
Information Management for z/OS
Client Installation and User’s Guide
Version 7.1 SC31-8738-00

Information Management for z/OS
Client Installation and User’s Guide
Version 7.1 SC31-8738-00

Tivoli Information Management for z/OS Client Installation and User’s Guide

Copyright Notice

© Copyright IBM Corporation 1981, 2001. All rights reserved. May only be used pursuant to a Tivoli Systems
Software License Agreement, an IBM Software License Agreement, or Addendum for Tivoli Products to IBM Customer
or License Agreement. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any computer language, in any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual, or otherwise, without prior written permission of IBM Corporation. IBM Corporation grants
you limited permission to make hardcopy or other reproductions of any machine-readable documentation for your own
use, provided that each such reproduction shall carry the IBM Corporation copyright notice. No other rights under
copyright are granted without prior written permission of IBM Corporation. The document is not intended for
production and is furnished “as is” without warranty of any kind. All warranties on this document are hereby
disclaimed, including the warranties of merchantability and fitness for a particular purpose.

U.S. Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corporation.

Trademarks

The following product names are trademarks of International Business Machines Corporation in the United States, other
countries, or both: IBM, the IBM logo, Tivoli, the Tivoli logo, AIX, APPN, CICS, CICS/ESA, DATABASE 2, DB2,
DFSMS/MVS, IBMLink, Language Environment, MVS, MVS/ESA, NetView, OpenEdition, Operating System/2, OS/2,
OS/2 WARP, OS/390, Presentation Manager, RACF, Redbooks, RISC System/6000, RMF, RS/6000, System/390, Tivoli
Enterprise Console, TME 10, VisualAge, VTAM, z/OS.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names mentioned in this document may be trademarks or service marks of others.

Notices

References in this publication to Tivoli Systems or IBM products, programs, or services do not imply that they will be
available in all countries in which Tivoli Systems or IBM operates. Any reference to these products, programs, or
services is not intended to imply that only Tivoli Systems or IBM products, programs, or services can be used. Subject
to valid intellectual property or other legally protectable right of Tivoli Systems or IBM, any functionally equivalent
product, program, or service can be used instead of the referenced product, program, or service. The evaluation and
verification of operation in conjunction with other products, except those expressly designated by Tivoli Systems or
IBM, are the responsibility of the user. Tivoli Systems or IBM may have patents or pending patent applications
covering subject matter in this document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, North Castle
Drive, Armonk, New York 10504-1785, U.S.A.

Programming Interface Information

This publication documents intended Programming Interfaces that allow the customer to write programs to obtain the
services of Tivoli Information Management for z/OS.

Contents

Preface . xxi
Who Should Read This Guide . xxi

Prerequisite and Related Documentation . xxii

What This Guide Contains . xxiii

Contacting Customer Support . xxiv

Chapter 1. Client/Server Computing . 1
Supported Communication Protocols . 2

Clients . 2

HLAPI Functions and Transactions . 3

Client Comparisons . 4

Servers . 5

Remote Environment Server (RES) . 5

Multiclient Remote Environment Server (MRES) with APPC. 6

Multiclient Remote Environment Server (MRES) with TCP/IP . 8

Java Applications . 10

Chapter 2. Choosing a Server . 13
RES Conversation Management . 13

MRES with APPC Conversation Management . 14

MRES with TCP/IP Conversation Management . 15

Logical Unit (LU) Considerations . 16

Socket Considerations . 16

Accounting Considerations . 16

RES . 16

MRES with APPC. 17

Performance Considerations. 17

MRES with Pre-started API Sessions Considerations . 18

MRES with APPC Cataloged Procedure Considerations . 19

MRES with TCP/IP Cataloged Procedure Considerations . 19

Transaction Logging by a RES and by an MRES Without Pre-started API Sessions 20

Transaction Logging by an MRES with Pre-started API Sessions . 21

Security Considerations . 21

Security References . 22

Security for a RES . 22

Security Considerations When Using Pre-started API Sessions . 23

iiiClient Installation and User’s Guide

Security for an MRES with APPC . 23

Security for an MRES with TCP/IP . 24

Chapter 3. Configuring and Running a Remote Environment Server
(RES) . 25

Using a RES . 25

RES Configuration Tasks. 26

Planning Your RES Configuration . 26

Setting Up APPC/MVS . 26

Creating a VSAM Data Set for the TP Profile . 26

Making an Entry for the RES in the TP Profile Data Set . 27

Defining Local LUs and Identifying Partner LUs . 28

Defining a Schedule Class . 29

Modifying VTAM . 30

Defining the Local LU in VTAM. 30

Defining the Log-on Mode . 30

Defining Links to Clients . 31

Defining Security Classes and Profiles . 32

Starting and Stopping the APPC Environment . 32

Determining Values Clients Need. 33

Chapter 4. Configuring and Running a Multiclient Remote
Environment Server (MRES) with APPC . 35

Using an MRES with APPC . 36

MRES Configuration Tasks . 37

Planning an MRES with APPC Configuration . 38

Defining a Procedure for an MRES with APPC . 38

Coding the Parameters for an MRES with APPC . 39

Sample MRES Parameters . 45

Adding the Data Sets to the APF List . 46

Defining an MRES with APPC to APPC/MVS. 46

Creating a VSAM Data Set for the Side Information . 46

Adding a Side Information Entry for an MRES . 47

Defining a Nonscheduled APPC/MVS Logical Unit . 48

Defining an MRES with APPC to VTAM . 48

Implementing Security. 49

Starting and Stopping an MRES with APPC . 49

START Command Syntax . 49

iv Version 7.1

STOP Command Syntax . 50

Determining Values Clients Need. 50

Chapter 5. Configuring and Running a Multiclient Remote
Environment Server (MRES) with TCP/IP . 53

Using an MRES with TCP/IP . 54

MRES Configuration Tasks . 56

Planning Your MRES with TCP/IP Configuration. 56

Defining a Procedure for an MRES with TCP/IP . 56

Coding the Parameters for an MRES with TCP/IP . 58

Sample MRES Parameters . 64

Adding the Data Sets to the APF List . 65

Starting and Stopping an MRES with TCP/IP . 65

START Command Syntax . 65

STOP Command Syntax . 66

Determining Values Clients Need. 66

Chapter 6. Using MVS Operator Commands. 67
Displaying Server Address Space Status. 67

Cancelling a Server Address Space . 68

Forcing a Server Address Space. 68

Chapter 7. Introduction to the HLAPI/2. 69
A Typical Scenario . 69

Server Overview . 70

Requester Overview . 71

HLAPI/2 C Language Binding. 71

Basic Transaction Flow . 72

On the Workstation . 72

Communication Link . 73

On the Host . 73

Back to the Workstation . 73

The REXX HLAPI/2 Interface. 73

Client Workstation Requirements for the HLAPI/2 . 74

Software . 74

Hardware . 74

Chapter 8. Installing and Configuring HLAPI/2 . 77
Configuring a Communication Link to a Server . 77

vClient Installation and User’s Guide

Configuring HLAPI/2 for APPC . 77

Configuring HLAPI/2 for TCP/IP . 81

Preparing to Install HLAPI/2 . 82

Installing HLAPI/2 on the Workstation . 82

Installing HLAPI/2 in Attended Mode from CD-ROM . 83

Installing HLAPI/2 on a LAN Server. 84

Installing HLAPI/2 in Attended Mode from a LAN Server . 85

Installing HLAPI/2 on a Workstation in Unattended Mode . 86

Choosing the Appropriate Requester . 90

Customizing the HLAPI/2 CONFIG.SYS File . 90

Applying HLAPI/2 Maintenance . 91

Restoring HLAPI/2 to the Previous Service Level . 91

Restoring HLAPI/2 If It Was Installed from the HLAPI/2 CD-ROM . 91

Restoring HLAPI/2 If It Was Installed from a LAN Server. 92

Deleting HLAPI/2 from Your Workstation . 92

Diagnostic Assistance . 93

Chapter 9. HLAPI/2 Profiles, Environment Variables, and Data
Logging . 95

Profile Syntax . 95

System Profile Keywords . 96

IDBINBOUNDBUFSIZE. 96

IDBOUTBOUNDBUFSIZE . 96

IDBSHARECMS. 96

System Profile Example. 97

Database Profile Keywords . 97

IDBDataLogLevel . 98

IDBLogFileSize. 98

IDBLogFileNameActive . 98

IDBLogFileNameOld. 98

IDBCharCodePage . 98

IDBServCharCodePage . 99

IDBSymDestName . 99

IDBServerHost . 99

IDBServerService . 99

Database Profile Example . 100

HLAPI/2 OS/2 Environment Variables . 101

Profile Override. 101

vi Version 7.1

Profile Search Path . 101

IDBDBPATH. 101

IDBSMPATH . 102

Server Logging . 102

Transaction Logging . 102

HLAPI/2 Error Logging. 103

Chapter 10. The HLAPI/2 Requester . 105
Starting the Requester . 105

Stopping the Requester . 105

Diagnosis of Some Common HLAPI/2 Problems . 106

Changing the Profile and Its Effect on Program Operation . 106

Establishing a Conversation with the Host . 106

Establishing Too Many APPC Conversations . 107

Chapter 11. HLAPI/2 Transactions. 109
Transaction Operating Modes. 109

Synchronous Processing. 109

Asynchronous Processing. 110

Data Conversion Characteristics . 110

Database Profile Parameters . 111

Possible Truncation of Mixed SBCS/DBCS Data . 111

Differences between HLAPI/2 and HLAPI Transactions . 111

Initialize Tivoli Information Management for z/OS (HL01). 111

Terminate Tivoli Information Management for z/OS (HL02) . 113

Retrieve Record (HL06). 113

Create Record (HL08) . 114

Update Record (HL09) . 114

HLAPI/2 Code Pages. 114

ASCII SBCS Code Pages. 114

ASCII DBCS Code Pages . 115

EBCDIC SBCS Code Pages. 115

EBCDIC MIX Code Pages. 115

EBCDIC PURE DBCS Code Pages . 115

Chapter 12. Tips for Writing a HLAPI/2 Application . 117
Installation and Setup Summary for HLAPI/2 Sample Applications. 118

Chapter 13. HLAPI/2 C Language Application Program. 121
Allocating HICAs and PDBs . 121

viiClient Installation and User’s Guide

Including the Header File in Your Program . 121

Allocating and Initializing a HICA. 122

Allocating and Initializing a PDB . 122

Binding Prototypes . 123

IDBTransactionSubmit. 124

IDBTransactionStatus . 124

Linking Your Program . 126

Sample HLAPI/2 C Program . 126

Steps Required to Run the HLAPI/2 C Sample Program. 127

HLAPI/2 Header Code. 127

Chapter 14. REXX HLAPI/2 Interface . 131
REXX HLAPI/2 Installation and Setup . 131

Prerequisite Setup . 132

Registering the REXX HLAPI/2 DLL . 132

REXX HLAPI/2 Interface Calls . 132

Deregistering the REXX HLAPI/2 DLL. 133

Differences between the REXX HLAPI/2 and the HLAPI/2 . 133

Differences between the REXX HLAPI/2 and the HLAPI/REXX . 133

REXX Reserved Variables . 133

Sample REXX HLAPI/2 Program . 134

Steps Required to Run the REXX HLAPI/2 Sample Program . 134

Transaction List. 135

Chapter 15. Introduction to the HLAPI/NT . 137
A Typical Scenario . 137

Server Overview . 138

Requester Overview. 138

HLAPI/NT C Language Binding . 139

Basic Transaction Flow . 139

On the Workstation . 140

Communication Link . 140

On the Host. 141

Back to the Workstation. 141

Client Workstation Requirements for the HLAPI/NT . 141

Software . 141

Hardware . 142

viii Version 7.1

Chapter 16. Installing and Configuring HLAPI/NT . 143
Configuring a Communication Link to a Server . 143

Configuring HLAPI/NT for TCP/IP . 143

Configuring HLAPI/NT for APPC . 144

Preparing to Install HLAPI/NT . 145

Installing HLAPI/NT in Attended Mode from CD-ROM. 145

Installing HLAPI/NT onto a Network Drive . 146

Installing HLAPI/NT in Attended Mode from a Network Drive . 147

Installing HLAPI/NT in Unattended Mode . 148

HLAPI/NT Response File Keywords . 148

Applying HLAPI/NT Maintenance . 151

Deleting HLAPI/NT from a Workstation . 151

Chapter 17. HLAPI/NT Profiles, Environment Variables, and Data
Logging. 153

Profile Syntax . 153

System Profile Keywords. 154

IDBINBOUNDBUFSIZE. 154

IDBOUTBOUNDBUFSIZE . 154

IDBSHARECMS. 154

System Profile Example. 155

Database Profile Keywords . 155

IDBDataLogLevel . 156

IDBLogFileSize. 156

IDBLogFileNameActive . 156

IDBLogFileNameOld. 156

IDBCharCodeSet . 156

IDBServCharCodeSet . 157

IDBServerHost . 157

IDBServerService . 157

IDBSymDestName . 157

Database Profile Example . 158

Environment Variables . 158

Profile Override. 159

Profile Search Path . 159

IDBDBPATH. 159

IDBSMPATH . 160

Server Logging . 160

ixClient Installation and User’s Guide

Transaction Logging . 160

HLAPI/NT Error Logging . 161

Chapter 18. The HLAPI/NT Requester. 163
Starting the Requester . 163

Stopping the Requester . 163

Diagnosis of Some Common HLAPI/NT Problems. 164

Changing the Profile and Its Effect on Program Operation . 164

Data Conversion Problems. 164

Establishing a Conversation with the Host . 164

Establishing Too Many APPC Conversations . 165

Chapter 19. HLAPI/NT Transactions. 167
Transaction Operating Modes. 167

Synchronous Processing. 167

Asynchronous Processing. 168

Data Conversion Characteristics . 168

Database Profile Parameters. 169

Possible Truncation of Mixed SBCS/DBCS Data . 169

Differences between HLAPI/NT and HLAPI Transactions . 170

Initialize Tivoli Information Management for z/OS (HL01). 170

Terminate Tivoli Information Management for z/OS (HL02). 172

Retrieve Record (HL06) . 172

Create Record (HL08) . 172

Update Record (HL09) . 172

Chapter 20. Tips for Writing a HLAPI/NT Application 175
Installation and Setup Summary for HLAPI/NT Sample Applications . 176

Chapter 21. HLAPI/NT C Language Application Program. 179
Allocating HICAs and PDBs . 179

Including the Header File in Your Program . 179

Allocating and Initializing a HICA. 180

Allocating and Initializing a PDB . 180

Binding Prototypes . 181

IDBTransactionSubmit. 182

IDBTransactionStatus . 182

Linking Your Program . 184

Sample HLAPI/NT C Program. 184

x Version 7.1

Steps Required to Run the HLAPI/NT C Sample Program . 184

Chapter 22. Introduction to HLAPI/CICS . 187
HLAPI/CICS Overview . 187

Server Overview . 188

HLAPI/CICS Basic Transaction Flow . 188

Requirements. 190

Software . 190

Hardware . 190

Chapter 23. Installing HLAPI/CICS and Customizing CICS/ESA. 191
Installing HLAPI/CICS . 191

Customizing CICS/ESA for HLAPI/CICS . 191

Customizing the System Initialization Table (DFHSIT). 192

Customizing the Destination Control Table (DFHDCT) . 193

Customizing the Shut-Down Program Load Table (DFHPLT) . 194

Customizing the Startup JCL . 195

Customizing the CICS/ESA System Definition Data Set - JCL . 195

Customizing the CICS/ESA Systems Definition Data Set - Online . 196

Program Entries. 196

Transaction Entries . 199

Connection Entries . 201

Session Entries . 202

Partner Entries. 204

Add the Groups to a List . 205

Chapter 24. HLAPI/CICS Transaction Coding. 209
Linking to the HLAPI/CICS . 209

Control PDBs for HLAPI Transactions. 210

CICS_User_ID PDB . 210

CICS_Partner_ID PDB . 210

CICS_CM_Time_Out_Value PDB . 210

CICS_Inter_Time_Out_Value PDB. 211

Chapter 25. Running the Sample CICS Application . 213
Sample Programs. 213

Installing the Sample Programs . 214

Defining the Programs and Transactions to CICS . 215

Starting the Sample Application . 216

Entering the BLMM Transaction . 216

xiClient Installation and User’s Guide

HL01 - Starting the Session . 217

Modifying the HL01 Panel . 218

HL01 Output - Main Menu . 219

HL08 - Creating a Record . 219

HL08 Output . 220

HL06 - Retrieving a Record. 221

HL06 Output . 221

HL13 - Deleting a Tivoli Information Management for z/OS Record . 222

HL13 Input . 222

HL13 Output . 222

HL02 - Ending the Logical Session . 223

HL02 Input . 223

Ending the Sample Application . 223

Sample Closing Screen . 224

Running Multiple Environments. 224

Chapter 26. Introduction to HLAPI/UNIX . 225
A Typical Scenario . 226

Server Overview . 226

Requester Overview. 227

Client Interface Overview . 228

Communication Overview . 228

Basic Transaction Flow . 229

On the UNIX host running the client application program . 230

On the UNIX host running the requester . 230

On the MVS host running the server and Tivoli Information Management for z/OS 230

On the UNIX host running the requester . 230

On the UNIX host running the client application program . 230

HLAPI/UNIX Configuration Considerations . 231

Resources Needed for the Client Interface . 232

Resources Needed for the Requester . 233

Hardware and Software Requirements . 234

Hardware for HLAPI/UNIX. 234

Software for HLAPI/UNIX . 234

Chapter 27. Installing and Setting Up HLAPI/UNIX. 237
Planning a HLAPI/UNIX Configuration . 237

Setting Up HLAPI/AIX . 238

xii Version 7.1

Distributing HLAPI/AIX from a CD-ROM. 238

Distributing HLAPI/AIX from a File System . 238

Installing HLAPI/AIX on the RS⁄6000 System . 239

Installing Options from a CD-ROM . 239

Installing Options from a File System . 240

Setting Up HLAPI/HP and HLAPI/Solaris . 240

Distributing HLAPI/HP and HLAPI/Solaris from CD-ROM . 240

Installing HLAPI/HP and HLAPI/Solaris . 241

Configuring HLAPI/UNIX and Associated Software. 241

Configuring HLAPI/AIX for APPC . 242

Control Point Profile . 242

Defining Side Information . 243

Verifying Configuration . 244

Starting and Stopping APPC . 245

Determining Values . 245

Configuring HLAPI/UNIX for TCP⁄IP . 245

Defining the Client Interface to Requester Communication Link. 246

Updating ⁄etc⁄services on a Requester Host . 246

Updating ⁄etc⁄services and ⁄etc⁄hosts on a Client Host . 247

Removing HLAPI/UNIX Options. 248

Chapter 28. HLAPI/UNIX Profiles, Environment Variables, and Data
Logging. 251

Profile Syntax . 251

System Profile . 252

IDBINBOUNDBUFSIZE. 252

IDBMAXCMS . 253

IDBOUTBOUNDBUFSIZE . 253

IDBSERVICENAME. 253

IDBSHARECMS. 253

IDBTIMEOUT . 254

System Profile Example. 255

Database Profile . 255

IDBCHARCODESET . 255

IDBDATALOGLEVEL . 256

IDBIDLECLIENTTIMEOUT. 256

IDBLOGFILENAMEACTIVE . 256

IDBLOGFILENAMEOLD . 257

IDBLOGFILESIZE . 257

xiiiClient Installation and User’s Guide

IDBREQUESTERHOST . 257

IDBREQUESTERSERVICE . 257

IDBSERVCHARCODESET. 258

IDBSERVERHOST . 258

IDBSERVERSERVICE . 258

IDBSYMDESTNAME. 259

Database Profile Example . 259

Environment Variables . 260

IDBDATALOGLEVEL . 260

IDBREQUESTERHOST . 260

IDBREQUESTERSERVICE . 260

IDBDBPATH. 260

IDBSMPATH . 261

Transaction Logging . 261

Transaction Logging by a Client Interface . 261

Error Probe Logging by a Requester or Client Interface . 262

Chapter 29. The HLAPI/UNIX Requester . 263
Starting the Requester Manually . 263

Starting the Requester Automatically . 263

Stopping a Requester . 264

Diagnosing Some Common Problems. 264

Chapter 30. HLAPI/UNIX Transactions . 267
Validation of the Calling Process . 267

Transaction Processing Modes . 267

Synchronous Processing. 267

Asynchronous Processing. 268

Transaction Concurrency Limitations . 268

Data Conversion Characteristics . 269

Special DBCS Considerations . 269

Developing HLAPI/UNIX Client Applications . 270

Including the HLAPI/UNIX Header File idbh.h . 271

Including the HLAPI/UNIX Header File idbech.h . 272

Overview of HICA and PDB Data Structures . 272

Allocating and Initializing a HICA structure. 273

Allocating and Initializing a PDB Structure . 274

HLAPI/UNIX Functions . 275

IDBTransactionSubmit() . 275

xiv Version 7.1

IDBTransactionStatus() . 276

Using HLAPI/UNIX Functions in a Transaction Sequence . 278

Initialize Tivoli Information Management for z/OS (HL01). 278

Terminate Tivoli Information Management for z/OS (HL02). 279

Retrieve Record (HL06) . 279

Create Record (HL08) . 280

Update Record (HL09) . 280

Linking Your Application to HLAPI/UNIX Services. 280

Planning Your HLAPI/UNIX Application . 281

Converting HLAPI Programs to HLAPI/UNIX Programs . 282

Using the REXX HLAPI/AIX Interface . 283

REXX HLAPI/AIX Installation and Setup . 283

Invoking REXX HLAPI/AIX. 283

REXX Reserved Variables . 285

Other Considerations . 285

REXX HLAPI/AIX Sample REXX Program . 286

Sample Program BLMYRXSA . 286

Chapter 31. Introduction to HLAPI/USS. 291
Server Overview . 291

Requester Overview. 292

Client Interface Overview . 292

Communication Overview . 293

Basic Transaction Flow . 293

On the USS host running the client application program. 294

On the USS host running the requester . 294

On the MVS host running the MRES with TCP/IP server and Tivoli Information
Management for z/OS . 295

On the USS host running the requester . 295

On the USS host running the client application program. 295

HLAPI/USS Configuration Considerations . 295

Resources Needed for the Client Interface . 296

Resources Needed for the Requester . 297

Hardware and Software Requirements . 297

Hardware for HLAPI/USS . 298

Software for HLAPI/USS . 298

Chapter 32. Installing and Setting Up HLAPI/USS. 299
Planning a HLAPI/USS Configuration . 299

xvClient Installation and User’s Guide

Configuring HLAPI/USS and Associated Software . 299

Configuring HLAPI/USS for TCP⁄IP . 299

Defining the Client Interface to Requester Communication Link. 300

Updating ⁄etc⁄services on a Requester Host . 300

Updating ⁄etc⁄services on a Client Host. 301

Chapter 33. HLAPI/USS Profiles, Environment Variables, and Data
Logging. 303

Profile Syntax . 303

System Profile . 304

IDBINBOUNDBUFSIZE. 304

IDBMAXCMS . 305

IDBOUTBOUNDBUFSIZE . 305

IDBSERVICENAME. 305

IDBSHARECMS. 305

IDBTIMEOUT . 306

System Profile Example. 307

Database Profile . 307

IDBDATALOGLEVEL . 307

IDBIDLECLIENTTIMEOUT. 308

IDBLOGFILENAMEACTIVE . 308

IDBLOGFILENAMEOLD . 308

IDBLOGFILESIZE . 308

IDBREQUESTERHOST . 309

IDBREQUESTERSERVICE . 309

IDBSERVERHOST . 309

IDBSERVERSERVICE . 310

Database Profile Example . 310

Environment Variables . 310

IDBDATALOGLEVEL . 310

IDBREQUESTERHOST . 311

IDBREQUESTERSERVICE. 311

BLMDBPATH . 311

BLMSMPATH . 311

Transaction Logging . 312

Transaction Logging by a Client Interface . 312

Error Probe Logging by a Requester or Client Interface . 313

Chapter 34. The HLAPI/USS Requester . 315

xvi Version 7.1

Starting the Requester from the Shell . 315

Stopping a Requester from the Shell . 316

Starting a Requester by JCL . 316

Diagnosing Some Common Problems. 316

Chapter 35. HLAPI/USS Transactions . 319
Validation of the Calling Process . 319

Transaction Processing Modes . 319

Transaction Concurrency Limitations . 319

Developing HLAPI/USS Client Applications . 320

Including the HLAPI/USS Header File blmh.h . 320

Including the HLAPI/USS Header File blmech.h . 321

Overview of HICA and PDB Data Structures . 321

Allocating and Initializing a HICA structure. 322

Allocating and Initializing a PDB Structure . 322

HLAPI/USS Function . 324

IDBTransactionSubmit() . 324

Using the HLAPI/USS Function in a Transaction Sequence . 325

Initialize Tivoli Information Management for z/OS (HL01). 325

Terminate Tivoli Information Management for z/OS (HL02). 326

Retrieve Record (HL06) . 326

Create Record (HL08) . 327

Update Record (HL09) . 327

Compiling and Linking Your Application to HLAPI/USS Services . 327

Planning Your HLAPI/USS Application . 328

Converting HLAPI Programs to HLAPI/USS Programs . 328

Using the REXX HLAPI/USS Interface . 329

REXX HLAPI/USS Installation and Setup . 330

Invoking REXX HLAPI/USS. 330

REXX Reserved Variables . 332

Other Considerations . 332

REXX HLAPI/USS Sample REXX Program . 333

Sample Program blmyrxsa . 333

Appendix A. Components of Tivoli Information Management for z/OS
Clients . 339

Components of HLAPI/2 . 339

Files on the Workstation . 339

Files on the LAN Server . 340

xviiClient Installation and User’s Guide

Components of HLAPI/CICS. 341

Components of HLAPI/NT . 342

Files on the Workstation . 342

Files on the Network Server . 347

Components of HLAPI/AIX. 348

Requester Option. 348

Client Interface Option . 348

Components of HLAPI/HP . 349

Requester Option. 349

Client Interface Option . 349

Other Files . 350

Components of HLAPI/Solaris . 350

Requester Option. 350

Client Interface Option . 351

Other Files . 351

Components of HLAPI/USS . 352

Directories. 352

Files . 352

Symbolic links. 352

Appendix B. Tivoli Information Management for z/OS Java Wrappers
(HLAPI for Java). 353

Class Hicao . 354

Class Pdbo . 361

Class Blmyjwc . 363

Appendix C. HLAPI Service Call Return Codes . 367
Return Codes. 367

Appendix D. Relating Publications to Specific Tasks 369
Typical Tasks. 369

Appendix E. Tivoli Information Management for z/OS Courses 373
Education Offerings. 373

United States . 373

United Kingdom . 373

Appendix F. Where to Find More Information . 375
The Tivoli Information Management for z/OS Library . 375

xviii Version 7.1

Index . 379

xixClient Installation and User’s Guide

xx Version 7.1

Preface

Tivoli® Information Management for z/OS extends your ability to gather, organize, and
locate information about your company’s data processing installation. The main purpose of
the Tivoli Information Management for z/OS database is to hold problem, change,
configuration, and user-defined data for your company. You can do these things from a
remote environment workstation.

The remote environments supported by Tivoli Information Management for z/OS are
Advanced Interactive Executive (AIX®), Customer Information Control System (CICS®),
HP-UX, Operating System/2® (OS/2®), Sun Solaris, and Microsoft® Windows NT®. The
communication protocols supported are advanced program-to-program communication
(APPC) and Transmission Control Protocol/Internet Protocol (TCP/IP).

Please Note
Throughout this guide, the term UNIX® refers to the AIX, HP-UX, and Sun Solaris
clients, unless otherwise specified. The term HLAPI/UNIX refers to HLAPI/AIX,
HLAPI/HP, and HLAPI/Solaris.

In addition to those workstation environments, remote and local access to Tivoli Information
Management for z/OS can be provided from an application program that runs on OS/390®

UNIX System Services. Such user application programs can be local, running under OS/390
UNIX System Services on the same MVS™ host as Tivoli Information Management for
z/OS, or they can be run on a remote MVS host. These local or remote environment user
application programs can be thought of as the clients to the Tivoli Information Management
for z/OS server.

This guide describes the servers Tivoli Information Management for z/OS offers to support
remote clients and tells the system or application programmer how to configure them. This
guide also describes the clients supported by Tivoli Information Management for z/OS and
tells the system or application programmer how to install and set them up to communicate
with the MVS host.

There may be references in this publication to versions of Tivoli Information Management
for z/OS’s predecessor products. For example:

¶ TME 10™ Information/Management Version 1.1

¶ Information/Management Version 6.3, Version 6.2, Version 6.1

¶ Tivoli Service Desk for OS/390 Version 1.2

Who Should Read This Guide
This guide is intended for system programmers and application programmers. It assumes that
the system programmer installing the servers on MVS is familiar with MVS and the
communication protocols to be used. It also assumes that the application programmer in each
of the remote environments understands the client environment being used. For example, if
you choose to access Tivoli Information Management for z/OS from OS/2, this guide
assumes that the system programmer understands how to use OS/2 functions, commands,

xxiClient Installation and User’s Guide

|

and communications protocols. This guide also describes the client Application Programming
Interfaces (APIs), and is of value to anyone who will be installing these APIs.

Prerequisite and Related Documentation
The library for Tivoli Information Management for z/OS Version 7.1 consists of these
publications. For a description of each, see “The Tivoli Information Management for z/OS
Library” on page 375.

Tivoli Information Management for z/OS Application Program Interface Guide,
SC31-8737-00

Tivoli Information Management for z/OS Client Installation and User’s Guide,
SC31-8738-00

Tivoli Information Management for z/OS Data Reporting User’s Guide, SC31-8739-00

Tivoli Information Management for z/OS Desktop User’s Guide, SC31-8740-00

Tivoli Information Management for z/OS Diagnosis Guide, GC31-8741-00

Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications,
SC31-8744-00

Tivoli Information Management for z/OS Integration Facility Guide, SC31-8745-00

Tivoli Information Management for z/OS Licensed Program Specification, GC31-8746-00

Tivoli Information Management for z/OS Master Index, Glossary, and Bibliography,
SC31-8747-00

Tivoli Information Management for z/OS Messages and Codes, GC31-8748-00

Tivoli Information Management for z/OS Operation and Maintenance Reference,
SC31-8749-00

Tivoli Information Management for z/OS Panel Modification Facility Guide,
SC31-8750-00

Tivoli Information Management for z/OS Planning and Installation Guide and Reference,
GC31-8751-00

Tivoli Information Management for z/OS Problem, Change, and Configuration
Management, SC31-8752-00

Tivoli Information Management for z/OS Program Administration Guide and Reference,
SC31-8753-00

Tivoli Information Management for z/OS Reference Summary, SC31-8754-00

Tivoli Information Management for z/OS Terminal Simulator Guide and Reference,
SC31-8755-00

Tivoli Information Management for z/OS User’s Guide , SC31-8756-00

Tivoli Information Management for z/OS World Wide Web Interface Guide,
SC31-8757-00

Note: Tivoli is in the process of changing product names. Products referenced in this
manual may still be available under their old names (for example, TME 10 Enterprise
Console instead of Tivoli Enterprise Console®).

Who Should Read This Guide

xxii Version 7.1

What This Guide Contains
“Client/Server Computing” on page 1 introduces the Tivoli Information Management for
z/OS clients and servers. It lists the HLAPI transactions the clients support and illustrates
some possible network configurations.

“Choosing a Server” on page 13 compares the Tivoli Information Management for z/OS
servers on several key characteristics. Read this chapter when you are planning a
client/server configuration.

“Configuring and Running a Remote Environment Server (RES)” on page 25 provides
instructions for setting up and running a Remote Environment Server (RES). Read this
chapter to become familiar with the setup of Tivoli Information Management for z/OS’s
server that supports one client per MVS address space.

“Configuring and Running a Multiclient Remote Environment Server (MRES) with APPC”
on page 35 provides instructions for setting up and running a Multiclient Remote

Environment Server with APPC (MRES with APPC). Read this chapter to become familiar
with the setup of Tivoli Information Management for z/OS’s server that uses APPC and can
support multiple clients per MVS address space.

“Configuring and Running a Multiclient Remote Environment Server (MRES) with TCP/IP”
on page 53 provides instructions for setting up and running a Multiclient Remote

Environment Server with TCP/IP (MRES with TCP/IP). Read this chapter to become
familiar with the setup of Tivoli Information Management for z/OS’s server that uses TCP/IP
and can support multiple clients per MVS address space.

“Using MVS Operator Commands” on page 67 lists some useful support commands.

Information on the clients is grouped into sections, with several chapters providing
information specific to each client:

¶ Information on the HLAPI/2 client begins with “Introduction to the HLAPI/2” on
page 69.

¶ Information on the client for Windows NT begins with “Introduction to the HLAPI/NT”
on page 137.

¶ Information on the CICS client begins with “Introduction to HLAPI/CICS” on page 187.

¶ Information on the HLAPI/UNIX clients begins with “Introduction to HLAPI/UNIX” on
page 225.

¶ Information on the HLAPI/USS client begins with “Introduction to HLAPI/USS” on
page 291.

“Components of Tivoli Information Management for z/OS Clients” on page 339 lists the
components of the clients.

“Tivoli Information Management for z/OS Java Wrappers (HLAPI for Java)” on page 353 is
a listing of Java™ classes that are provided to allow programmers to more easily write
HLAPI applications using Java. These classes are based on the existing HLAPI
programming model, but simplify that model by providing some of the common
programming functions.

What This Guide Contains

xxiiiClient Installation and User’s Guide

“HLAPI Service Call Return Codes” on page 367 lists the HLAPI Service Call Return
Codes.

Contacting Customer Support
For support inside the United States, for this or any other Tivoli product, contact Tivoli
Customer Support in one of the following ways:
¶ Send e-mail to support@tivoli.com
¶ Call 1-800-TIVOLI8
¶ Navigate our Web site at http://www.support.tivoli.com

For support outside the United States, refer to your Customer Support Handbook for phone
numbers in your country. The Customer Support Handbook is available online at
http://www.support.tivoli.com.

When you contact Tivoli Customer Support, be prepared to provide identification
information for your company so that support personnel can assist you more readily.

The latest downloads and fixes can be obtained at http://www.tivoli.com/infoman.

What This Guide Contains

xxiv Version 7.1

|

Client/Server Computing

Tivoli Information Management for z/OS extends your ability to gather, organize, and locate
information about your company’s data processing installation. The main purpose of the
Tivoli Information Management for z/OS database is to hold problem, change, configuration,
and user-defined data for your company. If your Tivoli Information Management for z/OS
system is part of a communications network, you may want to access Tivoli Information
Management for z/OS data from user application programs running on other platforms in
remote environments, such as OS/2 or AIX. Tivoli Information Management for z/OS
provides interfaces for OS/2, UNIX, CICS, Windows NT, and OS/390 UNIX System
Services that enable application programs on those platforms to do just that. These interfaces
are called clients because they request services from a network.

Tivoli Information Management for z/OS also provides interfaces on MVS to receive client
requests and pass them along to Tivoli Information Management for z/OS for processing.
These interfaces are called servers because they respond to requests for service from clients.

In order for an application program running on a different platform, or running on MVS
under CICS or OS/390 UNIX System Services, to retrieve data from Tivoli Information
Management for z/OS, a communication link between Tivoli Information Management for
z/OS and the application program has to be established. Tivoli Information Management for
z/OS clients initiate the establishment of the communication link. They send identifying
information to MVS to verify their authorization to use the communication link and the
Tivoli Information Management for z/OS database.

Data from application programs in remote environments such as OS/2 or UNIX or Windows
NT also must be translated into a code page that MVS understands. Then, when Tivoli
Information Management for z/OS returns data to a remote environment, the data has to be
translated back into the code page that the remote environment understands. This code page
translation is done by the Tivoli Information Management for z/OS client.

On the Tivoli Information Management for z/OS end of the communication link, the
application program has a choice of servers that support access to Tivoli Information
Management for z/OS data through the High-Level Application Program Interface (HLAPI).
The servers are MVS-based programs that reside on the host system and provide a way for a
remote application program to communicate with a Tivoli Information Management for z/OS
database.

The Tivoli Information Management for z/OS clients for OS/2, UNIX, Windows NT, and
OS/390 UNIX System Services consist of two parts: a client interface and a requester. A
requester is a transaction program that runs on the client platform; it is the counterpart to the
server on the host. A client’s requester must be up and running before an application
program can request services from a Tivoli Information Management for z/OS server.

1

1Client Installation and User’s Guide

1.
C

lien
t/S

erver
C

o
m

p
u

tin
g

This chapter introduces the Tivoli Information Management for z/OS clients and servers.

Supported Communication Protocols
Tivoli Information Management for z/OS provides servers that support Advanced
Program-to-Program Communication (APPC) and Transmission Control Protocol/Internet
Protocol (TCP/IP) communication protocols. The OS/2, AIX, CICS, and Windows NT clients
all support communication with a Tivoli Information Management for z/OS server using
APPC protocol. The OS/2, UNIX, Windows NT, and OS/390 UNIX System Services clients
also support communication with a Tivoli Information Management for z/OS server using
TCP/IP. See “Choosing a Server” on page 13 for a comparison of the servers.

Clients
Like the HLAPI, each client is a transaction-based application programming interface. User
application programs interact with Tivoli Information Management for z/OS from a remote
environment in basically the same way as they do from MVS using the HLAPI. The client
environments offer a subset of HLAPI transactions, which are listed in Table 1 and described
in the Tivoli Information Management for z/OS Application Program Interface Guide.

The user application communicates with the Tivoli Information Management for z/OS
system by creating a high-level application communication area (HICA) and its related
parameter data blocks (PDBs). The HICA must include some client-specific PDBs to identify
its source. The user application then submits the HICA transaction by making client program
service calls. Return and reason codes are returned in the transaction HICA.

For those clients that require language bindings, such as the OS/2 client, these are provided
to assist you in writing application programs that request services from a Tivoli Information
Management for z/OS server.

Three of the remote clients (OS/2, AIX, and USS) also provide a REXX interface which
allows you to write REXX application programs. The interfaces are the same as
HLAPI/REXX, which is described in Tivoli Information Management for z/OS Application
Program Interface Guide.

Clients are provided for the following remote environments:

¶ AIX

This client is referred to as the HLAPI/AIX. It can communicate with a RES or an
MRES using the APPC protocol, or an MRES using the TCP/IP protocol. This client
consists of two parts, a client interface and a requester. The requester can be run on the
same client platform as the client interface or on a different platform. The client
interface can also use a requester running on a different UNIX platform.

¶ CICS

This client is referred to as the HLAPI/CICS. It can communicate with a RES or an
MRES using the APPC protocol.

¶ HP-UX

This client is referred to as the HLAPI/HP. It can communicate with an MRES using the
TCP/IP protocol. This client consists of two parts, a client interface and a requester. The

Supported Communication Protocols

2 Version 7.1

requester can be run on the same client platform as the client interface or on a different
platform. The client interface can also use a requester running on a different UNIX
platform.

¶ OS/2

This client is referred to as the HLAPI/2. It can communicate with a RES or an MRES
using the APPC protocol, or an MRES using the TCP/IP protocol. This client consists of
two parts, a client interface and a requester. The requester and client interface must run
on the same host.

¶ Sun Solaris

This client is referred to as the HLAPI/Solaris. It can communicate with an MRES using
the TCP/IP protocol. This client consists of two parts, a client interface and a requester.
The requester can be run on the same client platform as the client interface or on a
different platform. The client interface can also use a requester running on a different
UNIX platform.

¶ Windows NT

This client is referred to as the HLAPI/NT. It can communicate with a RES or an MRES
using the APPC protocol, or an MRES using the TCP/IP protocol. This client consists of
two parts, a client interface and a requester. The requester and client interface must run
on the same host.

¶ OS/390 UNIX System Services (USS)

This client is referred to as the HLAPI/USS. It can communicate with an MRES using
the TCP/IP protocol. This client consists of two parts, a client interface and a requester.
The requester can be run under OS/390 UNIX System Services on the same MVS host
as the client interface or on a different MVS host. The client interface can also use a
requester running under OS/390 UNIX System Services on a different MVS host.

HLAPI Functions and Transactions

Table 1. HLAPI Functions and Transaction Numbers Supported by Clients
HLAPI Function Supported by
Clients

Transaction
Number

Transaction Type

Initialize Tivoli Information
Management for z/OS

HL01 Environment Control

Terminate Tivoli Information
Management for z/OS

HL02 Environment Control

Obtain External Record ID HL03 Interface Service

Check Out Record HL04 Interface Service

Check In Record HL05 Interface Service

Retrieve Record HL06 Database Access

Reserved HL07 —

Create Record HL08 Database Access

Update Record HL09 Database Access

Change Record Approval HL10 Interface Service

Record Inquiry HL11 Database Access

Add Record Relations HL12 Database Access

Delete Record HL13 Database Access

Clients

3Client Installation and User’s Guide

1.
C

lien
t/S

erver
C

o
m

p
u

tin
g

Table 1. HLAPI Functions and Transaction Numbers Supported by
Clients (continued)
HLAPI Function Supported by
Clients

Transaction
Number

Transaction Type

Start User TSP or TSX HL14 Interface Service

Get Data Model HL31 Database Access

Client Comparisons
Table 2 compares the clients on the following characteristics:

¶ The communication protocols they support

¶ Which servers they can be served by

¶ Which language bindings are shipped with Tivoli Information Management for z/OS for
each client

¶ Whether they require security verification

¶ Which client control PDBs are required on HL01 transactions

¶ Other characteristics

Table 2. Comparison of Tivoli Information Management for z/OS HLAPI Clients
Client Protocol Served by Language

Bindings
Verify Control PDBs Other

HLAPI/AIX
TCP/IP

APPC/APPN

RES

MRES with
APPC

MRES with
TCP/IP

C

Java

REXX

YES DATABASE_PROFILE

SECURITY_ID

PASSWORD

Client and requester can run
on separate machines.

A conversation can carry a
maximum of 10 logical
sessions.

HLAPI/CICS

APPC/APPN
RES

MRES with
APPC

Sample
requires
VS
COBOL
II. See
“Other”
column.

NO CICS_User_ID

CICS_Partner_ID

CICS_CM_Time_Out_Value

CICS_Inter_Time_Out_Value

Any language supported by
both CICS and Tivoli
Information Management for
z/OS

.

HLAPI/HP
TCP/IP MRES with

TCP/IP
C

Java

YES DATABASE_PROFILE

SECURITY_ID

PASSWORD

Client and requester can run
on separate machines.

A conversation can carry a
maximum of 10 logical
sessions.

HLAPI/2
TCP/IP

APPC/APPN

RES

MRES with
APPC

MRES with
TCP/IP

C

Java

REXX

YES DATABASE_PROFILE

SECURITY_ID

PASSWORD

Client and requester must run
on the same machine.

HLAPI/Solaris
TCP/IP MRES with

TCP/IP
C

Java

YES DATABASE_PROFILE

SECURITY_ID

PASSWORD

Client and requester can run
on separate machines.

A conversation can carry a
maximum of 10 logical
sessions.

Clients

4 Version 7.1

Table 2. Comparison of Tivoli Information Management for z/OS HLAPI Clients (continued)
Client Protocol Served by Language

Bindings
Verify Control PDBs Other

HLAPI/NT
TCP/IP

APPC/APPN

RES

MRES with
APPC

MRES with
TCP/IP

C

Java

YES DATABASE_PROFILE

SECURITY_ID

PASSWORD

Client and requester must run
on the same machine.

A conversation can carry a
maximum of 10 logical
sessions.

HLAPI/USS
TCP/IP MRES with

TCP/IP
C

REXX

YES DATABASE_PROFILE

SECURITY_ID

PASSWORD

Client and requester can run
on separate hosts.

A conversation can carry a
maximum of 10 logical
sessions.

Servers
Tivoli Information Management for z/OS servers are MVS/ESA™ programs that handle all
communication between a client and any Tivoli Information Management for z/OS databases
that reside on the MVS system where the server is installed. The server cannot be accessed
directly from a user application program. The application must use one of the Tivoli
Information Management for z/OS clients to access a Tivoli Information Management for
z/OS server.

A Tivoli Information Management for z/OS server must be set up on every MVS/ESA
machine running a Tivoli Information Management for z/OS database that an application
from a client needs to access.

You can choose between Tivoli Information Management for z/OS servers that can:

¶ Serve a single client application program at a time using APPC protocol. The application
program can start multiple Tivoli Information Management for z/OS logical sessions on
one APPC conversation. This server is called a Remote Environment Server (RES). See
“Remote Environment Server (RES)” for an overview of the RES.

¶ Serve several client application programs concurrently using APPC protocol. Each
application program can start multiple Tivoli Information Management for z/OS logical
sessions on its APPC conversation. This server is called a Multiclient Remote
Environment Server with APPC (MRES with APPC). See “Multiclient Remote
Environment Server (MRES) with APPC” on page 6 for an overview of the MRES.

¶ Serve multiple client application programs concurrently using TCP/IP communication
protocol. Each application program can start multiple Tivoli Information Management
for z/OS logical sessions on its TCP/IP conversation. This server is called a Multiclient
Remote Environment Server with TCP/IP (MRES with TCP/IP). See “Multiclient
Remote Environment Server (MRES) with TCP/IP” on page 8 for an overview of the
MRES with TCP/IP.

Remote Environment Server (RES)
One of the means by which Tivoli Information Management for z/OS supports remote client
access is via the Remote Environment Server (RES). The RES runs as a transaction program
(TP) that is started by APPC/MVS 4.2 (or later) when a connection request (an allocate
verb) is received from a Tivoli Information Management for z/OS client. For each

Clients

5Client Installation and User’s Guide

1.
C

lien
t/S

erver
C

o
m

p
u

tin
g

connection request, the APPC scheduler starts a new address space with a RES dedicated to
servicing that client’s HLAPI transactions. Each RES can access only one BLX-Service
Provider (BLX-SP).

A RES must be associated with a logical unit (LU) that is defined as scheduled (sched) to
APPC/MVS. The minimum software required to define a RES is:
¶ OS/390 Version 2.5, or a later version

Figure 1 illustrates a client/server configuration that could be achieved using the RES.

The HLAPI/AIX, HLAPI/CICS, HLAPI/2, and HLAPI/NT clients can communicate with a
RES.

See “Configuring and Running a Remote Environment Server (RES)” on page 25 for
information on installing and running a RES.

Multiclient Remote Environment Server (MRES) with APPC
This server is the Multiclient Remote Environment Server with APPC (MRES with APPC).
The address space for MRES with APPC runs as a task started by the MVS operator. Unlike
the RES, the MRES with APPC bypasses the APPC scheduler and receives the connection
request (an allocate verb) directly from a Tivoli Information Management for z/OS client.
This allows a single address space for MRES with APPC to receive and process transactions
from multiple Tivoli Information Management for z/OS clients concurrently. It also removes
the burden of having a separate address space for each client connection. Address spaces for
both RES and MRES with APPC can be active on an MVS machine at the same time. Each
MRES with APPC can access only one BLX-SP.

Remote
Environment
Server

Com
Manager

High-
Level
Application
Program
Interface

CICS
Interface

Low-
Level
Application
Program
Interface

User
Transaction

EXEC CICS
LINK ...

MVS Address Space

CICS Address Space

APPC (LU6.2)

Tivoli
Information
Management
for z/OS
Subtask

Figure 1. Client/Server Configuration with RESs

Servers

6 Version 7.1

An MRES with APPC requires an LU defined to APPC/MVS as nonscheduled (Nosched).
The minimum software required to define an MRES with APPC is:
¶ OS/390 Version 2.5, or a later version

Figure 2 illustrates a client/server configuration that could be achieved using an MRES with
APPC.

The HLAPI/AIX, HLAPI/CICS, HLAPI/2, and HLAPI/NT clients can communicate with an
MRES with APPC.

See “Configuring and Running a Multiclient Remote Environment Server (MRES) with
APPC” on page 35 for information on installing and starting an MRES with APPC.

Figure 3 on page 8 illustrates a client/server configuration that could be achieved using RESs
and an MRES with APPC.

Figure 2. Client/Server Configuration Using an MRES with APPC

Servers

7Client Installation and User’s Guide

1.
C

lien
t/S

erver
C

o
m

p
u

tin
g

Multiclient Remote Environment Server (MRES) with TCP/IP
Tivoli Information Management for z/OS also provides a server that uses TCP/IP
communication protocol. This server is the Multiclient Remote Environment Server with
TCP/IP (MRES with TCP/IP). Like the address space for MRES with APPC, the address
space for MRES with TCP/IP runs as a task started by the MVS operator. The MRES with
TCP/IP uses socket interfaces to communicate with TCP/IP. A single address space for
MRES with TCP/IP can receive and process transactions from multiple Tivoli Information
Management for z/OS clients concurrently. Address spaces for RES, MRES with APPC, and
MRES with TCP/IP can be active on an MVS machine at the same time. Each MRES with
TCP/IP can access only one BLX-SP.

The minimum software required to define an MRES with TCP/IP is:
¶ OS/390 Version 2.5, or a later version

Figure 3. Client/Server Configuration Using RESs and an MRES with APPC

Servers

8 Version 7.1

Figure 4 illustrates a client/server configuration that could be achieved using an MRES with
TCP/IP. The OS/2, UNIX, Windows NT, and USS clients can communicate with an MRES
with TCP/IP.

See “Configuring and Running a Multiclient Remote Environment Server (MRES) with
TCP/IP” on page 53 for information on installing and starting an MRES with TCP/IP.

Figure 5 on page 10 illustrates a client/server configuration that could be achieved using the
RES, MRES with APPC, and MRES with TCP/IP. In this example, they all use the same
BLX-SP.

HP

OS/2

Windows
NT

AIX

HLAPI
BLX-SP

Subsystem

T
C
P
/
I
P

T
C
P
/
I
P

T
C
P
/
I
P

T
C
P
/
I
P

T
C
P
/
I
P

T
C
P
/
I
P

M

R

E

SSolaris

USS

Figure 4. Client/Server Configuration Using an MRES with TCP/IP

Servers

9Client Installation and User’s Guide

1.
C

lien
t/S

erver
C

o
m

p
u

tin
g

Java Applications
Java programs can interface with Tivoli Information Management for z/OS clients on the
following operating systems, which must also support the Java Runtime Environment (JRE)
Version 1.1:

¶ AIX

¶ HP-UX

¶ Sun Solaris

¶ OS/2

¶ Windows®/NT

A sample Java program that illustrates the use of the Java class objects is also provided with
the clients. “Tivoli Information Management for z/OS Java Wrappers (HLAPI for Java)” on
page 353 contains additional information on the following classes and their methods:

¶ The Hicao class which contains methods and data to handle HICA field data and
collections of PDBs.

AIX Windows
NT

OS/2

AIX

Solaris

USS

HP

A
P
P
C

R
E
S

T
C
P
/
I
P

T
C
P
/
I
P

T
C
P
/
I
P

T
C
P
/
I
P

T
C
P
/
I
P

T
C
P
/
I
P

R
E
S

R
E
S

M

R

E

S

M

R

E

S

R
E
S

A
P
P
C

A
P
P
C

A
P
P
C

A
P
P
C

A
P
P
C

A
P
P
C

A
P
P
C

HLAPI

HLAPI

HLAPI

HLAPI

BLX-SP
Subsystem HLAPI

HLAPIOS/2

OS/2

Windows
NT

Windows
NT

CICS

CICS

AIX

Figure 5. Client/Server Configuration Using RESs, an MRES with APPC, and an MRES with TCP/IP

Java Applications

10 Version 7.1

¶ The Pdbo class which contains methods to store and retrieve data from the PDB data
structure.

¶ The Blmyjwc class which defines constants used for control PDB names.

Java Applications

11Client Installation and User’s Guide

1.
C

lien
t/S

erver
C

o
m

p
u

tin
g

Java Applications

12 Version 7.1

Choosing a Server

This chapter compares the servers that are supported and discusses characteristics that you
need to consider while planning your configuration.

The servers are compared on the following characteristics:

¶ How they manage conversations, including

v Which communication protocol they support

v What type of LU-to-LU conversation they require, if any

v How many concurrent clients they can support in one server address space (ASID)

¶ Where you can define security controls

¶ How you can determine who used a server

¶ How each server is started

Some performance issues and transaction logging are also discussed.

Table 3 summarizes the comparisons.

Table 3. Comparison of Servers
Server Protocol Conversation Clients per ASID Security Accounting Startup

RES APPC SCHEDULED 1 APPC/MVS, VTAM®,
RACF® (or comparable
security product), and TP
profile

SMF type 33,
subtype 1
records

Initiated by
client

MRES with
APPC

APPC NONSCHEDULED 1 to 50, as specified
by MAXCONNECT
in the parameters data
set

APPC/MVS, VTAM, and
RACF (or comparable
security product)

SMF type 33,
subtype 2
records

Started by
MVS operator

MRES with
TCP/IP

TCP/IP Terminology does not
apply. Uses sockets.

1 to 50, as specified
by MAXCONNECT
in the parameters data
set

RACF (or comparable
security product)

None Started by
MVS operator

RES Conversation Management
The RES supports APPC protocol. It uses the APPC scheduler to schedule conversations and
start an address space to serve a client’s request for a conversation. Therefore, the APPC and
VTAM definitions for a RES must be for a scheduled logical unit.

A single APPC conversation is established for each combination of security user ID, client
requester, and symbolic destination name. The symbolic destination name identifies an MVS
system where a server resides. Once established, all database connections with the same

2

13Client Installation and User’s Guide

2.
C

h
o

o
sin

g
a

S
erver

combination use this single conversation. (Some clients, though, can support no more than
10 logical sessions per conversation. This is a limitation of the sockets interface.)

As the number of logical sessions associated with a specific server address space increases,
the address space might run out of storage. If this happens, an MVS abend ends all of the
logical sessions in the address space. This includes any logical sessions that might
correspond to HICAs from multiple client application programs.

The number of logical sessions that an address space can support depends on many factors:

¶ The MVS configuration

¶ The number of client sessions

¶ The specific transaction being performed

¶ What data is in the Tivoli Information Management for z/OS database

¶ If the client application specifies MVS HLAPI/LLAPI logging

It is suggested that you limit the number of HICAs per conversation. Generally, each MVS
host has one conversation with each combination of security user ID, client requester, and
symbolic destination name.

Conversations are established based on unique symbolic destination names and security IDs.
If more than one symbolic destination name refers to exactly the same system and TP name,
more than one conversation is established to that system and TP name. How many different
conversations you can establish from one workstation to each symbolic destination is limited
by the session limits your system administrator has defined in APPC/MVS and VTAM on
the host for the server’s logical unit.

MRES with APPC Conversation Management
The MRES with APPC also supports APPC protocol. Facilities available on z/OS enable the
MRES to support conversations with multiple clients in a single MVS address space and to
bypass the APPC scheduler when it processes LU 6.2 inbound transaction program requests.
Therefore, the APPC and VTAM definitions for an MRES must be for a nonscheduled LU.

The MRES address space runs as a task started by the MVS operator. The number of
LU-to-LU conversations this address space can serve simultaneously is determined by the
number of client conversation processors the task starts. A client conversation processor is a
program that connects a client conversation to a HLAPI session. Transactions from the client
flow through this connection to the HLAPI. The results from the HLAPI flow back through
this connection to the client.

When an MRES is started, it registers with APPC/MVS to receive inbound conversations.
Thereafter, APPC/MVS monitors all the inbound conversation requests for those requests for
which the MRES has registered. Instead of routing the requests to the APPC scheduler,
APPC/MVS places the requests on a queue to await further processing by the MRES. The
queue is called an allocate queue. The MRES processes conversation requests by receiving
them from the allocate queue and performing the function requested by the client transaction
program. This allows a single MRES address space to receive and process transactions from
multiple Tivoli Information Management for z/OS clients concurrently. This removes the

RES Conversation Management

14 Version 7.1

burden of having a separate address space for each client connection. Both RES and MRES
address spaces can be active on an MVS machine at the same time. Also, each MRES can
access only one BLX-SP.

If memory abends are a problem with this server, you can either increase the region size in
the started procedure or reduce the number of client conversation processors this server
supports.

The number of client conversation processors that an address space can support depends on
many factors:

¶ The size of the address space

¶ The MVS configuration

¶ The number of logical sessions flowing on each conversation

¶ The specific transactions being performed

¶ What data is in the Tivoli Information Management for z/OS database

¶ If the client application specifies MVS HLAPI/LLAPI logging

MRES with TCP/IP Conversation Management
The MRES with TCP/IP supports the TCP/IP protocol. Like the MRES with APPC, it can
support multiple clients in a single MVS address space. It uses sockets as the interface
between the client and Tivoli Information Management for z/OS. The MRES with TCP/IP
uses the standard OS/390 UNIX System Services socket interface. You must create and
define a generic user to OS/390 UNIX System Services and associate the user with the name
of the MRES to be started.

Note: If you are migrating from an earlier release of Tivoli Information Management for
z/OS, you should review your specifications. Some of the parameters may have
changed. For example, the parameter WTO that was valid in earlier releases should
now be specified as WRITEOPER. In a like manner, in earlier releases, the TCP/IP
address space name was specified with the ASN parameter. This parameter is not
valid in this release, and specifying it will result in an error. In addition to the
changed parameters, you need to specify your MRES startup parameters in a data set
rather than inline in your cataloged procedure, as was done in earlier releases. A list
and description of valid parameters for this release can be found in “Coding the
Parameters for an MRES with TCP/IP” on page 58.

The MRES with TCP/IP address space runs as a task started by the MVS operator. The
number of clients this address space can serve simultaneously is determined by the number
of client communication processors this task starts. RES, MRES with APPC, and MRES
with TCP/IP address spaces can all be active on an MVS machine at the same time.

Each MRES with TCP/IP can access only one BLX-SP.

If memory abends are a problem with this server, you can either increase the region size in
the started procedure or reduce the number of client conversation processors the server
supports.

The number of client conversation processors that an address space can support depends on
many factors:

MRES with APPC Conversation Management

15Client Installation and User’s Guide

2.
C

h
o

o
sin

g
a

S
erver

¶ The size of the address space

¶ The MVS configuration

¶ The number of logical sessions flowing on each conversation

¶ The specific transactions being performed

¶ What data is in the Tivoli Information Management for z/OS database

¶ If the client application specifies MVS HLAPI/LLAPI logging

Logical Unit (LU) Considerations
The RES and the MRES with APPC both require logical unit definitions in APPC/MVS and
VTAM. The LU for a RES must be scheduled. The LU for an MRES must be nonscheduled.
Therefore, you cannot use the same LU for both a RES and an MRES.

The clients you use may have requirements that you need to consider when defining LUs
also. For example, HLAPI/CICS clients may not need password verification, but HLAPI/2,
HLAPI/NT, and HLAPI/AIX clients do. If you have both HLAPI/2 and HLAPI/CICS clients,
one way to handle the security issue is to define LUs for the exclusive use of each client
and create security definitions to restrict the use of each LU to a particular client.

Refer to the publications listed in “Security References” on page 22 for more information.

Refer to MVS/ESA Planning: APPC Management for more information about defining LUs
that implement security mechanisms.

Socket Considerations
The MRES with TCP/IP uses sockets. The client must know the port number for the server’s
socket. So, if you decide to change the port number when you start an MRES with TCP/IP,
you must inform the clients that use the server of the change. The client also has to know
the IP address or the host name of the server. The MRES with TCP/IP uses the standard
OS/390 UNIX System Services socket interface. You must create and define a generic user
to OS/390 UNIX System Services and associate the user with the name of the MRES to be
started.

Accounting Considerations
System Management Facilities (SMF) is the MVS component that collects and records
system and job related information for accounting, configuration, performance, and security
management purposes.

RES
Your installation can track the use of RES resources through the SMF record type 33,
subtype 1. This record provides data that includes the following information about inbound
conversations scheduled by APPC:

¶ TP name, TP profile name, and TP class

¶ Local and partner LU names

¶ Queueing and processing times for the scheduled program

¶ Number of sends and receives for the request

MRES with TCP/IP Conversation Management

16 Version 7.1

You can also use an SMF account validation exit to validate the accounting information for
TPs whose profiles specify TAILOR_ACCOUNT(YES). The exit receives control when a
new unit of work is prepared for processing and is passed the user ID and account number
information. The exit can validate that information and approve or deny the processing of
the related TP instance.

The OS/390 MVS System Management Facilities (SMF) contains additional information
about SMF.

MRES with APPC
Your installation can track the use of MRES with APPC resources through the SMF record
type 33, subtype 2. This record provides data that includes the following information:

¶ Conversation user ID and conversation ID

¶ TP name for the conversation

¶ Local and partner LU names

¶ The date and time a request was:

v Received by APPC/MVS

v Queued for processing

v Delivered to the processing program

v Deallocated

¶ Number of sends and amount of data sent

¶ Number of receives and amount of data received

For more information, OS/390 System Management Facilities (SMF) has further discussion
of SMF accounting for APPC/MVS servers.

Performance Considerations
If you use an MRES with APPC or an MRES with TCP/IP, the total elapsed time required to
perform the first HL01 (initialization) transaction received from the client will be less than if
you use a RES. This is because the MRES address space has already been started and the
client conversation processing task is waiting to handle the first transaction. If you are using
an MRES with pre-started API sessions, you may obtain better HL01 performance because
session initialization is done when the MRES is started; this is described in “MRES with
Pre-started API Sessions Considerations” on page 18.

The symbolic destination name, specified when an MRES with APPC is started, defines the
APPC allocate queue that will be monitored. More than one MRES with APPC can be
started and assigned to the same APPC allocate queue. As client conversations arrive in the
queue, they are received by the waiting MRESs. When all of the MRESs assigned to an
allocate queue have received their maximum number of active conversations, any additional
conversations arriving in the queue must wait until an MRES becomes available to receive
it. This wait time, which does not occur in RES processing, can be significant, thus
impacting performance of the waiting conversations. The MVS operator can use APPC
commands to monitor the activity of the allocate queue. Another solution is for the operator
to start a sufficient number of MRESs beforehand to handle the volume of active
conversations.

Accounting Considerations

17Client Installation and User’s Guide

2.
C

h
o

o
sin

g
a

S
erver

The port number and internet protocol address, specified when an MRES with TCP/IP is
started, defines the socket that receives the connection request. More than one MRES with
TCP/IP can be started, but each must have a unique port number. As client connection
requests arrive at the socket, they are received by the waiting MRES with TCP/IP. When the
MRES with TCP/IP has received its maximum number of connection requests, any
additional requests arriving at the socket are rejected.

MRES with Pre-started API Sessions Considerations
You may improve performance by using pre-started API sessions. When you use pre-started
API sessions, the initialization (HL01) time for a client connecting to Tivoli Information
Management for z/OS through the MRES may be shortened. This is because each client
conversation processor (CCP) issues the HL01 transaction when the MRES is first started
and before clients begin to connect in. If some of your clients typically connect to the
MRES using the same HL01 control values, the clients should achieve a faster response
when they submit the HL01 to a Tivoli Information Management for z/OS that is using
pre-started sessions.

With either MRES with APPC or MRES with TCP/IP, the system administrator can request
that an MRES pre-start its API sessions by providing the appropriate keywords in the data
set specified on the BLMYPRM DD statement in the cataloged procedure for the MRES.
The parameters that are specified have the same names as the corresponding control PDBs
for the HL01 HLAPI transaction.

The MRES parameter PRESTARTSESSIONS (described on page 41) is used to indicate
whether the MRES should pre-start API sessions. Based on the specification of this
parameter, either none of the CCPs will pre-start an API session or else all of the CCPs will
pre-start an API session.

Existing clients can use an MRES with pre-started API sessions by ensuring that the values,
if specified, for SESSION_MEMBER, DATABASE_ID, and
BYPASS_PANEL_PROCESSING, match those specified for the MRES. If these values are
different, the HL01 is rejected.

New clients can be designed to take advantage of the pre-started API sessions. In doing so,
the HL01 transaction is still needed. As stated in the preceding paragraph, if values are
specified for SESSION_MEMBER, DATABASE_ID, and
BYPASS_PANEL_PROCESSING, they must match the values specified for the MRES.
For workstation and HLAPI/USS clients, SECURITY_ID and PASSWORD are required
because these are used by RACF to ensure proper access authority to MVS. Tivoli
Information Management for z/OS also checks access authority by using the specifications
for APPLICATION_ID and PRIVILEGE_CLASS. The value for APPLICATION_ID
must be provided by the client on either the HL01 or on the first transaction sent after the
HL01. A specification for PRIVILEGE_CLASS is optional; if a privilege class is not
specified by the client, the one used to pre-start the API session is used. Finally, workstation
clients must also specify a value for DATABASE_PROFILE.

Note: The values specified by the client application remain in effect until changed on a
subsequent transaction by the same application or another application.

Because the API sessions will be open for as long as the MRES is running, an attempt will
be made to restart a session if it is down when a client’s transaction is being processed. One

Performance Considerations

18 Version 7.1

reason why the session may be down is that the BLX-SP may have been stopped and
restarted. The API return codes will be analyzed to determine if the session can be restarted.
If the API session cannot be restarted, the error codes will flow back to the client attempting
the transaction.

When a client conversation sends an HL01 transaction to a pre-started MRES session, the
parameters SESSION_MEMBER, DATABASE_ID, and
BYPASS_PANEL_PROCESSING, if specified, are compared with the pre-started values. If
they are different, Return Code 12, Reason Code 200 is returned to the client. If any of
these three PDBs are not specified on the HL01 transaction, then the MRES assumes that
the client wants to inherit the values specified for the pre-started session. For example, if the
session is pre-started with DATABASE_ID=8 and the DATABASE_ID is not specified on
the HL01, then the HL01 value is assumed to be 8, and no error occurs.

Note: Note that the Client HL01 uses the specified value of the pre-started DATABASE_ID
parameter and does not take the HLAPI default of 5.

When a client conversation sends an HL01 transaction to an MRES with pre-started API
session, the APPLICATION_ID, PRIVILEGE_CLASS, and DATE_FORMAT values are
saved. If the next transaction received from the client does not specify these PDBs, then the
values from the HL01 are appended to the transaction. If the PRIVILEGE_CLASS or
DATE_FORMAT is not specified by the client on the HL01 or the next transaction, the
values used by the MRES to pre-start the session are appended to the transaction. If the
client does not provide an application ID, the transaction does not run and Return Code 12,
Reason Code 201 is returned to the client. This ensures that the privilege class check is
made and that the correct application ID is used for the audit trail.

When data model records or PIDTs are updated and you want to force the cache to get the
new updates, use the BRDCST operator command with the TABLES keyword to pick up the
updates. More information on using the BRDCST command can be found in Tivoli
Information Management for z/OS Operation and Maintenance Reference.

MRES with APPC Cataloged Procedure Considerations
You can start multiple MRESs with APPC using the same cataloged procedure. If you do
that, you will be able to distinguish one MRES from another by its address space
identification (ASID). Additional information on starting an MRES with APPC can be found
in “Starting and Stopping an MRES with APPC” on page 49; you may also wish to see the
JCL provided in “Defining a Procedure for an MRES with APPC” on page 38.

HLAPI/2, HLAPI/CICS, HLAPI/AIX, and HLAPI/NT client application programs can all
access the same MRES at the same time. If you define an LU for the exclusive use of each
type of client or for the exclusive use of an application program, though, you must define a
corresponding MRES cataloged procedure to start the address space that uses the LU.

MRES with TCP/IP Cataloged Procedure Considerations
You can start only one MRES with TCP/IP using the same cataloged procedure. You must
create a separate cataloged procedure, each with a unique port number. Additional
information on starting an MRES with TCP/IP can be found in “Starting and Stopping an
MRES with TCP/IP” on page 65; you may also wish to see the JCL provided in “Defining a
Procedure for an MRES with TCP/IP” on page 56.

MRES with Pre-started API Sessions Considerations

19Client Installation and User’s Guide

|
|
|
|

2.
C

h
o

o
sin

g
a

S
erver

Transaction Logging by a RES and by an MRES Without Pre-started
API Sessions

The content of the server log entries produced by a client is similar to the content of log
entries produced by the HLAPI. If logging is enabled for a client’s logical session, the
transactions of the logical session are logged when they are processed by the HLAPI. Log
entries include both transaction request data and transaction reply data. Transactions are
logged in the order in which they are completed on the MVS host.

For client transaction sequences, the server’s transaction program or cataloged procedure
JCL allocates the DDNAME HLAPILOG. Therefore, a client application program cannot
control allocation of a log in some of the ways a HLAPI application program can. For
example, a client application program cannot use a CLIST, logging on, or executing JCL to
control allocation of a log.

The client application program can control the content and size of the server log through
control PDBs. This conforms to the HLAPI logging implementation. An application program
can control the server log in the following ways:

¶ Turn logging on or off for a logical session. An application can turn logging off for a
session by omitting the SPOOL_INTERVAL control PDB on the HL01 transaction of
the transaction sequence.

¶ Set the server log spool interval. An application can control the reuse of the server log
by specifying a time interval in a SPOOL_INTERVAL control PDB on an HL01
transaction. When the specified time interval elapses, logging continues at the beginning
of the log and previous entries are overwritten.

¶ Control the messages. An application can use the APIMSG_OPTION control PDB on
an HL01 transaction to control the writing of a logical session’s Low-Level Application
Program Interface (LLAPI) messages to the server log. An application can use the
HLIMSG_OPTION control PDB on an HL01 transaction to control the writing of a
logical session’s High-Level Application Program Interface (HLAPI) messages to the
server log.

The server log entries for each logical session are labeled with the identifier specified by the
HLAPILOG_ID control PDB passed to the HLAPI client on the HL01 transaction that
initiated the session.

When two or more logical sessions use the same conversation, and when multiple
conversations use the same MRES, the following rules apply:

¶ If the DDNAME HLAPILOG is allocated to a data set, transactions are logged only for
the logical session that most recently submitted an HL01 transaction with logging
specified. Transactions of other logical sessions are not logged in the server log file.

¶ If the DDNAME HLAPILOG is allocated to SYSOUT, transactions from all of the
logical sessions are interleaved in the server log file.

¶ When different spool intervals are specified by different logical sessions, the spool
interval applied to the server log is the spool interval specified most recently by any
logical session.

The Tivoli Information Management for z/OS Application Program Interface Guide contains
additional information about transaction logging.

Transaction Logging by a RES and by an MRES Without Pre-started API Sessions

20 Version 7.1

Transaction Logging by an MRES with Pre-started API Sessions
The MRES controls the content and size of the server log through the values specified for
the HLIMSG_OPTION and the SPOOL_INTERVAL pre-start parameters. These
parameters control the server log for all of the pre-started tasks as a unit and cannot be
varied for individual CCP sessions. The log entries in the HLAPILOG are labeled with the
character string MRESCP followed by the 2-digit number of the CCP task, starting with 01.
If you are using pre-started API sessions, the client application has no control over
transaction logging. Any values that you specify in a client PDB for SPOOL_INTERVAL,
HLIMSG_OPTION, or APIMSG_OPTION are ignored.

The MRES can control the server log in the following ways:

¶ Turn logging on or off for a logical session. The MRES can turn logging off for a
session by omitting the SPOOL_INTERVAL pre-start parameter on the BLMYPRM
DD statement.

¶ Set the server log spool interval. The MRES can control the reuse of the server log by
specifying a time interval in a SPOOL_INTERVAL pre-start parameter on the
BLMYPRM DD statement. When the specified time interval elapses, logging continues
at the beginning of the log and previous entries are overwritten.

¶ Control the messages. The MRES can use the APIMSG_OPTION pre-start parameter
on the BLMYPRM DD statement to control the writing of a logical session’s
Low-Level Application Program Interface (LLAPI) messages to the server log. The
MRES can use the HLIMSG_OPTION pre-start parameter on the BLMYPRM DD
statement to control the writing of a logical session’s High-Level Application Program
Interface (HLAPI) messages to the server log.

The Tivoli Information Management for z/OS Application Program Interface Guide contains
additional information about transaction logging.

Security Considerations
The clients all send identifying information to the server. You can use this identifying
information to implement security for your servers. For the HLAPI/UNIX, HLAPI/2,
HLAPI/NT, and HLAPI/USS clients using the TCP/IP protocol, this information includes a
user ID and password. For the HLAPI/2, HLAPI/AIX, and HLAPI/NT clients using the
APPC/APPN® protocol, this information includes a user ID, password, and symbolic
destination name. For the HLAPI/CICS client, this information includes a user ID and a
partner ID. The HLAPI/CICS does not require a password because it assumes CICS has
already checked the user ID’s password. The symbolic destination name and partner ID
identify the LUs, side information entries, and any other APPC resources the client
application program wants to access. The user ID and password identify an authorized user
of those APPC resources.

If you are using the APPC protocol, APPC performs the security verifications you have set
up, and then the RES or MRES calls RACF (or a comparable security product) to verify that
the user ID is authorized to initialize a Tivoli Information Management for z/OS session.
Each server, whether using the APPC protocol or the TCP/IP protocol, uses RACF (or a
comparable security product) to verify that the user ID is authorized to initialize a Tivoli
Information Management for z/OS session. If the user ID passes that verification, Tivoli
Information Management for z/OS verifies that the application ID is a member of a privilege
class authorized to access the Tivoli Information Management for z/OS database. For more

Transaction Logging by an MRES with Pre-started API Sessions

21Client Installation and User’s Guide

2.
C

h
o

o
sin

g
a

S
erver

information about the APPLICATION_ID control PDB, refer to the Tivoli Information
Management for z/OS Application Program Interface Guide. Security checking ensures that a
user has the authority to use the value specified in PICAUSRN. (The value specified in
PICAUSRN ensures that the MVS user ID(s) running your application are allowed to use
this application ID). This security checking is optional and is implemented by the system
administrator. The Tivoli Information Management for z/OS Application Program Interface
Guide contains additional information about this security feature.

If you plan to secure your servers, you need to use parameters on your APPC/MVS and
VTAM definitions that enable security checking. You also need to define security classes and
profiles in a security product, such as RACF. The classes you define depend on the server.
The following sections briefly discuss some of the security measures you can take to provide
security for the Tivoli Information Management for z/OS servers that use APPC/APPN.

Security References
The following publications provide more information about security:

¶ OS/390 Version 2 Release 5 Security Server (RACF) Planning: Installation and
Migration

¶ OS/390 Version 2 Release 5 MVS Planning: APPC/MVS Management

¶ VTAM Resource Definition Reference

¶ AIX for RISC System/6000® General Concepts and Procedures

Security for a RES
You enable security in the following places:

¶ APPC on the LUADD definition and the TP profile definition. Also, by adding
database tokens to the administrative data sets (the TP profile and side information data
sets).

¶ VTAM on the APPL and MODE definitions.

¶ RACF or a comparable security product.

¶ APISECURITY in the BLX startup parameters

APPC/MVS Definitions That Enable Security
In APPC/MVS, you can specify a search order for the TP profile. You do this with
TPLEVEL on the LUADD statement. GROUP means to look for profiles associated with a
group of users. The default level of the TP profile is SYSTEM, which means that any user
ID on the MVS host can use this TP. However, if your MVS host has a security product
such as RACF installed, consider using GROUP or USER to control access to the TP. If
you do that, you can specify the name of the group or user in the TP profile on the
GROUPID parameter.

For example, HLAPI/2 users need to have their user IDs and passwords verified. So you
could create a TP profile for them that specifies GROUPID(IMOS2) and have your security
administrator define the IMOS2 group in your security product and associate the HLAPI/2
user IDs with that group.

A single TP can have profiles for all three levels: one available for all users on the system
(highest level), one for a specified group of users, and one for an individual user (lowest
level). When APPC/MVS receives an incoming allocate request for a TP with more than one
profile, it uses the TP profile with the lowest level to which the user ID has access.

Security Considerations

22 Version 7.1

If you defined the TP as SYSTEM when you created the profile, define the LU as
SYSTEM also on the TPLEVEL statement. This will prevent unnecessary searching for
profiles, because if the LU is defined as GROUP, APPC searches for a TP profile that
specifies GROUPID.

Refer to the publications listed in “Security References” on page 22 for more information.

VTAM Definitions That Enable Security
Values that you specify for SECACPT and VERIFY on the VTAM APPL statement enable
security checking. If you are defining an LU for a CICS client, specify
SECACPT=ALREADYV because the user is already verified. If you are defining an LU
for an OS/2 or AIX or Windows NT client, specify SECACPT=CONV because users of
these clients are not yet verified.

You can customize the conversation security levels accepted for inbound requests. The
CONVSEC operand in the SESSION segment of the RACF APPCLU class implements
this in conjunction with VTAM.

VTAM also provides data encryption facilities you may want to consider using.

Refer to the publications listed in “Security References” on page 22 for more information.

RACF Definitions
RACF offers several classes to implement APPC/MVS security. The APPCLU class enables
customization of conversation security. The APPCTP class controls access to TPs. The
APPCPORT class controls access to remote LUs. The APPL general resource class controls
what groups of APPC/MVS applications the user has access to.

Refer to the publications listed in “Security References” on page 22 for more information.

Security Considerations When Using Pre-started API Sessions
When the BLX-SP has been started with the APISECURITY parameter set ON, RACF
checking is performed whenever the application ID is different from the user ID of the task
starting the API session. When an operator starts the MRES task, the system default is to not
assign a user ID. Thus, a pre-started API session will fail with a RACF error. It is possible
to define a started procedures table in the operating system which names the MRES and a
user ID to be assigned when the task is started. By doing this, the session can be pre-started.

Security for an MRES with APPC
The MRES with APPC is a started procedure. It must be able to access any RACF-protected
resources it needs. If your site has a started procedures table, your security administrator can
associate the names of the MRES cataloged procedures with specific RACF user IDs and
group names. This ensures that the MRES started procedures can access the resources they
need.

You can use APPC and VTAM definitions to protect the MRES with APPC the same way
that you use them to protect a RES. However, you cannot use the APPCTP class because
the MRES with APPC does not use a TP profile. The MRES with APPC uses the side
information data set on MVS to resolve the symbolic destination name on conversation
requests to a TP name. RACF provides the APPCSERV class that you can use to verify that
a server is authorized to serve a particular TP.

Security Considerations

23Client Installation and User’s Guide

2.
C

h
o

o
sin

g
a

S
erver

RACF also provides an APPCSI class. However, it controls access to side information
entries used on outbound requests. (The RES, MRES with APPC, and MRES with TCP/IP
handle only inbound requests.) You might want to implement this class, though, to protect
the side information data set from unauthorized changes.

Refer to the publications listed in “Security References” on page 22 for more information.

Security for an MRES with TCP/IP
The MRES with TCP/IP is a started procedure. It must be able to access any
RACF-protected resources it needs. If your site has a started procedures table, your security
administrator can associate the names of the MRES cataloged procedures with specific
RACF user IDs and group names. This ensures that the MRES started procedures can access
the resources they need.

All of the Tivoli Information Management for z/OS HLAPI clients, except for the
HLAPI/CICS, can use the TCP/IP protocol. When one of these clients wants to use TCP/IP,
the MVS IP address and port number are used to find the MRES.

The MRES with TCP/IP calls RACF to verify that the user ID is authorized to initialize a
Tivoli Information Management for z/OS session. If the user ID passes that verification,
Tivoli Information Management for z/OS verifies that the application ID is a member of a
privilege class authorized to access the Tivoli Information Management for z/OS database.
For more information about the APPLICATION_ID, SECURITY_ID and PASSWORD
control PDBs, refer to the Tivoli Information Management for z/OS Application Program
Interface Guide.

Security Considerations

24 Version 7.1

Configuring and Running a Remote
Environment Server (RES)

This chapter tells you how to configure a Remote Environment Server (RES) on a network
that has the following software:
¶ OS/390 Version 2.5, or a later version
¶ Tivoli Information Management for z/OS Version 7.1

The configuration described in this chapter is based on a zSeries host connected to a 3745
Communication Controller with a token-ring attachment that serves as a gateway to the rest
of the network. Figure 6 illustrates a RES that was started in response to a request from an
OS/2 client.

Using a RES
The Remote Environment Server (RES) runs as a transaction program (TP) that is started by
APPC/MVS when a connection request is received from a Tivoli Information Management
for z/OS client application program. For each unique connection request, the APPC
scheduler starts a new address space with a RES dedicated to servicing that client’s HLAPI
transactions. Each RES can access only one BLX-Service Provider (BLX-SP).

HLAPI/2

Workstation

APPC

Remote
Environment

Server

HLAPI

LLAPI

MVS Address Space

Tivoli
Information

Management
for z/OS Subtask

Figure 6. RES Started by an OS/2 Client

3

25Client Installation and User’s Guide

3.
C

o
n

fig
u

rin
g

an
d

R
u

n
n

in
g

a
R

E
S

RES Configuration Tasks
To configure a RES, do the following tasks:

1. Plan your configuration. “Planning Your RES Configuration” discusses this task.

2. Set up APPC/MVS. “Setting Up APPC/MVS” discusses this task.

a. Create a VSAM data set for the APPC transaction program profile. “Creating a
VSAM Data Set for the TP Profile” discusses this task.

b. Make an entry for the RES in the transaction program profile. “Making an Entry for
the RES in the TP Profile Data Set” on page 27 discusses this task.

c. Define a local LU for the RES and identify its partner LUs in APPCPMxx of
SYS1.PARMLIB. “Defining Local LUs and Identifying Partner LUs” on page 28
discusses this task.

d. Define a schedule class for the RES in ASCHPMxx of SYS1.PARMLIB. “Defining
a Schedule Class” on page 29 discusses this task.

3. Set up VTAM. “Modifying VTAM” on page 30 discusses this task.

a. Define APPC/MVS local LUs in SYS1.VTAMLST. “Defining the Local LU in
VTAM” on page 30 discusses this task.

b. Define the log-on mode in SYS1.VTAMLIB. “Defining the Log-on Mode” on
page 30 discusses this task.

4. Define a link to each client requester you plan to use with the RES. “Defining Links to
Clients” on page 31 discusses this task.

5. Define security classes and profiles. “Defining Security Classes and Profiles” on page 32
discusses this task.

This server is started in response to a request from a client. Both APPC and the APPC
scheduler must be started and running before requests can be received. See “Starting and
Stopping the APPC Environment” on page 32 for information about starting the APPC
environment.

Planning Your RES Configuration
Setting up a RES is independent of setting up a client. However, you need to consider which
clients you want to use a RES. The clients will need to know some of the values you
declare when you configure the RES. And you will need to know some of the client’s values
when you configure the RES. See “Choosing a Server” on page 13 for a discussion of
factors you should consider while planning your configuration.

Setting Up APPC/MVS
Either you or the APPC/MVS system administrator of your communications network does
the tasks outlined in this section. The information in this section is presented to help you
plan your configuration. Refer to the OS/390 MVS Planning: APPC/MVS Management
manual for more information.

Creating a VSAM Data Set for the TP Profile
Use IDCAMS to create a VSAM key sequenced data set for the transaction program profile.
APPC/MVS needs this data set to be able to associate TP names with particular job streams

RES Configuration Tasks

26 Version 7.1

when an incoming request to start a TP is received. You must define this file first, before
you associate it to an LU in SYS1.PARMLIB.

You can use the JCL in the following example to create a VSAM data set for TP profiles.
Change volname to the name of your local volume.
//jobname JOB your-job-card
//JOBPARM LINES=9999,TIME=1440
//TPSAMPLE EXEC PGM=IDCAMS
//volname DD DISP=OLD,UNIT=3380,VOL=SER=volname
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//AMSDUMP DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER (NAME(SYS1.APPCTP) -
VOLUMES (volname) -
INDEXED REUSE -
SHAREOPTIONS(3 3) -
RECORDSIZE(3824 7024) -
KEYS(112 0) -
RECORDS(300 150)) -

DATA -
(NAME(SYS1.APPCTP.DATA)) -

INDEX -
(NAME(SYS1.APPCTP.INDEX))

/*

Making an Entry for the RES in the TP Profile Data Set
A TP profile contains the identification, security, and scheduling information for a
transaction program. You can use the APPC/MVS administration utility, program
ATBSDFMU, to add a TP profile entry for each client application program that can start a
RES. The utility commands are issued in the SYSIN data stream. Refer to the MVS/ESA
Planning: APPC Management guide for more information about how to define the TP
profile. Set the following parameters as indicated:

1. The value for TPNAME must match the value specified for TPNAME in the CPI-C
side information entry on the client. In on page 28, the TPNAME is INFOTP1.

Note: You must create a CPI-C side information entry on each workstation or CICS
system that uses a RES. See the sections on installing the individual clients.

2. The default level of a TP profile is SYSTEM, which means that any user ID on the
MVS host can use the TP. SYSTEM is allowed for a RES. However, if your MVS host
has a security product such as RACF installed, consider using GROUPID or USER to
control access to the TP.

A single TP can have profiles for all three levels: one available for all users on the
system (highest level), one for a specified group of users, and one for an individual user
(lowest level). When APPC/MVS receives an incoming allocate request for a TP with
more than one profile, it uses the TP profile with the lowest level to which the user ID
has access.

3. The value for TPSCHED_EXIT must be ASCH for scheduled. This is the default.

4. The value for TPSCHED_TYPE must be STANDARD. This is the default.

5. To better control the processing environment of each TP, assign each TP to its own
CLASS. In the following example, the CLASS is FAST. See “Defining a Schedule
Class” on page 29 for information on defining a class.

Setting Up APPC/MVS

27Client Installation and User’s Guide

3.
C

o
n

fig
u

rin
g

an
d

R
u

n
n

in
g

a
R

E
S

6. Specify BLMYSCSC as the program name on the IKJAACNT EXEC statement. A
STEPLIB DD statement must point to the library containing the load modules used by
Tivoli Information Management for z/OS. Refer to the Tivoli Information Management
for z/OS Planning and Installation Guide and Reference for more information about
Tivoli Information Management for z/OS load modules and how to allocate them.

Note: For the purposes of the remote clients, you can continue to define the RFT data sets
the same way you normally do for API use. Refer to the Tivoli Information
Management for z/OS Application Program Interface Guide and the Tivoli
Information Management for z/OS Planning and Installation Guide and Reference for
more information about RFT definition.

//jobname JOB your-job-card
//***
//*** ADD USERS TO TP PROFILE ***********************
//*** ***********************
//***
//* IN THIS EXAMPLE, A GROUP-LEVEL TP PROFILE
//* FOR INFOTP1 IS ADDED TO THE TP PROFILE FILE
//* SYS1.APPCTP. WHEN ADDING TP PROFILES, THE TP PROFILE
//* KEY PRECEDES THE TP PROFILE. THE TP PROFILE CONSISTS OF:
//* I) A TP ATTRIBUTES SECTION
//* II) A TRANSACTION SCHEDULER SECTION (DELIMITED)
//* THE FOLLOWING DEFAULTS ARE ASSUMED:
//* I) TYPRUN=RUN
//* II) TPSCHED_EXIT(ASCH)
//***
//STEP EXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=*
//SYSSDLIB DD DSN=SYS1.APPCTP,DISP=SHR
//SYSSDOUT DD SYSOUT=*
//SYSIN DD DATA,DLM=XX

TPADD <-- Utility command to add a TP profile
TPNAME(INFOTP1) <-- Transaction program name
GROUPID(IMCICS) <-- Name of group of authorized userids
ACTIVE(YES) <-- Attribute to allow access
TPSCHED_DELIMITER(##) <----,

CLASS(FAST) | TP scheduler section
TPSCHED_TYPE(STANDARD) |
JCL_DELIMITER(END_OF_JCL) |

//INFOAPI1 JOB MSGLEVEL=(1,1) | Job name
//IKJAACNT EXEC PGM=BLMYSCSC <----| Program to run to start server
//STEPLIB DD DSN=BLM.V1R2M0.SBLMMOD1,DISP=SHR |
//APIPRINT DD SYSOUT=* <--- | Send LLAPI messages to SYSOUT class
//HLAPILOG DD SYSOUT=* <--- | Send HLAPI messages to SYSOUT class
//SYSPRINT DD SYSOUT=*,FREE=CLOSE |
END_OF_JCL |

KEEP_MESSAGE_LOG(NEVER) |
<----| End of TP scheduler section
XX <----| End of SYSIN data stream
/*
//

The sample profile uses the Tivoli Information Management for z/OS database subsystem
BLX1, which is the default. If you use a subsystem other than this, you must add a DD
statement to the STEPLIB concatenation for the BLXx LOAD data set. This statement must
be inserted before the DD statement that specifies the SBLMMOD1 data set.

Defining Local LUs and Identifying Partner LUs
You associate the local LU with the TP by an LUADD statement in the APPCPMxx
member of SYS1.PARMLIB. In the LUADD statement, you specify the TP profile data set
name, the search level for the TP profile, and scheduling information.

Setting Up APPC/MVS

28 Version 7.1

The following example illustrates the used of an LUADD statement.

¶ ACBNAME specifies the local LU name, BLMSRV01.

¶ SCHED specifies the transaction scheduler. The value for this parameter must be
ASCH, which specifies the APPC transaction scheduler.

¶ TPDATA specifies the VSAM data set that contains the TP profiles for this LU. In on
page 28, the TP profile was put in SYS1.APPCTP.

¶ TPLEVEL specifies the search order for the TP profile. GROUP means to look for
profiles associated with a group of users.

If you defined the TP as SYSTEM when you created the profile, define the LU as
SYSTEM also on the TPLEVEL statement. This will prevent unnecessary searching for
profiles, because if the LU is defined as GROUP, APPC searches for a TP profile that
specifies GROUPID.

LUADD
ACBNAME(BLMSRV01),
SCHED(ASCH),
TPDATA(SYS1.APPCTP),
TPLEVEL(GROUP),

Defining a Schedule Class
A class of transaction initiators for the APPC transaction scheduler must be defined in an
ASCHPMaa member of SYS1.PARMLIB. This member also contains default scheduling
information that is used when it is missing from a TP profile. The class name is specified
for the TP in the TP profile on the TPADD statement in the scheduler section. The sample
profile on page 28 specifies FAST as the class.

The following example shows the statements that define a class of transaction initiators
named FAST. Comment lines explain each of the statements.
CLASSADD CLASSNAME(FAST), /* Specify the name of the class to be */

/* added */
MAX(10), /* Specify that the maximum number of */

/* transaction initiators allowed for */
/* this class is 10 */

MIN(2), /* Specify that the minimum number of */
/* transaction initiators to be brought */
/* up for this class is 2 */

RESPGOAL(1), /* Specify that the response time goal */
/* for transaction programs running */
/* in this class is 1 second */

MSGLIMIT(500) /* Specify that the maximum size of */
/* the job logs for TPs is 500 messages */

OPTIONS DEFAULT(FAST) /* Specify the default class. See Note 1 */
SUBSYS(yourjes) /* Name of the subsystem under which all */

/* newly created APPC transaction */
/* are stored */

TPDEFAULT REGION(4M) /* See Note 2 */
/*

OUTCLASS(A) /* See Note 3 */

Notes

1. The DEFAULT (classname) is an optional parameter that specifies the default class of
transaction initiators in which to run a TP when a class name is not specified in a TP
profile. If the TP profile does not specify a class name, and there is no default defined
by this parameter, the request to run the TP is denied. If the default parameter names a
class that does not exist, an error message is displayed on the console.

Setting Up APPC/MVS

29Client Installation and User’s Guide

3.
C

o
n

fig
u

rin
g

an
d

R
u

n
n

in
g

a
R

E
S

2. The region size assigned to TPs that do not specify a region size in their TP profile is
4MB.

3. The message class used for TPs whose profiles do not specify the MSGCLASS keyword
in their job statements is A. When the SYSOUT keyword does not include a specific
output class, the value of OUTCLASS can be used as a default.

Modifying VTAM
The system administrator for your communications network can modify VTAM so that you
can use APPC at your installation on each Tivoli Information Management for z/OS system
using a RES. The OS/390 MVS Planning: APPC/MVS Management manual contains more
information about these modifications, including planning samples. Have your system
administrator define the local LU for your RES and define the log-on mode to VTAM. (If an
APPC/MVS LU is not defined to VTAM, the LU can only process local requests to and
from itself.)

Defining the Local LU in VTAM
Use the VTAM APPL statement to define the BLMSRV01 LU defined to APPC/MVS by
the LUADD statement in the LUADD example on page 29.

This is an example of a VTAM APPL definition for an OS/2 client’s use. If this LU were
for a CICS client’s use, you would specify SECACPT=ALREADYV. This definition goes
in the SYS1.VTAMLST library.
APPCAPP VBUILD TYPE=APPL
BLMSRV01 APPL ACBNAME=BLMSRV01,APPC=YES,AUTOSES=1,

DDRAINL=NALLOW,DMINWNL=1,DMINWNR=1,DRESPL=NALLOW,DSESLIM=20,
EAS=509,MODETAB=ISTINCLM,SECACPT=CONV,VPACING=0,
VERIFY=NONE,SRBEXIT=YES,DLOGMOD=#INTER

¶ ACBNAME specifies the name of the LU for the RES. This value must be the same as
the value you declared for ACBNAME on the LUADD statement in the APPCPMxx
member of SYS1.PARMLIB.

¶ MODETAB specifies the name of the VTAM log mode table that contains the definition
of #INTER, the mode you declared on the LMADD statement in the APPCPMxx
member of SYS1.PARMLIB.

¶ DLOGMOD specifies the name of a compiled log-on mode to use for the conversation.
This logon mode is in the VTAM log mode table declared on the MOTETAB parameter
and is the same one you declared on the LMADD statement in the APPCPMxx member
of SYS1.PARMLIB, #INTER. See “Defining the Log-on Mode” for information on
defining a mode.

¶ SECACPT specifies whether the client must send a password when requesting a
conversation. Use ALREADYV if you are defining an LU for a CICS client to use. Use
CONV if you are defining an LU for an OS/2, an AIX, or a Windows NT client to use.

Refer to MVS/ESA Planning: APPC Management and VTAM Resource Definition
Reference and APPC Security: MVS/ESA, CICS/ESA®, and OS/2 for more information
about security and defining LUs to VTAM.

Defining the Log-on Mode
You must define the parameters and protocols that determine the communication
characteristics of #INTER. Log-on modes are entries in a log-on mode table, a compiled
version of which exists in the SYS1.VTAMLIB.

Setting Up APPC/MVS

30 Version 7.1

The following example is a sample of uncompiled source statements to define logmode
#INTER. This definition is for interactive sessions on resources capable of acting as LU 6.2
devices. Place this definition in the logmode table ISTINCLM because that is the mode
table you specified when you defined the LU.

This sample is provided in the BLXVTAML member of the SBLMSAMP library. Refer to
the VTAM Resource Definition Reference for information on each of the parameters.
#INTER MODEENT LOGMODE=#INTER,FMPROF=X'13',TSPROF=X'07',

ENCR=B'0000',SSNDPAC=7,RUSIZES=X'F7F7',
SRCVPAC=7,PSNDPAC=7,APPNCOS=#INTER

Defining Links to Clients
The system administrator of your communications network defines the links to clients or to
intermediate nodes in NCP and VTAM. The link definition in the following example is for a
link to a partner on a token-ring connection.
TO30T2PG GROUP ECLTYPE=(PHYSICAL,ANY)
TO30T2PL LINE ADDRESS=(1089,FULL),LOCADD=ncplanaddr,PORTADD=2, X

RCVBUFC=4095,MAXTSL=2044,ADAPTER=TIC2,TRSPEED=4
*
TO30TRLO GROUP ECLTYPE=LOGICAL,AUTOGEN=10,PHYPORT=2,CALL=INOUT

The value you specify on the LOCADD parameter (ncplanaddr) is the local LAN address
that is defined in NCP on a LINE macro using the LOCADD parameter.

