
Information Management for z/OS
Application Program Interface Guide
Version 7.1 SC31-8737-00

Information Management for z/OS
Application Program Interface Guide
Version 7.1 SC31-8737-00

Tivoli Information Management for z/OS Application Program Interface Guide

Copyright Notice

© Copyright IBM Corporation 1981, 2001. All rights reserved. May only be used pursuant to a Tivoli Systems
Software License Agreement, an IBM Software License Agreement, or Addendum for Tivoli Products to IBM Customer
or License Agreement. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any computer language, in any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual, or otherwise, without prior written permission of IBM Corporation. IBM Corporation grants
you limited permission to make hardcopy or other reproductions of any machine-readable documentation for your own
use, provided that each such reproduction shall carry the IBM Corporation copyright notice. No other rights under
copyright are granted without prior written permission of IBM Corporation. The document is not intended for
production and is furnished “as is” without warranty of any kind. All warranties on this document are hereby
disclaimed, including the warranties of merchantability and fitness for a particular purpose.

U.S. Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corporation.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States, other
countries, or both: IBM, the IBM logo, Tivoli, the Tivoli logo, AIX, C/370, CICS, CICS/ESA, DATABASE 2, DB2,
DFSMS/MVS, IBMLink, Language Environment, MVS, MVS/ESA, NetView, OS/2, OS/2 WARP, OS/390, RACF,
Redbooks, RMF, System/390, Tivoli Enterprise Console, TME 10, VTAM, z/OS.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names mentioned in this document may be trademarks or service marks of others.

Notices

References in this publication to Tivoli Systems or IBM products, programs, or services do not imply that they will be
available in all countries in which Tivoli Systems or IBM operates. Any reference to these products, programs, or
services is not intended to imply that only Tivoli Systems or IBM products, programs, or services can be used. Subject
to valid intellectual property or other legally protectable right of Tivoli Systems or IBM, any functionally equivalent
product, program, or service can be used instead of the referenced product, program, or service. The evaluation and
verification of operation in conjunction with other products, except those expressly designated by Tivoli Systems or
IBM, are the responsibility of the user. Tivoli Systems or IBM may have patents or pending patent applications
covering subject matter in this document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, North Castle
Drive, Armonk, New York 10504-1785, U.S.A.

Programming Interface Information

This publication documents intended Programming Interfaces that allow the customer to write programs to obtain the
services of Tivoli Information Management for z/OS.

Contents

Preface. xi
Who Should Read This Guide . xi

Prerequisite and Related Documentation . xi

What This Guide Contains . xii

How Information Is Presented in This Guide . xiii

Contacting Customer Support . xiii

Chapter 1. Introduction to the Application Program Interfaces 1
Writing Applications for the APIs . 2

Initializing . 2

Processing. 3

Terminating. 3

CICS Applications. 4

OS/2 Applications . 4

UNIX Applications . 4

Windows NT Applications . 4

Java Applications . 5

Security . 5

Date Format . 5

The Low-Level Application Program Interface . 5

Understanding the LLAPI Control and Data Flow . 5

The High-Level Application Program Interface . 8

Understanding the HLAPI Control and Data Flow . 9

Choosing the Appropriate API . 11

Data Model Records . 11

Chapter 2. Using the LLAPI . 15
LLAPI Operating Characteristics . 15

Data Sets . 21

LLAPI Considerations and Restrictions . 24

Command Limitations . 24

Errors and Messages . 25

Structures . 25

LLAPI Transactions. 26

Environment Control Transactions . 27

Initialize Tivoli Information Management for z/OS (T001) . 27

Terminate Tivoli Information Management for z/OS (T002) . 30

iiiApplication Program Interface Guide

Interface Service Transactions . 31

Obtain External Record ID (T003). 31

Obtain Pattern Table (T004). 33

Free Pattern Table (T005) . 34

Free Data Table (T006) . 35

Free Result Table (T007) . 36

Check In Record (T008) . 37

Sync and Wait On Completion (T009) . 39

Check Transaction Completion (T010) . 40

Obtain Alias Table (T011) . 41

Free Alias Table (T012). 42

Load PIDT (T013). 43

Obtain Record Create Resource (T101) . 44

Obtain Record Update Resource (T103) . 45

Check Out Record (T104) . 47

Obtain Inquiry Resource (T106) . 49

Obtain Add Record Relation Resource (T108) . 50

Start User TSP or TSX (T111). 52

Database Access Transactions . 55

Retrieve Record (T100) . 55

Create Record (T102) . 63

Update Record (T105) . 73

Record Inquiry (T107). 84

Add Record Relation (T109) . 93

Delete Record (T110) . 96

Change Record Approval (T112) . 98

LLAPI Structures . 100

Low-Level Program Interface Communications Area (PICA) . 101

Program Interface Alias Table (PALT) . 112

Program Interface Data Table (PIDT) . 114

Program Interface History Table (PIHT). 132

Program Interface Pattern Table (PIPT) . 136

Program Interface Argument Table (PIAT) . 139

Program Interface Results Table (PIRT) . 141

Program Interface Message Block (PIMB) . 143

Chapter 3. Using the HLAPI . 145
HLAPI Operating Characteristics . 145

Data Sets. 150

Errors and Messages . 150

iv Version 7.1

Structures . 150

HLAPI Transactions . 151

Control PDB . 152

Input PDB. 152

Output PDB . 152

Message and Error PDB . 152

Environment Control Transactions . 153

Initialize Tivoli Information Management for z/OS (HL01). 153

Terminate Tivoli Information Management for z/OS (HL02). 160

Interface Service Transactions . 161

Obtain External Record ID (HL03) . 161

Check Out Record (HL04). 162

Check In Record (HL05) . 164

Start User TSP or TSX (HL14) . 166

Free Text Data Set (HL15). 169

Delete Text Data Set (HL16) . 170

Database Access Transactions . 171

Retrieve Record (HL06) . 171

Create Record (HL08) . 178

Update Record (HL09) . 183

Change Record Approval (HL10). 191

Record Inquiry (HL11) . 194

Add Record Relation (HL12) . 202

Delete Record (HL13) . 205

Get Data Model (HL31) . 207

HLAPI Graphic Examples . 209

Initialize Tivoli Information Management for z/OS. 210

Record Retrieve. 211

Create Record . 213

Record Inquiry . 214

Delete Text Data Set . 216

HLAPI Structures . 216

High-Level Application Program Interface Communications Area . 216

Parameter Data Block . 218

PDB Example . 223

Reserved Symbolic PDB Names . 224

Parameter Data Definition . 225

Data Model Information . 236

Data Model Validation Pattern Data . 237

vApplication Program Interface Guide

Alias Tables. 238

Using the HLAPI/REXX Interface . 240

Date Considerations. 241

Differences between the HLAPI/REXX Interface and the HLAPI . 241

HLAPI/REXX Interface Calls . 241

Chapter 4. HLAPI Extensions. 263
BLGTRPND . 263

Control Data . 263

Input Data . 263

Output Data. 263

Return Codes. 263

BLGTSPCH . 264

Output Data. 264

Return Codes. 264

BLGTXINQ . 264

Control Data . 265

Input Data . 265

Output Data. 266

Return Codes. 266

Usage Notes . 267

Writing HLAPI Extensions . 268

HLAPI REXX Example. 269

Getting Input Data. 270

Return Data. 270

Usage notes for HLAPI Extensions . 271

Chapter 5. Tips for Writing an API Application . 273
Determine What You Want Your Application to Do . 273

Determine Which Application ID You Want to Use . 273

Determine Which Level of the API You Want to Use . 273

Determine Whether You Must Modify LLAPI TSPs . 274

Determine Whether You Must Build New API Tables. 274

Determine Which API Control Block Mapping Macros You Need. 275

Determine If You Want To Use Data Model Records . 276

Determine If You Want To Bypass Panel Processing. 276

Write Your Application . 276

vi Version 7.1

||

||

||

||

||

||

||

||

Chapter 6. Field Validation Using the Field Validation Module
BLGPPFVM . 279

Using BLGPPFVM To Validate Data Fields . 279

Input . 280

Codes from BLGPPFVM. 280

Chapter 7. API Control Flow . 283
LLAPI Modes of Operation . 283

Chapter 8. API Security . 287
Security Implementation . 287

Chapter 9. Tailoring the Application Program Interfaces 289
Tailoring Data Tables. 289

User-Defined Record Support . 290

When to Tailor Terminal Simulator Panels . 291

Chapter 10. LLAPI User Exits . 293
BLGEXDEL - Delete Unusable Record . 293

BLGJAUTH - Check Authorization . 294

BLGYAPCP - LLAPI Control Processor . 294

BLGYAPGP - Retrieve Panel Name. 294

BLGYAPBR - Record Build Processor. 295

BLGYAPSR - Set LLAPI Reason Code . 296

BLGYAPBU - Retrieve Record ID. 296

BLGYAPUP - Verify Record Update . 296

BLGRESET- Reset all Approvals to Pending . 297

BLGTSAPI - Test for LLAPI Environment . 297

BLGYAPIS - Set Product . 297

BLGYAPRF - File Record . 298

Appendix A. Record Type and Function PIDT Tables 299
PIDT to Record SERVICE Transaction Cross-Reference. 299

PIDT to Record LIST Transaction Cross-Reference . 300

PIDT to Record ADD Transaction Cross-Reference . 300

Appendix B. Return and Reason Codes . 301
Return Codes. 301

Reason Codes for Return Code=0 . 302

viiApplication Program Interface Guide

Reason Codes for Return Code=4 . 302

Reason Codes for Return Code=8 . 304

Reason Codes for Return Code=12 . 314

Reason Codes for Return Code=16 . 337

Reason Codes for Return Code=20 . 342

HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, and REXX HLAPI/USS Return Codes. 343

Appendix C. Terminal Simulator Panels . 349
BLGAPI00–LLAPI Router TSP for Panel Processing . 349

BLGAPI02–LLAPI Create Record TSP for Panel Processing . 350

BLGAPI05–LLAPI Update Record TSP for Panel Processing. 352

BLGAPI09–LLAPI Add Record Relation TSP for Panel Processing . 355

BLGAPI10–LLAPI Delete Record TSP . 356

BLGAPIDI–LLAPI Router for Bypass Panel Processing. 357

BLGAPIPX–LLAPI Bypass Panel Processing TSP . 358

Appendix D. Record Process Panels . 361
Control panel BLG1AACP . 361

Control panel BLG1AAUP . 361

Appendix E. Sample Low-Level Application Program Interface 363
C Language Functions . 364

C Language Include File . 364

Panels . 364

Using the C370 LLAPI Sample Programs . 365

Appendix F. Sample High-Level Application Program Interface 367
Using the C370 HLAPI Sample Program . 367

Using the PL/I HLAPI Sample Program. 368

Appendix G. Sample HLAPI/REXX Interface . 369
Using the HLAPI/REXX Sample Program . 369

Appendix H. Relating Publications to Specific Tasks 371
Typical Tasks. 371

Appendix I. Tivoli Information Management for z/OS Courses 375
Education Offerings. 375

United States . 375

United Kingdom . 375

viii Version 7.1

Appendix J. Where to Find More Information . 377
The Tivoli Information Management for z/OS Library . 377

Index . 381

ixApplication Program Interface Guide

x Version 7.1

Preface

The Tivoli® Information Management for z/OS Application Program Interfaces (APIs)
provide a means of providing data through defined data structures that you can create and
process with your application programs. This guide describes APIs and tells how your
applications can use them to access the database.

There may be references in this publication to versions of Tivoli Information Management
for z/OS’s predecessor products. For example:

¶ TME 10™ Information/Management Version 1.1

¶ Information/Management Version 6.3, Version 6.2, Version 6.1

¶ Tivoli Service Desk for OS/390® Version 1.2

Who Should Read This Guide
If you are a system or application programmer, you can use this publication as a guide and
reference in writing application programs that access and run Tivoli Information
Management for z/OS database functions.

You should be familiar with the information in the Tivoli Information Management for z/OS
User’s Guide and the Tivoli Information Management for z/OS Program Administration
Guide and Reference before you use this guide. You should also be familiar with the basics
of Tivoli Information Management for z/OS’s problem management, change management,
and configuration management facilities. If you are developing and modifying Desktop or
Web applications, you should also be familiar with the concepts of API return and reason
codes. “Where to Find More Information” on page 377 lists the publications that contain
information about these subjects.

Prerequisite and Related Documentation
The library for Tivoli Information Management for z/OS Version 7.1 consists of these
publications. For a description of each, see “The Tivoli Information Management for z/OS
Library” on page 377.

Tivoli Information Management for z/OS Application Program Interface Guide,
SC31-8737-00

Tivoli Information Management for z/OS Client Installation and User’s Guide,
SC31-8738-00

Tivoli Information Management for z/OS Data Reporting User’s Guide, SC31-8739-00

Tivoli Information Management for z/OS Desktop User’s Guide, SC31-8740-00

Tivoli Information Management for z/OS Diagnosis Guide, GC31-8741-00

Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications,
SC31-8744-00

Tivoli Information Management for z/OS Integration Facility Guide, SC31-8745-00

Tivoli Information Management for z/OS Licensed Program Specification, GC31-8746-00

Tivoli Information Management for z/OS Master Index, Glossary, and Bibliography,
SC31-8747-00

xiApplication Program Interface Guide

|

|
|
|

Tivoli Information Management for z/OS Messages and Codes, GC31-8748-00

Tivoli Information Management for z/OS Operation and Maintenance Reference,
SC31-8749-00

Tivoli Information Management for z/OS Panel Modification Facility Guide,
SC31-8750-00

Tivoli Information Management for z/OS Planning and Installation Guide and Reference,
GC31-8751-00

Tivoli Information Management for z/OS Problem, Change, and Configuration
Management, SC31-8752-00

Tivoli Information Management for z/OS Program Administration Guide and Reference,
SC31-8753-00

Tivoli Information Management for z/OS Reference Summary, SC31-8754-00

Tivoli Information Management for z/OS Terminal Simulator Guide and Reference,
SC31-8755-00

Tivoli Information Management for z/OS User’s Guide , SC31-8756-00

Tivoli Information Management for z/OS World Wide Web Interface Guide,
SC31-8757-00

Note: Tivoli is in the process of changing product names. Products referenced in this
manual may still be available under their old names (for example, TME 10 Enterprise
Console instead of Tivoli Enterprise Console®).

