.92,5,1) PROBLEM_TYPE,DECODE;
MSUSEG(0000.92,6,2) DESCRIPTION,DECODE;
MSUSEG(0000.93,3,2) DESCRIPTION_TEXT,DECODE,TEXT;
MSUSEG(0000.94.01,3,2) DESCRIPTION_TEXT,DECODE,TEXT;
MSUSEG(0000.94.81,3,2) DESCRIPTION_TEXT,DECODE,TEXT;
MSUSEG(0000.95.01,3,2) DESCRIPTION_TEXT,DECODE,TEXT;
MSUSEG(0000.95.81,3,2) DESCRIPTION_TEXT,DECODE,TEXT;
MSUSEG(0000.96.01,3,2) DESCRIPTION_TEXT,DECODE,TEXT;
MSUSEG(0000.96.81,3,2) DESCRIPTION_TEXT,DECODE,TEXT;
MSUSEG(H1311.81.02,3) NETWORK_NAME;
HIER(4) DEVICE_NAME,EYLEXNAM(DEVICE_NAME),SEARCH;
MSUSEG(0000.31.30,3) DESCRIPTION_TEXT,TEXT;
END MAP_GENALERT1;

This mapping table segment has the following features:

¶ The NetView MSUSEG function is used to parse the generic alert which is routed
through the NetView automation table.

¶ The REXX functions EYLEXCDT and EYLEXCTM are AutoBridge-provided samples
for converting hexadecimal date and time values to text and formatting them
appropriately.

¶ DESCRIPTION_TEXT is the alias name of a freeform text field; the actual text is
resolved from alert code points (as indicated by the DECODE option) and from
subvector 31.

The following example shows a filter table corresponding to the previous examples. Filtering
via AutoBridge occurs only if the keyword FILTER is specified on a PARSE statement in
the active process table segment.

*
*
DEFAULT BLOCK;
NETWORK_NAME=CNM01 | PROBLEM_TYPE=PERM;
*

Since the default for this filter table is set to BLOCK, the transaction is processed only if
NETWORK_NAME = CNM01 or PROBLEM_TYPE = PERM.

Processing BNJ146I Messages
This section uses examples to show the relationships between an API invocation statement
and the associated process and mapping table segments for processing BNJ146I messages
and building transactions to be sent over the NetView Bridge.

The following example shows a statement coded in the NetView automation table for
invoking AutoBridge with parameters for processing a BNJ146I message:

IF MSGID = 'BNJ146I' & TOKEN(4) = 'G' THEN
EXEC (CMD('ABAPI PROCESS_BNJ146I BRGDHIPR MSG')
ROUTE (ONE AUTO1));

Here’s an example of a BNJ146I message:
09/16 11:00 G TYPE=PERM ALID=17511734 DESC=2000
PSID=USER1 PC=1001,0101 ACTS=1012,1205,3300,0600,3110
TEXT="APPLICATION ABENDED" HIER=RALVS12,CPU,REPTGEN,PROG

The PROCESS_BNJ146I segment of the process table could be coded as follows:
**** PROCESS TABLE SEGMENT FOR BNJ146I MESSAGE *************
*
BEGIN PROCESS_BNJ146I;

AutoBridge Table Examples

100 Version 7.1

*TRACE ON;
ADD_DATA 'YES',USE_DATA_VIEW;
ADD_DATA 'OPEN',PROBLEM_STATUS;
ADD_DATA 'NETVIEW',REPORTER_NAME,SEARCH;
ADD_DATA 'D15A',REPORTER_DEPT;
ADD_DATA '3',INITIAL_PRIORITY;
ADD_DATA '555-3454',REPORTER_PHONE;
ADD_DATA 'AUTOBRG',PROGRAM_NAME,SEARCH;
PARSE MAPPING=MAP_BNJ146I;
IBCREATE 'INFONETW','PROBLEM';
END PROCESS_BNJ146I;

This segment is similar to the process table segment used for generic alerts in the previous
section, except that a different mapping table segment is called from the PARSE statement.
The mapping table segment identified on this PARSE statement could be coded as follows:

*********** THIS SEGMENT FOR MAPPING BNJ146I MESSAGES *************
BEGIN MAP_BNJ146I;
MSGSTR(1,1) DATE_OCCURRED,EYLEXAYR(DATE_OCCURRED);
MSGSTR(2,1) TIME_OCCURRED;
TYPE(1,1) PROBLEM_TYPE;
DESC(1,1) DESCRIPTION,DECODE;
PC(1,1) DESCRIPTION_TEXT,TEXT,DECODE;
ACTS(1,1) DESCRIPTION_TEXT,TEXT,DECODE;
TEXT(1) DESCRIPTION_TEXT,TEXT;
HIER(1,1) ADDRESS_TEXT,TEXT;
END MAP_BNJ146I;

In this mapping table segment, MSGSTR is a NetView function used to extract the date and
time from the message buffer. The EYLEXAYR function, supplied with AutoBridge,
calculates the current year and adds it to the date value taken from the message, which is in
the format MM/DD.

Each of the other statements identifies a keyword in the BNJ146I message that is used to
locate and extract data from the message buffer.

The statement with the keyword ACTS(1,1) defines the data beginning at offset 1 for a
length of one word. Because words are delimited by blanks in REXX, multiple code points
will be extracted by this statement and appended to the freeform text field with the alias
DESCRIPTION_TEXT.

Coding the Initialization Table
AutoBridge’s initialization values are defined in the NetView DSIPARM data set member
EYLATINT. This member, the initialization table, defines the environment in which
AutoBridge operates. It is comprised of segments and subsegments of dispatcher, database,
and record definitions organized in a nested, hierarchical structure.

The following sections describe and give examples of the structure and syntax of the
initialization table. A sample EYLATINT is shipped in SEYLSPL that you can modify to
meet your needs.

Initialization Table Structure
Figure 7 on page 102 illustrates the nested structure of the initialization table.

AutoBridge Table Examples

101Guide to Integrating with Tivoli Applications

8.
C

o
d

in
g

N
etV

iew
A

u
to

B
rid

g
e

Tab
les

Initialization Table Examples
Figure 8 on page 103 and Figure 9 on page 104 show examples of initialization tables on
both a resident and remote NetView. These examples define a set of values for the
“INFONETW” database only. They also define the bridge dispatchers and database server
adapters to be started.

Figure 7. Initialization table nesting hierarchy. The initialization table is defined with a strict hierarchical relationship of
segments and subsegments.

Coding the Initialization Table

102 Version 7.1

*-- EYLATINT ON A RESIDENT NETVIEW -------------------------------------
*-- Common Values --

*-- Type of AutoBridge application, resident or remote -----------------
AUTOBRIDGE = RESIDENT

*-- Date format generated for the checkpoint manager data --------------
DATEFORMAT = U

*-- Wait time (in seconds) for issued commands (EYLSTMGR, MVS D,A) -----
WAITTIME = 29

*-- Remote dispatcher on this NetView ----------------------------------
RDISPATCH = BRGREMOP

*-- Bridge dispatcher, checkpoint mgr and adapters segment -------------
BEGIN DISPATCHER BRGDHIPR
CHECKPT = EYLTCHKH
ADAPTER = INFOBRG1
END DISPATCHER BRGDHIPR

BEGIN DISPATCHER BRGDLOPR
CHECKPT = EYLTCHKL
ADAPTER = INFOBRG2
END DISPATCHER BRGDLOPR

*-- Database segment ---

BEGIN INFONETW

DATABASE = INFOMGMT type of target database

BRGNETID = NETA resident network id
DOMAINID = CNM01 resident domain id
SEPARATOR = , separation character
*CORRID = ORIGINAL_PROBLEM correlation alias name
SEND = EYLSCIMT send transaction processor
RECEIVE = EYLSCIRC receive transaction processor

RETRYNUM = 1 number of times to resend trans
RETRYINT = 3 time in minutes between retries

CREPRIV = MASTER (opt) create privilege class
UPDPRIV = MASTER (opt) update privilege class
INQPRIV = MASTER (opt) inquiry privilege class

*-- Record segment ---

BEGIN PROBLEM
*VOCAB = EYLALIA problem alias table
IBCREATE = BLGYPRC problem create pidt
IBUPDATE = BLGYPRU problem update pidt
IBSEARCH = BLGYPRR problem retrieve pidt
INQVIEW = BLGYPRI problem inquiry pidt
END PROBLEM

BEGIN CHANGE
VOCAB = CHGAKA change alias table
IBCREATE = BLGYCHC change create pidt
IBUPDATE = BLGYCHU change update pidt
IBSEARCH = BLGYCHR change retrieve pidt
INQVIEW = BLGYCHI change inquiry pidt
END CHANGE

END INFONETW

Figure 8. Example of an initialization table for AutoBridge on a resident NetView

Coding the Initialization Table

103Guide to Integrating with Tivoli Applications

8.
C

o
d

in
g

N
etV

iew
A

u
to

B
rid

g
e

Tab
les

Initialization Table Syntax
The following sections describe the syntax for the following data segments in the
initialization table:

*-- EYLATINT ON A REMOTE NETVIEW ---------------------------------------

*-- Common Values --

*-- Type of AutoBridge Application, Resident or Remote------------------
AUTOBRIDGE = REMOTE

*-- Date format generated for the Checkpoint Manager Data---------------
DATEFORMAT = U

*-- Wait time (in seconds) for issued commands (ie, EYLSTMGR, MVS D,A)--
WAITTIME = 29

*-- Remote Dispatcher on this Remote NetView----------------------------
RDISPATCH = REMOPERA

*-- Bridge Dispatcher, Checkpoint Mgr and Adapters segment--------------
BEGIN DISPATCHER BRGDHIPR
CHECKPT = EYLTCHK1
END DISPATCHER BRGDHIPR

BEGIN DISPATCHER BRGDLOPR
CHECKPT = EYLTCHK2
END DISPATCHER BRGDLOPR

*-- Database Segment--

BEGIN INFONETW

DATABASE = INFOMGMT type of target database

BRGNETID = NETA resident network id
DOMAINID = CNM01 resident domain id
SEPARATOR = , separation character
*CORRID = ORIGINAL_PROBLEM alias name for corrid
SEND = EYLSCIMT send transaction processor
RECEIVE = EYLSCIRC receive transaction processor

RETRYNUM = 2 number of times to resend trans
RETRYINT = 3 time in minutes between retries

CREPRIV = MASTER (opt) create privilege class
UPDPRIV = MASTER (opt) update privilege class
INQPRIV = MASTER (opt) inquiry privilege class

*-- Record Segment--

BEGIN PROBLEM
VOCAB = EYLALIA problem alias table
IBCREATE = BLGYPRC problem create pidt
IBUPDATE = BLGYPRU problem update pidt
IBSEARCH = BLGYPRR problem retrieve pidt
INQVIEW = BLGYPRI problem inquiry pidt
END PROBLEM

END INFONETW

Figure 9. Example of an initialization table for AutoBridge on a remote NetView

Coding the Initialization Table

104 Version 7.1

¶ Common values
¶ Dispatcher segment
¶ Database segment
¶ Record segment.

The following sections describe the values defined in each of these segments. Each
definition is mapped to the corresponding item on the initialization worksheet (see
“Initialization Table Worksheet” on page 231 and 232).

Common Values
This segment defines the NetView Bridge type, the date displayed for checkpoint files, the
wait time for issued commands, and the remote dispatcher on the resident NetView.

Bridge Type

YY AUTOBRIDGE =
RESIDENT
REMOTE Y[

where:

RESIDENT|REMOTE
Specifies the type of NetView Bridge on this host. The target database resides on the
resident host. All others are remote. The default value is RESIDENT.

This value corresponds to item 1 on the initialization table worksheet, which can be found in
“NetView AutoBridge Worksheets” on page 231.

Date Format

YY DATEFORMAT =
U
E
O

Y[

where:

U|E|O
Specifies the format of the Created Date and Sent Date values displayed when viewing
checkpoint manager files. The default value is U.
U USA (mm/dd/yy)
E European (dd/mm/yy)
O Ordered (yy/mm/dd)

This value corresponds to item 2 on the initialization table worksheet.

Wait Time

YY WAITTIME = time_in_seconds Y[

where:

Coding the Initialization Table

105Guide to Integrating with Tivoli Applications

8.
C

o
d

in
g

N
etV

iew
A

u
to

B
rid

g
e

Tab
les

time_in_seconds
Is the time in seconds to wait for the completion of any commands issued by AutoBridge.
Any command that has not completed within this time is considered “timed out.” An
appropriate value depends on the responsiveness of your system. It is recommended that you
start with a value of 29 and adjust as necessary.

This value corresponds to item 3 on the initialization table worksheet.

Remote Dispatcher

YY RDISPATCH = remote_dispatcher Y[

where:

remote_dispatcher
Is the name of the remote dispatcher on this host. It is a NetView autotask.

This value corresponds to item 4 on the initialization table worksheet.

Dispatcher Segment
Bridge dispatchers, checkpoint managers, and bridge adapters on the resident NetView are
defined in this segment. The dispatcher name is on the BEGIN/END DISPATCHER segment
label.

Dispatcher Segment Start

YY BEGIN DISPATCHER bridge_dispatcher Y[

where:

bridge_dispatcher
Is the bridge dispatcher being started by this segment.

This statement defines the NetView autotask that is initialized as a dispatcher. Use this
statement and the corresponding END statement to delimit segments for each of the bridge
dispatchers that will be activated or referenced on the resident host or referenced from the
remote host. On both the resident and remote NetView Bridge, the BEGIN DISPATCHER
statement associates a bridge dispatcher to a checkpoint manager task.

This value corresponds to items 5, 8, 11, and 14 on the initialization table worksheet.

Checkpoint Manager

YY CHECKPT = checkpoint_manager Y[

where:

checkpoint
Is the name of the checkpoint manager associated with the current dispatcher segment. This
NetView subtask is started and stopped by the ABRIDGE command.

This value corresponds to items 6, 9, 12, and 15 on the initialization table worksheet.

Coding the Initialization Table

106 Version 7.1

Database Server Adapter

YY ADAPTER = adapter
,adapter,...

Y[

where:

adapter,adapter,...
Names up to four database server adapters associated with the current dispatcher segment.
This MVS task will be started or stopped by the ABRIDGE command.

This value corresponds to items 7, 10, 13, and 16 on the initialization table worksheet.

Note: The ADAPTER definition is required on the resident AutoBridge only.

Dispatcher Segment End

YY END DISPATCHER bridge_dispatcher Y[

where:

bridge_dispatcher
Is the same bridge dispatcher identified on the BEGIN statement for this segment.

Database Segment
This segment contains definitions of database segments and record segments for a specific
target database. The database name is on the BEGIN/END database_segment segment label.

Database Segment Start

YY BEGIN database_segment Y[

where:

database_segment
Is the database segment that is defined in this segment.

This value corresponds to item 17 on the initialization table worksheet.

Database Type

YY DATABASE =
INFOMGMT
database_name Y[

where:

database_name
Specifies the target database type. AutoBridge supports the Tivoli Information Management
for z/OS database (INFOMGMT) only.

Coding the Initialization Table

107Guide to Integrating with Tivoli Applications

8.
C

o
d

in
g

N
etV

iew
A

u
to

B
rid

g
e

Tab
les

This value corresponds to item 18 on the initialization table worksheet.

Resident Network ID

YY BRGNETID = resident_netid Y[

where:

resident_netid
Is the ID of the network where the target Tivoli Information Management for z/OS database
resides. If you specify an asterisk &, the network ID defaults to the one determined by
VTAM®.

This value corresponds to item 19 on the initialization table worksheet.

Resident Domain ID

YY DOMAINID = resident_domainid Y[

where:

resident_domainid
Is the NetView domain ID where the NetView Bridge adapter is active.

This value corresponds to item 20 on the initialization table worksheet.

Separator Character

YY SEPARATOR = separator_character Y[

where:

separator_character
Is the control parameter of the character used to separate list items in the Tivoli Information
Management for z/OS data.

This value corresponds to item 21 on the initialization table worksheet.

Correlation ID Alias Name

YY CORRID = alias_name Y[

where:

alias_name
Is the alias name where the correlation ID generated by AutoBridge will be saved in the
Tivoli Information Management for z/OS record. You can omit this field if no correlation ID
is to be saved in the record.

This value corresponds to item 22 on the initialization table worksheet.

Coding the Initialization Table

108 Version 7.1

Send Command Name

YY SEND = send_transaction Y[

where:

send_transaction
Is the name of the command to invoke when sending a transaction request to the target
database. AutoBridge supplies EYLSCIMT as the interface to Tivoli Information
Management for z/OS.

This value corresponds to item 23 on the initialization table worksheet.

Receive Command Name

YY RECEIVE = receive_transaction Y[

where:

receive_transaction
Is the name of the command to invoke when receiving a transaction reply from the target
database. AutoBridge supports EYLSCIRC.

This value corresponds to item 24 on the initialization table worksheet.

Number of Retries

YY RETRYNUM = resend_times Y[

where:

resend_times
Is the number of times to attempt to send a transaction. This value may be between 1–9.

This value corresponds to item 25 on the initialization table worksheet.

Retry Interval

YY RETRYINT = resend_interval Y[

where:

resend_interval
Is the number of whole minutes between retry attempts.

This value corresponds to item 26 on the initialization table worksheet.

Create Privilege Class

Coding the Initialization Table

109Guide to Integrating with Tivoli Applications

8.
C

o
d

in
g

N
etV

iew
A

u
to

B
rid

g
e

Tab
les

YY CREPRIV = create_privilege_class Y[

where:

create_privilege_class
Is the privilege class used by the Tivoli Information Management for z/OS API when
performing a create. If omitted, the transaction uses the initialization privilege class defined
in INFOBRDS.

This value corresponds to item 27 on the initialization table worksheet.

Update Privilege Class

YY UPDPRIV = update_privilege_class Y[

where:

update_privilege_class
Is the privilege class used by the Tivoli Information Management for z/OS API when
performing an update. If omitted, the transaction uses the initialization privilege class
defined in INFOBRDS.

This value corresponds to item 28 on the initialization table worksheet.

Inquiry Privilege Class

YY INQPRIV = inquiry_privilege_class Y[

where:

inquiry_privilege_class
Is the privilege class used by the Tivoli Information Management for z/OS API when
performing an inquiry. If omitted, the transaction uses the initialization privilege class
defined in INFOBRDS.

This value corresponds to item 29 on the initialization table worksheet.

Database Segment End

YY END database_segment Y[

where:

database_segment
Is the same database segment identified on the corresponding BEGIN statement for this
segment. Place the END statement for the database segment after all associated record
segments within the database segment. See Figure 7 on page 102.

Coding the Initialization Table

110 Version 7.1

Record Segment
This segment groups together a series of values that apply to one type of database record.
The record type is on the BEGIN/END record_type segment label. Make a segment for each
unique type of record you want to process.

Record Segment Start

YY BEGIN record_type Y[

where:

record_type
Identifies the type of record defined in this segment.

This value corresponds to items 30, 36, 42, and 48 on the initialization table worksheet.

Alias Table

YY VOCAB = alias_table Y[

where:

alias_table
Is the name of the alias table that is used for this transaction.

This value corresponds to items 31, 37, 43, and 49 on the initialization table worksheet.

Create PIDT

YY IBCREATE = create_PIDT Y[

where:

create_PIDT
Is the name of the PIDT or Data View Record used for the IBCREATE transaction.

This value corresponds to items 32, 38, 44, and 50 on the initialization table worksheet.

Update PIDT

YY IBUPDATE = update_PIDT Y[

where:

update_PIDT
Is the name of the PIDT or Data View Record used for the IBUPDATE transaction.

This value corresponds to items 33, 39, 45, and 51 on the initialization table worksheet.

Coding the Initialization Table

111Guide to Integrating with Tivoli Applications

8.
C

o
d

in
g

N
etV

iew
A

u
to

B
rid

g
e

Tab
les

Search PIDT

YY IBSEARCH = retrieve_PIDT Y[

where:

search_PIDT
Is the name of the PIDT or Data View Record used for the IBSEARCH transaction.

This value corresponds to items 34, 40, 46, and 52 on the initialization table worksheet.

Inquiry PIDT

YY INQVIEW = inquiry_PIDT Y[

where:

inquiry_PIDT
Specifies the name of the PIDT or Data View Record used for the IBCREATE or the
IBSEARCH transactions.

This value corresponds to items 35, 41, 47, and 53 on the initialization table worksheet.

Record Segment End

YY END record_type Y[

where:

record_type
Is the same record type identified on the corresponding BEGIN statement for this segment.

Coding the Initialization Table

112 Version 7.1

NetView AutoBridge Commands

AutoBridge provides commands that let you:
¶ Invoke AutoBridge from the NetView automation table
¶ Submit data directly to Tivoli Information Management for z/OS. from other applications
¶ Start, stop, or recycle AutoBridge and AutoBridge tasks
¶ Manage AutoBridge checkpoint files
¶ Manage AutoBridge’s process, mapping, and filter tables
¶ Turn tracing on or off for the AutoBridge application.

To simplify the task of issuing AutoBridge commands, AutoBridge provides an operator
interface—a set of full-screen panels—for specifying command parameters. You can access
the panels by entering the appropriate command or by selecting them from the AutoBridge
main menu panel.

Table 23 lists the AutoBridge commands along with their respective actions and synonyms.

Table 23. Summary of AutoBridge commands
Command Synonym Where used Action Described in

EYLEAPI ABAPI NetView automation table,
other application, or
command processor

Invokes AutoBridge with
parameters (process
segment name, bridge
dispatcher name, and input
data)

“Invoking AutoBridge” on
page 114

EYLSCSUB ABSUB Other application or
command processor, any
NetView Network
Communication Control
Facility (NCCF) panel

Submits, requests, or
deletes data to or from
AutoBridge’s checkpoint
managers

“Handling Checkpoint
Manager Transactions” on
page 116

EYLEHBRG ABRIDGE NetView automation table
or any NetView NCCF
panel

Starts, stops, or recycles the
AutoBridge API and
AutoBridge dispatcher,
checkpoint, and adapter
tasks

“Starting/Stopping/Recycling
AutoBridge and Its
Components” on page 119

EYLEUMEN ABMENU Any NetView NCCF panel Displays the AutoBridge
main menu

“Using the AutoBridge
Main Menu” on page 120

EYLEUSRS ABSRS AutoBridge main menu,
any NetView NCCF panel

Displays a panel for
starting, recycling, and
stopping AutoBridge

“Starting/Recycling/Stopping
the NetView Bridge
Dispatchers or Adapters” on
page 121

EYLEUCKP ABCHECKP AutoBridge main menu,
any NetView NCCF panel

Displays a panel for
managing the AutoBridge
checkpoint files

“Managing Checkpoint
Transactions” on page 121

9

113Guide to Integrating with Tivoli Applications

9.
N

etV
iew

A
u

to
B

rid
g

e
C

o
m

m
an

d
s

Table 23. Summary of AutoBridge commands (continued)
Command Synonym Where used Action Described in

EYLEUFMP ABTABLES AutoBridge main menu,
any NetView NCCF panel

Displays a panel for
managing the filter,
mapping, and process
tables

“Managing the AutoBridge
Tables” on page 125

EYLEUTRC ABTRACE AutoBridge main menu,
any NetView NCCF panel

Displays a panel for setting
tracing on or off for
AutoBridge

“Setting AutoBridge
Tracing On or Off” on
page 126

Invoking AutoBridge
The command used to invoke AutoBridge is ABAPI (a synonym for EYLEAPI). Entries in
the NetView automation table may issue this command to request an AutoBridge transaction
based on an appropriate alert or message. The command can also be issued by applications
and command processors that are written in any high-level programming language.

The ABAPI command uses the following syntax:

YY ABAPI process_segment_name bridge_dispatcher_name
MSUSEG
MSG
input

Y[

where:

process_segment_name
Specifies the process table (EYLATPRO) segment that contains the process steps to
perform.

bridge_dispatcher_name
Specifies the bridge dispatcher on the resident NetView that will process this transaction.
The record will be processed by the checkpoint task associated with this dispatcher.

MSUSEG
Specifies that an MSU has driven this request either directly from the NetView
automation table or through an intermediate application.

MSG
Specifies that a message has driven this request directly from the NetView automation
table.

input
Specifies the name of a task global variable containing input data.

Task global variables are REXX variables that have been declared with the NetView
GLOBALV PUTT command. Such variables may be defined in two forms—simple and
stemmed (compound). A simple variable is defined as follows:
TECHNICIAN = 'JOE'
DEVICE_NAME = 'CNM0199LU'
DESCRIPTION = 'REPORT OF A NETWORK FAILURE'

Input for AutoBridge is stored in simple variables in a keyword = data format as shown
for the variable “buffer” in the example on page 115.

114 Version 7.1

Stemmed variables are specified as a series of stem.tail values. The tail value of each
variable in a series is incremented over the previous one, with the first tail value set to
zero. The zero-tailed variable must be set to the number of stemmed variables to be
accessed in the series. The variables will be accessed starting at the first tail until the
value in stem.0 is met.

These are examples of stemmed variables:
SMALL_VAR.0 = 1
SMALL_VAR.1 = 'THIS IS A SMALL STEMMED VARIABLE'

MEDIUM_VAR.0 = 3
MEDIUM_VAR.1 = 'THIS IS A SLIGHTLY BIGGER STEMMED'
MEDIUM_VAR.2 = 'VARIABLE CONTAINING SEVERAL LINES'
MEDIUM_VAR.3 = 'OF TEXT'

BIG_VAR.0 = 7
BIG_VAR.1 = 'AND THIS IS OUR BIGGEST EXAMPLE OF'
BIG_VAR.2 = 'A STEMMED VARIABLE. EACH LINE OF '
BIG_VAR.3 = 'THIS IS SAVED AS A SEPARATE LINE '
BIG_VAR.4 = 'IN THE FREEFORM TEXT AREA OF THE '
BIG_VAR.5 = 'DATABASE. ASSUMING OF COURSE THAT'
BIG_VAR.6 = 'YOU SET UP THE ALIAS NAME PROPERLY'
BIG_VAR.7 = 'TO MAKE THAT HAPPEN. '
BIG_VAR.8 = 'THESE LAST TWO STEMS ARE NOT '
BIG_VAR.9 = 'ACCESSED BY THE AUTOBRIDGE API. '

Notes:

1. In the previous example, BIG_VAR.8 and BIG_VAR.9 will not be accessed because
they exceed the value set in BIG_VAR.0.

2. Stemmed variables that are used to contain data that is parsed in the mapping table
must contain input data that is in a “keyword = data” format, as illustrated by the
following example:

MAPPED_TEXT.0 = 5
MAPPED_TEXT.1 = 'MAPTEXT=THIS DATA WILL BE PARSED '
MAPPED_TEXT.2 = 'IN THE MAPPING TABLE. THE KEYWORD '
MAPPED_TEXT.3 = 'IN THIS INPUT SHOULD BE IN THE '
MAPPED_TEXT.4 = 'FIRST LINE OF THE DATA (THE VALUE '
MAPPED_TEXT.5 = 'OF THE VARIABLE WITH THE TAIL OF 1).'

These first two examples are examples of calls to AutoBridge from the NetView automation
table. The third example shows how AutoBridge can be requested by another application.

¶ In this example, an Alert (MS Major Vector X'0000') with a second subvector 10
(Product Set ID) of ’IBM LAN MANAGER’ drives the API. (See NetView
Customization: Writing Command Lists for more information on the MSUSEG function.)
IF MSUSEG(0000.10.(2)) = . 'IBM LAN MANAGER' . THEN

EXEC (CMD('ABAPI LANPROC BRGDHIPR MSUSEG') ROUTE(ONE BRIDGE));

¶ In this example, an alert message (BNJ146I) containing RECFMS data drives
AutoBridge.
IF MSGID = 'BNJ146I' & TOKEN(4) = 'R' & TEXT = MESSAGE
THEN EXEC(CMD('ABAPI SNAPROC BRGDLOPR MSG') ROUTE (ONE BRIDGE));

¶ In this example, an application program invokes AutoBridge to pass data to the target
database.
buffer = 'device_name = ny13820 fftext = This is control data for
this particular device that will be sent to Tivoli Information Management for z/OS.'

Invoking AutoBridge

115Guide to Integrating with Tivoli Applications

9.
N

etV
iew

A
u

to
B

rid
g

e
C

o
m

m
an

d
s

'GLOBALV PUTT buffer'

If new_information = 'YES' Then
'ABAPI AUTOPROC BRGAHIPR buffer'

Handling Checkpoint Manager Transactions
The ABSUB (EYLSCSUB) command enables you to directly submit, retrieve, update, or
delete data to or from AutoBridge’s checkpoint manager, bypassing the AutoBridge API.
This command has five function keywords that you can use to either PUT, GET, LIST,
UPDATE, or DELETE AutoBridge transactions in a checkpoint file as follows:

PUT The ABSUB PUT function saves transaction data in a checkpoint file and
submits it to the database. Use this function to submit Tivoli Information
Management for z/OS transactions that are built by other applications or
command processors. Because the ABSUB command bypasses the
AutoBridge API, it lets you submit transactions to Tivoli Information
Management for z/OS. without having to pass them through AutoBridge’s
process and mapping tables. This way, your automation programs can take
advantage of AutoBridge’s recovery and post-processing abilities without
your having to re-define their output in the AutoBridge tables.

The checkpoint manager task responds to this command by generating a
correlation ID for the transaction, which it returns in the variable
EYLCORID. Programs that submit transactions in this way can use this
value to query transaction status using the ABSUB GET command or delete
transactions with the ABSUB DELETE command.

GET The ABSUB GET command retrieves a specific record from a checkpoint
file and returns it in the form of a multiline message. The multi-line message
begins with message EYL551I, which is followed by EYL553I messages
that each contain a piece of transaction data.

LIST The ABSUB LIST command returns control information from a specific
checkpoint file or from all checkpoint files. This control information is
returned in a multiline message that begins with message EYL561I, followed
by EYL563I messages.

UPDATE The ABSUB UPDATE command updates a transaction in the checkpoint file
and submits it to the NetView Bridge API. This command allows
transactions in the checkpoint file to be corrected and resubmitted.

DELETE The ABSUB DELETE command deletes a transaction from the checkpoint
file where it resides and returns a confirmation message, EYL547I.

Note: All parameters for the specified PUT, GET, UPDATE, or DELETE function are
required in the ABSUB command. For the LIST function, you must specify a
dispatcher ID or the ALL keyword. If you do not specify the required parameters for
these functions, an error message is issued and command processing is halted.

The ABSUB command has the following syntax:

Invoking AutoBridge

116 Version 7.1

YY ABSUB PUT dispatcher database rec_type transid parmvar
GET dispatcher corrid
LIST dispatcher

ALL
UPDATE corrid dispatcher database rec_type transid parmvar
DELETE dispatcher corrid

Y[

where:

dispatcher
Specifies the ID of the dispatcher used to process this transaction. This value determines
the checkpoint manager to which the transaction output is routed.

database
Specifies the name of the database as defined in the initialization table.

rec_type
Specifies the record type for the transaction as defined in the initialization table.

transid
Specifies the type of transaction: IBCREATE, IBSEARCH, or IBUPDATE.

parmvar
Specifies the name of a variable containing a list of task global variables required to
process the transaction. These variables can be in any of the following three forms:

Alias names The name of the variable is the same as the alias name of the field that
will hold this variable’s contents.

S-words The name of the variable is the same as the structured word index of the
field that will hold this variable’s contents.

List names One of the following variable names that contains a list of variables used
by the checkpoint manager task:

VERIFIER One or more field/value pairs that must be checked
against the matching database record as a means of
verification prior to updating the record. See “VERIFIER
Function Syntax” on page 87 for details on VERIFIER.

Note: If VERIFIER is present, it must be placed before
TEXTLIST, SEARCHLIST, and UPDATELIST;
otherwise, RESPCODE 2 REASONCODE 24
(RC2 RC24 INVALID VERIFIER) will be
returned.

TEXTLIST The list of stemmed variables containing freeform text
data.

SEARCHLIST
The list of variables specifying which fields are to be
included in a search argument when processing a
conditional IBCREATE or IBSEARCH transaction.

UPDATELIST
The list of variables specifying which fields are to
replace the original data when updating a record. If

Handling Checkpoint Manager Transactions

117Guide to Integrating with Tivoli Applications

9.
N

etV
iew

A
u

to
B

rid
g

e
C

o
m

m
an

d
s

UPDATELIST includes a freeform text s-word or alias,
RESPCODE 12 REASONCODE 32 (RC12 RC32
DYNAMIC ALLOCATION ERROR) will be received.
Put text s-words or aliases in UPDATETEXTLIST and
then include UPDATETEXTLIST in UPDATELIST. See
the following example for the proper format.

To differentiate these list names variables from the alias name, the
keyword EYLLIST is always the first value in the list.

corrid
Specifies the correlation ID assigned to the transaction you are attempting to GET,
UPDATE, or DELETE.

ALL
Specifies that transactions will be listed for all checkpoint managers.

The following is an example of the ABSUB command used to submit a create transaction to
the checkpoint manager associated with the NetView Bridge dispatcher BRGHIPR.
'ABSUB PUT BRGDHIPR INFONETW PROBLEM IBCREATE PARMVAR'

where:
PARMVAR = DATE_OCCURRED

TIME_OCCURRED
USE_DATA_VIEW
DOMAINID
DEVICE_NAME
PROBLEM_TYPE
INITIAL_PRIORITY
DESCRIPTION
VERIFIER
TEXTLIST
SEARCHLIST
UPDATELIST

and where:
DATE_OCCURRED = 02/28/1998
TIME_OCCURRED = 12:57
USE_DATA_VIEW = YES
DOMAINID = CNM01
DEVICE_NAME = CNM0199LU
PROBLEM_TYPE = HARDWARE
INITIAL_PRIORITY = 3
DESCRIPTION = 'TOKEN-RING INOPERATIVE'

VERIFIER = EYLLIST REPORTER_NAME INITIAL_PRIORITY
TEXTLIST = EYLLIST DESCRIPTION_TEXT STATUS_TEXT
SEARCHLIST = EYLLIST DEVICE_NAME DOMAINID
UPDATELIST = EYLLIST DATE_OCCURRED TIME_OCCURRED

PROBLEM_TYPE UPDATETEXTLIST

DESCRIPTION_TEXT.0 = 5
DESCRIPTION_TEXT.1 = 'TOKEN-RING INOPERATIVE'
DESCRIPTION_TEXT.2 = 'TOKEN-RING FAULT DOMAIN'
DESCRIPTION_TEXT.3 = 'I120 - REVIEW LINK DETAILED DATA'
DESCRIPTION_TEXT.4 = 'IF PROBLEM PERSISTS THEN DO THE FOLLOWING'
DESCRIPTION_TEXT.5 = 'CONTACT TOKEN-RING ADMINISTRATOR RESPONSIBLE'

STATUS_TEXT.0 = 2
STATUS_TEXT.1 = 'THIS ERROR DETECTED VIA MSU IN NETVIEW AND'
STATUS_TEXT.2 = 'AUTOMATICALLY OPENED VIA AUTOBRIDGE'

Handling Checkpoint Manager Transactions

118 Version 7.1

UPDATETEXTLIST = EYLLIST STATUS_TEXT

REPORTER_NAME = ABRIDGE
INITIAL_PRIORITY = 1

Starting/Stopping/Recycling AutoBridge and Its Components
The ABRIDGE (or EYLEHBRG) command allows you to start, stop, or recycle AutoBridge
and its separate components. It can be invoked as follows:
¶ From the NetView automation table during NetView startup or shutdown
¶ By an application used to start, stop, or recycle AutoBridge
¶ By a user on the command line.

It has the following syntax:

YY ABRIDGE
START

STOP
RECYCLE

ALL

API
ALL

DISP=
dispatcher,...
ALL

ADPT=
adapter,...

Y[

where:

START
Initializes AutoBridge or specific AutoBridge components. START is the default
parameter for the ABRIDGE command.

STOP
Stops the processing of AutoBridge or specific AutoBridge components.

RECYCLE
Conditionally stops and then restarts AutoBridge or specific AutoBridge components.

ALL
Specifies that all AutoBridge components will be started, stopped, or recycled. ALL is
the default parameter for the ABRIDGE command.

API
Specifies that the AutoBridge API will be started, stopped, or recycled.

DISP
Specifies that the AutoBridge dispatchers will be started, stopped, or recycled as
specified by the following parameters:

ALL
Specifies that all bridge dispatchers defined in the initialization table will be started,
stopped, or recycled.

dispatcher,...
Specifies which of the bridge dispatchers to start, stop, or recycle. You can specify
dispatchers that are not listed in the initialization table.

Handling Checkpoint Manager Transactions

119Guide to Integrating with Tivoli Applications

9.
N

etV
iew

A
u

to
B

rid
g

e
C

o
m

m
an

d
s

ADPT
Specifies that the AutoBridge adapters will be started, stopped, or recycled as specified
by the following parameters:

ALL
Specifies that all bridge adapters defined in the initialization table will be started,
stopped, or recycled.

adapter,...
Specifies which bridge adapters to start, stop, or recycle. You can specify adapters
that are not listed in the initialization table.

As an example of the syntax of the ABRIDGE command, the following command initializes
all AutoBridge components:
ABRIDGE START ALL

Any AutoBridge components already active are not restarted, but remain active.

The following command stops all bridge dispatchers defined in the initialization table:
ABRIDGE STOP DISP=ALL

The following command stops (if active) and starts the bridge adapters: BRGAHIPR and
BRGAHIP2.

ABRIDGE RECYCLE ADPT=BRGAHIPR,BRGAHIP2

These adapters do not have to be defined in the initialization table.

Using the AutoBridge Main Menu
The AutoBridge main menu provides access to all of the AutoBridge panels. To access the
AutoBridge main menu, enter ABMENU (or EYLEUMEN) from any NetView NCCF
panel. This is the main menu panel.

EYLKUMEN NetView AutoBridge CNM01
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

Select one of the following. Then press Enter.

__ 1. Start/Recycle/Stop Dispatchers and Adapters...
2. Manage the Checkpoint File...
3. Manage the Filter, Mapping and/or Process Table(s)...
4. Set Trace ON|OFF...

Command ==>
F1=Help F3=Exit F6=Roll F12=Cancel

There are three ways to select an option from the main menu:
¶ Type the number of the option you want to select and press Enter.
¶ Place the cursor next to the option you want to select and press Enter.
¶ Type the corresponding command on the command line and press Enter.

Starting/Stopping/Recycling AutoBridge and Its Components

120 Version 7.1

You can also use the command line to enter NetView commands.

Starting/Recycling/Stopping the NetView Bridge Dispatchers or
Adapters

The ABSRS command (EYLEUSRS), option 1 on the AutoBridge main menu, enables you
to start, stop, or recycle one or more NetView Bridge dispatcher, checkpoint, and adapter
tasks. You can start these tasks separately; however, for NetView Bridge transactions to
perform successfully on a given dispatcher, all tasks associated with it must be active.

This is the Tivoli Information Management for z/OS NetView AutoBridge Start/Recycle/Stop
panel.

EYLKUSRS NetView AutoBridge Start/Recycle/Stop CNM01
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

Enter the action code. Then press Enter.
1 = Start 2=Recycle 3=Stop

_ Perform action on ALL Table, Dispatcher/Checkpoint Tasks and Adapters

Or select individual tasks. Active tasks are shown with an '*'.
-Dispatchers- -Checkpoint-- ---Database Server Adapters-------

2 * BRGDHIPR 2 * EYLTCHKH _ * INFOBRG1 _ * INFOBRG2
_ * INFOBRG3

_ * BRGDLOPR _ * EYLTCHKL _ * INFOBRG4

Remote Dispatcher
2 * BRGREMOP

Command ==>
F1=Help F3=Exit F6=Roll F12=Cancel

This panel gives you the option of performing actions on all component tasks or on
individual ones. On this panel, a dispatcher, its associated checkpoint task, and up to four
associated database server adapters are grouped together on two lines. Active tasks are
shown with an asterisk (*). Note how a dispatcher and its associated tasks are arranged on
this panel. The high-priority dispatcher BRGDHIPR is grouped together with the
EYLTCHKH checkpoint task and database server adapters INFOBRG1, INFOBRG2, and
INFOBRG3.

To start, recycle (stop and immediately restart), or stop all component tasks, enter an action
code in the first field on the panel.

To perform an action on a specific bridge dispatcher, checkpoint task, database server
adapter, or the remote dispatcher, tab to the appropriate task and enter the action code beside
it.

The example shows action codes typed in to recycle the high-priority bridge dispatcher, its
associated checkpoint task, and the remote dispatcher.

Managing Checkpoint Transactions
The ABCHECKP (EYLKUCKP) command, option 2 on the AutoBridge main menu, enables
you to manage AutoBridge transaction records stored in the checkpoint file.

Starting/Recycling/Stopping the NetView Bridge Dispatchers or Adapters

121Guide to Integrating with Tivoli Applications

9.
N

etV
iew

A
u

to
B

rid
g

e
C

o
m

m
an

d
s

A pop-up panel appears as shown in this panel if there is more than one bridge dispatcher
on your system. It allows you to select one or more dispatchers to manage by typing a slash
(/) next to them and pressing Enter. If your system has only one dispatcher, the pop-up panel
does not appear.

EYLKUCKP NetView AutoBridge CNM01
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

Select one of the following. Then press Enter.

2 1. Start/Recycle/Stop Dispatchers and Adapters...
2. Manage the Checkpoint File...
3. Manage the Filter, Mapping and/or Process Tables(s)...
4. Set Trace ON|OFF...

| Bridge Dispatchers |
| Select one or more. Then press Enter. |
| |
| _ BRGDHIPR |
| _ BRGDLOPR |
| |
| |
| |
F1=Help F12=Cancel

Command ==>
F1=Help F3=Exit F6=Roll F12=Cancel

After you have entered your selection, the Manage the Checkpoint File panel appears as
shown in this panel.

EYLKUCKL NetView AutoBridge-Manage Checkpoint File CNM01
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

Type one or more action codes. Then press Enter.
1 = View 2=Delete 3=Update More: >

Desc Created Created Send Send Send
Action Corrid Flag Date Time Count Date Time

_ CNM01@#H F 10/28/1997 18:40 1 10/28/92 18:40
_ CNM01@#I F 10/28/1997 18:42 1 10/28/92 18:42
_ CNM01@#J F 10/28/1997 18:44 1 10/28/92 18:44
_ CNM01@#K F 10/28/1997 18:49 1 10/28/92 18:49
_ CNM01@#X F 10/28/1997 19:22 1 10/28/92 19:22

Command ==>
F1=Help F3=Exit F5 =Refresh F6 =Roll
F7=Backward F8=Forward F11=Right F12=Cancel

This panel shows control information for each transaction record in the checkpoint file
associated with the selected dispatchers. Press PF11 to shift right and view the rest of the
line. These are the fields that are displayed after PF11 has been pressed to shift the display
to the right.

Managing Checkpoint Transactions

122 Version 7.1

EYLKUCKR NetView AutoBridge-Manage Checkpoint File CNM01
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

Type one or more action codes. Then press Enter.
1 = View 2=Delete 3=Update More: <

Data Bridge Record
Action Corrid OPID TRANSID Base Dispatcher Type

1 CNM01@#H OPER01 IBSEARCH INFONETW BRGDHIPR PROBLEM
1 CNM01@#I OPER01 IBSEARCH INFONETW BRGDHIPR PROBLEM
_ CNM01@#J OPER01 IBSEARCH INFONETW BRGDHIPR PROBLEM
2 CNM01@#K OPER01 IBSEARCH INFONETW BRGDHIPR PROBLEM
3 CNM01@#X OPER01 IBSEARCH INFONETW BRGDHIPR PROBLEM

Command ==>
F1=Help F3=Exit F5 =Refresh F6 =Roll
F7=Backward F8=Forward F10=Left F12=Cancel

To view, update, or delete a transaction in the checkpoint file, tab to the transaction and
enter one of the following action codes beside it:
1 To view the checkpoint file transaction
2 To delete the checkpoint file transaction
3 To update the checkpoint file transaction

The preceding panel has action codes typed in to view two transactions, delete one
transaction, and update one transaction.

The fields on this panel provide the following information:

Corrid The correlation ID number of the transaction.

Desc Flag The descriptor flag indicating the transaction’s status. Valid
descriptor flags are:

R Ready to be resent

W Waiting for response (sent but no response)

F Failed, no more retries will be attempted (but can be
updated)

D Flagged for deletion

Created Date The date the transaction was created. Dates are displayed in
the format defined by the DATEFORMAT parameter in the
initialization table.

Created Time The time at which the transaction was created.

Send Count The number of times the transaction has been sent to the
dispatcher.

Send Date The most recent date the transaction was sent to the
dispatcher. Dates are displayed in the format defined by the
DATEFORMAT parameter in the initialization table.

Send Time The most recent time the transaction was sent to the
dispatcher.

Managing Checkpoint Transactions

123Guide to Integrating with Tivoli Applications

9.
N

etV
iew

A
u

to
B

rid
g

e
C

o
m

m
an

d
s

OPID The ID of the operator station task (OST) that created the
transaction.

TRANSID The type of transaction that this is (IBCREATE, IBUPDATE,
IBSEARCH).

Database The label, as defined in the initialization table, of the
database to which the transaction was sent.

Bridge Dispatcher The name of the dispatcher that sent the transaction to the
database server.

Record Type The record type for the transaction.

This is the panel that is displayed when you select a transaction for update. This panel is
shown with values corresponding to the transaction selected for update in the panel on page
123.

EYLKUDUF Update Checkpoint Record: CNM01@#X
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

Edit control information, S=search/U=update options, parmvar names and
parmvar values. Then press Enter. More: + >
Dispatcher Database Record type Transaction
BRGDHIPR INFONETW PROBPP IBCREATE

SU Alias,S-Word,VERIFIER,ASSOCDATA
Opts Name+---10----+---20----+---30-- Data+---10----+---20----+---30----+---40
S NETWORK_NAME CNM01

REPORTER_NAME AUTOBRIDGE
DATE_OCCURRED 02/28/1998
TIME_OCCURRED 15:50

S DEVICE_NAME L140A0F
U DESCRIPTION OPENED VIA NETVIEW BRIDGE BY SANDERS

S0C09 HARDWARE
U PROBLEM_STATUS OPEN

CURRENT_PRIORITY 04
INITIAL_PRIORITY 02

U DESCRIPTION_TEXT.1 THIS RECORD WAS CREATED VIA THE AUTOBR
U DESCRIPTION_TEXT.2 USING THE USER INPUT SCREEN SAMPLE

Command ==>
F1=Help F3=Exit F6=Roll F7=Backward F8=Forward F10=Left F11=Right F12=Cancel

This panel has four fields that display the control information for the specific transaction
record displayed on the panel: Dispatcher, Database, Record type, and Transaction. You can
change the values in these fields to display a different transaction record.

Below the control information, the panel displays a list of the fields specified in the parmvar
variable of the API call that initiated this transaction. (The format of parmvar is described in
“Handling Checkpoint Manager Transactions” on page 116.) You can modify any of the
displayed values, and also add and delete fields from the list. The fields, their values, and
any associated keyword operators are specified in three columns, as follows:

SU Opts
This column indicates whether a SEARCH or UPDATE keyword is associated with
this field. An S in this column indicates that the corresponding non-text alias or
s-word is added to the searchlist for the transaction. A U in this column adds the
alias name or s-word to the transaction’s updatelist. You cannot search or update
ASSOCDATA and VERIFIER fields.

Alias,S-Word,VERIFIER,ASSOCDATA
This column contains either an alias name such as REPORTER_NAME or
DESCRIPTION_TEXT.1, an s-word such as S0C09 or S0E02.1 (not shown in the
preceding example), the string ASSOCDATA, or the string VERIFIER. These items

Managing Checkpoint Transactions

124 Version 7.1

are described in “ADD_DATA Function Syntax” on page 86, “VERIFIER Function
Syntax” on page 87, and “ASSOCDATA Function Syntax” on page 87.

Data This column contains the value of the corresponding alias name, s-word, VERIFIER,
or ASSOCDATA. This value can be up to 132 characters long. PF11 and PF10
enable you to scroll right and left, respectively, to view the entire 132-character
field. Scrolling right and left shifts only the data portion of the row, leaving the first
two columns in place.

You can edit these values as follows:

¶ To replace an existing value in any of the three columns, type over it with a new value.

¶ To remove a field from the list, delete it using the Delete key or type over it with
blanks.

¶ To add a new field to the list, type new data in the first available blank line.

When you have finished updating, deleting, or adding fields on the panel, press the Enter
key to resubmit this transaction to the checkpoint manager. The transaction is then processed
as though it were invoked via ABAPI or ABSUB.

Managing the AutoBridge Tables
The ABTABLES command (EYLEUFMP), option 3 on the AutoBridge main menu, enables
you to manage AutoBridge’s process, mapping, and filter tables. You can browse a table,
load it, or test its syntax. This is panel ABTABLES.

EYLKUFMP Manage the AutoBridge Tables CNM01
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

Select one of the following. Then press Enter.
__ Filter Table

1. Display
2. Load
3. Status
4. Test ... EYLATFIL

Mapping Table
5. Display ... ALL_____________________________
6. Load
7. Status
8. Test ... EYLATMAP

Process Table
9. Display ... ALL_____________________________

10. Load
11. Status
12. Test ... EYLATPRO

Command ==>
F1=Help F3=Exit F6=Roll F12=Cancel

You can display, load, test, or check the status of a table in one of the following ways:
¶ Type the number of the option and press Enter.
¶ Position the cursor next to the option and press Enter.

You can take the following actions:

Display Display the entire table or a specific segment you have selected.

Load Load the table you have selected into memory. All subsequent AutoBridge
transactions will use the newly-loaded table.

Managing Checkpoint Transactions

125Guide to Integrating with Tivoli Applications

9.
N

etV
iew

A
u

to
B

rid
g

e
C

o
m

m
an

d
s

Status Report whether the table is active, the time and date it was last loaded, and
the user ID of the operator who loaded it.

Test Test the syntax of the table.

Note: The preceding panel displays the default names of the tables. You can overtype these
default table names in order to Browse or Test another member in the DSIPARM data
set. However, the Load and Status commands are valid only with one of the default
table names:
Filter table EYLATFIL
Mapping table EYLATMAP
Process table EYLATPRO

See “Coding NetView AutoBridge Tables” on page 81 for information on coding the
process, mapping, and filter tables.

Setting AutoBridge Tracing On or Off
The ABTRACE command (EYLEUTRC), option 4 on the AutoBridge main menu, enables
you to turn AutoBridge tracing on or off. This is panel ABTRACE.

EYLKUTRC AutoBridge Trace On|Off CNM01
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

Type / to turn tracing ON or blank to turn tracing OFF. Then press Enter.

----- TRACE LEVEL -----
FUNCTION TO TRACE ALL MOD DATA REXX

ALL _ _ _ _

AutoBridge API _ _ / _

Checkpoint Manager _ _ _ _

High Level Manager _ _ _ _

Process Table _ / _ _

Table Manager _ _ _ _

Command ==>
F1=Help F3=Exit F6=Roll F12=Cancel

This command enables, disables, and sets the parameters of AutoBridge’s internal tracing
function. AutoBridge allows multiple tracing levels for each of its component functions to
aid in problem isolation.

To turn tracing on, choose a function to trace and enter a slash (/) below the appropriate
trace level for that function. You can enable or disable tracing for all AutoBridge functions
or select individual functions.

The available trace levels are:
ALL Enable all tracing options.
MOD Trace entry to and exit from the function.
DATA Trace transaction data through the function.
REXX

Issue the REXX language TRACE intermediate instruction. This option is valid for
REXX program modules only.

Managing the AutoBridge Tables

126 Version 7.1

The preceding example shows this panel with slashes that select both a Data level trace of
the AutoBridge API and a Mod level trace of the process table.

To turn tracing off, delete the slash or type over it with a blank.

Note: You can also turn tracing on in the process table. However, tracing initiated by the
process table is in effect only while the process table segment that invoked it is being
accessed. All tracing initiated via this command (ABTRACE) is in effect until it is
turned off via this command.

Setting AutoBridge Tracing On or Off

127Guide to Integrating with Tivoli Applications

9.
N

etV
iew

A
u

to
B

rid
g

e
C

o
m

m
an

d
s

Setting AutoBridge Tracing On or Off

128 Version 7.1

NetView AutoBridge Implementation
Scenarios

This chapter contains four scenarios to illustrate some of the ways that AutoBridge can
function on your system. It includes scenarios that describe how to use AutoBridge to create
records from the following types of data:
¶ BNJ146I data
¶ MSU data
¶ User-written application data
¶ Automated “unalert” notification data.

BNJ146I Message Scenario
Suppose you want to open a record whenever an alert containing the text field of
“APPLICATION ABEND” is received. You can extract the following data from the BNJ146I
message:

NETWORK_NAME
PROBLEM_TYPE
DATE_OCCURRED
TIME_OCCURRED
ADDRESS_TEXT
DESCRIPTION_TEXT
RESOLUTION_TEXT

To allow you to track the origin and status of the problem, you might want to add the
following constant data to the record:

PROGRAM_NAME
PROBLEM_STATUS
REPORTER_NAME
REPORTER_DEPT
REPORTER_PHONE
INITIAL_PRIORITY

You can add a NetView automation table entry that will invoke AutoBridge and specify a
process table segment to be used. For example,

IF MSGID = 'BNJ146I' & TOKEN(4)= 'G' & TEXT= . 'APPLICATION ABEND' . THEN
EXEC (CMD('ABAPI PROCESS_BNJ146G BRGDHIPR MSG')

This entry invokes AutoBridge and tells it to use the PROCESS_BNJ146G segment of the
AutoBridge process table. It also specifies that the transaction is to be handled by the
NetView Bridge dispatcher BRGDHIPR and that the input is a message.

The process table could be coded as:

10

129Guide to Integrating with Tivoli Applications

10.
N

etV
iew

A
u

to
B

rid
g

e
Im

p
lem

en
tatio

n
S

cen
ario

s

BEGIN PROCESS_BNJ146G;
ADD_DATA 'INITIAL',PROBLEM_STATUS;
ADD_DATA 'NETVIEW',REPORTER_NAME,SEARCH;
ADD_DATA 'D15A',REPORTER_DEPT;
ADD_DATA '3',INITIAL_PRIORITY;
ADD_DATA '555-5430',REPORTER_PHONE;
ADD_DATA 'AUTOBRG',PROGRAM_NAME;
PARSE MAPPING=MAP_BNJ146G;
IBCREATE 'INFONETW','PROBLEM';
END PROCESS_BNJ146G;

Note that you could have coded the alias table with default values for REPORTER_NAME,
and so on, rather than defining them in the process table.

To parse the data from the BNJ146I message, this segment calls the PARSE function
specifying the MAP_BNJ146G segment in the AutoBridge mapping table:

PARSE MAPPING=MAP_BNJ146G;

The specified mapping table segment assigns data values from the input message keywords
to specific alias names or s-words. It might look like the following example:

BEGIN MAP_BNJ146G;
MSGSTR(1,1) DATE_OCCURRED,EYLEXAYR(DATE_OCCURRED);
MSGSTR(2,1) TIME_OCCURRED;
TYPE(1,1) PROBLEM_TYPE,SEARCH;
DESC(1,1) DESCRIPTION_TEXT,TEXT,DECODE;
PC(1,1) DESCRIPTION_TEXT,TEXT,DECODE;
ACTS(1,1) RESOLUTION_TEXT,TEXT,DECODE;
USER(1,1) DESCRIPTION_TEXT,TEXT,DECODE;
FAIL(1,1) DESCRIPTION_TEXT,TEXT,DECODE;
INST(1,1) DESCRIPTION_TEXT,TEXT,DECODE;
TEXT(1) DESCRIPTION_TEXT,TEXT;
HIER(1,1) ADDRESS_TEXT,TEXT;
HIER(1,1) DEVICE_NAME,EYLEXHRL(N,L,DEVICE_NAME),SEARCH;
DOMID(1,1) NETWORK_NAME,SEARCH;
END MAP_BNJ146G;

Note that in this example, the REPORTER_NAME, PROBLEM_TYPE, and
DEVICE_NAME are passed as SEARCH arguments.

This mapping table segment uses another keyword, DECODE, to specify that the input data
is a code point and should be translated. Several fields within the BNJ146I message are code
points and will be decoded so that their text can be added to the freeform text in the
description section of the problem record.

This example also shows the use of the EYLEXAYR function, supplied with AutoBridge,
which calculates the current year and adds it to the MM/DD date value taken from the
message.

When the mapping segment finishes processing, it returns control to the process segment,
where the IBCREATE statement that follows the PARSE statement is processed:

IBCREATE 'INFONETW','PROBLEM';

The IBCREATE function builds a create transaction using the field values just created by the
process and mapping table segments. Because SEARCH data was specified, this transaction
will be a conditional create, which means that if a duplicate record is found, a new record
will not be created.

BNJ146I Message Scenario

130 Version 7.1

MSU Scenario
Suppose you want to create a Tivoli Information Management for z/OS record based on an
alert received from a local network. The alert comes to NetView in an NMVT, so you must
first decide to select the NMVT for automation and processing by AutoBridge.

To select an MSU for automation, you can use the MSUSEG compare item. You can check
for the existence of the major vector, subvectors, or subfields, or test the contents of a
particular field. Refer to NetView Customization: Writing Command Lists for syntax.

For example, to test for the existence of an NMVT, you could place the following entry in
the NetView automation table:

IF MSUSEG(0000) ¬= '' THEN
EXEC (CMD('ABAPI PROCESS_GENALERT BRGDHIPR MSUSEG')
ROUTE (ALL EYL));

If a generic alert major vector is detected, then the AutoBridge API is invoked with the
following parameters:
¶ Process table segment = PROCESS_GENALERT
¶ Target dispatcher = BRGDHIPR
¶ Input type = MSUSEG

To check the contents of a particular field, you could code the following statement:
IF MSUSEG (0000.10(*)) = . 'IBM LAN NETWORK MANAGER' . THEN

EXEC (CMD('ABAPI PROCESS_GENALERT BRGDHIPR MSUSEG')
ROUTE (ALL EYL));

This entry invokes AutoBridge if any subvector X'10' (product set ID) contains the string
“IBM LAN NETWORK MANAGER”. If you use an occurrence number instead of the
asterisk (*), then only that subvector (X'10') could satisfy the comparison.

Now that you have modified the NetView automation table, the next step is to build the
process table segment (PROCESS_GENALERT) that the API can use in processing the alert.
As in the previous scenario, you can use the ADD_DATA function to add information not
contained in the MSU so that you can track the Tivoli Information Management for z/OS
record. This case adds data to these fields:
¶ PROBLEM_STATUS
¶ PROGRAM_NAME
¶ REPORTER_NAME
¶ REPORTER_DEPT
¶ REPORTER_PHONE
¶ INITIAL_PRIORITY

The process table segment for our generic alert may look like this:

********* PROCESS TABLE SEGMENT FOR GENERIC ALERTS ************

*
BEGIN PROCESS_GENALERT;
ADD_DATA 'INITIAL',PROBLEM_STATUS;
ADD_DATA 'NETVIEW',REPORTER_NAME,SEARCH;
ADD_DATA 'D15A',REPORTER_DEPT;
ADD_DATA '3',INITIAL_PRIORITY;
ADD_DATA '555-5430',REPORTER_PHONE;
ADD_DATA 'AUTOBRG',PROGRAM_NAME,SEARCH;

MSU Scenario

131Guide to Integrating with Tivoli Applications

10.
N

etV
iew

A
u

to
B

rid
g

e
Im

p
lem

en
tatio

n
S

cen
ario

s

PARSE MAPPING=MAP_GENALERT,FILTER;
IBCREATE 'INFONETW','PROBLEM';
END PROCESS_GENALERT;
*

Notice that along with the ADD_DATA statements, there is a PARSE statement and an
IBCREATE statement. The PARSE statement invokes the mapping table segment that
contains statements for parsing the alert. Also note the FILTER keyword on the PARSE
statement, indicating that AutoBridge will perform additional filtering as specified by the
filter table.

The IBCREATE statement defines the name of the target database and the type of record
being created.

To extract information from the NMVT, you need to code an appropriate segment in the
mapping table. Mapping table segments for MSUs contain statements that define the location
of discrete pieces of alert information, the alias name or s-word to which the information
should be assigned, and other options described in “Coding NetView AutoBridge Tables” on
page 81.

The mapping table segment for your generic alert might look like this:

******* THIS IS A MAPPING SEGMENT FOR A GENERIC ALERT ROUTED *******
******* THROUGH THE NETVIEW AUTOMATION TABLE. *******

BEGIN MAP_GENALERT;
MSUSEG(0000.01.10,3,3) DATE_OCCURRED,EYLEXCDT('DATE_OCCURRED'X);
MSUSEG(0000.01.10,6,3) TIME_OCCURRED,EYLEXCTM('DATE_OCCURRED'X);
MSUSEG(0000.92,5,1) PROBLEM_TYPE,DECODE,SEARCH;
MSUSEG(0000.92,6,2) DESCRIPTION_TEXT,DECODE,UPDATE,TEXT;
MSUSEG(0000.93,3,2) DESCRIPTION_TEXT,DECODE,TEXT,UPDATE;
MSUSEG(0000.31.30,3) DESCRIPTION_TEXT,TEXT;
HIER(4) DEVICE_NAME,EYLEXNAM(DEVICE_NAME),SEARCH;
END MAP_GENALERT;
**

The MSUSEG function statements in this segment, when parsed, do the following:

1. The first two statements retrieve the hexadecimal representations of the date and time
from subvector X'01' (the date/time subvector). The EYLEXCDT function converts the
hexadecimal representation of the date to text and assigns this value to the alias
DATE_OCCURRED. The EYLEXCTM function does a similar conversion for the time
and assigns that value to the alias TIME_OCCURRED. These functions are included in
the AutoBridge samples library.

2. The third statement extracts the alert type code point, decodes it, and assigns the text to
the alias name PROBLEM_TYPE. The SEARCH option specified on this statement
specifies that the PROBLEM_TYPE value is used in duplicate records searches.

3. The fourth statement extracts the alert description code point, decodes it, and assigns the
text to the DESCRIPTION_TEXT alias name. The UPDATE keyword on the statement
indicates that the alias DESCRIPTION_TEXT is used to update the duplicate record, if
one is found.

4. The fifth statement extracts the probable cause code point, decodes it, and appends the
text to DESCRIPTION_TEXT. In both statements 4 and 5, the TEXT keyword specifies
that DESCRIPTION_TEXT is a freeform text field and should be appended to the
variable TEXTLIST in the parmvar list.

MSU Scenario

132 Version 7.1

5. The sixth statement extracts the self-defining text from subvector X'30' and appends it to
DESCRIPTION_TEXT. If subvector X'30' was not in the NMVT, AutoBridge generates
message EYL159W.

6. The final statement extracts the fourth name/type pair from the hierarchy list and invokes
the function EYLEXNAM, which strips the type data. It assigns this name value to the
alias DEVICE_NAME.

Since our process table segment for this alert specified AutoBridge filtering, you can code a
filter table to look like this:

* AUTOBRIDGE FILTER TABLE SAMPLE

DEFAULT BLOCK;
PROBLEM_TYPE=PERM & DEVICE_NAME=LAN*;
*

In this table, the first statement defines a default filtering value of BLOCK. Because of this,
all inputs will be blocked from AutoBridge processing unless the second statement is true. In
this example, the NMVT being processed will result in a Tivoli Information Management for
z/OS record being created or updated only if PROBLEM_TYPE=PERM and
DEVICE_NAME=“any value starting with ‘LAN’”.

Once the AutoBridge tables are in place, you can activate them by either recycling the
AutoBridge application or by manually reloading those tables that were changed. See
“Managing the AutoBridge Tables” on page 125. You must also reload the NetView
automation table. You can use the AUTOTBL command to do this. Its syntax is AUTOTBL
MEMBER=membername.

You should also make sure that the NPDA filters are set to pass alerts to the NetView
automation table. Refer to NetView Operation for information on doing this.

User-Written Application Data Scenario
This scenario demonstrates how you can use AutoBridge to create Tivoli Information
Management for z/OS records with data passed from a user-written application. For this
example, suppose there’s an automation exec on your system that is attempting to vary a
device online but is unsuccessful. This exec provides the option of creating a problem
record. To do so, you can put the name of the device and any other pertinent information in
task global variables and call your user-written application to invoke the NetView Bridge.

The originating exec could include something like this:
If operator_option = 'info_record' then Do

DEVICE_NAME = vary_net
'GLOBALV PUTT DEVICE_NAME'
'USERPROB'

End

This code fragment invokes an exec named USERPROB. You can customize the sample
exec EYLEXUSR, supplied in the AutoBridge sample library, to create such an exec.
USERPROB displays a panel that allows you to create, search, retrieve, and update problem
records. This panel is pre-filled with default and task global values that you can use, add to,
modify, or delete, as shown in the following example:

MSU Scenario

133Guide to Integrating with Tivoli Applications

10.
N

etV
iew

A
u

to
B

rid
g

e
Im

p
lem

en
tatio

n
S

cen
ario

s

USERPROB NetView Interface for Problem Records

Select one of the following. Then press Enter.
_ 1. Create a new problem record

2. Search problem records
3. Retrieve a problem record
4. Update a problem record

DISPATCHER.......... BRGDHIPR

The problem number (RECORDID) is required for a Retrieve or Update request
PROBLEM NUMBER..... _________

These fields are required for a Create/Update request
REPORTED BY........ NETVIEW PROBLEM TYPE........ HARDWARE
DATE OCCURRED...... 02/28/97 PROBLEM STATUS...<U> OPEN
TIME OCCURRED...... 15:50 SEVERITY............ 4
DEV/COMP NAME...<S> L140A0F INITIAL PRIORITY.... 2
DESCRIPTION LINE<U> OPENED VIA NETVIEW BRIDGE BY SANDERS

This field is provided on a Retrieve request (leave blank on Create)
CORRELATION ID..... ________

Command ==>
F1=Help F3=Exit F6=Roll F12=Cancel

Pressing the Enter key on this panel performs the specified action using the displayed
values.

USERPROB bypasses the AutoBridge API (ABAPI) by formatting the NetView Bridge
record and invoking the AutoBridge checkpoint manager (ABSUB) directly. No process
table, mapping table, or filter table data is referenced in this transaction.

In this example, the data is passed as follows:
'ABSUB BRGDHIPR INFONETW PROBLEM IBCREATE PARMVAR'

where:
PARMVAR = NETWORK_NAME REPORTER_NAME DATE_OCCURRED TIME_OCCURRED
DEVICE_NAME DESCRIPTION PROBLEM_TYPE PROBLEM_STATUS CURRENT_PRIORITY
INITIAL_PRIORITY SEARCHLIST UPDATELIST

and where:
NETWORK_NAME = CNM01
REPORTER_NAME = NETVIEW
DATE_OCCURRED = 02/28/1997
TIME_OCCURRED = 15:50
DEVICE_NAME = L140A0F
DESCRIPTION = OPENED VIA NETVIEW BRIDGE BY SANDERS
PROBLEM_TYPE = HARDWARE
PROBLEM_STATUS = OPEN
CURRENT_PRIORITY = 4
INITIAL_PRIORITY = 2
SEARCHLIST = EYLLIST NETWORK_NAME DEVICE_NAME
UPDATELIST = EYLLIST DESCRIPTION PROBLEM_STATUS

A search is performed on the NETWORK_NAME and DEVICE_NAME. If no match is
found, a new record is created. If a match is found, the DESCRIPTION line and
PROBLEM_STATUS fields are updated. The panel displays the resulting correlation ID and
problem number for reference.

User-Written Application Data Scenario

134 Version 7.1

Automated “Unalert” Notification Scenario
An alert major vector might flow into NetView with a description code point (subvector 92)
of X'A000' (PROBLEM RESOLVED) or X'A001' (IMPENDING COOLING PROBLEM
RESOLVED). You might want to conditionally update any open problem records to let the
technician assigned to work on the problem know that this “unalert” has been received.

You can accomplish this by including an entry in the NetView automation table to trap
either the MSU or BNJ146I message. The MSU entry would look like this:

IF MSUSEG(0000.92 6) = HEX('A0') .
& HIER = DEVICE THEN
EXEC (CMD('AUNALERT 'DEVICE) ROUTE (ONE AUTOBR1 *));

The BNJ146I entry would look like this:
IF MSGID='BNJ146I' & TEXT = 'DESC=A' .

& TEXT = . 'HIER=' HIER . THEN
EXEC (CMD('AUNALERT 'HIER) ROUTE (ONE AUTOBR1 *));

These table entries invoke an exec called AUNALERT, which is based on the sample exec
EYLEXA00 provided with AutoBridge. AUNALERT calls the AutoBridge API with a search
request for OPEN problem records in this domain for the device name parsed from the
NetView automation table. The AutoBridge API is called as follows:

'ABAPI SEARCH_FOR BRGDHIPR none'

The process table segment that performs this request would be:
BEGIN SEARCH_FOR;
GLOBALV GETT DEVICE;
ADD_DATA DEVICE,DEVICE_NAME,SEARCH;
ADD_DATA NVID(),NETWORK_NAME,SEARCH;
ADD_DATA 'OPEN',PROBLEM_STATUS,SEARCH;
ASSOCDATA DESCRIPTION;
IBSEARCH 'INFONETW','PROBLEM';
END SEARCH_FOR;

The AUNALERT exec traps the response messages from the NetView Bridge search request.
If one or more record IDs are returned, the highest problem record ID with a record
processing code of ‘00’ (no error detected) is updated with an informative DESCRIPTION
line such as the following:

new_desc = 'THIS ALERT HAS BEEN RESOLVED -- SEE NETVIEW'
'GLOBALV PUTT new_desc'

The AutoBridge API is called as follows:
'ABAPI UPDATE_IT BRGDHIPR none'

The process table segment UPDATE_IT would look like this:
BEGIN UPDATE_IT;
GLOBALV GETT HIGH_RECID;
GLOBALV GETT NEW_DESC;
ADD_DATA HIGH_RECID,RECORDID;
ADD_DATA NEW_DESC,DESCRIPTION,UPDATE;
VERIFIER REPORTER_NAME=NETVIEW;
IBUPDATE 'INFONETW','PROBLEM';
END UPDATE_IT;

Automated “Unalert” Notification Scenario

135Guide to Integrating with Tivoli Applications

10.
N

etV
iew

A
u

to
B

rid
g

e
Im

p
lem

en
tatio

n
S

cen
ario

s

When the REPORTER_NAME value is NETVIEW, then this segment updates the Tivoli
Information Management for z/OS OPEN problem record for this device, in this domain,
with the new DESCRIPTION text.

Automated “Unalert” Notification Scenario

136 Version 7.1

NetView AutoBridge Planning

This chapter describes all the planning steps necessary to implement NetView AutoBridge.
Complete and verify the steps listed here before the start of implementation.

Use this table to keep track of your completed work:

Table 24. AutoBridge planning checklist
U Step

Step 1. Verify Installation of Required Hardware

Step 2. Verify Installation of Required Software

Step 3. Verify Required Skills and Documentation Present

Step 4. Choose an Application ID and Receive a Queue Name

Step 5. Plan the Initialization Table

Step 6. Plan the NetView Automation Table Customization

Step 7. Plan the PIDT, PIPT, and Alias Table Modifications

Step 8. Plan the Process Table

Step 9. Plan the Mapping Table

Step 10. Plan the Filter Table

Step 1. Verify Installation of Required Hardware
Make sure that the following hardware is present on your host system:

¶ One 3480 or 3490 tape drive for the installation of the cartridge (6250)

¶ Sufficient DASD storage as specified in the Tivoli Information Management for z/OS
NetView AutoBridge section of the Tivoli Information Management for z/OS Program
Directory

Step 2. Verify Installation of Required Software
Make sure that the following software is present on your host system:

¶ NetView Version 3 for MVS/ESA (5655–007) or a subsequent release

11

137Guide to Integrating with Tivoli Applications

11.
N

etV
iew

A
u

to
B

rid
g

e
P

lan
n

in
g

Step 3. Verify Required Skills and Documentation Present
You should have the following skills, knowledge, and documentation present before
installing AutoBridge.

¶ Skill in using JCL to implement programs

¶ Skill in creating high-level qualifiers

¶ Skill in creating VSAM data sets

¶ Skill in using the Tivoli Information Management for z/OS Panel Modification Facility
(PMF)

¶ Skill in assigning NetView messages to operator IDs

¶ Skill in coding NetView automation table entries

¶ Knowledge of NetView alert and message formats

¶ Knowledge of the data sets in which your Tivoli Information Management for z/OS and
NetView programs reside

¶ Access to the following books:
v NetView Installation and Administration Guide--(SC31-6051)
v NetView Automation Implementation--(LY43-0008)
v Tivoli Information Management for z/OS User’s Guide
v Tivoli Information Management for z/OS Planning and Installation Guide and

Reference
v Tivoli Information Management for z/OS Program Administration Guide and

Reference
v Tivoli Information Management for z/OS Panel Modification Facility Guide

Step 4. Choose an Application ID and Receive a Queue Name
The NetView Bridge adapters require an application identifier (APPLID) specified in the
startup JCL, as well as a unique receive queue identifier to be used by the PPI. The example
on page 8 shows a sample of the JCL and an explanation of these fields is in “The EXEC
Statement” on page 9.

Note: ALL STEPLIB data sets must be APF-authorized.

Step 5. Plan the Initialization Table
Use the information in “Coding the Initialization Table” on page 101 to complete a copy of
the initialization table worksheet on page 231 for each NetView on your system that will use
AutoBridge. Use the initialization table worksheets and the sample member EYLATINT to
code an initialization table for each NetView.

If your system handles a high volume of transactions, be careful in the assignment of the
NetView Bridge dispatchers and adapters. The configuration of these components is critical
to the level of performance achieved on your system.

Step 3. Verify Required Skills and Documentation Present

138 Version 7.1

Step 6. Plan the NetView Automation Table Customization
You may need to customize your NetView automation table for use with AutoBridge. Plan
entries for the following:

¶ An entry to automatically start AutoBridge during NetView startup

¶ An entry to trap all AutoBridge messages and route them to all operators in the
AutoBridge group

¶ Entries for all MSUs or messages that will drive the AutoBridge API.

The NetView automation table intercepts system messages and all alerts and MSUs that are
not filtered by NetView’s hardware monitor (formerly called NPDA). You can use the
NetView automation table to parse and filter input, and then pass it to AutoBridge via a call
to the AutoBridge API. You can also use the NetView automation table to pass input to
user-written routines or command processors that, in turn, invoke AutoBridge.

The following example shows a NetView automation table entry that invokes AutoBridge:
IF MSUSEG(0000.92 5 1) = '01' & MSUSEG('0000.10.(2)') = .'IBM LAN MANAGER'.

EXEC (CMD('ABAPI LAN_MSU BRGDHIPR MSUSEG'));

This entry produces the following results:

If a generic alert specifies a permanent error (MSUSEG(0000.92 5 1) = ’01 ’)
and
if the alert is from IBM LAN Manager (as specified in the second instance of

subvector 10 in the NMVT)
then

execute the AutoBridge API along with a call to the LAN_MSU process
table segment

and process the transaction via the dispatcher task BRGAHIPR
and use the MSUSEG as input to the AutoBridge API.

For more information on invoking AutoBridge, see “Invoking AutoBridge” on page 114.

For an overview of how to define automated message statements, refer to NetView
Installation and Administration Guide For the syntax of NetView automation table
statements, refer to NetView Administration Reference.

Step 7. Plan the PIDT, PIPT, and Alias Table Modifications
Use the information in the Tivoli Information Management for z/OS Application Program
Interface Guide to determine which of these tables must be customized. If you have
customized Tivoli Information Management for z/OS, you may need to add or modify those
fields that will be passed to the Tivoli Information Management for z/OS High Level API
(HLAPI) via AutoBridge.

The PIDT defines the data that passes between AutoBridge and the Tivoli Information
Management for z/OS High Level API. The Program Interface Pattern Table (PIPT) enables
applications to test record or search argument data against validation patterns. The alias table
(PALT) lets you use external symbolic names (alias names) for data fields, define default
values, and specify which fields are required.

Step 6. Plan the NetView Automation Table Customization

139Guide to Integrating with Tivoli Applications

11.
N

etV
iew

A
u

to
B

rid
g

e
P

lan
n

in
g

Both the AutoBridge initialization table and the user-supplied input data set INFOBRDS
contain entries that affect the use of the PIDT, PIPT, and alias tables. At this time, you may
want to consider the values you will assign to these entries. Table 25 summarizes each of
these entries.