If you want to provide for the use of independent LUs on the token-ring connection, add a
statement like the following one. It enables the NCP to support up to 100 independent LUs
that are using dial connections, either token-ring or switched lines.
POOL1 LUDRPOOL NUMILU=100,NUMTYP1=20,NUMTYP2=20

VTAM has to be able to associate a client’s LU (known as a partner LU here) with a
physical unit. You establish this association in the SYS1.VTAMLST library. You can place
the statements in the following example in a switched major node definition provided the
partner LU is not on another VTAM system. If the partner LU is on another VTAM system,
then the link definitions above needs to be for a subarea link, or the cross-domain links need
to be defined so that normal LU routing within the subarea network will resolve the
locations of the session partners.
WSN VBUILD TYPE=SWNET,MAXGRP=2,MAXNO=2
PARTPU PU ADDR=04, X

CPNAME=partnerlu, X
PUTYPE=2, X
MAXDATA=2012, X
MAXPATH=1

partnerlu LU LOCADDR=0,MODETAB=ISTINCLM,DLOGMOD=#INTER

Replace partnerlu with the name that you defined for the client’s local LU. This example
uses MODETAB=ISTINCLM and DLOGMOD=#INTER because the logon mode
#INTER is defined in the VTAM logon mode table ISTINCLM.

Modifying VTAM

31Client Installation and User’s Guide

3.
C

o
n

fig
u

rin
g

an
d

R
u

n
n

in
g

a
R

E
S

Defining Security Classes and Profiles
If you specified a GROUPID in the TP profile you added for your client application
program, you can ask your security administrator to add a profile in the APPCTP class of
RACF. Give your security administrator the following information:

¶ APPCTP profile name for the client application in the format of dbtoken.level.tpname

v dbtoken is the database token associated with the VSAM data set that contains the TP
profile.

Refer to the OS/390 MVS Planning: APPC/MVS Management for information on
using the DBRETRIEVE command provided by the APPC/MVS administration
utility to retrieve a database token. If a database token has not been defined, use the
DBMODIFY command provided by the APPC/MVS administration utility to add a
database token to the profile data set.

v level is one of the following:

– system if the transaction program is available to all users who can access the LU.

– groupid if the transaction program is available to a group.

– userid if the transaction program is for a specific user.

v tpname is the name of the transaction program, INFOTP1 in the example on page 28.

For example, the APPCTP profile name for the TP profile added in the example on
page 28 would be dbtoken.IMCICS.INFOTP1.

¶ A list of user IDs who will run the transaction program. These IDs need EXECUTE
access to the TP.

¶ A list of user IDs who will need to view the TP. These IDs need READ access to the
TP.

¶ A list of user IDs who will create or modify the TP. These IDs need UPDATE access to
the TP.

Your security administrator must make these modifications on each Tivoli Information
Management for z/OS system using a RES. The section about network security in the
OS/390 MVS Planning: APPC/MVS Management manual contains more information about
security, including information about other security classes and profiles you may want to
have your security administrator set up.

Starting and Stopping the APPC Environment
The APPC environment must be started to use the server functions. The APPC environment
consists of the APPC address space and the APPC scheduler address space. Issue the
START operator command for the APPC and ASCH address spaces as follows:

¶ To start the APPC address space with PARMLIB member APPCPMAA, and to have
the master subsystem process the task, enter the statement
START APPC,SUB=MSTR,APPC=aa

¶ To start the APPC scheduler address space with PARMLIB member ASCHPMAA, and
have the master subsystem process the task, enter the statement
START ASCH,SUB=MSTR,ASCH=aa

Defining Security Classes and Profiles

32 Version 7.1

After both address spaces are started, when APPC receives a request for a conversation with
the TP, INFOTP1, it starts a new address space dedicated to the session between the local
LU BLMSRV01 and the client requester’s LU. Then it runs BLMYSCSC, the program
specified in the TP, to access Tivoli Information Management for z/OS through the HLAPI.

To stop the APPC environment, issue the following commands:
C APPC
C ASCH

Determining Values Clients Need
When you set up the communication links on the clients, you will need the following values:

¶ LU name for the RES

For APPC/MVS, this is configured in SYS1.PARMLIB(APPCPMxx). The LUADD
parameter includes an ACBNAME. The ACBNAME defines an APPC/MVS LU name.
This same LU must also be included on an APPL definition statement in an APPL
major node of VTAM. The examples in this chapter define an LU named BLMSRV01.

¶ Control Point (CP) name for the RES

VTAM does not have a CP name for APPN use. It does have an SSCPNAME (system
services control point name). If you need a CP name when you configure a client, use
the SSCPNAME instead. It is defined in the ATCSTRxx member of a data set with the
DDNname of VTAMLST in the VTAM startup procedure. The xx is two digits, and the
default is 00. ATCSTRxx contains the VTAM startup options.

¶ Network name

The NETID parameter defines the network name. It is also set in the ATCSTRxx
member of the VTAMLST data set.

¶ LAN address

The LAN address is coded in NCP on a LINE macro using the LOCADD parameter.

¶ TPNAME

The TPNAME is on the TPNAME parameter of the TPADD statement in the TP
profile entry. The value for TPNAME must match the one that comes in on a client
request to start a conversation. In the example on page 28, the TPNAME is INFOTP1.

Starting and Stopping the APPC Environment

33Client Installation and User’s Guide

3.
C

o
n

fig
u

rin
g

an
d

R
u

n
n

in
g

a
R

E
S

Determining Values Clients Need

34 Version 7.1

Configuring and Running a Multiclient
Remote Environment Server (MRES) with
APPC

This chapter tells you how to configure a Multiclient Remote Environment Server with
APPC (MRES with APPC) on a network that has the following software:
¶ OS/390 Version 2.5, or a later version
¶ Tivoli Information Management for z/OS Version 1.2

The configuration described in this chapter is based on a System 390 host connected to a
3745 Communication Controller with a token-ring attachment that serves as a gateway to the
rest of the network.

Figure 7 on page 36 illustrates an MRES. The collector in this figure represents an
application program that handles several client connections. An example of a collector is the
AIX requester.

4

35Client Installation and User’s Guide

4.
R

u
n

n
in

g
an

M
R

E
S

w
ith

A
P

P
C

Using an MRES with APPC
The systems programmer creates one or more MRES procedures with APPC cataloged
procedures in SYS1.PROCLIB. Each procedure contains the MVS JCL required to start the
MRES address space. The systems programmer must also create a data set pointed to by the
procedure which contains the values for the MRES with APPC parameters.

The systems programmer works with the security administrator and the APPC/APPN
communications programmer to determine the appropriate security mechanisms to use for
securing the MRES and ensuring that only authorized TPs use the MRES. Then the Tivoli
Information Management for z/OS systems programmer works with the APPC/APPN
communications programmer to define APPC/MVS resources for the MRES to APPC/MVS
and VTAM that implement the security mechanisms. They also work together to define LUs
for the clients on the clients’ operating systems and to add definitions to NCP to enable
routing conversation requests from clients to the MRES with APPC.

While the APPC and VTAM definitions are being done, the security administrator defines
the agreed upon security classes and profiles for the APPC and VTAM resources that the
communications programmer is defining.

C
o
l
l
e
c
t
o
r BLX SP

Subsystem

Figure 7. MRES with APPC with Multiple Client Conversation Processors Started

Using an MRES with APPC

36 Version 7.1

After the cataloged procedure, MRES parameters, APPC, VTAM, and security definitions are
complete, the system programmer and the communications programmer verify that each
client can establish an LU-to-LU session with the MRES with APPC and exchange data.

The operator starts an MRES with APPC address space with the MVS START command.
The MRES parameter APPCDESTNAME specifies the symbolic destination name with
which the MRES registers with APPC/MVS that it is ready to receive client conversations.
APPC/MVS creates an allocate queue for the MRES. The MRES parameter
MAXCONNECT specifies the maximum number of client conversations (connections) that
the MRES can process concurrently. Additional MRES address spaces can also be started
using the same cataloged procedure.

APPC/MVS monitors the allocate queue for inbound client conversation requests that
contain the appropriate symbolic destination name. If the maximum number of conversations
for the MRES has not been reached, the conversation is received and the client transactions
processed. When a client ends its last or only HLAPI session, the conversation is ended.
When the specified maximum number of conversations are active, the MRES does not
attempt to access additional conversations from the allocate queue. If another MRES is not
started to access this queue, these conversations will wait until the MRES can receive them.

The operator uses the MVS STOP command to stop an MRES with APPC address space.
Upon receipt of the stop command, a write-to-operator (WTO) message is sent saying how
many client connections are still active. Once the STOP command is issued, the MRES will
not accept any more conversation requests. After a period of time (specified in a startup
parameter) expires or when the MRES has no more client connections, the address space
ends. Additional WTO messages may be sent at a specified time interval while the MRES is
waiting to end.

MRES Configuration Tasks
To configure an MRES, do the following tasks:

1. Plan your configuration. “Planning an MRES with APPC Configuration” on page 38
discusses this task.

2. Define a cataloged procedure for the MRES. “Defining a Procedure for an MRES with
APPC” on page 38 discusses this task.

3. Create a data set and specify the MRES parameters. This data set is referenced by the
BLMYPRM DD statement in the cataloged procedure. “Coding the Parameters for an
MRES with APPC” on page 39 describes this task.

4. Add the data sets that contain the MRES load modules to the authorized program facility
(APF) library. “Adding the Data Sets to the APF List” on page 46 discusses this task. If
the data sets are specified in the link list or if you have them in the link pack area, you
can skip this step.

5. Define an LU for the MRES to APPC/MVS. “Defining an MRES with APPC to
APPC/MVS” on page 46 discusses this task.

6. Define the MRES LU to VTAM. “Defining an MRES with APPC to VTAM” on page 48
discusses this task.

7. Define classes and profiles in your security product. “Implementing Security” on page 49
discusses this task.

Using an MRES with APPC

37Client Installation and User’s Guide

4.
R

u
n

n
in

g
an

M
R

E
S

w
ith

A
P

P
C

When you are ready to start an MRES with APPC, see “Starting and Stopping an MRES
with APPC” on page 49 for the syntax.

Planning an MRES with APPC Configuration
Setting up an MRES with APPC is independent of setting up a client. However, you need to
consider which clients will be using the MRES and whether you want them all to use the
same MRES or whether you want each client to use a different MRES. Also, the clients will
need to know some of the values you declare when you configure the MRES. And you will
need to know some of the client’s values when you configure the MRES. See “Choosing a
Server” on page 13 for a discussion of other factors you should consider while planning your
configuration.

Defining a Procedure for an MRES with APPC
You must define a procedure for an MRES with APPC in SYS1.PROCLIB. The following
example lists the JCL statements to include in an MRES with APPC procedure. This JCL is
shipped as BLMMRES in the SBLMSAMP sample library.
//***
//*
//* THIS SAMPLE CATALOGUED PROCEDURE STARTS THE MULTICLIENT REMOTE
//* ENVIRONMENT SERVER (MRES) ADDRESS SPACE USING THE SAMPLE
//* PARAMETERS DATA MEMBER.
//*
//*---*
//* UPDATE THE FOLLOWING WITH UPPERCASE TEXT:
//*
//* FROM TO
//* ===
//* BLM.SBLMMOD1 - THE ACTUAL NAME OF THE INFORMATION MANAGEMENT
//* FOR Z/OS DATA SET USED AT YOUR INSTALLATION.
//* BLM.SBLMSAMP - THE NAME OF THE MRES PARAMETERS DATA SET
//* USED AT YOUR INSTALLATION.
//* BLM.SBLMTSX - THE NAME OF THE TSX DATA SET USED AT YOUR
//* INSTALLATION.
//* BLMMRESP - THE NAME OF YOUR MRES PARAMETERS MEMBER IF
//* YOU ARE USING A PARTITIONED DATA SET FOR
//* YOUR MRES PARAMETERS
//*
//* STORE THE UPDATED PROCEDURE AS A MEMBER IN YOUR SYSTEM'S PROCEDURE
//* LIBRARY, SUCH AS SYS1.PROCLIB.
//*
//***
//BLMMRES PROC PRM=BLMMRESP PARAMETER DATA MEMBER
//MRESPGM EXEC PGM=BLMYSM00,REGION=6M,TIME=1440
//STEPLIB DD DISP=SHR,DSN=BLM.SBLMMOD1 APF AUTHORIZED
//BLMYPRM DD DISP=SHR,DSN=BLM.SBLMSAMP(&PRM) PARAMETER DATA
//BLGTSX DD DISP=SHR,DSN=BLM.SBLMTSX TSX REXX EXECS
//APIPRINT DD SYSOUT=* LLAPI LOG
//HLAPILOG DD SYSOUT=* HLAPI LOG
//SYSTSPRT DD SYSOUT=* TSX OUTPUT
// PEND

A description of the JCL statements follows:

BLMMRES
This is the name of the instream catalogued procedure. The PRM= parameter specifies
the name of a data set member that contains the parameters unique to this MRES. It is
set to a default value of BLMMRESP, the name of a sample MRES parameters member
supplied in the SBLMSAMP data set. If a value for PRM= is not specified on the

MRES Configuration Tasks

38 Version 7.1

START command when you start the MRES, the values contained in the sample
parameter data member BLMMRESP are used. To override the value contained in the
cataloged procedure, you can specify a PRM= on the START command.

MRESPGM
This statement specifies the program to be processed, its region size, and how long it
can run. The value for PGM= must be BLMYSM00 to call the MRES program. The
REGION= parameter specifies how much memory to reserve for the MRES program.
The larger the region size, the more HLAPI sessions can run concurrently. Declaring
TIME=1440 tells the operating system not to time out the MRES. If this parameter and
value are not specified, the MRES will receive an out-of-time abend.

STEPLIB
This statement specifies the program libraries used by the MRES. You must specify the
data sets in a STEPLIB DD statement if you do not specify them in the link list or if
you do not have the load modules in the link pack area. The data sets must be
authorized program facility (APF) libraries.

BLMYPRM
This statement specifies the data set or PDS member containing the MRES parameters.
Both fixed and variable length record formats are supported.

BLGTSX
This statement points to the PDS (or PDSs) containing the TSX REXX execs.

APIPRINT
This statement specifies the LLAPI log. If any messages about LLAPI transaction
activity are generated, they are to be sent to the job’s SYSOUT class. Refer to the Tivoli
Information Management for z/OS Application Program Interface Guide for more
information about these messages.

HLAPILOG
This statement specifies the HLAPI log. If any messages about HLAPI transaction
activity are generated, they are to be sent to the job’s SYSOUT class. The Tivoli
Information Management for z/OS Application Program Interface Guide contains
additional information about these messages.

SYSTSPRT
This SYSOUT file can be written to by a TSX.

Coding the Parameters for an MRES with APPC
You must specify the MRES parameters in the data set or PDS member that you specify on
the BLMYPRM DD statement. A sample that you can use for your MRES parameters is
shipped as BLMMRESP in the SBLMSAMP library; this is described in “Sample MRES
Parameters” on page 45.

Several basic rules must be followed when you code the parameter data:

¶ Comments must begin with /* and end with */

¶ Comments can be in any column between 1 and 72, inclusive

¶ Nothing (except comments) can be in column 1

¶ Nothing can be in any column greater than column 72

¶ Begin the parameters data with a statement identifier of BLMYPRM

Defining a Procedure for an MRES with APPC

39Client Installation and User’s Guide

4.
R

u
n

n
in

g
an

M
R

E
S

w
ith

A
P

P
C

¶ You can separate parameters with a comma. Parameters need not appear on separate
lines

¶ The final parameter should end with a semicolon

These are the MRES parameters that you can specify in your BLMYPRM data set:
[APMINSTRUMENT={OFF|ON}]
[MAXCONNECT={10|n}]
SHUTDOWNTRY=hhmmss
SHUTDOWNWT=hhmmss
[WRITEOPER={1|code}]
COMMTYPE=APPC
APPCDESTNAME=id
[PRESTARTSESSIONS={NO|YES}]
[APPLICATION_ID=id]
[PRIVILEGE_CLASS=id]
[SESSION_MEMBER=session member name]
[APIMSG_OPTION={C|P|B}]
[BYPASS_PANEL_PROCESSING={NO|YES}]
[CLASS_COUNT={0|n}]
[DATABASE_ID={5|n}]
[DEFAULT_DATA_STORAGE_SIZE={1024|n}]
[DATE_FORMAT={DATABASE|pattern}]
[DEFAULT_OPTION={ALL|REQUIRED|NONE}]
[HLIMSG_OPTION={C|P|B}]
[MULTIPLE_RESPONSE_FORMAT={SEPARATOR|PHRASE}]
[PDB_TRACE={NO|YES}]
[SPOOL_INTERVAL={0|n}]
[TABLE_COUNT={0|n}]
[TIMEOUT_INTERVAL={300|n}]

The values that you can specify for these parameters are as follows:

APMINSTRUMENT={OFF|ON}
This parameter specifies the APM Instrumentation flag. A specification of ON indicates
that the MRES should generate heartbeats or pulses to allow Tivoli Global Enterprise
Manager (GEM) Application Policy Manager (APM) to monitor the status of the MRES.
To have pulses generated, specify APMINSTRUMENT=ON. If a value is not specified,
the default value is OFF. This parameter is optional. This parameter is provided for
those users who are using Tivoli Global Enterprise Manager (GEM) to manage Tivoli
Information Management for z/OS in a Tivoli Management Environment. The Tivoli
Information Management for z/OS Guide to Integrating with Tivoli Applications contains
additional information about using the Tivoli Global Enterprise Manager.

If you are not using Tivoli Information Management for z/OS in a Tivoli GEM
environment, you can omit this parameter.

MAXCONNECT={10|n}
This parameter specifies the maximum number of client conversation processors this
MRES can run concurrently. Valid values are from 1 to 50. The default value is 10. This
parameter is optional.

SHUTDOWNTFY=hhmmss
A required parameter that specifies the time interval between shutdown notification
messages. The value specified indicates the amount of time between operator notification
messages that follow the first message. When the operator issues the MVS STOP
command, the MRES sends a message to the operator indicating the number of
conversations that are still connected. After this first notification message is sent,
notification messages are sent at the interval specified on this parameter. For example, if
you specify a value of 000000, you will receive only one notification message. If you

Coding the Parameters for an MRES with APPC

40 Version 7.1

specify a value of 000500, you will receive the first notification message and additional
messages at 5-minute intervals until either the SHUTDOWNTFY time expires or all the
conversations have ended.

You must specify this interval as HHMMSS where
HH Hours
MM Minutes
SS Seconds

SHUTDOWNWT=hhmmss
A required parameter that specifies the shutdown wait time period. The value specified
indicates a period of time that the MRES is to continue processing after receiving the
MVS STOP command. This time period permits client conversations to complete any
processing that was active when the operator issued the STOP command. Additional
conversations are not accepted during this time, but those already connected can
continue until the time expires. If no clients are connected when the STOP command is
issued, the MRES stops processing immediately regardless of the interval specified on
this parameter. Also, when all the conversations have stopped, the MRES stops
processing immediately.

You must specify this interval as HHMMSS where
HH Hours
MM Minutes
SS Seconds

WRITEOPER={1|code}
This parameter specifies the default write-to-operator (WTO) routing code. Valid values
are from 1 to 128. If not specified, the default value is 1. All WTOs that are not a result
of command responses are automatically routed to this code. To determine the routing
codes for a console, you can do one of the following:

¶ Display console characteristics by issuing the DISPLAY CONSOLES,A command from
the console.

¶ Review the ROUTCODE parameter of the CONSOLE statements in the
CONSOL.xx member of SYS1.PARMLIB.

Refer to OS/390 Operations: System Commands for more information about consoles
and routing codes. This parameter is optional.

COMMTYPE=APPC
A required parameter that specifies that APPC communications protocol is to be used.

APPCDESTNAME=id
Specifies the APPC symbolic destination name. When COMMTYPE=APPC is
specified, this is a required parameter. The id you specify indicates the symbolic
destination name that represents the transaction program and local LU to be registered.
This name must match a symbolic destination name defined in the active side
information data set. The name can be from 1 to 8 characters in length and composed of
the uppercase letters A through Z and the numerals 0 through 9.

PRESTARTSESSIONS={NO|YES}
Pre-start API sessions indicator. Set this to YES to specify that the API sessions are to
be pre-started. If you specify NO or omit this parameter, the API sessions are not
pre-started. This parameter is optional.

APPLICATION_ID=id
Contains a 1- to 8-character uppercase application ID that Tivoli Information

Coding the Parameters for an MRES with APPC

41Client Installation and User’s Guide

4.
R

u
n

n
in

g
an

M
R

E
S

w
ith

A
P

P
C

Management for z/OS uses for this session. The application ID is specified on the HL01
transaction and can be specified on many other HLAPI transactions, so it can vary over
the life of the HLAPI session. The ID must be an eligible user of the privilege class
being used. This keyword is required when PRESTARTSESSIONS=YES is specified;
otherwise, it is optional.

PRIVILEGE_CLASS=id
Contains a 1- to 8- byte privilege class name, which can contain DBCS characters
enclosed by an SO/SI pair. A privilege class remains in effect until your application
specifies a different privilege class name. An application can specify an initial privilege
class that grants all authority required for the duration of the Tivoli Information
Management for z/OS session. This keyword is required when
PRESTARTSESSIONS=YES is specified; otherwise, it is optional.

SESSION_MEMBER=session member name
Contains a 7- or 8-character load library session parameter member name that Tivoli
Information Management for z/OS uses for this session. Session member names begin
with the character string BLGSES and cannot contain imbedded blanks. This keyword is
required when PRESTARTSESSIONS=YES is specified; otherwise, it is optional.

APIMSG_OPTION={C|P|B}
Specify a 1-character LLAPI message option parameter P, C, or B.

¶ A value of P specifies that the LLAPI writes messages to the APIPRINT data set.

¶ A value of C specifies that the LLAPI chains messages and passes them from the
LLAPI to the HLAPI for conversion into message PDBs.

¶ A value of B specifies that the LLAPI performs both P and C.

This parameter is optional and is used only if PRESTARTSESSIONS=YES. This
parameter is used only if SPOOL_INTERVAL is specified and is not set to zero. If you
omit this parameter, the LLAPI performs option C.

BYPASS_PANEL_PROCESSING={NO|YES}
Bypass panel processing indicator. Set this to YES to specify that no panels be used in
record processing other than those used by the delete transaction. If you specify NO, the
HLAPI uses panel processing mode.

If you specify BYPASS_PANEL_PROCESSING = YES, you must use data model
records for the following transactions:

¶ HL08 Create record

¶ HL09 Update record

¶ HL12 Add record relation

This parameter is optional and is used only if PRESTARTSESSIONS=YES.

CLASS_COUNT={0|n}
Contains a character number that indicates the maximum number of Tivoli Information
Management for z/OS privilege class records that can be maintained in storage during
the life of this Tivoli Information Management for z/OS session. If you omit this
parameter or enter zero as its value, the Tivoli Information Management for z/OS
session operates with a single privilege class record in storage at a time. This parameter
is optional and is used only if PRESTARTSESSIONS=YES.

DATABASE_ID={5|n}
A character number containing a 1-character ID number of the database to be used. For

Coding the Parameters for an MRES with APPC

42 Version 7.1

Tivoli Information Management for z/OS records, the database ID number is 5. If you
omit this parameter, the HLAPI automatically sets the database ID to 5. This parameter
is optional and is used only if PRESTARTSESSIONS=YES.

DEFAULT_DATA_STORAGE_SIZE={1024|n}
Contains a character number specifying how much additional storage is allocated to hold
default response data from an alias table when your application is creating records.
When the HLAPI creates records, it calculates the size of the response buffer it needs by
totaling the lengths of all the input data PDBs and adding the specified default data
storage size. If you omit the default data storage size, the HLAPI adds a default of 1024
bytes. When the HLAPI performs create response processing, it always checks to make
sure the response will not overlay storage. If the response will overlay storage, the
HLAPI transaction will end with an error code. You use this parameter with the
DEFAULT_OPTION parameter. This parameter is optional and is used only if
PRESTARTSESSIONS=YES.

DATE_FORMAT={DATABASE|pattern}
Contains a character field that specifies how your application uses dates. If the value
DATABASE is specified, the default format from the database is assumed. If you omit
this parameter, the value DATABASE is assumed. Valid values are:

MM/DD/YY
MM-DD-YY
MM.DD.YY
MM/DD/YYYY
MM-DD-YYYY
MM.DD.YYYY
DD/MM/YY
DD-MM-YY
DD.MM.YY
DD/MM/YYYY
DD-MM-YYYY
DD.MM.YYYY
YY/MM/DD
YY-MM-DD
YY.MM.DD
YYYY/MM/DD
YYYY-MM-DD
YYYY.MM.DD
DDMMMYY
DDMMMYYYY
YYDDD
YYYYDDD

This parameter is optional and is used only if PRESTARTSESSIONS=YES.

DEFAULT_OPTION={ALL|REQUIRED|NONE}
Contains a character field that specifies how the HLAPI performs create default data
response processing in this session. The valid data values for DEFAULT_OPTION are
ALL, REQUIRED, and NONE. ALL specifies that all response fields specified in a
PIDT are candidates for default responses. REQUIRED specifies that only required
fields are candidates for default responses. The HLAPI does not perform default
response processing if you omit this field or specify it as NONE. You can override the
initial default processing option when creating records by respecifying the default option
on the control chain. After the create transaction completes, the HLAPI reverts to the

Coding the Parameters for an MRES with APPC

43Client Installation and User’s Guide

4.
R

u
n

n
in

g
an

M
R

E
S

w
ith

A
P

P
C

initial default specification for record creation unless overridden again. This parameter is
optional and is used only if PRESTARTSESSIONS=YES. If you omit this parameter,
the value NONE is assumed.

HLIMSG_OPTION={C|P|B}
Contains a 1-character HLAPI message option parameter P, C, or B.

¶ A value of P specifies that the HLAPI writes messages to the HLAPILOG data set.

¶ A value of C specifies that the HLAPI chains messages on the PDB message chain.

¶ A value of B specifies that the HLAPI performs both P and C.

If you omit this parameter, then the HLAPI performs option C. The HLAPI writes
messages passed back from the LLAPI to the HLAPILOG data set. This parameter is
used only if SPOOL_INTERVAL is specified and is not set to zero. This parameter is
optional and is used only if PRESTARTSESSIONS=YES.

MULTIPLE_RESPONSE_FORMAT={SEPARATOR|PHRASE}
A specification of PHRASE permits you to use spaces to separate multiple response
fields. The default value, SEPARATOR, requires that a separator character be specified
in the control PDB named SEPARATOR_CHARACTER on the HLAPI transaction
submitted by the client API application. This parameter is optional and is used only if
PRESTARTSESSIONS=YES.

PDB_TRACE={NO|YES}
This parameter specifies whether the HLAPI should perform PDB data tracing for
debugging purposes or PDB data logging to the HLAPILOG output file. Setting this
parameter value to YES causes the logging of up to 32 bytes of PDBDATA information
for each PDB used throughout the session. A value of NO causes no PDB logging to be
performed. This parameter is optional and is used only if PRESTARTSESSIONS=YES.
If you omit this parameter, the value NO is assumed.

SPOOL_INTERVAL={0|n}
Contains a character specifying the number of minutes that the HLAPI spools the
activity logs HLAPILOG and APIPRINT when messages are printed. If the HLAPI is
spooling to a data set and this time interval has passed, the activity logs are recycled and
new log information is written starting at the top of the data set, writing over any
existing information. If you omit this parameter, the HLAPI does not log messages and
the settings in APIMSG_OPTION and HLIMSG_OPTION are ignored. This
parameter is optional and is used only if PRESTARTSESSIONS=YES.

TABLE_COUNT={0|n}
Contains a character value that indicates the maximum number of alias tables and PIDTs
and anchored PIPTs that the HLAPI can maintain in storage during the life of a Tivoli
Information Management for z/OS session. Static PIDTs and PIDTs generated from data
view records are treated the same for caching purposes. It can take a significant amount
of time to generate a PIDT from data view records. The length of time depends on the
number of data attribute records (and validation records they reference) contained in the
data view record. Therefore, it can be especially important to direct the HLAPI to
maintain PIDTs in storage if you are using data models. If you specify this value as zero
or omit it, the Tivoli Information Management for z/OS session will not process
ALIAS_TABLE parameters or cache PIDTs. Alias table and PIDT processing can
increase transaction run time due to the increased I/O time of loading and unloading
tables. By balancing the table count to alias table and PIDT usage, you can reduce to

Coding the Parameters for an MRES with APPC

44 Version 7.1

zero the additional I/O overhead for long-running applications. This parameter is
optional and is used only if PRESTARTSESSIONS=YES.

TIMEOUT_INTERVAL={300|n}
Contains a character value specifying the number of seconds that a transaction can run
before a timer interrupt occurs. If you specify a value between 0 and 45 seconds, the
HLAPI uses a value of 45 seconds. If you specify a value of 0 or omit this parameter,
the HLAPI uses a default value of 300 seconds (five minutes). This parameter is
optional and is used only if PRESTARTSESSIONS=YES.

Sample MRES Parameters
A sample of the MRES parameters is provided in BLMMRESP in the SBLMSAMP data
set. If you rename this member or create a new one, be sure to change the member name in
the PRM= parameter in the JCL for your MRES with APPC procedure or be sure to specify
PRM= on the START command when you start the MRES with APPC procedure. Refer to
“Defining a Procedure for an MRES with APPC” on page 38 for an example of the JCL.
The following are sample parameters for an MRES with APPC.

/***/
/* */
/* MRES START UP PARAMETERS */
/* */
/***/

BLMYPRM /* SPECIFY MRES PARAMETERS */

/**/
/* */
/* PARAMETERS TO CONTROL THE GENERAL MRES SESSION */
/* */
/**/

APMINSTRUMENT=OFF, /* APM INSTRUMENTATION (ON OR OFF) */
MAXCONNECT=10, /* MAXIMUM NUMBER OF CONNECTIONS */
SHUTDOWNTFY=000200, /* SHUTDOWN NOTIFY TIME (HHMMSS) */
SHUTDOWNWT=000500, /* SHUTDOWN WAIT TIME (HHMMSS) */
WRITEOPER=1, /* WRITE-TO-OPERATOR ROUTING CODE */

/**/
/* */
/* PARAMETERS TO CONTROL THE COMMUNICATIONS SESSION */
/* */
/**/

COMMTYPE=APPC, /* COMMUNICATIONS (APPC OR TCPIP) */
APPCDESTNAME=XXXXXXXX, /* APPC SYMBOLIC DESTINATION NAME */

/**/
/* */
/* PARAMETERS TO CONTROL THE PRE-STARTING OF API SESSIONS */
/* */
/**/

PRESTARTSESSIONS=NO, /* PRE-START (YES OR NO) */
APPLICATION_ID=XXXXXXXX, /* APPLICATION ID */
PRIVILEGE_CLASS=XXXXXXXX, /* PRIVILEGE CLASS NAME */
SESSION_MEMBER=BLGSESXX, /* SESSION MEMBER NAME */
APIMSG_OPTION=C, /* LLAPI MESSAGES (C, P, OR B) */
BYPASS_PANEL_PROCESSING=NO, /* BYPASS PANELS (YES OR NO) */
CLASS_COUNT=0, /* MAXIMUM NUMBER TO BE CACHED */
DATABASE_ID=5, /* DATABASE ID */
DEFAULT_DATA_STORAGE_SIZE=1024, /* DEFAULT SIZE IN BYTES */
DATE_FORMAT=DATABASE, /* FORMAT OF DATE DATA */

Coding the Parameters for an MRES with APPC

45Client Installation and User’s Guide

4.
R

u
n

n
in

g
an

M
R

E
S

w
ith

A
P

P
C

DEFAULT_OPTION=NONE, /* (ALL, REQUIRED, OR NONE) */
HLIMSG_OPTION=C, /* HLAPI MESSAGES (C, P, OR B) */
MULTIPLE_RESPONSE_FORMAT=SEPARATOR, /* (PHRASE OR SEPARATOR) */
PDB_TRACE=NO, /* PDB DEBUG TRACE (YES OR NO) */
SPOOL_INTERVAL=0, /* MAXIMUM TIME IN MINUTES */
TABLE_COUNT=0, /* MAXIMUM TABLE ENTRIES */
TIMEOUT_INTERVAL=300; /* MAXIMUM TIME IN SECONDS */

Adding the Data Sets to the APF List
If you neither specified the data sets that contain the MRES load modules in the link list nor
have them in the link pack area, you must add the data sets to the APF library.

To define the data sets that contain the load modules as APF libraries, make an entry for
each data set in the appropriate PROGxx members of SYS1.PARMLIB. Each entry in a
PROGxx member includes the data set name (dsn) and the volume serial number (volser) of
the library.

The changes will be activated the next time you IPL the system, or you can use the MVS
operator console command SET PROG=xx to dynamically activate the changes.

Defining an MRES with APPC to APPC/MVS
To define an MRES to APPC/MVS, do the following tasks:

1. Create a VSAM data set for the CPI-C side information if the MVS system does not
already have one.

2. Add an entry to the side information file for the MRES LU.

3. Define an MRES LU in APPCPMxx of SYS1.PARMLIB.

You do not have to define a class in ASCHPMxx because classes define scheduling
information and the MRES bypasses the transaction scheduler. For the same reason, you do
not need to define a TP profile. If you plan to use the APPCSERV class provided by RACF
for security, verify that a TP profile data set exists.

Creating a VSAM Data Set for the Side Information
If you do not have a VSAM data set for the CPI-C side information, use IDCAMS to create
one. APPC/MVS uses this data set to translate symbolic destination names. You must define
this file first, before you reference it in SYS1.PARMLIB when you define local LUs.

If you already have a VSAM data set for CPI-C side information, add the side information
entry for the MRES to that file. APPC/MVS allows only one active side information data set
on an MVS system.

You can use the JCL in this example to create a VSAM data set for the CPI-C side
information. Change volname to the name of your local volume. Change sidefile to the name
you want to use for your local side information data set.
//jobname JOB your-job-card
//JOBPARM LINES=9999,TIME=1440
//SISAMPLE EXEC PGM=IDCAMS
//volname DD DISP=OLD,UNIT=3380,VOL=SER=volname
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//AMSDUMP DD SYSOUT=*
//SYSIN DD *

Coding the Parameters for an MRES with APPC

46 Version 7.1

DEFINE CLUSTER (NAME(sidefile) - /*side info data set name = SYS1.APPCSI */
VOLUMES(volname) -
INDEXED REUSE -
SHAREOPTIONS(3 3) -
RECORDSIZE(248 248) -
KEYS(112 0) -
RECORDS(50 25)) -

DATA -
(NAME(sidefile.DATA)) - /*side info data set name = SYS1.APPCSI */

INDEX -
(NAME(sidefile.INDEX)) - /*side info data set name = SYS1.APPCSI */

/*

Adding a Side Information Entry for an MRES
Because the MRES uses a nonscheduled LU, it does not require a transaction program
profile. (Transaction program profiles contain scheduling information.) For nonscheduled
LUs, APPC/MVS searches the side information file for a DESTNAME that matches the one
in the request from a client to initiate a conversation. If a match is found, the conversation
request is routed to the LU specified on the PARTNER_LU parameter of that side
information entry.

You can modify the JCL shown in the following example to add an entry to the side
information file.
//jobname JOB your-job-card
//STEP EXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=*
//SYSSDLIB DD DSN=SYS1.APPCSI,DISP=SHR
//SYSSDOUT DD SYSOUT=*
//SYSIN DD *

SIADD
DESTNAME(symbolic_destination_name)
TPNAME(tpname)
MODENAME(mode)
PARTNER_LU(mres_lu)

/*

Set the parameters in the side information entry as follows:

DESTNAME
Specifies the symbolic destination name for the MRES. Use a symbolic destination
name you will use on the APPCDESTNAME parameter in the MRES parameters
data set.

TPNAME
Specifies the name of the incoming TP that can use the associated DESTNAME.
tpname must match the value coming from the client.

MODENAME
Specifies the name of a compiled log-on mode to use for the conversation. The
log-on mode is an entry in SYS1.VTAMLIB. See “Defining the Log-on Mode” on
page 30 for information on defining a mode.

PARTNER_LU
Specifies the name of a nonscheduled LU that is defined in the APPCPMxx member
of SYS1.PARMLIB on this MVS system. This LU is on the same MVS system as
this side information file. The example in “Defining a Nonscheduled APPC/MVS
Logical Unit” on page 48 shows the statements to use to define a nonscheduled LU.

Defining an MRES with APPC to APPC/MVS

47Client Installation and User’s Guide

4.
R

u
n

n
in

g
an

M
R

E
S

w
ith

A
P

P
C

You must have a separate side information entry for each symbolic destination name you use
when you start an MRES procedure. If this MRES is allowed to serve more than one TP,
you must also have a separate side information entry for each unique TPname.

Defining a Nonscheduled APPC/MVS Logical Unit
You must define one or more nonscheduled APPC/MVS LUs to serve as partner LUs for
your client’s transaction programs. The definitions go in member APPCPMxx of
SYS1.PARMLIB.

The following example shows the statements to define a nonscheduled LU to APPC. Only
two of the statements shown are required, LUADD ACBNAME(mres_lu) and NOSCHED.
The remaining statements default to the values shown. Because the MRES does not use a TP
profile, the only TPLEVEL available is SYSTEM, the default.
LUADD ACBNAME(mres_lu)

NOSCHED /* Declares the LU as nonscheduled
TPDATA(SYS1.APPCTP) /* This is the APPC default
TPLEVEL(SYSTEM) /* This is the APPC default

SIDEINFO DATASET(SYS1.APPCSI) /* Specifies that VSAM data set
/* SYS1.APPCSI is the CPI-C
/* side information file
/* This is the APPC default

Defining an MRES with APPC to VTAM
The logical units that you defined to APPC/MVS must also be defined to VTAM in a
VTAMLST library. This example illustrates the statements needed to define an LU for an
MRES to VTAM.
APPCAPP VBUILD TYPE=APPL
mres_lu APPL ACBNAME=mres_lu,APPC=YES,AUTOSES=1,

DDRAINL=NALLOW,DMINWNL=1,DMINWNR=1,DRESPL=NALLOW,DSESLIM=20,EAS=509,
MODETAB=modetab,SECACPT=security,VPACING=0,VERIFY=NONE
SRBEXIT=YES,DLOGMOD=mode

Substitute the variables in the example as follows:

ACBNAME
Specifies the name of the LU for the MRES. This value must be the same as the
value you declared for ACBNAME on the LUADD statement and PARTNER_LU
on the SIADD statement.

MODETAB
Specifies the name of the VTAM log mode table, for example ISTINCLM, that
contains the definition for the value you declare for mode on the DLOGMOD
parameter.

DLOGMOD
Specifies the name of a compiled logon mode to use for the conversation. This
log-on mode is in the VTAM log mode table declared on the MODETAB parameter.
See “Defining the Log-on Mode” on page 30 for information on defining a mode.

SECACPT
Specifies whether the client must send a password when requesting a conversation.
Use ALREADYV if you are defining an LU for a CICS client to use. Use CONV if
you are defining an LU for an OS/2, an AIX, or a Windows NT client to use.

The following documents contain additional information about security and defining
LUs to VTAM:

Defining an MRES with APPC to APPC/MVS

48 Version 7.1

OS/390 MVS Planning: APPC/MVS Management
VTAM Resource Definition Reference
OS/390 Security Server (RACF) Planning: Installation and Migration

Implementing Security
Define the security profiles needed to implement the APPC security mechanisms your LU
definitions require. Refer to your security product’s documentation for information on
creating the definitions.

Starting and Stopping an MRES with APPC
APPC/MVS and the BLX-SP server must be running before you start an MRES with APPC.
The APPC/MVS scheduler does not have to be running because the MRES does not use it.

To start an MRES, issue the MVS system operator START command. To stop an MRES,
issue the MVS system operator STOP command. For full descriptions of the MVS START
and STOP operator commands, refer to OS/390 Operations: System Commands The START
command accepts the parameters listed in the following section.

START Command Syntax
The syntax of the MVS system operator START command for an MRES with APPC is as
follows:

S blmmres[,JOBNAME=job_name][,PRM=member_name]

S The MVS system operator START command.

blmmres
The name of the cataloged procedure for this MRES with APPC.

Note: The name of the cataloged procedure becomes the name of the job unless it is
overridden by the JOBNAME= parameter.

JOBNAME=job_name
The value assigned to this keyword becomes the name of the newly started MRES. If
this parameter is not specified, the name of the cataloged procedure becomes the name
of the job.

Note: For the MRES with APPC, multiple MRESs can be started with the same or
different job names and with either the same or different parameter data.

PRM=MRES_parameters_member_name
In the sample procedure BLMMRES on page “Defining a Procedure for an MRES with
APPC” on page 38), PRM= specifies the name of the data set member that contains the
MRES parameters. If you specify PRM= on the START command, the MRES
parameters in that member are used. They override the values contained in the MRES
parameters data set member referenced by PRM= in the catalogued procedure for this
MRES with APPC. If PRM= is not specified on the START command, the MRES
parameters contained in the data set member referenced by the cataloged procedure are
used. Refer to “Defining a Procedure for an MRES with APPC” on page 38 for a sample
of the cataloged procedure. The sample uses the MRES parameters in SBLMSAMP data
set member BLMMRESP.

Defining an MRES with APPC to VTAM

49Client Installation and User’s Guide

4.
R

u
n

n
in

g
an

M
R

E
S

w
ith

A
P

P
C

STOP Command Syntax
The syntax of the MVS system operator STOP command for an MRES with APPC is as
follows:

P job_name[,A=n]

P The MVS system operator STOP command.

job_name
The name of the cataloged procedure for this MRES with APPC.

Note: Note that job_name is the name of the cataloged procedure that was started,
unless the parameter JOBNAME was specified on the START command.

A=n
An optional parameter that specifies the address space number consisting of from 1 to 4
hexadecimal digits (0–F). You can obtain this number in several ways:

¶ Use the Display Jobs operator command (D J,BLMMRES displays information about
all jobs with the name BLMMRES).

¶ Look for ASID=n in message BLM03170I. This message is written to the console
when the MRES is successfully started.

¶ Use other display commands. (See “Using MVS Operator Commands” on page 67
for information about the DISPLAY command.)

If you do not use this parameter, all jobs with the name job_name are stopped. If you
do use this parameter, only the job you specify is stopped.

Determining Values Clients Need
When you set up the communication links on the clients, you will need the following values:

¶ LU name for MRES with APPC

For APPC/MVS, this is configured in SYS1.PARMLIB(APPCPMxx). The LUADD
parameter includes an ACBNAME. The ACBNAME defines an APPC/MVS LU name.
This same LU must also be included on an APPL definition statement in an APPL
major node of VTAM. This is the value you specified for mres_lu.

¶ Control Point (CP) name for MRES

VTAM does not have a CP name for APPN use. It does have an SSCPNAME (system
services control point name). If you need a CP name when you configure a client, use
the SSCPNAME instead. It is defined in the ATCSTRxx member of a data set with the
DDNname of VTAMLST in the VTAM startup procedure. The xx is two digits, and the
default is 00. ATCSTRxx contains the VTAM startup options.

¶ Network name

The NETID parameter defines the network name. It is also set in the ATCSTRxx
member of the VTAMLST data set.

¶ LAN address

The LAN address is coded in NCP on a LINE macro using the LOCADD parameter.

¶ Symbolic destination name

The DESTNAME parameter on the SIADD statement you use to add side information
for the MRES defines the symbolic destination name. (This value also matches the

Starting and Stopping an MRES with APPC

50 Version 7.1

APPCDESTNAME value used when starting the MRES with APPC cataloged
procedure.) In the JCL example on page “Adding a Side Information Entry for an
MRES” on page 47, the symbolic destination name is the value you declare for
symbolic_destination_name.

¶ TPname

The TPNAME parameter on each SIADD statement identifies a TP that can be served
by the MRES associated with that entry. In the JCL example on page 47, the TPname is
the value you declare for tpname.

Determining Values Clients Need

51Client Installation and User’s Guide

4.
R

u
n

n
in

g
an

M
R

E
S

w
ith

A
P

P
C

Determining Values Clients Need

52 Version 7.1

Configuring and Running a Multiclient
Remote Environment Server (MRES) with
TCP/IP

This chapter tells how to configure a Multiclient Remote Environment Server with TCP/IP
(MRES with TCP/IP) on a network that has the following software:
¶ OS/390 Version 2.5, or a later version
¶ IBM® Transmission Control Protocol (TCP/IP) for MVS Version 3 Release 2

(5655–HAL) with PTF UN98840, or equivalent.
¶ Tivoli Information Management for z/OS Version 1.2

You may need other software, depending on the configuration of your network.

Figure 8 on page 54 illustrates an MRES with TCP/IP.

5

53Client Installation and User’s Guide

5.
R

u
n

n
in

g
an

M
R

E
S

w
ith

T
C

P
/IP

Using an MRES with TCP/IP
The systems programmer creates one or more MRES with TCP/IP cataloged procedures in
SYS1.PROCLIB. Each procedure contains the MVS JCL required to start the MRES with
TCP/IP address space. The systems programmer must also create a data set pointed to by the
procedure which contains the values for MRES with TCP/IP startup parameters.

The systems programmer works with the security administrator and the TCP/IP
communications programmer to determine the appropriate security mechanisms to use for
securing the MRES with TCP/IP and the transaction programs it serves. The Tivoli
Information Management for z/OS systems programmer then works with the TCP/IP
communications programmer to define resources for the MRES with TCP/IP.

Figure 8. MRES with TCP/IP and Multiple Client Conversation Processors Started

Using an MRES with TCP/IP

54 Version 7.1

While the TCP/IP definitions are being done, the security administrator defines the agreed
upon security classes and profiles. For example, when using RACF as the security product
with OS/390 UNIX System Services (OS/390 UNIX System Services was previously called
OpenEdition®), you need to add the MRES started procedure name to the RACF STARTED
class, specifying the following information for STDATA:

USER= specify a userid that has an OMVS segment.

Note: You may consider using an OMVS default user. In the OpenEdition Planning
Guide, see the section entitled “Setting Up Default OMVS Segments“ for
additional information on creating an OMVS default user.

TRUSTED(NO)

PRIVILEGED(YES)

The commands to perform this are:
RDEFINE STARTED mres STDATA(USER(OEDFLT) TRUSTED(NO) PRIVILEGED(YES)

SETROPTS RACLIST(STARTED) REFRESH

where mres is the name of the started procedure. In a RACF environment, the first
SETROPTS command causes the OEDFLT user ID to be assigned to a started task which
has a name of mres. The second SETROPTS command performs a refresh of the RACF
list.

After the cataloged procedure, MRES parameters, TCP/IP, and security definitions are
complete, the system programmer and the communications programmer verify that each
client user ID can communicate with the MRES with TCP/IP and exchange data.

The operator starts an MRES with TCP/IP address space with the MVS START command,
described in “START Command Syntax” on page 65. The MRES parameter PORT specifies
the unique port number for TCP/IP to use to communicate with the MRES address space.
The MRES parameter IPADDRESS specifies the IP address used to access the MRES
address space. The MRES parameter MAXCONNECT specifies the maximum number of
client conversations (connections) that the MRES can process concurrently. Additional
address spaces for MRES for TCP/IP communication can also be started. Each address space
must have a unique IP address and port number combination.

Note: You can start multiple MRESs using the same procedure. You will need to create an
MRES parameters member for each PORT number you plan to use because each
MRES must be started with a unique PORT number. To start an MRES using the
same procedure, specify the name of the procedure on the START command along
with the PRM= parameter identifying the particular MRES parameters member that
should be used for that MRES. The name of an MRES address space is the same
name as that of the catalogued procedure that started it unless the JOBNAME=
parameter is specified.

When the MRES address space receives a communication request, it grants the request
provided it has not reached its maximum number of communication connections. When a
client ends its last or only HLAPI session, the communication connection is ended. If the
MRES receives a request and all its communication connections are being used, the request
is rejected.

Using an MRES with TCP/IP

55Client Installation and User’s Guide

|
|
|

|

5.
R

u
n

n
in

g
an

M
R

E
S

w
ith

T
C

P
/IP

The operator uses the MVS STOP command to stop an MRES address space. Upon receipt
of the stop command, a write-to-operator (WTO) message is sent saying how many client
connections are still active. After the STOP command is issued, the MRES does not accept
any more connection requests. After a period of time (specified in a startup parameter)
expires or when the MRES has no more client connections, the address space ends.
Additional WTO messages may be sent at a specified time interval while the MRES is
waiting to end.

MRES Configuration Tasks
To configure an MRES with TCP/IP, do the following tasks:

1. Plan your configuration. “Planning Your MRES with TCP/IP Configuration” discusses
this task.

2. Define a cataloged procedure for the MRES with TCP/IP. “Defining a Procedure for an
MRES with TCP/IP” discusses this task.

3. Create a data set and specify the MRES parameters. This data set is referenced by the
BLMYPRM DD statement in the cataloged procedure; “Coding the Parameters for an
MRES with TCP/IP” on page 58 describes this task.

4. Add the data sets that contain the MRES load modules to the authorized program facility
(APF) library. “Adding the Data Sets to the APF List” on page 65 discusses this task. If
the data sets are specified in the link list, or if you have them in the link pack area, you
can skip this step.

5. Implement your security plan. Refer to your security product’s documentation for
information on this task.

When you are ready to start an MRES with TCP/IP, see “Starting and Stopping an MRES
with TCP/IP” on page 65 for the syntax.

Planning Your MRES with TCP/IP Configuration
Setting up an MRES is independent of setting up a client. You need to consider which
clients will be using the MRES and whether you want them all to use the same MRES or
whether you want each client to use a different MRES. You will need to tell the clients what
TCP/IP port numbers and addresses to use. See “Choosing a Server” on page 13 for a
discussion of other factors you should consider while planning your configuration.

Defining a Procedure for an MRES with TCP/IP
You must define a procedure for an MRES with TCP/IP in SYS1.PROCLIB. This example
lists the JCL statements to include in an MRES with TCP/IP procedure. This JCL is shipped
as BLMMRES in the SBLMSAMP sample library.
//***
//*
//* THIS SAMPLE CATALOGUED PROCEDURE STARTS THE MULTICLIENT REMOTE
//* ENVIRONMENT SERVER (MRES) ADDRESS SPACE USING THE SAMPLE
//* PARAMETERS DATA MEMBER.
//*
//*---*
//* UPDATE THE FOLLOWING WITH UPPERCASE TEXT:
//*
//* FROM TO
//* ===

Using an MRES with TCP/IP

56 Version 7.1

//* BLM.SBLMMOD1 - THE ACTUAL NAME OF THE INFORMATION MANAGEMENT
//* FOR Z/OS DATA SET USED AT YOUR INSTALLATION.
//* BLM.SBLMSAMP - THE NAME OF THE MRES PARAMETERS DATA SET
//* USED AT YOUR INSTALLATION.
//* BLM.SBLMTSX - THE NAME OF THE TSX DATA SET USED AT YOUR
//* INSTALLATION.
//* BLMMRESP - THE NAME OF YOUR MRES PARAMETERS MEMBER IF
//* YOU ARE USING A PARTITIONED DATA SET FOR
//* YOUR MRES PARAMETERS
//*
//* STORE THE UPDATED PROCEDURE AS A MEMBER IN YOUR SYSTEM'S PROCEDURE
//* LIBRARY, SUCH AS SYS1.PROCLIB.
//*
//***
//BLMMRES PROC PRM=BLMMRESP PARAMETER DATA MEMBER
//MRESPGM EXEC PGM=BLMYSM00,REGION=6M,TIME=1440
//STEPLIB DD DISP=SHR,DSN=BLM.SBLMMOD1 APF AUTHORIZED
//BLMYPRM DD DISP=SHR,DSN=BLM.SBLMSAMP(&PRM) PARAMETER DATA
//BLGTSX DD DISP=SHR,DSN=BLM.SBLMTSX TSX REXX EXECS
//APIPRINT DD SYSOUT=* LLAPI LOG
//HLAPILOG DD SYSOUT=* HLAPI LOG
//SYSTSPRT DD SYSOUT=* TSX OUTPUT
// PEND

A description of the JCL statements follows:

BLMMRES
This is the name of the instream catalogued procedure.The PRM= parameter specifies
the name of a data set member that contains the parameters unique to this MRES. It is
set to a default value of BLMMRESP, the name of a sample MRES parameters member
supplied in the SBLMSAMP data set. If PRM= is not specified on the START
command, the values contained in the sample parameter data member BLMMRESP are
used. To override the value contained in the cataloged procedure, you can specify a
PRM= on the START command.

MRESPGM
This statement specifies the program to be processed, its region size, and how long it
can run. The value for PGM= must be BLMYSM00 to call the MRES program. The
REGION= parameter specifies how much memory to reserve for the MRES program.
The larger the region size, the more HLAPI sessions can run concurrently. Declaring
TIME=1440 tells the operating system not to time out the MRES. If this parameter and
value are not specified, the MRES will receive an out-of-time abend.

STEPLIB
This statement specifies the program libraries used by the MRES. You must specify the
data sets in a STEPLIB DD statement if you do not specify them in the link list or if
you do not have the load modules in the link pack area. The data sets must be
authorized program facility (APF) libraries.

BLMYPRM
This statement specifies the data set or PDS member containing the MRES parameters.
Both fixed and variable length record formats are supported.

BLGTSX
This statement points to the PDS (or PDSs) containing the TSX REXX execs.

APIPRINT
This statement specifies the LLAPI log. If any messages about LLAPI transaction

Defining a Procedure for an MRES with TCP/IP

57Client Installation and User’s Guide

5.
R

u
n

n
in

g
an

M
R

E
S

w
ith

T
C

P
/IP

activity are generated, they are to be sent to the job’s SYSOUT class. Refer to the Tivoli
Information Management for z/OS Application Program Interface Guide for more
information about these messages.

HLAPILOG
This statement specifies the HLAPI log. If any messages about HLAPI transaction
activity are generated, they are to be sent to the job’s SYSOUT class. The Tivoli
Information Management for z/OS Application Program Interface Guide contains
additional information about these messages.

SYSTSPRT
This SYSOUT file can be written to by a TSX.

Coding the Parameters for an MRES with TCP/IP
You must specify the MRES parameters in the data set or PDS member that you specify on
the BLMYPRM DD statement. A sample that you can use for your MRES parameters is
shipped as BLMMRESP in the SBLMSAMP library; this is described in “Sample MRES
Parameters” on page 64.

Several basic rules must be followed when you code the parameter data:

¶ Comments must begin with /* and end with */

¶ Comments can be in any column between 1 and 72, inclusive

¶ Nothing (except comments) can be in column 1

¶ Nothing can be in any column greater than column 72

¶ Begin the parameters data with a statement identifier of BLMYPRM

¶ You can separate parameters with a comma. Parameters need not appear on separate
lines

¶ The final parameter should end with a semicolon

These are the MRES parameters that you can specify in your BLMYPRM data set:
[APMINSTRUMENT={OFF|ON}]
[MAXCONNECT={10|n}]
SHUTDOWNTRY=hhmmss
SHUTDOWNWT=hhmmss
[WRITEOPER={1|code}]
COMMTYPE=TCPIP
[IPADDRESS={0.0.0.0|n.n.n.n}]
[PORT={1451|n}]
[PRESTARTSESSIONS={NO|YES}]
[APPLICATION_ID=id]
[PRIVILEGE_CLASS=id]
[SESSION_MEMBER=session member name]
[APIMSG_OPTION={C|P|B}]
[BYPASS_PANEL_PROCESSING={NO|YES}]
[CLASS_COUNT={0|n}]
[DATABASE_ID={5|n}]
[DEFAULT_DATA_STORAGE_SIZE={1024|n}]
[DATE_FORMAT={DATABASE|pattern}]
[DEFAULT_OPTION={ALL|REQUIRED|NONE}]
[HLIMSG_OPTION={C|P|B}]
[MULTIPLE_RESPONSE_FORMAT={SEPARATOR|PHRASE}]

Defining a Procedure for an MRES with TCP/IP

58 Version 7.1

[PDB_TRACE={NO|YES}]
[SPOOL_INTERVAL={0|n}]
[TABLE_COUNT={0|n}]
[TIMEOUT_INTERVAL={300|n}]

The values that you can specify for these parameters are as follows:

APMINSTRUMENT={OFF|ON}
This parameter specifies the APM Instrumentation flag. A specification of ON indicates
that the MRES should generate heartbeats or pulses to allow Tivoli Global Enterprise
Manager (GEM) Application Policy Manager (APM) to monitor the status of the MRES.
To have pulses generated, specify APM=ON. If a value is not specified, the default
value is OFF. This parameter is optional. This parameter is provided for those users who
are using Tivoli Global Enterprise Manager (GEM) to manage Tivoli Information
Management for z/OS in a Tivoli Management Environment. The Tivoli Information
Management for z/OS Guide to Integrating with Tivoli Applications contains additional
information about the Global Enterprise Manager.

If you are not using Tivoli Information Management for z/OS in a Tivoli GEM
environment, you can omit this parameter.

MAXCONNECT={10|n}
This parameter specifies the maximum number of client conversation processors this
MRES can run concurrently. Valid values are from 1 to 50. The default value is 10. This
is an optional parameter.

SHUTDOWNTFY=hhmmss
A required parameter that specifies the time interval between shutdown notification
messages. The value specified indicates the amount of time between operator notification
messages that follow the first message. When the operator issues the MVS STOP
command, the MRES sends a message to the operator indicating the number of
conversations that are still connected. After this first notification message is sent,
notification messages are sent at the interval specified on this parameter. For example, if
you specify a value of 000000, you will receive only one notification message. If you
specify a value of 000500, you will receive the first notification message and additional
messages at 5-minute intervals until either the SHUTDOWNTFY time expires or all the
conversations have ended.

You must specify this interval as HHMMSS where
HH Hours
MM Minutes
SS Seconds

SHUTDOWNWT=hhmmss
A required parameter that specifies the shutdown wait time period. The value specified
indicates a period of time that the MRES is to continue processing after receiving the
MVS STOP command. This time period permits client conversations to complete any
processing that was active when the operator issued the STOP command. Additional
conversations are not accepted during this time, but those already connected can
continue until the time expires. If no clients are connected when the STOP command is
issued, the MRES stops processing immediately regardless of the interval specified on
this parameter. Also, when all the conversations have stopped, the MRES stops
processing immediately.

You must specify this interval as HHMMSS where
HH Hours

Coding the Parameters for an MRES with TCP/IP

59Client Installation and User’s Guide

5.
R

u
n

n
in

g
an

M
R

E
S

w
ith

T
C

P
/IP

MM Minutes
SS Seconds

WRITEOPER={1|code}
This parameter specifies the default write-to-operator (WTO) routing code. Valid values
are from 1 to 128. If not specified, the default value is 1. All WTOs that are not a result
of command responses are automatically routed to this code. To determine the routing
codes for a console, you can do one of the following:

¶ Display console characteristics by issuing the DISPLAY CONSOLES,A command
from the console.

¶ Review the ROUTCODE parameter of the CONSOLE statements in the
CONSOL.xx member of SYS1.PARMLIB.

This parameter is optional.

COMMTYPE=TCPIP
A required parameter that specifies the communications protocol to be used. You must
specify TCPIP for the MRES with TCP/IP.

IPADDRESS={0.0.0.0|n.n.n.n}
This parameter specifies the Internet or IP address of the network interface for accessing
the MRES with TCP/IP. It is the unique address of the host on a network and is
specified in dotted decimal format. This consists of four numbers with valid values from
0 to 255, separated by periods. Some hosts have more than one network address. If you
want to allow this MRES to receive connection requests from any of the network
interfaces, specify the dotted decimal string of all zeros (000.000.000.000). If a value is
not specified, the default value is 0.0.0.0 (this is the equivalent of 000.000.000.000).

PORT={1451|n}
If you specified COMMTYPE=TCPIP, this parameter specifies the unique port number
used to communicate between TCP/IP and the MRES address space. This number must
not be used by any other application, including another MRES or any HLAPI/USS
requester that may be running on the same MVS host. Valid values are from 1 to 65534.
The value you specify here becomes the default port number for this MRES address
space. This parameter is optional. If a value is not specified, the default value is 1451.

PRESTARTSESSIONS={NO|YES}
Pre-start API sessions indicator. Set this to YES to specify that the API sessions are to
be pre-started. If you specify NO or omit this parameter, the API sessions are not
pre-started. This parameter is optional.

APPLICATION_ID=id
Contains a 1- to 8-character uppercase application ID that Tivoli Information
Management for z/OS uses for this session. The application ID is specified on the HL01
transaction and can be specified on many other HLAPI transactions, so it can vary over
the life of the HLAPI session. The ID must be an eligible user of the privilege class
being used. This keyword is required when PRESTARTSESSIONS=YES is specified;
otherwise, it is optional.

PRIVILEGE_CLASS=id
Contains a 1- to 8- byte privilege class name, which can contain DBCS characters
enclosed by an SO/SI pair. A privilege class remains in effect until your application
specifies a different privilege class name. An application can specify an initial privilege
class that grants all authority required for the duration of the Tivoli Information

Coding the Parameters for an MRES with TCP/IP

60 Version 7.1

Management for z/OS session. This keyword is required when
PRESTARTSESSIONS=YES is specified; otherwise, it is optional.

SESSION_MEMBER=session member name
Contains a 7- or 8-character load library session parameter member name that Tivoli
Information Management for z/OS uses for this session. Session member names begin
with the character string BLGSES and cannot contain imbedded blanks. This keyword is
required when PRESTARTSESSIONS=YES is specified; otherwise, it is optional.

APIMSG_OPTION={C|P|B}
Contains a 1-character LLAPI message option parameter P, C, or B.

¶ A value of P specifies that the LLAPI writes messages to the APIPRINT data set.

¶ A value of C specifies that the LLAPI chains messages and passes them from the
LLAPI to the HLAPI for conversion into message PDBs.

¶ A value of B specifies that the LLAPI performs both P and C.

If you omit this parameter, then the LLAPI performs option C. This parameter is used
only if SPOOL_INTERVAL is specified and is not set to zero. This parameter is
optional and is used only if PRESTARTSESSIONS=YES.

BYPASS_PANEL_PROCESSING={NO|YES}
Bypass panel processing indicator. Set this to YES to specify that no panels be used in
record processing other than those used by the delete transaction. If you specify NO or
omit this parameter, the HLAPI performs panel processing.

If you specify BYPASS_PANEL_PROCESSING = YES, you must use data model
records for the following transactions:

¶ HL08 Create record

¶ HL09 Update record

¶ HL12 Add record relation

This parameter is optional and is used only if PRESTARTSESSIONS=YES.

CLASS_COUNT={0|n}
Contains a character number that indicates the maximum number of Tivoli Information
Management for z/OS privilege class records that can be maintained in storage during
the life of this Tivoli Information Management for z/OS session. If you omit this
parameter or enter zero as its value, the Tivoli Information Management for z/OS
session operates with a single privilege class record in storage at a time. This parameter
is optional and is used only if PRESTARTSESSIONS=YES.

DATABASE_ID={5|n
A 1-byte character field containing the 1-character ID number of the database to be
used. For Tivoli Information Management for z/OS records, the database ID number is
5. If you omit this parameter, the HLAPI automatically sets the database ID to 5. This
parameter is optional and is used only if PRESTARTSESSIONS=YES.

DEFAULT_DATA_STORAGE_SIZE={1024|n}
Contains a character specifying how much additional storage is allocated to hold default
response data from an alias table when your application is creating records. When the
HLAPI creates records, it calculates the size of the response buffer it needs by totaling
the lengths of all the input data PDBs and adding the specified default data storage size.
If you omit the default data storage size, the HLAPI adds a default of 1024 bytes. When
the HLAPI performs create response processing, it always checks to make sure the

Coding the Parameters for an MRES with TCP/IP

61Client Installation and User’s Guide

5.
R

u
n

n
in

g
an

M
R

E
S

w
ith

T
C

P
/IP

response will not overlay storage. If the response will overlay storage, the HLAPI
transaction will end with an error code. You use this parameter with the
DEFAULT_OPTION parameter. This parameter is optional and is used only if
PRESTARTSESSIONS=YES.

DATE_FORMAT={DATABASE|pattern}
Contains a character field that specifies how your application uses dates. If the value
DATABASE is specified, the default format from the database is assumed. If you omit
this parameter, the value DATABASE is assumed. Valid values are:

MM/DD/YY
MM-DD-YY
MM.DD.YY
MM/DD/YYYY
MM-DD-YYYY
MM.DD.YYYY
DD/MM/YY
DD-MM-YY
DD.MM.YY
DD/MM/YYYY
DD-MM-YYYY
DD.MM.YYYY
YY/MM/DD
YY-MM-DD
YY.MM.DD
YYYY/MM/DD
YYYY-MM-DD
YYYY.MM.DD
DDMMMYY
DDMMMYYYY
YYDDD
YYYYDDD

This parameter is optional and is used only if PRESTARTSESSIONS=YES.

DEFAULT_OPTION={ALL|REQUIRED|NONE}
Contains a character field that specifies how the HLAPI performs create default data
response processing in this session. The valid data values for DEFAULT_OPTION are
ALL, REQUIRED, and NONE. ALL specifies that all response fields specified in a
PIDT are candidates for default responses. REQUIRED specifies that only required
fields are candidates for default responses. The HLAPI does not perform default
response processing if you omit this field or specify it as NONE. After the create
transaction completes, the HLAPI reverts to the initial default specification for record
creation unless overridden again. This parameter is optional. If you omit this parameter,
the value NONE is assumed. This parameter is optional and is used only if
PRESTARTSESSIONS=YES.

HLIMSG_OPTION={C|P|B
Contains a 1-character HLAPI message option parameter P, C, or B.

¶ A value of P specifies that the HLAPI writes messages to the HLAPILOG data set.

¶ A value of C specifies that the HLAPI chains messages on the PDB message chain.

¶ A value of B specifies that the HLAPI performs both P and C.

Coding the Parameters for an MRES with TCP/IP

62 Version 7.1

If you omit this parameter, then the HLAPI performs option C. The HLAPI writes
messages passed back from the LLAPI to the HLAPILOG data set. This parameter is
used only if SPOOL_INTERVAL is specified and is not set to zero. This parameter is
optional and is used only if PRESTARTSESSIONS=YES.

MULTIPLE_RESPONSE_FORMAT={SEPARATOR|PHRASE}
A specification of PHRASE permits you to use spaces to separate multiple response
fields. The default value, SEPARATOR, requires that a separator character be specified
in the control PDB named SEPARATOR_CHARACTER on the HLAPI transaction
submitted by the client application. This parameter is optional and is used only if
PRESTARTSESSIONS=YES.

PDB_TRACE={NO|YES}
This parameter specifies whether the HLAPI should perform PDB data tracing for
debugging purposes or PDB data logging to the HLAPILOG output file. Setting this
parameter value to YES causes the logging of up to 32 bytes of PDBDATA information
for each PDB used throughout the session. A value of NO causes no PDB logging to be
performed. This parameter is optional and is used only if PRESTARTSESSIONS=YES.
If you omit this parameter, the value NO is assumed.

SPOOL_INTERVAL={0|n}
Contains a character specifying the number of minutes that the HLAPI spools the
activity logs HLAPILOG and APIPRINT when messages are printed. If the HLAPI is
spooling to a data set and this time interval has passed, the activity logs are recycled and
new log information is written starting at the top of the data set, writing over any
existing information. If you omit this parameter, the HLAPI does not log messages and
the settings in APIMSG_OPTION and HLIMSG_OPTION are ignored. This
parameter is optional and is used only if PRESTARTSESSIONS=YES.

TABLE_COUNT={0|n}
Contains a character that indicates the maximum number of alias tables and PIDTs and
anchored PIPTs that the HLAPI can maintain in storage during the life of a Tivoli
Information Management for z/OS session. Static PIDTs and PIDTs generated from data
view records are treated the same for caching purposes. It can take a significant amount
of time to generate a PIDT from data view records. The length of time depends on the
number of data attribute records (and validation records they reference) contained in the
data view record. Therefore, it can be especially important to direct the HLAPI to
maintain PIDTs in storage if you are using data models. If you specify this value as zero
or omit it, the Tivoli Information Management for z/OS session will not process
ALIAS_TABLE parameters or cache PIDTs. Alias table and PIDT processing can
increase transaction run time due to the increased I/O time of loading and unloading
tables. By balancing the table count to alias table and PIDT usage, you can reduce to
zero the additional I/O overhead for long-running applications. This parameter is
optional and is used only if PRESTARTSESSIONS=YES.

TIMEOUT_INTERVAL={300|n}
Contains a character specifying the number of seconds that a transaction can run before
a timer interrupt occurs. If you specify a value between 0 and 45 seconds, the HLAPI
uses a value of 45 seconds. If you specify a value of 0 or omit this parameter, the
HLAPI uses a default value of 300 seconds (five minutes). This parameter is optional
and is used only if PRESTARTSESSIONS=YES.

Coding the Parameters for an MRES with TCP/IP

63Client Installation and User’s Guide

5.
R

u
n

n
in

g
an

M
R

E
S

w
ith

T
C

P
/IP

Sample MRES Parameters
A sample of the MRES parameters is provided in BLMMRESP in the SBLMSAMP data
set. If you rename this member or create a new one, be sure to change the member name in
the PRM= parameters in the JCL for your MRES with TCP/IP procedure or be sure to
specify PRM= on the START command when you start the MRES. Refer to “Defining a
Procedure for an MRES with TCP/IP” on page 56 for an example of the JCL for your
MRES with TCP/IP procedure. The following are sample parameters for an MRES with
TCP/IP.

/**/
/* */
/* MRES START UP PARAMETERS */
/* */
/**/
BLMYPRM /* SPECIFY MRES PARAMETERS */
/**/
/* */
/* PARAMETERS TO CONTROL THE GENERAL MRES SESSION */
/* */
/**/

APMINSTRUMENT=OFF, /* APM INSTRUMENTATION (ON OR OFF) */
MAXCONNECT=10, /* MAXIMUM NUMBER OF CONNECTIONS */
SHUTDOWNTFY=000200, /* SHUTDOWN NOTIFY TIME (HHMMSS) */
SHUTDOWNWT=000500, /* SHUTDOWN WAIT TIME (HHMMSS) */
WRITEOPER=1, /* WRITE-TO-OPERATOR ROUTING CODE */

/**/
/* */
/* PARAMETERS TO CONTROL THE COMMUNICATIONS SESSION */
/* */
/**/

COMMTYPE=TCPIP, /* COMMUNICATIONS (APPC OR TCPIP) */
IPADDRESS=000.000.000.000, /* INTERNET PROTOCOL ADDRESS */
PORT=1451, /* TCP/IP UNIQUE PORT NUMBER */

/**/
/* */
/* PARAMETERS TO CONTROL THE PRE-STARTING OF API SESSIONS */
/* */
/**/

PRESTARTSESSIONS=NO, /* PRE-START (YES OR NO) */
APPLICATION_ID=XXXXXXXX, /* APPLICATION ID */
PRIVILEGE_CLASS=XXXXXXXX, /* PRIVILEGE CLASS NAME */
SESSION_MEMBER=BLGSESXX, /* SESSION MEMBER NAME */
APIMSG_OPTION=C, /* LLAPI MESSAGES (C, P, OR B) */
BYPASS_PANEL_PROCESSING=NO, /* BYPASS PANELS (YES OR NO) */
CLASS_COUNT=0 /* MAXIMUM NUMBER TO BE CACHED */
DATABASE_ID=5, /* DATABASE ID */
DEFAULT_DATA_STORAGE_SIZE=1024, /* DEFAULT SIZE IN BYTES */
DATE_FORMAT=DATABASE, /* FORMAT OF DATE DATA */
DEFAULT_OPTION=NONE, /* (ALL, REQUIRED, OR NONE) */
HLIMSG_OPTION=C, /* HLAPI MESSAGES (C, P, OR B) */
MULTIPLE_RESPONSE_FORMAT=SEPARATOR, /* (PHRASE OR SEPARATOR) */
PDB_TRACE=NO, /* PDB DEBUG TRACE (YES OR NO) */
SPOOL_INTERVAL=0, /* MAXIMUM TIME IN MINUTES */
TABLE_COUNT=0, /* MAXIMUM TABLE ENTRIES */
TIMEOUT_INTERVAL=300; /* MAXIMUM TIME IN SECONDS */

Coding the Parameters for an MRES with TCP/IP

64 Version 7.1

Adding the Data Sets to the APF List
If you neither specified the data sets that contain the MRES load modules in the link list nor
have them in the link pack area, you must add the data sets to the APF library.

To define the data sets that contain the load modules as APF libraries, make an entry for
each data set in the appropriate PROGxx members of SYS1.PARMLIB. Each entry in a
PROGxx member includes the data set name (dsn) and the volume serial number (volser) of
the library.

The changes will be activated the next time you IPL the system, or you can use the MVS
operator command SET PROG=xx to dynamically activate the changes.

Starting and Stopping an MRES with TCP/IP
TCP/IP/MVS and the BLX-SP server must be running before you start an MRES with
TCP/IP.

To start an MRES with TCP/IP, issue the MVS system operator START command for the
cataloged procedure. To stop an MRES with TCP/IP, issue the MVS system operator STOP
command. For full descriptions of the MVS START and STOP operator commands, refer to
OS/390 Operations: System Commands. The START command accepts the parameters listed
in the following section.

START Command Syntax
The syntax of the MVS system operator START command for an MRES with TCP/IP is as
follows:

S blmmres[,JOBNAME=job_name][,PRM=member_name]

S The MVS system operator START command.

blmmres
The name of the cataloged procedure for this MRES with TCP/IP.

Note: The name of the cataloged procedure becomes the name of the job unless it is
overridden by the JOBNAME= parameter.

JOBNAME=job_name
The value assigned to this keyword becomes the name of the newly started MRES. If
this parameter is not specified, the name of the cataloged procedure becomes the name
of the job.

Note: For the MRES with TCP/IP, multiple MRESs can be started with the same or
different job names, but only with different parameter data. This is because the
PORT= parameter must be unique for each started MRES.

PRM=MRES_parameters_member_name
In the sample procedure BLMMRES (see “Defining a Procedure for an MRES with
TCP/IP” on page 56), PRM= specifies the name of the data set member that contains the
MRES parameters. If you specify PRM= on the START command, the MRES
parameters in that member are used. They override the values contained in the MRES
parameters data set member referenced by PRM= in the catalogued procedure for this
MRES with TCP/IP. If PRM= is not specified on the START command, the MRES
parameters contained in the data set member referenced by the cataloged procedure are
used. Refer to “Defining a Procedure for an MRES with TCP/IP” on page 56 for a

Adding the Data Sets to the APF List

65Client Installation and User’s Guide

5.
R

u
n

n
in

g
an

M
R

E
S

w
ith

T
C

P
/IP

sample of the cataloged procedure. The sample uses the MRES parameters in
SBLMSAMP data set member BLMMRESP

STOP Command Syntax
The syntax of the MVS system operator STOP command for an MRES with TCP/IP is as
follows:

P job_name[,A=n]

Note: Note that job_name is the name of the cataloged procedure that was started, unless
the parameter JOBNAME was specified on the START command.

P The MVS system operator STOP command.

job_name
The name of the cataloged procedure for this MRES with TCP/IP.

A=n
An optional parameter that specifies the address space number consisting of from 1 to 4
hexadecimal digits (0–F). You can obtain this number in several ways:

¶ Use the Display Jobs operator command (D J,BLMMRES displays information about
all jobs with the name BLMMRES).

¶ Look for ASID=n in message BLM03170I. This message is written to the console
when the MRES is successfully started.

¶ Use other display commands. (See “Using MVS Operator Commands” on page 67
for information about the DISPLAY command.)

If you do not use this parameter, all jobs with the name job_name are stopped. If you
do use this parameter, only the job you specify is stopped.

Determining Values Clients Need
When you set up the communication links on the clients, you will need the following values:

¶ Port number

This is the unique port number for a particular MRES with TCP/IP. For the
HLAPI/UNIX client system, this value must be set in the ⁄etc⁄services file. For the
HLAPI/USS client system, this value must be set in either the ⁄etc⁄services file or the
hlq.ETC.SERVICES data set. For HLAPI/2 and HLAPI/NT client systems, this value
must be set in the SERVICES file in the ETC subdirectory.

¶ Internet address

This is the address of the MVS host with which you are communicating. If you use a
host name in your database profile to identify the MVS host, this value must be set in
the file on the HLAPI/UNIX client systems running the requester. If you use a host
name on the HLAPI/2 or HLAPI/NT or HLAPI/USS client systems, the host name must
be resolvable.

Starting and Stopping an MRES with TCP/IP

66 Version 7.1

Using MVS Operator Commands

MVS supports a set of system commands that enables the operator to monitor APPC
operation, and, thus, a RES or an MRES with APPC address space. These commands are
relevant to the server address space. For specific details on using these commands, refer to
OS/390 MVS Planning: APPC/MVS Management and OS/390 MVS: System Commands.
DISPLAY

Views server address space status
CANCEL

Removes a server address space from the system
FORCE

Destructively removes a server address space from the system

To use these commands, you must know the job and TP name for the server address space.
You can use the following DISPLAY command to see these names:
DISPLAY APPC,TP,ALL

Because TCP/IP is not integrated into MVS, it does not have special operator commands
(such as the DISPLAY APPC command). However, because the MRES with TCP/IP runs in
an MVS address space, you can use job-related operator commands (for example, DISPLAY
JOB).

Displaying Server Address Space Status
You can display detailed information about the APPC server address space running in a
system by using the DISPLAY APPC and DISPLAY ASCH commands. The DISPLAY
APPC command shows information about the status of the server TP (and other APPC TPs
and LUs). The DISPLAY ASCH command displays information about the status of the
APPC scheduler and the work it manages. The following sample commands can be used to
find the status of one or more server address spaces:

To display information about the server TP, enter the statement:
D APPC,TP,LIST,LTPN=tp_name

To display the status of a server in a particular address space, enter the statement:
D APPC,LIST,ASID=asid

You can display detailed information about either the APPC or the TCP/IP server address
space running in a system by using the Display Jobs operator command. For example, to
display information about all jobs with the name BLMMRES, enter the statement:
D J,blmmres

6

67Client Installation and User’s Guide

6.
U

sin
g

M
V

S
O

p
erato

r
C

o
m

m
an

d
s

Cancelling a Server Address Space
Use the CANCEL command to stop a single instance of a server immediately. The
CANCEL command requires the job name for the particular server and the server’s address
space identifier (ASID). To get this information, use an example shown in section
“Displaying Server Address Space Status” on page 67. When you have the ASID, use the
command:
CANCEL job_name,A=server_asid

If the CANCEL request does not succeed in cancelling the server address space, you can
use the FORCE command.

Forcing a Server Address Space
The FORCE command can be used when the CANCEL command fails to remove a server
address space from the system. FORCE deletes the address space from the system without
allowing any cleanup or recovery to occur. This can result in some loss of resources until
the system is re-IPLed. CANCEL must be issued before you can use FORCE. The FORCE
command requires the job name for the particular server and the server address space
identifier (ASID). Use the following command:
FORCE job_name,A=server_asid

Cancelling a Server Address Space

68 Version 7.1

Introduction to the HLAPI/2

Tivoli Information Management for z/OS supports remote access from a workstation that
runs in an OS/2 environment. It does this through the High-Level Application Program
Interface (HLAPI) and the Tivoli Information Management for z/OS HLAPI Client for OS/2
(HLAPI/2). The HLAPI/2 provides remote access to Tivoli Information Management for
z/OS data and data manipulation services. It consists of three parts:

¶ A Tivoli Information Management for z/OS server, an MVS-based transaction program
that resides on the MVS host system. It provides the link between Tivoli Information
Management for z/OS and the OS/2 system.

¶ The Tivoli Information Management for z/OS HLAPI/2 Requester (requester), an
OS/2-based transaction program that provides workstation access to the HLAPI through
a Tivoli Information Management for z/OS server.

¶ C and REXX language bindings and support Dynamic Link Libraries (DLLs) for the C
and REXX languages.

Like the HLAPI, the HLAPI/2 is a transaction-based application programming interface.
User application programs interact with Tivoli Information Management for z/OS from the
remote environment in basically the same way as they do from MVS using the HLAPI.
These remote environment user application programs can be thought of as the clients to
Tivoli Information Management for z/OS’s server. The remote environment offers a subset
of HLAPI transactions, which are listed in Table 1 on page 3, described in “HLAPI/2
Transactions” on page 109, and described in the Tivoli Information Management for z/OS
Application Program Interface Guide .

The HLAPI/2 enables application programmers to write applications for use in their specific
work environment. The task described in “A Typical Scenario” is typical of the system
problems that can be solved by using Tivoli Information Management for z/OS database
services.

A Typical Scenario
Suppose an application programming group in an enterprise has written two
workstation-based help desk applications that interact with the HLAPI through the HLAPI/2.
One is a problem management database application, and the other is a configuration
management database application. The application programming group has already provided
the help desk with the information necessary to install and start these applications
successfully.

7

69Client Installation and User’s Guide

7.
In

tro
d

u
ctio

n
to

th
e

H
L

A
P

I/2

For efficiency, the help desk operator maintains two separate user IDs on the MVS system:
one with basic privilege class authority for queries sent through the configuration
management application, and one with a higher privilege class authority for creating records
through the problem management application.

1. A help desk operator starts an OS/2 workstation. The workstation’s STARTUP.CMD
command file starts up the HLAPI/2 requester, the problem management application, and
the configuration management application.

2. When a problem call arrives, a help desk operator uses the problem management
application to collect preliminary information and open a problem record through the
HLAPI/2.

3. In another OS/2 window, the same operator uses the configuration application to query
Tivoli Information Management for z/OS through the HLAPI/2 for information about the
caller’s configuration.

4. Meanwhile, Tivoli Information Management for z/OS has returned a problem number
back through the HLAPI/2, and the operator gives the caller his problem number and
promises follow-up on the problem.

5. By this time, Tivoli Information Management for z/OS has returned results of the
configuration query through the HLAPI/2. The operator can then research the problem
and update the problem record as necessary.

The same Tivoli Information Management for z/OS functions that once required direct host
access are now performed on a desktop workstation. The remaining sections of this chapter
help you understand the interactions of the HLAPI/2 and Tivoli Information Management for
z/OS.

Server Overview
A Tivoli Information Management for z/OS server is an MVS/ESA transaction program that
handles communication between an HLAPI/2 requester and any Tivoli Information
Management for z/OS databases that reside on the MVS system where the server is installed.
An OS/2 client application program must use a requester for access to the server.

A server must be installed and available on every MVS/ESA machine with a Tivoli
Information Management for z/OS database that an application using the HLAPI/2 needs to
access.

The HLAPI/2 can use any of the Tivoli Information Management for z/OS servers. See
“Configuring and Running a Remote Environment Server (RES)” on page 25, “Configuring
and Running a Multiclient Remote Environment Server (MRES) with APPC” on page 35,
and “Configuring and Running a Multiclient Remote Environment Server (MRES) with
TCP/IP” on page 53 for information about the servers.

When deciding which server to use, consider the communication protocol that each one
supports. Also consider the security requirements of your application and how you will
implement these requirements.

A Typical Scenario

70 Version 7.1

Requester Overview
The requester is a transaction program that runs on the workstation. It must be up and
running before any HLAPI/2 activity can occur. At the request of a client application
program, the requester initiates a conversation with a server. Then the requester transfers
information from the client application program to the appropriate server, and from the
server back to the client application program.

The requester appears on your workstation as a Presentation Manager® (PM) window. To
start the requester, select OK in the window. You can also start the requester from the
workstation’s STARTUP.CMD file. See “The HLAPI/2 Requester” on page 105 for more
information about starting the requester.

The HLAPI/2 requester is implemented as an OS/2 system service. Therefore, HLAPI/2
requester services are available to all processes and related threads running in the OS/2
environment. One copy of the HLAPI/2 requester service can support many user
applications.

HLAPI/2 C Language Binding
A client application program communicates with the Tivoli Information Management for
z/OS system by creating a high-level application communication area (HICA) and its related
parameter data blocks (PDBs). The client application program then submits the HICA
transaction by making HLAPI/2 program service calls. The HLAPI/2 program service
routines exist on the user’s workstation as a dynamic link library (DLL). When the calls are
made by the client application program, the supporting HLAPI/2 routines are loaded from
the DLL and started.

To utilize HLAPI/2 program service calls, the HLAPI/2 provides two standard header files
and one import library. These are located in the H subdirectory of the directory in which you
install HLAPI/2. These files are only used in the creation of an HLAPI/2 application. After
the application is written and installed, these files are not required to be on a user’s
workstation.

IDBH.H is a required C programming language header file for all HLAPI/2 application
programs. It defines data types and function calls used by HLAPI/2 to communicate with
your application program.

IDBHLAPI.LIB is the import library that contains the function calls provided by HLAPI/2.
You must specify this library when you link your compiled program.

IDBECH.H is an optional C programming language header file that defines constant
declarations for return and reason codes used by the HLAPI/2.

After you install the HLAPI/2, refer to “HLAPI/2 C Language Application Program” on
page 121 to learn more about the header files and the import library.

Requester Overview

71Client Installation and User’s Guide

7.
In

tro
d

u
ctio

n
to

th
e

H
L

A
P

I/2

Basic Transaction Flow
A transaction sequence is a series of HLAPI/2 transactions that begins with an initialize
Tivoli Information Management for z/OS (HL01) transaction, followed by other supported
transactions in any order, and ends with a terminate Tivoli Information Management for
z/OS (HL02) transaction. Client application programs submit transactions in a transaction
sequence, which is referred to as a logical session.

Each HLAPI/2 transaction request travels from a client application program on OS/2 to
Tivoli Information Management for z/OS on MVS along the route shown in Figure 9. This
example illustrates OS/2 using a RES. The path would be similar using an MRES with
APPC or an MRES with TCP/IP. With an MRES with TCP/IP, the communication protocol
would be TCP/IP instead of APPC.

The transaction reply travels from Tivoli Information Management for z/OS to the client
application along the same route, but reversed.

On the Workstation
The client application program, through the HLAPI/2 program service calls, uses the
requester to request Tivoli Information Management for z/OS work to be performed. The
user application creates a HICA and PDBs to represent a Tivoli Information Management for
z/OS HLAPI transaction. Then it submits the HICA to HLAPI/2 for processing. HLAPI/2
takes the HICA and its related control and input PDBs and translates them for the server
character set. It then packages and transfers them to the server associated with the specified
HICA. (Refer to transaction HL01 in the Tivoli Information Management for z/OS
Application Program Interface Guide for a description of how to associate a HICA with a
particular Tivoli Information Management for z/OS database.)

Remote
Environment
Server

High-
Level
Appl icat ion
Program
Interface

Low-
Level
Appl icat ion
Program
Interface

MVS Address Space

OS/2 Process OS/2 Process

APPC (LU6.2)

Workstat ion

HLAPI/2
Requester

HLAPI/2
Interface

Cl ient
Appl icat ion

Tivoli
Information
Management
for z/OS
Subtask

Figure 9. HLAPI/2 Overview

Basic Transaction Flow

72 Version 7.1

Communication Link
The HLAPI/2 requester communicates with a server using the APPC LU 6.2 protocol or
using TCP/IP. The client application chooses the communication protocol and that protocol
is used for the entire transaction sequence submitted by that client application.

The requester can communicate with multiple servers on multiple MVS hosts. The
IDBSYMDESTNAME database profile keyword indicates that the requester is to establish
an APPC conversation on behalf of the client. The IDBSERVERHOST database profile
keyword indicates that the client wants a TCP/IP connection. These keywords and the
database profile are described in “HLAPI/2 Profiles, Environment Variables, and Data
Logging” on page 95.

To enable the communication link between an OS/2 workstation and a RES or an MRES
with APPC, APPC/MVS and the Communications Manager/2 must be configured for
HLAPI/2 use. For information on configuring a RES or MRES with APPC, refer to
“Configuring and Running a Remote Environment Server (RES)” on page 25 and
“Configuring and Running a Multiclient Remote Environment Server (MRES) with APPC”
on page 35.

To enable the communication link between an OS/2 workstation and an MRES with TCP/IP,
TCP/IP must be set up for HLAPI/2 use. For information on configuring an MRES with
TCP/IP, see “Configuring and Running a Multiclient Remote Environment Server (MRES)
with TCP/IP” on page 53.

On the Host
Upon arrival in the server, the HICA and PDBs are processed and submitted to the Tivoli
Information Management for z/OS HLAPI. After the requested HLAPI transaction finishes,
the server transmits the HICA, the output, error, and message PDBs, and the PDBCODE
field of the input PDB to the requester.

Back to the Workstation
The transmission buffers are received by the requester. The buffers are parsed in sequence
and their contents (the PDBs) are translated from the server character set to the character set
being used by the workstation. Memory is allocated for the newly received PDBs. These
PDBs are chained onto their corresponding type list on the owning (and original) HICA. The
HICA contains the original control and input PDB chains and the new output, error, and
message PDB chains. The HICA contains other fields set by the HLAPI, such as
HICARETC and HICAREAS. The PDBPROC value set by the HLAPI in the input PDB
field is also returned. The transaction request is complete, and control of the HICA is
returned to the client application program.

The REXX HLAPI/2 Interface
This interface enables you to access HLAPI/2 transactions from OS/2 REXX programs. The
REXX HLAPI/2 is similar to the HLAPI/REXX interface on MVS. Using the REXX
HLAPI/2, the client programmer can write REXX programs to:

¶ Set variables with control and input information

¶ Submit transactions to the HLAPI/2 through the REXX HLAPI/2 interface

¶ Retrieve information from REXX variables set by the REXX HLAPI/2 interface

All of the HLAPI/2 transactions are available to the REXX HLAPI/2.

Basic Transaction Flow

73Client Installation and User’s Guide

7.
In

tro
d

u
ctio

n
to

th
e

H
L

A
P

I/2

The REXX HLAPI/2 is installed as a component of the HLAPI/2. It consists of a single
functional part, the REXX HLAPI/2 DLL, which is the interface between the application
REXX program and the HLAPI/2:

The Tivoli Information Management for z/OS Application Program Interface Guide gives
useful information for HLAPI/REXX which also applies to writing REXX HLAPI/2
applications.

Client Workstation Requirements for the HLAPI/2
The HLAPI/2 requires certain software and hardware to function.

Software
Each HLAPI/2 client workstation requires the following software:
¶ OS/2 WARP® Version 3 or OS/2 WARP Version 4
¶ VisualAge® C++ for OS/2, or any C language compiler and linker that supports the

32-bit system linkage convention.

Note: A compiler is required only if you are developing client applications. A client
workstation does not need a compiler to run a client application.

To use the optional HLAPI for Java provided with the client, you must have Java
Development Kit (JDK) Version 1.1 or higher, and OS/2 WARP Version 4.

To use a RES or MRES with APPC:
¶ Communications Manager/2 Version 1.1 or a later release (required for the APPC

protocol).

To use an MRES with TCP/IP:
¶ Because OS/2 WARP Version 3 and OS/2 WARP Version 4 contain support for TCP/IP,

no separate installation of TCP/IP is required.

Hardware
¶ An IBM personal computer or compatible system unit capable of running OS/2 WARP

Version 3 or OS/2 WARP Version 4, and Communications Manager/2 1.1 (or higher) if
you are using APPC.

¶ One or more fixed disk drives with sufficient capacity to contain your version of OS/2,
and possibly, Communications Manager/2; note also the disk storage requirements
specified in “Disk Storage” on page 75

¶ Token-Ring Adapter Card and network or a communication option capable of supporting
LU 6.2 or TCP/IP communication to one or more MVS systems running a Tivoli
Information Management for z/OS server.

Figure 10. The REXX HLAPI/2 Interface

The REXX HLAPI/2 Interface

74 Version 7.1

Disk Storage
The amount of fixed disk space needed by HLAPI/2 depends on which parts of the product
you install, and how you install them. You can install HLAPI/2 only on an HPFS drive.
When you install HLAPI/2, the disk space needed for each component is:
¶ Installation and Maintenance utility, 1.40 MB
¶ Run time parts, 610 KB
¶ Toolkit parts, 260 KB

When you install the HLAPI/2 from a local area network (LAN), the disk space listed above
is accurate, but the Installation and Maintenance utility is only temporarily copied to your
workstation; it is then deleted.

Client Workstation Requirements for the HLAPI/2

75Client Installation and User’s Guide

7.
In

tro
d

u
ctio

n
to

th
e

H
L

A
P

I/2

Client Workstation Requirements for the HLAPI/2

76 Version 7.1

Installing and Configuring HLAPI/2

To use HLAPI/2 on your workstation, you must do the following tasks:

1. Configure a communication link to a Tivoli Information Management for z/OS server.
“Configuring a Communication Link to a Server” discusses this task.

2. Install the HLAPI/2 files from the source system to your workstation. “Installing
HLAPI/2 on the Workstation” on page 82 discusses this task.

3. Customize the HLAPI/2 files. “Customizing the HLAPI/2 CONFIG.SYS File” on
page 90 discusses this task.

Configuring a Communication Link to a Server
In order to use the functions of the HLAPI/2, you must configure a communication link for
the workstation to each server you want to use. If the server you are using is a RES or
MRES with APPC, you must configure an APPC/APPN communication link. If you are
using an MRES with TCP/IP, you must configure a TCP/IP communication link. The
following sections describe how to configure your communications software and update
various files. “Configuring HLAPI/2 for TCP/IP” on page 81 provides you with the steps
needed for a TCP/IP configuration. The following section, “Configuring HLAPI/2 for
APPC”, provides you with the steps needed for an APPC configuration.

Configuring HLAPI/2 for APPC
To use a RES or MRES with APPC, you must configure an APPC/APPN communication
link for the workstation to each server you want to use. On an OS/2 workstation, you use
Communications Manager/2 to configure the link. You can either use a text editor to modify
a CM/2 Node Definition File (NDF) or step through the panels CM/2 provides. This section
shows you the statements to add to an NDF file for the HLAPI/2. It does not include
defining a link for 3270 sessions.

Your NDF file is located in the \CMLIB directory. It has the same file name as your
Communications Manager configuration file, which has a file extension of CFG. The NDF
file has the file extension NDF.

There are also example CFG and NDF files. These files are provided with the CM/2
Configuration Guide files. If you want to configure a machine from scratch, copy the
BASE2.NDF and BASE2.CFG files into the \CMLIB directory. If you want to modify an
existing configuration, do not copy the BASE2 files. You can, however, cut and paste the
verbs needed from the file BASE2.NDF to your own NDF file.

For more information about configuring CM/2, refer to the following guides:
¶ CM/2 Installation, Configuration and Administration
¶ CM/2 Configuration Guide

8

77Client Installation and User’s Guide

8.
In

stallin
g

an
d

C
o

n
fig

u
rin

g
H

L
A

P
I/2

¶ CM/2 APPC Programming Guide and Reference

The tasks you need to do to configure APPC/APPN are:

1. Determine the values to use in the configuration.

2. Define a local LU.

3. Define a logical link to the MVS host where the server resides.

4. Define a partner LU.

5. Define CPI-C side information.

6. Verify the configuration.

The NDF file configuration samples in this chapter show what commands and parameters
should be in an NDF file to define a direct link to a Tivoli Information Management for
z/OS server. If the workstation is an end node on a token-ring local area network that
communicates with MVS by way of a network node, define the partner LU on the network
node and define a link from the end node to the network node.

Determining Configuration Values
Configuring Communications Manager/2 for the HLAPI/2 is independent of configuring a
server. For example, whether the server is a RES or an MRES is transparent to the
HLAPI/2. However, you need to know some of the values that were declared when the
server was configured. See “Determining Values Clients Need” on page 33 if the server is a
RES. See “Determining Values Clients Need” on page 50 if the server is an MRES with
APPC.

Defining a Local LU for HLAPI/2
Each workstation intending to use HLAPI/2 must have a local LU definition in its
environment. The LU name must match a partner LU name defined in VTAM for the MVS
server system. Use the DEFINE_LOCAL_CP command as shown here.
DEFINE_LOCAL_CP

FQ_CP_NAME(network_name.luname)
CP_ALIAS(lu_alias)
NODE_TYPE(node_type)
HOST_FP_SUPPORT(YES)
HOST_FP_LINK_NAME(link_name);

FQ_CP_NAME The fully qualified name of this LU: network_name is the
ID for the entire network and luname is the name of the
local LU on this workstation.

CP_ALIAS lu_alias is an alias for this LU. Alias names are case
sensitive. You can define it as (lu_alias,LU_ALIAS).

NODE_TYPE node_type is EN to define an end node.

HOST_FP_SUPPORT The value of YES indicates that this end node is to
communicate with the host over the link identified in the
next parameter.

HOST_FP_LINK_NAME link_name is the name of the logical link this LU uses for
communication with the host.