What This Guide Contains
This guide is structured as follows:

¶ “Introduction to the Application Program Interfaces” on page 1 describes the Low- and
High-Level Application Program Interfaces (LLAPI, HLAPI), in terms of their functions,
components, and operating characteristics.

¶ “Using the LLAPI” on page 15 explains the transactions that the low-level interface uses.
The chapter also provides step-by-step instructions for creating transactions to perform
typical tasks, describes interface structures and interface tables, and it describes the
relationships among components of the interface.

¶ “Using the HLAPI” on page 145 explains the transactions that the high-level interface
uses, and how to use the HLAPI/REXX interface. The chapter also provides step-by-step
instructions for creating transactions to perform typical tasks, describes interface
structures and interface tables, and it describes the relationships among components of
the interface.

¶ “HLAPI Extensions” on page 263 describes a specific extension to the HLAPI which
may cause fewer transactions to the server, thereby improving performance. This chapter
also describes information about how to write other HLAPI TSX extensions.

¶ “Tips for Writing an API Application” on page 273 describes the steps typically involved
in creating an application that uses the Tivoli Information Management for z/OS APIs.

¶ “Field Validation Using the Field Validation Module BLGPPFVM” on page 279
describes the Table Build Utility (BLGUT8) you use to build data, pattern, and alias

Prerequisite and Related Documentation

xii Version 7.1

tables for use by the interfaces. This chapter also explains how to validate data fields
using the Field Validation Module (BLGPPFVM).

¶ “API Control Flow” on page 283 describes some of the logic of the APIs. This chapter
also discusses the two modes of operation of the LLAPI, panel processing and bypass
panel processing.

¶ “API Security” on page 287 describes the security checking available to ensure that a
user has the authority to use the value specified in PICAUSRN.

¶ “Tailoring the Application Program Interfaces” on page 289 describes how you can
modify the interfaces to better meet the needs of your installation.

¶ “LLAPI User Exits” on page 293 describes the user exits used in the API environment.

¶ The appendixes in this guide give you reference information that you might find useful
when you are working with the APIs. You can find return and reason codes, transaction
lists, and more.

How Information Is Presented in This Guide
The panels presented in this guide are not meant to be exact replicas of the way a panel
appears on the screen. The information on the panels is correct but the spacing is not always
exact.

In the text of this guide, selections on selection or options panels and fields on data-entry
panels appear like this. The input you enter in response to the fields on data-entry panels
appears like this.

Commands, such as END, CONTROL, RESUME, or FIELD, appear as illustrated. Although
not commands, the user responses YES and NO also appear in the same highlighting as
commands.

The highlighted print on a panel indicates the selection you are to make; the highlighted
print in text is the information you enter or select while performing a task.

Contacting Customer Support
For support inside the United States, for this or any other Tivoli product, contact Tivoli
Customer Support in one of the following ways:
¶ Send e-mail to support@tivoli.com
¶ Call 1-800-TIVOLI8
¶ Navigate our Web site at http://www.support.tivoli.com

For support outside the United States, refer to your Customer Support Handbook for phone
numbers in your country. The Customer Support Handbook is available online at
http://www.support.tivoli.com.

When you contact Tivoli Customer Support, be prepared to provide identification
information for your company so that support personnel can assist you more readily.

The latest downloads and fixes can be obtained at http://www.tivoli.com/infoman.

What This Guide Contains

xiiiApplication Program Interface Guide

|

Contacting Customer Support

xiv Version 7.1

Introduction to the Application Program
Interfaces

Tivoli Information Management for z/OS extends your ability to gather, organize, and locate
information about your company’s data processing installation. The Tivoli Information
Management for z/OS application program interfaces (APIs) are part of this product.

The main purpose of the Tivoli Information Management for z/OS database is to hold
problem, change, configuration, and user-defined data for your company. Traditionally, Tivoli
Information Management for z/OS data has been managed through panel interfaces, either
with direct user interaction or with Terminal Simulator Panels (TSPs) acting for users.

Of course, you can still manage your database that way, but sometimes you cannot or do not
want to access your information interactively. Sometimes you might want to use applications
that are external to Tivoli Information Management for z/OS to access this database.

The Tivoli Information Management for z/OS APIs accept and provide data through defined
data structures that you can create and process with your application programs. The APIs
enable you to use external applications to perform Tivoli Information Management for z/OS
record access functions. You can extract or enter data into the Tivoli Information
Management for z/OS database from external sources. The APIs enable you to have an
ongoing dialog between an external resource and your Tivoli Information Management for
z/OS database. With the APIs, it is possible for you to open up the Tivoli Information
Management for z/OS environment and transfer data between your external sources and the
Tivoli Information Management for z/OS database.

Compared to earlier, batch-oriented methods, using the APIs provides you control advantages
over your data operations. The APIs enable real-time processing that is synchronous with
your application. You gain better control because you can check your data streams as well as
determine if your operations were successful.

Using the APIs does not require an interactive user, so the Tivoli Information Management
for z/OS requirements for Time Sharing Option (TSO) and Interactive System Productivity
Facility (ISPF) do not apply to API uses. Most of the time, a storage region size of 4MB
(1MB equals 1 048 576 bytes) is sufficient for API use. If you have installed the Tivoli
Information Management for z/OS NetView® Bridge Adapter, you might need to increase
the region size to 6MB.

Tivoli Information Management for z/OS supports two APIs. They are the Low-Level
Application Program Interface (LLAPI) and the High-Level Application Program Interface
(HLAPI). Both APIs perform the same tasks. However, for a given task, the HLAPI requires
fewer user-written instructions. The LLAPI requires more user-written instructions, but it

1

1Application Program Interface Guide

1.
In

tro
d

u
ctio

n
to

th
e

A
P

Is

provides a greater degree of interface control. The HLAPI has an additional facility called
the HLAPI/REXX interface. The HLAPI/REXX interface enables you to access HLAPI
functions from REXX code. Using these APIs, your external applications can access and
manipulate Tivoli Information Management for z/OS’s problem, change, and configuration
database records, as well as your own user-defined records.

Tivoli Information Management for z/OS supports access from applications running on other
operating systems through the HLAPI. Three MVS™-based servers are provided to support
access from remote clients:
¶ The Remote Environment Server (RES), which serves one client at a time, and uses

advanced program-to-program communication (APPC).
¶ The Multiclient Remote Environment Server with APPC (MRES with APPC), which can

serve multiple clients concurrently, and uses advanced program-to-program
communication.

¶ The Multiclient Remote Environment Server with TCP/IP (MRES with TCP/IP), which
can serve multiple clients concurrently, and uses TCP/IP.

These servers provide access to Tivoli Information Management for z/OS data for client
application programs running on Operating System/2® (OS/2®), CICS®, UNIX®, and
Windows NT® platforms. Refer to the Tivoli Information Management for z/OS Client
Installation and User’s Guide for more information on the servers and clients, including
information on the communication protocols the clients support.

Writing Applications for the APIs
If you write applications that process customized Tivoli Information Management for z/OS
records, you might need to perform setup steps or tailor the API TSPs to correctly process
these records. See “Tips for Writing an API Application” on page 273, “Tailoring the
Application Program Interfaces” on page 289, and “Terminal Simulator Panels” on page 349
for more information.

Any application you write that uses the APIs must perform three basic steps: API
initialization, API processing, and API termination. This sequence of steps is called a
session. The individual interactions and data accesses of each session are called transactions.
The API initialization and API termination steps are individual transactions. They are started
only once for each session. The HLAPI/REXX interface initializes and terminates a session
for you when you use it. However, your application must still perform the initialize and
terminate transactions. The API processing step can consist of many transactions. This step
makes up the bulk of any session. The following sections discuss these basic steps, writing
applications for remote environments, and security.

Initializing
Initialization involves specifying the characteristics of this API session and establishing the
Tivoli Information Management for z/OS environment.

Your application loads a server module that is supplied by Tivoli Information Management
for z/OS into the application’s address space. The application calls the module with a
defined set of initialization parameters.

Note: For performance reasons, you can load the module once, before the API initialization
transaction, call it as many times as you need it, then delete it after the API
termination transaction. This saves any processing overhead that is required for
reading the module from the disk many times.

2 Version 7.1

When using the HLAPI/REXX interface, your REXX program links to the HLAPI/REXX
interface server module. It, in turn, accesses the HLAPI server module.

The server then loads and initializes the remainder of the code (the subtask) necessary to
access the Tivoli Information Management for z/OS database. The server and the supporting
code for accessing the Tivoli Information Management for z/OS database run as extensions
of the application program and use resources in the application’s address space. For these
reasons, your application, the API, and the database must reside on the same system.

Note: Tivoli Information Management for z/OS uses system services such as GETMAIN to
acquire resources and therefore might not be appropriate for running under certain
subsystems.

To initialize the Tivoli Information Management for z/OS environment, you must use the
transaction code to initialize Tivoli Information Management for z/OS (transaction T001 for
the LLAPI, HL01 for the HLAPI, or INIT for the HLAPI/REXX interface). This prepares
Tivoli Information Management for z/OS for further transaction processing.

Processing
The processing portion of your application involves several steps. First, you specify the
action that you want to perform and any data or options needed to perform that action. Then
you perform the action. Finally, you process any data that returns to your application.

You can use applications that start the APIs to retrieve, create, update, inquire about, and
delete records in the Tivoli Information Management for z/OS database. You can write your
application programs in languages such as C, PL/I, COBOL, C++, assembler, or any
program language that supports the data structures of the APIs. If you are using a remote
platform, you can also write your application program in Java™. See “LLAPI Structures” on
page 100 and “HLAPI Structures” on page 216 for information about these structures. See
the Tivoli Information Management for z/OS Client Installation and User’s Guide and the
Tivoli Information Management for z/OS World Wide Web Interface Guide for additional
information about accessing the Tivoli Information Management for z/OS database from a
remote platform. You can also use the REXX language to communicate with the HLAPI
through the HLAPI/REXX interface. To perform the API functions, call again the server that
you used to initialize the API and give it the appropriate transaction code to perform the
function you want. The API remains initialized and ready to use for any number and any
combination of processing transactions as long as your application remains active, or until
you perform a termination transaction.

Terminating
Termination of the Tivoli Information Management for z/OS environment means that you
close down your API session and the Tivoli Information Management for z/OS environment.
Your application closes the environment by issuing the termination transaction. This
transaction returns to the system all resources that the server acquired and deletes the
associated database access code from the address space. You must run the termination
transaction under the same task control block that the initialization transaction was run
under.

If you are using MVS and you stop the API, it is not available for use until you initialize it
again. Repeated initializations and terminations can affect performance, so perform as few of
them as possible.

Writing Applications for the APIs

3Application Program Interface Guide

1.
In

tro
d

u
ctio

n
to

th
e

A
P

Is

CICS Applications
You can develop CICS applications that issue Tivoli Information Management for z/OS
HLAPI calls for any Tivoli Information Management for z/OS database. You can do this by
using the Tivoli Information Management for z/OS High-Level Application Program
Interface Client for CICS (HLAPI/CICS), a remote environment client that Tivoli
Information Management for z/OS supports. This client does not extend the CICS function
set; it enables CICS transactions to retrieve and update Tivoli Information Management for
z/OS data. Of the three MVS-based servers described on page 2, the HLAPI/CICS client can
connect to either the Remote Environment Server (RES) or the Multiclient Remote
Environment Server with APPC (MRES with APPC). Refer to the Tivoli Information
Management for z/OS Client Installation and User’s Guide for more information on the
Tivoli Information Management for z/OS servers and installing and using the HLAPI/CICS
client.

OS/2 Applications
You can develop OS/2 applications that issue Tivoli Information Management for z/OS
HLAPI calls for any Tivoli Information Management for z/OS database. You can do this by
using the HLAPI/2, a remote environment client that Tivoli Information Management for
z/OS supports. This client does not extend the OS/2 function set; it enables OS/2
applications to retrieve and update Tivoli Information Management for z/OS data. The
HLAPI/2 client connects to any of the Tivoli Information Management for z/OS servers
listed on page 2. Refer to the Tivoli Information Management for z/OS Client Installation
and User’s Guide for more information on the Tivoli Information Management for z/OS
servers and installing and using the HLAPI/2 client.

The OS/2 remote environment client also provides a REXX interface that permits you to
access HLAPI/2 from REXX programs. Refer to the Tivoli Information Management for
z/OS Client Installation and User’s Guide for more information about this interface.

UNIX Applications
You can develop UNIX applications that issue Tivoli Information Management for z/OS
HLAPI calls for any Tivoli Information Management for z/OS database. You can do this by
using one of the remote environment clients on AIX®, HP-UX, and Sun Solaris that Tivoli
Information Management for z/OS supports or by using the client . These clients do not
extend the UNIX function sets; they enable UNIX applications to retrieve and update Tivoli
Information Management for z/OS data. The HLAPI/AIX client connects to any of the Tivoli
Information Management for z/OS servers listed on page 2. The HLAPI/HP, HLAPI/Solaris,
and HLAPI for OS/390 UNIX System Services (HLAPI/USS) connect to only the MRES
with TCP/IP. Refer to the Tivoli Information Management for z/OS Client Installation and
User’s Guide for more information on the Tivoli Information Management for z/OS servers
and installing and using the HLAPI/UNIX clients.

The AIX remote environment client (HLAPI/AIX) provides a REXX interface that allows
you to access HLAPI/AIX from REXX programs. The HLAPI/USS also provides a REXX
interface that allows you to access HLAPI/USS from REXX programs. Refer to the Tivoli
Information Management for z/OS Client Installation and User’s Guide for more information
on this interface.

Windows NT Applications
You can develop Windows NT applications that issue Tivoli Information Management for
z/OS HLAPI calls for any Tivoli Information Management for z/OS database. You can do
this by using the HLAPI/NT, a remote environment client that Tivoli Information

Writing Applications for the APIs

4 Version 7.1

Management for z/OS supports. The HLAPI/NT connects to any of the Tivoli Information
Management for z/OS servers listed on page 2. Refer to the Tivoli Information Management
for z/OS Client Installation and User’s Guide for more information on the Tivoli Information
Management for z/OS servers and installing and using the HLAPI/NT client.

Java Applications
You can run Java application programs that interface with the Tivoli Information
Management for z/OS Client Application Programming Interfaces (CAPIs) on any operating
system platform that supports both the Tivoli Information Management for z/OS Client APIs
and the Java Version 1.1.1 run-time environment. A sample Java program that illustrates the
use of the Java class objects is also provided with the clients.