Data view records can be used instead of PIDTs. To use data view records, specify
BYPASS_PANEL_PROCESSING=YES in the INFOBRDS data set. If
BYPASS_PANEL_PROCESSING=NO is specified, data view records can still be used if the
INFOBRDS keyword parameter USE_DATA_VIEW is specified as YES.

“Coding the Initialization Table” on page 101 describes the contents of the AutoBridge
initialization table. “The User-Supplied Input Data Set” on page 10 discusses creating the
INFOBRDS data set.

Table 25. Environment settings relative to PIDT, PIPT, and alias tables
Table Entry Purpose

EYLATINT
(initialization table)

VOCAB Defines the alias table to be used. An alias table created
by BLGUT8 is supplied in member EYLALIA of
SBLMFMT. The source is member EYLALIAS,
supplied in SBLMSAMP.

The VOCAB entry in the initialization table specifies
the name of the PALT containing alias names, defaults,
and other entries.

IBCREATE, IBUPDATE, IBSEARCH,
INQVIEW

Specifies the name of the PIDT to be used for each
specific transaction. Values for these PIDTs are supplied
for the Tivoli default record types. If
BYPASS_PANEL_PROCESSING=YES is specified in
the INFOBRDS data set, then the values specified for
IBCREATE, IBUPDATE, IBSEARCH, and INQVIEW
will be used as data view names. Even if
BYPASS_PANEL_PROCESSING=NO is specified in
the INFOBRDS data set, if USE_DATA_VIEW=YES is
specified, these values will be used as data view names.

INFOBRDS (input
data set)

DEFAULT_OPTION Specifies how default processing of alias entries is
handled.

You may define default values and specify whether a
field is required for each entry in an alias table. If this
option is set to ALL, the defaults you defined are used
if no other value is specified. If set to REQUIRED, only
required fields assume their default value if none is
specified. If set to NONE, no default values are used.

VALIDATE Determines if the HLAPI performs data response
validation when processing input.

If VALIDATE is set to YES, the HLAPI will access the
PIPT associated with the specified PIDT. If set to NO,
no validation is performed.
Note: A VALIDATE setting of NO may cause
unexpected records to appear in the database.

Step 7. Plan the PIDT, PIPT, and Alias Table Modifications

140 Version 7.1

Step 8. Plan the Process Table
Use the information in “Coding the Process Table” on page 83 to complete a copy of the
process table worksheet on page 233. Use the sample member EYLATPRO to aid in
completing the process table worksheet.

Step 9. Plan the Mapping Table
Use the information in “Coding the Mapping Table” on page 92 to complete a copy of the
mapping table worksheet on page 234. Use the sample member EYLATMAP to aid in
completing the mapping table worksheet.

Step 10. Plan the Filter Table
Use the information in “Coding the Filter Table” on page 97 to complete a copy of the filter
table worksheet on page 235. Use the sample member EYLATFIL to aid in completing the
filter table worksheet.

Step 8. Plan the Process Table

141Guide to Integrating with Tivoli Applications

11.
N

etV
iew

A
u

to
B

rid
g

e
P

lan
n

in
g

Step 10. Plan the Filter Table

142 Version 7.1

NetView AutoBridge Software Setup and
Administration

This chapter describes the activities you must perform for AutoBridge to function on your
system. It is divided into two sections:

¶ “Setting Up the Resident NetView” on page 144 describes the steps for setting up the
NetView Bridge and AutoBridge components on the resident NetView as required by
AutoBridge.

¶ “Setting Up Remote NetViews” on page 153 describes the steps for setting up the remote
NetView Bridge and the remote installation of AutoBridge.

For directions on installing the AutoBridge program, refer to the Tivoli Information
Management for z/OS NetView AutoBridge section of the Tivoli Information Management
for z/OS Program Directory.

To give you a better idea of the NetView Bridge and AutoBridge components that you must
define in these setup procedures, Figure 10 on page 144 shows a diagram of the relationship
between NetView Bridge adapters, NetView Bridge dispatchers, checkpoint manager tasks,
and remote dispatchers.

12

143Guide to Integrating with Tivoli Applications

12.
A

u
to

B
rid

g
e

S
etu

p
an

d
A

d
m

in
istratio

n

Setting Up the Resident NetView
Follow these steps to set up NetView Bridge and AutoBridge components on the resident
NetView:

Table 26. Resident NetView setup checklist
U Step

Add operator IDs to NetView for the bridge dispatcher, checkpoint manager, and
remote bridge dispatcher (optional) tasks as described in “Adding Operator IDs for
NetView Autotasks” on page 145.

Create autotask profiles for each new operator ID as described in “Creating Profiles
for NetView Autotasks” on page 146.

Add NetView Bridge and AutoBridge command model statements to NetView as
described in “Adding Command Model Statements to NetView” on page 148.

Modify the NetView procedure JCL to include command list, panel, message, and
STEPLIB data sets as described in “Modifying the NetView Procedure JCL” on
page 149.

Modify the JCL supplied with the Tivoli Information Management for z/OS NetView
Bridge Adapter as described in “Modifying the JCL Supplied with the Tivoli
Information Management for z/OS NetView Bridge Adapter” on page 150.

Figure 10. Relationship of NetView autotasks in AutoBridge process flow

Setting Up the Resident NetView

144 Version 7.1

Table 26. Resident NetView setup checklist (continued)
U Step

Customize the DSIDMN member of the concatenated DSIPARM data set as
described in “Customizing the DSIPARM DSIDMN Member” on page 151.

Allocate a VSAM data set for the AutoBridge checkpoint files as described in
“Allocating the Checkpoint File VSAM Data Set” on page 150.

Add the application identifier to the proper class definition as described in
“Modifying the JCL Supplied with the Tivoli Information Management for z/OS
NetView Bridge Adapter” on page 150.

Create any additional copies of the NetView Bridge adapter server you need to
improve performance of the bridge as described in “Creating Additional Copies of a
Server” on page 151.

Customize the Tivoli Information Management for z/OS PIDT, PIPT, and alias tables
as described in “Customizing the PIDT, PIPT, and Alias Tables” on page 152.

Customize the NetView automation table as described in “Customizing the NetView
Automation Table” on page 152.

Customize the initialization table as described in “Creating the Initialization Table”
on page 153.

Create the process table as described in “Creating the Process Table for Resident
NetView” on page 153.

Create the mapping table as described in “Creating the Mapping Table for Resident
NetView” on page 153.

Create the filter table as described in “Creating the Filter Table for Resident
NetView” on page 153.

Adding Operator IDs for NetView Autotasks
You must define at least one operator ID for each of the following autotasks:
¶ NetView Bridge dispatchers
¶ Checkpoint managers (one for each NetView Bridge dispatcher)
¶ Remote dispatcher (optional)

The function of these autotasks can be summarized as follows:

NetView Bridge dispatcher Establishes the NetView Bridge environment

Checkpoint manager Controls transaction flow through its associated dispatcher

Remote dispatcher Provides remote access to the bridge

When defining these autotasks, be aware of the following conventions:

¶ The resident NetView can have only one remote dispatcher.

¶ For performance reasons, you may define multiple bridge dispatchers, each handling
different types of traffic.

¶ Each bridge dispatcher may communicate with one or more copies of a database server.

¶ Your autotasks should be exclusive to the NetView Bridge.

To define the IDs, you must modify the DSIOPF member of DSIPARM. The member
EYLRES of the sample data set SEYLSPL contains the following operator ID definitions
that you can copy into DSIOPF and modify as needed:

Setting Up the Resident NetView

145Guide to Integrating with Tivoli Applications

12.
A

u
to

B
rid

g
e

S
etu

p
an

d
A

d
m

in
istratio

n

BRGREMOP OPERATOR PASSWORD=BRGREMOP
PROFILEN EYLPRFRD

BRGDHIPR OPERATOR PASSWORD=BRGDHIPR
PROFILEN EYLPRFDH

EYLTCHKH OPERATOR PASSWORD=EYLTCHKH
PROFILEN EYLPRFAO

BRGDLOPR OPERATOR PASSWORD=BRGDLOPR
PROFILEN EYLPRFDL

EYLTCHKL OPERATOR PASSWORD=EYLTCHKL
PROFILEN EYLPRFAO

This sample includes operator ID definitions for high and low priority NetView Bridge
dispatchers (BRGDHIPR and BRGDLOPR), their associated checkpoint managers
(EYLTCHKH and EYLTCHKL), and a remote dispatcher (BRGREMOP). Note that each
definition contains a pointer to an associated profile. The following section describes how to
create these profiles.

Your ID definitions take effect the next time NetView is recycled.

Creating Profiles for NetView Autotasks
You must create new members in a data set of NetView DSIPRF concatenation having the
profile names referenced in the operator ID definitions you created in the previous section.

These members authorize the operator ID to act as a NetView Bridge autotask. The profile
for the NetView Bridge dispatcher specifies the NetView Bridge command RTRINIT as the
initial command that runs at task initialization time to start the NetView Bridge. The profile
for the remote dispatcher specifies the NetView Bridge command REMOTEBR to initialize
remote access to the bridge.

By customizing the sample profiles provided with AutoBridge (EYLPRFAO, EYLPRFDH,
EYLPRFDL, and EYLPRFRD), you can create profiles for the NetView Bridge dispatchers,
their associated checkpoint manager tasks, and, optionally, a remote dispatcher.

The following are examples of PROFILE statements:
EYLPRFDH PROFILE IC=RTRINIT,HOLDQ01,READYQ01,OUTPTQ01,2000

AUTH MSGRECVR=NO,CTL=GLOBAL
OPCLASS 1,2,6
END

EYLPRFDL PROFILE IC=RTRINIT,HOLDQ02,READYQ02,OUTPTQ02,200
AUTH MSGRECVR=NO,CTL=GLOBAL
OPCLASS 1,2
END

EYLPRFRD PROFILE IC=REMOTEBR
AUTH MSGRECVR=NO,CTL=GLOBAL
OPCLASS 1,2,6
END

EYLPRFAO PROFILE
AUTH CTL=GLOBAL
OPCLASS 1,2
END

The OUTPTQnn value must match the SEND_QUEUE='OUTPTQnn' setting defined in the
Tivoli Information Management for z/OS NetView Bridge Adapter INFOBRDS input data
set as shown in the example on page 11.

Setting Up the Resident NetView

146 Version 7.1

For information on the RTRINIT and REMOTEBR commands, see “RTRINIT Command”
and “REMOTEBR Command”.

RTRINIT Command
NetView Bridge uses the RTRINIT command to activate the interface between a NetView
autotask and a specific set of database servers. This command must be executed under an
autotask. See “Adding Operator IDs for NetView Autotasks” on page 145 for instructions on
creating this autotask.

The RTRINIT command is driven by the profile of a NetView autotask. This autotask serves
as the interface to a specific set of database servers and connects three user-provided queue
names to the NetView program-to-program interface (PPI). A bridge dispatcher executes the
NetView Bridge command RTRINIT to establish the NetView Bridge environment. For more
information on PPI queues, refer to the NetView Application Programming Guide.

Note: The parameters described in the following syntax are positional and must be placed in
the order shown.

The syntax for the RTRINIT command is:

YY RTRINIT hqueue, rqueue, oqueue, hqueuel Y[

where:

hqueue
Is the name of the hold queue. A PPI queue is created to save transactions that have not
been dispatched to a database server. This 1- to 8-character field is required and can
contain uppercase alphabetic characters, numeric characters, or $, %, &, @, and #.

rqueue
Is the name of the ready queue. A PPI queue is created to save the READY tokens
generated by the database servers. This 1- to 8-character field is required and can
contain uppercase alphabetic characters, numeric characters, or $, %, &, @, and #.

oqueue
Is the name of the output queue. A PPI queue is created to receive transaction replies
and control messages from the database servers. This queue has the same name as the
send queue name defined in INFOBRDS as shown in the example on page 11.

This 1- to 8-character field is required and can contain uppercase alphabetic characters,
numeric characters, or $, %, &, @, and #.

hqueuel
Defines the limit of the HOLD queue to the PPI. This parameter is required and must be
an integer. Its value must be between 50 and 2000 inclusive.

REMOTEBR Command
The REMOTEBR command enables the remote dispatcher to register as a management
services application on the high-performance transport API. This command is driven by the
profile of the remote dispatcher autotask. The autotask must be running on both the remote
NetView that is sending transactions and receiving replies and on the resident NetView in
which the database server resides. Only one autotask in each NetView can issue this
command at a time. Consecutive invocations of this command by other tasks results in
message DWO534I being issued.

Setting Up the Resident NetView

147Guide to Integrating with Tivoli Applications

12.
A

u
to

B
rid

g
e

S
etu

p
an

d
A

d
m

in
istratio

n

Note: Although you can execute REMOTEBR from the same autotask NetView Bridge is
using to communicate with a resident database server, this setup is not recommended.
Issue the REMOTEBR command from a new autotask. See “Adding Operator IDs for
NetView Autotasks” on page 145 for instructions on creating this autotask.

The syntax for the REMOTEBR command is:

YY REMOTEBR Y[

Adding Command Model Statements to NetView
You must define the NetView Bridge and AutoBridge commands to NetView by using
command model (CMDMDL) statements. These statements reside in the DSICMD member
of the DSIPARM data set.

To define these statements for the NetView Bridge, remove the asterisks that comment out
the following command model statements in the DSICMD member:
RTRINIT CMDMDL MOD=DSINBINT,TYPE=R,RES=N
RTRQUEUE CMDMDL MOD=DSINBQUE,TYPE=R,RES=Y
TRANRCV CMDMDL MOD=DSINBRCV,TYPE=R,RES=Y
TRANSND CMDMDL MOD=DSINBSND,TYPE=R,RES=Y
DSINBRSM CMDMDL MOD=DSINBRSM,TYPE=R,RES=Y
DSINBTRM CMDMDL MOD=DSINBTRM,TYPE=R,RES=Y

For remote bridge operation, the following command model statements are also required:
DSINBR62 CMDMDL MOD=DSINBR62,TYPE=R,PARSE=N,RES=Y
REMOTEBR CMDMDL MOD=DSINBREM,TYPE=R,PARSE=Y,RES=Y
DSINBRLG CMDMDL MOD=DSINBRLG,TYPE=R,PARSE=Y,RES=Y

To define command model statements for AutoBridge, copy the member EYLCMD from the
AutoBridge-supplied SEYLSPL data set into the DSICMD member. Figure 11 on page 149
shows the contents of EYLCMD.

Setting Up the Resident NetView

148 Version 7.1

Modifying the NetView Procedure JCL
Modify the NetView startup procedure JCL to include the AutoBridge data sets. You must
add these statements to the command list, panel, message, and STEPLIB data set
concatenation lists. If you have changed the data set allocation statements or renamed the
data sets after they were unloaded, use the new names that you have chosen.

Command lists
Your command list data set concatenation list should contain the following lines:

//DSICLD DD DSN=current clists
// DD DSN=EYL.SEYLCL1
// DD DSN=EYL.SEYLSPL

Panels
Your panel data set concatenation list should contain the following lines:

//CNMPNL1 DD DSN=current panels
// DD DSN=EYL.SEYLPN1,DISP=SHR
// DD DSN=EYL.SEYLPN2,DISP=SHR

Messages
Your message data set concatenation list should contain the following lines:

* AUTOBRIDGE *
* DESCRIPTION: COMMAND MODEL ENTRIES FOR THE NV AUTOBRIDGE *

EYLEAPI CMDMDL MOD=DSICCP,ECHO=N

CMDSYN ABAPI
EYLEHBRG CMDMDL MOD=DSICCP,ECHO=N

CMDSYN ABRIDGE
EYLEUCKP CMDMDL MOD=DSICCP,ECHO=N

CMDSYN ABCHECKP
EYLEUMEN CMDMDL MOD=DSICCP,ECHO=N

CMDSYN ABMENU
EYLEUFMP CMDMDL MOD=DSICCP,ECHO=N

CMDSYN ABTABLES
EYLEUSRS CMDMDL MOD=DSICCP,ECHO=N

CMDSYN ABSRS
EYLEUTRC CMDMDL MOD=DSICCP,ECHO=N

CMDSYN ABTRACE
EYLSTMEM CMDMDL MOD=EYLSTMEM,TYPE=R,RES=N,ECHO=Y

CMDSYN EYLSTMEM
CMDSYN EYLMEM

EYLSSVAR CMDMDL MOD=EYLSSVAR,TYPE=R,RES=Y
EYLSMSG CMDMDL MOD=EYLSMSG,ECHO=N,TYPE=R,RES=Y
EYLSCSUB CMDMDL MOD=EYLSCSUB,TYPE=R,RES=N,PARSE=Y

CMDSYN ABSUB
EYLSCGET CMDMDL MOD=EYLSCGET,TYPE=R,RES=N,PARSE=Y
EYLSCDEL CMDMDL MOD=EYLSCDEL,TYPE=R,RES=N,PARSE=Y
EYLSCLST CMDMDL MOD=EYLSCLST,TYPE=R,RES=N,PARSE=Y
EYLSCVSM CMDMDL MOD=EYLSCVSM,TYPE=R,RES=N,PARSE=Y
EYLSCIMT CMDMDL MOD=EYLSCIMT,TYPE=R,RES=N,PARSE=Y
EYLSCIRC CMDMDL MOD=EYLSCIRC,TYPE=R,RES=N,PARSE=Y
EYLSCPCF CMDMDL MOD=EYLSCPCF,TYPE=R,RES=N,PARSE=Y
EYLSMVSM CMDMDL MOD=EYLSMVSM,TYPE=D,RES=N,PARSE=N
EYLSCLPR CMDMDL MOD=EYLSCLPR,TYPE=D,RES=N,PARSE=N
EYLSTMGR CMDMDL MOD=EYLSTMGR,TYPE=R,RES=N,ECHO=Y
EYLTMGR CMDMDL MOD=EYLSTSUB,TYPE=D,RES=N,PARSE=N
EYLSTNCP CMDMDL MOD=EYLSTNCP,TYPE=R,RES=N,PARSE=N
****** END AUTOBRIDGE COMMANDS *****

Figure 11. AutoBridge sample command model statement definitions

Setting Up the Resident NetView

149Guide to Integrating with Tivoli Applications

12.
A

u
to

B
rid

g
e

S
etu

p
an

d
A

d
m

in
istratio

n

//DSIMSG DD DSN=current messages
// DD DSN=EYL.SEYLMSG,DISP=SHR

STEPLIB
Your STEPLIB data set concatenation list should contain the following lines:

//STEPLIB DD DSN=current steplibs
// DD DSN=EYL.SEYLMOD

Note: All libraries in this STEPLIB must be authorized.

Modifying the JCL Supplied with the Tivoli Information Management
for z/OS NetView Bridge Adapter

The Tivoli Information Management for z/OS NetView Bridge Adapter provides you with a
sample startup JCL procedure. This section explains how to use this procedure to get the
NetView Bridge adapter working using these steps:

¶ Assign an application identifier (APPLID) for the server address space and a unique
program-to-program interface (PPI) receiver queue name (RCVQUEUE) in the JCL
procedure’s EXEC statement as described in “The EXEC Statement” on page 9.

¶ Create the data set INFOBRDS as described in “The User-Supplied Input Data Set” on
page 10.

¶ Create following output data sets as described in “The User-Supplied Output Data Sets”
on page 17:
v IBRPRINT
v HLAPILOG
v APIPRINT
v SYSPRINT
v SYSUDUMP

The example on page 8 shows a typical JCL startup procedure for a Tivoli Information
Management for z/OS NetView Bridge Adapter server address space. You must modify the
HCL EXEC supplied with the adapter to fit your particular user environment. An
explanation of each part of the procedure shown in boldface type follows the example.

In the JCL example on page 8, the values for the procedure name, APPLID, and receiver
queue name must also be unique for each adapter server address space. You can use the JCL
to start multiple copies of the adapter if you modify it to contain these unique parameters
each time. See “Creating Additional Copies of a Server” on page 151 for more information.

Allocating the Checkpoint File VSAM Data Set
A sample JCL job, EYLSJ008, is provided with AutoBridge to define VSAM clusters for the
AutoBridge checkpoint files. Table 27 lists the statements in EYLSJ008, their purpose, and
the members that contain their VSAM cluster information.

Table 27. VSAM data for checkpoint file allocation
Statement in
EYLSJ008

Purpose Member

//STEP1 EXEC Delete existing VSAM checkpoint file EYLSID01

//STEP2 EXEC Allocate VSAM checkpoint file EYLSI101

Follow these steps to define the clusters using EYLSJ008:

Setting Up the Resident NetView

150 Version 7.1

1. Before running EYLSJ008, review the members listed in Table 27 on page 150 for
VSAM (cluster) data set names or VOL(xxxxxx) changes.

2. Update the EYLSJ008 JCL to reflect the correct DASD type, data set names, and any
other information that is unique to your environment.

Note: For better performance, place the VSAM database INDEX and DATA components
on different devices.

3. Run EYLSJ008.

4. After you run EYLSJ008 the first time, remove the asterisk (*) that follows the slashes
(//) in the //STEP1 EXEC statement of the job. The //STEP1 EXEC statement deletes the
previously allocated data sets.

5. When EYLSJ008 has finished processing, add the following statement to the NetView
startup procedure to define the VSAM DDNAME:

EYLVSAM DD DSN=name_specified_in_JCL,
DISP=SHR,AMP=AMORG

Customizing the DSIPARM DSIDMN Member
AutoBridge contains two data services tasks (DSTs). To define these DSTs, copy the
SEYLSPL member EYLDMN into the DSIDMN member of DSIPARM. Copy the two
SEYLSPL DST definition members, EYLATMEM and EYLATSUB, into a data set of the
DSIPARM concatenation list.

Your Tivoli Information Management for z/OS administrator must add the application
identifier (APPLID) definition to the MASTER class record for Tivoli Information
Management for z/OS.

Creating Additional Copies of a Server
Each transaction request from NetView is queued in the bridge dispatcher until the Tivoli
Information Management for z/OS NetView Bridge Adapter server becomes available. A
high volume of transaction traffic may cause a bottleneck in your system. At these times,
you may want to create more than one copy of an adapter server. Multiple copies provide
greater throughput for your transactions by giving the dispatcher more than one server in
which to send the queued requests.

Keep in mind, however, that each copy of a server costs you in terms of storage and
possible degradation of performance of both NetView and Tivoli Information Management
for z/OS.

To create an additional copy of an existing NetView Bridge adapter server, make a separate
copy of the JCL procedure and modify the copy as follows:

1. Assign a unique receiver PPI queue name for each additional server.

2. Define a unique APPLID for each extra server.

Note: The application identifier must be a unique ID defined to Tivoli Information
Management for z/OS and included in the INITCLAS privilege class. If you use a
security product, such as RACF®, you may also want to define this ID to that
security product. For additional security considerations, see the Tivoli Information
Management for z/OS Planning and Installation Guide and Reference.

3. Define unique output data sets for each server’s use.

Setting Up the Resident NetView

151Guide to Integrating with Tivoli Applications

12.
A

u
to

B
rid

g
e

S
etu

p
an

d
A

d
m

in
istratio

n

Note: If you want to run a second copy of the adapter with different initialization
parameters, you can modify the INFOBRDS data set or create a new copy of the
data set and point to it in the modified JCL procedure. If you want to run two
copies of the adapter with the same parameters, both copies can use the same
INFOBRDS data set.

You do not need to change any programming of NetView commands or NetView Bridge
definitions to use the additional copies of a server.

Customizing the PIDT, PIPT, and Alias Tables
Use the information in the Tivoli Information Management for z/OS Application Program
Interface Guide to customize the PIDT, PIPT, and alias tables as necessary. All values of the
server can share the PIDT, PIPT, and Alias Tables

While modifying these tables for AutoBridge, you may want to make the changes necessary
for implementing the PostProcessor. To implement the PostProcessor, you must define the
PostProcessor Marker structured word (S7C00) in the PIDT and, optionally, in the alias
table. The examples contained in “Modifying AutoBridge’s Tivoli Information Management
for z/OS Interface” on page 179 illustrate the necessary modifications. If
BYPASS_PANEL_PROCESSING=YES is specified in the INFOBRDS data set, then the
values specified for IBCREATE, IBUPDATE, IBSEARCH, and INQVIEW will be used as
data view names. Even if BYPASS_PANEL_PROCESSING=NO is specified in the
INFOBRDS data set, if USE_DATA_VIEW=YES is specified, these values will be used as
data view names.

Customizing the NetView Automation Table
You may need to edit your NetView automation table to add the automation steps necessary
for implementing AutoBridge. Your changes take effect the next time the NetView
automation table load command is issued (AUTOTBL MEMBER=xxxxxxxx).

The following are suggested NetView automation table additions for AutoBridge:

¶ If you want AutoBridge to start automatically during NetView startup, make an entry to
trap a known message and issue the ABRIDGE command. The following is an example
of this type of entry:

* NEXT STATEMENT NEEDED TO INVOKE THE AUTOBRIDGE APPLICATION *
* ONCE THE SSI TASK HAS INITIALIZED *

IF MSGID='DSI530I' & TEXT=.'CNMCSSIR'. & DOMAINID=%MYDOMAIN%

THEN EXEC(CMD('ABRIDGE') ROUTE(ONE AUTO1));
*

¶ To allow AutoBridge messages (prefixed with EYL) to be displayed on ABMENU
operator screens, make an entry in the NetView automation table to route these messages
to operators in the AutoBridge group. (Whenever you display any ABMENU panel, you
are automatically added to the AutoBridge group.) This entry will drive the AutoBridge
command list EYLESUPD, which creates a common global value for the AutoBridge
message text used by the VIEW processor. The following is an example of this type of
entry:

IF MSGID = 'EYL' .

& TEXT = MESSAGE
THEN EXEC(CMD('EYLESUPD ' MESSAGE) ROUTE (ALL +EYL))
NETLOG(Y) DISPLAY(Y) SYSLOG(Y) CONTINUE(Y);

*

Setting Up the Resident NetView

152 Version 7.1

On a resident NetView, you may also choose to have PostProcessor messages (prefixed
with EYM) be displayed on the operator panel. The following is an example of this type
of entry:

IF MSGID = 'EYM' .

& TEXT = MESSAGE
THEN EXEC(CMD('EYLESUPD ' MESSAGE) ROUTE (ALL +EYL))
NETLOG(Y) DISPLAY(Y) SYSLOG(Y) CONTINUE(Y);

*

¶ Edit the NetView automation table to drive the AutoBridge API for any MSUs and
messages requiring AutoBridge processing. See “NetView AutoBridge Implementation
Scenarios” on page 129 for examples of these kinds of entries.

Creating the Initialization Table
The initialization table resides in the EYLATINT member of the SEYLSPL data set. Make
any changes necessary and copy to DSIPARM.

Use the sample member EYLATINT and the data on the initialization table worksheets on
page 231 to code an initialization table for each NetView.

Creating the Process Table for Resident NetView
The process table resides in the EYLATPRO member of the SEYLSPL data set. Process
table segments must reside either in the EYLATPRO member of DSIPARM or in another
member of DSIPARM that is referred to from the process table by an %INCLUDE
statement.

Use the sample member EYLATPRO and the data on the process table worksheet on page
233 to code the process table for your AutoBridge installation.

Creating the Mapping Table for Resident NetView
The mapping table resides in the EYLATMAP member of the SEYLSPL data set. Mapping
table segments must reside either in the EYLATMAP member of DSIPARM or in another
member of DSIPARM that is referred to from the mapping table by an %INCLUDE
statement.

Use the sample member EYLATMAP and the data on the mapping table worksheet on page
234 to code the mapping table for your AutoBridge installation.

Creating the Filter Table for Resident NetView
The filter table resides in the EYLATFIL member of the SEYLSPL data set.

Use the sample member EYLATFIL and the data on the filter table worksheet on page 235
to code the filter table for your AutoBridge installation. Then copy it to the DSIPARM data
set.

Setting Up Remote NetViews
There are additional things to consider when implementing a remote NetView. Notice in the
following diagram that on the remote NetView the NetView Bridge API sends requests to
the resident’s bridge dispatcher (via the resident’s remote dispatcher). The bridge dispatcher
sends replies to the remote’s remote dispatcher. Thus, each NetView needs its own remote
dispatcher.

Setting Up the Resident NetView

153Guide to Integrating with Tivoli Applications

12.
A

u
to

B
rid

g
e

S
etu

p
an

d
A

d
m

in
istratio

n

You don’t specify the remote dispatcher in your AutoBridge call. Your automation table calls
could be identical on the resident and all remotes (if you have the same process table),
because the dispatcher parameter is the name of the bridge dispatcher on the resident
NetView.
ABAPI PROCESS_SEGMENT BRGDHIPR MSUSEG

Follow these steps to set up NetView Bridge and AutoBridge components on each separate
remote NetView:

Table 28. Remote NetView setup checklist
U Step

Add operator IDs for the remote bridge dispatcher and checkpoint manager tasks on
the remote NetViews as described in “Adding an Operator ID for the Dispatcher
Autotask” on page 155.

Remote NetView Resident NetView Information
Management

for z/OS

Information
Management

for z/OS
Database

Remote Dispatcher Remote Dispatcher

Server Support
API

Server Support
API

Transaction
Processor

Transaction
Processor

Remote Dispatcher

NetView Bridge
Requester API

NetView Bridge
Requester API

Automation Table
- MSU/BNJ146I
- System Messages
- Etc Etc

Automation Table
- MSU/BNJ146I
- System Messages
- Etc Etc

Automation Data
- ANO/AOC
- Solutions
- User Applications

Automation Data
- ANO/AOC
- Solutions
- User Applications

NetView AutoBridge
- Parse/Format Data
- Filter
- Checkpoint Record
- Search/Create/Update

NetView AutoBridge
- Parse/Format Data
- Filter
- Checkpoint Record
- Search/Create/Update

PostProcessor

B B

C C
5C 51A 1

1B

5A

2

2

4

4
3

3

5B
1C

A A
D

Figure 12. Interaction of Remote and Bridge Dispatchers

Setting Up Remote NetViews

154 Version 7.1

Table 28. Remote NetView setup checklist (continued)
U Step

Create autotask profiles for the new operator IDs on the remote NetViews as
described in “Creating NetView Bridge Dispatcher Profiles” on page 156.

Add NetView Bridge and AutoBridge command model statements to the remote
NetViews as described in “Adding NetView Bridge Command Model Statements to
NetView” on page 156.

Modify the NetView procedure JCL to include command list, panel, message, and
STEPLIB data sets as described in “Modifying the NetView Procedure JCL” on
page 156.

Allocate a VSAM data set for the AutoBridge checkpoint files as described in
“Allocating the Checkpoint File VSAM Data Set” on page 157.

Customize the DSICMD and DSIDMN members of the concatenated DSIPARM data
set as described in “Customizing the DSIPARM DSIDMN Member” on page 157.

Customize the NetView automation table as described in “Customizing the NetView
Automation Table” on page 157.

Customize the initialization table as described in “Creating the Initialization Table for
a Remote NetView” on page 158.

Create the process table as described in “Creating the Process Table for a Remote
NetView” on page 159.

Create the mapping table as described in “Creating the Mapping Table for a Remote
NetView” on page 159.

Create the filter table as described in “Creating the Filter Table for a Remote
NetView” on page 159.

Adding an Operator ID for the Dispatcher Autotask
You must define at least one operator ID on each remote NetView for each of the following
autotasks:
¶ Remote dispatcher
¶ Checkpoint managers—one for each NetView Bridge dispatcher on the resident NetView

that will receive transactions from this NetView

The operator IDs you define will serve as the NetView interface for these autotasks. The
NetView Bridge Requester API uses these operator IDs to request the associated autotasks.

To define the IDs, you must modify the DSIOPF member of DSIPARM. The member
EYLREM in the sample data set SEYLSPL contains the following operator ID definitions
that you can copy into DSIOPF and modify as needed:
REMOPERA OPERATOR PASSWORD=REMOPERA

PROFILEN EYLPRFRD
EYLTCHK1 OPERATOR PASSWORD=EYLTCHK1

PROFILEN EYLPRFAO
EYLTCHK2 OPERATOR PASSWORD=EYLTCHK2

PROFILEN EYLPRFAO

Note that each definition in this example contains a pointer to an associated profile. The
following section describes how to create these profiles.

Your ID definitions take effect the next time NetView is recycled.

Setting Up Remote NetViews

155Guide to Integrating with Tivoli Applications

12.
A

u
to

B
rid

g
e

S
etu

p
an

d
A

d
m

in
istratio

n

Creating NetView Bridge Dispatcher Profiles
You must create new members in the NetView DSIPRF data set having the profile names
referenced in the operator ID definitions you created in the previous section. The profile
specifies the NetView Bridge command REMOTEBR to initialize remote access to the
bridge.

By customizing the sample profiles provided with AutoBridge (EYLPRFAO and
EYLPRFRD), you can create profiles for the checkpoint manager tasks and a remote
dispatcher.

The following are examples of PROFILE statements that correspond to the example operator
IDs in the previous section:

EYLPRFRD PROFILE IC=REMOTEBR
AUTH MSGRECVR=NO,CTL=GLOBAL
OPCLASS 1,2,6
END

For information on the REMOTEBR command, see “REMOTEBR Command” on page 147.

Adding NetView Bridge Command Model Statements to NetView
You must define the NetView Bridge commands to NetView by using command model
(CMDMDL) statements. These statements are in the DSICMD member of the DSIPARM
data set.

To define these statements for the remote NetView Bridge, remove the asterisks that
comment out the following command model statements in the DSICMD member:
TRANRCV CMDMDL MOD=DSINBRCV,TYPE=R,RES=Y
TRANSND CMDMDL MOD=DSINBSND,TYPE=R,RES=Y
DSINBR62 CMDMDL MOD=DSINBR62,TYPE=R,PARSE=N,RES=Y
REMOTEBR CMDMDL MOD=DSINBREM,TYPE=R,PARSE=Y,RES=Y
DSINBRLG CMDMDL MOD=DSINBRLG,TYPE=R,PARSE=Y,RES=Y

To define command model statements for AutoBridge, copy the member EYLCMD from the
SEYLSPL data set into the DSICMD member.

Modifying the NetView Procedure JCL
Modify the NetView startup procedure JCL to include the AutoBridge data sets. You must
add these statements to the command list, panel, message, and STEPLIB data set
concatenation lists. If you have changed the data set allocation statements or renamed the
data sets after they were unloaded, use the new names that you have chosen.

Command lists
Your command list data set concatenation list should contain the following lines:

//DSICLD DD DSN=current clists
// DD DSN=EYL.SEYLCL1
// DD DSN=EYL.SEYLSPL

Panels
Your panel data set concatenation list should contain the following lines:

//CNMPNL1 DD DSN=current panels
// DD DSN=EYL.SEYLPN1,DISP=SHR
// DD DSN=EYL.SEYLPN2,DISP=SHR

Messages
Your message data set concatenation list should contain the following lines:

Setting Up Remote NetViews

156 Version 7.1

//DSIMSG DD DSN=current messages
// DD DSN=EYL.SEYLMSG,DISP=SHR

STEPLIB
Your STEPLIB data set concatenation list should contain the following lines:

//STEPLIB DD DSN=current steplibs
// DD DSN=EYL.SEYLMOD

Note: All libraries in this STEPLIB must be authorized.

Allocating the Checkpoint File VSAM Data Set
A sample JCL job, EYLSJ008, is provided with AutoBridge to define VSAM clusters for the
AutoBridge checkpoint files. Table 29 lists the statements in EYLSJ008, their purpose, and
the members that contain their VSAM cluster information.

Table 29. VSAM data for checkpoint file allocation
Statement in EYLSJ008 Purpose Member

//STEP1 EXEC Delete existing VSAM
checkpoint file

EYLSID01

//STEP2 EXEC Allocate VSAM checkpoint file EYLSI101

Follow these steps to define the clusters using EYLSJ008:

1. Before running EYLSJ008, review the members listed in Table 29 for VSAM (cluster)
data set names or VOL(xxxxxx) changes.

2. Update the EYLSJ008 JCL to reflect the correct DASD type, data set names, and any
other information that is unique to your environment.

Note: For better performance, place the VSAM database INDEX and DATA components
on different devices.

3. Run EYLSJ008.

4. After you run EYLSJ008 the first time, remove the asterisk (*) that follows the slashes
(//) in the //STEP1 EXEC statement of the job. The //STEP1 EXEC statement deletes the
previously allocated data sets.

5. When EYLSJ008 has finished processing, add the following statement to the NetView
startup procedure to define the VSAM DDNAME:

EYLVSAM DD DSN=name_specified_in_JCL,
DISP=SHR,AMP=AMORG

Customizing the DSIPARM DSIDMN Member
AutoBridge contains two data services tasks (DSTs). To define these DSTs, copy the
SEYLSPL member EYLDMN into the DSIDMN member of DSIPARM. Copy the two
SEYLSPL DST definition members, EYLATMEM and EYLATSUB, into a data set of the
DSIPARM concatenation list.

Customizing the NetView Automation Table
You may need to customize your NetView automation table for use with AutoBridge. Edit
your NetView automation table to add the automation steps necessary for implementing
AutoBridge. Your changes take effect the next time the NetView automation table load
command (AUTOTBL MEMBER=xxxxxxxx) is issued.

Setting Up Remote NetViews

157Guide to Integrating with Tivoli Applications

12.
A

u
to

B
rid

g
e

S
etu

p
an

d
A

d
m

in
istratio

n

The following are suggested NetView automation table additions for AutoBridge:

¶ If you want AutoBridge to start automatically during NetView startup, make an entry to
trap a known message and issue the ABRIDGE command. The following is an example
of this type of entry:

* NEXT STATEMENT NEEDED TO INVOKE THE AUTOBRIDGE APPLICATION *
* ONCE THE SSI TASK HAS INITIALIZED *

IF MSGID='DSI530I' & TEXT=.'CNMCSSIR'. & DOMAINID=%MYDOMAIN%

THEN EXEC(CMD('ABRIDGE') ROUTE(ONE AUTO1));
*

¶ To allow AutoBridge messages (prefixed with EYL) to be displayed on ABMENU
operator screens, make an entry in the NetView automation table to route these messages
to operators in the AutoBridge group. (Whenever you display any ABMENU screen, you
are automatically added to the AutoBridge group.) This entry will drive the AutoBridge
command list EYLESUPD, which creates a common global value for the AutoBridge
message text used by the VIEW processor. The following is an example of this type of
entry:

IF MSGID = 'EYL' .

& TEXT = MESSAGE
THEN EXEC(CMD('EYLESUPD ' MESSAGE) ROUTE (ALL +EYL))
NETLOG(Y) DISPLAY(Y) SYSLOG(Y) CONTINUE(Y);

*

You may also choose to have PostProcessor messages (prefixed with EYM) be displayed
on the operator panel. The following is an example of this type of entry:

IF MSGID = 'EYM' .

& TEXT = MESSAGE
THEN EXEC(CMD('EYLESUPD ' MESSAGE) ROUTE (ALL +EYL))
NETLOG(Y) DISPLAY(Y) SYSLOG(Y) CONTINUE(Y);

*

¶ Edit the NetView automation table to drive the AutoBridge API for any MSUs and
messages requiring AutoBridge processing. See “NetView AutoBridge Implementation
Scenarios” on page 129 for examples of these kinds of entries.

Creating the Initialization Table for a Remote NetView
The initialization table resides in the EYLATINT member of the DSIPARM data set. Make
any changes necessary and copy to the DSIPARM data set.

Use the sample member EYLINTRM in SEYLSPL and the data on the initialization table
worksheets on page 231 to create the initialization table, EYLATINT, for each remote
NetView. The EYLATINT table is different on the remote NetViews. The most obvious
difference is
AUTOBRIDGE = REMOTE

There is also the Dispatcher/Checkpoint task definitions difference. The remote NetView has
only a remote dispatcher and checkpoint task(s). The bridge dispatcher names are defined
only to associate a dispatcher with the sender’s checkpoint task.
*-- Remote dispatcher on this NetView ----------------------------------
RDISPATCH = BRGREMOP

*-- Bridge dispatcher, checkpoint mgr and adapters segment -------------
BEGIN DISPATCHER BRGDHIPR <-- This exists on the resident only

Setting Up Remote NetViews

158 Version 7.1

CHECKPT = EYLTCHKH
END DISPATCHER BRGDHIPR

BEGIN DISPATCHER BRGDLOPR <-- This exists on the resident only
CHECKPT = EYLTCHKL
END DISPATCHER BRGDLOPR

The remote bridge autotask BRGREMOP and the checkpoint tasks EYLTCHKH and
EYLTCHKL must exist on this remote NetView. The bridge dispatcher tasks BRGDHIPR
and BRGDLOPR exist on the resident NetView only.

On this remote NetView a call is made to AutoBridge as:
ABAPI PROCESS_SEGMENT BRGDHIPR MSUSEG

The record is created and the checkpoint manager running on task EYLTCHKH forwards
this transaction via the high performance transport (LU6.2 session) to the bridge dispatcher
BRGDHIPR on the resident NetView. This is processed by the bridge adapter (also known
as database server) associated with this bridge dispatcher. The results are sent to the remote
dispatcher BRGREMOP on the remote NetView and forwarded to the originator
EYLTCHKH.

Creating the Process Table for a Remote NetView
The process table resides in the EYLATPRO member of the DSIPARM data set. Process
table segments must reside either in the EYLATPRO member or in another member of
DSIPARM that is referred to from the process table by an %INCLUDE statement.

Use the sample member EYLATPRO in SEYLSPL and the data on the process table
worksheet on page 233 to code the process table for your AutoBridge installation.

Creating the Mapping Table for a Remote NetView
The mapping table resides in the EYLATMAP member of the DSIPARM data set. Mapping
table segments must reside either in the EYLATMAP member or in another member of
DSIPARM that is referred to from the mapping table by an %INCLUDE statement.

Use the sample member EYLATMAP in SEYLSPL and the data on the mapping table
worksheet on page 234 to code the mapping table for your AutoBridge installation.

Creating the Filter Table for a Remote NetView
The filter table resides in the EYLATFIL member of the DSIPARM data set.

Use the sample member EYLATFIL in SEYLSPL and the data on the filter table worksheet
on page 235 to code the filter table for your AutoBridge installation.

VTAM List
Ensure that the VTAM List specification for the resident and all remote NetViews include
the APPC=YES parameter to allow LU6.2 sessions. For example:
'SYS1.VTAMLST(CNM0100)'

* IF LU 6.2 OR GRAPHIC MONITOR FACILITY IS NOT BEING USED, *
* THE APPC KEYWORD CAN BE REMOVED FROM NETVIEW'S APPL *
* STATEMENT. *

CNM01 APPL AUTH=(NVPACE,ACQ,PASS),PRTCT=CNM01,EAS=6, X

MODETAB=AMODETAB,DLOGMOD=DSILGMOD,APPC=YES

Setting Up Remote NetViews

159Guide to Integrating with Tivoli Applications

12.
A

u
to

B
rid

g
e

S
etu

p
an

d
A

d
m

in
istratio

n

Required NetView Tasks
When using Remote NetViews, list these tasks and make sure that they are started:
LIST DSIHPDST
LIST DSI6DST
LIST DSIUDST

These would normally be started when you start NetView in the CNMSTART clist
(CNME1015).

Using RMTCMD to Test Connectivity
To verify that two NetViews can communicate via an LU6.2 session, you can use the
RMTCMD. To do this, issue a RMTCMD to the other NetView specifying an autotask
name. The autotask doesn’t have to be the checkpoint task; any autotask defined at the target
is acceptable. But, if you use the checkpoint task name, it will also check that the task is
defined correctly.

In most cases the checkpoint name and “my user ID” would be identical on the two
NetViews. Different names are shown here so that it’s easier to follow this example.

¶ On the resident NetView:
you enter --> RMTCMD LU=CNM02,OPERID=CHECK02,MSG COLETTE,OK FROM CNM01
you see --> DSI001I MESSAGE SENT TO COLETTE

¶ On the remote NetView:
you see --> DSI039I MSG FROM CHECK02 : OK FROM CNM01

¶ On the remote NetView:
you enter --> RMTCMD LU=CNM01,OPERID=CHECK01,MSG SANDERS,OK FROM CNM02
you see --> DSI001I MESSAGE SENT TO SANDERS

¶ On the remote NetView:
you see --> DSI039I MSG FROM CHECK01 : OK FROM CNM02

If the RMTCMD fails, messages will be logged reporting the problem.
DSI072A RMTCMD COMMAND ABORTED. DSIHSNDS RETURN CODE = 220

This indicates that the DSIHSNDS macro (Send High Performance Message Unit) received
rc = 220. NetView Customization: Using Assembler documents that a return code of 220
means ″DSIHPDST task inactive″. Start it.

Another failure message might be something like:

Figure 13. Remote and the resident NetViews

Required NetView Tasks

160 Version 7.1

DSI769I CNM01 RPL_EXIT APPCCMD CONTROL = SEND FAILED - REG15 = X'00', REG
DWO570I UNABLE TO ESTABLISH REMOTE SESSION ON USIBMTA.CNM02 WITH SENSE: X
DWO575I RMTCMD TERMINATED ON USIBMTA.CNM02 WITH SENSE: X'08A80003'

You can enter SENSE 08A80003 to get an explanation of the sense code.

Using RMTCMD to Test Connectivity

161Guide to Integrating with Tivoli Applications

12.
A

u
to

B
rid

g
e

S
etu

p
an

d
A

d
m

in
istratio

n

Using RMTCMD to Test Connectivity

162 Version 7.1

Using the NetView AutoBridge
PostProcessor

This chapter describes the AutoBridge PostProcessor facility, its function, requirements, and
operation, as well as how to install and implement it. The following sections provide this
information:

¶ “PostProcessor Overview” describes what the PostProcessor does and why you might
want to use it.

¶ “Installing the PostProcessor” on page 167 describes the steps necessary to install the
PostProcessor.

¶ “Setting Up the PostProcessor” on page 173 describes the setup tasks for implementing
the PostProcessor.

¶ “Running the PostProcessor” on page 181 discusses considerations of operating the
PostProcessor.

¶ “Creating a Mapping Reference Record” on page 174 describes the mapping reference
records that the PostProcessor uses to modify AutoBridge-created transactions.

¶ “AutoBridge PostProcessor User Exits” on page 184 describes the AutoBridge
PostProcessor user exits. The function, overview, description, input, output, and return
codes are provided for each user exit.

PostProcessor Overview
AutoBridge’s PostProcessor facility locates and processes records in the Tivoli Information
Management for z/OS database. The PostProcessor accesses AutoBridge-created records and
modifies them according to a set of instructions that you supply. The PostProcessor’s flexible
design enables it to process records created through your customized Tivoli Information
Management for z/OS panels.

Figure 5 on page 80 shows a representation of how the PostProcessor supplements the Tivoli
Information Management for z/OS record data created by AutoBridge.

When to Use the PostProcessor
You should use the PostProcessor if you need to supplement the records created by
AutoBridge with additional data to complete each record as though it had been entered on a
terminal by an operator. Because AutoBridge uses the Tivoli Information Management for
z/OS Application Program Interface (API), which bypasses the panels that allow operators to
add record data, some of this data may be missing from records entered by AutoBridge. The
panels AutoBridge bypasses may invoke routines and program exits that generate new data
to add to the record or copy it from some other source.

13

163Guide to Integrating with Tivoli Applications

13.
N

etV
iew

A
u

to
B

rid
g

e
P

o
stP

ro
cesso

r

Consult with your Tivoli Information Management for z/OS administrator to determine if
your Problem Management panels invoke control panels, program exits, or terminal
simulator panels (TSPs) that modify Tivoli Information Management for z/OS records. If so,
you will need to use the PostProcessor to ensure that AutoBridge records are equivalent in
content to records entered manually by Tivoli Information Management for z/OS operators.

PostProcessor Function
The PostProcessor performs two major functions. First, it initializes the PostProcessor
environment and detects the creation of records by the Tivoli Information Management for
z/OS API. Second, it performs the actual processing of these records.

For optimum performance, the PostProcessor resides on your system as a set of background
tasks, one for each Tivoli Information Management for z/OS NetView Bridge Adapter. Since
AutoBridge supports up to four NetView Bridge dispatchers on the resident NetView, and
each dispatcher can have up to four associated adapters, there can be as many as 16
PostProcessor tasks on the resident NetView.

A PostProcessor task is activated when an AutoBridge transaction occurs on its associated
adapter. Once an individual PostProcessor task is activated, it searches the database for
AutoBridge-created records that have not yet been post-processed. (AutoBridge-created
records contain a unique structured word entry that distinguishes them from other records in
the database.) It then processes each record in the search results list according to instructions
that you specify in a new type of Tivoli Information Management for z/OS record, provided
with AutoBridge, called a mapping reference record. The mapping reference record contains
entries that correspond to those items on your Tivoli Information Management for z/OS
panels that invoke processes to modify or generate record data.

The PostProcessor handles records in a way that prevents post-processing errors from
corrupting Tivoli Information Management for z/OS data. The PostProcessor task makes a
copy of the AutoBridge-created record, which it then processes as specified in the mapping
reference record. After this copy is successfully processed and filed, the original record is
deleted. The PostProcessor then issues message EYM105I to indicate that record
new_record_id has been post-processed and record old_record_id has been deleted.

PostProcessor Example
As an example of PostProcessor operation, consider a record that is displayed on an
Integration Facility panel as shown in this panel.

Note: Although this example uses Integration Facility panels, the PostProcessor operates the
same way with base Tivoli Information Management for z/OS panels.

PostProcessor Overview

164 Version 7.1

BTN0B100 PROBLEM DATA PROBLEM: 00000001

1. Callers name.....<R> AUTOBRIDGE_____ 13. Problem type......... HDW
2. Callers dept........ ___________ 14. Problem status....<R> OPEN_____
3. Callers phone #..... _____________ 15. Severity............. _
4. Date occurred....<R> 08/05/1997 16. Initial priority..... __
5. Time occurred....<R> 08:31 17. Location............ ________
6. Dev/Comp name....... DEVICE01 18. Contact name... _______________
7. Related problem #... ________ 19. Contact phone.. _____________

(NPDA) Components affected
__

20. Gen. device type.... ___ 40. Program name....... ________
21. Comp model.......... __________ 41. Vendor component #. ___________
22. Serial #............ ________ 42. Program version.... ____
23. System name......... ________ 43. Release level...... ____
24. Network name........ ________ 44. Fix level.......... ________
25. Description......<R> AUTOBRIDGE CREATED THIS PROBLEM______________

26. Detailed description 29. Previous problems
27. Or END to go to summary panel 30. Previous changes
28. To file

In the next panel, problem record 00000001 is created by AutoBridge with basic problem
data. Had an operator entered the same data through the Integration Facility panels, the
PROBLEM DATA panel would contain more data as shown in this example.

BTN0B100 PROBLEM DATA PROBLEM: 00000001

1. Callers name.....<R> AUTOBRIDGE_____ 13. Problem type......... HDW
2. Callers dept........ ___________ 14. Problem status....<R> OPEN_____
3. Callers phone #..... _____________ 15. Severity............. 1
4. Date occurred....<R> 08/05/1997 16. Initial priority..... __
5. Time occurred....<R> 08:31 17. Location............ RALEIGH
6. Dev/Comp name....... DEVICE01 18. Contact name... SMITH
7. Related problem #... ________ 19. Contact phone.. 919-555-1063

(NPDA) Components affected
__

20. Gen. device type.... CPU 40. Program name....... ________
21. Comp model.......... 3090JTURBO 41. Vendor component #. ___________
22. Serial #............ 12345678 42. Program version.... ____
23. System name......... ________ 43. Release level...... ____
24. Network name........ ________ 44. Fix level.......... ________
25. Description......<R> THIS RECORD HAS BEEN POST-PROCESSED__________

26. Detailed description 29. Previous problems
27. Or END to go to summary panel 30. Previous changes

28. To file

Note the additional data shown in the previous panel. This data is generated when a value is
entered into field 6 (Dev/Comp name). Data entered in this field triggers a call to a program
exit that copies data into the problem record from the record for hardware component
DEVICE01. The AutoBridge-created record does not include this additional data because it
is created through the Tivoli Information Management for z/OS API, which cannot access
this panel to trigger the logic behind field 6.

The PostProcessor, however, is able to reproduce the action that triggers the logic behind
field 6. To do this, the PostProcessor locates the value for field 6 in the record, DEVICE01,
then builds a command to enter the value into that field. The PostProcessor is instructed to
do so by the mapping reference record fields that correspond to this panel. For the
PostProcessor to accomplish the processing required for this example, the mapping reference
record would appear as shown in the next panel.

PostProcessor Overview

165Guide to Integrating with Tivoli Applications

13.
N

etV
iew

A
u

to
B

rid
g

e
P

o
stP

ro
cesso

r

EYMBM500 MAPPING REFERENCE DATA

TARGET SOURCE
PANEL TARGET FIELD/COMMAND PREFIX
BTN0BU00 1__ ______
BTN0BU00 9__ ______
BTN0ENSY ___ ______
BTN0B100 6__ COMD/_
BTN0B100 25/THIS RECORD HAS BEEN POST-PROCESSED_______ ______
BTN0B100 END__ ______
________ ___ ______
________ ___ ______
________ ___ ______
________ ___ ______
________ ___ ______
________ ___ ______

ISSUE SCROLL COMMANDS (UP,DOWN), OR REPLY END TO EXIT

===>

The PostProcessor would access and process the data shown in the Mapping Reference panel
on page 166 as follows:

1. AutoBridge creates a record, activating the PostProcessor when it invokes the Tivoli
Information Management for z/OS API.

2. The PostProcessor searches for all records that were created by AutoBridge and
compiles these records in a search results list for processing. This example describes the
processing of the first record only.

3. The PostProcessor selects the record for update to prevent the record from being
modified by another operator while it is being post-processed. The PostProcessor
locates the structured word in the record that specifies the name of the mapping
reference record to be used. It then reads this mapping reference record to determine
the post-processing sequence.

4. The PostProcessor makes a copy of the record and begins processing it using the
information in the mapping reference record. In the Integration Facility, the copy of the
record is processed starting on the Problem Summary panel, BTN0BU00.

5. The PostProcessor reads the name of the currently displayed panel (BTN0BU00) and
locates the first row in the mapping reference record having a matching Target Panel
value. This is the first row in the Mapping Reference panel on page 166. Its Target
Field/Command field contains the value 1.

This row instructs the PostProcessor to enter the value 1 on the command line, which
initiates data entry on the Problem Summary panel. The PostProcessor marks the row in
the mapping reference record as having been processed, so that it will not be accessed
again for this record. The Integration Facility dialog then flows from panel BTN0BU00
to panel BTN0B100, the Problem Data panel shown on page 165.

6. The PostProcessor looks for the first available row in the mapping reference record
having a Target Panel value of BTN0B100. This is the fourth row in the Mapping
Reference panel on page 166. It has a Target Field/Command value of 6 and a source
prefix value of COMD/.

This row instructs the PostProcessor to locate the record data associated with the prefix
word COMD/ and enter it into field 6. (You can determine the prefix word for a value
by using the Tivoli Information Management for z/OS VIEW INTERNALS command.).

PostProcessor Overview

166 Version 7.1

This value is DEVICE01, so the PostProcessor issues the command 6,DEVICE01, and
then marks the row in the mapping reference record, making it unavailable to
subsequent searches. With this command processed, the Integration Facility dialog flows
to a control panel that calls a program exit to copy the data from the Hardware
Component field. Control then returns to panel BTN0B100.

7. The PostProcessor looks for the first available row in the mapping reference record
having a Target Panel value of BTN0B100. This is the fifth row in the Mapping
Reference panel on page 166. Its Target Field/Command contains the value 25/THIS
RECORD HAS BEEN POSTPROCESSED, which causes a message to be placed in the
Description field, number 25. The PostProcessor then marks the row as having been
processed.

Note: In the mapping reference record, slashes (/) are used as delimiters (rather than
the commas that are used on Tivoli Information Management for z/OS panels).

8. The PostProcessor looks for the first available row in the mapping reference record
having a Target Panel value of BTN0B100—the sixth row in the Mapping Reference
panel on page 166. The Target Field/Command field in this row contains the value END,
which instructs the PostProcessor to enter the value END on the command line. The
PostProcessor then marks the row as having been processed. With this command
processed, the panel flow returns to panel BTN0BU00.

9. The PostProcessor looks for the first available row in the mapping reference record
having a Target Panel value of BTN0BU00. This is the second row in the list in the
Mapping Reference panel on page 166, with a Target Field/Command value of 9. This
row instructs the PostProcessor to enter the value 9 on the command line. On the
Problem Summary panel, this is the command to file the record. The PostProcessor then
marks the row as having been processed.

As a result of this command, Tivoli Information Management for z/OS files the record
and the flow returns to primary options panel, BTN0ENSY (assuming a systems
administrator privilege class in the Integration Facility).

10. The PostProcessor looks for the first available row in the mapping reference record
having a Target Panel value of BTN0ENSY, which is the third row listed in the
Mapping Reference panel on page 166. The Target Field/Command and Source Prefix
fields in this row are empty. On finding these fields empty, the PostProcessor looks for
the Tivoli Information Management for z/OS message BLG03058I (Record ________
stored successfully).

11. If the PostProcessor finds message BLG03058I, it issues a message that indicates
successful post-processing. The AutoBridge-created record is deleted and the
PostProcessor moves on to the next record in the search results list.

12. After all records have been post-processed, the PostProcessor waits for AutoBridge to
create a new record.

Installing the PostProcessor
Many of the steps for installing the PostProcessor are similar to those for installing Tivoli
Information Management for z/OS. Where further information is needed about Tivoli
Information Management for z/OS and its installation and maintenance utilities, refer to the
Tivoli Information Management for z/OS Planning and Installation Guide and Reference.

PostProcessor Overview

167Guide to Integrating with Tivoli Applications

13.
N

etV
iew

A
u

to
B

rid
g

e
P

o
stP

ro
cesso

r

Remember to verify each step before proceeding to the next. Table 30 is a checklist for you
to use as you complete each step of the planning process.

Table 30. PostProcessor planning checklist
U Step

“Step 1. Plan for the PostProcessor Panels” on page 168

“Step 2. Update Your Tivoli Information Management for z/OS Session Member” on
page 169

“Step 3. Create a TSO Background Procedure for the PostProcessor” on page 169

“Step 4. Create Background Profiles for the PostProcessor” on page 170

Step 1. Plan for the PostProcessor Panels
Installing the PostProcessor requires that you examine five panels. If you are running a
previous version of the PostProcessor, it is not necessary to make any changes to your
existing panels. If you have customized any of the following panels, you should compare
these panels to the versions of the panels as they were shipped from Tivoli and restore onto
your customized panels any aspects that you may have modified from the Tivoli-supplied
versions:

BLG00011
BLG00010
BLG1ACOP
BLG1A210

If you have not customized these panels, you can use the versions supplied with the Tivoli
Information Management for z/OS PostProcessor and skip this section.

In addition to those four panels, if you modified panel BLGAPI00, you must modify that
panel in order to use the PostProcessor. BLGAPI00 is the controlling panel for the Tivoli
Information Management for z/OS API, and, as shipped, has the PostProcessor exit
EYMSP010 disabled. You can enable it by deleting the BRANCH control line that precedes
the USEREXIT line for EYMSP010. See “Modifying Panel BLGAPI00” on page 171 and
review the comment lines.

Note: An experienced Tivoli Information Management for z/OS operator should perform the
necessary modifications.

The PostProcessor panels are included in the Tivoli Information Management for z/OS base
panel data set, and you do not need to load them separately. This is a list of the
PostProcessor panels included in SBLMPNLS:
EYMAM100 EYMBM100 EYMBM500 EYM1MBAK EYM1MCOP EYM1M500
EYM1M501 EYM1M92A EYM1M92B EYM1M921 EYM1M925 EYM1M926
EYM1M928 EYM1M929 EYM2M100 EYM2M110 EYM2M120 EYM2M130
EYM2M200 EYM2M250 EYM2M500 EYM2M510 EYM4M901 EYM4M902
EYM4M903 EYM4M904 EYM5MARK EYM5M100 EYM5M110 EYM5M200
EYM5M250 EYM5M500 EYM6ACCN EYM6ALTD EYM6ALTT EYM6CLAE
EYM6CRDT EYM6CRTM EYM6DSAB EYM6MARK EYM6POWN EYM6RIDN
EYM6RNOD EYM6SPFX EYM6TFLD EYM6TPAN EYM6TPNI EYM6URN0
EYM6USER EYM6USRE EYM9MAIN EYM9MAPB EYM9MAPE EYM9M500
EYM9M7XC EYM9M7XI EYM9M901 EYM9M902 EYM9M903 EYM9M904
EYM9M904 EYM9POST EYM9RSET EYM9XMIT

Installing the PostProcessor

168 Version 7.1

Step 2. Update Your Tivoli Information Management for z/OS Session
Member

If you do not want all of your API sessions to run the PostProcessor, you should create a
VSAM panel data set that contains a copy of BLGAPI00 that has been modified to invoke
the PostProcessor. This panel data set should be placed into the RPANELS concatenation of
a session member before any other copy of BLGAPI00. This session member should be
accessed only by the NetView Bridge Adapter proc (or other API application) that you wish
to have records post-processed.

Step 3. Create a TSO Background Procedure for the PostProcessor
An instance of the PostProcessor starts as a background procedure the first time AutoBridge
passes a Tivoli Information Management for z/OS record through the Tivoli Information
Management for z/OS NetView Bridge Adapter, or the first time a record passes through the
Tivoli Information Management for z/OS API using a session that calls the PostProcessor.
This is an example procedure for starting the PostProcessor. The data set names in the figure
are examples; replace them with names appropriate to your installation.
//***
//* *
//* NAME: EYMPOST (PostProcessor PROC) *
//* *
//* PURPOSE: START THE POSTPROCESSOR *
//* *
//* Change blm.v0r0m0 to your Information Management for z/OS qualifier *
//* Change eyl.bridge to your PostProcessor qualifier. *
//* Change eyl.&ppid to your PostProcessor ID (PP00 - PP15) *
//* *
//* Change the other qualifiers to match your ISPF installation. *
//* *
//***
//EYMPROC PROC
//*
//EYMPOST EXEC PGM=EYMSP020,REGION=4096K
//STEPLIB DD DSN=blm.v0r0m0.SBLMMOD1,DISP=SHR
//*
//BLGTSX DD DSN=blm.v0r0m0.SBLMTSX,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD DSN=eyl.bridge.SYSTSPRT,DISP=SHR
//SYSTSIN DD DSN=eyl.bridge.SYSTSIN,DISP=SHR
//ISPPROF DD DSN=eyl.&ppid..ISPPROF,DISP=SHR
//ISPPLIB DD DSN=blm.v0r0m0.SBLMSAMP,DISP=SHR
// DD DSN=ISR.ISRPLIB,DISP=SHR
// DD DSN=ISP.ISPPLIB,DISP=SHR
//ISPTLIB DD DSN=ISR.ISRTLIB,DISP=SHR
// DD DSN=ISP.ISPTLIB,DISP=SHR
//ISPMLIB DD DSN=ISR.ISRMLIB,DISP=SHR
// DD DSN=ISP.ISPMLIB,DISP=SHR
//ISPSLIB DD DSN=ISR.ISRSLIB,DISP=SHR
// DD DSN=ISP.ISPSLIB,DISP=SHR
//ISPLLIB DD DSN=blm.v0r0m0.SBLMMOD1,DISP=SHR
// DD DSN=ISR.ISRLOAD,DISP=SHR
// DD DSN=ISP.ISPLOAD,DISP=SHR
//SYSPROC DD DSN=ISR.ISRCLIB,DISP=SHR

This procedure is shipped in the EYMPOST member of the SBLMSAMP library. You must
place EYMPOST in a data set that resides in an accessible PROCLIB. Do not rename it.
Consult with your systems programmer for the correct placement of this member.

The following data definitions are likely to be allocated differently from the way they are
currently allocated in your installation:

Installing the PostProcessor

169Guide to Integrating with Tivoli Applications

13.
N

etV
iew

A
u

to
B

rid
g

e
P

o
stP

ro
cesso

r

STEPLIB The STEPLIB DD statement must reference the data set containing the
SBLMMOD1 loadlib unless it is in the link list concatenation.

Note: The PostProcessor code library is not re-entrant and is in loadlib
SBLMMOD1. If you want to place SBLMMOD1 in the system link
pack area (LPA), all jobs (NetView AutoBridge and background
postprocessors) must have SBLMMOD1 in their STEPLIB. Otherwise
an ABEND0C4 will occur when an attempt is made to use a
PostProcessor load module (EYMSPnnn).

SYSTSPRT The SYSTSPRT DD statement identifies the destination of output messages
issued by TSO.

SYSTSIN The SYSTSIN DD statement must reference the data set containing the TSO
commands necessary to invoke Tivoli Information Management for z/OS and
start the PostProcessor TSP. These commands must appear as follows:
PROFILE PREFIX(nnnnnn)
ISPSTART PGM(BLGINIT) PARM(SESS(00) IRC(RUN EYM9MAIN))

The following considerations apply to these commands:

¶ You must set the PREFIX parameter (the nnnnnn in the example above)
of the PROFILE command to an authorized high-level qualifier on your
system. Tivoli Information Management for z/OS may use this value to
allocate temporary data sets during PostProcessor execution.

¶ The SESS parameter of the ISPSTART command must refer to a session
member that accesses the same database and panels that AutoBridge and
your Tivoli Information Management for z/OS operators access.

¶ You can also use the CLASS parameter instead of specifying an
invocation class in the background profile. See “Step 4. Create
Background Profiles for the PostProcessor” for information on
specifying a PostProcessor privilege class.

¶ Using the other Tivoli Information Management for z/OS ISPSTART
parameters is not recommended.

ISPPROF The ISPPROF DD statement must reference a data set name containing the
&ppid. insert as one of its middle-level qualifiers. When starting this
procedure, the PostProcessor passes a value in this parameter, PPnn, that is
derived from a count of how many PostProcessor tasks are active on the
system (nn = 00 through 15). See “Step 4. Create Background Profiles for
the PostProcessor” for information on defining ISPF profiles for the
PostProcessor.

ISPLLIB The ISPLLIB DD statement should also reference the data set containing the
SBLMMOD1 code library.

Step 4. Create Background Profiles for the PostProcessor
While processing records, the PostProcessor uses an ISPF profile just as an operator would.
This profile is in member BLG0PROF of the partitioned data set allocated to the ISPPROF
DD statement in the background procedure that starts the PostProcessor task. You must
create a unique profile data set for up to 16 PostProcessor tasks running at the same time.
The maximum number of PostProcessor tasks running must be less than or equal to the
number of simultaneously running NetView Bridge adapters. If you have other Tivoli

Installing the PostProcessor

170 Version 7.1

Information Management for z/OS API applications that are exploiting the PostProcessor,
they must be considered when determining the maximum number of PostProcessor tasks that
can run at the same time.

Each address space containing an initialized Tivoli Information Management for z/OS API
environment will cause a PostProcessor task to be started at the first call to TSP user exit
EYMSP010. As profile data sets do not occupy significant space, you should allocate the
maximum number (16) while performing these installation tasks. When allocating these data
sets, consider the placement of PP00 through PP15 in the EYMPOST procedure. If your
installation data set naming conventions permit you to follow these installation instructions
explicitly, then allocate 16 data sets: EYL.PP00.ISPPROF through EYL.PP15.ISPPROF.

You can load each profile by copying member BLG0PROF from your profile data set, or
you can create a custom profile for the PostProcessor as follows:

1. In your profile data set, copy member BLG0PROF to a new member name.

2. Invoke Tivoli Information Management for z/OS and define the profile settings for the
PostProcessor using the Tivoli Information Management for z/OS PROFILE command.
Command detection must be set to DATA and the invocation class must be set to a
privilege class name with database administration authority and full access authority to
the records you will be post-processing. Do not specify an invocation SRC.

3. Exit from Tivoli Information Management for z/OS using the QUIT command.

4. Copy member BLG0PROF from your profile data set into the profile data sets for the
PostProcessor.

5. Delete member BLG0PROF from your profile data set.

6. Rename the member you created in step 1 above to BLG0PROF.

Your PostProcessor profiles are now ready.

Modifying Panel BLGAPI00
Modify panel BLGAPI00 to delete the BRANCH control line that calls exit EYMSP010 to
invoke the PostProcessor (see the following example), or if you have modified BLGAPI00,
make the changes documented here. Place this control line in the TSP so that it runs only
after the Tivoli Information Management for z/OS API CREATE function has completed.

Installing the PostProcessor

171Guide to Integrating with Tivoli Applications

13.
N

etV
iew

A
u

to
B

rid
g

e
P

o
stP

ro
cesso

r

BLM1TUCU FUNCTION LINE SUMMARY LINE 14 OF 47

FUNCTION LABEL LITERAL GET APPLY FIELD
NAME NAME DATA VAR NOT NAME

14. TESTFIELD LINKT109 T109 NO NO TSCAUFLD
15. LABEL TEST FOR DELETE TRANSACTION
16. TESTFIELD LINKT110 T110 NO NO TSCAUFLD
17. LABEL TEST FOR INVOKE USER TSP
18. TESTFIELD LINKT111 T111 NO NO TSCAUFLD
19. BRANCH APIWAIT
20. LABEL LINKT102 LINK TO CREATE TSP
21. LINK
22. LABEL REMOVE FOLLOWING BRANCH TO
23. LABEL ENABLE THE AUTOBRIDGE
24. LABEL POSTPROCESSOR
25. BRANCH DISABLED
26. USEREXIT API POSTPROCESSOR NOTIFY NO NO
27. LABEL DISABLED

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN or UP to scroll the panel, or type END to exit.

===>

BLM8CU9P DATA FIELD SPECIFICATION PANEL: BLGAPI00

Enter 'USEREXIT' data fields; cursor placement or input line entry allowed.

1. Function exit...........<R> EYMSP010 Structured word...... __________
2. Structured word index...... 0000 Word acronym......... __________
3. Prefix index............... 0000 Prefix............... ______
4. Label name................. ________ Validation........... __________
5. Panel name................. ________ New structured word.. __________
6. Verify name................ ________ New word acronym..... __________
7. TSCA field name............ ________ New prefix........... ______
8. New structured word index.. 0000 New validation....... __________
9. New prefix index........... 0000
10. User data.................. ________
11. List index................. 0000
12. Literal/Test data.......... API POSTPROCESSOR NOTIFY

13. New data................... ________________________________

When you finish, type END to save or CANCEL to discard any changes.

===>

BLM8CU9Q FLAG FIELD SPECIFICATION PANEL: BLGAPI00

Enter 'USEREXIT' flag fields; cursor placement or input line entry allowed.

1. Verify type............. PANEL__ 12. Use id of current record..... NO_
2. Word occurrence......... NEXT_ 13. Use id of last record filed.. NO_
3. Apply not logic......... NO_ 14. Retain record id............. NO_
4. Get variable data....... NO_ 15. Save generated message....... NO_
5. Treat as string data.... NO_ 16. Insert data type............. CHAR
6. Find string anywhere.... NO_ 17. Replace data?................ NO_
7. Set TRACE on............ NO_ 18. Get list index?.............. NO_
8. Trace LINK function..... NO_
9. Print the messages...... NO_
10. Print the screen........ NO_
11. Print the TSCA.......... NO_

When you finish, type END to save or CANCEL to discard any changes.

===>

Installing the PostProcessor

172 Version 7.1

Setting Up the PostProcessor
This section describes the planning and setup tasks necessary to start the PostProcessor. It
also helps you determine what information needs to be post-processed and contains
instructions for building and maintaining mapping reference records.

Determining If a Record Should Be Post-Processed
The following records are appropriate candidates for post-processing:

¶ Records entered on any panels containing any fields or selections that trigger program
exits or TSPs to supplement or modify data either within the record or in some other
record, database, or application.

¶ Records that, when filed, invoke the Tivoli Information Management for z/OS
notification facility to send a message to one or more operators.

Records created by AutoBridge will not be subject to these processes unless they are
accessed and handled by the PostProcessor.

Determining Which Fields or Selections to Post-Process
Your Tivoli Information Management for z/OS administrator must be familiar with the
internals of your customized Tivoli Information Management for z/OS panels to identify the
selections and fields that require post-processing. If such information is not documented or
readily available, you can use the Tivoli Information Management for z/OS FLOW
command to identify any control panels or TSPs that may be called to supplement or modify
record data. Only an experienced Tivoli Information Management for z/OS operator should
perform this task.

Authorizing the PostProcessor to Tivoli Information Management for
z/OS

During processing, the PostProcessor reads mapping reference records and also copies,
updates, and deletes records created by AutoBridge. Therefore, you must be sure that the
PostProcessor is authorized to perform these types of record operations. Because the
PostProcessor runs as an MVS-started task, it assumes an assigned task ID as its TSO user
ID. The TSO ID could be the default value (STC) or could be defined based on the setup of
your installation. If you are a user of the IBM Resource Access Control Facility (RACF),
define this ID in the ICHRIN03 member of SYS1.LINKLIB. Consult your MVS systems
programmer for the TSO user ID that will be assigned to the PostProcessor task.

To determine the task user ID, allow the PostProcessor to start with at least one
AutoBridge-created record in the database. Without proper Tivoli Information Management
for z/OS authority, the PostProcessor fails and Tivoli Information Management for z/OS
error messages are written to the destination specified by the SYSPRINT DD statement.
When this occurs, look for the message
BLG10030I (Logon identifier _______ is not in privilege class ________)

The message will contain the user ID assigned to the PostProcessor task.

You must enter the ID for the PostProcessor task as an eligible user in the privilege class in
which the PostProcessor operates. This privilege class must have database administration
authority to access mapping reference records in addition to whatever authority is necessary
to post-process the AutoBridge-created records.

Setting Up the PostProcessor

173Guide to Integrating with Tivoli Applications

13.
N

etV
iew

A
u

to
B

rid
g

e
P

o
stP

ro
cesso

r

Modifying the Tivoli Information Management for z/OS Profile
When accessing mapping reference records, your Tivoli Information Management for z/OS
profile must have command detection set to DATA; otherwise, unexpected errors may occur.

Authorizing User Access to Mapping Reference Records
Mapping reference records contain sensitive data that is critical to the integrity of any
records processed by the PostProcessor. Mapping reference records should be created or
modified only by those who fully understand record processing in the Tivoli Information
Management for z/OS database. Such personnel should know the commands and selections
necessary to permit the PostProcessor to create a complete Tivoli Information Management
for z/OS record from an AutoBridge-created record.

Mapping reference record dialogs are designed to allow only those Tivoli Information
Management for z/OS operators with database administration authority to create, access, or
manipulate mapping reference records.

To authorize an operator to access mapping reference records, do the following:

1. Define a privilege class record that has database administration authority enabled (set to
YES).

2. Add the TSO user IDs of those authorized to access mapping reference records to the list
of eligible users in the privilege class record.

3. Users working with mapping reference records must make this authorized privilege class
the current class for their session.

Creating a Mapping Reference Record
The following procedure describes the steps involved in creating a mapping reference
record:

1. From the System Primary Options Menu (BLG0EN10), select option 5 (ENTRY). The
System Record Entry panel (BLG00010) is displayed.

+ BLG00010 ------------ SYSTEM RECORD ENTRY --------------- 1 OF 1-+
| |
| USE....Identify the type of description (record) to be entered. |
| |
| 1.CLASS..............Define authority and users in a privilege |
| class record. |
| 2.REFERENCE..........Define reference information. |
| 3.LOGSAVE............Define information used by the Automatic |
| Log Save and DB2 Extract Facilities. |
| 4.MAP................Define PostProcessor data mapping. |
| 5.INDEX..............Define index for text search. |
| |
| |
+------------------------- SELECT ITEM ----------------------------+

===>

2. From the Reference Entry selection panel (BLG00010), select option 4 (MAP). The
Mapping Reference Entry panel (EYM5M100) is displayed as shown in this example.

Setting Up the PostProcessor

174 Version 7.1

|

EYM5M100 MAPPING REFERENCE ENTRY

10. Record ID <R>.......... ________
11. Description............ ___

PostProcessor ERROR NOTIFICATION

12. User 1 ID to notify.... ________ 14. User 2 ID to notify.... ________
13. User 1 Node............ ________ 15. User 2 Node............ ________

MAKE A SELECTION, OR REPLY END (TO FILE) OR CANCEL (NO SAVE)

1. Add mapping reference data

===>

This is the main entry panel for the mapping reference record. You are required to enter
the record ID of a mapping reference record in field 10. The record ID you enter must
be unique in the database and match the ID that is entered in the record by AutoBridge.