Configuring a Communication Link to a Server

78 Version 7.1

Define a default local LU to use for communication with the host. This definition can be
made only by adding a statement to the NDF file. Use the DEFINE_DEFAULTS statement
shown here.

DEFINE_DEFAULTS DEFAULT_LOCAL_LU_ALIAS(lu_alias)

lu_alias must match the value you declared on the CP_ALIAS statement.

Defining a Link to the MVS System
To define a link directly to the MVS system where the server is installed, add a link
definition as shown here, to your NDF file.
DEFINE_LOGICAL_LINK

LINK_NAME(linkname)
FQ_ADJACENT_CP_NAME(partnernet.partnerlu)
ADJACENT_NODE_TYPE(LEARN)
DLC_NAME(IBMTRNET)
ADAPTER_NUMBER(0)
DESTINATION_ADDRESS(lanaddress)
CP_CP_SESSION_SUPPORT(NO)
ACTIVATE_AT_STARTUP(NO)
SOLICIT_SSCP_SESSION(NO);

LINK_NAME
linkname specifies the name of this link.

FQ_ADJACENT_CP_NAME
partnernet is the ID of the network the MVS system is on. partnerlu is the
name of the LU defined for the Tivoli Information Management for z/OS
server on the MVS system.

DESTINATION_ADDRESS
lanaddress is the address by which the MVS system is known to the local
area network.

Defining a Partner LU
In order for your workstation to be able to locate a Tivoli Information Management for z/OS
server when a client application wants to initiate a conversation, the workstation’s NDF file
must contain a partner LU definition for the server. This partner LU must specify the fully
qualified name of the MVS server system as shown in this example.
DEFINE_PARTNER_LU FQ_PARTNER_LU_NAME(network_name.imserver_lu)

PARTNER_LU_ALIAS(imserver_lu)
PARTNER_LU_UNINTERPRETED_NAME(imserver_lu)
MAX_MC_LL_SEND_SIZE(32767)
CONV_SECURITY_VERIFICATION(YES)
PARALLEL_SESSION_SUPPORT(YES);

DEFINE_PARTNER_LU_LOCATION FQ_PARTNER_LU_NAME(network_name.imserver_lu)
WILDCARD_ENTRY(NO)
FQ_OWNING_CP_NAME(network_name.vtam_sscpname)
LOCAL_NODE_NN_SERVER(NO);

network.name
The ID for the network the server’s LU is on.

imserver_lu The name of the server’s logical unit. This value on the
PARTNER_LU_ALIAS parameter can be the same or different from the
value on the other parameters.

vtam_sscpname
The System Services Control Point Name for VTAM. You use this value

Configuring a Communication Link to a Server

79Client Installation and User’s Guide

8.
In

stallin
g

an
d

C
o

n
fig

u
rin

g
H

L
A

P
I/2

instead of a Control Point (CP) name because VTAM does not have a CP
name for APPN to use. This value is set in the ATCSTRxx member of the
VTAMLST data set.

Defining CPI-C Side Information
The HLAPI/2 uses a symbolic destination name to locate the target for a conversation. You
define symbolic destination names in your NDF file on a DEFINE_CPIC_SIDE_INFO
statement. Then you specify that same symbolic destination name on the
IDBSYMDESTNAME keyword in the database profile on the workstation. Refer to
“HLAPI/2 Profiles, Environment Variables, and Data Logging” on page 95 for more
information about database profile keywords.

This example illustrates the command for defining a symbolic destination name in an NDF
file.
DEFINE_CPIC_SIDE_INFO SYMBOLIC_DESTINATION_NAME(symname)

FQ_PARTNER_LU_NAME(network_name.imserver_lu)
MODE_NAME(mode)
TP_NAME(tpname);

symname Declares the symbolic destination name to use on the workstation to locate a
server. Use this same symbolic destination name when you define your
database profile on the workstation.

network_name.imserver_lu
Specifies a partner LU that is defined in this same NDF file on a
DEFINE_PARTNER_LU statement. If the symbolic destination name is for
a RES, the partner LU must be one that is defined on the MVS system as
scheduled. If the symbolic destination name is for an MRES, the partner LU
must be one that is defined on the MVS system as nonscheduled.

network_name
Is the ID for the network the server’s LU is on.

imserver_lu Is the name of the server’s logical unit.

mode Specifies the name of a compiled log-on mode to use for the conversation.
The mode name must match the mode specified in the TP profile for a RES
or in the side information entry for an MRES. The log-on mode is an entry
in SYS1.VTAMLIB. See “Defining the Log-on Mode” on page 30 for
information on defining a mode.

tpname If the symbolic destination name represents a RES, this value must match
the name used for the TP profile on the MVS system where the RES resides.

If the symbolic destination name represents an MRES, this value must match
the value on the TPNAME parameter of the side information entry that the
symname maps to.

Verifying the Configuration
To verify the changes you have made to your NDF file, issue the following command from
the OS/2 command prompt:
CMVERIFY ndf_file_name.NDF

Substitute the name of your NDF file for ndf_file_name.

Configuring a Communication Link to a Server

80 Version 7.1

To activate the changes you have made to your NDF file, stop and restart Communications
Manager/2.

Configuring HLAPI/2 for TCP/IP
To use an MRES with TCP/IP, you must configure TCP/IP so that HLAPI/2 can connect to
each MRES with TCP/IP server you want to use. Each MRES with TCP/IP is uniquely
identified by the IP address of its MVS host and its port number. Refer to “Configuring and
Running a Multiclient Remote Environment Server (MRES) with TCP/IP” on page 53 for
more information about the MRES with TCP/IP.

To identify the port number of each MRES with TCP/IP, you must update the SERVICES
file in your ETC subdirectory where you installed TCP/IP to associate a service name or
alias with the port number of the MRES with TCP/IP. You must specify a service name and
port number for each server the HLAPI/2 needs to be able to connect to. The port numbers
must match those used by the Tivoli Information Management for z/OS MRES with TCP/IP
servers. The service name is of your choosing. Service names are case-sensitive.

A default service name infoman and port number 1451 have been reserved for Tivoli
Information Management for z/OS use. The general format of an entry in the SERVICES
file is:
<service> <port>⁄tcp <alias_list> #<comment>

<service>
The service name of the Tivoli Information Management for z/OS MRES with
TCP/IP.

<port>
The port number of the Tivoli Information Management for z/OS MRES with
TCP/IP.

<alias_list>
Alias definitions for the service

<comment>
Comment text that describes the service.

For example, to associate the default service name infoman with the default port number
1451, you must place the following line in the SERVICES file before you run HLAPI/2:
infoman 1451/tcp #default MRES server

The default service name and default port number are reserved for Tivoli Information
Management for z/OS so you can use them to designate your MRES with TCP/IP. If the
client application does not specify a service name in the database profile specified on the
HL01 transaction, infoman will be assumed. Therefore, be sure to include it in the
SERVICES file.

Be sure that your client application programs use the service names that you define. If your
client application program needs to access an MRES with TCP/IP that uses a port number
other than the default infoman/1451, you must specify its service name in the
IDBSERVERSERVICE keyword in the client application’s database profile.

Additional information regarding the IDBSERVERSERVICE keyword and the database
profile can be found in “HLAPI/2 Profiles, Environment Variables, and Data Logging” on
page 95.

Configuring a Communication Link to a Server

81Client Installation and User’s Guide

8.
In

stallin
g

an
d

C
o

n
fig

u
rin

g
H

L
A

P
I/2

To identify the MVS host running the MRES with TCP/IP, your client application must
specify the host in the IDBSERVERHOST keyword in the database profile. The host can
be identified by an IP address in dotted-decimal format or by a host name. If you use a host
name, the host name must be resolvable. Refer to the OS/2 online help for information on
how TCP/IP should be configured to resolve a host name.

Additional information regarding the IDBSERVERHOST keyword and the database profile
can be found in “HLAPI/2 Profiles, Environment Variables, and Data Logging” on page 95.

Preparing to Install HLAPI/2
Before you begin installing HLAPI/2, you should familiarize yourself with the important
information in the READ.ME file shipped with HLAPI/2. If you are installing HLAPI/2
from the HLAPI/2 installation CD-ROM, the READ.ME file is on the CD-ROM; if you are
installing HLAPI/2 from a LAN server, the READ.ME file is in the LAN subdirectory.

HLAPI/2 is delivered on a CD-ROM. You can install HLAPI/2 directly from the CD-ROM
to a workstation or install on a LAN server and then to workstations from the LAN Server.

Note: Upgrades or patches that can be downloaded from a Tivoli Web site may be available
for HLAPI/2. Visit the Tivoli Information Management for z/OS Web site
http://www.tivoli.com/infoman for more information.

Installing HLAPI/2 on the Workstation
The source files for installation can reside in two places. You either install the files directly
from the HLAPI/2 installation CD-ROM, or install them from the HLAPI/2 installation
CD-ROM to a local area network (LAN) server, then install HLAPI/2 from the LAN server.
And you can install the files in either attended mode or unattended mode.

If you already have an existing version of HLAPI/2 installed, delete this version before
installing HLAPI/2. See “Deleting HLAPI/2 from Your Workstation” on page 92.

The default requester (IDBREQ.EXE) supports both APPC/APPN and TCP/IP
communication with MVS and requires Communications Manager/2 and TCP/IP. You can
choose a requester that only supports one of these. See “Choosing the Appropriate
Requester” on page 90.

When installing HLAPI/2 on your workstation, you install the HLAPI/2 Installation and
Maintenance Utility and the HLAPI/2 components.

You use the HLAPI/2 Installation and Maintenance Utility to perform the following tasks:

¶ Install HLAPI/2. See “Installing HLAPI/2 in Attended Mode from CD-ROM” on page 83
and “Installing HLAPI/2 on a Workstation in Unattended Mode” on page 86.

¶ Maintain HLAPI/2. See “Applying HLAPI/2 Maintenance” on page 91.

¶ Restore the previous service level. See “Restoring HLAPI/2 to the Previous Service
Level” on page 91.

¶ Delete HLAPI/2. See “Deleting HLAPI/2 from Your Workstation” on page 92.

Configuring a Communication Link to a Server

82 Version 7.1

Installing HLAPI/2 in Attended Mode from CD-ROM
Install HLAPI/2 by following these steps:

Note: You must install HLAPI/2 on an HPFS drive.

1. Switch to, or start, an OS/2 window or an OS/2 full screen session.

2. If you already have HLAPI/2 installed, delete it. See “Deleting HLAPI/2 from Your
Workstation” on page 92.

3. Insert the HLAPI/2 installation CD-ROM into a CD-ROM drive.

4. Type the following command at the OS/2 command prompt, then press Enter:
e:\hlapi\os2\pc\install

where:

e Is the drive letter of the CD-ROM drive that contains the HLAPI/2 installation
CD-ROM.

5. Read the information in the instructions window, then select Continue.

6. In the Install window, if you want the HLAPI/2 Installation and Maintenance Utility to
update your CONFIG.SYS file, select OK and go on to step 7. If you do not select OK,
changes are put in a file called CONFIG.ADD.

If you do not want the HLAPI/2 Installation and Maintenance Utility to update your
CONFIG.SYS file, do the following:

a. De-select Update CONFIG.SYS before you select OK.

b. Modify the CONFIG.SYS file manually before you shut down and restart your
workstation or start HLAPI/2. Modify the CONFIG.SYS file using the information
in the CONFIG.ADD file. It is in the same directory as your CONFIG.SYS file.
This file is not created until the HLAPI/2 Installation and Maintenance Utility has
completed its part of the installation. See “Customizing the HLAPI/2 CONFIG.SYS
File” on page 90 for information about updating your CONFIG.SYS file.

7. In the Install - Directories window:

a. Select the components of the HLAPI/2 you want to install. (See “Components of
HLAPI/2” on page 339 for a complete list of HLAPI/2 files.)

b. Type the target paths in which to install the HLAPI/2 files. You can accept the
default values or change them. If the paths do not exist, they will be created. The
default directory is C:\INFOAPI.

Note: You can select Disk space... to determine the amount of available space on the
fixed disk drives in your workstation.

c. Select Install...

The HLAPI/2 files are transferred from the HLAPI/2 installation CD-ROM to your
workstation. The Install - Progress window indicates progress.

8. When the transfer is complete, a message appears to indicate that HLAPI/2 is installed.
Select OK.

9. Optionally, choose the requester to be used. See “Choosing the Appropriate Requester”
on page 90.

Installing HLAPI/2 on the Workstation

83Client Installation and User’s Guide

8.
In

stallin
g

an
d

C
o

n
fig

u
rin

g
H

L
A

P
I/2

Note: If you update the CONFIG.SYS file during the installation, you must shut down your
workstation and start it again before starting HLAPI/2.

The HLAPI/2 installation is complete. After you start your workstation again, verify the
installation.

Installing HLAPI/2 on a LAN Server
To install HLAPI/2 on a workstation from a LAN server, you install the HLAPI/2
Installation and Maintenance Utility and the HLAPI/2 package files on the LAN server.

Note: If you choose to install the HLAPI/2 Installation and Maintenance Utility on a LAN,
you must do so in attended mode. You cannot perform these steps in unattended
mode.

To put the HLAPI/2 Installation and Maintenance Utility and HLAPI/2 package files on a
LAN server, follow these steps:

1. Switch to, or start, an OS/2 window or an OS/2 full screen session.

2. If you already have HLAPI/2 installed, delete it. See “Deleting HLAPI/2 from Your
Workstation” on page 92.

3. Insert the HLAPI/2 installation CD-ROM into a CD-ROM drive.

4. Type the following command at the OS/2 command prompt, then press Enter:
e:\hlapi\os2\lan\install /p:"HLAPI/2 on LAN SERVER

Note: For the DBCS version of OS/2, type a space followed by a left bracket symbol ([)
at the end of the command.

e Is the drive letter of the CD-ROM drive that contains the HLAPI/2 installation
CD-ROM.

5. Read the information in the instructions window, then select Continue.

6. In the Install window, de-select the CONFIG.SYS option so that the CONFIG.SYS file
is not updated.

Note: Verify that the install window says HLAPI/2 on LAN SERVER. If not, then
choose CANCEL and return to 4 and reenter the command exactly as shown.

7. In the Install - Directories window:

a. Type the target path in which to install the HLAPI/2 files. You can accept the default
value or change it. If the path does not exist, it will be created. The default directory
is C:\INFOAPIS. This directory should be on a LAN Server drive.

Note: You can select Disk space... to determine the amount of available space on the
fixed disk drives in your workstation.

b. Select Install...

The HLAPI/2 files are transferred from the HLAPI/2 installation CD-ROM to your
workstation. The Install - Progress window indicates progress.

8. When the transfer is complete, a message appears to indicate that HLAPI/2 has been
installed. Select OK.

The HLAPI/2 installation to the LAN server is complete. Give all authorized users access to
the LAN drive on which you installed HLAPI/2.

Installing HLAPI/2 on the Workstation

84 Version 7.1

Installing HLAPI/2 in Attended Mode from a LAN Server
If you have access to a LAN server that holds HLAPI/2, you can access the alias
drive/directory and install HLAPI/2 on your workstation by following these steps:

Note: You can only install HLAPI/2 on an HPFS drive.

1. Switch to, or start, an OS/2 window or an OS/2 full screen session.

2. Use the CHDIR (CD) command to change to the LAN server directory that contains
HLAPI/2.

3. Type INSTALL on the command line

4. The Initial Installation dialog and an Information window appear. Read the information
in the window, then select Continue.

5. In the Install window, if you want the HLAPI/2 Installation and Maintenance Utility to
update your CONFIG.SYS file, select OK and go on to step 6. This is recommended.

If you do not want the HLAPI/2 Installation and Maintenance Utility to update your
CONFIG.SYS file, do the following:

a. De-select Update CONFIG.SYS before you select OK.

b. Modify the CONFIG.SYS file manually before you shut down and restart your
workstation, or start HLAPI/2. Modify the CONFIG.SYS file using the information
in the CONFIG.ADD file. It is in the same directory as your CONFIG.SYS file.
This file is not created until the HLAPI/2 Installation and Maintenance Utility has
completed its part of the installation. See “Customizing the HLAPI/2 CONFIG.SYS
File” on page 90 for information about updating your CONFIG.SYS file.

6. In the Install - Directories window:

a. Select the components of the HLAPI/2 you want to install. (See “Components of
HLAPI/2” on page 339 for a complete list of HLAPI/2 files.)

b. Type the target paths in which to install the HLAPI/2 files. You can accept the
default values or change them. These directories will be created if they do not
already exist.

Note: Select Disk space... to determine the amount of available space on the fixed
disk drives in your workstation.

c. Select Install...

The HLAPI/2 files are transferred from the LAN server to your workstation. The
Install - Progress window indicates progress.

7. When the transfer is complete, a message appears to indicate that HLAPI/2 has been
installed. Select OK.

8. Optionally, choose the requester to be used. See “Choosing the Appropriate Requester”
on page 90.

Note: If you update the CONFIG.SYS file during the installation, you must shut down your
workstation and start it again before starting HLAPI/2.

The HLAPI/2 installation is complete. After you start your workstation again, you can verify
the installation.

Installing HLAPI/2 on the Workstation

85Client Installation and User’s Guide

8.
In

stallin
g

an
d

C
o

n
fig

u
rin

g
H

L
A

P
I/2

Installing HLAPI/2 on a Workstation in Unattended Mode
You can automate the installation of HLAPI/2 on your workstation by using a response file
and command line parameters. The response file contains the responses you would normally
provide interactively. The command line parameters enable the installation to proceed
without user intervention.

A sample response file is shipped with HLAPI/2. You can use this file as is or you can
modify it to meet your needs. The sample response file is named BLMIRFW.DAT and is
contained on the HLAPI/2 installation CD-ROM, or, if HLAPI/2 is installed on a LAN
server, it is contained in the LAN server subdirectory that contains the HLAPI/2 code.

You can use the sample response file to install HLAPI/2 from either the HLAPI/2
installation CD-ROM or a LAN server to a workstation. Details about the response file
keywords are included in “HLAPI/2 Response File Keywords” on page 87. Details about the
command line parameters are included in “Command Line Parameters” on page 88.

Installing HLAPI/2 from CD-ROM in Unattended Mode
To install HLAPI/2 from the HLAPI/2 installation CD-ROM in unattended mode, follow
these steps:

Note: You can only install HLAPI/2 on an HPFS drive.

1. Switch to, or start, an OS/2 window or an OS/2 full screen session.

2. Insert the HLAPI/2 installation CD-ROM into a CD-ROM drive.

3. If a previous version of HLAPI/2 is not already installed, type the following at the OS/2
command prompt:
e:\hlapi\os2\pc\install /X /A:I /R:<path>BLMIRFW.DAT /L1:LOG

Otherwise, type:
e:\hlapi\os2\pc\install /X /A:U /R:<path>BLMIRFW.DAT /L1:LOG

where:

e Is the drive letter of the CD-ROM drive that contains the HLAPI/2
installation CD-ROM.

For details about the command line parameters, see “Command Line Parameters” on
page 88.

4. Optionally, choose the requester to be used. See “Choosing the Appropriate Requester”
on page 90.

Installing HLAPI/2 from a LAN Server in Unattended Mode
To install HLAPI/2 from a LAN server in unattended mode, follow these steps:

Note: You can only install HLAPI/2 on an HPFS drive.

1. Switch to, or start, an OS/2 window or an OS/2 full screen session.

2. Use the CHDIR (CD) command to change to the LAN server directory that contains
HLAPI/2.

3. If a previous version of HLAPI/2 is not already installed, type the following at the OS/2
command prompt:

Installing HLAPI/2 on the Workstation

86 Version 7.1

INSTALL /X /A:I /R:<path>BLMIRFW.DAT /L1:LOG

Otherwise, type:
INSTALL /X /A:U /R:<path>BLMIRFW.DAT /L1:LOG

For details about the command line parameters, see “Command Line Parameters” on
page 88.

4. Optionally, choose the requester to be used. See “Choosing the Appropriate Requester”
on page 90.

HLAPI/2 Response File Keywords
The sample response file shipped with HLAPI/2 includes these keywords:

CFGUPDATE (required)
Specifies whether the CONFIG.SYS file is automatically updated. Valid values for
this keyword are:
AUTO

Automatically updates CONFIG.SYS
MANUAL

Does not update CONFIG.SYS

COMP
Specifies the unique name of a component of the product to which the information
passed applies. You can specify a maximum of 100 components. The COMP value
must match the NAME keyword of the COMPONENT entry in the package file.

Note: Do not use quotes around the component name, even when the name is more
than one word with blanks between words.

DELETEBACKUP (required)
Specifies whether to delete only the backup versions of the product or to delete the
entire product. Valid values for this keyword are YES and NO.

If you attempt to perform an unattended delete and the DELETEBACKUP is not
present in the response file, the deletion fails with an EPFIE212 error.

This keyword is required because an existing dialog requests this information in the
attended mode.

FILE (conditionally required)
Provides the new default path for the file directory. Use this keyword only for
installation processing.

The FILE value is used in place of the FILE keyword of the PATH entry in the
package file. This keyword is required if you specify a FILE keyword in the PATH
entry.

OVERWRITE (required)
Specifies whether to automatically overwrite files during installation. Valid values
for this keyword are YES and NO. This keyword is required for unattended
processing.

SAVEBACKUP (required)
Specifies whether to save a backup version of the product when it is updated. Valid
values for this keyword are YES and NO. This keyword is required for unattended
processing because an existing dialog requests this information in the attended mode.

Installing HLAPI/2 on the Workstation

87Client Installation and User’s Guide

8.
In

stallin
g

an
d

C
o

n
fig

u
rin

g
H

L
A

P
I/2

WORK (conditionally required)
Provides the new default path for the data directory. The WORK value is used in
place of the WORK keyword of the PATH entry in the package file. This keyword
is required if you specify a WORK keyword in the PATH entry.

Command Line Parameters
The command line parameters you use to install HLAPI/2 in unattended mode are:

/A:<action>
Specifies the action of the EPFINSTS.EXE or INSTALL.EXE.

If you use this parameter, the main window of the installation is not displayed. If
you do not use this parameter, the installation starts normally with all windows
displayed.

Valid values for this parameter are:
D Delete
I Install
R Restore
U Update.

This example uses the /A parameter to specify an install:
/A:I

/G:<include path>
Specifies the drive and directory of the general response files that are included by
the specific response file. An example of how this can be specified is:

/G:C:\infoapi

/L1:<error log>
Specifies the drive, path, and file name of the error log file.

All lines logged to the error file are prefixed with a time stamp. The time stamp has
this format:
YYYY-MM-DD HH:mm:SS:ss

where:
YYYY is the year
MM is the month
DD is the day
HH is the hour
mm is the minute
SS is the second
ss in the hundredth of a second.

The date and time separators are the current user-defined settings in the Country
object of the System Settings folder. The default separators are the dash sign (-) and
the colon (:), respectively.

Following is an example of using the /L1 parameter to create an ERROR.LOG file
in the C:\ABC\ directory:

/L1:C:\ABC\ERROR.LOG

/L2:<history log>
Specifies the drive, path, and file name of the history log file.

Installing HLAPI/2 on the Workstation

88 Version 7.1

All lines added to the history file are prefixed with a time stamp in this format:
YYYY-MM-DD HH:mm:SS:ss

where:
YYYY is the year
MM is the month
DD is the day
HH is the hour
mm is the minute
SS is the second
ss in the hundredth of a second.

The date and time separators are the current user-defined settings in the Country
object of the System Settings folder. The default separators are the dash sign (-) and
the colon (:), respectively.

If you do not specify this parameter, no history log is maintained.

Following is an example of using the /L2 parameter to create a HISTORY.LOG file
in the C:\ABC\ directory:

/L2:C:\ABC\HISTORY.LOG

/L3: /L4: /L5:<log files>
Each of these parameters can contain a drive, path, and file name of a log file.

/P:<product name>
Provides the name of the product for the specified action.

If you do not specify this parameter, the installation comes up normally with all
windows displayed.

If your product name string includes any spaces, you must use double quotes around
the word string. For example:

/p:"product name with spaces"

/R:<response file>
Specifies the drive, path, and file name of the specific response file.

The following search order is used to find the response files:

1. The fully qualified file specification

2. The current directory

3. The file name together with the /G: invocation parameter

4. Each directory in the PATH environment variable

5. Each directory in the DPATH environment variable.

The drive and path are optional for this parameter.

This is an example of using this parameter:
/R:L:\XYZ\RESPONSE.DAT

/S:<source_location>
Specifies the drive and path that contains the source files to be installed.

Installing HLAPI/2 on the Workstation

89Client Installation and User’s Guide

8.
In

stallin
g

an
d

C
o

n
fig

u
rin

g
H

L
A

P
I/2

/T:<install target directory>
Specifies the drive and path into which the product files are installed. An example of
using this parameter follows:

/T:C:\IBB

/TU:<update target CONFIG.SYS directory>
Specifies the drive and path of the target CONFIG.SYS to be updated.

If you do not specify this parameter, the CONFIG.SYS files are updated as
specified in the product’s package file.

This is an example of using this parameter:
/TU:C:\

/X Specifies that the action is unattended.

If you do not specify all of the information needed for the action to complete, an
error occurs. When you specify the /X option, no progress indication is shown and
all error messages are logged in the log file. You can specify the location of this
error log file by using the /L1 parameter.

If you do not specify this option, the user is prompted for any information that is
needed to complete the action. In this attended mode of action, progress indication is
shown and error messages are displayed to the user in secondary windows.

Choosing the Appropriate Requester
The default requester (IDBREQ.EXE) installed for HLAPI/2 requires Communications
Manager/2 and TCP/IP to be installed. If you do not have both of these installed, you can
use a requester that supports only one of the protocols.

To do so:

1. Switch to, or start, an OS/2 window or an OS/2 full screen session.

2. Change to the directory where HLAPI/2 is installed.

3. Type BLMREQI at the OS/2 command prompt.

4. Follow the directions that appear on the screen. The chosen requester is copied to
IDBREQ.EXE.

Customizing the HLAPI/2 CONFIG.SYS File
If you chose not to have the HLAPI/2 Installation and Maintenance Utility update the
CONFIG.SYS file for you, you must update certain entries yourself. The example
statements in this section use C:\INFOAPI as the default product directory (to show where
HLAPI/2 is installed). If you specified a different drive and directory during your
installation, use that information instead.

If you installed the HLAPI/2 RUNTIME component, update the LIBPATH and SET
statements. Add the name of the HLAPI/2 directory where the product’s dynamic link library
file (DLL) is installed to the LIBPATH statement. Add the name of the HLAPI/2 directory
to the SET statement. The updated statements should look like these:
LIBPATH=C:\OS2\DLL;C:\MUGLIB\DLL;...;C:\INFOAPI\DLL;
SET DPATH=C:\OS2;C:\MUGLIB;...;C:\INFOAPI;

Installing HLAPI/2 on the Workstation

90 Version 7.1

Note: The ellipses in these statements indicate information already in the statements that
does not need to be changed.

Applying HLAPI/2 Maintenance
Perform the following steps:

1. Ensure that the CD-ROM is accessible in its drive.

2. Stop any application that uses HLAPI/2.

3. Stop the HLAPI/2 requester.

4. Change to the directory that contains the HLAPI/2 Installation and Maintenance Utility.
Then enter the command EPFINSTS to start the HLAPI/2 Installation and Maintenance
Utility.

5. In the Installation and Maintenance window:
a. Select HLAPI/2 or HLAPI/2 on LAN SERVER.
b. Select Update from the Action pull-down.

6. In the Update window, select Save a Backup Version? to store the backup of the current
level of the product. If you want to automatically update the CONFIG.SYS file, select
Update CONFIG.SYS.

7. Select Update. The update operation begins. When the update finishes, the Update
window closes and a message indicating that the update was successful appears.

8. Select OK. The Installation and Maintenance window appears.

9. Close the HLAPI/2 Installation and Maintenance Utility.

Restoring HLAPI/2 to the Previous Service Level
You can restore the previous service level of the HLAPI/2 if:
¶ HLAPI/2 was installed (and not deleted).
¶ HLAPI/2 was updated at least once.
¶ The HLAPI/2 files were stored in a backup directory during the update.

Restoring HLAPI/2 If It Was Installed from the HLAPI/2 CD-ROM
If you want to restore the previous service level and HLAPI/2 was installed directly from
the HLAPI/2 installation CD-ROM, follow these steps:

1. Stop any application that uses HLAPI/2.

2. Stop the HLAPI/2 requester.

3. Start the HLAPI/2 Installation and Maintenance Utility. Use the CHDIR (CD) command
to change to the directory that contains the HLAPI/2 Installation and Maintenance
Utility. Then enter the command EPFINSTS.

4. In the Installation and Maintenance window:
a. Select HLAPI/2 or HLAPI/2 on LAN SERVER.
b. Select Restore from the Action pull-down.

5. In the Restore window, select Restore to restore the most recent backup of the previous
level of this product. The restore operation begins. When the restore finishes, the Restore
window closes and a message indicating that the restore operation was successful
appears.

Customizing the HLAPI/2 CONFIG.SYS File

91Client Installation and User’s Guide

8.
In

stallin
g

an
d

C
o

n
fig

u
rin

g
H

L
A

P
I/2

6. Select OK. The Installation and Maintenance window appears.

7. Close the HLAPI/2 Installation and Maintenance Utility.

Restoring HLAPI/2 If It Was Installed from a LAN Server
If you want to restore the previous service level and HLAPI/2 was installed from a LAN
server, follow these steps:

1. Stop any application that uses HLAPI/2.

2. Stop the HLAPI/2 requester.

3. Access the alias drive/directory on the LAN where HLAPI/2 is located and type
EPFINSTS.

4. In the Installation and Maintenance window:
a. Select HLAPI/2.
b. Select Restore from the Action pull-down.

5. In the Restore window, select Restore to restore the backup of the previous level of this
product. The restore operation begins. When the restore finishes, the Restore window
closes, and a message indicating that the restore operation was successful appears.

6. Select OK. The Installation and Maintenance window appears.

7. Close the HLAPI/2 Installation and Maintenance Utility.

Deleting HLAPI/2 from Your Workstation
Follow the steps below to remove HLAPI/2 from your system.

1. Stop any application that uses HLAPI/2.

2. Stop the HLAPI/2 requester.

3. Start the HLAPI/2 Installation and Maintenance Utility. Use the CHDIR (CD) command
to change to the directory that contains the HLAPI/2 Installation and Maintenance
Utility. Then enter the command BLMINSTS (for a pre-Information/Management
Version 6.3 version of HLAPI/2) or EPFINSTS from the OS/2 window.

4. In the Installation and Maintenance window:
a. Select HLAPI/2 or HLAPI/2 on LAN SERVER
b. Select Delete from the Action pull-down

5. In the Delete window, review the information and select the components you want to
delete. Then select Delete to begin the delete operation. The delete operation begins. The
Status changes to Deleting Files. All the HLAPI/2 product files associated with the
selected component are deleted from your workstation. Any backup service level files
associated with the selected component are also deleted. A message appears indicating
that the Delete operation is finished.

Note: Installation and maintenance files are not deleted.

6. Select OK. The Installation and Maintenance window appears.

7. Close the HLAPI/2 Installation and Maintenance Utility by selecting File on the
pull-down, then select Exit.

Restoring HLAPI/2 to the Previous Service Level

92 Version 7.1

Diagnostic Assistance
A valuable tool to help you trace the network traffic between the HLAPI/2 client and the
server is provided by OS/2 Communications Manager. The tool is called CMTRACE. It can
only be used if you choose to use APPC communication to MVS via OS/2 Communications
Manager. Follow these steps to use and format the CMTRACE:

1. Select the CMTRACE option in Communications Manager.

2. Select the items you want to trace.

3. Run your application.

4. Return to Communications Manager and stop CMTRACE.

5. Specify the file name for your trace. The default directory is CMLIB.

6. Access the CMLIB directory, and use the following command to format the trace output:
FMTTRACE xxxx.xxx +d

where xxxx.xxx is the file name you specified in step 5.

7. Your formatted output is stored as xxxx.DET. Use a browse utility to look at the file.

Diagnostic Assistance

93Client Installation and User’s Guide

8.
In

stallin
g

an
d

C
o

n
fig

u
rin

g
H

L
A

P
I/2

Diagnostic Assistance

94 Version 7.1

HLAPI/2 Profiles, Environment Variables,
and Data Logging

Certain aspects of the HLAPI/2 interface can be tuned to the needs of your application. You
do this by specifying profile keywords and values in two OS/2 text files–the system profile
and the database profile.

The system profile is optional. It is specified in the command that starts the HLAPI/2
requester. See “The HLAPI/2 Requester” on page 105 for more information about this
command. The system profile defines the sizes of the data buffers that are passed between
the OS/2 workstation and the MVS host.

The database profile is required and must be specified in a control PDB that is passed to
HLAPI/2 as part of an HL01 transaction. The database profile defines which MVS server is
the destination of Tivoli Information Management for z/OS HLAPI transactions that are
submitted by the user application. It controls all aspects of logging these transactions on the
workstation, and it defines which ASCII and EBCDIC code pages to use for data
conversion.

Profile Syntax
A profile can be created and manipulated with common text editors. The profile syntax is
keyword driven. Keyword processing is not case-sensitive. The keywords can be entered
with any mix of uppercase and lowercase characters. Each keyword requires a data
parameter.

For each keyword, the equals character (=) separates the keyword from its data value.
Optionally, one or more spaces may precede or follow the equals character or the keyword.
The data value consists of all nonblank characters to the right of the equals character, up to
the end of line. This is an example:
IDBServCharCodepage = 37

You can specify a comment; but it must be specified on a text line of its own. The comment
must be preceded by the characters REM as in the following example:
REM Code page 37 is the EBCDIC U.S. English code page.

When you enter numbers for profile keyword data, do not use commas in the numbers; enter
the numbers without spaces or any punctuation whatsoever:
IDBLogFileSize = 262144

9

95Client Installation and User’s Guide

9.
H

L
A

P
I/2

P
ro

files,
V

ariab
les,

an
d

L
o

g
g

in
g

System Profile Keywords
When the requester is started, it can be given a system profile file name. The system profile
enables the application programmer to tune certain aspects of the client HLAPI/2 system.

The system profile file name can be fully qualified with its path and drive, or you can
specify the file name only. If only a file name is specified, the search path name is obtained
from the current value held in the IDBSMPATH OS/2 environment variable, described in
“IDBSMPATH” on page 102.

If a profile is not specified, default values are used for each of the keywords. Information on
IDBINBOUNDBUFSIZE, IDBOUTBOUNDBUFSIZE, and IDBSHARECMS can be
found on this page and pages following.

An example of a System Profile is contained in “System Profile Example” on page 97.

IDBINBOUNDBUFSIZE
This value is the number of bytes to be allocated for each buffer that the workstation
receives from the server. The number is rounded up to the next highest multiple of 4096 in
all cases except at the uppermost range (greater than 28672). A buffer size greater than this,
but less than 32767, is rounded up to 32767.

Note: Do not use commas when entering numbers in profile keywords.

An example of when to increase the IDBINBOUNDBUFSIZE is when you have an
application that uses retrieve transactions containing a large amount of data.

Valid entries: any number between 1 and 32767.

Default value: 4096.

IDBOUTBOUNDBUFSIZE
This value is the number of bytes to be allocated for each buffer sent from the workstation
to the server. The number is rounded up to the next highest multiple of 4096 in all cases
except at the uppermost range (greater than 28672). A buffer size greater than this, but less
than 32767, is rounded up to 32767.

Note: Do not use commas when entering numbers in profile keywords.

An example of when to increase the IDBOUTBOUNDBUFSIZE is when you have an
application that uses create transactions that contain a large amount of data.

Valid entries: any number between 1 and 32767.

Default value: 4096.

IDBSHARECMS
This keyword determines whether the requester should enable or disable conversation
sharing. When conversation sharing is enabled, the requester assigns new client applications
to an existing conversation if criteria such as same server and same security ID are met.
When conversation sharing is disabled (the default), each client application is assigned its
own dedicated conversation. A conversation is terminated when the last client assigned to it
submits an HL02.

System Profile Keywords

96 Version 7.1

Note: If you choose to use conversation sharing, you must be aware that there is a potential
for a delay because transactions are handled synchronously. Thus, if Client A and
Client B share a conversation, and Client A submits a long search and Client B
submits an update, Client B will wait for Client A’s search to complete before its
transaction can be processed.

Note: If you are using pre-started API sessions (described in “MRES with Pre-started API
Sessions Considerations” on page 18), you must disable conversation sharing.

Valid entries: 0 (conversation sharing disabled) or 1 (conversation sharing enabled).

Default value: 0 (conversation sharing disabled).

System Profile Example
REM***
REM
REM
REM
IDBINBOUNDBUFSIZE = 4096
REM
IDBOUTBOUNDBUFSIZE = 4096
REM
IDBSHARECMS = 0
REM

Database Profile Keywords
Database profiles are created by the user. The database profile file name is passed to
HLAPI/2 through a PDB named DATABASE_PROFILE on the control PDB list. This
occurs when your application connects to the database using the HL01 transaction. The
database profile is used only with the HL01 transaction. If you specify it for other
transactions, it is ignored.

The database profile file name can be fully qualified with its path and drive, or you can
specify the file name only. If only a file name is specified, the search path name is obtained
from the current value held in the OS/2 environment variable IDBDBPATH described in
“IDBDBPATH” on page 101.

During profile resolution, the contents of database profile text files and profile overrides are
compiled together into a final collection of profile settings. This final collection is then used
by the HLAPI/2. For more information about profile overrides, see “Profile Override” on
page 101.

Within a profile, a keyword cannot be duplicated. If a keyword is duplicated, an error is
reported, and processing ends.

Information about individual keywords can be found in the following sections:
¶ “IDBDataLogLevel” on page 98
¶ “IDBLogFileSize” on page 98
¶ “IDBLogFileNameActive” on page 98
¶ “IDBLogFileNameOld” on page 98
¶ “IDBCharCodePage” on page 98
¶ “IDBServCharCodePage” on page 99
¶ “IDBSymDestName” on page 99

System Profile Keywords

97Client Installation and User’s Guide

9.
H

L
A

P
I/2

P
ro

files,
V

ariab
les,

an
d

L
o

g
g

in
g

¶ “IDBServerHost” on page 99
¶ “IDBServerService” on page 99

An example of a Database Profile can be found in “Database Profile Example” on page 100.

IDBDataLogLevel
The level at which client data logging is performed. This profile setting can be overridden
with the OS/2 environment variable also called IDBDataLogLevel.

Valid entries: 0 (logging disabled) and 1 (logging enabled).

Default value: 0 (logging disabled).

IDBLogFileSize
The approximate maximum size in bytes of a log file. The log file is phased after it grows
larger than this size. To phase a log file is to close the current log file, rename and archive
it, and open a new empty log file.

Valid entries: Any positive integer between 4096 and 10485760 (do not include commas
when entering numbers). If a value between 1 and 4095 is specified, 4096 is substituted.
Specifying zero causes the log file to grow indefinitely.

Default value: 262144.

IDBLogFileNameActive
The primary name given to the active log file name for the client.

Valid entries: Any valid file name.

Default value: IDB_LOG.ACT. If you are running in a LAN environment, it is suggested
that this file be written to a file unique to each LAN workstation to avoid errors due to file
contention.

IDBLogFileNameOld
The name given to log files about to be archived. After the active log file as specified by
IDBLogFileNameActive is phased, the file is renamed to this value.

Valid entries: Any valid file name.

Default value: IDB_LOG.OLD. If you are running in a LAN environment, it is suggested
that this file be written to a file unique to each LAN workstation to avoid file contention
errors.

IDBCharCodePage
This keyword indicates the code page to use in the client. Character data bound for the
client is translated to this code page. Character data bound for the server is translated from
this code page.

Valid entries: any code page listed in “HLAPI/2 Code Pages” on page 114.

Default value: the current code page. If you do not enter a value for this variable, HLAPI/2
interrogates the operating system for the current code page.

Database Profile Keywords

98 Version 7.1

IDBServCharCodePage
This keyword indicates the code page that the server uses. Character data bound for the
server is translated to this code page. Character data bound for the client is translated from
this code page.

Valid entries: any code page listed in “HLAPI/2 Code Pages” on page 114.

Default value: 37 (U.S. English).

IDBSymDestName
Symbolic destination name. This keyword specifies the name of a Common Programming
Interface for Communications (CPI-C) side information entry, which provides information
required for HLAPI/2 to establish a conversation with a RES or an MRES with APPC. For
more information on CPI-C side information entries, refer to the OS/2 Communications
Manager/2 Configuration Guide. You can also refer to “Configuring and Running a Remote
Environment Server (RES)” on page 25, “Configuring and Running a Multiclient Remote
Environment Server (MRES) with APPC” on page 35, and “Configuring HLAPI/2 for
APPC” on page 77 for additional information.

If you use this keyword, you must not use the IDBServerHost keyword.

Valid entries: Any CPI-C symbolic destination name (a 1- to 8-byte character string) defined
in the Communications Manager/2 CPI-C side information entry.

Default value: none. This value is required if IDBServerHost is not specified.

IDBServerHost
This keyword identifies the MVS host that is running the MRES with TCP/IP server you
want the requester to establish a conversation with. For more information about the MRES
with TCP/IP and setting up the HLAPI/2 to communicate with an MRES with TCP/IP , refer
to “Configuring and Running a Multiclient Remote Environment Server (MRES) with
TCP/IP” on page 53 and “Configuring HLAPI/2 for TCP/IP” on page 81.

If you use this keyword, you must not use the IDBSymDestName keyword.

Valid entries: Any valid IP address in dotted-decimal format, or any valid host name, such as
mvshost. If you specify a host name, the host name must be resolvable. Refer to the OS/2
online help for information on host name resolution.

Default value: none. This value is required if IDBSymDestName is not specified.

IDBServerService
This keyword identifies the service name of the MRES with TCP/IP server you want the
requester to establish a conversation with. The service name must be listed in the
SERVICES file in the ETC subdirectory on your workstation. For more information about
the MRES with TCP/IP and setting up the HLAPI/2 to communicate with an MRES with
TCP/IP, refer to “Configuring and Running a Multiclient Remote Environment Server
(MRES) with TCP/IP” on page 53 and “Configuring HLAPI/2 for TCP/IP” on page 81.

Valid entries: Any valid service name or alias. Service names and aliases are case-sensitive.

Database Profile Keywords

99Client Installation and User’s Guide

9.
H

L
A

P
I/2

P
ro

files,
V

ariab
les,

an
d

L
o

g
g

in
g

Default value: infoman. IDBServerService is an optional keyword. If you do not specify it,
when you specify IDBServerHost, the default is assumed. If you specify
IDBSymDestName, IDBServerService is ignored.

Database Profile Example
REM***
REM
REM Example Database Profile
REM
REM
REM***
REM
REM ------------------------------------
REM Symbolic Destination Name (Required if using APPC)
REM ------------------------------------
IDBSymDestName = LUNAME
REM
REM ------------------------------------
REM Host Name or TCP/IP Address (Required if using TCP/IP)
REM ------------------------------------
REM IDBServerHost = yourhost
REM
REM ------------------------------------
REM MRES Service Name (Optional)
REM ------------------------------------
REM IDBServerService = infoman
REM
REM ***** Specify Client and Server Code Pages *****
REM ------------------------------------
REM Client Character Code Page (Optional)
REM ------------------------------------
IDBCharCodepage = 437
REM
REM ------------------------------------
REM Server Character Code Page (Optional)
REM ------------------------------------
IDBServCharCodepage = 37
REM
REM
REM ***** Specify Log File Parameters *************
REM ------------------------------------
REM Client Data Log Level (Optional)
REM ------------------------------------
IDBDataLogLevel = 1
REM
REM ------------------------------------
REM Log File Size (Optional)
REM ------------------------------------
IDBLogFilesize = 262144
REM
REM ------------------------------------
REM The Active Log File Name (Optional)
REM ------------------------------------
IDBLogFileNameActive = IDBLOG.ACT
REM
REM ------------------------------------
REM The Old Log File Name (Optional)
REM ------------------------------------
IDBLogFileNameOld = IDBLOG.OLD

Database Profile Keywords

100 Version 7.1

HLAPI/2 OS/2 Environment Variables
HLAPI/2 uses OS/2 environment variables in two different ways. One environment variable
can be set and used as a profile override. Other variables can be used to fully qualify the
names of database and system profiles when a user does not do so. The means of doing a
profile override is described in “Profile Override” and an explanation of Profile Search Path
is described in “Profile Search Path”.

Profile Override
Profile override specifications enable certain profile values to be specified through OS/2
environment variables. Not all profile parameters that can be specified in a profile can be
overridden by environment variables. IDBDataLogLevel is currently the only variable that
can be overridden this way. You can use the OS/2 environment variable IDBDataLogLevel
to override the database profile parameter IDBDataLogLevel. The value of the OS/2
environment variable always takes precedence.

By setting profile overrides in the CONFIG.SYS file, you can cause the profile override to
effect all OS/2 sessions on the workstation.

By using the SET command on the command line, the values you specify are only in effect
for a single OS/2 session (the current one). Values specified in this way override any values
previously given in CONFIG.SYS. An example follows.

Assume this is part of your current database profile:
REM ** Connection to Information Management for z/OS BLX0
IDBSymDestName = OS2BLX0
REM ** Turn workstation logging on
IDBDataLogLevel = 1
REM ** Allow the workstation file to grow indefinitely
IDBLogFileSize = 0
REM ** Write the log file to BLX0TRAN.LOG
IDBLogFileNameActive = C:\INFOAPI\BLX0TRAN.LOG

This profile logs the data from all HLAPI transactions to the file
C:\INFOAPI\BLX0TRAN.LOG. However, if you submit the command before you start the
application that uses this profile, then no logging occurs on the workstation for transactions
issued by the application. You have overridden the setting for IDBDataLogLevel for the
current session. If you put the same command into CONFIG.SYS, you override the setting
for all OS/2 sessions on this workstation.

Profile Search Path
Two environment variables are used to fully qualify the name of a database profile or system
profile when the user does not do this. More information on IDBDBPATH can be found in
“IDBDBPATH” and more information on IDBSMPATH can be found in “IDBSMPATH” on
page 102.

IDBDBPATH
This is the search path to be used when a HLAPI/2 database profile name is specified
without full qualification. If a user specifies a database profile name without a drive and
path, HLAPI/2 first checks the current directory for the file with that name. If the database
profile is not found there, HLAPI/2 searches the directories specified by the IDBDBPATH
value. A sample default path is C:\PROBLEM\HLAPI2\.

You can use this variable to specify multiple paths to search. For example

HLAPI/2 OS/2 Environment Variables

101Client Installation and User’s Guide

9.
H

L
A

P
I/2

P
ro

files,
V

ariab
les,

an
d

L
o

g
g

in
g

SET IDBDBPATH=C:\;C:\PROBLEM\HLAPI2\;

causes the C:\ directory to be searched first, followed by C:\PROBLEM\HLAPI2.

Valid entries: Any valid file path qualifier. The last backslash (\) is optional.

IDBSMPATH
This is the search path to be used when a HLAPI/2 system profile name is specified without
full qualification. If a user specifies a system profile name without a drive and path,
HLAPI/2 first checks the current directory for the file with that name. If the system profile
is not found there, HLAPI/2 searches the directories specified by the IDBSMPATH value. A
sample default path is C:\HLAPI2\REQ.

You can use this variable to specify multiple paths to search. For example:
SET IDBSMPATH=C:\;C:\HLAPI2\REQ\;

This causes the C:\ directory to be searched first, followed by C:\HLAPI2\REQ.

Valid entries: Any valid file path qualifier. The last backslash (\) is optional.

Server Logging
The content of the server log produced by HLAPI/2 is similar to that of one produced by the
HLAPI. Each HLAPI/2 logical session that has logging enabled has its various transaction
data, results, and messages logged as each transaction is completed on the host. For more
information, refer to the Tivoli Information Management for z/OS Application Program
Interface Guide.

Transaction Logging
Each started HLAPI/2 Tivoli Information Management for z/OS logical session has one log
file. The database profile parameter, described in “IDBDataLogLevel” on page 98, (or the
OS/2 environment variable used as an override) specifies whether data logging is enabled. If
the parameter is not specified, then logging does not occur.

A logical session’s log entry on the host is identified by the HLAPILOG_ID PDB (refer to
the Tivoli Information Management for z/OS Application Program Interface Guide) passed
on an HL01 transaction. This identifier is repeated for each transaction recorded in the
server log.

The client writes the transaction to the log file specified by the database profile parameter,
described in “IDBLogFileNameActive” on page 98, until it reaches the size (in bytes)
specified by the database profile parameter, described in “IDBLogFileSize” on page 98. If
you do not specify a log file name, the default name of IDB_LOG.ACT is used. The
current log file is renamed to that specified by the parameter IDBLogFileNameOld,
described in “IDBLogFileNameOld” on page 98. The default name for this parameter is
IDB_LOG.OLD.

If an old log already exists it is deleted before the current log file is renamed. A new log file
is created.

HLAPI/2 OS/2 Environment Variables

102 Version 7.1

If two sessions are started specifying the same log file, then the first session that opens the
log file has access to it, and the other session receives an error. When two sessions contend
with each other for write access to the same log file, the following rules are followed to
decide who can write to it.
¶ If the log file does not exist, then it is created and opened by the first session to ask for

it.
¶ If the log file already exists, then it is opened and new log entries are appended to it by

the first session.
¶ If the log file is already open, then this is not the first session to request it, and logging

is not performed. The transaction continues to try to open the log until it reaches the
internal retry limit, or is successful in opening the log. If it reaches the retry limit, then
a return code and reason code are passed back in the HICA, indicating that logging was
tried until the internal retry limit was reached.

When both HLAPI/2 and HLAPI logging are turned on, you may see differences in the
PDBs that each one logs. The HLAPI/2 log shows any PDBs with a data length of zero.
However, because HLAPI/2 does not send zero length PDBs to the server, the HLAPI log
does not show any zero length PDBs. The HLAPI log also does not show the
SECURITY_ID, PASSWORD, and DATABASE_PROFILE PDBs, because the HLAPI/2
does not send them to the server.

HLAPI/2 Error Logging
When HLAPI/2 encounters an unexpected logic or system error, it automatically creates or
updates an error log file on the workstation’s startup (IPL) drive. This log file is always
written to the same place on your workstation, regardless of where the user application
started. Called the IDBPROBE.LOG, it is found in the \INFOAPI subdirectory
(\INFOAPI\IDBPROBE.LOG). If the \INFOAPI subdirectory does not already exist,
HLAPI/2 creates it before writing the file. It provides more information about errors than
can be returned in the HICA return and reason codes.

You can delete or rename the log file any time after it is created. If you do, HLAPI/2 creates
a new error log file if new error information must be recorded.

Transaction Logging

103Client Installation and User’s Guide

9.
H

L
A

P
I/2

P
ro

files,
V

ariab
les,

an
d

L
o

g
g

in
g

HLAPI/2 Error Logging

104 Version 7.1

The HLAPI/2 Requester

The HLAPI/2 requester is a program that must be running on the workstation before any
HLAPI/2 activity can occur.

Starting the Requester
The requester program is typically started from within the STARTUP.CMD file on the OS/2
system. An optional system profile name is passed on the command line as a parameter
when starting the HLAPI/2 requester program. Any OS/2 file name can be specified for the
system profile name.

A sample system profile is copied to your workstation when the HLAPI/2 is installed. Look
for SYSTEM.PRO in the INFOAPI\SAMPLE directory.

To start the HLAPI/2 requester, put the following line in the OS/2 STARTUP.CMD file:
IDBREQ [/P profile_file_name]

The command line parameters /P and the profile_file_name are optional. If you do not
specify a file, default values are taken as specified in the system profile keyword list. The
profile_file_name is preceded by a slash (/) followed by an uppercase or lowercase letter P.
Separate the /P and the file name by at least one space.

You can also start the requester by placing a shadow of the HLAPI/2 Requester object that
is in the Tivoli Information Management for z/OS folder into the OS/2 Startup folder or you
can open the Tivoli Information Management for z/OS folder and double-click on the
HLAPI/2 Requester object to start the requester. To specify a system profile name with
either of these methods, you will need to modify the SETTINGS for the object and specify
/P profile_file_name as a parameter.

The requester starts with a Presentation Manager (PM) window that shows standard Tivoli
copyright information. Select OK, and another PM window briefly appears to indicate that
the requester is running. This PM window is the requester run time window. It minimizes to
an icon if there are no errors starting the requester.

Stopping the Requester
You end the requester program by pressing the EXIT button on the requester run time
window. A confirmation panel appears where you select OK to indicate that you want to exit
the program. This action starts a shutdown of the requester environment, ending all
conversations and freeing resources. If you select CANCEL from the confirmation panel,
your request to exit the program is dropped, and the requester continues to run.

10

105Client Installation and User’s Guide

10.
T

h
e

H
L

A
P

I/2
R

eq
u

ester

The requester program can also be closed by bringing the OS/2 Task list window into focus
and closing the process running the requester. However, the preferred method is to use the
requester run time window.

Client user applications receive a requester not started return code (Return code=12, Reason
code=109) for all transaction requests that occur after the requester is closed or before it is
started.

Diagnosis of Some Common HLAPI/2 Problems
When attempting to diagnose unexpected results from your use of the HLAPI/2, the Tivoli
Information Management for z/OS Diagnosis Guide can help you analyze Tivoli Information
Management for z/OS. Some common problems that can occur with the HLAPI/2
specifically are discussed in this section.

Changing the Profile and Its Effect on Program Operation
Perhaps you made a change to your database profile variables and it seems that nothing has
changed in the way the program runs. For example, you change the setting for
IDBDataLogLevel in your profile. The expected result does not occur when you next use
the program. Check the following:

¶ Check your user application to determine which profile it uses to perform its task.
HLAPI/2 looks at the database profile and the system profile.

¶ Verify that no environment variable (as a profile override) takes precedence over the
setting in your database profile. In the current example, check the setting for this
variable in the CONFIG.SYS file. The variable setting there overrides the profile.

You can use the OS/2 command SET to check current settings. If an override is in
effect, check the CONFIG.SYS file or any .CMD file that you run to find the profile
override.

¶ Check the user application that you are running to see if it is setting the value of the
environment variable (and thus the override) directly.

¶ HLAPI/2 might be reading a different profile with the same name, but which is located
in a different directory from the profile you have changed. Use the OS/2 command SET
to check each directory listed in the IDBDBPath environment variable for a file with
the same name as the file that you are changing.

Establishing a Conversation with the Host
If the server you are using is a RES or an MRES with APPC, APPC/MVS and APPC on
your workstation can get out of synchronization if the host APPC/MVS is restarted while
Communications Manager/2 is still active on your workstation. If they are not in synch, you
might not be able to start a conversation. Stop and restart the Communications Manager/2
program on your workstation to synchronize it with the host.

Another source of failed connections can be the APPC Transaction Scheduler (ASCH) on the
MVS host system. If you are not able to establish as many total sessions on your
workstations as you expect to, check the CLASSADD command used to define the APPC
class in the Transaction Scheduler that you are using for HLAPI/2. To increase the number
of sessions, increase the MAX value of the command, or define a separate class for your
transaction program to run under.

Stopping the Requester

106 Version 7.1

If the server you are using is an MRES with TCP/IP or an MRES with APPC, the server
must be started before HLAPI/2 can access it.

Establishing Too Many APPC Conversations
If you attempt to establish too many concurrent conversations using either a RES or an
MRES with APPC, you may reach the system limits for APPC. Conversations you try to
establish after the limit is reached are suspended until an earlier one shuts down. To expand
the limit, update the APPC settings to the desired number.

Diagnosis of Some Common HLAPI/2 Problems

107Client Installation and User’s Guide

10.
T

h
e

H
L

A
P

I/2
R

eq
u

ester

Diagnosis of Some Common HLAPI/2 Problems

108 Version 7.1

HLAPI/2 Transactions

The work done by the HLAPI/2 takes place through the use of HLAPI transactions. For a
list of all the transactions that are available to the HLAPI/2, see “Transaction List” on
page 135. Also, refer to the Tivoli Information Management for z/OS Application Program
Interface Guide for an explanation of each transaction. Because the MVS and OS/2
environments are different, slight differences appear in the way the HLAPI/2 and the HLAPI
use the same transaction. This section explains some differences to consider.

Transaction Operating Modes
A user application can select from two forms of transaction processing: synchronous or
asynchronous. Users familiar with the Tivoli Information Management for z/OS Low Level
Application Programming Interface (LLAPI) know that it selects either all synchronous or
all asynchronous processing for Tivoli Information Management for z/OS database
transactions within a session. With the HLAPI/2 you can select synchronous or asynchronous
processing for a transaction at any time. This is also different from the HLAPI, which does
not support asynchronous processing.

Synchronous Processing
Synchronous processing forces your user application’s current thread to wait for a Tivoli
Information Management for z/OS transaction to finish before it can perform any other
work. The thread that submits the synchronous transaction does not receive control from the
IDBTransactionSubmit HLAPI/2 service call until the transaction ends. You choose this
mode of operation by coding a transaction type of IDB_SYNC (synchronous) on the
IDBTransactionSubmit HLAPI/2 service call. Transaction completion includes both
successful and unsuccessful outcomes.

You can implement the user application using the multitasking capabilities of OS/2 and use
the synchronous mode of transaction processing. By using multiple threads within your
application, one application thread can be dedicated to Tivoli Information Management for
z/OS transaction processing while others perform other application duties. In this case, only
the dedicated HLAPI/2 thread is blocked while the synchronous Tivoli Information
Management for z/OS transaction finishes. Meanwhile, the other application threads continue
to perform work.

CAUTION:

During synchronous processing, do not modify a HICA or PDB that you have
submitted until after the IDBTransactionSubmit service call returns to the calling
thread. Any changes to the HICA or its associated PDBs during transaction processing
may cause unpredictable results.

11

109Client Installation and User’s Guide

11.
H

L
A

P
I/2

Tran
sactio

n
s

Asynchronous Processing
Asynchronous processing enables your user application to submit a Tivoli Information
Management for z/OS transaction and then continue performing application-related work
while the submitted transaction finishes. After your application submits a transaction, control
is immediately returned from the IDBTransactionSubmit service call to the application.
Application processing and transaction processing occur concurrently. You choose this mode
of operation by coding a transaction type of IDB_ASYNC (asynchronous) on the
IDBTransactionSubmit HLAPI/2 service call.

After a transaction is submitted for asynchronous processing, your application must
determine when the transaction finishes. Use the IDBTransactionStatus HLAPI/2 service
call to do this. For every asynchronous transaction that returns an IDBRC_NOERR code
from IDBTransactionSubmit, you must call the IDBTransactionStatus function to
determine when the transaction ends or to change the transaction to a synchronous type.

Your user application can check for transaction completion either by polling the transaction
or by converting the asynchronous transaction to a synchronous transaction. Polling is
achieved by coding a transaction query type of IDB_CHECKFORCOMPLETION on the
IDBTransactionStatus service call. If the transaction is finished, an IDBTransactionStatus
of IDB_TCOMPLETE indicates completion. The data returned from an asynchronous
transaction is not stored in the HICA until the status value IDB_TCOMPLETE is returned
from an IDBTransactionStatus call. If the transaction is not finished, a status of
IDB_TINPROGRESS indicates the transaction has not finished processing.

However, when HLAPI/2 no longer needs the conversation between the requester and the
server to process a given transaction, the conversation is immediately free to be used by
another transaction. This way, processing can start on another transaction with a different
HICA using the same conversation, even before the IDBTransactionStatus call is performed
for the current HICA.

If you want your application to convert the asynchronous transaction into a synchronous
transaction, you can code a query type of IDB_WAITFORCOMPLETION on the
IDBTransactionStatus service call. With this option, control is not returned from the
IDBTransactionStatus service call until the transaction finishes. Transaction completion
includes both successful and unsuccessful completions.

CAUTION:

During asynchronous processing, do not modify a HICA or PDB that you have
submitted until after an IDBTransactionStatus service call returns the value of
IDB_TCOMPLETE to the calling process. Any changes to the HICA or its associated
PDBs during transaction processing may cause unpredictable results.

Data Conversion Characteristics
OS/2 uses the ASCII character set. MVS uses the EBCDIC character set. Thus, the HLAPI/2
requester and server each use a different character set, and character data exchanged between
the host system and workstation requires conversion for the data to be useful in both
environments.

HLAPI/2 converts the data at the workstation using the OS/2 system-provided functions
WinCpTranslateString and TrnsDt. The function WinCpTranslateString converts

Transaction Operating Modes

110 Version 7.1

single-byte character set (SBCS) characters. The function TrnsDt converts mixed DBCS
characters. A list of all source and target code pages supported by HLAPI/2 can be found in
“HLAPI/2 Code Pages” on page 114.

Database Profile Parameters
The IDBCharCodePage parameter specifies the code page the client application is using. If
this parameter is not specified, then the operating system is polled for the current code page.

The IDBServCharCodePage parameter specifies the code page the server is using. This
code page is used to retrieve and store data in the Tivoli Information Management for z/OS
database. If this parameter is not specified, then the default code page 37 (EBCDIC U.S.
English) is used. See “Database Profile Keywords” on page 97 for more information about
the database profile parameters.

Possible Truncation of Mixed SBCS/DBCS Data
Some HLAPI/2 data fields, such as the external record identifier (user defined) and privilege
class, have a maximum defined size. The HLAPI/2 requester does not restrict mixed data
from being entered (up to the maximum size) when such data is presented to HLAPI/2 for
processing. During conversion from ASCII to EBCDIC, HLAPI/2 adds two bytes of data to
each contiguous group of DBCS characters. If any data, after being converted between code
pages by HLAPI/2, is larger than its maximum defined field size, then truncation occurs
while maintaining proper DBCS truncation and padding.

Your application program must ensure that critical data is not lost because of DBCS
truncation. Be sure that enough spaces appear at the end of each line of freeform text, or at
the end of each data field, so that only spaces are truncated during data conversion.

Differences between HLAPI/2 and HLAPI Transactions
The HLAPI/2 requester enables a user application in the OS/2 environment to use many of
the transactions available on the Tivoli Information Management for z/OS HLAPI. Some
differences do exist between transactions originating on the host and those originating on the
workstation.

One global consideration is that the HLAPI/2 does not support text data sets.

The HLAPI/2 also requires several PDBs not used by the HLAPI on the initialization
transaction. They are:

SECURITY_ID --
your MVS userid (maximum length 8 characters)

PASSWORD --
your MVS password (maximum length 8 characters)

DATABASE_PROFILE --
Database Profile, described in “Database Profile Keywords” on page 97

Initialize Tivoli Information Management for z/OS (HL01)
The Tivoli Information Management for z/OS HLAPI transaction HL01 requests a
connection to a database on a specific Tivoli Information Management for z/OS server. The
steps that occur when a user application requests an HL01 transaction are outlined in this
section.

Data Conversion Characteristics

111Client Installation and User’s Guide

11.
H

L
A

P
I/2

Tran
sactio

n
s

1. The application author creates a database profile for the Tivoli Information Management
for z/OS database connection. Use a text editor to create the database profile. See
“Database Profile Keywords” on page 97 for a list of valid profile keywords. You
should, but are not required to, create a unique database profile for each database
connection that the application uses.

Information obtained from the database profile includes the particular server you want
to establish a conversation with. If you are using a RES or an MRES with APPC, then
the database profile must include the symbolic destination name to use when
establishing the APPC conversation to the server. If you are using an MRES with
TCP/IP, then the database profile must include the host name or IP address of the MVS
host where the server resides and optionally, you can specify a service name associated
with the server.

2. The user application initializes a HICA structure for a given logical database. It inserts
a DATABASE_PROFILE PDB onto the Control PDB chain to specify the name of the
database profile that is to be used for the database connection.

The database profile file name can be fully qualified (drive and subdirectory path), or
just the name can be specified. If only the name is specified, the current directory is
searched for the specified database profile. If it is not found in the current directory, the
drive and path are obtained from the IDBDBPath environment variable.

3. Create a SECURITY_ID PDB and a PASSWORD PDB, and any additional PDBs for
the HL01 transaction, and place them on the Control PDB chain.

4. The user application submits the transaction for processing by using the HLAPI/2
service call IDBTransactionSubmit.

5. HLAPI/2 looks for the DATABASE_PROFILE PDB in the Control PDB chain in the
HICA. The database profile is read, and the specifications are recorded for use
throughout the specified logical Tivoli Information Management for z/OS session.

6. The server information is obtained from the database profile. If a symbolic destination
name is specified, and a conversation associated with the symbolic destination name is
not already established, it is established now. If a server host is specified, and
optionally, a server service name, and a conversation associated with the server host and
service is not already established, it is established now. If the HLAPI/2 requester was
started with a system profile in which IDBSHARECMS was set to 1, an established
conversation is used for the session when the same server is specified, and the same
SECURITY_ID and PASSWORD are specified. Otherwise, a new conversation is
established.

7. The TIMEOUT_INTERVAL PDB applies to the HLAPI that is running on Tivoli
Information Management for z/OS. (Refer to the Tivoli Information Management for
z/OS Application Program Interface Guide for more information.) If you specify a
timeout interval, it determines the interval of the HLAPI running on the server.
HLAPI/2 processing time and communications time between the workstation and the
host are not considered for this timeout interval. Therefore, a transaction submitted from
the workstation may take longer to time out than this value indicates.

8. Code pages for workstation and host processing are established when an HL01
transaction is submitted. They remain in effect until an HL02 (terminate) transaction is
submitted for this particular HICA.

9. For information about logging, see “Server Logging” on page 102 and “Transaction
Logging” on page 102.

Differences between HLAPI/2 and HLAPI Transactions

112 Version 7.1

10. The rest of the processing for the HL01 transaction is normal HLAPI/2 processing. See
“Basic Transaction Flow” on page 72 for this description.

After you establish the main database connection with your first HL01 transaction, your
application can issue multiple HL01 transactions in the same conversation to the server that
is started. Each of these transactions creates a new database connection, and each of them
performs tasks without affecting the others. Each of these connections can also be stopped
without affecting any of the others. A graphic representation of this transaction nesting effect
looks like this:
HL01 (initialize main session, session 1)

HL01 (initialize session 2)
HL01 (initialize session 3)
HL02 (terminate session 2)
HL02 (terminate session 3)

HL02 (terminate session 1)

Sessions 2 and 3 run independently of each other, and ending either of them does not affect
session 1. However, multiple logical sessions on the same conversation can affect each other,
because the requester waits on APPC or TCP/IP to send and receive a request before
processing the next request.

Logical Session and Process Ownership
When an HL01 transaction is performed from within a client application, all further
transactions associated with this HL01 transaction must be performed by the same process.
The HICA and PDB chains can be shared across threads within the same process. For
example, one thread in a client application can submit a transaction, and a different thread in
the same application can process the results.

Terminate Tivoli Information Management for z/OS (HL02)
The Tivoli Information Management for z/OS HLAPI transaction HL02 closes a database
connection on a specific Tivoli Information Management for z/OS server. The steps that
occur when your user application requests an HL02 transaction follow.

1. The user application creates the normal Control PDBs requesting a disconnect from the
logical database associated with the HICA and submits the transaction using the
IDBTransactionSubmit service call.

2. Normal HLAPI/2 transaction processing requests a database disconnect from the
corresponding Tivoli Information Management for z/OS server. See “Basic Transaction
Flow” on page 72 for a description of this processing.

3. The HLAPI/2 examines the resulting return code to determine that the disconnect
finished successfully. If this is the last active HL01 connection on this conversation, then
the conversation is closed. If the conversation is with a RES, then the associated MVS
address space is also closed. If this is not the last active HL01 connection, then the
conversation continues.

4. The appropriate return codes are set and control returns to the caller.

Retrieve Record (HL06)
The difference between this transaction on the HLAPI/2 and the HLAPI is:

¶ The optional PDB called TEXT_MEDIUM supports only one storage media type for
HLAPI/2. The only type supported is type B. If you omit this value or specify any
character other than B, the HLAPI/2 assumes the value of B.

Differences between HLAPI/2 and HLAPI Transactions

113Client Installation and User’s Guide

11.
H

L
A

P
I/2

Tran
sactio

n
s

¶ If you want to retrieve freeform text as a continuous stream of data with carriage return
/ line feed characters (ASCII X'0D0A') after each text line, set the control PDB
TEXT_STREAM to YES. The Tivoli Information Management for z/OS Application
Program Interface Guide contains additional information about the TEXT_STREAM
PDB.

Create Record (HL08)
The difference between this transaction on the HLAPI/2 and the HLAPI is:

¶ Text data sets are not supported. The PDB_DATW field in the input PDBs should
always be specified with a nonzero value for text data.

¶ If you are creating a record that contains freeform text, and the input text contains either
line feed characters (ASCII X'0A') or carriage return / line feed characters (ASCII
X'0D0A'), set the control PDB TEXT_STREAM to YES. This will ensure that text
formatting information is stored in the record. When the text is retrieved, it will be
formatted exactly as it was entered. The Tivoli Information Management for z/OS
Application Program Interface Guide contains additional information about the
TEXT_STREAM PDB.

Update Record (HL09)
The difference between this transaction on the HLAPI/2 and the HLAPI is:

¶ Text data sets are not supported in HLAPI/2. The PDB_DATW field in the input PDBs
should always be specified with a nonzero value for text data.

¶ If you are updating a record that contains freeform text, and the input text contains
either line feed characters (ASCII X'0A') or carriage return / line feed characters (ASCII
X'0D0A'), set the control PDB TEXT_STREAM to YES. This will ensure that text
formatting information is stored in the record. When the text is retrieved, it will be
formatted exactly as it was entered. The Tivoli Information Management for z/OS
Application Program Interface Guide contains additional information about the
TEXT_STREAM PDB.

HLAPI/2 Code Pages
Following is a list of all code pages supported by the HLAPI/2. Some of these code pages
might not be supported by the particular OS/2 system that you work with. Some of the
pages are supported only on a DBCS OS/2 system, while others are only supported on a
SBCS OS/2 system. Check the OS/2 system you use to be sure which code pages it
supports.

ASCII SBCS Code Pages
437 USA
850 Multilingual
852 Czechoslovakia/Hungary/Poland/Yugoslavia
857 Turkey
860 Portugal
861 Iceland
862 Hebrew-speaking
863 Canada (French-speaking)
864 Arabic-speaking
865 Norway
891 Korean
897 Japanese

Differences between HLAPI/2 and HLAPI Transactions

114 Version 7.1

903 S-Chinese
904 T-Chinese
1004 Desktop publish
1040 Korean Extended
1041 Japanese Extended
1042 S-Chinese Extended
1043 T-Chinese Extended

ASCII DBCS Code Pages
301 Japanese pure DBCS
926 Korean pure DBCS
927 T-Chinese pure DBCS
928 S-Chinese pure DBCS
932 Japanese
934 Korean
936 S-Chinese
938 T-Chinese
942 Japanese Extended
944 Korean Extended
946 S-Chinese Extended
948 T-Chinese Extended

EBCDIC SBCS Code Pages
37 USA/Canada (French)/Netherlands/Portugal
273 Austria/Germany
274 Belgian
277 Denmark/Norway
278 Finland/Sweden
280 Italy
282 Portugal
284 Latin America/Spain
285 United Kingdom
290 Japanese (Katakana) Extended
297 France
500 Multilingual
833 Korean Extended
836 S-Chinese Extended
870 Czechoslovakia/Hungary/Poland/Yugoslavia
871 Iceland
1026 Turkey
1027 Japanese (Latin) Extended

EBCDIC MIX Code Pages
930 Japanese (Katakana) Extended
931 English & Japanese Extended
933 Korean Extended
935 S-Chinese Extended
937 T-Chinese Extended
939 Japanese (Latin) Extended

EBCDIC PURE DBCS Code Pages
300 Japanese
834 Korean

HLAPI/2 Code Pages

115Client Installation and User’s Guide

11.
H

L
A

P
I/2

Tran
sactio

n
s

835 T-Chinese
837 S-Chinese

HLAPI/2 Code Pages

116 Version 7.1

Tips for Writing a HLAPI/2 Application

This chapter describes the steps typically involved in creating an application that uses the
Tivoli Information Management for z/OS HLAPI/2. Every programmer has a certain
technique or style for designing applications, so think of this chapter as more of a set of
guidelines than as a set of rules. Refer to ″Tips for Writing An API Application″ and
″Tailoring the APIs″ in the Tivoli Information Management for z/OS Application Program
Interface Guide for more information on this subject. Refer to “Choosing a Server” on
page 13 for more information on the Tivoli Information Management for z/OS servers.

Determine What You Want Your Application to Do

The first step in creating an application is to determine exactly what you want it to do. After
you decide that, consider:

¶ Which Tivoli Information Management for z/OS functions (for example, create or
update) do you use?

¶ Which record types (for example, problem or change) do you use?

¶ Which fields (for example, status or assignee name) do you use?

¶ On which MVS system is your Tivoli Information Management for z/OS database
located?

¶ Do you need to connect to more than one Tivoli Information Management for z/OS
database?

¶ Are the databases on the same or different MVS systems?

¶ Which server do you use to access the databases?

¶ Do you want different OS/2 processes (or threads) to manage the different database
connections, or do you want to use just one?

¶ How much storage do you need in the host address space to handle requests from the
workstation?

¶ Do you want data logging enabled on the host? On the workstation?

¶ What data validation (if any) do you want to perform?

Converting C Programs

If you want to convert an existing C program that uses the HLAPI to a C program that uses
HLAPI/2, here are some general instructions on how to do it.

¶ Make any general modifications to modify the program to run on OS/2, including fixing
{} pairs that might have been mistranslated when the files were transferred from one

12

117Client Installation and User’s Guide

12.
Tip

s
fo

r
W

ritin
g

a
H

L
A

P
I/2

A
p

p
licatio

n

environment to another, and modifying the parameters passed to the main procedure.
This step is required if the download program you use to copy the code from MVS to
OS/2 translates the source improperly.

¶ Be sure you:
v Include IDBH.H header file. Do not include BLGUHLC header file.
v Include IDBECH.H if you want constant declarations of HLAPI/2 return codes.
v Do not include spc.h.

¶ Delete #pragmas used for the MVS program.

¶ Convert any data set method freeform text processing for HL06, HL08, and HL09 to use
buffer method freeform text processing.

¶ Convert HLAPI call syntax to HLAPI/2 format: use IDBTransactionSubmit and
IDBTransactionStatus. Do not define variables to point to the BLGYHLPI module. Do
not call the BLGYHLPI module.

¶ Add processing to create and initialize the three HLAPI/2-specific control PDBs:
SECURITY_ID, PASSWORD, and DATABASE_PROFILE. Add them to the control
PDB linked list.

¶ Build a database profile for use with the HLAPI/2 sessions you will be starting (or
multiple database profiles if necessary).

¶ Review the error handling you use after the call to the HLAPI to see if changes are
required to handle the error codes specific to the HLAPI/2.

¶ If you are using an MRES with APPC or a RES:

v Set up the CPI-C side information entries for Communication Manager/2 to
communicate with the particular MVS host. Specify these names in the database
profile.

v Set up APPC/MVS on the host to accept conversations from the workstations that
your application runs on.

v Set up the MRES with APPC or the RES on the host.

¶ If you are using an MRES with TCP/IP:

v Set up TCP/IP to communicate with the particular MVS host, and the particular
MRES you want to use. Specify the information in the database profile.

v Set up the MRES with TCP/IP on the particular MVS host you want to use.

Installation and Setup Summary for HLAPI/2 Sample Applications
1. If you are using a RES or an MRES with APPC, install and configure APPC/MVS and

Communication Manager/2 to connect your OS/2 workstation to your MVS host system.
If you are using an MRES with TCP/IP, configure TCP/IP to connect your OS/2
workstation to your MVS host system.

2. If you are using a RES, create a TP profile on the MVS host that brings up Tivoli
Information Management for z/OS and the Remote Environment. This must include the
appropriate BLX-SP load module. Refer to the Tivoli Information Management for z/OS
Planning and Installation Guide and Reference and Tivoli Information Management for
z/OS Operation and Maintenance Reference manuals, or “Configuring and Running a
Remote Environment Server (RES)” on page 25 in this manual, for more information.

118 Version 7.1

3. If you are using an MRES with APPC or an MRES with TCP/IP, create a cataloged
procedure with the JCL to start the MRES. If you are using an MRES with APPC, define
the MRES to APPC and VTAM. The MRES must be started before you attempt to
establish a conversation with it. See “Configuring and Running a Multiclient Remote
Environment Server (MRES) with APPC” on page 35 and “Configuring and Running a
Multiclient Remote Environment Server (MRES) with TCP/IP” on page 53 for additional
information.

4. Install Tivoli Information Management for z/OS including building a session parameters
member. You can also build the session parameter BLGSES00 at this time, which
enables you to skip the modification to the sample application for the session member.

5. Bring up Tivoli Information Management for z/OS as an interactive user using the
session parameters member that you want the sample application to use. This ensures
that Tivoli Information Management for z/OS can be brought up using that session
member.

6. Install HLAPI/2. Refer to “Installing and Configuring HLAPI/2” on page 77 for
information about how to do this.

7. Set up a database profile for use by the sample program. A sample database profile is
copied to your OS/2 workstation during the installation of HLAPI/2. This profile is in
the SAMPLE subdirectory in whatever directory you chose for HLAPI/2. Look for
DATABASE.PRO. Be sure to modify the symbolic destination name if you are using
APPC or modify the server host and server service names if you are using TCP/IP to fit
your particular system.

8. To complete the setup and run the sample program, you will need to perform additional
steps listed in the corresponding section, “Steps Required to Run the HLAPI/2 C Sample
Program” on page 127 or “Steps Required to Run the REXX HLAPI/2 Sample Program”
on page 134.

Installation and Setup Summary for HLAPI/2 Sample Applications

119Client Installation and User’s Guide

12.
Tip

s
fo

r
W

ritin
g

a
H

L
A

P
I/2

A
p

p
licatio

n

Installation and Setup Summary for HLAPI/2 Sample Applications

120 Version 7.1

HLAPI/2 C Language Application Program

The HLAPI/2 interface enables you to access the HLAPI transactions from an OS/2 C
language application. A C language client application program communicates with the Tivoli
Information Management for z/OS system by creating a high-level application
communication area (HICA) and its related parameter data blocks (PDBs). The client
application program then submits the HICA transaction by making HLAPI/2 program service
calls. The HLAPI/2 program service routines exist on the user’s workstation as a dynamic
link library (DLL). When the calls are made by the client application program, the
supporting HLAPI/2 routines are loaded from the DLL and started.

Allocating HICAs and PDBs
To utilize HLAPI/2 program service calls, your user application must include a C
language-based header file (named IDBH.H) in its source file and specify IDBHLAPI.LIB
as one of the link libraries. Linking to IDBHLAPI.LIB gives you access to the HLAPI/2
service calls. To use the service calls, your user application must:
¶ Allocate HICA and PDB structures using the types provided in the header file
¶ Include the code for the HLAPI/2 program service calls.

The HICA and PDB data structures that you submit to HLAPI/2 must exist for the entire
time that a transaction using them is being processed. Make sure that your program does not
accidentally deallocate them, such as by using local variables in a subroutine, then exiting
the subroutine while HLAPI/2 is processing your request.

The required header file IDBH.H provides the type definitions for both the HICA and PDB
data structures. See “Allocating and Initializing a HICA” on page 122 and “Allocating and
Initializing a PDB” on page 122 for more information.

Including the Header File in Your Program
Before using HLAPI/2, you must first include the HLAPI/2 header file into your program
source. This file identifies the HLAPI/2 call prototypes and the various type definitions and
constants your program uses to communicate information to the HLAPI/2-connected system.
To include the HLAPI/2 header file into your source file, put the following line into your
source file before you make any HLAPI/2 service calls and before you define any HICAs or
PDBs.

#include "IDBH.H" /* Include the HLAPI/2 header file. */

The text of the header file appears in “HLAPI/2 Header Code” on page 127.

13

121Client Installation and User’s Guide

13.
H

L
A

P
I/2

C
L

an
g

u
ag

e
A

p
p

licatio
n

P
ro

g
ram

Allocating and Initializing a HICA
Your application must allocate and initialize at least one HICA data structure to
communicate through the HLAPI/2. The values you put in the control and input PDB chains
depend on the specific HLAPI/2 transaction you want to use. PDB allocation is discussed in
“Allocating and Initializing a PDB”. The way in which the user application initializes the
control and input PDB chains is covered in the Tivoli Information Management for z/OS
Application Program Interface Guide under the individual transaction discussions. This
example shows part of an application that illustrates the declaration and partial initialization
of a HICA structure for HLAPI/2.

/* Allocate a HICA structure. */
static HICA MyHICA;

/* Initialize HICA eyecatcher to "HICA". */
memcpy(MyHICA.ACRO, HICAACRO_TEXT,

HICAACRO_MAX_SIZE);

/* Initialize the HICA fields to NULL */
MyHICA.ENVP = NULL; /* pointer to environment block */

MyHICA.OUTP = NULL; /* pointer to output pdb chain */

MyHICA.CTLP = NULL; /* pointer to control pdb chain */

MyHICA.INPP = NULL; /* pointer to input pdb chain */

MyHICA.MSGP = NULL; /* pointer to message pdb chain */

MyHICA.ERRP = NULL; /* pointer to error pdb chain */

MyHICA.LENG = sizeof(HICA); /* HICA data block length */
#include "IDBH.H" /* Include the HLAPI/2 header file. */

An alternate method of allocating the HICA structure using typical C language calls is:
pMyHICA = malloc(sizeof(HICA));

Addressing the elements of the HICA then follows the ’pMyHICA->’ (pointer) notation
rather than the ’MyHICA.’ (dot) notation.

A full description of the contents of a HICA appears in the Tivoli Information Management
for z/OS Application Program Interface Guide in the section about HLAPI structures.

Allocating and Initializing a PDB
Parameter information is communicated between the user application and the
HLAPI/2-connected system through PDBs. PDBs can be several types: control, input, output,
error, or message. All PDBs of the same type are organized as a linked list. Each linked list
type is anchored to a specific field within a HICA. For a description of the HICA fields,
refer to the Tivoli Information Management for z/OS Application Program Interface Guide.

Your user application must create any required control and input type PDBs before it
submits a transaction. Your user application should examine the output, error, and message
PDB chains that are returned when a transaction completes processing.

Part of an application follows. It illustrates the declaration and initialization of an input PDB
chain containing one PDB

Allocating and Initializing a HICA

122 Version 7.1

Note: The PDB data structure has a variable length whose value can be very large. To
conserve storage, the example below shows allocation of the PDB with only as much
storage as it needs. The total storage in this case is the sum of the length of the data
fields all of the PDBs have, plus the length of the variable field at the end of the
PDB. The file IDBH.H contains the variable PDBFIX_SIZE to make this
programming more convenient.

/* Temporary PDB pointer variable. */
PPDB pTempPDB;

/* Allocate the PDB memory. */
pTempPDB = malloc(PDBFIX_SIZE + strlen("John Doe"));

/* Because this is the first PDB, init the NEXT PDB */
/* pointer to null. */
pTempPDB->Next = NULL;

/* Init the previous PDB pointer to null. */
pTempPDB->Prev = NULL;

/* set the PDB eyecatcher to "PDB " */
memcpy(pTempPDB->Acro, PDBACRO_TEXT,

PDBACRO_MAX_SIZE);

/* Set the parameter data item name to REPORTER_NAME */
memset(pTempPDB->Name, ' ', PDBNAME_MAX_SIZE);
memcpy(pTempPDB->Name, "REPORTER_NAME",

strlen("REPORTER_NAME"));

/* fill the parameter with the name John Doe */
memcpy(pTempPDB->Data, "John Doe",

strlen("John Doe"));

/* Perform data response validation. */
pTempPDB->Proc = 'V';

/* Initialize the PDB error code to a blank. */
pTempPDB->Code = ' ';

... and the rest of the PDB is initialized in similar ways ...

/* Place the new PDB on the INPUT PDB chain */
MyHICA.INPP = pTempPDB;

Binding Prototypes
The two entry points into HLAPI/2 are IDBTransactionSubmit, described in
“IDBTransactionSubmit” on page 124 and IDBTransactionStatus, described in
“IDBTransactionStatus” on page 124.

Your application must allocate data structures conforming to the data types defined in the
IDBH.H header file. HLAPI/2 program options must be specified by using the constants
also supplied by the IDBH.H header file. Descriptions of the bindings and related data types
follow.

Note: Fields are specified differently for the HLAPI/2 HICA and PDB structures than for
those in the HLAPI. In the OS/2 client environment, field names are similar, but they
might have been extended to conform with standard C language naming conventions.
For more information about the HICA and PDBs, refer to the Tivoli Information
Management for z/OS Application Program Interface Guide.

Allocating and Initializing a PDB

123Client Installation and User’s Guide

13.
H

L
A

P
I/2

C
L

an
g

u
ag

e
A

p
p

licatio
n

P
ro

g
ram

IDBTransactionSubmit
The IDBTransactionSubmit program call is used to submit a transaction to the HLAPI/2
system. In a C language program, the call looks like the following:
rc = IDBTransactionSubmit(pHICA, TranType);

The two variables that your application must provide are:

pHICA
A pointer to a structure of the type HICA that contains the HICA that you want to
submit to HLAPI/2.

TranType
Your selection of the type of transaction to perform. This variable has a type
definition of TRANTYPE_TYPE, and can be one of these two values:

IDB_SYNC --- Synchronous transaction processing
IDB_ASYNC -- Asynchronous transaction processing

HLAPI/2 returns a value from this function call that you should examine before looking at
the HICA return and reason codes. This return code (rc) is a variable of type
IDBRC_TYPE. The values that can be returned for it are described in “HLAPI Service Call
Return Codes” on page 367. Here is an example of how this routine might be used:

#include "idbh.h"
#include <OS2.H>
#include <stdio.h>
#include "MYCODE.H"

main()
{
HICA MyHICA;
IDBRC_TYPE rc;

Initialize_HICA(&MyHICA); /* routine that sets up the data */
/* for an HL01 transaction. */

rc = IDBTransactionSubmit(&MyHICA,IDB_SYNC);
switch (rc)

{
case (IDBRC_NOERR) : Main_Loop(&MyHICA); /* The rest of your */

/* application program.*/
break;

case (IDBRC_XERR) : Process_Error(&MyHICA); /* A non-zero HICA */
/* return and reason code was */
/* detected. */

break;
case (IDBRC_BADHICA): printf("The HICA data structure is corrupt\n");

return(-1);
case (IDBRC_BADPARM): printf("Incorrect value passed on call\n");

return(-2);
case (IDBRC_SYSERR) : printf("HLAPI/2 encountered a System Error\n");

printf("Check the file IDBPROBE.LOG.\n");
return(-3);

}
}

IDBTransactionStatus
The IDBTransactionStatus program call is used to request the status of an asynchronous
transaction. It can also be used to convert an asynchronous transaction to a synchronous
transaction. In a C language program, the call looks like this:

Binding Prototypes

124 Version 7.1

rc = IDBTransactionStatus(pHICA, QueryType, pTStatus);

The three variables that your application must provide are:

¶ pHICA

A pointer to a structure of type HICA that contains the HICA whose status you want to
check.

¶ QueryType

This input value is of the type QUERYTYPE_TYPE, and has one of the following two
values:

v IDB_CHECKFORCOMPLETION

This value causes HLAPI/2 to check the current status of a transaction submitted on
the HICA provided in pHICA. This program call returns to your application
immediately, no matter what state the transaction is in.

v IDB_WAITFORCOMPLETION

This value causes HLAPI/2 to change the asynchronous transaction to a synchronous
transaction. This program call does not return to your application until the transaction
processing has finished.

¶ pTStatus

This is a pointer to a variable of type TRANSTATUS_TYPE. It can have one of the
following two values:

v IDB_TCOMPLETE

The transaction has completed processing. Any Output, Error, and Message PDBs
returned from the host are attached to the HICA and available for your program’s
use. The RETC and REAS fields of the HICA are set with values indicating the
result of the transaction (see Tivoli Information Management for z/OS Application
Program Interface Guide for possible values).

v IDB_TINPROGRESS

The transaction is still in progress. No data has been returned on the HICA, and the
HICA is unavailable for use by your application.

HLAPI/2 returns a value from this function call which you should examine before looking at
the HICA return and reason codes. This return code (rc) is defined as a variable of type
IDBRC_TYPE. The values that can be returned appear in “HLAPI Service Call Return
Codes” on page 367. Here is an example of how this routine might be used:

#include "idbh.h"
#include <OS2.H>
#include <stdio.h>
#include "MYCODE.H"

main()
{
HICA MyHICA;
TRANSTATUS_TYPE MyStatus;
IDBRC_TYPE rc;

Initialize_HICA(&MyHICA); /* routine that sets up the data */
/* for an HL01 transaction. */

rc = IDBTransactionSubmit(&MyHICA,IDB_ASYNC); /* Use Asynchronous */
/* processing so this code has the */

Binding Prototypes

125Client Installation and User’s Guide

13.
H

L
A

P
I/2

C
L

an
g

u
ag

e
A

p
p

licatio
n

P
ro

g
ram

/* ability to maintain a PM window */
if (rc!=IDBRC_NOERR) /* Detected a non-zero return code */

Process_rc(rc,&MyHICA);
else

{
MyStatus = IDB_TINPROGESS; /* Start the while loop out right */
while(MyStatus == IDB_TINPROGRESS)

{
rc = IDBTransactionStatus(&MyHICA,

IDB_CHECKFORCOMPLETION,
&MyStatus); /* Keep checking this*/
/* until MyStatus == IDB_TCOMPLETE */

if (rc != IDBRC_NOERR)
Process_rc(rc,&MyHICA);

Process_PM_Window(); /* Handle the PM window duties */

/* Note: If you do not have time-critical duties to perform in this */
/* loop, you may want to use the DosSleep() routine, or some */
/* similar routine to prevent 100% CPU usage. */

}
}

.

.

.
}

Linking Your Program
Before using HLAPI/2, you must link to IDBHLAPI.LIB. This is an import library that
resolves the external references to the HLAPI/2 service routines you use to perform
HLAPI/2 functions.

The BLM2SAMI.CMD file in the SAMPLE\C subdirectory of the directory in which you
installed HLAPI/2 contains:

ICC BLM2SAM1.C IDBHLAPI.LIB

It illustrates one way to link IDBHLAPI.LIB with your application using VisualAge C++
for OS/2.

Sample HLAPI/2 C Program
A sample program BLM2SAM1.C is installed as part of the installation of HLAPI/2. Look
for it in the directory SAMPLE\C, which is a subdirectory of the directory where HLAPI/2
is installed. The sample shows the setup and start of HLAPI/2. It includes the header file
IDBH.H. The sample C code performs the following functions:

1. Initialize the HLAPI by performing an HL01 transaction.

2. Obtain a system-assigned record ID and save it to use for the create transaction. (This
step is not mandatory because the HL08 transaction generates a record ID if one is not
specified).

3. Create a record using the previously obtained record ID.

4. Update several fields in the record just created.

5. Retrieve the record just created and updated, and print the fields just retrieved.

6. Search for all records created today by this program and print the search results.

7. End the HLAPI with an HL02 transaction.

Binding Prototypes

126 Version 7.1

8. Perform cleanup.

Steps Required to Run the HLAPI/2 C Sample Program
1. Perform the steps described in “Installation and Setup Summary for HLAPI/2 Sample

Applications” on page 118.

2. Modify the sample program BLM2SAM1.C. You may want to back up BLM2SAM1.C
before making any changes to it. This program is in the SAMPLE\C subdirectory in the
directory in which you installed HLAPI/2. The default installation directory is
C:\INFOAPI.

¶ Find the SESSMBR #define near the beginning of BLM2SAM1.C. Change the
value of this #define to the name of the session parameters member you want to use.
If you want to use BLGSES00, no changes are required.

¶ Find the PRIVCLAS #define. Change the value of this #define to the name of the
privilege class to be used on the HL01 (initialize) transaction. This privilege class
must be in the database defined in your chosen session parameters member. The
privilege class must have authority to display, create, and update problem records.

If you want to use MASTER privilege class, no changes are required.

¶ Find the APPLID #define. Change the value of this #define to the name of the
application ID to be used on the HL01 (initialize) transaction. The value you choose
must be defined as an eligible user in the privilege class you use.

¶ Find the SECID and PASSWORD #defines. Put in the appropriate values for the
security ID and password for the ID you want to use on the MVS system.

¶ Find the DBPROF #define. Use the name of the database profile or the sample
profile shipped with HLAPI/2 (DATABASE.PRO).

The database profile must be in the subdirectory where the sample program resides
or in the path defined on your system in the IDBDBPATH variable. See
“IDBDBPATH” on page 101 for more information about this variable.

3. To compile and link BLM2SAM1.C using VisualAge C++ for OS/2, run
BLM2SAMI.CMD. First, verify that the OS/2 environment variable LIB contains the
directory that holds IDBHLAPI.LIB and that the OS/2 environment variable INCLUDE
contains the directory that holds IDBH.H.

4. Start the HLAPI/2 requester. See “The HLAPI/2 Requester” on page 105 for more
information.

5. If you are running a RES or an MRES with APPC, be sure that Communications
Manager/2 is running. If you are running an MRES with TCP/IP, be sure that TCP/IP for
OS/2 is running.