The Tivoli Information Management for z/OS Client Installation and User’s Guide contains
additional information on Java classes and methods that are distributed with Tivoli
Information Management for z/OS.

Security
For additional security over the APIs, keep the server modules (BLGYSRVR and
BLGYHLPI) in a limited access library using security software, such as RACF®. The
module that provides access to the HLAPI from REXX programs is BLGYRXM. Place it,
too, in a limited access library in the same manner. In this way you can prevent
unauthorized applications from accessing the Tivoli Information Management for z/OS
database through the APIs. Additional information regarding security aspects of the API can
be found in “API Security” on page 287.

Date Format
Your APIs can use any supported date format and have dates converted to or from the
format used in the database. For the LLAPI, this is controlled by the PICADFMT flag in the
PICA (where the PICADSEP must also be specified). For the HLAPI, this is controlled by
the use of a PDB named DATE_FORMAT. The date formats available for the LLAPI are
described in the discussion of the PICA flag PICADFMT, described on page 111; the date
formats available for the HLAPI are discussed throughout “Using the HLAPI” on page 145.

The Low-Level Application Program Interface
The LLAPI runs in the MVS environment and consists of the following components:
¶ Server (callable enabler)
¶ Structures and tables
¶ Tivoli Information Management for z/OS API subtask code

Understanding the LLAPI Control and Data Flow
Your application must establish linkage with the server, allocate and prepare the
communications area, and interact with the server and LLAPI tables. The server validates
transaction data and attaches to and interfaces with the Tivoli Information Management for
z/OS API subtask. The subtask is attached to the server automatically when the server is
initialized. The API subtask performs transaction processing, table construction and
navigation, data set accessing, and error processing.

Figure 1 on page 6 shows the components of the LLAPI and the interface points between
them. In addition, the figure shows the key elements within the structures and tables
component. The structures and tables are described in detail in “LLAPI Structures” on
page 100.

Writing Applications for the APIs

5Application Program Interface Guide

1.
In

tro
d

u
ctio

n
to

th
e

A
P

Is

All communications between your application and the LLAPI take place through
transactions. Each transaction uses specific control blocks and structures to convey
information between the application and the interface. This forms the basis for control flow.
The transaction code tells the LLAPI what to do, and the call to the server tells the LLAPI
when to do it. Because your application initiates all calls to the LLAPI, it follows that the
application dictates the control flow.

PICA
Data flow is synchronized when the transaction runs. Therefore, it too is controlled by your
application. All transactions use a set of tables and data structures. The first and most
significant of these structures is the program interface communications area (PICA). In
Figure 1 it is labeled Communications Area. Your application and the LLAPI both use the
PICA as the focal point for data specification.

The PICA is the only LLAPI control block for which your application must allocate storage.
It is where you specify your initialization parameters and transaction codes. It is where you
receive your return and reason codes. And it also serves as the anchor to all other LLAPI
structures. When you enable the interface by calling the server to start a transaction, the only
parameter you pass in the call is the address of the parameter list that points to the PICA.
All other information necessary to complete the transaction is either contained in, or located
through, the PICA. See “Low-Level Program Interface Communications Area (PICA)” on
page 101 for a detailed description of the communications area.

The LLAPI uses other structures and data to support the transactions that your applications
use to access the Tivoli Information Management for z/OS database. These structures and a
core set of data are called resources. With the exception of the PICA, the LLAPI acquires

ADDRESS SPACE

Application

Communications
Area (PICA)

Alias
Table

(PALT)

Pattern
Table
(PIPT)

Data Buffer Argument Table
(PIAT)

History Table
(PIHT) Database

Server
Tivoli

Information
Management

for z/OS
Subtask

Data
Table

(PIDT) Data

Result
Table
(PIRT)

Process
Control

Inquiry
Results

Figure 1. LLAPI Components and Data Flows

The Low-Level Application Program Interface

6 Version 7.1

these resources through transactions initiated by your application. Not all of the tables shown
in Figure 1 on page 6 are used for every transaction. The tables used by the LLAPI depend
on which transaction your application wants to perform.

PIDT
The PICA identifies the program interface data table (PIDT) for the LLAPI and your
application. The PIDT is labeled Data Table in Figure 1 on page 6. The PIDT defines a view
of a Tivoli Information Management for z/OS database record. Based on the data contained
in the record, you can provide a pre-defined (or static) view, request that the LLAPI build a
dynamic view, or direct the LLAPI to generate a PIDT from data model records. For detailed
information about the PIDT, see “Program Interface Data Table (PIDT)” on page 114. For
more information about types of PIDTs and BLGUT8, see “Field Validation Using the Field
Validation Module BLGPPFVM” on page 279.

PIPT
The PIDT also identifies the characteristics of the fields and serves as the anchor for the
program interface pattern table (PIPT), labeled Pattern Table in Figure 1 on page 6. Except
for dynamic PIDTs, the PIPT contains the validation criteria for the data associated with the
indexes and the data buffer. The data buffer contains the data itself and is anchored to the
PIDT.

PIAT
For inquiry transactions, the PIDT identifies the program interface argument table (PIAT),
labeled Argument Table in Figure 1 on page 6. You can use the Argument Table to specify
freeform search arguments.

PIHT
For retrieve transactions that request processing of history data, the PIDT identifies the
program interface history table (PIHT), labeled History Table in Figure 1 on page 6. You can
use the History Table to modify or input history data on subsequent update and create record
transactions. For detailed information about the PIHT, see “Program Interface History Table
(PIHT)” on page 132.

PALT
The program interface alias table (PALT), labeled Alias Table in Figure 1 on page 6, is
identified through the PICA. The Alias Table lets your application specify alias names for
PIDTs, p-words, p-word indexes, and s-word indexes. It also enables you to specify default
values for fields. “Alias Tables” on page 238 gives you a description of how the HLAPI uses
this table. That description can serve as an example of how you can use the table in an
application for the LLAPI. For more detailed information about the PALT see “Program
Interface Alias Table (PALT)” on page 112.

PIRT
Inquiry transactions require the use of the program interface results table (PIRT), labeled
Result Table in Figure 1 on page 6. It contains the record IDs of records that were found to
meet an application’s specific search criteria. The PIRT, is also identified through the PICA.
For detailed information about the PIRT, see “Program Interface Results Table (PIRT)” on
page 141.

A Typical Scenario
Suppose you are writing an application to retrieve and display database problem records that
meet specific criteria. You establish criteria for problem records that are:
¶ Nonclosed

The Low-Level Application Program Interface

7Application Program Interface Guide

1.
In

tro
d

u
ctio

n
to

th
e

A
P

Is

¶ Associated with a particular department
¶ Assigned dates within a specified range

Note: This example is specifically designed, for instructional purposes, to retrieve and
display records. If all you want to do is find a record ID and any one other piece of
data in a record (maximum length 45 characters), the search can accomplish this
without any retrieves at all.

To do this, ensure that your application performs the following steps:

1. Specify the characteristics of this API session and establish the Tivoli Information
Management for z/OS environment.

2. Request problem record inquiry resources from the interface so that the application can
define to the interface the specific criteria it is looking for.

Your application can specify the following two forms of inquiry, or a combination of
both forms:
¶ A simulation of the interactive quick-search response entry
¶ A simulation of the interactive freeform argument response entry

For more information on inquiry argument generation, see “Record Inquiry (T107)” on
page 84.

3. After defining the specific inquiry criteria by one of the methods in the previous step,
your application passes the inquiry specifications to the API by using an inquiry
transaction.

4. The API searches the database and passes a list of the external problem record IDs that
match the specific inquiry criteria back to your application in the Results Table, or PIRT.

5. Your application then requests the API to retrieve each record that was in the list. As
each retrieve transaction is performed, the API converts the record data to an external
form that uses a data buffer and data table (PIDT) structure. The PICA provides the
information to locate the PIDT, and the PIDT provides the information on how to locate
the data in the Data Buffer. Your application can use whatever transactions are necessary
to display the records while still in this API session.

6. After your records have been displayed, your application can continue to perform other
tasks for you, or it can end this session.

You can find a complete example of a program that uses the LLAPI in the Tivoli
Information Management for z/OS SAMPLIB (MVS data set SBLMSAMP). Refer to the
Tivoli Information Management for z/OS Planning and Installation Guide and Reference for
information on the person to contact for information on high-level qualifiers of data sets at
your site.

The High-Level Application Program Interface
The HLAPIHLAPI consists of the following components:
¶ Server (callable enabler)
¶ High-Level communication area structure (HICA)
¶ Parameter data blocks (PDBs)

While not actually parts of the HLAPI, the LLAPI and API subtask components are used by
the HLAPI to perform its functions.

The Low-Level Application Program Interface

8 Version 7.1

You can use the HLAPI from MVS, or you can use it from user application programs
running on a different operating system in a remote environment. User application programs
interact with Tivoli Information Management for z/OS from a remote environment in
basically the same way as they do from MVS using the HLAPI. Additional information on
these client applications can be found in the Tivoli Information Management for z/OS Client
Installation and User’s Guide.

Understanding the HLAPI Control and Data Flow
The HLAPI enables you to use a set of callable high-level service functions that the
interface transforms into LLAPI transactions that it passes to the LLAPI. Using the HLAPI
reduces the complexity of your applications because a single HLAPI transaction can cause
several LLAPI transactions to run.

Figure 2 shows, for an MVS operating system, where the HLAPI fits into the common
address space occupied by the APIs, your MVS application, and the server/subtask. Figure 2
also illustrates their relationships and how the data flows between them. From HLAPI
transactions started by your application, the HLAPI generates LLAPI transactions that are
processed by the LLAPI and the subtask. The subtask and LLAPI then return processing
results and other information, such as messages and error codes, back through the HLAPI to
your application. You cannot mix HLAPI transactions and LLAPI transactions during the
same session.

Figure 3 on page 10 shows the components of the HLAPI and the data flow relationships
between them.

User
Appl icat ion

High-
Level
Appl icat ion
Program
Interface

Low-
Level
Appl icat ion
Program
Interface

MVS Address Space

Tivoli
Information
Management
for z/OS
Subtask

Figure 2. HLAPI Relationships to Your Application and the LLAPI

The High-Level Application Program Interface

9Application Program Interface Guide

1.
In

tro
d

u
ctio

n
to

th
e

A
P

Is

The main components of the HLAPI are the HICA structure and parameter data blocks
(PDBs) for control, input, output, message, and error chains. The HICA serves the same
purpose for the HLAPI that the program interface communications area (PICA) serves for
the LLAPI. The HICA:
¶ Provides a place where you specify your initialization parameters and transaction codes
¶ Receives return and reason codes
¶ Anchors the PDBs

The PDBs provide a common structure for communication between your application and the
HLAPIHLAPI, replacing the various tables and buffers that the LLAPI uses. The HLAPI
uses this structure for both control information and data, as well as for input and output
communications. Your application must allocate and initialize a PDB for each item of data
that it passes to the HLAPI. The API allocates and initializes a PDB for each data item that
it passes back. Every time your application calls the HLAPI, the API frees the PDBs that
were used in the transaction prior to the latest call, so your application must completely
process the PDB chains it receives before it requests a new HLAPI transaction. These
components are described in detail in “HLAPI Structures” on page 216.

You can find a complete example of a program that uses the HLAPI in the Tivoli
Information Management for z/OS SAMPLIB (MVS data set SBLMSAMP). Refer to the
Tivoli Information Management for z/OS Planning and Installation Guide and Reference for
information on the person to contact for information on high-level qualifiers of data sets at
your site. See “Sample HLAPI/REXX Interface” on page 369 and “Sample High-Level
Application Program Interface” on page 367 for more information on sample programs.

Return Code

Reason Code

Environment

Control

Input

Output

Messages

Error Codes

TCB Information

COMMUNICATION
AREA (HICA)

PDB

PDB

PDB

PDB

PDB

INPUT
DATA

OUTPUT
DATA

MESSAGE
DATA

ERROR
CODES

TCB = Task Control Block

PROCESS
CONTROL

PARAMETERS

Figure 3. HLAPI Components

The High-Level Application Program Interface

10 Version 7.1

Choosing the Appropriate API
Because the LLAPI and the HLAPI perform the same functions, choosing the one to use
must be based on API characteristics other than function. Table 1 lists characteristics of both
the LLAPI and the HLAPI. Comparing these characteristics might help you to choose the
API most appropriate to your needs.

Table 1. Characteristics of the LLAPI and HLAPI
LLAPI Characteristics HLAPI Characteristics

Offers more user control. Offers less user control.

Only available from MVS Available from remote platforms. See the Tivoli
Information Management for z/OS Client
Installation and User’s Guide for more
information on the use of remote platforms for
accessing the Tivoli Information Management for
z/OS database.

Enables synchronous or asynchronous operation. Enables synchronous operation for HLAPI on
MVS and asynchronous operation for HLAPI on
some remote platforms.

Enables alias processing. (Alias processing must
be performed by your application.)

Enables automatic alias processing.

You need more transactions to do many functions
(tasks).

You need fewer transactions to do many
functions (tasks) because many HLAPI
transactions are converted into multiple LLAPI
transactions.

There are more control blocks and structures to
understand.

There are fewer control blocks and structures to
understand.

Uses less storage. Uses more storage because of PDB allocation.

Enables specific field retrieval only by using
customized PIDTs. Your application code must
scan through the PIDT to select fields if you do
not use a customized PIDT.

Enables specific field retrieval by using a field
retrieval list. The HLAPI can scan through the
PIDT and return selected fields in PDBs.

Enables data validation by allowing you to call
Field Validation Module BLGPPFVM for each
field to be validated.

Enables automatic data validation through
automatic calls to the BLGPPFVM module.

Does not enable use of REXX programming
language to access functions.

Enables use of REXX programming language to
access functions.

Session does not end when a transaction timeout
condition occurs.

Session ends when a transaction timeout
condition occurs.

Enables dynamic PIDT processing. Does not enable dynamic PIDT processing.

Can process history data. Can only retrieve history data and delete data
based on date.

Data Model Records
The composition of data records is that set of fields which define a record type and the
attributes of each of those fields. Tivoli Information Management for z/OS utilizes two
means of describing the composition of data records: panels and data model records.