Fields 12 through 15 allow you to enter node and user ID information to notify two
operators about PostProcessor failures.

To get more information about the fields on this panel, enter HELP on the command
line.

3. Select option 1 (Add mapping reference data) to specify the fields, commands, and
selections to be processed by the PostProcessor. The Mapping Reference Data entry
panel (EYM5M500) is displayed as shown in this example.

EYM5M500 MAPPING REFERENCE DATA LINE 1 OF 1

RECORD: MAP

TARGET SOURCE
PANEL TARGET FIELD/COMMAND PREFIX

'' ________ ___ ______
'' ________ ___ ______
'' ________ ___ ______
'' ________ ___ ______
'' ________ ___ ______
'' ________ ___ ______
'' ________ ___ ______
'' ________ ___ ______
'' ________ ___ ______
'' ________ ___ ______
'' ________ ___ ______
'' ________ ___ ______

BASE LINE COMMANDS: A,A#=ADD D,D#=DELETE R,R#=REPEAT L,L#=LINE ENTRY
CUSTOM LINE COMMANDS: I=INSERT A BLANK LINE C=REPEAT THIS LINE
ISSUE LINE COMMANDS, SCROLL COMMANDS (UP,DOWN), OR REPLY END TO EXIT

===>

The information you enter on this panel determines how the PostProcessor processes
your AutoBridge-created records. Information on entering mapping reference record data
follows this procedure. To see detailed information about each field on this panel, enter
HELP on the command line. The line commands on this panel work the same as those
on standard Tivoli Information Management for z/OS panels.

Setting Up the PostProcessor

175Guide to Integrating with Tivoli Applications

13.
N

etV
iew

A
u

to
B

rid
g

e
P

o
stP

ro
cesso

r

4. When you have finished entering mapping reference record data on this panel, exit the
panel as follows:

¶ To save the changes to this mapping reference record, enter END on the command
line.

¶ To quit without saving your changes, enter CANCEL.

Either action returns you to the Mapping Reference Entry panel (EYM5M100).

5. Close the entry session for this mapping reference record as follows:
¶ To file the record in the database, enter END on the command line.
¶ To cancel entry of the record, enter CANCEL.

Either action returns you to the Information/System Primary Options Menu
(BLG0EN10).

When defining the PostProcessor commands and selections for a mapping reference record,
think of the PostProcessor as an automated end user. Combine the selections and fields used
for post-processing with any selections and commands necessary for navigating through your
Tivoli Information Management for z/OS panels and filing the processed record.
“PostProcessor Example” on page 164 shows the mapping reference record contents.

Mapping Reference Record Considerations
Keep in mind the following considerations when creating mapping reference records:

¶ The PostProcessor determines which mapping reference record to use by reading the
value in the transaction record that corresponds to the PostProcessor structured word
specified in the alias table. This value is the record ID of the mapping reference record
to be used. If there is no such value specified in the transaction record, the default value
specified in the alias table is used.

¶ The PostProcessor copies the AutoBridge-created record using the Tivoli Information
Management for z/OS COPY command; therefore, the starting panel is the same as if
you had initiated a record copy from your terminal.

¶ The PostProcessor keeps track of the rows it has used. Each row in the mapping
reference record that is accessed by the PostProcessor is used only once for each record
processed.

¶ Rows that contain the names of Target Panels that are not accessed during record
processing are ignored. Such entries do not cause post-processing errors.

¶ Mapping reference records must include a selection or command to file the
post-processed record.

¶ The PostProcessor determines its success by testing for the following message:
BLG03058I Record ________ stored successfully

The PostProcessor looks for this message when it locates a row in the mapping
reference record having a value in the Target Panel column and no values in the Target
Field/Command and Source Prefix columns. The Target Panel value in this row will
typically be the name of a primary options menu such as Tivoli Information
Management for z/OS’s BLG0EN20. The value you use may differ based on the
customization at your site.

Setting Up the PostProcessor

176 Version 7.1

¶ The PostProcessor can perform only limited processing of freeform text and does so
only with the Tivoli Information Management for z/OS editor. Do not use the
PostProcessor to manipulate freeform text.

¶ The PostProcessor encounters an error if it attempts to leave a panel that does not have
all required fields filled. Either AutoBridge must create records with all required fields
filled, or the mapping reference record data used during post-processing must contain
commands that supply values to these fields.

Note: Verify your mapping reference record content manually as follows:
1. Print your mapping reference record.
2. Create a test AutoBridge record.
3. Manually follow the mapping reference record procedure in the same way as the

PostProcessor would. Remember to begin by copying the record.

Maintaining Mapping Reference Records
As the administrative processes at your site evolve, your Tivoli Information Management for
z/OS applications will change. These changes may affect panel flows and the hidden
automation behind fields and selections. As a result, you may need to modify your mapping
reference records periodically.

Modifying Mapping Reference Records
You can access and modify mapping reference records like any other Tivoli Information
Management for z/OS record. All record operations are supported for mapping reference
records (update, display, copy, purge, print) and can be initiated using the typical methods:
¶ Enter a command on the command line.
¶ Use the UTILITY dialog (Option 7 on the primary options menu).
¶ Enter line commands next to mapping reference record entries in a search results list.

Helpful details about record operations follow.

¶ When you copy a mapping reference record, all field values are carried into the new
record with the exception of the following:

Record ID
Date entered
Time entered
Entry privilege class
User ID last altered
Date last altered
Time last altered
Owning privilege class

¶ When you print a mapping reference record, output is generated that includes the
complete record contents, formatted according to RFT EYMPRMR.

Locating Mapping Reference Records
Search for mapping reference records using the standard Tivoli Information Management for
z/OS methods:

¶ Enter freeform SEARCH commands directly on the command line or via the
ARGUMENT command.

¶ Create structured searches using the inquiry dialog (Option 6) from the System Primary
Options Menu (BLG0EN10).

Setting Up the PostProcessor

177Guide to Integrating with Tivoli Applications

13.
N

etV
iew

A
u

to
B

rid
g

e
P

o
stP

ro
cesso

r

¶ Use a combination of these methods.

As shipped, the following fields will be searchable (recognized) in the mapping reference
record:

Record ID
User 1 ID to notify
User 1 Node
User 2 ID to notify
User 2 Node
Date entered
Time entered
Entry privilege class
User ID last altered
Date last altered
Time last altered
Owning privilege class
Target panel (column in mapping reference list)

In the System dialog, only the Quick Search Panels path is supported for structured searches.
Therefore, set the Quick Search Panels value to YES in your profile. Otherwise you may get
inaccurate search results.

To locate a mapping reference record, perform a structured search as follows:

1. From the System Primary Options Menu (BLG0EN10), select option 6 (INQUIRY). The
System Inquiry selection panel (BLG00011) is displayed as shown in this example. Type
3 for mapping records and press Enter.

+ BLG00011 ----------- SYSTEM RECORD INQUIRY -------------- 1 OF 1-+
| |
| USE....Identify the type of records to include in the inquiry. |
| |
| 1.CLASS............Include privilege class records in inquiry. |
| 2.SRC..............Include SRC records in the inquiry. |
| 3.MAP..............Include mapping records in inquiry. |
| 4.INDEX............Include index records in inquiry. |
| |
| |
| |
| |
| |
+------------------------- SELECT ITEM ----------------------------+

===> 3

2. The mapping reference record Inquiry panel (EYMAM100) is displayed as shown here.

Setting Up the PostProcessor

178 Version 7.1

|

EYMAM100 MAPPING REFERENCE INQUIRY

10. Record ID.............. ________

PostProcessor ERROR NOTIFICATION

12. User 1 ID to notify.... ________ 14. User 2 ID to notify.... ________
13. User 1 Node............ ________ 15. User 2 Node............ ________

RECORD ACTIVITY

16. User entered.......... ________ 20. User last altered...... ________
17. Date entered.......... ________ 21. Date last altered...... ________
18. Time entered.......... _____ 22. Time last altered...... _____
19. Entry priv. class..... ________ 23. Owning priv. class..... ________

MAPPING REFERENCE DATA

24. Target Panel ________

WHEN COMPLETE REPLY END OR CANCEL TO RETURN, OR SEARCH (SE)

===>

To view detailed information about each field on this panel, enter HELP on the
command line.

Use this inquiry panel like you would use the other Tivoli Information Management for
z/OS Quick Search panels. Once you have entered the search criteria, enter SEARCH to
initiate the database search.

Using Updated Mapping Reference Records
The PostProcessor uses the mapping reference record that is in memory until a different
record is called. For the PostProcessor to use an updated mapping reference record, you
must stop the PostProcessor task and then restart it. Do this by responding to message
EYM000I with the END command. The next API event will restart the PostProcessor.

Modifying AutoBridge’s Tivoli Information Management for z/OS
Interface

This section describes modifications that you must make to Tivoli Information Management
for z/OS’s PIDT and alias table. This section also describes a consideration regarding the
modification of Tivoli Information Management for z/OS’s record file TSP (BLGAPI00).

If you need additional information on the PIDT and alias table, refer to the Tivoli
Information Management for z/OS Application Program Interface Guide.

PIDT Modifications
You must modify the Program Interface Data Table (PIDT) used by AutoBridge to include a
reference to the Tivoli Information Management for z/OS structured word that the
PostProcessor uses to distinguish an AutoBridge-created record from other database records.
Your PIDT must refer to panel EYM6MARK, supplied with the PostProcessor. This example
highlights the addition to the PIDT segment for Problem Create.
TABLE NAME(BLGYPRC) USE(CREATE) CODE(0110) SEPARATOR(,);

FIELD PANEL(BLG00000) INDEX(S0032) /* PROBLEM RECORD TYPE */
REQUIRED(Y) RCDSWORD(Y);

/* POSTPROCESSOR MARKER SWORD */
FIELD PANEL(EYM6MARK) INDEX(S7C00); /* POSTPROC FLAG */
/* REPORTER DATA */
FIELD PANEL(BLG0BU00) INDEX(S0CFC); /* REPORTER DATA */

Setting Up the PostProcessor

179Guide to Integrating with Tivoli Applications

13.
N

etV
iew

A
u

to
B

rid
g

e
P

o
stP

ro
cesso

r

FIELD PANEL(BLG6REQN) INDEX(S0B59) /* REPORTER NAME */
REQUIRED(Y);

FIELD PANEL(BLG6RQDP) INDEX(S0B9B); /* REPORTER DEPARTMENT */
FIELD PANEL(BLG6PHON) INDEX(S0B2D); /* REPORTER PHONE */
FIELD PANEL(BLG6OCCD) INDEX(S0C3D); /* DATE OCCURRED */
FIELD PANEL(BLG6OCCT) INDEX(S0C6A); /* TIME OCCURRED */
FIELD PANEL(BLG6NETN) INDEX(S0CA3); /* NETWORK NAME */
FIELD PANEL(BLG6SYSN) INDEX(S0CA5); /* SYSTEM NAME */
FIELD PANEL(BLG60APN) INDEX(S0CA8); /* PROGRAM NAME */
FIELD PANEL(BLG6DEVN) INDEX(S0CA9); /* DEVICE NAME */
FIELD PANEL(BLG6KIAF) INDEX(S0CBF); /* KEY ITEM AFFECTED */
FIELD PANEL(BLG6REQD) INDEX(S0C49); /* DATE FIX REQUIRED */

Alias Table Modifications
As with the PIDT, you must modify the Tivoli Information Management for z/OS alias table
to include an alias for the PostProcessor structured word, as shown in the following
example. See the sample EYLALIAS in SBLMSAMP.
TABLE NAME(EYLALIA) USE(ALIAS);
ALIAS NAME(POSTPROC_FLAG) /* POSTPROCESSOR FLAG */

FIELD(S7C00) /* POSTPROC FLAG SWORD */
DEFAULT(EYMMAPR); /* OPTIONAL DEFAULT */

ALIAS NAME(REPORTER_NAME) /* REPORTER NAME */
FIELD(S0B59) /* REPORTER NAME SWORD */
DEFAULT(AUTOBRIDGE); /* DEFAULT REPORTER */

ALIAS NAME(REPORTER_DEPT) /* REPORTER DEPT */
FIELD(S0B9B); /* REPORTER DEPT SWORD */

ALIAS NAME(REPORTER_PHONE) /* REPORTER PHONE */
FIELD(S0B2D); /* REPORTER PHONE SWORD */

ALIAS NAME(DATE_OCCURRED) /* DATE OCCURRED */
FIELD(S0C3D); /* DATE OCCURRED SWORD */

ALIAS NAME(TIME_OCCURRED) /* TIME OCCURRED */
FIELD(S0C6A); /* TIME OCCURRED SWORD */

ALIAS NAME(NETWORK_NAME) /* NETWORK NAME */
FIELD(S0CA3); /* NETWORK NAME SWORD */

ALIAS NAME(SYSTEM_NAME) /* SYSTEM NAME */
FIELD(S0CA5); /* SYSTEM NAME SWORD */

ALIAS NAME(PROGRAM_NAME) /* PROGRAM NAME */

This example also shows an optional default value that can be specified in the alias table.
All Tivoli Information Management for z/OS API applications with DEFAULT_OPTIONS
set to ALL use this alias table to create records that are located and processed by the
PostProcessor. If you have many applications that share the same alias table, do not specify
a default value unless you want all API-created records to be processed by the PostProcessor
using the same mapping reference record.

Note: If you specify a default value, it must be equal to the ID of a mapping reference
record in the Tivoli Information Management for z/OS database. If you do not, then
the API must supply the ID of a mapping reference record for the PostProcessor to
use.

Record File TSP Modifications
The PostProcessor is invoked when AutoBridge creates a record through Tivoli Information
Management for z/OS’s API. This is the result of the modification to BLGAPI00 discussed
in “Step 1. Plan for the PostProcessor Panels” on page 168. If you have other applications
that create records via the Tivoli Information Management for z/OS API, and you do not
want to have the PostProcessor invoked in these instances, you need to set up your session
members and panel data set concatenations so that only the AutoBridge session accesses the
version of BLGAPI00 with the PostProcessor modifications.

Setting Up the PostProcessor

180 Version 7.1

Running the PostProcessor
With proper installation, setup, and authorization, the PostProcessor runs automatically when
AutoBridge enters a record into the Tivoli Information Management for z/OS database. The
following sections discuss PostProcessor messages, error recovery, and halt conditions.

Viewing PostProcessor Messages
All messages generated by the PostProcessor begin with the prefix EYM. PostProcessor
messages are written to the system console and can be viewed directly via the Spool Display
and Search Facility (SDSF) or any similar facility. Tivoli Information Management for z/OS
messages that are indirectly generated by the PostProcessor are not collected, except for
messages that occur when an unexpected error is encountered. Should such an error occur,
these messages, along with an image of the last Tivoli Information Management for z/OS
panel processed, are sent to the destination specified by the SYSPRINT DD statement
defined to the PostProcessor.

Recovering from PostProcessor Errors
Table 31 lists the most common PostProcessor errors, their causes, and the response
necessary to correct them.

Table 31. Probable causes and responses to common PostProcessor errors
Error Probable cause Corrective action

System '047' abends One or more libraries are
not authorized in the
STEPLIB concatenation.

Verify that system authorization is complete for all data
sets in the STEPLIB DD statements for the ADAPTER
PROC and EYMPOST PROC.

Message BLG10030I The PostProcessor may not
have the correct
authorization to access and
modify records in the Tivoli
Information Management for
z/OS database.

Make sure that the PostProcessor is correctly authorized
to read mapping reference records as well as copy,
update, and purge records created by AutoBridge. See
“Authorizing the PostProcessor to Tivoli Information
Management for z/OS” on page 173 for instructions.

PostProcessor procedure
EYMPOST does not start

Data sets not correctly
defined.

Check data set allocations and concatenations to be sure
the correct data sets are being referenced. In particular,
check the ISPF profile data set, as its name is generated
from a passed parameter and may not correlate to a data
set name on the system.

Data validation errors
“Selection not found”
messages
Panel flow errors
Other similar errors

Mapping reference record
data is incorrectly specified.

Determine from the error messages which row in the
mapping reference record data list is causing the error
and make the necessary corrections. See “Creating a
Mapping Reference Record” on page 174 for additional
information on creating and validating a mapping
reference record.

Message EYM107E There is no mapping
reference record in the
database with an ID that is
the same as that passed in
by AutoBridge.

Create a mapping reference record with an ID that is the
same as the ID passed by AutoBridge. If the Tivoli
Information Management for z/OS alias table contains a
default for the mapping reference record ID, make sure
this value has been entered correctly. If there are
customized AutoBridge command procedures that are
overriding the default mapping reference record ID in the
alias table, the procedures must have valid values so that
the PostProcessor will not encounter an error.

Running the PostProcessor

181Guide to Integrating with Tivoli Applications

13.
N

etV
iew

A
u

to
B

rid
g

e
P

o
stP

ro
cesso

r

Error Notification
When the PostProcessor encounters an error while attempting to process a record, it attempts
to access the current mapping reference record and then to look for PostProcessor
error-notification data. If it finds notification data, the PostProcessor will build an error
message and transmit it to the user IDs specified in the mapping reference record using the
TSO XMIT command.

If your installation uses a different command or command format, you can change the
command skeleton. The command skeleton is defined by a MOVEVAR control line in TSP
EYM9XMIT and saved in the escalation control block (ESCB) as shown in this example.
Refer to the Tivoli Information Management for z/OS Problem, Change, and Configuration
Management or the Tivoli Information Management for z/OS Panel Modification Facility
Guide for additional information.

BLM1TSU9 CONTROL LINE SUMMARY LINE 15 OF 88
CONTROL FUNCTION LABEL LITERAL GET APPLY
LINE NAME NAME DATA VAR NOT

'' LABEL * EXECUTE DISPLAY COMMAND *
'' LABEL ********************************
'' PROCESS ERROR
'' LABEL BLGESGCB GET ESCALATION CONTROL BLOCK
'' USEREXIT NO NO
'' LABEL BLGESINI INITIALIZE ESCALATION ENVIR'MENT
'' USEREXIT NO NO
'' LABEL ********************************
'' LABEL * BUILD NOTIFICATION SKELETON *
'' LABEL ********************************
'' MOVEVAR XMIT (&NODE./&ID.)
'' MOVEVAR MSGDDNAME(&DDN.) NOLOG NONOTIFY
'' USEREXIT YES NO
'' LABEL ********************************

LINE COMMANDS: U,U#,UU=UPDATE, D,D#,DD=DELETE
ISSUE LINE CMDS, SCROLL CMDS (UP, DOWN, LEFT, RIGHT), OR REPLY END TO EXIT

===>

BLM8CU9O MOVEVAR SPECIFICATION PANEL: EYM9XMIT
Enter 'MOVEVAR' control data; cursor placement or input line entry allowed.

1. TSCA Field Name............... ________
2. Literal Data.................. XMIT (&NODE./&ID.)
3. Replace data.................. YES

WHEN COMPLETE REPLY END (TO SAVE) OR CANCEL (NO SAVE)

===>

Running the PostProcessor

182 Version 7.1

BLM8CU9O MOVEVAR SPECIFICATION PANEL: EYM9XMIT
Enter 'MOVEVAR' control data; cursor placement or input line entry allowed.

1. TSCA Field Name............... ________
2. Literal Data.................. MSGDDNAME(&DDN.) NOLOG NONOTIFY
3. Replace data.................. NO_

WHEN COMPLETE REPLY END (TO SAVE) OR CANCEL (NO SAVE)

===>

SNAP Macro Data
When system macros fail or internal logic errors occur, the PostProcessor calls the SNAP
macro to create a dump of register and selected storage contents that you can use for
problem determination. This data is sent to the destination specified by the SYSPRINT DD
statement defined to the PostProcessor.

Reprocessing Records in Error
Records that cause PostProcessor errors are flagged to ensure that another running
PostProcessor does not locate these records in the database and attempt to reprocess them.
After you identify and resolve such errors, you can reset the records so that the next
PostProcessor that is activated will locate and process them.

Follow these steps to locate and update these records so that they will be reprocessed by the
PostProcessor:

1. Enter Tivoli Information Management for z/OS using a privilege class with record update
authority for the records to be processed.

2. Issue the command RUN EYM9RSET from the command line.

TSP EYM9RSET resets all records in the database that have encountered PostProcessor
errors and makes the records available to the next PostProcessor that runs.

Stopping the PostProcessor
The PostProcessor task stops running whenever one of the following occurs:

A NetView Bridge adapter task ends
The PostProcessor task associated with the adapter will end approximately one
minute after the adapter address space is purged. This is the most likely cause of a
PostProcessor task stopping. It does not require any operator intervention.

You respond to console message EYM000I with the END command
Do this only if you need to force a PostProcessor to stop prior to the purging of the
NetView Bridge adapter or other application address space. If AutoBridge or an
application associated with the address space continues to file more records, the
PostProcessor will be automatically restarted.

Running the PostProcessor

183Guide to Integrating with Tivoli Applications

13.
N

etV
iew

A
u

to
B

rid
g

e
P

o
stP

ro
cesso

r

A severe PostProcessor error occurs
Console messages and possibly a SNAP dump of memory contents will indicate the
error condition. Also, the PostProcessor task is disabled so it does not attempt to
restart.

Mapping Reference Records Contents
Following is a list of the mapping reference record fields and their associated structured
words and prefix words. Refer to the Assisted Entry panel for a complete list of the prefix
words defined to each field.

Table 32. Mapping reference record data model

Field name/Description
Assisted Entry
Panel

S-word
index S-word

S-word
index S-word

Record type s-word 7C05 XIM0I0MREC

Record ID EYM6URN0 01E9 RNID/

Description EYM6DSAB 0E0F XIM0TXCA00

Target panel list item EYM6TPAN 7C10 XIM0IL01 7B11 TPAN/

Target field list item EYM6TFLD 7C12 XIM0IL02

Source prefix list item EYM6SPFX 7C14 XIM0IL03 7B04 SPFX/

Date entered EYM6CRDT 0C34 XIM00SDC00 00D8 DATE/

Time entered EYM6CRTM 0C61 XIM00STC00 028B TIME/

Entry privilege class EYM6CLAE 007A XIM0I0CCS0 007A CLAE/

User ID entered EYM6USRE 7C0A XIM0I0PE00 7B02 USERE/

Date last altered EYM6ALTD 0C35 XIM00SDM00 00DF DATM/

Time last altered EYM6ALTT 0C62 XIM00STM00 0291 TIMM/

Owning privilege class EYM6POWN 0BB5 XIM0I0CCO0 007E CLAO/

User ID last altered EYM6USER 0B5E XIM0I0PM00 02C4 USER/

User 1 ID to notify EYM6RIDN 0125 XIM0I0PRL1 0468 USRN/

User 1 node EYM6RNOD 0126 XIM0IC0RL1 00CA COMX/

User 2 ID to notify EYM6RIDN 0128 XIM0I0PRL2 0468 USRN/

User 2 node EYM6RNOD 0129 XIM0IC0RL2 00CA COMX/

AutoBridge PostProcessor User Exits
This section describes the AutoBridge PostProcessor user exits. For each user exit, the
function, overview, description, input, output, and return codes are provided.

EYMSP010
MODULE NAME

EYMSP010

FUNCTION API Event Detection Module Flow

OVERVIEW EYMSP010 API Event Detection Module
¶ Installed as an exit for BLGAPI00 TSP (file time TSP)
¶ Will GETMAIN storage for Common Program Storage
¶ Will start the PostProcessor job and pass CPS address

Running the PostProcessor

184 Version 7.1

¶ After initial invocation will POST EYMSP030 module when there is
processing to do

DESCRIPTION
EYMSP010 is activated when the API files a Tivoli Information
Management for z/OS record. It will check for the PostProcessor being
active, if it is, then POST EYMSP030’s ECB and return to the TSP. If the
PostProcessor is not active, then start EYMSP020, which is the
PostProcessor initialization task. After the PostProcessor has been notified of
work to be done then return control to the TSP.

INPUT None

OUTPUT None

Return codes
¶ 0 - no errors
¶ 4 - warning
¶ 8 - error
¶ 12 - severe error
¶ 16 - catastrophic error

EYMSP020
MODULE NAME

EYMSP020

FUNCTION PostProcessor Main Task

OVERVIEW EYMSP020 PostProcessor Initialization task
¶ LOAD EYMSP030 program
¶ LINK to EYMSP030 task and pass address of CPS
¶ ATTACH TSO subtask (TSO will start an &im; session)
¶ WAIT on termination of TSO subtask
¶ LINK to EYMSP030 task to update status in CPS

DESCRIPTION
EYMSP020 will LOAD then LINK to EYMSP030 passing the address of
the Common Program Storage area then ATTACH TSO as a sub-task. When
control is returned after sub-task termination, perform address space clean-up
and exit to MVS.

INPUT None

OUTPUT None

Return codes
¶ 0 - no errors
¶ 4 - warning
¶ 8 - error
¶ 12 - severe error
¶ 16 - catastrophic error

EYMSP030
MODULE NAME

EYMSP030

FUNCTION EYMSP030 PostProcessor Link Module

AutoBridge PostProcessor User Exits

185Guide to Integrating with Tivoli Applications

13.
N

etV
iew

A
u

to
B

rid
g

e
P

o
stP

ro
cesso

r

OVERVIEW EYMSP030 PostProcessor Link Module
¶ Will BE LINKed to by EYMSP020 with CPS address
¶ POST EYMSP010 that PostProcessor is active
¶ Will BE LINKed to by EYMSP040
¶ Will issue a WTOR for termination
¶ WAIT to be POSTed by EYMSP010
¶ RETURN to EYMSP040 when there is work to do
¶ Pass termination command to EYMSP040
¶ Pass termination status to EYMSP010

DESCRIPTION
EYMSP030 is the link between the API address space and the PostProcessor
batch address space. It is called by EYMSP020 for initilization/termination
processing and by EYMSP040 to wait for work to do. EYMSP020 will pass
the address of the CPS area which contains ECBs, ECB addresses and the
ENQ name suffix which is used to determine the status of EYMSP010 and
the PostProcessor. EYMSP030 will POST EYMSP010’s ECB to indicate the
PostProcessor is active and issue a WTOR message which will allow the
operator to terminate the PostProcessor task. EYMSP040 will call
EYMSP030 to wait for work and pass the status of the Tivoli Information
Management for z/OS segment of the PostProcessor. EYMSP030 will WAIT
to be POSTed by EYMSP010 when an API entered record is filed. After
being POSTed, EYMSP030 returns to EYMSP040 for record processing.
EYMSP030 will be re-entered when processing has been completed to WAIT
on the next event.

INPUT Address of the Common Program Storage. Status of the PostProcessor

OUTPUT None

Return codes
¶ 0 - no errors
¶ 4 - warning
¶ 8 - error
¶ 12 - severe error
¶ 16 - catastrophic error

EYMSP040
MODULE NAME

EYMSP040

FUNCTION EYMSP040 Tivoli Information Management for z/OS Link Module

OVERVIEW EYMSP040 Tivoli Information Management for z/OS Link Module.
¶ Invoked as Tivoli Information Management for z/OS exit
¶ LINK to EYMSP030 for wait
¶ Execute Tivoli Information Management for z/OS PostProcess after

EYMSP030 is POSTed
¶ RETURN to EYMSP020 for termination (via Tivoli Information

Management for z/OS/TSO)

DESCRIPTION
EYMSP040 is the interface between the Tivoli Information Management for
z/OS process and the MVS environment.

INPUT None

AutoBridge PostProcessor User Exits

186 Version 7.1

OUTPUT
¶ TSCAFRET 0 = no errors
¶ TSCAFRET 8 = error
¶ TSCAFRES 0 = normal, record(s) to be processed
¶ TSCAFRES 4 = terminate PostProcessor

Return codes
¶ 0 - no errors
¶ 4 - warning
¶ 8 - error
¶ 12 - severe error
¶ 16 - catastrophic error

EYMSP041
MODULE NAME

EYMSP041

FUNCTION Allocate/initialize Post Processor Mapping Table (PPMT)

OVERVIEW EYMSP041 Allocate/initialize in-storage PostProcessor mapping table
¶ VDEFINES ISPF variable &EYMPPMT for mapping table address
¶ GETMAINs a block of storage for mapping table
¶ Initializes select fields in mapping table
¶ VPUTs PPMT address in ISPF variable &EYMPPMT

DESCRIPTION
EYMSP041 is called as a user exit from TSP EYM9MAIN to allocate
storage for the PostProcessor Mapping Table (PPMT) and initialize select
fields within the PPMT.

INPUT None

OUTPUT
¶ PPMT - Post Processor Mapping Table - modified
¶ TSCA - Terminal Simulator Communications Area - modified

Return codes
¶ 0 - no errors
¶ 16 - catastrophic error

EYMSP042
MODULE NAME

EYMSP042

FUNCTION Initialize/Reset the Post Processor Mapping Table (PPMT)

OVERVIEW EYMSP042 Initialize/reset the in-storage PostProcessor mapping table
¶ Compares input mapping reference record id with id of last record

processed
¶ If table is to be reused, it resets row flags
¶ If a new table is to be built, it initializes table header

DESCRIPTION
EYMSP042 is called as a user exit from TSP EYM9MAPB to either
initialize or reset the in-storage mapping reference list (PPMT). If the
mapping reference record passed via the TSCA is the same as the ID stored

AutoBridge PostProcessor User Exits

187Guide to Integrating with Tivoli Applications

13.
N

etV
iew

A
u

to
B

rid
g

e
P

o
stP

ro
cesso

r

in the PPMT, the PPMT table is retained with any row and table flags
initialized. If the IDs are different, the rows of the PPMT are discarded.

INPUT
¶ TSCA - Terminal Simulator Communications Area
¶ PPMT - Post Processor Mapping Table

OUTPUT PPMT - Post Processor Mapping Table - modified

Return codes
¶ 0 - no errors
¶ 16 - VGET of PPMT address failed

EYMSP043
MODULE NAME

EYMSP043

FUNCTION Load row from mapping reference record into storage

OVERVIEW EYMSP043 Loads row from mapping reference record into storage
¶ Parses Target Panel, Source Prefix and Target Field/Command out of

variable data area
¶ Loads parsed values into Post Processor Mapping table

DESCRIPTION
EYMSP043 is called as a user exit from TSP EYM9MAPB to parse
mapping reference record data out of the TSP variable data area and load it
into the Post Processor Mapping Table, the in-storage representation of the
mapping reference record.

INPUT
¶ TSCA - Terminal Simulator Communications Area
¶ PPMT - Post Processor Mapping Table
¶

OUTPUT PPMT - Post Processor Mapping Table - modified

Return codes
¶ 0 - no errors
¶ 8 - data length errors were found
¶ 16 - VGET of PPMT address failed

EYMSP044
MODULE NAME

EYMSP044

FUNCTION Gets next available PPMT row for current panel

OVERVIEW EYMSP044 Gets next available PPMT row for current panel
¶ Target Field/Command placed in TSP Variable data area
¶ Source Prefix placed in TSP user area
¶ Posts flag in TSP user area if row not found, or record filed

DESCRIPTION
EYMSP044 is called as a user exit from TSP EYM9MAPE to retrieve the
next available row from the in-storage Post-Processor Mapping Table
(PPMT). A flag is posted if a row is not found, or if a row is found
indicating that the post-processed record should have been filed.

AutoBridge PostProcessor User Exits

188 Version 7.1

INPUT
¶ TSCA - Terminal Simulator Communications Area
¶ PPMT - Post Processor Mapping Table

OUTPUT
¶ TSCA - Terminal Simulator Communications Area - modified
¶ PPMT - Post Processor Mapping Table - modified

Return codes
¶ 0 - no errors
¶ 16 - VGET of PPMT address failed

EYMSP045
MODULE NAME

EYMSP045

FUNCTION Initialize user areas in TSCA

OVERVIEW EYMSP045 Initializes user areas in TSCA
¶ Resets user field (TSCAUFLD) to blanks
¶ Set Variable Data Area length (TSCAVDAL) to zero

DESCRIPTION
EYMSP045 is called as a user exit from TSP EYM9MAPE to clear user
areas in the TSCA prior to executing a command to post-process data.
Clearing these areas assures that user TSPs are not corrupted by execution of
the post-processor.

INPUT TSCA - Terminal Simulator Communications Area

OUTPUT TSCA - Terminal Simulator Communications Area - modified

Return codes
¶ 0 - no errors

EYMSP050
MODULE NAME

EYMSP050

FUNCTION EYMSP050 PostProcessor Message Module

OVERVIEW EYMSP050 PostProcessor Message Handler Module.
¶ LINK to by EYMSP modules to issue a message

DESCRIPTION
EYMSP050 will issue a message when linked to by other EYMSP modules.
The only exception will be for EYM000I; this message will be returned to
EYMSP030 for a WTOR to be issued.

INPUT Parm list — Register 1 →
@ message number
@ insert #1
@ insert #2
@ X’80’ insert #n

OUTPUT The desired message is placed on the current message chain.

Return codes
¶ 0 - no errors

AutoBridge PostProcessor User Exits

189Guide to Integrating with Tivoli Applications

13.
N

etV
iew

A
u

to
B

rid
g

e
P

o
stP

ro
cesso

r

¶ 4 - warning
¶ 8 - error
¶ 12 - severe error
¶ 16 - catastrophic error

EYMSP055
MODULE NAME

EYMSP055

FUNCTION Interface between TSP environment and exit EYMSP050

OVERVIEW EYMSP055 Bridges between TSP environment and message exit
EYMSP050
¶ Obtains message id from TSCA
¶ Retrieves insert information when necessary
¶ Build parameter list and calls EYMSP050

DESCRIPTION
EYMSP055 is called to issue an error message from within the TSP
environment. The message id is retrieved from the TSCA, Applicable inserts
are retrieved, a parameter list is built, and a call is made to EYMSP050.

INPUT
¶ TSCA - Terminal Simulator Communications Area
¶ PPMT - PostProcessor Mapping Table

OUTPUT The desired message is placed on the current message chain.

Return codes
¶ 0 - no errors
¶ 16 - ISPF VGET of PPMT address failed

AutoBridge PostProcessor User Exits

190 Version 7.1

NetView AutoBridge Messages

Messages
This chapter lists and describes the messages issued by AutoBridge.

EYL001I hh:mm:ss modname INPUT > parm1 parm2 parm3 parm4 parm5 parm6 parm7

Explanation: The AutoBridge MOD trace was selected for one or more functions. This is the message produced
whenever a module is entered.

Destination:

hh:mm:ss The current hour, minute, and second on this NetView system

modname The name of the module being entered

parm1—parm7 The first seven parameters passed to this module

System Action: This informational trace message is displayed, logged, or both depending on message
suppression and automation table values.

Operator Response: None.

EYL002I hh:mm:ss modname OUTPUT > exit_value

Explanation: The AutoBridge MOD trace was selected for one or more functions. This is the message produced
whenever a module is exited.

Destination:

hh:mm:ss
The current hour, minute, and second on this NetView system

modname
The name of the module being exited

exit_value
The return code or result specified on this module’s exit or return point

System Action: This informational trace message is displayed, logged, or both depending on message
suppression and automation table values.

Operator Response: None.

EYL003I hh:mm:ss module DATA > d1 d2 d3 d4 d5 d6 d7

Explanation: The AutoBridge DATA trace was selected for one or more functions. This is the message
produced when certain modules produce data. For example, if tracing the AutoBridge API data, these messages
contain the record being passed to the checkpoint task. If tracing the process table, these messages contain the
ADD_DATA and PARSE results.

Destination:

hh:mm:ss
The current hour, minute, and second on this NetView system

14

191Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

module The name of the module producing the data

d1—d7 The data fields (up to seven data fields per message line)

System Action: This informational trace message is displayed, logged, or both depending on message
suppression and automation table values.

Operator Response: None.

EYL004W AUTOBRIDGE EXEC modname CANCELED PER OPERATOR REQUEST

Explanation: You entered either a RESET or a CANCEL command while an AutoBridge module was running.

Destination:

modname
The name of the module that was canceled

System Action: Processing for the indicated command stops.

Operator Response: None.

EYL005W AUTOBRIDGE EXEC modname TIMED OUT

Explanation: An AutoBridge module issued a command and was waiting for the expected response. For
example, starting a task or loading a process table should produce a message. No message was received in either
the time specified by the value of WAITTIME in the initialization table (EYLATINT) or, if no value was
specified, the default timeout of five seconds.

Destination:

modname
The name of the module that encountered the timeout condition

System Action: Processing for the indicated module stops.

Operator Response: Notify your system programmer.

Operator Response: Look for the NetView or system log to determine which module failed and any associated
error messages. If you are unable to solve the problem, increase the value of WAITTIME in the initialization
table (EYLATINT).

EYL006E AUTOBRIDGE EXEC modname FAILED — NO VALUE AT LINE linenum

Explanation: An AutoBridge REXX module NOVALUE signal was raised.

Destination:

modname
The name of the module that encountered the “no value” condition

linenum The line number of the failing instruction

System Action: Processing for the indicated module stops.

Operator Response: Notify your system programmer.

Operator Response: Look for the NetView or system log to determine which module failed and any associated
error messages. If unable to determine the cause or perform a correction, contact Tivoli Customer Support for
additional programming assistance.

Messages

192 Version 7.1

EYL007E AUTOBRIDGE EXEC modname FAILED — SYNTAX ERROR error AT LINE linenum

Explanation: An AutoBridge REXX module SYNTAX signal was raised.

Destination:

modname
The name of the module that encountered the “no value” condition.

error The type of syntax error encountered. These are documented in the Procedures Language MVS/REXX
Reference manual.

linenum The line number of the failing instruction.

System Action: Processing for the indicated module stops.

Operator Response: Notify your system programmer.

Operator Response: Look for the NetView or system log to determine which module failed and any associated
error messages. If unable to determine the cause or perform a correction, contact Tivoli Customer Support for
additional programming assistance.

EYL051E AUTOBRIDGE API INVOKED WITH INVALID PARAMETERS parm1 parm2 parm3

Explanation: The invocation of the NetView AutoBridge API (ABAPI) did not include a valid process segment
name, bridge dispatcher name and description, or label for input data.

Destination:

parm1 The first parameter

parm2 The second parameter

parm3 The third parameter

System Action: No NetView AutoBridge processing occurs.

Operator Response: Notify your system programmer.

System Programmer Response: Verify that the NetView AutoBridge was invoked correctly.

EYL052E THERE IS NO VALID TRANSACTION DATA FOR THE AUTOBRIDGE

Explanation: The NetView AutoBridge API was invoked, but when the process table segment was complete, no
parmvar data was created to send to the target database.

System Action: No NetView AutoBridge processing occurs.

Operator Response: Notify your system programmer.

System Programmer Response: Verify that the process table segment includes statements that will produce
transaction data. You may choose to trace AutoBridge components.

EYL053E AUTOBRIDGE STOPPED PROCESSING RECORD, RC=rc FROM EXEC=exec

Explanation: The NetView AutoBridge API invoked an exec which produced a return code greater than 8 to
stop processing this data.

Destination:

rc The return code

exec The exec name (command, command processor or command list)

System Action: No further NetView AutoBridge processing occurs.

Operator Response: None.

System Programmer Response: None required (assuming that this was a valid return code and the desired
result). If this message was received unexpectedly, examine the invoked EXEC to determine the cause of the
return code.

Messages

193Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

EYL054E AUTOBRIDGE ENCOUNTERED INVALID COMMAND command

Explanation: The AutoBridge API encountered an invalid command in the process table.

Destination:

command
The command as listed in the process table

System Action: The AutoBridge ignores this command and proceeds with the next process table statement.

Operator Response: Notify your system programmer.

System Programmer Response: Examine the process table and correct the statement.

EYL055I AUTOBRIDGE API IS NOT ACTIVE. NO PROCESSING WILL OCCUR

Explanation: The AutoBridge API was invoked but it is not in an active state.

System Action: The AutoBridge does not process the MSUSEG, message, or data buffer passed to it.

Operator Response: If the API was purposely stopped or the AutoBridge application was purposely not started,
no action is required. If the API should be active, you may start the application by issuing ABRIDGE START
ALL or ABRIDGE START API or by using the ABMENU screen.

System Programmer Response: If this was an unexpected state, review the system and NetView logs to
determine why the API was inactive.

EYL056E AUTOBRIDGE API UNABLE TO READ THE PROCESS TABLE process_segment

Explanation: The process segment specified as the first parameter in the AutoBridge call cannot be accessed.

Destination:

process_segment The process segment that cannot be accessed

System Action: The AutoBridge does not process the MSUSEG, message, or data buffer passed to it.

Operator Response: Notify your system programmer.

System Programmer Response: Verify that the process segment name exists in the process table EYLATPRO.
If the segment was added since the last time AutoBridge was started, use the ABTABLES process table load
(option 10) to reload the process table.

EYL150E THE PROCESS TABLE FUNCTION function WAS INVOKED AND A REQUIRED PARAMETER parm
WAS MISSING

Explanation: A required keyword was not found or a keyword was not valid for the invocation of a process
table function.

Destination:

function The name of the process table function that was invoked

parm The parameter that was not found

System Action: The alias name associated with that function is deleted.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the error, then reload the process table.

Messages

194 Version 7.1

EYL151E EXEC exec ENDED. RETURN CODE rc

Explanation: An application or user-written exec returned a non-zero return code

Destination:

exec The name of the exec that returned a non-zero code

rc The return code value

System Action: The alias name associated with that function is deleted.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the error, then retry.

EYL152I MAPPING STATEMENT statement_details

Explanation: This message precedes most error messages and identifies the statement that was being processed
when an error was detected.

Destination:

statement_details The statement from the mapping segment

System Action: None.

Operator Response: Give details of the statement to your system programmer.

System Programmer Response: Use this message and its related messages to identify the statement and
segment where the failure occurred.

EYL153E THE PROCESS TABLE FUNCTION function WAS TERMINATED DUE TO A SEGMENT OR TABLE
ERROR

Explanation: The process table function was not executed because the mapping segment could not be retrieved
or because the table was not active.

Destination:

function The name of the process table function that was invoked

System Action: Control returns to the AutoBridge API.

Operator Response: Verify that the mapping table is active. If the table is inactive, start the table. Notify your
system programmer if the table had been started when the error occurred.

System Programmer Response: Correct the problem, then reload the mapping table.

EYL154E THE PARAMETER parm IS NOT VALID

Explanation: An invalid parameter was passed to a process table function.

Destination:

parm The name of the parameter that failed

System Action: Processing for the command stops.

Operator Response: If the command was entered from the command line, then check the syntax and re-enter.
If the syntax is correct, contact your system programmer.

System Programmer Response: Verify and correct the command, then retry.

Messages

195Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

EYL155W THE CODEPOINT code FOR BLOCKID bkid WAS NOT FOUND

Explanation: The DECODE keyword was specified on a statement, but the specified codepoint and block ID
could not be retrieved.

Destination:

code The codepoint value extracted from the input data

bkid The block ID value extracted from the input data

System Action: The decode operation stops.

Operator Response: Notify your system programmer.

System Programmer Response: Contact your service representative for assistance in diagnosing the cause of
the failure.

EYL156W THE CODEPOINT codepoint FOR SUBVECTOR subvector WAS NOT FOUND

Explanation: DECODE was specified on the mapping statement but the codepoint could not be resolved to
descriptive text. See also EYL152I.

Destination:

codepoint
The codepoint displayed in hex

subvector
The subvector table that was searched

System Action: The decode operation ends.

Operator Response: Notify your system programmer.

System Programmer Response: Verify that the correct input was used, then retry the operation.

EYL157W THE DECODE OF codepoint FAILED. THE SUBVECTOR AND/OR CODEPOINT WAS NOT FOUND

Explanation: The mapping statement specifies “decode”, but this could not be performed because the codepoint
or subvector was missing. See also EYL152I.

Destination:

codepoint
The codepoint displayed in hex

System Action: Processing continues.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the error and reload the mapping table.

EYL159W NO DATA ASSIGNED TO ALIAS alias FROM d1 d2 d3 d4 d5 d6 d7 d8 — NONE FOUND OR WAS
INVALID

Explanation: The from_field specified on a mapping or ADD_DATA statement did not contain data.
Consequently, the alias variable was not created or modified.

Destination:

alias The name of the alias variable

d1—d8 The data fields (up to eight data fields per message line)

System Action: Processing of the statement stops.

Operator Response: Notify your system programmer.

System Programmer Response: Investigate the cause of the failure and, if necessary, correct the problem.

Messages

196 Version 7.1

EYL162E THE SEGMENT segment WAS NOT FOUND IN THE MAPPING TABLE

Explanation: The table manager did not retrieve the named segment. The segment may not exist or may be
marked unusable due to syntax errors.

Destination:

segment The name of the mapping table segment

System Action: Processing of the segment stops.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the error and reload the mapping table. Note that EYL152I identifies
the failing statement.

EYL163E PROCESSING TERMINATED FOR SEGMENT segment. INPUT DATA NOT FOUND

Explanation: The process table was invoked but the source data could not be found.

Destination:

segment The name of the process table segment

System Action: Processing of the segment stops.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the error and reload the mapping table. Note that EYL152I identifies
the failing statement.

EYL167I THE INPUT DID NOT PASS THE AUTOBRIDGE FILTER. PROCESSING IS BEING TERMINATED

Explanation: The AutoBridge filtering was invoked and the input failed the filtering criteria. Processing of the
input data stops and the checkpoint record is discarded.

System Action: Processing of the input stops.

Operator Response: None.

System Programmer Response: None required (assuming that this transaction should have been filtered).

EYL200E THE ABRIDGE COMMAND MUST BE ISSUED WITH START, STOP OR RECYCLE

Explanation: The ABRIDGE command was issued but the keyword of START, STOP, or RECYCLE was not
entered as the action value.

System Action: AutoBridge start/resume activity stops.

Operator Response: If ABRIDGE was entered as a direct command, reissue the command with the proper
syntax. If ABRIDGE was issued from a NetView automation table or via the ABMENU panel, notify your
system programmer.

System Programmer Response: If ABRIDGE was issued from the NetView automation table, correct the
syntax and reload the NetView automation table. If ABRIDGE was issued via the ABMENU panel, contact Tivoli
Customer Support for additional programming assistance.

Note: The correct syntax is EYLEHBRG START|STOP|RECYCLE component.

Messages

197Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

EYL201E THE ABRIDGE COMMAND MUST BE ISSUED WITH ALL|API|DISP|ADPT

Explanation: The ABRIDGE command was issued but the keyword of ALL, API, DISP, or ADPT was not
entered as the component value.

System Action: AutoBridge start/resume activity stops.

Operator Response: If ABRIDGE was entered as a direct command, reissue the command with the proper
syntax. If ABRIDGE was issued from a NetView automation table or via the ABMENU panel, notify your
system programmer.

System Programmer Response: If ABRIDGE was issued from the NetView automation table, correct the
syntax and reload the NetView automation table. If ABRIDGE was issued via the ABMENU panel, contact Tivoli
Customer Support for additional programming assistance.

Note: The correct syntax is ABRIDGE action ALL|API|DISP|ADPT.

EYL202E ENDING segment1 BUT ACTIVE SEGMENT IS segment2 in EYLATINT MEMBER

Explanation: The EYLATINT member (initialization data) contains an END statement that does not match the
previous BEGIN statement. Proper initialization values cannot be created.

Destination:

segment1
Label on the END statement

segment2
Label on the previous BEGIN statement

System Action: AutoBridge start/resume activity stops.

Operator Response: Notify your system programmer.

System Programmer Response: Edit the EYLATINT member to contain matching BEGIN/END pairs and
reissue the ABRIDGE command.

Note: See “Step 5. Plan the Initialization Table” on page 138 for the layout of the initialization table.

EYL203E FAILED TO LOAD EYLATINT INITIALIZATION MEMBER

Explanation: The EYLATINT member (initialization data) could not be loaded.

System Action: AutoBridge start/resume activity stops.

Operator Response: Notify your system programmer.

System Programmer Response: Contact Tivoli Customer Support to report an error in module EYLSTMEM.

EYL204E INITIALIZATION MEMBER EYLATINT NOT FOUND IN DSIPARM DATASET(S)

Explanation: The EYLATINT member (initialization data) was not located in any of the defined DSIPARM
data sets.

System Action: AutoBridge start/resume activity stops.

Operator Response: Notify your system programmer.

System Programmer Response: Either create or copy the EYLATINT member to a concatenated DSIPARM
data set or include the new DSIPARM data set in the NetView procedure, recycle NetView, and reissue the
ABRIDGE command.

Messages

198 Version 7.1

EYL205W CANNOT START TABLE MANAGER TASK, ALREADY STARTED

Explanation: A request was made to START ALL of the ABRIDGE components. This automatically includes
the table manager and checkpoint manager subtasks. A started subtask cannot be started; you must RECYCLE or
STOP, then START.

System Action: None.

Operator Response: If ABRIDGE was entered as a direct command or via the ABMENU panel, RECYCLE or
STOP then START ALL to restart the subtasks. If ABRIDGE was issued from a NetView automation table, notify
your system programmer.

System Programmer Response: If ABRIDGE was issued from the NetView automation table, correct the
syntax and reload the NetView automation table.

EYL206E TABLE MANAGER TASK FAILED TO START

Explanation: A request was made to start all of the ABRIDGE components. The START ALL command
includes the table manager and checkpoint manager subtasks. The START command failed.

System Action: The remainder of the AutoBridge START/RECYCLE activity continues.

Operator Response: Browse the NetView or system log for more detailed messages regarding this failure. If
you are unable to resolve the problem, contact your system programmer.

System Programmer Response: Browse the NetView or system log for more detailed messages regarding this
failure. Correct the error or contact Tivoli Customer Support for additional programming assistance.

EYL207W CANNOT START CHECKPOINT VSAM, ALREADY STARTED

Explanation: A request was made to START ALL of the ABRIDGE components. The START ALL command
includes the table manager and checkpoint manager subtasks. A started subtask cannot be started; you must
RECYCLE or STOP, then START.

System Action: None.

Operator Response: If ABRIDGE was entered as a direct command or via the ABMENU panel, RECYCLE or
STOP then START ALL to restart the subtasks. If ABRIDGE was issued from a NetView automation table, notify
your system programmer.

System Programmer Response: If this command was issued from the NetView automation table, correct the
syntax and reload the NetView automation table.

EYL208E CHECKPOINT VSAM TASK FAILED TO START

Explanation: A request was made to START ALL of the ABRIDGE components. The START ALL command
includes the table manager and checkpoint manager subtasks. The START command failed.

System Action: The remainder of the AutoBridge START/RECYCLE activity continues.

Operator Response: Browse the NetView or system log for more detailed messages regarding this failure. If
you are unable to resolve the problem, contact your system programmer.

System Programmer Response: Browse the NetView or system log for more detailed messages regarding this
failure. Correct the error or contact Tivoli Customer Support for additional programming assistance.

Messages

199Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

EYL209E BEGIN STATEMENT IN EYLATINT BUT NO SECTION LABEL SPECIFIED

Explanation: A BEGIN statement was encountered in the initialization member (EYLATINT). The statement
did not include the required section label such as BEGIN XYZ.

System Action: AutoBridge start/resume activity stops.

Operator Response: Notify your system programmer.

System Programmer Response: Edit the EYLATINT member so that it contains matching BEGIN/END pairs
and reissue the EYLEHBRG command.

Note: See “Step 5. Plan the Initialization Table” on page 138 for the layout of the initialization table.

EYL210E AUTOBRIDGE TASK task FAILED TO START IN ALLOTTED TIME

Explanation: An AUTOTASK command was issued for this dispatcher or checkpoint task based on a START
or RECYCLE command and the expected response was not received in the allotted time. The task may still be in
the process of starting, or it may have experienced a permanent error.

Destination:

task The dispatcher or checkpoint task name

System Action: The remainder of the AutoBridge START/RECYCLE activity continues.

Operator Response: Browse the NetView or System Log for more detailed messages regarding this failure. If
necessary, contact the system programmer.

System Programmer Response: Browse the NetView or System Log for more detailed messages regarding this
failure. If the expected response was logged in the MVS system log (message DSI020I), you may want to
increase the WAITTIME value in the EYLATINT initialization table. If a permanent error occurred, such as an
invalid name specified in the initialization table, correct the table and retry. You may contact Tivoli Customer
Support for additional programming assistance.

Note: This may be followed by message EYL214I because this is not considered a fatal error.

EYL211W CANNOT START AUTOBRIDGE TASK task, ALREADY STARTED

Explanation: A request was made to START a dispatcher or checkpoint task that is already started. You must
RECYCLE or STOP then START.

Destination:

task The dispatcher or checkpoint task name

System Action: The remainder of the AutoBridge START activity continues.

Operator Response: If this was entered as a direct command or via the EYLMENU panel, RECYCLE or
STOP then START ALL to restart the dispatcher. If this was issued from a NetView automation table, notify your
system programmer.

System Programmer Response: If this command was issued from the NetView automation table, you may
have to change this command to RECYCLE if it is possible that the dispatchers are already started.

EYL212E ADAPTER adapter FAILED TO action IN THE ALLOTTED TIME

Explanation: An MVS START or MVS STOP command was issued for this adapter based on a START,
RECYCLE or STOP command, and the expected response was not received in the allotted time. The adapter may
still be in the process of starting or stopping, or it may have experienced a permanent error.

Destination:

adapter The adapter name

action The action taken (START, STOP, or RECYCLE)

System Action: The remainder of the AutoBridge START/RECYCLE/STOP activity continues.

Messages

200 Version 7.1

Operator Response: Browse the NetView or System Log for more detailed messages regarding this failure. If
necessary, contact the system programmer.

EYL213W CANNOT START ADAPTER adapter, ALREADY STARTED

Explanation: A request was made to START an adapter that is already started. You must RECYCLE or STOP,
then START.

Destination:

adapter The adapter name

System Action: The remainder of the AutoBridge START activity continues.

Operator Response: If ABRIDGE START was entered as a direct command or via the EYLMENU panel,
RECYCLE or STOP then START ALL to restart the adapter. If ABRIDGE START was issued from a NetView
automation table, notify your system programmer.

System Programmer Response: If ABRIDGE START command was issued from the NetView automation
table, you may have to change this command to RECYCLE if it is possible that the adapters are already started.

EYL214I AUTOBRIDGE action COMPLETED SUCCESSFULLY

Explanation: The requested action was completed with no severe errors.

Destination:

action The action taken (START, STOP, or RECYCLE)

System Action: None.

Operator Response: None.

System Programmer Response: None.

EYL215E AUTOBRIDGE FAILED TO action SUCCESSFULLY

Explanation: The requested action encountered severe errors.

Destination:

action The action that caused the errors (START, STOP, or RECYCLE)

System Action: The remainder of AutoBridge START/STOP/RECYCLE activity continues.

Operator Response: Browse the NetView or system log for more detailed messages regarding this failure. If
you are unable to solve the problem, contact your system programmer.

System Programmer Response: Browse the NetView or system log for more detailed messages regarding this
failure. Correct the error or contact Tivoli Customer Support for additional programming assistance.

EYL216I AUTOBRIDGE action COMMAND IN PROCESS

Explanation: The requested action is starting.

Destination:

action The action that is starting

System Action: Command processing continues.

Operator Response: None.

System Programmer Response: None.

Messages

201Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

EYL217E BEGIN LABEL label IN EYLATINT LONGER THAN 8 CHARACTERS

Explanation: The label on a BEGIN/END segment in the initialization table (EYLATINT) is longer than the
maximum of eight characters.

Destination:

label The label on the BEGIN database_segment or BEGIN record_type segment

System Action: The AutoBridge START or RECYCLE action ends.

Operator Response: Contact your system programmer.

System Programmer Response: Correct the initialization table so that all BEGIN database_segment and
BEGIN record_type labels are eight characters or less. Also, correct any process list segment referring to those
database_segment and record_type labels. Once corrected, reissue the ABRIDGE START or RECYCLE
command.

EYL250E MESSAGE ID msgid INVALID, MUST BE "NNN", "ABCNNN" OR "ABCDNNN"

Explanation: The message ID used on the EYLSMSG command was specified in an incorrect format.

Destination:

msgid The message identifier specified on the call to EYLSMSG

System Action: None.

Operator Response: Notify your system programmer.

System Programmer Response: If the message originated within an application supplied by Tivoli, contact
Tivoli Customer Support. Otherwise, determine the cause of the error and correct it.

EYL251I MESSAGE ID NUMERIC msgid IS NOT NUMERIC

Explanation: The specified message ID is not a numeric value.

Destination:

msgid The message number to be displayed

System Action: None.

Operator Response: Notify your system programmer.

System Programmer Response: If the message originated within an application supplied by Tivoli, contact
Tivoli Customer Support. Otherwise, determine the cause of the error and correct it.

EYL252I TOO FEW PARMS ON EYLSMSG COMMAND, 2 IS MINIMUM

Explanation: The EYLSMSG command processor was called without the two required parameters.

System Action: None.

Operator Response: Notify your system programmer.

System Programmer Response: If the message originated within an application supplied by Tivoli, contact
Tivoli Customer Support. Otherwise, determine the cause of the error and correct it.

Messages

202 Version 7.1

EYL400I TABLE table WAS SUCCESSFULLY LOADED AT time ON date BY operid

Explanation: The specified table loaded correctly.

Destination:

table The name of the table

time The time of the load

date The date of the load

operid The name of the operator who initiated the load

System Action: Processing continues and the table is available for use.

Operator Response: None.

System Programmer Response: None.

EYL401W SEGMENT NAME segment ON BEGIN STATEMENT DOES NOT MATCH NAME ON END
STATEMENT

Explanation: The segment name on the BEGIN statement does not match the name on the corresponding END
statement. This message is preceded by message EYL424I.

Destination:

segment The segment name on the BEGIN statement

System Action: The segment is marked as unavailable for further processing.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the cause of the failures, then reload the table.

EYL403W THE NAME name NOT ALLOWED FOR AUTOBRIDGE action

Explanation: The load request was entered for a table name that is not allowed by AutoBridge. This message is
preceded by message EYL424I.

Destination:

name The name of the table

action The table action (LOAD, DISPLAY,STATUS) being requested

System Action: The load operation stops.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the table name, then retry the operation.

EYL404E INVALID OPTIONS SPECIFIED ON action REQUEST

Explanation: An invalid option was detected on the EYLSTMGR command. This message is preceded by
message EYL424I.

Destination:

action LOAD, STATUS, TEST, or DISPLAY

System Action: The load operation stops.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the command then retry the operation.

Messages

203Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

EYL405I TEST COMPLETE. NO ERRORS DETECTED IN member

Explanation: The test of the DSIPARM member was successful with no errors detected.

Destination:

member The name of the DSIPARM member

System Action: None.

Operator Response: None.

System Programmer Response: None.

EYL406E TEST COMPLETE. ERRORS DETECTED IN member

Explanation: The test of the DSIPARM member detected errors in the member.

Destination:

member The name of the DSIPARM member

System Action: Operation stops.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the errors, then retry the operation.

EYL407I TABLE table IS ACTIVE. LOADED AT time ON date BY operid

Explanation: The message is in response to a status request on an AutoBridge table.

Destination:

table The name of the table

time The time the table was loaded

date The date the table was loaded

operid The name of the operator who initiated the load

System Action: None.

Operator Response: None.

System Programmer Response: None.

EYL408E REQUIRED PARAMETERS ON TABLE MANAGER COMMAND INVALID OR MISSING

Explanation: The command was not constructed correctly; required parameters may be missing or misspelled.
This message is preceded by message EYL424I.

System Action: Processing of the command stops.

Operator Response: Correct and re-enter the command, or contact your system programmer.

System Programmer Response: Correct the command, then retry.

EYL409I TABLE table IS NOT LOADED

Explanation: A request was made to a table that is not currently active.

Destination:

table The name of the table

System Action: None.

Operator Response: See “Managing the AutoBridge Tables” on page 125 for information on loading tables, or
contact your system programmer.

System Programmer Response: Load the table and check for successful completion.

Messages

204 Version 7.1

EYL410W THE REQUESTED SEGMENT segment WAS NOT FOUND

Explanation: The segment name specified on a display or retrieve request was not found in the specified table.

Destination:

segment The name of the segment specified on the command

System Action: The request is canceled.

Operator Response: Correct the command and re-enter it. If the message reappears, then contact your system
programmer.

System Programmer Response: Verify the segment name and retry the operation.

EYL411W THE TABLE MANAGER IS NOT ACTIVE

Explanation: The table manager task is not active.

System Action: The requested operation cannot be started.

Operator Response: Start the table manager subtask.

System Programmer Response: None.

EYL412W STATEMENT ERRORS. A DELIMITER MAY BE MISSING

Explanation: One or more errors are associated with a statement in the mapping, process, or filter table. This
message is preceded by message EYL424I.

System Action: The statement or segment that contains this statement will be ignored in future processing.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the errors and reload the table.

EYL413W AN END STATEMENT WAS NOT FOUND FOR SEGMENT segment

Explanation: A segment in a mapping table or process table does not have the required END statement.

Destination:

segment The name of the segment specified on the BEGIN statement

System Action: The segment will not be available for future processing.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the errors and reload the table.

EYL414E TABLE table FAILED TO LOAD DUE TO EXCESSIVE ERRORS

Explanation: All segments in a table contain one or more errors.

Destination:

table The name of the table

System Action: The load is ended and the previously loaded table is restored (if one existed).

Operator Response: Notify your system programmer.

System Programmer Response: Correct the errors and reload the table.

Messages

205Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

EYL415W UNEXPECTED STATEMENT TERMINATION.

Explanation: A semicolon was detected before all of the expected clauses on a statement were processed. This
message is preceded by message EYL424I.

System Action: The statement and associated segment are marked as unavailable for further processing.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the errors and reload the table.

EYL416W SEGMENT segment NOT USABLE DUE TO ERRORS

Explanation: The segment name specified on a display or retrieve request has errors and has been marked as
unavailable.

Destination:

segment The name of the segment specified on the command

System Action: The request is not processed.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the errors then reload the table.

EYL417I START OF DATA FROM TABLE table

Explanation: The message is part of a multi-line message and marks the start of the data retrieved from the
specified table.

Destination:

table The name of the table

System Action: The request is successfully completed.

Operator Response: None.

System Programmer Response: None.

EYL418I DATA IS: dataline

Explanation: This message is part of a multiline message and is generated for each statement of the table that
is retrieved.

Destination:

dataline The statement from the specified table

System Action: Processing completes successfully.

Operator Response: None.

System Programmer Response: None.

EYL419I END OF DATA FROM TABLE table

Explanation: This message is part of a multiline message and marks the end of the data retrieved from the
table.

Destination:

table The name of the table

System Action: Processing completes successfully.

Operator Response: None.

System Programmer Response: None.

Messages

206 Version 7.1

EYL421W A STATEMENT WAS FOUND BUT IT WAS NOT ASSOCIATED WITH ANY SEGMENT

Explanation: A statement is not within a segment. The statement will not be accessible by the table manager.
This message is preceded by message EYL424I.

System Action: Processing continues.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the error and reload the table.

EYL422W A DELIMITER WAS NOT FOUND FOR THIS STATEMENT

Explanation: A statement was encountered that does not end with a semicolon. This message is preceded by
message EYL424I.

System Action: Processing continues.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the error and reload the table.

EYL423W THE PARAMETER parm IS NOT VALID

Explanation: A statement was encountered that contained an incorrect keyword parameter. This message is
preceded by message EYL424I.

Destination:

parm The invalid parameter

System Action: Processing continues.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the error and reload the table.

EYL424I ERROR DATA: user data

Explanation: This message contains the data that was being processed when an error was detected.

Destination:

user data
The statement or parameter that was being processed when the error was detected

System Action: Processing continues.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the error and reload the table.

EYL425E LOAD OF TABLE table HAS BEEN TERMINATED BECAUSE OF ERRORS

Explanation: A storage failure occurred during load, or all table segments contain one or more errors.

Destination:

table The name of the table that was being processed when the failure occurred

System Action: AutoBridge processing continues.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the error and reload the table.

Messages

207Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

EYL426E NO STORAGE AVAILABLE TO PROCESS COMMAND

Explanation: Storage constraints resulted in an AutoBridge command failure.

System Action: AutoBridge processing continues.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the error and reload the table.

EYL427W IMBEDDED 'BEGIN' STATEMENTS NOT ALLOWED

Explanation: Another BEGIN statement is not allowed inside of a segment.

System Action: AutoBridge processing continues.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the error and reload the table.

EYL428E PROGRAM NOT LOADED. STORAGE FAILURE OCCURRED

Explanation: The table manager could not load one of its modules because of a storage failure.

System Action: AutoBridge processing continues.

Operator Response: Notify your system programmer.

System Programmer Response: Recycle the table manager.

EYL430E TABLE table FAILED TO LOAD DUE TO READ ERRORS

Explanation: The table could not be read, possibly because of allocation errors.

Destination:

table The name of the table that was being processed

System Action: AutoBridge processing continues.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the error and reload the table.

EYL431E TABLE table NOT FOUND OR COULD NOT BE OPENED

Explanation: The DSIPARM member was not found or the member could not be opened.

Destination:

table The name of the table that was being processed

System Action: AutoBridge processing continues.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the error and reload the table.

EYL432E INVALID PARAMETER. VALID PARMS ARE: LOAD, DISPLAY, TEST, STATUS

Explanation: The table manager was invoked with an invalid request.

System Action: Processing stops.

Operator Response: If the table manager command was entered from the NCCF command line, re-enter the
command with a valid request. Otherwise, contact your system programmer.

System Programmer Response: See “Coding NetView AutoBridge Tables” on page 81 for the correct syntax of
the table manager command and make the necessary corrections.

Messages

208 Version 7.1

EYL433E THE OPERATOR operator IS NOT SUPPORTED FOR THE FILTER TABLE

Explanation: An invalid filter statement was encountered.

Destination:

operator
The unknown operator symbol

System Action: Processing stops.

Operator Response: Notify your system programmer.

System Programmer Response: See “Coding the Filter Table” on page 97 for the correct syntax of a filter
statement and make the necessary corrections.

EYL435E A SEQUENCE ERROR IS DETECTED FOR THE OPERATOR: operator

Explanation: A filter statement operator is being incorrectly used. For example, an EQUAL (=) was found
where an AND (&) was expected.

Destination:

operator
The unknown operator symbol

System Action: Processing stops.

Operator Response: Notify your system programmer.

System Programmer Response: See “Coding the Filter Table” on page 97 for the correct syntax of a filter
statement and make the necessary corrections.

EYL436E UNBALANCED PARENTHESIS ENCOUNTERED IN STATEMENT

Explanation: The number of right parentheses does not match the number of left parentheses in a given
statement.

System Action: Processing stops.

Operator Response: Notify your system programmer.

System Programmer Response: Review the statement in error and ensure that all open parentheses are
properly closed. Reload the AutoBridge table.

EYL437E SEGMENT NAME segment IS TOO LONG

Explanation: The specified table segment name exceeds the maximum allowable length of 32 characters.

Destination:

segment The name of the invalid segment

System Action: No further processing is performed on the segment.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the segment and reload the AutoBridge table.

Messages

209Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

EYL450E SELECTION sel IS NOT DEFINED. ENTER A NUMBER BETWEEN 1 AND maxvalue

Explanation: You entered a selection that is not defined for the current menu.

Destination:

sel The selection you entered

maxvalue
The maximum selection number supported on this menu

System Action: No AutoBridge processing occurs.

Operator Response: Enter a valid selection number to choose the desired option.

EYL451E KEY key IS NOT DEFINED. TRY AGAIN

Explanation: You pressed a function key that is not defined for the current menu.

Destination:

key The undefined function key

System Action: No AutoBridge processing occurs.

Operator Response: Press a valid function key to choose the desired action.

EYL452W CANNOT SCROLL BACKWARD. ALREADY AT TOP OF DATA

Explanation: You pressed the backward function key (F7), but the screen is already displaying the top of the
data.

System Action: No AutoBridge processing occurs.

Operator Response: Press a valid function key to choose the desired action.

EYL453W CANNOT SCROLL FORWARD. ALREADY AT BOTTOM OF DATA

Explanation: You pressed the forward function key (F8), but the screen is already displaying the bottom of the
data.

System Action: No AutoBridge processing occurs.

Operator Response: Press a valid function key to choose the desired action.

EYL454W CANNOT ACCESS CHECKPOINT FILE. AUTOBRIDGE IS NOT ACTIVE

Explanation: You requested the “Manage the Checkpoint File” option but AutoBridge has not been activated.
The Checkpoint VSAM and Autotask must be active in order to process the checkpoint file request.

System Action: No AutoBridge processing occurs.

Operator Response: You may start the AutoBridge application by entering “ABRIDGE” or by entering
“ABMENU” to go to the AutoBridge menu and selecting option 1 (Start/Recycle/Stop), then selecting Action 1
(Start) at the “Perform Action on All” entry.

EYL455W INVALID ENTRY FOR level TRACE OF function. TRACE VALUE UNCHANGED

Explanation: You entered a value on the ABTRACE screen other than a forward slash (/) or blank (space or
delete).

Destination:

level The level of tracing (ALL, MOD, DATA, or REXX)

function The function for which tracing should be turned on or off (ALL, AUTOBRIDGE_API,
CHECKPOINT_MANAGER, HIGH_LEVEL, PROCESS_TABLE, or TABLE_MANAGER)

System Action: The original trace settings remain unchanged.

Messages

210 Version 7.1

Operator Response: Enter the forward slash (/) for the tracing levels to turn on or blank out an entry by
spacing over or deleting the slash for the tracing levels to turn off.

EYL456W OPTS VALUE opts INVALID. ENTER S FOR SEARCH AND/OR U FOR UPDATE

Explanation: You entered a value other than S or U in the Opts column of the checkpoint update panel.

Destination:

opts The value that was entered in the Opts column.

System Action: The checkpoint update facility waits for a corrected entry, an END command, or a CANCEL
command.

Operator Response: Correct the entry by entering either or both of the following, then retry:

S Specifies that this alias name should be included in the search list

U Specifies that this alias name or text field should be included in the update list

System Programmer Response: None.

EYL457W CANNOT SEARCH OR UPDATE THIS TYPE OF PARMVAR DATA

Explanation: You entered an S or a U in the Opts column next to an ASSOCDATA or VERIFIER parameter.
You may specify search only on alias names; update only on alias names or text lines.

System Action: The checkpoint update facility waits for a corrected entry, an END command, or a CANCEL
command.

Operator Response: Correct the entry and retry.

System Programmer Response: None.

EYL458W CANNOT SEARCH TEXT PARMVAR DATA

Explanation: You entered a U in the Opts column next to a text line parameter. You cannot search freeform
text via the AutoBridge API.

System Action: The checkpoint update facility waits for a corrected entry, an END command, or a CANCEL
command.

Operator Response: Correct the entry and retry.

System Programmer Response: None.

EYL500W modname1 COULD NOT EXECUTE modname2, RC=rc

Explanation: The module specified in modname1 received a non-zero return code while attempting to invoke
the module specified in modname2.

Destination:

modname1 The parent module that detected the error

modname2 The child module that was being invoked

rc The return code acquired while attempting to invoke the child module

System Action: If the return code is a positive number, it is from the called process. If the return code is a
negative number, the called process is not invoked.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the failure and correct it.

Messages

211Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

EYL501I modname EXECUTED WITH INVALID PARMLIST, parmlist

Explanation: The command processor specified in modname was called with one of its required parameters
missing.

Destination:

modname
The name of the module with missing parameters

parmlist The list of parameters passed when the module was invoked

System Action: Processing for the requested transaction stops.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the missing parameter and correct it.

EYL502I TASK task INACTIVE, TRANSACTION NOT PROCESSED

Explanation: A transaction request was submitted to a checkpoint manager task that is inactive.

Destination:

task The checkpoint autotask specified to handle the transaction request

System Action: Processing for the requested transaction stops.

Operator Response: Start the autotask.

System Programmer Response: None.

EYL503W VARIABLE varname SPECIFIED AS PARMVAR COULD NOT BE ACCESSED

Explanation: The EYLSCSUB command processor determined that the variable specified as the parmvar
cannot be accessed in the calling routine’s variable pool.

Destination:

varname
The variable name used as the parmvar variable

System Action: Processing for the requested transaction continues.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the inaccessible variable and correct it.

EYL504E ERROR OCCURRED ACCESSING VARIABLE varname, RC= rc

Explanation: The module EYLSCSUB encountered an error other than “variable not initialized” while
attempting to determine the value of the variable specified. The return code is that of the NetView CNMVARS
macro.

Destination:

varname
The name of the variable that could not be determined by the EYLSCSUB routine

rc The return code as specified by the NetView CNMVARS macro

System Action: The request is not processed.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the error and correct it.

Messages

212 Version 7.1

EYL505W VARIABLE varname SPECIFIED IN parmlist COULD NOT BE ACCESSED

Explanation: The variable specified as varname in the parameter list parmlist could not be determined in the
called routine’s variable pool.

Destination:

varname
The name of the variable to be determined

parmlist The name of the parameter list containing the variable

System Action: Transaction processing continues.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the error and correct it.

EYL506E UNKNOWN TRANSACTION transid IN MODULE modname

Explanation: The module invoked to process the specified transaction ID could not determine the transaction to
be performed.

Destination:

transid The transaction requested

modname
The module that was invoked to process the transaction specified

System Action: Checkpoint-manager processing of this transaction is canceled.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the error and correct it.

EYL507E UNKNOWN FUNCTION SPECIFIED IN MODULE modname

Explanation: The module specified by modname could not determine the function to be performed (GET, PUT,
LIST, UPDATE, or DELETE).

Destination:

modname
The name of the module detecting the error

System Action: Processing of the requested transaction stops.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the error and correct it.

EYL508E modname FAILED TO ACQUIRE STORAGE, RC= rc

Explanation: The module specified as modname could not acquire a block of storage needed to build a node in
the NetView Bridge link list interface.

Destination:

modname
The name of the module detecting the error

rc The return code from the NetView CNMNAMS command

System Action: Transaction processing stops.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the error and correct it.

Messages

213Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

EYL509E modname COULD NOT EXPOSE GLOBAL VARIABLE varname, RC= rc

Explanation: The module specified in modname detected an error while attempting to retrieve the global
variable specified in varname.

Destination:

modname
The name of the module that detected the error

varname
The name of the global variable to be exposed

rc The return code of the CNMVARS command

System Action: Transaction processing stops.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the missing global variable and correct it.

EYL520I corrid SUCCESSFULLY COMPLETED BY CHECKPOINT MANAGER checkpoint_task

Explanation: This message is written to the NetView log every time a transaction is successfully completed by
a checkpoint task.

Destination:

corrid The correlation ID assigned to this transaction

checkpoint_task The task ID of the checkpoint autotask that processed this transaction

System Action: None.

Operator Response: None.

System Programmer Response: None.

EYL522E DATA RETURNED FROM VSAM DST task NOT CORRECT

Explanation: The DST that manages the checkpoint VSAM file returned a buffer that does not have the
expected structure.

Destination:

task The ID of the DST that returned the buffer

System Action: Transaction processing stops.

Operator Response: Notify your system programmer.

System Programmer Response: Verify the VSAM checkpoint file data structure. Contact Tivoli Customer
Support for additional programming assistance.

EYL523W WARNING code DETECTED ON transid corrid REASONCODE rc

Explanation: The checkpoint manager received a warning return code during an attempt to submit a transaction
to the target database.

Destination:

code The warning code generated

transid The transaction being attempted

corrid The correlation ID of the transaction

rc The reason code returned to further define the warning

System Action: The response is ignored.

Operator Response: Notify your system programmer.

Messages

214 Version 7.1

System Programmer Response: Find the warning/reason code pair in the Tivoli Information Management for
z/OS documentation to determine the error and correct it.

EYL524E FAILURE DURING WAIT FOR RESPONSE FROM modname, RC= rc

Explanation: An error was encountered while waiting for a response from the module specified by modname.

Destination:

modname
The name of the module being waited for

rc The return code set at the time the error is encountered

System Action: Transaction processing stops.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the error and correct it.

EYL525I cmd_proc FAILED RC= rc, DATA FROM DST NOT RETURNED

Explanation: A command processor that has requested data from the VSAM DST failed while attempting to
fetch the returned data.

Destination:

cmd_proc
The name of the command processor that encountered the error

rc The return code from the CNMGETD command

System Action: Transaction processing is halted.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the error and correct it.