6. Run the program BLM2SAM1.

HLAPI/2 Header Code
This is the text of the HLAPI/2 header. The file name is IDBH.H and it can be found in the
INFOAPI\H sudirectory in the directory where HLAPI/2 is installed on your workstation.
/* */
/* */
/* Source file: IDBH.H */
/* */
/* FUNCTION: This header file contains all public function */
/* prototypes and structure definitions for the */

Sample HLAPI/2 C Program

127Client Installation and User’s Guide

13.
H

L
A

P
I/2

C
L

an
g

u
ag

e
A

p
p

licatio
n

P
ro

g
ram

/* language bindings. */
/* */
/* USAGE NOTE: All allocations should be made using a "packed" */
/* attribute. That is, no alignment should be used */
/* that would insert empty bytes between fields. */
/* */
/* If the compiler you are using has an optimization */
/* function which you intend to use, you must allocate the */
/* HICA and PDB structures as "volatile" objects. This */
/* ensures that all program statements that write data to */
/* these structures in your program are complete when */
/* your program submits the HICA data structure to HLAPI/2. */
/* */
/* Below is a list of atomic types and their storage sizes. */
/* */
/* "unsigned long" 4 byte unsigned integer */
/* "unsigned char" 1 byte unsigned integer */
/* "void * " 4 byte pointer */
/* */
/**/

#ifndef __idbh_h
#define __idbh_h

#ifdef __cplusplus
extern "C"

{
#endif/**/
/*--*/
/* PDB Type and General definitions. */
/*--*/
#define PDBACRO_MAX_SIZE 4
#define PDBNAME_MAX_SIZE 32
#define PDBACRO_TEXT ("PDB ")
#define PDB_SIZE (sizeof(PDB))
#define PDBFIX_SIZE (sizeof(PDB)-sizeof(PDBDATA_TYPE))

#pragma pack(1)
typedef struct _PDB *PPDB; /* Forward reference. */

typedef PPDB PDBNEXT_TYPE;
typedef PPDB PDBPREV_TYPE;
typedef unsigned char PDBACRO_TYPE[PDBACRO_MAX_SIZE];
typedef unsigned char PDBNAME_TYPE[PDBNAME_MAX_SIZE];
typedef unsigned char PDBTYPE_TYPE;
typedef unsigned char PDBPROC_TYPE;
typedef unsigned char PDBCODE_TYPE;
typedef unsigned char PDBRSV1_TYPE[5];
typedef unsigned long PDBDATW_TYPE;
typedef unsigned long PDBAPPL_TYPE;
typedef unsigned long PDBDATL_TYPE;
typedef unsigned char PDBDATA_TYPE[1];
#pragma pack()

/*--*/
/* PDB - structure definition. */
/*--*/
#pragma pack(1)
typedef struct _PDB

{
PDBNEXT_TYPE Next; /* Address of next PDB in chain. */
PDBPREV_TYPE Prev; /* Address of previous PDB in chain. */
PDBACRO_TYPE Acro; /* The acronym "PDB " */
PDBNAME_TYPE Name; /* Parameter data symbolic name */
PDBTYPE_TYPE Type; /* Parameter data type */
PDBPROC_TYPE Proc; /* Parameter data processing flag */

HLAPI/2 Header Code

128 Version 7.1

PDBCODE_TYPE Code; /* Parameter data error code */
PDBRSV1_TYPE RSV1; /* Reserved */
PDBDATW_TYPE Datw; /* Parameter data unit width */
PDBAPPL_TYPE Appl; /* Application use field */
PDBDATL_TYPE Datl; /* Length of parameter data */
PDBDATA_TYPE Data; /* Parameter data */

}
PDB; /* Type - Structure. */

#pragma pack()
/*--*/
/* HICA Type and General definitions. */
/*--*/
#define HICAACRO_MAX_SIZE 4
#define HICAACRO_TEXT ("HICA")

typedef unsigned char HICAACRO_TYPE[HICAACRO_MAX_SIZE];
typedef unsigned long HICALENG_TYPE;
typedef unsigned long HICARETC_TYPE;
typedef unsigned long HICAREAS_TYPE;
typedef void * HICAENVP_TYPE;
typedef PPDB HICACTLP_TYPE;
typedef PPDB HICAINPP_TYPE;
typedef PPDB HICAOUTP_TYPE;
typedef PPDB HICAMSGP_TYPE;
typedef PPDB HICAERRP_TYPE;
typedef unsigned long HICASTPA_TYPE;
typedef unsigned long HICACRRC_TYPE;
typedef unsigned char HICARESV_TYPE[32];

/*--*/
/* HICA - structure definition. */
/*--*/
#pragma pack(1)
typedef struct _HICA

{
HICAACRO_TYPE ACRO; /* The acronym "HICA" */
HICALENG_TYPE LENG; /* Length of this structure */
HICARETC_TYPE RETC; /* Transaction return code */
HICAREAS_TYPE REAS; /* Transaction reason code */
HICAENVP_TYPE ENVP; /* Transaction environment anchor */
HICACTLP_TYPE CTLP; /* Control PDB anchor */
HICAINPP_TYPE INPP; /* Input PDB anchor */
HICAOUTP_TYPE OUTP; /* Output PDB anchor */
HICAMSGP_TYPE MSGP; /* Message PDB anchor */
HICAERRP_TYPE ERRP; /* Error PDB anchor */
HICASTPA_TYPE STPA; /* Reserved */
HICACRRC_TYPE CRRC; /* Reserved */
HICARESV_TYPE RESV; /* Reserved */

}
HICA, /* Type - Structure. */

PHICA; / Type - Pointer to Structure. */
#pragma pack()
/*--*/
/* Language Binding type definitions. */
/*--*/
typedef unsigned long QUERYTYPE_TYPE;
typedef unsigned long TRANSTATUS_TYPE;
typedef unsigned long TRANTYPE_TYPE;
typedef unsigned long IDBRC_TYPE;

/*--*/
/* Language Binding return code constants. */
/*--*/

#define IDBRC_NOERR 0

HLAPI/2 Header Code

129Client Installation and User’s Guide

13.
H

L
A

P
I/2

C
L

an
g

u
ag

e
A

p
p

licatio
n

P
ro

g
ram

#define IDBRC_XERR 1
#define IDBRC_BADHICA 2
#define IDBRC_BADPARM 3
#define IDBRC_SYSERROR 4

/*--*/
/* Prototype and constants for "IDBTransactionStatus". */
/*--*/

/* Status-type-check constants. */
#define IDB_CHECKFORCOMPLETION 0
#define IDB_WAITFORCOMPLETION 1

/* Transaction status constants. */
#define IDB_TCOMPLETE 0
#define IDB_TINPROGRESS 1

IDBRC_TYPE _System IDBTransactionStatus(PHICA,
QUERYTYPE_TYPE,
TRANSTATUS_TYPE *);

/*--*/
/* Prototype and constants for "IDBTransactionSubmit". */
/*--*/

/* Transaction type constants. */
#define IDB_SYNC 1 /* Synchronous transaction. */
#define IDB_ASYNC 2 /* Asynchronous transaction. */

IDBRC_TYPE _System IDBTransactionSubmit(PHICA,
TRANTYPE_TYPE);

#ifdef __cplusplus
}
#endif
#endif /* #ifndef __idbh_h */

HLAPI/2 Header Code

130 Version 7.1

REXX HLAPI/2 Interface

The REXX HLAPI/2 interface enables you to access HLAPI/2 transactions from OS/2
REXX programs. It supports the same set of functional transactions as the HLAPI/2
interface, which is a subset of the transactions available via the HLAPI interface. For a list
of the transactions, refer to “Transaction List” on page 135. The REXX HLAPI/2 interface is
similar to HLAPI/REXX on MVS, so you should be familiar with HLAPI/REXX described
in the Tivoli Information Management for z/OS Application Program Interface Guide before
you use REXX HLAPI/2.

To utilize the HLAPI/2 transactions in an OS/2 REXX program, the REXX HLAPI/2
provides BLMYRXM, the REXX HLAPI/2 DLL. The BLMYRXM DLL is the interface
between the REXX application program and the HLAPI/2. Users write OS/2 REXX
applications which call the REXX HLAPI/2 DLL to submit their REXX HLAPI/2
transactions. BLMYRXM in turn invokes the HLAPI/2 client API to process the requested
transactions on MVS.

The use of shared REXX variables for specifying control and input data to Tivoli
Information Management for z/OS and returning output data from Tivoli Information
Management for z/OS is equivalent to the HLAPI/REXX interface on MVS. Refer to the
Tivoli Information Management for z/OS Application Program Interface Guide for
information on:

¶ Using the HLAPI/REXX Interface

¶ REXX Reserved Variables

¶ Examples of REXX programs

The rest of this section is devoted to information unique to the REXX HLAPI/2.

REXX HLAPI/2 Installation and Setup
The REXX HLAPI/2 is installed as a component of the HLAPI/2. See “Installing and
Configuring HLAPI/2” on page 77 for additional information on HLAPI/2 installation.

Once the installation procedure is completed, the following REXX HLAPI/2 parts are
resident on your OS/2 system in the default installation subdirectory \INFOAPI or in the
directory where you installed HLAPI/2:

¶ BLMYRXM.DLL - the REXX HLAPI/2 DLL in the \DLL subdirectory

¶ BLMYRXSA.CMD - sample REXX code in your \SAMPLE\REXX subdirectory

14

131Client Installation and User’s Guide

14.
R

E
X

X
H

L
A

P
I/2

In
terface

Prerequisite Setup
The REXX HLAPI/2 requires OS/2 Procedures Language 2/REXX (commonly referred to as
REXX) which is included with OS/2 V2.11 or later.

Before the REXX HLAPI/2 is executed, the Tivoli Information Management for z/OS
HLAPI/2 requester must be running. Refer to the section “The HLAPI/2 Requester” on
page 105 for this information.

Registering the REXX HLAPI/2 DLL
To call the REXX HLAPI/2, the REXX HLAPI/2 DLL must first be registered with the
function RxFuncAdd. Registering BLMYRXM makes its location known to REXX
programs on your OS/2 system.

The syntax of RxFuncAdd is:

CALL RxFuncAdd 'blmyrxm','blmyrxm','blmyrxm'

blmyrxm
The first parameter is the name your REXX program will use to call the function.

blmyrxm
The second parameter is the name of the file containing the function.

blmyrxm
The third parameter is the name of the routine in the file that contains the function.

The RxFuncAdd call may be placed in individual REXX programs or as a separate REXX
procedure which is called once by STARTUP.CMD. The latter technique saves the
programmer the task of adding registration code within their REXX applications.

REXX HLAPI/2 Interface Calls
After registering the REXX HLAPI/2 interface, it is now callable from within an OS/2
REXX program. The parameter syntax for making interface calls is identical to the
HLAPI/REXX on MVS, that is the transaction name, control, input and output parameters
are the same.

Syntax of REXX HLAPI/2 call:

CALL BLMYRXM transaction-name,{control},{input},{output}

transaction-name
Specifies the transaction to perform. For a list of the transaction names supported by
REXX HLAPI/2, see “Transaction List” on page 135.

control
An optional item. It is the stem of a compound variable that identifies control data
items that this transaction uses.

input An optional item. It is the stem of a compound variable that identifies input data to
use when processing the transaction.

output
An optional item. It is the stem of a compound variable for the REXX HLAPI/2
interface to use to return output data.

REXX HLAPI/2 Installation and Setup

132 Version 7.1

Deregistering the REXX HLAPI/2 DLL
Deregistering the REXX HLAPI/2 DLL causes REXX programs to lose access to the REXX
HLAPI/2 functions. To drop the REXX HLAPI/2 DLL, the RxFuncDrop function is used.
Although the sample REXX code shows how to deregister the REXX HLAPI/2 DLL, it is
recommended that REXX applications not drop the REXX HLAPI/2 DLL because other
REXX programs may currently be using the REXX HLAPI/2 on the same OS/2 system.
This is also a consideration if you are running your REXX program repeatedly because the
REXX HLAPI/2 DLL must be registered again once it is dropped.

The syntax of RxFuncDrop is:

CALL RxFuncDrop 'blmyrxm'

blmyrxm
Required parameter specifying the name of the function to be dropped.

Differences between the REXX HLAPI/2 and the HLAPI/2
Although the REXX HLAPI/2 uses the HLAPI/2, there is a difference between the two in
how they process transactions.

¶ Only synchronous processing is supported for REXX HLAPI/2 transactions

All transactions submitted are processed synchronously by the REXX HLAPI/2.
Synchronous processing forces the REXX application’s current thread to wait for a
Tivoli Information Management for z/OS transaction to finish before it can perform any
other work.

The asynchronous processing feature of the HLAPI/2 is not supported.

Differences between the REXX HLAPI/2 and the HLAPI/REXX
The differences between the HLAPI/2 and HLAPI transactions also apply to REXX
HLAPI/2. For a full description, see “Differences between HLAPI/2 and HLAPI
Transactions” on page 111. In addition, the following differences affect the REXX HLAPI/2
interface:

¶ The REXX HLAPI/2 does not support MVS text data sets. As a result,

v For the RETRIEVE transaction, the REXX variable TEXT_MEDIUM supports
only a value of type B.

v For the CREATE and UPDATE transactions, the TEXT-NAME.?WIDTH field, if
specified, should always have a nonzero value indicating that a text data set is not
used.

REXX Reserved Variables
The Tivoli Information Management for z/OS Application Program Interface Guide contains
a list of REXX reserved variables used by HLAPI/REXX. In addition, the REXX HLAPI/2
uses the following REXX reserved variables:

BLG_HLAPI2_RC Return code passed back from the HLAPI/2
interface. Null if the HLAPI/2 is not called.

BLG_REXXVAR_POOL_RC Set to return code from the REXX variable pool
service on failures.

REXX HLAPI/2 Interface Calls

133Client Installation and User’s Guide

14.
R

E
X

X
H

L
A

P
I/2

In
terface

RESULT Return code from the REXX HLAPI/2. Used
instead of RC.

Note: The following REXX reserved variables are not used by the REXX HLAPI/2:
¶ BLG_R15
¶ BLG_IRXEXCOM_RC
¶ RC

Sample REXX HLAPI/2 Program
The SAMPLE\REXX subdirectory in the directory where HLAPI/2 is installed, contains a
sample REXX program named BLMYRXSA.CMD. This program illustrates how to register
and deregister the REXX HLAPI/2 DLL, setup REXX variables, make REXX HLAPI/2
transaction calls, and retrieve output data.

BLMYRXSA performs the following functions.

1. Registers the REXX HLAPI/2 DLL by calling the function RxFuncAdd.

2. Initializes Tivoli Information Management for z/OS by performing an INIT transaction.

3. Records REXX HLAPI/2 output to an OS/2 file named BLMYRXSA.OUT. This is done
for each transaction.

4. Creates a record with id SAMP1.

5. Retrieves the record SAMP1 and records the fields just retrieved.

6. Deletes the record SAMP1.

7. Terminates Tivoli Information Management for z/OS by performing a TERM
transaction.

8. Deregisters the REXX HLAPI/2 DLL by calling the function RxFuncDrop.

Steps Required to Run the REXX HLAPI/2 Sample Program
1. Perform the steps described in “Installation and Setup Summary for HLAPI/2 Sample

Applications” on page 118.

2. Modify the sample REXX program BLMYRXSA.CMD. You may want to back up
BLMYRXSA before making any changes to it. Change the following REXX variables
used on the INIT transaction.

¶ Change the value of the SESSION_MEMBER to the name of the session
parameters member you want to use. If you want to use BLGSES00, no changes are
required.

¶ Change the value of the PRIVILEGE_CLASS to the name of the privilege class to
be used on the INIT transaction. This privilege class must be in the database defined
in your chosen session parameters member. The privilege class must have authority
to display, create, and delete problem records.

If you want to use MASTER privilege class, no changes are required.

¶ Change the value of the APPLICATION_ID to the name of an eligible user in the
privilege class you use.

¶ Change the values of the SECURITY_ID and PASSWORD for the ID you want to
use on the MVS system.

REXX Reserved Variables

134 Version 7.1

¶ If you choose to use another database profile other then DATABASE.PRO, change
the value of the DATABASE_PROFILE to that name.

3. Start the HLAPI/2 requester. See “The HLAPI/2 Requester” on page 105 for additional
information.

4. If you are using a RES or an MRES with APPC, be sure that Communications
Manager/2 is running. If you are using an MRES with TCP/IP, be sure that TCP/IP is
running.

5. From a command prompt, enter BLMYRXSA to run the sample program.

Transaction List

HLAPI Function Transaction Number REXX HLAPI/2 Transaction
Name

Initialize Tivoli Information Management
for z/OS

HL01 INIT

Terminate Tivoli Information
Management for z/OS

HL02 TERM

Obtain External Record ID HL03 GETID

Check Out Record HL04 CHECKOUT

Check In Record HL05 CHECKIN

Retrieve Record HL06 RETRIEVE

(Reserved) HL07 (Reserved)

Create Record HL08 CREATE

Update Record HL09 UPDATE

Change Record Approval HL10 CHANGE_APPROVAL

Record Inquiry HL11 SEARCH

Add Record Relations HL12 ADD_REL

Delete Record HL13 DELETE

Start User TSP or TSX HL14 USERTSP

Get Data Model HL31 GETDATAMODEL

Sample REXX HLAPI/2 Program

135Client Installation and User’s Guide

14.
R

E
X

X
H

L
A

P
I/2

In
terface

Transaction List

136 Version 7.1

Introduction to the HLAPI/NT

Tivoli Information Management for z/OS supports remote access from a workstation that
runs in a Windows NT environment. It does this through the High-Level Application
Program Interface (HLAPI) and the Tivoli Information Management for z/OS HLAPI Client
for Windows NT (HLAPI/NT). The HLAPI/NT provides remote access to Tivoli Information
Management for z/OS data and data manipulation services. It consists of three parts:

¶ A Tivoli Information Management for z/OS server, an MVS-based transaction program
that resides on the MVS host system. It provides the link between Tivoli Information
Management for z/OS and the Windows NT system.

¶ The Tivoli Information Management for z/OS HLAPI/NT Requester (requester), a
Windows NT-based transaction program that provides workstation access to the HLAPI
through a Tivoli Information Management for z/OS server.

¶ Language bindings and a support Dynamic Link Library (DLL) for the C language.

Two versions of the HLAPI/NT were available for installation, and you must know which
was installed at your location. The file IDBREQ.EXE was installed if you elected to install
the version that supports the TCP/IP protocol only; the file IDBREQB.EXE was installed if
you elected to install the version that supports both the TCP/IP and the APPC protocols.

Like the HLAPI, the HLAPI/NT is a transaction-based application programming interface.
User application programs interact with Tivoli Information Management for z/OS from the
remote environment in basically the same way as they do from MVS using the HLAPI.
These remote environment user application programs can be thought of as the clients to
Tivoli Information Management for z/OS’s server. The remote environment offers a subset
of HLAPI transactions, which are listed in Table 1 on page 3, and described in the Tivoli
Information Management for z/OS Application Program Interface Guide.

The HLAPI/NT enables application programmers to write applications for use in their
specific work environment. The task described in “A Typical Scenario” is typical of the
system problems that can be solved by using Tivoli Information Management for z/OS
database services.

A Typical Scenario
Suppose an application programming group in an enterprise has written two
workstation-based help desk applications that interact with the HLAPI through the
HLAPI/NT. One is a problem management database application, and the other is a
configuration management database application. The application programming group has
already provided the help desk with the information necessary to install and start these
applications successfully.

15

137Client Installation and User’s Guide

15.
In

tro
d

u
ctio

n
to

th
e

H
L

A
P

I/N
T

For efficiency, the help desk operator maintains two separate user IDs on the MVS system:
one with basic privilege class authority for queries sent through the configuration
management application, and one with a higher privilege class authority for creating records
through the problem management application.

1. A help desk operator starts a Windows NT workstation. The workstation’s STARTUP
group starts up the HLAPI/NT requester, the problem management application, and the
configuration management application.

2. When a problem call arrives, a help desk operator uses the problem management
application to collect preliminary information and open a problem record through the
HLAPI/NT.

3. In another window, the same operator uses the configuration application to query Tivoli
Information Management for z/OS through the HLAPI/NT for information about the
caller’s configuration.

4. Meanwhile, Tivoli Information Management for z/OS has returned a problem number
back through the HLAPI/NT, and the operator gives the caller his problem number and
promises follow-up on the problem.

5. By this time, Tivoli Information Management for z/OS has returned results of the
configuration query through the HLAPI/NT. The operator can then research the problem
and update the problem record as necessary.

The same Tivoli Information Management for z/OS functions that once required direct host
access are now performed on a desktop workstation. The remaining sections of this chapter
help you understand the interactions of the HLAPI/NT and Tivoli Information Management
for z/OS.

Server Overview
A Tivoli Information Management for z/OS server is an MVS/ESA transaction program that
handles communication between a HLAPI/NT requester and any Tivoli Information
Management for z/OS databases that reside on the MVS system where the server is installed.
A Windows NT client application program must use a requester for access to the server.

A server must be installed and available on every MVS/ESA machine with a Tivoli
Information Management for z/OS database that an application using the HLAPI/NT needs
to access.

The HLAPI/NT can use any of the Tivoli Information Management for z/OS servers. See
“Configuring and Running a Remote Environment Server (RES)” on page 25, “Configuring
and Running a Multiclient Remote Environment Server (MRES) with APPC” on page 35,
and “Configuring and Running a Multiclient Remote Environment Server (MRES) with
TCP/IP” on page 53 for information about the servers.

Requester Overview
The requester is a transaction program that runs on the workstation. It must be up and
running before any HLAPI/NT activity can occur. At the request of a client application
program, the requester initiates a conversation with a server. Then the requester transfers
information from the client application program to the appropriate server, and from the
server back to the client application program.

A Typical Scenario

138 Version 7.1

To start the requester, open the Tivoli Information Management for z/OS folder and click on
the HLAPI FOR WINDOWS NT REQUESTER icon. You can also start the requester from
the workstation’s STARTUP group. See “The HLAPI/NT Requester” on page 163 for more
information about starting the requester.

The HLAPI/NT requester is implemented as a Windows NT system service. Therefore,
HLAPI/NT requester services are available to all processes and related threads running in the
Windows NT environment. One copy of the HLAPI/NT requester service can support many
user applications.

HLAPI/NT C Language Binding
A client application program communicates with the Tivoli Information Management for
z/OS system by creating a high-level application communication area (HICA) and its related
parameter data blocks (PDBs). The client application program then submits the HICA
transaction by making HLAPI/NT program service calls. The HLAPI/NT program service
routines exist on the user’s workstation as a dynamic link library (DLL). When the calls are
made by the client application program, the supporting HLAPI/NT routines are loaded from
the DLL and started.

To utilize HLAPI/NT program service calls, the HLAPI/NT provides two standard header
files and one import library. These are located in the H subdirectory of the directory in
which you install HLAPI/NT. These files are only used in the creation of an HLAPI/NT
application. After the application is written and installed, these files are not required to be on
a user’s workstation.

IDBH.H is a required C programming language header file for all HLAPI/NT application
programs. It defines data types and function calls used by HLAPI/NT to communicate with
your application program.

IDBHLAPI.LIB is the import library that contains the function calls provided by
HLAPI/NT. You must specify this library when you link your compiled program.

IDBECH.H is an optional C programming language header file that defines constant
declarations for return and reason codes used by the HLAPI/NT.

Basic Transaction Flow
A transaction sequence is a series of HLAPI/NT transactions that begins with an initialize
Tivoli Information Management for z/OS (HL01) transaction, followed by other supported
transactions in any order, and ends with a terminate Tivoli Information Management for
z/OS (HL02) transaction. Client application programs submit transactions in a transaction
sequence, which is referred to as a logical session.

Each HLAPI/NT transaction request travels from a client application program on Windows
NT to Tivoli Information Management for z/OS on MVS along the route shown in Figure 11
on page 140. This example illustrates HLAPI/NT using an MRES with TCP/IP. The path

would be similar using a RES or an MRES with APPC, but the communication protocol
would be APPC instead of TCP/IP.

Requester Overview

139Client Installation and User’s Guide

15.
In

tro
d

u
ctio

n
to

th
e

H
L

A
P

I/N
T

On the Workstation
The client application program, through the HLAPI/NT program service calls, uses the
requester to request Tivoli Information Management for z/OS work to be performed. The
client application creates a HICA and PDBs to represent a Tivoli Information Management
for z/OS HLAPI transaction. Then it submits the HICA to HLAPI/NT for processing.
HLAPI/NT takes the HICA and its related control and input PDBs and translates them for
the server character set. It then packages and transfers them to the server associated with the
specified HICA. (Refer to transaction HL01 in the Tivoli Information Management for z/OS
Application Program Interface Guide, for a description of how to associate a HICA with a
particular Tivoli Information Management for z/OS database.)

Communication Link
The HLAPI/NT requester communicates with a server using TCP/IP or the APPC LU 6.2
protocol. The client application chooses the communication protocol and that protocol is
used for the entire transaction sequence submitted by that client application.

The requester can communicate with multiple servers on multiple MVS hosts. The
IDBSERVERHOST database profile keyword indicates that the client wants a TCP/IP
connection. The IDBSYMDESTNAME database profile keyword indicates that the
requester is to establish an APPC conversation on behalf of the client. These keywords and
the database profile are described in “HLAPI/NT Profiles, Environment Variables, and Data
Logging” on page 153.

Multiclient
Remote
Environment
Server

High-
Level
Application
Program
Interface

Low-
Level
Application
Program
Interface

MVS Address Space

Windows NT Process Windows NT Process

TCP/IP

Workstation

HLAPI/NT
Interface

Client
Application

HLAPI/NT
Requester

Tivoli
Information
Management
for z/OS
Subtask

Figure 11. HLAPI/NT Overview

Basic Transaction Flow

140 Version 7.1

To enable the communication link between a Windows NT workstation and an MRES with
TCP/IP, TCP/IP must be set up for HLAPI/NT use. For information on configuring an
MRES with TCP/IP, see “Configuring and Running a Multiclient Remote Environment
Server (MRES) with TCP/IP” on page 53.

To enable the communication link between a Windows NT workstation and a RES or an
MRES with APPC, APPC client software, such as the client software provided with IBM
Communications Server for Windows NT or Microsoft SNA Server, must be installed and
configured on the workstation where the client application is running. For information on
configuring a RES or MRES with APPC, refer to “Configuring and Running a Remote
Environment Server (RES)” on page 25 and “Configuring and Running a Multiclient Remote
Environment Server (MRES) with APPC” on page 35.

On the Host
Upon arrival in the server, the HICA and PDBs are processed and submitted to the Tivoli
Information Management for z/OS HLAPI. After the requested HLAPI transaction finishes,
the server transmits the HICA, the output, error, and message PDBs, and the PDBCODE
field of the input PDB to the requester.

Back to the Workstation
The transmission buffers are received by the requester. The buffers are parsed in sequence
and their contents (the PDBs) are translated from the server character set to the character set
being used by the workstation. Memory is allocated for the newly received PDBs. These
PDBs are chained onto their corresponding type list on the owning (and original) HICA. The
HICA contains the original control and input PDB chains and the new output, error, and
message PDB chains. The HICA contains other fields set by the HLAPI, such as
HICARETC and HICAREAS. The value set by the HLAPI in the input PDB field is also
returned. The transaction request is complete, and control of the HICA is returned to the
client application program.

Client Workstation Requirements for the HLAPI/NT
The HLAPI/NT requires certain software and hardware in order to function.

Note: For the HLAPI/NT, the requester and client interface must be run on the same
machine.

Software
¶ Microsoft Windows NT Version 4.0. This version includes support for TCP/IP.
¶ If you install the version of HLAPI/NT that supports both TCP/IP and APPC, you must

install and configure the APPC client software, such as the client software provided with
IBM Communications Server for Windows NT Version 5.0 or Microsoft SNA Server
Version 2.11 or higher.

¶ IBM VisualAge for C++ for Windows or Microsoft Visual C++ or any C language
compiler and linker that supports the 32-bit system linkage convention.

Note: A compiler is required only if you are developing client applications. A client
workstation does not need a compiler to run a client application.

¶ To use the optional HLAPI for Java provided with the client, you must have Java
Development Kit (JDK) Version 1.1 or higher, and Microsoft Windows NT Workstation
Version 4.

Basic Transaction Flow

141Client Installation and User’s Guide

15.
In

tro
d

u
ctio

n
to

th
e

H
L

A
P

I/N
T

Hardware
¶ An IBM personal computer or compatible system unit capable of running Windows NT

Workstation Version 4.0.
¶ One or more fixed disk drives with sufficient capacity to contain your version of

Windows NT and the disk storage requirements as specified in “Disk Storage”.
¶ Token-Ring Adapter Card and network or a communication option capable of supporting

TCP/IP or APPC LU 6.2 communication to one or more MVS systems running a Tivoli
Information Management for z/OS server.

Disk Storage
The disk space needed for each component is:
¶ Installation utility, 520 KB
¶ Requester, 1.5 MB
¶ Toolkit, 16.3 MB

1 MB equals 1 048 576 bytes; 1 KB equals 1024 bytes.

Client Workstation Requirements for the HLAPI/NT

142 Version 7.1

Installing and Configuring HLAPI/NT

To use HLAPI/NT on your workstation, you must do the following tasks:

1. Configure a communication link to a Tivoli Information Management for z/OS server.
“Configuring a Communication Link to a Server” discusses this task.

2. Install the HLAPI/NT files on your workstation.

Configuring a Communication Link to a Server
In order to use the functions of the HLAPI/NT, you must configure a communication link
for the workstation to each server you want to use. If you are using an MRES with TCP/IP,
you must configure a TCP/IP communication link. If the server you are using is a RES or
MRES with APPC, you must configure an APPC/APPN communication link. The following
sections describe how to configure your communications software and update various files.
“Configuring HLAPI/NT for TCP/IP” provides the steps needed for a TCP/IP configuration.
“Configuring HLAPI/NT for APPC” on page 144 provides the steps needed for an APPC
configuration.

Configuring HLAPI/NT for TCP/IP
To use an MRES with TCP/IP, you must configure TCP/IP so that HLAPI/NT can connect to
each server you want to use. Each MRES with TCP/IP is uniquely identified by the IP
address of its MVS host and its port number. Refer to “Configuring and Running a
Multiclient Remote Environment Server (MRES) with TCP/IP” on page 53 for more
information about the MRES with TCP/IP.

To identify the port number of each MRES with TCP/IP, you must update the SERVICES
file in your ETC subdirectory to associate a service name or alias with the port number
defined in the MRES with TCP/IP. You must specify a service name and port number for
each server the HLAPI/NT needs to be able to connect to. The port numbers must match
those used by the Tivoli Information Management for z/OS MRES with TCP/IP servers. The
service name is of your choosing. Service names are case-sensitive.

A default service name infoman and port number 1451 have been reserved for Tivoli
Information Management for z/OS use. The general format of an entry in the SERVICES file
is:
<service> <port>⁄tcp <alias_list> #<comment>

<service>
The service name of the Tivoli Information Management for z/OS MRES with
TCP/IP.

16

143Client Installation and User’s Guide

16.
In

stallin
g

an
d

C
o

n
fig

u
rin

g
H

L
A

P
I/N

T

<port>
The port number of the Tivoli Information Management for z/OS MRES with
TCP/IP.

<alias_list>
Alias definitions for the service

<comment>
Comment text that describes the service.

For example, to associate the default service name (infoman) with the default port number
(1451), you must place the following line in the SERVICES file before you run HLAPI/NT:
infoman 1451/tcp #default MRES server

The default service name and default port number are reserved for Tivoli Information
Management for z/OS so you can use them to designate your MRES with TCP/IP. If the
client application does not specify a service name in the database profile specified on the
HL01 transaction, infoman will be assumed. Therefore, be sure to include it in the
SERVICES file.

Be sure that your client application programs use the service names that you define. If your
client application program needs to access an MRES with TCP/IP that uses a port number
other than the default infoman/1451, you must specify its service name in the
IDBSERVERSERVICE keyword in the client application’s database profile.

Additional information regarding the IDBSERVERSERVICE keyword and the database
profile is located in “HLAPI/NT Profiles, Environment Variables, and Data Logging” on
page 153.

To identify the MVS host running the MRES with TCP/IP, your client application must
specify the host in the IDBSERVERHOST keyword in the database profile. The host can
be identified by an IP address in dotted-decimal format or by a host name. If you use a host
name, the host name must be resolvable. Refer to the Windows NT system documentation
for information on how TCP/IP should be configured to resolve a host name.

Additional information regarding the IDBSERVERHOST keyword and the database profile
is located in “HLAPI/NT Profiles, Environment Variables, and Data Logging” on page 153.

Configuring HLAPI/NT for APPC
To use a RES or MRES with APPC, you must configure an APPC/APPN communication
link for the workstation to each server you want to use. The tasks you need to do to
configure APPC/APPN are:

1. Determine the values to use in the configuration. See “Determining Values Clients Need”
on page 50 for information on possible values.

2. Define a local LU.

3. Define a logical link to the MVS host where the server resides.

4. Define a partner LU.

5. Define the symbolic destination name for a CPI-C side information entry.

For detailed information about performing these tasks, consult the appropriate documentation
for your APPC client software. For the Microsoft SNA Server, refer to the Administration

Configuring a Communication Link to a Server

144 Version 7.1

Guide for information about assigning LUs to users and configuring symbolic destination
names. For the IBM Communications Server, refer to Quick Beginnings.

Preparing to Install HLAPI/NT
HLAPI/NT is delivered on a CD-ROM. You can install HLAPI/NT directly from the
CD-ROM to a workstation or install onto a network drive and then to workstations from the
network drive.

Before you begin installing HLAPI/NT, you should familiarize yourself with the important
information in the README.TXT file shipped with it. If you are installing HLAPI/NT
from the HLAPI/NT installation CD-ROM, the README.TXT file is on the CD-ROM; if
you are installing HLAPI/NT from a network drive, the README.TXT file is in the
network drive subdirectory.

If you already have a version of HLAPI/NT installed, delete it before installing the new
version of HLAPI/NT. See “Deleting HLAPI/NT from a Workstation” on page 151.

When installing HLAPI/NT on your workstation, you install a folder containing icons for the
HLAPI/NT Requester, the README.TXT file, and the UNINSTALL utility.

Note: Upgrades or patches that can be downloaded from a Tivoli Web site may be available
for HLAPI/NT. Visit the Tivoli Information Management for z/OS Web site for more
information:

http://www.tivoli.com/infoman

Installing HLAPI/NT in Attended Mode from CD-ROM
Install HLAPI/NT by following these steps (during the installation, you can press F1 on any
window to display Help information):

1. Switch to, or start, an MS DOS window.

2. If you already have HLAPI/NT installed, delete it. See “Deleting HLAPI/NT from a
Workstation” on page 151.

3. Insert the HLAPI/NT installation CD-ROM into the CD-ROM drive.

4. At the DOS command prompt, type e:\hlapi\nt\disk1\setup and press Enter (e is
the drive letter of the drive that contains the HLAPI/NT installation CD-ROM).

5. Select Next > from the Welcome window.

6. In the Setup Options window, select Workstation Installation.

7. In the Select Components window:

¶ Select the components of HLAPI/NT you want to install. If you select the
Requester component, you must choose either the requester component which
supports only TCP/IP (IDBREQ.EXE) or the requester component which supports
both TCP/IP and APPC (IDBREQB.EXE). “Components of HLAPI/NT” on
page 342 contains a complete list of HLAPI/NT files.

¶ Select Browse... to change the destination directory in which to install the
HLAPI/NT files. You can accept the default value or change it.

Configuring a Communication Link to a Server

145Client Installation and User’s Guide

16.
In

stallin
g

an
d

C
o

n
fig

u
rin

g
H

L
A

P
I/N

T

Note: You can select Disk space... to determine the amount of available space on
the fixed disk drives in your workstation.

¶ Select Next >.

8. In the Select Program Folder window:

¶ Select the folder into which you want the HLAPI/NT icons placed. You can choose
to have a new folder created or select an existing folder.

¶ Select Next >.

9. In the Start Copying Files window, verify that the information is correct and then select
Next >.

10. In the Setup Complete window:

¶ Select whether you want your computer to be restarted now.

¶ Select Finish.

The HLAPI/NT installation is finished. After you start your workstation again, verify the
installation.

Installing HLAPI/NT onto a Network Drive
To install HLAPI/NT on a workstation from a network drive, you must first install
HLAPI/NT onto the network drive. You do this by choosing the Network Drive installation
option during the installation.

To install HLAPI/NT, follow these steps:

1. Switch to, or start, an MS DOS window.

2. If you already have HLAPI/NT installed, delete it. See “Deleting HLAPI/NT from a
Workstation” on page 151.

3. Insert the HLAPI/NT installation CD-ROM into a drive.

4. At the DOS command prompt, type e:\hlapi\nt\disk1\setup and press Enter (e is
the drive letter of the CD-ROM drive that contains the HLAPI/NT installation
CD-ROM).

5. Select Next > from the Welcome window.

6. In the Setup Options window, select Network Drive installation.

7. In the Select Components window:

¶ Select the components of HLAPI/NT you want to install. (See “Components of
HLAPI/NT” on page 342 for a complete list of HLAPI/NT files.)

¶ Select Browse... to change the destination directory in which to install the
HLAPI/NT files. You can accept the default value or change it.

Note: You can select Disk space... to determine the amount of available space on
the fixed disk drives in your workstation.

¶ Select Next >.

8. In the Select Program Folder window:

Installing HLAPI/NT in Attended Mode from CD-ROM

146 Version 7.1

¶ Select the folder into which you want the HLAPI/NT icons placed. You can choose
to have a new folder created or select an existing folder.

¶ Select Next >.

Note: The HLAPI/NT Requester icon will not be created because you cannot run
the product from this installation.

9. In the Start Copying Files window, verify that the information is correct and then select
Next >.

The HLAPI/NT files are transferred from the CD-ROM to the network drive.

10. In the Setup Complete window, select Finish.

The HLAPI/NT installation to the network drive is complete. Give all authorized users
access to the network drive on which you installed HLAPI/NT.

Installing HLAPI/NT in Attended Mode from a Network Drive
If you have access to a network drive on which HLAPI/NT is installed, you can access the
drive/directory and install HLAPI/NT on your workstation by following these steps:

1. Switch to, or start, an MS DOS window.

2. Use the CHDIR (CD) command to change to the DISK1 subdirectory of the network
drive directory that contains HLAPI/NT.

3. If you already have HLAPI/NT installed, delete it. See “Deleting HLAPI/NT from a
Workstation” on page 151.

4. Type SETUP on the command line.

5. Select Next > from the Welcome window.

6. In the Setup Options window, select Workstation Installation.

7. In the Select Components window:

¶ Select the components of HLAPI/NT you want to install. If you select the
Requester component, you must choose either the requester component which
supports only TCP/IP (IDBREQ.EXE) or the requester component which supports
both TCP/IP and APPC (IDBREQB.EXE). “Components of HLAPI/NT” on
page 342 contains a complete list of HLAPI/NT files.

¶ Select Browse... to change the destination directory in which to install the
HLAPI/NT files. You can accept the default value or change it.

Note: You can select Disk space... to determine the amount of available space on
the fixed disk drives in your workstation.

¶ Select Next >.

8. In the Select Program Folder window:

¶ Select the folder into which you want the HLAPI/NT icons placed. You can choose
to have a new folder created or select an existing folder.

¶ Select Next >.

9. In the Start Copying Files window, verify that the information is correct and then select
Next >.

Installing HLAPI/NT onto a Network Drive

147Client Installation and User’s Guide

16.
In

stallin
g

an
d

C
o

n
fig

u
rin

g
H

L
A

P
I/N

T

The HLAPI/NT files are transferred from the network drive to your workstation.

10. In the Setup Complete window:

¶ Select whether you want your computer to be restarted now.

¶ Select Finish.

The HLAPI/NT installation is complete. After you start your workstation again, you can
verify the installation.

Installing HLAPI/NT in Unattended Mode
A sample response file is shipped with HLAPI/NT. You can use this file as is, or you can
modify it to meet your needs. The sample response file is named SETUP.ISS and it is
contained on the HLAPI/NT installation CD-ROM or the network drive directory that
contains the HLAPI/NT code.

You can use the sample response file to install HLAPI/NT from either the HLAPI/NT
installation CD-ROM or from a network drive. Details about the response file keywords are
contained in “HLAPI/NT Response File Keywords”.

To install HLAPI/NT in unattended mode, follow these steps:

1. Switch to, or start, an MS DOS window.

2. Use the CHDIR (CD) command to change to the appropriate subdirectory of the
HLAPI/NT installation CD-ROM or the appropriate subdirectory of the network drive
directory that contains HLAPI/NT.

3. If you already have HLAPI/NT installed, delete it. See “Deleting HLAPI/NT from a
Workstation” on page 151.

4. Type SETUP -s [-f1path\ResponseFile] [-f2path\LogFile], where

-s Runs InstallShield Silent to perform an unattended installation
[-f1path\ResponseFile] Specifies the alternate location and name of the response file (.ISS

file). The default path is the location of the SETUP.EXE file and
the default name is SETUP.ISS.

[-f2path\LogFile] Specifies the alternate location and name of the log file created by
InstallShield Silent. The default path is the location of the
SETUP.EXE file and the default name is SETUP.LOG.

HLAPI/NT Response File Keywords
The sample response file shipped with HLAPI/NT includes the following keywords. All
keywords are required.

[InstallShield Silent]

Response File Silent Header.

Version
Indicates the version of the InstallShield response file. The current valid
value for this keyword is:

v3.00.000

Installing HLAPI/NT in Attended Mode from a Network Drive

148 Version 7.1

File Identifies the file as a legitimate InstallShield response file. The current valid
value for this keyword is:

Response File

[Application]

Response File Application Header.

Name Indicates the Product Key from the Installation Information. The current
valid value for this keyword is:

Service Desk for OS/390

Version
Indicates the Version Key from the Installation Information. The current
valid value for this keyword is:

1.2

Company
Indicates the Company Key from the Installation Information. The current
valid value for this keyword is:

Tivoli

[DlgOrder]

Response File Dialog Sequence Header. This section lists all dialogs used in the
installation in the order in which they appear. In addition, the exact number of
dialogs listed is specified in this section. This section is very installation dependent
and should not be modified.

Dlg0=SdBitmap-0

Count=6

Dlg1=SdOptionsButtons-0

Dlg2=SdComponentDialogAdv-0

Dlg3=SdSelectFolder-0

Dlg4=SdStartCopy-0

Dlg5=SdFinishReboot-0

[SdBitmap-0]

Response File Dialog Data for the initial Welcome window.

Result Button that was clicked to exit or end the dialog. Valid values for
this keyword are:

12 Back button
1 Next button

[SdOptionsButtons-0]

Response File Dialog Data for the Setup Options Dialog window.

Result Button that was clicked to exit or end the dialog. Valid values for
this keyword are:

Installing HLAPI/NT in Unattended Mode

149Client Installation and User’s Guide

16.
In

stallin
g

an
d

C
o

n
fig

u
rin

g
H

L
A

P
I/N

T

12 Back button
101 Workstation Installation
102 Network Drive Installation

[SdComponentDialogAdv-0]

Response File Dialog Data for the Select Components window.

szDir Destination directory path. Default path is C:\INFOAPI.

Component-type
The only value currently allowed is String.

Component-count
The total number of components selected to be installed. For a
workstation installation, this number can be 1 or 2. For a network
drive installation, this number can be 1 or 2 or 3. You must specify

¶ The COMPONENT-COUNT keyword which specifies the
number of components which will be installed.

¶ A list of components to be installed (the number of components
specified must equal the number specified in the
COMPONENT-COUNT keyword). The component names must
be specified as COMPONENT-N=NAME where N is a number,
beginning with 0, that numbers each component to be installed,
and NAME is the name of the component. Because numbering
begins with 0, the greatest value for N will always be one less
than the value of COMPONENT-COUNT. The valid values for
NAME are:

Toolkit
Requester - TCP-IP only
Requester - TCP-IP and APPC

Note: For the purposes of specifying these names, note that
TCP-IP is specified as TCP-IP and not TCP/IP.

For example, to install the Toolkit component and the Requester
component that supports the TCP/IP protocol only, you would
specify a component count of 2 and then list the 2 components:

Component-Count=2
Component-0=Toolkit
Component-1=Requester - TCP-IP only

Result Button that was clicked to exit or end the dialog. Valid values for
this keyword are:

12 Back button
1 Next button

[SdSelectFolder-0]

Response File Dialog Data for the Select Program Folder window.

szFolder
The name of the program folder where you want the icons for the
product placed. The default program folder name is Tivoli Service
Desk for OS390.

Installing HLAPI/NT in Unattended Mode

150 Version 7.1

Note: The folder name cannot contain a slash / character.

Result Button that was clicked to exit or end the dialog. Valid values for
this keyword are:

12 Back button
1 Next button

[SdStartCopy-0]

Response File Dialog Data for the Start Copying Files window.

Result Button that was clicked to exit or end the dialog. Valid values for
this keyword are:

12 Back button
1 Next button

[SdFinishReboot-0]

Response File Dialog Data for the Setup Complete window.

BootOption
Boot option used upon completion of the installation. Valid values
for this keyword are:

0 Do not restart Windows NT or the machine.
2 Restart Windows NT
3 Reboot the machine

Result Button that was clicked to exit or end the dialog. The only valid
value for this keyword is:

1 Finish

Applying HLAPI/NT Maintenance
To apply maintenance to HLAPI/NT, you must delete and reinstall the components that are
affected by the update or maintenance. See “Deleting HLAPI/NT from a Workstation” and
“Installing HLAPI/NT in Attended Mode from CD-ROM” on page 145 or “Installing
HLAPI/NT onto a Network Drive” on page 146.

Deleting HLAPI/NT from a Workstation
To delete HLAPI/NT from a workstation, follow these steps:

1. Open the folder where you installed the HLAPI/NT components.

2. Run the Uninstall Components program.

3. From the Select Components window:

a. Select the components you wish to uninstall.

b. Select Remove.

4. A message appears when the uninstall is complete. Select OK.

Installing HLAPI/NT in Unattended Mode

151Client Installation and User’s Guide

16.
In

stallin
g

an
d

C
o

n
fig

u
rin

g
H

L
A

P
I/N

T

Deleting HLAPI/NT from a Workstation

152 Version 7.1

HLAPI/NT Profiles, Environment Variables,
and Data Logging

Certain aspects of the HLAPI/NT interface can be tuned to the needs of your application.
You do this by specifying profile keywords and values in two Windows NT text files—the
system profile and the database profile.

The system profile is optional. It is specified in the command that starts the HLAPI/NT
requester. See “The HLAPI/NT Requester” on page 163 for more information about this
command. The system profile defines the sizes of the data buffers that are passed between
the Windows NT workstation and the MVS host.

The database profile is required and must be specified in a control PDB that is passed to
HLAPI/NT as part of an HL01 transaction. The database profile defines which MVS server
is the destination of Tivoli Information Management for z/OS HLAPI transactions that are
submitted by the user application. It controls all aspects of logging these transactions on the
workstation, and it defines which ASCII and EBCDIC code sets to use for data conversion.

Profile Syntax
A profile can be created and manipulated with common text editors. You must press the
Enter key at the end of each line. The profile syntax is keyword driven. Keyword processing
is not case-sensitive. The keywords can be entered with any mix of uppercase and lowercase
characters. Each keyword requires a data parameter.

For each keyword, the equals character (=) separates the keyword from its data value.
Optionally, one or more spaces may precede or follow the equals character or the keyword.
The data value consists of all nonblank characters to the right of the equals character, up to
the end of line. An example follows:
IDBServCharCodeSet = IBM-037

You can specify a comment; but it must be specified on a text line of its own. The comment
must be preceded by the characters REM as in the following example:
REM Code set IBM-037 is the EBCDIC U.S. English code page.

When you enter numbers for profile keyword data, do not use commas in the numbers; for
example
IDBLogFileSize = 262144

17

153Client Installation and User’s Guide

17.
H

L
A

P
I/N

T
P

ro
files,

V
ariab

les,
an

d
L

o
g

g
in

g

System Profile Keywords
When the requester is started, it can be given a system profile file name. The system profile
enables the application programmer to tune certain aspects of the client HLAPI/NT system.

The system profile file name can be fully qualified with its path and drive, or you can
specify the file name only. If only a file name is specified, the search path name is obtained
from the current value held in the IDBSMPATH environment variable described in
“IDBSMPATH” on page 160.

If a profile is not specified, default values are used for each of the keywords. Additional
detail about the keywords is contained on this page and on pages following.

For an example of a System Profile, see “System Profile Example” on page 155.

IDBINBOUNDBUFSIZE
This value is the number of bytes to be allocated for each buffer that the workstation
receives from the server. The number is rounded up to the next highest multiple of 4096 in
all cases except at the uppermost range (greater than 28672). A buffer size greater than this,
but less than 32767, is rounded up to 32767.

Note: Do not use commas when entering numbers in profile keywords.

An example of when to increase the IDBINBOUNDBUFSIZE is when you have an
application that uses retrieve transactions containing a large amount of data.

Valid entries: any number between 1 and 32767.

Default value: 4096.

IDBOUTBOUNDBUFSIZE
This value is the number of bytes to be allocated for each buffer sent from the workstation
to the server. The number is rounded up to the next highest multiple of 4096 in all cases
except at the uppermost range (greater than 28672). A buffer size greater than this, but less
than 32767, is rounded up to 32767.

Note: Do not use commas when entering numbers in profile keywords.

An example of when to increase the IDBOUTBOUNDBUFSIZE is when you have an
application that uses create transactions that contain a large amount of data.

Valid entries: any number between 1 and 32767.

Default value: 4096.

IDBSHARECMS
This keyword determines whether the requester should enable or disable conversation
sharing. When conversation sharing is enabled, the requester assigns new client applications
to an existing conversation if criteria such as same server and same security ID are met.
When conversation sharing is disabled (the default), each client application is assigned its
own dedicated conversation. A conversation is terminated when the last client assigned to it
submits an HL02.

System Profile Keywords

154 Version 7.1

Note: If you choose to use conversation sharing, you must be aware that there is a potential
for a delay because transactions are handled synchronously. Thus, if Client A and
Client B share a conversation, and Client A submits a long search and Client B
submits an update, Client B will wait for Client A’s search to complete before its
transaction can be processed.

Note: If you are using pre-started API sessions (described in “MRES with Pre-started API
Sessions Considerations” on page 18), you must disable conversation sharing.

Valid entries: 0 (conversation sharing disabled) or 1 (conversation sharing enabled).

Default value: 0 (conversation sharing disabled).

System Profile Example
REM***
REM
REM Example System Profile
REM
REM
REM***
REM
REM
IDBINBOUNDBUFSIZE = 4096
REM
IDBOUTBOUNDBUFSIZE = 4096
REM
IDBSHARECMS = 0
REM

Database Profile Keywords
Database profiles are created by the user. The database profile file name is passed to
HLAPI/NT through a PDB named DATABASE_PROFILE on the Control PDB list. This
occurs when your application connects to the database using the HL01 transaction. The
database profile is used only with the HL01 transaction. If you specify it for other
transactions, it is ignored.

The database profile file name can be fully qualified with its path and drive, or you can
specify the file name only. If only a file name is specified, the search path name is obtained
from the current value held in the environment variable described in “IDBDBPATH” on
page 159.

During profile resolution, the contents of database profile text files and profile overrides are
compiled together into a final collection of profile settings. This final collection is then used
by the HLAPI/NT. For more information about profile overrides, see “Profile Override” on
page 159.

Within a profile, a keyword cannot be duplicated. If a keyword is duplicated, an error is
reported, and processing ends.

To learn about individual keywords, go to one of the following:
“IDBDataLogLevel” on page 156
“IDBLogFileSize” on page 156
“IDBLogFileNameActive” on page 156
“IDBLogFileNameOld” on page 156

System Profile Keywords

155Client Installation and User’s Guide

17.
H

L
A

P
I/N

T
P

ro
files,

V
ariab

les,
an

d
L

o
g

g
in

g

“IDBCharCodeSet”
“IDBServCharCodeSet” on page 157
“IDBServerHost” on page 157
“IDBServerService” on page 157
“IDBSymDestName” on page 157

For an example of a Database Profile, see “Database Profile Example” on page 158.

IDBDataLogLevel
The level at which client data logging is performed. This profile setting can be overridden
with the Windows NT environment variable also called IDBDataLogLevel.

Valid entries: 0 (logging disabled) and 1 (logging enabled).

Default value: 0 (logging disabled).

IDBLogFileSize
The approximate maximum size in bytes of a log file. The log file is phased after it grows
larger than this size. To phase a log file is to close the current log file, rename and archive
it, and open a new empty log file.

Valid entries: Any positive integer between 4096 and 10 485 760 (do not include commas
when entering numbers). If a value between 1 and 4095 is specified, 4096 is substituted.
Specifying zero causes the log file to grow indefinitely.

Default value: 262 144.

IDBLogFileNameActive
The primary name given to the active log file name for the client.

Valid entries: Any valid file name.

Default value: IDB_LOG.ACT. If you are running in a LAN environment, it is suggested
that this file be written to a file unique to each LAN workstation to avoid errors due to file
contention.

IDBLogFileNameOld
The name given to log files about to be archived. After the active log file as specified by
IDBLogFileNameActive is phased, the file is renamed to this value.

Valid entries: Any valid file name.

Default value: IDB_LOG.OLD. If you are running in a LAN environment, it is suggested
that this file be written to a file unique to each LAN workstation to avoid file contention
errors.

IDBCharCodeSet
This keyword indicates the code set to use in the client. Character data bound for the client
is translated to this code set. Character data bound for the server is translated from this code
set.

Default value: IBM-850 (U.S. English).

Database Profile Keywords

156 Version 7.1

IDBServCharCodeSet
This keyword indicates the code set that the server uses. Character data bound for the server
is translated to this code set. Character data bound for the client is translated from this code
set.

Default value: IBM-037 (U.S. English).

IDBServerHost
This keyword identifies the MVS host that is running the MRES with TCP/IP server you
want the requester to establish a conversation with. For more information about the MRES
with TCP/IP and setting up the HLAPI/NT to communicate with an MRES with TCP/IP,
refer to “Configuring and Running a Multiclient Remote Environment Server (MRES) with
TCP/IP” on page 53 and “Configuring HLAPI/NT for TCP/IP” on page 143.

Valid entries: Any valid IP address in dotted-decimal format, or any valid host name, such as
mvshost. If you specify a host name, the host name must be resolvable. If you use this
keyword, you must not use the IDBSymDestName keyword. Refer to the Windows NT
online documentation for information on host name resolution.

Default value: none. If the IDBSymDestName keyword is not specified, this value is
required.

IDBServerService
This keyword identifies the service name of the MRES with TCP/IP server you want the
requester to establish a conversation with. The service name must be listed in the
SERVICES file in the ETC subdirectory on your workstation. For more information about
the MRES with TCP/IP and setting up the HLAPI/NT to communicate with an MRES with
TCP/IP, refer to the “Configuring HLAPI/NT for TCP/IP” on page 143 and “Configuring and
Running a Multiclient Remote Environment Server (MRES) with TCP/IP” on page 53.

Valid entries: Any valid service name or alias. Service names and aliases are case-sensitive.

Default value: infoman. IDBServerService is an optional keyword. If you do not specify it
when you specify IDBServerHost, the default is assumed. If you specify
IDBSymDestName, then IDBServerService is ignored.

IDBSymDestName
Symbolic destination name. This keyword specifies the name of a Common Programming
Interface for Communications (CPI-C) side information entry, which provides information
required for HLAPI/NT to establish a conversation with a RES or an MRES with APPC. For
more information on CPI-C side information entries, refer to the your APPC client software
documentation. You can also refer to “Configuring and Running a Remote Environment
Server (RES)” on page 25, “Configuring and Running a Multiclient Remote Environment
Server (MRES) with APPC” on page 35, and “Configuring HLAPI/NT for APPC” on
page 144 for additional information.

If you use this keyword, you must not use the IDBServerHost keyword.

Valid entries: Any CPI-C symbolic destination name (a 1- to 8-byte character string) that
you have defined.

Default value: none. This value is required if IDBServerHost is not specified.

Database Profile Keywords

157Client Installation and User’s Guide

17.
H

L
A

P
I/N

T
P

ro
files,

V
ariab

les,
an

d
L

o
g

g
in

g

Database Profile Example
REM**
REM
REM SAMPLE Database Profile
REM
REM**
REM
REM ---
REM Server Host Name or TCP/IP address (Required if using TCP/IP)
REM ---
IDBServerHost = yourhost
REM
REM ---
REM MRES Service Name (Optional)
REM ---
IDBServerService = infoman
REM
REM ---
REM Symbolic Destination Name (Required if using APPC)
REM ---
REM IDBSymDestName = LUNAME
REM
REM
REM ***** Specify Client and Server Code Sets *****
REM ---
REM Client Character Code Set (Optional)
REM ---
IDBCharCodeSet = IBM-850
REM
REM ---
REM Server Character Code Set (Optional)
REM ---
IDBServCharCodeSet = IBM-037
REM
REMREM ***** Specify Log File Parameters *************
REM ---
REM Client Data Log Level (Optional)
REM ---
IDBDataLogLevel = 1
REM
REM ---
REM Log File Size (Optional)
REM ---
IDBLogFilesize = 262144
REM
REM ---
REM The Active Log File Name (Optional)
REM ---
IDBLogFileNameActive = IDBLOG.ACT
REM
REM ---
REM The Old Log File Name (Optional)
REM ---
IDBLogFileNameOld = IDBLOG.OLD

Environment Variables
HLAPI/NT uses Windows NT environment variables in two different ways. One
environment variable can be set and used as a profile override. Other variables can be used
to fully qualify the names of database and system profiles when a user does not do so. To
see an explanation of the use of these variables, see “Profile Override” on page 159 or
“Profile Search Path” on page 159.

Database Profile Example

158 Version 7.1

Profile Override
Profile override specifications enable certain profile values to be specified through Windows
NT environment variables. Not all profile parameters that can be specified in a profile can
be overridden by environment variables. IDBDataLogLevel is currently the only variable
that can be overridden this way. You can use the Windows NT environment variable
IDBDataLogLevel to override the database profile parameter IDBDataLogLevel. The value
of the Windows NT environment variable always takes precedence.

By setting profile overrides in the System dialog box, you can cause the profile override to
effect all Windows NT sessions on the workstation. The System dialog box appears when
you choose the System icon in the Control Panel window.

By using the SET command on the command line, the values you specify are only in effect
for a single Windows NT session (the current one). An example follows.

Assume this is part of your current database profile:
REM ** Turn workstation logging on
IDBDataLogLevel = 1
REM ** Allow the workstation file to grow indefinitely
IDBLogFileSize = 0
REM ** Write the log file to BLX0TRAN.LOG
IDBLogFileNameActive = C:\INFOAPI\BLX0TRAN.LOG

This profile logs the data from all HLAPI transactions to the file
C:\INFOAPI\BLX0TRAN.LOG. However, if you submit the command
SET IDBDataLogLevel=0

before you start the application that uses this profile, then no logging occurs on the
workstation for transactions issued by the application. You have overridden the setting for
IDBDataLogLevel for the current session. If you set IDBDataLogLevel in the System
dialog box, you override the setting for all Windows NT sessions on this workstation.

Profile Search Path
Two environment variables are used to fully qualify the name of a database profile or system
profile when the user does not do this. For additional information, see “IDBDBPATH” or
“IDBSMPATH” on page 160.

IDBDBPATH
The search path to be used when an HLAPI/NT database profile name is specified without
full qualification. If a user specifies a database profile name without a drive and path,
HLAPI/NT first checks the current directory for the file with that name. If the database
profile is not found there, HLAPI/NT searches the directories specified by the IDBDBPATH
value. A sample default path is C:\PROBLEM\HLAPINT\.

You can use this variable to specify multiple paths to search. For example:
SET IDBDBPATH=C:\;C:\PROBLEM\HLAPINT\;

causes the C:\ directory to be searched first, followed by C:\PROBLEM\HLAPINT.

Valid entries: Any valid file path qualifier. The last backslash (\) is optional.

Profile Override

159Client Installation and User’s Guide

17.
H

L
A

P
I/N

T
P

ro
files,

V
ariab

les,
an

d
L

o
g

g
in

g

IDBSMPATH
The search path to be used when an HLAPI/NT system profile name is specified without full
qualification. If a user specifies a system profile name without a drive and path, HLAPI/NT
first checks the current directory for the file with that name. If the system profile is not
found there, HLAPI/NT searches the directories specified by the IDBSMPATH value. A
sample default path is C:\HLAPINT\REQ.

You can use this variable to specify multiple paths to search. For example:
SET IDBSMPATH=C:\;C:\HLAPINT\REQ\;

This causes the C:\ directory to be searched first, followed by C:\HLAPINT\REQ.

Valid entries: Any valid file path qualifier. The last backslash (\) is optional.

Server Logging
The content of the server log produced by HLAPI/NT is similar to that of one produced by
the HLAPI. Each HLAPI/NT logical session that has logging enabled has its various
transaction data, results, and messages logged as each transaction is completed on the host.
For more information about server logging, refer to the Tivoli Information Management for
z/OS Application Program Interface Guide.

Transaction Logging
Each started HLAPI/NT Tivoli Information Management for z/OS logical session has one
log file. The database profile parameter “IDBDataLogLevel” on page 156 (or the Windows
NT environment variable used as an override) specifies whether data logging is enabled. If
the parameter is not specified, then logging does not occur.

A logical session’s log entry on the host is identified by the HLAPILOG_ID PDB (refer to
the Tivoli Information Management for z/OS Application Program Interface Guide) passed
on an HL01 transaction. This identifier is repeated for each transaction recorded in the
server log.

The client writes the transaction to the log file specified by the database profile parameter
“IDBLogFileNameActive” on page 156 until it reaches the size (in bytes) specified by the
database profile parameter “IDBLogFileSize” on page 156. If you do not specify a log file
name, the default name of IDB_LOG.ACT is used. The current log file is renamed to that
specified by the parameter “IDBLogFileNameOld” on page 156. The default name for this
parameter is IDB_LOG.OLD.

If an old log already exists it is deleted before the current log file is renamed. A new log file
is created.

If two sessions are started specifying the same log file, then the first session that opens the
log file has access to it, and the other session receives an error. When two sessions contend
with each other for write access to the same log file, the following rules are followed to
decide who can write to it.
¶ If the log file does not exist, then it is created and opened by the first session to ask for

it.
¶ If the log file already exists, then it is opened and new log entries are appended to it by

the first session.

Profile Search Path

160 Version 7.1

¶ If the log file is already open, then this is not the first session to request it, and logging
is not performed. The transaction continues to try to open the log until it reaches the
internal retry limit, or is successful in opening the log. If it reaches the retry limit, then
a return code and reason code are passed back in the HICA, indicating that logging was
tried until the internal retry limit was reached.

When both HLAPI/NT and HLAPI logging are turned on, you may see differences in the
PDBs that each one logs. The HLAPI/NT log shows any PDBs with a data length of zero.
However, because HLAPI/NT does not send zero length PDBs to the server, the HLAPI log
does not show any zero length PDBs. The HLAPI log also does not show the
SECURITY_ID, PASSWORD and DATABASE_PROFILE PDBs, because the HLAPI/NT
does not send them to the server.

HLAPI/NT Error Logging
When HLAPI/NT encounters an unexpected logic or system error, it automatically creates or
updates an error log file on the workstation’s startup (IPL) drive. This log file is always
written to the same place on your workstation, regardless of where the user application
started. Called the IDBPROBE.LOG, it is found in the \INFOAPI subdirectory
(\INFOAPI\IDBPROBE.LOG). If the \INFOAPI subdirectory does not already exist,
HLAPI/NT creates it before writing the file. It provides more information about errors than
can be returned in the HICA return and reason codes.

You can delete or rename the log file any time after it is created. If you do, HLAPI/NT
creates a new error log file if new error information must be recorded.

Transaction Logging

161Client Installation and User’s Guide

17.
H

L
A

P
I/N

T
P

ro
files,

V
ariab

les,
an

d
L

o
g

g
in

g

HLAPI/NT Error Logging

162 Version 7.1

The HLAPI/NT Requester

The HLAPI/NT requester is a program that must be running on the workstation before any
HLAPI/NT activity can occur.

Starting the Requester
The requester program is typically started by including its icon in the STARTUP group on
the Windows NT system. An optional system profile name is passed as a parameter when
starting the HLAPI/NT requester program. Any valid file name can be specified for the
system profile name.

A sample system profile is copied to your workstation when the HLAPI/NT is installed.
Look for SYSTEM.PRO in the SAMPLE subdirectory in the directory where HLAPI/NT is
installed.

To start the HLAPI/NT, copy the requester’s icon to the STARTUP group. If you choose to
pass a system profile to the requester, open the PROPERTIES window for the requester’s
icon and type
IDBREQ [/P profile_file_name]SET IDBSMPATH=C:\;C:\HLAPINT\REQ\;

in the Command Line: field.

The command line parameters /P and the profile_file_name are optional. If you do not
specify a file, default values are taken as specified in the system profile keyword list. The
profile_file_name is preceded by a slash (/) followed by an uppercase or lowercase letter P.
Separate the /P and the file name by at least one space.

The requester starts with a window that shows standard Tivoli copyright information. Select
OK (or wait 15 seconds) and another window briefly appears to indicate that the requester is
running. This window is the requester run time window. It minimizes to an icon if there are
no errors starting the requester.

Stopping the Requester
You end the requester program by pressing the EXIT button on the requester run time
window. A confirmation panel appears where you select OK to indicate that you want to exit
the program. This action starts a shutdown of the requester environment, ending all
conversations and freeing resources. If you select CANCEL from the confirmation panel,
your request to exit the program is dropped, and the requester continues to run.

18

163Client Installation and User’s Guide

18.
T

h
e

H
L

A
P

I/N
T

R
eq

u
ester

The requester program can also be closed by bringing the Task List window into focus and
closing the process running the requester. However, the preferred method is to use the
requester run time window.

Client user applications receive a requester not started return code (Return code=12, Reason
code=109) for all transaction requests that occur after the requester is closed or before it is
started.

Diagnosis of Some Common HLAPI/NT Problems
When attempting to diagnose unexpected results from your use of the HLAPI/NT, the Tivoli
Information Management for z/OS Diagnosis Guide can help you analyze Tivoli Information
Management for z/OS. Some common problems that can occur with the HLAPI/NT
specifically are discussed in this section.

Changing the Profile and Its Effect on Program Operation
Perhaps you made a change to your database profile variables and it seems that nothing has
changed in the way the program runs. For example, you change the setting for
IDBDataLogLevel in your profile. The expected result does not occur when you next use
the program. Check the following:

¶ Check your user application to determine which profile it uses to perform its task.
HLAPI/NT looks at the database profile and the system profile.

¶ Verify that no environment variable (as a profile override) takes precedence over the
setting in your database profile. In the current example, check the setting for this
variable in the System dialog box. The variable setting there overrides the profile.

You can use the Windows NT command SET to check current settings. If an override is
in effect, check the System dialog box or any .BAT file that you run to find the profile
override.

¶ Check the user application that you are running to see if it is setting the value of the
environment variable (and thus the override) directly.

¶ HLAPI/NT might be reading a different profile with the same name, but which is
located in a different directory from the profile you have changed. Use the Windows NT
command SET to check each directory listed in the IDBDBPath environment variable
for a file with the same name as the file that you are changing.

Data Conversion Problems
If you are getting return codes indicating there are problems pertaining to code set
translation, refer to “Data Conversion Characteristics” on page 168 to ensure the code set
translation tables are installed properly and the LOCPATH environment variable is properly
set.

Establishing a Conversation with the Host
If the server you are using is a RES or an MRES with APPC, the APPC Transaction
Scheduler (ASCH) on the MVS host system may be a source of failed connections. If you
are not able to establish as many total sessions on your workstations as you expect to, check
the CLASSADD command used to define the APPC class in the Transaction Scheduler that
you are using for HLAPI/NT. To increase the number of sessions, increase the MAX value
of the command, or define a separate class for your transaction program to run under.

Stopping the Requester

164 Version 7.1

If the server you are using is an MRES with TCP/IP or an MRES with APPC, the server
must be started before HLAPI/NT can access it.

Establishing Too Many APPC Conversations
If you attempt to establish too many concurrent conversations using either a RES or an
MRES with APPC, you may reach the system limits for APPC. Conversations you try to
establish after the limit is reached are suspended until an earlier one shuts down. To expand
the limit, update the APPC settings to the desired number.

Diagnosis of Some Common HLAPI/NT Problems

165Client Installation and User’s Guide

18.
T

h
e

H
L

A
P

I/N
T

R
eq

u
ester

Diagnosis of Some Common HLAPI/NT Problems

166 Version 7.1

HLAPI/NT Transactions

The work done by the HLAPI/NT takes place through the use of HLAPI transactions. For a
list of all the transactions that are available to the HLAPI/NT, see “Clients” on page 2. Also,
refer to the Tivoli Information Management for z/OS Application Program Interface Guide
for an explanation of each transaction. Because the MVS and Windows NT environments are
different, slight differences appear in the way the HLAPI/NT and the HLAPI use the same
transaction. This section explains some differences to consider.

Transaction Operating Modes
A user application can select from two forms of transaction processing: synchronous or
asynchronous. Users familiar with the Tivoli Information Management for z/OS Low Level
Application Programming Interface (LLAPI) know that it selects either all synchronous or
all asynchronous processing for Tivoli Information Management for z/OS database
transactions within a session. With the HLAPI/NT you can select synchronous or
asynchronous processing for a transaction at any time. This is also different from the
HLAPI, which does not support asynchronous processing.

Synchronous Processing
Synchronous processing forces your user application’s current thread to wait for a Tivoli
Information Management for z/OS transaction to finish before it can perform any other
work. The thread that submits the synchronous transaction does not receive control from the
IDBTransactionSubmit HLAPI/NT service call until the transaction ends. You choose this
mode of operation by coding a transaction type of IDB_SYNC (synchronous) on the
IDBTransactionSubmit HLAPI/NT service call. Transaction completion includes both
successful and unsuccessful outcomes.

You can implement the user application using the multitasking capabilities of Windows NT
and use the synchronous mode of transaction processing. By using multiple threads within
your application, one application thread can be dedicated to Tivoli Information Management
for z/OS transaction processing while others perform other application duties. In this case,
only the dedicated HLAPI/NT thread is blocked while the synchronous Tivoli Information
Management for z/OS transaction finishes. Meanwhile, the other application threads continue
to perform work.

CAUTION:

During synchronous processing, do not modify a HICA or PDB that you have
submitted until after the IDBTransactionSubmit service call returns to the calling
thread. Any changes to the HICA or its associated PDBs during transaction processing
may cause unpredictable results.

19

167Client Installation and User’s Guide

19.
H

L
A

P
I/N

T
Tran

sactio
n

s

Asynchronous Processing
Asynchronous processing enables your user application to submit a Tivoli Information
Management for z/OS transaction and then continue performing application-related work
while the submitted transaction finishes. After your application submits a transaction, control
is immediately returned from the IDBTransactionSubmit service call to the application.
Application processing and transaction processing occur concurrently. You choose this mode
of operation by coding a transaction type of IDB_ASYNC (asynchronous) on the
IDBTransactionSubmit HLAPI/NT service call.

After a transaction is submitted for asynchronous processing, your application must
determine when the transaction finishes. Use the IDBTransactionStatus HLAPI/NT service
call to do this. For every asynchronous transaction that returns an IDBRC_NOERR code
from IDBTransactionSubmit, you must call the IDBTransactionStatus function to
determine when the transaction ends or to change the transaction to a synchronous type.

Your user application can check for transaction completion either by polling the transaction
or by converting the asynchronous transaction to a synchronous transaction. Polling is
achieved by coding a transaction query type of IDB_CHECKFORCOMPLETION on the
IDBTransactionStatus service call. If the transaction is finished, an IDBTransactionStatus
of IDB_TCOMPLETE indicates completion. The data returned from an asynchronous
transaction is not stored in the HICA until the status value IDB_TCOMPLETE is returned
from an IDBTransactionStatus call. If the transaction is not finished, a status of
IDB_TINPROGRESS indicates the transaction has not finished processing.

However, when HLAPI/NT no longer needs the conversation between the requester and the
server to process a given transaction, the conversation is immediately free to be used by
another transaction. This way, processing can start on another transaction with a different
HICA using the same conversation, even before the IDBTransactionStatus call is performed
for the current HICA.

If you want your application to convert the asynchronous transaction into a synchronous
transaction, you can code a query type of IDB_WAITFORCOMPLETION on the
IDBTransactionStatus service call. With this option, control is not returned from the
IDBTransactionStatus service call until the transaction finishes. Transaction completion
includes both successful and unsuccessful completions.

CAUTION:

During asynchronous processing, do not modify a HICA or PDB that you have
submitted until after an IDBTransactionStatus service call returns the value of
IDB_TCOMPLETE to the calling process. Any changes to the HICA or its associated
PDBs during transaction processing may cause unpredictable results.

Data Conversion Characteristics
Windows NT uses the ASCII character set. MVS uses the EBCDIC character set. Thus, the
HLAPI/NT requester and server each use a different character set, and character data
exchanged between the host system and workstation requires conversion for the data to be
useful in both environments.

HLAPI/NT converts the data at the workstation using the ICONV routine supplied by
VisualAge for C++ for Windows. This routine is used internally by HLAPI/NT, so you are

Transaction Operating Modes

168 Version 7.1

not required to have VisualAge for C++ for Windows installed in order to use HLAPI/NT.
The ICONV routine allows you to create your own translation tables. More detailed
information can be found in the VisualAge for C++ Programming Guide and VisualAge for
C++ User’s Guide.

The environment variable LOCPATH must be set to point to the directory that contains the
\ICONV and \UCONVTAB subdirectories. For example,

LOCPATH=X:\INFOAPI\LOCALE

where the subdirectories X:\INFOAPI\LOCALE\ICONV and
X:\INFOAPI\LOCALE\UCONVTAB are located.

The \ICONV subdirectory contains ICONV.LST, UCSTBL.DLL, and UTF-8.DLL. The
ICONV.LST has one line per conversion and two column entries per line. The first entry
contains the input/output character code set and the second entry is the name of the DLL
used to support the conversion.

The \UCONVTAB subdirectory contains the tables used for data conversion. The
HLAPI/NT installation will install all or some of the code set translation tables depending on
what option is selected during installation. If the HLAPI/NT Requester component is
selected, only the files needed to convert EBCDIC (IBM-037) to ASCII (IBM-850) are
installed. If the HLAPI/NT Toolkit component is selected, all translation tables that are
shipped with VisualAge for C++ for Windows are installed. The tables are IBM-xxx with no
file extension. They may be packaged and distributed, according to the VisualAge license
agreement.

Database Profile Parameters
The IDBCharCodeSet parameter specifies the code set the client application is using. If this
parameter is not specified, then the default code set 850 (ASCII U.S. English) is used.

The IDBServCharCodeSet parameter specifies the code set the server is using. This code
set is used to retrieve and store data in the Tivoli Information Management for z/OS
database. If this parameter is not specified, then the default code set 37 (EBCDIC U.S.
English) is used. See “Database Profile Keywords” on page 155 for more information about
the database profile parameters.

Possible Truncation of Mixed SBCS/DBCS Data
Some HLAPI/NT data fields, such as the external record identifier (user defined) and
privilege class, have a maximum defined size. The HLAPI/NT requester does not restrict
mixed data from being entered (up to the maximum size) when such data is presented to
HLAPI/NT for processing. During conversion from ASCII to EBCDIC, HLAPI/NT adds two
bytes of data to each contiguous group of DBCS characters. If any data, after being
converted between code sets by HLAPI/NT, is larger than its maximum defined field size,
then truncation occurs while maintaining proper DBCS truncation and padding.

Your application program must ensure that critical data is not lost because of DBCS
truncation. Be sure that enough spaces appear at the end of each line of freeform text, or at
the end of each data field, so that only spaces are truncated during data conversion.

Data Conversion Characteristics

169Client Installation and User’s Guide

19.
H

L
A

P
I/N

T
Tran

sactio
n

s

Differences between HLAPI/NT and HLAPI Transactions
The HLAPI/NT requester enables a user application in the Windows NT environment to use
many of the transactions available on the Tivoli Information Management for z/OS HLAPI.
Some differences do exist between transactions originating on the host and those originating
on the workstation.

One global consideration is that the HLAPI/NT does not support text data sets.

The HLAPI/NT also requires several PDBs not used by the HLAPI. They are:

SECURITY_ID --
your MVS userid (maximum length 8 characters)

PASSWORD --
your MVS password (maximum length 8 characters)

DATABASE_PROFILE --
your database profile, described in “Database Profile Keywords” on page 155

These PDBs are explained in “Initialize Tivoli Information Management for z/OS (HL01)”.

Initialize Tivoli Information Management for z/OS (HL01)
The Tivoli Information Management for z/OS HLAPI transaction HL01 requests a
connection to a database on a specific Tivoli Information Management for z/OS server. The
steps that occur when a user application requests an HL01 transaction are outlined in this
section.

1. The application author creates a database profile for the Tivoli Information Management
for z/OS database connection. Use a text editor to create the database profile. See
“HLAPI/NT Profiles, Environment Variables, and Data Logging” on page 153 for a list
of valid profile keywords. You should, but are not required to, create a unique database
profile for each database connection that the application uses.

Information obtained from the database profile includes the particular server you want
to establish a conversation with. If you are using a RES or an MRES with APPC, then
the database profile must include the symbolic destination name to use when
establishing the APPC conversation to the server. If you are using an MRES with
TCP/IP, then the database profile must include the host name or IP address of the MVS
host where the server resides and optionally, you can specify a service name associated
with the server. See “Database Profile Keywords” on page 155 for more information.

2. The user application initializes a HICA structure for a given logical database. It inserts
a DATABASE_PROFILE PDB onto the Control PDB chain to specify the name of the
database profile that is to be used for the database connection.

The database profile file name can be fully qualified (drive and subdirectory path), or
just the name can be specified. If only the name is specified, the current directory is
searched for the specified database profile. If it is not found in the current directory, the
drive and path are obtained from the IDBDBPath environment variable.

3. Create a SECURITY_ID PDB and a PASSWORD PDB, and any additional PDBs for
the HL01 transaction, and place them on the Control PDB chain.

4. The user application submits the transaction for processing by using the HLAPI/NT
service call IDBTransactionSubmit.

Differences between HLAPI/NT and HLAPI Transactions

170 Version 7.1

5. HLAPI/NT looks for the DATABASE_PROFILE PDB in the Control PDB chain in
the HICA. The database profile is read, and the specifications are recorded for use
throughout the specified logical Tivoli Information Management for z/OS session.

6. The server information is obtained from the database profile. If a symbolic destination
name is specified, and a conversation associated with the symbolic destination name is
not already established, it is established now. If a server host and optionally, a server
service name are specified, and a conversation associated with the server host and
service is not already established, it is established now. If the HLAPI/NT requester was
started with a system profile in which IDBSHARECMS was set to 1, an established
conversation is used for the session when the same server is specified, and the same
SECURITY_ID and PASSWORD are specified. Otherwise, a new conversation is
established.

7. The TIMEOUT_INTERVAL PDB applies to the HLAPI that is running on Tivoli
Information Management for z/OS. (Refer to the Tivoli Information Management for
z/OS Application Program Interface Guide for more information.) If you specify a
timeout interval, it determines the interval of the HLAPI running on the server.
HLAPI/NT processing time and communications time between the workstation and the
host are not considered for this timeout interval. Therefore, a transaction submitted from
the workstation may take longer to time out than this value indicates.

8. Code sets for workstation and host processing are established when an HL01
transaction is submitted. They remain in effect until an HL02 (terminate) transaction is
submitted for this particular HICA.

9. For information about logging, see “Transaction Logging” on page 160 and and “Server
Logging” on page 160.

10. The rest of the processing for the HL01 transaction is normal HLAPI/NT processing.

After you establish the main database connection with your first HL01 transaction, your
application can issue multiple HL01 transactions in the same conversation to the server that
is started. Each of these transactions creates a new database connection, and each of them
performs tasks without affecting the others. Each of these connections can also be stopped
without affecting any of the others. A graphic representation of this transaction nesting effect
looks like this:
HL01 (initialize main session, session 1)

HL01 (initialize session 2)
HL01 (initialize session 3)
HL02 (terminate session 2)
HL02 (terminate session 3)

HL02 (terminate session 1)

Sessions 2 and 3 run independently of each other, and ending either of them does not affect
session 1. Multiple logical sessions on the same conversation can affect each other, because
the requester waits on APPC or TCP/IP to send and receive a request before processing the
next request.

Logical Session and Process Ownership
When an HL01 transaction is performed from within a client application, all further
transactions associated with this HL01 transaction must be performed by the same process.
The HICA and PDB chains can be shared across threads within the same process. For
example, one thread in a client application can submit a transaction, and a different thread in
the same application can process the results.

Differences between HLAPI/NT and HLAPI Transactions

171Client Installation and User’s Guide

19.
H

L
A

P
I/N

T
Tran

sactio
n

s

Terminate Tivoli Information Management for z/OS (HL02)
The Tivoli Information Management for z/OS HLAPI transaction HL02 closes a database
connection on a specific Tivoli Information Management for z/OS server. The steps that
occur when your user application requests an HL02 transaction follow.

1. The user application creates the normal Control PDBs requesting a disconnect from the
logical database associated with the HICA and submits the transaction using the
IDBTransactionSubmit service call.

2. Normal HLAPI/NT transaction processing requests a database disconnect from the
corresponding Tivoli Information Management for z/OS server. See “Basic Transaction
Flow” on page 139 for a description of this processing.

3. The HLAPI/NT examines the resulting return code to determine that the disconnect
finished successfully. If this is the last active HL01 connection on this conversation, then
the conversation is closed. If this is not the last active HL01 connection, then the
conversation continues.

4. The appropriate return codes are set and control returns to the caller.

Retrieve Record (HL06)
The difference between this transaction on the HLAPI/NT and the HLAPI is:

¶ The optional PDB called TEXT_MEDIUM supports only one storage media type for
HLAPI/NT. The only type supported is type B. If you omit this value or specify any
character other than B, the HLAPI/NT assumes the value of B.

¶ If you want to retrieve freeform text as a continuous stream of data with carriage return
/ line feed characters (ASCII X'0D0A') after each text line, set the control PDB
TEXT_STREAM to YES. The Tivoli Information Management for z/OS Application
Program Interface Guide contains additional information about the TEXT_STREAM
PDB.

Create Record (HL08)
The difference between this transaction on the HLAPI/NT and the HLAPI is:

¶ Text data sets are not supported. The PDB_DATW field in the input PDBs should
always be specified with a nonzero value for text data.

¶ If you are creating a record that contains freeform text, and the input text contains either
line feed characters (ASCII X'0A') or carriage return / line feed characters (ASCII
X'0D0A'), set the control PDB TEXT_STREAM to YES. This will ensure that text
formatting information is stored in the record. When the text is retrieved, it will be
formatted exactly as it was entered. The Tivoli Information Management for z/OS
Application Program Interface Guide contains additional information about the
TEXT_STREAM PDB.

Update Record (HL09)
The difference between this transaction on the HLAPI/NT and the HLAPI is:

¶ Text data sets are not supported in HLAPI/NT. The PDB_DATW field in the input
PDBs should always be specified with a nonzero value for text data.

¶ If you are updating a record that contains freeform text, and the input text contains
either line feed characters (ASCII X'0A') or carriage return / line feed characters (ASCII
X'0D0A'), set the control PDB TEXT_STREAM to YES. This will ensure that text
formatting information is stored in the record. When the text is retrieved, it will be

Differences between HLAPI/NT and HLAPI Transactions

172 Version 7.1

formatted exactly as it was entered. The Tivoli Information Management for z/OS
Application Program Interface Guide contains additional information about the
TEXT_STREAM PDB.

Differences between HLAPI/NT and HLAPI Transactions

173Client Installation and User’s Guide

19.
H

L
A

P
I/N

T
Tran

sactio
n

s

Differences between HLAPI/NT and HLAPI Transactions

174 Version 7.1

Tips for Writing a HLAPI/NT Application

This chapter describes the steps typically involved in creating an application that uses the
Tivoli Information Management for z/OS HLAPI/NT. Every programmer has a certain
technique or style for designing applications, so think of this chapter as more of a set of
guidelines than as a set of rules. Refer to the sections about ″Tips for Writing An API
Application″ and ″Tailoring the APIs″ in the Tivoli Information Management for z/OS
Application Program Interface Guide for more information on this subject. Refer to
“Choosing a Server” on page 13 for more information on the Tivoli Information
Management for z/OS servers.

Determine What You Want Your Application to Do

The first step in creating an application is to determine exactly what you want it to do. After
you decide that, consider:

¶ Which Tivoli Information Management for z/OS functions (for example, create or
update) do you use?

¶ Which record types (for example, problem or change) do you use?

¶ Which fields (for example, status or assignee name) do you use?

¶ On which MVS system is your Tivoli Information Management for z/OS database
located?

¶ Do you need to connect to more than one Tivoli Information Management for z/OS
database?

¶ Are the databases on the same or different MVS systems?

¶ Which server do you use to access the databases?

¶ Do you want different Windows NT processes (or threads) to manage the different
database connections, or do you want to use just one?

¶ How much storage do you need in the host address space to handle requests from the
workstation?

¶ Do you want data logging enabled on the host? On the workstation?

¶ What data validation (if any) do you want to perform?

Converting C Programs

If you want to convert an existing C program that uses the HLAPI to a C program that uses
HLAPI/NT, here are some general instructions on how to do it.

20

175Client Installation and User’s Guide

20.
Tip

s
fo

r
W

ritin
g

a
H

L
A

P
I/N

T
A

p
p

licatio
n

¶ Make any general modifications to modify the program to run on Windows NT,
including fixing {} pairs that might have been mistranslated when the files were
transferred from one environment to another, and modifying the parameters passed to the
main procedure. This step is required if the download program you use to copy the code
from MVS to Windows NT translates the source improperly.

¶ Be sure you:
v Include IDBH.H header file. Do not include BLGUHLC header file.
v Include IDBECH.H if you want constant declarations of HLAPI/NT return codes.
v Do not include spc.h.

¶ Delete #pragmas used for the MVS program.

¶ Convert any data set method freeform text processing for HL06, HL08, and HL09 to use
buffer method freeform text processing.

¶ Convert HLAPI call syntax to HLAPI/NT format: use IDBTransactionSubmit and
IDBTransactionStatus. Do not define variables to point to the BLGYHLPI module. Do
not call the BLGYHLPI module.

¶ Add processing to create and initialize the three HLAPI/NT-specific control PDBs:
SECURITY_ID, PASSWORD, and DATABASE_PROFILE. Add them to the control
PDB linked list.

¶ Build a database profile for use with the HLAPI/NT sessions you will be starting (or
multiple database profiles if necessary).

¶ Review the error handling you use after the call to the HLAPI to see if changes are
required to handle the error codes specific to the HLAPI/NT.

¶ If you are using an MRES with APPC or a RES:

v Set up the CPIC side information entries to communicate with the particular MVS
host. Specify these names in the database profile.

v Set up APPC/MVS on the host to accept conversations from the workstations that
your application runs on.

v Set up the MRES with APPC or the RES on the host.

¶ If you are using an MRES with TCP/IP:

v Set up TCP/IP to communicate with the particular MVS host, and the particular
MRES you want to use. Specify the information in the database profile.

v Set up the MRES with TCP/IP on the particular MVS host you want to use.

Installation and Setup Summary for HLAPI/NT Sample Applications
1. If you are using an MRES with TCP/IP, install and configure TCP/IP to connect your

Windows NT workstation to your MVS host system. If you are using a RES or an
MRES with APPC, install and configure APPC/MVS and your APPC client software to
connect your Windows NT workstation to your MVS host system.

2. If you are using a RES, create a TP profile on the MVS host that brings up Tivoli
Information Management for z/OS and the Remote Environment. This must include the
appropriate BLX-SP load module. Refer to the Tivoli Information Management for z/OS
Planning and Installation Guide and Reference and Tivoli Information Management for
z/OS Operation and Maintenance Reference manuals, or “Configuring and Running a
Remote Environment Server (RES)” on page 25 in this manual, for more information.

176 Version 7.1

3. If you are using an MRES with APPC or an MRES with TCP/IP, create a cataloged
procedure with the JCL to start the MRES. If you are using an MRES with APPC, define
the MRES to APPC and VTAM. The MRES must be started before you attempt to
establish a conversation with it. See “Configuring and Running a Multiclient Remote
Environment Server (MRES) with APPC” on page 35 and “Configuring and Running a
Multiclient Remote Environment Server (MRES) with TCP/IP” on page 53 for additional
information.

4. Install Tivoli Information Management for z/OS including building a session parameters
member. You can also build the session parameter BLGSES00 at this time, which
enables you to skip one modification to the sample application.

5. Bring up Tivoli Information Management for z/OS as an interactive user using the
session parameters member that you want the sample application to use. This ensures
that Tivoli Information Management for z/OS can be brought up using that session
member.

6. Install HLAPI/NT. Refer to “Installing and Configuring HLAPI/NT” on page 143 for
information about how to do this.

7. Set up a database profile for use by the sample program. A sample database profile is
copied to your Windows NT workstation during the installation of HLAPI/NT. This
profile is in the SAMPLE subdirectory in whatever directory you chose for HLAPI/NT.
Look for DATABASE.PRO. To fit your particular system, if you are using TCP/IP, be
sure to modify the server host and server service names, or, if you are using APPC,
modify the symbolic destination name.

8. To complete the setup and run the sample program, you will need to perform additional
steps listed in “Steps Required to Run the HLAPI/NT C Sample Program” on page 184.

Installation and Setup Summary for HLAPI/NT Sample Applications

177Client Installation and User’s Guide

20.
Tip

s
fo

r
W

ritin
g

a
H

L
A

P
I/N

T
A

p
p

licatio
n

Installation and Setup Summary for HLAPI/NT Sample Applications

178 Version 7.1

HLAPI/NT C Language Application
Program

The HLAPI/NT interface enables you to access the HLAPI transactions from a Windows NT
C language application. A C language client application program communicates with the
Tivoli Information Management for z/OS system by creating a high-level application
communication area (HICA) and its related parameter data blocks (PDBs). The client
application program then submits the HICA transaction by making HLAPI/NT program
service calls. The HLAPI/NT program service routines exist on the user’s workstation as a
dynamic link library (DLL). When the calls are made by the client application program, the
supporting HLAPI/NT routines are loaded from the DLL and started.

Allocating HICAs and PDBs
To utilize HLAPI/NT program service calls, your user application must include a C
language-based header file (named IDBH.H) in its source file and specify IDBHLAPI.LIB
as one of the link libraries. Linking to IDBHLAPI.LIB gives you access to the HLAPI/NT
service calls. To use the service calls, your user application must:
¶ Allocate HICA and PDB structures using the types provided in the header file
¶ Include the code for the HLAPI/NT program service calls.

The HICA and PDB data structures that you submit to HLAPI/NT must exist for the entire
time that a transaction using them is being processed. Make sure that your program does not
accidentally deallocate them, such as by using local variables in a subroutine, then exiting
the subroutine while HLAPI/NT is processing your request.

The required header file IDBH.H provides the type definitions for both the HICA and PDB
data structures. See “Allocating and Initializing a HICA” on page 180 and “Allocating and
Initializing a PDB” on page 180 for more information.

Including the Header File in Your Program
Before using HLAPI/NT, you must first include the HLAPI/NT header file into your
program source. This file identifies the HLAPI/NT call prototypes and the various type
definitions and constants your program uses to communicate information to the
HLAPI/NT-connected system. To include the HLAPI/NT header file into your source file,
put the following line into your source file before you make any HLAPI/NT service calls
and before you define any HICAs or PDBs.

#include "IDBH.H" /* Include the HLAPI/NT header file. */

The header file is in the H subdirectory in the directory in which you installed HLAPI/NT.

21

179Client Installation and User’s Guide

21.
H

L
A

P
I/N

T
C

L
an

g
u

ag
e

A
p

p
licatio

n
P

ro
g

ram

Allocating and Initializing a HICA
Your application must allocate and initialize at least one HICA data structure to
communicate through the HLAPI/NT. The values you put in the control and input PDB
chains depend on the specific HLAPI/NT transaction you want to use. PDB allocation is
discussed in “Allocating and Initializing a PDB”. The way in which the user application
initializes the control and input PDB chains is covered in the Tivoli Information
Management for z/OS Application Program Interface Guide under the individual transaction
discussions. The following shows part of an application that illustrates the declaration and
partial initialization of a HICA structure for HLAPI/NT.

/* Allocate a HICA structure. */
static HICA MyHICA;

/* Initialize HICA eyecatcher to "HICA". */
memcpy(MyHICA.ACRO, HICAACRO_TEXT,

HICAACRO_MAX_SIZE);

/* Initialize the HICA fields to NULL */
MyHICA.ENVP = NULL; /* pointer to environment block */

MyHICA.OUTP = NULL; /* pointer to output pdb chain */

MyHICA.CTLP = NULL; /* pointer to control pdb chain */

MyHICA.INPP = NULL; /* pointer to input pdb chain */

MyHICA.MSGP = NULL; /* pointer to message pdb chain */

MyHICA.ERRP = NULL; /* pointer to error pdb chain */

MyHICA.LENG = sizeof(HICA); /* HICA data block length */

An alternate method of allocating the HICA structure using typical C language calls is:
pMyHICA = malloc(sizeof(HICA));

Addressing the elements of the HICA then follows the ’pMyHICA->’ (pointer) notation
rather than the ’MyHICA.’ (dot) notation.

A full description of the contents of a HICA appears in the Tivoli Information Management
for z/OS Application Program Interface Guide in the section about HLAPI structures.

Allocating and Initializing a PDB
Parameter information is communicated between the user application and the
HLAPI/NT-connected system through PDBs. PDBs can be several types: control, input,
output, error, or message. All PDBs of the same type are organized as a linked list. Each
linked list type is anchored to a specific field within a HICA. For a description of the HICA
fields, refer to the Tivoli Information Management for z/OS Application Program Interface
Guide.

Your user application must create any required control and input type PDBs before it
submits a transaction. Your user application should examine the output, error, and message
PDB chains that are returned when a transaction completes processing.

Part of an application follows. It illustrates the declaration and initialization of an input PDB
chain containing one PDB.

Allocating and Initializing a HICA

180 Version 7.1

Note: The PDB data structure has a variable length whose value can be very large. To
conserve storage, the example below shows allocation of the PDB with only as much
storage as it needs. The total storage in this case is the sum of the length of the data
fields all PDBs have, plus the length of the variable field at the end of the PDB. The
file IDBH.H contains the variable PDBFIX_SIZE to make this programming more
convenient.

/* Temporary PDB pointer variable. */
PPDB pTempPDB;

/* Allocate the PDB memory. */
pTempPDB = malloc(PDBFIX_SIZE + strlen("John Doe"));

/* Because this is the first PDB, init the NEXT PDB */
/* pointer to null. */
pTempPDB->Next = NULL;

/* Init the previous PDB pointer to null. */
pTempPDB->Prev = NULL;

/* set the PDB eyecatcher to "PDB " */
memcpy(pTempPDB->Acro, PDBACRO_TEXT,

PDBACRO_MAX_SIZE);

/* Set the parameter data item name to REPORTER_NAME */
memset(pTempPDB->Name, ' ', PDBNAME_MAX_SIZE);
memcpy(pTempPDB->Name, "REPORTER_NAME",

strlen("REPORTER_NAME"));

/* fill the parameter with the name John Doe */
memcpy(pTempPDB->Data, "John Doe",

strlen("John Doe"));

/* Perform data response validation. */
pTempPDB->Proc = 'V';

/* Initialize the PDB error code to a blank. */
pTempPDB->Code = ' ';

... and the rest of the PDB is initialized in similar ways ...

/* Place the new PDB on the INPUT PDB chain */
MyHICA.INPP = pTempPDB;

Binding Prototypes
The two entry points into HLAPI/NT are:
¶ “IDBTransactionSubmit” on page 182
¶ “IDBTransactionStatus” on page 182

Your application must allocate data structures conforming to the data types defined in the
IDBH.H header file. HLAPI/NT program options must be specified by using the constants
also supplied by the IDBH.H header file. Descriptions of the bindings and related data types
follow.

Note: Fields are specified differently for the HLAPI/NT HICA and PDB structures than for
those in the HLAPI. In the Windows NT client environment, field names are similar,
but they might have been extended to conform with standard C language naming
conventions. For more information about the HICA and PDBs, refer to the Tivoli
Information Management for z/OS Application Program Interface Guide.

Allocating and Initializing a PDB

181Client Installation and User’s Guide

21.
H

L
A

P
I/N

T
C

L
an

g
u

ag
e

A
p

p
licatio

n
P

ro
g

ram

IDBTransactionSubmit
The IDBTransactionSubmit program call is used to submit a transaction to the HLAPI/NT
system. In a C language program, the call looks like the following:
rc = IDBTransactionSubmit(pHICA, TranType);

The two variables that your application must provide are:

¶ pHICA

A pointer to a structure of the type HICA that contains the HICA that you want to
submit to HLAPI/NT

¶ TranType

Your selection of the type of transaction to perform. This variable has a type definition
of TRANTYPE_TYPE, and can be one of these two values:

IDB_SYNC --- Synchronous transaction processing
IDB_ASYNC -- Asynchronous transaction processing

HLAPI/NT returns a value from this function call that you should examine before looking at
the HICA return and reason codes. This return code (rc) is a variable of type
IDBRC_TYPE. The values that can be returned for it appear in “HLAPI Service Call
Return Codes” on page 367. This is an example of how this routine might be used:

#include "idbh.h"
#include <stdio.h>
#include "MYCODE.H"

main()
{
HICA MyHICA;
IDBRC_TYPE rc;

Initialize_HICA(&MyHICA); /* routine that sets up the data */
/* for an HL01 transaction. */

rc = IDBTransactionSubmit(&MyHICA,IDB_SYNC);
switch (rc)

{
case (IDBRC_NOERR) : Main_Loop(&MyHICA); /* The rest of your */

/* application program.*/
break;

case (IDBRC_XERR) : Process_Error(&MyHICA); /* A non-zero HICA */
/* return and reason code was */
/* detected. */

break;
case (IDBRC_BADHICA): printf("The HICA data structure is corrupt\n");

return(-1);
case (IDBRC_BADPARM): printf("Incorrect value passed on call\n");

return(-2);
case (IDBRC_SYSERR) : printf("HLAPI/NT encountered a System Error\n");

printf("Check the file IDBPROBE.LOG.\n");
return(-3);

}
}

IDBTransactionStatus
The IDBTransactionStatus program call is used to request the status of an asynchronous
transaction. It can also be used to convert an asynchronous transaction to a synchronous
transaction. In a C language program, the call looks like this:

Binding Prototypes

182 Version 7.1

rc = IDBTransactionStatus(pHICA, QueryType, pTStatus);

The three variables that your application must provide are:

¶ pHICA

A pointer to a structure of type HICA that contains the HICA whose status you want to
check.