Choosing the Appropriate API

11Application Program Interface Guide

1.
In

tro
d

u
ctio

n
to

th
e

A
P

Is

When panels are used, there is a limitation because the API cannot access the composition
directly; the composition must be extracted by the utility BLGUT8 and stored in static tables
(PIDTs and PIPTs). These static tables, the PIDTs and PIPTs, convey the data view and field
attributes of data to be used by applications which used the APIs.

Data model records provide a means of storing the composition of data records in records
rather than in panels.

There are three types of data model records:

Data view records
Data view records describe the entire record’s contents. Information needed for
certain record transactions, such as the record-type s-word and authorization codes,
are included in these records. Data view records contain data attribute record IDs.
Data view records replace static PIDTs and PIPTs and are used to generate the
in-storage PIDTs and PIPTs. These records are only used by the APIs.

To specify a data view record in the LLAPI, the name is passed in the existing PIDT
name field PICATABN and a flag, PICADMRC=Y, is set to indicate that a PIDT
should be built using the data view record and given the data view record ID as its
name. If you are using the HLAPI, specify the data view record ID in the control
PDB DATA_VIEW_NAME.

It can take a significant amount of time to generate a PIDT from data view records.
The length of time depends on the number of data attribute records (and validation
record that they reference) contained in the data view record. Therefore, it can be
especially important to direct the HLAPI to maintain PIDTs in storage if you are
using data model records.

Data attribute records
Data attribute records describe the data and its attributes; a data attribute record
takes the place of an assisted-entry panel. There are several methods of using data
attribute records on an interactive panel sequence. Refer to the Tivoli Information
Management for z/OS Panel Modification Facility Guide for more information on
using data attribute records.

Note: If data attribute records are used as direct-add fields, then normal file
processing is not performed for change records when change approval
processing is being performed. That is, if ALL of these five
direct-adds—DATE/, TIME/, CLAE/, DATM/, and TIMM/—are changed to
data attribute records, then date modified, time modified, and user ID are not
saved in the record

Data attribute records can be used with data view records for use with the API.

Validation records
Validation records are records that contain validation criteria for a field in a record.

These records can be used with the APIs. In addition, validation records include
validation patterns, prefixes, authorization codes, and group prefix indicators to
contain all of the data necessary for data validation. The utility BLGUT8 copies the
validation record ID, validation s-word, and validation data s-word into a static
PIDT. All of this information is put into the PIDT generated from a specific data
view record. When the PIDT is loaded or generated for use with a transaction within
an API, the validation data is resolved, except for the validation record ID. Because

Data Model Records

12 Version 7.1

the contents of the record must be available to find the validation record ID when
one is specified, the validation record ID is resolved when processing the PIDT
entry. You should place the entry with the validation record ID s-word following the
entry which contains the s-word that is used to find the validation record ID. For
example, if field “system name” has a validation record ID s-word that is the
“location” field, the system name entry must follow the location entry in the static
PIDT or data view record so that the LLAPI can find the location record ID to use
to validate the system name data.

If you use data model records, the following program exits can be invoked when data is
entered into fields. There is a limitation that only one program exit can be invoked for a
field.
¶ BLG01052
¶ BLG01054
¶ BLG01147
¶ BLG01246
¶ BLG01273
¶ BLG01437
¶ BLG01438
¶ BLG01439
¶ BLG02024
¶ BLG02096
¶ BLG02097
¶ BLG02119
¶ BLG02120
¶ BLG02121

Refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide for
more information on using data model records.

Data Model Records

13Application Program Interface Guide

1.
In

tro
d

u
ctio

n
to

th
e

A
P

Is

Data Model Records

14 Version 7.1

Using the LLAPI

This chapter tells you how your applications can use the LLAPI to access a Tivoli
Information Management for z/OS database to perform the tasks of:
¶ Creating records
¶ Updating records
¶ Retrieving records
¶ Inquiring about records
¶ Deleting records
¶ Using TSPs and TSXs

Although your application must interface with external systems that provide the data and
other parameters on which you base your use of the LLAPI, this aspect of your application
is not discussed. Instead, this book assumes that such data and parameters are present to
cause your application to start LLAPI transactions to accomplish the tasks in the preceding
list. In addition, this chapter does not discuss how your application processes transaction
results and what your application does next.

LLAPI text data set attributes are modified. A description of the changes follows in “Data
Sets” on page 21.

LLAPI Operating Characteristics
Using the LLAPI entails certain operating restrictions and characteristics.

Control Transfer Considerations
In an MVS environment, most high-level languages create an internal parameter list
structure in which the first 4 bytes are the address of the PICA. The call to the
server passes the PICA structure itself and not its address. See Figure 4 on page 21
for more information.

Also consider how to transfer control to the LLAPI server (module BLGYSRVR).
BLGYSRVR is installed with attributes of AMODE 31, RMODE ANY. Starting with
Version 5.1, Tivoli Information Management for z/OS runs above the 16MB address
range. Applications must be either link-edited with AMODE(31) RMODE(ANY) or
modified to use the MVS LINK macro to transfer control to BLGYSRVR. Also
consider establishing the server entry address by preloading BLGYSRVR using
either the MVS LOAD macro or the equivalent function in the language that you are
writing your application. This method is usually most efficient because the server is
loaded into storage only once, thereby saving load I/O cycles. Consider, too, whether
you want to enable the LLAPI to return data above the 16MB address range.

Operating Modes
The LLAPI works in synchronous or asynchronous modes. In synchronous mode,
your application does not receive control until the LLAPI returns transaction status

2

15Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

to your application. In asynchronous mode, the LLAPI returns control to your
application as soon as it receives a transaction request. Using asynchronous mode
enables your application to perform other tasks while the LLAPI is operating. Your
application can check on the status of the requested transaction at a later point in the
application program flow by using the check transaction completion (T010) function.
Except for this T010 transaction, however, your application cannot initiate another
transaction request until the first one has completed. You can set synchronous or
asynchronous mode only with the initialization transaction, and only at the beginning
of your session.

Validating Data
The LLAPI does not perform response validation as extensively as do panel dialogs
in Tivoli Information Management for z/OS entry or inquiry mode. However, it does
provide for some response validation and for some equal sign processing using the =
sign. Data from validation records can be used to construct PIPTs and thus be used
for validation. You can also define another field in the record that names a validation
record to use for validating field data. Your application can use the field validation
module BLGPPFVM to validate response data, or you can write your own validation
routines using the validation pattern tables provided by the LLAPI. With regard to
equal sign processing, if an equal sign is passed as data and the PICA flag
PICAEQRP=Y is set, then the API will attempt to process the equal sign using the
validation patterns in the PIPT. The four patterns which are currently supported in
the API environment are:
¶ DATE
¶ TIME
¶ USER
¶ CLASS

Collecting Data in Mixed Case
Data which is not validated is passed through the API in the case in which your
application supplies it. To convert the data to the case specified in the PIDT (derived
from the assisted-entry panel or data attribute record for the field), you must call the
validation module described in “Using BLGPPFVM To Validate Data Fields” on
page 279.

Loading and Initializing
Your application must establish program linkage to the server routineBLGYSRVR
before you can initiate the Tivoli Information Management for z/OS environment.
You initiate the Tivoli Information Management for z/OS environment by using the
environment initialization transaction (T001). The LLAPI performs all other
transactions only after your application initializes the Tivoli Information
Management for z/OS environment. The LLAPI environment requires that the
MVS/ESA™ operating system, data management services, and VSAM be available.
See “Environment Control Transactions” on page 27 for more information on
transaction T001.

Recovering from Errors
The LLAPI does not provide error recovery. However, you can design your
application to attempt error recovery.

Terminating
To end the Tivoli Information Management for z/OS environment, your application
calls the LLAPI using the environment termination transaction (T002). This
transaction frees up any resources held by Tivoli Information Management for z/OS.

LLAPI Operating Characteristics

16 Version 7.1

Your application is then responsible for deleting the server routine. See
“Environment Control Transactions” on page 27 for more information on transaction
T002.

LLAPI Logic
The LLAPI provides two operating modes:

¶ the mode which uses some of your interactive panel flow (called panel
processing)

¶ the mode which uses none of your interactive panel flow except when
processing the delete transaction; this mode is called bypass panel processing.

For information on how the LLAPI files records, see page 20. If you write
applications that process customized Tivoli Information Management for z/OS
records, you might need to perform setup steps or tailor the LLAPI TSPs to
correctly process these records. See “Tips for Writing an API Application” on
page 273, “Tailoring the Application Program Interfaces” on page 289, and “Terminal
Simulator Panels” on page 349 for more information.

Exit and Terminal Simulator Limitations
Program exits, Terminal Simulator Panels (TSPs), and Terminal Simulator Execs
(TSXs) that start as a result of file selection are the only program exits, TSPs, and
TSXs that run in the interface environment. If you choose to bypass panel
processing, file processing is performed by user exit BLGYAPRF and the file control
panel is not processed. If you use data model records, you can define in the data
view record a TSP or TSX to be run upon record file. Whether you use panel
processing or bypass panel processing, program exits, TSPs, and TSXs called during
panel processing in interactive mode are not called when your application accesses
Tivoli Information Management for z/OS. Your application must perform these
functions. For example, in the interactive reporter dialog, a program exit can
automatically add the reporter’s phone number. This program exit is not called when
the interface creates a record unless you use data model records. Therefore, the
application that creates records through the interface must add the reporter’s phone
number. You can use some of your existing automation on the create and update
transactions by calling program exits and linking to TSPs from the TSPs that control
these transactions. Review any commands run by TSPs or TSXs because certain
commands cannot run in an API environment (see “Command Limitations” on
page 24 for more information).

The value for command processing detection in the user profile determines how an
assisted-entry command reply is handled. If you modify or use TSPs or TSXs that
enter information into assisted-entry panels, be aware that the LLAPI changes the
value of this entry from PROMPT to DATA.

The value for Quick Search? in the user profile determines if structured search mode
or quick search mode is issued within Tivoli Information Management for z/OS. The
LLAPI changes the value for Quick Search to YES.

If you use data model records, some program exits can be invoked when data is
entered into fields. “Field Validation Using the Field Validation Module
BLGPPFVM” on page 279 contains a discussion of data model records and a list of
supported program exits.

The following occurs if a TSP or TSX receives a severe error:
¶ Fields TSCAFRET and TSCAFRES are set to 8.

LLAPI Operating Characteristics

17Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

¶ The reply buffer is cleared.
¶ The current dialog is ended.
¶ The severe error panel is not displayed.

If the severe error generates any messages, they are returned to your application or
printed, if your application requests messages to be printed or returned.

Record Update Retry and Wait Considerations
There is a small time window during which a record is unavailable when another
user is attempting to check out, update, or check in that record. This could make the
record unavailable to you for update even if you have checked out the record. To
avoid receiving an error from the LLAPI indicating that the record is unavailable,
you can direct the LLAPI to do either of the following:
¶ Retry the transaction from 1 to 255 times before returning control to the

application with the normal message or return code indicating the record is busy.
¶ Retry the transaction when the record is released.

The transaction can gain access to the record for your application as soon as the
record is released by the application or user that is attempting to access the record.
For example, you direct the LLAPI to attempt to perform the update record
transaction five times. If the first attempt fails, the LLAPI attempts the transaction
again. If the record is released before the second attempt, the LLAPI successfully
completes the transaction and returns control to your application. The LLAPI
performs five retries in all before returning control to your application.

To direct the LLAPI to retry these transactions, ask the person responsible for
defining the attributes in this session-parameters member to add the
APIENQ=NOWAIT parameter to the BLGPARMS macro. The default number of
retry attempts is 25. If you want to specify another number of retry attempts, specify
the APIRETRY=N parameter on the BLGPARMS macro, where N is the number of
retry attempts.

Functions Shipped Disabled
The following LLAPI functions are shipped disabled:
¶ On the create record (T102) and update record (T105) transactions:

v Use a dynamic PIDT
v Process history data
v Process text audit data

¶ On the delete record (T110) transaction:
v Delete a damaged record with the root VSAM key

If you are using panel processing, you can enable these functions by modifying the
TSPs for these LLAPI transactions. For the
¶ Create record transaction, modify TSP BLGAPI02
¶ Update record transaction, modify TSP BLGAPI05
¶ Delete record transaction, modify TSP BLGAPI10

If you have chosen to bypass panel processing, you can modify TSP BLGAPIPX to
enable those functions shipped disabled. See “Terminal Simulator Panels” on
page 349 for information on the TSPs and how to modify them.

Once the functions for a transaction are enabled, the TSP checks for database
administration authority.

LLAPI Operating Characteristics

18 Version 7.1

Multiple Response List Data Item Processing Considerations
A multiple response list item is a list column for which a single entry allows more
than 1 word. The LLAPI does not support multiple response list items.

Addressing
Applications using the LLAPI can reside in an address space above or below the
16MB address range. The components of the interface all reside above the 16MB
address range. Applications using either 24-bit or 31-bit addressing can call the
server.

If your application runs below the 16MB address range, it must transfer control to
the server using the MVS LINK macro. Using the LINK macro assures correct
address mode maintenance.

The LLAPI allocates storage and returns data using addresses above the 16MB
address range if you specify the PICAHMEM=Y when you initialize the LLAPI.

Checking Records In and Out
Checking out a record with an API differs from what interactive users of Tivoli
Information Management for z/OS are used to. When you check out a record with
an API, it remains checked out and unavailable to anyone else for update until you
perform a check in transaction, until an optional administrator-specified time limit is
reached, or until an administrator manually checks in the record. This way, you can
be sure that the record you want to work with is unchanged from the time you find
it until the time you make your own changes to it, even if your application ends
before it checks in the record. Your system administrator can define an expiration
time that will, in effect, check in records after the specified period of time. See
“Check Out Record (T104)” on page 47 and “Check Out Record (HL04)” on
page 162 for additional information on this process.

If your application runs a check–out transaction for any record, be sure to check it
back in when you finish with it.

Note: If you do not check in a record, the system administrator can check it in
interactively. Refer to the Tivoli Information Management for z/OS User’s
Guide for details on database cleanup.

LLAPI Environment Considerations
Your application must call the server BLGYSRVR in problem program state with
storage key 8 under the control of a task that was attached with storage key 8. If it
does not, unpredictable results can occur, such as an ABEND 0C4.

NetView Considerations
If your application runs under NetView, all Tivoli Information Management for z/OS
components must be put in an authorized program facility (APF) library.