EYL526E modname FAILED DURING WAIT FOR DATA FROM DST, RC= rc

Explanation: The command processor specified by modname detected an error while waiting for requested data
from the VSAM DST.

Destination:

modname
The name of the command processor that encountered the error

rc The return code from the correlation ID request

System Action: Transaction processing stops.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the error and correct it.

EYL527E function CHECKPOINT FILE DATA TO EYLTVSM FAILED, RC= rc

Explanation: A command processor performing the specified function determined that the VSAM DST failed to
process the data.

Destination:

function The function requested of the DST (GET, PUT, LIST)

rc The return code from attempting to submit the request

System Action: Transaction processing stops.

Operator Response: Notify your system programmer.

Messages

215Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

System Programmer Response: Find the return code for the CNMSMSG macro in the NetView Using PL/I
and C manual. A subset of the possible return codes are:

4 Not invoked from an allowed installation exit.

24 Nonzero return code from DSIGET macro. (28)

88 smtext is too long.

116 Invalid message type.

120 Invalid destination type.

124 Conflict between message and destination type.

216 DSIWLS failure. Log was inactive.

220 DSIMQS failure. Task was inactive.

1000 Bad return code, X, from DSIMQS. (28)

EYL528I TRANSACTION COUNTER COULD NOT BE ACCESSED, RC= rc

Explanation: The EYLSCSUB command processor could not access the variable used to retain the last
correlation ID used.

Destination:

rc The return code from the CNMVARS command, documented in the NetView Using PL/I and C manual.
A subset of the possible return codes are:

20 cvname not found or value of cvname is null.

40 cvdatlen was too small. Data truncated.

52 Invalid cvfunc.

88 cvdatlen less than (<) 0 or cvdata greater than (>) 255.

108 Invalid cvname.

156 Invalid cvpool.

160 The storage pointed to by cvdata is not addressable.

14000 + X
Nonzero return code, X. See values for X below.

x=4 Invalid variable name.

x=8 Variable name already defined in dictionary.

x=12 Insufficient storage.

x=20 Value length limit was exceeded.

x=28 No command procedure related to current action.

x=32 Data was truncated.

System Action: Transaction processing continues with the transaction counter reset to @@@.

Operator Response: None.

System Programmer Response: None.

Messages

216 Version 7.1

EYL529I GLOBAL varname COULD NOT BE ACCESSED BY modname, RC= rc

Explanation: A module specified by modname failed to retrieve the value of an AutoBridge common global
variable.

Destination:

varname
The name of the global being retrieved

modname
The name of the module attempting to retrieve the variable

rc The return code of the CNMVARS command. See message EYL528I for a subset of possible return
codes.

System Action: Transaction processing stops.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the error and correct it.

EYL530E ERROR SUBMITTING corrid TO dbase DATABASE, RC= rc

Explanation: The dispatcher encountered an error submitting the specified transaction to the NetView Bridge
adapter.

Destination:

corrid The correlation ID assigned to the transaction

dbase The name of the database to which the transaction was submitted

rc The return code from the CNMSNDT macro documented in the NetView Bridge Implementation
manual. A subset of the possible return codes are:

4 Nonzero return code.

24 Storage allocation failure.

44 Deregistration unsuccessful. Issued from an exit.

56 Time-out value is not valid.

88 MDS_MU length is not valid.

220 DSI6DT task is inactive.

288 The transaction request generated exceeds 31K.

292 Invalid task type. The service routine can be invoked only under an OST or a PPT.

296 One of the transaction header parameters contained an invalid value.

300 A severe error condition was encountered when the service routine attempted to build the
transaction request.

400 Data type is not valid.

404 DATA missing or not valid.

408 MS application cannot send to itself.

416 MS application is not registered.

420 Operations management served application is not registered.

424 UOW missing or not valid.

428 RTI missing or is invalid.

432 OAN missing or is invalid.

436 DAN missing or is invalid.

Messages

217Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

440 Origin application name invalid.

444 Destination network ID missing or is invalid.

448 Destination LU name missing or is invalid.

452 Destination application name missing or is invalid.

456 OII in RTI does not match TVBOPID.

460 Reply is invalid.

464 Bad MUTYPE given.

468 Bad SYNCH option.

472 User list is full.

1000 + X
MQS failed while sending transaction request to DESTTASK. X is the return code from
DSIMQS.

4000 + Y
Nonzero return code, Y, from DSIPUSH macro.

9000 + Y
Reply command is invalid. Y is the return code from DSICES.

22000 + n
The nth parameter block in the link list pointed to by the stparms field contains an invalid
prmnaml, prmleng value, or both.

System Action: The transaction is written to the checkpoint file, but transmission to the database stops.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the error and correct it.

EYL531I corrid TO dbase DATABASE SUCCESSFULLY SUBMITTED

Explanation: The dispatcher has successfully submitted the transaction specified to the NetView Bridge adapter.

Destination:

corrid The correlation ID assigned to the transaction

dbase The name of the database the transaction is for

System Action: Processing continues.

Operator Response: None.

System Programmer Response: None.

EYL532E SYNTAX ERROR DETECTED IN MODULE modname, PARMS= parm_list

Explanation: The module specified detected a syntax error in its parameter list.

Destination:

modname
The name of the module producing this message

parm_list
The list of parameters with which the module was executed

System Action: Processing of the transaction stops.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the failure and correct it.

Messages

218 Version 7.1

EYL533E DELETE ID corrid REQUEST FAILED, RC=rc

Explanation: A delete request could not be completed by the VSAM DST.

Destination:

corrid The correlation ID to be deleted

rc The return code from the CNMKIO command

System Action: Processing of the transaction stops.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the failure and correct it.

EYL534E FAILURE ATTEMPTING TO ACQUIRE CORRELATION ID LOCK, RC= rc

Explanation: The EYLSCSUB command processor could not acquire the lock needed to generate a correlation
ID.

Destination:

rc The return code from the CNMLOCK macro

System Action: Transaction processing stops.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the error and correct it.

EYL535E PUT DIRECT FAILED FOR ckptask KEY corrid, RC= rc

Explanation: A create checkpoint file record failed.

Destination:

ckptask The checkpoint manager the transaction was processed by

corrid The correlation ID to be deleted

rc The return code from the CNMKIO command

System Action: Processing of the transaction stops.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the failure and correct it.

EYL536E PUT UPDATE FAILED FOR ckptask KEY corrid, RC= rc

Explanation: A checkpoint file record update failed.

Destination:

ckptask The checkpoint manager that processed the transaction

corrid The correlation ID to be deleted

rc The return code from the CNMKIO command

System Action: Processing of the transaction stops.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the failure and correct it.

Messages

219Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

EYL537E BAD REQUEST FROM ckptask PASSED TO DST IN TRANSACTION corrid

Explanation: The EYLTVSM DST could not determine the function being requested.

Destination:

ckptask The task ID of the checkpoint autotask that submitted the request

corrid The correlation ID of the transaction to be processed

System Action: Transaction processing stops.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the error and correct it.

EYL538E GET_EQ FAILED FOR ckptask KEY corrid, RC= rc

Explanation: The DST attempting to retrieve a record from the checkpoint file received an error other than
“not found”.

Destination:

ckptask The checkpoint manager that processed the transaction

corrid The correlation ID to be deleted

rc The return code from the CNMKIO command

System Action: Processing of the transaction stops.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the failure and correct it.

EYL539E KEY corrid NOT FOUND FOR ckptask

Explanation: The DST attempting to retrieve a record for the specified checkpoint task could not find the
record.

Destination:

corrid The correlation ID to be retrieved

ckptask The checkpoint manager that processed the transaction

System Action: None.

Operator Response: List the checkpoint entries to determine the correct checkpoint and resubmit the
transaction.

System Programmer Response: None.

EYL540E transid FOR corrid CANNOT BE PROCESSED, FIELD fld MISSING

Explanation: A required field for the transaction specified could not be filled.

Destination:

transid The transaction ID being processed

corrid The correlation ID assigned to this transaction

fld The name of the field in error

System Action: Transaction processing stops.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the error and correct it.

Messages

220 Version 7.1

EYL541E TRANSACTION corrid RETRY COUNT EXCEEDED

Explanation: The specified transaction has been resent to the target database the maximum number of times
with no response.

Destination:

corrid The correlation ID of the transaction

System Action: The transaction is flagged as “failed” in the checkpoint file.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the error and correct it.

EYL542E INPUT DATA WILL EXCEED BUFFER LIMIT OF 31000 BYTES

Explanation: The transaction data generated via the mapping table or process table will result in a data buffer
larger than the 31000 byte limit.

System Action: Transaction processing stops.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the error and correct it.

EYL543I UPDATE FOR TRANSACTION corrid CANCELLED, NO UPDATE DATA SPECIFIED

Explanation: A conditional create transaction detected a duplicate record, but an update transaction could not
take place because no update data was specified.

Destination:

corrid The correlation ID assigned to this transaction

System Action: Transaction processing is halted and the checkpoint file entry for this transaction is flagged as
failed.

Operator Response: Add update data to the transaction or delete the entry from the checkpoint file.

System Programmer Response: None.

EYL546W TRANSACTION COUNTER NOT SAVED TO VSAM DATABASE, RC=rc

Explanation: A failure occurred when the transaction counter was saved to disk. The transaction counter is
saved to disk after each transaction initiation.

Destination:

rc The return code from the GLOBALV SAVE command

System Action: Transaction processing continues. When NetView is recycled, correlation IDs might be
duplicated before the 64 000 unique names limit.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the error and correct it.

EYL547I DELETE REQUEST corrid WAS SUCCESSFUL

Explanation: This message is generated when a “delete checkpoint file” request completes successfully.

Destination:

corrid The checkpoint file to be deleted

System Action: The checkpoint file record is deleted.

Operator Response: None.

System Programmer Response: None.

Messages

221Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

EYL551I corrid dfl ckptask transid dbase disp type

Explanation: This is the control line of the multiline message returned to the requester of a GET function.

Destination:

corrid The value of the correlation ID created by this module

dfl The description flag of this transaction record

ckptask The checkpoint task that created this record

transid The value of the current transaction ID for the specified record

dbase The value of the dbase variable identified in the parameter list to this module

disp The NetView dispatcher that processes this transaction

type The value of the record type identified in the parameter list to this module

System Action: None.

Operator Response: None.

System Programmer Response: None.

EYL553I data_tag IS key val

Explanation: This is the data line of the checkpoint manager multiline message. It is repeated within the
message to list all the data fields within the transaction data.

Destination:

data_tags
The identifier of the parmvar part the data belongs to

key The key or alias name of the data item

val The value of the data to be used in the specified key when a transaction is created from this checkpoint
record

System Action: None.

Operator Response: None.

System Programmer Response: None.

EYL554I END OF DATA

Explanation: This is the “end of message” line in the checkpoint manager multiline message.

System Action: None.

Operator Response: None.

System Programmer Response: None.

EYL556E CORRELATION ID NOT EXTRACTED FROM transid RESPONSE

Explanation: The transaction response processor could not retrieve the correlation ID from the transaction
response data returned by the NetView Bridge adapter.

Destination:

transid The transaction ID from the response

System Action: Transaction results cannot be returned to the originating task, and the checkpoint file record
cannot be updated as the correlation ID is the VSAM key to the record.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the error and correct it.

Messages

222 Version 7.1

EYL557E CHECKPOINT FILE PROCESSING FAILED, DST RETURNED BUFFER data

Explanation: The checkpoint file processor received a buffer from the VSAM DST containing a bad response.

Destination:

data The first 80 bytes of the buffer returned by the checkpoint file VSAM DST

System Action: Checkpoint file processing stops.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the error and correct it.

EYL558E RESEND INTERVAL ERROR, DATE AND TIME date time

Explanation: The checkpoint file processor failed to calculate the time variance between the time the
transaction was last sent and the current time.

Destination:

date The date the transaction was last sent

time The time the transaction was last sent

System Action: Checkpoint file processing stops.

Operator Response: Notify your system programmer.

System Programmer Response: Determine the cause of the error and correct it.

EYL559I corrid FOUND DUPLICATE RECORD recno - WILL UPDATE

Explanation: The checkpoint manager found one or more records matching search arguments. The record with
the highest RECORDID value will be updated. If the IBCREATE transaction was specified, only the process and
mapping table statements containing the ’,UPDATE’ keyword are updated.

Destination:

corrid The correlation ID associated with the IBCREATE or IBUPDATE transaction.

recno The record number that the update has been submitted against.

System Action: The update request is submitted.

Operator Response: None.

System Programmer Response: None.

EYL560I corrid IBUPDATE FAILED - RECORD rnid NOT FOUND - WILL ATTEMPT IBCREATE

Explanation: A conditional create located a record and attempted to update the record, but the record was not
found when the update was processed. The update of the rnid will not occur, and another conditional create will
be attempted.

Destination:

corrid The correlation ID of the transaction.

rnid The record number that could not be found.

System Action: The rnid value contained in the checkpoint file record for this corrid is removed and the
transaction is changed to an IBCREATE. The IBCREATE will then be retried if RETRYNUM is not exceeded.

Operator Response: None.

System Programmer Response: None.

Messages

223Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

EYL561I LIST FUNCTION RESPONSE DATA

Explanation: This is the control line of the multiline message created by the checkpoint manager in response to
the user’s request to list checkpoint file data.

System Action: None.

Operator Response: None.

System Programmer Response: None.

EYL563I corrid dfl cdate ctime scnt sdate stime opid transid dbase disp type

Explanation: This is the data line within the EYL561I multi-line message. It is repeated under EYL561I to list
each of the checkpoint file records to be listed.

Destination:

corrid The correlation ID assigned to the transaction specified in the record

dfl The description flag of this transaction record

cdate The create date of this transaction record

ctime The create time of this transaction record

scnt The number of times this transaction has been sent to the database

sdate The date this transaction was last sent to the database

stime The time this transaction was last sent to the database

opid The operator task ID that created this transaction record

transid The transaction ID assigned to the transaction specified in the record

dbase The database that processed this transaction

disp The NetView Bridge dispatcher that processes this transaction

type The type of database record this transaction is to be processed against

System Action: None.

Operator Response: None.

System Programmer Response: None.

EYL565W trans corrid, RESPCODE: respcode REASONCODE reasoncode. RETRY NOT SCHEDULED

Explanation: The response processor received an error condition in a transaction response.

Destination:

trans The transaction ID associated with the transaction

corrid The correlation ID of the transaction that failed

respcode The response code specifying the type of error detected in the transaction

reasoncode The reason code for the failure detailing the error within the type

System Action: The checkpoint file record for this transaction is flagged as a failed transaction.

Operator Response: Attempt to determine the cause of the error and correct it.

System Programmer Response: None.

Messages

224 Version 7.1

EYL567I TRANSACTION trans corrid COMPLETED SUCCESSFULLY

Explanation: This is the control line of a multiline message returned to the originating task of a transaction
when that transaction completes successfully.

Destination:

trans The transaction ID associated with the transaction

corrid The correlation ID of the transaction

System Action: The checkpoint file record for this transaction is deleted.

Operator Response: None.

System Programmer Response: None.

EYM000I THE POSTPROCESSOR IS ACTIVE, REPLY END TO TERMINATE POSTPROCESSOR id

Explanation: This message informs the operator that the named PostProcessor is active and can be stopped
with a reply of “end”.

Destination:

id The PostProcessor ID

System Action: None.

Operator Response: Enter END to stop the named PostProcessor.

System Programmer Response: None.

EYM001E THE macro MACRO HAS FAILED IN MODULE modname WITH A RETURN CODE OF rc

Explanation: A system macro has ended with a non-zero return code.

Destination:

macro The name of the macro which failed

modname
The name of the module in which the macro failed

rc The return code received from the macro

System Action: The PostProcessor stops with a SNAP macro dump of program and related storage areas.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the error and rerun the program.

EYM002E THE macro MACRO HAS FAILED IN MODULE modname

Explanation: A system macro has failed.

Destination:

macro The name of the macro which failed

modname
The name of the module in which the macro failed

System Action: The PostProcessor stops with a SNAP of program and related storage areas.

Operator Response: Notify your system programmer.

System Programmer Response: Correct the error and re-execute the program.

Messages

225Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

EYM003E POSTPROCESSOR id HAS FAILED TO START

Explanation: The PostProcessor task failed to POST EYMSP010 that it had completed initialization.

Destination:

id The name of the PostProcessor which failed

System Action: Processing of API records continues without the PostProcessor for this adapter.

Operator Response: Notify your system programmer.

System Programmer Response: Examine the console log to determine the reason for the PostProcessor’s
failure to start.

EYM004W POSTPROCESSOR TERMINATING DUE TO BRIDGE TERMINATION

Explanation: The PostProcessor task has detected that its associated BRIDGE task has ended.

System Action: The PostProcessor stops.

Operator Response: None.

System Programmer Response: None.

EYM005W THE MAXIMUM NUMBER OF POSTPROCESSORS ARE ACTIVE

Explanation: The EYMSP010 module has detected that 16 PostProcessors are currently active.

System Action: Processing of API records continues without the PostProcessor for this adapter.

Operator Response: None.

System Programmer Response: None.

EYM006E INVALID CALL TO MESSAGE HANDLER EYMSP050

Explanation: The EYMSP050 module has detected an error in a call made to it.

System Action: A SNAP macro dump is created and processing continues.

Operator Response: Notify your system programmer.

System Programmer Response: Before contacting Tivoli Customer Support, be sure the following are true:
¶ The PostProcessor has been correctly installed.
¶ The PostProcessor logic has not been modified such that program exits are running incorrectly.

If the error persists after you have verified that the PostProcessor has been installed and customized correctly,
contact Tivoli Customer Support for additional programming assistance.

EYM007E AN INTERNAL LOGIC ERROR WAS DETECTED IN modulename

Explanation: An unexpected and incorrect condition was detected by the named PostProcessor module.

Destination:

modulename The name of the module in which the error was detected

System Action: The PostProcessor stops.

Operator Response: Notify your system programmer.

System Programmer Response: Before contacting Tivoli Customer Support, be sure the following are true:
¶ The PostProcessor has been correctly installed.
¶ The PostProcessor logic has not been modified such that program exits are running incorrectly.

If the error persists after you have verified that the PostProcessor has been installed and customized correctly,
contact Tivoli Customer Support for additional programming assistance.

Messages

226 Version 7.1

EYM100E DATA TOO LONG TO STORE IN PPMT; RECORD ID: record_id REASON CODE: rc

Explanation: Exit EYMSP043 attempted to write an entry to the PostProcessor mapping table (PPMT) and
found that the entry is either missing or too long for the table column.

Destination:

record_id
The name of the record which failed

rc The reason code for the failure:
0 TSCA variable data area is empty.
1 Error occurred loading Target Panel Name.
2 Error occurred loading Target Field/Command Name.
3 Error occurred loading Source Prefix Name.

System Action: The PostProcessor stops with a SNAP macro dump of program and related storage areas.

Operator Response: None.

System Programmer Response: This error will occur if one of the following is true:

¶ The mapping reference record panels have been modified to accept data that is greater in length than the
panels shipped by Tivoli accept.

¶ Exit EYMSP043 is improperly used in a new or user-modified TSP.

Restore the PostProcessor panels supplied by Tivoli, then update the record which caused the failure.

EYM101E RECORD FILE MESSAGE NOT FOUND

Explanation: TSP EYM9MAPE read an entry from the PostProcessor mapping table (PPMT) which contains a
Target Panel value, but no Target Field/Command value, indicating that the record being post-processed should
have been filed. TSP EYM9MAPE tested for Tivoli Information Management for z/OS message BLG03058
(“record filed successfully”), but did not find it and issued this message.

System Action: The post-processing of the current record stops.

Operator Response: None.

System Programmer Response: This error will occur only if both of the following conditions are true:

¶ The mapping reference record contains an entry with a Target Panel value, but no Target Field/Command
value.

¶ At PostProcessor execution time, the Tivoli Information Management for z/OS dialog does not return to this
panel after the post-processed record has been filed.

The mapping reference record must be updated to ensure that the correct file-processing panel flow is represented
in the mapping reference data list.

EYM102E UNEXPECTED PANEL FLOW; CURRENT PANEL: panel_id

Explanation: TSP EYM9MAPE could not find an available entry in the PostProcessor mapping table (PPMT)
for the current panel.

Destination:

panel_id
The name of the panel that could not be located

System Action: The post-processing of the current record stops.

Operator Response: None.

System Programmer Response: This error is issued when PostProcessor execution causes flow to a panel for
which there is no available entry in the PPMT.

Messages

227Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

The mapping reference record must be updated to ensure that the correct panel flow is represented in the
mapping reference data list.

EYM103E FIELD/COMMAND PROCESS ERROR; MAP ID: map_id; ROW: row

Explanation: TSP EYM9MAPE processed an entry from the PostProcessor mapping table (PPMT) that resulted
in a non-zero return code. Message EYM104I follows this message, listing the contents of the failed row.

Destination:

map_id The ID of the mapping reference record used to post-process the record

row The number of the row in the mapping reference record that was being executed when the error
occurred

System Action: The post-processing of the current record stops.

Operator Response: None.

System Programmer Response: This error is issued when post-processing causes a non-zero return code to be
returned from the PROCESS control line in TSP EYM9MAPE. This can be caused by incorrect data in the
post-processed record or an incorrect Target Field/Command or Source Prefix value in the mapping reference
record.

Check the mapping reference record to ensure that the correct post-processing flow is specified. If this appears
correct, check the data in the record undergoing post-processing.

EYM104I PANEL: panel_id; COMMAND: command PREFIX: prefix; DATA: data

Explanation: This message follows message EYM103E to state the contents of the PPMT row that triggered
execution failure.

Destination:

panel_id
The value of the Target Panel field for this row

command
The value of the Target Field/Command field for this row

prefix The value of the Source Prefix field for this row

data The first 16 bytes of the record that is associated with this source prefix

System Action: The post-processing of the current record stops.

Operator Response: None.

System Programmer Response: This message is issued when post-processing causes a non-zero return code to
be returned from the PROCESS control line in TSP EYM9MAPE. This can be caused by incorrect data in the
post-processed record or an incorrect Target Field/Command or Source Prefix value in the mapping reference
record.

Check the mapping reference record to ensure that the correct post-processing flow is specified. If the mapping
reference record appears correct, check the data in the record undergoing post-processing.

EYM105I POST PROCESSING OF RECORD new_record_id HAS COMPLETED. SOURCE RECORD old_record_id
HAS BEEN DELETED

Explanation: This message is issued whenever the post-processing of a given record has completed
successfully.

Destination:

new_record_id The ID of the record which was created

old_record_id The ID of the record which was deleted

System Action: Post-processing continues.

Messages

228 Version 7.1

Operator Response: None.

System Programmer Response: None.

EYM106E POST PROCESSING OF RECORD record_id HAS FAILED

Explanation: The post-processing of a given record is unable to continue for conditions stated in error
messages that immediately precede this message.

Destination:

record_id
The ID of the record which failed

System Action: The post-processing of the current record is cancelled, and the record is flagged to prevent the
PostProcessor from attempting to re-process the record.

Operator Response: None.

System Programmer Response: Examine the error messages immediately preceding this message to determine
the error conditions and the corrective action.

EYM107E MAPPING REFERENCE RECORD ID: record_id NOT FOUND

Explanation: The PostProcessor could not find a mapping reference record in the database of the same name as
that specified in the record created by AutoBridge.

Destination:

record_id
The ID of the record which could not be found

System Action: The post-processing of the current record is cancelled

Operator Response: None.

System Programmer Response: Ensure the alias tables used by AutoBridge contain the correct mapping
reference record ID or create a mapping reference record with a name equal to the above record ID.

EYM108E UNEXPECTED RESPONSE RECEIVED; RESPONSE WAS: response_code

Explanation: This message is issued when a PostProcessor TSP receives an unexpected response.

Destination:

response_code

1x - EYM9MAIN (PostProcessor is terminated)
2x - EYM9POST (PostProcessor is terminated)
3x - EYM9MAPB (PostProcessor is terminated)
4x - EYM9MAPE (PostProcessor is terminated)
5x - EYM9XMIT (Processing continues)

Operator Response: None.

System Programmer Response: You can view the appropriate TSP to try to determine the source of the error.
For example, message EYM108E reported a response code of ’32’. The TSP list above indicates that 3x
responses are from EYM9MAPB. View EYM9MAPB to find where ’32’ is issued.

LABEL NOTFOUND * DISPLAY OF MAP REF REC FAILED*
LABEL ********************************
TESTFLOW ERR32

If you can’t determine the problem, contact Tivoli Customer Support service after verifying that the
PostProcessor has been correctly installed and logic has not been modified such that program exits are being
incorrectly executed.

Messages

229Guide to Integrating with Tivoli Applications

14.
N

etV
iew

A
u

to
B

rid
g

e
M

essag
es

EYM13901E Target Panel data is required

Explanation: A value for the Target Panel field is required when data is present in either the Target Field
Command or Source Prefix fields.

System Action: The mapping reference data list is positioned at the row where the error was detected.

Operator Response: Correct the line by specifying a value in the Target Panel field, or by deleting the line in
question.

System Programmer Response: None.

EYM13902E Mapping Reference Data List is too long

Explanation: The mapping reference data list can contain a maximum of 100 rows. This error message is
issued because more than 100 rows were found.

System Action: The mapping reference data list is displayed for operator action.

Operator Response: Delete rows in the mapping reference data list until there are no more than 100 rows
present.

System Programmer Response: None.

EYM13903E User Node Field is required if User ID is specified.

Explanation: The User Node field is required whenever a value has been specified in the corresponding User
ID field.

System Action: The mapping reference record cannot be filed until the error is corrected.

Operator Response: Either specify a value for the corresponding User Node field, or clear the User ID field.

System Programmer Response: None.

EYM13904E Record not purged due to referencing records.

Explanation: An attempt was made to delete a mapping reference record whose record ID is contained in other
records.

System Action: The mapping reference record is not deleted.

Operator Response: The mapping reference record cannot be deleted until all references are removed. Process
the referencing records to remove the ID of record you wish to delete.

System Programmer Response: None.

EYM999E EYMSP050

Explanation: The Message Handler module, EYMSP050, was unable to locate message EYM006E in the
Message module.

Operator Response: Notify your system programmer.

System Programmer Response: Before contacting Tivoli Customer Support, be sure the following are true:
¶ The PostProcessor has been correctly installed.
¶ The PostProcessor logic has not been modified such that program exits are being incorrectly processed.

If the error persists after you have verified that the PostProcessor has been installed and customized correctly,
contact Tivoli Customer Support for additional programming assistance.

Messages

230 Version 7.1

NetView AutoBridge Worksheets

Use the worksheets in this chapter to plan the content of the initialization table, process
table, mapping table, and filter table for your AutoBridge installation.

You may choose to photocopy the worksheets in this chapter to facilitate your installation
planning.

Initialization Table Worksheet

Table 33. Initialization table worksheet
Description Values
Type of AutoBridge application, resident or remote 1. AUTOBRIDGE = ________

Date format generated for the checkpoint manager data 2. DATEFORMAT = __
Wait time (in whole seconds) for issued commands 3. WAITTIME = ____
Remote dispatcher on the resident NetView 4. RDISPATCH = ____________
Bridge dispatcher, checkpoint manager, and adapters
segment

5. Dispatcher name: ______________

6. CHECKPT = _______________
7. ADAPTER = _______________
8. Dispatcher name: ______________
9. CHECKPT = ________________
10. ADAPTER = _______________
11. Dispatcher name: ______________
12. CHECKPT = _______________
13. ADAPTER = _______________
14. Dispatcher name: ______________
15. CHECKPT = _______________
16. ADAPTER = _______________

Database group 17. Database group name: ___________
Type of target database 18. DATABASE = INFOMGMT
Resident network ID 19. BRGNETID = ____________
Resident domain ID 20. DOMAINID = ____________
Separation character 21. SEPARATOR = ______
Correlation alias name 22. CORRID = ____________
Send transaction processor 23. SEND = ____________
Receive transaction processor 24. RECEIVE = ____________
Number of times to resend transaction 25. RETRYNUM = ____________
Time in seconds between retries 26. RETRYINT = ____________
Create privilege class (optional) 27. CREPRIV = ____________
Update privilege class (optional) 28. UPDPRIV = ____________
Inquiry privilege class (optional) 29. INQPRIV = ____________

15

231Guide to Integrating with Tivoli Applications

15.
N

etV
iew

A
u

to
B

rid
g

e
W

o
rksh

eets

Table 33. Initialization table worksheet (continued)
Description Values
Record group 30. Record group name: _________
Alias table 31. VOCAB = ____________
Create PIDT 32. IBCREATE = ____________
Update PIDT 33. IBUPDATE = _____________
Search PIDT 34. IBSEARCH = ____________
Inquiry PIDT 35. INQVIEW = ____________

36. Record group name: _________
37. VOCAB = ____________
38. IBCREATE = ____________
39. IBUPDATE = ____________
40. IBSEARCH = ____________
41. INQVIEW = ____________
42. Record group name: _________
43. VOCAB = ____________
44. IBCREATE = ____________
45. IBUPDATE = ____________
46. IBSEARCH = ____________
47. INQVIEW = ____________
48. Record group name: _________
49. VOCAB = ____________
50. IBCREATE = _____________
51. IBUPDATE = ____________
52. IBSEARCH = ____________
53. INQVIEW = ____________

Initialization Table Worksheet

232 Version 7.1

Process Table Planning Worksheet

Table 34. Process table worksheet
Function Mapping

segment
(U) FILTER EXEC () (U) SEARCH (U) UPDATE (U) TEXT

Process Table Planning Worksheet

233Guide to Integrating with Tivoli Applications

15.
N

etV
iew

A
u

to
B

rid
g

e
W

o
rksh

eets

Mapping Table Planning Worksheet

Table 35. Mapping table worksheet
From_input To_name (U) DECODE (U) SEARCH (U) UPDATE EXEC () (U) TEXT

Mapping Table Planning Worksheet

234 Version 7.1

Filter Table Planning Worksheet

Table 36. Filter table worksheet
DEFAULT=BLOCK|PASS

Alias name Operator Value

Filter Table Planning Worksheet

235Guide to Integrating with Tivoli Applications

15.
N

etV
iew

A
u

to
B

rid
g

e
W

o
rksh

eets

Filter Table Planning Worksheet

236 Version 7.1

NetView AutoBridge Sample Members

This chapter lists and describes the sample members provided with AutoBridge. Use them to
assist you in installing and customizing AutoBridge. These samples are shipped in the
SEYLSPL library and are listed in the following sections:

¶ “Installation Samples” lists the AutoBridge installation samples. Use these samples when
defining operators and their profiles, commands, and VSAM files.

¶ “Installation Verification Programs (IVPs)” on page 239 lists three IVPs for verifying
your AutoBridge installation.

¶ “AutoBridge Table Samples” on page 239 lists the sample process, filter, and mapping
tables, as well as sample initialization tables for both resident and remote NetViews.

¶ “User-written CLISTs and Panel Samples” on page 239 lists two samples of user-written
CLISTs.

¶ “User-written Functions” on page 240 lists user-written functions that you can call from
mapping table segments. These functions manipulate data extracted from a messages and
MSUs.

Installation Samples
EYLCMD The command model statements to add to the NetView DSICMD member.

These statements should be added exactly as shown in the sample. This step
is described in “Adding Command Model Statements to NetView” on
page 148.

EYLDMN The command facility definitions to add to the NetView DSIDMN member.
These statements should be added exactly as shown in the sample. This step
is described in “Customizing the DSIPARM DSIDMN Member” on
page 151.

EYLPRFAO The operator profile for the checkpoint tasks. This definition is an example
only. If you change the profile name of the checkpoint task in the
installation sample EYLRES, rename this member to reflect the new name.
This step is described in “Creating Profiles for NetView Autotasks” on
page 146.

EYLPRFDH The high-level operator profile for a NetView Bridge dispatcher. This
definition is an example only. If you change the profile name of the
NetView Bridge dispatcher in the EYLRES sample, rename this member to
reflect that name. This step is described in “Creating Profiles for NetView
Autotasks” on page 146.

EYLPRFDL The low-level operator profile for a NetView Bridge dispatcher. This

16

237Guide to Integrating with Tivoli Applications

16.
N

etV
iew

A
u

to
B

rid
g

e
S

am
p

le
M

em
b

ers

definition is an example only. If you changed the profile name of the
NetView Bridge dispatcher in the EYLRES sample, rename this member to
reflect that name.

EYLPRFRD The operator profile for the remote NetView Bridge dispatcher. This
definition is an example only. If you change the profile name of the remote
dispatcher in either the EYLRES or EYLREM installation samples, rename
EYLPRFRD to reflect the new name. This step is described in “Creating
Profiles for NetView Autotasks” on page 146.

EYLREM The operator ID definitions for remote NetViews. Copy this member into the
NetView DSIOPF member in each remote NetView. These definitions are
examples only. Rename the autotasks as appropriate. Use as many autotasks
as suits your needs.

Note: If you change the operator IDs, make a corresponding change in the
RDISPATCH variable and BEGIN DISPATCHER variables of the
initialization table (EYLATINT).

The sample contains definitions for one remote NetView Bridge dispatcher
(required) and two checkpoint tasks. You may define a checkpoint task
associated with any or all NetView Bridge dispatchers on the resident
NetView.

EYLRES The operator ID definitions for the resident NetView. Copy EYLRES into
the NetView DSIOPF member in the resident NetView. These definitions are
examples only. Rename the autotasks as appropriate. Use as many autotasks
as suits your needs.

Note: If you change the operator IDs, make a corresponding change in the
RDISPATCH variable and BEGIN DISPATCHER variables of
EYLATINT.

The sample contains definitions for one remote dispatcher (required if there
are any remote NetViews) and for two NetView Bridge dispatchers and their
two associated checkpoint tasks. You may define one to four NetView
Bridge dispatchers, each with an associated checkpoint task. This step is
described in “Adding Operator IDs for NetView Autotasks” on page 145.

EYLSID01 The sample IDCAM to be used by EYLSJ008 to delete the current
checkpoint file.

EYLSI101 The sample IDCAM to be used by EYLSJ008 to create the new checkpoint
file.

EYLSJ002 The JCL job to allocate NetView Bridge adapter output data sets. Change
these JCL statements as necessary to reflect the correct DASD type and data
set names, as well as any other information that is unique to your
environment. This step is described in “The User-Supplied Output Data Sets”
on page 17.

EYLSJ008 A JCL job that defines VSAM clusters for the AutoBridge checkpoint files.
Change these JCL statements as necessary to reflect the correct DASD type
and data set names, as well as any other information that is unique to your
environment. This step is described in “Allocating the Checkpoint File
VSAM Data Set” on page 150.

Installation Samples

238 Version 7.1

EYLATMEM Sample DSIDMN definition statements for initializing the checkpoint
manager data services task.

EYLATSUB Sample DSIDMN definition statements for initializing the table manager
data services task.

Installation Verification Programs (IVPs)
After installing AutoBridge and customizing its tables, profiles, and other components, you
can execute any of the following IVPs to produce simple BNJ146I messages. Copy these
members into a concatenated DSICLD data set. Rename them if necessary.

EYLIVP1 A sample IVP that produces a BNJ146I RECFMS message

EYLIVP2 A sample IVP that produces a BNJ146I generic alert message

EYLIVP3 A sample IVP that produces a BNJ146I non-generic alert message

AutoBridge Table Samples
EYLATFIL The sample filter table. You may customize the default value of PASS or

BLOCK and the following filter conditions.

EYLATINT The sample initialization table for a resident NetView. You must customize
this table to reflect the IDs and table names on your system.

Note: If you changed the operator IDs in the EYLRES sample, make a
corresponding change in the RDISPATCH variable and BEGIN
DISPATCHER variables of this table.

This step is described in “Creating Profiles for NetView Autotasks” on
page 146.

EYLATMAP The sample mapping table. You can modify the mapping segments to suit
your needs or use them as a model for creating others.

EYLATPRO The sample process table. You can modify the process segments to suit your
needs or use them as a model for creating others.

EYLINTRM The sample initialization table for remote NetViews. You must customize
this table to reflect the IDs and table names on your system.

Note: If you changed the operator IDs in the EYLREM sample, make a
corresponding change in the RDISPATCH variable and BEGIN
DISPATCHER variables of this table.

Rename this member to EYLATINT after copying it to a remote NetView.

User-written CLISTs and Panel Samples
To use these samples, copy the EYLEXA00 and EYLEXUSR members into a concatenated
DSICLD data set. Rename them if necessary. Copy the EYLKXUSR panel into a
concatenated CNMPNL1 data set. If you rename EYLKXUSR, edit EYLEXUSR to reflect
the new name on the VIEW command.

EYLEXA00 A sample REXX exec that can be invoked in response to an unalert (an alert
with description code point of Annn). Customize the NetView Bridge

Installation Samples

239Guide to Integrating with Tivoli Applications

16.
N

etV
iew

A
u

to
B

rid
g

e
S

am
p

le
M

em
b

ers

dispatcher specified on the ABAPI invocation as necessary, as well as the
description line to be updated in the record.

EYLEXUSR A sample REXX exec that allows user interaction with records on the
NetView Bridge. This exec displays a panel (EYLKXUSR) showing the
contents of some of the fields in a record. Edit the fields in this exec’s
CUSTOMIZE subroutine to use EYLEXUSR on your system. The remainder
of the exec should work without modification.

EYLKXUSR A sample panel used with EYLEXUSR. You must customize the panel
entries to agree with changes made in the CUSTOMIZE subroutine of the
EYLEXUSR exec.

User-written Functions
To use any of these functions, copy the members into a concatenated DSICLD data set.
Rename them if necessary. If you change the name of a function, make a corresponding
change to those statements in the sample mapping table that invoke that function.

EYLEXAYR This function adds the current year to a month/day string in the format
MM/DD. The output string is in the format MM/DD/YY. Use this function
when parsing a BNJ146I message such as:
MSGSTR(1,1) DATE_OCCURRED,EYLEXAYR(DATE_OCCURRED);

EYLEXCDT This function converts a hexadecimal date string in the format YYMMDD to
a decimal string in the format MM/DD/YY. Use this function when parsing
the date from MSU subvector 10 as in the following example:
MSUSEG(0000.01.10,3,3) DATE_OCCURRED,EYLEXCDT('DATE_OCCURRED'X);

EYLEXCHG This function returns a substitute text string for a string you specify. For
example, you could substitute the string 'TOKEN RING TEMPORARY
ERROR' with 'RECOVERED BEACONING CONDITION'. Use this exec
when parsing the description from MSU subvector 92 as in the following
example:
MSUSEG(0000.92,6,2) DESCRIPTION,DECODE,EYLEXCHG(DESCRIPTION);

EYLEXCON This sample function concatenates a text string to 45 characters for insertion
into the DESCRIPTION field. Use it when you want to see at least part of
the probable cause text in the Problem Reporter DESCRIPTION field. This
could be used when parsing the probable cause from MSU subvector 93 as
in the following example:
MSUSEG(0000.93,3,2) DESCRIPTION,DECODE,EYLEXCON(DESCRIPTION),UPDATE;

EYLEXCTM This function converts a hexadecimal time string in the format HHMMSS to
a decimal string in the format HH:MM. Use this function when parsing the
time from MSU subvector 10 as in the following example:
MSUSEG(0000.01.10,6,3) TIME_OCCURRED,EYLEXCTM('DATE_OCCURRED'X);

EYLEXLAD This function extracts the LAN Fault Domain Description MAC addresses
and builds a Tivoli Information Management for z/OS list that is separated
by commas. Use this function when parsing the LAN link connection from
MSU subvector 51, subfield 06, to create a line/circuit numbers list in the
symptom data:
MSUSEG(0000.51.06,3) S1422,EYLEXLAD('S1422'X);

EYLEXLNM This function extracts the LAN Fault Domain names and builds a Tivoli

User-written CLISTs and Panel Samples

240 Version 7.1

Information Management for z/OS list that is separated by commas. Use this
function when parsing the LAN link connection from MSU subvector 51,
subfield 26, to create a device names list in the symptom data:

MSUSEG(0000.51.26,3) S1416,EYLEXLNM('S1416'X);

EYLEXNAM This function strips the device name returned from the HIER() function
down to the 8-character name field (dropping the 4-character type). Use this
function when parsing the HIER list in the MSU as in the following
example:

HIER(4) DEVICE_NAME,EYLEXNAM(DEVICE_NAME),SEARCH;

EYLEXSTR This function informs AutoBridge that the input is in hexadecimal format.
AutoBridge’s PARSE support converts such data into character format so
that it is acceptable to Tivoli Information Management for z/OS. Use this
function when parsing the LAN link connection from subvector 51, subfield
07, to save the beaconing type in the symptom data abstract:

MSUSEG(0000.51.07,3) S0C3A,EYLEXSTR('S0C3A'X);

User-written Functions

241Guide to Integrating with Tivoli Applications

16.
N

etV
iew

A
u

to
B

rid
g

e
S

am
p

le
M

em
b

ers

User-written Functions

242 Version 7.1

Tivoli Information Management for z/OS to
Tivoli NetView Connection

Tivoli Information Management for z/OS extends problem control and management to
remote parts of your network. Because Tivoli Information Management for z/OS NetView
AutoBridge provides an interface to Tivoli NetView for z/OS, you can automatically open
and update network problems in Tivoli Information Management for z/OS’s database. You
can also connect Tivoli Information Management for z/OS with Tivoli NetView running on
an AIX® platform through the Tivoli NetView for z/OS program. This connection creates
centralized network management within a distributed, multivendor, heterogeneous
environment, as shown in Figure 14.

AIX
NetView
Service
Point

AIX

AIX

PC

RS/6000

RS/6000

RS/6000

Host OS/390

RS/6000

TCP/IP

Token Ring

TME 10
NetView

Information
Management

for z/OS

TCP/IP
Network

NetView

AutoBridge
Information

Management
for z/OS

Database

NetView
Bridge

Adapter

Figure 14. Centralized Network Management within a Heterogeneous Environment

17

243Guide to Integrating with Tivoli Applications

17.
Tivo

li
N

etV
iew

C
o

n
n

ectio
n

Understanding the Tivoli NetView Connection
The Tivoli NetView for z/OS program connects to Tivoli NetView (previously known as
NetView for AIX) using the AIX NetView Service Point program. The Tivoli NetView
program filters the Simple Network Management Protocol (SNMP) traps received from
TCP/IP networks, converts them to SNA alerts, and sends them to Tivoli NetView for z/OS.
The Tivoli NetView for z/OS program uses Tivoli Information Management for z/OS
NetView AutoBridge which in turn uses the Tivoli Information Management for z/OS
NetView Bridge Adapter to send requests to Tivoli Information Management for z/OS.

Note: The connection between Tivoli NetView for z/OS and Tivoli NetView is available
only from the Tivoli NetView program that runs on the AIX operating system.

What is Tivoli NetView for AIX?
The Tivoli NetView program is a comprehensive management tool for heterogeneous,
multivendor devices on TCP/IP networks.

The Tivoli NetView program provides configuration, fault, security, and performance
management functions, along with many features that make it easy to install and use. It
provides an open network management platform that enables the integration of Simple
Network Management Protocol (SNMP) and Common Management Information Protocol
(CMIP) applications. For cooperative management of TCP/IP networks, Tivoli NetView uses
the AIX NetView Service Point program to communicate with your Tivoli NetView program.
The Tivoli NetView program is a network and system management tool that provides
distributed or centralized management for your network.

What is AIX NetView Service Point?
The AIX NetView Service Point program is a network management tool that enables you to
expand the Tivoli NetView for z/OS centralized management of an SNA network to include
non-SNA network devices, by providing a gateway to Tivoli NetView on an RS/6000®.
Tivoli NetView for AIX is an example of a program that uses AIX NetView Service Point to
enable Tivoli NetView for z/OS to communicate with non-SNA devices.

AIX NetView Service Point and Tivoli NetView for z/OS are separate programs. Tivoli
NetView for z/OS is a host program that provides network management functions in an SNA
network. AIX NetView Service Point is a library of functions and a set of system services
that enable applications residing on a local or distributed AIX-based workstation to exchange
data with Tivoli NetView for z/OS.

When you install and customize AIX NetView Service Point, the product functions as a
gateway. The Service Point does not provide a local operator interface. AIX NetView
Service Point runs in an unattended environment.

The AIX NetView Service Point program operates in the AIX and UNIX environments and
takes advantage of the multi-user, multiprocessing, and network facilities provided by AIX
and UNIX.

AIX NetView Service Point enables the host program and the Tivoli NetView program to
exchange SNA management services (MS) major vectors over SNA Services/6000 or SNA
Server/6000. Tivoli NetView supplies the spappld daemon as a service point application and
starts the daemon as a part of the Tivoli NetView initialization process. The resulting

Understanding the Tivoli NetView Connection

244 Version 7.1

connection enables a host operator to send SNA MS Execute (X'8061') Major Vectors
containing RUNCMD commands. Tivoli NetView processes the contents of the RUNCMD
command in the SNMP environment.

For information about configuring the AIX NetView Service Point, refer to the AIX NetView
Service Point Installation, Operation, and Programming Guide.

Software Requirements
Using the host connection between Tivoli NetView and Tivoli NetView for z/OS requires the
following software programs.

¶ One of the following host z/OS programs:

v Tivoli NetView for z/OS Version 1 Release 1.

v NetView Version 1 Release 3, Version 2 Release 3, or Version 2 Release 4.

v NetView for MVS Version 3 with the Enterprise feature.

¶ AIX NetView/6000 Version 2 Release 1, NetView for AIX Version 3 or 4, or Tivoli
NetView Version 5.

¶ One of the following AIX NetView Service Point programs:

v AIX NetView Service Point Version 1 Release 1 or Version 1 Release 2 Modification
0 to use with SNA Services/6000

v AIX NetView Service Point Version 1 Release 2 Modification 1 or later, to use with
SNA Server/6000

¶ AIX SNA Services/6000 Version 1 Release 2, or AIX SNA Server/6000 Version 2
Release 1 or later

Purpose of the Host Connection
The purpose of the connection between Tivoli NetView and Tivoli NetView for z/OS is to
inform the host program of certain events in a TCP/IP network by converting selected traps
into alerts and forwarding them to the host program. The host program can respond to the
alert by returning a RUNCMD command that contains an appropriate response to the event.

The host connection also enables Tivoli NetView for z/OS to issue a command to be run in
the SNMP environment. The command is enclosed in a RUNCMD command and sent to the
SNMP environment for processing. The results are returned to the host program in another
RUNCMD command.

How the Host Connection Works
You can use the AIX NetView Service Point program with the Tivoli NetView and Tivoli
NetView for z/OS programs to cooperatively manage both SNA networks and TCP/IP
networks. The AIX NetView Service Point program acts as a bridge between the Tivoli
NetView program and the host enabling the Tivoli NetView for z/OS program to use the
facilities of the Tivoli NetView program to manage SNMP devices.

The Tivoli NetView tralertd daemon receives the traps that meet the filtering criteria. Traps
are a type of event in which agents send information to the manager without an explicit
request from the manager. Tivoli NetView uses the NetView Service Point application
programming interfaces (APIs) to convert the traps into alerts or network management
vector transports (NMVTs). The NetView Service Point program then forwards the alerts to
Tivoli NetView for z/OS. From Tivoli NetView for z/OS, the Tivoli Information

Understanding the Tivoli NetView Connection

245Guide to Integrating with Tivoli Applications

17.
Tivo

li
N

etV
iew

C
o

n
n

ectio
n

Management for z/OS NetView AutoBridge program processes the NMVTs and uses the data
from the NMVTs to create and update the Tivoli Information Management for z/OS records.

The host program responds to the alert by enclosing an appropriate command in a
RUNCMD command. The RUNCMD command is started by the Tivoli NetView program,
which then returns a response to the host program.

The host connection also enables you to use Tivoli NetView for z/OS automation facilities to
invoke shell scripts or send SNMP network management commands with RUNCMDs
through the AIX NetView Service Point program to the Tivoli NetView program to monitor
and manage your internet environment.

For more detailed information about how to implement and maintain the connection between
Tivoli NetView and Tivoli NetView for z/OS, refer to Tivoli NetView Host Connection.

Advantages of Connecting Tivoli Information Management for z/OS
to Tivoli NetView

Connecting Tivoli Information Management for z/OS to Tivoli NetView enables you to get
an enterprise view of your network. You can create and update problem records in Tivoli
Information Management for z/OS databases in remote locations and dynamically track
problems in your distributed network. This connection also enables you to create distributed
and host oriented problem records in one database and automate tasks to ensure accuracy
and improve the quality of your management system. This allows time for trend analysis and
more effective network planning.

Understanding the Tivoli NetView Connection

246 Version 7.1

III — Problem Service
Chapter 18. Understanding the Problem Service Component 251
Problem Service Sessions . 251
Problem Service Operations . 252

Unlocking a Record. 253
Locking a Record . 253
Deleting Records . 254
Propagating Records . 254
Retrieving Records . 254
Searching for a Record . 255
Transferring Records . 255
Updating Records . 256
Control Operations . 256

Pinging for Status . 256
Shutting Down Problem Service . 256

Automated Operations . 256
Reverse Assignment Operation. 257
Monitor Operation . 258

Problem Service Data Mappings . 259

Chapter 19. Problem Service Installation . 261
Planning for Problem Service Installation. 261

Tivoli Information Management for z/OS Environment. 261
HLAPI Client . 261

Requester Interface . 262
Client Interface . 262

Installation Requirements. 262
Hardware Requirements . 262
Disk Space Requirements . 262
Software Requirements . 262

MVS Host. 262
AIX Workstation . 263
Windows NT Workstation . 263

Installing Problem Service . 263
National Language Support (NLS) for Messages . 264

AIX Workstations . 264
Windows NT Workstations. 264

REGSRV2 Program (Windows NT Only) . 265

Chapter 20. Planning for Problem Service Configuration. 267
Basic HLAPI Concepts . 267

HLAPI Transactions . 267
HLAPI PDBs . 268
HLAPI Data Views . 268

Structured and Prefix Word Indexes . 268
P-Words . 268

HLAPI PALTs . 268
Problem Service Configuration Process . 269

Sample Configuration File . 269

247Guide to Integrating with Tivoli Applications

Customizing Statements . 269
General Syntax Rules . 269

Process Steps. 270

Chapter 21. Customizing Your Problem Service Configuration File 271
Customizing the HLAPI Session Information . 271

HLAPI-Related Statements . 271
HLAPI Session Statements . 274

Customizing Problem Service General Settings . 275
Customizing Problem Service Data Mappings . 281

Mapping Your Application and Tivoli Information Management for z/OS Records 282
Setting Up the Data Mapping Rules . 282
Mapping Fields to Problem Service Operations . 284
Understanding the Syntax of Data Mapping Statements . 284
Changing the Data Mapping Rules. 285

Sample Configuration File Descriptions . 286
Defining Specific Record Types . 286
Defining API PIDT Names . 287
Defining Freeform Text Fields . 288
Defining the ReverseArguments Statement . 288

Mapping Records from Your Application to Tivoli Information Management for z/OS 289
Mapping Records from Tivoli Information Management for z/OS to Your Application 291

Chapter 22. Completing Problem Service Configuration 293
Preparing the HLAPI Data Views on MVS . 293

Using PIDTs and PIPTs with Uncustomized Records . 293
Preparing PIDTs and PIPTs for Customized Records . 294

Updating the Services File . 295
AIX Workstation /etc/services File . 295
Windows NT Workstation Services File . 295

Chapter 23. Running Problem Service . 297
Starting Problem Service . 297
Stopping Problem Service . 297
Logging with Problem Service . 297

Chapter 24. Problem Service Application Programming Information 299
Copying the Samples and Files . 299
Compiling and Link Editing Your Code . 299
Interface Definition Language Data Types . 300
Coding Examples for Problem Service Operations . 300

Checkin. 300
Checkout . 301
Delete . 301
Ping . 301
Propagate . 302
Retrieve . 302
Search . 303
Shutdown . 303
Transfer. 304
Update . 304

248 Version 7.1

Tivoli Application Development Environment (ADE) Exceptions . 305
ExInfoGateway Exception . 305
Examples of Gateway Exceptions . 306

Chapter 25. Customizing User Exit Routines for the Problem Service
Daemon . 307
Supported Data Conversions . 307

Truncation . 307
Convert One Character to Another Character . 307
Convert Specific Field Value to Another Value . 308
Date/Time Conversion . 308
Freeform Text . 308
Default Data . 308
Field Combining (Concatenation). 308
Substring and Sub-Word . 308
Exit Routines. 308

Specifying User Exits for Conversions . 309
change. 309
fromIMDate . 310
fromIMPriority . 310
fromIMTime . 310
nullDefault . 310
stripLeading . 310
subString . 311
toIMDate. 311
toIMTime . 311
translate. 311
translateWord . 312
words . 312

249Guide to Integrating with Tivoli Applications

250 Version 7.1

Understanding the Problem Service
Component

The Problem Service component provides distributed help desk applications with an
interface to the Tivoli Information Management for z/OS database on MVS so that both
products can be part of the same distributed networking environment. Tivoli Information
Management for z/OS enables applications on remote environments to connect to the Tivoli
Information Management for z/OS system on MVS and to access the Tivoli Information
Management for z/OS database.

Problem Service consists of the following components:

¶ Tivoli-related functions that install the Problem Service object and operations into the
Tivoli database

¶ Daemon-related functions: the executable Problem Service daemon and user exits

¶ Sample files that provide coding examples for the Problem Service operations,
configuration file, MVS tables, and high-level application program interface (HLAPI)
profile

¶ Files needed to compile and link-edit an application that will use Problem Service
operations

Conceptually, Problem Service provides:

¶ Session management with Tivoli Information Management for z/OS

¶ A set of application programming interfaces (APIs) that enable you to interact with a
Tivoli Information Management for z/OS database

¶ A data mapping facility that enables you to define data manipulations

Problem Service Sessions
The sessions provided by Problem Service are determined by what you specify in the
Problem Service configuration file. These sessions provide an application access through the
HLAPI to a Tivoli Information Management for z/OS database. There are three types of
sessions available:
¶ Outbound
¶ Reverse
¶ Monitor

Multiple outbound sessions can be specified in the configuration file, but only one reverse
session and one monitor session are permitted. Figure 15 on page 252 shows an overview of

18

251Guide to Integrating with Tivoli Applications

18.
T

h
e

P
ro

b
lem

S
ervice

C
o

m
p

o
n

en
t

Problem Service sessions, including an interface with an application and a Tivoli Information
Management for z/OS database.

With this example, only three sessions were specified in the configuration file: one monitor
session and two outbound sessions. A reverse session was not defined.

When the monitor session (polling daemon) detects a change in a database record that was
assigned to or created by the application, it notifies the application.

The two outbound sessions are used for Problem Service operations initiated by the
application. When the application requests an operation, Problem Service routes the request
to the first available outbound session. A transaction interface is established and Problem
Service performs the operation requested.

Problem Service Operations
Problem Service enables you to use your applications to share information in Tivoli
Information Management for z/OS database records. The following operations, using
outbound sessions, enable you to exchange information between your applications and Tivoli
Information Management for z/OS databases:
¶ Checkin
¶ Checkout
¶ Delete
¶ Propagate
¶ Retrieve
¶ Search
¶ Transfer
¶ Update

The following are Problem Service control operations:
¶ Ping

A
P
P
L
I
C
A
T
I
O
N

I
n
f
o
r
m
a
t
i
o
n

M
a
n
a
g
e
m
e
n
t

OS/390

PROBLEM SERVICE

Request

Notify

Transaction HLAPI

HLAPI

HLAPI

Router

Outbound
Session

Outbound
Session

Monitor
Session

f
o
r

z
/
O
S

Figure 15. Problem Service Sessions Example

Problem Service Sessions

252 Version 7.1

¶ Shutdown

The following are Problem Service automated operations:
¶ Reverse assignment
¶ Monitor

The operations provided by Problem Service are affected by the availability of the network
connection between the Problem Service daemons and Tivoli Information Management for
z/OS. If the network connection is unavailable, you cannot perform or complete some
Problem Service operations. You can resume them when the connection becomes available.

Furthermore, the data fields handled by your application can differ in meaning and format
from the data fields in Tivoli Information Management for z/OS records. To ensure data
integrity when these records are interchanged between your application and Tivoli
Information Management for z/OS, Problem Service provides customizable data mappings to
map your application record fields to Tivoli Information Management for z/OS record fields
and vice versa.

To maintain data integrity, avoid multiple update access to the same record. Use the Problem
Service record locking capability to ensure that your application keeps others from updating
a record that you want to update.

A description of each Problem Service operation follows. Each description contains a
prototype statement for the operation in the form of:

Response Operation Input

where Input consists of
(in datatype datavalue)

For example code fragments that show how to use the operations, see “Coding Examples for
Problem Service Operations” on page 300.

Unlocking a Record
The checkin operation unlocks a specified record in the Tivoli Information Management for
z/OS database by checking it in. The prototype statement for checkin is:
void checkin (in string rnid);

Where:

void Indicates that there are no returned values.

rnid Is a 1 to 8-character string that is the record number of the record to be checked in
to a Tivoli Information Management for z/OS.

Locking a Record
The checkout operation locks a specified record in the Tivoli Information Management for
z/OS database by checking it out. The prototype statement for checkout is:
void checkout (in string rnid);

Where:

void Indicates that there are no returned values.

rnid Is a 1 to 8-character string that is the record number of the record to be checked out
of Tivoli Information Management for z/OS.

Problem Service Operations

253Guide to Integrating with Tivoli Applications

18.
T

h
e

P
ro

b
lem

S
ervice

C
o

m
p

o
n

en
t

Deleting Records
The delete operation deletes a specified record in Tivoli Information Management for z/OS.
The prototype statement for delete is:
void delete (in string rnid);

Where:

void Indicates that there are no returned values.

rnid Is a 1 to 8-character string that is the record number of the record to be deleted from
Tivoli Information Management for z/OS.

Propagating Records
The propagate operation creates a copy of the record in the Tivoli Information Management
for z/OS database. When created in checked-out status, a Tivoli Information Management for
z/OS user on the host can only view the record to see any updates made by a user from the
workstation.

You can make this record a read-only copy by supplying the checkout indication data field
or hardcoding the checkout indicator in the Problem Service configuration file data
mappings for propagate.

The prototype statement for propagate is:
string propagate (in GWAttrList keyvaluepairs, in string recordtypevalue);

Where:

string Is the Tivoli Information Management for z/OS record number returned when the
operation has successfully completed.

keyvaluepairs
Is a sequence of name value pairs consisting of name and data values.

recordtypevalue
Is the name of the record type that corresponds to the configuration file mapping
section identified by the RecordTypeValue statement.

The record is assumed to exist if a record number (rnid) is passed as one of the name value
pairs. The field that contains the rnid is determined by the ForeignIMRNIDField
configuration file statement. In this case, the propagate operation attempts to update the
existing Tivoli Information Management for z/OS record.

Your application can pass only changed data or it can pass all record data. The
InputJustChangedData statement in the Problem Service configuration file defines the
selected behavior to Problem Service.

When you pass all data and use data mapping, Problem Service attempts to delete all NULL
data fields from the Tivoli Information Management for z/OS record. When you pass only
changed values and you want to delete a Tivoli Information Management for z/OS field,
pass NULL as the data.

Retrieving Records
The retrieve operation retrieves a specific Tivoli Information Management for z/OS record.
The prototype statement for retrieve is:
GWAttrList retrieve (in string rnid, in string recordtypevalue);

Problem Service Operations

254 Version 7.1

Where:

GWAttrList
Is a Tivoli Information Management for z/OS record in a sequence of name value
pairs returned in response to the retrieve operation.

rnid Is a 1 to 8-character string that is the record number of the record to be retrieved
from Tivoli Information Management for z/OS.

recordtypevalue
Is the name of the record type that corresponds to the configuration file mapping
section identified by the RecordTypeValue statement.

Searching for a Record
The search operation returns a list of Tivoli Information Management for z/OS records that
match the specified search criteria. The prototype statement for search is:
SearchResultList search (in GWAttrList keyvaluepairs, in string recordtypevalue);

Where:

SearchResultList
Is a sequence of elements that match the search criteria of the search operation. Each
element contains the rnid and a data value, which is typically the data abstract, for
each Tivoli Information Management for z/OS record. The AssociatedDataField
statement in the Problem Service configuration file determines the Tivoli Information
Management for z/OS data field that is returned in the name value pair. The number
of matches is limited to the value of the SearchHits statement in the Problem
Service configuration file.

keyvaluepairs
Is the sequence of name value pairs consisting of name and data values which
specify the criteria to be used for the search operation.

recordtypevalue
Is the name of the record type that corresponds to the configuration file mapping
section identified with the RecordTypeValue statement.

Transferring Records
The transfer operation creates a record in the Tivoli Information Management for z/OS
database that can be viewed and updated by a Tivoli Information Management for z/OS user
on the host. The prototype statement for transfer is:
string transfer (in GWAttrList keyvaluepairs, in string recordtypevalue);

Where:

string Is the Tivoli Information Management for z/OS record number returned when the
operation has successfully completed.

keyvaluepairs
Is a sequence of name value pairs consisting of name and data values. The rnid can
be specified as one of the name/value pairs or it can be assigned by Tivoli
Information Management for z/OS. When Tivoli Information Management for z/OS
assigns the rnid, it is always an 8-character numeric string.

recordtypevalue
Is the name of the record type that corresponds to the configuration file mapping
section identified by the RecordTypeValue statement.

Problem Service Operations

255Guide to Integrating with Tivoli Applications

18.
T

h
e

P
ro

b
lem

S
ervice

C
o

m
p

o
n

en
t

Updating Records
The update operation updates the specified Tivoli Information Management for z/OS record.
The prototype statement for update is:
void update (in GWAttrList keyvaluepairs, in string recordtypevalue);

Where:

void Indicates there are no returned values.

keyvaluepairs
Is the sequence of name value pairs that consist of name and data values. One of the
name value pairs must contain an rnid. The field that contains the rnid is determined
by the ForeignIMRNIDField configuration file statement.

recordtypevalue
Is the name of the record type that corresponds to the configuration file mapping
section identified by the RecordTypeValue statement.

Your application can pass only changed data or it can pass all record data. The
InputJustChangedData statement in the Problem Service configuration file defines the
selected behavior to Problem Service.

If you pass all data and use data mapping, Problem Service attempts to delete all NULL data
fields from the Tivoli Information Management for z/OS record. When you pass only
changed values and you want to delete a Tivoli Information Management for z/OS field,
pass NULL as the data.

Control Operations
Here are the descriptions for the control operations (ping and shutdown) provided by
Problem Service.

Pinging for Status
Ping is used by your application to obtain the status of the Problem Service daemons. The
prototype statement for ping is:
PingResult ping ();

The operation returns PingResult, which indicates the status of Problem Service outbound,
reverse assignment, and monitor sessions. If Problem Service is not running, an exception is
thrown.

Shutting Down Problem Service
Shutdown closes the Problem Service and its associated child daemons. This is a hard
shutdown, and does not ensure that all transactions are completed. The prototype statement
for shutdown is:
void shutdown ();

No values are returned.

Automated Operations
The remaining operations provided by Problem Service are automated operations. You tailor
the Problem Service configuration file to customize the behavior of the operations. There
can only be one session specified for each automated operation in the configuration file: one
reverse session and one monitor session.

Problem Service Operations

256 Version 7.1

Reverse Assignment Operation
Reverse assignment allows records created in Tivoli Information Management for z/OS to be
used and assigned in the local database. You might want to transfer the responsibility of
specific Tivoli Information Management for z/OS records to your distributed help desk staff
or have your staff share the responsibility for those records with the Tivoli Information
Management for z/OS staff on the host. Periodically, reverse assignment automatically
queries the Tivoli Information Management for z/OS database and identifies records that
meet specific search criteria.

The record is still owned by Tivoli Information Management for z/OS and the record can be
updated by the Tivoli Information Management for z/OS staff on the host. When you update
a reverse assigned record, the record should be checked-out and retrieved from the Tivoli
Information Management for z/OS database before it is updated.

Reverse assigned records can be monitored for changes. See “Monitor Operation” on
page 258 for more information on monitoring.

Tailoring
You tailor the Problem Service configuration file to customize the behavior of this operation
by specifying:

¶ The time interval between each activation of the reverse assignment operation.

¶ The search criteria to use when querying the Tivoli Information Management for z/OS
database.

¶ The executable to be invoked when search matches are found.

Activating
The reverse assignment automated operation is activated at the end of each time interval. If
the network connection to Tivoli Information Management for z/OS is not available at
activation time, the reverse assignment operation is not performed for that activation.

If the network connection is available at activation time, reverse assignment queries the
Tivoli Information Management for z/OS database according to the specified search criteria.
When it queries the database, it considers all records except those that have already been
transferred or reverse assigned by your application’s system. The number of search matches
is limited to the SearchHits configuration file value.

Record Processing
For each record that is identified in the Tivoli Information Management for z/OS database,
the executable identified by the RACallApp statement is run on the system identified by the
ForeignHost statement. These statements and their values can be found in your configuration
file.

The record number, record type, and the reverse assignment GatewayID (RGatewayID) are
passed to the executable, which performs the processing of the Tivoli Information
Management for z/OS record. This processing could include:

1. Checking out the record.

2. Retrieving the record.

3. Performing application-specific actions (for example, creating a record in the distributed
help desk’s database).

Problem Service Operations

257Guide to Integrating with Tivoli Applications

18.
T

h
e

P
ro

b
lem

S
ervice

C
o

m
p

o
n

en
t

4. Updating the Tivoli Information Management for z/OS record to add the gateway ID to
mark the record as being reverse assigned by this Problem Service. This enables the
monitor operation on the record.

Note: This step prevents the reverse assignment operation from repeatedly processing
the same record.

5. Checking in the record.

Monitor Operation
Problem Service provides an automated monitor operation that periodically queries the Tivoli
Information Management for z/OS database to identify records that have been transferred or
reverse assigned by your distributed help desk and that have been recently updated in Tivoli
Information Management for z/OS.

Tailoring
You tailor the Problem Service configuration file to specify:

¶ The time interval between each activation of the monitor operation.

¶ The executable to be invoked when search hits are found.

Activating
The monitor operation is activated at the end of each time interval. If the network
connection to Tivoli Information Management for z/OS is not available at activation time,
the monitor operation is not performed for that activation.

The monitor operation affects only the records that have been identified as being reverse
assigned or transferred by your application’s system. The records processed by Problem
Service contain a gateway identifier, specified in the Problem Service configuration file, that
associates them with your application’s system that is running Problem Service.

Note: This assumes that the transfer data mappings include the Problem Service identifier
and that you updated reverse assigned records with the Problem Service identifier.

The monitor operation selects only records that were last changed by a different user. All
records last changed by your application through a Problem Service instance will be marked
as being changed last by the gateway identifier value.

You must update the Tivoli Information Management for z/OS record or the monitor will
always find the same record on the next monitor iteration. If you do not have data to
change, you can use a field returned by the retrieve operation as the data to use for the
update.

Record Processing
For each record that the monitor finds in the Tivoli Information Management for z/OS
database that matches the search criteria, the executable identified by the MonCallApp
statement is run on the system identified by the ForeignHost statement. These statements and
their values are in your configuration file.

The record number and record type are passed to the executable. The number of search
matches is limited to the SearchHits configuration file value. The executable processes the
Tivoli Information Management for z/OS record, which could include:

Problem Service Operations

258 Version 7.1

1. Checking out the record.

2. Retrieving the record.

3. Performing an application-specific function (for example, updating a record in the
distributed help desk’s database).

4. Updating the Tivoli Information Management for z/OS record to mark the record as
being last altered by this instance of Problem Service.

Note: This step prevents the monitor operation from repeatedly processing the same
record.

5. Checking in the record.

Problem Service Data Mappings
When a propagate or transfer operation copies a record to Tivoli Information Management
for z/OS, it uses the data you pass to it as input for the Tivoli Information Management for
z/OS record fields. Correspondingly, when you retrieve a Tivoli Information Management for
z/OS record, it uses the data in the Tivoli Information Management for z/OS record fields as
input. However, the record fields in your application’s data might differ in number, name,
meaning, and format from the Tivoli Information Management for z/OS record fields. You
must define how these record contents are mapped from one database to the other.

The Problem Service data mappings consist of mapping rules, specified in the Problem
Service configuration file, that the Problem Service operations apply when manipulating
records. You can customize the data mappings for each operation to specify:

¶ Which of your data fields and Tivoli Information Management for z/OS record fields are
processed for various operations.

¶ The association between your data fields and Tivoli Information Management for z/OS
record fields that have similar meaning.

¶ The conversion mechanism to use to transform the field data from your format to the
Tivoli Information Management for z/OS record format and from the Tivoli Information
Management for z/OS record format to your application’s data format.

You can disable all data mapping by specifying PerformDataMapping=no in the
configuration file. When data mapping is disabled, you work with only Tivoli Information
Management for z/OS field names and Tivoli Information Management for z/OS format data.

Problem Service Operations

259Guide to Integrating with Tivoli Applications

18.
T

h
e

P
ro

b
lem

S
ervice

C
o

m
p

o
n

en
t

Problem Service Data Mappings

260 Version 7.1

Problem Service Installation

This chapter explains how to plan for and install Problem Service.

Follow these steps to install and configure Problem Service:

1. Ensure that the prerequisite software is installed, configured, and operational on your
workstation and on the MVS host.

Note: With this release of Tivoli Information Management for z/OS, support for the use
of Problem Service on a Sun Solaris platform is not included.

2. Install Problem Service on your workstation.

Note: The Problem Service daemon (AIX) or the Windows NT® service must be
installed on a Tivoli Management Region (TMR) server.

3. Configure Problem Service on your workstation (see “Customizing Your Problem Service
Configuration File” on page 271).

Note: Work with the Tivoli Information Management for z/OS system administrator to
complete the Problem Service configuration.

Planning for Problem Service Installation
The following sections describe how Problem Service fits into the Tivoli Information
Management for z/OS environment and provides you with an overview of the Tivoli
Information Management for z/OS setup that is necessary for operating Problem Service.

Tivoli Information Management for z/OS Environment
To perform its operations, Problem Service uses the Tivoli Information Management for
z/OS HLAPI to remotely access the Tivoli Information Management for z/OS database
records from the workstation environment.

The Tivoli Information Management for z/OS HLAPI is a transaction-based application
programming interface (API). It enables applications in remote environments to establish
HLAPI working sessions with the host Tivoli Information Management for z/OS system to
manipulate database records.

For more information on the Tivoli Information Management for z/OS HLAPI, refer to the
Tivoli Information Management for z/OS Application Program Interface Guide.

HLAPI Client
In the workstation environment, Tivoli Information Management for z/OS provides a HLAPI
client that establishes communication links with the Tivoli Information Management for

19

261Guide to Integrating with Tivoli Applications

19.
P

ro
b

lem
S

ervice
In

stallatio
n

z/OS system on MVS. This feature of Tivoli Information Management for z/OS is made up
of two interfaces: a requester and a client. Both interfaces must be installed and configured
in the workstation environment.

Requester Interface
The requester interface provides the communication link to the Tivoli Information
Management for z/OS system on MVS. Either TCP/IP or advanced program-to-program
communication (APPC) is used, depending on the platform used.

Client Interface
The client interface must reside on the Problem Service workstation. It provides Problem
Service with the interface to the Tivoli Information Management for z/OS HLAPI.

For more information on setting up the HLAPI client/server environment, refer to the Tivoli
Information Management for z/OS Client Installation and User’s Guide.

Installation Requirements
To install and configure Problem Service on your workstation, you need the hardware,
storage, and software listed in the following sections.

Hardware Requirements
The Problem Service option has no unique hardware requirements.

Disk Space Requirements
In addition to your workstation’s other requirements, the free disk space required for
Problem Service is shown in Table 37.

Table 37. Free Disk Space Requirements
Problem Service Disk Space

AIX 12 MB

Windows NT 7 MB

Software Requirements
The installation and operation of Problem Service requires software on both MVS and the
workstation.

MVS Host
To use Problem Service, you must have Tivoli Information Management for z/OS Version
7.1 installed and operational on an MVS host. Refer to the Tivoli Information Management
for z/OS Planning and Installation Guide and Reference for more information.

The Tivoli Information Management for z/OS HLAPI and either a remote environment
server (RES) or multiclient remote environment server (MRES) must be set up on the Tivoli
Information Management for z/OS system that owns the database that your Problem Service
must access.

Both the Tivoli Information Management for z/OS Client Installation and User’s Guide and
the Tivoli Information Management for z/OS Planning and Installation Guide and Reference
contain additional information on the Tivoli Information Management for z/OS environment
setup for remote HLAPI applications.

Planning for Problem Service Installation

262 Version 7.1

AIX Workstation
The following software is required for the installation, operation, and maintenance of
Problem Service:

¶ AIX 4.2

¶ Tivoli Information Management for z/OS HLAPI Client for AIX

¶ Tivoli Management Environment 3.1 or higher

Note: When writing an application to use Problem Service, you also need the Tivoli
Application Development Environment.

For instructions on how to install and configure the HLAPI Client for AIX, refer to the
Tivoli Information Management for z/OS Client Installation and User’s Guide. Install and
configure both the requester and the client interface components on the AIX workstation.

Note: The client interface must reside on the same workstation where Problem Service is to
be installed.

After you install and configure the HLAPI Client for AIX, record the name and location of
the database profile you configure. You need this information for configuring Problem
Service. If you did not change the name and location of this file, you can find it in the
/usr/lpp/idbhlapi/examples directory. The default name is idbdb.pro. You can also
customize and use the example HLAPI profile gateway.prf supplied with Problem Service.

Windows NT Workstation
The following software is required for the installation, operation, and maintenance of
Problem Service:

¶ Windows NT 4.0

¶ Tivoli Information Management for z/OS HLAPI for Windows NT Client feature

¶ Tivoli Management Environment 3.1 or higher

Note: When writing an application to use Problem Service, you also need Tivoli
Application Development Environment.

For instructions on how to install and configure the HLAPI for Windows NT Client, refer to
the Tivoli Information Management for z/OS Client Installation and User’s Guide. Install and
configure both the requester and the client interface components on the Windows NT
workstation where Problem Service is to be installed.

After you install and configure the HLAPI for Windows NT Client, record the name and
location of the database profile you configure. You need this information for configuring
Problem Service. If you did not change the name and location of this file, you can find it in
the c:\infoapi\sample directory. The default name is database.pro. You can also customize
and use the example HLAPI profile gateway.prf supplied with Problem Service.

Installing Problem Service
Before installing Problem Service, ensure that the HLAPI client can communicate with
Tivoli Information Management for z/OS on MVS.

Installation Requirements

263Guide to Integrating with Tivoli Applications

19.
P

ro
b

lem
S

ervice
In

stallatio
n

Some of the commands that you are requested to use in this section require you to be in the
Tivoli environment. For AIX, entering the Tivoli environment is typically done by invoking
the setup_env.sh shell script in the session being used. For Windows NT, entering the Tivoli
environment is typically done by running the setup_env.cmd command file.

Problem Service is shipped on the Tivoli Information Management for z/OS installation
CD-ROM in the \Tivoli_Int\PS directory. Insert the CD-ROM into your CD-ROM drive.
Then use the Tivoli desktop to install Problem Service on your TMR server as follows:

1. On the Tivoli desktop, select Desktop → Install → Install Product. The Install Product
window will appear.

2. On the Install Product window, select Select Media. The File Browser window will
appear.

3. On the File Browser window, in the Path Name field, type the path of the Problem
Service directory on the Tivoli Information Management for z/OS installation CD-ROM.
For Windows NT, this is x:\Tivoli_Int\PS where x: is the CD-ROM drive letter; for
AIX, this is /cdrom/Tivoli_Int/PS. Then select Set Media and Close.

4. Back on the Install Product window, select TSD390 1.2 — Problem Service as the
product to be installed. When the Install Options window appears, you can specify the
directory where the Problem Service sample programs will be stored. Select Set to close
the Install Options window.

5. On the Product Install window, select the client on which you wish to install. The select
Install & Close.

6. On the Product Install Product window, select Continue Install. When the installation is
complete, a message will be displayed in the Product Install window. The files used by
Problem Service are installed in the $INST_DIR/$INTERP/InfoMgt/InfoGateway
directory.

To ensure that the installation completed successfully, enter the following command from the
Tivoli environment to obtain the object ID (OID) of the object:
wlookup -r InfoMgtGW -a

The Info_GW instance is displayed, labeled with the OID. Your application uses the OID of
the Info_GW instance to invoke Problem Service operations.