¶ QueryType

This input value is of the type QUERYTYPE_TYPE, and has one of the following two
values:

v IDB_CHECKFORCOMPLETION

This value causes HLAPI/NT to check the current status of a transaction submitted
on the HICA provided in pHICA. This program call returns to your application
immediately, no matter what state the transaction is in.

v IDB_WAITFORCOMPLETION

This value causes HLAPI/NT to change the asynchronous transaction to a
synchronous transaction. This program call does not return to your application until
the transaction processing has finished.

¶ pTStatus

This is a pointer to a variable of type TRANSTATUS_TYPE. It can have one of the
following two values:

v IDB_TCOMPLETE

The transaction has completed processing. Any Output, Error, and Message PDBs
returned from the host are attached to the HICA and available for your program’s
use. The RETC and REAS fields of the HICA are set with values indicating the
result of the transaction (the Tivoli Information Management for z/OS Application
Program Interface Guide contains possible values).

v IDB_TINPROGRESS

The transaction is still in progress. No data has been returned on the HICA, and the
HICA is unavailable for use by your application.

HLAPI/NT returns a value from this function call which you should examine before looking
at the HICA return and reason codes. This return code (rc) is defined as a variable of type
IDBRC_TYPE. The values that can be returned for it appear in “HLAPI Service Call
Return Codes” on page 367. Here is an example of how this routine might be used:

#include "idbh.h"
#include <stdio.h>
#include "MYCODE.H"
main()
{
HICA MyHICA;
TRANSTATUS_TYPE MyStatus;
IDBRC_TYPE rc;

Initialize_HICA(&MyHICA); /* routine that sets up the data */
/* for an HL01 transaction. */

rc = IDBTransactionSubmit(&MyHICA,IDB_ASYNC); /* Use Asynchronous */
/* processing so this code has the */
/* ability to maintain a window */

if (rc!=IDBRC_NOERR) /* Detected a non-zero return code */

Binding Prototypes

183Client Installation and User’s Guide

21.
H

L
A

P
I/N

T
C

L
an

g
u

ag
e

A
p

p
licatio

n
P

ro
g

ram

Process_rc(rc,&MyHICA);
else

{
MyStatus = IDB_TINPROGESS; /* Start the while loop out right */
while(MyStatus == IDB_TINPROGRESS)

{
rc = IDBTransactionStatus(&MyHICA,

IDB_CHECKFORCOMPLETION,
&MyStatus); /* Keep checking this*/

/* until MyStatus == IDB_TCOMPLETE */
if (rc != IDBRC_NOERR)

Process_rc(rc,&MyHICA);
Process_Window(); /* Handle the window duties */

/* Note: If you do not have time-critical duties to perform in this */
/* loop, you may want to use the Sleep() routine, or some */
/* similar routine to prevent 100% CPU usage. */

}
}

.

.

.
}

Linking Your Program
Before using HLAPI/NT, you must link to IDBHLAPI.LIB. This is an import library that
resolves the external references to the HLAPI/NT service routines you use to perform
HLAPI/NT functions. Look at the BLM2SAMI.BAT or BLM2SAMM.BAT file in the
SAMPLE\C subdirectory of the directory in which you installed HLAPI/NT. It illustrates
one way to link IDBHLAPI.LIB with your application.

Sample HLAPI/NT C Program
A sample program BLM2SAM1.C is installed on your workstation during installation of
HLAPI/NT. Look for it in the directory SAMPLE\C, which is a subdirectory of the
directory where HLAPI/NT is installed. The sample shows the setup and start of HLAPI/NT.
It includes the header file IDBH.H. The sample C code performs the following functions:

1. Initialize the HLAPI by performing an HL01 transaction.

2. Obtain a system-assigned record ID and save it to use for the create transaction. (This
step is not mandatory because the HL08 transaction generates a record ID if one is not
specified).

3. Create a record using the previously obtained record ID.

4. Update several fields in the record just created.

5. Retrieve the record just created and updated, and print the fields just retrieved.

6. Search for all records created today by this program and print the search results.

7. End the HLAPI with an HL02 transaction.

8. Perform cleanup.

Steps Required to Run the HLAPI/NT C Sample Program
1. Perform the steps described in “Installation and Setup Summary for HLAPI/NT Sample

Applications” on page 176.

Binding Prototypes

184 Version 7.1

2. Modify the file BLM2SAM1.C. You may want to back up BLM2SAM1.C before
making any changes to it. This program is in the SAMPLE\C subdirectory in the
directory you chose for HLAPI/NT.

¶ Find the SESSMBR #define near the beginning of BLM2SAM1. Change the value
of this #define to the name of the session parameters member you want to use. If
you want to use BLGSES00, no changes are required.

¶ Find the PRIVCLAS #define. Change the value of this #define to the name of the
privilege class to be used on the HL01 (initialize) transaction. This privilege class
must be in the database defined in your chosen session parameters member. The
privilege class must have authority to display, create, and update problem records.

If you want to use MASTER privilege class, no changes are required.

¶ Find the APPLID #define. Change the value of this #define to the name of the
application ID to be used on the HL01 (initialize) transaction. The value you choose
must be defined as an eligible user in the privilege class you use.

¶ Find the SECID and PASSWORD #defines. Put in the appropriate values for the
security ID and password for the ID you want to use on the MVS system.

¶ Find the DBPROF #define. Use the name of the database profile or the sample
profile shipped with HLAPI/NT (DATABASE.PRO).

The database profile must be in the subdirectory where the sample program resides
or in the path defined on your system in the IDBDBPATH variable. See
“IDBDBPATH” on page 159 for more information about this variable.

3. To compile and link BLM2SAM1.C using VisualAge for C++ for Windows, run
BLM2SAMI.BAT or to compile and link using Microsoft Visual C++, run
BLM2SAMM.BAT. First, verify that the LIB environment variable contains the
directory that holds IDBHLAPI.LIB. Verify that the INCLUDE path contains the
directory that holds IDBH.H.

4. Start the HLAPI/NT requester. Refer to the “The HLAPI/NT Requester” on page 163 for
more information.

5. If you are running an MRES with TCP/IP, be sure that TCP/IP is running. If you are
running a RES or an MRES with APPC, be sure that your APPC server is running.

6. Run the program BLM2SAM1.

Sample HLAPI/NT C Program

185Client Installation and User’s Guide

21.
H

L
A

P
I/N

T
C

L
an

g
u

ag
e

A
p

p
licatio

n
P

ro
g

ram

Sample HLAPI/NT C Program

186 Version 7.1

Introduction to HLAPI/CICS

Application programmers can develop CICS applications that issue Tivoli Information
Management for z/OS HLAPI calls for any Tivoli Information Management for z/OS
database. You can do this by using the Tivoli Information Management for z/OS High-Level
Application Program Interface Client for CICS (HLAPI/CICS or client), a remote
environment client that Tivoli Information Management for z/OS supports. This client does
not extend the CICS function set; however, it does enable CICS transactions to retrieve and
update Tivoli Information Management for z/OS data, just as the existing Tivoli Information
Management for z/OS programs do. The HLAPI/CICS client can connect to either Tivoli
Information Management for z/OS server that supports APPC.

HLAPI/CICS Overview
HLAPI/CICS is the client interface for Tivoli Information Management for z/OS that enables
the CICS programmer to access and update data in the Tivoli Information Management for
z/OS database through a Tivoli Information Management for z/OS server. The HLAPI/CICS
uses the APPC protocol to access a Tivoli Information Management for z/OS server. This
allows a CICS client application program to access a server on the same machine or on a
different machine. The CICS client can even access multiple Tivoli Information Management
for z/OS servers on different machines.

With the HLAPI/CICS, multiple CICS clients can access the Tivoli Information Management
for z/OS data at the same time.

The HLAPI/CICS can use synchronous processing only, which requires the client application
program to submit Tivoli Information Management for z/OS work and wait for its
completion. The client application program cannot do any other work until the transaction
finishes.

The HLAPI CICS interface provides functions and transactions that are similar to those of
the HLAPI. The transactions available to an application using the HLAPI/CICS are listed in
Table 1 on page 3. For a complete description of all these transactions, refer to the Tivoli
Information Management for z/OS Application Program Interface Guide.

The HLAPI/CICS components are:
¶ CICS transactions that use CICS commands
¶ Installed as CICS transactions using CICS functions
¶ Managed as CICS transactions using CICS functions.

No calls or interfaces to system functions other than CICS functions are supported. The
CICS client does not require any interface or binding code because all the interfaces are
through CICS commands. You can write a client application program in any language
supported by both CICS and Tivoli Information Management for z/OS.

22

187Client Installation and User’s Guide

22.
In

tro
d

u
ctio

n
to

H
L

A
P

I/C
IC

S

The CICS client is made up of three pieces that interface to a Tivoli Information
Management for z/OS server:
¶ CICS interface
¶ Communication Manager (CM)
¶ Termination handler (TH)

Note: It is important to note that the Communication Manager (CM) component of
HLAPI/CICS is in no way related to the OS/2 Communications Manager/2 program.

The Communication Manager (CM) is a long running CICS transaction that manages an
APPC session connected with a Tivoli Information Management for z/OS server. Because
the CM maintains an active communication environment with the server, CICS
pseudoconversational design techniques are maintained. The CICS interface is established
with a CICS transaction performed by an EXEC LINK command from the client
application program. It locates the correct CM instance for the Tivoli Information
Management for z/OS environment and connects to it, making the connection to the server.
When the server returns the information to the CM, the CM in turn sends the information to
the CICS interface, which returns the data to the client application program and then ends.
The termination handler, a transaction called by the CICS ending process, closes all existing
conversations with the Tivoli Information Management for z/OS server, ensuring nothing is
left unfinished if CICS is stopped.

Server Overview
A Tivoli Information Management for z/OS server is an MVS/ESA transaction program that
handles all communication between an HLAPI/CICS application and any Tivoli Information
Management for z/OS databases that reside on the MVS system where the server is installed.
The Tivoli Information Management for z/OS server processes transactions from
HLAPI/CICS by converting calls into HLAPI high-level application communication areas
(HICAs) and parameter data blocks (PDBs). A CICS client application program cannot
directly access the layer of software that runs on the OS/390 host machine.

The HLAPI/CICS client can communicate with either a RES or an MRES with APPC. A
server must be set up on every MVS/ESA machine running a Tivoli Information
Management for z/OS database that an application using the HLAPI/CICS needs to access.

HLAPI/CICS Basic Transaction Flow
Figure 12 shows the organization of the functional components and the sequencing of a call
from a CICS transaction to a Tivoli Information Management for z/OS RES and back.

HLAPI/CICS Overview

188 Version 7.1

The CICS application calls a HLAPI/CICS function that passes the Tivoli Information
Management for z/OS HLAPI requests to the correct target system. The first call from the
CICS application to the HLAPI/CICS must be an HL01 transaction that causes the dynamic
invocation of the HLAPI/CICS Communication Manager (CM). The call passes information
to start a conversation with a Tivoli Information Management for z/OS server.

The HLAPI requests are in the form of Tivoli Information Management for z/OS HICAs and
PDBs (control and input) that the CICS client application program passes by means of a
HICA address. The HLAPI/CICS initiates an APPC conversation between the Tivoli
Information Management for z/OS server identified in the control PDBs and the
HLAPI/CICS Communication Manager. The Communication Manager anchors the CICS side
of the APPC conversation and identifies the Tivoli Information Management for z/OS server
it wants to communicate with. One Communication Manager is active for each combination
of terminal ID and user ID that is making Tivoli Information Management for z/OS HLAPI
calls to a Tivoli Information Management for z/OS server (Partner ID).

The HLAPI/CICS returns all Tivoli Information Management for z/OS HICA and PDB
blocks sent from the HLAPI to the calling CICS user application by means of HICA and
PDB addresses using shared memory. The calling CICS user application can then retrieve
this information and perform the required processing. The calling CICS user application is
responsible for freeing the memory it allocated for the HICA, control PDBs, and input
PDBs. The Communication Manager frees the memory it allocated for the output, error, and
message PDBs when the next transaction for a specific Tivoli Information Management for
z/OS environment is processed.

Remote
Environment
Server

High-
Level
Application
Program
Interface

Low-
Level
Application
Program
Interface

MVS Address Space

CICS Address Space

Com
Manager

APPC (LU6.2)

CICS
Interface

User
Transaction

EXEC CICS
LINK ...

Tivoli
Information
Management
for z/OS
Subtask

Figure 12. HLAPI/CICS Overview

HLAPI/CICS Basic Transaction Flow

189Client Installation and User’s Guide

22.
In

tro
d

u
ctio

n
to

H
L

A
P

I/C
IC

S

Requirements

Software
The software requirements for the HLAPI/CICS follow:

¶ OS/390 Version 2.5, or a later version

¶ CICS/ESA Version 4 Release 1 (5655–018) installed on the machine where the
HLAPI/CICS client resides. This release provides support for CPI-C.

¶ An APPC/APPN network link to a machine with a Tivoli Information Management for
z/OS server installed.

Note: The sample CICS application that is shipped by Tivoli requires VS COBOL II
Version 1.4 or Language Environment® (LE) to run. HLAPI/CICS itself does not
require VS COBOL II.

Hardware
The HLAPI/CICS client must be installed on a host system that can run CICS/ESA. If Tivoli
Information Management for z/OS and the HLAPI/CICS do not reside on the same MVS
system, you must have a communications link between the two systems.

Requirements

190 Version 7.1

|
|

Installing HLAPI/CICS and Customizing
CICS/ESA

This chapter describes the tasks required to enable your CICS installation for Tivoli
Information Management for z/OS HLAPI/CICS:

¶ Install HLAPI/CICS object files and link-edit the load modules

¶ Customize the CICS environment

¶ Online customizing of the CICS environment.

Installing HLAPI/CICS
To install HLAPI/CICS, use SMP/E to extract the object files from the distribution tape, and
link-edit them into the CICS load libraries. At the same time, you can install the sample
COBOL application. The FMID of HOYA201 identifies the component to be installed and
the load modules should be placed in SDFHLOAD for running as normal CICS
transactions. The modules are all re-entrant and reusable and should be linked
RMODE=ANY. The load modules have the following names:

¶ BLMYKCOM

¶ BLMYKINF

¶ BLMYKTRM

Note: Upgrades or patches that can be downloaded from a Tivoli Web site may be available
for HLAPI/CICS. Visit the Tivoli Information Management for z/OS Web site for
more information:

http://www.tivoli.com/infoman

Customizing CICS/ESA for HLAPI/CICS
The following areas of CICS require customization for HLAPI/CICS:

¶ System initialization table (DFHSIT)

¶ Destination control table (DFHDCT)

¶ ShutDown Program Load Table (DFHPLTSD)

¶ Startup JCL

¶ System definition data set

23

191Client Installation and User’s Guide

23.
In

stallin
g

H
L

A
P

I/C
IC

S
an

d
C

IC
S

/E
S

A

You can define, assemble, and link-edit more than one version of a table, and you can use a
suffix to distinguish them. Start with the version of the definition that you want for the
HLAPI/CICS definition and choose a new suffix to apply to all the tables that you have to
modify for this installation. In the examples, the value chosen is im for illustration purposes
only. You can choose any suffix.

Customizing the System Initialization Table (DFHSIT)
You can customize the DFHSIT in three ways:

¶ Add parameters to CICS startup procedure.

¶ At run time, use the DFHSIT startup override option.

¶ Alter the source code of the DFHSIT and reassemble.

Startup Procedure Parameter Changes
You can modify the parameter string on the EXEC statement of the JCL for the CICS
program (DFHSIP). Refer to the chapter about processing system initialization parameters in
the CICS/ESA System Definition Guide.

Using Overrides
To use the DFHSIT startup overrides, define a SYSIN data set in the startup JCL. You can
use these data sets to select the correct DFHSIT suffix for your purposes. Add ICS=YES,
PLTSD=IM, and DCT=IM to these overrides, if they are not already there.

Altering the DFHSIT Source Code
To alter the DFHSIT source, do the following tasks:

1. Locate the present source statements for DFHSIT, and copy them to another member
name. The examples in this book use the name DFHSITim.

2. Edit the DFHSITim file. Insert or modify the table (do not forget the nonblank character
in column 72):

3. Ensure that the value specified in the DFLTUSER parameter is a valid user ID on the
system where the Tivoli Information Management for z/OS server resides and is properly
authorized.

4. Assemble and link-edit the file using JCL as shown in the following figure.

SUFFIX=im, X
ICS=YES, X
PLTSD=im, X
DCT=im, X
INTTR=ON, X
USERTR=ON, X

//jobname JOB your-job-card
//ASMTAB EXEC PROC=DFHAUPLE,NAME=SDFHAUTH
//******
//* Make sure that the DSN= in the following statement addresses
//* the data set that you modified.
//ASSEM.SYSUT1 DD DSN=DFHSITim,DISP=SHR

Customizing CICS/ESA for HLAPI/CICS

192 Version 7.1

Customizing the Destination Control Table (DFHDCT)
For message output from HLAPI/CICS, set up a destination. Add an entry to the DCT
source code for destination BLML to receive all messages from the output of the
HLAPI/CICS system. Perform the following steps to alter the DCT source:

1. Locate the current copy of the DCT.

2. Copy the current copy of the DCT to another member name, such as DFHDCTim.

3. Edit DFHDCTim and make the following insertions:

4. Assemble and link-edit the file using JCL as shown in this example.

*
BLMLOG DFHDCT TYPE=SDSCI, FOR HLAPI/CICS APPLICATIONS X

BLKSIZE=136, X
BUFNO=1, X
DSCNAME=BLMLOG, X
RECFORM=VARUNB, X
RECSIZE=132, X
TYPEFLE=OUTPUT

*
BLML DFHDCT TYPE=EXTRA, DESTINATION USED BY HLAPI/CICS X

DESTID=BLML, X
DSCNAME=BLMLOG

//jobname JOB your-job-card
//ASMTAB EXEC PROC=DFHAUPLE,NAME=SDFHLOAD
//******
//* Make sure that the DSN= in the following statement addresses
//* the DCT data set that you modified.
//ASSEM.SYSUT1 DD DSN=DFHDCTim,DISP=SHR

Customizing CICS/ESA for HLAPI/CICS

193Client Installation and User’s Guide

23.
In

stallin
g

H
L

A
P

I/C
IC

S
an

d
C

IC
S

/E
S

A

Customizing the Shut-Down Program Load Table (DFHPLT)
For initiating the HLAPI/CICS termination handler at CICS shutdown, add an entry to the
DFHPLTSD source code for program BLMYKTRM.

1. Locate the current working copy of the PLT table.

2. Copy the current copy to a new member with the name DFHPLTim.

3. Edit the new member and add the DFHPLT ... PROGRAM=BLMYKTRM statement before the
DFHPLTProgram=DFHDELIM statement. Put the entry with the other ’First Pass’
programs as shown in the following example.

4. Assemble and link-edit the file using JCL as shown in this example.

*
DFHPLT TYPE=INITIAL, X

SUFFIX=im, X
STARTER=YES ALLOWS $ IN SUFFIX

* FIRST PASS SHUTDOWN PROGRAMS
* DFHPLT existing or other entries

DFHPLT TYPE=ENTRY,PROGRAM=BLMYKTRM TERMINATION HANDLER
* DFHPLT existing or other entries

DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM
* SECOND PASS SHUTDOWN PROGRAMS
*

DFHPLT TYPE=FINAL

//jobname JOB your-job-card
//ASMTAB EXEC PROC=DFHAUPLE,NAME=SDFHLOAD
//******
//* Make sure that the DSN= in the following statement addresses
//* the PLT data set that you modified.
//ASSEM.SYSUT1 DD DSN=DFHPLTim,DISP=SHR

Customizing CICS/ESA for HLAPI/CICS

194 Version 7.1

Customizing the Startup JCL
Include the data set name for HLAPI/CICS in the CICS startup JCL. Because a separate data
set is used for the destination BLML, a DD record, such as the following, is required:

Ensure the startup JCL you use references the data set with the overrides that specify the
version of the DFHSIT you want to use, and the other customization steps you performed in
this section.

Customizing the CICS/ESA System Definition Data Set - JCL
You can modify the CICS system definition (CSD) data set by using JCL, or you can
modify the data set online. The following example contains JCL that you can use to define
the programs, transactions, connections, sessions, partner, and groups necessary to use
HLAPI/CICS. It is a complete substitution for the CEDA DEFINE transactions defined in
“Customizing the CICS/ESA Systems Definition Data Set - Online” on page 196. You can
use either process alone, or parts from both processes. To use the example JCL, make the
following changes:

1. Modify the JOB statement to your site’s requirements.

¶ Ensure that the STEPLIB DD statement’s DSNAME parameter contains the
DFHCSDUP member.

¶ Verify that the DFHCSD DD statement references the CSD file used to start CICS.
//jobname JOB your jobcard
//* UPDATE THE CSD WITH THE VALUES FOR THE INFO CLIENT
//*
//CSDUP EXEC PGM=DFHCSDUP,REGION=4M
//STEPLIB DD DISP=SHR,DSN=CICS330.SDFHLOAD
//DFHCSD DD DISP=SHR,DSN=CICS330.DFHCSD
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

2. Leave the DEFINE PROGRAM statements as specified, except to modify the group
parameter to meet your site’s requirements.
*
DEFINE PROGRAM(BLMYKINF) GROUP(BLM610PP)

LANGUAGE(ASSEMBLER) DATALOCATION(ANY)
RES(YES)

*
DEFINE PROGRAM(BLMYKCOM) GROUP(BLM610PP)

LANGUAGE(ASSEMBLER) DATALOCATION(ANY)
RES(YES)

*
DEFINE PROGRAM(BLMYKTRM) GROUP(BLM610PP)

LANGUAGE(ASSEMBLER) DATALOCATION(ANY)
RES(YES)

3. Leave the DEFINE TRANSACTION statements as specified, except to modify the
group parameter to meet your site’s requirements.
*
DEFINE TRANSACTION(BLMK) GROUP(BLM610PC)

TASKDATALOC(ANY) SPURGE(YES)
PROGRAM(BLMYKCOM)

//BLMLOG DD DSN=data set name
or

//BLMLOG DD SYSOUT=class

Customizing CICS/ESA for HLAPI/CICS

195Client Installation and User’s Guide

23.
In

stallin
g

H
L

A
P

I/C
IC

S
an

d
C

IC
S

/E
S

A

*
DEFINE TRANSACTION(BLMT) GROUP(BLM610PC)

TASKDATALOC(ANY)
PROGRAM(BLMYKTRM)

4. You can modify the CONNECTION parameter on both the DEFINE CONNECTION
and the DEFINE SESSION, but they must both be modified to the same value.
*
DEFINE CONNECTION(BLM1) GROUP(BLM610TC)
*
DEFINE SESSION(BLM1) CONNECTION(BLM1) GROUP(BLM610TC)

5. The DEFINE PARTNER name must match the partner defined in the
CICS_Partner_ID PDB, as described in “CICS_Partner_ID PDB” on page 210. Specify
this same value in the PARTNER field in the sample program panel “HL01 - Starting
the Session” on page 217. This name must match the LU name defined for the Tivoli
Information Management for z/OS server. Set the NETNAME, NETWORK and
TPNAME values to those appropriate for your site. Ask your local APPC administrator
for the values.
*
*
DEFINE PARTNER(BLM1PART) GROUP(BLM610TC)

NETNAME(TBA)
NETWORK(NETLAND)
TPNAME(TBA)

6. Set the ADD GROUP statements to match what is correct for your site and what is
coded in the GROUP parameters in this example.
*
*
ADD GROUP(BLM610PP) LIST(BLM6LIST)
ADD GROUP(BLM610PC) LIST(BLM6LIST)
ADD GROUP(BLM610TC) LIST(BLM6LIST)
/*

Customizing the CICS/ESA Systems Definition Data Set - Online
The systems definition data set can also be updated for programs, transactions, connections,
sessions, and partners, using resource definition online (RDO). The following sections
explain the RDO process.

Program Entries
1. Start CICS by typing CEDA DEFINE PROGRAM as the transaction and pressing

Enter.

2. Make the changes on the panel as indicated to define program BLMYKINF field
values.

Field Value

PROGram ==> BLMYKINF

Group ==> BLM610PP

Language ==> Assembler

RESident ==> Yes

DAtalocation ==> ANY

Customizing CICS/ESA for HLAPI/CICS

196 Version 7.1

3. Press Enter.

4. Type CEDA DEFINE PROGRAM and press Enter again, this time to define the
Communication Manager values.

5. Make the changes on the panel as indicated to define program BLMYKCOM field
values.

Field Value

PROGram ==> BLMYKCOM

Group ==> BLM610PP

Language ==> Assembler

RESident ==> Yes

DAtalocation ==> ANY

DEF PROGRAM
OVERTYPE TO MODIFY OR PRESS ENTER TO EXECUTE CICS RELEASE = 0330
CEDA DEFine
PROGram ==> BLMKYINF
Group ==> BLM610PP
DEscription ==>
Language ==> Assembler CObol | Assembler | Le370 | C |

Pli | Rpg
RELoad ==> No No | Yes
RESident ==> Yes No | Yes
USAge ==> Normal Normal | Transient
USElpacopy ==> No No | Yes
Status ==> Enabled Enabled | Disabled
RSl : 00 0-24 | Public
Cedf ==> Yes Yes | No
DAtalocation ==> ANY Below | Any
EXECKey ==> User User | Cics
REMOTE ATTRIBUTES
REMOTESystem ==>

+ REMOTEName ==>

Customizing CICS/ESA for HLAPI/CICS

197Client Installation and User’s Guide

23.
In

stallin
g

H
L

A
P

I/C
IC

S
an

d
C

IC
S

/E
S

A

6. Press Enter.

7. Type CEDA DEFINE PROGRAM and press Enter again, this time to define the
termination handler values.

8. Make the changes on the panel as indicated to define program BLMYKTRM field
values.

Field Value

PROGram ==> BLMYKTRM

Group ==> BLM610PP

Language ==> Assembler

DAtalocation ==> ANY

DEF PROGRAM
OVERTYPE TO MODIFY OR PRESS ENTER TO EXECUTE CICS RELEASE = 0330
CEDA DEFine
PROGram ==> BLMKYCOM
Group ==> BLM610PP
DEscription ==>
Language ==> Assembler CObol | Assembler | Le370 | C |

Pli | Rpg
RELoad ==> No No | Yes
RESident ==> Yes No | Yes
USAge ==> Normal Normal | Transient
USElpacopy ==> No No | Yes
Status ==> Enabled Enabled | Disabled
RSl : 00 0-24 | Public
Cedf ==> Yes Yes | No
DAtalocation ==> ANY Below | Any
EXECKey ==> User User | Cics
REMOTE ATTRIBUTES
REMOTESystem ==>

+ REMOTEName ==>

Customizing CICS/ESA for HLAPI/CICS

198 Version 7.1

9. Press Enter.

10. Go on to the section on transaction entries.

Transaction Entries
Continuing from the DEFINE PROGRAM transaction perform the following steps to
define the transactions:

1. Type CEDA DEFINE TRANSACTION as the transaction.

2. Define the transaction for HLAPI/CICS Communication Manager (BLMK). Make the
changes on the panel as indicated to define transaction BLMK field values.

Field Value

TRansaction ==> BLMK

Group ==> BLM610PC

PROGram ==> BLMYKCOM

TASKDATALoc
==> Any

SPurge ==> Yes

Note: The BLMK transaction is an internal transaction. Do not try to start it directly
from a user terminal. Unpredictable results can occur.

DEF PROGRAM
OVERTYPE TO MODIFY OR PRESS ENTER TO EXECUTE CICS RELEASE = 0330
CEDA DEFine
PROGram ==> BLMKYTRM
Group ==> BLM610PP
DEscription ==>
Language ==> Assembler CObol | Assembler | Le370 | C |

Pli | Rpg
RELoad ==> No No | Yes
RESident ==> Yes No | Yes
USAge ==> Normal Normal | Transient
USElpacopy ==> No No | Yes
Status ==> Enabled Enabled | Disabled
RSl : 00 0-24 | Public
Cedf ==> Yes Yes | No
DAtalocation ==> ANY Below | Any
EXECKey ==> User User | Cics
REMOTE ATTRIBUTES
REMOTESystem ==>

+ REMOTEName ==>

Customizing CICS/ESA for HLAPI/CICS

199Client Installation and User’s Guide

23.
In

stallin
g

H
L

A
P

I/C
IC

S
an

d
C

IC
S

/E
S

A

Note: You might want to use TClass to limit HLAPI/CICS. Use PF7 or PF10 to scroll
backward, PF8 or PF11 to scroll forward.

3. Press Enter.

4. Repeat the action for the Termination handler transaction. Make the changes on the panel
as indicated to define transaction BLMT field values.

Field Value

Transaction ==> BLMT

Group ==> BLM610PC

PROGram ==> BLMYKTRM

DEF TRAN
OVERTYPE TO MODIFY OR PRESS ENTER TO EXECUTE CICS RELEASE = 0330
CEDA DEFine
TRansaction ==> BLMK
Group ==> BLM610PC
DEscription ==>
PROGram ==> BLMYKCOM
TWasize ==> 00000 0-32767
PROFile ==> DFHCICST
PArtitionset ==>
STatus ==> Enabled Enabled | Disabled
PRIMedsize : 00000 0-65520
TASKDATALoc ==> Any Below | Any
TASKDATAKey ==> User User | Cics
REMOTE ATTRIBUTES
DYnamic ==> No No | Yes
REMOTESystem ==>
REMOTEName ==>
TRProf ==>

+ Localq ==> No | Yes
S An object must be specified.

OVERTYPE TO MODIFY OR PRESS ENTER TO EXECUTE CICS RELEASE = 0330
CEDA DEFine

+ SCHEDULING
PRIOrity ==> 001 0-255
TClass ==> No No | 1-10
ALIASES
Alias ==>
TASKReq ==>
XTRanid ==>
TPName ==>

==>
XTPname ==>

==>
==>

RECOVERY
DTimout ==> No No | 1-6800
Indoubt ==> Backout Backout | Commit | Wait
RESTart ==> No No | Yes

+ SPurge ==> Yes No | Yes

Customizing CICS/ESA for HLAPI/CICS

200 Version 7.1

TASKDATALoc
==> Any

5. Press Enter.

6. Go to the section about connection entries.

Connection Entries
Continuing from the previous transaction, perform the following steps to define the
connections:

1. Type CEDA DEFINE CONNECTION as the transaction.

2. Define the transaction for HLAPI/CICS connections. Make the changes on the panel as
indicated to define field values.

Field Value

Connection ==> BLM1

Group ==> BLM610TC

DEF TRAN
OVERTYPE TO MODIFY OR PRESS ENTER TO EXECUTE CICS RELEASE = 0330
CEDA DEFine
TRansaction ==> BLMT
Group ==> BLM610PC
DEscription ==>
PROGram ==> BLMYKTRM
TWasize ==> 00000 0-32767
PROFile ==> DFHCICST
PArtitionset ==>
STatus ==> Enabled Enabled | Disabled
PRIMedsize : 00000 0-65520
TASKDATALoc ==> Any Below | Any
TASKDATAKey ==> User User | Cics
REMOTE ATTRIBUTES
DYnamic ==> No No | Yes
REMOTESystem ==>
REMOTEName ==>
TRProf ==>

+ Localq ==> No | Yes
S An object must be specified.

Customizing CICS/ESA for HLAPI/CICS

201Client Installation and User’s Guide

23.
In

stallin
g

H
L

A
P

I/C
IC

S
an

d
C

IC
S

/E
S

A

3. Press Enter.

4. Go on to Session Entries.

Session Entries
1. Type CEDA DEFINE SESSION as the transaction.

2. Make the changes in the panels as indicated below.

Field Value

Sessions ==> BLM1 (Name of session)

Group BLM610TC (The name of the group used in the connection entry)

Connection ==> BLM1 (Name of connection)

DEF CONNECTION
OVERTYPE TO MODIFY CICS RELEASE = 0330
CEDA DEFine
Connection ==> BLM1
Group ==> BLM610TC
DEscription ==>
CONNECTION IDENTIFIERS
Netname ==>
INDsys ==>
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
CONNECTION PROPERTIES
ACcessmethod ==> Vtam Vtam | IRc | INdirect | Xm
Protocol ==> APPC Appc | Lu61
SInglesess ==> No No | Yes
DAtastream ==> User User | 3270 | SCs | STrfield | Lms
RECordformat ==> U U | Vb
OPERATIONAL PROPERTIES

+ AUtoconnect ==> No No | Yes | All
S An object must be specified.

DEF CONNECTION
OVERTYPE TO MODIFY CICS RELEASE = 0330
CEDA DEFine

+ INService ==> Yes Yes | No
SECURITY
SEcurityname ==>
ATtachsec ==> Local Local | Identify | Verify | Persistent

| Mixidpe
BINDPassword ==> PASSWORD NOT SPECIFIED
BINDSecurity ==> No No | Yes

Customizing CICS/ESA for HLAPI/CICS

202 Version 7.1

MOdename Refer to CICS/ESA Version 3 Release 3 RDO under sessions modename
option

Protocol ==> APPC

MAximum ==> (00,00)

Refer to CICS/ESA Version 3 Release 3 RDO under sessions maximum
option.

SENDSize ==> Default to 4096 negotiated at CNOS time

RECEIVESize
==> Default to 4096 negotiated at CNOS time

DEF SESSION
OVERTYPE TO MODIFY OR PRESS ENTER TO EXECUTE CICS RELEASE = 0330
CEDA DEFine
Sessions ==> BLM1
Group ==> BLM610TC
DEscription ==>
SESSION IDENTIFIERS
Connection ==> BLM1
SESSName ==>
NETnameq ==>
MOdename ==>
SESSION PROPERTIES
Protocol ==> Appc Appc | Lu61
MAximum ==> 000 , 000 0-999
RECEIVEPfx ==>
RECEIVECount ==> 1-999
SENDPfx ==>
SENDCount ==> 1-999
SENDSize ==> 4096 1-30720

+ RECEIVESize ==> 4096 1-30720
S An object must be specified.

Customizing CICS/ESA for HLAPI/CICS

203Client Installation and User’s Guide

23.
In

stallin
g

H
L

A
P

I/C
IC

S
an

d
C

IC
S

/E
S

A

3. Press Enter to perform the transactions and go on to the section on Partner entries.

Partner Entries
Add a partner entry for each Tivoli Information Management for z/OS database system with
which this CICS/ESA exchanges information.

1. Type CEDA DEFINE PARTNER as the transaction.

2. Make the changes in the panels as indicated below.

Field Value

PARTNer ==> BLM1PART (Name of partner passed in CICS_PARTNER_ID PDB)

Group ==> BLM610TC (The name of the group used in connection)

DEF SESSION
OVERTYPE TO MODIFY OR PRESS ENTER TO EXECUTE CICS RELEASE = 0330
CEDA DEFine

+ SESSPriority ==> 000 0-255
Transaction :
OPERATOR DEFAULTS
OPERId :
OPERPriority : 000 0-255
OPERRsl : 0 0-24,...
OPERSecurity : 1 1-64,...
PRESET SECURITY
USERId ==>
OPERATIONAL PROPERTIES
Autoconnect ==> No No | Yes | All
INservice : No | Yes
Buildchain ==> Yes Yes | No
USERArealen ==> 000 0-255
IOarealen ==> 00000 , 00000 0-32767
RELreq ==> No No | Yes

+ DIscreq ==> No No | Yes
S An object must be specified.

DEF SESSION
OVERTYPE TO MODIFY CICS RELEASE = 0330
CEDA DEFine

+ NEPclass ==> 000 0-255
RECOVERY
RECOVOption ==> Sysdefault Sysdefault | Clearconv | Releasesess

| Uncondrel | None
RECOVNotify ==> None None | Message | Transaction

Customizing CICS/ESA for HLAPI/CICS

204 Version 7.1

NETName ==> Application ID of target system APPC/MVS (TBA in example)

NETWork ==> Netland

Tpname ==> The name assigned to the TP in the active APPC profile data set if
the server is a RES. If the server is an MRES, the value given for
TPNAME in the side information entry for the MRES in the active side
information file on the MVS system where the server resides. (TBA in
example)

3. Press Enter to perform the transactions.

Add the Groups to a List
Add the groups you defined into a single list. Perform the following steps.

1. Type CEDA ADD GROUP as the transaction.

2. Make the changes in the panels as indicated below, to add the program group to the list.

Field Value

Group ==> BLM610PP

List ==> BLM6LIST

DEF PARTNER
OVERTYPE TO MODIFY CICS RELEASE = 0330
CEDA DEFine
PARTNer ==> BLM1PART
Group ==> BLM610TC
Description ==> The side information used for CPI-C conversations
REMOTE LU NAME
NETName ==> TBA
NETWork ==> Netland
SESSION PROPERTIES
Profile ==> DFHCICSA
REMOTE TP NAME
Tpname ==> TBA

==>
Xtpname ==>

==>
==>

Customizing CICS/ESA for HLAPI/CICS

205Client Installation and User’s Guide

23.
In

stallin
g

H
L

A
P

I/C
IC

S
an

d
C

IC
S

/E
S

A

3. Press Enter to perform the transactions.

4. Type CEDA ADD GROUP again, this time to add the transaction group.

5. Make the changes in the panels as indicated below.

Field Value

Group ==> BLM610PC

List ==> BLM6LIST

6. Press Enter to perform the transactions.

7. Type CEDA ADD GROUP again, this time to add the connection group.

8. Make the changes in the panels as indicated below.

Field Value

Group ==> BLM610TC

List ==> BLM6LIST

ADD GROUP
OVERTYPE TO MODIFY
CEDA ADd
Group ==> BLM610PP
List ==> BLM6LIST
Before ==>
After ==>

ADD GROUP
OVERTYPE TO MODIFY
CEDA ADd
Group ==> BLM610PC
List ==> BLM6LIST
Before ==>
After ==>

Customizing CICS/ESA for HLAPI/CICS

206 Version 7.1

9. Press Enter to perform the transactions.

This finishes online customization to define the CICS Base.

ADD GROUP
OVERTYPE TO MODIFY
CEDA ADd
Group ==> BLM610TC
List ==> BLM6LIST
Before ==>
After ==>

Customizing CICS/ESA for HLAPI/CICS

207Client Installation and User’s Guide

23.
In

stallin
g

H
L

A
P

I/C
IC

S
an

d
C

IC
S

/E
S

A

Customizing CICS/ESA for HLAPI/CICS

208 Version 7.1

HLAPI/CICS Transaction Coding

To code CICS transactions that utilize the Tivoli Information Management for z/OS
HLAPI/CICS client, you must consider the following:

¶ The calls to the HLAPI/CICS are made by means of the EXEC CICS LINK
methodology, passing the address of the HICA as a parameter in the COMMAREA.

¶ Whether pseudoconversational or conversational mode transactions are being utilized, the
HICA and any control or input PDBs must be placed in shared storage that is addressed
by a value passed in the first four bytes of the COMMAREA.

¶ The input PDBs and control PDBs must reside in shared storage controlled by the client
application transactions.

¶ The output PDBs, error PDBs, and message PDBs reside in shared storage controlled by
HLAPI/CICS, and that storage should not be freed by the client application transactions.

¶ The return codes and reason codes generated by the HLAPI/CICS are returned in the
HICA return code and reason code fields.

¶ The storage management rules above take precedence over the rules in the Tivoli
Information Management for z/OS Application Program Interface Guide. The only time
that the output, error, and message pointers should be changed is before a HL01
transaction. At that time, the pointers should all be set to 0.

Linking to the HLAPI/CICS
The HLAPI/CICS is called by a CICS link function. The call looks similar to the following
COBOL fragment.

The HICA_ADDR must be an ordinary Tivoli Information Management for z/OS HICA
with the self-identifying text contained in it. If the data passed as the parameter cannot be

.

.
01 DFHCOMMAREA.

03 HICA_ADDR USAGE POINTER.
.
.
.
.
EXEC CICS LINK PROGRAM("BLMYKINF") COMMAREA(DFHCOMMAREA)

LENGTH(64);
.
.
.

24

209Client Installation and User’s Guide

24.
H

L
A

P
I/C

IC
S

Tran
sactio

n
C

o
d

in
g

validated as a HICA, then an abend occurs because there is no place to return the return
code and reason codes. Thus, the client application need never process any return codes
other than those in the HICA.

The PDBs are all addressed from the HICA, and the environment identifier is also contained
in the HICA. Use the same HICA to make a series of calls into the same Tivoli Information
Management for z/OS database. The transaction must allocate enough shared storage to
contain the HICA and PDB storage.

Control PDBs for HLAPI Transactions
The HLAPI/CICS supports many of the transactions that you can normally use with the
Tivoli Information Management for z/OS HLAPI. However, there are slight differences that
exist between the two, concerning the use of PDBs. The HLAPI/CICS uses the normal
HLAPI PDBs, plus some that the HLAPI alone does not use. This section describes the
PDBs for the HL01 call from HLAPI/CICS.

The following control PDBs are used only in the CICS environment that uses the
HLAPI/CICS functions. The additional PDBs supply information about the CICS UserID,
which is used to identify instances of the client Communication Manager. The Partner ID is
the name given the Tivoli Information Management for z/OS host in the CICS system’s
APPC tables. The other parameters are timeout values used to shutdown:

¶ Inactive sessions and the applications that started them but did not complete them

¶ The communications functions if the host has not responded in the stated amount of
time.

CICS_User_ID PDB
This PDB supplies a name that identifies which Communication Manager instance this CICS
transaction wants to use. The value you specify here must match one specified on the
DFLTUSER parameter in the DFHSIT table. The value must be a valid user ID on the
server system and properly authorized. Subsequent HL01 calls from the same CICS terminal
to the same partner can be forced to a different Communication Manager instance by
altering the value of this PDB. If the value is the same as in previous HL01 calls, the same
Communication Manager instance and conversation is used.

This PDB is required and has no default value.

CICS_Partner_ID PDB
The Partner ID is the name of the server, which is the same value as the partner parameter
of the CICS set session definition shown in “Partner Entries” on page 204. The partner ID is
the name of the APPC node containing the Tivoli Information Management for z/OS server
with the data that the client application actions address.

This PDB is required and has no default value.

CICS_CM_Time_Out_Value PDB
The CICS_CM_Time_Out_Value is the interval of time that the Communication Manager
waits for the CICS transaction program to submit its next transaction. When the interval
passes, all of the sessions that this instance of the Communication Manager is involved in
are canceled. This prevents a client application from keeping a session and its resources
unavailable to other client applications while he has suspended use of the terminal for

Linking to the HLAPI/CICS

210 Version 7.1

whatever reason. The value specified in the HL01 transaction that starts the Communication
Manager is used; values for this interval that are found in subsequent HL01s are ignored.

The value for this PDB should not be set too low. A value less than several minutes might
not be enough. When this interval passes, the client application must restart the entire
transaction, thus wasting the time necessary to establish the session in the first place.

This timeout interval and the CICS_Inter_Time_Out_Value interval are independent of
each other. This PDB is optional and has a default value of 99:59:59 (99 hours, 59 minutes,
and 59 seconds).

CICS_Inter_Time_Out_Value PDB
The CICS_Inter_Time_Out_Value is the interval of time that the HLAPI/CICS interface
waits for the Communication Manager to complete its task. If the Communication Manager
does not respond within the time interval, the client interface assumes that the host has
failed and is not available. All of the sessions that this instance of the Communication
Manager is involved in are canceled, the Communication Manager transaction ends, and the
CICS transaction is given a return and reason code that indicates that a timeout has
occurred.

This PDB is optional and has a default value of 29:59:59 (29 hours, 59 minutes, and 59
seconds).

As a matter of processing, do not set these values too low. If the server is a RES, it is not
unusual for an HL01 transaction to take a considerable amount of time as APPC sessions are
established, the RES is started, and the subtask interface is started. If the server is an MRES,
this time should be shorter.

Control PDBs for HLAPI Transactions

211Client Installation and User’s Guide

24.
H

L
A

P
I/C

IC
S

Tran
sactio

n
C

o
d

in
g

Control PDBs for HLAPI Transactions

212 Version 7.1

Running the Sample CICS Application

The Tivoli Information Management for z/OS product tape includes some sample
HLAPI/CICS programs for your use. After you perform the installation steps described in
“Installing HLAPI/CICS and Customizing CICS/ESA” on page 191 you can access the
samples. Note, however, that the sample application uses the Program Interface Data Table
(PIDT) and Program Interface Pattern Table (PIPT) tables that are shipped with Tivoli
Information Management for z/OS. This sample CICS application runs against the Tivoli
Information Management for z/OS problem record BLGYPRC. If you change this record
substantially from the way it is shipped, the sample application program might not run
correctly.

Sample Programs
The HLAPI/CICS sample programs are coded in VS COBOL II. If your installation does not
currently run VS COBOL II programs, ensure that your CICS startup JCL is modified to
link to the VS COBOL II libraries at execution time.

BLMYKMNU
The sample menu program (tranid BLMM).

The program displays a map with standard selections. The user chooses one by
entering a character in the selection field to the left of the description. When the
enter key is pressed, the program displays the selected transaction panel (which may
be overtyped) and sets the CICS transaction to process the panel to be called next.
There is a check to prevent ending with Tivoli Information Management for z/OS
logical sessions hanging.

BLMYKCTL
The sample control program.

This program serves a dual purpose. It processes both the HL01 and the HL02
panels.

After the HLAPI/CICS interface returns, the results are displayed on the terminal
and the next transaction is set to the menu transaction.

¶ tranid BLM1 generates HICA and PDBs for HL01

¶ tranid BLM2 generates HICA and PDBs for HL02

BLMYKCRE
The sample create program (tranid BLM8).

This program processes the HL08 panel that builds data to do the create record
transaction.

25

213Client Installation and User’s Guide

25.
R

u
n

n
in

g
th

e
S

am
p

le
C

IC
S

A
p

p
licatio

n

After the HLAPI/CICS interface returns, the results are displayed on the terminal
and the next transaction is set to the menu transaction.

BLMYKDEL
The sample delete program (tranid BLMD).

This program processes the HL13 panel that builds data to do the delete record
function.

After the HLAPI/CICS interface returns, the results are displayed on the terminal
and the next transaction is set to the menu transaction.

BLMYKRTV
The sample retrieve program (tranid BLM6).

This program processes the HL06 panel that builds data to do the retrieve record
transaction.

After the HLAPI/CICS interface returns, the results are displayed on the terminal as
unformatted data, and the next transaction is set to the menu transaction.

BLMYKMAP
The sample BMS Maps, cataloged as BLMMAPS.

This is the source for the maps required to compile and run the sample programs.

Installing the Sample Programs
The following must be defined in CICS for the sample system.

1. Programs written in VS COBOL II

¶ BLMYKMNU

¶ BLMYKCTL

¶ BLMYKCRE

¶ BLMYKDEL

¶ BLMYKRTV

2. Map set

¶ BLMYKMAP

3. Transactions

¶ BLMM

¶ BLM1

¶ BLM2

¶ BLM6

¶ BLM8

¶ BLMD

¶ BLME

Sample Programs

214 Version 7.1

Defining the Programs and Transactions to CICS
You can use the following sample job to define the sample programs and transactions to
CICS. This presumes that the CSD has been updated for the SESSION, CONNECTION
and PARTNER definitions. See “Customizing the CICS/ESA System Definition Data Set -
JCL” on page 195 and “Customizing the CICS/ESA Systems Definition Data Set - Online”
on page 196 for more information about these definitions. To modify the sample for your

location, follow these steps:

1. Change the JOB Statement to your site’s requirements.

2. Ensure that the STEPLIB DD statement’s DSNAME parameter contains the data set
that contains the DFHCSDUP program.

3. Verify that the DFHCSD DD statement addresses the CSD file that you use to start
CICS.

4. Leave the DEFINE PROGRAM and DEFINE TRANSACTION statements as defined,
except that you can change the GROUP parameter.

//jobname JOB your jobcard
//* UPDATE THE CSD
//*
//CSDUP EXEC PGM=DFHCSDUP,REGION=4M
//STEPLIB DD DISP=SHR,DSN=CICS330.SDFHLOAD
//DFHCSD DD DISP=SHR,DSN=CICS330.DFHCSD
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
* DEFINE PROGRAM(BLMYKMNU) GROUP(BLM610SP)

LANGUAGE(COBOL) DATALOCATION(ANY)
RES(YES)

*
DEFINE PROGRAM(BLMYKCTL) GROUP(BLM610SP)

LANGUAGE(COBOL) DATALOCATION(ANY)
RES(YES)

*
DEFINE PROGRAM(BLMYKRTV) GROUP(BLM610SP)

LANGUAGE(COBOL) DATALOCATION(ANY)
RES(YES)

*
DEFINE PROGRAM(BLMYKCRE) GROUP(BLM610SP)

LANGUAGE(COBOL) DATALOCATION(ANY)
RES(YES)

*
DEFINE PROGRAM(BLMYKDEL) GROUP(BLM610SP)

LANGUAGE(COBOL) DATALOCATION(ANY)
RES(YES)

*
DEFINE MAPSET(BLMMAPS) GROUP(BLM610SP)

RES(YES)
*
DEFINE TRANSACTION(BLMM) GROUP(BLM610ST)

TASKDATALOC(ANY) PROGRAM(BLMYKMNU)
*
DEFINE TRANSACTION(BLM1) GROUP(BLM610ST)

TASKDATALOC(ANY) PROGRAM(BLMYKCTL)
*
DEFINE TRANSACTION(BLM2) GROUP(BLM610ST)

TASKDATALOC(ANY) PROGRAM(BLMYKCTL)
*
DEFINE TRANSACTION(BLM6) GROUP(BLM610ST)

TASKDATALOC(ANY) PROGRAM(BLMYKRTV)
*
DEFINE TRANSACTION(BLM8) GROUP(BLM610ST)

TASKDATALOC(ANY) PROGRAM(BLMYKCRE)

Defining the Programs and Transactions to CICS

215Client Installation and User’s Guide

25.
R

u
n

n
in

g
th

e
S

am
p

le
C

IC
S

A
p

p
licatio

n

*
DEFINE TRANSACTION(BLMD) GROUP(BLM610ST)

TASKDATALOC(ANY) PROGRAM(BLMYKDEL)
*
DEFINE TRANSACTION(BLME) GROUP(BLM610ST)

TASKDATALOC(ANY) PROGRAM(BLMYKMNU)
*
ADD GROUP(BLM610SP) LIST(BLM6LIST)
ADD GROUP(BLM610ST) LIST(BLM6LIST)
/*

Starting the Sample Application
The following illustrates the process for starting the sample application. When Figure 13
appears, the sample program can be started.

Entering the BLMM Transaction
Clear the CICS/ESA logo screen and enter the transaction code for the sample transaction,
BLMM, to start the HLAPI/CICS client program and display the screen shown in Figure 14
on page 217.

***DFH2312 WELCOME TO CICS/ESA *** 14:08:44

******\ ******\ ******\ ******\ *\ ********\ ******\ ****\
********\ ******\ ********\ ********\ **\ ********\ ********\ ******\
****\ **\\\ ****\ ****\ **\ **\\\\\\\ ****\ ****\
**\ \\ **\ **\ \\ **\ \\ **\ **\ **\ \\ **\ **\
\ **\ **\ *****\ **\ ******\ *******\ ********\
\ **\ **\ *****\ **\ ******\ *******\ ********\
\ **\ **\ **\ **\ **\\\\\ **\ **\
**\ **\ **\ **\ **\ **\ **\ **\ **\ **\ **\ **\ **\
********\ ******\ ********\ ********\ **\ ********\ ********\ **\ **\
******\\ ******\ ******\\ ******\\ *\ ********\ ******\\ **\ **\
\\\\\\ \\\\\\ \\\\\\ \\\\\\ \ \\\\\\\\ \\\\\\ \\ \\

Figure 13. CICS/ESA Logo Panel

Defining the Programs and Transactions to CICS

216 Version 7.1

The Current Environment field on the menu contains a value that identifies the connection
with the Tivoli Information Management for z/OS server. This value is copied from the
environment field (HICAENVP). The return code and reason code fields on the menu
reflect the return code (HICARETC) and reason code (HICAREAS) in the HICA used with
the host.

If you place a nonblank character in the line that has the menu item to be processed, that
item is selected for processing. If more than one is selected, the first item on the menu is
chosen.

HL01 - Starting the Session
When you select Start Logical Conversation HL01 Transaction, the following panel
appears. The values represent pieces of information necessary to the HLAPI conversation
with the Tivoli Information Management for z/OS server. Each item is a control PDB to be
passed to the server. The last four PDBs are unique to the CICS environment. Of these four
PDBs, the User ID and Partner names are required, and the Interface Timeout and
Communication Manager Timeout are optional, both having the default values as shown.

CHOOSE AN OPTION BY PLACING ANY CHARACTER BEFORE IT

START LOGICAL CONVERSATION HL01 TRANSACTION

CREATE RECORD HL08 TRANSACTION

RETRIEVE RECORD HL06 TRANSACTION

DELETE RECORD HL13 TRANSACTION

END LOGICAL SESSION HL02 TRANSACTION
AN HL01 WILL BE REQUIRED TO RESTART.

END SAMPLE APPLICATION

CURRENT ENVIRONMENT 00000000

RETURN CODE 00000000 REASON CODE 00000000

PRESS ENTER TO PROCESS, CLEAR TO ABORT

Figure 14. HLAPI/CICS Sample Program - Main Menu

Starting the Sample Application

217Client Installation and User’s Guide

25.
R

u
n

n
in

g
th

e
S

am
p

le
C

IC
S

A
p

p
licatio

n

Modifying the HL01 Panel
You can change a series of defaults on the HL01 input screen. The Application ID, User
ID, and Partner field values should be changed to values appropriate for your installation.
The other values can be changed to match your specific Tivoli Information Management for
z/OS database setup, with the exception of the Transaction ID. Refer to the Tivoli
Information Management for z/OS Application Program Interface Guide for more
information. The last four control PDBs are unique to the CICS client.

CONTROL

TRANSACTION ID HL01

APPLICATION ID IBMUSER

DEFAULT OPTION NONE

PRIVILEGE CLASS MASTER

SESSION MEMBER BLGSES00

USER ID IBMUSER

PARTNER INFOPTNR

INTERFACE TIMEOUT HHMMSS 002959

COM MGR TIMEOUT HHMMSS 095050

PRESS ENTER TO PROCESS, CLEAR TO ABORT

Figure 15. HL01 Input Panel with Default Settings

CONTROL

TRANSACTION ID HL01

APPLICATION ID hanover

DEFAULT OPTION NONE

PRIVILEGE CLASS MASTER

SESSION MEMBER BLGSES00

USER ID hanover

PARTNER blm1part

INTERFACE TIMEOUT HHMMSS 002959

COM MGR TIMEOUT HHMMSS 095050

PRESS ENTER TO PROCESS, CLEAR TO ABORT

Figure 16. HL01 Input Panel Modified for Local Variables

HL01 - Starting the Session

218 Version 7.1

The HL01 transaction initializes the Tivoli Information Management for z/OS transaction,
the APPC session on the CICS machine, the connection to the Tivoli Information
Management for z/OS server, and the Tivoli Information Management for z/OS session. If
the server is a RES, an address space is started for the conversation. If the server is an
MRES, the request goes to a pre-started address space where it is assigned to the first
available Client Communication Processor. It takes time to perform all these functions, but
only at startup. After Communication Manager starts, it reuses what it can without
destroying the audit trail. The output of the transaction is updated Current Environment
and Return Code and Reason Code fields on the main menu.

HL01 Output - Main Menu
At this point, the conversation with the host is established and is available to run the
transaction types.

HL08 - Creating a Record
Select Create Record HL08 Transaction from the main menu to view the panel shown in
Figure 18 on page 220. Press Enter to add the data to the host Tivoli Information
Management for z/OS database.

The input PDBs in the following example include the internal symbol values.

CHOOSE AN OPTION BY PLACING ANY CHARACTER BEFORE IT

START LOGICAL CONVERSATION HL01 TRANSACTION

CREATE RECORD HL08 TRANSACTION

RETRIEVE RECORD HL06 TRANSACTION

DELETE RECORD HL13 TRANSACTION

END LOGICAL SESSION HL02 TRANSACTION
AN HL01 WILL BE REQUIRED TO RESTART.

END SAMPLE APPLICATION

CURRENT ENVIRONMENT 00000001

RETURN CODE 00000000 REASON CODE 00000000

PRESS ENTER TO PROCESS, CLEAR TO ABORT

Figure 17. HL01 Output Panel

HL01 - Starting the Session

219Client Installation and User’s Guide

25.
R

u
n

n
in

g
th

e
S

am
p

le
C

IC
S

A
p

p
licatio

n

HL08 Output
The output from the HL08 transaction is a panel with the output and message PDB
information, and the return code and reason code values.

CONTROL:
TRANSACTION ID HL08
DEFAULT OPTION NONE
PIDT NAME BLGYPRC
SEPARATOR CHAR ,
PRIVILEGE_CLASS MASTER
ALIAS_TABLE

INPUT:
S0CCF SAMPLE01
S0E0F THIS IS THE DESCRIPTION OF SAMPLE #01
S0B59 IBMUSER
S0B9B T50
S0BEE INITIAL

ENVIRONMENT ID 00000001

PRESS ENTER TO PROCESS, CLEAR TO ABORT

Figure 18. HL08 Input Panel

DISPLAYING THE OUTPUT OF INFORMATION/MANAGEMENT
SAMPLE01
BLG03058I Record SAMPLE01 was stored successfully.

PRESS ENTER TO CONTINUE RC= 00000000 REASON= 00000000
HL08 WAS SUCCESSFUL

Figure 19. HL08 Output Panel

HL08 - Creating a Record

220 Version 7.1

HL06 - Retrieving a Record
When you select Retrieve Record HL06 Transaction from the main menu to retrieve a
record, the input panel shown in Figure 20 appears. The default values retrieve the sample
record created in “HL08 - Creating a Record” on page 219.

HL06 Output
The output of the retrieve transaction displays just the actual data at one line per field,
without the field names.

CONTROL:
TRANSACTION ID HL06
RNID SYMBOL SAMPLE01
PIDT NAME BLGYPRR

ENVIRONMENT ID 00000001

PRESS ENTER TO PROCESS, CLEAR TO ABORT

Figure 20. HL06 Input Panel

DISPLAYING THE OUTPUT OF INFORMATION/MANAGEMENT
,
RECS=PROBLEM
IBMUSER
T50
INITIAL
THIS IS THE DESCRIPTION OF SAMPLE #01
MASTER
10/17/97
14:42
10/17/97
14:42
HANOVER

PRESS ENTER TO CONTINUE RC= 00000000 REASON= 00000000
HL06 WAS SUCCESS

Figure 21. HL06 Output Panel

HL06 - Retrieving a Record

221Client Installation and User’s Guide

25.
R

u
n

n
in

g
th

e
S

am
p

le
C

IC
S

A
p

p
licatio

n

HL13 - Deleting a Tivoli Information Management for z/OS Record
You can delete the data record created and retrieved previously. The default values provide
the information required to delete the record from the Tivoli Information Management for
z/OS database if you did not alter the create data.

HL13 Input

HL13 Output

CONTROL:
TRANSACTION ID HL13
RNID SYMBOL SAMPLE01

ENVIRONMENT ID 00000001

PRESS ENTER TO PROCESS, CLEAR TO ABORT

Figure 22. HL13 Input Panel

DISPLAYING THE OUTPUT OF INFORMATION/MANAGEMENT
HL13
SAMPLE01
BLG03034I The specified record SAMPLE01 was successfully deleted.

PRESS ENTER TO CONTINUE RC= 00000000 REASON= 00000000
HL13 WAS SUCCESS

Figure 23. HL13 Output Panel

HL13 - Deleting a Tivoli Information Management for z/OS Record

222 Version 7.1

HL02 - Ending the Logical Session
Selecting the End Logical Session HL02 Transaction closes the logical session associated
with the environment and the CICS client using that environment. However, if there are
other environments using the same APPC session, then an APPC use count is decremented
and just the environment in question is closed. When the use count is zero, the conversation
between the server and the client is closed.

HL02 Input

When the HL02 transaction finishes, the menu panel displays the new Current
Environment value, now zero, and the Return Code and Reason Code values.

Ending the Sample Application
This menu choice closes the sample program. Type a nonblank character next to the End
Sample Application field.

CONTROL:
TRANSACTION ID HL02

ENVIRONMENT ID 00000001

THIS WILL END THE LOGICAL SESSION
AN HL01 WILL BE REQUIRED TO RESTART

PRESS ENTER TO PROCESS, CLEAR TO ABORT

Figure 24. HL02 Input Panel

HL02 - Ending the Logical Session

223Client Installation and User’s Guide

25.
R

u
n

n
in

g
th

e
S

am
p

le
C

IC
S

A
p

p
licatio

n

Sample Closing Screen

Running Multiple Environments
You can run multiple environments at the same time using the sample program by doing the
following:

1. Before the HL01 for the second environment, reset the current environment field on the
main menu to all zeros.

2. Change the environment field on the main menu when you want to operate on a different
environment.

CHOOSE AN OPTION BY PLACING ANY CHARACTER BEFORE IT

START LOGICAL CONVERSATION HL01 TRANSACTION

CREATE RECORD HL08 TRANSACTION

RETRIEVE RECORD HL06 TRANSACTION

DELETE RECORD HL13 TRANSACTION

END LOGICAL SESSION HL02 TRANSACTION
AN HL01 WILL BE REQUIRED TO RESTART.

X END SAMPLE APPLICATION

CURRENT ENVIRONMENT 00000000

RETURN CODE 00000000 REASON CODE 00000000

PRESS ENTER TO PROCESS, CLEAR TO ABORT
LOGICAL SESSION HAS ENDED SUCCESSFULLY

Figure 25. End Sample Application Menu Choice

CHOOSE TO END TASK

THANKS FOR USING THE INFORMATION/MANAGEMENT SAMPLES

Ending the Sample Application

224 Version 7.1

Introduction to HLAPI/UNIX

Tivoli Information Management for z/OS supports remote access from an application
program that runs on AIX, HP-UX, and Sun Solaris. It does this through the High-Level
Application Program Interface (HLAPI) and one of the Tivoli Information Management for
z/OS HLAPI clients for UNIX (HLAPI/UNIX). The HLAPI/UNIX clients are:

¶ HLAPI/AIX

¶ HLAPI/HP

¶ HLAPI/Solaris.

Throughout the chapters dealing with these HLAPI/UNIX clients, the information and
instructions pertain to all three clients unless otherwise noted. Where there is a difference, it
is noted.

The HLAPI/UNIX provides remote access to Tivoli Information Management for z/OS data
and data manipulation services. Each one consists of three parts:

¶ A Tivoli Information Management for z/OS server, an MVS-based transaction program
that resides on the MVS host system. It provides the link between Tivoli Information
Management for z/OS and the HLAPI/UNIX system. These servers are the RES
(HLAPI/AIX), MRES with APPC (HLAPI/AIX), and MRES with TCP/IP (HLAPI/AIX,
HLAPI/HP, and HLAPI/Solaris).

¶ The Tivoli Information Management for z/OS HLAPI/UNIX requester (requester), a
UNIX-based transaction program that provides access to the HLAPI through a Tivoli
Information Management for z/OS server.

¶ The Tivoli Information Management for z/OS HLAPI/UNIX client interface (client
interface), a UNIX-based shared library and bindings for the C language. HLAPI/AIX
also provides a REXX HLAPI/AIX feature which provides access to the HLAPI/AIX
client interface from AIX REXX/6000 programs.

Like the HLAPI, the HLAPI/UNIX is a transaction-based application programming interface.
User application programs interact with Tivoli Information Management for z/OS from the
UNIX environment in basically the same way as they do from MVS using the HLAPI.
These remote environment user application programs can be thought of as the remote clients
to the Tivoli Information Management for z/OS server. The remote environment offers a
subset of HLAPI transactions, which are listed in Table 1 on page 3; the Tivoli Information
Management for z/OS Application Program Interface Guide contains additional information.

The HLAPI/UNIX enables application programmers to write applications for use in their
specific work environment. The task described in “A Typical Scenario” on page 226 is
typical of the problems that can be solved using HLAPI/UNIX.

26

225Client Installation and User’s Guide

26.
In

tro
d

u
ctio

n
to

H
L

A
P

I/U
N

IX

A Typical Scenario
Suppose an application programming group in an enterprise has written two AIX-based help
desk applications that interact with Tivoli Information Management for z/OS through
HLAPI/AIX. One is a problem management database application, and the other is a
configuration management database application. The databases reside on two MVS systems.
For efficiency, each help desk operator maintains two user IDs on each MVS system with
privilege classes as follows:

¶ Basic privilege class authority for queries sent through the configuration management
application

¶ A higher privilege class authority for creating records through the problem management
application.

The AIX system administrator has already provided the help desk operators with the
information necessary to install and start both application programs successfully.

1. The AIX administrator for the host RS/6000® machine starts the HLAPI/AIX requester
on the RS/6000 network.

2. A help desk operator logs on to another RS/6000 machine in the same network as the
one that is running the requester. The operator’s .xinitrc file starts the problem
management and the configuration management application programs.

3. When a problem call arrives, the operator uses the problem management application to
enter preliminary information and open a problem record in Tivoli Information
Management for z/OS through the HLAPI/AIX.

4. In another window on the same machine, the operator uses the configuration
management application to query Tivoli Information Management for z/OS through
HLAPI/AIX for information about the configuration of the caller.

5. Meanwhile, Tivoli Information Management for z/OS returns a problem record number
through HLAPI/AIX, and the operator gives the number to the caller and promises a
response to the problem report.

6. By this time, Tivoli Information Management for z/OS has returned results of the
configuration query through HLAPI/AIX. The operator investigates the problem and
updates the problem record if necessary.

The same Tivoli Information Management for z/OS functions that once required direct MVS
access are now performed on a RS/6000 machine.

The remaining sections of this chapter help you understand the interactions of the
HLAPI/UNIX and Tivoli Information Management for z/OS.

Server Overview
A Tivoli Information Management for z/OS server is an MVS/ESA transaction program that
handles communication between a HLAPI/UNIX requester and a Tivoli Information
Management for z/OS database that resides on the MVS system where the server is installed.
A UNIX client application program must use a HLAPI/UNIX client interface to access a
server through a HLAPI/UNIX requester. Any UNIX client interface can access any UNIX
requester. For example, an AIX client interface can access an HP requester. Only the AIX
requester, however, provides APPC communication support to a RES or MRES with APPC.
So although the client application chooses the server, the requester supporting that client

A Typical Scenario

226 Version 7.1

application must provide the appropriate communications support for the server. The client
application should use a requester that supports the protocol for the server it has chosen.

A server must be installed and available on every MVS/ESA machine with a Tivoli
Information Management for z/OS database that HLAPI/UNIX needs to access. See
“Configuring and Running a Remote Environment Server (RES)” on page 25, “Configuring
and Running a Multiclient Remote Environment Server (MRES) with APPC” on page 35,
and “Configuring and Running a Multiclient Remote Environment Server (MRES) with
TCP/IP” on page 53 for information about installing the servers.

Specific to AIX:
When deciding which server, RES, MRES with APPC, or MRES with TCP/IP, to
use, consider the communication protocol each one supports. Also consider the
security requirements of your application and how you will implement them.

Requester Overview
The requester receives information from the client application program through the client
interface and transfers the information to the appropriate server. It receives information from
the server and transfers the information back to the client application program through the
client interface. A requester can communicate with multiple servers and multiple client
interfaces. In addition, any HLAPI/UNIX requester can communicate with any
HLAPI/UNIX client interface. However, only an AIX requester can use APPC
communications to access a server (RES or MRES with APPC).

A HLAPI/UNIX requester includes the following components:

¶ A daemon program that runs on a requester host to serve as a communication link
between a server on MVS and a client interface on UNIX.

The communication link from the HLAPI/AIX requester to the server can use the APPC
and TCP/IP communication protocols. The communication link from the HLAPI/HP or
HLAPI/Solaris requester to the server must use the TCP/IP communication protocol.

A requester and a client interface communicate using TCP/IP sockets. Each requester can
communicate with multiple client interfaces on multiple hosts, and each client interface
can communicate with multiple requesters on multiple requester hosts. The requester
need not be located on the same requester host as a client interface that uses the
requester.

¶ An optional system profile that specifies parameters affecting the requester’s function.

You can run more than one requester on a single UNIX host. You can have AIX requesters
communicating with a RES, an MRES with APPC, and an MRES with TCP/IP all on a
single RS/6000 machine. You can have one or more than one HP requester communicating
with different MRESs with TCP/IP on a single HP Series 800 machine. You can direct
UNIX to start a HLAPI/UNIX requester when a client interface attempts to establish the
initial contact with the requester. This eliminates the need to start a requester before starting
a client application program. “Starting the Requester Automatically” on page 263 explains
how to configure the requester so that it starts automatically.

Server Overview

227Client Installation and User’s Guide

26.
In

tro
d

u
ctio

n
to

H
L

A
P

I/U
N

IX

Client Interface Overview
The HLAPI/UNIX client interface transfers information from the client application program
to the requester. It also transfers information it receives from the requester back to the client
application program. Any of the HLAPI/UNIX client interfaces can communicate with any
of the HLAPI/UNIX requesters. However, only an AIX requester can use APPC
communications to access a server (RES or MRES with APPC).

The HLAPI/UNIX client interfaces use C programming language bindings. A client interface
includes the following components:

¶ A C-language header file, idbh.h, which must be included by applications that use
HLAPI/UNIX services. This file contains the declarations for the functions and data
structures that application programs must use to communicate with Tivoli Information
Management for z/OS through HLAPI/UNIX.

¶ An optional C-language header file, idbech.h, which contains named constants
representing the HLAPI, LLAPI, and HLAPI/UNIX return and reason codes used by
HLAPI/UNIX.

¶ A shared runtime library, which application programs using HLAPI/UNIX services link
to dynamically.

Specific to AIX:
libidb.a

Specific to HP:
libidb.sl

Specific to Solaris:
libidb.so

This library contains the entry points and executable code for the client interface
functions.

¶ One or more database profiles, each of which specifies parameters that apply to entire
sequences of transactions.

A client interface communicates with a requester using TCP/IP protocol. A client interface
can communicate with multiple requesters.

HLAPI/AIX also provides a REXX HLAPI/AIX interface. The REXX HLAPI/AIX interface
enables you to access HLAPI/AIX functions from AIX REXX/6000 programs, in the same
manner as HLAPI/REXX on MVS enables you to access HLAPI functions from MVS
REXX programs. See “Using the REXX HLAPI/AIX Interface” on page 283 for more
information about REXX HLAPI/AIX.

Communication Overview
The client chooses the communication protocol that the requester uses to communicate with
the server on its behalf. The communication protocol is used for the entire transaction
sequence submitted by the client.

An AIX requester and a Tivoli Information Management for z/OS server can communicate
using APPC or TCP/IP protocols so an AIX requester can use a RES, MRES with APPC, or
MRES with TCP/IP. An HP or Solaris requester and a Tivoli Information Management for
z/OS server can communicate using TCP/IP protocol so they can use only an MRES with

Client Interface Overview

228 Version 7.1

TCP/IP. Each requester can communicate with multiple servers on multiple MVS hosts, and
each server can communicate with multiple requesters on multiple requester hosts. The
HLAPI/UNIX application developer chooses the communication protocol in the database
profile on the client host. The IDBSYMDESTNAME database profile keyword indicates
that the requester is to establish an APPC conversation on behalf of the UNIX client. The
IDBSERVERHOST database profile keyword indicates the client wants a TCP/IP
connection.

A requester and a client interface communicate using sockets. Each requester can
communicate with multiple client interfaces on multiple hosts, and each client interface can
communicate with multiple requesters on multiple hosts.

A requester need not be located on the same host as a client interface using that requester.

Basic Transaction Flow
A transaction sequence is a series of HLAPI/UNIX transactions that begins with an initialize
Tivoli Information Management for z/OS transaction (HL01), followed by other supported
transactions in any order and ends with a terminate Tivoli Information Management for z/OS
transaction (HL02). Client application programs submit transactions in a transaction
sequence, which is referred to as a logical session.

Each HLAPI/UNIX transaction request travels from a client application program on UNIX
to Tivoli Information Management for z/OS on MVS along the route shown in Figure 26.
This example illustrates AIX with a RES. The path would be similar for an AIX MRES with
APPC or a UNIX MRES with TCP/IP. With an MRES with TCP/IP, of course, the
communication protocol would be TCP/IP instead of APPC.

Remote
Environment
Server

High-
Level
Application
Program
Interface

Low-
Level
Application
Program
Interface

MVS Address Space

AIX Process

APPC (LU6.2)

RS/6000

AIX
Requester

TCP/IP

AIX Process

RS/6000

AIX
Client
Interface

Client
Application

Tivoli
Information
Management
for z/OS
Subtask

Figure 26. HLAPI/AIX Transaction Flow

Communication Overview

229Client Installation and User’s Guide

26.
In

tro
d

u
ctio

n
to

H
L

A
P

I/U
N

IX

The transaction reply travels from Tivoli Information Management for z/OS to the client
application along the same route in reverse.

The following steps describe the events that occur when a HLAPI/UNIX transaction is
processed. For simplicity, assume that the transaction is synchronous and that it is neither
the HL01 transaction nor the HL02 transaction of the transaction sequence.

On the UNIX host running the client application program
A client application program initiates a transaction by calling the HLAPI/UNIX function
IDBTransactionSubmit(). One of the arguments passed to this function is a HICA structure
and its control PDBs and input PDBs. Together, these structures represent a transaction
request. The HLAPI/UNIX client interface frees any output, error, and message PDBs it
allocated for the client application program during the previous transaction in the sequence.
The client interface translates the HICA and PDBs from the specified client code set to the
specified server code set. The client interface converts the data in the HICA and PDBs from
data structure format to byte stream format, then transmits the data via TCP/IP sockets to the
requester identified in the database profile specified in a control PDB.

On the UNIX host running the requester
The HLAPI/UNIX requester forwards the transaction request to the server on MVS over the
communication link established during the HL01 transaction that initiated the transaction
sequence. For more information about communication links between requesters and servers,
see “Defining the Client Interface to Requester Communication Link” on page 246.

On the MVS host running the server and Tivoli Information
Management for z/OS

When the transaction request arrives at the MVS host, the server submits the request to the
Tivoli Information Management for z/OS HLAPI. After the requested HLAPI transaction
finishes, the server transmits the HICA, the output, error, and message PDBs, and the
PDBCODE field of the input PDBs to the requester.

On the UNIX host running the requester
The requester forwards the transaction reply to the HLAPI/UNIX client interface that
submitted the transaction.

On the UNIX host running the client application program
The HLAPI/UNIX client interface translates the HICA and PDBs from the specified server
code set to the specified client code set. The order of the PDBs in each chain is maintained
from the server to the client interface. The client interface updates the HICA and PDBs of
the client application program with data received from the transaction. The transaction is
complete, and the client application program returns from the call to
IDBTransactionSubmit().

The flow of an asynchronous transaction is similar to the flow of a synchronous transaction.
In synchronous processing, the client application program returns from
IDBTransactionSubmit() after the entire transaction is complete. In asynchronous
processing, the client application program returns from IDBTransactionSubmit() after the
transaction is initiated, and the client application program must call IDBTransactionStatus()
to retrieve the transaction reply.

Basic Transaction Flow

230 Version 7.1

HLAPI/UNIX Configuration Considerations
The following information is helpful in configuring HLAPI/UNIX.

A UNIX client application program can manage multiple concurrent transaction sequences
through HLAPI/UNIX. Each HICA is associated with a specific transaction sequence. Each
transaction sequence is associated with a Tivoli Information Management for z/OS logical
session on MVS. Therefore, there is a one-to-one correspondence between HICAs and Tivoli
Information Management for z/OS logical sessions.

A client application program specifies the parameters listed below when it submits an HL01
transaction. Each of these parameters remains in effect for the duration of a transaction
sequence. If conversation sharing (described in “IDBSHARECMS” on page 253) is enabled,
the requester can assign multiple transaction sequences to the communication connection if
each transaction sequence uses the same values for the following parameters:

¶ Requester host and service name (IDBREQUESTERHOST and
IDBREQUESTERSERVICE)

The requester host and the requester service name are parameters in the database profile.
Together, they identify the requester host and TCP/IP service name or alias, which the
client interface uses to establish communication with the requester.

¶ For APPC: Symbolic destination name of the server (IDBSYMDESTNAME)

The server symbolic destination name is a parameter in the database profile. The
symbolic destination name specifies an APPC side information entry that the requester
uses to establish an APPC conversation with the server on MVS.

¶ For TCP/IP: IDBSERVERHOST and IDBSERVERSERVICE

The IDBSERVERHOST and IDBSERVERSERVICE keywords are specified in the
database profile. Together, they identify the MVS host and the MRES with TCP/IP
service name that the requester uses to establish a TCP/IP conversation with the server
on MVS.

¶ User ID for the MVS logon

The MVS user ID is specified in the SECURITY_ID control PDB for the HL01
transaction.

¶ User password for the MVS logon

The MVS password is specified on the PASSWORD control PDB for the HL01
transaction.

The requester assigns a new transaction sequence to an existing conversation if the following
conditions apply when the HL01 transaction is processed:

¶ Conversation sharing is enabled.

¶ The parameters of the conversation match the parameters specified by the client
application program for the transaction sequence (as just identified).

¶ Fewer than 10 transaction sequences are assigned to the conversation.

When the server is a RES, each APPC conversation between an AIX requester and the
server corresponds to an address space on the MVS host. The correspondence between
conversations and address spaces is one-to-one. Each address space manages one or more

HLAPI/UNIX Configuration Considerations

231Client Installation and User’s Guide

26.
In

tro
d

u
ctio

n
to

H
L

A
P

I/U
N

IX

Tivoli Information Management for z/OS logical sessions. The logical sessions are in a
one-to-one correspondence with the transaction sequences sharing the APPC conversation.

A server can perform transactions against multiple Tivoli Information Management for z/OS
databases within the same BLX-SP on the server’s MVS host. However, a logical session
can perform transactions against only one Tivoli Information Management for z/OS database.
When a server receives a valid HL01 transaction request, the server establishes a Tivoli
Information Management for z/OS logical session with the database specified in a control
PDB. The association between the logical session and the database lasts until the transaction
sequence ends.

Multiple transaction sequences can be routed through a single APPC conversation and its
associated Tivoli Information Management for z/OS logical session. Each session processes
transactions serially on a first-in, first-out (FIFO) basis. A transaction sequence cannot have
more than one transaction pending. All previously submitted transactions must be complete
before a client application program can submit another transaction in the same transaction
sequence. This also applies to conversations established using MRES with APPC or MRES
with TCP/IP.

Resources Needed for the Client Interface
When you write a client application program, consider that the HLAPI/UNIX client interface
uses the following types of resources:

¶ Processes

A client interface requires that the process ID and the effective user ID of a calling
process remain constant from call to call for a transaction sequence. This allows
HLAPI/UNIX to reaccess and release resources without compromising resources or data
on the UNIX system.

¶ Sockets

A client interface uses sockets from two address families: AF_UNIX and AF_INET. A
client interface uses fewer than four sockets to process an individual transaction. Of
these sockets, at most two are AF_UNIX sockets; at most three are AF_INET sockets.

The descriptor table of any process calling HLAPI/UNIX services must allow enough
entries for the sockets and files used by the client interface.

¶ Memory

The amount of memory that a client interface uses to process a transaction is difficult to
predict. The type of transactions that the client application calls and the database
contents determine the memory requirements of the client interface. The client
application program is responsible for allocating and freeing memory used for the HICA,
and the input and control PDBs. The client interface allocates and frees memory used
for output, error, and message PDBs, and other HLAPI/UNIX structures. In general,
search transactions are more memory-intensive than other transactions.

¶ Shared memory segments

A client interface creates and attaches a shared memory segment during the processing
of each transaction. The shared memory segment is detached normally before the
process calling HLAPI/UNIX services returns from the call. The shared memory
segment is deleted normally before the calling process returns with the results of the
transaction.

HLAPI/UNIX Configuration Considerations

232 Version 7.1

A process calling HLAPI/UNIX services must allow for the attachment of one shared
memory segment during the call.

Specific to AIX:
With AIX, a process cannot have more than 16 segments attached at any time.

Specific to HP:
With HP-UX, a shared memory segment size of 8 388 608 is required.

Specific to Solaris:
With Sun Solaris, a shared memory segment size of 8 388 608 is required.

¶ Files

A client interface accesses the following UNIX system files during transaction
processing:
v /etc/services
v /etc/hosts
v /etc/utmp

A client interface also accesses the following HLAPI/UNIX files during transaction
processing. The client interface does not delete these files except when replacing an old
archived file with a new archived file:
v Database profile
v Active trace log file
v Archived trace log file
v Probe log file (idbprobe.log)

Additional files created during installation of a client interface are listed in “Components
of HLAPI/AIX” on page 348, “Components of HLAPI/HP” on page 349, and
“Components of HLAPI/Solaris” on page 350. Most of these files, with the exception of
the files in the directory *⁄idbhlapi/examples, are used during transaction processing
(where * is the directory where the HLAPI/UNIX is installed).

The descriptor table of any process calling HLAPI/UNIX services must allow enough
entries for the sockets and files used by the client interface.

Resources Needed for the Requester
The HLAPI/UNIX requester uses the following types of resources:

¶ Logical units (LUs)

Specific to AIX:
For APPC communication between an AIX requester and server, at least one LU
on the requester host AIX machine is required. You may need more depending
on your APPC configuration and runtime demands.

¶ Files
v /etc/services
v /etc/hosts
v /etc/inittab

A requester also accesses a system profile, if one is specified, and the files listed for the
requester in “Components of HLAPI/AIX” on page 348, “Components of HLAPI/HP” on
page 349, and “Components of HLAPI/Solaris” on page 350.

Resources Needed for the Client Interface

233Client Installation and User’s Guide

26.
In

tro
d

u
ctio

n
to

H
L

A
P

I/U
N

IX

Hardware and Software Requirements
The HLAPI/UNIX clients consist of two parts:
¶ Requester
¶ Client interface.

Both the UNIX requester and client interface can be run on the same machine or on
different machines.

Hardware for HLAPI/UNIX
Specific to AIX:

To use the HLAPI/AIX client, you need an RS/6000 machine capable of running
AIX for RS/6000. Machines that run the requester require either APPC/APPN or
TCP/IP connectivity to the MVS host and TCP/IP connectivity to the machines that
run the client interface. Machines that run the client interface (this can be the same
machine as the requester) require TCP/IP connectivity to the machine that runs the
requester.

The amount of fixed disk space you need to install the HLAPI/AIX is:
¶ Requester, approximately 310 KB
¶ Client, approximately 2340 KB

Specific to HP:
To use the HLAPI/HP client, you need an HP Series 700 or 800 workstation capable
of running HP-UX Version 10 (up to and including Version 10.2). HP-UX includes
TCP/IP.

To use the optional HLAPI for Java provided with the client, you need one of the
following:
¶ HP 9000 Enterprise Business Server
¶ HP 9000 Workstation
¶ HP Visualize Workstation

The amount of fixed disk space you need to install the HLAPI/HP is:
¶ Requester, approximately 150 KB
¶ Client, approximately 2350 KB

Specific to Solaris:
To use the HLAPI/Solaris client, you need a Sun SPARCstation workstation capable
of running Solaris Version 2.3, Version 2.4, or Version 2.5, all of which include
TCP/IP.

The amount of fixed disk space you need to install the HLAPI/Solaris is:
¶ Requester, approximately 160 KB
¶ Client, approximately 375 KB

Software for HLAPI/UNIX
Specific to AIX:

Each RS/6000 machine that runs any part of the HLAPI/AIX requires the following
software:
¶ IBM AIX Version 4.2 (5765-C34), or a subsequent release.

Each RS/6000 machine that runs the requester options of HLAPI/AIX to
communicate with either a RES or an MRES with APPC requires the following
additional software:

Hardware and Software Requirements

234 Version 7.1

¶ IBM AIX SNA Server/6000 Version 2.1 (5765–247) or a subsequent release.

Each RS/6000 machine that runs REXX HLAPI/AIX requires the following
software:
¶ IBM AIX REXX/6000 (5764-057)

To use the optional HLAPI for JAVA provided with the client, you must have JDK
Version 1.1 or higher.

Specific to HP:
Each HP machine that runs any part of the HLAPI/HP requires the following
software:
¶ HP-UX Version 10 (up to and including Version 10.2)

To use the optional HLAPI for JAVA provided with the client, you must have JDK
Version 1.1 or higher and HP-UX Version 10.2.

Specific to Solaris:
Each Sun machine that runs any part of the HLAPI/Solaris requires the following
software:
¶ Solaris Version 2.5.1.

To use the optional HLAPI for JAVA provided with the client, you must have JDK
Version 1.1.6 or higher and Solaris Version 2.5.1.

Hardware and Software Requirements

235Client Installation and User’s Guide

26.
In

tro
d

u
ctio

n
to

H
L

A
P

I/U
N

IX

Hardware and Software Requirements

236 Version 7.1

Installing and Setting Up HLAPI/UNIX

Installing and Setting Up HLAPI/UNIX The two components of HLAPI/UNIX are packaged
as two separately installable options, the requester option and the client interface option. You
can install either option separately or both options together on a UNIX host.

Specific to AIX:
If you do not specify the commit option on installp when you install a HLAPI/AIX
option, you can also remove the option. This enables you to tailor the HLAPI/AIX
environment on all AIX hosts in your particular HLAPI/AIX configuration. Refer to
the AIX Installation Guide for information about installp.

Installing HLAPI/UNIX involves the following steps:
1. Plan your HLAPI/UNIX configuration.
2. Distribute the HLAPI/UNIX application package.
3. Install HLAPI/UNIX.
4. Configure HLAPI/UNIX and associated software.

If you need to remove a HLAPI/UNIX option, see “Removing HLAPI/UNIX Options” on
page 248.

Note: Upgrades or patches that can be downloaded from a Tivoli Web site may be available
for HLAPI/UNIX. Visit the Tivoli Information Management for z/OS Web site for
more information.

http://www.tivoli.com/infoman

Planning a HLAPI/UNIX Configuration
Decide which UNIX hosts will run your HLAPI/UNIX client application programs. You
need to install the client interface option on each of these UNIX hosts.

Decide which UNIX hosts will enable communication between client interfaces on UNIX
and Tivoli Information Management for z/OS servers on MVS. You must install the
requester option on each UNIX host that communicates with MVS.

Decide which communication protocol the client application programs will want the
requester to use.

Specific to AIX:
If an application program will use APPC, install SNA Server⁄6000 on each AIX
requester host that the application program will use.

27

237Client Installation and User’s Guide

27.
In

stallin
g

an
d

S
ettin

g
U

p
H

L
A

P
I/U

N
IX

Setting Up HLAPI/AIX
After you decide which combination of HLAPI/AIX options (requester, client interface, or
both) your installation requires on each AIX host in your HLAPI/AIX configuration, decide
how to distribute the HLAPI/AIX installp image to the AIX hosts.

The installp image of HLAPI/AIX is delivered on a CD-ROM.

You can use one of the following methods to distribute the HLAPI/AIX options to your AIX
hosts:

¶ Install the HLAPI/AIX options directly from a CD-ROM to the target AIX hosts.

¶ Copy the HLAPI/AIX options from a CD-ROM to an RS/6000 hard drive. If your AIX
systems do not use a distributed file system, copy the HLAPI/AIX options to the target
AIX hosts.

The methods are described in the following sections.

Distributing HLAPI/AIX from a CD-ROM
This method directly distributes the HLAPI/AIX installp image from a CD-ROM to an AIX
host. Do these steps on each AIX host that requires an HLAPI/AIX option:

1. Log on to the RS/6000 as the root user.

2. Insert the HLAPI/AIX installation CD-ROM into a CD-ROM drive.

3. Mount the CD-ROM on a file system, such as /cdrom on the AIX host.

4. Start the installp utility to read the installp image on the CD-ROM. See “Installing
Options from a CD-ROM” on page 239 for the command syntax.

Distributing HLAPI/AIX from a File System
This method copies the HLAPI/AIX installp image from a CD-ROM to a file system on a
source AIX host. The HLAPI/AIX installp image is then copied from the source AIX host
to target AIX hosts.

To copy the installp image from the HLAPI/AIX installation CD-ROM to a source AIX
host, do the following steps:

1. Log on to the RS/6000 as the root user.

2. Insert the HLAPI/AIX installation CD-ROM into a CD-ROM drive.

3. Mount the CD-ROM on a file system, such as /cdrom on the AIX host.

4. Create an AIX file. Use the bffcreate utility to copy the installp image. In addition to
copying the installp image, bffcreate creates a hidden file named .toc that contains a
table of contents for the installp file. The syntax of the bffcreate utility is:
bffcreate -qvd' <source>' -t'<target_directory>' '-X' idbhlapi

<source>
The full path name of the INSTALLP image on the mounted CD

<target_directory>
The path of the directory to contain the installp image.

For example, to copy the installp image from the CD-ROM drive /cdrom to the
directory ⁄usr⁄sys⁄inst.images, specify the command as follows:

Setting Up HLAPI/AIX

238 Version 7.1

bffcreate -qvd'⁄cdrom⁄hlapi⁄aix⁄idbhlapi.inst_images'
-t'⁄usr⁄sys⁄inst.images' '-X' idbhlapi

After this command finishes, the installp image exists in the directory with the name
⁄usr⁄sys⁄inst.images⁄idbhlapi.usr.1.0.9609.2700. The numeric part of the name varies with
the release level of the installp image. The .toc file is in this directory as well. Note that
the .toc file is a hidden file.

5. If your AIX hosts do not support a distributed file system that allows transparent sharing
of files, start the ftp utility to copy both the installp image and .toc file from the source
AIX host to the target AIX hosts.

Note: If you use a file transfer utility to distribute the .toc file and installp image, make
sure you perform the file transfer in binary mode to avoid changing their contents
during the transfer.

Installing HLAPI/AIX on the RS⁄6000 System
After distributing the HLAPI/AIX installp image and .toc file, install the appropriate
HLAPI/AIX options on the AIX hosts. The following two methods describe how to install
HLAPI/AIX options from a CD-ROM and from a file system. Use whichever method is
appropriate for your installation.

Note: You must log on as the root user to install software with the installp utility.

Installing Options from a CD-ROM
To install HLAPI/AIX options from an installp image on a CD-ROM, do the following
steps:

1. Insert the CD-ROM into the appropriate drive.

2. Mount the CD-ROM on a file system, such as /cdrom

3. Start the installp utility. Type the following command on an AIX command line:
installp -qaId'<source>' '-X' <option>

<source>
The full path name of the installp image on the mounted CD-ROM.

<option>
One of the following:

idbhlapi.cli
Installs only the client interface option

idbhlapi.req
Installs only the requester option

idbhlapi.all
Installs both the client interface option and the requester option

For example, if you want to install only the requester option, type the following
command:
installp -qaId'⁄cdrom⁄hlapi⁄aix⁄idbhlapi.inst_image' '-X' idbhlapi.req

4. You must set the environment variable TISDIR to /usr/lpp/idbhlapi by using either the
setenv TISDIR=/usr/lpp/idbhlapi command or the export TISDIR=/usr/lpp/idbhlapi
command. You may want to put the appropriate command into your login script.

Setting Up HLAPI/AIX

239Client Installation and User’s Guide

27.
In

stallin
g

an
d

S
ettin

g
U

p
H

L
A

P
I/U

N
IX

5. If you do not have Systems Network Architecture (SNA) installed on your requester
system and you are using MRES with TCP/IP, you must complete your requester
installation by typing the following command:
⁄usr⁄lpp⁄idbhlapi⁄idbinsta

Installing Options from a File System
To install HLAPI/AIX options from an installp image in a file system, start the installp
utility by typing the following command on an AIX command line:
installp -qaId'<source_directory>' '-X' <option>

<source_directory>
The complete path of the directory containing the installp image

<option>
One of the following:

idbhlapi.cli
Installs only the client interface option

idbhlapi.req
Installs only the requester option

idbhlapi.all
Installs both the client interface option and the requester option

For example, if the installp image is the file ⁄usr⁄sys⁄inst.images⁄idbhlapi.usr.1.0.9609.2700
and you want to install both the client interface and requester options, type the following
command:
installp -qaId'⁄usr⁄sys⁄inst.images' '-X' idbhlapi.all

If you do not have Systems Network Architecture (SNA) installed on your requester system
and you are using MRES with TCP/IP, you must complete your requester installation by
typing the following command:
⁄usr⁄lpp⁄idbhlapi⁄idbinsta

After you install the HLAPI/AIX options, delete the installp image and .toc file to save
space on the host file system.

Setting Up HLAPI/HP and HLAPI/Solaris
After you decide which combination of HLAPI/UNIX options (requester, client interface, or
both) your installation requires on each UNIX host in your HLAPI/HP or HLAPI/Solaris
configuration, decide how to distribute the archive format (tar) to the UNIX hosts.

The tar archive of HLAPI/UNIX is delivered on a CD-ROM.

To distribute the HLAPI/UNIX options to your UNIX hosts, copy the HLAPI/UNIX options
directly from the CD-ROM to the target UNIX hosts.

This is described in the following section.

Distributing HLAPI/HP and HLAPI/Solaris from CD-ROM
Do these steps on each UNIX host that requires a HLAPI/HP or HLAPI/Solaris option:

1. Log on on the UNIX system as the root user.

Setting Up HLAPI/AIX

240 Version 7.1

2. Create a directory where you want the HLAPI code installed.

3. Change to the directory you just created.

4. Insert the CD-ROM into the appropriate drive and mount on a file system, such as
/cdrom if necessary.

5. Copy the tar image from the appropriate directory (/cdrom/hlapi/hpux for HLAPI/HP or
/cdrom/hlapi/solaris for Solaris) on the CD-ROM file system.

Installing HLAPI/HP and HLAPI/Solaris
After copying the HLAPI/HP or HLAPI/Solaris tar archive, install the appropriate
HLAPI/HP or HLAPI/Solaris options on the respective host system.

1. Log on on the UNIX system as the root user.

2. Change to the directory where you copied the tar archive.

3. Extract the files from the archive. Type the following command on a UNIX command
line:
tar -xvf idbhlapi.tar

4. You must set the environment variable TISDIR to /usr/lpp/idbhlapi by using either the
setenv TISDIR=/usr/lpp/idbhlapi command or the export TISDIR=/usr/lpp/idbhlapi
command. You may want to put the appropriate command into your login script.

5. Run the IDB installation script. Type the following command on a UNIX command line:
.⁄idbhlapi⁄idbinstl

You must respond to the prompt and specify which option you want to install:

c Installs only the client interface option

r Installs only the requester option

b Installs both the client interface option and the requester option

Configuring HLAPI/UNIX and Associated Software
After you install HLAPI/UNIX options on your UNIX hosts, you must configure the
communication link between the requester host and a Tivoli Information Management for
z/OS server. You must also enable communication between the client hosts and requester
hosts. Then you must define database profiles to enable your client application programs to
use HLAPI/UNIX services. You may also need to create system profiles for your requester
hosts. The following sections tell you how to configure your communications software and
update various files. “HLAPI/UNIX Profiles, Environment Variables, and Data Logging” on
page 251 provides information about defining database and system profiles.

The configuration steps depend on whether client application programs will use a server that
supports APPC or TCP/IP. “Configuring HLAPI/UNIX for TCP⁄IP” on page 245 gives you
the steps for a TCP/IP configuration. The following section gives you the steps for an AIX
APPC configuration.

Setting Up Setting Up HLAPI/HP and HLAPI/Solaris

241Client Installation and User’s Guide

27.
In

stallin
g

an
d

S
ettin

g
U

p
H

L
A

P
I/U

N
IX

Configuring HLAPI/AIX for APPC
The machine to be configured must have AIX Version 4.2 and SNA Server/6000 Version 2.1
installed. It must also have a token-ring adapter. AIX SNA Server/6000 is IBM’s
implementation of APPN for AIX. Version 2.1 supports APPN network nodes, end nodes,
and low entry networking nodes.

For more detailed configuration information, refer to the following publications:
¶ AIX SNA Server/6000: User’s Guide
¶ AIX SNA Server/6000: Configuration Reference
¶ Multiplatform Configuration Guide (This guide is available through your IBM marketing

representative.)