Notification Considerations
API processing allows mail notification to users to be performed when an API
record is successfully filed. A TSP or TSX can be invoked from file processing if
you are using panel processing or you can define in a data view record the name of
a TSP or TSX to be invoked when a record is filed. A TSX can send mail via MVS
TCP/IP SMTP or local processing. For more information on mail notification and
TSPs or TSXs, refer to the Tivoli Information Management for z/OS Program
Administration Guide and Reference.

LLAPI Operating Characteristics

19Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Using Alias Names
The LLAPI provides transactions that obtain and free resources for alias tables, but
it does not provide alias table processing. Your application must provide the
processing.

Record File Processing
If you are using panel processing, the LLAPI performs record file processing for
create and update transactions by using Selection 9 (File Record) on summary
panels. It processes the record just as if you had used the panel interface. That is,
certain data fields, such as Date last altered, Time last altered, and Time entered, are
automatically set by Tivoli Information Management for z/OS.

If you are using the bypass panel processing function, record file processing is
performed by user exit BLGYAPRF.

Date Considerations
Dates used by your application can be processed in either of two ways:

Database format
Dates are passed to your application from the API in the default external
date format. Dates your application passes to the API must be in either the
default format or, if one is defined, the old format specified in the session
parameters being used. Dates passed in either format are automatically
converted to internal format when they are stored in the SDDS portion of
the database.

Application-specified format
Dates are passed between the API and your application in a date format your
application specifies. This format does not need to match that of the
database. The API automatically converts dates from the internal format in
the database to the format you specify when passing data to your application
and from your specified format to the database’s internal format when
receiving data from your application.

An application-specified date format is set in the LLAPI by specifying the
desired date format in the PICADFMT and PICADSEP fields. If you choose
this option and your date format is longer than PIDTMAXL for a field, the
entire date will be returned and PIDTCURL will be larger than PIDTMAXL.

The default external format is the default and can be specified in the LLAPI by
leaving the PICADFMT field set to zero or setting it to zero if an
application-specified format was used for the previous transaction.

Logical Database Partitioning
If you are using logical database partitioning, you can perform the database access
transactions (retrieve, update, check in, check out, add record relation, and delete)
only for records whose Owning Partition matches the Primary Partition of your
privilege class. You should also be aware that API applications cannot perform
multipartition searches.

LLAPI Calls
This example shows the interface call syntax which uses call-with-parameter-list
notation.
<Label> CALL BLGYSRVR (parameter list)

LLAPI Operating Characteristics

20 Version 7.1

|
|
|

|

|

|

|

Figure 4 shows the parameter list (PLIST) structure used for calling the interface as
it appears to an Assembler language program. The parameter list points to the
LLAPI communications area (PICA). Your application allocates and initializes the
PICA. The PICA cannot be allocated in protected storage.

This example shows how to code the setup of the PICA for your application. This is
a sample of various sections of code. It is not a complete application.
**
* GETMAIN AREA TO CONTAIN THE PICA *
**

LA R0,APICALNG LOAD ADDRESS OF THE PICA LENGTH
GETMAIN R,LV=(0) STORAGE FOR PICA
LR R5,R1 GETMAIN FOR PICA WORK AREA...

**
* INITIALIZE THE PARAMETER LIST *
**

LA R1,PARMLIST ADDRESSABILITY TO PARMLIST
ST R5,PICAADR STORE ADDRESS OF PICA

**
* CALL API INTERFACE *
**

LINK EP=BLGYSRVR...

**
* PARMLIST DEFINED *
**
PARMLIST DS 0F PLIST FOR
PICAADR DS F PARM1 (ADDR OF PICA)...

**
* PICA *
**

BLGUPICA
APICALNG EQU *-PICAACRO LENGTH OF PICA...

Data Sets
The LLAPI uses the following data sets:

¶ Text data set

This data set stores text data for a unique text record. You use text data sets when:
v Creating records that contain text
v Updating records that contain text
v Retrieving records that contain text

Register 1
PLIST

@PLIST

@PICA

PICA

Figure 4. Input Parameter List for the LLAPI

LLAPI Operating Characteristics

21Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Note: You can process text using a storage buffer and avoid the processing overhead
associated with data set manipulation. See “Text Processing Considerations” on
page 59 for details.

When retrieving text, the LLAPI creates the data set according to the following
conventions:

Data Set Name (DSN) =

v APPL_ID.TEXT_TYPE_S-WORD_INDEX.DYYDDD.THHMMSS.THS.TEXT

APPL_ID (1st qualifier)
The application name in PICA field PICAUSRN.

TEXT_TYPE_S-WORD_INDEX (2nd qualifier)
The s-word index of the text item in the data set.

When using a dynamic PIDT, this qualifier is Xnnnn, with nnnn being
the number of the freeform text entry in the record. For example, the
first freeform text entry in the record is X0001, the second is X0002,
and so on.

DYYDDD (3rd qualifier)
The character D followed by the Julian date expressed as YYDDD.

THHMMSS (4th qualifier)
The character T followed by the time expressed as HHMMSS.

THS (5th qualifier)
The time extended to tenths and hundredths of a second.

TEXT (6th qualifier)
The word TEXT.

When creating or updating text in the database, you can specify any valid data set name
up to 44 characters long.

When you retrieve text (text and audit) data from the database, the contents of the data
set are:
v Text Data – 132 bytes of text

Note: If the freeform text is modified to contain more than 132 bytes of text, only
132 bytes are returned.

v Audit Data – 36 bytes
Blank (1 byte)
Date in Julian format (YYDDD)

(5 bytes)
Blank (1 byte)
Time in format (hh:mm:ss) (8 bytes)
Blank (1 byte)
Application or user ID (8 bytes)
Blank (1 byte)
Privilege class name if present (8 characters)

(8 bytes)
Blanks (3 bytes)

v DCB Parameters (For both input and output. Retrieving text only uses output.)

LLAPI Operating Characteristics

22 Version 7.1

Data set organization = Sequential
Device type = DASD
Record format = Fixed block
Blocksize = 5280 when data set is used for input and

audit data is not specified

= 6216 when data set is used for output and
audit data is not suppressed, or when data set
is used for input and audit data is specified

= 6336 when data set is used for output and
audit data is suppressed

Record length = 132 when data set is used for input and
audit data is not specified, or when data set is
used for output and audit data is suppressed

= 168 when data set is used for output and
audit data is not suppressed, or when data set
is used for input and audit data is specified

Contents = variable text data.

¶ Report format table data set

This data set contains the data, pattern, and alias tables used by the LLAPI. It also
includes report format tables (RFTs) used for report generation. You can access the data
set through the session-parameters member named during interface initialization or
through the use of the RFTDD DDNAME.

If you concatenate report format table data sets, all block sizes do not have to be the
same.

¶ SYSPRINT data set

This data set contains, among other things, messages that can result from an abnormal
termination of the API subtask. The data set must be a sequential non-VSAM data set
you write to a system output device, a tape volume, or a direct access volume.

When Tivoli Information Management for z/OS writes to SYSPRINT, it formats the data
using DCB information specified by the user on either a SYSPRINT DD statement (that
is, LRECL or BLKSIZE) or a TSO ALLOCATE. If the user specifies an LRECL without
a BLKSIZE, Tivoli Information Management for z/OS sets the BLKSIZE to:

(14 * LRECL) + 4

If the user does not specify a BLKSIZE or an LRECL, the LRECL is set to:
(length of output message) + 4

and the BLKSIZE is set to:
(14 * LRECL) + 4

If the user specifies a BLKSIZE without an LRECL, the LRECL is set to the smaller of
the following two statements:

(length of output message) + 4

or
BLKSIZE - 4

LLAPI Operating Characteristics

23Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

In all cases, the LRECL must be less than or equal to (BLKSIZE - 4). If this is not the
case when the data set is opened, an abend will occur because the data attributes are
inconsistent.

The RECFM of the SYSPRINT data set must be VBA and the DSORG must be PS.

¶ APIPRINT data set

If you set the PICAMSGD field to B or P, this data set contains messages about
transaction activity. The data set must be a sequential non-VSAM data set that you write
to a system output device, a tape volume, or a direct access volume.

DCB parameters for this data set are:
DSORG = PS
RECFM = VBA
LRECL = 125
BLKSIZE = 6144

If you do not allocate the APIPRINT data set before you request logging, the LLAPI
dynamically allocates APIPRINT to a SYSOUT=A data set.

¶ SYSMDUMP data set

This data set must be defined to receive dump output that can result from an abnormal
termination of the API subtask. The data set must be a sequential non-VSAM data set
that you write to a tape volume or a direct access volume.

DCB parameters for this data set are:
DSORG = PS
RECFM = FB
LRECL = 4160
BLKSIZE = 4160

LLAPI Considerations and Restrictions
You must use unique s-words or p-words for all data responses to define the context of their
use, and you must define the field as replaceable. The term replaceable means that when the
LLAPI collects a unique field response, the last response collected for the field replaces all
previously collected responses for the field when the LLAPI stores the response in the
database. Refer to the Tivoli Information Management for z/OS Panel Modification Facility
Guide for more information on s-words.

The following transactions are exceptions to this limitation:
¶ Add record relation
¶ Create using dynamic PIDTs
¶ Update using dynamic PIDTs

Responses collected using the add record relations transaction are marked as nonreplaceable.
Responses collected using dynamic PIDTs are marked replaceable or nonreplaceable
depending on how the data is stored in the record that was retrieved to create the dynamic
PIDT.

The APIs enable your application to access Tivoli Information Management for z/OS without
passing SRCs in a batch-type panel driven process. The APIs do not support SRC records.

Command Limitations
When the LLAPI initializes Tivoli Information Management for z/OS,the following Tivoli
Information Management for z/OS commands are disabled:

LLAPI Operating Characteristics

24 Version 7.1

|

|

|

|
||
||
||
||

|

¶ CHANGE
¶ DRAW
¶ DROP
¶ ISPF
¶ PRINT
¶ RECALL
¶ REPORT
¶ WINDOW

If any user-written TSP or TSX issues such a command, Tivoli Information Management for
z/OS issues message BLG03046W, “The specified response is not a command or a panel
reply.”

Errors and Messages
Error conditions detected in the LLAPI are associated with a unique transaction. Return
codes indicate the transaction’s success or failure.

The LLAPI can issue messages to the APIPRINT activity log. The LLAPI also provides a
way to pass Tivoli Information Management for z/OS messages to the calling application by
using the interface message chain. When returning messages on the chain, PICA field
PICAMSGP contains a pointer to the message chain. PICA field PICAMSGC contains a
count of the messages on the chain. The messages on the chain are variable length.

The API subtask provides messages about the LLAPI transactions and functions. The API
writes these messages to the activity log or places them on the message chain or both. Refer
to Tivoli Information Management for z/OS Messages and Codes for messages issued by the
LLAPI. See “Return and Reason Codes” on page 301 for return codes and reason codes
issued by the LLAPI.

Structures
For detailed information on the LLAPI structures and their fields, refer to the sections in the
following list:

¶ Program interface communications area (PICA), see “Low-Level Program Interface
Communications Area (PICA)” on page 101.

¶ Program interface alias table (PALT), see “Program Interface Alias Table (PALT)” on
page 112.

¶ Program interface data table (PIDT), see “Program Interface Data Table (PIDT)” on
page 114.

¶ Program interface history table (PIHT), see “Program Interface History Table (PIHT)” on
page 132.

¶ Program interface pattern table (PIPT), see “Program Interface Pattern Table (PIPT)” on
page 136.

¶ Program interface argument table (PIAT), see “Program Interface Argument Table
(PIAT)” on page 139.

¶ Program interface results table (PIRT), see “Program Interface Results Table (PIRT)” on
page 141.

¶ Program interface message block (PIMB), see “Program Interface Message Block
(PIMB)” on page 143.

LLAPI Operating Characteristics

25Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

LLAPI Transactions
The LLAPI transactions your application uses are divided into three groups:
¶ Environment control
¶ Service
¶ Database access

Your application uses the environment control transactions to establish and to close the
Tivoli Information Management for z/OS environment and the LLAPI. Your application uses
the service transactions to access services, such as storage allocation and deallocation for
other transactions, obtaining special tables, checking in and checking out records being
modified by the LLAPI, and checking on the progress of transactions in process by the
LLAPI. Your application uses database access transactions to perform the database tasks
listed at the beginning of this chapter on page 15. Table 2 lists each function that the LLAPI
performs, its associated transaction number, and the page in this book where you can find
more information about the function.

Table 2. LLAPI Functions and Transactions
LLAPI Function Transaction Number page

Initialize Tivoli Information Management
for z/OS

T001 27

Terminate Tivoli Information Management
for z/OS

T002 30

Obtain external record ID T003 31

Obtain pattern table (PIPT) T004 33

Free pattern table (PIPT) T005 34

Free data table (PIDT) T006 35

Free result table (PIRT) T007 36

Check in a record T008 37

Sync and wait on completion T009 39

Check transaction completion T010 40

Obtain alias table (PALT) T011 41

Free alias table (PALT) T012 42

Load PIDT T013 43

Retrieve record T100 55

Obtain record create resource T101 44

Create record T102 63

Obtain record update resource T103 45

Check out a record T104 47

Update record T105 73

Obtain inquiry resource T106 49

Record inquiry T107 84

Obtain add record relation resource T108 50

Add record relation T109 93

Delete record T110 96

Start user TSP T111 52

LLAPI Transactions

26 Version 7.1

Table 2. LLAPI Functions and Transactions (continued)
LLAPI Function Transaction Number page

Change record approval T112 98

The remainder of this chapter describes the use of these transactions. For each transaction,
introductory text describes required and optional structure (control blocks, tables) fields,
their value settings, and their relationships to other structures. The descriptions include tables
that show transaction flow from the application through the LLAPI and back to the
application.

Environment Control Transactions
Use this group of transactions to initialize and end an LLAPI environment. You can also
establish particular operating characteristics for the environment. The environment control
transactions are T001 and T002.

Initialize Tivoli Information Management for z/OS (T001)
This transaction initializes the Tivoli Information Management for z/OS environment and
prepares the LLAPI for other transaction processing. It also lets you establish particular
environment operating characteristics by setting values in various fields in the PICA. Your
application can initialize any number of environments to run concurrently, but you must save
each one in a unique PICA or application pointer variable.

Each time you initialize a Tivoli Information Management for z/OS session, you establish a
storage environment for that particular instance of Tivoli Information Management for z/OS.
PICA field PICAENVP points to this storage environment.