National Language Support (NLS) for Messages
After installing Problem Service, the message catalog resides in the /msg_cat/C directory
under the Tivoli install tree. For AIX, this directory needs to be part of your NLSPATH.

AIX Workstations
For catalog files to reside in your NLSPATH, issue the export LANG=C command after
you have entered the Tivoli environment. When the bl*.cat files reside in the NLSPATH, the
messages issued by the daemon resolve correctly.

Windows NT Workstations
LOCPATH points to the directories used to convert data between different code sets. For
example, you can set the LOCPATH variable by specifying:
LOCPATH=C:\INFOAPI\LOCALE

Installing Problem Service

264 Version 7.1

The LOCPATH variable must be set in the system environment variables on the TMR server
where Problem Service is installed. You must be logged on as an administrator to update
system environment variables.

REGSRV2 Program (Windows NT Only)
Problem Service is automatically registered as a Windows NT service as part of the
installation process. If it should fail for any reason, or if you need to register or unregister
Problem Service, information on running REGSRV2 is provided here. You can change the
drive letter and directory path if necessary.

To install Problem Service (gw_nxd) as a Windows NT service, use the REGSRV2 program.
The format is:
REGSRV2 x app_name

Where:

x Is I to install the service or D to delete the service.

app_name
Is the full application path name of the program, when the Windows NT service is being
installed. If the full application path name contains a blank, enclose it in quotes. For
example:
REGSRV2 I "C:\Program Files\GW_NXD.EXE"

The app_name parameter is not needed when deleting the Windows NT service. For
example:
REGSRV2 D

Note: You must be logged on as an administrator to install the Windows NT service.

Installing Problem Service

265Guide to Integrating with Tivoli Applications

19.
P

ro
b

lem
S

ervice
In

stallatio
n

Installing Problem Service

266 Version 7.1

Planning for Problem Service
Configuration

This chapter provides a general overview of some basic Tivoli Information Management for
z/OS concepts and the process for configuring Problem Service.

Basic HLAPI Concepts
The Problem Service configuration requires you to be familiar with the following
HLAPI-related concepts:

¶ HLAPI transactions

¶ The input and control Parameter Data Block (PDB), used for HLAPI transactions

¶ HLAPI data views that consist of either:

v Program interface data tables (PIDTs) and program interface pattern tables (PIPTs)

v Data model records

¶ Program interface alias table (PALT)

This section provides introductory information about these concepts. For a more detailed
description, refer to the Tivoli Information Management for z/OS Application Program
Interface Guide.

HLAPI Transactions
HLAPI is a transaction-based application program interface. Problem Service uses HLAPI
transactions to establish sessions with the Tivoli Information Management for z/OS system
and to manipulate its database records.

In particular, to perform the Problem Service operations as described in “Problem Service
Operations” on page 252, Problem Service uses the HLAPI transactions:
¶ checkin
¶ checkout
¶ create
¶ inquiry
¶ retrieve
¶ update

For example, the Problem Service propagate and transfer operations use the HLAPI create
transaction to create a corresponding record in the Tivoli Information Management for z/OS
database. The propagate operation also uses an implicit checkout on the create transaction to
lock the record in the Tivoli Information Management for z/OS database. This protects the

20

267Guide to Integrating with Tivoli Applications

20.
P

lan
n

in
g

fo
r

P
ro

b
lem

S
ervice

C
o

n
fig

u
ratio

n

propagated record from being updated by the Tivoli Information Management for z/OS staff
or other users and allows only the application that propagated the record to update it.

HLAPI PDBs
The HLAPI PDBs contain parameters that control the operating characteristics of the HLAPI
sessions that Problem Service uses to connect to the Tivoli Information Management for
z/OS system and to manipulate the records in the database. Problem Service uses these
PDBs for the HLAPI transactions.

HLAPI Data Views
HLAPI uses data views to define the Tivoli Information Management for z/OS record fields
that an application can access using the HLAPI transactions. These views can be PIDTs and
PIPTs or data model (data view, data attribute, and data validation) records.

In a Tivoli Information Management for z/OS database that is not customized, PIDTs and
associated PIPTs define the base Tivoli Information Management for z/OS records. You can
customize these PIDTs and PIPTs to define additional user-defined fields in the Tivoli
Information Management for z/OS records that you want your application to manipulate.
You could also build data model records that define your fields.

Each HLAPI transaction has a separate PIDT that is also associated with a specific Tivoli
Information Management for z/OS record type. For example, the HLAPI create transaction
has a separate PIDT that defines the fields that can be used when creating a record in the
Tivoli Information Management for z/OS database.

If you use data model records, the data view record can apply to multiple record
transactions. For example, you can use the same data view for HLAPI create, update, or
retrieve transactions.

Structured and Prefix Word Indexes
The PIDT or data attributes identify specific fields within a Tivoli Information Management
for z/OS record using Tivoli Information Management for z/OS structured word (s-word)
and prefix word (p-word) indexes. An s-word index is represented by an S, followed by 4
hexadecimal characters. An example of an s-word index is S0B5C. A p-word index is
represented by a P, followed by 4 hexadecimal characters. An example of a p-word index is
P028A.

P-Words
You should be familiar with p-words and their uses. A p-word consists of a keyword that
performs searches on fields in Tivoli Information Management for z/OS database records. It
can be associated to one or several s-word indexes. A p-word can be up to 6 characters long
and must include the slash (/) or underscore (_) character as the last character. An example
of a p-word is AUTH/.

To specify Tivoli Information Management for z/OS fields that HLAPI recognizes in the
Problem Service configuration file, you can use indexes, alias names, and in some cases,
p-words. For simplicity, the sample Problem Service configuration file uses s-word indexes
instead of alias names.

HLAPI PALTs
The PALT enables applications to specify alias names for PIDTs, p-words, p-word indexes,
and s-word indexes. In a PALT, you can specify default values for the Tivoli Information

Basic HLAPI Concepts

268 Version 7.1

Management for z/OS record fields. That is, you can specify default response data values for
Tivoli Information Management for z/OS record fields for which your application does not
provide a response value.

You can define an alias name for a field, and use the alias name instead of using an s-word
or a p-word index to identify the field. An alias name can as long as 32 characters. For
example, you could define and use an alias name of STATUS instead of using the s-word
index of S0BEE.

Problem Service Configuration Process
Problem Service configuration is a multistep process that must be done to enable Problem
Service operations. This process may involve customizing the Tivoli Information
Management for z/OS system.

Note: Work with the Tivoli Information Management for z/OS administrator to complete the
Problem Service configuration process.

Sample Configuration File
A configuration file used by Problem Service controls various aspects of how Problem
Service operates in your application’s system and environment. It is a root-owned file and
access to it is usually restricted to your application’s administrator.

The sample configuration file blmygc.cfg is provided with Problem Service, but it must be
customized before use. The blmygc.cfg file is made up of a series of statements that are
grouped into three main parts:

1. Tivoli Information Management for z/OS HLAPI session information

2. Problem Service general settings

3. Data mappings

This file is located in the $INST_DIR/$INTERP/InfoMgt/InfoGateway directory.

Customizing Statements
To customize the sample configuration file statements, edit the file and modify the
statements as required. Knowledge of the Tivoli Information Management for z/OS HLAPI
and how it is used by remote applications is a prerequisite for editing and modifying the
statements. Refer to the Tivoli Information Management for z/OS Application Program
Interface Guide for a description of the HLAPI. References to other Tivoli Information
Management for z/OS manuals are indicated when necessary.

The sample file has already been partially customized for you with suggested values that suit
any application’s system. You only need to customize a few statements in it that are related
to your specific application’s environment.

Customize the required values in the sample file that have been pre-filled with question
mark (?) characters. After you are familiar with this file, you can customize any of the
remaining statements.

General Syntax Rules
This is the general syntax when modifying the configuration file:

Basic HLAPI Concepts

269Guide to Integrating with Tivoli Applications

20.
P

lan
n

in
g

fo
r

P
ro

b
lem

S
ervice

C
o

n
fig

u
ratio

n

¶ Each statement in the configuration file must end with a semicolon. If the statement
spans more than one line, only the last line in the statement should end with a
semicolon.

¶ Comments can appear on any line in the file but must be preceded with double slash (//)
characters.

Process Steps
To configure Problem Service, perform the following tasks:

1. Customize the Problem Service sample configuration file:

a. Customize the Tivoli Information Management for z/OS HLAPI information that
Problem Service uses when establishing sessions with Tivoli Information
Management for z/OS. See “Customizing the HLAPI Session Information” on
page 271 for instructions.

b. Customize the general Problem Service settings required for Problem Service
operations. See “Customizing Problem Service General Settings” on page 275 for
instructions.

c. Customize the data mappings that Problem Service applies when transferring records
back and forth between your applications and the Tivoli Information Management for
z/OS database. See “Customizing Problem Service Data Mappings” on page 281 for
instructions.

2. If you are using customized records on Tivoli Information Management for z/OS, prepare
the HLAPI data views on MVS. See “Preparing the HLAPI Data Views on MVS” on
page 293 for instructions.

3. Update the Services file. See “Updating the Services File” on page 295 for instructions.

You can customize the Problem Service configuration file at any time to modify existing
settings. If your applications and Problem Service are running:
1. Stop your applications.
2. Stop Problem Service.
3. Modify the Problem Service configuration file.
4. Start Problem Service for the new configuration settings to take effect.
5. Start your applications.

Problem Service Configuration Process

270 Version 7.1

Customizing Your Problem Service
Configuration File

This chapter explains how to plan for and configure the Problem Service option.

Customizing the HLAPI Session Information
The configuration file contains a series of HLAPI-related statements that correspond to the
HLAPI control PDB parameters. Problem Service uses these PDB parameters when
establishing HLAPI sessions with Tivoli Information Management for z/OS and when
performing transactions on records in the Tivoli Information Management for z/OS database.
These statement values are used for all sessions started between Problem Service and Tivoli
Information Management for z/OS.

The configuration file also contains HLAPI session statements that determine the number
and the characteristics of the sessions that Problem Service will establish.

HLAPI-Related Statements
This example shows the HLAPI-related statements in the sample configuration file.
// HLAPI-Related Statements

SessionMember="BLGSES??";
PrivilegeClass="?????";
TableCount=5;
APIMsgOption="B";
HLIMsgOption="B";
SpoolInterval=0;
TimeoutInterval=120;
DatabaseID="5";
DefaultOption="NONE";
DefaultDataStorageSize=1024;
SeparatorCharacter=",";
BypassPanel="NO";
ReplaceFreeformText=yes;

Customize the statements that appear in bold characters. These statements are required and
are specific to your application’s system. Ask your Tivoli Information Management for z/OS
program administrator to provide you with these required values.

Table 38 on page 272 gives you a brief description of the HLAPI-related statements. As each
of these statements corresponds to a specific parameter of the HLAPI control PDB, the
correspondence with these parameters is also included in the table.

For more detailed descriptions of these parameters and the values they can assume, refer to
the Tivoli Information Management for z/OS Application Program Interface Guide.

21

271Guide to Integrating with Tivoli Applications

21.
P

ro
b

lem
S

ervice
C

o
n

fig
u

ratio
n

F
ile

Table 38. HLAPI Related-Statements for Sessions
Statement

DescriptionPDB Parameter

SessionMember

SESSION_MEMBER

This is a required statement. It specifies the name of the Tivoli Information
Management for z/OS session-parameters member to be used for sessions
with the HLAPI client.

The name can be up to 8 characters long, beginning with the character string
BLGSES. It must match the name of the session member that the Tivoli
Information Management for z/OS administrator defines in MVS.

PrivilegeClass

PRIVILEGE_CLASS

This is a required statement. It specifies the level of authority granted to
users for performing certain operations on the Tivoli Information
Management for z/OS database. Your Problem Service application is
considered a Tivoli Information Management for z/OS user.

This value must match the name of the privilege class that the Tivoli
Information Management for z/OS administrator assigns to your Problem
Service application. The value can be 1 to 8 characters long.

TableCount

TABLE_COUNT

This is an optional statement. It specifies the number of Tivoli Information
Management for z/OS tables that can be in storage during the session.

The value ranges from 0 to 256.

The default value is 0. The suggested value for Problem Service is 5.

APIMsgOption

APIMSG_OPTION

This is an optional statement. It specifies the destination of the low level
application program interface (LLAPI) logging messages.

The valid values are P, C, or B. P indicates that LLAPI writes messages to
the APIPRINT data set, and C indicates that the LLAPI messages will be put
in message PDBs.

The default value is B, which indicates that LLAPI will perform both P and
C.

This statement is used only if the SpoolInterval statement is specified and
has a non-zero value.

HLIMsgOption

HLIMSG_OPTION

This is an optional statement. It specifies the destination of the HLAPI
logging messages.

The valid values are P, C, or B. P indicates that HLAPI writes messages to
the HLAPILOG data set, and C indicates that HLAPI puts the messages in
the message PDBs.

The default value is B, which indicates that HLAPI will perform both P and
C.

This statement is used only if the SpoolInterval statement is specified and
has a non-zero value.

SpoolInterval

SPOOL_INTERVAL

This is an optional statement. It specifies the time interval, in minutes, for
HLAPI and LLAPI logging in MVS.

The value ranges from 0 to 1440. The default value is 0, meaning that
messages are not logged. In this case, the values in HLIMsgOption and
APIMsgOption are ignored.

Customizing the HLAPI Session Information

272 Version 7.1

Table 38. HLAPI Related-Statements for Sessions (continued)
Statement

DescriptionPDB Parameter

TimeoutInterval

TIMEOUT_INTERVAL

This is an optional statement. It specifies the number of seconds that a
database transaction can run before a timeout causes HLAPI to terminate the
session.

The value ranges from 0 to 300, but if you specify a value between 0 and
45, the interval is set to 45 seconds.

The default value is 300 seconds. The suggested value is 120.

DatabaseID

DATABASE_ID

This is an optional statement. It specifies the name or ID number of the
database that your application accesses during the session. For Tivoli
Information Management for z/OS records that can be created or updated,
the database ID is 5; do not change this value.

The default value is 5.

DefaultOption

DEFAULT_OPTION

This is an optional statement. It specifies which Tivoli Information
Management for z/OS record fields are candidates for default data response
processing by HLAPI during the session.

The valid values are:
¶ REQUIRED
¶ ALL
¶ NONE

The default value is NONE.

DefaultDataStorageSize

DEFAULT_DATA_STORAGE_SIZE

This is an optional statement. It specifies the additional storage, in bytes, that
HLAPI uses to hold the default response data.

The default value is 1024.

SeparatorCharacter

SEPARATOR_CHARACTER

This is an optional statement. It specifies the separator character that HLAPI
uses to process response data. This character is used by HLAPI to separate
the data items in a record field, if the field contains a list of data items.

The default value is the comma.

BypassPanel

BYPASS_PANEL_PROCESSING

This is an optional statement. It is used globally for all Tivoli Information
Management for z/OS API sessions that this Problem Service starts. Only
used on the API initialization transaction; applies for all of the transactions
the gateway performs.

The default value is NO.

ReplaceFreeformText

REPLACE_TEXT_DATA

This is an optional statement. It is used globally for the Tivoli Information
Management for z/OS API sessions that this Problem Service starts. It is
used on an update transaction or a propagate transaction when propagating a
record that has already been propagated (results in an update of the record).
If it has a value of yes, the update uses the REPLACE_TEXT_DATA
HLAPI control PDB with a value of YES. This indicates that new freeform
text being supplied with the update replaces existing freeform text of the
same type in the record being updated. Problem Service does not specify the
REPLACE_FREEFORM_TEXT PDB if ReplaceFreeformText has a value of
NO.

The default value is YES.

Customizing the HLAPI Session Information

273Guide to Integrating with Tivoli Applications

21.
P

ro
b

lem
S

ervice
C

o
n

fig
u

ratio
n

F
ile

HLAPI Session Statements
The other HLAPI statements that you must customize in the configuration file are the
HLAPI session statements. These statements determine:

¶ The number of sessions that Problem Service will establish with the Tivoli Information
Management for z/OS HLAPI to perform Problem Service operations on the Tivoli
Information Management for z/OS database.

¶ The characteristics of the physical connection to the MVS host where Tivoli Information
Management for z/OS resides.

¶ The type of Problem Service operation for which Problem Service will use each session

The number of sessions is determined by the number of Session statements specified in the
configuration file.

The following example shows the session statements as they appear in the Problem Service
sample configuration file. Customize the keywords in bold characters.

// Session statements
Session Transaction=outbound

DatabaseProfile="/usr/lpp/idbhlapi/examples/idbdb.pro"
UserID="?????" Password="?????";

Session Transaction=outbound
DatabaseProfile="/usr/lpp/idbhlapi/examples/idbdb.pro"
UserID="?????" Password="?????";

Session Transaction=reverse
DatabaseProfile="/usr/lpp/idbhlapi/examples/idbdb.pro"
UserID="?????" Password="?????";

Session Transaction=monitor
DatabaseProfile="/usr/lpp/idbhlapi/examples/idbdb.pro"
UserID="?????" Password="?????";

Each session statement has four keywords: Transaction, DatabaseProfile, UserID, and
Password.

Transaction
This keyword specifies the type of Problem Service operations for which the session
will be used.

The values are:

monitor
Indicates monitor operations.

outbound
Indicates that the session will be used for all operations except monitor and
reverse assignment.

reverse
Indicates reverse assignment operations.

You can specify only one session statement for each of the monitor and reverse
assignment operations. You can specify up to 30 session statements for outbound
operations. A separate daemon is started for each session.

You should specify at least one session for each type of transaction to obtain full
Problem Service functionality. Otherwise, the Problem Service operation
corresponding to an unspecified transaction will not be performed. For example,

Customizing the HLAPI Session Information

274 Version 7.1

when you do not specify the reverse transaction in any of the session statements,
Problem Service does not perform reverse assignment operations.

DatabaseProfile
The name of the database profile that you configured for the HLAPI client.

The database profile determines the connection characteristics for the session. If you
are using the default database profile from the HLAPI client installation, use:

¶ For AIX:
/usr/lpp/idbhlapi/examples/idbdb.pro

¶ For Windows NT:
x:\infoapi\sample\database.pro

where x is the drive on which the HLAPI client was installed.

If you are using a different database profile, you must specify the path and name of
that file.

Note: Omit the path specification if the database profile resides in the current
working directory for Problem Service.

Refer to the Tivoli Information Management for z/OS Client Installation and User’s
Guide for more information on the database profile usage and specification.

UserID
A user ID assigned for the MVS logon for the session.

This user ID is assigned to you by the MVS administrator and it must have the
necessary authorizations to access the Tivoli Information Management for z/OS
database. UserID corresponds to the SECURITY_ID parameter in the HLAPI control
PDB used for establishing the session.

Password
The password assigned for the MVS logon for the session.

This parameter corresponds to the PASSWORD parameter in the HLAPI control
PDB used for establishing the session.

By default, the HLAPI client requester will use a separate physical connection for each
session you customize. If you want your sessions to share a single physical connection to the
Tivoli Information Management for z/OS system, you must start the HLAPI client requester
with a system profile. In the system profile, you must set parameter IDBSHARECMS equal
to 1. Then your sessions will share a single physical connection if you specify the same
values for UserID, Password, and DatabaseProfile in all the session statements.

Refer to the Tivoli Information Management for z/OS Client Installation and User’s Guide
for more information about the IDBSHARECMS parameter and the sharing of physical
connections.

Customizing Problem Service General Settings
The statements in the second part of the configuration file define general settings that
control the operating characteristics of Problem Service. This example provides partially
customized statements as they appear in the sample configuration file. You must customize
the statements that appear in bold characters. If any of the remaining customized statements
do not suit your application’s system requirements, modify them.

Customizing the HLAPI Session Information

275Guide to Integrating with Tivoli Applications

21.
P

ro
b

lem
S

ervice
C

o
n

fig
u

ratio
n

F
ile

// Problem Service General Settings
GatewayID="?????";
ReverseAssignInterval=60;
MonitorInterval=60;
InfoGatewayService="infogateway";
ForeignHost="?????";
RACallAPP="rassign";
MonCallApp="moninfo";
UnconditionalShutdownWait=10;
GatewayIDField="S1260";
GatewayIDPrefix="GWID/";
ConvertToUppercase=yes;
MaximumHits=1000;
MaxTextRetrieveLines=20;
IMPatternValidation=yes;
IMRNIDField="S0CCF";
IMCheckoutField="S14EF";
AssociatedDataField="S0E0F';
RetrieveBeforeUpdate=no;
SessionRetryInterval=10;
SessionRetryLimit=10;
InputJustChangedData=no;
PerformDataMapping=yes;

The following list gives a description of the statements in this part of the configuration file
and explains how to customize them.

GatewayID (Required)
Defines the unique identifier for a Problem Service instance. It can be 1 to 8
characters long.

GatewayID corresponds to the APPLICATION_ID parameter in the HLAPI control
PDBs. The ID you specify must be an eligible user ID defined in the same privilege
class that you use in the PrivilegeClass statement in the configuration file.

Problem Service uses the GatewayID value for two main purposes:

¶ To identify itself as an eligible Tivoli Information Management for z/OS user, so
that it can perform database record transactions during the HLAPI sessions with
Tivoli Information Management for z/OS. The same GatewayID value is used
for all the HLAPI sessions it establishes with Tivoli Information Management
for z/OS.

¶ To identify all the Tivoli Information Management for z/OS records that it
processes so that they can later be associated to this particular Problem Service
application. The GatewayID value is stored in a field present in all Tivoli
Information Management for z/OS records it processes. It also stores a prefix
character, along with the GatewayID value, to indicate the operation performed
on each of these records:

Prefix Definition
P Propagated
T Transferred
R Reverse assigned

When you customize the data mappings in the configuration file, specify the
GatewayID value and prefix character in the propagate and transfer data mappings.
For the records that your application reverse assigns, it must update the Tivoli
Information Management for z/OS record’s GatewayIDField with a reverse

Customizing Problem Service General Settings

276 Version 7.1

assignment gateway ID (RGatewayID). This keeps your application from being
notified of the same Tivoli Information Management for z/OS records over and over
again.

The Problem Service monitor operation uses this GatewayID value to identify all the
records transferred and reverse assigned by this particular Problem Service.

Note: In a Tivoli Information Management for z/OS environment where more than
one Problem Service or instance is present, you must make sure that the
GatewayID is unique for each Problem Service. Otherwise, Problem Service
operations will produce unpredictable results.

It is recommended that you use the GatewayID value as the checkout indicator value
when customizing the data mappings for the propagate operation. This causes an
automatic check-out of the records that are propagated by your application and
enables you to update these records.

Note: After you are assigned a GatewayID value, you should not change it.
However, if such a need arises, in addition to changing the value in the
GatewayID statement, you must change all the occurrences of the GatewayID
value in the rest of the Problem Service configuration file. Otherwise,
unpredictable results will occur.

Furthermore, if you change the GatewayID value, all the records in Tivoli
Information Management for z/OS that were previously processed by Problem
Service will contain the old GatewayID value.

ReverseAssignInterval (Optional)
Specifies the time interval, in minutes, that Problem Service waits between each
activation of the reverse assignment operation.

The value ranges from 0 to 999999.

The default value is 60 minutes.

MonitorInterval (Optional)
Specifies the time interval, in minutes, that Problem Service waits between each
activation of the monitor operation.

The value ranges from 0 to 999999.

The default value is 60 minutes.

InfoGatewayService (Required)
Specifies the service name of the TCP/IP port used by Problem Service.

The sample configuration file provides the InfoGatewayService service name, which
must be infogateway. Define this service name in the services file, and assign it an
available TCP/IP port number.

ForeignHost (Required)
Specifies the name of the host that holds the executables specified by the
RACallApp and MonCallApp statements in the configuration file. The specified host
must be a managed node.

To determine the host name for AIX, issue the hostname AIX command from the
AIX command line on the system that holds the executables.

Customizing Problem Service General Settings

277Guide to Integrating with Tivoli Applications

21.
P

ro
b

lem
S

ervice
C

o
n

fig
u

ratio
n

F
ile

To determine the hostname for a Windows NT system, on the Windows NT desktop
select My Computer → Control Panel→ Network→ Protocols → TCP/IP Protocol→
Properties → DNS.

RACallApp (Optional)
Specifies the name of the executable to be invoked whenever the reverse assignment
operation finds a search match in the Tivoli Information Management for z/OS
database. The host name of the system where the executable resides is specified by
the ForeignHost statement.

This executable should be written to accept three parameters: the Tivoli Information
Management for z/OS record ID, its record type, and the reverse assignment
gateway ID to be used to update the Tivoli Information Management for z/OS record
when the application accepts the record.

MonCallApp (Optional)
Specifies the name of the executable to be invoked whenever the monitor operation
finds a record in the Tivoli Information Management for z/OS database that belongs
to this application’s gateway ID and has been updated by Tivoli Information
Management for z/OS or another application. The host name of the system where
the executable resides is specified by the ForeignHost statement.

This executable should be written to accept two parameters: the Tivoli Information
Management for z/OS record ID and its record type.

UnconditionalShutdownWait (Optional)
Specifies the number of seconds that Problem Service waits before sending
unconditional shut down signals to terminate unclosed subprocesses, after having
previously attempted to shut down those processes.

The value range is 5 to 300 seconds.

The default value is 10 seconds.

GatewayIDField (Required)
Specifies the index or alias name of a Tivoli Information Management for z/OS
record field that will hold the GatewayID value. Problem Service needs such a field
to store the GatewayID value and prefix character for all the records it propagates
and transfers. For reverse assigns, you must store the GatewayID value in this field.

The sample configuration file sets GatewayIDField to s-word index S1260. The
HLAPI PIDTs shipped with Tivoli Information Management for z/OS for problem
and change records contain this index.

You can use this suggested Tivoli Information Management for z/OS field or use
another field (either an existing one or another user-defined field) to hold the
GatewayID value. If you choose to use another Tivoli Information Management for
z/OS field, customize the create, update, and retrieve PIDTs and PIPTs or your data
model records in the Tivoli Information Management for z/OS system on MVS to
include this field. See “Preparing the HLAPI Data Views on MVS” on page 293 for
information on customizing PIDTs and PIPTs.

GatewayIDPrefix (Required)
Specifies the p-word that is associated with the Tivoli Information Management for
z/OS GatewayID field. It is used for searching the Tivoli Information Management
for z/OS database for the records processed by Problem Service.

Customizing Problem Service General Settings

278 Version 7.1

A p-word can contain up to 6 characters, where the last character must be a slash (/)
or an underscore (_).

The suggested value provided in the sample configuration file is GWID/.

ConvertToUppercase (Optional)
Specifies whether or not to convert to uppercase characters all field data, except for
freeform text data, that Problem Service stores in the Tivoli Information
Management for z/OS database.

The possible values are:

yes Indicates that the data will be converted to uppercase characters.

no Indicates that the data will not be converted.

The default value is yes.

MaximumHits (Optional)
Corresponds to the NUMBER_OF_HITS parameter of the HLAPI control PDB. It is
used for the HLAPI inquiry transaction on Tivoli Information Management for z/OS
records. It specifies the maximum number of matches to be returned from a search.
It applies to the Problem Service monitor, reverse assignment, and search operations.

The value ranges from 0 to 9999. The value 0 is treated as if the MaximumHits
statement has not been specified.

The default value is 500. The suggested value for Problem Service is 1000.

MaxTextRetrieveLines (Optional)
Corresponds to the TEXT_UNITS parameter of the HLAPI control PDB. It specifies
the maximum number of lines that can be retrieved for each freeform text field of a
Tivoli Information Management for z/OS record.

The value ranges from 1 to 9999.

The default value is 1000. The suggested value for Problem Service is 20.

IMPatternValidation (Optional)
Specifies whether or not HLAPI should perform pattern validation on the input data
fields for the records that Problem Service creates or updates in the Tivoli
Information Management for z/OS database.

The possible values are:

yes Indicates that pattern validation will be performed.

no Indicates that pattern validation will not be performed.

The default value is yes.

IMRNIDField (Required)
Specifies the index or alias name of the Tivoli Information Management for z/OS
record field that holds the record number identifier for the Tivoli Information
Management for z/OS record.

For Tivoli Information Management for z/OS records, the s-word index for the
default RNID field is S0CCF.

Customizing Problem Service General Settings

279Guide to Integrating with Tivoli Applications

21.
P

ro
b

lem
S

ervice
C

o
n

fig
u

ratio
n

F
ile

IMCheckoutField (Required)
Specifies the index or alias name of the Tivoli Information Management for z/OS
record field that is used as the indicator that the record is locked or checked out in
Tivoli Information Management for z/OS.

The Tivoli Information Management for z/OS records already contain a field that
Tivoli Information Management for z/OS uses to indicate that records are checked
out. The s-word index of this field is S14EF, which you must specify for this
statement.

The HLAPI PIDTs shipped with Tivoli Information Management for z/OS for
problem and change records contain this index. If you have customized PIDTs or
data model records, you must add this index to those records so that Problem
Service can use this field for propagated records. See “Preparing the HLAPI Data
Views on MVS” on page 293 for information on customizing PIDTs.

Note: Specify this field in the propagate data mappings, in the third part of the
Problem Service configuration file, so that Problem Service automatically
checks out propagated records.

AssociatedDataField (Required)
Specifies the index or alias of the Tivoli Information Management for z/OS field that
is to be returned for matches on the search operation.

RetrieveBeforeUpdate (Optional)
Specifies whether Problem Service needs to perform special processing before
updating a record in the Tivoli Information Management for z/OS database. This
statement is applicable when you are using record fields that contain a Tivoli
Information Management for z/OS List Processor list of data items. It also affects
how Problem Service handles the deletion of null fields when updating the Tivoli
Information Management for z/OS record.

The possible values are:

yes Indicates that Problem Service will first retrieve the record fields from the
Tivoli Information Management for z/OS database and then update them.

Note: The retrieve is not performed if data mapping is disabled.

no Indicates that Problem Service will update the record fields directly, without
retrieving them.

The default value is yes. The suggested value for Problem Service is no.

If the record is retrieved before the update, Problem Service can verify the fields
that are already null and does not need to perform extra delete processing to delete
their contents. If the record is not retrieved, Problem Service attempts to delete the
field contents even if the fields are already empty. This has an impact on
performance if the record contains a large number of empty fields.

When updating a Tivoli Information Management for z/OS List Processor list with a
shortened list, you can specify yes to ensure the Tivoli Information Management for
z/OS field is updated correctly. If you specify no, you must explicitly delete
unwanted list entries by using the HLAPI separator character.

Customizing Problem Service General Settings

280 Version 7.1

SessionRetryInterval (Required)
Specifies the time interval, in minutes, that Problem Service will delay between
attempts to start a session that has stopped for some reason other than being shut
down.

The maximum value for the interval is 30 minutes.

SessionRetryLimit (Required)
Specifies the number of times that Problem Service will attempt to restart a stopped
session.

The maximum value for the number of retries is 10. A value of 0 directs Problem
Service not to attempt session restarts.

Note: It is recommended that you initially set this value to zero (0). After Problem
Service is installed and configured, a higher value can be set.

InputJustChangedData (Optional)
Specifies whether the caller will provide all data for a record or just the changed
(delta) data. This is important when performing a Tivoli Information Management
for z/OS update (updating or propagating) to an existing record.

yes Problem Service attempts to delete from the Tivoli Information Management
for z/OS record null fields passed by the caller. Special list processor field
processing is not performed. The caller must ensure that existing entries in a
list to be updated are deleted if necessary. This is important when passing a
parameter list that has fewer entries than the current list it is updating.

no Problem Service attempts to delete Tivoli Information Management for z/OS
fields that are defined in your data mappings, but were not passed by your
application or hardcoded in the data mappings.

The default value is no.

PerformDataMapping (Optional)
The possible values are:

yes The data mapping function of the gateway is used.

no Data mapping is not performed; all data is in Tivoli Information
Management for z/OS format. If updating a Tivoli Information Management
for z/OS record, optional record retrieval and null field deletion is not
performed, unless you are only passing changed (delta) data.

The default value is yes.

Customizing Problem Service Data Mappings
The main purpose of the third part of the configuration file is to define the data mappings
that will be applied during Problem Service operations and Tivoli Information Management
for z/OS transactions that share data between Tivoli Information Management for z/OS and
your application’s records. If you are an end user of Problem Service, refer to your
application’s documentation for help in mapping records to Tivoli Information Management
for z/OS.

This part of the configuration file also contains statements that define the data required by
the Tivoli Information Management for z/OS HLAPI transactions as well as statements that

Customizing Problem Service General Settings

281Guide to Integrating with Tivoli Applications

21.
P

ro
b

lem
S

ervice
C

o
n

fig
u

ratio
n

F
ile

enable you to customize the search criteria for the reverse assignment operation. You must
complete the customization of this part of the configuration file before you can use Problem
Service.

The data mappings in the sample configuration file have been customized to best fit a
sample application’s requirements and to find the best match between the Tivoli Information
Management for z/OS database fields and the application’s record fields. The mappings are
based on uncustomized Tivoli Information Management for z/OS records. If they have been
customized, the data mappings need to be adjusted accordingly. You can disable Problem
Service data mapping by specifying:
PerformDataMapping=no

Mapping Your Application and Tivoli Information Management for z/OS
Records

Fields within mapped records that are contained in the Tivoli Information Management for
z/OS record and your application’s record will be mapped. Remember that the mappings in
the sample configuration file are based on uncustomized Tivoli Information Management for
z/OS records. You can configure the mapping to:
¶ Alter a mapped-to Tivoli Information Management for z/OS record field.
¶ Add a new mapped-to Tivoli Information Management for z/OS record field.
¶ Remove a mapped-to Tivoli Information Management for z/OS record field.

Tivoli Information Management for z/OS list processor and multiple response fields are
supported. List processor fields contain from 1 to 19274 entries. An example is a name field
that allows a first and last name separated by a blank. Most Tivoli Information Management
for z/OS fields are single response fields.

HLAPI requires that lists and multiple responses for a field be entered as separate strings
with each response separated by a separator character (default is a comma). The data for
these fields must be passed to Problem Service containing these separator characters or must
be manipulated by data mappings to include them. For example, the data can be separated
by blanks when passed to Problem Service and the mappings can convert these blanks into
the separator character.

The default mappings supplied in the sample configuration file do not contain list processor
fields. The only Tivoli Information Management for z/OS fields that are multiple response
fields are those customized by the user.

See “Supported Data Conversions” on page 307 for information on converting data and for a
list of the data conversions supplied with Problem Service.

Setting Up the Data Mapping Rules
Fields can be mapped between your application’s records and Tivoli Information
Management for z/OS records. Using mapping statements in the configuration file, data is
mapped to produce a collection of data that has Tivoli Information Management for z/OS
data keys and Tivoli Information Management for z/OS format.

For transactions, such as propagate and transfer, that put a record into the Tivoli Information
Management for z/OS database, a mapping statement with a hardcoded gateway ID (with
prefix) should be included. The prefix indicates whether the Tivoli Information Management
for z/OS record has been propagated or transferred.

Prefix Definition

Customizing Problem Service Data Mappings

282 Version 7.1

P Record has been propagated.
T Record has been transferred.

In the default mappings, the gateway ID is identified by the Tivoli Information Management
for z/OS s-word index S1260.

Table 39 shows the uncustomized Tivoli Information Management for z/OS record fields to
which the sample application record fields are mapped by the Problem Service samples.

Table 39. Uncustomized Tivoli Information Management for z/OS and Sample Application Record
Fields and Their Attributes
Uncustomized Tivoli Information Management for z/OS Field Sample Application Field

Name Index Attributes Name Attributes

Assignee
department

S0B9C 11 alphanumeric characters
including #, @, $, &, or /

Organization 30 characters, varchar

Assignee name S0B5A 1–15 alphanumeric
characters including #, @, $,
&, or /

Assignee 90 characters, varchar

Current priority S0BE7 1–2 numeric Priority 1 digit (1, 2, 3, 4, 5) or
None (required)

Date/Time opened S0C3E or
S0C74

Date: external date format;
Time: external time format

StartDate MM/DD/YY(YY) hh:mm:ss
(a│p)

Description abstract S0E0F 1–45 freeform (string) (not mapped)

Description text S0E01 Freeform text Description 240 characters, freeform text

Gateway ID S1260 1–8 alphanumeric characters
including #, @, $, &, or /

(not mapped)

Problem status S0BEE INITIAL OPEN CLOSED Status Approved Closed Open
Working Pending Rejected
Complete

Problem type S0C09 1–8 alphameric characters
including #, @, $, &, or /

TroubleCode
(hierarchy
classifying the
problem)

Length is 40, data can
include '.'

Record ID S0CCF 1–8 alphanumeric characters
including #, @, $, &, or /

rnid 30 characters, varchar

Reported by S0B59 1–15 alphanumeric
characters including #, @, $,
&, or /

Originator 90 characters, varchar

Status text S0E02 Freeform text Detail 1000 characters, freeform
text

Tracked by S0B5C 1–15 alphanumeric
characters including #, @, $,
&, or /

Modifier 90 characters (first, middle,
last)

Vendor PMR
number

S0F52 8 numeric TicketNum 8 numeric

Customizing Problem Service Data Mappings

283Guide to Integrating with Tivoli Applications

21.
P

ro
b

lem
S

ervice
C

o
n

fig
u

ratio
n

F
ile

Mapping Fields to Problem Service Operations
Not all fields are mapped for each operation being performed. In the configuration file,
specify the fields that are to be mapped for each operation by using transactions statements.
They enable fields to be mapped to one or more Problem Service operations. Different fields
can be mapped to different operations.

Data mapping statements specified before the first occurrence of a transactions statement
apply to all operations. Otherwise, the data mapping statements apply only to the operations
specified by the most recent transactions statement. For example:
Transactions=propagate,transfer,update;
S0B5A(15)<<translate(Assignee,", ","//");

In this example, the data mapping statement following the transactions statement applies to
the Problem Service operations: propagate, transfer, and update.

Multiple transactions statements can be specified. When multiple transactions statements are
specified with the same keyword, the mapping definitions for each occurrence are grouped
together for that operation; the last occurrence does not override previous occurrences.

Understanding the Syntax of Data Mapping Statements
Data mapping statements identify the data to be mapped, how to transform the data, and
where to put the data. The direction of the mapping is indicated by double less than symbols
(<<) or double greater than symbols (>>):

<< Specifies that the mapping applies to data flowing from your application’s database
to the Tivoli Information Management for z/OS database. The target of the mapping
is the operand to the left of the <<.

>> Specifies that the mapping applies to data flowing from the Tivoli Information
Management for z/OS database to your application’s database. The target of the
mapping is the operand to the right of the >>.

The mapping target operand is a field name, suffixed by a length enclosed in parentheses.
Field names appearing to the left of the << or >> are assumed to be Tivoli Information
Management for z/OS field names, and field names appearing to the right of the << or >>
are assumed to be your application’s field names. A Tivoli Information Management for
z/OS field name can be one of the following:

¶ An alias name as defined in a program alias table (PALT).

¶ An S followed by an s-word index as defined in the PIDT field PIDTSYMB.

¶ A P followed by a prefix index as defined in the PIDT field PIDTSYMB.

The source for the mapping is a combination of literal strings, field names, and user exit
specifications. Data associated with source field names, and data returned from user exit
calls, is substituted by the mapping facility. User exits are specified as user exit name,
followed by a comma delimited argument list enclosed in parentheses. Each of these
arguments can be a combination of integers, literal strings, field names, and user exit
specifications. See “Supported Data Conversions” on page 307 for information on data
conversions and user exits.

The syntax for a mapping into a Tivoli Information Management for z/OS field is as
follows:

Customizing Problem Service Data Mappings

284 Version 7.1

IMFieldName(length) << literal_string ;
subroutineName(parm1, parm2, ...)
your_application's_FieldName
[combination of the above]

Where parmn can be:
integer
literal_string
your_application's_FieldName
subroutineName(parm1, parm2, ...)

The following is an example of a mapping into your application’s field:
literal_string >> your_application's_FieldName(length);
subroutineName(parm1, parm2, ...)
IMFieldName
[combination of the above]

Where parmn can be:
integer
literal_string
IMFieldName
subroutineName(parm1, parm2, ...)

Syntax Examples
The following are some examples of data mappings in both directions:

¶ S0E0F<<"This is a description abstract.";

For appropriate transaction types (for example, transfer), the Tivoli Information
Management for z/OS field defined in the PIDT as S0E0F is assigned the value This is
a description abstract.

¶ S0E02>>detail(1000);

For appropriate transaction types (for example, retrieve), the data in the Tivoli
Information Management for z/OS field defined in the PIDT as S0E02 is assigned to
your application’s field named detail. The target field is truncated or padded with blanks
to 1000 bytes.

¶ "@"S0B59>>Originator;

For appropriate transaction types (for example, retrieve), an @ is added as a prefix to
the data in the Tivoli Information Management for z/OS field defined in the PIDT as
S0B59. The result of this operation is then assigned to your application’s field named
Originator.

Changing the Data Mapping Rules
You can change data mappings rules by adding, modifying, or deleting mapping statements
in the configuration file.

Adding a Field
When a new field is added, a new mapping statement must be added to the configuration
file if the field is to be shared with Tivoli Information Management for z/OS. All necessary
conversions must be specified here. The Tivoli Information Management for z/OS PIDTs and
PIPTs must be rebuilt or data model records modified to allow Problem Service to process
the new field in Tivoli Information Management for z/OS.

Customizing Problem Service Data Mappings

285Guide to Integrating with Tivoli Applications

21.
P

ro
b

lem
S

ervice
C

o
n

fig
u

ratio
n

F
ile

Changing a Field
If a field in your application’s record is changed, it might be necessary to change the
mapping statements by:
¶ Converting it in a different way
¶ Mapping it into a different Tivoli Information Management for z/OS field
¶ Changing the operating characteristics of Problem Service

Tivoli Information Management for z/OS PIDTs and PIPTs might have to be rebuilt to allow
the Tivoli Information Management for z/OS HLAPI to correctly validate data sent by
Problem Service. Keep the Problem Service and Tivoli Information Management for z/OS
data models as similar as possible to minimize the data conversions needed to share data
between the two databases.

Removing a Field
When a field in your application’s record is removed, check the configuration file to ensure
that there are no mapping statements mapping Tivoli Information Management for z/OS
fields into the removed field. If there are, these mapping statements need to be removed
from the configuration file.

Sample Configuration File Descriptions
In the sample configuration file, values have been included that you need not change for a
basic configuration. It assumes that Tivoli Information Management for z/OS records have
not been customized. Values that you must provide are clearly indicated by bold characters
or question mark (?) characters in the following descriptions.

Data mappings should be defined for all fields that are to be shared between your
application and Tivoli Information Management for z/OS records.

Defining Specific Record Types
The part of the configuration file shown in this example contains statements needed by the
Tivoli Information Management for z/OS HLAPI. The statement descriptions are:

//**
//
// Define information to use for specific record types including data
// required by the Information Management for z/OS HLAPI and data mappings for
// data sharing between the local application and Information Management for z/OS.
//
//**

//**
//
// Record Type: Helpdeskapp
//
// Define information for a Helpdeskapp record. Helpdeskapp
// records map to Information Management for z/OS records.
//
//**
RecordType

// --
// String that identifies the record type.
// --
RecordTypeValue="Helpdeskapp"
// --
// Key of field in helpdesk record that contains the
// Information Management for z/OS RNID.
// --
ForeignIMRNIDField="rnid"

Customizing Problem Service Data Mappings

286 Version 7.1

// --
// Key of field (PIDTSYMB value or alias name) that contains the identifier
// of the helpdesk record - only used by Reverse Assignment and Monitor.
// --
IMForeignRNIDField="S0F52"

RecordTypeValue="Helpdeskapp"
The string that identifies the record type. Identify the record type as the appropriate
record type for your application.

ForeignIMRNIDField="rnid"
The name of the field in your application record that contains the Tivoli Information
Management for z/OS identifier.

IMForeignRNIDField="S0F52"
The Tivoli Information Management for z/OS field (PIDTSYMB value or alias
name) that contains the identifier of your application record. This is only used by the
reverse assignment and monitor operations.

Another value that can be defined, but which has not been included in the sample
configuration file, is:

AliasTable
This defines the value for the HLAPI control PDB ALIAS_TABLE. When this
statement is specified, the ALIAS_TABLE control PDB is specified for all Tivoli
Information Management for z/OS HLAPI create, update, retrieve, and inquiry
transactions performed for this record type.

Defining API PIDT Names
The required Tivoli Information Management for z/OS API PIDT names are specified by the
following configuration file statements:
CreateDataView="P:BLGYPRC"
UpdateDataView="P:BLGYPRU"
DisplayDataView="P:BLGYPRR"
SearchDataView="P:BLGYPRI";

They specify the set of Tivoli Information Management for z/OS PIDTs or data view record
names to be used with the record type field value (see the RecordTypeValue keyword).
These statements can be specified more than one time in the configuration file, but are
locally mutually inclusive (all must appear wherever one appears). These statements must
immediately follow a RecordTypeValue statement.

The data value for these PIDT statements must begin with P: or D:. P: indicates that the rest
of the value is a PIDT name (for example, P:BLGYPRC). D: indicates that the rest of the
value is a data view record ID.

CreateDataView="P:BLGYPRC"
This is the name of the PIDT that creates Tivoli Information Management for z/OS
problem records.

UpdateDataView="P:BLGYPRU"
This is the name of the PIDT that updates Tivoli Information Management for z/OS
problem records.

DisplayDataView="P:BLGYPRR"
This is the name of the PIDT that retrieves Tivoli Information Management for z/OS
problem records.

Customizing Problem Service Data Mappings

287Guide to Integrating with Tivoli Applications

21.
P

ro
b

lem
S

ervice
C

o
n

fig
u

ratio
n

F
ile

SearchDataView="P:BLGYPRI"
This is the name of the PIDT table used to search for Tivoli Information
Management for z/OS problem records.

Defining Freeform Text Fields
The following sample configuration file statement defines the Tivoli Information
Management for z/OS fields that are freeform text together with their associated line widths:
IMText Width=60 Fields="S0E01", "S0E02";

In the example, the Tivoli Information Management for z/OS fields S0E01 and S0E02 are
freeform text fields with a line width of 60 characters.

The application’s record text is broken up into segments using the width value with each
segment becoming a line of text in the Tivoli Information Management for z/OS record. The
Problem Service transfer, propagate, and update operations use the value specified for width
to break up the application’s input data into Tivoli Information Management for z/OS
freeform text lines of this width. The retrieve operation uses the maximum width for the
record type as the width to retrieve, and this value then becomes the value of the HLAPI
control PDB TEXT_UNITS.

Tivoli Information Management for z/OS freeform text lines are truncated or padded with
blanks to the width specified.

Defining the ReverseArguments Statement
One or more structured or freeform search arguments can be specified for the reverse
assignment operation. If no arguments are specified, reverse assignment will not be
performed. The following is a sample configuration file ReverseArguments statement:
ReverseArguments S0B5A="??????";

For example, when SMITH replaces ?????? in the sample, it becomes:
ReverseArguments S0B5A="SMITH";

This means that all records with the field S0B5A containing the value SMITH will be
reverse assigned. This is an example of a structured search argument. If a search argument is
specified by itself, without an associated field name, it is a freeform search.

If more than one search argument is specified, all conditions must be satisfied for the record
to be reverse assigned. Arguments can include a Boolean operator as the first character
(valid operators are those allowed by the Tivoli Information Management for z/OS HLAPI
for freeform search arguments). In the following example, all records for which the S0B5A
field contains SMITH and not reported by JONES will be reverse assigned.
ReverseArguments S0B5A="SMITH" "¬PERS/JONES";

Reverse assignment can act against records transferred by other gateways, but not against
records transferred by this gateway. When a transferred record is reverse assigned, the
originating Problem Service stops monitoring it for changes. Reverse assignment does not
act against records reverse assigned by another gateway. It checks the value in the
GatewayID field. It also ignores records that have been checked out.

ReverseArguments constructs the total search argument using the following information:

¶ ReverseArguments structured arguments

Customizing Problem Service Data Mappings

288 Version 7.1

¶ Predefined arguments (for example, not transferred by this gateway)

¶ ReverseArguments freeform arguments

Mapping Records from Your Application to Tivoli Information
Management for z/OS

The mappings as shown in this example are defined for the Problem Service propagate,
transfer, and update operations as specified in the transactions statement. Your application’s
data is mapped to Tivoli Information Management for z/OS data through the use of user
exits. For information on these user exits, refer to “Specifying User Exits for Conversions”
on page 309.
Transactions=propagate,transfer,update;
S0B5A(15)<<translate(Assignee,", ","//");
S0B9C(11)<<translate(Organization,", ","//");
S0B5C(15)<<translate(Modifier,", ","//");
S0BE7<<change(Priority,"None","");
S0C3E<<(words(StartDate,1,1));
S0C74<<toIMTime(words(StartDate,2));
S0BEE<<translateWord(Status,"Approved","OPEN",

"Pending","OPEN",
"Working","OPEN",
"Complete","CLOSED",
"Rejected","CLOSED");

S0C09(8)<<translate(TroubleCode,".","/");
S0B59(15)<<nullDefault(translate(Originator,", ","//"),

"Helpdeskapp") ;

Where:

S0B5A(15)<<translate(Assignee,", ","//");
All commas and spaces found within the value in the application’s Assignee field
are converted to slashes and the value is truncated to 15 characters.

S0B9C(11)<<translate(Organization,", ","//");
All commas and spaces found within the value in the application’s Organization
field are converted to slashes and the value is truncated to 11 characters.

S0B5C(15)<<translate(Modifier,", ","//");
All commas and spaces found within the value in the application’s Modifier field
are converted to slashes and the value is truncated to 15 characters.

S0BE7<<change(Priority,"None","");
When the application’s Priority field contains the value None, this is converted to a
null string.

S0C3E<<toIMDate(StartDate,1,1);
The first value in the application’s StartDate field is a date. In this example, the
format is mm/dd/yyyy.

S0C74<<toIMTime(words(StartDate,2));
This converts the second value (time) in the application’s StartDate field from the
format hh:mm:ss am or hh:mm:ss pm to the format hh:mm, by dropping the
seconds.

S0BEE<<translateWord(Status,"Approved","OPEN", "Pending","OPEN",
"Working","OPEN", "Complete","CLOSED", "Rejected","CLOSED");

¶ If the value in the application’s Status field is Approved, Pending, or
Working, convert it to OPEN.

Customizing Problem Service Data Mappings

289Guide to Integrating with Tivoli Applications

21.
P

ro
b

lem
S

ervice
C

o
n

fig
u

ratio
n

F
ile

¶ If the value in the application’s Status field is Complete or Rejected, convert it
to CLOSED.

S0C09(8)<<translate(TroubleCode,".","/");
All periods found within the value in the application’s TroubleCode field are
converted to slashes and the value is truncated to 8 characters.

S0B59(15)<<nullDefault(translate(Originator,", ","//"), "Helpdeskapp");
All commas and spaces found within the value in your application’s Originator
field are converted to slashes and the value is truncated to 15 characters. If the
Originator field is empty, a value of Helpdeskapp is mapped.

These mappings are defined for propagate and transfer as specified in the transactions
statement. No conversions are performed on the application’s fields before being mapped.
Transactions=propagate,transfer;
S0E01<<Description;
00E02<<Detail;
S0F52<<TicketNum;

The following mappings are defined for propagate as specified in the transactions statement.
Transactions=propagate;
S0E0F<<"PROPAGATED RECORD FROM HELPDESKAPP";
S1260<<"P?????";
// ????? = GatewayID. Indicates this record was propagated
// by this gateway.
S14EF<<"?????";
// ????? = GatewayID. Check-out indicator

Where:

S0E0F<<"PROPAGATED RECORD FROM HELPDESKAPP";
"PROPAGATED RECORD FROM HELPDESKAPP" is hardcoded into the Tivoli
Information Management for z/OS field.

S1260<<"P?????";
Indicates this record was propagated by the gateway identified by the GatewayID
value specified in substitution for P?????.

S14EF<<"?????";
Is the checkout indicator; the record has been checked out by the gateway indicated
in substitution for ?????. By being checked out, propagated records can only be
updated by this gateway.

The following mappings are defined for the transfer operation as specified in the transactions
statement. In this case no conversions are made before the mappings.
Transactions=transfer;
S0E0F<<"TRANSFERRED RECORD FROM HELPDESKAPP";
S1260<<"T?????";

Where:

S0E0F<<"TRANSFERRED RECORD FROM HELPDESKAPP";
"TRANSFERRED RECORD FROM HELPDESKAPP" is hardcoded into the Tivoli
Information Management for z/OS field.

S1260<<"T?????";
Indicates that the record was transferred by the gateway identified by the GatewayID
value specified in substitution for T?????.

Customizing Problem Service Data Mappings

290 Version 7.1

Mapping Records from Tivoli Information Management for z/OS to
Your Application

The following mappings are defined for the Retrieve transaction as specified in the
transactions statement. Tivoli Information Management for z/OS data is mapped to your
application’s data.
Transactions=retrieve;
translateWord(change(nullDefault(S0B5A,"None"),"//",", ","/",","),

"NONE","None")>>Assignee;
S0E01>>Description(240);
translateWord(translate(nullDefault(S0B9C,"None"),"/"," "),

"ORGANIZATIO", "Organization",
"NONE","None")>>Organization;

nullDefault(stripLeading(fromIMPriority(S0BE7),"0"),"None")>>Priority;
translateWord(change(S0B59,"//",", ","/",", "),

"NONE","None")>>Originator;
translateWord(S0BEE,"INITIAL","Open",

"OPEN","Open", "CLOSED","Closed")>>Status;
translateWord(change(nullDefault(S0B5C,"None"),"//",", ","/",", "),

"NONE","None")>>Modifier;
translateWord(nullDefault(S0C09,"Unknown"),

"APPLICAT","Applications", "HARDWARE","Hardware",
"NETWORKS","Networks", "SOFTWARE","Software",
"UNKNOWN","Unknown") >> TroubleCode;

S0E02>>Detail(1000);
S0CA9>>Resource;
S0C3E" "translateWord(S0C74,"","","*",S0C74":00")>>StartDate;
S0CCF>>rnid;

Where:

translateWord(change(nullDefault(S0B5A,"None"), "//",",","/",","),
"NONE","None")>>Assignee;

When the S0B5A field is empty, a value of "None" is mapped. If its value is
"NONE", it is converted to "None". All slashes are converted to commas before
being mapped into the application’s Assignee field.

S0E01>>Description(240);
The first 240 characters of the Tivoli Information Management for z/OS S0E01 field
are mapped into the application’s Description field.

translateWord(translate(nullDefault(S0B9C,"None"),"/"," "),
"ORGANIZATIO","Organization","NONE","None") >>Organization;

When the S0B9C field is empty, a value of "None" is mapped. "ORGANIZATIO" is
converted to "Organization" and "NONE" is converted to "None". All slashes are
converted to spaces before being mapped into the application’s Organization field.

nullDefault(stripLeading(fromIMPriority(S0BE7),"0"),"None") >>Priority;
When the value in the S0BE7 field is between 0 and 5, it remains unaltered.
Otherwise a value of "5" is mapped. Leading zeros are removed and if the field is
empty, the value "None" is mapped into the application’s Priority field.

translateWord(change(S0B59,"//",", ","/",", "), "NONE","None")>>Originator;
If the value of the S0B59 field is ″NONE″, it is converted to ″None″. All slashes are
converted to commas before being mapped into the application’s Originator field.

translateWord(S0BEE,"INITIAL","Open", "OPEN","Open",
"CLOSED","Closed")>>Status;

The value ″INITIAL″ in the Tivoli Information Management for z/OS S0BEE field

Customizing Problem Service Data Mappings

291Guide to Integrating with Tivoli Applications

21.
P

ro
b

lem
S

ervice
C

o
n

fig
u

ratio
n

F
ile

is changed to ″Open″, the value ″OPEN″ to ″Open″, and the value ″CLOSED″ to
″Closed″ before being mapped into the application’s Status field.

translateWord(change(nullDefault(S0B5C,"None"), "//",",","/", ","), "NONE","None")
>>Modifier;

When the S0B5C field is empty, a value of ″None″ is mapped. If its value is
″NONE″, it is converted to ″None″. All slashes are converted to commas before
being mapped into the application’s Modifier field.

translateWord(nullDefault(S0C09,"Unknown"), ″APPLICAT″,″Applications″,
″HARDWARE″,″Hardware″, ″NETWORKS″,″Networks″, ″SOFTWARE″,″Software″,
″UNKNOWN″,″Unknown″) >>TroubleCode;

When there is a null value in the Tivoli Information Management for z/OS S0C09
field, it is replaced with the hardcoded value of ″Unknown″. All occurrences of
″APPLICAT″ in the field are replaced by ″Applications″, ″HARDWARE″ is replaced
with ″Hardware, ″NETWORKS″ with ″Networks″, ″SOFTWARE″ with ″Software″,
and ″UNKNOWN″ with ″Unknown″.

S0E02>>Detail(1000);
The first 1000 characters of the Tivoli Information Management for z/OS S0E02
field are mapped into the application’s Detail field

S0CA9>>Resource;
The value in the S0CA9 field is mapped directly into the application’s Resource
field without being converted.

S0C3E" "translateWord(S0C74,"", "","*",S0C74":00")>>StartDate;
When the Tivoli Information Management for z/OS time field (S0C74) is empty, it
remains empty. Otherwise, seconds are added (:00) to the time already specified in
hours and minutes (hh:mm). The Tivoli Information Management for z/OS date field
(S0C3E) and the time are concatenated before being mapped into the application’s
StartDate field. In this example, the date in the S0C3E field is in mm/dd/yyyy
format.

S0CCF>>rnid;
The value in the S0CCF field is mapped directly into the application’s rnid field
without being converted.

Customizing Problem Service Data Mappings

292 Version 7.1

Completing Problem Service
Configuration

This chapter explains how to complete the configuration of Problem Service.

Preparing the HLAPI Data Views on MVS
To define all the Tivoli Information Management for z/OS record fields that Problem Service
needs to access when performing the Problem Service operations, you need HLAPI PIDTs
and PIPTs or Tivoli Information Management for z/OS data model records.

The HLAPI PIDTs that you need for the database records are create, update, and retrieve.
Problem Service requires two fields to be defined in the HLAPI PIDTs or the data model’s
data view records:

¶ The create, update, and retrieve PIDTs or data view records must contain the Tivoli
Information Management for z/OS field that you specify in the GatewayIDField
statement in the Problem Service configuration file. This field must be present in all
Tivoli Information Management for z/OS records processed by Problem Service.

¶ The create PIDT or data view record must also contain the Tivoli Information
Management for z/OS field specified in the IMCheckoutField statement in the Problem
Service configuration. This is necessary for the propagate operation to always check out
the propagated records.

How to proceed depends on whether the Tivoli Information Management for z/OS records
you are using with Problem Service are:

¶ Uncustomized (see “Using PIDTs and PIPTs with Uncustomized Records” for
information on the HLAPI tables shipped with Tivoli Information Management for
z/OS.)

¶ Customized (see “Preparing PIDTs and PIPTs for Customized Records” on page 294 for
information to assist you in preparing the HLAPI tables.)

To prepare the HLAPI tables on MVS you need the assistance of the Tivoli Information
Management for z/OS administrator.

Using PIDTs and PIPTs with Uncustomized Records
The HLAPI PIDTs and PIPTs shipped with Tivoli Information Management for z/OS for
problem and change records have been built to reflect the Tivoli Information Management
for z/OS field specifications used in the sample Problem Service configuration file. These
tables contain the fields of uncustomized Tivoli Information Management for z/OS records
as well as the two Tivoli Information Management for z/OS fields (GatewayIDField and
IMCheckoutField) required by Problem Service.

22

293Guide to Integrating with Tivoli Applications

22.
C

o
m

p
letin

g
P

ro
b

lem
S

ervice
C

o
n

fig
u

ratio
n

The PIDTs and PIPTs shipped with Tivoli Information Management for z/OS are listed in
Table 40.

Table 40. Tivoli Information Management for z/OS PIDTs and PIPTs for
Uncustomized Records
Filename Description

BLGYPRC Problem Record Create PIDT

BLGYPRCP Problem Record Create PIPT

BLGYPRI Problem Record Inquiry PIDT

BLGYPRIP Problem Record Inquiry PIPT

BLGYPRR Problem Record Retrieve PIDT

BLGYPRRP Problem Record Retrieve PIPT

BLGYPRU Problem Record Update PIDT

BLGYPRUP Problem Record Update PIPT

BLGYCHC Change Record Create PIDT

BLGYCHCP Change Record Create PIPT

BLGYCHI Change Record Inquiry PIDT

BLGYCHIP Change Record Inquiry PIPT

BLGYCHR Change Record Retrieve PIDT

BLGYCHRP Change Record Retrieve PIPT

BLGYCHU Change Record Update PIDT

BLGYCHUP Change Record Update PIPT

For more information on how Tivoli Information Management for z/OS uses PIDTs and
PIPTs, refer to the Tivoli Information Management for z/OS Application Program Interface
Guide.

Preparing PIDTs and PIPTs for Customized Records
Use the MVS system where Tivoli Information Management for z/OS is running to create
new PIDTs and PIPTs. Customizing these tables requires experience with the Tivoli
Information Management for z/OS product and knowledge of how records are customized in
Tivoli Information Management for z/OS. If you do not have experience with this product,
you need the direct assistance of the Tivoli Information Management for z/OS administrator
to customize these tables on MVS. The Tivoli Information Management for z/OS
administrator will also have the necessary information about the characteristics of the fields
of the customized records in Tivoli Information Management for z/OS.

Tivoli Information Management for z/OS provides you with an MVS utility, called
BLGUT8, that you use to build each customized PIDT and corresponding PIPT in Tivoli
Information Management for z/OS. The BLGUT8 utility requires the following input:

¶ Control statements that specify the record fields for the PIDT.

¶ Tivoli Information Management for z/OS assisted entry panels (in offloaded format
using utility BLGUT6F) for the fields specified in the PIDT.

¶ Tivoli Information Management for z/OS dictionary entries defining the characteristics
of the fields specified in the PIDT.

Preparing the HLAPI Data Views on MVS

294 Version 7.1

Note: For more information on assisted entry panels and the Tivoli Information
Management for z/OS dictionary, refer to the Tivoli Information Management for
z/OS Panel Modification Facility Guide

The BLGUT8 utility generates PIDTs and PIPTs that HLAPI uses with your application. For
detailed descriptions on customizing HLAPI tables, using data model records, and using the
BLGUT8 utility, refer to the Tivoli Information Management for z/OS Application Program
Interface Guide.

Shown below are the input statements that must be added to the BLGUT8 job stream that
builds your customized HLAPI tables. These statements use the dictionary entries and
assisted entry panels shipped with Tivoli Information Management for z/OS. If you use a
different s-word index for the Gateway ID field, then you must update these statements to
match your environment.
FIELD PANEL(BLM6GWID) INDEX(S1260); /* GATEWAY ID FIELD */
FIELD PANEL(BLG6APPL) INDEX(S14EF); /* CHECKOUT FIELD */

Updating the Services File
After you complete the customization of the Problem Service configuration file, update the
services file on your workstation to reflect the settings you specified in the configuration
file.

AIX Workstation /etc/services File
In the /etc/services file, define the entry for the service name you specified in the
InfoGatewayService statement and associate an available TCP/IP port number for this
service name.

For example, if you customized the statement with the following service name:
InfoGatewayService="infogateway";

The entry in the /etc/services file would be as follows:
infogateway 1453/tcp

Select a TCP/IP port number (for example, 1453) for the service name that is unique and
available on your system.

Windows NT Workstation Services File
In your IP services file, define the entry for the service name you specified in the
InfoGatewayService statement and associate an available TCP/IP port number for this
service name.

For example, if you customized the statement with the following service name:
InfoGatewayService="infogateway";

The entry in the services file would be as follows:
infogateway 1453/tcp

Select a TCP/IP port number (for example, 1453) for the service name that is unique and
available on your system.

Preparing the HLAPI Data Views on MVS

295Guide to Integrating with Tivoli Applications

22.
C

o
m

p
letin

g
P

ro
b

lem
S

ervice
C

o
n

fig
u

ratio
n

Updating the Services File

296 Version 7.1

Running Problem Service

Problem Service can be started after installation and configuration is complete, and HLAPI
has been invoked successfully.

Starting Problem Service
For AIX and Solaris, Problem Service is started by running the gw_nxd executable file. This
file is in the $INST_DIR/$INTERP/InfoMgt/InfoGateway directory. Other daemon
sessions are automatically started by the base process according to what was specified for
the session statements in the Problem Service configuration file.

You can start Windows NT system services by opening the control panel folder and
double-clicking on the services icon. The name will be displayed in the services list as
TSD390 Problem Service Gateway. Click on this name, then click on the start button.

You must start Problem Service from an administrator user ID in the Tivoli Management
Region (TMR) where Problem Service is installed to use reverse assignment and monitor
operations.

Stopping Problem Service
For AIX and Solaris, use the shutdown Problem Service function or locate the process ID of
the main Problem Service process and use the kill command to stop the daemon. The main
process will stop the subprocesses. For more information on the shutdown function, refer to
“Shutdown” on page 303.

You can stop Windows NT system services by opening the control panel folder and
double-clicking on the services icon. The name will be displayed in the services list as
TSD390 Problem Service Gateway. Click on this name, then click on the stop button.

Logging with Problem Service
Problem Service has the ability to write error, trace, and informational messages to a log
file. There are several characteristics of the logging function that can be customized. A list
of these, along with their default values, are:

Log name
This is the name of the log file. The default log file name used is infogw.log and is
created in the current directory.

Log size
This is the maximum size of the log file. The default log size is set to 250000 bytes.
Upon reaching this size the current active log is archived and a new log file is

23

297Guide to Integrating with Tivoli Applications

23.
R

u
n

n
in

g
P

ro
b

lem
S

ervice

started. One archived backup log is maintained and uses the name of the log file
with .bak concatenated to the end. If the default log name is used, the backup file
would have the name infogw.log.bak.

Archiving takes place by removing the existing backup file and then renaming the
current active log file to the backup name. The new log file is then created.

Log state
This is the state of the logger (ON or OFF). The logger is ON by default.

Log level
This is the level of logging to be performed. The logger has three levels of logging:

Level 1
Only messages listed as errors are written to the log file

Level 2
Error messages plus trace messages are written to the log file

Level 3
Error, trace, and informational messages are written to the log file

The log level is set to level 3 by default, which causes all messages to be logged.

The logging characteristics can be customized by setting and exporting the following
environment variables:

GWLOGNAME
Specifies the name of the log file.

GWLOGSIZE
Specifies the maximum size of the log file in bytes. The smallest value that can be
specified is 5000 bytes. A smaller value results in 5000 bytes being used as the
maximum size.

GWLOGSTATE
Specifies the state of the logger. The logger is disabled if the value of this variable
is set to OFF. Other values cause the logger to be ON.

GWLOGLEVEL
Sets the level of logging. The valid values are 1, 2, or 3. A value less than 1 causes
1 to be used as the level and a value more than 3 causes 3 to be used as the level.

The environment variables must be exported from a parent session of the one used by
Problem Service.

Each output to the log file will contain the following information:
Date Time PID MessageID MessageText

An example output to the log is:
01/10/97 16:32:35 18454 APAGM034I Process configuration file blymgc.cfg.
01/10/97 16:32:38 3610 APAGT003I Gateway Reverse Assignment process started
01/10/97 16:32:38 3610 APAGT028I Connect to Tivoli Information Management for z/OS

This log file, along with the HLAPI client log and the HLAPI client probe log, can be
useful in identifying and locating problems. Information about the two HLAPI client log
files can be found in the Tivoli Information Management for z/OS Client Installation and
User’s Guide.

Logging with Problem Service

298 Version 7.1

Problem Service Application Programming
Information

This chapter is for the programmer who is developing an application that will invoke the
Problem Service operations. Refer to the Tivoli Application Development Environment
(Tivoli ADE) publications for more information about developing an application in the Tivoli
environment.

Copying the Samples and Files
Copy the samples and files you need to compile calls to the APIs.

¶ Create a test directory (example: /home/userid/tivtest).

¶ Change directory to the new test directory.

¶ Copy the files into the new test directory. The files are in
$INST_DIR/../include/$INTERP/InfoMgt/InfoGateway unless you specified a
different directory for header files during the installation of Problem Service.

Compiling and Link Editing Your Code
Compile and link edit your code with the Problem Service APIs.

¶ Change to your test directory.

¶ Edit the Makefile for your setup:
v Change TOP (directory where Tivoli is installed)
v Change HERE (your test directory)
v For Windows NT only, change TOOLROOT (your compiler directory)
v Change references to tester, tester.c, and tester.o to the appropriate names for your

application if you have written your own program that uses the Problem Service
operations.

v Change the compiler commands and libraries to those for your compiler. For AIX,
the sample Makefile uses the xlC compiler and the IBMcset libraries. For Windows
NT, the sample tester.mak uses the IBM VisualAge® for C++ for Windows®

compiler.

¶ For AIX workstations, enter ln -s /home/userid/tivtest tivoli to set up a
symbolic link used by the make program to find the files you copied.

¶ Compile and link edit your program. The sample C program, tester.c, uses the gnu make
(gmake) program. For AIX workstations, enter gmake test to compile and link the
tester.c program using the gnu make program. For Windows NT workstations, enter
make -f tester.mak tester.exe to compile and link the tester.c program using the
gnu make program.

24

299Guide to Integrating with Tivoli Applications

24.
P

ro
b

lem
S

ervice
A

p
p

licatio
n

P
ro

g
ram

m
in

g

Refer to the Tivoli Application Development Environment publications for more information
about creating an application in the Tivoli environment.

Interface Definition Language Data Types
The following are the interface definition language (IDL) data types used by the Problem
Service API:

string Null terminated character string

unsigned long
32 bit integer

sequence
A one dimensional array of elements. The Common Object Request Broker
Architecture (CORBA) specification defines the sequence data type for operations
that accept or return a set of data structures. Tivoli provides a library of functions
for manipulating sequences.

This is an example of a sequence that can be used in coding Problem Service
operations:
struct GWAttr {

string name; // name of data field
string value; // value of data field

};

typedef sequence <GWAttr>GWAttrList;

The GWAttrList sequence contains a list of elements that represent a record. Each
element has a name and value. The name identifies the data field name and the
value contains the value associated with the data field.

Coding Examples for Problem Service Operations
The following code fragments demonstrate how to code the Problem Service operations in
an application program. For more detail and to see each example in context, refer to the
Bash shell script examples in the sample file and the C code examples in the tester.c file
that are shipped with Problem Service.

Checkin
Script example:
OID=vwlookup -r InfoMgtGW Info_GWv
idlcall $OID InfoGW::checkin \"00000311\"

C example:
/***/
/* Variables */
/***/
Environment ev;
Object oid = OBJECT_NIL;

/***/
/* Get the object id */
/***/
oid = dir_lookup_instance("InfoMgtGW", "Info_GW");
/***/

Compiling and Link Editing Your Code

300 Version 7.1

/* Perform the transaction */
/***/
t_InfoGW_checkin(oid, &ev, Trans_none, "00000311");

Checkout
Script example:
OID=vwlookup -r InfoMgtGW Info_GWv
idlcall $OID InfoGW::checkout \"00000311\"

C example:
/***/
/* Variables */
/***/
Environment ev;
Object oid = OBJECT_NIL;

/***/
/* Get the object id */
/***/
oid = dir_lookup_instance("InfoMgtGW", "Info_GW");
/***/
/* Perform the transaction */
/***/
t_InfoGW_checkout(oid, &ev, Trans_none, "00000311");

Delete
Script example:
OID=vwlookup -r InfoMgtGW Info_GWv
idlcall $OID InfoGW::delete \"00000311\"

C example:
/***/
/* Variables */
/***/
Environment ev;
Object oid = OBJECT_NIL;

/***/
/* Get the object id */
/***/
oid = dir_lookup_instance("InfoMgtGW", "Info_GW");
/***/
/* Perform transaction */
/***/
t_InfoGW_delete(oid, &ev, Trans_none, "00000311");

Ping
Script example:
OID=vwlookup -r InfoMgtGW Info_GW
PINGRES=vidlcall $OID InfoGW::pingv

C example:
/***/
/* Variables */
/***/
Environment ev;
Object oid = OBJECT_NIL;
PingResult pr;

Coding Examples for Problem Service Operations

301Guide to Integrating with Tivoli Applications

24.
P

ro
b

lem
S

ervice
A

p
p

licatio
n

P
ro

g
ram

m
in

g

/***/
/* Get the object id */
/***/
oid = dir_lookup_instance("InfoMgtGW", "Info_GW");
/***/
/* Perform transaction */
/***/
pr = t_InfoGW_ping(oid, &ev, Trans_none);

Propagate
Script example:
OID=vwlookup -r InfoMgtGW Info_GWv
RNID1=vidlcall $OID InfoGW::propagate { 2 \

{\"Originator\"\"Smith,Bill\"}\
{\"Status\"\"Pending\"}} \"Helpdeskapp\"v

C example:
/***/
/* Variables */
/***/
Environment ev;
Object oid = OBJECT_NIL;
GWAttrList gwattrlist;
GWAttr tmpattr;
char * rnid;

/***/
/* Get the object id */
/***/
oid = dir_lookup_instance("InfoMgtGW", "Info_GW");
/***/
/* Initialize the sequence of name value pairs */
/***/
seq_init((sequence_t *) &gwattrlist);
/**/
/* Set the element values and append them to the sequence */
/**/
tmpattr.name = ml_ex_strdup("Originator");
tmpattr.value = ml_ex_strdup("Smith,Bill");
seq_add((sequence_t *)&gwattrlist,&tmpattr,sizeof(GWAttr));
tmpattr.name = ml_ex_strdup("Status");
&tmpattr.value = ml_ex_strdup("Pending");
seq_add((sequence_t *)&gwattrlist,&tmpattr,sizeof(GWAttr));
/***/
/* Perform the transaction and save the record id */
/***/
rnid=t_InfoGW_propagate(oid,&ev,Trans_none,&gwattrlist,"Helpdeskapp");
/***/
/* Free the input sequence's buffer */
/***/
seq_free_buffer((sequence_t *) &gwattrlist);

Retrieve
Script example:
OID=vwlookup -r InfoMgtGW Info_GWv
RESULT=vidlcall $OID InfoGW::retrieve \"00000311\"\"Helpdeskapp\"v

C example:
/***/
/* Variables */
/***/
Environment ev;

Coding Examples for Problem Service Operations

302 Version 7.1

Object oid = OBJECT_NIL;
GWAttrList myrec;

/***/
/* Get the object id */
/***/
oid = dir_lookup_instance("InfoMgtGW", "Info_GW");
/**/
/* Perform the transaction */
/**/
myrec=t_InfoGW_retrieve(oid,&ev,Trans_none,"00000311","Helpdeskapp");

Search
Script example:
OID=vwlookup -r InfoMgtGW Info_GWv
RESULT2=vidlcall $OID InfoGW::search { 2 \

{\"Originator\"\"Smith,Bill\"}
{\"Status\"\"Pending\"}} \"Helpdeskapp\"v

C example:
/***/
/* Variables */
/***/
Environment ev;
Object oid = OBJECT_NIL;
GWAttrList gwattrlist;
GWAttr tmpattr;
SearchResultList mysearchlist;

/***/
/* Get the object id */
/***/
oid = dir_lookup_instance("InfoMgtGW", "Info_GW");
/**/
/* Initialize the sequence of name value pairs */
/**/
seq_init((sequence_t *) &gwattrlist);
/**/
/* Set the element values and append them to the sequence */
/**/
tmpattr.name = ml_ex_strdup("Originator");
tmpattr.value = ml_ex_strdup("Smith,Bill");
seq_add((sequence_t *)&gwattrlist, &tmpattr, sizeof(GWAttr));
tmpattr.name = ml_ex_strdup("Status");
tmpattr.value = ml_ex_strdup("Pending");
seq_add((sequence_t *)&gwattrlist, &tmpattr, sizeof(GWAttr));
/**/
/* Perform the transaction */
/**/
mysearchlist = t_InfoGW_search(oid, &ev, Trans_none,

&gwattrlist, "Helpdeskapp");
/**/
/* Free the input sequence's buffer */
/**/
seq_free_buffer((sequence_t *) &gwattrlist);

Shutdown
Script example:
OID=vwlookup -r InfoMgtGW Info_GWv
idlcall $OID InfoGW::shutdown

C example:

Coding Examples for Problem Service Operations

303Guide to Integrating with Tivoli Applications

24.
P

ro
b

lem
S

ervice
A

p
p

licatio
n

P
ro

g
ram

m
in

g

/***/
/* Variables */
/***/
Environment ev;
Object oid = OBJECT_NIL;

/***/
/* Get the object id */
/***/
oid = dir_lookup_instance("InfoMgtGW", "Info_GW");
/***/
/* Perform transaction */
/***/
t_InfoGW_shutdown(oid, &ev, Trans_none);

Transfer
Script example:
OID=vwlookup -r InfoMgtGW Info_GWv
RNID=vidlcall $OID InfoGW::transfer { 2 \

{\"Originator\"\"Smith,Bill\"} \
{\"Status\"\"Pending\"}} \Helpdeskapp\"v

C example:
/***/
/* Variables */
/***/
Environment ev;
Object oid = OBJECT_NIL;
GWAttrList gwattrlist;
GWAttr tmpattr;
char * rnid;

/***/
/* Get the object id */
/***/
oid = dir_lookup_instance("InfoMgtGW", "Info_GW");
/**/
/* Initialize the sequence of name value pairs */
/**/
seq_init((sequence_t *) &gwattrlist);
/**/
/* Set the element values and append them to the sequence. */
/**/
tmpattr.name = ml_ex_strdup("Originator");
tmpattr.value = ml_ex_strdup("Smith,Bill");
seq_add((sequence_t *) &gwattrlist, &tmpattr, sizeof(GWAttr));
tmpattr.name = ml_ex_strdup("Status");
tmpattr.value = ml_ex_strdup("Pending");
seq_add((sequence_t *) &gwattrlist, &tmpattr, sizeof(GWAttr));
/**/
/* Perform the transaction and save the record id */
/**/
rnid=t_InfoGW_transfer(oid,&ev,Trans_none, &gwattrlist,"Helpdeskapp");
/**/
/* Free the input sequence's buffer */
/**/
seq_free_buffer((sequence_t *) &gwattrlist);

Update
Script example:
OID=vwlookup -r InfoMgtGW Info_GWv
idlcall $OID InfoGW::update { 2 \

{\"Status\"\"Closed\"}
{\"rnid\"\"311\"}} \"Helpdeskapp\"

Coding Examples for Problem Service Operations

304 Version 7.1

C example:
/***/
/* Variables */
/***/
Environment ev;
Object oid = OBJECT_NIL;
GWAttrList gwattrlist;
GWAttr tmpattr;

/***/
/* Get the object id */
/***/
oid = dir_lookup_instance("InfoMgtGW", "Info_GW");
/**/
/* Initialize the sequence of name value pairs */
/**/
seq_init((sequence_t *) &gwattrlist);
/**/
/* Set the element values and append them to the sequence. */
/**/
tmpattr.name = ml_ex_strdup("Status");
tmpattr.value = ml_ex_strdup("Closed");
seq_add((sequence_t *) &gwattrlist,&tmpattr,sizeof(GWAttr));
tmpattr.name = ml_ex_strdup("rnid");
tmpattr.value = ml_ex_strdup("00000311");
seq_add((sequence_t *) &gwattrlist,&tmpattr,sizeof(GWAttr));
/**/
/* Perform the transaction */
/**/
t_InfoGW_update(oid, &ev, Trans_none, &gwattrlist, "Helpdeskapp");
/**/
/* Free the input sequence's buffer */
/**/
seq_free_buffer((sequence_t *) &gwattrlist);

Tivoli Application Development Environment (ADE) Exceptions
Tivoli ADE exceptions are used to return error information to your application. Problem
Service defines the ExInfoGateway exception. Refer to the Tivoli Application Development
Environment documentation for more information on these exceptions.