SNA Server/6000 stores its configuration information within encoded profiles that are
accessed using the System Management Interface Tool (SMIT). SMIT presents panels on
which you enter your configuration values.

All of the values used in SNA Server/6000 are case-sensitive, so be sure to always enter
profile names and other configuration values in the same case throughout the SMIT
panels.

Within SMIT, SNA Server/6000 configuration panels can be accessed by selecting the
following series of panels:
--Communications Applications

--SNA Server/6000
--Configure SNA Profiles

All other panels referenced in this section are accessed from this base level within SMIT.

You must have the base configuration of AIX SNA Server/6000 installed and have system
group access to the system before you can start the SNA subsystem. You need system group
authority to make the changes described. Refer to the AIX SNA Server/6000: User’s Guide
for information on SNA Server/6000 installation.

A token ring data link connection (DLC) must already exist on the system. Other DLCs will
require link station profile definitions that would replace the token ring link station profile
described below.

You need to define:
¶ Control point profile
¶ Token ring link station profile
¶ Token ring SNA DLC profile
¶ Local LU (6.2) profile
¶ Side information profile.

Control Point Profile
SNA Server/6000 has one control point profile, node_cp, which is used to identify the local
node to the network. You must complete the control point profile before you can start SNA
and use APPC. Configuration of this profile is handled through initial node setup. The initial
node setup function also allows you to configure a single link station to provide a link to
one remote station. This gives you a single entry point to define the minimum amount of
information for SNA Server/6000 to operate.

Configuring HLAPI/AIX for APPC

242 Version 7.1

From within SMIT, initial node setup can be accessed on this panel:
--Initial Node Setup

The following figures show the panels that display using initial node setup. The first panel
requires you to select the primary link type you will use for this configuration. Select
token_ring.

Choose the DLC type you wish this configuration to token_ring
represent.

The second panel requests the information necessary to configure the control point, link
station, and SNA DLC profiles. Replace the words that appear in bold with the appropriate
values for your network configuration.

Control Point name = cp_name
Control Point type = appn_end_node # See note
Local network name = network_name
XID node ID = * # See note

Optional link station information:

Link station type = token_ring
Link station name = ls_profile_name
Calling link station? = yes
Link address = LAN_address

Note: By default, your machine is configured as an APPN end node. Change this value only
if you are certain that you are to function as an APPN network node.

Note: Using an XID node ID for configuration is not recommended.

Defining Side Information
From within SMIT, the Side Information panel can be accessed by following this series of
panels:
--Advanced Configuration

--Sessions
--LU 6.2

--LU 6.2 Side Information
--Add Profile

The following figure shows the Side Information panel. Replace the words that appear in
bold

Profile name = "symdest"
Local LU or Control Point alias = ""

Partner LU alias = ""
Fully qualified partner LU name = "network_name.imserver_lu"

Mode name = "mode"
Remote transaction program name (RTPN) = "tpname"
RTPN in hexadecimal = no
Comments = ""

symdest Declares the symbolic destination name to use on the workstation to locate a
server. Use this same symbolic destination name when you define your
database profile on the workstation.

network_name.imserver_lu
Specifies a partner LU that is defined in this same NDF file on a
DEFINE_PARTNER_LU statement. If the symbolic destination name is for
a RES, the partner LU must be one that is defined on the MVS system as

Configuring HLAPI/AIX for APPC

243Client Installation and User’s Guide

27.
In

stallin
g

an
d

S
ettin

g
U

p
H

L
A

P
I/U

N
IX

scheduled. If the symbolic destination name is for an MRES, the partner LU
must be one that is defined on the MVS system as nonscheduled.

network_name
Is the ID for the network the server’s LU is on.

imserver_lu Is the name of the server’s logical unit.

mode Specifies the name of a compiled log-on mode to use for the conversation.
The mode name must match the mode specified in the TP profile for a RES
or in the side information entry for an MRES. The log-on mode is an entry
in SYS1.VTAMLIB. See “Defining the Log-on Mode” on page 30 for
information on defining a mode.

tpname If the symbolic destination name represents a RES, this value must match
the name used for the TP profile on the MVS system where the RES resides.

If the symbolic destination name represents an MRES, this value must match
the value on the TPNAME parameter of the side information entry that
symdest maps to.

Creating a Local LU 6.2 Profile
You can also add the local LU 6.2 profile if you plan to use a local LU name that is
different from the local CP name. If you create a local LU name using a LU 6.2 local LU
profile, then the local LU alias field in that profile must be specified in the Local LU or
Control Point alias field in the side information profile. If no local LU alias is specified in
the side information profile, the local CP name is used as the local LU by default.

From within SMIT, the local LU panel can be accessed by following this series of panels:
--Advanced Configuration

--Sessions
--LU 6.2

--LU 6.2 Local LU

The following figure shows the Local LU profile panel. Replace the words that appear like
this.

Profile name = profile_name
Local LU name = locallu
Local LU alias = locallu
Local LU is dependent? = no

If yes,
Local LU address = 1
SSCP ID = *
Link Station Profile name = ""

Conversation Security Access List Profile name = ""

Verifying Configuration
After the profiles are created, they must be verified using either the command verifysna, or
in SMIT by following this hierarchy of panels:
--Advanced SNA Configuration

--Verify Configuration Profiles

Before profiles can be used by SNA and APPC, they must be verified with the update option
(either normal or dynamic, depending whether SNA is running). Verification ensures that
changes are correct and that no profiles are in conflict with each other. Profile additions,
changes, or deletions will not take effect until the profile database is verified and updated.

Configuring HLAPI/AIX for APPC

244 Version 7.1

Starting and Stopping APPC
APPC is part of the AIX SNA Server/6000 subsystem. You can use the following command
to test the status of the SNA subsystem:
sna -display global

or, for short,
sna -d g

If the SNA subsystem is not started, you can start it with the command:
sna -start sna

or, for short,
sna -s

SNA Server/6000 can be configured to accept incoming link activation requests from remote
stations automatically. This function, known as dynamic link station support, is configured
by default.

To stop the SNA subsystem, use this command:
sna -stop sna

Determining Values
¶ LU name

The LU name is specified in a Local LU 6.2 profile as the ″Local LU name″ parameter.

¶ Network name

The network name is specified in the Control Point profile, node_cp as the ″Local
network name″ parameter.

¶ Control Point (CP) name

The CP name is specified in the Control Point profile node_cp as the ″Control Point
name″ parameter.

¶ LAN address

The LAN address is hard-coded on the Token-Ring adapter in the AIX machine or is
over-ridden by a value called the “locally administered LAN address.” It is a 12-digit
hexadecimal value. You can find the LAN address by running the command lscfg -v.
The LAN address is specified by the Network Address parameter under the tok0
resource. This parameter will specify the locally administered address if there is one.

Configuring HLAPI/UNIX for TCP⁄IP
Update the file ⁄etc⁄services on a requester host to associate a service name or alias with
a TCP/IP port number of an MRES with TCP/IP server. You must specify a service name
and port number of each server host the requester needs to be able to connect to. The port
numbers must match those on the MVS host designated for the Tivoli Information
Management for z/OS MRES with TCP/IP servers. The general format of an entry in
⁄etc⁄services is:
<service> <port>⁄tcp <alias_list> #<comment>

<service>
The server service name

Configuring HLAPI/AIX for APPC

245Client Installation and User’s Guide

27.
In

stallin
g

an
d

S
ettin

g
U

p
H

L
A

P
I/U

N
IX

<port>
The server port number

<alias_list>
Alias definitions for the service

<comment>
Comment text that describes the service.

For example, to associate the default server service name (infoman) with the default server
port number (1451), you must place the following line in the file ⁄etc⁄services before you run
the HLAPI/UNIX:
infoman 1451⁄tcp #default HLAPI/UNIX requester and MRES server

The default service name and default port number are reserved for Tivoli Information
Management for z/OS. You can use them to designate your server service. If a client does
not specify a server service (IDBSERVERSERVICE) in the database profile specified on
the HL01 transaction, infoman will be assumed. Therefore, be sure to include it in the
/etc/services file.

Be sure that your client application programs are aware of the service names that you define.
If you access an MRES for TCP/IP that uses a port number other than the default
(infoman/1451), you must specify the server service name in the IDBSERVERSERVICE
keyword in your database profile.

You must update the ⁄etc⁄hosts file on the requester to include the host names and
corresponding dotted-decimal IP address of any server hosts that the requester needs to be
able to connect to on behalf of its clients. If the clients use host names to identify the server
host, you must update ⁄etc⁄hosts on the requester to include those hostnames and their
corresponding dotted-decimal IP address.

Defining the Client Interface to Requester Communication Link
To define the communication link between a requester and a client interface, you must
update the ⁄etc⁄services file on all hosts where either the requester or the client interface is
installed. You must also update the ⁄etc⁄hosts file on all the hosts where the client interface
is installed. The following sections tell you how to do that.

Note: Service names, host names, and aliases are case-sensitive.

Updating ⁄etc⁄services on a Requester Host
Update the file ⁄etc⁄services on a requester host to associate the requester service name or
alias with the TCP/IP port number of the requester. The general format of a requester entry
in ⁄etc⁄services is:
<service> <port>⁄tcp <alias_list> #<comment>

<service>
The requester service name

<port>
The requester port number

<alias_list>
Alias definitions for the service

Configuring HLAPI/UNIX for TCP⁄IP

246 Version 7.1

<comment>
Comment text that describes the service.

For example, to associate the default requester service name (infoman) with the default
requester port number (1451), you must place the following line in the file ⁄etc⁄services
before you run the HLAPI/UNIX:
infoman 1451⁄tcp #default HLAPI/UNIX requester and MRES server

The default service name and default port number are reserved for Tivoli Information
Management for z/OS. You can use a different combination of service name (or alias) and
port number for a requester. For each combination, you must specify a corresponding line in
the ⁄etc⁄services file to associate the port number with the service name or alias. Port
numbers greater than 6000 are user-definable.

Only one service can use a given port number and a given service name or alias in an
⁄etc⁄services file on a UNIX host. However, you can use the same port number or the same
service name (or alias) on different UNIX hosts.

You can run multiple requesters on a single UNIX host. Use a different service name for
each requester and associate the service name with a port number in the requester’s
⁄etc⁄services file. You also need to create a system profile for each requester and specify the
appropriate service name in each profile.

You might need to run the following UNIX commands after making changes to the
⁄etc⁄services file:

Specific to AIX:
inetimp refresh -s inetd

For more information, refer to the AIX Version 4.2 Files Reference.

Specific to HP:
inetd –c

For more information, refer to the HP-UX Reference, Volume 3

These commands enable the inetd daemon to recognize the changes.

You can direct UNIX to start a HLAPI/UNIX requester when a client interface attempts to
establish the initial contact with the requester. This eliminates the need to start a requester
before starting a client application program. See “The HLAPI/UNIX Requester” on page 263
for information on how to do this.

Updating ⁄etc⁄services and ⁄etc⁄hosts on a Client Host
You must associate the client interface with each local or remote requester that the client
interface communicates with. To do this, update the file ⁄etc⁄services on the client interface
host with the requester service names and their corresponding TCP/IP port numbers. Also
update the file ⁄etc⁄hosts on the client interface host with the host name and corresponding
dotted decimal IP address of the requester hosts.

The general format of a requester entry in ⁄etc⁄services is:
<service> <port>⁄tcp <alias_list> #<comment>

Defining the Client Interface to Requester Communication Link

247Client Installation and User’s Guide

27.
In

stallin
g

an
d

S
ettin

g
U

p
H

L
A

P
I/U

N
IX

<service>
The requester service name

<port>
The requester port number

<alias_list>
Alias definitions for the service

<comment>
Comment text describing the service.

For example, to associate the default requester service name (infoman) with the default
requester port number (1451), put the following line in ⁄etc⁄services file before you attempt
to run the HLAPI/UNIX:
infoman 1451⁄tcp #default HLAPI/UNIX Requester

The default service name and default port number are reserved for the exclusive use of
Tivoli Information Management for z/OS. However, you may use a different combination of
service name (or alias) and port number for a requester. For each combination you specify
for your requesters, put a corresponding line in the client’s ⁄etc⁄services file to associate the
port number with the service name or alias. Port numbers greater than 6000 are
user-definable; they should not conflict with reserved ports.

In an ⁄etc⁄services file on a UNIX host, only one service can use a given port number and a
given service name or alias. However, different ⁄etc⁄services files on different UNIX hosts
may use the same port number or the same service name (or alias). This is because each
UNIX host manages its own set of ports and service names.

You might need to run the following commands after making changes to ⁄etc⁄services:

Specific to AIX:
inetimp refresh -s inetd

For more information, refer to the AIX Version 4.2 Files Reference.

Specific to HP:
inetd –c

For more information, refer to the HP-UX Reference, Volume 3. These commands
enable the INETD daemon to recognize the changes.

Removing HLAPI/UNIX Options
Specific to AIX:

If you did not specify the commit option on installp when you installed the
HLAPI/AIX client interface or requester, you can remove them. To remove one or
both of the options from an AIX host, do the following steps:

1. Log on as the root user.

2. Type the following on an AIX command line:
installp -r '-X' <option>

<option>
Is one of the following:

Defining the Client Interface to Requester Communication Link

248 Version 7.1

idbhlapi.cli
Removes only the client interface option

idbhlapi.req
Removes only the requester option

idbhlapi.all
Removes both the client interface option and the requester
option.

For example, to remove the client interface option from a host, type the
following on an AIX command line:
installp -r '-X' idbhlapi.cli

Specific to HP:
To remove the HLAPI/HP client interface or requester, erase the files and directories
listed in “Components of HLAPI/HP” on page 349.

Specific to Solaris:
To remove the HLAPI/Solaris client interface or requester, erase the files and
directories listed in “Components of HLAPI/Solaris” on page 350.

Removing HLAPI/UNIX Options

249Client Installation and User’s Guide

27.
In

stallin
g

an
d

S
ettin

g
U

p
H

L
A

P
I/U

N
IX

Removing HLAPI/UNIX Options

250 Version 7.1

HLAPI/UNIX Profiles, Environment
Variables, and Data Logging

Certain aspects of HLAPI/UNIX can be customized to meet the requirements of your
application. You do this by specifying profile keywords and values in two types of
HLAPI/UNIX profiles. The profiles are UNIX text files; so you can use any text editor to
create and update them.

The first type of profile is a system profile, which is associated with a requester. You can
specify the name of a system profile as an optional argument of a command that starts a
HLAPI/UNIX requester. The parameters in a system profile control aspects of HLAPI/UNIX
operation. If no system profile is specified, the requester uses default values for all system
profile parameters.

The second type of profile is a database profile, which is associated with a transaction
sequence. The name of a database profile must be specified by a control PDB passed to
HLAPI/UNIX as part of an HL01 transaction. The parameters in a database profile control
aspects of HLAPI/UNIX operation.

Profile Syntax
Profile parameter entries are specified in the form
<keyword>=<data_value>

<keyword>
Represents one of the keywords defined by HLAPI/UNIX.

= Is a literal character.

<data_value>
Represents a data value to be associated with the keyword.

Whitespace characters (blanks or tabs) can precede or follow the value for keyword or data
value. The data value includes all characters following the = to the end of the line. Each
profile parameter must be specified entirely on a single line. For example,
IDBTIMEOUT = 60

Profile comments are specified in the form
REM <comment_text>

REM A literal keyword

<comment_text>
Any sequence of characters up to the end of the line.

28

251Client Installation and User’s Guide

28.
H

L
A

P
I/U

N
IX

P
ro

files,
V

ariab
les,

an
d

L
o

g
g

in
g

Whitespace characters (blanks or tabs) can precede the REM keyword; at least one
whitespace character must immediately follow the REM keyword. Each profile comment
must be specified entirely on a single line. For example,
REM This is an example of a comment in a profile.

Each line of a profile must contain exactly one of the following:
¶ A profile parameter entry
¶ A profile comment
¶ Whitespace only.

Keywords cannot be duplicated in profiles. If duplicate keywords are detected, processing
stops and an error is returned to the client application program.

Profile keywords and data values are case-sensitive. Profile keywords must be entered with
uppercase characters only. Profile data values must match their definitions in your
/etc/services, /etc/hosts, or other system configuration file.

When specifying a numeric value in a profile, use decimal digits to represent the value. Do
not place any delimiter characters, such as commas or periods, among the digits of the
value.

System Profile
You can specify the name of a single system profile as an optional parameter of a command
that starts a HLAPI/UNIX requester. If a system profile is not specified when a requester is
started or if some parameters are unspecified in the system profile, the requester uses the
default values for the parameters. A requester reads a system profile only once when the
requester is started. The developer of the client application program or UNIX system
administrator creates system profiles. Multiple requesters can use the same system profile.

You can specify either the file name only or you can fully qualify the name with its path
and drive. If you specify only a file name, the file is obtained from the current working
directory. If the file is not found, the qualifying path name is obtained from the value of the
UNIX environment variable IDBSMPATH. See “IDBSMPATH” on page 261 for additional
information.

The valid keywords for system profiles follow.

IDBINBOUNDBUFSIZE
This value specifies the number of bytes to allocate for the communication buffers that the
requester uses for receiving data from the server for transmittal to the client interface.

The buffer size can affect communication performance. For example, you might wish to
specify a large buffer size, such as 28672, if the requester will be handling database search
transactions that generate large amounts of reply data. For related information, see
“IDBOUTBOUNDBUFSIZE” on page 253.

Valid values:
Any integer from 1 to 32767, inclusive.

Values are rounded up to the nearest multiple of 4096. If the value after rounding is
32768, it is adjusted to 32767.

Profile Syntax

252 Version 7.1

Default value:
4096

IDBMAXCMS
This value specifies the maximum number of child processes the requester can create to
manage conversations between the requester and the server. The conversations are in a
one-to-one correspondence with the requester processes that manage the conversations. The
actual number of conversations might be further limited by constraints on UNIX system
resources. One example is the UNIX system variable _SC_CHILD_MAX, which limits the
number of processes for each user.

Valid values:
Any integer from 1 to 65534, inclusive.

Default value:
65534

IDBOUTBOUNDBUFSIZE
This value specifies the number of bytes to allocate for the communication buffers that the
requester uses to transmit transaction data received from the client interface to the server.

The buffer size can affect communication performance. For example, you might wish to
specify a large buffer size, such as 8192, if the requester will be handling record creation
transactions that involve large amounts of record data. For related information, see
“IDBINBOUNDBUFSIZE” on page 252.

Valid values:
Any integer from 1 to 32767, inclusive.

Values are rounded up to the nearest multiple of 4096. If the value after rounding is
32768, it is adjusted to 32767.

Default value:
4096

IDBSERVICENAME
This value specifies the service name for the requester that is listed in the UNIX system file
/etc/services.

Valid values:
Any valid service name or alias. Service names and aliases are case-sensitive.

Default value:
infoman

This is the default requester service name suggested during HLAPI/UNIX
installation. If you specified a different service name in your /etc/services file during
installation in “Defining the Client Interface to Requester Communication Link” on
page 246, you must specify that service name or its alias on this parameter in a
system profile.

IDBSHARECMS
This keyword determines whether the requester should enable or disable conversation
sharing. When conversation sharing is enabled, the requester assigns new client applications
to an existing conversation if criteria such as same server and same security ID are met.

System Profile

253Client Installation and User’s Guide

28.
H

L
A

P
I/U

N
IX

P
ro

files,
V

ariab
les,

an
d

L
o

g
g

in
g

When conversation sharing is disabled (the default), each client application is assigned its
own dedicated conversation. A conversation is terminated when the last client assigned to it
submits an HL02.

Note: If you choose to use conversation sharing, you must be aware that there is a potential
for a delay because transactions are handled synchronously. Thus, if Client A and
Client B share a conversation, and Client A submits a long search and Client B
submits an update, Client B will wait for Client A’s search to complete before its
transaction can be processed.

Note: If you are using pre-started API sessions (described in “MRES with Pre-started API
Sessions Considerations” on page 18), you must disable conversation sharing.

The number of conversations that the requester can start up is based on requester and
operating system limitations. When conversation sharing is disabled, you may be more likely
to reach these limits if your client applications hold on to conversations for an extended
period. Any of the HLAPI/UNIX clients provides the ability to start multiple concurrent
requesters as long as each requester is assigned a unique port number identified by the
IDBSERVICENAME in the system profile. You may wish to route client applications that
require dedicated conversation to requesters that you have started with conversation sharing
disabled, and route your other client applications to other requesters with conversation
sharing enabled.

Valid entries: 0 (conversation sharing disabled) or 1 (conversation sharing enabled).

Default value: 0 (conversation sharing disabled).

IDBTIMEOUT
This value specifies the maximum number of minutes that can elapse between transactions
in a single transaction sequence. This is called idle time, which is defined as the time
interval between the completion of one transaction and the start of the next transaction in the
same transaction sequence. The start time is determined by when the transaction becomes
the active transaction in the requester-server conversation. The end time is determined by
when the transaction stops being the active transaction in the conversation.

If the idle time for a transaction sequence exceeds the smaller of this value or the value of
IDBIDLECLIENTTIMEOUT in the database profile for the transaction sequence, the
requester refuses to process additional transactions in the sequence (including any transaction
pending on the conversation queue). This allows the requester to end logical sessions and
conversations if a client application program does not submit an HL02 transaction for a
transaction sequence.

Valid values:
Any integer from 0 to 35791394, inclusive.

The value is specified in minutes, except that a value of 0 corresponds to an infinite
interval.

Default value:
35791394

System Profile

254 Version 7.1

System Profile Example
REM***
REM
REM SAMPLE HLAPI/AIX System Profile
REM
REM***

IDBINBOUNDBUFSIZE = 28672

IDBMAXCMS = 128

IDBOUTBOUNDBUFSIZE = 8192

IDBSERVICENAME = hlapiaix9

IDBSHARECMS = 0

IDBTIMEOUT = 60

Database Profile
Your client application must specify the name of a single database profile in a
DATABASE_PROFILE control PDB on the HL01 transaction of each transaction sequence.
If a DATABASE_PROFILE PDB is not specified or if multiple DATABASE_PROFILE
PDBs are specified for an HL01 transaction, an error is returned to the client application
program. If a DATABASE_PROFILE PDB is specified on a transaction other than HL01,
the PDB is ignored. A client interface reads the database profile only once per transaction
sequence, and that is during the HL01 transaction. The UNIX system administrator, client
application developer, or client application user creates the database profile for a transaction
sequence. Multiple client application programs can use the same database profile.

The specified database profile must contain at least an entry for the IDBSYMDESTNAME
keyword or the IDBSERVERHOST keyword. It must not contain both of these keywords.
This information identifies to which Tivoli Information Management for z/OS server the
requester establishes a communication link for the client application. See
“IDBSYMDESTNAME” on page 259 and “IDBSERVERHOST” on page 258 for information
on these keywords.

You can specify either the file name only or you can fully qualify the name with its path
and drive. If you specify only a file name, the file is obtained from the current working
directory. If the file is not found, the qualifying path name is obtained from the value of the
UNIX environment variable IDBDBPATH. See “IDBDBPATH” on page 260 for more
information.

The valid keywords for database profiles follow.

IDBCHARCODESET
This keyword specifies the code set to use on the client interface host for data conversion
during the transaction sequence. The client interface converts the text of a transaction
request from the client code set to the server code set. The client interface also converts the
text of a transaction reply from the server code set to the client code set. The keyword
IDBSERVCHARCODESET specifies the server code set. See
“IDBSERVCHARCODESET” on page 258 for information on that keyword.

System Profile Example

255Client Installation and User’s Guide

28.
H

L
A

P
I/U

N
IX

P
ro

files,
V

ariab
les,

an
d

L
o

g
g

in
g

Valid values:
Any code set supported by the AIX or HP iconv subroutine. Refer to AIX Version
4.2 General Programming Concepts or HP-UX Reference, Volume 1 for a list of
supported code sets.

Default value:
The code set in use by the process submitting the transaction to HLAPI/AIX or
HLAPI/HP when the database profile is read. The client interface queries the
operating system to determine the code set.

Specific to Solaris:
HLAPI/Solaris does not support the iconv subroutine. IBM provides the
translate tables to perform the necessary data conversion between the
IBM-850 and IBM-037 code pages.

IDBDATALOGLEVEL
This keyword determines whether the client interface logs transaction data. The value
specified with this keyword can be overridden by the UNIX environment variable
IDBDATALOGLEVEL.

Valid values:
0 (logging disabled) 1 (logging enabled)

Default value:
0 (logging disabled).

The default value is applied only if neither the UNIX environment variable
IDBDATALOGLEVEL nor the database profile keyword IDBDATALOGLEVEL
specifies a value.

IDBIDLECLIENTTIMEOUT
This keyword specifies the maximum number of minutes that can elapse between
transactions in a single transaction sequence. This is called idle time, which is defined as the
time interval between the completion of one transaction and the start of the next transaction
in the same transaction sequence. The start time is determined by when the transaction
becomes the active transaction in the requester-server conversation. The end time is
determined by when the transaction stops being the active transaction in the conversation.

If the idle time for a transaction sequence exceeds the smaller of this value or the value of
IDBTIMEOUT in the system profile associated with the requester, the requester refuses to
process additional transactions in the sequence (including any transaction pending on the
conversation queue). This allows the requester to end logical sessions and conversations if a
client application program does not submit an HL02 transaction for a transaction sequence.

Valid values:
Any integer from 0 to 35 791 394, inclusive. The value is specified in minutes,
except that a value of 0 corresponds to an infinite interval.

Default value:
60

IDBLOGFILENAMEACTIVE
This keyword specifies the name of the active log file for the transaction sequence. Multiple
transaction sequences can use the same log file. However, it is recommended that you limit
the number of simultaneous transaction sequences per log file to reduce contention for write
access to the file and to prevent the file from being archived frequently.

Database Profile

256 Version 7.1

Valid values:
Any valid file name on your UNIX system. File names and path names are
case-sensitive.

Default value:
IDB_LOG.ACT

IDBLOGFILENAMEOLD
This keyword specifies the name to give an active log file when it is archived. Active log
files are archived when they reach their maximum size as specified on the keyword
IDBLOGFILESIZE. See “IDBLOGFILESIZE”.

Valid values:
Any valid file name on your UNIX system. File names and path names are
case-sensitive.

Default value:
IDB_LOG.OLD

IDBLOGFILESIZE
This keyword specifies the approximate maximum size, in bytes, of the active log file. If
logging a transaction causes the active log file to exceed this size, the active log file is
archived. Archiving involves two steps:
1. Closing and renaming the active log file
2. Opening a new active log file.

Valid values:
Any integer from 0 to 10 485 760, inclusive. (The upper limit equals 10 megabytes.)

If a value between 1 and 4 095 is specified, then 4 096 is substituted. If the value 0
is specified, HLAPI/UNIX does not restrict the size of the log file.

Default value:
262 144 (Equal to 256 kilobytes.)

IDBREQUESTERHOST
This keyword identifies the UNIX host that is running the requester so that communication
can be established between the client interface and the requester.

Valid values:
Any valid TCP/IP address in dotted-decimal format, or any valid alias, such as
host5, that is associated with a dotted-decimal address in the UNIX system file
/etc/hosts. Host aliases are case-sensitive.

Default value:
The UNIX host running the client interface that is handling the transaction sequence.
The default host can be determined with the gethostname() system call.

IDBREQUESTERSERVICE
This keyword specifies the service name of the requester you want to establish
communication with. The service name must be listed in the /etc/services file on the client
host.

Valid values:
Any valid service name or alias.

Database Profile

257Client Installation and User’s Guide

28.
H

L
A

P
I/U

N
IX

P
ro

files,
V

ariab
les,

an
d

L
o

g
g

in
g

Use the UNIX command odmshow InetServ to display the maximum length of
service names and aliases. A service name has a maximum length of 19, while an
alias has a maximum length of 49. Service names and aliases are case-sensitive.

Default value:
infoman

This is the default requester service name suggested during HLAPI/UNIX
installation. If you specified a different service name in your /etc/services file during
installation in “Defining the Client Interface to Requester Communication Link” on
page 246, you must specify that service name or its alias on this parameter in a
database profile.

IDBSERVCHARCODESET
This keyword specifies the code set used on the server. The client interface converts the text
of a transaction request from the client code set to the server code set. The client interface
also converts the text of a transaction reply from the server code set to the client code set.
The keyword IDBCHARCODESET specifies the client code set. See
“IDBCHARCODESET” on page 255 for information on that keyword.

Valid values:
Any code set supported by the AIX or HP iconv subroutine. Refer to AIX Version
4.2 General Programming Concepts or HP-UX Reference, Volume 1 for a list of
supported code sets.

Default value:

Specific to AIX:
IBM-037 (US English)

Specific to HP:
american_e

Specific to Solaris:
HLAPI/Solaris does not support the iconv subroutine. Tivoli provides the
translate tables to perform the necessary data conversion between the
IBM-850 and IBM-037 code pages.

IDBSERVERHOST
This keyword identifies the MVS host that is running the MRES with TCP/IP server you
want the requester to establish communication with for your client application.

Valid values:
Any valid IP address in dotted-decimal format, or any valid host name, such as
mvshost, that is associated with a dotted-decimal IP address in the UNIX system file
/etc/hosts on the requester host. Host names are case-sensitive.

Default value:
None. This value is required if IDBSYMDESTNAME is not specified. There is no
default.

If you use this keyword you must not use the IDBSYMDESTNAME keyword.

IDBSERVERSERVICE
This keyword specifies the service name of the MRES with TCP/IP you want to establish
communication with. The service name must be listed in the /etc/services file on the
requester host.

Database Profile

258 Version 7.1

Valid values:
Any valid service name or alias.

Note: Use the UNIX command odmshow InetServ to display the maximum length
of service names and aliases. A service name has a maximum length of 19,
while an alias has a maximum length of 49. Service names and aliases are
case-sensitive.

Default value:
infoman

IDBSERVERSERVICE is an optional keyword. If you do not specify it when you
specify IDBSERVERHOST, the default is assumed. If you specify
IDBSYMDESTNAME, IDBSERVERSERVICE is ignored.

IDBSYMDESTNAME
This keyword identifies either a RES or an MRES with APPC on the MVS host that you
want the requester to establish communication with for your client application. This value
must correspond to a side information entry on the requester host. Only an AIX requester
can establish communication with a RES or MRES with APPC.

Note: You must use this keyword if your UNIX client connects to an AIX requester that
uses APPC to connect to MVS. However, you cannot use this keyword if your UNIX
client connects to an HP or Solaris requester.

Valid values:
Any valid APPC symbolic destination name defined in the requester’s side
information to identify the transaction program to run on the MVS host. A symbolic
destination name is a character string from 1 to 8 bytes long. These names are
case-sensitive.

Default value:
None. This value is required if IDBSERVERHOST is not specified. No default
value is defined.

If you use this keyword you must not use the IDBSERVERHOST keyword.

Database Profile Example
REM***
REM
REM SAMPLE HLAPI/AIX Database Profile
REM
REM***

IDBREQUESTERHOST = zeus
IDBREQUESTERSERVICE = hlapi9
IDBIDLECLIENTTIMEOUT = 30

IDBSYMDESTNAME = infosrv2
IDBSERVCHARCODESET = IBM-037

IDBCHARCODESET = IBM-850

IDBDATALOGLEVEL = 1
IDBLOGFILENAMEACTIVE = helpdesk5.log
IDBLOGFILENAMEOLD = helpdesk5.old
IDBLOGFILESIZE = 262144

Database Profile

259Client Installation and User’s Guide

28.
H

L
A

P
I/U

N
IX

P
ro

files,
V

ariab
les,

an
d

L
o

g
g

in
g

Environment Variables
HLAPI/UNIX recognizes some UNIX environment variables for which you can define
values. Korn shell and Bourne shell environment variables are case-sensitive, but C shell
environment variables are not case-sensitive. If you are using a shell with case-sensitive
environment variables, you must enter the names of HLAPI/UNIX environment variables
using only uppercase characters.

You can use the HLAPI/UNIX environment variables described in the following sections to
override the corresponding database profile parameters and to qualify the path names for the
profiles. Refer to

AIX Version 4.2 Management Guide: Operating System and Devices
or
How HP-UX Works: Concepts for the System Administrator

for information on using environment variables.

IDBDATALOGLEVEL
If this environment variable is set to a valid value when a client interface reads the database
profile, the value in the environment variable overrides any value given for the database
profile keyword IDBDATALOGLEVEL. Valid values are 0 (transaction data logging
disabled) and 1 (transaction data logging enabled). See “IDBDATALOGLEVEL” on
page 256 for additional information.

IDBREQUESTERHOST
If this environment variable is set to a valid value when a client interface reads the database
profile, the value in the environment variable overrides any value set for the database profile
keyword IDBREQUESTERHOST. You can specify any valid TCP/IP address in
dotted-decimal format, or any valid alias. See “IDBREQUESTERHOST” on page 257 for
additional information.

IDBREQUESTERSERVICE
If this environment variable is set to a valid value when a client interface reads a database
profile, the value in the environment variable overrides any value set for the database profile
keyword IDBREQUESTERSERVICE. You can specify any valid service name or alias.
See “IDBREQUESTERSERVICE” on page 257 for additional information.

IDBDBPATH
This environment variable specifies a search path for locating a database profile when both
of the following conditions are true:

1. The database profile file name does not explicitly specify a complete path from the root
directory to the database profile file. This is called a relative path.

2. The database profile is not in the current working directory of the calling process.

You can specify multiple paths on IDBDBPATH. For example, if the file name of a
database profile is specified using a relative path, then the following assignment:
IDBDBPATH=/:/usr/profiles/:

causes a client interface to seek the database profile first in the current working directory,
then in the root directory /, then in the directory /usr/profiles.

Environment Variables

260 Version 7.1

The ’:’ following the final path specification is optional. The trailing ’/’ of the second path
specification is also optional. For example, the following two assignments are equivalent:
IDBDBPATH=/:/usr/profiles/:

IDBDBPATH=/:/usr/profiles

IDBSMPATH
This environment variable specifies a search path for locating a system profile when both of
the following conditions are true:

1. The system profile file name does not explicitly specify a complete path from the root
directory to the system profile file. This is called a relative path.

2. The system profile is not in the initial working directory of the requester process. The
initial working directory of the requester process is the current working directory at the
time the requester is started.

You can specify multiple paths on IDBSMPATH. For example, if the file name of a system
profile is specified using a relative path, the following assignment:
IDBSMPATH=/:/usr/profiles/:

causes a requester to seek the system profile first in the initial working directory of the
requester process, then in the root directory /, then in the directory /usr/profiles.

The ’:’ following the final path specification is optional. The trailing ’/’ of the second path
specification is also optional. For example, the following two assignments are equivalent:
IDBSMPATH=/:/usr/profiles/:

IDBSMPATH=/:/usr/profiles

Transaction Logging
HLAPI/UNIX transactions can be logged by the server as well as by the client interface.
When both server logging and client interface logging are active, you might notice
differences between entries in the server log and the corresponding entries in the client
interface log. For example, the client interface logs PDBs with a data length of zero but
does not send those PDBs to the server. Therefore, the server log records no zero-length
PDBs.

Transaction Logging by a Client Interface
Every HLAPI/UNIX transaction sequence has an associated log file in which the client
interface can record transactions. The value specified for the HLAPI/UNIX environment
variable IDBDATALOGLEVEL or the HLAPI/UNIX database profile keyword
IDBDATALOGLEVEL determines whether transactions in a transaction sequence are
logged by the client interface.

The client interface creates a log file automatically if it does not already exist. Log entries
are appended to the end of a log file. In order to prevent the log file from growing
indefinitely, HLAPI/UNIX provides an archiving mechanism. The client interface records
individual transactions in the log file specified by the database profile keyword
IDBLOGFILENAMEACTIVE until the file reaches or exceeds the maximum file size
specified by the database profile keyword IDBLOGFILESIZE. The active log file is then
renamed to the file name specified by the database profile keyword
IDBLOGFILENAMEOLD. If a previously archived log file of the same name exists, it is

Environment Variables

261Client Installation and User’s Guide

28.
H

L
A

P
I/U

N
IX

P
ro

files,
V

ariab
les,

an
d

L
o

g
g

in
g

deleted before the active log file is archived. Finally, a new active log file is created with the
name specified by the database profile keyword IDBLOGFILENAMEACTIVE.

Multiple transaction sequences can use the same log file. However, if multiple transaction
sequences attempt to record transactions in the same file, there will probably be contention
for access to the file. To log a transaction, a client interface opens a log file, records the
transaction, and closes the file. While the file is open, the process has exclusive write access
to the file. If a process attempts to open the log file while another process has exclusive
write access to it, the attempt to open the file fails. When this happens, the process that
failed to open the file repeatedly attempts to open the file until the process opens the file
successfully or reaches an internal HLAPI/UNIX retry limit. If the client interface fails to
open the file because it reaches the retry limit, a return code and reason code are returned in
the HICA to reflect the logging failure.

For more information about transaction logging by the client interface, see “Database
Profile” on page 255 and “Environment Variables” on page 260.

Error Probe Logging by a Requester or Client Interface
A HLAPI/UNIX requester or client interface might encounter an error condition that cannot
be explained with available information. When this happens, the requester or client interface
records an entry in the HLAPI/UNIX probe log file /usr/tmp/idbprobe.log on the local
UNIX host. If a probe log file does not exist, one is created.

HLAPI/UNIX imposes no limit on the maximum size of a probe log file. You can delete or
rename a probe log file at any time. However, avoid using a probe log file in any way that
would prevent HLAPI/UNIX from opening the file for exclusive write access.

When diagnosing a problem associated with a HLAPI/UNIX client application program, you
might find entries in HLAPI/UNIX probe log files to be useful supplements to any
transaction reply data that HLAPI/UNIX returns to the program.

Transaction Logging

262 Version 7.1

The HLAPI/UNIX Requester

You can start a HLAPI/UNIX requester manually or automatically using any of the facilities
provided by UNIX for issuing commands. The HLAPI/UNIX requester is started as a
daemon task; it runs without a console in the background. Messages from the requester are
written in the file idbprobe.log on the requester host.

Regardless of how you start a requester, the UNIX system file ⁄etc⁄services on both the
requester host and the client interface host must contain an entry associating the service
name of the requester with the TCP/IP port for the requester. The UNIX system file
⁄etc⁄hosts on the client interface host must also contain an entry that identifies the requester
host name. See “Configuring HLAPI/UNIX and Associated Software” on page 241 for
information on updating the ⁄etc⁄services file.

Starting the Requester Manually
The syntax of the command to start a HLAPI/UNIX requester is:
<Requester_executable> [-p|-P <System_Profile>]

<Requester_executable>
Specifies the name of the requester executable file. The requester executable
program name is idbreq. On an AIX host, it is located in ⁄usr⁄lpp⁄idbhlapi⁄bin. On
an HP or Solaris host, it is located in *⁄idbhlapi⁄bin, where * is the directory
specified at installation.

-p <System_Profile>
Specifies a system profile to use when starting the requester. The value for
System_Profile must be preceded by either -p or -P. At least one blank must
separate the -p from the value for System_Profile. This parameter and value are
optional. If they are not specified, defaults for the system profile keywords are used.

For example, if you start a requester with the following command:
⁄usr⁄lpp⁄idbhlapi⁄bin⁄idbreq -p idbsys.pro

The requester will search for the system profile idbsys.pro in the current working directory
first. If the profile is not there, it will search in any directories in the search path specified
by the environment variable IDBSMPATH.

Starting the Requester Automatically
You can place an entry in the /etc/inittab file to direct UNIX to start a HLAPI/UNIX
requester when the init process runs. Refer to AIX Version 4.2 Files Reference, How HP-UX
Works: Concepts for the System Administrator or SunOS 5.3 Reference Manual for more
information.

29

263Client Installation and User’s Guide

29.
T

h
e

H
L

A
P

I/U
N

IX
R

eq
u

ester

Stopping a Requester
Once started, a requester runs indefinitely even if all of its conversations have ended. To
stop a requester, you must first determine the process ID (pid) of the requester’s
highest-level process. Use the following command to do that:
ps -ef | grep idbreq

Once you know the process ID, issue the following command to stop the requester:
kill <pid>

If the requester does not stop, you can use the KILL command with the -9 parameter, but
you should consult the AIX Version 4.2 Files Reference and How HP-UX Works: Concepts
for the System Administrator for possible consequences of using this command:
kill -9 <pid>

Diagnosing Some Common Problems
Symptom:

Changing the setting of a parameter in a database profile or a system profile has no
impact on HLAPI/UNIX operation.

Possible Causes:

1. HLAPI/UNIX failed to locate your profile because it is not in the profile search
path.

Action:
Specify the complete path for the profile or define the profile search path
by setting the value of the appropriate HLAPI/UNIX environment
variable. Make sure the value of the environment variable applies to the
calling process. For information about environment variables, see
“Environment Variables” on page 260.

2. HLAPI/UNIX used another profile that was ahead of your profile in the search
path.

Action:
Delete one of the profiles, change the search path by changing the value
of the appropriate HLAPI/UNIX environment variable, or specify the
complete path name for the profile in the DATABASE_PROFILE
control PDB.

3. A HLAPI/UNIX environment variable is overriding the value for the parameter.

Action:
Redefine the HLAPI/UNIX environment variable.

Symptom:
During an HL01 transaction, a client application process takes much longer than
usual (typically 1-2 minutes) to return from the call to IDBTransactionSubmit().

Possible causes:

1. Establishing a new APPC conversation between the requester and a server could
cause the number of conversations to exceed a system limit for the number of
conversations. Because the number of APPC conversations equals the system
limit, new conversations are suspended until an existing conversation ends.

Stopping a Requester

264 Version 7.1

Action:
Increase the requester or server limit for the maximum number of APPC
conversations.

Symptom:
Your client application process takes much longer than usual to run or it is rejected
by the requester.

Possible causes:

1. If the conversation limit on the host is set too low, applications trying to start
will have to wait until an HL01 is honored. This wait time may be significant,
and nothing is returned to the waiting application indicating that the conversation
limit was reached. When one of the applications already running finishes, the
waiting application begins processing.

Action:
Ensure that the conversation limit is set high enough to run your
applications.

2. The time between the client application’s last transaction and the current
transaction may have exceeded the allowable wait time specified by the database
or the system profile. The client application is forced off the requester when the
wait time is exceeded.

Action:
Ensure that the wait time set in your system profile is set high enough to
run your applications.

Diagnosing Some Common Problems

265Client Installation and User’s Guide

29.
T

h
e

H
L

A
P

I/U
N

IX
R

eq
u

ester

Diagnosing Some Common Problems

266 Version 7.1

HLAPI/UNIX Transactions

The work done by HLAPI/UNIX takes place through the use of HLAPI transaction
sequences. Each transaction sequence begins with an HL01 transaction, optionally followed
by any of the transactions listed in Table 1 on page 3, and ended by an HL02 transaction.
Refer to the Tivoli Information Management for z/OS Application Program Interface Guide
for information on the HLAPI transactions. This chapter explains aspects of transaction
processing that are specific to the HLAPI/UNIX.

Validation of the Calling Process
When a client application program submits an HL01 transaction to begin a transaction
sequence, HLAPI/UNIX records the process ID and the effective user ID of the process
submitting the transaction. On all subsequent HLAPI/UNIX function calls of the transaction
sequence, the process ID and effective user ID of the calling process must match those
recorded for the transaction sequence. If they do not match, the HLAPI/UNIX returns an
error to the calling process. This ensures that HLAPI/UNIX has the permissions necessary to
access and free any HLAPI/UNIX resources that persist between calls to HLAPI/UNIX
services.

CAUTION:

Do not modify a HICA or PDB associated with a transaction submitted to the
HLAPI/UNIX until the transaction ends successfully or unsuccessfully. Any changes to
a HICA or its associated PDBs during transaction processing causes unpredictable
results.

Transaction Processing Modes
A HLAPI/UNIX client application program can select from two modes of transaction
processing: synchronous and asynchronous. Unlike the Tivoli Information Management for
z/OS Low-Level Application Programming Interface (LLAPI), which applies a transaction
processing mode globally to all transactions in a session, the HLAPI/UNIX applies a
transaction processing mode individually to each transaction.

Regardless of the transaction processing mode, a call to IDBTransactionStatus() returns the
status and the reply (if available) for the most recently submitted transaction in the
transaction sequence.

Synchronous Processing
Synchronous processing forces the current process in the application program to wait for a
Tivoli Information Management for z/OS transaction to end before the process returns from
a HLAPI/UNIX function call. The process cannot do any other work until the transaction is
complete. Transaction completion includes both successful and unsuccessful outcomes.

30

267Client Installation and User’s Guide

30.
H

L
A

P
I/U

N
IX

Tran
sactio

n
s

To choose synchronous transaction processing, code a transaction type of IDB_SYNC on a
call to IDBTransactionSubmit(). The process submitting the transaction will return from the
call when the transaction is complete.

A transaction originally submitted in asynchronous mode can be changed to synchronous
mode. To convert an asynchronous transaction to a synchronous transaction, code a query
type of IDB_WAITFORCOMPLETION on a call to IDBTransactionStatus(). The process
will return from the call when the transaction is complete.

You can implement a client application program using the multitasking capabilities of UNIX
and the synchronous mode of transaction processing. By using multiple processes within an
application, you can dedicate some processes to HLAPI/UNIX transaction processing while
other processes do other tasks. In this case, only the dedicated processes are unavailable
until their synchronous transactions complete.

Asynchronous Processing
Asynchronous transaction processing allows a client application program to submit a
HLAPI/UNIX transaction and then continue doing other work while HLAPI/UNIX handles
the transaction. When a process calls IDBTransactionSubmit() to submit a transaction
asynchronously, the process returns from the call before the transaction runs to normal
completion. The process can do other work while the transaction is in process. Some time
later, the process can call IDBTransactionStatus() to determine whether the transaction is
complete and to obtain the transaction reply.

To choose asynchronous transaction processing, code a transaction type of IDB_ASYNC on
a call to IDBTransactionSubmit(). Later, call IDBTransactionStatus() to determine
whether the transaction is complete. If the transaction is complete, the calling process will
return immediately with the transaction reply. If the transaction is not complete, when the
process will return depends on the value coded for the query type parameter of the call to
IDBTransactionStatus():

¶ If the value coded for the query type is IDB_CHECKFORCOMPLETION, the process
returns immediately from the call to IDBTransactionStatus().

¶ If the value coded for the query type parameter is IDB_WAITFORCOMPLETION, the
process does not return from the call to IDBTransactionStatus() until the transaction is
complete. Thus, the transaction that was originally submitted in asynchronous mode is
converted to synchronous mode.

Transaction Concurrency Limitations
A client application program can use multiple HICA structures, each corresponding to a
different transaction sequence. At any time, any of the transaction sequences can have a
transaction in process. However, no transaction sequence can have more than one
incomplete transaction outstanding at any time.

For any single requester-server conversation, transactions are processed serially on a
first-come, first-served basis.

Transaction Processing Modes

268 Version 7.1

Data Conversion Characteristics
UNIX uses the ASCII character set. MVS uses the EBCDIC character set. These operating
systems also represent DBCS data differently. For these reasons, data conversion is an
essential part of data exchange between UNIX and MVS.

The client interface does all data conversion for HLAPI/UNIX. The AIX or HP system
routine iconv() is used for the conversion. The database profile parameters
IDBCHARCODESET and IDBSERVCHARCODESET specify which code sets to use for
the conversion.

Specific to Solaris:
The HLAPI/Solaris does not support the iconv subroutine. Tivoli provides
the translate tables to perform the necessary data conversion between the
IBM-850 and IBM-037 code pages.

See “IDBCHARCODESET” on page 255 and “IDBSERVCHARCODESET” on page 258 for
more information.

Data length validation is always done on the MVS host rather than the client interface or
requester.

Code set conversions cannot be inverted when the mapping between characters in the code
sets is not one-to-one. If a code set conversion cannot be inverted, certain characters will
have a different representation after conversion from one code set to the other code set then
back to the first code set.

Special DBCS Considerations
This section is relevant only for client application programs that use Double-Byte Character
Set (DBCS) data. The HLAPI/Solaris does not support DBCS data.

DBCS data conversions do not preserve data length. Data length is not preserved because
MVS uses shift-in and shift-out characters (X'0F' and X'0E', respectively) to delimit
double-byte character strings, and UNIX does not. When DBCS data is converted from
UNIX format to MVS format, shift-in and shift-out characters are inserted into the data.
When DBCS data is converted from MVS format to UNIX format, shift-in and shift-out
characters are removed from the data. These transformations cause the length of DBCS data
to change during each conversion.

Transaction data is in MVS format when the data length is validated. Therefore, your UNIX
client application program should allow for the insertion of shift-in and shift-out characters
during conversion of DBCS data. Allow for two extra bytes per DBCS string: one byte to
delimit the beginning of the string, and one byte to delimit the end of the string. The field
length values received by HLAPI/UNIX are adjusted automatically to reflect changes in data
length when shift-in and shift-out characters are inserted or removed from the data.

For all DBCS-enabled PDB fields other than freeform text data, the field length is increased
or decreased to reflect the insertion of any shift-in and shift-out characters. If the new field
length exceeds the maximum valid length for the field, the data is truncated.

Data Conversion Characteristics

269Client Installation and User’s Guide

30.
H

L
A

P
I/U

N
IX

Tran
sactio

n
s

Developing HLAPI/UNIX Client Applications
To use HLAPI/UNIX data structures and function calls, your application source files must
include the C language-based header file idbh.h. You can optionally include idbech.h to
declare named constants for HLAPI/UNIX return and reason codes. In addition, you must
specify the HLAPI/UNIX runtime library as one of the application’s shared libraries for
dynamic linking. The default path and file names for the HLAPI/UNIX runtime libraries are:

Specific to AIX:
⁄usr⁄lpp⁄idbhlapi⁄lib⁄libidb.a

Specific to HP:
*⁄idbhlapi⁄lib⁄libidb.sl

Specific to Solaris:
*⁄idbhlapi⁄lib⁄libidb.so

where * is the directory where the HLAPI/UNIX is installed. Linking to the runtime library
permits runtime access to the client interface services for IDBTransactionSubmit() and
IDBTransactionStatus().

To use these functions, your application program must do the following:

1. Allocate memory for HICA and PDB structures using the data types declared in the
header file idbh.h.

2. Assign valid values to the fields of the structures.

3. Pass the structures and other arguments on calls to the HLAPI/UNIX functions.

Note: HLAPI/AIX also provides a REXX HLAPI/AIX interface which allows you to access
HLAPI/AIX functions from AIX REXX/6000 programs in the same manner as
HLAPI/REXX on MVS allows you to access the HLAPI from MVS REXX
programs. See “Using the REXX HLAPI/AIX Interface” on page 283 for more
information about REXX HLAPI/AIX.

There are differences between the HICA and PDB structure definitions for the HLAPI and
the corresponding structure definitions for HLAPI/UNIX. Corresponding field names are
generally similar. Some field names have been modified for HLAPI/UNIX to conform to
standard C-language naming conventions.

The client APIs create child processes to complete each high-level API. If your client
application registers an exit routine, the child processes will inherit the registration. If you
do not want the children to execute the routine, wrap it with an if statement to ensure that
the client process is performed. For example, if the pid is pidClient, you could check a
global containing the pid with this code:
if (getpid()==pidClient)
[

/* your exit routine */
]

If your client is the top-level parent, you could use:
if (getpid()==(pid_t)1
[

/* your exit routine */
]

Developing HLAPI/UNIX Client Applications

270 Version 7.1

|
|
|
|
|

|
|
|
|

|

|
|
|
|

Including the HLAPI/UNIX Header File idbh.h
You must include the HLAPI/UNIX header file idbh.h in application source code that
references HLAPI/UNIX data types and functions. This header file declares the
HLAPI/UNIX data types and function prototypes your program needs to communicate with
HLAPI/UNIX runtime services. Ensure that each source file’s references to HLAPI/UNIX
data types and functions fall within the scope of the include file’s declarations. To include
the header file idbh.h in a source file, put the following line into the source file:
#include <idbh.h> /* HLAPI/UNIX header file */

The default path and file names for these include files are:

Specific to AIX:
⁄usr⁄lpp⁄idbhlapi⁄include⁄idbh.h

Installation of HLAPI/AIX creates the symbolic link ⁄usr⁄include⁄idbh.h
to reference the include file.

Specific to HP:
*⁄idbhlapi⁄include⁄idbh.h

Installation of HLAPI/HP creates the symbolic link ⁄usr⁄include⁄idbh.h
to reference the include file.

Specific to Solaris:
*⁄idbhlapi⁄include⁄idbh.h

Installation of HLAPI/Solaris creates the symbolic link
⁄usr⁄include⁄idbh.h to reference the include file.

where * is the directory where the HLAPI/UNIX is installed.

The compiler’s default search path for header files is generally sufficient to access the
HLAPI/UNIX include file. If the header file resides in a location other than the default or if
the specified symbolic link is absent, then you may need to explicitly specify a search path
to enable the compiler to locate the header file.

Refer to the file idbappl.c in the HLAPI/UNIX examples subdirectory (listed below) for an
example of how to include the HLAPI/UNIX header files.

Specific to AIX:
⁄usr⁄lpp⁄idbhlapi⁄examples

Specific to HP:
*⁄idbhlapi⁄examples

Specific to Solaris:
*⁄idbhlapi⁄examples

You must specify the following definition on the COMPILE command to include the
correct version of the data structure:

Specific to AIX:
–D_AIXINFO

Specific to HP:
–D_HPINFO

Developing HLAPI/UNIX Client Applications

271Client Installation and User’s Guide

|

30.
H

L
A

P
I/U

N
IX

Tran
sactio

n
s

Specific to Solaris:
–D_SUNINFO

Including the HLAPI/UNIX Header File idbech.h
You can include the HLAPI/UNIX header file idbech.h in application source files to declare
named constants defined for HLAPI/UNIX return and reason codes. This header file declares
the named constants for most LLAPI, HLAPI, and HLAPI/UNIX return and reason codes
used by HLAPI/UNIX. Ensure that each source file’s references to the named constants fall
within the scope of the include file’s declarations. To include the header file idbech.h in a
source file, put the following line into the source file:
#include <idbech.h> /* HLAPI/UNIX header file */

The default path and file names for these include files are:

Specific to AIX:
⁄usr⁄lpp⁄idbhlapi⁄include⁄idbech.h

Installation of HLAPI/AIX creates the symbolic link
⁄usr⁄include⁄idbech.h to reference the include file.

Specific to HP:
*⁄idbhlapi⁄include⁄idbech.h

Installation of HLAPI/HP creates the symbolic link
⁄usr⁄include⁄idbech.h to reference the include file.

Specific to Solaris:
*⁄idbhlapi⁄include⁄idbech.h

Installation of HLAPI/Solaris creates the symbolic link
⁄usr⁄include⁄idbech.h to reference the include file.

Refer to the file idbappl.c in the HLAPI/UNIX examples subdirectory (listed below) for an
example of how to include the HLAPI/UNIX header files.

Specific to AIX:
⁄usr⁄lpp⁄idbhlapi⁄examples

Specific to HP:
*⁄idbhlapi⁄examples

Specific to Solaris:
*⁄idbhlapi⁄examples

Note: The default path name for this include file is
⁄usr⁄lpp⁄idbhlapi⁄include⁄idbech.h. However, installation of HLAPI/UNIX
creates the symbolic link ⁄usr⁄include⁄idbech.h to reference the include file.
Therefore, the compiler’s default search path for header files is generally sufficient to
access the HLAPI/UNIX include file. If the header file resides in a location other
than the default or if the specified symbolic link is absent, then you may need to
explicitly specify a search path to enable the compiler to locate the header file.

Overview of HICA and PDB Data Structures
The primary data structures that your application uses to communicate with HLAPI/UNIX
are HICA structures and PDB structures. The arguments of the HLAPI/UNIX functions
IDBTransactionSubmit() and IDBTransactionStatus() include the address of a HICA that
represents a transaction sequence. The fields of the HICA include pointers to PDB structures.

Developing HLAPI/UNIX Client Applications

272 Version 7.1

Each non-null PDB pointer of the HICA is a pointer to the first element of a linked list of
PDBs of a particular type. There are five types of PDBs, hence five PDB pointers in a
HICA:
¶ Control PDB
¶ Input PDB
¶ Output PDB
¶ Error PDB
¶ Message PDB

Each type of PDB can have subtypes. For example, some of the subtypes of control PDBs
are SPOOL_INTERVAL, HLIMSG_OPTION, HLAPILOG_ID, DATABASE_PROFILE,
SECURITY_ID, and PASSWORD.

To submit a transaction request to HLAPI/UNIX, your application program calls
IDBTransactionSubmit() and passes the address of a HICA with associated control PDB
and input PDB structures. The HL01 transaction must include the three required control
PDBs, SECURITY_ID, PASSWORD, and DATABASE_PROFILE, which are described in
“Initialize Tivoli Information Management for z/OS (HL01)” on page 278. The
HLAPI/UNIX communicates the transaction reply to your application program by
associating linked lists of output PDBs, error PDBs, and message PDBs with the HICA. In
addition, HLAPI/UNIX updates the list of input PDBs for some transaction replies.

The values you store in the control PDBs and input PDBs depend on the specific
HLAPI/UNIX transaction you want to use. For example, if a control PDB specifies that the
transaction type is for record creation, then input PDBs may specify the data values for
individual fields of the record to be created. The Tivoli Information Management for z/OS
Application Program Interface Guide contains additional information about HICAs and
PDBs.

Allocating and Initializing a HICA structure
Your application program must allocate and initialize one HICA structure for each
HLAPI/UNIX transaction sequence. The HICA is used throughout the transaction sequence.
Therefore, your application program must ensure that the storage allocated for the HICA
persists for the duration of the transaction sequence. Your application program can allocate
any class of storage for a HICA, such as shared memory, automatic storage, and static
storage. This example shows an application fragment that illustrates the allocation and
initialization of a HICA. Note that the ENVP field of a HICA must be set to null before
each HL01 transaction and must not be changed by the application program during the
remainder of the transaction sequence.
/***/
/* allocate a HICA for a transaction sequence */
/***/

static IDB_HICA MyHICA; /* allocate HICA */
/***/
/* initialize a HICA before an HL01 transaction */
/***/

memset(&MyHICA, /* fill HICA with nulls */
'\0',
sizeof(MyHICA));

memcpy(MyHICA.ACRO, /* initialize HICA eyecatcher */
HICAACRO_TEXT,
sizeof(MyHICA.ACRO));

MyHICA.LENG = sizeof(MyHICA); /* set HICA length */

Developing HLAPI/UNIX Client Applications

273Client Installation and User’s Guide

30.
H

L
A

P
I/U

N
IX

Tran
sactio

n
s

MyHICA.ENVP = (void *)0; /* initialize ENVP field -- */
/* ONLY FOR HL01 TRANSACTION */

...
/* associate Control PDBs */

...
/* and Input PDBs with HICA */

Allocating and Initializing a PDB Structure
Your application program is responsible for allocating, initializing, and freeing control PDBs
and input PDBs for each transaction. HLAPI/UNIX is responsible for allocating, initializing,
and freeing output PDBs, error PDBs, and message PDBs for each transaction.

Your application must allocate and initialize any required control PDBs and input PDBs
before it submits a transaction request. Your application program should examine any output
PDBs, error PDBs, and message PDBs that are returned with a transaction reply. In addition,
your application program should examine the input PDBs for updates made by
HLAPI/UNIX as part of certain transaction replies. The Tivoli Information Management for
z/OS Application Program Interface Guide contains additional information.

The last field of a PDB structure is the data field. This field is declared to be a one-element
array of unsigned characters, but it is actually a variable-length field. The actual length of
the field is determined by the number of extra bytes allocated for the PDB structure. Your
application program should use the data field to record the actual number of bytes of data in
the data field. This arrangement allows your application program to conserve memory by
allocating each PDB with only as much storage as it needs. The total size of a PDB is the
sum of PDBFIX_SIZE (a constant defined in idbh.h) and the number of bytes for the data
field.

This example shows an application fragment that illustrates allocation and partial
initialization of an input PDB. Note the calculation of PDB size.

int PDBsize;
PDB *pPDB; /* pointer to PDB */

PDBsize = PDBFIX_SIZE + strlen("DOE JOHN");

pPDB = malloc(PDBsize); /* allocate memory for PDB */

if (pPDB) {

memset(pPDB, /* fill PDB with nulls */
'\0',
PDBsize);

memcpy(pPDB->Acro, /* initialize PDB eyecatcher */
PDBACRO_TEXT,
sizeof(pPDB->Acro));

memset(pPDB->Name, /* initialize with blanks */
' ',
sizeof(pPDB->Name));

memcpy(pPDB->Name, /* record field value */
"REPORTER_NAME",
strlen("REPORTER_NAME"));

pPDB->Datl = strlen("DOE JOHN"); /* initialize length */
memcpy(pPDB->Data, /* initialize value */

"DOE JOHN",

Developing HLAPI/UNIX Client Applications

274 Version 7.1

pPDB->DATL);

pPDB->Proc = 'V'; /* request validation */

pPDB->Code = ' '; /* initialize data error code */

...
/* initialize other fields */

pPDB->Next = MyHICA.INPP; /* insert PDB into linked list */
pPDB->Prev = NULL; /* of Input PDBs */

HLAPI/UNIX Functions
Two C-language HLAPI/UNIX functions are available to client application programs:

¶ IDBTransactionSubmit() for submitting a transaction request

¶ IDBTransactionStatus() for checking the status of a pending transaction and retrieving
the transaction reply.

The HLAPI/UNIX header file idbh.h contains prototypes for the functions and declarations
of the data types and values associated with the functions.

IDBTransactionSubmit()
A client application program calls the function IDBTransactionSubmit() to submit a
transaction request to HLAPI/UNIX. In a C-language program, the call to
IDBTransactionSubmit() looks like
rc = IDBTransactionSubmit(pHICA, SubmitMode);

Your application must provide the following variables:

¶ pHICA

A pointer to a structure of the type HICA that contains the HICA that you want to
submit to HLAPI/UNIX.

¶ SubmitMode

Your selection of the processing mode for the transaction. The variable has a type
definition of TRANTYPE_TYPE. The following values are valid:
IDB_SYNC

Specifies synchronous processing mode
IDB_ASYNC

Specifies asynchronous processing mode

HLAPI/UNIX returns a value from this function call that you should examine before looking
at the HICA return and reason codes. This return code (rc) is a variable of type
IDBRC_TYPE. The values that can be returned for it are listed in “HLAPI Service Call
Return Codes” on page 367.

#include <idbh.h>
IDBRC_TYPE rc;
HICA MyHICA;
TRANTYPE_TYPE Mode;

...

Mode = IDB_ASYNC;

Developing HLAPI/UNIX Client Applications

275Client Installation and User’s Guide

30.
H

L
A

P
I/U

N
IX

Tran
sactio

n
s

rc = IDBTransactionSubmit(&MyHICA, Mode);

...

Usage Notes
After calling IDBTransactionSubmit() to submit a transaction, a client application program
should not alter the HICA, PDBs, or other associated structures until the transaction is
complete.

After submitting the HL01 transaction to initiate a transaction sequence, a client application
need only change the control PDB and input PDB chains to prepare the HICA for a
subsequent transaction. The HICA pointers to the output PDB, message PDB, and error PDB
chains may be set optionally to NULL to prepare for a subsequent transaction.

Additional information about error conditions for a particular transaction may be obtained
from the following:

¶ The values of the HICA fields RETC and REAS, if IDBTransactionSubmit() returned
the value IDBRC_XERR

¶ Any error PDBs and message PDBs chained to the HICA

¶ Any input PDBs updated by HLAPI/UNIX

¶ The HLAPI/UNIX file idbprobe.log

¶ The requester and client interface log files, if transaction logging is enabled for the
transaction sequence.

¶ “Transaction Logging by a RES and by an MRES Without Pre-started API Sessions” on
page 20.

IDBTransactionStatus()
A client application program calls the function IDBTransactionStatus() to request the status
and obtain the reply of an asynchronous transaction. IDBTransactionStatus() can also be
used to convert an asynchronous transaction to a synchronous transaction. In a C-language
program, the call to IDBTransactionStatus() looks like this:

rc = IDBTransactionStatus(pHICA, StatusMode, pTranStatus);

Your application must provide the following variables:

¶ pHICA

A pointer to a structure of the type HICA that contains the HICA that you want to
submit to HLAPI/UNIX.

¶ StatusMode

An input parameter specifying whether the calling process will wait for the transaction
reply if it is not yet available. The variable has a type definition of QUERY_TYPE and
the following values are valid:

IDB_CHECKFORCOMPLETION
This value specifies that the caller is to return immediately from the call to
IDBTransactionStatus() even if the transaction is not yet complete. If the
transaction is complete, the transaction reply will be available to the caller upon
return.

HLAPI/UNIX Functions

276 Version 7.1

IDB_WAITFORCOMPLETION
This value specifies that the caller is to return from the call to
IDBTransactionStatus() only when the transaction is complete. The transaction
results will be available to the caller upon return.

¶ pTranStatus

A pointer to a variable of type TRANSTATUS_TYPE. Upon return from the call to
IDBTransactionStatus, the variable will contain one of the following values:

IDB_TCOMPLETE
The transaction is complete. Any output, error, and message PDBs returned from
the MVS host are attached to the HICA and available for your program’s use.
The RETC and REAS fields of the HICA are set with values indicating the
result of the transaction. The Tivoli Information Management for z/OS
Application Program Interface Guide contains a listing of possible values.

IDB_TINPROGRESS
The transaction is still in progress. No data has been returned on the HICA, and
the HICA is unavailable for use by your application.

IDBTransactionStatus() returns a value from this call. Examine this value before looking at
the HICA return and reason codes. This return code (rc) is defined as a variable of type
IDBRC_TYPE. The values that can be returned for it are listed in “HLAPI Service Call
Return Codes” on page 367.

#include <idbh.h>
IDBRC_TYPE rc;
HICA MyHICA;
QUERYTYPE_TYPE StatusMode;
TRANSTATUS_TYPE TranStatus;

...

StatusMode = IDB_WAITFORCOMPLETION;
rc = IDBTransactionStatus(&MyHICA, StatusMode, &TranStatus);

...

Usage notes
Additional information about error conditions for a particular transaction may be obtained
from the following:

¶ The values of the HICA fields RETC and REAS, if IDBTransactionStatus() returned
the value IDBRC_XERR

¶ Any error PDBs and message PDBs chained to the HICA

¶ Any input PDBs updated by HLAPI/UNIX

¶ The HLAPI/UNIX file idbprobe.log

¶ The requester and client interface log files, if transaction logging is enabled for the
transaction sequence.

¶ “Transaction Logging by a RES and by an MRES Without Pre-started API Sessions” on
page 20.

HLAPI/UNIX Functions

277Client Installation and User’s Guide

30.
H

L
A

P
I/U

N
IX

Tran
sactio

n
s

Using HLAPI/UNIX Functions in a Transaction Sequence
All HLAPI/UNIX function calls for a given transaction sequence must be made by the same
process. In addition, the effective user ID of the process must not vary from one
HLAPI/UNIX function call to the next. HLAPI/UNIX returns an error to the calling process
if the process ID or effective user ID does not match the value recorded during the call to
IDBTransactionSubmit() for the HL01 transaction of the transaction sequence.

The HLAPI transactions supported by HLAPI/UNIX are listed in Table 1 on page 3. For a
description of the transactions supported by HLAPI/UNIX, refer to the Tivoli Information
Management for z/OS Application Program Interface Guide. The remainder of this section
discusses aspects of each transaction that are specific to HLAPI/UNIX.

Initialize Tivoli Information Management for z/OS (HL01)
The HLAPI/UNIX transaction HL01 requests a connection to a Tivoli Information
Management for z/OS database on a specific Tivoli Information Management for z/OS
server. The HL01 transaction initiates a HLAPI/UNIX transaction sequence. This section
describes the steps performed for an HL01 transaction.

1. The user creates a HLAPI/UNIX database profile for the database connection. A text
editor can be used to create or update a database profile. Different database connections
can share the same database profile, but it is generally advisable to create a different
database profile for each database connection. The database profile specifies the server
(either symbolic destination name for a server that supports APPC or host and service
names for a server that supports TCP/IP), the requester host and service names, the code
sets used during data conversion, and other parameters governing the transaction
sequence for the database connection. See “HLAPI/UNIX Profiles, Environment
Variables, and Data Logging” on page 251 for a description of database profile contents.

2. The client application program allocates and initializes a HICA structure for the
transaction sequence. The client application program allocates and initializes three
required control PDBs:

¶ The DATABASE_PROFILE PDB, specifying the name of the database profile for
the transaction sequence

¶ The SECURITY_ID PDB, specifying the MVS user ID

¶ The PASSWORD PDB, specifying the MVS user password.

The client application places these PDBs on the HICA’s chain of control PDBs. The
DATABASE_PROFILE PDB can go anywhere on the chain of control PDBs. If the
DATABASE_PROFILE PDB uses a relative path for the database profile, the value of
the HLAPI/UNIX environment variable IDBDBPATH is used to qualify the path name
and locate the profile. A relative path does not explicitly specify a complete path from
the root directory to the file.

3. The client application program calls IDBTransactionSubmit(), passing the address of
the HICA as a parameter. During the call to IDBTransactionSubmit(), HLAPI/UNIX
reads the database profile and records its parameters for use during the entire transaction
sequence. The client interface then uses the requester host and service names to establish
communication with the requester.

4. At this time, the specified requester must be available to the client interface.

5. The client interface transmits the MVS user ID, MVS password, and symbolic
destination name or server host and server service name to the requester. If sharing is

Using HLAPI/UNIX Functions in a Transaction Sequence

278 Version 7.1

enabled, the requester examines these values to determine whether they match the
corresponding values for any existing conversation between the requester and a server. If
a matching conversation is identified and the new transaction sequence can be assigned
to the conversation without exceeding the implicit HLAPI/UNIX limit on the number of
transaction sequences per conversation (10), then the requester assigns the new
transaction sequence to the conversation. Otherwise, a new conversation is started and
the new transaction sequence is assigned to it.

6. The TIMEOUT_INTERVAL PDB applies to the HLAPI that is running on Tivoli
Information Management for z/OS. If you specify a timeout interval, it determines the
maximum time that may elapse during HLAPI processing of a single transaction. If the
HLAPI processing time exceeds the timeout interval, the HLAPI ends the transaction.
Note that the HLAPI processing time for a transaction does not include time spent by the
server or components of HLAPI/UNIX to process the transaction. Therefore, a
transaction submitted from HLAPI/UNIX may appear to require more processing time
than the timeout interval indicates.

7. For information about transaction logging, see “Transaction Logging” on page 261.

8. The client application program returns from the call to IDBTransactionSubmit(). If the
transaction was submitted asynchronously, the client application program must call
IDBTransactionStatus() to retrieve the transaction reply before submitting other
transactions of the transaction sequence.

Any process of a client application program can have multiple, concurrent transaction
sequences. The transactions of a transaction sequence can be submitted independently of the
transactions of all other transaction sequences. However, a different HICA must be
associated with each transaction sequence.

Terminate Tivoli Information Management for z/OS (HL02)
The HLAPI/UNIX transaction HL02 allows a client application program to close a database
connection on a specific server. The HL02 transaction completes a normal HLAPI/UNIX
transaction sequence. This section describes the steps performed for an HL02 transaction.

1. The client application program allocates and initializes the normal control PDBs
requesting a disconnect from the database, associates the PDBs with the HICA for the
transaction sequence, and calls IDBTransactionSubmit() to submit the HL02 transaction
to HLAPI/UNIX.

2. The client interface communicates the disconnect request through the requester to the
server. If this is the last transaction sequence assigned to the conversation between the
requester and the server, the conversation with the server is ended. If this is not the last
transaction sequence assigned to the conversation, the conversation is not ended.

3. The client application program returns from the call to IDBTransactionSubmit(). If the
transaction was submitted asynchronously, the client application program must call
IDBTransactionStatus() to retrieve the transaction reply. For an HL02 transaction, the
transaction reply does not include any output PDBs, message PDBs, or error PDBs.
However, the transaction reply does include the return and reason codes returned in the
HICA fields RETC and REAS.

Retrieve Record (HL06)
The optional TEXT_MEDIUM control PDB can specify the type of storage medium for the
HLAPI. However, the HLAPI/UNIX only supports storage medium type B. The

Using HLAPI/UNIX Functions in a Transaction Sequence

279Client Installation and User’s Guide

30.
H

L
A

P
I/U

N
IX

Tran
sactio

n
s

TEXT_MEDIUM PDB is optional for the HLAPI/UNIX HL06 transactions. However,
HLAPI/UNIX overrides any specified value with the value for storage medium type B.

If you want to retrieve freeform text as a continuous stream of data with carriage return /
line feed characters (ASCII X'0D0A') after each text line, set the optional control PDB
TEXT_STREAM to YES. The Tivoli Information Management for z/OS Application
Program Interface Guide contains additional information about the TEXT_STREAM PDB.

Create Record (HL08)
HLAPI/UNIX does not support text data sets. Always specify a non-zero value for the
PDB_DATW field of the input PDBs for text data.

If you are creating a record that contains freeform text, and the input text contains either line
feed characters (ASCII X'0A') or carriage return / line feed characters (ASCII X'0D0A'), set
the optional control PDB TEXT_STREAM to YES. This will ensure that text formatting
information is stored in the record. When the text is retrieved, it will be formatted exactly as
it was entered. The Tivoli Information Management for z/OS Application Program Interface
Guide contains additional information about the TEXT_STREAM PDB.

Update Record (HL09)
HLAPI/UNIX does not support text data sets. Always specify a non-zero value for the
PDB_DATW field of the input PDBs for text data.

If you are updating a record that contains freeform text, and the input text contains either
line feed characters (ASCII X'0A') or carriage return / line feed characters (ASCII X'0D0A'),
set the optional control PDB TEXT_STREAM to YES. This will ensure that text formatting
information is stored in the record. When the text is retrieved, it will be formatted exactly as
it was entered. The Tivoli Information Management for z/OS Application Program Interface
Guide contains additional information about the TEXT_STREAM PDB.

Linking Your Application to HLAPI/UNIX Services
The HLAPI/UNIX shared runtime library contains the client interface runtime services
accessed by calling the HLAPI/UNIX functions IDBTransactionSubmit() and
IDBTransactionStatus(). Before using the runtime services of HLAPI/UNIX, you must link
your application program to the HLAPI/UNIX shared runtime library. The default path and
file names for the libraries are:

Specific to AIX:
⁄usr⁄lpp⁄idbhlapi⁄lib⁄libidb.a

Specific to HP:
*⁄idbhlapi⁄lib⁄libidb.sl

Specific to Solaris:
*⁄idbhlapi⁄lib⁄libidb.so

where * is the directory where the HLAPI/UNIX is installed.

However, installation of HLAPI/UNIX creates a symbolic link in the ⁄usr⁄lib directory to
reference the shared library.

When starting the link editor, specify the option
-lidb

Using HLAPI/UNIX Functions in a Transaction Sequence

280 Version 7.1

to enable dynamic linking with the HLAPI/UNIX shared runtime library.

You may need to explicitly specify a search path to enable the link editor to locate the
library if it resides in a location other than the default, if the specified symbolic link is
absent, or if you are not starting the link editor through cc.

Refer to the file idbappl.mak in the HLAPI/UNIX examples subdirectory (listed below) for
an example of how to link your application with the runtime library.

Specific to AIX:
⁄usr⁄lpp⁄idbhlapi⁄examples

Specific to HP:
*⁄idbhlapi⁄examples

Specific to Solaris:
*⁄idbhlapi⁄examples

Planning Your HLAPI/UNIX Application
This section lists some questions you need to answer when you plan and design your
application that uses HLAPI/UNIX. Refer to the Tivoli Information Management for z/OS
Application Program Interface Guide for more information on this subject.

¶ Which Tivoli Information Management for z/OS transactions (for example, create or
update) do you use?

¶ Which record types (for example, problem or change) do you use?

¶ Which fields (for example, problem status or assignee name) do you use?

¶ Do you need to connect to more than one Tivoli Information Management for z/OS
database?

¶ On which MVS systems are your Tivoli Information Management for z/OS databases
located?

¶ Which communication protocol, APPC or TCP/IP, will your application use?

¶ Does your application require security?

¶

Specific to AIX:
Do you want the application to be served by a dedicated address space
(RES) or do you want to share an address space with other applications
(MRES with APPC or MRES with TCP/IP)?

¶

Specific to AIX:
Do you have symbolic destination names defined for the servers that
support APPC?

¶ Do you have port numbers assigned for the sockets any servers that support TCP/IP will
need?

¶ On which UNIX systems will your client application programs run?

¶ On which UNIX systems will your requesters be located?

Linking Your Application to HLAPI/UNIX Services

281Client Installation and User’s Guide

30.
H

L
A

P
I/U

N
IX

Tran
sactio

n
s

¶ How should your UNIX system resource limits be configured to support requester and
client interface requirements?

¶ Will the transactions be submitted synchronously or asynchronously?

¶ How are the processes of your application related to one another?

¶ How much storage do you need in a server to support sessions, given your transaction
mix?

¶ Do you want to enable transaction logging by the client interface or by the server?

¶ Do you want to perform data validation? Data length validation is always performed for
a transaction, but other validation can be controlled as described in the Tivoli
Information Management for z/OS Application Program Interface Guide.

Converting HLAPI Programs to HLAPI/UNIX Programs
If you want to convert an existing C-language program that uses HLAPI to a C-language
program that uses HLAPI/UNIX, here are some tips on how to do that:

¶ Make general modifications that are required to make the program run on UNIX:

v If necessary, fix brackets (’{’,’}’,’[’,’]’) after converting the program source code
from EBCDIC (the MVS format) to ASCII (the UNIX format). Brackets and other
characters may be translated incorrectly when a file is transferred from MVS to
UNIX.

v Change HICA and PDB field names to their HLAPI/UNIX counterparts.

¶ Update references to included header files:

v Include the HLAPI/UNIX header file idbh.h.

v Include the HLAPI/UNIX header file idbech.h if you want to use the named
constants for HLAPI/UNIX return and reason codes.

v Do not include the HLAPI header file spc.h.

¶ Delete compiler pragmas used by the MVS program.

¶ Convert any HL06, HL08, and HL09 transactions that use the data set method of
freeform text processing to the buffer method of freeform text processing.

¶ Convert HLAPI function calls to the HLAPI/UNIX function calls
IDBTransactionSubmit() and IDBTransactionStatus(). Do not define variables to
reference the BLGYHLPI module, and do not fetch the BLGYHLPI module.

¶ Add processing to allocate and initialize the three special types of control PDBs for
HLAPI/UNIX (SECURITY_ID, PASSWORD, and DATABASE_PROFILE) and to
insert the PDBs into the chain of control PDBs for each HL01 transaction.

¶ Create one or more database profiles for use with your program’s transaction sequences.

¶ Create any system profiles needed for requesters.

¶ Review the error handling sections of the program to determine whether changes are
needed to process HLAPI/UNIX error conditions.

¶ When starting the compiler and the link editor, compile with appropriate options for
locating the HLAPI/UNIX header files and for linking dynamically to the HLAPI/UNIX
shared runtime library.

Planning Your HLAPI/UNIX Application

282 Version 7.1

Using the REXX HLAPI/AIX Interface
The REXX HLAPI/AIX interface enables you to access HLAPI/AIX transactions from AIX
REXX/6000 programs similar to the manner in which HLAPI/REXX on MVS enables you
to access HLAPI transactions from MVS REXX programs. You should be familiar with
HLAPI/REXX which is described in the Tivoli Information Management for z/OS
Application Program Interface Guide before you attempt to use the REXX HLAPI/AIX
interface.

REXX HLAPI/AIX allows you to write a REXX program on AIX that sets REXX variables
with control and input information, then links to the HLAPI/AIX through the REXX
HLAPI/AIX interface to process that information. On return, REXX HLAPI/AIX uses data
returned by the HLAPI/AIX to set various REXX output variables in your program. The
particular transactions that the REXX HLAPI/AIX interface supports are the same as those
supported by the HLAPI/AIX. For a list of those transactions, see Table 4 on page 284.

The use of shared REXX variables for specifying control and input data to Tivoli
Information Management for z/OS and returning output data from Tivoli Information
Management for z/OS is equivalent to how this is implemented for HLAPI/REXX on MVS.
Refer to the Tivoli Information Management for z/OS Application Program Interface Guide
for information on how to define REXX variables in your program and for a list of reserved
REXX variables that the REXX HLAPI interfaces (HLAPI/REXX, REXX HLAPI/2, REXX
HLAPI/AIX, and REXX HLAPI/USS) use.

The remainder of this section discusses the operating differences between HLAPI/REXX and
REXX HLAPI/AIX.

REXX HLAPI/AIX Installation and Setup
The REXX HLAPI/AIX interface is a REXX external function package that you call from
your REXX program. The REXX HLAPI/AIX is named blmyrxm and is distributed with the
client interface option of the HLAPI/AIX. After installation of the HLAPI/AIX client
interface, blmyrxm is located in /usr/lpp/idbhlapi/lib. A sample REXX program is also
distributed with the client interface and is located in /usr/lpp/idbhlapi/examples. It is named
blmyrxsa. “Installing and Setting Up HLAPI/UNIX” on page 237 contains information on
HLAPI/AIX installation.

When you run the REXX HLAPI/AIX interface, you must make sure that blmyrxm is
located in any directory in your LIBPATH, so you may need to copy blmyrxm to a directory
in your LIBPATH or include /usr/lpp/idbhlapi/lib in your LIBPATH. You should also make
certain that the REXX shared library librexx.a is located in any directory in your LIBPATH.

REXX HLAPI/AIX Software Requirement
AIX REXX/6000 (commonly referred to as REXX) must be installed on the same AIX
system as the REXX HLAPI/AIX.

Invoking REXX HLAPI/AIX
REXX HLAPI/AIX is an external function package that you invoke from your AIX
REXX/6000 program. Because the REXX HLAPI/AIX is an external function package, your
program must first register it with REXX before you call it.

You use the SysAddFuncPkg system-defined function in your REXX program to register the
REXX HLAPI/AIX. The syntax is as follows:

call SysAddFuncPkg 'blmyrxm'

Using the REXX HLAPI/AIX Interface

283Client Installation and User’s Guide

30.
H

L
A

P
I/U

N
IX

Tran
sactio

n
s

After calling SysAddFuncPkg to register the REXX HLAPI/AIX, you can test the REXX
variable RESULT for a value of 0 to make sure that the code was registered successfully.

You deregister the REXX HLAPI/AIX at the end of your REXX program using
SysDropFuncPkg as follows:

call SysDropFuncPkg 'blmyrxm'

In addition, before you run your REXX program, you must ensure that blmyrxm and the
REXX shared library (librexx.a) are located in any directory in your LIBPATH.

After the REXX HLAPI/AIX is registered, your REXX program can call it. The syntax of
the REXX HLAPI/AIX call is:

call blmyrxm transaction-name,{control},{input},{output}

The following example illustrates a call to the REXX HLAPI/AIX for a create transaction
with an input stem name of INPUT, a control stem name of CONTROL and an output
stem name of OUTPUT.

call blmyrxm 'CREATE','CONTROL','INPUT','OUTPUT'

REXX HLAPI/AIX Transaction Names
The following REXX HLAPI/AIX transaction names are supported. The list matches the
HLAPI/AIX transaction subset which is specified in Table 1 on page 3.

Table 4. REXX HLAPI/AIX Transaction Names
NAME FUNCTION

INIT Initialize Tivoli Information Management for z/OS

TERM Terminate Tivoli Information Management for z/OS

GETID Obtain External Record ID

CHECKOUT Check Out Record

CHECKIN Check In Record

RETRIEVE Retrieve Record

CREATE Create Record

UPDATE Update Record

CHANGE_APPROVAL Change Record Approval

SEARCH Record Inquiry

ADD_REL Add Record Relations

DELETE Delete Record

USERTSP Start User TSP

GETDATAMODEL Get Data Model

Running Your AIX REXX/6000 Program
To run your REXX program, you can use either of the following methods:

¶ At your shell command prompt, type rexx name where name is the name of your
REXX program. This method explicitly starts the REXX/AIX language interpreter and
identifies the REXX program to be run.

OR

Using the REXX HLAPI/AIX Interface

284 Version 7.1

¶ If the first line of your REXX program contains a “magic number” and identifies the
directory where the REXX/AIX interpreter resides, your REXX program can be run by
simply typing its name at the shell command prompt. For example, if the REXX/AIX
interpreter file is in the /usr/bin directory include the following as the very first line of
your REXX program starting in column 1:
#! /usr/bin/rexx

When you have finished creating your REXX program source file and wish to run it for
the first time, make it executable using the chmod +x name command. Then run the
REXX program by typing its filename at your shell command prompt.

REXX Reserved Variables
The REXX HLAPI/AIX interface uses the same REXX reserved variables as those described
for HLAPI/REXX in the Tivoli Information Management for z/OS Application Program
Interface Guide with the following additions and deletions:

Table 5. REXX reserved variables added for REXX HLAPI/AIX
BLG_HLAPIAIX_RC Return code passed back from HLAPI/AIX. The

return codes are documented in “HLAPI Service Call
Return Codes” on page 367.

BLG_REXXVAR_POOL_RC Set to return code from REXX variable pool service
on failures.

Table 6. HLAPI/REXX reserved variables not used by REXX HLAPI/AIX
BLG_R15 replaced by BLG_HLAPIAIX_RC

BLG_IRXEXCOM_RC replaced by BLG_REXXVAR_POOL_RC

RC replaced by RESULT

Other Considerations
¶ REXX HLAPI/AIX does not support asynchronous processing; all transactions are

processed synchronously. Synchronous processing forces the REXX program’s current
process to wait for a Tivoli Information Management for z/OS transaction to finish
before it can perform any other work.

¶ REXX HLAPI/AIX requires three additional control variables on the INIT transaction.
The REXX variable names are:

v SECURITY_ID

v PASSWORD

v DATABASE_PROFILE

Use SECURITY_ID to specify the MVS user ID. Use PASSWORD to specify the
MVS password for the user ID. Use DATABASE_PROFILE to specify the name of the
database profile.

¶ Neither HLAPI/AIX nor REXX HLAPI/AIX supports text data sets.

v For a RETRIEVE transaction, the REXX variable TEXT_MEDIUM only supports
storage medium type B.

v For a CREATE or UPDATE transaction, text-name.?width for text data must be
nonzero or not be specified.

Using the REXX HLAPI/AIX Interface

285Client Installation and User’s Guide

30.
H

L
A

P
I/U

N
IX

Tran
sactio

n
s

Refer to the Tivoli Information Management for z/OS Application Program Interface
Guide for information on how to define REXX variables in your program and for a list
of reserved REXX variables that the REXX HLAPI interfaces use.

REXX HLAPI/AIX Sample REXX Program
A sample REXX program named blmyrxsa is distributed with the client interface option of
the HLAPI/AIX. After installation, blmyrxsa is located in /usr/lpp/idbhlapi/examples. This
sample REXX program illustrates how to:

¶ register the REXX HLAPI/AIX interface with REXX

¶ setup REXX variables

¶ make REXX HLAPI/AIX transaction calls

¶ retrieve output data

¶ deregister the REXX HLAPI/AIX interface

“Sample Program BLMYRXSA” also shows the blmyrxsa sample REXX program. The
following steps are performed:

1. Register the REXX HLAPI/AIX interface using the SysAddFuncPkg system-defined
function.

2. Setup REXX variables for an INIT transaction.

3. Call REXX HLAPI/AIX to perform the INIT transaction.

4. Record REXX HLAPI/AIX output to an AIX file named blmyrxsa.out.

5. Setup REXX variables to CREATE a record with record id SAMP1.

6. Call REXX HLAPI/AIX to perform the CREATE transaction.

7. Record REXX HLAPI/AIX output to the AIX file named blmyrxsa.out.

8. Setup REXX variables to retrieve the record just created.

9. Call REXX HLAPI/AIX to perform the RETRIEVE transaction.

10. Record REXX HLAPI/AIX output to the AIX file named blmyrxsa.out.

11. Setup REXX variables to delete the record just created.

12. Call REXX HLAPI/AIX to perform the DELETE transaction.

13. Record REXX HLAPI/AIX output to the AIX file named blmyrxsa.out.

14. Call REXX HLAPI/AIX to perform the TERM transaction.

15. Deregister the REXX HLAPI/AIX interface using the SysDropFuncPkg system-defined
function.

Sample Program BLMYRXSA
The sample program blmyrxsa demonstrates calls to the REXX HLAPI/AIX interface.
#! /usr/bin/rexx
/* */
/*---*/
/* */
/* Licensed Materials - Property of IBM. */
/* */
/* */
/* 5697-SD9 */
/* */

Using the REXX HLAPI/AIX Interface

286 Version 7.1

/* (C) Copyright IBM Corp. 1981, 2001 */
/* */
/* See Copyright Instructions */
/* */
/* */
/* */
/*---*/
/* */
/* This sample REXX program demonstrates calls to the REXX HLAPI/AIX */
/* interface. The program shows how: */
/* */
/* - SysAddFuncPkg() is used to register the REXX HLAPI/AIX */
/* */
/* - REXX HLAPI/AIX variables are set for transactions */
/* */
/* - INIT, CREATE, RETRIEVE, DELETE and TERM REXX HLAPI/AIX */
/* transactions are issued */
/* */
/* - SysDropFuncPkg() is used to deregister the REXX HLAPI/AIX */
/* */
/* - a log of transaction output is kept in file BLMYRXSA.OUT */
/* */
/*---*/

'rm blmyrxsa.out'

/**/
/* call SysAddFuncPkg to register blmyrxm */
/**/
call SysAddFuncPkg 'blmyrxm'
if RESULT=0 then
do
/**/
/* set the CONTROL data for the INIT */
/**/
CONTROL.0 = 10
CONTROL.1 = 'database_profile'
CONTROL.2 = 'privilege_class'
CONTROL.3 = 'session_member'
CONTROL.4 = 'application_id'
CONTROL.5 = 'class_count'
CONTROL.6 = 'hlimsg_option'
CONTROL.7 = 'security_id'
CONTROL.8 = 'password'
CONTROL.9 = 'spool_interval'
CONTROL.10 = 'apimsg_option'
privilege_class = 'MASTER'
session_member = 'BLGSES00'
application_id = 'SAMPID'
class_count = 1
spool_interval = 200
hlimsg_option = 'C'
apimsg_option = 'C'
security_id = 'SAMPID'
password = 'PASSWORD'
database_profile = 'database.pro'
/**/
/* call REXX HLAPI/AIX to perform the */
/* INIT transaction */
/**/
Call blmyrxm 'INIT','CONTROL'

/**/
/* record REXX HLAPI/AIX output in file */
/* blmyrxsa.out */
/**/

Using the REXX HLAPI/AIX Interface

287Client Installation and User’s Guide

30.
H

L
A

P
I/U

N
IX

Tran
sactio

n
s

say 'Returned from INIT with Result = ' Result
rc = lineout('blmyrxsa.out','INIT Transaction results:')
rc = lineout('blmyrxsa.out','Result=' Result)
rc = lineout('blmyrxsa.out','BLG_RC=' BLG_RC)
rc = lineout('blmyrxsa.out','BLG_REAS=' BLG_REAS)
rc = lineout('blmyrxsa.out','BLG_VARNAME=' BLG_VARNAME)
rc = lineout('blmyrxsa.out','BLG_HLAPIAIX_RC=' BLG_HLAPIAIX_RC)
rc = lineout('blmyrxsa.out',' ')
say '

if Result \= 0 then
do
call blmyrxm 'TERM'
call SysDropFuncPkg 'blmyrxm'
exit
end

/**/
/* set the CONTROL and INPUT data for */
/* the CREATE */
/**/
CONTROL = '
CONTROL.0 = 1
CONTROL.1 = 'PIDT_NAME'
PIDT_NAME = 'BLGYPRC'

INPUT = '
INPUT.0 = 6
INPUT.1.?NAME = 'S0BEE'
INPUT.1.?PROC = 'V'
INPUT.2.?NAME = 'S0B59'
INPUT.3.?NAME = 'S0CA9'
INPUT.4.?NAME = 'S0E0F'
INPUT.5.?NAME = 'S0CCF'
INPUT.6.?NAME = 'S0E01.'
S0E01.?WIDTH = 20
S0BEE = 'INITIAL'
S0B59 = 'DOE/JOHN'
S0CA9 = 'LPT1'
S0E0F = 'PROBLEM RECORD CREATE BY REXX HLAPI/AIX'
S0CCF = 'SAMP1'
S0E01.0 = 2
S0E01.1 = 'Sample1 first line'
S0E01.2 = 'Sample1 second line'
OUTPUT.0 = 1
OUTPUT.1.?TYPE = ' '

/**/
/* call REXX HLAPI/AIX to perform the */
/* CREATE transaction */
/**/
Call blmyrxm 'CREATE','CONTROL','INPUT','OUTPUT'

/**/
/* record REXX HLAPI/AIX output in file */
/* blmyrxsa.out */
/**/
say 'Returned from CREATE with Result = ' Result
rc = lineout('blmyrxsa.out','CREATE Transaction results:')
rc = lineout('blmyrxsa.out','Result=' Result)
rc = lineout('blmyrxsa.out','BLG_RC=' BLG_RC)
rc = lineout('blmyrxsa.out','BLG_REAS=' BLG_REAS)
rc = lineout('blmyrxsa.out','BLG_VARNAME=' BLG_VARNAME)
rc = lineout('blmyrxsa.out','BLG_HLAPIAIX_RC=' BLG_HLAPIAIX_RC)
if BLG_ERRCODE.0 \= 0 then

do
rc = lineout('blmyrxsa.out','REXX Error Variables')

Using the REXX HLAPI/AIX Interface

288 Version 7.1

do i = 1 to BLG_ERRCODE.0
rc = lineout('blmyrxsa.out','Error Name ' i ' = ' BLG_ERRCODE.i.?NAME)
rc = lineout('blmyrxsa.out','Error Code ' i ' = ' BLG_ERRCODE.i.?CODE)
end

end
if BLG_MSGS.0 \= 0 then

do
rc = lineout('blmyrxsa.out','Messages')
do i = 1 to BLG_MSGS.0
rc = lineout('blmyrxsa.out','Message ' i ' = ' BLG_MSGS.i.?NAME)
end

end
rc = lineout('blmyrxsa.out',' ')
say '
if Result \= 0 then

do
call blmyrxm 'TERM'
call SysDropFuncPkg 'blmyrxm'
exit
end

/**/
/* set the CONTROL data for the RETRIEVE */
/**/
CONTROL = '
CONTROL.0 = 3
CONTROL.1 = 'PIDT_NAME'
CONTROL.2 = 'TEXT_OPTION'
CONTROL.3 = 'RNID_SYMBOL'

PIDT_NAME = 'BLGYPRR'
TEXT_OPTION = 'YES'
RNID_SYMBOL = 'SAMP1'

/**/
/* call REXX HLAPI/AIX to perform the */
/* RETRIEVE transaction */
/**/
call blmyrxm 'RETRIEVE','CONTROL',,'OUTPUT'
/**/
/* record REXX HLAPI/AIX output in file */
/* blmyrxsa.out */
/**/
say 'Returned from RETRIEVE with Result = ' Result
rc = lineout('blmyrxsa.out','RETRIEVE Transaction results:')
rc = lineout('blmyrxsa.out','Result=' Result)
rc = lineout('blmyrxsa.out','BLG_RC=' BLG_RC)
rc = lineout('blmyrxsa.out','BLG_REAS=' BLG_REAS)
rc = lineout('blmyrxsa.out','BLG_VARNAME=' BLG_VARNAME)
rc = lineout('blmyrxsa.out','BLG_HLAPIAIX_RC=' BLG_HLAPIAIX_RC)
rc = lineout('blmyrxsa.out','REXX Output Variables')
do i = 1 to OUTPUT.0
otype = OUTPUT.i.?TYPE
tname = OUTPUT.i.?NAME
rc = lineout('blmyrxsa.out','Name- ' tname ' Type- ' otype)
/***/
/* if the output is freeform text, put */
/* out all the lines */
/***/
if otype = 'X' then
do j= 1 to OUTPUT.tname.0
rc = lineout('blmyrxsa.out','Data- ' OUTPUT.tname.j)
end
else
rc = lineout('blmyrxsa.out','Data- ' OUTPUT.tname)

end
if BLG_MSGS.0 \= 0 then

Using the REXX HLAPI/AIX Interface

289Client Installation and User’s Guide

30.
H

L
A

P
I/U

N
IX

Tran
sactio

n
s

do
rc = lineout('blmyrxsa.out','Messages')
do i = 1 to BLG_MSGS.0
rc = lineout('blmyrxsa.out','Message ' i ' = ' BLG_MSGS.i.?NAME)

end
end

rc = lineout('blmyrxsa.out',' ')
say '

if Result \= 0 then
do
call blmyrxm 'TERM'
call SysDropFuncPkg 'blmyrxm'
exit
end

/**/
/* set the CONTROL data for the DELETE */
/**/
CONTROL = '
CONTROL.0 = 1
CONTROL.1 = 'RNID_SYMBOL'

RNID_SYMBOL = 'SAMP1'

/**/
/* call REXX HLAPI/AIX to perform the */
/* DELETE transaction */
/**/
Call blmyrxm 'DELETE','CONTROL'
/**/
/* record REXX HLAPI/AIX output in file */
/* blmyrxsa.out */
/**/
say 'Returned from DELETE with Result = ' Result
rc = lineout('blmyrxsa.out','DELETE Transaction results:')
rc = lineout('blmyrxsa.out','Result=' Result)
rc = lineout('blmyrxsa.out','BLG_RC=' BLG_RC)
rc = lineout('blmyrxsa.out','BLG_REAS=' BLG_REAS)
rc = lineout('blmyrxsa.out','BLG_VARNAME=' BLG_VARNAME)
rc = lineout('blmyrxsa.out','BLG_HLAPIAIX_RC=' BLG_HLAPIAIX_RC)
say '

/**/
/* call REXX HLAPI/AIX to perform the */
/* TERM transaction */
/**/
Call blmyrxm 'TERM'

/**/
/* call SysDropFuncPkg to deregister blmyrxm*/
/**/
call SysDropFuncPkg 'blmyrxm'
end

Exit

Using the REXX HLAPI/AIX Interface

290 Version 7.1

Introduction to HLAPI/USS

Tivoli Information Management for z/OS supports local and remote access from an
application program that runs on OS/390 UNIX System Services. It does this through the
High-Level Application Program Interface (HLAPI) and the Tivoli Information Management
for z/OS HLAPI client for OS/390 UNIX System Services (HLAPI/USS).