Follow these steps to initialize Tivoli Information Management for z/OS:
1. Define storage areas for each PICA control block your application uses.
2. Initialize PICA fields to govern how this session instance of the LLAPI is to operate. If

you choose to use bypass panel processing, you must set PICADRIF=Y at initialization.
3. Initialize PICAENVP to zero.
4. Initialize PICALENG to the length of the PICA structure.
5. Start the server module BLGYSRVR, passing a parameter list with the first pointer in the

parameter list pointing to the PICA.

Your application must set the following PICA fields to the values specified and must
maintain the first three of these values throughout the environment’s session:

PICAACRO Uppercase character string of PICA.

PICALENG Length of PICA structure in fixed binary format.

PICAENVP A pointer to the address of the Tivoli Information Management for z/OS
environment. You must initialize this field to zero through the initialize
Tivoli Information Management for z/OStransaction (T001).

PICATRAN A transaction code of T001.

PICAUSRN The name by which Tivoli Information Management for z/OS recognizes
your application. Tivoli Information Management for z/OSuses this name in

LLAPI Transactions

27Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

place of a TSO user ID when performing record access privilege class
processing. The value specified must be an eligible user of the initial
privilege class record.

PICACLSN A valid privilege class name. This privilege class is known as the initial
privilege class.

PICASESS A session-parameters member name. The attributes defined in this
session-parameters member initialize Tivoli Information Management for
z/OS in a way that is similar to the initialization of an interactive session.

The following PICA fields are optional, and they further define the operating characteristics
of the optional fields of the Tivoli Information Management for z/OS session.

PICAASYN Set this field to Y if the server is to operate in asynchronous mode. When
the server operates asynchronously, control returns to your application right
after the LLAPI validates transaction parameters and the API subtask starts.
When using this mode, your application can issue a sync and wait on
completion (T009) or check transaction completion (T010) transaction to
inquire about the status of the currently processing transaction.
Asynchronous mode provides a way for your application to do other work
while the API processes your transaction.

PICACLSC A count of the number of privilege class records that can be maintained in
storage during this session. Any value of zero or larger is valid. However, if
you specify a value of zero, Tivoli Information Management for z/OS uses a
value of one. In an interactive session, your application operates under a
unique privilege class. If you want to change that class, you must choose a
new class from a list of class names you are entitled to use. Each time the
user chooses a new class, the LLAPI brings the class record into storage
where it is made the new class. In the API’s environment, the class records
stay in storage as long as there is space for them. This count field specifies
the number of class records that can be in storage simultaneously. When
storage contains the PICACLSC number of class records and you need a
new record, the LLAPI removes the least recently used class record from
storage to make room for the new record. If your application uses a large
number of different class records, make this count high for improved
performance. The value used, of course, must be tempered by considering
storage availability.

Note: The API also provides a method (PICACLSN) whereby you can start
database access transactions with a different privilege class.

PICATINT Transaction processing time interval. This field specifies the time (in
seconds) that any transaction can process before the LLAPI notifies your
application of a timeout.

It is important to realize that, because of external loads on the database,
there is no guarantee that transactions will run within a certain time. To
avoid problems, assign a worst-case time value that your application can
endure before timeout occurs and a recovery process must be started.

No transaction recovery can be made for environments operating in
synchronous mode. However, if your environment is asynchronous, you can
issue a check transaction completion (T010) transaction to restart the timeout
interval and obtain the status of the transaction for your application. You can

Environment Control Transactions

28 Version 7.1

also issue a sync and wait on completion (T009) transaction to transfer to
the interface and wait for the completion of the processing transaction or its
timeout. If a timeout occurs, you can issue another T009 or T010 transaction
to restart the timeout interval and wait for completion of the processing
transaction. In all of these actions your application should check return and
reason codes to determine the most appropriate course of action.

PICASPLI Spool interval indicating the number of minutes that the activity log can
print transaction results before the LLAPI closes and reopens the log.
Closing and reopening the log destroys data previously recorded in the log.

The maximum number of minutes you can use is 60*24 (that is, 60 minutes
multiplied by 24 hours=1440 minutes, one full day). If you specify more
minutes than there are in a day, the activity log closes and reopens after
1440 minutes, ignoring your specification.

Note: The activity log is intended for debugging and should not serve as a
history file.

PICAMSGD A 1-character field indicating destination of messages produced by the API
subtask. The character options and their meanings are:
P Returns output messages to an APIPRINT data set
C Returns output messages on the message chain
B Performs the functions of both P and C

Any characters other than P or B are treated as C. Your application sets this
field.

PICADBID This field defaults to 5, which indicates access to the Tivoli Information
Management for z/OS database. If you have other Tivoli Information
Management for z/OS type databases with other identifiers, you can access
another database by specifying its ID in this field.

PICAHMEM Set this field to Y if you want to allow the LLAPI and Tivoli Information
Management for z/OS to allocate memory above the 16MB address range.

PICADRIF Bypass panel processing indicator. This is set by your application. A Y
indicates that no panels should be used in record processing. Any other value
indicates panels should be used. If you specify a value of Y, you must also
use data model records (PICADMRC=Y)if you are using file processing
commands (create, update, or add record relation).

Table 3 shows the initialize Tivoli Information Management for z/OS transaction flow for a
synchronous environment. T001 starts the LLAPI and prepares Tivoli Information
Management for z/OSfor further transaction processing.

Environment Control Transactions

29Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 3. LLAPI Transaction T001. Initialize Tivoli Information Management for z/OS (Synchronous)
Step Program Action

1 Application ¶ Establishes linkage to module BLGYSRVR and saves its address
¶ Gets storage for a PICA
¶ Sets PICA fields as follows:

v PICAACRO=PICA
v PICALENG=length of PICA
v PICATRAN=T001 (Initialize Tivoli Information Management for z/OS)
v PICAUSRN=application ID
v PICACLSN=privilege class name
v PICACLSC=class record count
v PICASESS=session-parameters member name
v PICAENVP=0
v PICAASYN=blank

Note: Specify a Y in this field to initialize Tivoli Information Management for
z/OS in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies a received transaction’s validity. The application
can then check the return code and, if no error is detected, perform other
processes. The application can periodically check the status of the transaction
being processed by the server, or it can start the sync and wait on completion
transaction (T009) and wait for the transaction being processed by the server to
finish. See explanations of T009 sync and T010 check transactions, page 39.

v PICATINT=300 (seconds)
¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Attaches API subtask
¶ Waits for completion
¶ Sets the following PICA fields:

v PICARETC
v PICAREAS
v PICAENVP

Note: Your application must maintain the environment block pointer
(PICAENVP) until you end the LLAPI session.

v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PICAMSGC contains message count.
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Terminate Tivoli Information Management for z/OS (T002)
This transaction stops the LLAPI and terminates the Tivoli Information Management for
z/OS environment. You must specify the following PICA field to start this transaction:

PICATRAN A transaction code of T002.

Environment Control Transactions

30 Version 7.1

Table 4 shows the terminate Tivoli Information Management for z/OS transaction flow for a
synchronous environment. For more detailed information on the LLAPI structures and their
fields, see “LLAPI Structures” on page 100.

Table 4. LLAPI Transaction T002. Terminate Tivoli Information Management for z/OS
(Synchronous)
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T002 (Terminate Tivoli Information Management for z/OS)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 sync and T010 check
transactions, page 39.

¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Detaches API subtask
¶ Waits for completion
¶ Sets the following PICA fields:

v PICARETC
v PICAREAS
v PICAENVP
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PICAENVP contains 0.
v PICAMSGC contains 0.
v PICAMSGP contains 0.

¶ Continues processing.

Interface Service Transactions
These transactions provide unique services to your application and other transactions. These
services include obtaining and freeing storage resources for other transactions and tables,
obtaining special tables, checking records in and out, and checking transaction progress.
These transactions are T003 through T013, T101, T103, T106, T108, and T111.

Obtain External Record ID (T003)
This transaction obtains an external record ID for use in creating records. On return to your
application, the external record ID is stored in PICA field PICARNID. This transaction is
useful in providing your application with a centralized record numbering service to prevent
duplicate record IDs. Once you obtain the record ID, you cannot return it to the system.

Environment Control Transactions

31Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

To create a record with this record ID, specify this record ID for the field associated with
p-word RNID/ on the create transaction (T102). Be aware that this record ID might not pass
validation because record IDs are usually not allowed to be all-numeric.

You must specify the following PICA fields to start this transaction:

PICATRAN A transaction code of T003.

You can specify values for these PICA fields if you want to change the name of the current
application ID or the name of the current privilege class:

PICAUSRN The name by which Tivoli Information Management for z/OS recognizes
your application.You can specify a value here to change the name of the
current application ID. Tivoli Information Management for z/OS uses this
name in place of a TSO user ID when performing record access privilege
class processing. The value specified must be an eligible user of the current
privilege class record.

PICACLSN A valid privilege class name.You can specify a value here to change the
current privilege class record.

Table 5 shows the obtain external record ID transaction flow for a synchronous environment.
For more detailed information on the LLAPI structures and their fields, see “LLAPI
Structures” on page 100.

Table 5. LLAPI Transaction T003. Obtain External Record ID (Synchronous)
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T003 (Obtain External Record ID)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 sync and T010 check
transactions, page 39.

¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following PICA fields:

v PICARETC
v PICAREAS
v PICARNID
v PICAMSGC
v PICAMSGP

¶ Returns to application.

Interface Service Transactions

32 Version 7.1

Table 5. LLAPI Transaction T003 (continued). Obtain External Record ID (Synchronous)
Step Program Action

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code
v PICAREAS contains reason code
v PICARNID contains external record ID if transaction is successful
v PICAMSGC contains number of messages
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Obtain Pattern Table (T004)
This transaction obtains an existing Program Interface Pattern Table (PIPT) associated with a
particular PIDT. To conserve resources, the LLAPI does not obtain a PIPT when it obtains
an associated PIDT. You obtain the PIPT only when you want to validate data responses
before storing them in a response buffer. This transaction obtains the companion PIPT
specified in the PIDT so the application can provide a level of response validation similar to
that provided by the assisted-entry panel of an interactive session. The address of the PIPT is
stored in PIDT field PIDTPIPT.

The LLAPI allows your application to provide response validation by invoking the
BLGPPVFM field validation module or any user-written validation module. Your application
must start this transaction to obtain the pattern table before you can use a validation module.
You must specify the following PICA fields to start this transaction:

PICATRAN A transaction code of T004

PICAPIDT Pointer to the PIDT for which this transaction obtains a PIPT

Table 6 shows the obtain PIPT transaction flow for a synchronous environment. For more
detailed information on the LLAPI structures and their fields, see “LLAPI Structures” on
page 100.

Table 6. LLAPI Transaction T004. Obtain PIPT (Synchronous)
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T004 (Obtain PIPT)
v PICAPIDT=address of the PIDT naming the PIPT

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 and T010 check and sync
transactions on page 39.

¶ Calls BLGYSRVR(PICA).

Interface Service Transactions

33Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 6. LLAPI Transaction T004 (continued). Obtain PIPT (Synchronous)
Step Program Action

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following fields:

v PICARETC
v PICAREAS
v PIDTPIPT
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PIDTPIPT points to pattern table (PIPT).
v PICAMSGC contains number of messages.
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Free Pattern Table (T005)
This transaction frees the storage associated with a particular PIPT. You must specify the
following fields to start this transaction:
PICATRAN A transaction code of T005
PICAPIDT Pointer to the PIDT containing the address of the PIPT to be freed.

Table 7 shows the free PIPT transaction flow for a synchronous environment. For more
detailed information on the LLAPI structures and their fields, see on page 39.

Table 7. LLAPI Transaction T005. Free PIPT (Synchronous)
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T005 (Free PIPT)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 and T010 check and sync
transactions on page 39.

v PICAPIDT=address of PIDT pointing to PIPT.
¶ Calls BLGYSRVR(PICA).

Interface Service Transactions

34 Version 7.1

Table 7. LLAPI Transaction T005 (continued). Free PIPT (Synchronous)
Step Program Action

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following fields:

v PICARETC
v PICAREAS
v PIDTPIPT
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PIDTPIPT contains 0.
v PICAMSGC contains number of messages.
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Free Data Table (T006)
This transaction frees the storage associated with a particular PIDT. The storage resources
include:
¶ Response buffer storage associated with the PIDT
¶ PIAT storage associated with the PIDT
¶ PIPT storage associated with the PIDT
¶ PIHT storage associated with the PIDT
¶ PIDT storage

You must specify the following PICA fields to start this transaction:
PICATRAN A transaction code of T006
PICAPIDT Pointer to the PIDT to free

Table 8 shows the free PIDT transaction flow for a synchronous environment. For more
detailed information on the LLAPI structures and their fields, see “LLAPI Structures” on
page 100.

Interface Service Transactions

35Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 8. LLAPI Transaction T006. Free PIDT (Synchronous)
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T006 (Free PIDT)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 and T010 check and sync
transactions on page 39.

v PICAPIDT=address of PIDT to free.
¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following PICA fields:

v PICARETC
v PICAREAS
v PICAPIDT
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PICAPIDT contains 0.
v PICAMSGC contains number of messages.
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Free Result Table (T007)
This transaction frees the storage associated with a PIRT that the API generates as a result of
an inquiry transaction. If you save a search results list, you can specify a search ID
(PICASRID), a PIRT address, or both to free all storage for that search. The process used by
this transaction to free storage depends on whether you specify a search ID:

¶ If you specify a search ID, the search results list is freed, and the specified PIRT address
is set to zero if the following conditions are true:
v A search results list is found with that search ID.
v The specified PIRT address matches the PIRT address of the search results list.

¶ If you do not specify a search ID and the specified PIRT is part of a search results list,
all storage for the search results list is freed, including the specified PIRT.

When the search is freed, it cannot be used to return match results. If successive inquiry
transactions require larger PIRTs, the API allocates them. Your application can conserve
storage by freeing the PIRT after your application performs its last inquiry transaction.

You must specify the following PICA field to start this transaction:

Interface Service Transactions

36 Version 7.1

PICATRAN A transaction code of T007

The following PICA fields are optional, but at least one must be specified:
PICAPIRT Pointer to the PIRT to free.
PICASRID A search ID to free

Table 9 shows the free PIRT transaction flow for a synchronous environment. For more
detailed information on the LLAPI structures and their fields, see “LLAPI Structures” on
page 100.