ExInfoGateway Exception
The following data is inherited from ExException:

string type_name
Name of exception type

string catalog
Name of message catalog

long key
Message catalog key

string default_message
Default message, when the message catalog is unavailable

long stamp
Date stamp

Msgcontext Msg_context
Context of exception raised

The following are ExInfoGateway data:

Coding Examples for Problem Service Operations

305Guide to Integrating with Tivoli Applications

24.
P

ro
b

lem
S

ervice
A

p
p

licatio
n

P
ro

g
ram

m
in

g

string message
Name of C++ exception

HICAReturnCode
Tivoli Information Management for z/OS API return code

HICAReasonCode
Tivoli Information Management for z/OS API reason code

Examples of Gateway Exceptions
Try {

t_InfoGW_checkout(oid, &ev, Trans_none,recordID);
}
Catch(ExInfoGateway,ex){//catches Gateway exceptions and

//any exceptions derived from
//ExInfoGateway

}
Catch(ExException,ex){ //catches ExExceptions and any

//exceptions derived from ExException
}
CatchAll() { //catches all exceptions
}

Tivoli Application Development Environment (ADE) Exceptions

306 Version 7.1

Customizing User Exit Routines for the
Problem Service Daemon

Problem Service assumes that all data is character data. Some data conversions, such as the
truncation of data, are supported. Problem Service does not know the Tivoli Information
Management for z/OS database record structure, and the Tivoli Information Management for
z/OS HLAPI does not automatically convert data, so you must define how truncations and
other conversions are to be performed.

Some types of mapping syntax enable you to define fields and rules for mappings for each
type of transaction. The mapping rule for a particular field can be different for different
transactions.

Supported Data Conversions
Here is a list of the mapping conversions that are supported, followed by a description of
each listed item:

¶ Truncation

¶ Convert one character to another character

¶ Convert specific field value to another value

¶ Date/time conversion

¶ Freeform text

¶ Default data

¶ Field combining (concatenation)

¶ Substring and sub-word

¶ Exit routines

Truncation
Data can be truncated to a specified length. For example, assignee in an application’s record
is 90 characters, while assignee in a Tivoli Information Management for z/OS database
record is only 15 characters, so you can choose to truncate after the first 15 characters.

Convert One Character to Another Character
An application’s field could contain blanks and commas while the corresponding Tivoli
Information Management for z/OS field might allow only one word and not allow commas.
The blanks and commas in the field are converted to a specified character that you can
choose.

25

307Guide to Integrating with Tivoli Applications

25.
U

ser
E

xit
R

o
u

tin
es

fo
r

P
ro

b
lem

S
ervice

The Tivoli Information Management for z/OS record field may allow multiple words (for
example, first and last name). In this case, the blanks and commas would be converted to a
specified separator character. This allows the HLAPI client to indicate that the data contains
multiple words (separator character separates each word).

Convert Specific Field Value to Another Value
An application’s field might allow hardcoded values that are different from the
corresponding Tivoli Information Management for z/OS problem fields. Each value that does
not match is converted to a specified value.

Date/Time Conversion
An application’s time stamp can be a combination of date and time. The date part and the
time part are put into the Tivoli Information Management for z/OS record’s respective date
field and time field. Tivoli Information Management for z/OS enables you to choose which
external date and time formats to use (exit routine is used to convert from internal to
external and vice versa).

The HLAPI client accepts dates and times in external format (this could be different for each
Tivoli Information Management for z/OS site). Problem Service allows the specification of a
C exit routine to convert the application’s record date/time into dates and times to be given
to Tivoli Information Management for z/OS.

Note: This means that a C compiler is a prerequisite if you want to use your own user exits.

The date and time conversion exit can manipulate the date and time to support time zone
differences between Tivoli Information Management for z/OS and your applications.

Freeform Text
An application’s freeform textual field is converted to Tivoli Information Management for
z/OS freeform text. An application’s text data might be just a stream of characters with no
indications of new lines. In this case, specify the length of the corresponding Tivoli
Information Management for z/OS text line so that your application’s text can be split into
Tivoli Information Management for z/OS text lines. When returning freeform text, the text
lines can be converted to a data stream before being given to your application.

Default Data
You can specify hardcoded data for a field, either on an unconditional basis or only if the
source data field is empty.

Field Combining (Concatenation)
You can combine multiple fields into one target field. For example, several of your
application’s fields might map into just one Tivoli Information Management for z/OS field.

Substring and Sub-Word
You can choose to map only a part of a field into the target field.

Exit Routines
An exit routine can be specified to perform whatever conversions you choose. This exit
routine must be written in the C programming language.

Supported Data Conversions

308 Version 7.1

Specifying User Exits for Conversions
You can specify exit routines to perform data conversions. These can be routines you write
yourself or those provided by Problem Service.

If you want to write your own exit routine, code it as shown in the following example:
char* main(int argumentCount, const char ** argumentArrayPointer);

To ensure that control returns to the mapping facility after the invocation of a user exit, it
must be linked with the entry point as main and not a compiler-generated routine. Refer to
the link options of the compiler you are using for instructions.

Copy the newly created user exit routine to the directory where the gw_nxd daemon
executable exists, so that Problem Service can use it.

Several user exits to perform data conversions are provided. The first argument for all of the
exits is data, and is either absent, a field name, a literal string, or another subroutine
specification. This is also true for any other argument requiring a string.

Table 41 is a list of the supplied user exits. Each user exit with examples of use is described
following the table.

Table 41. Supplied User Exits
User Exit Description

change Returns specified string changes.

fromIMDate Converts a date format year value.

fromIMPriority Maps priority values.

fromIMTime Converts a military time format.

nullDefault Returns a specified value when the target is null.

stripLeading Strips leading characters.

subString Returns a specified substring.

toIMDate Converts a date format year value.

toIMTime Converts a time format to military time format.

translate Returns a specified character translation.

translateWord Returns a specified word translation.

words Returns a specified substring.

change
This user exit returns specified string changes of the target data. The format is:
change(data, sourceWord1, targetWord1,

sourceWord2, targetWord2, ...)

The string given by sourceWord1, where found within data, is changed to the string given
by targetWord1. It then changes the string given by sourceWord2, where found in the result
of the first operation, to the string given by targetWord2. This continues until all source
strings have been processed. If the last matching target string is missing, it defaults to null.

For example, if fieldName is abcdefghijklm then:
change(fieldName,"abc","def","def","ghi") returns "ghighighijklm"
change("abcdefghijklm","def") returns "abcghijklm"

Specifying User Exits for Conversions

309Guide to Integrating with Tivoli Applications

25.
U

ser
E

xit
R

o
u

tin
es

fo
r

P
ro

b
lem

S
ervice

fromIMDate
This user exit converts a yy date format to a yyyy date format. The format is:
fromIMDate(IMDate)

A date in the format mm/dd/yy is converted to mm/dd/yyyy, where year characters 50
through 99 represent the years 1950 through 1999 and year characters 00 through 49
represent the years 2000 through 2049.

For example,
fromIMDate("12/05/49") returns "12/05/2049"

fromIMPriority
This user exit maps priority values. The format is:
fromIMPriority(IMPriority)

It maps values 6 through 99 to 5, while not altering values 0 through 5.

For example,
fromIMPriority("21") returns "5"
fromIMPriority("0") returns "0"

fromIMTime
This user exit converts a military time format. The format is:
fromIMTime(IMTime)

The military time format of hh:mm is converted to a time in the format hh:mm:ss am or
hh:mm:ss pm, by adding a seconds field of 00 and am or pm.

For example,
fromIMTime("13:34") returns "01:34:00 pm"

nullDefault
This user exit returns a specified value when the target is null. The format is:
nullDefault(data, defaultValue)

The value defaultValue is returned when data is null. Otherwise, the value for data is
returned.

For example, if fieldName is abc then:
nullDefault(fieldName,"default") returns "abc"
nullDefault(,fieldName) returns "abc"
nullDefault(,) returns ""

stripLeading
This user exit strips the leading characters from the target data. The format is:
stripLeading(data, stripCharacters)

For example, if fieldName is 0000200 then:
stripLeading(fieldName,"0") returns "200"
stripLeading(fieldName) returns "0000200"
stripLeading("000000","0") returns ""
stripLeading("wordwordzz","word") returns "zz"

Specifying User Exits for Conversions

310 Version 7.1

subString
This user exit returns a specified substring of the target data. The formats are:
subString(data, startPosition)
subString(data, startPosition, length)
subString(data, startPosition, length, padCharacter)

Where:

startPosition
Starting index position of the substring. If the index is beyond the end of the string,
the function returns a null string.

length The length of the substring. If the substring extends beyond the end of the string, the
substring is padded with the character given by the padCharacter argument. If
length is not specified, the substring goes from the starting position to the end of the
string.

padCharacter
The character to use as padding if the substring extends beyond the end of the
string. The default pad character is a single space.

For example, if fieldName is abcdef then:
substr(fieldName,2,3) returns "bcd"
substr(fieldName,4,5) returns "def "
substr(substr("abcdef",2,3),2,1) returns "c"
substr("abcdef",7,1) returns " "

toIMDate
This user exit converts a yyyy date format to a yy date format. The format is:
toIMDate(foreignDate)

A date in the format mm/dd/yyyy is converted to mm/dd/yy, where year characters 50
through 99 represent the years 1950 through 1999 and year characters 00 through 49
represent the years 2000 through 2049.

For example,
toIMDate("01/31/1950") returns "01/31/50"

toIMTime
This user exit converts a time format to military time format. The format is:
toIMTime(foreignTime)

A time in the format hh:mm:ss am or hh:mm:ss pm is changed to military time hh:mm, by
dropping the seconds.

For example,
toIMTime("12:34:56 am") returns "00:34"

translate
This user exit returns a specified character translation of the target data. The format is:
translate(data, inputCharacters, outputCharacters)

The characters given by inputCharacters, where found within data, are changed to the
characters given by outputCharacters. If not specified, outputCharacters defaults to spaces.

Specifying User Exits for Conversions

311Guide to Integrating with Tivoli Applications

25.
U

ser
E

xit
R

o
u

tin
es

fo
r

P
ro

b
lem

S
ervice

For example, if fieldName is a,b,c,d then:
translate(fieldName,","," ") returns "a b c d"
translate("a,b,c,d",fieldName) returns " "

translateWord
This user exit returns a specified word translation of the target data. The format is:
translateWord(data, sourceWord1, targetWord1,

sourceWord2, targetWord2, ...)

The string given by sourceWordN is changed to the string given by targetWordN, if found
within data. If the last matching target is missing, it defaults to null. If sourceWord1 is *,
any result for data is a match.

For example, if fieldName is word then:
translateWord(fieldName,fieldName,"bird") returns "bird"
translateWord("word","word") returns ""

words
This user exit returns a specified substring of the target data. The format is:
words(data, firstWord)
words(data, firstWord, numberOfWords)

It begins with the word in the word index position given by firstWord (words are separated
by spaces). If the index given by firstWord is not valid, the function returns a null string.
The numberOfWords argument can be used to specify how many words to include in the
substring. If the numberOfWords argument is not specified, all the words to the end of the
string are included in the substring. The substring contains all the word separators (spaces)
that are included in the original string.

For example, if fieldName is a b c d then:
words(fieldName,2,1) returns "b"
words(subString(fieldName,3,3),2,2) returns "c"
words("a b c d",5,1) returns ""

Specifying User Exits for Conversions

312 Version 7.1

IV — Tivoli Service Desk Bridge
Chapter 26. Tivoli Service Desk Bridge Overview . 315
Problem Records and People Records . 316
The Notification Server . 317
The Listener Program . 317

Chapter 27. Tivoli Service Desk Bridge Setup. 319
Hardware Requirements . 319
Software Requirements . 319

Database Requirements . 319
Information Management Setup . 319

Setting Up the Notification Server . 321
Data Model Records . 321

Loading Data Model Records. 322
Customizing Data Model Records . 322

Updating Panel BLG0S010 . 323
Updating Panel BLG0E090 . 331
Updating Panel BLG1A111 . 338
Copying Panel BLG1A11Z . 345
Copying BLM1B04Z. 347
Starting the Notification Server . 349
Stopping the Notification Server . 350

TSD Setup . 350
Setting Up Error Processing for the TSD Listener Program . 350

Chapter 28. Using the Tivoli Service Desk Bridge . 353
Transferring a Problem from Information Management to TSD. 353
Resume Ownership . 356
Refresh . 358
Send a Solution . 360
Tivoli Service Desk Bridge TSXs . 362

313Guide to Integrating with Tivoli Applications

314 Version 7.1

Tivoli Service Desk Bridge Overview
Note: Tivoli Service Desk (TSD) is a suite of applications; Tivoli Problem Management is

one of those applications. In the following chapters on Tivoli Service Desk Bridge,
TSD represents Tivoli Problem Management; Information Management represents
Tivoli Information Management for z/OS.

Tivoli Service Desk (TSD) is a network help desk system that enables help desk analysts to
register calls and resolve problems. With TSD, help desk analysts can simultaneously access
a large database of problems and solutions, track customer calls and problems, and transfer
calls and problems that your help desk handles. TSD has traditionally been a tool that is
used in a workstation environment. Tivoli Information Management for z/OS provides
functions similar to that of TSD, but traditionally has been a tool that is used in a host
environment.

Tivoli Information Management for z/OS can exchange problem records with TSD installed
on a Windows NT workstation platform. Working from TSD, a help desk analyst can request
that a problem record be transferred from a TSD help desk analyst to an Information
Management help desk analyst, and, working from Information Management, the reverse is
true.

Whether a problem record resides in the TSD database or in the Information Management
database, a help desk analyst who has knowledge of a problem record (usually by having
worked on the record previously) can request transfer of that record. When transferred,
information about the problem can be added, and the record can be transferred to another
analyst if that is the appropriate disposition of the record.

TSD maintains a database of problem records that is separate from the Information
Management database of problem records. A problem record can reside in both databases at
the same time, but it is “owned” by either Information Management or TSD. In Information
Management, this “ownership” designation is determined by the Person role contained in
the people record of the user to whom the problem is assigned. Each user who will access a
problem record is designated as an Information Management user known only to Information
Management (person role=TSD390), a TSD user or group known to Information
Management (person role=TSDUSER or TSDGROUP), or a Information Management user
known to TSD (role=TSD390&TSD). If a problem record is assigned to a user whose role is
TSDUSER or TSDGROUP, the record is owned by TSD. If a problem record is assigned to
a user whose role is anything other than TSDUSER or TSDGROUP, the record is owned by
Information Management.

A people record must be created for each user who can be assigned to problem records. A
people record created for an Information Management user will contain the Person role of
either TSD390&TSD or TSD390. A people record can also be created for a TSD user and

26

315Guide to Integrating with Tivoli Applications

26.
Tivo

li
S

ervice
D

esk
B

rid
g

e
O

verview

will contain a Person role of TSDUSER or TSDGROUP. The creation of people records is
described in the Tivoli Information Management for z/OS Program Administration Guide and
Reference.

The diagram in Figure 16 represents the interaction between Tivoli Information Management
for z/OS and TSD. The left portion of the diagram represents activity on the Information
Management side; the right portion of the diagram represents activity on the TSD side. Each
problem management application, Information Management and TSD, has its own database.

Problem Records and People Records
Information Management notifies TSD when Information Management records meet certain
criteria. Information Management notifies TSD when:

¶ A problem record is assigned to a user whose Person role is either TSDUSER or
TSDGROUP. Refer to the Tivoli Service Desk Networking Guide for more information
about these Person roles.

¶ A problem record for which a command of Resume Ownership, Refresh, or Send a
Solution is issued.

¶ A people record with a Person role of TSD390&TSD is created or updated.

When a problem record or a people record meets any of these criteria, Information
Management stores notification data in the record and, if the remote data resource (RDR) is
open, places the notification data on that RDR (general information about RDRs is contained
in the Tivoli Information Management for z/OS Program Administration Guide and
Reference).

Tivoli Information
Management for z/OS

Notification
Server

Information
Management

for z/OS
HLAPI

Requester

Listener
Program

MRES
TSD

Database

TSD
App Server

Mapping
C-API

TSD
Send

Program

Information
Management

for z/OS
Send

Program

Information
Management

for z/OS
Database

Remote
Data

Resource
(RDR)

Figure 16. TSD Bridge Overview

316 Version 7.1

The Notification Server
The notification server manages TSD notification. It is a TSX that is invoked by starting
Information Management as a batch job. When the notification server is started, it opens a
control RDR, establishes a long-running TCP/IP connection with the TSD listener program,
and opens the data RDR. The notification server then searches the TSD390 database for
records that need to processed by TSD and sends the notification data for those records to
the TSD listener program. Next, the notification server waits on the data RDR for work. As
Information Management places notification data on the RDR, the notification server
removes it from the RDR and sends it to the TSD listener program.

If the Notification Server is shut down in the middle of a process, a database administrator
must use the TSD Cleanup tool (described in the Tivoli Information Management for z/OS
Program Administration Guide and Reference) to clear records from Notification Server
queue.

The Listener Program
When the TSD listener program receives data from the notification server, the listener
program uses the Information Management HLAPI/NT Requester to retrieve information
from the Information Management database. The information is sent to the Information
Management Send program, where s-word values are mapped to the TSD fields. The
mapped data is written to the TSD database.

The Notification Server

317Guide to Integrating with Tivoli Applications

26.
Tivo

li
S

ervice
D

esk
B

rid
g

e
O

verview

The Listener Program

318 Version 7.1

Tivoli Service Desk Bridge Setup

Setting up the Tivoli Service Desk Bridge involves setup for Information Management,
described in “Information Management Setup”, and setup for TSD, described in “TSD
Setup” on page 350. It is assumed that you have already installed Tivoli Information
Management for z/OS Version 7.1.

Hardware Requirements
There are no special hardware requirements for the Tivoli Service Desk Bridge.

Software Requirements
The software requirements for the Tivoli Service Desk Bridge follow:

¶ Tivoli Service Desk Version 6.0.

¶ The Tivoli Service Desk Bridge can interface with TSD installed on a Windows NT
workstation platform. The TSD 6.0 installation package includes the Tivoli Service Desk
for OS/390 1.2 HLAPI/NT Client API. This code will work with Tivoli Information
Management for z/OS 7.1.

¶ TCP/IP connectivity between the notification server and the listener program.

In addition, if you are going to create Tivoli Enterprise Console (TEC) events to handle
Tivoli Service Desk Bridge errors, you will need the following:

¶ Tivoli Information Management for z/OS TEC Event Adapter

¶ Tivoli Event Integration Facility for OS/390 (5697–C74)

¶ See “Setting Up Error Processing for the TSD Listener Program” on page 350 for more
information about handling errors

Database Requirements
To use the Tivoli Service Desk Bridge, create your Information Management database with
an SDIDS key length of 34. For information about SDIDS key length, refer to the Tivoli
Information Management for z/OS Planning and Installation Guide and Reference.

Information Management Setup
These are the steps that you must follow for Information Management before using the
Tivoli Service Desk Bridge:

1. Set up an MRES with TCP/IP that pre-starts API sessions or an MRES with APPC that
pre-starts API sessions. Refer to the Tivoli Information Management for z/OS Client
Installation and User’s Guide for information on setting up an MRES and details on
pre-started API sessions.

27

319Guide to Integrating with Tivoli Applications

|
|

27.
Tivo

li
S

ervice
D

esk
B

rid
g

e
S

etu
p

Sample JCL to define an MRES procedure is shipped as BLMMRES in the
SBLMSAMP sample library. A sample MRES parameters member is shipped as
BLMMRESP in the SBLMSAMP sample library. The following parameters member
values are recommended:

¶ MULTIPLE_RESPONSE_FORMAT=PHRASE

¶ TABLE_COUNT=10

2. Set up the notification server. The information needed to do this can be found in
“Setting Up the Notification Server” on page 321.

3. Load data model records (data view records and data attribute records) for people
records and problem records. The procedure for doing this is described in “Data Model
Records” on page 321.

4. The Problem Summary Display panel, BLG0S010, is shipped from Tivoli with selection
11. TSD Bridge display; if you have not modified BLG0S010, use this panel shipped
from Tivoli. If you have customized BLG0S010 or you use a different problem
summary display panel, update it to include a selection for TSD Bridge display. The
procedure for adding a new selection for TSD Bridge display is described in “Updating
Panel BLG0S010” on page 323.

5. The Problem Inquiry Summary panel, BLG0E090, is shipped from Tivoli with selection
7. TSD Bridge data; if you have not modified BLG0E090, use this panel shipped from
Tivoli. If you have customized BLG0E090 or you use a different problem inquiry
summary panel, update it to add a selection for TSD Bridge data. The procedure for
adding a new selection for TSD Bridge data is described in “Updating Panel
BLG0E090” on page 331.

6. BLG1A111 is the Problem Record File panel. If you use the panel as shipped from
Tivoli, use the Panel Modification Facility (PMF) to copy panel BLG1A11Z from the
Tivoli base panel data set and rename it to panel BLG1A111 in your read panel data
set; a procedure for doing this is described in “Copying Panel BLG1A11Z” on
page 345. If you have modified BLG1A111 or use a different problem record file panel,
use PMF to update the panel to invoke the TSX BLGTSDPT; a procedure for doing this
is described in “Updating Panel BLG1A111” on page 338.

7. Use the Panel Modification Facility (PMF) to copy panel BLM1B04Z from the Tivoli
base panel data set and rename it to panel BLM1B040 in your read panel data set; a
procedure for doing this is described in “Copying BLM1B04Z” on page 347.

8. The TSX BLGTSDRQ is located in the SBLMTSX data set. The value specified for the
data RDR specified in BLGTSDRQ must be identical to the value specified for the data
RDR specified in the notification server, BLGTSDNS. See “Setting Up the Notification
Server” on page 321.

9. The Tivoli-supplied TSX BLGTSDPS, described on page 363, is used to send the
resolution for a closed problem record to TSD. The default value for ″closed″ is
STAC/CLOSED. If you use something other than STAC/CLOSED to indicate that a
problem is closed, modify BLGTSDPS, located in the SBLMTSX data set. Copy
BLGTSDPS to your TSX data set and update the value for the variable ″closed″ to the
p-word and value for your installation.

10. Start the MRES that you defined in step 1 on page 319. Information on how to start the
MRES can be found in the Tivoli Information Management for z/OS Client Installation
and User’s Guide.

Information Management Setup

320 Version 7.1

11. Start the notification server. The procedure for doing this is described in “Starting the
Notification Server” on page 349.

12. Verify that all steps listed in “TSD Setup” on page 350 have been completed.

13. Create people records for Information Management users to whom problem records will
be assigned by TSD. For information about creating people records, see the Tivoli
Information Management for z/OS Program Administration Guide and Reference.

Setting Up the Notification Server
The notification server manages TSD notification. It is a Information Management TSX that
is run by a batch job. The notification server source is BLGTSDNS and it is in the
SBLMTSX data set. You, as the Information Management systems programmer, should copy
BLGTSDNS to your TSX data set and update it according to your environment and setup.
At a minimum, update the TSX to specify the IP address and port number of the TSD
listener program. Also, review and update the other processing options as appropriate.
Processing options are specified by the following variables:

p_ipaddr
The IP address, entered in dotted decimal format, of the workstation on which the
TSD listener program is running; the value of this variable in the TSX BLGTSDNS
as shipped from Tivoli is 000.000.000.000. Change this value to the IP address of
the workstation on which the TSD listener program is running.

p_port#
The TCP/IP port number of the TSD listener program; the value of this variable in
the TSX BLGTSDNS as shipped from Tivoli is 0000. Change this value to the port
number of the TSD listener program. Refer to the Tivoli Service Desk Networking
Guide for more information on the listener program.

p_maxwait
The maximum time in seconds to try to connect to the TSD listener program. When
the time specified expires, processing is terminated; the value of this variable in the
TSX BLGTSDNS as shipped from Tivoli is 86400.

p_waitsec
The number of seconds to wait before retrying a particular function; the value of this
variable in the TSX BLGTSDNS as shipped from Tivoli is 5.

p_cntlrdr
The name of the control RDR monitored by the TSX BLGTSDNS; the value of this
variable in BLGTSDNS as shipped from Tivoli is BLGTSDC1.

p_datardr
The name of the data RDR monitored by the TSX BLGTSDNS; the value of this
variable in BLGTSDNS as shipped from Tivoli is BLGTSDD1. If you change this
name, change the value of p_datardr in the Tivoli-supplied TSX BLGTSDRQ to
match. The TSX BLGTSDRQ is located in the SBLMTSX data set.

Data Model Records
In order to use the Tivoli Service Desk Bridge, load the data model records described in
“Loading Data Model Records” on page 322. If you have created data model records for
your problem and change records, you must modify them in the manner described in
“Customizing Data Model Records” on page 322.

Information Management Setup

321Guide to Integrating with Tivoli Applications

27.
Tivo

li
S

ervice
D

esk
B

rid
g

e
S

etu
p

Loading Data Model Records
Load the Tivoli Information Management for z/OS data model records from the
SBLMRCDS data set library. Use batch job BLHRCDSJ in the SBLMSAMP sample library
to load these records. The Tivoli Information Management for z/OS Planning and
Installation Guide and Reference contains additional information about loading data model
records.

The BLHRCDSJ job unflattens the data model records and adds them to the Tivoli
Information Management for z/OS read/write database specified by the SESS parameter.
Before you can run BLHRCDSJ, edit the JCL, using the instructions in the JCL comments.

These are the list members used to load the data model records required for the Tivoli
Service Desk Bridge:

List Members

BLHLRBAS
The list containing the people record attributes. If you can display record
BLH&DATE, then the records in BLHLRBAS have already been loaded into
your database. You will need to load the records in this list if they have not
already been loaded.

BLMLRDSK
The list containing the problem record attributes. If you can display record
BLM&REQN, then the records in BLMLRDSK have already been loaded.
You will need to load the records in this list if they have not already been
loaded.

BLHLRBRG
The list containing other attributes and views to enable the Tivoli Service
Desk Bridge support. You must load the records in the BLHLRBRG list.

Customizing Data Model Records
The BLHPROB and BLHCHANG data views are provided as sample data views for
problem and change records. Use these data views as is or as models if you choose to create
views for problem and change records. If you have created a problem record data view that
defines your problem application, you can use this with the Tivoli Service Desk Bridge only
if you add the Tivoli-supplied data attribute records listed below to your problem record data
view. Likewise, if you have created a change record data view that defines your change
application, use this with the Tivoli Service Desk Bridge only if you add the Tivoli-supplied
data attribute records listed below to your change record data view. If you do not have a
problem record data view (and the associated data attributes for your problem application) or
a change record data view (and the associated data attributes for your change application),
use the TSX BLGTDMBL to build the required data attributes and views. See the Tivoli
Information Management for z/OS Panel Modification Facility Guide for more information
about running BLGTDMBL.

Data Attribute Records
In order to use the Tivoli Service Desk Bridge, add the following data attribute records to
your problem record data view (these data attribute records are in addition to BLH&DATE,
BLH&TIME, BLH&CLAE, BLH&DATM, BLH&TIMM, and BLH&USER, which should
already be part of your problem record data view):

BLH&NFID
Notify User ID

Information Management Setup

322 Version 7.1

BLH&OSTE
Owning Site ID

BLH&PMID
TSD Record ID

BLH&RDAT
Date Last Refreshed

BLH&RTIM
Time Last Refreshed

BLM&002C
Management Application Entry S-word (required for Create and Inquiry)

BLH&14FF
TSD Bridge Flag

BLM&URN0
Problem ID

Change Record Data View
In order to use the Tivoli Service Desk Bridge, add the following data attribute records to
your change record data view (these data attribute records are in addition to BLH&DATE,
BLH&TIME, BLH&CLAE, BLH&DATM, BLH&TIMM, and BLH&USER, which should
already be part of your change record data view):

BLH&PMID
TSD Record ID

BLM&002C
Management Application Entry S-word (required for Create and Inquiry)

Other Supplied Data View Records
The following data view records are supplied for use with the Tivoli Service Desk Bridge
and should not be changed:

BLHPEOPL
Tivoli Service Desk Bridge People Record View

BLHPLRPY
Tivoli Service Desk Bridge People Request Reply View

BLHPPRPY
Tivoli Service Desk Bridge Problem Request Reply View

Updating Panel BLG0S010
The Tivoli-supplied BLG0S010 contains 11. TSD Bridge display. as a selection. If you use
the Tivoli-supplied BLG0S010, you will not need to perform this modification. However, if
you have customized BLG0S010 or you use a different Problem Summary Display panel,
you will need to update your modified panel to include a selection for using the Tivoli
Service Desk Bridge. This selection will go to the Tivoli Service Desk Bridge Display panel
BLG0L700. Panel BLG0L700 provides methods that enable you to resume ownership of a
problem record that was transferred to TSD, refresh a problem record that was transferred to
TSD with current TSD information, or send the solution for a problem record to TSD.
Following are the steps to add that selection.

Information Management Setup

323Guide to Integrating with Tivoli Applications

27.
Tivo

li
S

ervice
D

esk
B

rid
g

e
S

etu
p

From BLG0EN20, the Primary Options Menu, type 9 and press Enter to begin the PMF
process.

BLG0EN20 --- PRIMARY OPTIONS MENU --- APPLICATION: MANAGEMENT

OPTIONS:

1. OVERVIEW.......Display general information and product enhancements.
2. PROFILE........Display or alter invocation or session defaults.
3. APPLICATION....Change application, list available applications.
4. CLASS..........Change current class, list available classes.
5. ENTRY..........Create a record.
6. INQUIRY........Search for records.
7. UTILITY........Copy, display, print, delete, and update records.
8. GLOSSARY.......Display a list of searchable words in the database.
9. PMF............Modify or create panels.

Select an option, enter a command, or type QUIT to exit.

Tivoli Information Management for z/OS Version 7 Release 1
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

===> 9

Type 1 and press Enter to update the panel.

+ BLM8C000 -------- PANEL MODIFICATION FACILITY -------------- PMF-+
| |
| OPTIONS: |
| |
| 1. PANEL UPDATE.....Display, modify, or create panels. |
| 2. DICTIONARY.......Display or modify dictionary data. |
| 3. PANEL COPY.......Create new panel via panel copy. |
| 4. PANEL DELETE.....Delete existing panel. |
| 5. REPORTS..........Panels, prefix, and other listings. |
| 6. PANEL SET........Create panels to be used for inquiry, |
| creation, update, etc. of records. |
| 7. PANEL LIST.......Display panel data set information. |
| |
+------------------------ SELECT OPTION ---------------------------+

===> 1

Type 1,blg0s010 on the control line and press Enter twice.

Information Management Setup

324 Version 7.1

BLM8CU00 PANEL NAME ENTRY UPDATE

Identify panel to be updated; cursor placement or input line entry allowed.

1. Panel name.................<R> ________
2. Data set definition label..... ________

To enter the panel update dialog, press Enter without field modifications.

===> 1,blg0s010

Type 1 and press Enter to modify the externals, the visible text of BLG0S010.

+ BLM8CU70 --------- DATA ENTRY PANEL UPDATE ----------------- PMF-+
| |
| OPTIONS: |
| |
| 1. EXTERNALS...Modify visible text or control data. |
| 2. COMMON......Modify help and service information. |
| 3. NULL REPLY..Modify null reply control information. |
| 4. SUMMARY.....Display summary of control information. |
| 5. TEST........Display or process panel in test mode. |
| 6. FILE........Panel update is complete, store panel. |
| |
| |
| |
+------------------------ SELECT OPTION ---------------------------+

===> 1

On BLG0S010, the Problem Summary Display, add a selection for TSD Bridge display. In
this example, do the following:

1. Type field protect on the command line, but do not yet press Enter.

2. Type 11. TSD Bridge display. (or a number and text of your choosing) in the right
column under 10. Record utilities.

3. Position the cursor immediately to the left of the 11. TSD Bridge display. field.
↓
11. TSD Bridge display.

4. Press Enter.

Information Management Setup

325Guide to Integrating with Tivoli Applications

27.
Tivo

li
S

ervice
D

esk
B

rid
g

e
S

etu
p

BLG0S010 PROBLEM SUMMARY DISPLAY PROBLEM: ________

Reported by............ _______________ Problem type.........<H> ________
Assignee name.......<H> _______________ Problem status.......<H> _______
Tracked by..........>H> _______________ Current phase........<H> ________
Network name........... ________ Current priority.....<H> __
System name............ ________ Owning priv. class...... ________
Program name........... ________ Entry priv. class....... ________
Device name............ ________ Date entered............ __________
Key item affected...... ________ Time entered............ _____
Cause code............. ________ Date last altered....<H> __________
Date closed............ __________ Time last altered....<H> _____
Vendor status.......<H> ________ User last altered....<H> ________
Description............ ___

Select one of the following, or type END or CANCEL to leave this panel.
1. Reporter display. 6. Detail display.
2. Status display. 7. Supplemental data display.
3. Close display. 8. Interested privilege classes.
4. History display. 9. Synopsis display.
5. Freeform text and notes. 10. Record utilities.

11. TSD Bridge display.

===> field protect

After you press Enter, you will receive a message indicating that an attribute byte was saved
for this field. Next, add control information for the 11. TSD Bridge display. field.

1. Type control on the command line, but do not yet press Enter.

2. Again position the cursor immediately to the left of the 11. TSD Bridge display. field.
↓
11. TSD Bridge display.

3. Press Enter.

BLG0S010 PROBLEM SUMMARY DISPLAY PROBLEM: ________

Reported by............ _______________ Problem type.........<H> _______
Assignee name.......<H> _______________ Problem status.......<H> _______
Tracked by..........<H> _______________ Current phase........<H> ________
Network name........... ________ Current priority.....<H> __
System name............ ________ Owning priv. class...... ________
Program name........... ________ Entry priv. class....... ________
Device name............ ________ Date entered............ __________
Key item affected...... ________ Time entered............ _____
Cause code............. ________ Date last altered....<H> __________
Date closed............ __________ Time last altered....<H> _____
Vendor status.......<H> ________ User last altered....<H> ________
Description............ ___

Select one of the following, or type END or CANCEL to leave this panel.
1. Reporter display. 6. Detail display.
2. Status display. 7. Supplemental data display.
3. Close display. 8. Interested privilege classes.
4. History display. 9. Synopsis display.
5. Freeform text and notes. 10. Record utilities.

11. TSD Bridge display.
BLM04052I An attribute byte was saved in the logical screen for this panel.
===> control

The Field Control Summary panel is displayed. Type 1 and press Enter to update Panel flow
processing.

Information Management Setup

326 Version 7.1

BLM8CU73 FIELD CONTROL SUMMARY PANEL: BLG0S010

FIELD: 11. TSD Bridge display.

Dialog begin.......... NO Structured word index..... 0B2B
Dialog end............ NO Structured word........... XISDEFAULT
Target panel.......... BLG1M120 Prefix word index......... ____
Branch and link....... YES Prefix word............... ______
Required field........ NO Field type................ ENTRY
Authorization code.... 0000 Program exit symbol....... ________

Select one of the choices, or type END to save or CANCEL to discard changes.

1. Panel flow processing.
2. Data collection processing.

BLM04053I A control line was not located. One is being created.
===> 1

Type 3,BLG0L700,4,no,5,selection,6,yes and press Enter to set the Target panel to
BLG0L700, Branch and link to NO, Field type to Selection, and Dialog begin to YES.

BLM8CU7A PANEL FLOW PROCESSING PANEL: BLG0S010

Enter panel flow control data; cursor placement or input line entry allowed.

FIELD: 11. TSD Bridge display.

1. Authorization code....... 0000
2. Response required........ NO_
3. Target panel............. BLG1M120
4. Branch and link.......... YES
5. Field type............... ENTRY
6. Dialog begin............. NO
7. Dialog end............... NO_
8. Override dialog target... NO_
9. Target is data entry..... NO_
10. Force SRC generate end... NO_
11. Program exit symbol...... ________

When you finish, type END to save or CANCEL to discard any changes.

===> 3,blg0l700,4,no,5,selection,6,yes

Type end and press Enter to save your changes.

Information Management Setup

327Guide to Integrating with Tivoli Applications

27.
Tivo

li
S

ervice
D

esk
B

rid
g

e
S

etu
p

BLM8CU7A PANEL FLOW PROCESSING PANEL: BLG0S010

Enter panel flow control data; cursor placement or input line entry allowed.

FIELD: 11. TSD Bridge display.

1. Authorization code....... 0000
2. Response required........ NO_
3. Target panel............. BLG0L700
4. Branch and link.......... NO
5. Field type............... SELECTION
6. Dialog begin............. YES
7. Dialog end............... NO_
8. Override dialog target... NO_
9. Target is data entry..... NO_
10. Force SRC generate end... NO_
11. Program exit symbol...... ________

When you finish, type END to save or CANCEL to discard any changes.

===> end

From the Field Control Summary, type 2 and press Enter to update Data collection
processing.

BLM8CU73 FIELD CONTROL SUMMARY PANEL: BLG0S010

FIELD: 11. TSD Bridge display.

Dialog begin.......... YES Structured word index..... 0B2B
Dialog end............ NO Structured word........... XISDEFAULT
Target panel.......... BLG0L700 Prefix word index......... ____
Branch and link....... NO_ Prefix word............... ______
Required field........ NO Field type................ SELECTION
Authorization code.... 0000 Program exit symbol....... ________

Select one of the choices, or type END to save or CANCEL to discard changes.

1. Panel flow processing.
2. Data collection processing.

===> 2

Type 1,000a,3,no,4,no and press Enter to set the Structured word index to 000A, set the
Replace previous reply to NO, and set the Use s-word for display to NO.

Information Management Setup

328 Version 7.1

BLM8CU7B DATA COLLECTION PROCESSING PANEL: SWB0S010

Enter collection control data; cursor placement or input line entry allowed.

FIELD: 11. TSD Bridge display.

1. Structured word index.... 0B2B Structured word.. XISDEFAULT
2. Prefix index............. ____ Word acronym..... _____________
3. Replace previous reply... YES Prefix word...... ______
4. Use s-word for display... YES
5. Field justification...... _____
6. Suppress character....... _
7. Cognize response......... NO_
8. Processing order_______

When you finish, type END to save or CANCEL to discard any changes.

===> 1,000a,3,no,4,no

Type end,end and press Enter to save the changes and return to the externals for
BLG0S010.

BLM8CU7B DATA COLLECTION PROCESSING PANEL: SWB0S010

Enter collection control data; cursor placement or input line entry allowed.

FIELD: 11. TSD Bridge display.

1. Structured word index.... 000A Structured word.. __________
2. Prefix index............. ____ Word acronym..... CODE - BRANCH
3. Replace previous reply... NO_ Prefix word...... ______
4. Use s-word for display... NO_
5. Field justification...... _____
6. Suppress character....... _
7. Cognize response......... NO_
8. Processing order_______

When you finish, type END to save or CANCEL to discard any changes.

===> end,end

If panel BLG0S010 now appears satisfactory, type end and press Enter to return to the Data
Entry Panel Update panel.

Information Management Setup

329Guide to Integrating with Tivoli Applications

|

|

27.
Tivo

li
S

ervice
D

esk
B

rid
g

e
S

etu
p

BLG0S010 PROBLEM SUMMARY DISPLAY PROBLEM: ________

Reported by............ _______________ Problem type.........<H> ________
Assignee name.......<H> _______________ Problem status.......<H> _______
Tracked by..........<H> _______________ Current phase........<H> ________
Network name........... ________ Current priority.....<H> __
System name............ ________ Owning priv. class...... ________
Program name........... ________ Entry priv. class....... ________
Device name............ ________ Date entered............ __________
Key item affected...... ________ Time entered............ _____
Cause code............. ________ Date last altered....<H> __________
Date closed............ __________ Time last altered....<H> _____
Vendor status.......<H> ________ User last altered....<H> ________
Description............ ___

Select one of the following, or type END or CANCEL to leave this panel.
1. Reporter display. 6. Detail display.
2. Status display. 7. Supplemental data display.
3. Close display. 8. Interested privilege classes.
4. History display. 9. Synopsis display.
5. Freeform text and notes. 10. Record utilities.

11. TSD Bridge display.

===> end

Type 6 and press Enter to file the modified panel into your write panel data set.

+ BLM8CU70 --------- DATA ENTRY PANEL UPDATE ----------------- PMF-+
| |
| OPTIONS: |
| |
| 1. EXTERNALS...Modify visible text or control data. |
| 2. COMMON......Modify help and service information. |
| 3. NULL REPLY..Modify null reply control information. |
| 4. SUMMARY.....Display summary of control information. |
| 5. TEST........Display or process panel in test mode. |
| 6. FILE........Panel update is complete, store panel. |
| |
| |
| |
+------------------------ SELECT OPTION ---------------------------+

===> 6

You will receive a message confirming that the panel was filed in the write panel data set.
Copy the panel to a read panel data set when you are ready for those changes to go into
effect.

Information Management Setup

330 Version 7.1

BLM8CU00 PANEL NAME ENTRY UPDATE

Identify panel to be updated; cursor placement or input line entry allowed.

1. Panel name.................<R> BLG0S010
2. Data set definition label..... ________

To enter the panel update dialog, press Enter without field modifications.

BLM04015I Panel BLG0S010 was written to the WRITE panel data set.
===>

Updating Panel BLG0E090
The Tivoli-supplied BLG0E090 contains 7. TSD Bridge data. as a selection. If you use the
Tivoli-supplied BLG0E090, you will not need to perform this modification. However, if you
have customized BLG0E090 or you use a different Problem Inquiry Summary panel, you
will need to update your modified panel to include a selection for TSD Bridge data. This
selection will go to the Tivoli Service Desk Bridge Data Inquiry panel BLG0E790. On
BLG0E790 you can enter search criteria for Tivoli Service Desk Bridge data. Following are
the steps to add that selection.

From BLG0EN20, the Primary Options Menu, type 9 and press Enter to begin the PMF
process.

BLG0EN20 --- PRIMARY OPTIONS MENU --- APPLICATION: MANAGEMENT

OPTIONS:

1. OVERVIEW.......Display general information and product enhancements.
2. PROFILE........Display or alter invocation or session defaults.
3. APPLICATION....Change application, list available applications.
4. CLASS..........Change current class, list available classes.
5. ENTRY..........Create a record.
6. INQUIRY........Search for records.
7. UTILITY........Copy, display, print, delete, and update records.
8. GLOSSARY.......Display a list of searchable words in the database.
9. PMF............Modify or create panels.

Select an option, enter a command, or type QUIT to exit.

Tivoli Information Management for z/OS Version 7 Release 1
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

===> 9

Type 1 and press Enter to update the panel.

Information Management Setup

331Guide to Integrating with Tivoli Applications

27.
Tivo

li
S

ervice
D

esk
B

rid
g

e
S

etu
p

+ BLM8C000 -------- PANEL MODIFICATION FACILITY -------------- PMF-+
| |
| OPTIONS: |
| |
| 1. PANEL UPDATE.....Display, modify, or create panels. |
| 2. DICTIONARY.......Display or modify dictionary data. |
| 3. PANEL COPY.......Create new panel via panel copy. |
| 4. PANEL DELETE.....Delete existing panel. |
| 5. REPORTS..........Panels, prefix, and other listings. |
| 6. PANEL SET........Create panels to be used for inquiry, |
| creation, update, etc. of records. |
| 7. PANEL LIST.......Display panel data set information. |
| |
+------------------------ SELECT OPTION ---------------------------+

===> 1

Type 1,blg0e090 on the control line and press Enter twice.

BLM8CU00 PANEL NAME ENTRY UPDATE

Identify panel to be updated; cursor placement or input line entry allowed.

1. Panel name.................<R> ________
2. Data set definition label..... ________

To enter the panel update dialog, press Enter without field modifications.

===> 1,blg0e090

Type 1 and press Enter to modify the externals, the visible text of BLG0E090.

Information Management Setup

332 Version 7.1

+ BLM8CU70 --------- DATA ENTRY PANEL UPDATE ----------------- PMF-+
| |
| OPTIONS: |
| |
| 1. EXTERNALS...Modify visible text or control data. |
| 2. COMMON......Modify help and service information. |
| 3. NULL REPLY..Modify null reply control information. |
| 4. SUMMARY.....Display summary of control information. |
| 5. TEST........Display or process panel in test mode. |
| 6. FILE........Panel update is complete, store panel. |
| |
| |
| |
+------------------------ SELECT OPTION ---------------------------+

===> 1

On BLG0E090, the Problem Inquiry Summary, add a selection for TSD Bridge data. (or
similar words). In this example, do the following:

1. Type field protect on the command line, but do not yet press Enter.

2. Type 7. TSD Bridge data. (or a number and text of your choosing) in the right column
under 6. Supplemental data.

3. Position the cursor immediately to the left of the 7. TSD Bridge data. field.
↓
7. TSD Bridge data.

4. Press Enter.

BLG0E090 PROBLEM INQUIRY SUMMARY

Problem status......... ________ Assignee name...... _______________
Reported by............ _______________ Assignee dept...... ___________
Reporter dept.......... ___________ Target date........ __________
Date occurred.......... __________ Resolved by........ _______________
Time occurred.......... _____ Resolver dept...... ___________
Location code.......... ________ Cause code......... ________
Network name........... ________ Original problem... ________
System name............ ________ Cause change number ________
Program name........... ________ Total time......... _____
Device name............ ________ Date closed........ __________
Key item affected...... ________

Description............ ___

Select one of the following to add information to your search argument.
1. Reporter data. 6. Supplemental data.
2. Status data. 7. TSD Bridge data.
3. Close data. 8. Control data.
4. Symptom data. 9. Search.
5. Resolution data. 10. Text data.

===> field protect

After you press Enter, you will receive a message indicating that an attribute byte was saved
for this field. Next, add control information for the 7. TSD Bridge data. field.

1. Type control on the command line, but do not yet press Enter.

2. Again position the cursor immediately to the left of the 7. TSD Bridge data. field.

Information Management Setup

333Guide to Integrating with Tivoli Applications

|

27.
Tivo

li
S

ervice
D

esk
B

rid
g

e
S

etu
p

↓
7. TSD Bridge display.

3. Press Enter.

BLG0E090 PROBLEM INQUIRY SUMMARY

Problem status......... ________ Assignee name...... _______________
Reported by............ _______________ Assignee dept...... ___________
Reporter dept.......... ___________ Target date........ __________
Date occurred.......... __________ Resolved by........ _______________
Time occurred.......... _____ Resolver dept...... ___________
Location code.......... ________ Cause code......... ________
Network name........... ________ Original problem... ________
System name............ ________ Cause change number ________
Program name........... ________ Total time......... _____
Device name............ ________ Date closed........ __________
Key item affected...... ________

Description............ ___

Select one of the following to add information to your search argument.
1. Reporter data. 6. Supplemental data.
2. Status data. 7. TSD Bridge data.
3. Close data. 8. Control data.
4. Symptom data. 9. Search.
5. Resolution data. 10. Text data.

BLM04025I An attribute byte was saved in the logical screen for this panel.
===> control

The Field Control Summary panel is displayed. Type 1 and press Enter to update Panel flow
processing.

BLM8CU73 FIELD CONTROL SUMMARY PANEL: BLG0E090

FIELD: 7. TSD Bridge data.

Dialog begin.......... NO Structured word index..... 0B2B
Dialog end............ NO Structured word........... XISDEFAULT
Target panel.......... BLG1M120 Prefix word index......... ____
Branch and link....... YES Prefix word............... ______
Required field........ NO Field type................ ENTRY
Authorization code.... 0000 Program exit symbol....... ________

Select one of the choices, or type END to save or CANCEL to discard changes.

1. Panel flow processing.
2. Data collection processing.

BLM04053I A control line was not located. One is being created.
===> 1

Type 3,BLG0E790,4,no,5,selection,6,yes and press Enter to set the Target panel to
BLG0E790, Branch and link to NO, Field type to Selection, and Dialog begin to YES.

Information Management Setup

334 Version 7.1

|

BLM8CU7A PANEL FLOW PROCESSING PANEL: BLG0E090

Enter panel flow control data; cursor placement or input line entry allowed.

FIELD: 7. TSD Bridge data.

1. Authorization code....... 0000
2. Response required........ NO_
3. Target panel............. BLG1M120
4. Branch and link.......... YES
5. Field type............... ENTRY
6. Dialog begin............. NO
7. Dialog end............... NO_
8. Override dialog target... NO_
9. Target is data entry..... NO_
10. Force SRC generate end... NO_
11. Program exit symbol...... ________

When you finish, type END to save or CANCEL to discard any changes.

===> 3,blg0E790,4,no,5,selection,6,yes

Type end and press Enter to save your changes.

BLM8CU7A PANEL FLOW PROCESSING PANEL: BLG0E090

Enter panel flow control data; cursor placement or input line entry allowed.

FIELD: 7. TSD Bridge data.

1. Authorization code....... 0000
2. Response required........ NO_
3. Target panel............. BLG0E790
4. Branch and link.......... NO
5. Field type............... SELECTION
6. Dialog begin............. YES
7. Dialog end............... NO_
8. Override dialog target... NO_
9. Target is data entry..... NO_
10. Force SRC generate end... NO_
11. Program exit symbol...... ________

When you finish, type END to save or CANCEL to discard any changes.

===> end

On the Field Control Summary, type 2 and press Enter to update Data collection processing.

Information Management Setup

335Guide to Integrating with Tivoli Applications

27.
Tivo

li
S

ervice
D

esk
B

rid
g

e
S

etu
p

BLM8CU73 FIELD CONTROL SUMMARY PANEL: BLG0E090

FIELD: 7. TSD Bridge data.

Dialog begin.......... YES Structured word index..... 0B2B
Dialog end............ NO Structured word........... XISDEFAULT
Target panel.......... BLG0E790 Prefix word index......... ____
Branch and link....... NO_ Prefix word............... ______
Required field........ NO Field type................ SELECTION
Authorization code.... 0000 Program exit symbol....... ________

Select one of the choices, or type END to save or CANCEL to discard changes.

1. Panel flow processing.
2. Data collection processing.

===> 2

Type 1,000a,3,no,4,no and press Enter to set the Structured word index to 000A, set the
Replace previous reply to NO, and set the Use s-word for display to NO.

BLM8CU7B DATA COLLECTION PROCESSING PANEL: BLG0E090

Enter collection control data; cursor placement or input line entry allowed.

FIELD: 7. TSD Bridge data.

1. Structured word index.... 0B2B Structured word.. XISDEFAULT
2. Prefix index............. ____ Word acronym..... _____________
3. Replace previous reply... YES Prefix word...... ______
4. Use s-word for display... YES
5. Field justification...... _____
6. Suppress character....... _
7. Cognize response......... NO_
8. Processing order_______

When you finish, type END to save or CANCEL to discard any changes.

===> 1,000a,3,no,4,no

Type end,end and press Enter to save the changes and return to the externals for
BLG0E090.

Information Management Setup

336 Version 7.1

|

BLM8CU7B DATA COLLECTION PROCESSING PANEL: BLG0E090

Enter collection control data; cursor placement or input line entry allowed.

FIELD: 7. TSD Bridge data.

1. Structured word index.... 000A Structured word.. __________
2. Prefix index............. ____ Word acronym..... CODE - BRANCH
3. Replace previous reply... NO_ Prefix word...... ______
4. Use s-word for display... NO_
5. Field justification...... _____
6. Suppress character....... _
7. Cognize response......... NO_
8. Processing order_______

When you finish, type END to save or CANCEL to discard any changes.

===> end,end

If panel BLG0E090 now appears satisfactory, type end and press Enter.

BLG0E090 PROBLEM INQUIRY SUMMARY

Problem status......... ________ Assignee name...... _______________
Reported by............ _______________ Assignee dept...... ___________
Reporter dept.......... ___________ Target date........ __________
Date occurred.......... __________ Resolved by........ _______________
Time occurred.......... _____ Resolver dept...... ___________
Location code.......... ________ Cause code......... ________
Network name........... ________ Original problem... ________
System name............ ________ Cause change number ________
Program name........... ________ Total time......... _____
Device name............ ________ Date closed........ __________
Key item affected...... ________

Description............ ___

Select one of the following to add information to your search argument.
1. Reporter data. 6. Supplemental data.
2. Status data. 7. TSD Bridge data.
3. Close data. 8. Control data.
4. Symptom data. 9. Search.
5. Resolution data. 10. Text data.

===> end

Type 6 and press Enter to file the modified panel into your write panel data set.

Information Management Setup

337Guide to Integrating with Tivoli Applications

|

|

27.
Tivo

li
S

ervice
D

esk
B

rid
g

e
S

etu
p

+ BLM8CU70 --------- DATA ENTRY PANEL UPDATE ----------------- PMF-+
| |
| OPTIONS: |
| |
| 1. EXTERNALS...Modify visible text or control data. |
| 2. COMMON......Modify help and service information. |
| 3. NULL REPLY..Modify null reply control information. |
| 4. SUMMARY.....Display summary of control information. |
| 5. TEST........Display or process panel in test mode. |
| 6. FILE........Panel update is complete, store panel. |
| |
| |
| |
+------------------------ SELECT OPTION ---------------------------+

===> 6

You will receive a message confirming that the panel was filed in the write panel data set.
Copy the panel to a read panel data set when you are ready for those changes to go into
effect.

BLM8CU00 PANEL NAME ENTRY UPDATE

Identify panel to be updated; cursor placement or input line entry allowed.

1. Panel name.................<R> BLG0E090
2. Data set definition label..... ________

To enter the panel update dialog, press Enter without field modifications.

BLM04015I Panel BLG0E090 was written to the WRITE panel data set.
===>

Updating Panel BLG1A111
BLG1A111 is the panel that is invoked when a problem record is filed. If you have not
previously modified panel BLG1A111, use the Panel Modification Facility (PMF) to copy
BLG1A11Z from the base panel data set into the read panel data set and rename it to
BLG1A111. A process for doing this is described in “Copying Panel BLG1A11Z” on
page 345. If you have previously modified panel BLG1A111 for other purposes, you should
use PMF to change it to invoke the TSX BLGTSDPT. Following is a process for doing that.

From BLG0EN20, the Primary Options Menu, type 9 and press Enter to begin the PMF
process.

Information Management Setup

338 Version 7.1

BLG0EN20 --- PRIMARY OPTIONS MENU --- APPLICATION: MANAGEMENT

OPTIONS:

1. OVERVIEW.......Display general information and product enhancements.
2. PROFILE........Display or alter invocation or session defaults.
3. APPLICATION....Change application, list available applications.
4. CLASS..........Change current class, list available classes.
5. ENTRY..........Create a record.
6. INQUIRY........Search for records.
7. UTILITY........Copy, display, print, delete, and update records.
8. GLOSSARY.......Display a list of searchable words in the database.
9. PMF............Modify or create panels.

Select an option, enter a command, or type QUIT to exit.

Tivoli Information Management for z/OS Version 7 Release 1
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

===> 9

Type 1 and press Enter to update the panel.

+ BLM8C000 -------- PANEL MODIFICATION FACILITY -------------- PMF-+
| |
| OPTIONS: |
| |
| 1. PANEL UPDATE.....Display, modify, or create panels. |
| 2. DICTIONARY.......Display or modify dictionary data. |
| 3. PANEL COPY.......Create new panel via panel copy. |
| 4. PANEL DELETE.....Delete existing panel. |
| 5. REPORTS..........Panels, prefix, and other listings. |
| 6. PANEL SET........Create panels to be used for inquiry, |
| creation, update, etc. of records. |
| 7. PANEL LIST.......Display panel data set information. |
| |
+------------------------ SELECT OPTION ---------------------------+

===> 1

Type 1,blg1a111 and press Enter twice.

Information Management Setup

339Guide to Integrating with Tivoli Applications

27.
Tivo

li
S

ervice
D

esk
B

rid
g

e
S

etu
p

BLM8CU00 PANEL NAME ENTRY UPDATE

Identify panel to be updated; cursor placement or input line entry allowed.

1. Panel name.................<R> ________
2. Data set definition label..... ________

To enter the panel update dialog, press Enter without field modifications.

===> 1,blg1a111

Type 1,control and press Enter to go to the Function Line Summary for this panel.

+ BLM8CU60 ------------ CONTROL PANEL UPDATE ----------------- PMF-+
| |
| OPTIONS: |
| |
| 1. ABSTRACT....Modify description of this control panel. |
| 2. COMMON......Modify common panel control information. |
| |
| 4. SUMMARY.....Display summary of control information. |
| 5. TEST........Process panel in test mode. |
| 6. FILE........Panel update is complete, store panel. |
| |
| |
| |
+------------------------- SELECT OPTION --------------------------+

===> 1,control

Type i on the FLOW line that calls program exit BLG01214 to insert a line after it. Then
press Enter. You may need to scroll down to find this line.

Information Management Setup

340 Version 7.1

BLM1TSCU FUNCTION LINE SUMMARY LINE 14 OF 17

FUNC FUNC S-WORD PREFIX MULT APPLY AUTH TRUE FALSE MESSAGE PROGRAM
TYPE CODE INDEX INDEX B E NOT CODE TARGET TARGET PANEL EXIT/TSP

'' TEST 0000 0D90 0000 Y N N 0000
'' ADD 0000 0D90 0444 N Y N 0000
i' FLOW 000B 0000 0000 N N N 0000 BLG01214
'' FLOW 0004 0000 0000 N N N 0000 BLG1A115
** **** **** **** **** * * * **** ******** ******** ******** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN, UP, LEFT, or RIGHT to scroll the panel, or type END to exit.

===>

Type 1 and press Enter to specify Control flow processing.

BLM8CU63 CONTROL LINE SUMMARY PANEL: BLG1A111

Control line type....... FLOW S-word index............. ____
Function code index..... 000A Structured word.......... __________
True target panel....... BLG1M118 Prefix word index........ ____
False target panel...... ________ Prefix word.............. ______
Begin multiple test..... NO Validation............... __________
End multiple test....... NO Program exit/TSP name.... ________
Authorization code...... 0000 Apply not logic.......... NO

Select one of the choices, or type END to save or CANCEL to discard changes.

1. Control flow processing.
2. Data collection processing.
3. Test data processing.

===> 1

Type 2,001b,5,,8,blgtsdpt and press Enter to set the Function code index to 001B, clear the
True target panel field, and set the Program exit/TSP name to BLGTSDPT.

Information Management Setup

341Guide to Integrating with Tivoli Applications

27.
Tivo

li
S

ervice
D

esk
B

rid
g

e
S

etu
p

BLM8CU6A CONTROL FLOW PROCESSING PANEL: BLG1A111

Enter control flow information; cursor placement or input line entry allowed.

1. Control line type........ FLOW
2. Function code index...... 000A Function acronym... __________________
3. Dialog end............... NO_
4. Override dialog target... ___
5. True target panel........ BLG1M118
6. False target panel....... ________
7. Authorization code....... 0000
8. Program exit/TSP name.... ________
9. Message panel............ ________

When you finish, type END to save or CANCEL to discard any changes.

===> 2,001b,5,,8,blgtsdpt

Type end and press Enter to return to the Control Line Summary panel.

BLM8CU6A CONTROL FLOW PROCESSING PANEL: BLG1A111

Enter control flow information; cursor placement or input line entry allowed.

1. Control line type........ FLOW
2. Function code index...... 001B Function acronym... __________________
3. Dialog end............... NO_
4. Override dialog target... ___
5. True target panel........ ________
6. False target panel....... ________
7. Authorization code....... 0000
8. Program exit/TSP name.... BLGTSDPT
9. Message panel............ ________

When you finish, type END to save or CANCEL to discard any changes.

===> end

Type 2 and press Enter to modify the Data collection processing.

Information Management Setup

342 Version 7.1

BLM8CU63 CONTROL LINE SUMMARY PANEL: BLG1A111

Control line type....... FLOW S-word index............. ____
Function code index..... 001B Structured word.......... __________
True target panel....... ________ Prefix word index........ ____
False target panel...... ________ Prefix word.............. ______
Begin multiple test..... NO Validation............... __________
End multiple test....... NO Program exit/TSP name.... BLGTSDPT
Authorization code...... 0000 Apply not logic.......... NO

Select one of the choices, or type END to save or CANCEL to discard changes.

1. Control flow processing.
2. Data collection processing.
3. Test data processing.

===> 2

Type 7,no and press Enter to set Replace previous reply to NO.

BLM8CU6B DATA COLLECTION PROCESSING PANEL: BLM1A111

Enter 'add word' control data; cursor placement or input line entry allowed.

1. Structured word index.... ____ Structured word.... __________
2. Prefix index............. ____ Word acronym....... _________________
3. Journal reply............ NO_ Prefix word........ ______
4. Journal sequence......... _____ Validation......... _________________
5. Cognize response......... NO_
6. Cognize only p-word...... NO_
7. Replace previous reply... YES
8. Data is a date........... ___
9. Cognize in mixed case?... NO_

When you finish, type END to save or CANCEL to discard any changes.

===> 7,no

Type end and press Enter.

BLM8CU6B DATA COLLECTION PROCESSING PANEL: BLM1A111

Enter 'add word' control data; cursor placement or input line entry allowed.

1. Structured word index.... ____ Structured word.... __________
2. Prefix index............. ____ Word acronym....... _________________
3. Journal reply............ NO_ Prefix word........ ______
4. Journal sequence......... _____ Validation......... _________________
5. Cognize response......... NO_
6. Cognize only p-word...... NO_
7. Replace previous reply... NO
8. Data is a date........... ___
9. Cognize in mixed case?... NO_

When you finish, type END to save or CANCEL to discard any changes.

===> end

Information Management Setup

343Guide to Integrating with Tivoli Applications

27.
Tivo

li
S

ervice
D

esk
B

rid
g

e
S

etu
p

Type end and press Enter to save the changes.

BLM8CU63 CONTROL LINE SUMMARY PANEL: BLG1A111

Control line type....... FLOW S-word index............. ____
Function code index..... 001B Structured word.......... __________
True target panel....... ________ Prefix word index........ ____
False target panel...... ________ Prefix word.............. ______
Begin multiple test..... NO Validation............... __________
End multiple test....... NO Program exit/TSP name.... BLGTSDPT
Authorization code...... 0000 Apply not logic.......... NO

Select one of the choices, or type END to save or CANCEL to discard changes.

1. Control flow processing.
2. Data collection processing.
3. Test data processing.

===> end

Type end,end and press Enter to return to the Control Panel Update panel.

BLM1TSCU FUNCTION LINE SUMMARY LINE 14 OF 18

FUNC FUNC S-WORD PREFIX MULT APPLY AUTH TRUE FALSE MESSAGE PROGRAM
TYPE CODE INDEX INDEX B E NOT CODE TARGET TARGET PANEL EXIT/TSP

'' TEST 0000 0D90 0000 Y N N 0000
'' ADD 0000 0D90 0444 N Y N 0000
'' FLOW 000B 0000 0000 N N N 0000 BLG01214
'' FLOW 001B N N N 0000 BLGTSDPT
'' FLOW 0004 0000 0000 N N N 0000 BLG1A115
** **** **** **** **** * * * **** ******** ******** ******** ********

Line Cmds: A=After C=Copy D=Delete I=Insert M=Move R=Repeat U=Update
Type DOWN, UP, LEFT, or RIGHT to scroll the panel, or type END to exit.

===> end,end

Type 6 and press Enter to file the modified panel into the write panel data set.

Information Management Setup

344 Version 7.1

+ BLM8CU60 ------------ CONTROL PANEL UPDATE ----------------- PMF-+
| |
| OPTIONS: |
| |
| 1. ABSTRACT....Modify description of this control panel. |
| 2. COMMON......Modify common panel control information. |
| |
| 4. SUMMARY.....Display summary of control information. |
| 5. TEST........Process panel in test mode. |
| 6. FILE........Panel update is complete, store panel. |
| |
| |
| |
+------------------------- SELECT OPTION --------------------------+

===> 6

You will receive a message confirming that the panel was written to the write panel data set.
Copy the panel to the read panel data set when you are ready for those changes to go into
effect.

BLM8CU00 PANEL NAME ENTRY UPDATE

Identify panel to be updated; cursor placement or input line entry allowed.

1. Panel name.................<R> BLG1A111
2. Data set definition label..... ________

To enter the panel update dialog, press Enter without field modifications.

BLM04015I Panel BLG1A111 was written to the WRITE panel data set.
===>

Copying Panel BLG1A11Z
Use this procedure only if you have not previously modified panel BLG1A111 and therefore
can replace it. Panel BLG1A11Z, as shipped from Tivoli, provides the appropriate function.
The following process describes a means of copying BLG1A11Z from the base panel data
set into the read panel data set and renaming it to BLG1A111.

From BLG0EN20, the Primary Options Menu, type 9 and press Enter.

Information Management Setup

345Guide to Integrating with Tivoli Applications

27.
Tivo

li
S

ervice
D

esk
B

rid
g

e
S

etu
p

BLG0EN20 --- PRIMARY OPTIONS MENU --- APPLICATION: MANAGEMENT

OPTIONS:

1. OVERVIEW.......Display general information and product enhancements.
2. PROFILE........Display or alter invocation or session defaults.
3. APPLICATION....Change application, list available applications.
4. CLASS..........Change current class, list available classes.
5. ENTRY..........Create a record.
6. INQUIRY........Search for records.
7. UTILITY........Copy, display, print, delete, and update records.
8. GLOSSARY.......Display a list of searchable words in the database.
9. PMF............Modify or create panels.

Select an option, enter a command, or type QUIT to exit.

Tivoli Information Management for z/OS Version 7 Release 1
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

BLG10014I Your current privilege class is MASTER.
===> 9

Type 3 and press Enter to copy a panel.

+ BLM8C000 -------- PANEL MODIFICATION FACILITY -------------- PMF-+
| |
| OPTIONS: |
| |
| 1. PANEL UPDATE.....Display, modify, or create panels. |
| 2. DICTIONARY.......Display or modify dictionary data. |
| 3. PANEL COPY.......Create new panel via panel copy. |
| 4. PANEL DELETE.....Delete existing panel. |
| 5. REPORTS..........Panels, prefix, and other listings. |
| 6. PANEL SET........Create panels to be used for inquiry, |
| creation, update, etc. of records. |
| 7. PANEL LIST.......Display panel data set information. |
| |
+------------------------ SELECT OPTION ---------------------------+

===> 3

Type 1,blg1a11z,2,base,3,blg1a111,4,read and press Enter.

Information Management Setup

346 Version 7.1

BLM8CC00 PANEL NAME ENTRY PANEL COPY

Enter panel name to be copied; cursor placement or input line entry allowed.

1. From panel name................<R> ________
2. From data set definition label.<R> ________
3. To panel name...................... ________
4. To data set definition label....... ________
5. Replace panel...................... ___

To copy the panel, press Enter without field modifications.

===> 1,blg1a11z,2,base,3,blg1a111,4,read

Press Enter again to cause panel BLG1A11Z to be copied from the BASE panel data set to
the READ panel data set. You will receive a message confirming that the panel was copied.

BLM8CC00 PANEL NAME ENTRY PANEL COPY

Enter panel name to be copied; cursor placement or input line entry allowed.

1. From panel name.................<R> BLG1A11Z
2. From data set definition label..<R> BASE____
3. To panel name...................... BLG1A111
4. To data set definition label....... READ____
5. Replace panel...................... ___

To copy the panel, press Enter without field modifications.

BLM04011I The PANEL COPY function completed successfully.
===>

Copying BLM1B04Z
Use this procedure only if you have not previously modified panel BLM1B040 and can
therefore replace it. Panel BLM1B04Z, as shipped from Tivoli, provides the appropriate
function. The following process describes a means of copying BLM1B04Z from the base
panel data set into the read panel data set and renaming it to BLM1B040.

From BLG0EN20, the Primary Options Menu, type 9 and press Enter.

Information Management Setup

347Guide to Integrating with Tivoli Applications

27.
Tivo

li
S

ervice
D

esk
B

rid
g

e
S

etu
p

BLG0EN20 --- PRIMARY OPTIONS MENU --- APPLICATION: MANAGEMENT

OPTIONS:

1. OVERVIEW.......Display general information and product enhancements.
2. PROFILE........Display or alter invocation or session defaults.
3. APPLICATION....Change application, list available applications.
4. CLASS..........Change current class, list available classes.
5. ENTRY..........Create a record.
6. INQUIRY........Search for records.
7. UTILITY........Copy, display, print, delete, and update records.
8. GLOSSARY.......Display a list of searchable words in the database.
9. PMF............Modify or create panels.

Select an option, enter a command, or type QUIT to exit.

Tivoli Information Management for z/OS Version 7 Release 1
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

BLG10014I Your current privilege class is MASTER.
===> 9

Type 3 and press Enter to copy a panel.

+ BLM8C000 -------- PANEL MODIFICATION FACILITY -------------- PMF-+
| |
| OPTIONS: |
| |
| 1. PANEL UPDATE.....Display, modify, or create panels. |
| 2. DICTIONARY.......Display or modify dictionary data. |
| 3. PANEL COPY.......Create new panel via panel copy. |
| 4. PANEL DELETE.....Delete existing panel. |
| 5. REPORTS..........Panels, prefix, and other listings. |
| 6. PANEL SET........Create panels to be used for inquiry, |
| creation, update, etc. of records. |
| 7. PANEL LIST.......Display panel data set information. |
| |
+------------------------ SELECT OPTION ---------------------------+

===> 3

Type 1,blm1b04z,2,base,3,blm1b040,4,read and press Enter.

Information Management Setup

348 Version 7.1

BLM8CC00 PANEL NAME ENTRY PANEL COPY

Enter panel name to be copied; cursor placement or input line entry allowed.

1. From panel name................<R> ________
2. From data set definition label.<R> ________
3. To panel name...................... ________
4. To data set definition label....... ________
5. Replace panel...................... ___

To copy the panel, press Enter without field modifications.

===> 1,blm1b04z,2,base,3,blm1b040,4,read

Press Enter again to cause panel BLM1B04Z to be copied from the BASE panel data set to
the READ panel data set and renamed to BLM1B040. You will receive a message
confirming that the panel was copied.

BLM8CC00 PANEL NAME ENTRY PANEL COPY

Enter panel name to be copied; cursor placement or input line entry allowed.

1. From panel name.................<R> BLM1B04Z
2. From data set definition label..<R> BASE____
3. To panel name...................... BLM1B040
4. To data set definition label....... READ____
5. Replace panel...................... ___

To copy the panel, press Enter without field modifications.

BLM04011I The PANEL COPY function completed successfully.
===>

Starting the Notification Server
The notification server is a TSX, BLGTSDNS, that is run by a batch Information
Management job; the Tivoli Information Management for z/OS Planning and Installation
Guide and Reference contains information about starting Information Management as a batch
job in a section entitled “Starting Tivoli Information Management for z/OS in Batch Mode”.
Because this is intended to be a long-running job, specify the TIME parameter of the EXEC
statement such that the batch job does not time out. The user ID that is associated with this
batch job must have authority to display people records and problem records. Before you
start the notification server, copy BLGTSDNS to your own TSX data set and update it
according to your environment. See “Setting Up the Notification Server” on page 321. Also,
specify your TSX data set in the BLGTSX DD statement in your batch job JCL. The
following is an example of a statement that starts Information Management in batch mode
and runs the notification server TSX BLGTSDNS. It uses session-parameters member
BLGSES00.

Information Management Setup

349Guide to Integrating with Tivoli Applications

27.
Tivo

li
S

ervice
D

esk
B

rid
g

e
S

etu
p

ISPSTART PGM(BLGINIT) PARM('SESS(00) TSP(BLGTSDNS) IRC(QUIT)')

Stopping the Notification Server
You can stop the notification server in several ways:

¶ By issuing an operator command to close the control RDR. Assuming that the control
RDR is named BLGTSDC1, this is an example of an operator command to close it,
where sblx1 is the name of your BLX-SP:
MODIFY sblx1,RDR,FLUSH=BLGTSDC1

¶ By running a TSX that closes the control RDR. Assuming that the control RDR is
named BLGTSDC1, this is an example of a TSX control line that closes the RDR:
CALL BLGTSX 'CLOSERRES','BLGTSDC1'

¶ By canceling the batch job that is running; you should do this only if necessary, because
if you cancel the batch job, it does not go to normal completion and both the control
RDR and the data RDR remain open.

TSD Setup
Following are the steps that must occur on TSD before using the Tivoli Service Desk
Bridge:

1. Ensure that the MRES running on Information Management was started with pre-started
API sessions (see step 1 on page 319).

2. Start the HLAPI/NT requester on the TSD application server, if you have not already
done so.

3. Set up the mapper; information about the mapping program can be found in the Tivoli
Service Desk Networking Guide. You might want to build an alias table to be used by the
mapper. A description of how to use the Table Build Utility to build an alias table can be
found in the Tivoli Information Management for z/OS Application Program Interface
Guide.