The HLAPI/USS provides local and remote access to Tivoli Information Management for
z/OS data and data manipulation services. It consists of three parts:

¶ A Tivoli Information Management for z/OS MRES with TCP/IP server, an MVS-based
transaction program that resides on the MVS host system. It provides the link between
Tivoli Information Management for z/OS and the HLAPI/USS system.

¶ The Tivoli Information Management for z/OS HLAPI/USS requester, a USS-based
transaction program that provides access to the HLAPI through a Tivoli Information
Management for z/OS MRES with TCP/IP server.

¶ The Tivoli Information Management for z/OS HLAPI/USS client interface, a USS-based
shared library and bindings for the C language.

HLAPI/USS also provides a REXX HLAPI/USS feature that provides access to HLAPI/USS
from REXX programs.

Like the HLAPI, the HLAPI/USS is a transaction-based application programming interface.
User application programs interact with Tivoli Information Management for z/OS from the
OS/390 UNIX System Services environment in basically the same way as they do from
MVS using the HLAPI. User application programs can be local, running under OS/390
UNIX System Services on the same MVS host as Tivoli Information Management for z/OS,
or they can be on a remote MVS host. These local or remote environment user application
programs can be thought of as the clients to the Tivoli Information Management for z/OS
server. The OS/390 UNIX System Services environment offers a subset of HLAPI
transactions, which are listed in Table 1 on page 3 and described in the Tivoli Information
Management for z/OS Application Program Interface Guide.

The HLAPI/USS enables application programmers to write applications for use in their
specific work environment.

Server Overview
A Tivoli Information Management for z/OS server is an MVS/ESA transaction program that
handles communication between a HLAPI/USS requester and a Tivoli Information
Management for z/OS database that resides on the MVS system where the server is installed.
An OS/390 UNIX System Services client application program must use the HLAPI/USS

31

291Client Installation and User’s Guide

31.
In

tro
d

u
ctio

n
to

H
L

A
P

I/U
S

S

client interface to access a server through a HLAPI/USS requester. The HLAPI/USS
requester only supports TCP/IP communication protocol, so it can only access the MRES
with the TCP/IP server.

An MRES with TCP/IP server must be installed and available on every MVS/ESA machine
with a Tivoli Information Management for z/OS database that HLAPI/USS needs to access.
See “Configuring and Running a Multiclient Remote Environment Server (MRES) with
TCP/IP” on page 53 for information about installing the server.

Requester Overview
The requester receives information from the client application program through the client
interface and transfers the information to the appropriate server. It receives information from
the server and transfers the information back to the client application program through the
client interface. A requester can communicate with multiple servers and multiple client
interfaces.

A HLAPI/USS requester includes the following components:

¶ A daemon program that runs on a requester host to serve as a communication link
between a server on MVS and a client interface on OS/390 UNIX System Services. The
communication link from the HLAPI/USS requester to the server uses TCP/IP
communication protocol; therefore, the HLAPI/USS requester has access to only MRES
with TCP/IP servers.

A requester and a client interface communicate using TCP/IP sockets. Each requester can
communicate with multiple client interfaces on multiple hosts, and each client interface
can communicate with multiple requesters on multiple requester hosts. The requester
need not be located on the same requester host as a client interface that uses the
requester. The requester must be running before a client application program accesses it.

¶ An optional system profile that specifies parameters affecting the requester’s function.

You can run one or more requesters on a single OS/390 UNIX System Services host, and
you can run requesters on different OS/390 UNIX System Services hosts. The requesters can
access the same MRES with TCP/IP or different MRESs with TCP/IP. A single requester can
also access different MRESs with TCP/IP.

Client Interface Overview
The HLAPI/USS client interface transfers information from the client application program to
the requester. It also transfers information it receives from the requester back to the client
application program.

The HLAPI/USS client interface uses C programming language bindings. The client
interface includes the following components:

¶ A C-language header file blmh.h that must be included by applications that use
HLAPI/USS services. This file contains the declarations for the function and data
structures that application programs must use to communicate with Tivoli Information
Management for z/OS through HLAPI/USS.

¶ An optional C-language header file blmech.h that contains named constants representing
HLAPI, LLAPI, and HLAPI/USS return and reason codes used by HLAPI/USS.

Server Overview

292 Version 7.1

¶ A shared runtime library blmhlapi that application programs using HLAPI/USS services
link to dynamically. This library contains the entry point and executable code for the
client interface function.

¶ A definition side-deck blmhlapi.x that contains the import function for the client
interface and must be specified when you compile and link your client application.

¶ One or more database profiles, each of which specifies parameters that apply to entire
sequences of transactions.

The client interface communicates with a requester using TCP/IP protocol. A client interface
can communicate with multiple requesters. The requester must be running before the client
interface can access it.

HLAPI/USS also provides a REXX HLAPI/USS interface. The REXX HLAPI/USS interface
enables you to access HLAPI/USS functions from REXX programs. See “Using the REXX
HLAPI/USS Interface” on page 329 for more information about REXX HLAPI/USS.

Communication Overview
The HLAPI/USS requester and a Tivoli Information Management for z/OS server
communicate using TCP/IP protocol, so a HLAPI/USS requester can only use an MRES
with TCP/IP. Each requester can communicate with multiple MRES with TCP/IP servers on
multiple MVS hosts, and each MRES with TCP/IP server can communicate with multiple
requesters on multiple requester hosts.

A requester and a client interface communicate using sockets. Each requester can
communicate with multiple client interfaces on multiple hosts, and each client interface can
communicate with multiple requesters on multiple hosts.

A requester need not be located on the same host as a client interface using that requester.

Basic Transaction Flow
A transaction sequence is a series of HLAPI/USS transactions that begins with an initialize
Tivoli Information Management for z/OS transaction (HL01), followed by other supported
transactions in any order and ends with a terminate Tivoli Information Management for z/OS
transaction (HL02). Client application programs submit transactions in a transaction
sequence, which is referred to as a logical session.

Each HLAPI/USS transaction request travels from a client application program on OS/390
UNIX System Services on MVS to Tivoli Information Management for z/OS on the same or
a different host along the route shown in Figure 27 on page 294. This example illustrates
HLAPI/USS installed on one MVS host and Tivoli Information Management for z/OS
installed on a different host. The requester uses TCP/IP to establish a connection to the
remote Tivoli Information Management for z/OS database.

Client Interface Overview

293Client Installation and User’s Guide

31.
In

tro
d

u
ctio

n
to

H
L

A
P

I/U
S

S

The transaction reply travels from Tivoli Information Management for z/OS to the client
application along the same route in reverse.

The following steps describe the events that occur when a HLAPI/USS transaction is
processed. For simplicity, assume that the transaction is neither the HL01 transaction nor the
HL02 transaction of the transaction sequence.

On the USS host running the client application program
A client application program initiates a transaction by calling the HLAPI/USS function
IDBTransactionSubmit(). The argument passed to this function is a HICA structure and its
control PDBs and input PDBs. Together, these structures represent a transaction request.
The HLAPI/USS client interface frees any output, error, and message PDBs it allocated for
the client application program during the previous transaction in the sequence. The client
interface converts the data in the HICA and PDBs from data–structure format to byte–stream
format, then transmits the data via TCP/IP sockets to the requester identified in the database
profile specified in a control PDB.

On the USS host running the requester
The HLAPI/USS requester forwards the transaction request to the MRES with TCP/IP server
over the communication link established during the HL01 transaction that initiated the
transaction sequence. For more information about communication links between requesters
and servers, see “Defining the Client Interface to Requester Communication Link” on
page 300.

MRES
with
TCP/IP

High-
Level
Application
Program
Interface

Low-
Level
Application
Program
Interface

MVS Address Space

USS Process

TCP/IP

MVS HOST A

MVS HOST B

OS/390 UNIX System Services

USS
Requester

TCP/IP

USS Process

USS
Client
Interface

Client
Application

Tivoli
Information
Management
for z/OS
Subtask

Figure 27. HLAPI/USS Transaction Flow

Basic Transaction Flow

294 Version 7.1

On the MVS host running the MRES with TCP/IP server and Tivoli
Information Management for z/OS

When the transaction request arrives at the server, the server submits the request to the
Tivoli Information Management for z/OS HLAPI. After the requested HLAPI transaction
finishes, the server transmits the HICA, the output PDB, error PDB, message PDB, and the
PDBCODE field of the input PDBs to the requester.

On the USS host running the requester
The requester forwards the transaction reply to the HLAPI/USS client interface that
submitted the transaction.

On the USS host running the client application program
The HLAPI/USS client interface updates the HICA and PDBs of the client application
program with data received from the transaction. The order of the PDBs in each chain is
maintained from the server to the client interface. The transaction is complete, and the client
application program returns from the call to IDBTransactionSubmit().

HLAPI/USS Configuration Considerations
The following information is helpful in configuring HLAPI/USS.

A UNIX System Services client application program can manage multiple concurrent
transaction sequences through HLAPI/USS. Each HICA is associated with a specific
transaction sequence. Each transaction sequence is associated with a Tivoli Information
Management for z/OS logical session on MVS. Therefore, there is a one-to-one
correspondence between HICAs and Tivoli Information Management for z/OS logical
sessions.

A client application program specifies the parameters listed below when it submits an HL01
transaction. Each of these parameters remains in effect for the duration of a transaction
sequence. If conversation sharing (described in “IDBSHARECMS” on page 305) is enabled,
the requester can assign multiple transaction sequences to the communication connection if
each transaction sequence uses the same values for the following parameters:

¶ Requester host (IDBREQUESTERHOST) and service name
(IDBREQUESTERSERVICE)

The requester host and the requester service name are parameters in the database profile.
Together, they identify the requester host and TCP/IP service name or alias, which the
client interface uses to establish communication with the requester.

¶ MRES with TCP/IP server host (IDBSERVERHOST) and service name
(IDBSERVERSERVICE).

The IDBSERVERHOST and IDBSERVERSERVICE keywords are specified in the
database profile. Together, they identify the MVS host and the MRES with TCP/IP
service name that the requester uses to establish a TCP/IP conversation with the server
on MVS.

¶ User ID for the MVS logon

The MVS user ID is specified in the SECURITY_ID control PDB for the HL01
transaction.

¶ User password for the MVS logon

Basic Transaction Flow

295Client Installation and User’s Guide

31.
In

tro
d

u
ctio

n
to

H
L

A
P

I/U
S

S

The MVS password is specified on the PASSWORD control PDB for the HL01
transaction.

The requester assigns a new transaction sequence to an existing conversation if the following
conditions apply when the HL01 transaction is processed:

¶ Conversation sharing is enabled.

¶ The parameters of the conversation match the parameters specified by the client
application program for the transaction sequence (as just identified).

¶ Fewer than 10 transaction sequences are assigned to the conversation.

A server can perform transactions against multiple Tivoli Information Management for z/OS
databases within the same BLX-SP on the server’s MVS host. However, a logical session
can perform transactions against only one Tivoli Information Management for z/OS database.
When a server receives a valid HL01 transaction request, the server establishes a Tivoli
Information Management for z/OS logical session with the database specified in a control
PDB. The association between the logical session and the database lasts until the transaction
sequence ends.

Multiple transaction sequences can be routed through a single MRES with TCP/IP
conversation and its associated Tivoli Information Management for z/OS logical session.
Each session processes transactions serially on a first-in, first-out (FIFO) basis. A transaction
sequence cannot have more than one transaction pending. All previously submitted
transactions must be complete before a client application program can submit another
transaction in the same transaction sequence.

Resources Needed for the Client Interface
When you write a client application program, consider that the HLAPI/USS client interface
uses the following types of resources:

¶ Processes

A client interface requires that the process ID and the effective user ID of a calling
process remain constant from call to call for a transaction sequence. This allows
HLAPI/USS to reaccess and release resources without compromising resources or data
on the OS/390 UNIX System Services system.

¶ Sockets

A client interface uses sockets from the AF_INET address family. The client interface
uses, at most, two AF_INET sockets.

The descriptor table of any process calling HLAPI/USS services must allow enough
entries for the sockets and files used by the client interface.

¶ Memory

The amount of memory that a client interface uses to process a transaction is difficult to
predict. The type of transactions that the client application calls and the database
contents determine the memory requirements of the client interface. The client
application program is responsible for allocating and freeing memory used for the HICA,
and the input and control PDBs. The client interface allocates and frees memory used
for output, error, and message PDBs, and other HLAPI/USS structures. In general,
search transactions are more memory-intensive than other transactions.

¶ Files

HLAPI/USS Configuration Considerations

296 Version 7.1

A client interface accesses the following OS/390 UNIX System Services system files
during transaction processing:
v /etc/services
v /etc/hosts
v /etc/utmpx

A client interface also accesses the following HLAPI/USS files during transaction
processing. The client interface does not delete these files except when replacing an old
archived file with a new archived file:
v Database profile
v Active trace log file
v Archived trace log file
v Probe log file (blmprobe.log)

Additional files created during installation of a client interface are listed in “Components
of HLAPI/USS” on page 352. Most of these files, with the exception of the files in the
directory *⁄examples, are used during transaction processing (where * is the directory
where the HLAPI/USS is installed).

The descriptor table of any process calling HLAPI/USS services must allow enough
entries for the sockets and files used by the client interface.

Resources Needed for the Requester
The HLAPI/USS requester uses the following types of resources:

¶ Files
v /etc/services
v /etc/hosts

¶ Semaphores
v The requester uses semaphores to serialize access to conversations. The number of

semaphores the requester requires is equal to the maximum number of conversations
it can create plus one. Therefore, your OS/390 UNIX System Services maximum
semaphore limit must be greater than the maximum number of conversations that the
requester can create. Refer to “IDBMAXCMS” on page 305 for information on how
the requester determines the maximum number of conversations that it can create.

A requester also accesses a system profile, if one is specified, and the files listed for the
requester in “Components of HLAPI/USS” on page 352.

Hardware and Software Requirements
The HLAPI/USS clients consist of two parts:
¶ Requester
¶ Client interface

Both the OS/390 UNIX System Services requester and client interface can be run on the
same machine or on different machines. When you use SMP/E to install HLAPI/USS, both
the requester and client interface are installed.

Resources Needed for the Client Interface

297Client Installation and User’s Guide

31.
In

tro
d

u
ctio

n
to

H
L

A
P

I/U
S

S

Hardware for HLAPI/USS
¶ TCP/IP connectivity is required between the MVS system running the requester and the

MRES with TCP/IP servers.

¶ The MVS systems running the client interface and the requester.

Software for HLAPI/USS
¶ TCP/IP 3.2 (5655–HAL) with PTF UN98840, or equivalent

¶ OS/390 UNIX System Services must be configured to start up in full-function mode.
Refer to OS/390 OpenEdition Planning.

Hardware and Software Requirements

298 Version 7.1

Installing and Setting Up HLAPI/USS

Installing HLAPI/USS involves the following steps:

¶ Plan your HLAPI/USS configuration

¶ Install HLAPI/USS using SMP/E

¶ Configure HLAPI/USS and associated software

Planning a HLAPI/USS Configuration
Decide which OS/390 UNIX System Services host will run your HLAPI/USS client
application programs or HLAPI/USS requesters. You need to install the HLAPI/USS feature
using SMP/E on each of these OS/390 UNIX System Services hosts. Refer to the Program
Directory for installation instructions.

Note: Upgrades or patches that can be downloaded from a Tivoli Web site may be available
for HLAPI/USS. Visit the Tivoli Information Management for z/OS Web site for more
information:

http://www.tivoli.com/infoman

Configuring HLAPI/USS and Associated Software
After you install HLAPI/USS on your OS/390 UNIX System Services hosts, you must
configure the communication link between the requester host and an MRES with TCP/IP
server. You must also enable communication between the host that will run your client
application programs and the requester hosts. Then you must define database profiles to
enable your client application programs to use HLAPI/USS services. You may also need to
create system profiles for your requester hosts. The following sections tell you how to
configure your communications software and update various files. “HLAPI/USS Profiles,
Environment Variables, and Data Logging” on page 303 provides information about defining
database and system profiles.

Configuring HLAPI/USS for TCP⁄IP
Update either the file ⁄etc⁄services or else the data set hlq.ETC.SERVICES, whichever you
use, on a requester host to associate a service name or alias with a TCP/IP port number of
an MRES with TCP/IP server. You must specify a service name and port number of each
server host the requester needs to be able to connect to. The port numbers must match those
on the MVS host designated for the Tivoli Information Management for z/OS MRES with
TCP/IP servers. The general format of an entry in ⁄etc⁄services or hlq.ETC.SERVICES is:
<service> <port>⁄tcp <alias_list> #<comment>

32

299Client Installation and User’s Guide

32.
In

stallin
g

an
d

S
ettin

g
U

p
H

L
A

P
I/U

S
S

<service> The server service name

<port> The server port number

<alias_list> Alias definitions for the service

<comment> Comment text that describes the service.

For example, to associate the default server service name (infoman) with server port number
1451, you must place the following line in the file ⁄etc⁄services or the data set
hlq.ETC.SERVICES, whichever you use, before you run the HLAPI/USS:
infoman 1451⁄tcp #default MRES server

The default service name and port number 1451 are reserved for Tivoli Information
Management for z/OS. You can use them to designate your server service. If a client does
not specify a server service (IDBSERVERSERVICE) in the database profile specified on the
HL01 transaction, infoman will be assumed. Therefore, be sure to include it in the
/etc/services file or the data set hlq.ETC.SERVICES.

Be sure that your client application programs are aware of the service names that you define.
If you access an MRES for TCP/IP that uses a port number other than the default
(infoman/1451), you must specify the server service name in the IDBSERVERSERVICE
keyword in your database profile.

If your MRES with TCP/IP server and requester run on the same MVS host, you may not
use the same service name and port number to identify them. Each requester and each
MRES with TCP/IP server on the same MRES host system must be identified with a unique
service name and port number.

If your client applications use host names to identify the server hosts, the requester must be
able to resolve the host names.

Defining the Client Interface to Requester Communication Link
To define the communication link between a requester and a client interface, you must
update the ⁄etc⁄services file or the data set hlq.ETC.SERVICES, whichever you use, on all
hosts where HLAPI/USS is installed. Host names must also be resolvable.

Note: Service names, host names, and aliases are case-sensitive.

Updating ⁄etc⁄services on a Requester Host
Update the file ⁄etc⁄services or the data set hlq.ETC.SERVICES, whichever you use, on a
requester host to associate the requester service name or alias with the TCP/IP port number
of the requester. The general format of a requester entry in ⁄etc⁄services or the data set
hlq.ETC.SERVICES is:
<service> <port>⁄tcp <alias_list> #<comment>

<service> The requester service name

<port> The requester port number

<alias_list> Alias definitions for the service

<comment> Comment text that describes the service.

Configuring HLAPI/USS for TCP⁄IP

300 Version 7.1

For example, to associate the default requester service name (infoman) with requester port
number 1451, you must place the following line in the file ⁄etc⁄services or the data set
hlq.ETC.SERVICES before you run the HLAPI/USS:
infoman 1451⁄tcp #default HLAPI/USS requester

The default service name and default port number are reserved for Tivoli Information
Management for z/OS. You can use a different combination of service name (or alias) and
port number for a requester. For each combination, you must specify a corresponding line in
the ⁄etc⁄services file or the data set hlq.ETC.SERVICES to associate the port number with
the service name or alias. Port numbers greater than 6000 are user-definable.

Only one service can use a given port number and a given service name or alias in an
⁄etc⁄services file or the data set hlq.ETC.SERVICES on an OS/390 UNIX System Services
host. However, you can use the same port number or the same service name (or alias) on
different OS/390 UNIX System Services hosts.

If your MRES with TCP/IP server and requester run on the same MVS host, you may not
use the same service name and port number to identify them. Each requester and each
MRES with TCP/IP server on the same MVS host system must be identified with a unique
service name and port number.

You can run multiple requesters on a single OS/390 UNIX System Services host. Use a
different service name for each requester and associate the service name with a port number
in the requester’s ⁄etc⁄services file or the data set. You also need to create a system profile
for each requester and specify the appropriate service name in each profile.

Updating ⁄etc⁄services on a Client Host
You must associate the client interface with each local or remote requester that the client
interface communicates with. To do this, update the file ⁄etc⁄services or the data set
hlq.ETC.SERVICES, whichever you use, on the client interface host with the requester
service names and their corresponding TCP/IP port numbers. If you use host names to
identify your requester hosts, the host names must be resolvable.

The general format of a requester entry in ⁄etc⁄services or the data set hlq.ETC.SERVICES
is:
<service> <port>⁄tcp <alias_list> #<comment>

<service> The requester service name

<port> The requester port number

<alias_list> Alias definitions for the service

<comment> Comment text describing the service.

For example, to associate the default requester service name (infoman) with requester port
number 1451, put the following line in the ⁄etc⁄services file or the data set
hlq.ETC.SERVICES before you attempt to run the HLAPI/USS:
infoman 1451⁄tcp #default HLAPI/USS Requester

The default service name and default port number are reserved for the exclusive use of
Tivoli Information Management for z/OS. However, you may use a different combination of
service name (or alias) and port number for a requester. For each combination you specify
for your requesters, put a corresponding line in the client’s ⁄etc⁄services file or the data set

Defining the Client Interface to Requester Communication Link

301Client Installation and User’s Guide

32.
In

stallin
g

an
d

S
ettin

g
U

p
H

L
A

P
I/U

S
S

hlq.ETC.SERVICES to associate the port number with the service name or alias. Port
numbers greater than 6000 are user-definable; they should not conflict with reserved ports.

In a ⁄etc⁄services file or the data set hlq.ETC.SERVICES on an OS/390 UNIX System
Services host, only one service can use a given port number and a given service name or
alias. However, different ⁄etc⁄services files or hlq.ETC.SERVICES data sets on different
OS/390 UNIX System Services hosts may use the same port number or the same service
name (or alias). This is because each OS/390 UNIX System Services host manages its own
set of ports and service names.

Defining the Client Interface to Requester Communication Link

302 Version 7.1

HLAPI/USS Profiles, Environment
Variables, and Data Logging

Certain aspects of HLAPI/USS can be customized to meet the requirements of your
application. You do this by specifying profile keywords and values in two types of
HLAPI/USS profiles. The profiles are OS/390 UNIX System Services text files; so you can
use any text editor to create and update them.

The first type of profile is a system profile, which is associated with a requester. You can
specify the name of a system profile as an optional argument of a command that starts a
HLAPI/USS requester. The parameters in a system profile control aspects of HLAPI/USS
operation. If no system profile is specified, the requester uses default values for all system
profile parameters.

The second type of profile is a database profile, which is associated with a transaction
sequence. The name of a database profile must be specified by a control PDB passed to
HLAPI/USS as part of an HL01 transaction. The parameters in a database profile control
aspects of HLAPI/USS operation.

Profile Syntax
Profile parameter entries are specified in the form
<keyword>=<data_value>

<keyword> Represents one of the keywords defined by HLAPI/USS.

= Is a literal character.

<data_value> Represents a data value to be associated with the keyword.

Whitespace characters (blanks or tabs) can precede or follow the value for keyword or data
value. The data value includes all characters following the = to the end of the line. Each
profile parameter must be specified entirely on a single line. For example,
IDBTIMEOUT = 60

Profile comments are specified in the form
REM <comment_text>

REM A literal keyword

<comment_text> Any sequence of characters up to the end of the line.

Whitespace characters (blanks or tabs) can precede the REM keyword; at least one
whitespace character must immediately follow the REM keyword. Each profile comment
must be specified entirely on a single line. For example,

33

303Client Installation and User’s Guide

33.
H

L
A

P
I/U

S
S

P
ro

files,
V

ariab
les,

an
d

L
o

g
g

in
g

REM This is an example of a comment in a profile.

Each line of a profile must contain exactly one of the following:
¶ A profile parameter entry
¶ A profile comment
¶ Whitespace only

Keywords cannot be duplicated in profiles. If duplicate keywords are detected, processing
stops and an error is returned to the client application program.

Profile keywords and data values are case-sensitive. Profile keywords must be entered with
uppercase characters only. Profile data values must match their definitions in your
/etc/services or other system configuration file.

When specifying a numeric value in a profile, use decimal digits to represent the value. Do
not place any delimiter characters, such as commas or periods, among the digits of the
value.

System Profile
You can specify the name of a single system profile as an optional parameter of a command
that starts a HLAPI/USS requester. If a system profile is not specified when a requester is
started or if some parameters are unspecified in the system profile, the requester uses the
default values for the parameters. A requester reads a system profile only once when the
requester is started. The developer of the client application program or OS/390 UNIX
System Services system administrator or superuser creates system profiles. Multiple
requesters can use the same system profile.

You can specify either the file name only or you can fully qualify the name with its path
and drive. If you specify only a file name, the file is obtained from the current working
directory. If the file is not found, the qualifying path name is obtained from the value of the
OS/390 UNIX System Services environment variable BLMSMPATH. See “BLMSMPATH”
on page 311 for additional information.

The valid keywords for system profiles follow.

IDBINBOUNDBUFSIZE
This value specifies the number of bytes to allocate for the communication buffers that the
requester uses for receiving data from the server for transmittal to the client interface.

The buffer size can affect communication performance. For example, you might wish to
specify a large buffer size, such as 28672, if the requester will be handling database search
transactions that generate large amounts of reply data. For related information, see
“IDBOUTBOUNDBUFSIZE” on page 305.

Valid values: Any integer from 1 to 32767, inclusive.

Values are rounded up to the nearest multiple of 4096. If the value after
rounding is 32768, it is adjusted to 32767.

Default value:
4096

Profile Syntax

304 Version 7.1

IDBMAXCMS
This value specifies the maximum number of child processes the requester can create to
manage conversations between the requester and servers. The conversations are in a
one-to-one correspondence with the requester processes that manage the conversations. The
actual number of conversations might be further limited by constraints on OS/390 UNIX
System Services system resources. One example is the OS/390 UNIX System Services
system variable _SC_CHILD_MAX, which limits the number of processes for each user.

Valid values: Any integer from 1 to 65534, inclusive.

Default value:
65534

IDBOUTBOUNDBUFSIZE
This value specifies the number of bytes to allocate for the communication buffers that the
requester uses to transmit transaction data received from the client interface to the server.

The buffer size can affect communication performance. For example, you might wish to
specify a large buffer size, such as 8192, if the requester will be handling record creation
transactions that involve large amounts of record data. For related information, see
“IDBINBOUNDBUFSIZE” on page 304.

Valid values: Any integer from 1 to 32767, inclusive.

Values are rounded up to the nearest multiple of 4096. If the value after
rounding is 32768, it is adjusted to 32767.

Default value:
4096

IDBSERVICENAME
This value specifies the service name for the requester that is listed in the OS/390 UNIX
System Services file /etc/services or the hlq.ETC.SERVICES data set, whichever you use,
on the requester host.

Valid values: Any valid service name or alias. Service names and aliases are
case-sensitive.

Default value:
infoman

This is the default requester service name suggested during HLAPI/USS
installation. If you specified a different service name in your /etc/services
file or the hlq.ETC.SERVICES data set during installation in “Defining the
Client Interface to Requester Communication Link” on page 300, you must
specify that service name or its alias on this parameter in a system profile.

Note: If you run an MRES with TCP/IP on the same MVS host as your requester, you must
ensure that the port number corresponding to the service name for the requester is
different from the port number that your MRES with TCP/IP uses. Refer to
“Configuring HLAPI/USS for TCP⁄IP” on page 299 and “Defining the Client Interface
to Requester Communication Link” on page 300 for additional information.

IDBSHARECMS
This keyword determines whether the requester should enable or disable conversation
sharing. When conversation sharing is enabled, the requester assigns new client applications

System Profile

305Client Installation and User’s Guide

33.
H

L
A

P
I/U

S
S

P
ro

files,
V

ariab
les,

an
d

L
o

g
g

in
g

to an existing conversation if criteria such as same server and same security ID are met.
When conversation sharing is disabled (the default), each client application is assigned its
own dedicated conversation. A conversation is terminated when the last client assigned to it
submits an HL02.

Note: If you choose to use conversation sharing, you must be aware that there is a potential
for a delay because transactions are handled synchronously. Thus, if Client A and
Client B share a conversation, and Client A submits a long search and Client B
submits an update, Client B will wait for Client A’s search to complete before its
transaction can be processed.

Note: If you are using pre-started API sessions (described in “MRES with Pre-started API
Sessions Considerations” on page 18), you must disable conversation sharing.

The number of conversations that the requester can start up is based on requester and
operating system limitations. When conversation sharing is disabled, you may be more likely
to reach these limits if your client applications hold on to conversations for an extended
period. HLAPI/USS provides the ability to start multiple concurrent requesters as long as
each requester is assigned a unique port number identified by the IDBSERVICENAME in
the system profile. You may wish to route client applications that require dedicated
conversation to requesters that you have started with conversation sharing disabled, and
route your other client applications to other requesters with conversation sharing enabled.

Valid entries: 0 (conversation sharing disabled) or 1 (conversation sharing enabled).

Default value: 0 (conversation sharing disabled).

IDBTIMEOUT
This value specifies the maximum number of minutes that can elapse between transactions
in a single transaction sequence. This is called idle time, which is defined as the time
interval between the completion of one transaction and the start of the next transaction in the
same transaction sequence. The start time is determined by when the transaction becomes
the active transaction in the requester-server conversation. The end time is determined by
when the transaction stops being the active transaction in the conversation.

If the idle time for a transaction sequence exceeds the smaller of this value or the value of
IDBIDLECLIENTTIMEOUT in the database profile for the transaction sequence, the
requester refuses to process additional transactions in the sequence (including any transaction
pending on the conversation queue). This allows the requester to end logical sessions and
conversations if a client application program does not submit an HL02 transaction for a
transaction sequence.

Valid values: Any integer from 0 to 35791394, inclusive.

The value is specified in minutes, except that a value of 0 corresponds to an
infinite interval.

Default value:
35791394

System Profile

306 Version 7.1

System Profile Example
REM***
REM
REM SAMPLE HLAPI/USS System Profile
REM
REM***

IDBINBOUNDBUFSIZE = 28672

IDBMAXCMS = 25

IDBOUTBOUNDBUFSIZE = 8192

IDBSERVICENAME = hlapiuss1

IDBSHARECMS = 0

IDBTIMEOUT = 60

Database Profile
Your client application must specify the name of a single database profile in a
DATABASE_PROFILE control PDB on the HL01 transaction of each transaction sequence.
If a DATABASE_PROFILE PDB is not specified or if multiple DATABASE_PROFILE
PDBs are specified for an HL01 transaction, an error is returned to the client application
program. If a DATABASE_PROFILE PDB is specified on a transaction other than HL01,
the PDB is ignored. A client interface reads the database profile only once per transaction
sequence, and that is during the HL01 transaction. The OS/390 UNIX System Services
system administrator or superuser, client application developer, or client application user
creates the database profile for a transaction sequence. Multiple client application programs
can use the same database profile.

The specified database profile must contain at least an entry for the IDBSERVERHOST
keyword. This information identifies to which MRES with TCP/IP server the requester
establishes a communication link for the client application. See “IDBSERVERHOST” on
page 309 for information on this keyword.

You can specify either the database profile file name only or you can fully qualify the name
with its path and drive. If you specify only a file name, the file is obtained from the current
working directory. If the file is not found, the qualifying path name is obtained from the
value of the OS/390 UNIX System Services environment variable BLMDBPATH. See
“BLMDBPATH” on page 311 for more information.

The valid keywords for database profiles follow.

IDBDATALOGLEVEL
This keyword determines whether the client interface logs transaction data. The value
specified with this keyword can be overridden by the OS/390 UNIX System Services
environment variable IDBDATALOGLEVEL.

Valid values: 0 (logging disabled) 1 (logging enabled)

Default value:
0 (logging disabled).

System Profile Example

307Client Installation and User’s Guide

33.
H

L
A

P
I/U

S
S

P
ro

files,
V

ariab
les,

an
d

L
o

g
g

in
g

The default value is applied only if neither the OS/390 UNIX System
Services environment variable IDBDATALOGLEVEL nor the database
profile keyword IDBDATALOGLEVEL specifies a value.

IDBIDLECLIENTTIMEOUT
This keyword specifies the maximum number of minutes that can elapse between
transactions in a single transaction sequence. This is called idle time, which is defined as the
time interval between the completion of one transaction and the start of the next transaction
in the same transaction sequence. The start time is determined by when the transaction
becomes the active transaction in the requester-server conversation. The end time is
determined by when the transaction stops being the active transaction in the conversation.

If the idle time for a transaction sequence exceeds the smaller of this value or the value of
IDBTIMEOUT in the system profile associated with the requester, the requester refuses to
process additional transactions in the sequence (including any transaction pending on the
conversation queue). This allows the requester to end logical sessions and conversations if a
client application program does not submit an HL02 transaction for a transaction sequence.

Valid values: Any integer from 0 to 35 791 394, inclusive. The value is specified in
minutes, except that a value of 0 corresponds to an infinite interval.

Default value:
60

IDBLOGFILENAMEACTIVE
This keyword specifies the name of the active log file for the transaction sequence. Multiple
transaction sequences can use the same log file. However, it is recommended that you limit
the number of simultaneous transaction sequences per log file to reduce contention for write
access to the file and to prevent the file from being archived frequently.

Valid values: Any valid file name on your OS/390 UNIX System Services system. File
names and path names are case-sensitive.

Default value:
./IDB_LOG.ACT

IDBLOGFILENAMEOLD
This keyword specifies the name to give an active log file when it is archived. Active log
files are archived when they reach their maximum size as specified on the keyword
IDBLOGFILESIZE. See “IDBLOGFILESIZE”.

Valid values: Any valid file name on your OS/390 UNIX System Services system. File
names and path names are case-sensitive.

Default value:
./IDB_LOG.OLD

IDBLOGFILESIZE
This keyword specifies the approximate maximum size, in bytes, of the active log file. If
logging a transaction causes the active log file to exceed this size, the active log file is
archived. Archiving involves two steps:
1. Closing and renaming the active log file
2. Opening a new active log file

Valid values: Any integer from 0 to 10 485 760, inclusive. (The upper limit equals 10
megabytes.)

Database Profile

308 Version 7.1

If a value between 1 and 4 095 is specified, then 4 096 is substituted. If the
value 0 is specified, HLAPI/USS does not restrict the size of the log file.

Default value:
262 144 (Equal to 256 kilobytes.)

IDBREQUESTERHOST
This keyword identifies the OS/390 UNIX System Services host that is running the requester
so that communication can be established between the client interface and the requester.

Valid values: Any valid IP address in dotted-decimal format, or any valid host name, such
as MVSHOSTX. If you specify a host name, the host name must be
resolvable on the client host.

Default value:
The OS/390 UNIX System Services host running the client interface that is
handling the transaction sequence.

IDBREQUESTERSERVICE
This keyword specifies the service name of the requester you want to establish
communication with. The service name must be listed in the /etc/services file or the
hlq.ETC.SERVICES data set, whichever you use, on the client host.

Valid values: Any valid service name or alias. Service names and aliases are
case-sensitive.

Default value:
infoman

This is the default requester service name suggested during installation. If
you specified a different service name in your /etc/services file or the
hlq.ETC.SERVICES data set during installation in “Defining the Client
Interface to Requester Communication Link” on page 300, you must specify
that service name or its alias on this parameter in a database profile.

Note: If you run an MRES with TCP/IP on the same MVS host as your requester, you must
ensure that the port number corresponding to the service name for your requester is
different from the port number that your MRES with TCP/IP uses. Refer to
“Configuring HLAPI/USS and Associated Software” on page 299 and “Defining the
Client Interface to Requester Communication Link” on page 300 for additional
information.

IDBSERVERHOST
This keyword identifies the MVS host that is running the MRES with TCP/IP server you
want the requester to establish communication with for your client application.

Valid values: Any valid IP address in dotted-decimal format, or any valid host name, such
as mvshost. If you specify a host name, the host name must be resolvable
on the requester host.

Default value:
None.

This keyword is required.

Database Profile

309Client Installation and User’s Guide

33.
H

L
A

P
I/U

S
S

P
ro

files,
V

ariab
les,

an
d

L
o

g
g

in
g

IDBSERVERSERVICE
This keyword specifies the service name of the MRES with TCP/IP you want to establish
communication with. The service name must be listed in the OS/390 UNIX System Services
/etc/services file or the hlq.ETC.SERVICES data set, whichever you use, on the requester
host.

Valid values: Any valid service name or alias. Service names and aliases are
case-sensitive.

Default value:
infoman

IDBSERVERSERVICE is an optional keyword. If you do not specify it
when you specify IDBSERVERHOST, the default is assumed.

Note: If your MRES with TCP/IP and requester run on the same MVS host,
you must ensure that the port number that your MRES with TCP/IP
use is different from the port number corresponding to the service
name for your requester. Refer to “Configuring HLAPI/USS for
TCP⁄IP” on page 299 or “Defining the Client Interface to Requester
Communication Link” on page 300 for additional information.

Database Profile Example
REM***
REM
REM SAMPLE HLAPI/USS Database Profile
REM
REM
REM***

IDBREQUESTERHOST = zeus
IDBREQUESTERSERVICE = hlapiuss9
IDBIDLECLIENTTIMEOUT = 30

IDBSERVERHOST = hera
IDBSERVERSERVICE = infosrv2

IDBDATALOGLEVEL = 1
IDBLOGFILENAMEACTIVE = ./helpdesk5.log
IDBLOGFILENAMEOLD = ./helpdesk5.old
IDBLOGFILESIZE = 262144

Environment Variables
HLAPI/USS recognizes some OS/390 UNIX System Services environment variables for
which you can define values. If you are using a shell with case-sensitive environment
variables, you must enter the names of HLAPI/USS environment variables using only
uppercase characters.

You can use the HLAPI/USS environment variables described in the following sections to
override the corresponding database profile parameters and to qualify the path names for the
profiles.

IDBDATALOGLEVEL
If this environment variable is set to a valid value when a client interface reads the database
profile, the value in the environment variable overrides any value given for the database

Database Profile

310 Version 7.1

profile keyword IDBDATALOGLEVEL. Valid values are 0 (transaction data logging
disabled) and 1 (transaction data logging enabled). See “IDBDATALOGLEVEL” on
page 307 for additional information.

IDBREQUESTERHOST
If this environment variable is set to a valid value when a client interface reads the database
profile, the value in the environment variable overrides any value set for the database profile
keyword IDBREQUESTERHOST. You can specify any valid IP address in dotted-decimal
format, or any resolvable host name. See “IDBREQUESTERHOST” on page 309 for
additional information.

IDBREQUESTERSERVICE
If this environment variable is set to a valid value when a client interface reads a database
profile, the value in the environment variable overrides any value set for the database profile
keyword IDBREQUESTERSERVICE. You can specify any valid service name or alias.
See “IDBREQUESTERSERVICE” on page 309 for additional information.

BLMDBPATH
This environment variable specifies a search path for locating a database profile when both
of the following conditions are true:

1. The database profile file name does not explicitly specify a complete path from the root
directory to the database profile file. This is called a relative path.

2. The database profile is not in the current working directory of the calling process.

You can specify multiple paths on BLMDBPATH. For example, if the file name of a
database profile is specified using a relative path, then the following assignment:
BLMDBPATH=/:/usr/profiles/:

causes a client interface to seek the database profile first in the current working directory,
then in the root directory, then in the directory /usr/profiles.

The colon : following the final path specification is optional. The trailing slash / of the
second path specification is also optional. For example, the following two assignments are
equivalent:
BLMDBPATH=/:/usr/profiles/:

BLMDBPATH=/:/usr/profiles

BLMSMPATH
This environment variable specifies a search path for locating a system profile when both of
the following conditions are true:

1. The system profile file name does not explicitly specify a complete path from the root
directory to the system profile file. This is called a relative path.

2. The system profile is not in the initial working directory of the requester process. The
initial working directory of the requester process is the current working directory at the
time the requester is started.

You can specify multiple paths on BLMSMPATH. For example, if the file name of a
system profile is specified using a relative path, the following assignment:
BLMSMPATH=/:/usr/profiles/:

Environment Variables

311Client Installation and User’s Guide

33.
H

L
A

P
I/U

S
S

P
ro

files,
V

ariab
les,

an
d

L
o

g
g

in
g

causes a requester to seek the system profile first in the initial working directory of the
requester process, then in the root directory, then in the directory /usr/profiles.

The colon : following the final path specification is optional. The trailing slash / of the
second path specification is also optional. For example, the following two assignments are
equivalent:
BLMSMPATH=/:/usr/profiles/:

BLMSMPATH=/:/usr/profiles

Transaction Logging
HLAPI/USS transactions can be logged by the server as well as by the client interface.
When both server logging and client interface logging are active, you might notice
differences between entries in the server log and the corresponding entries in the client
interface log. For example, the client interface logs PDBs with a data length of zero but
does not send those PDBs to the server. Therefore, the server log records no zero-length
PDBs.

Transaction Logging by a Client Interface
Every HLAPI/USS transaction sequence has an associated log file in which the client
interface can record transactions. The value specified for the HLAPI/USS environment
variable IDBDATALOGLEVEL or the HLAPI/USS database profile keyword
IDBDATALOGLEVEL determines whether transactions in a transaction sequence are
logged by the client interface.

The client interface creates a log file automatically if it does not already exist. Log entries
are appended to the end of a log file. In order to prevent the log file from growing
indefinitely, HLAPI/USS provides an archiving mechanism. The client interface records
individual transactions in the log file specified by the database profile keyword
IDBLOGFILENAMEACTIVE until the file reaches or exceeds the maximum file size
specified by the database profile keyword IDBLOGFILESIZE. The active log file is then
renamed to the file name specified by the database profile keyword
IDBLOGFILENAMEOLD. If a previously archived log file of the same name exists, it is
deleted before the active log file is archived. Finally, a new active log file is created with the
name specified by the database profile keyword IDBLOGFILENAMEACTIVE.

Multiple transaction sequences can use the same log file. However, if multiple transaction
sequences attempt to record transactions in the same file, there will probably be contention
for access to the file. To log a transaction, a client interface opens a log file, records the
transaction, and closes the file. While the file is open, the process has exclusive write access
to the file. If a process attempts to open the log file while another process has exclusive
write access to it, the attempt to open the file fails. When this happens, the process that
failed to open the file repeatedly attempts to open the file until the process opens the file
successfully or reaches an internal HLAPI/USS retry limit. If the client interface fails to
open the file because it reaches the retry limit, a return code and reason code are returned in
the HICA to reflect the logging failure.

For more information about transaction logging by the client interface, see “Database
Profile” on page 307 and “Environment Variables” on page 310.

Environment Variables

312 Version 7.1

Error Probe Logging by a Requester or Client Interface
A HLAPI/USS requester or client interface might encounter an error condition that cannot be
explained with available information. When this happens, the requester or client interface
records an entry in the HLAPI/USS probe log file /tmp/blmprobe.log on the local OS/390
UNIX System Services host. If a probe log file does not exist, one is created.

HLAPI/USS imposes no limit on the maximum size of a probe log file. You can delete or
rename a probe log file at any time. However, avoid using a probe log file in any way that
would prevent HLAPI/USS from opening the file for exclusive write access.

When diagnosing a problem associated with a HLAPI/USS client application program, you
might find entries in HLAPI/USS probe log files to be useful supplements to any transaction
reply data that HLAPI/USS returns to the program.

Error Probe Logging by a Requester or Client Interface

313Client Installation and User’s Guide

33.
H

L
A

P
I/U

S
S

P
ro

files,
V

ariab
les,

an
d

L
o

g
g

in
g

Error Probe Logging by a Requester or Client Interface

314 Version 7.1

The HLAPI/USS Requester

The HLAPI/USS requester is a daemon task. You can start it manually or start it
automatically from the shell or by JCL. Messages from the requester are written in the file
blmprobe.log on the requester host. Two methods that you can use to start the requester are
illustrated in this chapter. You should also consult OS/390 OpenEdition Planning for
additional information on how to start daemons. The HLAPI/USS requester should be started
by a superuser, but it does not require daemon authority.

Regardless of how you start a requester, the OS/390 UNIX System Services file ⁄etc⁄services
or hlq.ETC.SERVICES data set, whichever you use, on both the requester host and the
client interface host must contain an entry associating the service name of the requester with
the TCP/IP port for the requester. See “Configuring HLAPI/USS and Associated Software”
on page 299 for information on updating the ⁄etc⁄services file and hlq.ETC.SERVICES

data set.

Starting the Requester from the Shell
The syntax of the command to start a HLAPI/USS requester is:
<Requester_executable> [-p|-P <System_Profile>]

<Requester_executable> Specifies the name of the requester executable file. The
requester executable program name is blmreq. It is located
in ⁄usr⁄lpp⁄InfoMan⁄bin.

-p <System_Profile> Specifies a system profile to use when starting the requester.
The value for System_Profile must be preceded by either -p
or -P. At least one blank must separate the -p from the value
for System_Profile. This parameter and value are optional.
If they are not specified, defaults for the system profile
keywords are used.

For example, if you start a requester with the following command:
⁄usr⁄lpp⁄InfoMan⁄bin⁄blmreq -p blmsys.pro

The requester will search for the system profile blmsys.pro in the current working directory
first. If the profile is not there, it will search in any directories in the search path specified
by the environment variable BLMSMPATH.

You can place an entry in the /etc/rc file to direct OS/390 UNIX System Services to
automatically start a HLAPI/USS requester during OS/390 UNIX System Services
initialization. Refer to OS/390 OpenEdition Planning for additional information.

34

315Client Installation and User’s Guide

34.
T

h
e

H
L

A
P

I/U
S

S
R

eq
u

ester

Stopping a Requester from the Shell
Once started, a requester runs indefinitely even if all of its conversations have ended. You
can use the shell kill command to stop a requester, but first you must determine the process
ID (pid) of the requester’s highest-level process. Use the following command to do that:
ps -ef | grep blmreq

Once you know the process ID, issue the following command to stop the requester:
kill <pid>

If the requester does not stop, you can use the kill command with the –9 parameter, but you
should consult the OS/390 OpenEdition Command Reference for possible consequences of
using this command:
kill -9 <pid>

Starting a Requester by JCL
Another method of starting the HLAPI/USS requester is with a catalogued procedure that
uses BPXBATCH to invoke the requester located in the HFS:
//BLMREQ PROC
//BLMREQ EXEC PGM=BPXBATCH,REGION=30M,TIME=NOLIMIT,
// PARM='PGM /usr/lpp/InfoMan/bin/blmreq
// -p /usr/lpp/InfoMan/examples/blmsys.pro'

An operator can use the start command to start the catalogued procedure for the requester
and can use the cancel command to stop the requester.

Diagnosing Some Common Problems
Symptom: Changing the setting of a parameter in a database profile or

a system profile has no impact on HLAPI/USS operation.

Possible Causes:

1. HLAPI/USS failed to locate your profile because it is not
in the profile search path.

Action: Specify the complete path for the profile
or define the profile search path by
setting the value of the appropriate
HLAPI/USS environment variable. Make
sure the value of the environment
variable applies to the calling process.
For information about environment
variables, see “Environment Variables” on
page 310.

2. HLAPI/USS used another profile that was ahead of your
profile in the search path.

Action: Delete one of the profiles, change the
search path by changing the value of the
appropriate HLAPI/USS environment
variable, or specify the complete path

Stopping a Requester from the Shell

316 Version 7.1

name for the profile in the
DATABASE_PROFILE control PDB.

3. A HLAPI/USS environment variable is overriding the
value for the parameter.

Action: Redefine the HLAPI/USS environment
variable.

Symptom: Your client application process takes much longer than usual
to run or it is rejected by the requester.

Possible causes:

1. If the conversation limit on the host is set too low,
applications trying to start will have to wait until an
HL01 is honored. This wait time may be significant, and
nothing is returned to the waiting application indicating
that the conversation limit was reached. When one of the
applications already running finishes, the waiting
application begins processing.

Action: Ensure that the conversation limit is set
high enough to run your applications.

2. The time between the client application’s last transaction
and the current transaction may have exceeded the
allowable wait time specified by the database or the
system profile. The client application is forced off the
requester when the wait time is exceeded.

Action: Ensure that the wait time set in your
system profile is set high enough to run
your applications.

Diagnosing Some Common Problems

317Client Installation and User’s Guide

34.
T

h
e

H
L

A
P

I/U
S

S
R

eq
u

ester

Diagnosing Some Common Problems

318 Version 7.1

HLAPI/USS Transactions

The work done by HLAPI/USS takes place through the use of HLAPI transaction sequences.
Each transaction sequence begins with an HL01 transaction, optionally followed by any of
the transactions listed in Table 1 on page 3, and ended by an HL02 transaction. Refer to the
Tivoli Information Management for z/OS Application Program Interface Guide for
information on the HLAPI transactions. This chapter explains aspects of transaction
processing that are specific to the HLAPI/USS.

Validation of the Calling Process
When a client application program submits an HL01 transaction to begin a transaction
sequence, HLAPI/USS records the process ID and the effective user ID of the process
submitting the transaction. On all subsequent HLAPI/USS function calls of the transaction
sequence, the process ID and effective user ID of the calling process must match those
recorded for the transaction sequence. If they do not match, the HLAPI/USS returns an error
to the calling process. This ensures that HLAPI/USS has the permissions necessary to access
and free any HLAPI/USS resources that persist between calls to HLAPI/USS services.

CAUTION:

Do not modify a HICA or PDB associated with a transaction submitted to the
HLAPI/USS until the transaction ends successfully or unsuccessfully. Any changes to a
HICA or its associated PDBs during transaction processing causes unpredictable
results.

Transaction Processing Modes
HLAPI/USS supports synchronous transaction processing only. Synchronous processing
forces the current process in the application program to wait for a Tivoli Information
Management for z/OS transaction to end before the process returns from a HLAPI/USS
function call. The process cannot do any other work until the transaction is complete.
Transaction completion includes both successful and unsuccessful outcomes.

Transaction Concurrency Limitations
A client application program can use multiple HICA structures, each corresponding to a
different transaction sequence. At any time, any of the transaction sequences can have a
transaction in process.

For any single requester-server conversation, transactions are processed serially on a
first-come, first-served basis.

35

319Client Installation and User’s Guide

35.
H

L
A

P
I/U

S
S

Tran
sactio

n
s

Developing HLAPI/USS Client Applications
To use HLAPI/USS data structures and function calls, your application source files must
include the C language-based header file blmh.h. You can optionally include blmech.h to
declare named constants for HLAPI/USS return and reason codes. When you compile and
link your application, you must specify that you are using a dll and you must specify the
definition side-deck blmhlapi.x. The runtime library is named blmhlapi, which provides the
client interface service IDBTransactionSubmit(). The path and file name for the runtime
library is

/usr/lpp/InfoMan/lib/blmhlapi

and the path and file name for the definition side-deck is
/usr/lpp/InfoMan/lib/blmhlapi.x

To use this function, your application program must do the following:

1. Allocate memory for HICA and PDB structures using the data types declared in the
header file blmh.h.

2. Assign valid values to the fields of the structures.

3. Pass the structures and other arguments on calls to the HLAPI/USS functions.

Note: HLAPI/USS also provides a REXX HLAPI/USS interface which allows you to access
HLAPI/USS functions from REXX programs in the same manner as HLAPI/USS on
MVS allows you to access the HLAPI from MVS REXX programs. See “Using the
REXX HLAPI/USS Interface” on page 329 for more information about REXX
HLAPI/USS.

There are differences between the HICA and PDB structure definitions for the HLAPI and
the corresponding structure definitions for HLAPI/USS. Corresponding field names are
generally similar. Some field names have been modified for HLAPI/USS to conform to
standard C-language naming conventions.

Including the HLAPI/USS Header File blmh.h
You must include the HLAPI/USS header file blmh.h in application source code that
references HLAPI/USS function and data types. This header file declares the HLAPI/USS
data types and function prototype your program needs to communicate with HLAPI/USS
runtime services. Ensure that each source file’s references to HLAPI/USS function and data
types fall within the scope of the include file’s declarations. To include the header file
blmh.h in a source file, put the following line into the source file:

#include <blmh.h> /* HLAPI/USS header file */

The default path and file names for these include files are:
/usr/lpp/InfoMan/include/blmh.h

Installation of HLAPI/USS creates the symbolic link
/usr/include/blmh.h

to reference the include file.

The compiler’s default search path for header files is generally sufficient to access the
HLAPI/USS include file. If the header file resides in a location other than the default or if
the specified symbolic link is absent, then you may need to explicitly specify a search path
to enable the compiler to locate the header file.

Developing HLAPI/USS Client Applications

320 Version 7.1

Refer to the file blmappl.c in the HLAPI/USS examples subdirectory (listed below) for an
example of how to include the HLAPI/USS header files:

/usr/lpp/InfoMan/examples

Including the HLAPI/USS Header File blmech.h
You can include the HLAPI/USS header file blmech.h in application source files to declare
named constants defined for HLAPI/USS return and reason codes. This header file declares
the named constants for most LLAPI, HLAPI, and HLAPI/USS return and reason codes
used by HLAPI/USS. Ensure that each source file’s references to the named constants fall
within the scope of the include file’s declarations. To include the header file blmech.h in a
source file, put the following line into the source file:

#include <blmech.h> /* HLAPI/USS header file */

The default path and file names for these include files are:
/usr/lpp/InfoMan/include/blmech.h

Installation of HLAPI/USS creates the symbolic link
/usr/include/blmech.h

to reference the include file.

The compiler’s default search path for header files is generally sufficient to access the
HLAPI/USS include file. If the header file resides in a location other than the default or if
the specified symbolic link is absent, then you may need to explicitly specify a search path
to enable the compiler to locate the header file.

Refer to the file blmappl.c in the HLAPI/USS examples subdirectory (listed below) for an
example of how to include the HLAPI/USS header files.

/usr/lpp/InfoMan/examples

Overview of HICA and PDB Data Structures
The primary data structures that your application uses to communicate with HLAPI/USS are
HICA structures and PDB structures. The argument of the HLAPI/USS function
IDBTransactionSubmit() is the address of a HICA that represents a transaction sequence.
The fields of the HICA include pointers to PDB structures. Each non-null PDB pointer of
the HICA is a pointer to the first element of a linked list of PDBs of a particular type. There
are five types of PDBs, hence five PDB pointers in a HICA:
¶ Control PDB
¶ Input PDB
¶ Output PDB
¶ Error PDB
¶ Message PDB

Each type of PDB can have subtypes. For example, some of the subtypes of control PDBs
are SPOOL_INTERVAL, HLIMSG_OPTION, HLAPILOG_ID, DATABASE_PROFILE,
SECURITY_ID, and PASSWORD.

To submit a transaction request to HLAPI/USS, your application program calls
IDBTransactionSubmit() and passes the address of a HICA with associated control PDB
and input PDB structures. The HL01 transaction must include the three required control
PDBs, SECURITY_ID, PASSWORD, and DATABASE_PROFILE, which are described in
“Initialize Tivoli Information Management for z/OS (HL01)” on page 325. The HLAPI/USS
communicates the transaction reply to your application program by associating linked lists of

Developing HLAPI/USS Client Applications

321Client Installation and User’s Guide

35.
H

L
A

P
I/U

S
S

Tran
sactio

n
s

output PDBs, error PDBs, and message PDBs with the HICA. In addition, HLAPI/USS
updates the list of input PDBs for some transaction replies.

The values you store in the control PDBs and input PDBs depend on the specific
HLAPI/USS transaction you want to use. For example, if a control PDB specifies that the
transaction type is for record creation, then input PDBs may specify the data values for
individual fields of the record to be created. The Tivoli Information Management for z/OS
Application Program Interface Guide contains additional information about HICAs and
PDBs.

Allocating and Initializing a HICA structure
Your application program must allocate and initialize one HICA structure for each
HLAPI/USS transaction sequence. The HICA is used throughout the transaction sequence.
Therefore, your application program must ensure that the storage allocated for the HICA
persists for the duration of the transaction sequence. Your application program can allocate
any class of storage for a HICA, such as shared memory, automatic storage, and static
storage. This example shows an application fragment that illustrates the allocation and
initialization of a HICA. Note that the ENVP field of a HICA must be set to null before
each HL01 transaction and must not be changed by the application program during the
remainder of the transaction sequence.
/***/
/* allocate a HICA for a transaction sequence */
/***/

static IDB_HICA MyHICA; /* allocate HICA */
/***/
/* initialize a HICA before an HL01 transaction */
/***/

memset(&MyHICA, /* fill HICA with nulls */
'\0',
sizeof(MyHICA));

memcpy(MyHICA.ACRO, /* initialize HICA eyecatcher */
HICAACRO_TEXT,
sizeof(MyHICA.ACRO));

MyHICA.LENG = sizeof(MyHICA); /* set HICA length */

MyHICA.ENVP = (void *)0; /* initialize ENVP field -- */
/* ONLY FOR HL01 TRANSACTION */

...
/* associate Control PDBs */

...
/* and Input PDBs with HICA */

Allocating and Initializing a PDB Structure
Your application program is responsible for allocating, initializing, and freeing control PDBs
and input PDBs for each transaction. HLAPI/USS is responsible for allocating, initializing,
and freeing output PDBs, error PDBs, and message PDBs for each transaction.

Your application must allocate and initialize any required control PDBs and input PDBs
before it submits a transaction request. Your application program should examine any output
PDBs, error PDBs, and message PDBs that are returned with a transaction reply. In addition,
your application program should examine the input PDBs for updates made by HLAPI/USS

Developing HLAPI/USS Client Applications

322 Version 7.1

as part of certain transaction replies. The Tivoli Information Management for z/OS
Application Program Interface Guide contains additional information.

The last field of a PDB structure is the data field. This field is declared to be a one-element
array of unsigned characters, but it is actually a variable-length field. The actual length of
the field is determined by the number of extra bytes allocated for the PDB structure. Your
application program should use the data field to record the actual number of bytes of data in
the data field. This arrangement allows your application program to conserve memory by
allocating each PDB with only as much storage as it needs. The total size of a PDB is the
sum of PDBFIX_SIZE (a constant defined in blmh.h) and the number of bytes for the data
field.

This example shows an application fragment that illustrates allocation and partial
initialization of an input PDB. Note the calculation of PDB size.

int PDBsize;
PDB *pPDB; /* pointer to PDB */

PDBsize = PDBFIX_SIZE + strlen("DOE JOHN");
pPDB = malloc(PDBsize); /* allocate memory for PDB */

if (pPDB) {

memset(pPDB, /* fill PDB with nulls */
'\0',
PDBsize);

memcpy(pPDB->Acro, /* initialize PDB eyecatcher */
PDBACRO_TEXT,
sizeof(pPDB->Acro));

memset(pPDB->Name, /* initialize with blanks */
' ',
sizeof(pPDB->Name));

memcpy(pPDB->Name, /* record field value */
"REPORTER_NAME",
strlen("REPORTER_NAME"));

pPDB->Datl = strlen("DOE JOHN"); /* initialize length */
memcpy(pPDB->Data, /* initialize value */

"DOE JOHN",
pPDB->DATL);

pPDB->Proc = 'V'; /* request validation */
pPDB->Code = ' '; /* initialize data error code */

...
/* initialize other fields */

pPDB->Next = MyHICA.INPP; /* insert PDB into linked list */
pPDB->Prev = NULL; /* of Input PDBs */
MyHICA.INPP->Prev = pPDB;
MyHICA.INPP = pPDB;

}

...

Developing HLAPI/USS Client Applications

323Client Installation and User’s Guide

35.
H

L
A

P
I/U

S
S

Tran
sactio

n
s

HLAPI/USS Function
One C-language HLAPI/USS function is available to client application programs:

¶ IDBTransactionSubmit() for submitting a transaction request

The HLAPI/USS header file blmh.h contains the prototype for the function and declarations
of the data types and values associated with the function.

IDBTransactionSubmit()
A client application program calls the function IDBTransactionSubmit() to submit a
transaction request to HLAPI/USS. In a C-language program, the call to
IDBTransactionSubmit() looks like
rc = IDBTransactionSubmit(pHICA);

Your application must provide the variable pHICA as a pointer to a structure of the type
HICA that contains the HICA that you want to submit to HLAPI/USS.

HLAPI/USS returns a value from this function call that you should examine before looking
at the HICA return and reason codes. This return code (rc) is a variable of type
IDBRC_TYPE. The values that can be returned for it are listed in “HLAPI Service Call
Return Codes” on page 367.

#include <blmh.h>
IDBRC_TYPE rc;
HICA MyHICA;

...

rc = IDBTransactionSubmit(&MyHICA);

...

Usage Notes
After calling IDBTransactionSubmit() to submit a transaction, a client application program
should not alter the HICA, PDBs, or other associated structures until the transaction is
complete.

After submitting the HL01 transaction to initiate a transaction sequence, a client application
need only change the control PDB and input PDB chains to prepare the HICA for a
subsequent transaction. The HICA pointers to the output PDB, message PDB, and error PDB
chains may be set optionally to NULL to prepare for a subsequent transaction.

Additional information about error conditions for a particular transaction may be obtained
from the following:

¶ The values of the HICA fields RETC and REAS, if IDBTransactionSubmit() returned
the value IDBRC_XERR

¶ Any error PDBs and message PDBs chained to the HICA

¶ Any input PDBs updated by HLAPI/USS

¶ The HLAPI/USS file blmprobe.log

¶ The client interface log files, if transaction logging is enabled for the transaction
sequence.

HLAPI/USS Function

324 Version 7.1

¶ “Transaction Logging by a RES and by an MRES Without Pre-started API Sessions” on
page 20 .

Using the HLAPI/USS Function in a Transaction Sequence
All HLAPI/USS function calls for a given transaction sequence must be made by the same
process. In addition, the effective user ID of the process must not vary from one
HLAPI/USS function call to the next. HLAPI/USS returns an error to the calling process if
the process ID or effective user ID does not match the value recorded during the call to
IDBTransactionSubmit() for the HL01 transaction of the transaction sequence.

The HLAPI transactions supported by HLAPI/USS are listed in Table 1 on page 3. For a
description of the transactions supported by HLAPI/USS, refer to the Tivoli Information
Management for z/OS Application Program Interface Guide. The remainder of this section
discusses aspects of each transaction that are specific to HLAPI/USS.

Initialize Tivoli Information Management for z/OS (HL01)
The HLAPI/USS transaction HL01 requests a connection to a Tivoli Information
Management for z/OS database on a specific Tivoli Information Management for z/OS
server. The HL01 transaction initiates a HLAPI/USS transaction sequence. This section
describes the steps performed for an HL01 transaction.

1. The user creates a HLAPI/USS database profile for the database connection. A text editor
can be used to create or update a database profile. Different database connections can
share the same database profile, but it is generally advisable to create a different
database profile for each database connection. The database profile specifies the server
(host and service names for a server that supports TCP/IP), the requester host and service
names, and other parameters governing the transaction sequence for the database
connection. See “HLAPI/USS Profiles, Environment Variables, and Data Logging” on
page 303 for a description of database profile contents.

2. The client application program allocates and initializes a HICA structure for the
transaction sequence. The client application program allocates and initializes three
required control PDBs:

¶ The DATABASE_PROFILE PDB, specifying the name of the database profile for
the transaction sequence

¶ The SECURITY_ID PDB, specifying the MVS user ID

¶ The PASSWORD PDB, specifying the MVS user password

The client application places these PDBs on the HICA’s chain of control PDBs. The
DATABASE_PROFILE PDB can go anywhere on the chain of control PDBs. If the
DATABASE_PROFILE PDB uses a relative path for the database profile, the value of
the HLAPI/USS environment variable BLMDBPATH is used to qualify the path name
and locate the profile. A relative path does not explicitly specify a complete path from
the root directory to the file.

3. The client application program calls IDBTransactionSubmit(), passing the address of
the HICA as a parameter. During the call to IDBTransactionSubmit(), HLAPI/USS
reads the database profile and records its parameters for use during the entire transaction
sequence. The client interface then uses the requester host and service names to establish
communication with the requester.

4. At this time, the specified requester must be available to the client interface.

HLAPI/USS Function

325Client Installation and User’s Guide

35.
H

L
A

P
I/U

S
S

Tran
sactio

n
s

5. The client interface transmits the MVS user ID, MVS password, and server host and
server service name to the requester. If sharing is enabled, the requester examines these
values to determine whether they match the corresponding values for any existing
conversation between the requester and a server. If a matching conversation is identified
and the new transaction sequence can be assigned to the conversation without exceeding
the implicit HLAPI/USS limit on the number of transaction sequences per conversation
(10), then the requester assigns the new transaction sequence to the conversation.
Otherwise, a new conversation is started and the new transaction sequence is assigned to
it.

6. The TIMEOUT_INTERVAL PDB applies to the HLAPI that is running on Tivoli
Information Management for z/OS. If you specify a timeout interval, it determines the
maximum time that may elapse during HLAPI processing of a single transaction. If the
HLAPI processing time exceeds the timeout interval, the HLAPI ends the transaction.
Note that the HLAPI processing time for a transaction does not include time spent by the
server or components of HLAPI/USS to process the transaction. Therefore, a transaction
submitted from HLAPI/USS may appear to require more processing time than the
timeout interval indicates.

7. For information about transaction logging, see “Transaction Logging” on page 312.

8. The client application program returns from the call to IDBTransactionSubmit(). The
client application program can submit other transactions of the transaction sequence.

Any process of a client application program can have multiple, concurrent transaction
sequences. The transactions of a transaction sequence can be submitted independently of the
transactions of all other transaction sequences. However, a different HICA must be
associated with each transaction sequence.

Terminate Tivoli Information Management for z/OS (HL02)
The HLAPI/USS transaction HL02 allows a client application program to close a database
connection on a specific server. The HL02 transaction completes a normal HLAPI/USS
transaction sequence. This section describes the steps performed for an HL02 transaction.

1. The client application program allocates and initializes the normal control PDBs
requesting a disconnect from the database, associates the PDBs with the HICA for the
transaction sequence, and calls IDBTransactionSubmit() to submit the HL02 transaction
to HLAPI/USS.

2. The client interface communicates the disconnect request through the requester to the
server. If this is the last transaction sequence assigned to the conversation between the
requester and the server, the conversation with the server is ended. If this is not the last
transaction sequence assigned to the conversation, the conversation is not ended.

3. The client application program returns from the call to IDBTransactionSubmit(). For an
HL02 transaction, the transaction reply does not include any output PDBs, message
PDBs, or error PDBs. However, the transaction reply does include the return and reason
codes returned in the HICA fields RETC and REAS.

Retrieve Record (HL06)
The optional TEXT_MEDIUM control PDB can specify the type of storage medium for the
HLAPI. However, the HLAPI/USS only supports storage medium type B. The
TEXT_MEDIUM PDB is optional for the HLAPI/USS HL06 transactions. However,
HLAPI/USS overrides any specified value with the value for storage medium type B.

Using the HLAPI/USS Function in a Transaction Sequence

326 Version 7.1

If you want to retrieve freeform text as a continuous stream of data with carriage return /
line feed characters (ASCII X'0D0A') after each text line, set the optional control PDB
TEXT_STREAM to YES. The Tivoli Information Management for z/OS Application
Program Interface Guide contains additional information about the TEXT_STREAM PDB.

Create Record (HL08)
HLAPI/USS does not support text data sets. Always specify a non-zero value for the
PDB_DATW field of the input PDBs for text data.

If you are creating a record that contains freeform text, and the input text contains either line
feed characters (ASCII X'0A') or carriage return / line feed characters (ASCII X'0D0A'), set
the optional control PDB TEXT_STREAM to YES. This will ensure that text formatting
information is stored in the record. When the text is retrieved, it will be formatted exactly as
it was entered. The Tivoli Information Management for z/OS Application Program Interface
Guide contains additional information about the TEXT_STREAM PDB.

Update Record (HL09)
HLAPI/USS does not support text data sets. Always specify a non-zero value for the
PDB_DATW field of the input PDBs for text data.

If you are updating a record that contains freeform text, and the input text contains either
line feed characters (ASCII X'0A') or carriage return / line feed characters (ASCII X'0D0A'),
set the optional control PDB TEXT_STREAM to YES. This will ensure that text formatting
information is stored in the record. When the text is retrieved, it will be formatted exactly as
it was entered. The Tivoli Information Management for z/OS Application Program Interface
Guide contains additional information about the TEXT_STREAM PDB.

Compiling and Linking Your Application to HLAPI/USS Services
The HLAPI/USS dll contains the client interface entry point and executable code accessed
by calling the HLAPI/USS function IDBTransactionSubmit(). Before using the
HLAPI/USS dll, you must compile and link your application. You must specify that you are
using a dll and you must specify the HLAPI/USS definition side-deck. The default path and
filename for the definition side-deck is

/usr/lpp/InfoMan/lib/blmhlapi.x

The default path and file names for the HLAPI/USS dll is:
/usr/lpp/InfoMan/lib/blmhlapi

However, installation of HLAPI/USS creates a symbolic link in the ⁄usr⁄lib directory to
reference the dll.

To compile and link a C program named blmappl.c using c89:
c89 -o blmappl -W c,dll blmappl.c blmhlapi.x -lc

assuming the C program is in the same path as blmhlapi.x.

Refer to the file blmappl.mak in the HLAPI/USS examples subdirectory (listed below) for
an example of how to link your application.

/usr/lpp/InfoMan/examples

Using the HLAPI/USS Function in a Transaction Sequence

327Client Installation and User’s Guide

35.
H

L
A

P
I/U

S
S

Tran
sactio

n
s

Planning Your HLAPI/USS Application
This section lists some questions you need to answer when you plan and design your
application that uses HLAPI/USS. Refer to the Tivoli Information Management for z/OS
Application Program Interface Guide for more information on this subject.

¶ Which Tivoli Information Management for z/OS transactions (for example, create or
update) do you use?

¶ Which record types (for example, problem or change) do you use?

¶ Which fields (for example, problem status or assignee name) do you use?

¶ Do you need to connect to more than one Tivoli Information Management for z/OS
database?

¶ On which MVS systems are your Tivoli Information Management for z/OS databases
located?

¶ Does your application require security?

¶ Do you have port numbers assigned for the sockets any servers that support TCP/IP will
need?

¶ On which OS/390 UNIX System Services systems will your client application programs
run?

¶ On which OS/390 UNIX System Services systems will your requesters be located?

¶ Is there TCP/IP connectivity between the MVS systems running your MRES with
TCP/IP servers and the MVS systems running your requesters and between the requester
hosts and client interface hosts.

¶ How should your OS/390 UNIX System Services system resource limits be configured
to support requester and client interface requirements?

¶ How are the processes of your application related to one another?

¶ How much storage do you need in a server to support sessions, given your transaction
mix?

¶ Do you want to enable transaction logging by the client interface or by the server?

¶ Do you want to perform data validation? Data length validation is always performed for
a transaction, but other validation can be controlled as described in the Tivoli
Information Management for z/OS Application Program Interface Guide.

Converting HLAPI Programs to HLAPI/USS Programs
If you want to convert an existing C-language program that uses HLAPI to a C-language
program that uses HLAPI/USS, here are some tips on how to do that:

¶ Make general modifications that are required to make the program run on OS/390 UNIX
System Services:

v Change HICA and PDB field names to their HLAPI/USS counterparts.

¶ Update references to included header files:

v Include the HLAPI/USS header file blmh.h.

v Include the HLAPI/USS header file blmech.h if you want to use the named constants
for HLAPI/USS return and reason codes.

Planning Your HLAPI/USS Application

328 Version 7.1

v Do not include the HLAPI header file spc.h.

¶ Convert any HL06, HL08, and HL09 transactions that use the data set method of
freeform text processing to the buffer method of freeform text processing.

¶ Convert HLAPI function calls to the HLAPI/USS function call
IDBTransactionSubmit(). Do not define variables to reference the BLGYHLPI
module, and do not fetch the BLGYHLPI module.

¶ Add processing to allocate and initialize the three special types of control PDBs for
HLAPI/USS (SECURITY_ID, PASSWORD, and DATABASE_PROFILE) and to
insert the PDBs into the chain of control PDBs for each HL01 transaction.

¶ Create one or more database profiles for use with your program’s transaction sequences.

¶ Create any system profiles needed for requesters.

¶ Review the error handling sections of the program to determine whether changes are
needed to process HLAPI/USS error conditions.

¶ When starting the compiler and the linkage editor, compile with appropriate options for
locating the HLAPI/USS header files and for linking with the HLAPI/USS definition
side-deck.

¶ Remove asynchronous processing, because HLAPI/USS supports only synchronous
processing.

Using the REXX HLAPI/USS Interface
The REXX HLAPI/USS interface enables you to access HLAPI/USS transactions from MVS
REXX programs similar to the manner in which HLAPI/REXX enables you to access
HLAPI transactions from MVS REXX programs. You should be familiar with
HLAPI/REXX, described in the Tivoli Information Management for z/OS Application
Program Interface Guide, before you attempt to use the REXX HLAPI/USS interface.

REXX HLAPI/USS allows you to write a REXX program that sets REXX variables with
control and input information, then links to the HLAPI/USS through the REXX HLAPI/USS
interface to process that information. On return, REXX HLAPI/USS uses data returned by
the HLAPI/USS to set various REXX output variables in your program. The particular
transactions that the REXX HLAPI/USS interface supports are the same as those supported
by the HLAPI/USS. For a list of those transactions, see Table 7 on page 331.

The use of shared REXX variables for specifying control and input data to Tivoli
Information Management for z/OS and returning output data from Tivoli Information
Management for z/OS is equivalent to how this is implemented for HLAPI/REXX on MVS.
Refer to the Tivoli Information Management for z/OS Application Program Interface Guide
for information on how to define REXX variables in your program and for a list of reserved
REXX variables that the REXX HLAPI interfaces (HLAPI/REXX, REXX HLAPI/2, REXX
HLAPI/AIX, and REXX HLAPI/USS) use.

Although HLAPI/REXX and REXX HLAPI/USS are quite similar and both run on an MVS
host, their access to Tivoli Information Management for z/OS databases are significantly
different. HLAPI/REXX uses the HLAPI to access the database and therefore it must run on
the same MVS host as Tivoli Information Management for z/OS. REXX HLAPI/USS,
however, uses HLAPI/USS which establishes a TCP/IP connection to an MRES with TCP/IP
server and the server provides access to the database. This is a significant difference,

Converting HLAPI Programs to HLAPI/USS Programs

329Client Installation and User’s Guide

35.
H

L
A

P
I/U

S
S

Tran
sactio

n
s

because it allows REXX HLAPI/USS to be installed and run on an MVS system that is
remote from the MVS system where the Tivoli Information Management for z/OS database
is located.

The remainder of this section discusses the operating differences between HLAPI/REXX and
REXX HLAPI/USS.

REXX HLAPI/USS Installation and Setup
The REXX HLAPI/USS interface is an MVS load module that you call from your REXX
program. The REXX HLAPI/USS is named BLMYRXM and is distributed with
HLAPI/USS. After you use SMP/E to install the HLAPI/USS feature, BLMYRXM is located
in the SBLMMOD1 data set. A sample REXX program name blmyrxsa is also distributed
with HLAPI/USS and is located in the HFS file /usr/lpp/InfoMan/examples. “Installing and
Setting Up HLAPI/USS” on page 299 contains information on HLAPI/USS installation.

Invoking REXX HLAPI/USS
REXX HLAPI/USS is an MVS load module located in SBLMMOD1. The syntax of the
REXX HLAPI/USS call is:
ADDRESS LINKMVS 'BLMYRXM stem'

where stem is the name of a high-level compound variable whose elements must contain the
transaction name and the stem names of the control, input, and output compound variables.
Note that the high-level stem name is passed as the only parameter to BLMYRXM; this
differs from REXX HLAPI/2 and REXX HLAPI/AIX, where the transaction name and the
control, input, and output stem names are all passed as parameters to blmyrxm.

The general form of the high-level compound variable is:
stem.1 = transaction name
stem.2 = control stem name
stem.3 = input stem name
stem.4 = output stem name
stem.0 = the number of the largest element of the compound variable

The following example illustrates a call to the REXX HLAPI/USS for a create transaction
with an input stem name of INPUT, a control stem name of CONTROL, an output stem
name of OUTPUT, and a high-level stem name of PARM.

PARM.0=4
PARM.1='CREATE'
PARM.2='CONTROL'
PARM.3='INPUT'
PARM.4='OUTPUT'
ADDRESS LINKMVS 'BLMYRXM PARM'

If the transaction you want to run does not require control data, input data, or output data,
set the corresponding element value of the high level compound variable to null. For
example, if you have control data and want to specify an output stem name, but you do not
have input data, specify the high level stem element values as follows:

stem.0=4
stem.1=transaction name
stem.2=control stem name
stem.3=’’ (with no blanks between the quote marks to indicate a null value for the input
stem name)
stem.4=output stem name

Using the REXX HLAPI/USS Interface

330 Version 7.1

If the transaction returns output data, you do not have to specify an output stem name.
REXX HLAPI/USS defaults the output stem name to BLG_OUT. If you want to use the
default output stem name, specify the high level stem element values as follows:

stem.0=3
stem.1=transaction name
stem.2=control stem name
stem.3=input stem name

Because no output stem name was specified, the output stem name will take the default
name of BLG_OUT.

REXX HLAPI/USS Transaction Names
The following REXX HLAPI/USS transaction names are supported. The list matches the list
of HLAPI transactions and functions listed in Table 1 on page 3.

Table 7. REXX HLAPI/USS Transaction Names
NAME FUNCTION

INIT Initialize Tivoli Information Management for z/OS

TERM Terminate Tivoli Information Management for z/OS

GETID Obtain External Record ID

CHECKOUT Check Out Record

CHECKIN Check In Record

RETRIEVE Retrieve Record

CREATE Create Record

UPDATE Update Record

CHANGE_APPROVAL Change Record Approval

SEARCH Record Inquiry

ADD_REL Add Record Relations

DELETE Delete Record

USERTSP Start User TSP

GETDATAMODEL Get Data Model

Running REXX HLAPI/USS from OS/390 UNIX System Services
Before you can run your REXX program, your OS/390 UNIX System Services environment
needs to have several environment variables set:
¶ Your REXX programs need to reside in a directory specified in the PATH environment

variable
¶ Environment variable _BPX_SHAREAS must be set to YES
¶ The STEPLIB environment variable must be set to point to the SBLMMOD1 data set

so that your REXX program can locate the BLMYRXM load module.

When you have finished creating your REXX program source file and wish to run it for the
first time, make it executable using the chmod +x command

chmod +x name

Then run the REXX program by typing its filename at your shell command prompt.

Running REXX HLAPI/USS from MVS
In addition to being run from a REXX program in OS/390 UNIX System Services, as was
described in “Running REXX HLAPI/USS from OS/390 UNIX System Services”, a REXX

Using the REXX HLAPI/USS Interface

331Client Installation and User’s Guide

35.
H

L
A

P
I/U

S
S

Tran
sactio

n
s

exec that resides in an MVS partitioned data set can be used to invoke the REXX
HLAPI/USS interface. When you run your program from MVS, the SBLMMOD1 data set
needs to be in your logon procedure or available through either the linklist or through the
LPA.

A REXX program that you run from MVS to call the REXX HLAPI/USS interface is
similar to the sample illustrated in “Sample Program blmyrxsa” on page 333. However, the
following change is required:

¶ Near the beginning of the listing, immediately before the
address syscall

add the statement
Call syscalls('ON')

This statement allows the REXX syscall commands used in the REXX exec to run.

REXX Reserved Variables
The REXX HLAPI/USS interface uses the same REXX reserved variables as those described
for HLAPI/REXX in the Tivoli Information Management for z/OS Application Program
Interface Guide with these additions and deletions.

REXX reserved variables added for REXX HLAPI/USS

BLG_HLAPIUSS_RC Return code passed back from HLAPI/USS. The
return codes are documented in “HLAPI Service Call
Return Codes” on page 367.

HLAPI/REXX reserved variables not used by REXX HLAPI/USS

BLG_R15 replaced by BLG_HLAPIUSS_RC

BLG_RC and BLG_REAS
BLG_RC is set to the value of the RETC field of the HICA. BLG_REAS is set to the value
of the REAS field. If BLG_RC is set to 16 (indicating an abend), BLG_REAS is set to
xxsssuuu, where sss is an abend code, uuu is a reason code, and xx are do-not-care
positions.

Other Considerations
¶ Neither HLAPI/USS nor REXX HLAPI/USS supports asynchronous processing; all

transactions are processed synchronously. Synchronous processing forces the REXX
program’s current process to wait for a Tivoli Information Management for z/OS
transaction to finish before it can perform any other work.

¶ REXX HLAPI/USS requires three additional control variables on the INIT transaction.
The REXX variable names are:

v SECURITY_ID to specify the MVS user ID

v PASSWORD to specify the MVS user password

v DATABASE_PROFILE to specify the name of the database profile

¶ Neither HLAPI/USS nor REXX HLAPI/USS supports text data sets.

Using the REXX HLAPI/USS Interface

332 Version 7.1

v For a RETRIEVE transaction, the REXX variable TEXT_MEDIUM only supports
storage medium type B.

v For a CREATE or UPDATE transaction, text-name.?width for text data must be
nonzero or not be specified.

Refer to the Tivoli Information Management for z/OS Application Program Interface
Guide for information on how to define REXX variables in your program and for a list
of reserved REXX variables that the REXX HLAPI interfaces use.

REXX HLAPI/USS Sample REXX Program
A sample REXX program named blmyrxsa is distributed with HLAPI/USS. After
installation, blmyrxsa is located in /usr/lpp/InfoMan/examples. This sample REXX
program illustrates how to:

¶ Setup REXX variables

¶ Make REXX HLAPI/USS transaction calls

¶ Retrieve output data

“Sample Program blmyrxsa” also shows the blmyrxsa sample REXX program. The
following steps are performed:

1. Open the HFS file named /usr/lpp/InfoMan/examples/blmyrxsa.out; this is where
REXX HLAPI/USS output will be written.

2. Setup REXX variables for an INIT transaction.

3. Call REXX HLAPI/USS to perform the INIT transaction.

4. Record REXX HLAPI/USS output to the HFS file opened in step 1.

5. Setup REXX variables to CREATE a record with record id SAMP1.

6. Call REXX HLAPI/USS to perform the CREATE transaction.

7. Record REXX HLAPI/USS output to the HFS file opened in step 1.

8. Setup REXX variables to retrieve the record just created.

9. Call REXX HLAPI/USS to perform the RETRIEVE transaction.

10. Record REXX HLAPI/USS output to the HFS file opened in step 1.

11. Setup REXX variables to delete the record just created.

12. Call REXX HLAPI/USS to perform the DELETE transaction.

13. Record REXX HLAPI/USS output to the HFS file opened in step 1.

14. Call REXX HLAPI/USS to perform the TERM transaction.

15. Close the HFS file opened in step 1.

Note: The lineout function that is used to write data to an HFS file is not a built-in REXX
function. A lineout subroutine is provided at the end of the blmyrxsa sample to show
how data can be written to an HFS file. The HFS file must be opened before lineout
is used to write to it, and it must be closed before exiting the REXX program.

Sample Program blmyrxsa
The sample program blmyrxsa demonstrates calls to the REXX HLAPI/USS interface. In
this example, blmyrxsa is intended to run from OS/390 UNIX System Services. Your REXX

Using the REXX HLAPI/USS Interface

333Client Installation and User’s Guide

35.
H

L
A

P
I/U

S
S

Tran
sactio

n
s

program can also be run from TSO. Refer to “Running REXX HLAPI/USS from MVS” on
page 331 for information on how this sample can be changed to enable it to run from TSO.
/* rexx */
/*---*/
/* */
/* This sample REXX program demonstrates calls to the REXX HLAPI/USS */
/* interface. The program shows how: */
/* */
/* - REXX HLAPI/USS variables are set for transactions */
/* */
/* - INIT, CREATE, RETRIEVE, DELETE and TERM REXX HLAPI/USS */
/* transactions are issued */
/* */
/* - a log of transaction output is kept in file: */
/* /usr/lpp/InfoMan/examples/blmyrxsa.out */
/* */
/*---*/

address syscall

"open /usr/lpp/InfoMan/examples/blmyrxsa.out" ,
o_trunc+o_creat+o_wronly 755

file_id = retval

/**/
/* set the CONTROL data for the INIT */
/**/

CONTROL.0 = 10
CONTROL.1 = 'database_profile'
CONTROL.2 = 'class_count'
CONTROL.3 = 'hlimsg_option'
CONTROL.4 = 'security_id'
CONTROL.5 = 'password'
CONTROL.6 = 'spool_interval'
CONTROL.7 = 'apimsg_option'
CONTROL.8 = 'application_id'
CONTROL.9 = 'privilege_class'
CONTROL.10= 'session_member'

PRIVILEGE_CLASS = 'MASTER'
SESSION_MEMBER = 'BLGSES00'
APPLICATION_ID = 'SAMPID'
CLASS_COUNT = 1
SPOOL_INTERVAL = 200
HLIMSG_OPTION = 'B'
APIMSG_OPTION = 'B'
SECURITY_ID = 'SAMPID'
PASSWORD = 'PASSWORD'
DATABASE_PROFILE = '/usr/lpp/InfoMan/examples/blmdb.pro'

/**/
/* call REXX HLAPI/USS to perform the */
/* INIT transaction */
/**/
PARM.0=2
PARM.1='INIT'
PARM.2='CONTROL'
ADDRESS LINKMVS 'BLMYRXM PARM'
rexx_rc = RC

/**/
/* record REXX HLAPI/USS output in file */
/* blmyrxsa.out */
/**/
say 'Returned from INIT with RC = ' rexx_rc

Using the REXX HLAPI/USS Interface

334 Version 7.1

rc = lineout('INIT Transaction results:')
rc = lineout('rexx_rc=' rexx_rc)
rc = lineout('BLG_RC=' BLG_RC)
rc = lineout('BLG_REAS=' BLG_REAS)
rc = lineout('BLG_VARNAME=' BLG_VARNAME)
rc = lineout('BLG_HLAPIUSS_RC=' BLG_HLAPIUSS_RC)
rc = lineout(' ')
say ''

if rexx_rc \= 0 then
do
PARM.0=1
PARM.1='TERM'
ADDRESS LINKMVS 'BLMYRXM parm'
exit
end

/**/
/* set the CONTROL and INPUT data for */
/* the CREATE */
/**/
CONTROL = ''
CONTROL.0 = 1
CONTROL.1 = 'PIDT_NAME'
PIDT_NAME = 'BLGYPRC'

INPUT = ''
INPUT.0 = 6
INPUT.1.?NAME = 'S0BEE'
INPUT.1.?PROC = 'V'
INPUT.2.?NAME = 'S0B59'
INPUT.3.?NAME = 'S0CA9'
INPUT.4.?NAME = 'S0E0F'
INPUT.5.?NAME = 'S0CCF'
INPUT.6.?NAME = 'S0E01.'
S0E01.?WIDTH = 20
S0BEE = 'INITIAL'
S0B59 = 'DOE/JOHN'
S0CA9 = 'LPT1'
S0E0F = 'PROBLEM RECORD CREATE BY REXX HLAPI/USS'
S0CCF = 'SAMP1'
S0E01.0 = 2
S0E01.1 = 'Sample1 first line'
S0E01.2 = 'Sample1 second line'
OUTPUT.0 = 1
OUTPUT.1.?TYPE = ' '

/**/
/* call REXX HLAPI/USS to perform the */
/* CREATE transaction */
/**/
PARM.0=4
PARM.1='CREATE'
PARM.2='CONTROL'
PARM.3='INPUT'
PARM.4='OUTPUT'
ADDRESS LINKMVS 'BLMYRXM PARM'
rexx_rc = RC

/**/
/* record REXX HLAPI/USS output in file */
/* blmyrxsa.out */
/**/
say 'Returned from CREATE with RC = ' RC
rc = lineout('CREATE Transaction results:')
rc = lineout('rexx_rc=' rexx_rc)
rc = lineout('BLG_RC=' BLG_RC)

Using the REXX HLAPI/USS Interface

335Client Installation and User’s Guide

35.
H

L
A

P
I/U

S
S

Tran
sactio

n
s

rc = lineout('BLG_REAS=' BLG_REAS)
rc = lineout('BLG_VARNAME=' BLG_VARNAME)
rc = lineout('BLG_HLAPIUSS_RC=' BLG_HLAPIUSS_RC)
if BLG_ERRCODE.0 \= 0 then

do
rc = lineout('REXX Error Variables')
do i = 1 to BLG_ERRCODE.0
rc = lineout('Error Name ' i ' = ' BLG_ERRCODE.i.?NAME)
rc = lineout('Error Code ' i ' = ' BLG_ERRCODE.i.?CODE)

end
end

if BLG_MSGS.0 \= 0 then
do

rc = lineout('Messages')
do i = 1 to BLG_MSGS.0
rc = lineout('Message ' i ' = ' BLG_MSGS.i.?NAME)
end

end
rc = lineout(' ')
say ''

if rexx_rc \= 0 then
do
PARM.0=1
PARM.1='TERM'
ADDRESS LINKMVS 'BLMYRXM parm'
exit
end

/**/
/* set the CONTROL data for the RETRIEVE */
/**/
CONTROL = ''
CONTROL.0 = 3
CONTROL.1 = 'PIDT_NAME'
CONTROL.2 = 'TEXT_OPTION'
CONTROL.3 = 'RNID_SYMBOL'

PIDT_NAME = 'BLGYPRR'
TEXT_OPTION = 'YES'
RNID_SYMBOL = 'SAMP1'

/**/
/* call REXX HLAPI/USS to perform the */
/* RETRIEVE transaction */
/**/
PARM.0=4
PARM.1='RETRIEVE'
PARM.2='CONTROL'
PARM.3=''
PARM.4='OUTPUT'
ADDRESS LINKMVS 'BLMYRXM PARM'
rexx_rc = RC

/**/
/* record REXX HLAPI/USS output in file */
/* blmyrxsa.out */
/**/
say 'Returned from RETRIEVE with RC = ' RC
rc = lineout('RETRIEVE Transaction results:')
rc = lineout('rexx_rc=' rexx_rc)
rc = lineout('BLG_RC=' BLG_RC)
rc = lineout('BLG_REAS=' BLG_REAS)
rc = lineout('BLG_VARNAME=' BLG_VARNAME)
rc = lineout('BLG_HLAPIUSS_RC=' BLG_HLAPIUSS_RC)
rc = lineout('REXX Output Variables')
do i = 1 to OUTPUT.0

Using the REXX HLAPI/USS Interface

336 Version 7.1

otype = OUTPUT.i.?TYPE
tname = OUTPUT.i.?NAME
rc = lineout('Name- ' tname ' Type- ' otype)
/***/
/* if the output is freeform text, put */
/* out all the lines */
/***/
if otype = 'X' then
do j= 1 to OUTPUT.tname.0
rc = lineout('Data- ' OUTPUT.tname.j)
end
else
rc = lineout('Data- ' OUTPUT.tname)

end
if BLG_MSGS.0 \= 0 then

do
rc = lineout('Messages')
do i = 1 to BLG_MSGS.0
rc = lineout('Message ' i ' = ' BLG_MSGS.i.?NAME)
end

end
rc = lineout(' ')
say ''

if rexx_rc \= 0 then
do
PARM.0=1
PARM.1='TERM'
ADDRESS LINKMVS 'BLMYRXM parm'
exit
end

/**/
/* set the CONTROL data for the DELETE */
/**/
CONTROL = ''
CONTROL.0 = 1
CONTROL.1 = 'RNID_SYMBOL'

RNID_SYMBOL = 'SAMP1'

/**/
/* call REXX HLAPI/USS to perform the */
/* DELETE transaction */
/**/
PARM.0=2
PARM.1='DELETE'
PARM.2='CONTROL'
ADDRESS LINKMVS 'BLMYRXM PARM'
rexx_rc = RC

/**/
/* record REXX HLAPI/USS output in file */
/* blmyrxsa.out */
/**/
say 'Returned from DELETE with RC = ' RC
rc = lineout('DELETE Transaction results:')
rc = lineout('rexx_rc=' rexx_rc)
rc = lineout('BLG_RC=' BLG_RC)
rc = lineout('BLG_REAS=' BLG_REAS)
rc = lineout('BLG_VARNAME=' BLG_VARNAME)
rc = lineout('BLG_HLAPIUSS_RC=' BLG_HLAPIUSS_RC)
say ''

/**/
/* call REXX HLAPI/USS to perform the */
/* TERM transaction */

Using the REXX HLAPI/USS Interface

337Client Installation and User’s Guide

35.
H

L
A

P
I/U

S
S

Tran
sactio

n
s

/**/
RC = 4
PARM.0=1
PARM.1='TERM'
ADDRESS LINKMVS 'BLMYRXM parm'

"close " file_id
Exit

lineout:
parse arg string;
printit = string || esc_n
"write " file_id "printit"
return(0)

Using the REXX HLAPI/USS Interface

338 Version 7.1

Components of Tivoli Information
Management for z/OS Clients

Components of HLAPI/2
HLAPI/2 files that you install on the workstation reside in the default directory C:\INFOAPI,
unless you changed this default during installation. The HLAPI/2 files that are installed on a
LAN Server can be found in the directory C:\INFOAPIS.

Files on the Workstation

Installation and Maintenance Component
¶ Root directory

v CONFIG.ADD

¶ OS/2 System Directory
v EPFIS.INI
v EPFICAT.PKG
v EPFIHCNF.CNF

¶ INFOAPI directory
v EPFINSTS.EXE
v EPFIPRCS.EXE
v EPFIPII.DLL
v EPFIEXTS.DLL
v EPFIRSBK.DLL
v EPFIHPLB.HLP
v EPFIMSG.MSG
v EPFIDLDS.EXE
v EPFIUPK2.EXE
v EPFIICIS.ICO
v EPFIHELP.INF
v EPFISINC.PKG
v READ.ME

Toolkit Component
¶ INFOAPI directory

v BLMIPKG.PKG
v BLMICF.ICF
v \H

– IDBHLAPI.LIB
– IDBECH.H
– IDBH.H

A

339Client Installation and User’s Guide

A
.