Table 9. LLAPI Transaction T007. Free PIRT
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T007 (free PIRT)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 and T010 check and sync
transactions on page 39.

v PICAPIRT=address of PIRT (if PICASRID not specified)
v PICASRID=search ID (if search results saved)

¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following PICA fields:

v PICARETC
v PICAREAS
v PICAMSGC
v PICAMSGP

¶ If PICASRID is not specified or is specified and represents a search results list,
sets the following PICA fields to zero:
v PICASRID
v PICAPIRT

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PICAPIRT contains 0.
v PICASRID contains 0.
v PICAMSGC contains number of messages.
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Check In Record (T008)
This transaction removes the checkout indicator in a record when the application ID stored
in the record is the same as the application ID issuing the transaction request. If another

Interface Service Transactions

37Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Tivoli Information Management for z/OS user is attempting to update the record when you
attempt to check in the record and the API returns an unavailable condition, your application
should restart the check in record transaction as described below until it succeeds.

You can direct the LLAPI to either retry this transaction from 1 to 255 times before
returning control to your application or wait until the record is available. See page 18 for
more information.

Note: If you are using logical database partitioning, you can check in a record only if the
Owning Partition of that record matches the Primary Partition of your privilege class.

You must specify the following PICA fields to start this transaction:
PICATRAN A transaction code of T008
PICARNID The record ID or root VSAM key for which the checkout indicator is to be

removed so other database users can access the record.

You must also specify PICAVSAM=Y in the PICA when using a root
VSAM key in PICARNID.

You can specify values for these PICA fields if you want to change the name of the current
application ID or the name of the current privilege class:

PICAUSRN The name by which Tivoli Information Management for z/OS recognizes
your application.You can specify a value here to change the name of the
current application ID. Tivoli Information Management for z/OS uses this
name in place of a TSO user ID when performing record access privilege
class processing. The value specified must be an eligible user of the current
privilege class record.

PICACLSN A valid privilege class name.You can specify a value here to change the
current privilege class record.

Table 10 on page 39 shows the check in record transaction flow for a synchronous
environment. For more detailed information on the LLAPI structures and their fields, see
“LLAPI Structures” on page 100.

Interface Service Transactions

38 Version 7.1

Table 10. LLAPI Transaction T008. Check In Record (Synchronous)
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T008 (Check In Record)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 and T010 check and sync
transactions on page 39.

v PICARNID=record ID or root VSAM key of record to check in
v PICAVSAM=Y if using a root VSAM key.
v PICAUSRN=application ID if you want to change the name of the current

application.
v PICACLSN=privilege class if you want to change the privilege class.

¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following PICA fields:

v PICARETC
v PICAREAS
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PICAMSGC contains number of messages.
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Sync and Wait On Completion (T009)
This transaction allows your application to wait for a previously attempted transaction to
complete. When the wait ends, the LLAPI provides information about the previously
attempted transaction. If the transaction is not completed when the sync and wait transaction
is issued, the API returns control to the application when the previously attempted
transaction either completes or ends with a time-out. If a transaction timeout interval occurs
for the sync and wait transaction, the application can issue another sync (T009) or check
(T010) transaction to initiate another time interval and continue the sync and wait
transaction. The application can also issue the terminate transaction (T002).

The PICA return and reason codes correspond to the previously attempted transaction. The
codes returned by the API depends on the condition detected by the API. The LLAPI returns
a warning return code with a reason code that indicates no transaction is active. The LLAPI
returns various other codes to indicate transaction completion. See “Return and Reason
Codes” on page 301 for more information about codes that can be returned in the PICA.

Interface Service Transactions

39Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

You must specify the following PICA field to start this transaction:

PICATRAN A transaction code of T009.

Table 11 shows the sync and wait on completion transaction flow for an asynchronous
environment. For more detailed information on the LLAPI structures and their fields, see
“LLAPI Structures” on page 100.

Table 11. LLAPI Transaction T009. Sync and Wait on Completion (Asynchronous)
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T009 (sync and wait on completion)

¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Waits for completion
¶ Sets the following PICA fields:

v PICARETC
v PICAREAS
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PICAMSGC contains number of messages.
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Check Transaction Completion (T010)
This transaction provides your application with the status of a previously attempted
transaction. If the transaction is not finished when you start the check transaction, the API
immediately returns control to the application and provides the status of the previous
function. This transaction does not schedule any work by the API task.

The PICA return and reason codes correspond to the previously attempted transaction. The
codes returned by the API depends on the condition detected by the API. The LLAPI returns
a warning return code with a reason code that indicates no transaction is active. The LLAPI
returns various other codes to indicate transaction completion. See “Return and Reason
Codes” on page 301 for more information about codes that can be returned in the PICA.

You must specify the following PICA field to start this transaction.

PICATRAN A transaction code of T010.

Table 12 on page 41 shows the check transaction completion transaction flow for an
asynchronous environment. For more detailed information on the LLAPI structures and their
fields, see “LLAPI Structures” on page 100.

Interface Service Transactions

40 Version 7.1

Table 12. LLAPI Transaction T010. Check Transaction Completion (Asynchronous)
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T010 (Check Transaction Completion)

¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Checks previous transaction’s status
¶ Waits for completion
¶ Sets the following PICA fields:

v PICARETC
v PICAREAS
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PICAMSGC contains number of messages.
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Obtain Alias Table (T011)
This transaction retrieves a specified alias table (PALT) from its PDS, and creates a copy of
it for the LLAPI to use. You must specify the following PICA fields to start this transaction:
PICATRAN A transaction code of T011
PICATBLN The name of the table to retrieve

Table 13 shows the obtain alias table transaction flow for a synchronous environment. For
more detailed information on the LLAPI structures and their fields, see “LLAPI Structures”
on page 100.

Table 13. LLAPI Transaction T011. Obtain Alias Table (Synchronous)
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T011 (Obtain Alias Table PALT)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 and T010 check and sync
transactions on page 39.

v PICATBLN=requested alias table name
¶ Calls BLGYSRVR(PICA).

Interface Service Transactions

41Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 13. LLAPI Transaction T011 (continued). Obtain Alias Table (Synchronous)
Step Program Action

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following PICA fields:

v PICARETC
v PICAREAS
v PICATBLP
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PICATBLP points to alias table.
v PICAMSGC contains number of messages.
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Free Alias Table (T012)
This transaction frees the allocated storage of an alias table (PALT). You must specify the
following PICA fields to start this transaction:
PICATRAN A transaction code of T012
PICATBLP A pointer to the alias table to be freed.

Table 14 shows the free alias table transaction flow for a synchronous environment. For
more detailed information on the LLAPI structures and their fields, see “LLAPI Structures”
on page 100.

Table 14. LLAPI Transaction T012. Free Alias Table (Synchronous)
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T012 (Free Alias Table PALT)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 and T010 check and sync
transactions on page 39.

v PICATBLP=alias table to be freed.
¶ Calls BLGYSRVR(PICA).

Interface Service Transactions

42 Version 7.1

Table 14. LLAPI Transaction T012 (continued). Free Alias Table (Synchronous)
Step Program Action

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following PICA fields:

v PICARETC
v PICAREAS
v PICATBLP
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PICATBLP contains 0.
v PICAMSGC contains number of messages.
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Load PIDT (T013)
This transaction is used to load a static PIDT (or generate a PIDT from data model records)
to obtain information about the data model for a record. PIDTs obtained via this transaction
should not be used on subsequent database access transactions (for example, record create).
The value for PIDTREQD is always returned as N. You must specify the following PICA
fields to start this transaction:
PICATRAN A transaction code of T013.
PICATABN The name of the static PIDT or data view record.
PICADMRC Specify a value of Y if PICATABN contains a data view name; specify a

value of blank if PICATABN contains a static PIDT name.
PICAREQL Set to 0.

Table 15 shows the load PIDT transaction flow. For more detailed information on the LLAPI
structures and their fields, see “LLAPI Structures” on page 100.

Table 15. LLAPI Transaction T013. Load PIDT
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T013 (Load PIDT)
v PICATABN=name of the static PIDT or data view name
v PICADMRC=Y to indicate that PICATABN is a data view name or blank to

indicate that PICATABN is a static PIDT name
v PICAREQL=0 to not obtain a response buffer

¶ Calls BLGYSRVR(PICA).

Interface Service Transactions

43Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 15. LLAPI Transaction T013 (continued). Load PIDT
Step Program Action

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following PICA fields:

v PICARETC
v PICAREAS
v PICAPIDT
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PICAPIDT points to PIDT.
v PICAMSGC contains number of messages.
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Obtain Record Create Resource (T101)
This transaction constructs table and storage resources for record creation. If you are using
static PIDTs built by BLGUT8, the LLAPI allocates storage for a new PIDT, loads the
specified PIDT from the Report Format Table data set concatenation, and stores its address
in PICA field PICAPIDT. If you are using data model records, the PIDT is built fromthe
specified data view record. The LLAPI also allocates storage for a response buffer and stores
its address in PIDT field PIDTBUFP. Your application specifies the required size of the
response data buffer in PICA field PICAREQL.

You must specify the following PICA fields to start this transaction:
PICATRAN A transaction code of T101.
PICATABN Name of static record create PIDT name. If you are using data modelrecords

(that is, PICADMRC=Y), then PICATABN contains the record ID (RNID) of
the data view record.

PICAREQL Requested response buffer length.

If you are using data view records, and an error is returned(PICARETC not equal 0), check
PICAPIDT for the address of the PIDT. If one was returned, search for PIDTCODEs to find
any additional error codes and you must also free any storage that was obtained.

It can take a significant amount of time to generate a PIDT from data view records. The
length of time depends on the number of data attribute records (and validation records that
they reference) contained in the data view record. As with any PIDT, you can maintain the
PIDT in storage for subsequent use.

Table 16 shows the obtain create-resource transaction flow for a synchronous environment.
For more detailed information on the LLAPI structures and their fields, see “LLAPI
Structures” on page 100.

Interface Service Transactions

44 Version 7.1

Table 16. LLAPI Transaction T101. Obtain Create-Resource (Synchronous)
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T101 (Obtain Create-Resource)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 and T010 check and sync
transactions on page 39.

v PICATABN=record-create PIDT name. If you are using data models
(PICADMRC=Y), then this is the data view name.

v PICAREQL=requested response buffer length
¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following fields:

v PICARETC
v PICAREAS
v PICAPIDT
v PIDTBUFP
v PIDTBUFL
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PICAPIDT points to PIDT.
v PIDTBUFP points to response buffer.
v PIDTBUFL contains length of response buffer.
v PIDTCODE contains any field error codes.
v PICAMSGC contains number of messages.
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Obtain Record Update Resource (T103)
This transaction constructs table and storage resources needed for record update. If you are
using static PIDTs built by BLGUT8, the LLAPI allocates storage for a new PIDT, loads the
specified PIDT from the Report Format Table data set concatenation, and stores its address
in PICA field PICAPIDT. If you are using data model records, the PIDT is built from the
specified data view record. The LLAPI also allocates storage for a response buffer and stores
its address in PIDT field PIDTBUFP. Your application specifies the required size of the
response data buffer in PICA field PICAREQL.

You must specify the following PICA fields to start this transaction:
PICATRAN A transaction code of T103.

Interface Service Transactions

45Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

PICATABN Update resource PIDT name. If you are using data model records (that is,
PICADMRC=Y), then PICATABN contains the record ID (RNID) of the
data view record.

PICAREQL Requested response buffer length.

If you are using data view records, and an error is returned (PICARETC not equal 0), check
PICAPIDT for the address of the PIDT. If one was returned, search for PIDTCODEs to find
any additional error codes and you must also free any storage that was obtained.

It can take a significant amount of time to generate a PIDT from data view records. The
length of time depends on the number of data attribute records (and validation records that
they reference) contained in the data view record. As with any PIDT, you can maintain the
PIDT in storage for subsequent use.

Table 17 shows the obtain update-resource transaction flow for a synchronous environment.
For more detailed information on the LLAPI structures and their fields, see “LLAPI
Structures” on page 100.

Table 17. LLAPI Transaction T103. Obtain Update Resource (Synchronous)
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T103 (Obtain Update Resource)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 and T010 check and sync
transactions on page 39.

v PICATABN=record update PIDT name. If you are using data models
(PICADMRC=Y), then this is the data view name.

v PICAREQL=requested response buffer length
¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following fields:

v PICARETC
v PICAREAS
v PICAPIDT
v PIDTBUFP
v PIDTBUFL
v PICAMSGC
v PICAMSGP

¶ Returns to application.

Interface Service Transactions

46 Version 7.1

Table 17. LLAPI Transaction T103 (continued). Obtain Update Resource (Synchronous)
Step Program Action

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PICAPIDT points to PIDT.
v PIDTBUFP points to response buffer.
v PIDTBUFL contains buffer length.
v PIDTCODE contains any field error codes.
v PICAMSGC contains number of messages.
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Check Out Record (T104)
This transaction provides a mechanism for the LLAPI to hold a record for update. The check
out function automatically updates the record and adds an indicator to prevent subsequent
record updates by another user or application. This does not prevent other users from
attempting to access the record; it only prevents them from updating the record. Any
transactions attempting to update the record might not be able to access the record
immediately and might have to try one or more times. The LLAPI does not allow multiple
check outs of the same record by the same application ID. Record check out indicators are
removed by any of the following actions:
¶ Your application performs a Check In Record (T008) transaction

If another Tivoli Information Management for z/OS user is attempting to update the
record when you attempt to check out the record and the API returns an unavailable
condition, your application should restart the check out record transaction as described
below until it succeeds.

You can direct the LLAPI to either retry this transaction from 1 to 255 times before
returning control to your application or wait until the record is available. See page 18
for more information.

¶ The expiration timeout limit is exceeded.
¶ The database administrator performs an interactive check in of the record.

Check out transactions store the ID of the current application in the record. This provides a
mechanism to track and administer record check outs. When an application checks out a
record, the record is unavailable for update by anyone else (either other API applications or
interactive users) until it is checked in.

Note: If you are using logical database partitioning, you can check out a record only if the
Owning Partition of that record matches the Primary Partition of your privilege class.

In order to reduce the risk of leaving a record indefinitely in checked–out status, you may
wish to specify the BLX-SP parameter APICHKOUTLIM (this is described in greater detail
in the Tivoli Information Management for z/OS Planning and Installation Guide and
Reference). When a check–out limit is specified, the check–out record process reads the
value specified for this parameter and performs one of the following functions:

¶ If the record is not already checked out, or it is checked out to a different application ID
and the check out time has expired, the record is checked out to the new application ID
and the check out time period is added to the current clock time and stored in the
record.