4. Set up the TSD listener program error processing. Two sample TSXs, BLGTSDER and
BLGTSDE1, that process errors originating from the listener program, are shipped by
Tivoli Information Management for z/OS in the SBLMTSX data set. These TSXs are
described in “Setting Up Error Processing for the TSD Listener Program”.

5. Start the TSD listener program; the procedure for doing this is described in the Tivoli
Service Desk Networking Guide.

6. Ensure that people records have been created for any TSD users to whom Information
Management will assign problems. The method of creating people records created for
TSD users is contained in the Tivoli Service Desk Networking Guide.

Setting Up Error Processing for the TSD Listener Program
Tivoli Information Management for z/OS provides two sample TSXs, BLGTSDER and
BLGTSDE1.

BLGTSDER is a sample TSX to process errors coming from the TSD listener program.
Decide how these errors will be handled at your installation. BLGTSDER shows how to
create a Information Management problem record and a TEC event. BLGTSDER uses the
Information Management TEC Event Adapter TSX BLGTAGSD to create TEC events. If
you want to create TEC events when errors are detected by the TSD Listener program, TSX

Information Management Setup

350 Version 7.1

BLGTAGSD must be running. See step 3 on page 397 for information on the BLGTECAD
JCL that runs the Information Management TEC Event Adapter as a batch job.

Note: If you are going to create Tivoli Enterprise Console (TEC) events to handle Tivoli
Service Desk Bridge errors, you must install Tivoli Information Management for z/OS
TEC Event Adapter.

BLGTSDER can also call BLGTSDE1, which can send an e-mail message when an error is
detected by the TSD listener program.

BLGTSDER and BLGTSDE1 are shipped in the SBLMTSX data set. Copy them to your
TSX data set and update them as appropriate. Specify your TSX data set on the BLGTSX
DD statement in your MRES procedure.

TSD Setup

351Guide to Integrating with Tivoli Applications

27.
Tivo

li
S

ervice
D

esk
B

rid
g

e
S

etu
p

TSD Setup

352 Version 7.1

Using the Tivoli Service Desk Bridge

The Tivoli Service Desk Bridge permits records to be transferred from a user on one system
to a user on another system. Additionally, when a record has been transferred from Tivoli
Information Management for z/OS to TSD, an Information Management user can request
that the record in the Information Management database be updated with current
information. An Information Management user can also request that the record be transferred
back to Information Management. The Tivoli Service Desk Bridge also provides the ability
to send the solution for a closed Information Management problem record to the TSD
knowledge database.

Note: When one of the functions described in this chapter is being used, the record in the
Information Management database is locked until the processing is complete. The
record locking is automatic, with no external interface. The TSD Bridge Cleanup
function is available to the database administrator and can be used if the record seems
to be permanently locked. The Tivoli Information Management for z/OS Program
Administration Guide and Reference contains more information about the TSD Bridge
Cleanup function.

Transferring a Problem from Information Management to TSD
Information Management people records with a Person role of TSDUSER or TSDGROUP
represent TSD users. These records are created in the Information Management database by
the TSD system. In TSDUSER and TSDGROUP people records, there is also a TSD user
ID. When a problem record is assigned to a TSD user ID that is specified in a TSDUSER or
TSDGROUP people record, ownership for the problem record is transferred to TSD.

To transfer a problem record to TSD, assign the record to a TSD help desk analyst. To
assign the record, specify the TSD user ID for a TSDUSER or TSDGROUP people record in
the Assignee name field of a problem record.

In the following scenario, Frank is a TSD user. There is a people record for Frank with a
Person role of TSDUSER and his TSD user ID is frank1. Problem record 131 is assigned to
Ashley, an Information Management user. Problem record 131 is to be transferred to Frank.
From a Tivoli Information Management for z/OS panel, type upd r 131 and press Enter to
update the record.

28

353Guide to Integrating with Tivoli Applications

28.
U

sin
g

th
e

Tivo
li

S
ervice

D
esk

B
rid

g
e

BLG0EN20 --- PRIMARY OPTIONS MENU --- APPLICATION: MANAGEMENT

OPTIONS:

1. OVERVIEW.......Display general information and product enhancements.
2. PROFILE........Display or alter invocation or session defaults.
3. APPLICATION....Change application, list available applications.
4. CLASS..........Change current class, list available classes.
5. ENTRY..........Create a record.
6. INQUIRY........Search for records.
7. UTILITY........Copy, display, print, delete, and update records.
8. GLOSSARY.......Display a list of searchable words in the database.
9. PMF............Modify or create panels.

Select an option, enter a command, or type QUIT to exit.

Tivoli Information Management for z/OS Version 7 Release 1
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

===> upd r 131

Type 2 and press Enter to specify Status data.

BLG0BU00 PROBLEM SUMMARY PROBLEM: 00000131

Reported by............ CHARLES Problem status.......... OPEN
Assignee name.......... ASHLEY Current phase........... ________
Tracked by............. _______________ Current priority........ __
Network name........... ________ Owning priv. class...... ________
System name............ ________ Entry priv. class....... MASTER
Program name........... ________ Date entered............ 05/25/1999
Device name............ ________ Time entered............ 11:07
Key item affected...... ________ Date last altered....... 05/25/1999

Description............ sample problem

Select one of the following, type END to save your changes, or type CANCEL
to discard your changes.

1. Reporter data. 6. Supplemental data.
2. Status data. 7. Synopsis data.
3. Close data. 8. Freeform text.
4. Symptom data. 9. File record.
5. Resolution data. 10. Create solution and file record.

===> 2

The Status Entry panel, BLG0B200, indicates that the record is assigned to Ashley.

To transfer the record to Frank, enter Frank’s TSD user ID frank1 into the Assignee name
by typing 1,frank1 and pressing Enter.

Transferring a Problem from Information Management to TSD

354 Version 7.1

|

BLG0B200 PROBLEM STATUS ENTRY PROBLEM: 00000131

Enter problem status data; cursor placement or input line entry allowed.

1. Assignee name...... ASHLEY________ 12. Problem status....... OPEN___
2. Assignee dept...... ___________ 13. Current phase........ ________
3. Assignee phone..... _____________ 14. Current priority..... __
4. Transfer-to class.. ________ 15. Assignment status.... ________
5. Date opened........ __________ 16. Assignment number.... ___
6. Time opened........ _____ 17. Target date.......... __________
7. Date assigned...... __________ 18. Date started......... __________
8. Time assigned...... _____ 19. Time started......... _____
9. Tracked by......... _______________ 20. Date finished........ __________
10. Tracker dept....... ___________ 21. Time finished........ _____
11. Tracker phone...... _____________ 22. Fix available........ ___

23. Bypass available..... ___
24. Repair time.......... ________
25. Response/travel time. ________
26. Customer PD time..... ________

When you finish, type END to save or CANCEL to discard any changes.

===> 1,frank1

Then type end on the command line and press Enter to return to the Problem Summary
panel.

BLG0B200 PROBLEM STATUS ENTRY PROBLEM: 00000131

Enter problem status data; cursor placement or input line entry allowed.

1. Assignee name...... frank1________ 12. Problem status....... OPEN___
2. Assignee dept...... ___________ 13. Current phase........ ________
3. Assignee phone..... _____________ 14. Current priority..... __
4. Transfer-to class.. ________ 15. Assignment status.... ________
5. Date opened........ __________ 16. Assignment number.... ___
6. Time opened........ _____ 17. Target date.......... __________
7. Date assigned...... __________ 18. Date started......... __________
8. Time assigned...... _____ 19. Time started......... _____
9. Tracked by......... _______________ 20. Date finished........ __________
10. Tracker dept....... ___________ 21. Time finished........ _____
11. Tracker phone...... _____________ 22. Fix available........ ___

23. Bypass available..... ___
24. Repair time.......... ________
25. Response/travel time. ________
26. Customer PD time..... ________

When you finish, type END to save or CANCEL to discard any changes.

===> end

Type 9 and press Enter to file the record.

Transferring a Problem from Information Management to TSD

355Guide to Integrating with Tivoli Applications

28.
U

sin
g

th
e

Tivo
li

S
ervice

D
esk

B
rid

g
e

BLG0BU00 PROBLEM SUMMARY PROBLEM: 00000131

Reported by............ CHARLES Problem status.......... OPEN
Assignee name.......... frank1 Current phase........... ________
Tracked by............. _______________ Current priority........ __
Network name........... ________ Owning priv. class...... ________
System name............ ________ Entry priv. class....... MASTER
Program name........... ________ Date entered............ 05/25/1999
Device name............ ________ Time entered............ 11:07
Key item affected...... ________ Date last altered....... 05/25/1999

Description............ sample problem

Select one of the following, type END to save your changes, or type CANCEL
to discard your changes.

1. Reporter data. 6. Supplemental data.
2. Status data. 7. Synopsis data.
3. Close data. 8. Freeform text.
4. Symptom data. 9. File record.
5. Resolution data. 10. Create solution and file record.

===> 9

When the problem record is filed in the Information Management database, the Tivoli
Service Desk Bridge determines that the Assignee name matches the TSD user ID of a TSD
user (a user whose Person role is either TSDUSER or TSDGROUP). It then initiates the
process to transfer the problem to TSD by adding notification data to the record, and, if the
notification server is active, places the notification data on the data RDR.

When the notification data is added to the problem record, the problem record is locked
from further updates. When the transfer is complete, the record continues to be locked;
however, in this instance, it is locked because ownership of the record now belongs to TSD.
An Information Management user can request that the copy of the record in the Information
Management database be refreshed with current information from TSD and can also request
that the problem be transferred back to Information Management.

Resume Ownership
As described in “Tivoli Service Desk Bridge Overview” on page 315, a problem record can
be owned by Information Management (in which case any Information Management user
with appropriate authority can access it) or it is owned by TSD (in which case only the
owner of a problem record can add information or update the record). If an Information
Management analyst wishes to update an Information Management problem record that has
been transferred to TSD, the analyst must resume ownership of the record. Because TSD
assigns the record to this user when it returns the record to Information Management, TSD
must have knowledge of the Information Management user. Therefore, the only Information
Management user empowered to resume ownership of a record owned by a TSD user must
have a Person role of TSD390&TSD. To resume ownership, the Information Management
analyst must display the record and select 1. Resume ownership from the TSD Bridge
Display panel. If the analyst is a TSD390&TSD user, a request to resume ownership of the
record will be sent to TSD.

In the following scenario, problem record 00000001 has been transferred to TSD. It is
currently assigned to Frank (who has a TSD user ID of frank1). Ashley is an Information
Management user who wants to resume ownership of the problem. Ashley’s MVS user ID is
ASHLEY. Ashley has a people record; its record ID matches her MVS user ID. The
ASHLEY people record indicates that she has a Person role of TSD390&TSD. This allows

Transferring a Problem from Information Management to TSD

356 Version 7.1

|

her to resume ownership. From a Tivoli Information Management for z/OS panel, type dis r
00000001 and press Enter to display the record.

BLG0EN20 --- PRIMARY OPTIONS MENU --- APPLICATION: MANAGEMENT

OPTIONS:

1. OVERVIEW.......Display general information and product enhancements.
2. PROFILE........Display or alter invocation or session defaults.
3. APPLICATION....Change application, list available applications.
4. CLASS..........Change current class, list available classes.
5. ENTRY..........Create a record.
6. INQUIRY........Search for records.
7. UTILITY........Copy, display, print, delete, and update records.
8. GLOSSARY.......Display a list of searchable words in the database.
9. PMF............Modify or create panels.

Select an option, enter a command, or type QUIT to exit.

Tivoli Information Management for z/OS Version 7 Release 1
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

===> dis r 00000001

Type 11 and press Enter to select TSD Bridge display.

BLG0S010 PROBLEM SUMMARY DISPLAY PROBLEM: 00000001

Reported by............ CHARLES Problem type..........<H> ________
Assignee name.......<H> frank1_________ Problem status........<H> OPEN
Tracked by..........<H> _______________ Current phase.........<H> ________
Network name........... ________ Current priority......<H> 03
System name............ ________ Owning priv. class...... ________
Program name........... ________ Entry priv. class....... MASTER
Device name............ ________ Date entered............ 05/25/1999
Key item affected...... ________ Time entered............ 13:57
Cause code............. ________ Date last altered.....<H> 05/25/1999
Date closed............ __________ Time last altered.....<H> 13:57
Vendor status....... <H>________ User last altered....... CHARLES
Description............ User requests callback from MVS help desk

Select one of the following, or type END or CANCEL to leave this panel.
1. Reporter display. 6. Detail display.
2. Status display. 7. Supplemental data display.
3. Close display. 8. Interested privilege classes.
4. History display. 9. Synopsis display.
5. Freeform text and notes. 10. Record utilities.

11. TSD Bridge display.

===> 11

Type 1 and press Enter to resume ownership.

Resume Ownership

357Guide to Integrating with Tivoli Applications

28.
U

sin
g

th
e

Tivo
li

S
ervice

D
esk

B
rid

g
e

BLG0L700 TSD BRIDGE DISPLAY PROBLEM: 00000001

TSD site ID............. SITE02
TSD record ID........... SD390A-00000041
Date last refreshed..... __________
Time last refreshed..... _____
TSD Bridge flag......... ___

Select one of the following, or type END or CANCEL to leave this panel.

1. Resume ownership. 3. Send a solution.
2. Refresh.

===> 1

If the user ID of the analyst requesting resume ownership matches that record ID of a
people record that has a Person role of TSD390&TSD, a request to resume ownership is sent
to TSD. While the request is being processed, the user can work with other records. When
the request has completed, the user receives notification that ownership has been returned.
Additionally, the record will be assigned to that user.

Note: The fields on BLG0L700 are as follows:

TSD site ID
If this field is blank or contains a value of LOCAL, the record is owned by
Information Management; otherwise it is owned by TSD.

TSD record ID
If this field contains a value, then a copy of this problem exists in the TSD
database.

Date last refreshed
The date that this record was last refreshed by TSD.

Time last refreshed
The time that this record was last refreshed by TSD.

TSD Bridge flag
If this field contains a value, a transaction is in the process of being sent to
TSD for this record.

Refresh
If a record has been transferred from Information Management to TSD, the Information
Management analyst can use the Refresh function to have the Information Management
record updated with the current information from the TSD system. To refresh the record, the
Information Management analyst must display the record and select 2. Refresh from the
TSD Bridge Display panel. From a Tivoli Information Management for z/OS panel, type
display r 00000002 and press Enter to display the record.

Resume Ownership

358 Version 7.1

BLG0EN20 --- PRIMARY OPTIONS MENU --- APPLICATION: MANAGEMENT

OPTIONS:

1. OVERVIEW.......Display general information and product enhancements.
2. PROFILE........Display or alter invocation or session defaults.
3. APPLICATION....Change application, list available applications.
4. CLASS..........Change current class, list available classes.
5. ENTRY..........Create a record.
6. INQUIRY........Search for records.
7. UTILITY........Copy, display, print, delete, and update records.
8. GLOSSARY.......Display a list of searchable words in the database.
9. PMF............Modify or create panels.

Select an option, enter a command, or type QUIT to exit.

Tivoli Information Management for z/OS Version 7 Release 1
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

===> display r 00000002

Type 11 and press Enter to select TSD Bridge display.

BLG0S010 PROBLEM SUMMARY DISPLAY PROBLEM: 00000002

Reported by............ CHARLES Problem type..........<H> ________
Assignee name.......<H> frank1_________ Problem status........<H> OPEN
Tracked by..........<H> _______________ Current phase.........<H> ________
Network name........... ________ Current priority......<H> 03
System name............ ________ Owning priv. class...... ________
Program name........... ________ Entry priv. class....... MASTER
Device name............ ________ Date entered............ 05/25/1999
Key item affected...... ________ Time entered............ 14:03
Cause code............. ________ Date last altered.....<H> 05/25/1999
Date closed............ __________ Time last altered.....<H> 14:03
Vendor status....... <H>________ User last altered....... CHARLES
Description............ User requests callback from MVS help desk

Select one of the following, or type END or CANCEL to leave this panel.
1. Reporter display. 6. Detail display.
2. Status display. 7. Supplemental data display.
3. Close display. 8. Interested privilege classes.
4. History display. 9. Synopsis display.
5. Freeform text and notes. 10. Record utilities.

11. TSD Bridge display.

===> 11

The fields Date last refreshed and Time last refreshed on the TSD Bridge Display panel
indicate the last time the record was refreshed since transferred to TSD. Type 2 and press
Enter to send a request to TSD to refresh the record. While the request to refresh the record
is being processed by TSD, the user can work with other records. When the request has
completed, the user receives notification that the record has been refreshed.

Refresh

359Guide to Integrating with Tivoli Applications

28.
U

sin
g

th
e

Tivo
li

S
ervice

D
esk

B
rid

g
e

BLG0L700 TSD BRIDGE DISPLAY PROBLEM: 00000002

TSD site ID............. SITE02
TSD record ID........... SD390A-00000042
Date last refreshed..... __________
Time last refreshed..... _____
TSD Bridge flag......... ___

Select one of the following, or type END or CANCEL to leave this panel.

1. Resume ownership. 3. Send a solution.
2. Refresh.

===> 2

Note: The contents of the fields on this panel are explained on page 358.

Send a Solution
When an Information Management user resolves a problem, the Send–a–solution function
can be used to transmit the resolution to the problem to the TSD knowledge database. The
Send–a–solution function sends the Resolution freeform text from the problem record to the
TSD knowledge database. Only solutions for problem records that contain a TSD record ID
can be sent to TSD.

Note: A record with a TSD record ID means that either the record originated on TSD and
was transferred to Information Management or else the record originated on
Information Management, was transferred to TSD, and was returned to Information
Management by some means (such as the Resume ownership function).

To send a solution, the Information Management user must display the record and select 3.
Send a solution from the TSD Bridge Display panel. If the problem record is owned by
Information Management, contains a TSD record ID, and has a status of CLOSED, a request
to send the solution for the problem record will be sent to TSD.

From a Tivoli Information Management for z/OS panel, type display r 00000003 and press
Enter to display the record.

Refresh

360 Version 7.1

BLG0EN20 --- PRIMARY OPTIONS MENU --- APPLICATION: MANAGEMENT

OPTIONS:

1. OVERVIEW.......Display general information and product enhancements.
2. PROFILE........Display or alter invocation or session defaults.
3. APPLICATION....Change application, list available applications.
4. CLASS..........Change current class, list available classes.
5. ENTRY..........Create a record.
6. INQUIRY........Search for records.
7. UTILITY........Copy, display, print, delete, and update records.
8. GLOSSARY.......Display a list of searchable words in the database.
9. PMF............Modify or create panels.

Select an option, enter a command, or type QUIT to exit.

Tivoli Information Management for z/OS Version 7 Release 1
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

===> display r 00000003

Type 11 and press Enter to select TSD Bridge display.

BLG0S010 PROBLEM SUMMARY DISPLAY PROBLEM: 00000003

Reported by............ CHARLES Problem type..........<H> ________
Assignee name.......<H> ASHLEY_________ Problem status........<H> OPEN
Tracked by..........<H> _______________ Current phase.........<H> ________
Network name........... ________ Current priority......<H> 03
System name............ ________ Owning priv. class...... ________
Program name........... ________ Entry priv. class....... MASTER
Device name............ ________ Date entered............ 05/25/1999
Key item affected...... ________ Time entered............ 14:27
Cause code............. ________ Date last altered.....<H> 05/25/1999
Date closed............ __________ Time last altered.....<H> 14:27
Vendor status....... <H>________ User last altered....... CHARLES
Description............ User requests callback from MVS help desk

Select one of the following, or type END or CANCEL to leave this panel.
1. Reporter display. 6. Detail display.
2. Status display. 7. Supplemental data display.
3. Close display. 8. Interested privilege classes.
4. History display. 9. Synopsis display.
5. Freeform text and notes. 10. Record utilities.

11. TSD Bridge display.

===> 11

Type 3 and press Enter to send a request to TSD to transmit the solution for the problem
record to the TSD knowledge database. The request is sent if the problem record is owned
by Information Management, contains a TSD record ID, and has a status of CLOSED. While
the request is being processed, the record is locked in the Information Management database,
but the user can work with other records. When the request has completed, the record is
unlocked.

Send a Solution

361Guide to Integrating with Tivoli Applications

28.
U

sin
g

th
e

Tivo
li

S
ervice

D
esk

B
rid

g
e

BLG0L700 TSD BRIDGE DISPLAY PROBLEM: 00000003

TSD site ID............. ______
TSD record ID........... SD390A-00000043
Date last refreshed..... __________
Time last refreshed..... _____
TSD Bridge flag......... ___

Select one of the following, or type END or CANCEL to leave this panel.

1. Resume ownership. 3. Send a solution.
2. Refresh.

===> 3

Note: The contents of the fields on this panel are explained on page 358.

Tivoli Service Desk Bridge TSXs
The following TSXs are used by the Tivoli Service Desk Bridge.

BLGTSDFP
File people record (create, update, delete)

Environment:
Called from control panel BLM1B040 when filing a people record
interactively or using the HLAPI Start User TSP transactions (HL14).

Input:

Interactive:
None

API:

¶ RNID_SYMBOL PDB

Output:

Messages:
None

Return Codes (API only):

Table 42. BLGTSDFP Return Codes
HICARETC HICAREAS Description

8 900 Record ID parameter is required.

BLGTSDPO
Resume problem record ownership

Environment:
Called from data-entry panel BLG0L700 when displaying a problem record
interactively or using the HLAPI Start User TSP transaction (HL14). The

Send a Solution

362 Version 7.1

USER_NOTIFIED PDB in this TSX contains the Information Management
user ID to be notified when the function has finished. Because the Assignee
Name of the problem record will be updated with this user ID, a people
record with a Person role of TSD390&TSD must exist for this user ID.

Input:

Interactive:
None

API:

¶ RNID_SYMBOL PDB

¶ USER_NOTIFIED PDB

Output:

Messages:
None

Return Codes (API only):

Table 43. BLGTSDPO Return Codes
HICARETC HICAREAS Description

8 900 Record ID parameter is required.

8 901 User parameter is required.

BLGTSDPR
Refresh problem record

Environment:
Called from data-entry panel BLG0L700 when displaying a problem record
interactively or using the HLAPI Start User TSP transactions (HL14).

Input:

Interactive:
None

API:

¶ RNID_SYMBOL PDB

Output:

Messages:
None

Return Codes (API only):

Table 44. BLGTSDPR Return Codes
HICARETC HICAREAS Description

8 900 Record ID parameter is required.

BLGTSDPS
Send problem record solution

Tivoli Service Desk Bridge TSXs

363Guide to Integrating with Tivoli Applications

28.
U

sin
g

th
e

Tivo
li

S
ervice

D
esk

B
rid

g
e

Environment:
Called from data entry panel BLG0L700 when displaying a problem record
interactively or using the HLAPI Start User TSP transactions (HL14).

Input:

Interactive:
None

API:

¶ RNID_SYMBOL PDB

Output:

Messages:
BLG03148

Return Codes (API only):

Table 45. BLGTSDPS Return Codes
HICARETC HICAREAS Description

4 900 Record is not in closed status.

8 900 Record ID parameter is required.

12 900 Record was not found.

BLGTSDPT
Transfer problem record

Environment:
Called from control panel BLG1A111 when filing a problem record
interactively or using the HLAPI Start User TSP transaction (HL14).

Input:

Interactive:
None

API:

¶ RNID_SYMBOL PDB

Output:

Messages:
None

Return Codes (API only):

Table 46. BLGTSDPT Return Codes
HICARETC HICAREAS Description

8 900 Record ID parameter is required.

BLGTSDRQ
Process TSD requests

Environment:
Called using the LINK control line from a TSX

Tivoli Service Desk Bridge TSXs

364 Version 7.1

Input:

Function:
Operation to perform. Valid values: FILE, REFRESH, RESUME,
SENDSOLUTION, TRANSFER

RNID
Record identifier

Record type:
Type of record. Valid values: PEOPLE, PROBLEM

Notify ID:
User ID – userid to notify (optional)

Output:

Messages:

¶ BLG03083

¶ BLG03146

¶ BLG03147

¶ BLG03149

Return Codes (API only):

Table 47. BLGTSDRQ Return Codes
HICARETC HICAREAS Description

8 900 Function code is not valid.

8 901 Record type is not valid.

12 900 SETTSDDATA control line error.

BLGTSDSM
Send message

Environment:
Called using the HLAPI Start User TSP transaction (HL14).

Input:

Messages:
None

API:

¶ RNID_SYMBOL PDB

¶ MESSAGE_PANEL PDB

¶ USER_NOTIFIED PDB

Output:

Messages:
None

Tivoli Service Desk Bridge TSXs

365Guide to Integrating with Tivoli Applications

28.
U

sin
g

th
e

Tivo
li

S
ervice

D
esk

B
rid

g
e

Return Codes (API only):

Table 48. BLGTSDSM Return Codes
HICARETC HICAREAS Description

8 900 Message panel parameter is required.

8 901 User parameter is required.

12 900 Message panel was not found.

Tivoli Service Desk Bridge TSXs

366 Version 7.1

V — Integrating with Other Tivoli
Products
Chapter 29. Integrating with Tivoli Inventory . 369
Overview of Tivoli Inventory. 369
Overview of the Interface to Tivoli Inventory. 370
Components of the Interface to Tivoli Inventory. 371

Host Components . 371
Workstation Components . 372

Installing the Interface to Inventory . 372
Installing the Host Components . 373
Installing the Workstation Components. 374

Install Queries in Query Library . 374
Installation Considerations . 375
Scan Target Machines . 375
Verify Installation . 375

Customizing the Interface to Inventory. 376
Using the Interface to Inventory. 377

Using the Interface from a Workstation . 377
Using the Editor . 378

Using the Interface from the Host . 381
Messages. 384

Status Messages . 384

Chapter 30. Integrating with Tivoli Enterprise Console (TEC) 387
TEC Integration Facility . 387
Installing the TEC Integration Facility . 387
Task Library . 388
Trouble Ticket . 389
Creating a Problem Record . 389
Updating a Problem Record . 389
Deleting a Problem Record . 390
Task Status . 390
Rules. 390
Mapping Event Data to Problem Records. 391
Customizing Tasks. 392
List of Files. 394

Chapter 31. Integrating with Tivoli Software Distribution. 395
Overview of the Interface to Tivoli Software Distribution. 395
Installing the Components Used by the Interface . 395

Installing the Host Components . 396
Installing the TEC Components . 398
Software Distribution from TEC . 398

Class Definitions for TEC Events . 398
Rules for Processing Events. 399
PERL Program To Initiate Distribution of a File Package . 400

Using the Interface to Tivoli Software Distribution. 401
Example of Distributing the Tivoli Information Management for z/OS HLAPI Clients 401

367Guide to Integrating with Tivoli Applications

Creating a Change Request Record . 402
Approving the Change Request Record . 405

Chapter 32. Tivoli Decision Support . 409
Where To Find Additional Information. 409

368 Version 7.1

Integrating with Tivoli Inventory

This section describes how you can integrate your Tivoli Information Management for z/OS
system with the Tivoli Inventory application to receive an extract of Tivoli Inventory data on
your host database. The material provided in this section will help you to install and use the
interface that is provided by Tivoli Information Management for z/OS to receive and use
Tivoli Inventory data on your system. It is intended for users of both Tivoli Information
Management for z/OS and Tivoli Inventory. For full details on how to set up and use the
Tivoli Inventory application, refer to the Tivoli Inventory User’s Guide. It is assumed that
you have Tivoli Inventory installed and operational before you integrate Tivoli Information
Management for z/OS with Tivoli Inventory.

Overview of Tivoli Inventory
This section provides a high-level overview of the Tivoli Inventory scanning process and
describes how the Tivoli Information Management for z/OS interface to Tivoli Inventory
works.

Tivoli Inventory is a hardware and software inventory-gathering application designed to help
system administrators and accounting personnel manage the complexity of PC and UNIX
systems in a distributed client/server enterprise.

It enables users to:

¶ Maintain and upgrade hardware and software

¶ Monitor and record changes in software and hardware configurations

¶ Manage systems from a central point

¶ Access inventory information to perform system auditing functions

Tivoli Inventory is profile-based. That is, Tivoli Inventory scanning instructions are defined
in profiles. In the context of the Tivoli Framework environment, profiles are linked to a
Tivoli resource through a profile manager. The profile manager distributes the Tivoli
Inventory profile to target machines or sites. The Tivoli Inventory profile passes scanning
instructions to the scanner program that resides on each target machine. After Tivoli
Inventory scans the target machines, it creates special files that contain information from the
scan. Information such as the hardware, software, system configuration, and physical
inventory is stored in files in a standard format called Desktop Management Task Force
(DMTF) 2.0 Management Information Format (MIF).

Tivoli Inventory processes the information in the MIF files and sends it to the Tivoli
Management Server, which acts as the ″hub″ for further activity. The server parses the data
in the MIF files and sends the information to a relational database management system

29

369Guide to Integrating with Tivoli Applications

29.
In

teg
ratin

g
w

ith
Tivo

li
In

ven
to

ry

(RDBMS) server, where it is stored in an open relational database management system
called the Tivoli Inventory configuration repository. For the configuration repository you can
use the RDBMS of your choice, such as Oracle, Sybase, or Microsoft® SQL Server.

Once Tivoli Inventory updates the configuration repository with the results of a scan, Tivoli
Inventory users can access the information with the Tivoli Framework query feature. For
example, users can query the configuration repository for all systems that have an outdated
version of a software product that will need upgrading in the next year. The Tivoli
Framework query feature consists of query libraries and queries. Tivoli Inventory queries are
contained in query libraries which reside in policy regions on the Tivoli Framework desktop.

Overview of the Interface to Tivoli Inventory
The purpose of the Interface to Tivoli Inventory is to enable a bulk transfer of data, based
on Tivoli Inventory views, to Tivoli Information Management for z/OS. The data is extracted
from Tivoli Inventory by using one of several supplied queries, and is captured to a file. The
file, which contains data from the view, is read and parsed by the interface to Inventory
(called the i2i program). If the data is recognized as a supported view, it will be mapped into
Tivoli Information Management for z/OS s-words. The views supported are detailed on page
374. Attribute records for attributes in the supported views are supplied. The data is sent via
the Tivoli Information Management for z/OS HLAPI client. The i2i program was developed
on, and has been tested with, the Tivoli Information Management for z/OS HLAPI/NT
client.

Using i2i, you can open an exported view of the data that resided in the Tivoli Inventory
configuration repository. Once the data is sent to the Tivoli Information Management for
z/OS database, you can query or display the data from a Tivoli Information Management for
z/OS panel (BLG00030) or copy the data to other areas of Tivoli Information Management
for z/OS, such as Problem Management or Change Management. You can, for example, use
this data to perform an analysis of your overall computing environment to assist your service
desk personnel. And because this information is already available, your service desk
personnel will not need to enter all of the environmental data into Tivoli Information
Management for z/OS.

Queries are supplied that you can install on the Tivoli Inventory Management Server in a
Tivoli Information Management for z/OS query library. These queries are supplied to extract
the Tivoli Inventory data from supported views of the data. The queries are run using the
query facility of the Tivoli Management Server desktop to access information in the
configuration repository. The query results can be exported as ASCII files to a specific
Tivoli Information Management for z/OS HLAPI client workstation. When the query is run,
the results must be exported with the required TAB delimiter to the Tivoli node where the
Tivoli Inventory interface tool resides. This node must have the Tivoli Information
Management for z/OS HLAPI client installed. The Tivoli Inventory User’s Guide describes
how to set up query libraries, run queries, and export query results.

From the Tivoli desktop, you can, through the use of Structured Query Language (SQL)
functions, use the Tivoli Framework query facility to access information in the configuration
repository. Query libraries reside in policy regions and contain queries. The queries specify
which repository to search, which view or table within the repository to query, and what
information to retrieve. Views can be created so that a group of information can be accessed
with a single query.

Overview of Tivoli Inventory

370 Version 7.1

The ASCII files containing query results are used as the input to the interface to Inventory
program. The i2i tool can be used interactively or in batch mode. It is used interactively to:

¶ Edit the default mapping tables

¶ Open a file of extracted data to:

v View the result of a mapped record prior to sending data to Tivoli Information
Management for z/OS.

v Send the view of data, whether complete or partial, to Tivoli Information
Management for z/OS.

Note: Mapping of sample data should be tested after editing the mapping table.

Once the mapping tables are edited satisfactorily, preparation for batch mode includes:

¶ Creating a list of files for transfer

¶ Specifying the batch log file name

At this point, a scheduler should be used to automate:

¶ Running Tivoli Inventory scans

¶ Running Tivoli Inventory queries

¶ Running i2iBatch

Once the data is in the database, you can display or query the data by selecting the
SERVICDESK application from the Application Selection menu on panel BLG00030 on the
Tivoli Information Management for z/OS host. You can also copy the data for use by other
Tivoli Information Management for z/OS applications (such as Problem Management or
Change Management) by using user exits BLG01273 and BLG01439. You can use these
user exits to copy only the data you want to your customized application panels.

Special data model records—data view and data attribute records—are shipped with Tivoli
Information Management for z/OS to define the supported Tivoli Inventory views and
associated data. These records are provided on the base product installation media, and must
be installed on a Tivoli Information Management for z/OS host database before you can
receive and browse the Tivoli Inventory data. The i2i program maps the data extracted from
Inventory to Tivoli Information Management for z/OS fields and loads the data into the
database through the client API using these data view records. Database 6 is reserved for the
purpose of storing data extracted from Tivoli Inventory.

Components of the Interface to Tivoli Inventory

Host Components
The following host components are provided with Tivoli Information Management for z/OS
to support the interface to Tivoli Inventory:

¶ Data model records (data view and data attribute records)

¶ JCL to load the data model records into the SDDS

¶ Dictionary entries (s-words and p-words)

¶ Panels to display and query the inventory data in the Tivoli Inventory database

¶ Panels to delete the inventory records from the Tivoli Inventory database

Overview of the Interface to Tivoli Inventory

371Guide to Integrating with Tivoli Applications

29.
In

teg
ratin

g
w

ith
Tivo

li
In

ven
to

ry

¶ Predefined queries to search the inventory data in the Tivoli Information Management
for z/OS database

Note: These are queries that you can use from the Tivoli Information Management for
z/OS panels, which display inventory data from the Tivoli Information
Management for z/OS database. (These queries should not be confused with the
Tivoli Inventory queries that are shipped with Tivoli Information Management for
z/OS and installed on the Tivoli Management Server to support data extraction
for Tivoli Information Management for z/OS.)

¶ Report format tables (RFTs) to print inventory records in reports

Workstation Components
The following workstation components are provided with Tivoli Information Management
for z/OS to support the interface to Tivoli Inventory.

¶ i2i_queries.sh
The i2i_queries.sh is a Bourne shell script which creates a query library
containing the Service Desk queries. It must be run by an administrator
with proper Tivoli authorization in the appropriately configured Tivoli
Managed Resource (TMR) where the library resides. Queries are created
with the same name as the supported Inventory views.
Note: Make sure that the preceding queries do not already exist; if they
do exist, the new query will not be created.

¶ Blmi2i.jar

¶ Blmtsd12.jar

¶ Blminfoapi.jar

¶ Extend.jar

Contains the Java™ classes for the i2i program.

¶ i2i.bat
Batch command file to start the interactive version of the i2i program. The
interactive version allows you to modify map files, open scan files and
view and/or map an individual record and load the records to the Tivoli
Information Management for z/OS database.

¶ i2iBatch.bat
Batch command file to start the batch version of the i2i program. The
batch version accepts the name of scanfile output from one of the supplied
queries. The data file is loaded into the Tivoli Information Management
for z/OS database

Installing the Interface to Inventory
This section lists the prerequisites for installing the interface to Inventory and describes how
to install the necessary components to support the interface. Tivoli Information Management
for z/OS relies on Tivoli Inventory and the Tivoli Framework. Before you install the host
and workstation components to support the interface, ensure that Tivoli Inventory is installed
and that target machines can be scanned by Tivoli Inventory. For information on installing
Tivoli Inventory, refer to the Tivoli Inventory User’s Guide.

Installation involves loading both host and workstation components. Although it is not
necessary to perform the host installation tasks before installing the workstation components,
it is recommended.

Components of the Interface to Tivoli Inventory

372 Version 7.1

Installing the Host Components
Follow these steps to install the host portion of the interface to Inventory in Tivoli
Information Management for z/OS. The steps involve loading the data model records
supplied on tape, creating the Tivoli Inventory database, and updating your
session-parameters members to access the newly created database. It is assumed that you
have already installed Tivoli Information Management for z/OS Version 7.1.

1. Load the Tivoli Information Management for z/OS data model records (data view and
data attribute records) from the SBLMRCDS data set library. Use batch job BLHRCDSJ
in the SBLMSAMP sample library to load these records. The Tivoli Information
Management for z/OS Planning and Installation Guide and Reference contains additional
information about loading data model records.

Before you can run the batch job, you must edit the JCL. Instructions are provided in the
JCL comments. In your input data stream, be sure to specify BLHLRINV as the name of
the PDS member containing the list of data model records to be loaded.

The BLHRCDSJ job unflattens the data model records and adds them to the Tivoli
Information Management for z/OS database you specified.

You should also load the records listed in the BLHLRBAS list if they have not already
been loaded.

2. Create the SDDS and the SDIDS for the Tivoli Inventory database. The SDDS will be
the Tivoli Information Management for z/OS database that will hold the data records
extracted from Tivoli Inventory. The SDIDS for the Tivoli Inventory database must be
defined with a key length of 34. Use the AMS DEFINE CLUSTER command to create
the SDDS and the SDIDS. Refer to the Tivoli Information Management for z/OS
Planning and Installation Guide and Reference for instructions on defining the SDDS
and SDIDS.

3. Create the session-parameters member that will be used to load the Tivoli Inventory
database with the data extract. At a minimum, you will need to use the BLGPARMS
macro to define the session parameters, and the BLGCLUST macro to define the
database. The Tivoli Information Management for z/OS Planning and Installation Guide
and Reference provides details on how to use these macros.

a. In the BLGPARMS MODELDB keyword, specify the name of the database that
contains the data model records supplied with Tivoli Information Management for
z/OS.

b. Dates are sent from Tivoli Inventory through the Tivoli Information Management for
z/OS HLAPI client in the external date format of MM/DD/YYYY. If this is not the
primary external date format that you use in Tivoli Information Management for
z/OS, you must perform one of the following steps:

¶ If your primary external date format has a length of 10 characters, use the i2i
program to change the mapping of the Tivoli Inventory date to your external date
format.

or

¶ If your primary external date format is not 10 characters long, use the
BLGPARMS DATECNV keyword and specify your primary external date format,
specify MM/DD/YYYY as the secondary date format, and specify PRIMARY.
For example:
DATECNV=(BLGCDATS,YYYY/MM/DD,YY/MM/DD,MM/DD/YYYY,PRIMARY)

Installing the Interface to Inventory

373Guide to Integrating with Tivoli Applications

29.
In

teg
ratin

g
w

ith
Tivo

li
In

ven
to

ry

In this example, YYYY/MM/DD is the internal date format. Dates can be entered
in MM/DD/YYYY format but stored in the primary external date format of
YY/MM/DD.

c. Use the BLGCLUST macro to add the Tivoli Inventory database. You must specify
NAME=5 as the external name of the Inventory read/write database.

4. Update your session-parameters members so they can access the Tivoli Inventory
database you just created:

a. Use the BLGPARMS macro and specify, in the MODELDB keyword, the name of
the database that contains the data model records supplied with Tivoli Information
Management for z/OS for use with the interface to Inventory. (Use the name that was
set up in Step 3a on page 373.)

b. Use the BLGCLUST macro to add the Tivoli Inventory database. You must specify
NAME=6 as the external name of the Tivoli Inventory read-only database.

When you have completed these steps, you can proceed with installing the workstation
portion of the interface.

Installing the Workstation Components
You should ensure that the following prerequisites have been met before proceeding with
installation:

¶ Tivoli Inventory Version 3.6

¶ HLAPI for Windows NT

The installation CD-ROM contains a directory /Tivoli_Int/INV. Run SETUP.EXE from
within this directory to install i2I on a workstation.

Upgrades or patches that can be downloaded from a Tivoli Web site may be available for
HLAPI for Windows NT or for the Interface to Tivoli Inventory. Visit the Web site at
http://www.tivoli.com/TSD390 for more information.

Install Queries in Query Library
On the Tivoli Management Server, run the following shell script file to create the Tivoli
Inventory queries needed by Tivoli Information Management for z/OS to extract data from
the configuration repository. This file was created as a result of running SETUP.EXE from
within the /Tivoli_Int/INV directory.
\i2i\setup\i2i_queries.sh

When you run this script file, a new query library called ServiceDeskQueries is created on
the Tivoli Management Server. The following queries are automatically added to the
ServiceDeskQueries library:

Hardware Views
¶ PC_MEMORY_VIEW
¶ INVENTORYDATA
¶ PC_PORTS_VIEW
¶ LOGICALDRIVE_VIEW
¶ INSTALLED_COPROCESSOR_VIEW
¶ INSTALLED_HARDDISK_VIEW

Software Views

Installing the Interface to Inventory

374 Version 7.1

¶ PC_BIOS_VIEW
¶ NT_INFO_VIEW
¶ INSTALLED_SOFTWARE_VIEW
¶ INSTALLED_CONFIG_FILE_VIEW

Network Views
¶ PC_LAN_CONN_VIEW
¶ NETWARE_SERVER_VIEW
¶ NETWORK_NODE_VIEW
¶ PC_LAN_VIEW

These queries also correspond to the queries that you see when using the i2i program on the
Tivoli Information Management for z/OS HLAPI client workstation.

Installation Considerations
These are some additional items that you should consider:

¶ Make sure that you set up your MRES to use pre–started MRES sessions (refer to the
Tivoli Information Management for z/OS Client Installation and User’s Guide). In the
MRES parameters for the pre–started MRES, you must specify
BYPASS_PANEL_PROCESSING=YES. If this is not set up properly, you may receive a
message indicating that your session member is not valid.

¶ Test the HLAPI client with the supplied Java test program.

¶ Make sure that you set Preferences for Initialization and the Batch Files.

¶ If you modify the supplied Inventory queries, the query name must match one of the
supported Inventory views. The ASCII file output from the query contains the query
name. This name is used to verify the file in order to use the appropriate mapping table.

Scan Target Machines
Now, you are ready to scan target machines using Tivoli Inventory. You can perform this
scan from any workstation with a Tivoli Inventory desktop. Complete the scan according to
the instructions provided in the Tivoli Inventory User’s Guide.

Verify Installation
To verify that the workstation installation was performed correctly, check the query libraries
from a Tivoli desktop. An icon for the ServiceDeskQueries library that was created is
displayed.

1. Use the Tivoli Framework query facility to run the INVENTORYDATA query in the
ServiceDeskQueries library. (Refer to the Tivoli Inventory User’s Guide for instructions.)

The results of the query will display in a dialog. If no data appears, either the
workstation portion of the installation did not complete successfully, or else User Data
Forms were not submitted prior to the scan. Review the steps you followed and repeat
the workstation installation process as necessary.

2. Save the results of the query either on the local machine or by exporting the query
results to the Tivoli Information Management for z/OS client workstation.

Note: To export the results of a Tivoli Inventory query to your HLAPI client
workstation, your client workstation must have the Tivoli Management Agent
installed to allow it to be managed by Tivoli Management software. The Tivoli
Information Management for z/OS HLAPI client does not provide the agent
software.

Installing the Interface to Inventory

375Guide to Integrating with Tivoli Applications

29.
In

teg
ratin

g
w

ith
Tivo

li
In

ven
to

ry

3. Now, from the Tivoli Information Management for z/OS client workstation, follow these
steps:

a. Run the i2i program (i2i.bat) installed on the workstation.

The Tivoli Information Management for z/OS interface to Inventory window displays.

b. Select File->Open to browse the ASCII file you saved (or exported to your
workstation) from Tivoli Inventory. The view corresponding to the ASCII data is
highlighted (INVENTORYDATA), and the file is displayed along with its Tivoli
Information Management for z/OS mapping table. In order to parse properly, the file
requires two things:
¶ Line 1 contains Query Name : viewname (where viewname is the supported

view); for example,
Query Name : INVENTORYDATA

¶ Line 2 and all subsequent lines are separated with the tab delimited, where line 2
contains the column titles and lines 3 and beyond contain the data.

If this does not occur, an error message panel informs you of any error found.
Review the error and take the appropriate corrective action.

c. Refer to the Tivoli Information Management for z/OS Client Installation and User’s
Guide and take the actions described to use pre-started MRES sessions. Ensure that
you have specified BYPASS_PANEL_PROCESSING=YES in the MRES parameters for the
pre-started MRES.

Customizing the Interface to Inventory
During the installation of the host and workstation portions of the interface to Inventory, you
can customize the following:

¶ On the host, if you want to copy the inventory data that is loaded in the Tivoli
Information Management for z/OS database to other applications (such as to your
Problem Management or Change Management application), you must modify your
panels to use program exit BLG01273 (Add Data from One Record to Another Record),
or program exit BLG01439 (Extended Data Copy).

Program exit BLG01273 obtains information from one record and automatically adds it
to the record being created or updated. Program exit BLG01439 performs all the
functions of exit BLG01273, but can also validate data against an assisted-entry panel
and copy single items into list processor data. For information on how to use these
program exits, refer to the Tivoli Information Management for z/OS Panel Modification
Facility Guide.

You should not attempt to modify the data model records that are shipped with Tivoli
Information Management for z/OS to support the interface to Inventory.

¶ On the Tivoli Information Management for z/OS client workstation, you can use the i2i
program to edit the mapping of Inventory data to Tivoli Information Management for
z/OS. When you edit the mapping tables, you have default maps which map into
s-words. You can edit the maps; you cannot edit the s-words.

Installing the Interface to Inventory

376 Version 7.1

Using the Interface to Inventory
In order to use Inventory records, you must have Config Record Display authority. In order
to delete Inventory records, you must have DBADMIN (Database Administration) authority.
Authority levels are described in the Tivoli Information Management for z/OS Program
Administration Guide and Reference.

Using the Interface from a Workstation
¶ Select PREFERENCES -> INITIALIZATION to edit the SECURITY_ID,

APPLICATION_ID, PASSWORD, and DATABASE_PROFILE. Refer to the Tivoli
Information Management for z/OS Client Installation and User’s Guide for specific
information on these control PDBs. To edit an item, highlight the item and select Edit.
Supply the new value and select OK (or CANCEL). The updates are saved in the i2i
subdirectory of the user’s home directory. After returning to the Preferences panel, select
SAVE (or CANCEL).

¶ If you want to edit a mapping table, click on the INVENTORY VIEW TREE and
select the view you wish to edit. A single left-mouse click will display the map. To edit
the map for a specific s-word, highlight the row and select EDIT. Remember to save the
edited map. The updated maps are saved in the i2i subdirectory of the user’s home
directory.

¶ If you would like to verify the updated map, select FILE->OPEN and open a
previously created ASCII scan file for the specific view. Verify that the appropriate map
is loaded and that the file is parsed properly. Select a row and click on VIEW to see the
fields as represented in the Inventory database. Select MAP to see the fields as they will
be mapped to s-words in Tivoli Information Management for z/OS.

Note: The Client log is a cumulative log, so you should discard old messages prior to
transmitting new views.

¶ If you would like to “send” a view to Tivoli Information Management for z/OS, select
FILE->OPEN and open a previously created ASCII scan file for a view. Again, verify
that the appropriate map is loaded and that the file is parsed properly. Make sure that the
Tivoli Information Management for z/OS Client Requester is running. Select FILE ->
SELECT ALL to send the entire View.

Note: If you send less than a complete view, the result may be databases that are not
synchronized. The status window will be updated during transmission. The
terminated message will display transaction error counts. The history icon may be
selected for a complete status report. You can also refer to the client log
(specified in your client database profile) for detailed messages.

Refer to the Tivoli Information Management for z/OS Client Installation and User’s
Guide for additional information. Select SEND.

¶ The first item in the history log specifies whether the HL01 was successful. The next set
of rows specifies the result of each transaction. The last item specifies the status of the
HL02. Please refer to the Client log, the name of which is specified in the client
database profile, for detailed Tivoli Information Management for z/OS transaction
messages.

¶ If you plan to use batch, select PREFERENCES->BATCH->BATCH INPUT AND
BATCH OUTPUT. Update the list of input files by selecting ADD, EDIT, or
DELETE. The files should exist (although not necessarily at the time of the creation of
the list) and contain proper scan data at the time that the i2iBatch.bat is run. The output

Using the Interface to Inventory

377Guide to Integrating with Tivoli Applications

29.
In

teg
ratin

g
w

ith
Tivo

li
In

ven
to

ry

files specify the name of the old and new logs. The batch log will contain the date and
time that the job was run, the scan file name, the view name, and the status messages.
For detailed messages, refer to the Tivoli Information Management for z/OS client log.
The logs are written to the i2i subdirectory of the user’s home directory.

Using the Editor
The edit panel displays two panels:

¶ The tree on the left represents the parsed mapping table for the selected view. The
s-words are the first branches of the tree and the lower branches represent nested
functions. The mapping table ″maps″ data to the specified s-word. The data field may
contain new data, a Tivoli Inventory column title, or a nested function.

¶ The panel on the right is the editor panel. This panel enables editing the map for a
specific s-word. If the s-word was selected from the tree on the left or if the s-word is
highlighted prior to going to the mapping editor, the map may be edited ″free form″. In
other words, you may edit the map without editor panel assistance. If you edit free form,
substitute the following variables for the special characters: I2iLPAREN for the left
parenthesis “(” character or I2iRPAREN for the right parenthesis character “)” or
I2iCOMMA for the comma “,” character. Spaces are not allowed between the function
arguments. Click on child nodes, if any, to edit function calls will be selected if an
s-word was selected from the tree. If a nested function was selected, a specific function
editor panel will be displayed containing the current function arguments. The selected
nested function will be highlighted in the map field. The function arguments may be
modified. Assistance is provided by the use of spin buttons or radio buttons. If the data
argument is expected to be the result of a nested function, the button The data
argument will be determined by the evaluation of the nested function will be
selected. If the data argument is specified, the radio button The data argument is
provided will be selected. If several arguments are listed, a list box will be provided.
Update the box by selecting the ADD, EDIT, or DELETE buttons. When the edit of
the map is complete, select Apply or Reset. If Default is selected, the original default
map for that specific s-word will be retrieved.

Note: Using the editor panels is the preferred method of editing. This method provides
verification, whenever possible, and will automatically substitute the special
variables. If you choose to edit free form, once the node has been removed,
recalculated, and replaced, it is a good idea to click on the tree nodes
representing any nested functions to recapture the verifications.

¶ The Editor Help menu lists the current supported functions. The function call,
description, and examples are provided. The OK button provides FILE->SAVE and
FILE->CLOSE functions. The function tabs may be selected for viewing.

When the selected view mapping table edit session is complete, select FILE->SAVE or
FILE->CLOSE (Close will prompt for Save). If saved, the updated map will be saved in
the i2i directory of the user’s home directory.

¶ To retrieve the entire default map for the selected view: select FILE->DEFAULT MAP

¶ To print the map being edited: select FILE->PRINT->PRINT MAP

¶ To print the original default map for the selected view: select FILE->PRINT->PRINT
DEFAULT MAP

Printing is enabled to devices supported by the default graphics object.

Using the Interface to Inventory

378 Version 7.1

Editor Functions
These are the currently available functions of the editor. If the functions receive arguments
in a format other than specified, the data may be returned unchanged.

change(data,source1,target1,source2,target2,...)
The string given by source1, where found within data, is changed to the string given
by target1. It then changes the string given by source2, where found in the result of
the first operation, to the string given by target2. This continues until all source
strings have been processed. If the last matching target string is missing, it defaults
to a null string. For example, if fieldName is abcdefghijklm then
change(fieldName,abc,def,def,ghi)
returns
ghighighijklm

change(abcdefghijklm,def)
returns
abcghijklm

fromIMDate(IMDate)
A date in the format mm/dd/yy is converted to mm/dd/yyyy, where year characters
50 through 99 represent the years 1950 through 1999 and year characters 00 through
49 represent the years 2000 through 2049. For example:
fromIMDate(12/05/49)
returns
12/05/2049

fromIMPriority(IMPriority)
Values 6 through 99 are mapped to 5, while not altering values 0 through 5. For
example:
fromIMPriority(21)
returns
5

fromIMPriority(0)
returns
0

fromIMTime(IMTime)
The military time format of hh:mm is converted to a time in the format hh:mm:ss
am or hh:mm:ss pm by adding a seconds field of 00 and am or pm. For example:
fromIMTime(12:34)
returns
12:34:00 pm

nullDefault(data,defaultValue)
The value defaultValue is returned when data is a null string. Otherwise, the value
for data is returned. For example, if fieldName is abc, then:
nullDefault(fieldName,default)
returns
abc

nullDefault(,fieldName)
returns
abc

nullDefault(,)
returns
""

Using the Interface to Inventory

379Guide to Integrating with Tivoli Applications

29.
In

teg
ratin

g
w

ith
Tivo

li
In

ven
to

ry

stripLeading(data,stripCharacters)
This function strips the leading characters from the target data. For example, if
fieldName is 0000200, then:
stripLeading(fieldName,0)
returns
200

stripLeading(fieldName)
returns
0000200

stripLeading(000000,0)
returns ""

stripLeading(wordwordzz,word)
returns
zz

subString
This function returns a specified substring of the target data. The first character is
position 1. The formats are:

subString(data,startPosition)
subString(data,startPosition,length)
subString(data,startPosition,length,padCharacter)

startPosition
is the Starting index position of the substring. If the index is beyond the end
of the string, the function returns a null string.

length is the length of the substring. If the substring extends beyond the end of the
string, the substring is padded with the character given by the padCharacter
argument. If length is not specified, the substring goes from the starting
position to the end of the string.

padCharacter
is the character to use as padding if the substring extends beyond the end of
the string. The default pad character is a single space.

For example, if fieldName is abcdef then:
subString(fieldName,2,3)
returns
bcd

subString(fieldName,4,5)
returns
def + 2 spaces

subString(subString(abcdef,2,3),2,1)
returns c

subString(abcdef,7,1)
returns
""

toIMDate(foreignDate)
A date in the format mm/dd/yyyy is converted to mm/dd/yy, where year characters
50 through 99 represent the years 1950 through 1999 and year characters 00 through
49 represent the years 2000 through 2049. For example:
toIMDate(01/31/1950)
returns
01/31/50

Using the Interface to Inventory

380 Version 7.1

toIMTime(foreignTime)
A time in the format hh:mm:ss am or hh:mm:ss pm is changed to military time
hh:mm. For example:
toIMTime(12:34:56 am)
returns
00:34

translate(data,inputCharacters,outputCharacters)
The characters given by inputCharacters, where found within data, are changed to
the characters given by outputCharacters. If not specified, outputCharacters
defaults to spaces. For example, if fieldName is a,b,c,d then:
translate(fieldName,I2iCOMMA,)
returns
a b c d

translate(aI2iCOMMAbI2iCOMMAcI2iCOMMAd,fieldName)
returns
7 spaces

translateWord(data,sourceWord1,targetWord1,sourceWord2,targetWord2,...)
The string given by sourceWordN is changed to the string given by targetWordN,
if found within data. If the last matching target is missing, it defaults to a null string.
If sourceWord1 is *, any result for data is a match. For example, if fieldName is
word then:
translateWord(fieldName, fieldName, bird)
returns
bird

translateWord(word,word)
returns
""

words(data,firstWord) or words(data,firstWord,numberOfWords)
Words are returned from data beginning with firstWord, where words are separated
by spaces. If the index given by firstWord is not valid, a null string is returned. The
numberOfWords argument can be used to specify how many words to return. If the
numberOf words argument is not specified, all words to the end of the string are
returned. For example, if fieldName is a b c d then:
words(fieldName,2,1)
returns
b

words(subString(fieldName,3,3),2,2)
returns
c

words(a b c d,5,1)
returns
""

Using the Interface from the Host
This sections depicts the various hardware and software data that can be viewed from the
host. The inventory records are stored in database 6 with system-assigned RNIDs.

Note: Before using the search panels provided by this interface, make sure that you have
the Quick search? field in your User Profile set to YES. The Tivoli Information
Management for z/OS User’s Guide contains information about setting values for your
User Profile.

Using the Interface to Inventory

381Guide to Integrating with Tivoli Applications

29.
In

teg
ratin

g
w

ith
Tivo

li
In

ven
to

ry

To display the Tivoli Information Management for z/OS Tivoli Inventory menu, type 3 and
press Enter from the primary options menu BLG0EN20.

BLG0EN20 --- PRIMARY OPTIONS MENU --- APPLICATION: MANAGEMENT

OPTIONS:

1. OVERVIEW.......Display general information and product enhancements.
2. PROFILE........Display or alter invocation or session defaults.
3. APPLICATION....Change application, list available applications.
4. CLASS..........Change current class, list available classes.
5. ENTRY..........Create a record.
6. INQUIRY........Search for records.
7. UTILITY........Copy, display, print, delete, and update records.
8. GLOSSARY.......Display a list of searchable words in the database.
9. PMF............Modify or create panels.

Select an option, enter a command, or type QUIT to exit.

Tivoli Information Management for z/OS Version 7 Release 1
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

===> 3

Type 9 and press Enter to display the Inventory Menu.

===>

+ BLG00030 ------------ APPLICATION SELECTION ------------- 1 OF 1-+
| |
| IDENTIFY THE APPLICATION FOR THIS SESSION |
| |
| |
| OPTIONS: |
| |
| 1. SYSTEM.......Use System dialogs for entry/inquiry. |
| 2. MANAGEMENT...Use Management dialogs for entry/inquiry. |
| |
| 4. INTEGRAT.....Use Integration Facility dialogs. |
| |
| 9. SERVICDESK...Use Consolidated Service Desk. |
| |
+---------------------- SELECT APPLICATION ------------------------+

===> 9

At the Inventory Menu, BLH0I002, type 20 and press Enter to begin the query process;
depending on your authority level, this panel may display an additional choice:
12. Delete record: _______

To return to panel BLG00030, type 90 and press Enter on panel BLH0I002.

Using the Interface to Inventory

382 Version 7.1

===>

BLH0I002 Inventory Menu SERVICDESK

Select an action.

10. Display record: ________
11. Print record: ________

20. Query
21. Report

90. Change Applications
91. Change privilege class

From the Tivoli Inventory Query Menu, BLH0I000, you can choose to initiate a hardware
query, a software query, or query Inventory by a TMR. If you select 1 from this screen,
panel BLH0I022 on page 383 shows the hardware queries available; if you select 2 from
this screen, panel BLG0I023 on page 384 shows the software queries available.

BLH0I000 TIVOLI INVENTORY QUERY MENU

Select the query to run.

QUERIES:
1. Hardware query
2. Software query
3. Inventory by TMR _______________________________

===>

From panel BLH0I022, you can select an item, and on subsequent panels, add search
arguments in order to obtain information about the hardware that is installed.

BLH0I022 HARDWARE QUERY MENU

Make selection to add data to the search arguments.

1. Computer system 7. NetWare servers
2. Co-processors 8. Network nodes
3. Hard disks 9. PC bios
4. IPX LAN 10. PC memory
5. IPX LAN connections 11. Person
6. Logical drives 12. Ports

91. Find 99. Cancel

===>

Using the Interface to Inventory

383Guide to Integrating with Tivoli Applications

29.
In

teg
ratin

g
w

ith
Tivo

li
In

ven
to

ry

From panel BLH0I023, you can select an item and on subsequent panels, add search
arguments in order to obtain information about the software that is installed.

===>

BLH0I023 Software Query Menu

Make selection to add data to the search arguments.

1. Computer System
2. Configuration Files
3. Installed Software
4. NT Information
5. Person

91. Find 99. Cancel

Messages
You may receive error messages and warning messages from Tivoli Inventory; the content of
these message will explain cause and corrective action. In addition, these are the status
messages that can be issued from Tivoli Inventory:

Status Messages
These are the transaction status messages:

Initialization: BAD.
Possible causes:

¶ Tivoli Information Management for z/OS Requester not running.

¶ Pre-started MRES sessions not set up properly.

¶ MRES not running.

¶ Tivoli Information Management for z/OS not set up properly or not running.

¶ SECURITY_ID, APPLICATION_ID, or PASSWORD is not valid.

¶ DATABASE_PROFILE or profile contents are not valid:

v Host name (ping host name, check address)

v MRES (check TCP/IP SERVICES for server name and port)

Initialization: GOOD.
The HL01 transaction completed successfully.

Initialization Error:
An exception was thrown during the initialization step. The exception message is
displayed.

ID QueryError:
Where ID is a specific HARDWARE_SYSTEM_ID. A query transaction was
performed to determine if the record should be created or updated, but an exception
occurred. The exception message is displayed.

Using the Interface to Inventory

384 Version 7.1

ID RNID Record created.
Where ID is a specific HARDWARE_SYSTEM_ID and RNID is the Tivoli
Information Management for z/OS RNID. The record id did not previously exist and
the transaction was successful.

ID CreateException:
Where ID is a specific HARDWARE_SYSTEM_ID. An exception was thrown
during a create transaction. The exception message is displayed.

ID RNID Record not created.
Where ID is a specific HARDWARE_SYSTEM_ID and RNID is the Tivoli
Information Management for z/OS RNID. The record id did not previously exist and
the transaction was not successful. Refer to the client log for the Tivoli Information
Management for z/OS return and reason codes.

ID RNID Record updated.
Where ID is a specific HARDWARE_SYSTEM_ID and RNID is the Tivoli
Information Management for z/OS RNID. The record id did previously exist and the
transaction was successful.

ID RNID Record not updated.
Where ID is a specific HARDWARE_SYSTEM_ID and RNID is the Tivoli
Information Management for z/OS RNID. The record id did previously exist and the
transaction was not successful. Refer to the client log for the Tivoli Information
Management for z/OS return and reason codes.

Terminating Session.
The session is terminating.

Terminated...Transaction Errors:
The session has terminated with the specified error count.

Messages

385Guide to Integrating with Tivoli Applications

29.
In

teg
ratin

g
w

ith
Tivo

li
In

ven
to

ry

Messages

386 Version 7.1

Integrating with Tivoli Enterprise Console
(TEC)

One of the highest priorities of information technology (IT) departments charged with
managing distributed computing environments is to ensure that problems, as well as
conditions that could lead to problems, are handled in a timely and efficient manner.
Ensuring the high availability of applications running in these environments is another
essential responsibility of the IT staff to its users. Without the proper management platform
and tools for generating, transmitting, processing, and responding to significant problem
alerts, it is impossible to deploy reliable advanced client/server technologies for critical
business applications. The Tivoli Enterprise Console (TEC) provides the tools for handling
problems within a distributed computing environment.

Tivoli Information Management for z/OS provides the TEC Integration Facility which
integrates the Tivoli Enterprise Console into the Tivoli Information Management for z/OS
problem management application. The Tivoli Information Management for z/OS TEC
Integration Facility is described in the following sections.

TEC Integration Facility
The TEC Integration Facility enables you to create, update, and delete Tivoli Information
Management for z/OS problem records based on events received by the Tivoli Enterprise
Console (TEC). Specifically, you can:

¶ Issue problems to Tivoli Information Management for z/OS from the TEC based on
rules that apply to the TEC events.

¶ Issue problems to Tivoli Information Management for z/OS from the TEC manually

¶ Modify events in the TEC and automatically update the corresponding problem records
in Tivoli Information Management for z/OS.

Installing the TEC Integration Facility
The TEC Integration Facility uses Problem Service to pass information from TEC events to
Tivoli Information Management for z/OS problem records. Problem Service must be
installed on a Tivoli Management Region (TMR) server. A TEC server must also be running
in the same TMR and the TEC Integration Facility must be installed on the same
workstation as the TEC server. The TEC Integration Facility requires the following software:
¶ Tivoli Enterprise Console Version 3.1
¶ Problem Service (described in “III — Problem Service” on page 247)
¶ Patch 3.0-TMP-0012 for the Tivoli desktop may be required if you cannot display the

tasks in a task library from within the Enterprise Console.

30

387Guide to Integrating with Tivoli Applications

30.
In

teg
ratin

g
w

ith
Tivo

li
E

n
terp

rise
C

o
n

so
le

(T
E

C
)

The TEC Integration Facility is supported on the following platforms:
¶ AIX 4.2
¶ Windows NT 4.0

The TEC Integration Facility is shipped on the Tivoli Information Management for z/OS
installation medium in the \Tivoli_Int\TIF directory. If you are installing this from a
CD-ROM, insert the CD-ROM into your CD-ROM drive. Then use the Tivoli desktop to
install the TEC Integration Facility by clicking Install Product. The files used by the TEC
Integration Facility are copied to the $BINDIR\INFOTEC directory. $BINDIR is the
directory in which Tivoli is installed. See “List of Files” on page 394 for a list of the files
that are copied.

Task Library
After installing the TEC Integration Facility a new task library called INFOTEC is added in
the TMR’s policy region. This task library contains three tasks: Create_Record,
Update_Record, and Delete_Record. You can modify these tasks to meet your requirements,
or you can add your own tasks to the task library.

The Create_Record task extracts information from a selected TEC event and then creates a
problem record in the Tivoli Information Management for z/OS database. The task uses the
event number from the event to relate the event to a problem record. See “Mapping Event
Data to Problem Records” on page 391 for more information about this relationship.

The Update_Record task extracts information from a selected TEC event and then updates
the appropriate problem record in the Tivoli Information Management for z/OS database.
The record to be updated must have been created previously using either the Create_Record
task or the Trouble Ticket task. See “Trouble Ticket” on page 389 for more information
about the Trouble Ticket task.

The Delete_Record task extracts information from a selected TEC event and then deletes the
appropriate problem record in the Tivoli Information Management for z/OS database. The
record to be deleted must have been created previously using either the Create_Record task
or the Trouble Ticket task.

To test the tasks in the task library, generate an event by entering the TEC wpostemsg
command from the command prompt. The format of this command is:

wpostemsg -r rrr -m mmm slot1=value1 class source

where:
rrr = severity
mmm = message describing the event
slot1 = slot (or field) in the event
value1

= value assigned to the slot
class = type of event
source

= adapter (or program) that generated the event

Installing the TEC Integration Facility

388 Version 7.1

For example, to simulate an NFS_No_Response event generated by the LOGFILE adapter
on a workstation where the hostname is myhost and the server name is myserver, enter the
following command:

wpostemsg -r FATAL -m ″Test Message″ hostname=myhost server=myserver
NFS_No_Response LOGFILE

See the TME 10 Enterprise Console User’s Guide for more information about the
wpostemsg command.

Trouble Ticket
When viewing an event group or source in TEC, the “Event” menu item contains an action
called “Trouble Ticket”. When this action is selected, TEC tries to run a program called
TroubleTicket.sh in the $BINDIR\TME®\TEC directory. When you install the TEC
Integration Facility, a new TroubleTicket.sh is created in the $BINDIR\INFOTEC directory.
This program performs the same functions as the Create_Record task. If you want TEC to
run this program when you select ″Trouble Ticket″ from the Event menu, copy
TroubleTicket.sh from the $BINDIR\INFOTEC directory to the $BINDIR\TME\TEC
directory.

Creating a Problem Record
The TEC Integration Facility provides four ways to create a problem record. You can:

¶ Select Trouble Ticket from the Event menu while viewing a TEC event.

¶ Manually run the Create_Record task from the INFOTEC library while viewing a TEC
event, by selecting Execute on Selected Event from the Task menu.

¶ Automatically run the Create_Record task from the INFOTEC library when TEC
receives an event, by selecting New with Selected Event from the Automated Tasks
menu.

¶ Write rules that run the Create_Record task from the INFOTEC library when TEC
receives an event.

For more information about running tasks, see the TME 10 Enterprise Console User’s Guide.
For more information about writing rules, see the Tivoli Enterprise Console Rule Builder’s
Guide.

Updating a Problem Record
The TEC Integration Facility provides three ways to update a problem record that was
created previously using either the Create_Record task or the Trouble Ticket task. You can:

¶ Manually run the Update_Record task from the INFOTEC library while viewing a TEC
event, by selecting Execute on Selected Event from the Task menu.

¶ Automatically run the Update_Record task from the INFOTEC library when TEC
receives an event, by selecting New with Selected Event from the Automated Tasks
menu.

¶ Write rules that run the Update_Record task from the INFOTEC library when TEC
receives an event.

Task Library

389Guide to Integrating with Tivoli Applications

30.
In

teg
ratin

g
w

ith
Tivo

li
E

n
terp

rise
C

o
n

so
le

(T
E

C
)

When the Update_Record task updates a problem record, it updates all the fields listed in the
Problem Service configuration file. It is recommended that you do not log on to Tivoli
Information Management for z/OS and manually update these fields in a problem record
because the Update_Record task will overlay your changes the next time the task runs.

Deleting a Problem Record
The TEC Integration Facility provides three ways to delete a problem record that was
created previously using either the Create_Record task or the Trouble Ticket task. You can:

¶ Manually run the Delete_Record task from the INFOTEC library while viewing a TEC
event, by selecting Execute on Selected Event from the Task menu.

¶ Automatically run the Delete_Record task from the INFOTEC library when TEC
receives an event, by selecting New with Selected Event from the Automated Tasks
menu.

¶ Write rules that run the Delete_Record task from the INFOTEC library when TEC
receives an event.

Task Status
There are different ways to view the status of a task depending on how you run the task. For
the Trouble Ticket task, a message box is displayed when the task finishes. If you manually
run a task from the INFOTEC library, a message box is displayed when the task finishes. If
you automatically run a task from the INFOTEC library, no message box is displayed when
the task finishes. If you run a task from a rule, you can view the task’s status by selecting
View Action Status while viewing an event.

Additional sources of information are the Problem Service log (infogw.log) and the HLAPI
client log (idblog.act).

Rules
Rules enable you to specify what actions occur automatically when events that meet certain
conditions are received by TEC. The TEC Integration Facility provides you with a sample
rule set in the $BINDIR\INFOTEC directory. This rule set performs the following actions:

¶ If a new NFS_No_Response event is received, the Create_Record task is run to create a
problem record in the Tivoli Information Management for z/OS database.

¶ If a TEC administrator acknowledges the event, the Update_Record task is run to update
the corresponding problem record.

¶ If a TEC administrator closes the event, the Update_Record task is run to update the
corresponding problem record.

¶ If a duplicate NFS_No_Response event is received within 10 minutes of a previous
NFS_No_Response event, the repeat count in the previous event is incremented, the
duplicate event is discarded, and the Update_Record task is run to update the
corresponding problem record that was created by the previous event.

¶ If an NFS_OK event is received within 10 minutes of a previous NFS_No_Response
event, the Delete_Record task is run to delete the corresponding problem record that was
created by the previous NFS_No_Response event.

Updating a Problem Record

390 Version 7.1

You can use the sample rule set as a base for writing a rule set that performs the processing
needed by your organization. Before using the sample rule set, you must edit the infotec.rls
file and change all instances of ″??????″ to the host name of the workstation on which the
INFOTEC task library is installed.

To add the rule set to your rule base, perform the following steps from the command prompt
on the workstation that is running the TEC Server:

1. Enter wimprbrules to import the rule set into the rule base

2. Enter wcompbrules to compile the rule base

3. Enter wloadrb to load the rule base

4. Enter wstopesvr to stop the TEC Event Server

5. Enter wstartesvr to start the TEC Event Server

See the Tivoli Enterprise Console Rule Builder’s Guide for more information about writing
and using rules. See the TME 10 Enterprise Console User’s Guide for more information
about commands that can be issued at the command prompt.

Mapping Event Data to Problem Records
The TEC Integration Facility uses the Problem Service configuration file to map event data
to problem record fields. A sample configuration file is in the $BINDIR\INFOTEC
directory. The following list shows some sample data mappings:

Event data --> maps to --> Problem Record field
---------- ---------------------
Severity Current Priority

FATAL ---> 1
CRITICAL ---> 2
MINOR ---> 3
WARNING ---> 3
HARMLESS ---> 4
UNKNOWN ---> 4

Status Problem Status
OPEN ---> INITIAL
ACK ---> OPEN
CLOSED ---> CLOSED

Each event has a unique event number that is generated by TEC. When either the
Create_Record or Trouble Ticket task creates a problem record, it stores the event number in
a field in the problem record. The sample configuration file uses the TEC EVENT ID field
(s-word index S14FC). When either the Update_Record or Delete_Record task is run for an
event, it uses the event number to search for the corresponding record in the Tivoli
Information Management for z/OS database. Therefore, the Update_Record and
Delete_Record tasks can only process problem records that were created by a task, such as
the Create_Record task or the Trouble Ticket task, that stores the event number in the TEC
EVENT ID field. Make sure that the TEC EVENT ID field is included in the PIDTs or data
views that you specified in your Problem Service configuration file. See “Preparing the
HLAPI Data Views on MVS” on page 293 for additional information. However, you can
modify both the TEC Integration Facility tasks and the Problem Service configuration file to
implement your own methodology for relating TEC events to Tivoli Information
Management for z/OS problem records.

Rules

391Guide to Integrating with Tivoli Applications

30.
In

teg
ratin

g
w

ith
Tivo

li
E

n
terp

rise
C

o
n

so
le

(T
E

C
)

You can modify the Problem Service configuration file to change the data that is passed
from an event to a problem record. If you change the configuration file, you may need to
change the scripts invoked by the TEC Integration Facility tasks. Before using the sample
configuration file, you must edit the blmygc.cfg file and replace all occurrences of ″??????″
with the appropriate values for your system. See “Customizing Tasks” for more information
about customizing the TEC Integration Facility tasks. See “Problem Service Installation” on
page 261 and “Customizing Your Problem Service Configuration File” on page 271 for more
information about installing and configuring Problem Service.

When you run the Update_Record task, Problem Service expects the task to pass all of the
fields specified in the configuration file for the ″Update″ transaction. If the task omits one or
more fields, Problem Service deletes the corresponding field in the Tivoli Information
Management for z/OS problem record. If you want to change the Update_Record task so
that it only passes changed data, you also need to set ″InputJustChangedData=yes″ in the
Problem Service configuration file. See “Customizing Your Problem Service Configuration
File” on page 271 for more information about changing the configuration file.

Different types of TEC events can contain different data. Support for different event types
can be implemented by modifying the provided sample tasks or creating new tasks, and by
modifying the data mappings in the Problem Service configuration file.

Customizing Tasks
The tasks created by the TEC Integration Facility use the transfer, update, and search
transactions provided by Problem Service. The tasks are written as shell scripts and can be
customized for your use. You can also add new tasks to the INFOTEC task library. The shell
scripts are stored in the $BINDIR\INFOTEC directory. The following is a list of tasks and
their associated shell scripts:

Task Shell Script

Create_Record
itcreate.sh

Update_Record
itupdate.sh

Delete_Record
itdelete.sh

Trouble Ticket
TroubleTicket.sh

If you modify TroubleTicket.sh, you must copy it to $BINDIR\TME\TEC in order to
activate your changes. If you modify any of the other scripts, do the following to activate
your changes:

1. Open the Policy Region.

2. Open the INFOTEC task library.

3. Select the task to be changed, then use the right mouse button to select Edit Task. The
Edit Task window displays.

4. Under Platforms Supported, click Generic to uncheck it.

Mapping Event Data to Problem Records

392 Version 7.1

5. Under Platforms Supported, click Generic to check it again. The New Executable For
Task window displays.

6. Type the host name of the workstation on which the script is stored, and type the full
path of the script. For example, D:\Tivoli\bin\w32-ix86\INFOTEC\itcreate.sh.

7. Click Set & Close to close the New Executable For Task window, then click Change &
Close to close the Edit Task window.

For more information about editing a task in a task library, see the Tivoli Framework User’s
Guide

If you modify a shell script, be aware that some problem record fields only accept
alphanumeric and national characters. Because event data can contain other special
characters like periods, underscores, and hyphens, be sure that either the Problem Service
configuration file or your shell script translates the special characters to acceptable
characters, if necessary.

The tasks in the INFOTEC library can be written as C programs instead of shell scripts. See
“Problem Service Application Programming Information” on page 299 for more information
about writing programs that use Problem Service.