C
o

m
p

o
n

en
ts

o
f

C
lien

ts

v \SAMPLE\C
– BLM2SAM1.C
– BLM2SAMI.CMD

v \SAMPLE\CPPWRAP
– BLMYCWHI.CPP
– BLMYCWHI.HPP
– BLMYCWPD.CPP
– BLMYCWPD.HPP
– BLMYCWIS.CPP
– BLMYCWIS.HPP
– BLMYCWC.HPP
– BLMYCWS1.CPP
– BLMYCWRP.MAK
– BLMYCWS1.MAK
– BLMYCWRP.DEF
– BLMYCWRP.CMD
– BLMYCWS1.CMD

v \SAMPLE\REXX
– BLMYRXSA.CMD

Run-Time Component
¶ INFOAPI directory

v BLMIPKG.PKG
v IDBREQ.EXE
v IDBREQB.EXE
v IDBREQA.EXE
v IDBREQT.EXE
v IDBMSG.MSG
v BLMICF.ICF
v BLMREQI.CMD

¶ \DLL
v IDBHLAPI.DLL
v BLMYRXM.DLL

¶ \SAMPLE
v DATABASE.PRO
v SYSTEM.PRO

Files on the LAN Server

Installation and Maintenance
INFOAPIS directory
¶ BLMIPDL.PKG
¶ INSTALL.EXE
¶ EPFIUPK2.EXE
¶ EPFINSTS.EXE
¶ EPFIPRCS.EXE
¶ EPFIPII.DLL
¶ EPFIEXTS.DLL
¶ EPFIRSBK.DLL
¶ EPFIHPLB.HLP
¶ EPFIMSG.MSG

Components of HLAPI/2

340 Version 7.1

¶ EPFIDLDS.EXE
¶ EPFIICIS.ICO
¶ EPFIHELP.INF
¶ INSTALL.IN_
¶ BLMIPKG.PKG
¶ EPFISINC.PKG
¶ BLMIDDL.DSC
¶ BLMICF.ICF
¶ READ.ME

HLAPI/2 Base Files
INFOAPIS directory
¶ BLMITKPK.PA_
¶ BLMIRTPK.PA_

Components of HLAPI/CICS
HLAPI/CICS client has load modules and a sample program library. The sample program
library has both source and compiled versions.

Members in the CICS/client system load library (BLMCICS.VxRxMx.SBLMMOD1):
¶ BLMYKINF
¶ BLMYKCOM
¶ BLMYKTRM
¶ BLMYKMNU
¶ BLMYKCTL
¶ BLMYKCRE
¶ BLMYKRTV
¶ BLMYKDEL
¶ BLMMAPS

Members in the sample source (VS COBOL II) library (BLMCICS.VxRxMx.SBLMSAMP):
¶ BLMYKMNU
¶ BLMYKCTL
¶ BLMYKCRE
¶ BLMYKRTV
¶ BLMYKDEL
¶ BLMYKMAP

Members in the sample compiled library - Objects (BLMCICS.VxRxMx.SBLMTXT1):
¶ BLMYKMNU
¶ BLMYKCTL
¶ BLMYKCRE
¶ BLMYKRTV
¶ BLMYKDEL
¶ BLMYKMAP

Members in the message library - Objects (BLMCICS.VxRxMx.SBLMSRC1):
¶ BLMYKMSG

Components of HLAPI/2

341Client Installation and User’s Guide

|

|

|

|

A
.

C
o

m
p

o
n

en
ts

o
f

C
lien

ts

Components of HLAPI/NT
HLAPI/NT files that you install on the workstation reside in the default directory
C:\INFOAPI, unless you changed this default during installation. The HLAPI/NT files that
are installed on a network drive can be found in the directory C:\INFOAPI.

Files on the Workstation

Installation Files
¶ INFOAPI directory

v DeIsL1.isu
v DeIsL2.isu
v DeIsL3.isu
v UNINSTAL.EXE
v UNINST.EXE

Base Files
¶ INFOAPI directory

v README.TXT

Toolkit Component
¶ INFOAPI directory

v \H
– IDBECH.H
– IDBH.H
– IDBHLAPI.LIB

v \JAVA
– Blmyjwc.class
– Blmyjws1.java
– Hicao.class
– NameNotFoundException.class
– Pdbo.class

v \SAMPLE\C
– BLM2SAMI.BAT
– BLM2SAM1.C
– BLM2SAMM.BAT

v \SAMPLE\CPPWRAP
– BLMYCWC.HPP
– BLMYCWHI.CPP
– BLMYCWHI.HPP
– BLMYCWIS.CPP
– BLMYCWIS.HPP
– BLMYCWPD.CPP
– BLMYCWPD.HPP
– BLMYCWRP.BAT
– BLMYCWRP.MAK
– BLMYCWS1.BAT
– BLMYCWS1.CPP

v \LOCALE\ICONV
– ICONV.LST
– UCSTBL.DLL

Components of HLAPI/NT

342 Version 7.1

– UTF-8.DLL
v \LOCALE\UCONVTAB

– IBM-037
– IBM-1004
– IBM-1006
– IBM-1008
– IBM-1009
– IBM-1010
– IBM-1011
– IBM-1012
– IBM-1013
– IBM-1014
– IBM-1015
– IBM-1016
– IBM-1017
– IBM-1018
– IBM-1019
– IBM-1025
– IBM-1026
– IBM-1027
– IBM-1028
– IBM-1038
– IBM-1040
– IBM-1041
– IBM-1042
– IBM-1043
– IBM-1046
– IBM-1047
– IBM-1050
– IBM-1051
– IBM-1088
– IBM-1089
– IBM-1092
– IBM-1097
– IBM-1098
– IBM-1112
– IBM-1114
– IBM-1115
– IBM-1116
– IBM-1117
– IBM-1118
– IBM-1119
– IBM-1122
– IBM-1123
– IBM-1124
– IBM-1250
– IBM-1251
– IBM-1252
– IBM-1253
– IBM-1254
– IBM-1255
– IBM-1256

Components of HLAPI/NT

343Client Installation and User’s Guide

A
.

C
o

m
p

o
n

en
ts

o
f

C
lien

ts

– IBM-1257
– IBM-1275
– IBM-1276
– IBM-1277
– IBM-1350
– IBM-1380
– IBM-1381
– IBM-1382
– IBM-1383
– IBM-256
– IBM-259
– IBM-273
– IBM-274
– IBM-277
– IBM-278
– IBM-280
– IBM-282
– IBM-284
– IBM-285
– IBM-287
– IBM-290
– IBM-293
– IBM-297
– IBM-300
– IBM-301
– IBM-361
– IBM-363
– IBM-367
– IBM-382
– IBM-383
– IBM-385
– IBM-386
– IBM-387
– IBM-388
– IBM-389
– IBM-391
– IBM-392
– IBM-393
– IBM-394
– IBM-395
– IBM-420
– IBM-423
– IBM-424
– IBM-437
– IBM-4948
– IBM-4951
– IBM-4952
– IBM-4960
– IBM-500
– IBM-5037
– IBM-5039
– IBM-5048

Components of HLAPI/NT

344 Version 7.1

– IBM-5049
– IBM-5067
– IBM-5142
– IBM-5478
– IBM-813
– IBM-819
– IBM-829
– IBM-833
– IBM-834
– IBM-835
– IBM-836
– IBM-837
– IBM-838
– IBM-850
– IBM-851
– IBM-852
– IBM-855
– IBM-856
– IBM-857
– IBM-860
– IBM-861
– IBM-8612
– IBM-862
– IBM-863
– IBM-864
– IBM-865
– IBM-866
– IBM-868
– IBM-869
– IBM-870
– IBM-871
– IBM-874
– IBM-875
– IBM-880
– IBM-891
– IBM-895
– IBM-896
– IBM-897
– IBM-903
– IBM-9030
– IBM-904
– IBM-905
– IBM-9056
– IBM-9066
– IBM-907
– IBM-909
– IBM-910
– IBM-912
– IBM-913
– IBM-914
– IBM-9145
– IBM-915

Components of HLAPI/NT

345Client Installation and User’s Guide

A
.

C
o

m
p

o
n

en
ts

o
f

C
lien

ts

– IBM-916
– IBM-918
– IBM-919
– IBM-920
– IBM-921
– IBM-922
– IBM-927
– IBM-930
– IBM-933
– IBM-935
– IBM-937
– IBM-939
– IBM-941
– IBM-942
– IBM-943
– IBM-946
– IBM-947
– IBM-948
– IBM-949
– IBM-950
– IBM-951
– IBM-952
– IBM-955
– IBM-960
– IBM-961
– IBM-963
– IBM-964
– IBM-970
– IBM-971
– IBMSBDCN
– IBMSBDTW
– IBMUDCCN
– IBMUDCJP
– IBMUDCTW
– X2081983

Requester Component
¶ INFOAPI directory

v IDBREQ.EXE (TCP/IP only)
or

v IDBREQB.EXE (TCP/IP and APPC)

v \DLL
– BLMYJWRP.DLL
– IDBDLL.DLL
– IDBHLAPI.DLL

v \SAMPLE
– DATABASE.PRO
– SYSTEM.PRO

v \LOCALE\ICONV

Components of HLAPI/NT

346 Version 7.1

– ICONV.LST
– UCSTBL.DLL
– UTF-8.DLL

v \LOCALE\UCONVTAB
– IBM-037
– IBM-850

Files on the Network Server

Installation Files
¶ INFOAPI directory

v DeIsL1.isu
v DeIsL2.isu
v DeIsL3.isu
v DeIsL4.isu
v \DISK1

– _INST32I.EX_
– _ISDEL.EXE
– _SETUP.DLL
– _SETUP.LIB
– DISK1.ID
– SETUP.BMP
– SETUP.EXE
– SETUP.INI
– SETUP.INS
– SETUP.ISS
– SETUP.PKG
– UNINST.EXE
– UNINSTAL.EXE

v \DISK2
– DISK2.ID

v \DISK3
– DISK3.ID

v \DISK4
– DISK4.ID

Base Files
¶ INFOAPI directory

v \DISK1
– README.TXT

Toolkit Component
¶ INFOAPI directory

v \DISK2

– INFOT.1

v \DISK3

– INFOT.2

Components of HLAPI/NT

347Client Installation and User’s Guide

A
.

C
o

m
p

o
n

en
ts

o
f

C
lien

ts

Requester Component
¶ INFOAPI directory

v \DISK4
– INFOR.Z
– INFORB.Z

Components of HLAPI/AIX
The following files, directories, and symbolic links are created during the installation of the
requester option and client interface option of HLAPI/AIX.

Requester Option

Directories
¶ /usr/lpp/idbhlapi
¶ /usr/lpp/idbhlapi/bin
¶ /usr/lpp/idbhlapi/examples
¶ /usr/lpp/idbhlapi/nls
¶ /usr/lpp/idbhlapi/nls/msg
¶ /usr/lpp/idbhlapi/nls/msg/En_US

Files
¶ /usr/lpp/idbhlapi/idbinsta
¶ /usr/lpp/idbhlapi/bin/idbreq
¶ /usr/lpp/idbhlapi/bin/idbreqt
¶ /usr/lpp/idbhlapi/examples/idbsys.pro
¶ /usr/lpp/idbhlapi/nls/msg/En_US/idbreq.cat

Symbolic links
¶ /usr/lib/nls/msg/En_US/idbreq.cat -> /usr/lpp/idbhlapi/nls/msg/En_US/idbreq.cat
¶ /usr/lib/nls/msg/prime/idbreq.cat -> /usr/lpp/idbhlapi/nls/msg/En_US/idbreq.cat

Client Interface Option

Directories
¶ /usr/lpp/idbhlapi
¶ /usr/lpp/idbhlapi/examples
¶ /usr/lpp/idbhlapi/include
¶ /usr/lpp/idbhlapi/lib
¶ /usr/lpp/idblhapi/java
¶ /usr/lpp/idbhlapi/nls
¶ /usr/lpp/idbhlapi/nls/msg
¶ /usr/lpp/idbhlapi/nls/msg/En_US

Files
¶ /usr/lpp/idbhlapi/examples/blmyrxsa
¶ /usr/lpp/idbhlapi/examples/idbappl.c
¶ /usr/lpp/idbhlapi/examples/idbappl.mak
¶ /usr/lpp/idbhlapi/examples/idbdb.pro
¶ /usr/lpp/idbhlapi/include/idbech.h
¶ /usr/lpp/idbhlapi/include/idbh.h
¶ /usr/lpp/idbhlapi/java/Blmyjwc.class

Components of HLAPI/NT

348 Version 7.1

¶ /usr/lpp/idbhlapi/java/Blmyjws1.java
¶ /usr/lpp/idbhlapi/java/Hicao.class
¶ /usr/lpp/idbhlapi/java/NameNotFoundException.class
¶ /usr/lpp/idbhlapi/java/Pdbo.class
¶ /usr/lpp/idbhlapi/lib/blmyrxm
¶ /usr/lpp/idbhlapi/lib/libidb.a
¶ /usr/lpp/idbhlapi/lib/libblmyjwrp.so
¶ /usr/lpp/idbhlapi/nls/msg/En_US/idbcli.cat

Symbolic links
¶ /usr/include/idbech.h -> /usr/lpp/idbhlapi/include/idbech.h
¶ /usr/include/idbh.h -> /usr/lpp/idbhlapi/include/idbh.h
¶ /usr/lib/libidb.a -> /usr/lpp/idbhlapi/lib/libidb.a
¶ /usr/lib/libblmyjwrp.so -> /usr/lpp/idbhlapi/lib/libblmyjwrp.so
¶ /usr/lib/nls/msg/En_US/idbcli.cat -> /usr/lpp/idbhlapi/nls/msg/En_US/idbcli.cat
¶ /usr/lib/nls/msg/prime/idbcli.cat -> /usr/lpp/idbhlapi/nls/msg/En_US/idbcli.cat

Components of HLAPI/HP
The following files, directories, and symbolic links are created during the installation of the
requester option and client interface option of HLAPI/HP.

Requester Option

Directories
¶ */idbhlapi
¶ */idbhlapi/bin
¶ */idbhlapi/examples
¶ */idbhlapi/nls
¶ */idbhlapi/nls/C

Files
¶ */idbhlapi/idbinstl
¶ */idbhlapi/bin/idbreq
¶ */idbhlapi/examples/idbsys.pro
¶ */idbhlapi/nls/C/idbreq.cat

Symbolic links
¶ /usr/lib/nls/C/idbreq.cat -> */idbhlapi/nls/C/idbreq.cat

* is the directory where the HLAPI/UNIX is installed.

Client Interface Option

Directories
¶ */idbhlapi
¶ */idbhlapi/examples
¶ */idbhlapi/include
¶ */idbhlapi/java
¶ */idbhlapi/lib
¶ */idbhlapi/nls
¶ */idbhlapi/nls/C

Components of HLAPI/AIX

349Client Installation and User’s Guide

A
.

C
o

m
p

o
n

en
ts

o
f

C
lien

ts

Files
¶ */idbhlapi/idbinstl
¶ */idbhlapi/examples/idbappl.c
¶ */idbhlapi/examples/idbappl.mak
¶ */idbhlapi/examples/idbdb.pro
¶ */idbhlapi/include/idbech.h
¶ */idbhlapi/include/idbh.h
¶ */idbhlapi/java/Blmyjwc.class
¶ */idbhlapi/java/Blmyjws1.java
¶ */idbhlapi/java/Hicao.class
¶ */idbhlapi/java/NameNotFoundException.class
¶ */idbhlapi/java/Pdbo.class
¶ */idbhlapi/lib/libidb.sl
¶ */idbhlapi/lib/libblmyjwrp.sl
¶ */idbhlapi/nls/C/idbcli.cat

Symbolic links
¶ /usr/include/idbech.h -> */idbhlapi/include/idbech.h
¶ /usr/include/idbh.h -> */idbhlapi/include/idbh.h
¶ /usr/lib/libidb.sl -> */idbhlapi/lib/libidb.sl
¶ /usr/lib/libblmyjwrp.sl -> */idbhlapi/lib/libblmyjwrp.sl
¶ /usr/lib/nls/C/idbcli.cat -> */idbhlapi/nls/C/idbcli.cat

Other Files
When you installed the HLAPI/HP, if you did not choose the option to remove the tar files
after installation, you also need to delete these files:
¶ *⁄idbhlapi⁄idbcli.tar
¶ *⁄idbhlapi⁄idbreq.tar
¶ *⁄idbhlapi⁄idball.tar
¶ *⁄idbhlapi.tar

Components of HLAPI/Solaris
The following files, directories, and symbolic links are created during the installation of the
requester option and client interface option of HLAPI/Solaris.

Requester Option

Directories
¶ */idbhlapi
¶ */idbhlapi/bin
¶ */idbhlapi/examples
¶ */idbhlapi/locale
¶ */idbhlapi/locale/C
¶ */idbhlapi/locale/C/LC_MESSAGES

Files
¶ */idbhlapi/idbinstl
¶ */idbhlapi/bin/idbreq
¶ */idbhlapi/examples/idbsys.pro
¶ */idbhlapi/locale/C/LC_MESSAGES/idbreq.cat

Components of HLAPI/HP

350 Version 7.1

Symbolic links
¶ /usr/lib/locale/C/LC_MESSAGES/idbreq.cat ->

*/idbhlapi/locale/C/LC_MESSAGES/idbreq.cat

* is the directory where the HLAPI/UNIX is installed.

Client Interface Option

Directories
¶ */idbhlapi
¶ */idbhlapi/examples
¶ */idbhlapi/include
¶ */idbhlapi/java
¶ */idbhlapi/lib
¶ */idbhlapi/locale
¶ */idbhlapi/locale/C
¶ */idbhlapi/locale/C/LC_MESSAGES

Files
¶ */idbhlapi/idbinstl
¶ */idbhlapi/examples/idbappl.c
¶ */idbhlapi/examples/idbappl.mak
¶ */idbhlapi/examples/idbdb.pro
¶ */idbhlapi/include/idbech.h
¶ */idbhlapi/include/idbh.h
¶ */idbhlapi/java/Blmyjwc.class
¶ */idbhlapi/java/Blmyjws1.java
¶ */idbhlapi/java/Hicao.class
¶ */idbhlapi/java/NameNotFoundException.class
¶ */idbhlapi/java/Pdbo.class
¶ */idbhlapi/lib/libidb.so
¶ */idbhlapi/lib/libblmyjwrp.so
¶ */idbhlapi/locale/C/LC_MESSAGES/idbcli.cat

Symbolic links
¶ /usr/include/idbech.h -> */idbhlapi/include/idbech.h
¶ /usr/include/idbh.h -> */idbhlapi/include/idbh.h
¶ /usr/lib/libidb.so -> */idbhlapi/lib/libidb.so
¶ /usr/lib/libblmyjwrp.so -> */idbhlapi/lib/libblmyjwrp.so
¶ /usr/lib/locale/C/LC_MESSAGES/idbcli.cat ->

*/idbhlapi/locale/C/LC_MESSAGES/idbcli.cat

Other Files
When you installed the HLAPI/Solaris, if you did not choose the option to remove the tar
files after installation, you also need to delete these files:
¶ *⁄idbhlapi⁄idbcli.tar
¶ *⁄idbhlapi⁄idbreq.tar
¶ *⁄idbhlapi⁄idball.tar
¶ *⁄idbhlapi.tar

Components of HLAPI/Solaris

351Client Installation and User’s Guide

A
.

C
o

m
p

o
n

en
ts

o
f

C
lien

ts

Components of HLAPI/USS
The following files, directories, and symbolic links are created during HLAPI/USS
installation.

Directories
¶ /usr/lpp/InfoMan
¶ /usr/lpp/InfoMan/bin
¶ /usr/lpp/InfoMan/examples
¶ /usr/lpp/InfoMan/include
¶ /usr/lpp/InfoMan/lib
¶ /usr/lpp/InfoMan/nls
¶ /usr/lpp/InfoMan/nls/msg
¶ /usr/lpp/InfoMan/nls/msg/C

Files
¶ /usr/lpp/InfoMan/bin/blmreq
¶ /usr/lpp/InfoMan/examples/blmappl.c
¶ /usr/lpp/InfoMan/examples/blmappl.mak
¶ /usr/lpp/InfoMan/examples/blmdb.pro
¶ /usr/lpp/InfoMan/examples/blmsys.pro
¶ /usr/lpp/InfoMan/examples/blmyrxsa
¶ /usr/lpp/InfoMan/include/blmech.h
¶ /usr/lpp/InfoMan/include/blmh.h
¶ /usr/lpp/InfoMan/lib/blmhlapi
¶ /usr/lpp/InfoMan/lib/blmhlapi.x
¶ /usr/lpp/InfoMan/nls/msg/C/blmcli.cat
¶ /usr/lpp/InfoMan/nls/msg/C/blmreqoe.cat

Symbolic links
¶ /usr/include/blmech.h -> /usr/lpp/InfoMan/include/blmech.h
¶ /usr/include/blmh.h -> /usr/lpp/InfoMan/include/blmh.h
¶ /usr/lib/blmhlapi -> /usr/lpp/InfoMan/lib/blmhlapi
¶ /usr/lib/blmhlapi.x -> /usr/lpp/InfoMan/lib/blmhlapi.x
¶ /usr/lib/nls/msg/C/blmcli.cat -> /usr/lpp/InfoMan/nls/msg/C/blmcli.cat
¶ /usr/lib/nls/msg/C/blmreqoe.cat -> /usr/lpp/InfoMan/nls/msg/C/blmreqoe.cat

Components of HLAPI/USS

352 Version 7.1

Tivoli Information Management for z/OS
Java Wrappers (HLAPI for Java)

The following classes were written to allow programmers to more easily write HLAPI
applications using Java. They are based on the existing HLAPI programming model, but
simplify that model by providing some of the common programming functions. This section
describes the classes and their methods.

The following software must be installed to use the Tivoli Information Management for
z/OS Java wrapper classes:

¶ Tivoli Information Management for z/OS HLAPI Client

In order to use them, you must have the Java Runtime Environment (JRE) Release 1.1 or
later. If you are developing Java applications, you must also have the Java Development Kit
(JDK) Release 1.1 or later.

To use the Tivoli Information Management for z/OS Java wrapper classes, you must make
them accessible to the Java environment. To do this, add the directory in which they are
located to the CLASSPATH environment variable, or copy the class files into a directory
that is already listed in the CLASSPATH environment variable.

Hicao.class This class contains methods and data needed to manipulate
HICA field data and collections of PDBs. The application
writer uses the Hicao in their Java application to replace
code for common programming functions they would
normally have to write. Functions include the following:

¶ Obtaining storage and freeing storage for the HICA and
the PDB data structures

¶ Initializing fields and clearing fields in the HICA and the
PDB structures

¶ Chaining PDBs to the HICA and removing PDBs from
the HICA

¶ Pointer (index) movement within the PDB chains

¶ Retrieving and setting HICA and PDB field information

¶ Copying HICA and PDB structures

¶ Accessing information about the HICA and PDB, such
as the current count of control PDBs

¶ Submitting the transaction to HLAPI

B

353Client Installation and User’s Guide

B
.

Java
W

rap
p

ers

Refer to “Class Hicao” for a detailed description of the
Hicao methods.

Pdbo.class This class contains methods for storing data in and retrieving
data from the PDB data structure. Functions include the
following:

¶ Setting, retrieving, and initializing PDB fields

¶ Copying a PDB

Refer to “Class Pdbo” on page 361 for a detailed description
of the Pdbo methods.

Blmyjwc.class This class contains constants used for control PDB names.
“Class Blmyjwc” on page 363 contains a list of the
constants.

NameNotFoundException.class
Exception class for cases where a PDB object cannot be
found whose name matches a specified value.

Blmyjws1.java Java source code for sample program

Class Hicao
The public class Hicao is a class file used to implement HICA data structure. The function
of the Hicao class is to provide methods for implementing PDB chains and methods for
submitting the HLAPI transactions.

Hicao()
Constructor for the Hicao object.

addAsLastControl(String,String,char)
Builds a new PDB object (Pdbo) and adds it to the control PDB vector and sets the
internal cursor (index) to point to the new PDB object.
public void addAsLastControl(String name,String data,char proc)

Parameters:
name PDB symbolic name
data PDB data
proc PDB processing flag

addAsLastInput(Pdbo)
Adds an existing PDB object (Pdbo) to the input PDB chain and sets the internal
cursor (index) to point to the new PDB object in the chain.
public void addAsLastInput(Pdbo PdbO)

addAsLastInput(String,String)
Builds a new PDB object (Pdbo) and adds it to the input PDB chain and sets the
internal cursor (index) to point to the new PDB object in the chain. Because this
method does not call a PDB processing flag, the flag defaults to a blank value.
public void addAsLastInput(String name,String data)

addAsLastInput(String,String,char)
Builds a new PDB object (Pdbo) and adds it to the input PDB chain and sets the
internal cursor (index) to point to the new PDB object in the chain.
public void addAsLastInput(String name,String data,char proc)

354 Version 7.1

or
public void addAsLastInput(String,String)

or
public void addAsLastInput(Pdbo PdbO)

Parameters:
name PDB symbolic name
data PDB data
char PDB processing flag

PdbO PDB object (Pdbo) to add to the list

clear()
Resets the Hicao object to the initial state: Clears all of the Pdbo vectors and
invalidates the indices for those vectors.
public Hicao clear()

Returns:
Hicao Object

copyOutput(Hicao)
Copy all of the output Pdbo objects from the current Hicao object to the passed
Hicao object and set the output Pdbo index in the passed object to point to the first
output Pdbo.
public void copyOutput(Hicao targetHica)

Parameters:
targetHica - HICA Object to contain output PDB list

freeAllControl()
Removes all of the objects from the control Pdbo vector and invalidates the index.
public Hicao freeAllControl()

Returns:
Hicao Object

freeAllInput()
Removes all of the objects from the input Pdbo vector and invalidates the index.
public Hicao freeAllInput()

Returns:
Hicao Object

getCntrlPdbo(int)
Retrieves a Pdbo object (Pdbo) from the control PDB list.
public Pdbo getCntrlPdbo(int index) throws NullPointerException

Parameters:
index - Control PDB list index

Returns:
PDB Control Object

Throws:
NullPointerException (Occurs when the control PDB list is empty.)

getErrorPdbo(int)
Retrieves a Pdbo object (Pdbo) from the error PDB list.

Class Hicao

355Client Installation and User’s Guide

B
.

Java
W

rap
p

ers

public Pdbo getErrorPdbo(int index)
throws NullPointerException

Parameters:
index - Error PDB list index

Returns:
PDB Error Object

Throws:
NullPointerException (Occurs when the error PDB list is empty.)

getInputPdbo(int)
Retrieves a Pdbo object (Pdbo) from the input PDB list.
public Pdbo getInputPdbo(int index)
throws NullPointerException

Parameters:
index - Input PDB list index

Returns:
PDB Input Object

Throws:
NullPointerException (Occurs when the input PDB list is empty.)

getMessagePdbo(int)
Retrieves a Pdbo object (Pdbo) from the message PDB list.
public Pdbo getMessagePdbo(int index)
throws NullPointerException

Parameters:
index - Message PDB list index

Returns:
PDB Message Object

Throws:
NullPointerException (Occurs when the message PDB list is empty.)

getOutputPdbo(int)
Retrieves a Pdbo object (Pdbo) from the output PDB list.
public Pdbo getOutputPdbo(int index)
throws NullPointerException

Parameters:
index - Output PDB list index

Returns:
PDB Output Object

Throws:
NullPointerException (Occurs when the output PDB list is empty.)

HLAPIReasonCode()
Returns the Tivoli Information Management for z/OS remote HLAPI reason code.
public long HLAPIReasonCode()

Returns:
Remote API reason code

Class Hicao

356 Version 7.1

HLAPIReturnCode()
Returns the Tivoli Information Management for z/OS remote HLAPI return code.
public long HLAPIReturnCode()

Returns:
Remote API return code

HLAPITrans()
Locates the first control Pdbo element that has a key of TRANSACTION_ID and
returns the data associated with that element.
public String HLAPITrans()
throws NullPointerException, NameNotFoundException

Returns:
PDB object data

Throws:
NullPointerException (Occurs when the control PDB list is empty.)

NameNotFoundException (Occurs when there is no control PDB object
found whose name matches the value for the TRANSACTION_ID Pdbo).

isSessionActive()
Return true if this Hicao currently has a session active
public boolean isSessionActive()

Returns:
True or False

locateFirstControlWithName(String)
Locate the first control PDB object (Pdbo) whose name matches the passed name.
public Pdbo locateFirstControlWithName(String name)
throws NullPointerException, NameNotFoundException

Parameters:
name--PDB symbolic name

Returns:
Pdbo object

Throws:
NullPointerException (Occurs when the control PDB list is empty.)

NameNotFoundException (Occurs when there is no control PDB object
found whose name matches the passed name.)

locateFirstInputWithName(String)
Locate the first input PDB object (Pdbo) whose name matches the passed name.
public Pdbo locateFirstInputWithName(String name)
throws NullPointerException, NameNotFoundException

Parameters:
name -- PDB symbolic name

Returns:
Pdbo object

Throws:
NullPointerException (Occurs when the input PDB list is empty.)

Class Hicao

357Client Installation and User’s Guide

B
.

Java
W

rap
p

ers

NameNotFoundException (Occurs when there is no input PDB object found
whose name matches the passed name.)

locateFirstOutputWithName(String)
Locate the first output PDB object (Pdbo) whose name matches the passed name.
public Pdbo locateFirstOutputWithName(String name)
throws NullPointerException, NameNotFoundException

Parameters:
name--PDB symbolic name

Returns:
Pdbo object

Throws:
NullPointerException (Occurs when the output PDB list is empty.)

NameNotFoundException (Occurs when there is no output PDB object found
whose name matches the passed name.)

numberOfControlElements()
Returns a count of the number of elements in the control Pdbo vector.
public long numberOfControlElements()

Returns:
Number of control objects

numberOfErrorElements()
Returns a count of the number of elements in the error Pdbo vector.
public long numberOfErrorElements()

Returns:
Number of error objects

numberOfInputElements()
Returns a count of the number of elements in the input Pdbo vector.
public long numberOfInputElements()

Returns:
Number of input objects

numberOfMessageElements()
Returns a count of the number of elements in the message Pdbo vector.
public long numberOfMessageElements()

Returns:
Number of message objects

numberOfOutputElements()
Returns a count of the number of elements in the output Pdbo vector.
public long numberOfOutputElements()

Returns:
Number of output objects

remoteAPIReturnCode()
Returns the Tivoli Information Management for z/OS remotes HLAPI language
binding return code.
public long remoteAPIReturnCode()

Class Hicao

358 Version 7.1

Returns:
Remote API language binding return code

removeInput()
If index for input PDB vector is valid, remove the element at that position, set the
internal input index to the first input Pdbo object; otherwise, throw an exception for
the Hicao object.
public void removeInput()
throws NullPointerException

Throws:
NullPointerException (Occurs when input PDB list is empty or the input
PDB index is invalid.)

setcIndex(int)
Set control PDB list index
public void setcIndex(int index)

Parameters:
index - PDB list index

setControl(String,String,char)
If index for control PDB vector is valid, update the current Pdbo object with the
passed values; otherwise, throw an exception for the Hicao object.
public Pdbo setControl(String name,String data,char proc)
throws NullPointerException

Parameters:

name PDB symbolic name

data PDB data

proc PDB processing flag

Returns:
PDB Control Object

Throws:
NullPointerException (Occurs when control PDB list is empty or the control
PDB index is invalid.)

setControlWithName(String,String,char)
Look for a control Pdbo object whose name matches the passed name, and if found,
updates the Pdbo object.
public Pdbo setControlWithName(String name,String data,char proc)
throws NullPointerException,NameNotFoundException

Parameters:

name PDB symbolic name

data PDB data

proc PDB processing flag

Returns:
PDB Control Object

Throws:
NullPointerException (Occurs when the control PDB list is empty.)

Class Hicao

359Client Installation and User’s Guide

B
.

Java
W

rap
p

ers

NameNotFoundException (Occurs when there is no control PDB object
found whose name matches the passed name.)

seteIndex(int)
Set error PDB list index
public void seteIndex(int index)

Parameters:
index - PDB list index

setiIndex(int)
Set input PDB list index
public void setiIndex(int index)

Parameters:
index - PDB list index

setInput(String,String,char,char,long)
If index for input PDB vector is valid, update the current Pdbo object with the
passed values; otherwise, throw an exception for the Hicao object.
public Pdbo setInput(String name,String data,char proc,char type,long datw)
throws NullPointerException

Parameters:

name PDB symbolic name

data PDB data

proc PDB processing flag

type PDB data type

datw PDB parameter data width

Returns:
PDB Control Object

Throws:
NullPointerException (Occurs when input PDB list is empty or the input
PDB index is invalid.)

setmIndex(int)
Set message PDB list index
public void setmIndex(int index)

Parameters:
index - PDB list index

setoIndex(int)
Set output PDB list index
public void setoIndex(int index)

Parameters:
index - PDB list index

submit()
Call the Tivoli Information Management for z/OS remote HLAPI passing the current
HICA object (Hicao).
public Hicao submit()

Class Hicao

360 Version 7.1

Returns:
Hicao Object

summary()
Output a summary of the Hicao object to the standard output stream -- the
transaction (if there is one) obtained from the control Pdbo vector, and the return
and reason codes.
public void summary()
throws NullPointerException, NameNotFoundException

Throws:
NullPointerException (Occurs when the control PDB list is empty.)

NameNotFoundException (Occurs when there is no control PDB object
found whose name matches the passed name.)

Class Pdbo
The public class Pdbo is a class file used to implement the PDB data structure. The Pdbo
class contains information that is stored into and retrieved from the Tivoli Information
Management for z/OS HLAPI PDB control block by the associated methods.

Pdbo()
Constructor for the Pdbo object. The Pdbo data values are set to a default of either
blank or 0, depending on the data type.
public Pdbo()

Pdbo(String,String,char,char,char,long)
Constructor for the Pdbo object. The Pdbo data is initialized with the passed data
values.
public Pdbo(String name,String data,char proc,char type,char code,long dataw)

Parameters
name symbolic name (PDBNAME)
data parameter data (PDBDATA)
proc processing flag value (PDBPROC)
type data type value (PDBTYPE)
code data error code value (PDBCODE)
dataw data unit width value (PDBDATW)

copyTo(Pdbo)
Assigns values from passed Pdbo object to the current Pdbo object.
public void copyTo(Pdbo pdb)

Parameters:
pdb - Pdbo object

equalTo(Pdbo)
Determines the equality of Pdb objects based on their symbolic names.
public boolean equalTo(Pdbo pdb)

Parameters:
pdb - Pdbo object

getAppl()
Retrieves Pdb object (Pdbo) application use field.
public int getAppl()

Class Hicao

361Client Installation and User’s Guide

B
.

Java
W

rap
p

ers

Returns:
PDB application use field

getCode()
Retrieves Pdb object (Pdbo) parameter data error code.
public byte getCode()

Returns:
PDB parameter data error code

getData()
Retrieves Pdb object (Pdbo) parameter data.
public String getData()

Returns:
PDB parameter data

getDatw()
Retrieves Pdb object (Pdbo) parameter data unit width.
public int getDatw()

Returns:
PDB parameter data unit width

getFlag()
Retrieves Pdb object (Pdbo) binary flag.
public boolean getFlag()

Returns:
PDB binary data flag

getName()
Retrieves name of current Pdb object.
public String getName()

Returns:
PDB symbolic name

getProc()
Retrieves Pdb object (Pdbo) processing flag.
public byte getProc()

Returns:
PDB processing flag

getType()
Retrieves Pdb object (Pdbo) data type.
public byte getType()

Returns:
PDB data type

setAppl(long)
Sets Pdb object (Pdbo) application use field.
public void setAppl(long appl)

Parameters:
appl - PDB application use field

Class Pdbo

362 Version 7.1

setCode(char)
Sets Pdb object (Pdbo) data code.
public void setCode(char code)

Parameters:
code - PDB data code

setData(String)
Sets Pdb object (Pdbo) parameter data.
public void setData(String data)

Parameters:
data - PDB parameter data

setData(String,int)
Sets Pdb object (Pdbo) parameter data.
public void setData(String data,int datalen)

Parameters:
data PDB parameter data
datalen

Length of parameter data

setDatw(long)
Sets Pdb object (Pdbo) data unit width.
public void setDatw(long datw)

Parameters:
datw - PDB data unit width

setName(String)
Sets name of current Pdb object (Pdbo).
public void setName(String name)

Parameters:
name - PDB symbolic name

setProc(char)
Sets Pdb object (Pdbo) processing flag.
public void setProc(char proc)

Parameters:
proc - PDB processing flag

setType(char)
Sets Pdb object (Pdbo) data type.
public void setType(char type)

Parameters:
type - PDB data type

Class Blmyjwc
ALIAS_TABLE

public final static String ALIAS_TABLE

APIMSG_OPTION
public final static String APIMSG_OPTION

Class Pdbo

363Client Installation and User’s Guide

B
.

Java
W

rap
p

ers

APPLICATION_ID
public final static String APPLICATION_ID

APPROVAL_STATUS
public final static String APPROVAL_STATUS

ASSOCIATED_DATA
public final static String ASSOCIATED_DATA

BEGINNING_HIT_NUMBER
public final static String BEGINNING_HIT_NUMBER

BYPASS_PANEL_PROCESSING
public final static String BYPASS_PANEL_PROCESSING

CLASS_COUNT
public final static String CLASS_COUNT

DATA_VIEW_NAME
public final static String DATA_VIEW_NAME

DATABASE_ID
public final static String DATABASE_ID

DATABASE_PROFILE
public final static String DATABASE_PROFILE

DATE_FORMAT
public final static String DATA_FORMAT

DEFAULT_DATA_STORAGE_SIZE
public final static String DEFAULT_DATA_STORAGE_SIZE

DEFAULT_OPTION
public final static String DEFAULT_OPTION

DELETE_HISTORY
public final static String DELETE_HISTORY

EQUAL_SIGN_PROCESSING
public final static String EQUAL_SIGN_PROCESSING

HISTORY_DATA
public final static String HISTORY_DATA

HLAPILOG_ID
public final static String HLAPILOG_ID

HLIMSG_OPTION
public final static String HLIMSG_OPTION

INQUIRY_RESULT
public final static String INQUIRY_RESULT

LIST_MODE
public final static String LIST_MODE

MESSAGE_DATA
public final static String MESSAGE_DATA

MULTIPLE_RESPONSE_FORMAT
public final static String MULTIPLE_RESPONSE_FORMAT

Class Blmyjwc

364 Version 7.1

NUM_RESERVED_CPDBNAME
public final static long NUM_RESERVED_CPDBNAME

NUMBER_OF_HITS
public final static String NUMBER_OF_HITS

PASSWORD
public final static String PASSWORD

PIDT_NAME
public final static String PIDT_NAME

PRIVILEGE_CLASS
public final static String PRIVILEGE_CLASS

REPLACE_TEXT_DATA
public final static String REPLACE_TEXT_DATA

RETRIEVE_ITEM
public final static String RETRIEVE_ITEM

RETURN_VALIDATION_DATA
public final static String RETURN_VALIDATION_DATA

RNID_SYMBOL
public final static String RNID_SYMBOL

SEARCH_ID
public final static String SEARCH_ID

SEARCH_TYPE
public final static String SEARCH_TYPE

SECURITY_ID
public final static String SECURITY_ID

SEPARATOR_CHARACTER
public final static String SEPARATOR_CHARACTER

SESSION_MEMBER
public final static String SESSION_MEMBER

SPOOL_INTERVAL
public final static String SPOOL_INTERVAL

TABLE_COUNT
public final static String TABLE_COUNT

TEXT_AREA
public final static String TEXT_AREA

TEXT_AUDIT_OPTION
public final static String TEXT_AUDIT_OPTION

TEXT_DDNAME
public final static String TEXT_DDNAME

TEXT_MEDIUM
public final static String TEXT_MEDIUM

TEXT_OPTION
public final static String TEXT_OPTION

Class Blmyjwc

365Client Installation and User’s Guide

B
.

Java
W

rap
p

ers

TEXT_STREAM
public final static String TEXT_STREAM

TEXT_UNITS
public final static String TEXT_UNITS

TEXT_WIDTH
public final static String TEXT_WIDTH

TIMEOUT_INTERVAL
public final static String TIMEOUT_INTERVAL

TRANSACTION_ID
public final static String TRANSACTION_ID

TSP_NAME
public final static String TSP_NAME

USE_AS_IS_ARGUMENT
public final static String USE_AS_IS_ARGUMENT

USER_PARAMETER
public final static String USER_PARAMETER

USER_PARAMETER_DATA
public final static String USER_PARAMETER_DATA

Class Blmyjwc

366 Version 7.1

HLAPI Service Call Return Codes

Some codes are returned from the HLAPI client and are not returned within the HICA. They
are presented as a simple return code in the normal C-language style. Those return codes are
listed in this section.

Note: Return and reason codes for the HLAPI, LLAPI, HLAPI remote environment servers,
and HLAPI remote clients are contained in the Tivoli Information Management for
z/OS Application Program Interface Guide. That document also contains the return
codes for the HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, and REXX
HLAPI/USS.

Return Codes

IDBRC_NOERR (0)

Explanation: The service call was successful. This does not imply any status about the transaction submitted. It
simply means that the service call finished without error.

IDBRC_XERR (1)

Explanation: Extended error. The service call finished, but a nonzero return code exists in the HICARETC
field in the specified HICA.

IDBRC_BADHICA (2)

Explanation: The specified HICA is not valid. Three possible reasons for this are:

1. The acronym HICA does not exist in the HICA field labeled ACRO.

2. A length that is not valid has been given for the HICA.

3. The acronym PDB does not exist in one or more of the PDBs associated with the HICA.

IDBRC_BADPARM (3)

Explanation: An incorrect parameter was passed in the service call. For example, a null pointer was passed for
a HICA address, or a value that is not valid was specified for StatusMode or SubmitMode.

IDBRC_SYSERROR (4)

Explanation: This error is returned if there is an unknown error that cannot be returned in the HICA.

C

367Client Installation and User’s Guide

C
.

H
L

A
P

I
S

ervice
C

all
R

etu
rn

C
o

d
es

Return Codes

368 Version 7.1

Relating Publications to Specific Tasks

Your data processing organization can have many different users performing many different
tasks. The books in the Tivoli Information Management for z/OS library contain
task-oriented scenarios to teach users how to perform the duties specific to their jobs.

The following table describes the typical tasks in a data processing organization and
identifies the Tivoli Information Management for z/OS publication that supports those tasks.
See “The Tivoli Information Management for z/OS Library” on page 375 for more
information about each book.

Typical Tasks

Table 8. Relating Publications to Specific Tasks
If You Are: And You Do This: Read This:

Planning to Use Tivoli
Information Management for
z/OS

Identify the hardware and software
requirements of Tivoli Information
Management for z/OS. Identify the
prerequisite and corequisite products.
Plan and implement a test system.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Installing Tivoli Information
Management for z/OS

Install Tivoli Information Management
for z/OS. Define and initialize data
sets. Create session-parameters
members.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Tivoli Information
Management for z/OS
Integration Facility Guide

Define and create multiple Tivoli
Information Management for z/OS
BLX-SPs.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Define and create APPC transaction
programs for clients.

Tivoli Information
Management for z/OS Client
Installation and User’s Guide

Define coupling facility structures for
sysplex data sharing.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Diagnosing problems Diagnose problems encountered while
using Tivoli Information Management
for z/OS

Tivoli Information
Management for z/OS
Diagnosis Guide

D

369Client Installation and User’s Guide

|
|

D
.

R
elatin

g
P

u
b

licatio
n

s
to

S
p

ecific
Tasks

Table 8. Relating Publications to Specific Tasks (continued)
If You Are: And You Do This: Read This:

Administering Tivoli
Information Management for
z/OS

Manage user profiles and passwords.
Define and maintain privilege class
records. Define and maintain rules
records.

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Tivoli Information
Management for z/OS
Integration Facility Guide

Define and maintain USERS record.
Define and maintain ALIAS record.
Implement GUI interface. Define and
maintain command aliases and
authorizations.

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Implement and administer Notification
Management. Create user-defined line
commands. Define logical database
partitioning.

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Create or modify GUI workstation
applications that can interact with
Tivoli Information Management for
z/OS. Install the Tivoli Information
Management for z/OS Desktop on user
workstations.

Tivoli Information
Management for z/OS
Desktop User’s Guide

Maintaining Tivoli
Information Management for
z/OS

Set up access to the data sets. Maintain
the databases. Define and maintain
privilege class records.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Define and maintain the BLX-SP. Run
the utility programs.

Tivoli Information
Management for z/OS
Operation and Maintenance
Reference

Programming applications Use the application program interfaces. Tivoli Information
Management for z/OS
Application Program
Interface Guide

Use the application program interfaces
for Tivoli Information Management for
z/OS clients.

Tivoli Information
Management for z/OS Client
Installation and User’s Guide

Create Web applications using or
accessing Tivoli Information
Management for z/OS data.

Tivoli Information
Management for z/OS World
Wide Web Interface Guide

Typical Tasks

370 Version 7.1

Table 8. Relating Publications to Specific Tasks (continued)
If You Are: And You Do This: Read This:

Customizing Tivoli
Information Management for
z/OS

Design and implement a Change
Management system. Design and
implement a Configuration
Management system. Design and
implement a Problem Management
system.

Tivoli Information
Management for z/OS
Problem, Change, and
Configuration Management

Design, create, and test terminal
simulator panels or terminal simulator
EXECs. Customize panels and panel
flow.

Tivoli Information
Management for z/OS
Terminal Simulator Guide
and Reference

Tivoli Information
Management for z/OS Panel
Modification Facility Guide

Design, create, and test Tivoli
Information Management for z/OS
formatted reports.

Tivoli Information
Management for z/OS Data
Reporting User’s Guide

Create a bridge between NetView® and
Tivoli Information Management for
z/OS applications. Integrate Tivoli
Information Management for z/OS
with Tivoli distributed products.

Tivoli Information
Management for z/OS Guide
to Integrating with Tivoli
Applications

Assisting Users Create, search, update, and close
change, configuration, or problem
records. Browse or print Change,
Configuration, or Problem
Management reports.

Tivoli Information
Management for z/OS
Problem, Change, and
Configuration Management

Use the Tivoli Information
Management for z/OS Integration
Facility.

Tivoli Information
Management for z/OS
Integration Facility Guide

Using Tivoli Information
Management for z/OS

Learn about the Tivoli Information
Management for z/OS panel types,
record types, and commands. Change a
user profile.

Tivoli Information
Management for z/OS User’s
Guide

Learn about Problem, Change, and
Configuration Management records.

Tivoli Information
Management for z/OS
Problem, Change, and
Configuration Management

Receive and respond to Tivoli
Information Management for z/OS
messages.

Tivoli Information
Management for z/OS
Messages and Codes

Design and create reports. Tivoli Information
Management for z/OS Data
Reporting User’s Guide

Typical Tasks

371Client Installation and User’s Guide

D
.

R
elatin

g
P

u
b

licatio
n

s
to

S
p

ecific
Tasks

Typical Tasks

372 Version 7.1

Tivoli Information Management for z/OS
Courses

Education Offerings
Tivoli Information Management for z/OS classes are available in the United States and in
the United Kingdom. For information about classes outside the U.S. and U.K., contact your
local IBM representative or visit http://www.training.ibm.com on the World Wide Web.

United States
IBM Education classes can help your users and administrators learn how to get the most out
of Tivoli Information Management for z/OS. IBM Education classes are offered in many
locations in the United States and at your own company location.

For a current schedule of available classes or to enroll, call 1-800-IBM TEACh
(1-800-426-8322). On the World Wide Web, visit:

http://www.training.ibm.com

to see the latest course offerings.

United Kingdom
In Europe, the following public courses are held in IBM’s central London education centre
at the South Bank at regular intervals. On-site courses can also be arranged.

For course schedules and to enroll, call Enrollments Administration on 0345 581329, or send
an e-mail note to:

contact_educ_uk@vnet.ibm.com

On the World Wide Web, visit:

http://www.europe.ibm.com/education-uk

to see the latest course offerings.

E

373Client Installation and User’s Guide

E
.

E
d

u
catio

n
al

C
o

u
rses

374 Version 7.1

Where to Find More Information

The Tivoli Information Management for z/OS library is an integral part of Tivoli Information
Management for z/OS. The books are written with particular audiences in mind. Each book
covers specific tasks.

The Tivoli Information Management for z/OS Library
The publications shipped automatically with each Tivoli Information Management for z/OS
Version 7.1 licensed program are:
¶ Tivoli Information Management for z/OS Application Program Interface Guide
¶ Tivoli Information Management for z/OS Client Installation and User’s Guide *
¶ Tivoli Information Management for z/OS Data Reporting User’s Guide *
¶ Tivoli Information Management for z/OS Desktop User’s Guide
¶ Tivoli Information Management for z/OS Diagnosis Guide *
¶ Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications *
¶ Tivoli Information Management for z/OS Integration Facility Guide *
¶ Tivoli Information Management for z/OS Licensed Program Specification
¶ Tivoli Information Management for z/OS Master Index, Glossary, and Bibliography
¶ Tivoli Information Management for z/OS Messages and Codes
¶ Tivoli Information Management for z/OS Operation and Maintenance Reference
¶ Tivoli Information Management for z/OS Panel Modification Facility Guide
¶ Tivoli Information Management for z/OS Planning and Installation Guide and Reference
¶ Tivoli Information Management for z/OS Program Administration Guide and Reference
¶ Tivoli Information Management for z/OS Problem, Change, and Configuration

Management*
¶ Tivoli Information Management for z/OS Reference Summary
¶ Tivoli Information Management for z/OS Terminal Simulator Guide and Reference
¶ Tivoli Information Management for z/OS User’s Guide
¶ Tivoli Information Management for z/OS World Wide Web Interface Guide

Note: Publications marked with an asterisk (*) are shipped in softcopy format only.

Also included is the Product Kit, which includes the complete online library on CD-ROM.

To order a set of publications, specify order number SBOF-7028-00.

Additional copies of these items are available for a fee.

Publications can be requested from your Tivoli or IBM representative or the branch office
serving your location. Or, in the U.S., you can call the IBM Publications order line directly
by dialing 1-800-879-2755.

F

375Client Installation and User’s Guide

|

F.
W

h
ere

to
F

in
d

M
o

re
In

fo
rm

atio
n

The following descriptions summarize all the books in the Tivoli Information Management
for z/OS library.

Tivoli Information Management for z/OS Application Program Interface Guide,
SC31-8737-00, explains how to use the low-level API, the high-level API, and the REXX
interface to the high-level API. This book is written for application and system programmers
who write applications that use these program interfaces.

Tivoli Information Management for z/OS Client Installation and User’s Guide,
SC31-8738-00, describes and illustrates the setup and use of Tivoli Information Management
for z/OS’s remote clients. This book shows you how to use Tivoli Information Management
for z/OS functions in the AIX, CICS, HP-UX, OS/2, Sun Solaris, Windows NT, and OS/390
UNIX System Services environments. Also included in this book is complete information
about using the Tivoli Information Management for z/OS servers.

Tivoli Information Management for z/OS Data Reporting User’s Guide, SC31-8739-00,
describes various methods available to produce reports using Tivoli Information Management
for z/OS data. It describes Tivoli Decision Support for Information Management (a
Discovery Guide for Tivoli Decision Support), the Open Database Connectivity (ODBC)
Driver for Tivoli Information Management for z/OS, and the Report Format Facility. A
description of how to use the Report Format Facility to modify the standard reports provided
with Tivoli Information Management for z/OS is provided. The book also illustrates the
syntax of report format tables (RFTs) used to define the output from the Tivoli Information
Management for z/OS REPORT and PRINT commands. It also includes several examples of
modified RFTs.

Tivoli Information Management for z/OS Desktop User’s Guide, SC31-8740-00, describes
how to install and use the sample application provided with the Tivoli Information
Management for z/OS Desktop. The Tivoli Information Management for z/OS Desktop is a
Java-based graphical user interface for Tivoli Information Management for z/OS. Information
on how to set up data model records to support the interface and instructions on using the
Desktop Toolkit to develop your own Desktop application are also provided.

Tivoli Information Management for z/OS Diagnosis Guide, GC31-8741-00, explains how to
identify a problem, analyze its symptoms, and resolve it. This book includes tools and
information that are helpful in solving problems you might encounter when you use Tivoli
Information Management for z/OS.

Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications,
SC31-8744-00, describes the steps to follow to make an automatic connection between
NetView and Tivoli Information Management for z/OS applications. It also explains how to
customize the application interface which serves as an application enabler for the NetView
Bridge and discusses the Tivoli Information Management for z/OS NetView AutoBridge.
Information on interfacing Tivoli Information Management for z/OS with other Tivoli
management software products or components is provided for Tivoli Enterprise Console,
Tivoli Global Enterprise Manager, Tivoli Inventory, Tivoli Problem Management, Tivoli
Software Distribution, and Problem Service.

Tivoli Information Management for z/OS Integration Facility Guide, SC31-8745-00,
explains the concepts and structure of the Integration Facility. The Integration Facility
provides a task-oriented interface to Tivoli Information Management for z/OS that makes the

The Tivoli Information Management for z/OS Library

376 Version 7.1

Tivoli Information Management for z/OS applications easier to use. This book also explains
how to use the panels and panel flows in your change and problem management system.

Tivoli Information Management for z/OS Master Index, Glossary, and Bibliography,
SC31-8747-00, combines the indexes from each hardcopy book in the Tivoli Information
Management for z/OS library for Version 7.1. Also included is a complete glossary and
bibliography for the product.

Tivoli Information Management for z/OS Messages and Codes, GC31-8748-00, contains
the messages and completion codes issued by the various Tivoli Information Management
for z/OS applications. Each entry includes an explanation of the message or code and
recommends actions for users and system programmers.

Tivoli Information Management for z/OS Operation and Maintenance Reference,
SC31-8749-00, describes and illustrates the BLX-SP commands for use by the operator. It
describes the utilities for defining and maintaining data sets required for using the Tivoli
Information Management for z/OS licensed program, Version 7.1.

Tivoli Information Management for z/OS Panel Modification Facility Guide,
SC31-8750-00, gives detailed instructions for creating and modifying Tivoli Information
Management for z/OS panels. It provides detailed checklists for the common panel
modification tasks, and it provides reference information useful to those who design and
modify panels.

Tivoli Information Management for z/OS Planning and Installation Guide and Reference,
GC31-8751-00, describes the tasks required for installing Tivoli Information Management for
z/OS. This book provides an overview of the functions and optional features of Tivoli
Information Management for z/OS to help you plan for installation. It also describes the
tasks necessary to install, migrate, tailor, and start Tivoli Information Management for z/OS.

Tivoli Information Management for z/OS Problem, Change, and Configuration
Management, SC31-8752-00, helps you learn how to use Problem, Change, and
Configuration Management through a series of training exercises. After you finish the
exercises in this book, you should be ready to use other books in the library that apply more
directly to the programs you use and the tasks you perform every day.

Tivoli Information Management for z/OS Program Administration Guide and Reference,
SC31-8753-00, provides detailed information about Tivoli Information Management for z/OS
program administration tasks, such as defining user profiles and privilege classes and
enabling the GUI user interface.

Tivoli Information Management for z/OS Reference Summary, SC31-8754-00, is a
reference booklet containing Tivoli Information Management for z/OS commands, a list of
p-words and s-words, summary information for PMF, and other information you need when
you use Tivoli Information Management for z/OS.

Tivoli Information Management for z/OS Terminal Simulator Guide and Reference,
SC31-8755-00, explains how to use terminal simulator panels (TSPs) and EXECs (TSXs)
that let you simulate an entire interactive session with a Tivoli Information Management for
z/OS program. This book gives instructions for designing, building, and testing TSPs and
TSXs, followed by information on the different ways you can use TSPs and TSXs.

The Tivoli Information Management for z/OS Library

377Client Installation and User’s Guide

F.
W

h
ere

to
F

in
d

M
o

re
In

fo
rm

atio
n

Tivoli Information Management for z/OS User’s Guide, SC31-8756-00, provides a general
introduction to Tivoli Information Management for z/OS and databases. This book has a
series of step-by-step exercises to show beginning users how to copy, update, print, create,
and delete records, and how to search a database. It also contains Tivoli Information
Management for z/OS command syntax and descriptions and other reference information.

Tivoli Information Management for z/OS World Wide Web Interface Guide, SC31-8757-00,
explains how to install and operate the features available with Tivoli Information
Management for z/OS that enable you to access a Tivoli Information Management for z/OS
database using a Web browser as a client.

Other related publications include the following:

Tivoli Decision Support: Using the Information Management Guide is an online book (in
portable document format) that can be viewed with the Adobe Acrobat Reader. This book is
provided with Tivoli Decision Support for Information Management (5697-IMG), which is a
product that enables you to use Tivoli Information Management for z/OS data with Tivoli
Decision Support. This book describes the views and reports provided with the Information
Management Guide.

IBM Redbooks™ published by IBM’s International Technical Support Organization are also
available. For a list of redbooks related to Tivoli Information Management for z/OS and
access to online redbooks, visit Web site http://www.redbooks.ibm.com or
http://www.support.tivoli.com

The Tivoli Information Management for z/OS Library

378 Version 7.1

Index

A
accounting considerations for server 16, 17
adding defined groups to a list 205
allocating 121, 179

allocating 122, 180
allocating example 122, 180

allocating HICAs 122, 180
allocating PDBs 122, 180
APPC/MVS

ASCH address space command 33
HLAPI/CICS, customization for 191
starting the environment 32
stopping the environment 32
support command 67
SYS1.PARMLIB members, modifying 28

APPCPMaa parameter
modification 28
SCHED 29
TPDATA 29
TPLEVEL 22, 29

APPCPMaa parmlib member
SCHED 29
TPDATA 29
TPLEVEL 22, 29

applications, developing for HLAPI/UNIX client 270, 274
ASCHPMaa parmlib member

CLASSADD statement 29
modification 29
OPTIONS statement 29

ASCII DBCS code pages 115
ASCII SBCS code pages 114
asynchronous processing 110, 168

B
BLM2SAM1, setup 126, 184
BLMDBPATH environment variable 311
BLMIREAD 82
BLML parameter 193
BLMMRES 38, 56
BLMSMPATH environment variable 311
BLMYKCOM 197
BLMYKINF 196
BLMYKTRM 198
BRDCST command 19

C
C language binding

HLAPI/2 use 71

C language binding (continued)
Windows NT use 139

cancel command
APPC 68
TCP/IP 68

child processes 270
IDBMAXCMS 253, 305

CICS
DFHDCT 191
DFHPLTSD 191
DFHSIT 191
enabling 191
interface 188
startup JCL 191
system definitions data set 191
termination handler 188

CICS client
CICS/ESA 187
CICS interface 188
communication manager 188
Termination Handler 188

CICS system definition file (CSD)
JCL 195
online customization 196
system definition data set

connection entry 201
partner entry 204
program entry 199
sample entries 205
session entry 202
transaction entry 199

client
available HLAPI transactions 2
comparison 4
definition 1
HLAPI/2, overview 3
HLAPI/CICS, overview 2
HLAPI/UNIX

configuration planning 237
configuring 241
developing applications 270, 274
distributing 238, 239, 240
HLAPI/AIX overview 2, 228
HLAPI/HP overview 2
HLAPI/Solaris overview 3
HLAPI/USS overview 3
installing 239, 240, 241
removing options 248
resources 232
Windows NT overview 3

code pages supported by HLAPI/2 114
communication link, defining for HLAPI/UNIX 241, 246, 300
communication protocol 2, 228
Communications Manager/2

define CPI-C side information 80

379Client Installation and User’s Guide

In
d

ex

Communications Manager/2 (continued)
define link to MVS 79
define local LU 78
define partner LU 79
setup for HLAPI/2 77

components of HLAPI/CICS 341
configuring HLAPI/UNIX 231, 237, 241
conversation management 13, 16
conversation sharing 96, 154, 253, 305
converting C programs 117, 175
converting HLAPI programs to HLAPI/UNIX 282
create record, HL08 114, 172
customizing

APPC/MVS 191
destination control table (DFHDCT) 193
resource definition online (RDO) 196
shut-down program load table (DFHPLT) 194
startup JCL 195
system definition data set JCL 195
system initialization table (DFHSIT) 192
systems definition data set online 196

D
data conversion 110, 168
data conversion characteristics, HLAPI/UNIX transactions 269
database profile 97, 155, 255, 307

definition 251
example 100, 158, 310
IDBCharCodePage keyword 98
IDBCharCodeSet keyword 156, 255
IDBDataLogLevel keyword 98, 156
IDBDataLogLevelkeyword 256, 307
IDBIdleClientTimeOut keyword 256, 308
IDBLogFileNameActive keyword 98, 156, 256, 308
IDBLogFileNameOld keyword 98, 156, 257, 308
IDBLogFileSize keyword 98, 156, 257, 308
IDBRequesterHost keyword 257, 309
IDBRequesterService keyword 257, 309
IDBServCharCodePage keyword 99
IDBServCharCodeSet keyword 157, 258
IDBServerHost keyword 99, 157, 258, 309
IDBServerService keyword 99, 157, 258, 310
IDBSymDestName keyword 99, 157, 259

database profile example 100, 158, 259, 310
DBCS considerations, HLAPI/UNIX transaction data 269
deleting HLAPI/2

from workstation 92
DFHDCT, customizing 193
DFHPLT 194
DFHSIT, customizing 192
diagnosing HLAPI/UNIX common problems 264
diagnosis of some common HLAPI/2 problems 106
diagnosis of some common HLAPI/NT problems 164
display command

APPC 67
TCP/IP 67

E
EBCDIC MIX code pages 115
EBCDIC Pure DBCS code pages 115
EBCDIC SBCS code pages 115
environment variables (HLAPI/UNIX) 260, 261, 312
environment variables (OS/2) 101

IDBDataLogLevel 101
IDBDBPATH 101
IDBSMPATH 102
profile override 101
profile search path 101
two uses 101

environment variables (Windows NT) 158
IDBDataLogLevel 159
IDBDBPATH 159
IDBSMPATH 160
profile override 159
two uses 158

error logging 103, 161
error probe logging, HLAPI/UNIX 262, 313
example

MRES with APPC configuration 7
MRES with TCP/IP configuration 9
RES, MRES with APPC, and MRES with TCP/IP

configuration 10
RES and MRES with APPC configuration 8
RES configuration 6

F
FMID, HOY6108 191
force command

APPC 68
TCP/IP 68

functional components of HLAPI/CICS 188
functions, HLAPI/UNIX 275, 280

H
hardware requirements

HLAPI/2 74, 142
header file 121, 179
header files, HLAPI/UNIX 271
HICA 121, 179

allocating 122, 180
allocating example 122, 180

HICA data structure
allocating 273
initializing 273
overview 188, 272

HL01, initialize Tivoli Information Management for z/OS 111,
170

HL01 transaction 210, 278
HL02, terminate Tivoli Information Management for

z/OS 113, 172
HL02 transaction 279, 326

380 Version 7.1

HL06, retrieve record 113, 172
HL06 transaction 279, 326
HL08, create record 114, 172
HL08 transaction 280, 327
HL09, update record 114, 172
HL09 transaction 280, 327
HLAPI/2

deleting from workstation 92
installing from CD-ROM 83
language bindings 69
parts 69
requester 71
server for HLAPI/2 70
transactions 3, 72, 139
typical use 69, 137

HLAPI/CICS
call sequencing 188
customizing for APPC/MVS 191
description 187
functional components 188
installing 191
synchronous processing mode 187
transactions 3

HLAPI for Java
class Blmyjwc 363
class Hicao 354
class Pdbo 361
overview 353

HLAPI/NT
allocating HICAs and PDBs 179
basic transaction flow 139
binding prototypes 181
C language binding 139
client workstation requirements 141
configuring a communication link to a server 143
data conversion characteristics 168
database profile keywords 155
deleting from a workstation 151
diagnosing common problems 164
environment variables 158
installation and setup summary (sample applications) 176
installing on a network drive 146
installing on a workstation from CD-ROM 145
linking 184
logging

error 161
server 160
transaction 160

overview 137
profile override 159
profile search path 159
profile syntax 153
requester

starting 163
stopping 163

system profile keywords 154
tips for writing applications 175
transaction differences 170
transaction operating modes 167

HLAPI/UNIX
configuration considerations 231

HLAPI/UNIX (continued)
configuration planning 237
configuring 241
distributing 238, 239, 240
functions 275, 280
installing 239, 240, 241
introduction 225
removing options 248
setting up HLAPI/AIX 238
transactions 267

HLAPI/USS 291
configuration considerations 295
environment variables 310
functions 324
HICA structures 322
PDB structures 322
requester overview 292
sample program 333
server overview 291
system profile 304
transaction names 331
transactions 319
using the HLAPI/USS interface 329

I
IDBCHARCODEPAGE database profile keyword 98, 156
IDBCHARCODESET database profile keyword 255
IDBDATALOGLEVEL database profile keyword 98, 156,

256, 307
IDBDATALOGLEVEL environment variable 260, 310
IDBDBPATH environment variable 260
idbech.h header file 272
IDBH.H file

header file code 127
including in your program 121, 179

idbh.h header file 271
IDBHLAPI.LIB, linking to 126, 184
IDBIDLECLIENTTIMEOUT database profile keyword 256,

308
IDBINBOUNDBUFSIZE system profile keyword 96, 154,

252, 304
IDBLOGFILENAMEACTIVE database profile keyword 98,

156, 256, 308
IDBLOGFILENAMEOLD database profile keyword 98, 156,

257, 308
IDBLOGFILESIZE database profile keyword 98, 156, 257,

308
IDBMAXCMS system profile keyword 253, 305
IDBOUTBOUNDBUFSIZE system profile keyword 96, 154,

253, 305
IDBREQUESTERHOST database profile keyword 257, 309
IDBREQUESTERHOST environment variable 260, 311
IDBREQUESTERSERVICE database profile keyword 257,

309
IDBREQUESTERSERVICE environment variable 260, 311
IDBSERVCHARCODEPAGE database profile keyword 99,

157
IDBSERVCHARCODESET database profile keyword 258

381Client Installation and User’s Guide

In
d

ex

IDBSERVERHOST database profile keyword 99, 157, 258,
309

IDBSERVERSERVICE database profile keyword 99, 157,
258, 310

IDBSERVICENAME system profile keyword 253, 305
IDBSHARECMS 96, 154, 253, 305
IDBSMPATH environment variable 261
IDBSYMDESTNAME database profile keyword 99, 157, 259
IDBTIMEOUT system profile keyword 254, 306
IDBTransactionStatus() function 124, 182, 276
IDBTransactionSubmit() function 124, 182, 275, 324
initialize Tivoli Information Management for z/OS, HL01 111,

170
installing

HLAPI/2 component from a LAN to the workstation 85
HLAPI/2 on the workstation from HLAPI/2 installation

CD-ROM 82
HLAPI/CICS 191
HLAPI/UNIX 239, 240, 241
Installation and Maintenance Utility 82

J
Java applications 10
Java wrappers (HLAPI for Java)

class Blmyjwc 363
class Hicao 354
class Pdbo 361
overview 353

JCL (Job Control Language)
EXEC statement for RES 28
startup for CICS 195
system definition data set for CICS 195

L
list, adding groups 205
load modules

BLMYKCOM 191
BLMYKINF 191
BLMYKTRM 191

logging, error 103, 161
logging, server 102, 160
logging, transaction 102, 160, 261, 312
logical unit (LU)

considerations for server 16
defining an MRES to APPC/MVS 48
defining to VTAM 30
link definition for Communications Manager/2 79
local definition for Communications Manager/2 78
LUADD statement 48
nonscheduled 48
partner definition for Communications Manager/2 79

M
MRES with APPC/APPN

accounting considerations 17
cataloged procedure considerations 18, 19
conversation management 14
LU considerations 16
overview 6
parameters 39
performance considerations 17
pre-started API sessions considerations 18, 21
security considerations 23

MRES with TCP/IP
cataloged procedure considerations 18, 19
conversation management 15
LU considerations 16
overview 8
parameters 58
performance considerations 17
pre-started API sessions considerations 18, 21
security considerations 24
socket considerations 16

MVS operator command 67

O
operating modes

asynchronous processing 110, 168
synchronous processing 109, 167

operator command, MVS 67
overrides, startup for DFHSIT 192
overview

HLAPI/2 requester 69

P
PDB data structure

allocating 274
control 210
initializing 274
overview 188, 272

performance considerations 17
pre-started API sessions 18
processing mode

HLAPI/CICS, synchronous 187
HLAPI/UNIX

asynchronous 268
synchronous 267

profile
database 251, 255, 259
system 251, 255

profile override 101, 159
profile search path 101
profile syntax 95, 153
profiles 95, 153

database 97, 155
database profile example 100, 158

382 Version 7.1

profiles (continued)
syntax 95, 153
system 96, 154, 252, 304
system profile example 97, 155, 255, 307
two types 95, 153

protocol 2, 228

R
RACF 32
README file 82
removing HLAPI/UNIX options 248
requester

definition 1
HLAPI/2, overview 71, 138
HLAPI/UNIX

configuration planning 237
configuring 241
distributing 238, 239, 240
installing 239, 240, 241
overview 227
removing options 248
resources 233
starting 263
stopping 264
system profile 251, 255

requirements
hardware

HLAPI/2 74, 142
software

HLAPI/2 74, 141
HLAPI/CICS 190
HLAPI/Solaris 235

RES (remote environment server)
accounting considerations 16
conversation management 13
HLAPI/2 69
HLAPI/CICS 188
LU considerations 16
overview 5
performance considerations 17
security considerations 22
Windows NT 137

resource definition online (RDO) 196
restoing HLAPI/2 91

from a LAN 92
from the HLAPI/2 installation CD-ROM 91

retrieve record, HL06 113, 172
REXX HLAPI/2 interface

deregistering 133
description 131
installation and setup 131
interface calls 132
prerequisite 132
registering 132
reserved variables 133
REXX HLAPI/2 vs. HLAPI/2 133
REXX HLAPI/2 vs. HLAPI/REXX 133
sample program 134

S
security 21, 24, 32
server

accounting considerations 16, 17
comparison 13
comparison of characteristics 4, 13
definition 1
LU considerations 16
overview 5, 70, 138, 226
performance considerations 17
security considerations 21, 24
socket considerations 16

server logging 102, 160
setting up the sample code 126, 184
shut-down program load table (DFHPLT), customizing 194
side information

for Communications Manager/2 80
for TP profile 27
VSAM data set 46

software requirements
HLAPI/2 74, 141
HLAPI/CICS 190
HLAPI/Solaris 235

starting HLAPI/UNIX requester 263
startup procedure, CICS

startup for DFHSIT, parameter changes 192
stopping HLAPI/UNIX requester 264
synchronous processing 109, 167
syntax, profile 95, 153
SYS1.PARMLIB

APPCPMaa modification 28
ASCHPMaa modification 29
CLASSADD statement 29
modifying for HLAPI/2 28
OPTIONS statement 29

system definition data set
connection entry 201
customizing 195, 196
partner entry 204
program entry 199
sample entries 205
session entry 202
transaction entry 199

system initialization table (DFHSIT), customizing 192
system profile 96, 154, 252, 304

definition 251
example 97
IDBSHARECMS keyword 96, 154, 253, 305
keywords 252, 255

system profile example 97, 155, 255, 307

T
TCP/IP

cataloged procedure considerations 18, 19
conversation management 15
LU considerations 16
overview 8
parameters 58

383Client Installation and User’s Guide

In
d

ex

TCP/IP (continued)
performance considerations 17
pre-started API sessions considerations 18, 21
security considerations 24
socket considerations 16
support command 67

terminate Tivoli Information Management for z/OS,
HL02 113, 172

tips for writing an application 117, 175
TP parameter

GROUPID 27
TPNAME 27
TPSCHED_EXIT 27
TPSCHED_TYPE 27

TP profile
definition 27
GROUPID parameter 27
TPNAME parameter 27
TPSCHED_EXIT parameter 27
TPSCHED_TYPE parameter 27

transaction differences
DATABASE_PROFILE 111, 170
PASSWORD 111, 170
SECURITY_ID 111, 170
specific PDBs 111, 170

transaction list 135
transaction logging 102, 160, 261, 312
transaction program (TP)

JCL EXEC statement 28
profile 27
RFT data set 28
STEPLID DD statement 28

transaction sequence, definition 229, 293
transactions

HLAPI/2
available transactions 3
basic flow 72, 139
data conversion 110
description 109
HLAPI/2 vs. HLAPI 111
initialize Tivoli Information Management for z/OS,

HL01 111
operating modes 109
retrieve record, HL06 113
truncation of mixed data 111
update record, HL09 114

HLAPI/CICS
available transactions 3
synchronous processing mode 187

HLAPI/NT
create record, HL08 172
data conversion 168
description 167
HLAPI/NT vs. HLAPI 170
IDBTransactionStatus 182
IDBTransactionSubmit 182
initialize Tivoli Information Management for z/OS,

HL01 170
operating modes 167
retrieve record, HL06 172
truncation of mixed data 169

transactions (continued)
HLAPI/NT (continued)

update record, HL09 172
HLAPI/UNIX

available transactions 3
basic flow 229
client interface logging 261, 312
concurrency limitations 268
converting HLAPI programs 282, 328
data conversion characteristics 269
database profile 251, 255, 259
developing client applications 270, 274
functions 275, 280
linking applications to runtime services 280
planning applications 281
processing modes 267
server logging 20, 21
special DBCS considerations 269
validating the calling process 267, 319

IDBTransactionStatus 124
IDBTransactionSubmit 124

truncation of mixed data 111, 169

U
update record, HL09 114, 172

W
Windows NT

C language binding 71, 139
requester 138
requester overview 71, 138
server overview 70, 138

384 Version 7.1

File Number: S370/30xx/4300
Program Number: 5697-SD9

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC31-8738-00

	Contents
	Preface
	Who Should Read This Guide
	Prerequisite and Related Documentation
	What This Guide Contains
	Contacting Customer Support

	Client/Server Computing
	Supported Communication Protocols
	Clients
	HLAPI Functions and Transactions
	Client Comparisons

	Servers
	Remote Environment Server (RES)
	Multiclient Remote Environment Server (MRES) with APPC
	Multiclient Remote Environment Server (MRES) with TCP/IP

	Java Applications

	Choosing a Server
	RES Conversation Management
	MRES with APPC Conversation Management
	MRES with TCP/IP Conversation Management
	Logical Unit (LU) Considerations
	Socket Considerations
	Accounting Considerations
	RES
	MRES with APPC

	Performance Considerations
	MRES with Pre-started API Sessions Considerations
	MRES with APPC Cataloged Procedure Considerations
	MRES with TCP/IP Cataloged Procedure Considerations
	Transaction Logging by a RES and by an MRES Without Pre-started API Sessions
	Transaction Logging by an MRES with Pre-started API Sessions
	Security Considerations
	Security References
	Security for a RES
	APPC/MVS Definitions That Enable Security
	VTAM Definitions That Enable Security
	RACF Definitions

	Security Considerations When Using Pre-started API Sessions
	Security for an MRES with APPC
	Security for an MRES with TCP/IP

	Configuring and Running a Remote Environment Server (RES)
	Using a RES
	RES Configuration Tasks
	Planning Your RES Configuration
	Setting Up APPC/MVS
	Creating a VSAM Data Set for the TP Profile
	Making an Entry for the RES in the TP Profile Data Set
	Defining Local LUs and Identifying Partner LUs
	Defining a Schedule Class

	Modifying VTAM
	Defining the Local LU in VTAM
	Defining the Log-on Mode

	Defining Links to Clients
	Defining Security Classes and Profiles
	Starting and Stopping the APPC Environment
	Determining Values Clients Need

	Configuring and Running a Multiclient Remote Environment Server (MRES) with APPC
	Using an MRES with APPC
	MRES Configuration Tasks
	Planning an MRES with APPC Configuration
	Defining a Procedure for an MRES with APPC
	Coding the Parameters for an MRES with APPC
	Sample MRES Parameters

	Adding the Data Sets to the APF List
	Defining an MRES with APPC to APPC/MVS
	Creating a VSAM Data Set for the Side Information
	Adding a Side Information Entry for an MRES
	Defining a Nonscheduled APPC/MVS Logical Unit

	Defining an MRES with APPC to VTAM
	Implementing Security
	Starting and Stopping an MRES with APPC
	START Command Syntax
	STOP Command Syntax

	Determining Values Clients Need

	Configuring and Running a Multiclient Remote Environment Server (MRES) with TCP/IP
	Using an MRES with TCP/IP
	MRES Configuration Tasks
	Planning Your MRES with TCP/IP Configuration
	Defining a Procedure for an MRES with TCP/IP
	Coding the Parameters for an MRES with TCP/IP
	Sample MRES Parameters

	Adding the Data Sets to the APF List
	Starting and Stopping an MRES with TCP/IP
	START Command Syntax
	STOP Command Syntax

	Determining Values Clients Need

	Using MVS Operator Commands
	Displaying Server Address Space Status
	Cancelling a Server Address Space
	Forcing a Server Address Space

	Introduction to the HLAPI/2
	A Typical Scenario
	Server Overview
	Requester Overview
	HLAPI/2 C Language Binding
	Basic Transaction Flow
	On the Workstation
	Communication Link
	On the Host
	Back to the Workstation

	The REXX HLAPI/2 Interface
	Client Workstation Requirements for the HLAPI/2
	Software
	Hardware
	Disk Storage

	Installing and Configuring HLAPI/2
	Configuring a Communication Link to a Server
	Configuring HLAPI/2 for APPC
	Determining Configuration Values
	Defining a Local LU for HLAPI/2
	Defining a Link to the MVS System
	Defining a Partner LU
	Defining CPI-C Side Information
	Verifying the Configuration

	Configuring HLAPI/2 for TCP/IP

	Preparing to Install HLAPI/2
	Installing HLAPI/2 on the Workstation
	Installing HLAPI/2 in Attended Mode from CD-ROM
	Installing HLAPI/2 on a LAN Server
	Installing HLAPI/2 in Attended Mode from a LAN Server
	Installing HLAPI/2 on a Workstation in Unattended Mode
	Installing HLAPI/2 from CD-ROM in Unattended Mode
	Installing HLAPI/2 from a LAN Server in Unattended Mode
	HLAPI/2 Response File Keywords
	Command Line Parameters

	Choosing the Appropriate Requester
	Customizing the HLAPI/2 CONFIG.SYS File
	Applying HLAPI/2 Maintenance
	Restoring HLAPI/2 to the Previous Service Level
	Restoring HLAPI/2 If It Was Installed from the HLAPI/2 CD-ROM
	Restoring HLAPI/2 If It Was Installed from a LAN Server

	Deleting HLAPI/2 from Your Workstation
	Diagnostic Assistance

	HLAPI/2 Profiles, Environment Variables, and Data Logging
	Profile Syntax
	System Profile Keywords
	IDBINBOUNDBUFSIZE
	IDBOUTBOUNDBUFSIZE
	IDBSHARECMS

	System Profile Example
	Database Profile Keywords
	IDBDataLogLevel
	IDBLogFileSize
	IDBLogFileNameActive
	IDBLogFileNameOld
	IDBCharCodePage
	IDBServCharCodePage
	IDBSymDestName
	IDBServerHost
	IDBServerService

	Database Profile Example
	HLAPI/2 OS/2 Environment Variables
	Profile Override
	Profile Search Path
	IDBDBPATH
	IDBSMPATH

	Server Logging
	Transaction Logging
	HLAPI/2 Error Logging

	The HLAPI/2 Requester
	Starting the Requester
	Stopping the Requester
	Diagnosis of Some Common HLAPI/2 Problems
	Changing the Profile and Its Effect on Program Operation
	Establishing a Conversation with the Host
	Establishing Too Many APPC Conversations

	HLAPI/2 Transactions
	Transaction Operating Modes
	Synchronous Processing
	Asynchronous Processing

	Data Conversion Characteristics
	Database Profile Parameters
	Possible Truncation of Mixed SBCS/DBCS Data

	Differences between HLAPI/2 and HLAPI Transactions
	Initialize Tivoli Information Management for z/OS (HL01)
	Logical Session and Process Ownership

	Terminate Tivoli Information Management for z/OS (HL02)
	Retrieve Record (HL06)
	Create Record (HL08)
	Update Record (HL09)

	HLAPI/2 Code Pages
	ASCII SBCS Code Pages
	ASCII DBCS Code Pages
	EBCDIC SBCS Code Pages
	EBCDIC MIX Code Pages
	EBCDIC PURE DBCS Code Pages

	Tips for Writing a HLAPI/2 Application
	Installation and Setup Summary for HLAPI/2 Sample Applications

	HLAPI/2 C Language Application Program
	Allocating HICAs and PDBs
	Including the Header File in Your Program
	Allocating and Initializing a HICA
	Allocating and Initializing a PDB
	Binding Prototypes
	IDBTransactionSubmit
	IDBTransactionStatus

	Linking Your Program
	Sample HLAPI/2 C Program
	Steps Required to Run the HLAPI/2 C Sample Program

	HLAPI/2 Header Code

	REXX HLAPI/2 Interface
	REXX HLAPI/2 Installation and Setup
	Prerequisite Setup
	Registering the REXX HLAPI/2 DLL

	REXX HLAPI/2 Interface Calls
	Deregistering the REXX HLAPI/2 DLL

	Differences between the REXX HLAPI/2 and the HLAPI/2
	Differences between the REXX HLAPI/2 and the HLAPI/REXX
	REXX Reserved Variables
	Sample REXX HLAPI/2 Program
	Steps Required to Run the REXX HLAPI/2 Sample Program

	Transaction List

	Introduction to the HLAPI/NT
	A Typical Scenario
	Server Overview
	Requester Overview
	HLAPI/NT C Language Binding
	Basic Transaction Flow
	On the Workstation
	Communication Link
	On the Host
	Back to the Workstation

	Client Workstation Requirements for the HLAPI/NT
	Software
	Hardware
	Disk Storage

	Installing and Configuring HLAPI/NT
	Configuring a Communication Link to a Server
	Configuring HLAPI/NT for TCP/IP
	Configuring HLAPI/NT for APPC

	Preparing to Install HLAPI/NT
	Installing HLAPI/NT in Attended Mode from CD-ROM
	Installing HLAPI/NT onto a Network Drive
	Installing HLAPI/NT in Attended Mode from a Network Drive
	Installing HLAPI/NT in Unattended Mode
	HLAPI/NT Response File Keywords

	Applying HLAPI/NT Maintenance
	Deleting HLAPI/NT from a Workstation

	HLAPI/NT Profiles, Environment Variables, and Data Logging
	Profile Syntax
	System Profile Keywords
	IDBINBOUNDBUFSIZE
	IDBOUTBOUNDBUFSIZE
	IDBSHARECMS

	System Profile Example
	Database Profile Keywords
	IDBDataLogLevel
	IDBLogFileSize
	IDBLogFileNameActive
	IDBLogFileNameOld
	IDBCharCodeSet
	IDBServCharCodeSet
	IDBServerHost
	IDBServerService
	IDBSymDestName

	Database Profile Example
	Environment Variables
	Profile Override
	Profile Search Path
	IDBDBPATH
	IDBSMPATH

	Server Logging
	Transaction Logging
	HLAPI/NT Error Logging

	The HLAPI/NT Requester
	Starting the Requester
	Stopping the Requester
	Diagnosis of Some Common HLAPI/NT Problems
	Changing the Profile and Its Effect on Program Operation
	Data Conversion Problems
	Establishing a Conversation with the Host
	Establishing Too Many APPC Conversations

	HLAPI/NT Transactions
	Transaction Operating Modes
	Synchronous Processing
	Asynchronous Processing

	Data Conversion Characteristics
	Database Profile Parameters
	Possible Truncation of Mixed SBCS/DBCS Data

	Differences between HLAPI/NT and HLAPI Transactions
	Initialize Tivoli Information Management for z/OS (HL01)
	Logical Session and Process Ownership

	Terminate Tivoli Information Management for z/OS (HL02)
	Retrieve Record (HL06)
	Create Record (HL08)
	Update Record (HL09)

	Tips for Writing a HLAPI/NT Application
	Installation and Setup Summary for HLAPI/NT Sample Applications

	HLAPI/NT C Language Application Program
	Allocating HICAs and PDBs
	Including the Header File in Your Program
	Allocating and Initializing a HICA
	Allocating and Initializing a PDB
	Binding Prototypes
	IDBTransactionSubmit
	IDBTransactionStatus

	Linking Your Program
	Sample HLAPI/NT C Program
	Steps Required to Run the HLAPI/NT C Sample Program

	Introduction to HLAPI/CICS
	HLAPI/CICS Overview
	Server Overview
	HLAPI/CICS Basic Transaction Flow
	Requirements
	Software
	Hardware

	Installing HLAPI/CICS and Customizing CICS/ESA
	Installing HLAPI/CICS
	Customizing CICS/ESA for HLAPI/CICS
	Customizing the System Initialization Table (DFHSIT)
	Startup Procedure Parameter Changes
	Using Overrides
	Altering the DFHSIT Source Code

	Customizing the Destination Control Table (DFHDCT)
	Customizing the Shut-Down Program Load Table (DFHPLT)
	Customizing the Startup JCL
	Customizing the CICS/ESA System Definition Data Set - JCL
	Customizing the CICS/ESA Systems Definition Data Set - Online
	Program Entries
	Transaction Entries
	Connection Entries
	Session Entries
	Partner Entries
	Add the Groups to a List

	HLAPI/CICS Transaction Coding
	Linking to the HLAPI/CICS
	Control PDBs for HLAPI Transactions
	CICS_User_ID PDB
	CICS_Partner_ID PDB
	CICS_CM_Time_Out_Value PDB
	CICS_Inter_Time_Out_Value PDB

	Running the Sample CICS Application
	Sample Programs
	Installing the Sample Programs
	Defining the Programs and Transactions to CICS
	Starting the Sample Application
	Entering the BLMM Transaction

	HL01 - Starting the Session
	Modifying the HL01 Panel
	HL01 Output - Main Menu

	HL08 - Creating a Record
	HL08 Output

	HL06 - Retrieving a Record
	HL06 Output

	HL13 - Deleting a Tivoli Information Management for z/OS Record
	HL13 Input
	HL13 Output

	HL02 - Ending the Logical Session
	HL02 Input

	Ending the Sample Application
	Sample Closing Screen

	Running Multiple Environments

	Introduction to HLAPI/UNIX
	A Typical Scenario
	Server Overview
	Requester Overview
	Client Interface Overview
	Communication Overview
	Basic Transaction Flow
	On the UNIX host running the client application program
	On the UNIX host running the requester
	On the MVS host running the server and Tivoli Information Management for z/OS
	On the UNIX host running the requester
	On the UNIX host running the client application program

	HLAPI/UNIX Configuration Considerations
	Resources Needed for the Client Interface
	Resources Needed for the Requester
	Hardware and Software Requirements
	Hardware for HLAPI/UNIX
	Software for HLAPI/UNIX

	Installing and Setting Up HLAPI/UNIX
	Planning a HLAPI/UNIX Configuration
	Setting Up HLAPI/AIX
	Distributing HLAPI/AIX from a CD-ROM
	Distributing HLAPI/AIX from a File System
	Installing HLAPI/AIX on the RS⁄6000 System
	Installing Options from a CD-ROM
	Installing Options from a File System

	Setting Up HLAPI/HP and HLAPI/Solaris
	Distributing HLAPI/HP and HLAPI/Solaris from CD-ROM
	Installing HLAPI/HP and HLAPI/Solaris

	Configuring HLAPI/UNIX and Associated Software
	Configuring HLAPI/AIX for APPC
	Control Point Profile
	Defining Side Information
	Creating a Local LU 6.2 Profile

	Verifying Configuration
	Starting and Stopping APPC
	Determining Values

	Configuring HLAPI/UNIX for TCP⁄IP
	Defining the Client Interface to Requester Communication Link
	Updating ⁄etc⁄services on a Requester Host
	Updating ⁄etc⁄services and ⁄etc⁄hosts on a Client Host

	Removing HLAPI/UNIX Options

	HLAPI/UNIX Profiles, Environment Variables, and Data Logging
	Profile Syntax
	System Profile
	IDBINBOUNDBUFSIZE
	IDBMAXCMS
	IDBOUTBOUNDBUFSIZE
	IDBSERVICENAME
	IDBSHARECMS
	IDBTIMEOUT

	System Profile Example
	Database Profile
	IDBCHARCODESET
	IDBDATALOGLEVEL
	IDBIDLECLIENTTIMEOUT
	IDBLOGFILENAMEACTIVE
	IDBLOGFILENAMEOLD
	IDBLOGFILESIZE
	IDBREQUESTERHOST
	IDBREQUESTERSERVICE
	IDBSERVCHARCODESET
	IDBSERVERHOST
	IDBSERVERSERVICE
	IDBSYMDESTNAME

	Database Profile Example
	Environment Variables
	IDBDATALOGLEVEL
	IDBREQUESTERHOST
	IDBREQUESTERSERVICE
	IDBDBPATH
	IDBSMPATH

	Transaction Logging
	Transaction Logging by a Client Interface

	Error Probe Logging by a Requester or Client Interface

	The HLAPI/UNIX Requester
	Starting the Requester Manually
	Starting the Requester Automatically
	Stopping a Requester
	Diagnosing Some Common Problems

	HLAPI/UNIX Transactions
	Validation of the Calling Process
	Transaction Processing Modes
	Synchronous Processing
	Asynchronous Processing

	Transaction Concurrency Limitations
	Data Conversion Characteristics
	Special DBCS Considerations
	Developing HLAPI/UNIX Client Applications
	Including the HLAPI/UNIX Header File idbh.h
	Including the HLAPI/UNIX Header File idbech.h
	Overview of HICA and PDB Data Structures
	Allocating and Initializing a HICA structure
	Allocating and Initializing a PDB Structure

	HLAPI/UNIX Functions
	IDBTransactionSubmit()
	Usage Notes

	IDBTransactionStatus()
	Usage notes

	Using HLAPI/UNIX Functions in a Transaction Sequence
	Initialize Tivoli Information Management for z/OS (HL01)
	Terminate Tivoli Information Management for z/OS (HL02)
	Retrieve Record (HL06)
	Create Record (HL08)
	Update Record (HL09)

	Linking Your Application to HLAPI/UNIX Services
	Planning Your HLAPI/UNIX Application
	Converting HLAPI Programs to HLAPI/UNIX Programs
	Using the REXX HLAPI/AIX Interface
	REXX HLAPI/AIX Installation and Setup
	REXX HLAPI/AIX Software Requirement

	Invoking REXX HLAPI/AIX
	REXX HLAPI/AIX Transaction Names
	Running Your AIX REXX/6000 Program

	REXX Reserved Variables
	Other Considerations
	REXX HLAPI/AIX Sample REXX Program
	Sample Program BLMYRXSA

	Introduction to HLAPI/USS
	Server Overview
	Requester Overview
	Client Interface Overview
	Communication Overview
	Basic Transaction Flow
	On the USS host running the client application program
	On the USS host running the requester
	On the MVS host running the MRES with TCP/IP server and Tivoli Information Management for z/OS
	On the USS host running the requester
	On the USS host running the client application program

	HLAPI/USS Configuration Considerations
	Resources Needed for the Client Interface
	Resources Needed for the Requester
	Hardware and Software Requirements
	Hardware for HLAPI/USS
	Software for HLAPI/USS

	Installing and Setting Up HLAPI/USS
	Planning a HLAPI/USS Configuration
	Configuring HLAPI/USS and Associated Software
	Configuring HLAPI/USS for TCP⁄IP
	Defining the Client Interface to Requester Communication Link
	Updating ⁄etc⁄services on a Requester Host
	Updating ⁄etc⁄services on a Client Host

	HLAPI/USS Profiles, Environment Variables, and Data Logging
	Profile Syntax
	System Profile
	IDBINBOUNDBUFSIZE
	IDBMAXCMS
	IDBOUTBOUNDBUFSIZE
	IDBSERVICENAME
	IDBSHARECMS
	IDBTIMEOUT

	System Profile Example
	Database Profile
	IDBDATALOGLEVEL
	IDBIDLECLIENTTIMEOUT
	IDBLOGFILENAMEACTIVE
	IDBLOGFILENAMEOLD
	IDBLOGFILESIZE
	IDBREQUESTERHOST
	IDBREQUESTERSERVICE
	IDBSERVERHOST
	IDBSERVERSERVICE

	Database Profile Example
	Environment Variables
	IDBDATALOGLEVEL
	IDBREQUESTERHOST
	IDBREQUESTERSERVICE
	BLMDBPATH
	BLMSMPATH

	Transaction Logging
	Transaction Logging by a Client Interface

	Error Probe Logging by a Requester or Client Interface

	The HLAPI/USS Requester
	Starting the Requester from the Shell
	Stopping a Requester from the Shell
	Starting a Requester by JCL
	Diagnosing Some Common Problems

	HLAPI/USS Transactions
	Validation of the Calling Process
	Transaction Processing Modes
	Transaction Concurrency Limitations
	Developing HLAPI/USS Client Applications
	Including the HLAPI/USS Header File blmh.h
	Including the HLAPI/USS Header File blmech.h
	Overview of HICA and PDB Data Structures
	Allocating and Initializing a HICA structure
	Allocating and Initializing a PDB Structure

	HLAPI/USS Function
	IDBTransactionSubmit()
	Usage Notes

	Using the HLAPI/USS Function in a Transaction Sequence
	Initialize Tivoli Information Management for z/OS (HL01)
	Terminate Tivoli Information Management for z/OS (HL02)
	Retrieve Record (HL06)
	Create Record (HL08)
	Update Record (HL09)

	Compiling and Linking Your Application to HLAPI/USS Services
	Planning Your HLAPI/USS Application
	Converting HLAPI Programs to HLAPI/USS Programs
	Using the REXX HLAPI/USS Interface
	REXX HLAPI/USS Installation and Setup
	Invoking REXX HLAPI/USS
	REXX HLAPI/USS Transaction Names
	Running REXX HLAPI/USS from OS/390 UNIX System Services
	Running REXX HLAPI/USS from MVS

	REXX Reserved Variables
	REXX reserved variables added for REXX HLAPI/USS
	HLAPI/REXX reserved variables not used by REXX HLAPI/USS
	BLG_RC and BLG_REAS

	Other Considerations
	REXX HLAPI/USS Sample REXX Program
	Sample Program blmyrxsa

	Components of Tivoli Information Management for z/OS Clients
	Components of HLAPI/2
	Files on the Workstation
	Installation and Maintenance Component
	Toolkit Component
	Run-Time Component

	Files on the LAN Server
	Installation and Maintenance
	HLAPI/2 Base Files

	Components of HLAPI/CICS
	Components of HLAPI/NT
	Files on the Workstation
	Installation Files
	Base Files
	Toolkit Component
	Requester Component

	Files on the Network Server
	Installation Files
	Base Files
	Toolkit Component
	Requester Component

	Components of HLAPI/AIX
	Requester Option
	Directories
	Files
	Symbolic links

	Client Interface Option
	Directories
	Files
	Symbolic links

	Components of HLAPI/HP
	Requester Option
	Directories
	Files
	Symbolic links

	Client Interface Option
	Directories
	Files
	Symbolic links

	Other Files

	Components of HLAPI/Solaris
	Requester Option
	Directories
	Files
	Symbolic links

	Client Interface Option
	Directories
	Files
	Symbolic links

	Other Files

	Components of HLAPI/USS
	Directories
	Files
	Symbolic links

	Tivoli Information Management for z/OS Java Wrappers (HLAPI for Java)
	Class Hicao
	Class Pdbo
	Class Blmyjwc

	HLAPI Service Call Return Codes
	Return Codes

	Relating Publications to Specific Tasks
	Typical Tasks

	Tivoli Information Management for z/OS Courses
	Education Offerings
	United States
	United Kingdom

	Where to Find More Information
	The Tivoli Information Management for z/OS Library

	Index