Example:

The Create_Record task in itcreate.sh sends 9 fields to Problem Service to create a problem
record via the ″transfer″ transaction. The call to InfoGW::transfer is shown below:

RNID= idlcall $OID InfoGW::transfer { 9 \
{\"Originator\" \"$MYSOURCE\"} \
{\"StartDate\" \"$MYDATE\"} \
{\"Priority\" \"$severity\"} \
{\"EventNum\" \"$ev_key\"} \
{\"RepeatCount\" \"$repeat_count\"} \
{\"ClassDesc\" \"$MYCLASS\"} \
{\"Description\" \"$MYDESC\"} \
{\"Detail\" \"$MYDETAIL\"} \
{\"Status\" \"$status\"}} \"TECevent\"

Suppose your event contains a slot called ″server″, and you want to store the value of that
slot in the System Name field (s-word index S0CA5) when a problem record is created.

First, add a new mapping to the Problem Service configuration file as shown:
// --
// Define additional Transfer mappings.
// --
Transactions=transfer;
S0CA5(8)<<Server; // ADDED THIS LINE!
S0E0F(45)<<ClassDesc;
S1260<<"TGATEW1"; // Indicates this record was transferred by this

// Problem Service gateway.

Next, add the slot to the call to InfoGW::transfer and increment the field count:
RNID= idlcall $OID InfoGW::transfer { 10 \ # CHANGED THIS LINE!

{\"Server\" \"$server\"} \ # ADDED THIS LINE!
{\"Originator\" \"$MYSOURCE\"} \
{\"StartDate\" \"$MYDATE\"} \
{\"Priority\" \"$severity\"} \
{\"EventNum\" \"$ev_key\"} \
{\"RepeatCount\" \"$repeat_count\"} \

Customizing Tasks

393Guide to Integrating with Tivoli Applications

30.
In

teg
ratin

g
w

ith
Tivo

li
E

n
terp

rise
C

o
n

so
le

(T
E

C
)

{\"ClassDesc\" \"$MYCLASS\"} \
{\"Description\" \"$MYDESC\"} \
{\"Detail\" \"$MYDETAIL\"} \
{\"Status\" \"$status\"}} \"TECevent\"

If the ″server″ slot contains special characters like periods, underscores or hyphens, you may
need to translate these special characters to characters that Tivoli Information Management
for z/OS accepts. This translation can be performed by the Problem Service configuration
file as shown:
// --
// Define additional Transfer mappings.
// For "Server", translate periods and hyphens to #
// --
Transactions=transfer;
S0CA5 (8)<<change(Server, ".", "#", "-", "#"); // ADDED THIS LINE!
S0E0F (45)<<ClassDesc;
S1260<<"TGATEW1"; // Indicates this record was transferred by this

// Problem Service gateway.

Finally, update the task library as described in “Customizing Tasks” on page 392.

List of Files
$BINDIR\INFOTEC directory:

blmygc.cfg sample configuration file for Problem Service

infotec.rls sample rule set

itcreate.sh shell script for Create_Record task

itcrtlib.sh shell script to create INFOTEC task library

itdelete.sh shell script for Delete_Record task

itlib.tll task definitions used by itcrtlib.sh

itupdate.sh shell script for Update_Record task

TroubleTicket.sh shell script for Trouble Ticket task

Customizing Tasks

394 Version 7.1

Integrating with Tivoli Software
Distribution

Tivoli Software Distribution automates the software distribution process to clients and
servers throughout the enterprise. It allows you to install and update applications and
software in a coordinated, consistent manner across UNIX and PC platforms. Tivoli
Software Distribution simplifies the software distribution process, enabling timely
client/server application deployment. Software Distribution gives the administrator a
centralized software management capability to add new applications, update existing
software with newer versions, and synchronize software on distributed systems.

Overview of the Interface to Tivoli Software Distribution
You can run Tivoli Software Distribution from within Tivoli Information Management for
z/OS via the Change Management facility. The software to be distributed is defined in a
Tivoli software distribution file package. (The definition and creation of a file package is
described in the Tivoli Software Distribution Reference Manual.) The target machines, those
machines to which the software is to be distributed, are defined as those which are
subscribed to the software distribution profile manager containing the file package. A change
request record is created; part of the data contained in this change request record is the name
of the software file package that is to be distributed. Once the change request record has
been approved, an event is generated and sent via TCP/IP to the Tivoli Enterprise Console
(TEC). The TEC server receives this as an event, and associates this event with the
appropriate rules for processing the event. The rules associated with the event invoke a
PERL program that causes the Software Distribution process to distribute the file package
named in the change request record to the designated machines.

Installing the Components Used by the Interface
This section lists the steps for installing the components used by the interface for Tivoli
Information Management for z/OS to Tivoli Software Distribution. Tivoli Information
Management for z/OS relies on Tivoli Software Distribution and the Tivoli Enterprise
Console. Before you install the host and workstation components for this function, ensure
that Tivoli Software Distribution is installed and that a package file can be created, with
target machines subscribed to it. For information on installing Tivoli Software Distribution,
refer to the Tivoli Software Distribution User’s Guide. You must have also installed the
Tivoli Event Integration Facility for OS/390 (5697–C74).

Installation involves loading both host and workstation components. Although it is not
essential to install the host components before installing the workstation components, that is
the recommended order.

31

395Guide to Integrating with Tivoli Applications

31.
In

teg
ratin

g
w

ith
Tivo

li
S

o
ftw

are
D

istrib
u

tio
n

Installing the Host Components
Follow these steps to install the host portion of the interface from Tivoli Information
Management for z/OS to Tivoli Software Distribution. The steps involve modifying the panel
flow for your Change Management process to add the invocation of the interface at the
appropriate point(s), tailoring the configuration file used by the Tivoli Information
Management for z/OS TEC Event Adapter, and tailoring the JCL for a batch job that runs
this event adapter. It is assumed that you have already installed Tivoli Information
Management for z/OS Version 7.1.

1. Modify the panel flow for your Tivoli Information Management for z/OS Change
Management process. If you use the shipped version of these panels, you can skip this
step. For an example of the necessary modifications, refer to the shipped version of
panel BLG0CU00 (for the collection of data such as a file package name and related
items), and panel BLG0M500 (to initiate a software distribution request when all
approvers have approved the change request record).

2. Tailor the Tivoli Information Management for z/OS TEC Event Adapter configuration
file located in the OS/390 UNIX System Services HFS path named
/usr/lpp/InfoMan/tec/blgtecad.conf

This is blgtecad.conf as it is shipped from Tivoli. Modify this file to identify the target
TEC server by HOSTNAME or by PORT number.

Description:
Tivoli Information Management for z/OS Message Event Adapter Configuration file
#
===
#
ServerLocation=hostname
#
Default: None
Description: Specifies the name of the host on which the event
server is installed. The value in this field must be the
hostname of the system where the TEC server
is installed. The ServerLocation keyword is required.
The ServerLocation keyword may contain more than one value,
separated by commas. If more than one value is specified, the
first location for which a connection can be established will
be the location used.
#
#ServerPort=0
#
Default: 0
Description: Specifies the port number on which the event
server listens. This value should be 0 unless the portmapper
is not available on the server. If the value is not specified
or is specified as 0, the port number is retrieved by calling
the portmapper. The ServerPort keyword may contain more than
one value, separated by commas. If more than one port number
is specified, each port number specified should be paired
with a ServerLocation specified.
#
#TestMode=yes
#
Default: None
Valid values: yes|YES
Description: When TestMode is specified as yes or YES, events
are not sent to the TEC console but instead flushed to
a text file with a name that matches the value specified for
serverlocation.

Installing the Components Used by the Interface

396 Version 7.1

|

#
#
BufferEvents=no
#

3. Tailor the JCL for the batch job used to run the Tivoli Information Management for z/OS
TEC Event Adapter program. Sample JCL for this job can be found in member
BLGTECAD in the SBLMSAMP sample library. Instructions that describe the required
modifications are included.

Note: This job will require RACF authority to run program blgtecad which is installed
in the OS/390 UNIX System Services HFS file named
/usr/lpp/InfoMan/tec/blgtecad

This is the JCL for job BLGTECAD as it is shipped from Tivoli:
//BLGTECAD JOB
//*---
//*---
//* This is a sample JCL stream for running the Tivoli Information
//* Management for z/OS TEC adapter TSX. This job should be scheduled
//* to run at intervals appropriate for your installation. You must
//* change the dataset names for DD names STEPLIB, ISPPROF, ISPPLIB,
//* ISPMLIB, ISPSLIB, ISPTLIB, BLGTRACE, ISPLLIB, SYSPROC, and
//* SYSTSPRT to correspond to the data set names at your installation.
//* You may also need to change the privilege class and session member
//* listed in the parameters below. The privilege class used must
//* have the authority to search for and update CHANGE MANAGEMENT
//* records.
//*
//* The Tivoli Information Management for z/OS "RDR" operator command
//* can be used to terminate this job,
//* E.G. "F procname,RDR,FLUSH=BLGTECAD"
//* where procname designates the BLX-SP this job is connected to.
//*
//* ---
//*
//* DD names ISPxxxx are the libraries required by ISPF.
//* DD name BLGTRACE can be used to trace the flow of TSPs
//* for informational or debug purposes. Refer to the
//* TERMINAL SIMULATOR GUIDE AND REFERENCE for information
//* on using "TRACE" with TSPs.
//* DD name SYSTSPRT is for TSO background output, which is where
//* generated messages will be written.
//*

//* USERID is the MVS user ID assigned to this job.
//* This ID should be in the privilege class specified in the
//* parameters below.
//*--
//STEP1 EXEC PGM=IKJEFT01,DYNAMNBR=25,REGION=4M,TIME=1440
//STEPLIB DD DISP=SHR,DSN=ISP.SISPLPA
// DD DISP=SHR,DSN=ISP.SISPLOAD
// DD DISP=SHR,DSN=BLM.SBLMMOD1
//ISPPROF DD DISP=SHR,DSN=USERID.ISPF.ISPPROF
//ISPPLIB DD DISP=SHR,DSN=ISP.SISPPXXX
//ISPTLIB DD DISP=SHR,DSN=ISP.SISPTXXX
//ISPMLIB DD DISP=SHR,DSN=ISP.SISPMXXX
//ISPSLIB DD DISP=SHR,DSN=ISP.SISPSLIB
//ISPLLIB DD DISP=SHR,DSN=ISP.SISPLPA
// DD DISP=SHR,DSN=ISP.SISPLOAD
// DD DISP=SHR,DSN=BLM.SBLMMOD1
//SYSPROC DD DISP=SHR,DSN=ISP.SISPCLIB
//BLGTSX DD DISP=SHR,DSN=BLM.SBLMTSX
//SYSPRINT DD SYSOUT=A

Installing the Components Used by the Interface

397Guide to Integrating with Tivoli Applications

|

31.
In

teg
ratin

g
w

ith
Tivo

li
S

o
ftw

are
D

istrib
u

tio
n

//BLGTRACE DD SYSOUT=A
//SYSTSPRT DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=0)
//SYSTSIN DD *

PROFILE PREFIX(USERID)
ISPSTART PGM(BLGINIT) +
PARM(IRC(RUN BLGTAGSD,;QUIT) CLASS(MASTER) SESS(00))

/*
//

Note: If you are using a database that is logically partitioned, you should choose a
privilege class that has access to all partitions so that this job can access any
record in any database partition. The Tivoli Information Management for z/OS
Program Administration Guide and Reference contains additional information on
logically partitioned databases.

4. If the Tivoli Information Management for z/OS TEC Event Adapter is installed in a
directory path other than the default, TSX BLGTAGSD must be modified to use the
correct directory path.

When you have completed these steps, you can proceed with installing the workstation
components for this interface.

Installing the TEC Components
Before beginning this portion of the installation, ensure that the HLAPI client can
communicate with Tivoli Information Management for z/OS on MVS.

This portion of the installation should be done by the TEC administrator at your site.

¶ Create a directory for the TEC components.

¶ Insert the Tivoli Information Management for z/OS installation CD-ROM into your
CD-ROM drive and copy /Tivoli_Int/SWD/info_swd.tar into the directory you created
in the previous step.

¶ Unpack the tar file by typing tar -xvf info_swd.tar. To run tar on Windows NT, you
must set the Tivoli environment variables and start the bash shell.

Software Distribution from TEC
There are three parts to distribute software from TEC events. The first is to define the
classes; this is described in “Class Definitions for TEC Events”. Within TEC there are rules
that identify the events. The rules that identify the Tivoli Information Management for z/OS
event are described in “Rules for Processing Events” on page 399. The program that initiates
the actual software distribution is described in “PERL Program To Initiate Distribution of a
File Package” on page 400.

Class Definitions for TEC Events
These are the class definitions for TEC events that can be used to initiate a distribution of
software:
#
INFO.baroc
#
Example for events
#
#

TEC_CLASS:
INFO_sw_dist ISA EVENT

DEFINES {

Installing the Components Used by the Interface

398 Version 7.1

severity: default = HARMLESS;
filemode: STRING, default="a";
distmode: STRING, default="b";
fp_name: STRING;
subscribers: STRING;
};

END

TEC_CLASS:
INFO_close_event ISA EVENT

DEFINES {
severity: default = WARNING;
close_ev_class: STRING;
close_ev_handle: INTEGER;
close_sv_handle: INTEGER;
close_date_reception: INT32;
};

END

Rules for Processing Events
The class INFOsw_dist, when evaluated by the appropriate rules, can be used to trigger the
distribution of a file package. To include these event definitions, use the following steps and
practices:

1. Check the class by running wchkclass INFO.baroc rbname where rbname is the name
of the rulebase to which you intend to include these classes.

2. Import the class by running wimprbclass INFO.baroc rbname where rbname is the
name of the rulebase to which you wish to import the definitions.

3. Load the rulebase by running wloadrb rbname.

4. Stop and restart the event server.

The following rules process an INFO_sw_dist event and call a task to distribute a file
package. The first rule is to call a PERL program that triggers a software distribution.

/* */
/* */

rule: distribute_Package: (
event: _ev of_class 'INFO_sw_dist'

where [
severity: equals 'HARMLESS'
],

reception_action: (
set_event_status(_ev, 'ACK')
),

reception_action: (
exec_program(_ev,

'perl SWDist.pl',
'xxx' ,
[],
'YES')

)

).

Note: If you encounter difficulty with this program, the most likely cause is the 'perl
SWDist.pl' statement. The PERL interpreter is shipped with TEC. One possible
cause of the problem is that the PERL interpreter is not pointed to correctly; ensure

Installing the Components Used by the Interface

399Guide to Integrating with Tivoli Applications

31.
In

teg
ratin

g
w

ith
Tivo

li
S

o
ftw

are
D

istrib
u

tio
n

that the path is correct. It is also possible that there are path problems getting to
SWDist.pl. You may need to change this statement to directly point to the PERL
interpreter and/or SWDist.pl.

The second rule (close_cause_event) can be used to close an event when its corresponding
ticket in Tivoli Information Management for z/OS is closed. This rule assumes that the ticket
has captured the message ID, as well as the class name of the event that had the ticket
opened. Usually these events are related to a Tivoli Information Management for z/OS
record. In many instances, it was the event that caused the Tivoli Information Management
for z/OS record to be created.
rule: close_cause_event: (

event: _ev of_class 'INFO_close_event'
where [

severity: equals 'WARNING',
msg: _msg,
close_ev_class: _cclass, /* class of event that opened ticket */
close_ev_handle: _cev, /* event_handle of causing event */
close_sv_handle: _csv, /* server_handle of causing event */
close_date_reception: _cdate /* date of causing event */

],

action: close_original_event:(
all_instances(

event: _ev_close of_class _cclass
where [

event_handle: equals _cev,
server_handle: equals _csv,
date_reception: equals _cdate

]
),

set_event_status(_ev_close, 'CLOSED')
),

reception_action: (
set_event_status(_ev, 'ACK')
)

).

PERL Program To Initiate Distribution of a File Package
This code demonstrates how to initiate a software distribtion using PERL code.
SWDist.pl
#
#
Perl program, invoked via rules from TEC to initiate a S/W distribution
#

This captures the filemode slot
$filemode = $ENV{'filemode'};
if (!$name) { $filemode = "a"; }

This captures the distmode
$distmode = $ENV{'distmode'};
if (!$distmode) { $distmode = "b"; }

This captures the file package name from the message
$fp_name = $ENV{'fp_name'};
if (!$fp_name) {

print "No file package name was specified! Exit process\n";
exit (2);

Installing the Components Used by the Interface

400 Version 7.1

$fp_name = "@Sample_Files";
}

This captures the subscriber's list, if present
$sublist = $ENV{'sublist'};

#
Now, issue the distribute command and test the return code.
#

First, build the command we wish to issue
$Command = "wdistfp -".$filemode." -".$distmode." ".$fp_name." ".$sublist ;

print "Command is = ".$Command."\n";

$rc = system($Command);
printf "wdistfp return code = %1u \n", $rc/256;

exit $rc/256; # Give the wdistfp return code.

Using the Interface to Tivoli Software Distribution
Using this interface consists of two steps: creating a change request record and approving
the change request record. Remember, the sample JCL for running the Tivoli Information
Management for z/OS TEC Event Adapter is contained in BLGTECAD, shipped in the
SBLMSAMP sample library. It must be modified for your installation. Once this JCL is
started, it can be stopped with the RDR command, described in the Tivoli Information
Management for z/OS Operation and Maintenance Reference document.

Example of Distributing the Tivoli Information Management for z/OS
HLAPI Clients

Tivoli Information Management for z/OS provides a set of Software Distribution file
packages that enable you to distribute and install the Tivoli Information Management for
z/OS HLAPI clients. The file packages provide “containers” for, or the mechanism to
distribute, the HLAPI clients. The file packages contain references to the files and directories
to be distributed, and options or directions on how to distribute them. To install the file
packages, look at the READ.ME file in the directory \HLAPI\SW_DIST on the installation
CD.

The file packages make use of configuration scripts and the “unattended” install feature of
the HLAPI clients in order to automate the installation process. The file packages,
configuration scripts, and installation response files can all be customized and should be
customized to fit your particular installation. For more information on the installation
response files provided with the HLAPI clients, see the Tivoli Information Management for
z/OS Client Installation and User’s Guide.

The following Tivoli Information Management for z/OS HLAPI client features can be
installed using Tivoli Software Distribution:

HLAPI/2
HLAPI/NT
HLAPI/AIX
HLAPI/HP
HLAPI/Solaris

HLAPI/CICS® and HLAPI/USS are installed using SMP/E.

Installing the Components Used by the Interface

401Guide to Integrating with Tivoli Applications

31.
In

teg
ratin

g
w

ith
Tivo

li
S

o
ftw

are
D

istrib
u

tio
n

To distribute software upon approval of a Tivoli Information Management for z/OS change
request record, you need:

¶ Tivoli Software Distribution Version 3.1

¶ Tivoli Enterprise Console Version 3.1

Creating a Change Request Record
In this stage of the process, you must create a change request record that defines the change
that is to occur; in this instance, the software that is to be installed. A file package has
previously been defined that identifies the software to be distributed.

From the initial Tivoli Information Management for z/OS screen, type 5 and press Enter.

BLG0EN20 --- PRIMARY OPTIONS MENU --- APPLICATION: MANAGEMENT
OPTIONS:

1. OVERVIEW.......Display general information and product enhancements.
2. PROFILE........Display or alter invocation or session defaults.
3. APPLICATION....Change application, list available applications.
4. CLASS..........Change current class, list available classes.
5. ENTRY..........Create a record.
6. INQUIRY........Search for records.
7. UTILITY........Copy, display, print, delete, and update records.
8. GLOSSARY.......Display a list of searchable words in the database.
9. PMF............Modify or create panels.

Select an option, enter a command, or type QUIT to exit.

Tivoli Information Management for z/OS Version 7 Release 1
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

===> 5

Next, type 2 and press Enter to identify this record as a change request record.

+ BLG00000 -------------------- ENTRY --------------------- 1 OF 1-+
| |
| USE....Identify the type of description (record) to be entered. |
| |
| 1.PROBLEM............Enter data processing problem description. |
| 2.CHANGE.............Enter change request for system/procedure. |
| 3.CONFIG.............Enter description of system configuration, |
| financial data, or service organization. |
| 4.RULES..............Enter description of escalation rules. |
| 5.DATA MODEL.........Enter description of a data model. |
| 6.PEOPLE.............Enter description of a person. |
| 7.SOLUTION...........Enter solution record. | |
| |
+-------------------------- SELECT ITEM ---------------------------+

===> 2

Complete the required fields (the name of the requester, the change status, and a description
of the change request) and any other fields as needed. In this example, a software
distribution file package called ntfp.fp will be used.

Using the Interface to Tivoli Software Distribution

402 Version 7.1

|

BLG0C100 CHANGE REQUESTER ENTRY CHANGE: ________

Enter change requester data; cursor placement or input line entry allowed.

1. Requested by.....<H> SMITH__________ 11. Change type......... ________
2. Requester dept...... ___________ 12. Change status....<H> OPEN___
3. Requester phone..... _____________ 13. Change reason....... ________
4. Network name........ ________ 14. User change number.. ________
5. System name......... ________ 15. Initial priority.... __
6. Program name........ ________ 16. Estimated duration.. ________
7. Device name......... ________ 17. Problem fixed....... ________
8. Key item affected... ________ 18. User form number.... ________
9. Date required....... __________ 19. Location code....... ________
10. Time required....... _____

20. Description......<H> Install HLAPI/NT client______________________

When you finish, type END to save or CANCEL to discard any changes.

===> end

A summary of the change request is displayed. Type 5 and press Enter to identify the
approver(s) for this change request.

BLG0CU01 CHANGE REQUEST SUMMARY CHANGE: ________

Assignee name.......... _______________ Change status........... OPEN
Assignee phone......... _____________ Approval status......... ________
Coordinator name....... _______________ Current priority........ __
Device name............ ________ Date required........... __________
Key item affected...... ________ Planned start date...... __________

Completion date......... __________

Description............ Install HLAPI/NT client

Select one of the following, type END to save your changes, or type CANCEL
to discard your changes.

1. Requester data. 6. Reviewer data.
2. Status data. 7. Activity entry (and file change).
3. Close data. 8. Freeform text.
4. Detail data. 9. File record.
5. Approver data. 10. Software Distribution data.

===> 5

Identify the privilege class of the approver. In this example, assume that a CHGAPPR
privilege class has been created for the purpose of overseeing change requests. On panel
BLGLAPVR, the privilege class CHGAPPR is entered; any users belonging to that privilege
class are able to approve the change request.

Using the Interface to Tivoli Software Distribution

403Guide to Integrating with Tivoli Applications

|

31.
In

teg
ratin

g
w

ith
Tivo

li
S

o
ftw

are
D

istrib
u

tio
n

BLGLAPVR Change Approver Entry LINE 1 OF 14

Enter names of privilege classes that must approve this change request.

Approver
''''' CHGAPPR_
''''' ________
''''' ________
''''' ________
''''' ________
''''' ________
''''' ________
''''' ________
''''' ________
''''' ________
''''' ________
''''' ________
''''' ________
''''' ________

Line Cmds: A=After B=Before D=Delete E=Erase I=Insert
L=Line entry M=Move

Type DOWN, UP, LEFT, or RIGHT to scroll the panel, or type END to exit.

===>

The next task is to identify the name of the file package that contains the software. Type 10
and press Enter.

BLG0CU01 CHANGE REQUEST SUMMARY CHANGE: ________

Assignee name.......... _______________ Change status........... OPEN
Assignee phone......... _____________ Approval status......... ________
Coordinator name....... _______________ Current priority........ __
Device name............ ________ Date required........... __________
Key item affected...... ________ Planned start date...... __________

Completion date......... __________

Description............ Install HLAPI/NT client

Select one of the following, type END to save your changes, or type CANCEL
to discard your changes.

1. Requester data. 6. Reviewer data.
2. Status data. 7. Activity entry (and file change).
3. Close data. 8. Freeform text.
4. Detail data. 9. File record.
5. Approver data. 10. Software Distribution data.

===> 10

Enter the file package name. In the File mode field, you can type ALL if all files in the
package are to be distributed, MOD if only modified files are to be distributed, or NEW if only
files modified since the last distribution are to be distributed.

Using the Interface to Tivoli Software Distribution

404 Version 7.1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

BLG0C800 SOFTWARE DISTRIBUTION ENTRY CHANGE: ________

Enter Software Distribution data; cursor placement or input line entry allowed.

1. File Package Name..<H> ntfp.fp_______________________
2. File mode............. ALL

When you finish, type END to save or CANCEL to discard any changes.

===> end

Type 9 and press Enter to file the record.

BLG0CU01 CHANGE REQUEST SUMMARY CHANGE: ________

Assignee name.......... _______________ Change status........... OPEN
Assignee phone......... _____________ Approval status......... ________
Coordinator name....... _______________ Current priority........ __
Device name............ ________ Date required........... __________
Key item affected...... ________ Planned start date...... __________

Completion date......... __________

Description............ Install HLAPI/NT client

Select one of the following, type END to save your changes, or type CANCEL
to discard your changes.

1. Requester data. 6. Reviewer data.
2. Status data. 7. Activity entry (and file change).
3. Close data. 8. Freeform text.
4. Detail data. 9. File record.
5. Approver data. 10. Software Distribution data.

===> 9

Approving the Change Request Record
The next steps permit you to accept or reject approval of the change request. From
BLG0EN20, type 7 and press Enter to begin the approval process.

Using the Interface to Tivoli Software Distribution

405Guide to Integrating with Tivoli Applications

31.
In

teg
ratin

g
w

ith
Tivo

li
S

o
ftw

are
D

istrib
u

tio
n

BLG0EN20 --- PRIMARY OPTIONS MENU --- APPLICATION: MANAGEMENT

OPTIONS:

1. OVERVIEW.......Display general information and product enhancements.
2. PROFILE........Display or alter invocation or session defaults.
3. APPLICATION....Change application, list available applications.
4. CLASS..........Change current class, list available classes.
5. ENTRY..........Create a record.
6. INQUIRY........Search for records.
7. UTILITY........Copy, display, print, delete, and update records.
8. GLOSSARY.......Display a list of searchable words in the database.
9. PMF............Modify or create panels.

Select an option, enter a command, or type QUIT to exit.

Tivoli Information Management for z/OS Version 7 Release 1
5697-SD9 (C) Copyright IBM Corp., 1981, 2001.

===> 7

Display the record that was previously created.

BLG1UT01 UTILITY ENTRY DIALOG UTILITY

Enter UTILITY information; cursor placement or input line entry allowed.

1. Database..............> 5
2. Record ID.............> 00043512

To start the function, press Enter without field modification.

===>

From the Change Summary Display, type 8 and press Enter.

BLG0S020 CHANGE SUMMARY DISPLAY CHANGE: 00043512
Assignee name.......<H> _____________ Change type..........<H> ________
Assignee phone......... ____________ Change status........<H> OPEN
Coordinator name....<H> _____________ Approval status......<H> PENDING
Program name........... ________ Owning priv. class...... ________
Device name............ ________ Entry priv. class....... MASTER
Key item affected...... ________ Date entered............ 10/07/1998
Date required.......<H> __________ Time entered............ 14:37
Completion date.....<H> __________ Date last altered....<H> 10/07/1998
Current priority....<H> __ Time last altered....<H> 14:37
Estimated duration..<H> ________ User last altered....<H> ARTEMIS

Description............ Install HLAPI/NT client

Select one of the following, or type END or CANCEL to leave this panel.
1. Requester display. 7. Activity list display.
2. Status display. 8. Approver display.
3. Close display. 9. Reviewer display.
4. History display. 10. Record utilities.
5. Freeform text and notes. 11. Software Distribution display.
6. Detail display.

===> 8

Using the Interface to Tivoli Software Distribution

406 Version 7.1

At the Change Approver Display, the authorized approver(s) can elect to accept the change
or reject the change.

BLGLAPST Change Approver Display LINE _ OF _

Enter A to approve or R to reject this change request in the action field
for the approver.

Action Approver Current
Status

_ CHGAPPR _______

Type DOWN or UP to scroll the panel, or type END to exit.

NOTE: You can modify the contents of each area by using cursor movement keys
and PMF screen commands. Type HELP on the command line for more infor-
mation. Type FIELD SHOW on the command line to locate all attribute
bytes on the panel.

===>

Once the change request record has been approved, data from it is forwarded to the Tivoli
Information Management for z/OS TEC Event Adapter running in job BLGTECAD.
BLGTECAD invokes TSX BLGTAGSD which generates a TEC event and sents it to TEC
via TCP/IP. TEC then runs the PERL script to perform the actual software distribution. The
PERL script is described in “PERL Program To Initiate Distribution of a File Package” on
page 400.

Using the Interface to Tivoli Software Distribution

407Guide to Integrating with Tivoli Applications

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

31.
In

teg
ratin

g
w

ith
Tivo

li
S

o
ftw

are
D

istrib
u

tio
n

Using the Interface to Tivoli Software Distribution

408 Version 7.1

Tivoli Decision Support

Tivoli Decision Support enables users to determine how effective they are at controlling and
managing their problem and change processes. It also enables users to analyze information
stored in a Tivoli Information Management for z/OS host database through the Tivoli
Decision Support Discovery Interface.

Where To Find Additional Information
For an overview of how Tivoli Decision Support is used with Tivoli Information
Management for z/OS data, refer to the Tivoli Information Management for z/OS Data
Reporting User’s Guide. Installation and usage instructions for Tivoli Decision Support for
Information Management are provided in softcopy format on the Tivoli Decision Support for
Information Management CD-ROM.

32

409Guide to Integrating with Tivoli Applications

32.
Tivo

li
D

ecisio
n

S
u

p
p

o
rt

Where To Find Additional Information

410 Version 7.1

VI — Appendixes

411Guide to Integrating with Tivoli Applications

412 Version 7.1

Relating Publications to Specific Tasks

Your data processing organization can have many different users performing many different
tasks. The books in the Tivoli Information Management for z/OS library contain
task-oriented scenarios to teach users how to perform the duties specific to their jobs.

The following table describes the typical tasks in a data processing organization and
identifies the Tivoli Information Management for z/OS publication that supports those tasks.
See “The Tivoli Information Management for z/OS Library” on page 419 for more
information about each book.

Typical Tasks

Table 49. Relating Publications to Specific Tasks
If You Are: And You Do This: Read This:

Planning to Use Tivoli
Information Management for
z/OS

Identify the hardware and software
requirements of Tivoli Information
Management for z/OS. Identify the
prerequisite and corequisite products.
Plan and implement a test system.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Installing Tivoli Information
Management for z/OS

Install Tivoli Information Management
for z/OS. Define and initialize data
sets. Create session-parameters
members.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Tivoli Information
Management for z/OS
Integration Facility Guide

Define and create multiple Tivoli
Information Management for z/OS
BLX-SPs.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Define and create APPC transaction
programs for clients.

Tivoli Information
Management for z/OS Client
Installation and User’s Guide

Define coupling facility structures for
sysplex data sharing.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Diagnosing problems Diagnose problems encountered while
using Tivoli Information Management
for z/OS

Tivoli Information
Management for z/OS
Diagnosis Guide

A

413Guide to Integrating with Tivoli Applications

|
|

A
.

R
elatin

g
P

u
b

licatio
n

s
to

S
p

ecific
Tasks

Table 49. Relating Publications to Specific Tasks (continued)
If You Are: And You Do This: Read This:

Administering Tivoli
Information Management for
z/OS

Manage user profiles and passwords.
Define and maintain privilege class
records. Define and maintain rules
records.

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Tivoli Information
Management for z/OS
Integration Facility Guide

Define and maintain USERS record.
Define and maintain ALIAS record.
Implement GUI interface. Define and
maintain command aliases and
authorizations.

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Implement and administer Notification
Management. Create user-defined line
commands. Define logical database
partitioning.

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Create or modify GUI workstation
applications that can interact with
Tivoli Information Management for
z/OS. Install the Tivoli Information
Management for z/OS Desktop on user
workstations.

Tivoli Information
Management for z/OS
Desktop User’s Guide

Maintaining Tivoli
Information Management for
z/OS

Set up access to the data sets. Maintain
the databases. Define and maintain
privilege class records.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Define and maintain the BLX-SP. Run
the utility programs.

Tivoli Information
Management for z/OS
Operation and Maintenance
Reference

Programming applications Use the application program interfaces. Tivoli Information
Management for z/OS
Application Program
Interface Guide

Use the application program interfaces
for Tivoli Information Management for
z/OS clients.

Tivoli Information
Management for z/OS Client
Installation and User’s Guide

Create Web applications using or
accessing Tivoli Information
Management for z/OS data.

Tivoli Information
Management for z/OS World
Wide Web Interface Guide

Typical Tasks

414 Version 7.1

Table 49. Relating Publications to Specific Tasks (continued)
If You Are: And You Do This: Read This:

Customizing Tivoli
Information Management for
z/OS

Design and implement a Change
Management system. Design and
implement a Configuration
Management system. Design and
implement a Problem Management
system.

Tivoli Information
Management for z/OS
Problem, Change, and
Configuration Management

Design, create, and test terminal
simulator panels or terminal simulator
EXECs. Customize panels and panel
flow.

Tivoli Information
Management for z/OS
Terminal Simulator Guide
and Reference

Tivoli Information
Management for z/OS Panel
Modification Facility Guide

Design, create, and test Tivoli
Information Management for z/OS
formatted reports.

Tivoli Information
Management for z/OS Data
Reporting User’s Guide

Create a bridge between NetView and
Tivoli Information Management for
z/OS applications. Integrate Tivoli
Information Management for z/OS
with Tivoli distributed products.

Tivoli Information
Management for z/OS Guide
to Integrating with Tivoli
Applications

Assisting Users Create, search, update, and close
change, configuration, or problem
records. Browse or print Change,
Configuration, or Problem
Management reports.

Tivoli Information
Management for z/OS
Problem, Change, and
Configuration Management

Use the Tivoli Information
Management for z/OS Integration
Facility.

Tivoli Information
Management for z/OS
Integration Facility Guide

Using Tivoli Information
Management for z/OS

Learn about the Tivoli Information
Management for z/OS panel types,
record types, and commands. Change a
user profile.

Tivoli Information
Management for z/OS User’s
Guide

Learn about Problem, Change, and
Configuration Management records.

Tivoli Information
Management for z/OS
Problem, Change, and
Configuration Management

Receive and respond to Tivoli
Information Management for z/OS
messages.

Tivoli Information
Management for z/OS
Messages and Codes

Design and create reports. Tivoli Information
Management for z/OS Data
Reporting User’s Guide

Typical Tasks

415Guide to Integrating with Tivoli Applications

A
.

R
elatin

g
P

u
b

licatio
n

s
to

S
p

ecific
Tasks

Typical Tasks

416 Version 7.1

Tivoli Information Management for z/OS
Courses

Education Offerings
Tivoli Information Management for z/OS classes are available in the United States and in
the United Kingdom. For information about classes outside the U.S. and U.K., contact your
local IBM representative or visit http://www.training.ibm.com on the World Wide Web.

United States
IBM Education classes can help your users and administrators learn how to get the most out
of Tivoli Information Management for z/OS. IBM Education classes are offered in many
locations in the United States and at your own company location.

For a current schedule of available classes or to enroll, call 1-800-IBM TEACh
(1-800-426-8322). On the World Wide Web, visit:

http://www.training.ibm.com

to see the latest course offerings.

United Kingdom
In Europe, the following public courses are held in IBM’s central London education centre
at the South Bank at regular intervals. On-site courses can also be arranged.

For course schedules and to enroll, call Enrollments Administration on 0345 581329, or send
an e-mail note to:

contact_educ_uk@vnet.ibm.com

On the World Wide Web, visit:

http://www.europe.ibm.com/education-uk

to see the latest course offerings.

B

417Guide to Integrating with Tivoli Applications

B
.

E
d

u
catio

n
al

C
o

u
rses

418 Version 7.1

Where to Find More Information

The Tivoli Information Management for z/OS library is an integral part of Tivoli Information
Management for z/OS. The books are written with particular audiences in mind. Each book
covers specific tasks.

The Tivoli Information Management for z/OS Library
The publications shipped automatically with each Tivoli Information Management for z/OS
Version 7.1 licensed program are:
¶ Tivoli Information Management for z/OS Application Program Interface Guide
¶ Tivoli Information Management for z/OS Client Installation and User’s Guide *
¶ Tivoli Information Management for z/OS Data Reporting User’s Guide *
¶ Tivoli Information Management for z/OS Desktop User’s Guide
¶ Tivoli Information Management for z/OS Diagnosis Guide *
¶ Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications *
¶ Tivoli Information Management for z/OS Integration Facility Guide *
¶ Tivoli Information Management for z/OS Licensed Program Specification
¶ Tivoli Information Management for z/OS Master Index, Glossary, and Bibliography
¶ Tivoli Information Management for z/OS Messages and Codes
¶ Tivoli Information Management for z/OS Operation and Maintenance Reference
¶ Tivoli Information Management for z/OS Panel Modification Facility Guide
¶ Tivoli Information Management for z/OS Planning and Installation Guide and Reference
¶ Tivoli Information Management for z/OS Program Administration Guide and Reference
¶ Tivoli Information Management for z/OS Problem, Change, and Configuration

Management*
¶ Tivoli Information Management for z/OS Reference Summary
¶ Tivoli Information Management for z/OS Terminal Simulator Guide and Reference
¶ Tivoli Information Management for z/OS User’s Guide
¶ Tivoli Information Management for z/OS World Wide Web Interface Guide

Note: Publications marked with an asterisk (*) are shipped in softcopy format only.

Also included is the Product Kit, which includes the complete online library on CD-ROM.

To order a set of publications, specify order number SBOF-7028-00.

Additional copies of these items are available for a fee.

Publications can be requested from your Tivoli or IBM representative or the branch office
serving your location. Or, in the U.S., you can call the IBM Publications order line directly
by dialing 1-800-879-2755.

C

419Guide to Integrating with Tivoli Applications

|

C
.

W
h

ere
to

F
in

d
M

o
re

In
fo

rm
atio

n

The following descriptions summarize all the books in the Tivoli Information Management
for z/OS library.

Tivoli Information Management for z/OS Application Program Interface Guide,
SC31-8737-00, explains how to use the low-level API, the high-level API, and the REXX
interface to the high-level API. This book is written for application and system programmers
who write applications that use these program interfaces.

Tivoli Information Management for z/OS Client Installation and User’s Guide,
SC31-8738-00, describes and illustrates the setup and use of Tivoli Information Management
for z/OS’s remote clients. This book shows you how to use Tivoli Information Management
for z/OS functions in the AIX, CICS, HP-UX, OS/2®, Sun Solaris, Windows NT, and
OS/390 UNIX System Services environments. Also included in this book is complete
information about using the Tivoli Information Management for z/OS servers.

Tivoli Information Management for z/OS Data Reporting User’s Guide, SC31-8739-00,
describes various methods available to produce reports using Tivoli Information Management
for z/OS data. It describes Tivoli Decision Support for Information Management (a
Discovery Guide for Tivoli Decision Support), the Open Database Connectivity (ODBC)
Driver for Tivoli Information Management for z/OS, and the Report Format Facility. A
description of how to use the Report Format Facility to modify the standard reports provided
with Tivoli Information Management for z/OS is provided. The book also illustrates the
syntax of report format tables (RFTs) used to define the output from the Tivoli Information
Management for z/OS REPORT and PRINT commands. It also includes several examples of
modified RFTs.

Tivoli Information Management for z/OS Desktop User’s Guide, SC31-8740-00, describes
how to install and use the sample application provided with the Tivoli Information
Management for z/OS Desktop. The Tivoli Information Management for z/OS Desktop is a
Java-based graphical user interface for Tivoli Information Management for z/OS. Information
on how to set up data model records to support the interface and instructions on using the
Desktop Toolkit to develop your own Desktop application are also provided.

Tivoli Information Management for z/OS Diagnosis Guide, GC31-8741-00, explains how to
identify a problem, analyze its symptoms, and resolve it. This book includes tools and
information that are helpful in solving problems you might encounter when you use Tivoli
Information Management for z/OS.

Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications,
SC31-8744-00, describes the steps to follow to make an automatic connection between
NetView and Tivoli Information Management for z/OS applications. It also explains how to
customize the application interface which serves as an application enabler for the NetView
Bridge and discusses the Tivoli Information Management for z/OS NetView AutoBridge.
Information on interfacing Tivoli Information Management for z/OS with other Tivoli
management software products or components is provided for Tivoli Enterprise Console,
Tivoli Global Enterprise Manager, Tivoli Inventory, Tivoli Problem Management, Tivoli
Software Distribution, and Problem Service.

Tivoli Information Management for z/OS Integration Facility Guide, SC31-8745-00,
explains the concepts and structure of the Integration Facility. The Integration Facility
provides a task-oriented interface to Tivoli Information Management for z/OS that makes the

The Tivoli Information Management for z/OS Library

420 Version 7.1

Tivoli Information Management for z/OS applications easier to use. This book also explains
how to use the panels and panel flows in your change and problem management system.

Tivoli Information Management for z/OS Master Index, Glossary, and Bibliography,
SC31-8747-00, combines the indexes from each hardcopy book in the Tivoli Information
Management for z/OS library for Version 7.1. Also included is a complete glossary and
bibliography for the product.

Tivoli Information Management for z/OS Messages and Codes, GC31-8748-00, contains
the messages and completion codes issued by the various Tivoli Information Management
for z/OS applications. Each entry includes an explanation of the message or code and
recommends actions for users and system programmers.

Tivoli Information Management for z/OS Operation and Maintenance Reference,
SC31-8749-00, describes and illustrates the BLX-SP commands for use by the operator. It
describes the utilities for defining and maintaining data sets required for using the Tivoli
Information Management for z/OS licensed program, Version 7.1.

Tivoli Information Management for z/OS Panel Modification Facility Guide,
SC31-8750-00, gives detailed instructions for creating and modifying Tivoli Information
Management for z/OS panels. It provides detailed checklists for the common panel
modification tasks, and it provides reference information useful to those who design and
modify panels.

Tivoli Information Management for z/OS Planning and Installation Guide and Reference,
GC31-8751-00, describes the tasks required for installing Tivoli Information Management for
z/OS. This book provides an overview of the functions and optional features of Tivoli
Information Management for z/OS to help you plan for installation. It also describes the
tasks necessary to install, migrate, tailor, and start Tivoli Information Management for z/OS.

Tivoli Information Management for z/OS Problem, Change, and Configuration
Management, SC31-8752-00, helps you learn how to use Problem, Change, and
Configuration Management through a series of training exercises. After you finish the
exercises in this book, you should be ready to use other books in the library that apply more
directly to the programs you use and the tasks you perform every day.

Tivoli Information Management for z/OS Program Administration Guide and Reference,
SC31-8753-00, provides detailed information about Tivoli Information Management for z/OS
program administration tasks, such as defining user profiles and privilege classes and
enabling the GUI user interface.

Tivoli Information Management for z/OS Reference Summary, SC31-8754-00, is a
reference booklet containing Tivoli Information Management for z/OS commands, a list of
p-words and s-words, summary information for PMF, and other information you need when
you use Tivoli Information Management for z/OS.

Tivoli Information Management for z/OS Terminal Simulator Guide and Reference,
SC31-8755-00, explains how to use terminal simulator panels (TSPs) and EXECs (TSXs)
that let you simulate an entire interactive session with a Tivoli Information Management for
z/OS program. This book gives instructions for designing, building, and testing TSPs and
TSXs, followed by information on the different ways you can use TSPs and TSXs.

The Tivoli Information Management for z/OS Library

421Guide to Integrating with Tivoli Applications

C
.

W
h

ere
to

F
in

d
M

o
re

In
fo

rm
atio

n

Tivoli Information Management for z/OS User’s Guide, SC31-8756-00, provides a general
introduction to Tivoli Information Management for z/OS and databases. This book has a
series of step-by-step exercises to show beginning users how to copy, update, print, create,
and delete records, and how to search a database. It also contains Tivoli Information
Management for z/OS command syntax and descriptions and other reference information.

Tivoli Information Management for z/OS World Wide Web Interface Guide, SC31-8757-00,
explains how to install and operate the features available with Tivoli Information
Management for z/OS that enable you to access a Tivoli Information Management for z/OS
database using a Web browser as a client.

Other related publications include the following:

Tivoli Decision Support: Using the Information Management Guide is an online book (in
portable document format) that can be viewed with the Adobe Acrobat Reader. This book is
provided with Tivoli Decision Support for Information Management (5697-IMG), which is a
product that enables you to use Tivoli Information Management for z/OS data with Tivoli
Decision Support. This book describes the views and reports provided with the Information
Management Guide.

IBM Redbooks™ published by IBM’s International Technical Support Organization are also
available. For a list of redbooks related to Tivoli Information Management for z/OS and
access to online redbooks, visit Web site http://www.redbooks.ibm.com or
http://www.support.tivoli.com

The Tivoli Information Management for z/OS Library

422 Version 7.1

Index

A
ABAPI command, NetView AutoBridge 114
ABCHECKP command, NetView AutoBridge 121
ABMENU command, NetView AutoBridge 120
ABRIDGE command, NetView AutoBridge 119
ABSRS command, NetView AutoBridge 121
ABSUB command, NetView AutoBridge 116
ABTABLES command, NetView AutoBridge 125
ABTTRACE command, NetView AutoBridge 126
ADD_DATA function, NetView AutoBridge 86
AIX NetView Service Point and NetView AutoBridge 244
alias table

NetView AutoBridge 139
ALIAS_TABLE_CNT, NetView Bridge Adapter 14
API_MSG, NetView Bridge Adapter 13
APIPRINT, NetView Bridge Adapter 17
ASSOCDATA function, NetView AutoBridge 87
automated operations

Problem Service 256
automated operation reverse assignment 257
monitor operation reverse assignment 258

B
BLGTECAD and the Tivoli Service Desk Bridge 350
BLGTECAD and Tivoli Software Distribution 396
Bridge, Tivoli Service Desk 315
bridge dispatcher, NetView AutoBridge 73
BYPASS_PANEL_PROCESSING, NetView Bridge

Adapter 15

C
case sensitivity

lowercase to uppercase 15
TRANSLATE INFOBRDS field, NetView Bridge

Adapter 15
checkin a record

Problem Service 300
checkout a record

Problem Service 301
checkpoint management, NetView AutoBridge 79
checkpoint manager transactions, NetView AutoBridge 116
CLASS_COUNT, NetView Bridge Adapter 12
coding

ADD_DATA function, NetView AutoBridge 86
ASSOCDATA function, NetView AutoBridge 87
filter table, NetView AutoBridge 97
IBCREATE function, NetView AutoBridge 89
IBSEARCH function, NetView AutoBridge 90

coding (continued)
IBUPDATE function, NetView AutoBridge 89
initialization table, NetView AutoBridge 101
mapping table, NetView AutoBridge 92
NetView AutoBridge ASSOCDATA function 87
NetView AutoBridge_DATA function 86
NetView AutoBridge filter table 97
NetView AutoBridge IBCREATE function 89
NetView AutoBridge IBSEARCH function 90
NetView AutoBridge IBUPDATE function 89
NetView AutoBridge initialization table 101
NetView AutoBridge mapping table 92
NetView AutoBridge PARSE function 85
NetView AutoBridge process table 83

ADD_DATA function 86
ASSOCDATA function 87
IBCREATE function 89
IBSEARCH function 90
IBUPDATE function 89
PARSE function 85
TRACE function 84
VERIFIER function 87

NetView AutoBridge table 81
NetView AutoBridge TRACE function 84
NetView Bridge Adapter transactions 21
NetViewAutoBridge VERIFIER function 87
PARSE function, NetView AutoBridge 85
process table, NetView AutoBridge 83
TRACE function, NetView AutoBridge 84
VERIFIER function, NetView AutoBridge 87

commands
NetView AutoBridge 113
NetView AutoBridge command model statements 148
NetView AutoBridge REMOTEBR command 147
NetView AutoBridge RMTCMD command 160
NetView AutoBridge RTRINIT command 147
REMOTEBR command, NetView AutoBridge 147
RMTCMD command, NetView AutoBridge 160
RTRINIT command, NetView AutoBridge 147
Tivoli Service Desk Bridge 353

configuration
Problem Service 269

creating a record
Initialization Table for a Remote NetView 158
NetView Bridge Adapter 14, 27
Tivoli Enterprise Console 389

D
data model records and the Tivoli Service Desk Bridge 321
data sets

APIPRINT, NetView Bridge Adapter 17

423Guide to Integrating with Tivoli Applications

In
d

ex

data sets (continued)
IBRPRINT, NetView Bridge Adapter 53
INFOBRDS data set, NetView Bridge Adapter 11
NetView Bridge Adapter 17

APIPRINT 17
HLAPILOG 17
IBRPRINT 17
SYSPRINT 17
SYSUDUMP 17

SYSPRINT, NetView Bridge Adapter 17
SYSUDUMP, NetView Bridge Adapter 18

data views
Problem Service 293
Problem Service HLAPI data views 268

database
NetView AutoBridge 78
NetView Bridge Adapter 7

DATABASE_ID, NetView Bridge Adapter 14
database mapping

NetView AutoBridge 78
TEC 391

database server
NetView Bridge Adapter 7

DATE_CONVERSION, NetView Bridge Adapter 16
DEFAULT_OPTION, NetView Bridge Adapter 14
DEFAULT_STORAGE, NetView Bridge Adapter 14
deleting a record

Problem Service 254, 301
Tivoli Enterprise Console 390

disk space requirements
Problem Service 262

E
EXEC statement, NetView Bridge Adapter 9

H
hardware requirements

NetView AutoBridge 137
Problem Service 262
Tivoli Service Desk Bridge 319

HLAPI
AIX client interface, Problem Service 263
client interface for AIX, Problem Service 263
client interface for Problem Service 261
client interface for Windows NT, Problem Service 263
Problem Service 267, 271, 293
Problem Service client interface 261
Windows NT client interface, Problem Service 263

HLAPILOG, NetView Bridge Adapter 17
HLI_MSG, NetView Bridge Adapter 13

I
i2i program 369
IBCREATE function, NetView AutoBridge 89
IBCREATE transaction, NetView Bridge Adapter 27

TEXTLIST parameter 37
IBRPRINT, NetView Bridge Adapter 17

contents 53
IBRPRINT_OPTION, NetView Bridge Adapter 14
IBSEARCH transaction, NetView Bridge Adapter 34

SEARCHLIST parameter 38
IBUPDATE transaction, NetView Bridge Adapter 31

TEXTLIST parameter 37
VERIFIER parameter 43

INFOBRDS data set for NetView Bridge Adapter 10
INITCLAS, NetView Bridge Adapter 12
installing

installation samples, NetView AutoBridge 237
interface for Tivoli Information Management for z/OS to

Tivoli Software Distribution 395
host components 396
TEC components 398

interface to Tivoli Inventory 372
NetView AutoBridge installation samples 237
NetView AutoBridge installation verification programs 239
NetView AutoBridge PostProcessor 167
NetView Bridge Adapter 7
Problem Service 261, 262, 263
TEC Integration Facility 387
Tivoli Inventory host components 373
Tivoli Inventory workstation components 374

integrating with Tivoli Inventory
Consolidate Service Desk function 382
customizing 376
host components 371
host components, installation 373
how to access 382
installation 372
messages 384
overview 369
using from a workstation 377
using from the host 381
using the interface 377
workstation components 372

Install Queries in Query Library 374
Installation Considerations 375
Scan Target Machines 375
Verify Installation 375

workstation components, installation 374

J
JCL (Job Control Language)

example of typical startup procedure 8
NetView AutoBridge procedure 149
NetView AutoBridge supplied 150
NetView Bridge Adapter 8

424 Version 7.1

L
locking a record

Problem Service 253
log only code, NetView Bridge Adapter 62
logging

Problem Service 297

M
messages

Interface to Tivoli Inventory 384
NetView AutoBridge 191
NetView Bridge Adapter 59

N
NetView AutoBridge

ADD_DATA function 86
AIX NetView Service Point 244
ASSOCDATA function 87
automating netword management 70
checkpoint transactions, NetView AutoBridge 121
coding tables 81
coding the process table 83
command model statements 148, 156
commands 113

ABAPI, invoking AutoBridge 114
ABCHECKP, managing checkpoint transactions 121
ABMENU, the AutoBridge Main Menu 120
ABRIDGE, starting, stopping, recycling NetView

AutoBridge 119
ABSRS, starting, recycling, stopping NetView Bridge

Dispatchers or Adapters 121
ABSUB, handling checkpoint manager transactions 116
ABTABLES, managing AutoBridge Tables 125
ABTRACE, setting tracing on or off 126

connectivity test 160
database mapping 78
functional description 73
hardware requirements 137
IBCREATE function 89
IBSEARCH function 90
IBUPDATE function 89
implementation benefits 71
installation samples 237
installation verification programs 239
invoking 114
main menu 120
messages 191
NetView Connection 243
netword management 69
overview 67
PARSE function 85
planning 137
planning worksheets 231
PostProcessor facility 163

NetView AutoBridge (continued)
PostProcessor installation 167
PostProcessor user exits 184
process table coding 83
record filtering 79
remote NetViews 153
REMOTEBR command 147
resident NetView 144
RMTCMD command 160
RTRINIT command 147
sample members 237
software requirements 137
software setup 143
starting 114
starting and stopping 119
table examples 98
Tivoli NetView for AIX 244
TRACE function 84
user exit EYMSP010 184
user exit EYMSP020 185
user exit EYMSP030 185
user exit EYMSP040 186
user exit EYMSP041 187
user exit EYMSP042 187
user exit EYMSP043 188
user exit EYMSP044 188
user exit EYMSP045 189
user exit EYMSP050 189
user exit EYMSP055 190
VERIFIER function 87
VTAM list 159

NetView Bridge Adapter
diagram 5
IBCREATE transaction 27
IBSEARCH transaction 34
IBUPDATE transaction 31
initialization 4
installing 7
JCL supplied 150
messages 59
overview 3
preparing to use 7
reason codes 59
return codes 59
searching for records 34
setting up 7
software requirements 4
transactions 21

control parameters 22
header parameters 22
input parameters 22

user-defined modules 46
user-defined transactions 44
warning codes 62

NetView Connection and Tivoli Information Management for
z/OS 243

network management and NetView AutoBridge 69
automating 70

notification server in Tivoli Service Desk Bridge 321

425Guide to Integrating with Tivoli Applications

In
d

ex

O
output data sets

APIPRINT 17
HLAPILOG 17
IBRPRINT 17
NetView Bridge Adapter

APIPRINT 17
HLAPILOG 17
IBRPRINT 17
SYSPRINT 17
SYSUDUMP 17

SYSPRINT 17
SYSUDUMP 18

P
p-word index, Problem Service 268
p-words, Problem Service 268
PIDT

NetView AutoBridge 82, 139, 152, 179
Problem Service 293, 294

PIPT
NetView AutoBridge 139, 152
Problem Service 293, 294

planning
NetView AutoBridge 137, 139, 231
NetView AutoBridge filter table worksheet 235
NetView AutoBridge initialization table worksheet 231
NetView AutoBridge mapping table worksheet 234
NetView AutoBridge process table worksheet 233
Problem Service 261, 267

PostProcessor, NetView AutoBridge 163
example 164
function 164
installation 167
overview 163
setting up 173

PRELOAD_TRAN_PROC, NetView Bridge Adapter 16
Problem Service

Application Development Environment (ADE)
exceptions 305

examples 306
ExInfoGateway 305

automated operations 256
BLGUT8 utility 294
coding examples 300

checkin 300
checkout 301
delete 301
ping 301
propagate 302
retrieve 302
search 303
shutdown 303
transfer 304
update 304

configuration file blmygc.cfg 269
configuration process 269
control operations 256

Problem Service (continued)
pinging for status 256
reverse assignment automated operation 257
reverse assignment monitor operation 258
shutting down 256

daemon 307
data mapping 259, 281
deleting a record 254
hardware requirements 262
HLAPI client 261
HLAPI data views 268, 293
HLAPI PDBs 268
HLAPI transactions 267
identifying record fields 268
installation 261, 262
interface definition language 300
locking a record 253
logging 297
operations available 252
overview 251
PIDTs 293
PIPTs 293
planning 261, 267
prefix word (p-word) index 268
propagating a record 254
record deleting 254
record locking 253
record propagating 254
record retrieving 254
record searching 255
record transferring 255
record unlocking 253
record updating 256
retrieving a record 254
sample applications 299
searching for a record 255
services file 295
sessions 251
software requirements 262
starting 297
stopping 297
structured word (s-word) index 268
transferring a record 255
unlocking a record 253
updating a record 256
user exits 309

Problem Service HLAPI PDBs 268
processing NetView Bridge Adapter input PDB, response

validation 15
program-to-program interface (PPI), NetView Bridge

Adapter 7
propagating a record

Problem Service 254, 302

R
reason codes

NetView Bridge Adapter 59

426 Version 7.1

retrieving a record
Problem Service 254, 302

return codes
NetView Bridge Adapter 59

S
s-word index, Problem Service 268
sample applications

Problem Service 299
searching for records

Problem Service 255, 303
SEARCHLIST parameter, NetView Bridge Adapter 38
SEND_QUEUE, NetView Bridge Adapter 12
server

NetView Bridge Adapter 18
SESSMEMB, NetView Bridge Adapter 12
setting up

NetView AutoBridge 143
NetView AutoBridge PostProcessor 173
NetView AutoBridge remote NetViews 153
NetView AutoBridge resident NetView 144
PostProcessor, NetView AutoBridge 173
Tivoli Service Desk Bridge 319

software requirements
host connection between Tivoli NetView and Tivoli NetView

for z/OS 245
NetView AutoBridge 137
NetView Bridge Adapter 4
Problem Service 262

AIX workstation 262
MVS host 262
Windows NT workstation 263

Tivoli NetView and Tivoli NetView for z/OS 245
Tivoli Service Desk Bridge 319

SPOOL_INTERVAL, NetView Bridge Adapter 13
starting

NetView AutoBridge 114, 119
notification server in the Tivoli Service Desk Bridge 349
Problem Service 297
Tivoli Service Desk Bridge notification server 349

STEPLIB concatenation, NetView Bridge Adapter 10
stopping

NetView AutoBridge 119
NetView AutoBridge PostProcessor 183
NetView Bridge Adapter 18
notification server in the Tivoli Service Desk Bridge 350
Problem Service 297
Tivoli Service Desk Bridge notification server 350

SYSPRINT, NetView Bridge Adapter 17
system dump information, NetView Bridge Adapter 18
SYSUDUMP, NetView Bridge Adapter 17

T
task global variable, NetView AutoBridge 114
TEC Event Adapter and the Tivoli Service Desk Bridge 350
TEC Event Adapter and Tivoli Software Distribution 396
TEC Integration Facility Trouble Ticket 389
TEC overview 387
TEXTLIST parameter, NetView Bridge Adapter 37
TIINQLIM, NetView Bridge Adapter 15
TIMEOUT_INTERVALl, NetView Bridge Adapter 13
Tivoli Decision Support 409
Tivoli Enterprise Console (TEC)

creating a problem record 389
customization of tasks 392
deleting a problem record 390
installation 387
list of files 394
mapping event data 391
mapping problem records 391
overview 387
problem record 389
rules 390
task customization 392

Create_Record 392
Delete_Record 392
Trouble Ticket 392
Update_Record 392

task library 388
task status 390
Trouble Ticket 389
updating a problem record 389

Tivoli Inventory 369
Tivoli NetView for AIX and NetView AutoBridge 244
Tivoli Problem Management 315
Tivoli Service Desk Bridge

BLGTECAD 350
data model records 321
hardware requirements 319
notification server 321, 349
overview 315
refresh 358
resume ownership 356
send a solution 360
setup 317, 319

data model records 321
notification server 321
notification server starting 349
panel BLG0E090 331
panel BLG0S010 323
panel BLG1A111 338

software requirements 319
transferring a problem 353
TSXs 362

Tivoli Software Distribution
installation 395

host components 396
TEC components 398

overview 395
TRACE function, NetView AutoBridge 84, 85
transaction processor, NetView Bridge Adapter 7
TRANSACTION_PROCESSOR, NetView Bridge Adapter 16

427Guide to Integrating with Tivoli Applications

In
d

ex

transactions
Problem Service HLAPI 267

transactions, NetView Bridge Adapter 21
transferring a record

Problem Service 255, 304
TRANSLATE, NetView Bridge Adapter 15
TSD 315

U
unlocking a record

Problem Service 253
updating a record

Problem Service 256, 304
Tivoli Enterprise Console 389
updating a record 31

USE_DATA_VIEW, NetView Bridge Adapter 16
user exits

NetView AutoBridge PostProcessor 184
EYMSP010 184
EYMSP020 185
EYMSP030 185
EYMSP040 186
EYMSP041 187
EYMSP042 187
EYMSP043 188
EYMSP044 188
EYMSP045 189
EYMSP050 189
EYMSP055 190

Problem Service 309
change user exit 309
fromIMDate user exit 310
fromIMPriority user exit 310
fromIMTime user exit 310
nullDefault user exit 310
stripLeadingt user exit 310
subString user exit 311
toIMDate user exit 311
toIMTime user exit 311
translate user exit 311
translateWord user exit 312
words user exit 312

V
VALIDATE, NetView Bridge Adapter 15
VERIFIER function, NetView AutoBridge 87
VERIFIER parameter, NetView Bridge Adapter 43

W
warning codes, NetView Bridge Adapter 62
workstation components, Tivoli Inventory 374

428 Version 7.1

File Number: S370/30xx/4300
Program Number: 5697-SD9

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC31-8744-00

	Contents
	Preface
	Who Should Read This Guide
	Prerequisite and Related Documentation
	What This Guide Contains
	How Information Is Presented in This Guide
	Contacting Customer Support

	I — The NetView Bridge Adapter
	Introducing the NetView Bridge Adapter
	Software Required for the NetView Bridge Adapter?
	How Does the NetView Bridge Adapter Work?

	Preparing to Use the NetView Bridge Adapter
	Installing the NetView Bridge Adapter
	Setting Up the NetView Bridge Adapter
	Modifying the JCL Supplied with the NetView Bridge Adapter
	Defining the JCL Procedure
	The JCL Procedure Parameters
	The EXEC Statement
	The STEPLIB Concatenation
	The User-Supplied Input Data Set
	The User-Supplied Output Data Sets

	Stopping a Server
	Creating Additional Copies of a Server
	Recycling the Servers

	Performing the NetView Bridge Adapter Transactions
	Coding the Transactions
	Generating NetView Bridge Adapter Requests
	Header Parameters
	Control Parameters and Input Parameters

	Receiving NetView Bridge Adapter Replies

	Creating a Record (IBCREATE transaction)
	The IBCREATE Transaction Request
	The IBCREATE Transaction Reply

	Updating a Record (IBUPDATE Transaction)
	The IBUPDATE Transaction Request
	The IBUPDATE Transaction Reply

	Retrieving a Record by Argument (IBSEARCH Transaction)
	The IBSEARCH Transaction Request
	The IBSEARCH Transaction Reply

	Using Complex Parameters
	TEXTLIST
	SEARCHLIST
	Structured Search Requests
	Freeform Search Requests
	Combined Structured and Freeform Search Requests

	VERIFIER

	Writing User-Defined Transactions
	A Typical Scenario
	Requirements for a User-Supplied Module
	Identifying the User-Supplied Module
	Writing User-Supplied Modules
	Calling the BLGBURC Routine
	Building Control and Input PDB Chains
	Calling the BLGBUIM Routine
	Building a Results PDB Chain
	Setting the PDBAPPL Field
	Calling the BLGBUSN Routine

	NetView Return Codes
	Return Codes in Register 15
	Return and Reason Codes in TPCA
	User-Supplied Module Return Codes

	Sample Code for the User-Supplied Module
	Calling User-Defined NetView Bridge Adapter Transactions
	The User-Defined Transaction Request
	The User-Defined Transaction Reply

	The NetView Bridge Adapter IBRPRINT Data Set
	Contents of the IBRPRINT Data Set

	NetView Bridge Adapter Codes
	Return Codes and Reason Codes
	Warning Codes
	Log Only Codes

	II — NetView AutoBridge
	NetView AutoBridge Overview
	What Does Tivoli Information Management for z/OS NetView AutoBridge Do?
	Tivoli Information Management for z/OS NetView AutoBridge Highlights
	Why Use Tivoli Information Management for z/OS NetView AutoBridge?
	Managing Network Events
	Interfacing with Tivoli Information Management for z/OS
	Invoking User Functions

	Network Management
	Automating Network Management
	Implementation Benefits

	Functional Description of NetView AutoBridge
	AutoBridge and NetView Bridge Components
	NetView Bridge on the Resident Host
	AutoBridge on the Resident Host
	NetView Bridge on a Remote Host
	AutoBridge on a Remote Host

	Processing Overview
	Process Invocation
	Database Mapping
	Input Record Filtering
	Checkpoint Management
	Transaction Post-Processing

	Coding NetView AutoBridge Tables
	Coding the Process Table
	TRACE Function Syntax
	PARSE Function Syntax
	ADD_DATA Function Syntax
	VERIFIER Function Syntax
	ASSOCDATA Function Syntax
	User Function or Command Invocation Syntax
	IBCREATE Function Syntax
	IBUPDATE Function Syntax
	IBSEARCH Function Syntax

	Coding the Mapping Table
	Coding the Filter Table
	AutoBridge Table Examples
	Processing Generic Alerts
	Processing BNJ146I Messages

	Coding the Initialization Table
	Initialization Table Structure
	Initialization Table Examples
	Initialization Table Syntax
	Common Values
	Dispatcher Segment
	Database Segment
	Record Segment

	NetView AutoBridge Commands
	Invoking AutoBridge
	Handling Checkpoint Manager Transactions
	Starting/Stopping/Recycling AutoBridge and Its Components
	Using the AutoBridge Main Menu
	Starting/Recycling/Stopping the NetView Bridge Dispatchers or Adapters
	Managing Checkpoint Transactions
	Managing the AutoBridge Tables
	Setting AutoBridge Tracing On or Off

	NetView AutoBridge Implementation Scenarios
	BNJ146I Message Scenario
	MSU Scenario
	User-Written Application Data Scenario
	Automated “Unalert” Notification Scenario

	NetView AutoBridge Planning
	Step 1. Verify Installation of Required Hardware
	Step 2. Verify Installation of Required Software
	Step 3. Verify Required Skills and Documentation Present
	Step 4. Choose an Application ID and Receive a Queue Name
	Step 5. Plan the Initialization Table
	Step 6. Plan the NetView Automation Table Customization
	Step 7. Plan the PIDT, PIPT, and Alias Table Modifications
	Step 8. Plan the Process Table
	Step 9. Plan the Mapping Table
	Step 10. Plan the Filter Table

	NetView AutoBridge Software Setup and Administration
	Setting Up the Resident NetView
	Adding Operator IDs for NetView Autotasks
	Creating Profiles for NetView Autotasks
	RTRINIT Command
	REMOTEBR Command

	Adding Command Model Statements to NetView
	Modifying the NetView Procedure JCL
	Modifying the JCL Supplied with the Tivoli Information Management for z/OS NetView Bridge Adapter
	Allocating the Checkpoint File VSAM Data Set
	Customizing the DSIPARM DSIDMN Member
	Creating Additional Copies of a Server
	Customizing the PIDT, PIPT, and Alias Tables
	Customizing the NetView Automation Table
	Creating the Initialization Table
	Creating the Process Table for Resident NetView
	Creating the Mapping Table for Resident NetView
	Creating the Filter Table for Resident NetView

	Setting Up Remote NetViews
	Adding an Operator ID for the Dispatcher Autotask
	Creating NetView Bridge Dispatcher Profiles
	Adding NetView Bridge Command Model Statements to NetView
	Modifying the NetView Procedure JCL
	Allocating the Checkpoint File VSAM Data Set
	Customizing the DSIPARM DSIDMN Member
	Customizing the NetView Automation Table
	Creating the Initialization Table for a Remote NetView
	Creating the Process Table for a Remote NetView
	Creating the Mapping Table for a Remote NetView
	Creating the Filter Table for a Remote NetView

	VTAM List
	Required NetView Tasks
	Using RMTCMD to Test Connectivity

	Using the NetView AutoBridge PostProcessor
	PostProcessor Overview
	When to Use the PostProcessor
	PostProcessor Function
	PostProcessor Example

	Installing the PostProcessor
	Step 1. Plan for the PostProcessor Panels
	Step 2. Update Your Tivoli Information Management for z/OS Session Member
	Step 3. Create a TSO Background Procedure for the PostProcessor
	Step 4. Create Background Profiles for the PostProcessor
	Modifying Panel BLGAPI00

	Setting Up the PostProcessor
	Determining If a Record Should Be Post-Processed
	Determining Which Fields or Selections to Post-Process
	Authorizing the PostProcessor to Tivoli Information Management for z/OS
	Modifying the Tivoli Information Management for z/OS Profile
	Authorizing User Access to Mapping Reference Records
	Creating a Mapping Reference Record
	Mapping Reference Record Considerations
	Maintaining Mapping Reference Records
	Modifying Mapping Reference Records
	Locating Mapping Reference Records
	Using Updated Mapping Reference Records

	Modifying AutoBridge’s Tivoli Information Management for z/OS Interface
	PIDT Modifications
	Alias Table Modifications
	Record File TSP Modifications

	Running the PostProcessor
	Viewing PostProcessor Messages
	Recovering from PostProcessor Errors
	Error Notification
	SNAP Macro Data
	Reprocessing Records in Error

	Stopping the PostProcessor

	Mapping Reference Records Contents
	AutoBridge PostProcessor User Exits
	EYMSP010
	EYMSP020
	EYMSP030
	EYMSP040
	EYMSP041
	EYMSP042
	EYMSP043
	EYMSP044
	EYMSP045
	EYMSP050
	EYMSP055

	NetView AutoBridge Messages
	Messages

	NetView AutoBridge Worksheets
	Initialization Table Worksheet
	Process Table Planning Worksheet
	Mapping Table Planning Worksheet
	Filter Table Planning Worksheet

	NetView AutoBridge Sample Members
	Installation Samples
	Installation Verification Programs (IVPs)
	AutoBridge Table Samples
	User-written CLISTs and Panel Samples
	User-written Functions

	Tivoli Information Management for z/OS to Tivoli NetView Connection
	Understanding the Tivoli NetView Connection
	What is Tivoli NetView for AIX?
	What is AIX NetView Service Point?
	Software Requirements
	Purpose of the Host Connection
	How the Host Connection Works

	Advantages of Connecting Tivoli Information Management for z/OS to Tivoli NetView

	III — Problem Service
	Understanding the Problem Service Component
	Problem Service Sessions
	Problem Service Operations
	Unlocking a Record
	Locking a Record
	Deleting Records
	Propagating Records
	Retrieving Records
	Searching for a Record
	Transferring Records
	Updating Records
	Control Operations
	Pinging for Status
	Shutting Down Problem Service

	Automated Operations
	Reverse Assignment Operation
	Monitor Operation

	Problem Service Data Mappings

	Problem Service Installation
	Planning for Problem Service Installation
	Tivoli Information Management for z/OS Environment
	HLAPI Client
	Requester Interface
	Client Interface

	Installation Requirements
	Hardware Requirements
	Disk Space Requirements
	Software Requirements
	MVS Host
	AIX Workstation
	Windows NT Workstation

	Installing Problem Service
	National Language Support (NLS) for Messages
	AIX Workstations
	Windows NT Workstations

	REGSRV2 Program (Windows NT Only)

	Planning for Problem Service Configuration
	Basic HLAPI Concepts
	HLAPI Transactions
	HLAPI PDBs
	HLAPI Data Views
	Structured and Prefix Word Indexes
	P-Words

	HLAPI PALTs

	Problem Service Configuration Process
	Sample Configuration File
	Customizing Statements
	General Syntax Rules

	Process Steps

	Customizing Your Problem Service Configuration File
	Customizing the HLAPI Session Information
	HLAPI-Related Statements
	HLAPI Session Statements

	Customizing Problem Service General Settings
	Customizing Problem Service Data Mappings
	Mapping Your Application and Tivoli Information Management for z/OS Records
	Setting Up the Data Mapping Rules
	Mapping Fields to Problem Service Operations
	Understanding the Syntax of Data Mapping Statements
	Changing the Data Mapping Rules

	Sample Configuration File Descriptions
	Defining Specific Record Types
	Defining API PIDT Names
	Defining Freeform Text Fields
	Defining the ReverseArguments Statement

	Mapping Records from Your Application to Tivoli Information Management for z/OS
	Mapping Records from Tivoli Information Management for z/OS to Your Application

	Completing Problem Service Configuration
	Preparing the HLAPI Data Views on MVS
	Using PIDTs and PIPTs with Uncustomized Records
	Preparing PIDTs and PIPTs for Customized Records

	Updating the Services File
	AIX Workstation /etc/services File
	Windows NT Workstation Services File

	Running Problem Service
	Starting Problem Service
	Stopping Problem Service
	Logging with Problem Service

	Problem Service Application Programming Information
	Copying the Samples and Files
	Compiling and Link Editing Your Code
	Interface Definition Language Data Types
	Coding Examples for Problem Service Operations
	Checkin
	Checkout
	Delete
	Ping
	Propagate
	Retrieve
	Search
	Shutdown
	Transfer
	Update

	Tivoli Application Development Environment (ADE) Exceptions
	ExInfoGateway Exception
	Examples of Gateway Exceptions

	Customizing User Exit Routines for the Problem Service Daemon
	Supported Data Conversions
	Truncation
	Convert One Character to Another Character
	Convert Specific Field Value to Another Value
	Date/Time Conversion
	Freeform Text
	Default Data
	Field Combining (Concatenation)
	Substring and Sub-Word
	Exit Routines

	Specifying User Exits for Conversions
	change
	fromIMDate
	fromIMPriority
	fromIMTime
	nullDefault
	stripLeading
	subString
	toIMDate
	toIMTime
	translate
	translateWord
	words

	IV — Tivoli Service Desk Bridge
	Tivoli Service Desk Bridge Overview
	Problem Records and People Records
	The Notification Server
	The Listener Program

	Tivoli Service Desk Bridge Setup
	Hardware Requirements
	Software Requirements
	Database Requirements

	Information Management Setup
	Setting Up the Notification Server
	Data Model Records
	Loading Data Model Records
	Customizing Data Model Records

	Updating Panel BLG0S010
	Updating Panel BLG0E090
	Updating Panel BLG1A111
	Copying Panel BLG1A11Z
	Copying BLM1B04Z
	Starting the Notification Server
	Stopping the Notification Server

	TSD Setup
	Setting Up Error Processing for the TSD Listener Program

	Using the Tivoli Service Desk Bridge
	Transferring a Problem from Information Management to TSD
	Resume Ownership
	Refresh
	Send a Solution
	Tivoli Service Desk Bridge TSXs

	V — Integrating with Other Tivoli Products
	Integrating with Tivoli Inventory
	Overview of Tivoli Inventory
	Overview of the Interface to Tivoli Inventory
	Components of the Interface to Tivoli Inventory
	Host Components
	Workstation Components

	Installing the Interface to Inventory
	Installing the Host Components
	Installing the Workstation Components
	Install Queries in Query Library
	Installation Considerations
	Scan Target Machines
	Verify Installation

	Customizing the Interface to Inventory
	Using the Interface to Inventory
	Using the Interface from a Workstation
	Using the Editor

	Using the Interface from the Host

	Messages
	Status Messages

	Integrating with Tivoli Enterprise Console (TEC)
	TEC Integration Facility
	Installing the TEC Integration Facility
	Task Library
	Trouble Ticket
	Creating a Problem Record
	Updating a Problem Record
	Deleting a Problem Record
	Task Status
	Rules
	Mapping Event Data to Problem Records
	Customizing Tasks
	List of Files

	Integrating with Tivoli Software Distribution
	Overview of the Interface to Tivoli Software Distribution
	Installing the Components Used by the Interface
	Installing the Host Components
	Installing the TEC Components
	Software Distribution from TEC
	Class Definitions for TEC Events
	Rules for Processing Events
	PERL Program To Initiate Distribution of a File Package

	Using the Interface to Tivoli Software Distribution
	Example of Distributing the Tivoli Information Management for z/OS HLAPI Clients
	Creating a Change Request Record
	Approving the Change Request Record

	Tivoli Decision Support
	Where To Find Additional Information

	VI — Appendixes
	Relating Publications to Specific Tasks
	Typical Tasks

	Tivoli Information Management for z/OS Courses
	Education Offerings
	United States
	United Kingdom

	Where to Find More Information
	The Tivoli Information Management for z/OS Library

	Index