Interface Service Transactions

47Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

¶ If the record is already checked out to a different application ID and the check out time
has not expired, an error is returned indicating that the record is in use.

¶ If the record is already checked out to the same application ID, then the expiration time
is reset to a full check out time period and saved in the record.

The expiration time is also checked by the Update Record (T105) transaction, by the Add
Record Relations (T109) transaction, by the Delete Record (T110) transaction, and by
interactive update and delete processing.

You must specify the following PICA fields to start this transaction:
PICATRAN A transaction code of T104
PICARNID External record ID or root VSAM key. You must also specify

PICAVSAM=Y in the PICA when using a root VSAM key in PICARNID.

You can specify values for these PICA fields if you want to change the name of the current
application ID or the name of the current privilege class:

PICAUSRN The name by which Tivoli Information Management for z/OS recognizes
your application.You can specify a value here to change the name of the
current application ID. Tivoli Information Management for z/OS uses this
name in place of a TSO user ID when performing record access privilege
class processing. The value specified must be an eligible user of the current
privilege class record.

PICACLSN A valid privilege class name.You can specify a value here to change the
current privilege class record.

Table 18 shows the check out record transaction flow for a synchronous environment. For
more detailed information on the LLAPI structures and their fields, see “LLAPI Structures”
on page 100.

Table 18. LLAPI Transaction T104. Check Out Record (Synchronous)
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T104 (Check Out Record)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 and T010 check and sync
transactions on page 39.

v PICARNID=record ID or root VSAM key of record to check out
v PICAVSAM=Y if using a root VSAM key.
v PICAUSRN=application ID if you want to change the name of the current

application.
v PICACLSN=privilege class if you want to change the privilege class.

¶ Calls BLGYSRVR(PICA).

Interface Service Transactions

48 Version 7.1

Table 18. LLAPI Transaction T104 (continued). Check Out Record (Synchronous)
Step Program Action

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following PICA fields:

v PICARETC
v PICAREAS
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PICAMSGC contains number of messages.
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Obtain Inquiry Resource (T106)
This transaction constructs table and storage resources for record inquiry transactions. If you
are using static PIDTs built by BLGUT8, the LLAPI allocates storage for a new PIDT, loads
the specified PIDT from the Report Format Table data set concatenation, and stores its
address in PICA field PICAPIDT. If you are using data model records, the PIDT is built
from the specified data view record. The API allocates storage for a response buffer and
stores its address in the PIDT field PIDTBUFP. Your application specifies the required
amount of response buffer storage in PICAREQL.

Structured inquiry arguments (stored in the PIDT) simulate quick-search responses. The
LLAPI allocates the PIAT needed to specify freeform search arguments. Each freeform
argument word occupies an individual PIAT row. Your application specifies the number of
rows needed.

You must specify the following PICA fields to start this transaction:
PICATRAN A transaction code of T106.
PICATABN Record inquiry PIDT name. If you are using data model records (that is,

PICADMRC=Y), then PICATABN contains the record ID (RNID) of the
data view record.

PICAREQL Requested response buffer length (must be greater than 0)
PICAREQR Number of PIAT rows.

If you are using data view records, and an error is returned (PICARETC not equal 0), check
PICAPIDT for the address of the PIDT. If one was returned, search for PIDTCODEs to find
any additional error codes and you must also free any storage that was obtained.

It can take a significant amount of time to generate a PIDT from data view records. The
length of time depends on the number of data attribute records (and validation records that
they reference) contained in the data view record. As with any PIDT, you can maintain the
PIDT in storage for subsequent use.

Interface Service Transactions

49Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 19 shows the obtain inquiry resource transaction flow for a synchronous environment.
For more detailed information on the LLAPI structures and their fields, see “LLAPI
Structures” on page 100.

Table 19. LLAPI Transaction T106. Obtain Inquiry Resource (Synchronous)
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T106 (Obtain Inquiry Resource)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 and T010 check and sync
transactions on page 39.

v PICATABN=inquiry PIDT name. If you are using data models
(PICADMRC=Y), then this is the data view name.

v PICAREQL=request response buffer length
v PICAREQR=number of PIAT rows

¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following fields:

v PICARETC
v PICAREAS
v PICAPIDT
v PIDTBUFP
v PIDTBUFL
v PIDTPIAT
v PICAMSGC
v PICAMSGP
v PIATNUMR

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PICAPIDT points to PIDT.
v PIDTBUFP points to response buffer.
v PIDTBUFL contains buffer length.
v PIDTCODE contains any field error codes.
v PIDTPIAT points to PIAT.
v PICAMSGC contains number of messages.
v PICAMSGP points to message chain if PICAMSGC > 0.
v PIATNUMR contains the number of rows allocated in the PIAT.

¶ Continues processing.

Obtain Add Record Relation Resource (T108)
This transaction constructs table and storage resources required for adding record relations to
parent records. If you are using static PIDTs built by BLGUT8, the LLAPI allocates storage

Interface Service Transactions

50 Version 7.1

for a new PIDT, loads the specified PIDT from the Report Format Table data set
concatenation, and stores its address in PICA field PICAPIDT. If you are using data model
records, the PIDT is built from the specified data view record. The LLAPI allocates storage
for an add record relations PIDT, loads the specified PIDT from the report format table data
set concatenation, and stores its address in PICA field PICAPIDT. It also allocates storage
for a response buffer and stores its address in PIDT field PIDTBUFP. Your application
specifies the size of the response buffer storage required in PICA field PICAREQL.

You must specify the following PICA fields to start this transaction:
PICATRAN Transaction code of T108
PICATABN Record relation PIDT name. If you are using data model records (that is,

PICADMRC=Y), then PICATABN contains the record ID (RNID) of the
data view record.

PICAREQL Requested response buffer length.

If you are using data view records, and an error is returned (PICARETC not equal 0), check
PICAPIDT for the address of the PIDT. If one was returned, search for PIDTCODEs to find
any additional error codes and you must also free any storage that was obtained.

It can take a significant amount of time to generate a PIDT from data view records. The
length of time depends on the number of data attribute records (and validation records that
they reference) contained in the data view record. As with any PIDT, you can maintain the
PIDT in storage for subsequent use.

Table 20 shows the obtain add record relation resource transaction flow for a synchronous
environment. For more detailed information on the LLAPI structures and their fields, see
“LLAPI Structures” on page 100.

Table 20. LLAPI Transaction T108. Obtain Add Record Relation Resource (Synchronous)
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T108 (Obtain Add Record Relation Resource)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 and T010 check and sync
transactions on page 39.

v PICATABN=add record relation PIDT name. If you are using data models
(PICADMRC=Y), then this is the data view name.

v PICAREQL=request response buffer length
¶ Calls BLGYSRVR(PICA).

Interface Service Transactions

51Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 20. LLAPI Transaction T108 (continued). Obtain Add Record Relation Resource
(Synchronous)
Step Program Action

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following fields:

v PICARETC
v PICAREAS
v PICAPIDT
v PIDTBUFP
v PIDTBUFL
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PICAPIDT points to PIDT.
v PIDTBUFP points to response buffer.
v PIDTBUFL contains buffer length.
v PIDTCODE contains any field error codes.
v PICAMSGC contains number of messages.
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Start User TSP or TSX (T111)
Use this transaction to start a user Terminal Simulator Panel (TSP) or Terminal Simulator
Exec (TSX).

When your application runs this transaction, the API subtask router panel BLGAPI00 (if you
are using panel processing) or the API subtask router panel BLGAPIDI (if you are bypassing
panel processing) uses user exit BLGYITSP to invoke a TSP or TSX specified by your
application, or, if your application does not specify the name of a TSP or TSX, branches to
the label LINKT111.

Note: If your application does not specify the name of a TSP or TSX to invoke, prior to
performing this transaction you must have defined a LINK control line to link
BLGAPI00 or BLGAPIDI to the user TSP or TSX.

Your application can pass parameter data to the TSP by allocating a user-defined structure
and storing its address in PICA field PICAPARM. When the TSP runs, the Terminal
Simulator Communications Area (TSCA) field TSCAUPTR contains this address. You can
store any type of user data in the parameter structure. Your application can also specify the
privilege class that it wants the TSP to run under.

The PICA field PICAPARM can also be used to contain the address of a string to be passed
to an invoked TSP in the variable data area or an invoked TSX as an argument. The
maximum length of the string, in characters, is 255.

The PICA field PICAPARL signals whether PICAPARM is the address of a user buffer or
the address of a string. If PICAPARL is set to 0, then PICAPARM is the address of the user
buffer to be passed, and thus TSCAUPTR is set to the address contained in PICAPARM. If

Interface Service Transactions

52 Version 7.1

PICAPARL is greater than 0 (to a maximum of 255), then it indicates that PICAPARM is
the address of a string; the value of PICAPARL is the length in characters of the address
string being passed. A specified string parameter will only be passed as an argument to a
TSP or TSX specified in PICAUTSP. A TSP or TSX defined in BLGAPI00 or BLGAPIDI
can only be passed a user-specified pointer in TSCAUPTR (the value of PICAPARM).

Note: Setting PICAPARM to the address of a string and PICAPARL to the length of the
string is the only way to pass a string parameter to a TSP or TSX specified in
PICAUTSP.

The LLAPI imposes certain product command restrictions. For this reason, existing
user-written TSPs or TSXs might not run correctly when started from the LLAPI. For more
information about these restrictions, see “Command Limitations” on page 24, “LLAPI
Considerations and Restrictions” on page 24, and “Exit and Terminal Simulator Limitations”
on page 17.

The LLAPI returns any messages generated by the user TSP to the message chain pointed to
by the PICA in the same way as all other transactions.

You must specify the following PICA field to start this transaction:

PICATRAN Transaction code of T111.

Specify a value for the following to define the TSP or TSX to be invoked:

PICAUTSP The name of a TSP or a TSX to be invoked. A string of 255 characters can
be passed to the TSP (in the variable data area) or TSX (as an argument) by
storing the address of the string in PICAPARM and the length of the string
in PICAPARL. If you do specify a blank value (X'40') in PICAUTSP, any
address specified in PICAPARM is passed using TSCAUPTR to the TSP or
TSX specified in the API TSP BLGAPI00 or BLGAPIDI.

You can specify values for these PICA fields if you want to pass data to the TSP or TSX:

PICAPARM Address of a user structure or address of character string of 1 to 255
characters (if specifying PICAPARM greater than 0 and a value in
PICAUTSP). If PICAPARL is set to X'00', then PICAPARM is treated as the
address of a user buffer. If PICAPARL is a value other than X'00', than
PICAPARM is treated as the address of the string of data.

PICAPARL If this has a value of X'00', then PICAPARM is treated as the address of a
user buffer to be placed in TSCAUPTR; if this has a value other than X'00',
then PICAPARM is treated as the address of the string of data and
PICAPARL is the length in characters of the string being passed. This value
is ignored if PICAUTSP contains blanks or X'00'.

You can specify values for these PICA fields if you want to change the name of the current
application ID or the name of the current privilege class:

PICAUSRN The name by which Tivoli Information Management for z/OS recognizes
your application.You can specify a value here to change the name of the
current application ID. Tivoli Information Management for z/OS uses this
name in place of a TSO user ID when performing record access privilege
class processing. The value specified must be an eligible user of the current
privilege class record.

Interface Service Transactions

53Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

PICACLSN A valid privilege class name.You can specify a value here to change the
current privilege class record.

Table 21 shows the start user TSP transaction flow for a synchronous environment. For more
detailed information on the LLAPI structures and their fields, see “LLAPI Structures” on
page 100.

Table 21. LLAPI Transaction T111. Start User TSP (Synchronous)
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T111 (Start User TSP)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 and T010 check and sync
transactions on page 39.

v PICAUTSP=name of a TSP or TSX to be invoked. A string of up to 255
characters can be passed to the TSP (in the variable data area) or TSX (as an
argument) by storing the address of the string in PICAPARM and the length of
the string in PICAPARL.

v PICAPARM=depending on the setting of PICAPARL, this can be the address
of a user structure or else the address of a string to be passed.

v PICAPARL=a flag (if equal to 0) to indicate that PICAPARM is the address of
a user structure, or a length (if greater than 0) of the character string being
passed. PICAPARL is ignored if PICAPARM is 0 or PICAUTSP does not
contain the name of a TSP or TSX to invoke.

v PICAUSRN=application ID if you want to change the name of the current
application.

v PICACLSN=privilege class if you want to change the privilege class.
¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following PICA fields:

v PICARETC
v PICAREAS
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code
v PICAREAS contains reason code
v PICAMSGC contains number of messages
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Interface Service Transactions

54 Version 7.1

Database Access Transactions
You use this group of transactions to create, update, retrieve, inquire about, add record
relations to, delete records, and perform change record approval in the Tivoli Information
Management for z/OS database. They are T100, T102, T105, T107, T109, T110, and T112.

Retrieve Record (T100)
This transaction retrieves the Tivoli Information Management for z/OS record requested
from the database. The LLAPI loads a static PIDT or builds a dynamic view of the record or
generates the PIDT from a data view record when performing record retrieval.

The following list outlines the record retrieval process:

1. Do one of the following:
Direct the API to use a static PIDT (specify the static PIDT name in PICATABN).

or
Direct the API to build a view of the record (indicate dynamic PIDT processing by
specifying PICADYNM=Y).

or
Direct the API to generate a PIDT using data model records (specify the record ID of
a data view record). If you specify a data view record ID, set PICADMRC to Y.

2. Specify, in field PICARNID, the ID or the root VSAM key of the record to retrieve. If
you specify the root VSAM key, set PICAVSAM to Y.

Note: If you are using logical database partitioning, you can retrieve a record only if the
Owning Partition of that record matches the Primary Partition of your privilege
class.

3. Start transaction T100.

4. Process the record data.

5. Free the PIDT and buffer resources (T006).

Response Processing Considerations
The PIDT specifies how the LLAPI presents record data to your application. You can change
the PIDT name from one transaction to the next to create different views of a unique record
type to suit your needs. If you are using data model records, you can change the data view
record ID from one transaction to the next to create different views of a unique record type
to suit your needs. The LLAPI generates a PIDT from the specified data view record and
associated data attribute records. The LLAPI stores the PIDT address in PICA field
PICAPIDT. To free the PIDT and response buffer, define your application to perform a Free
PIDT transaction (T006) after your application processes the record data. If, on subsequent
Record Retrieval (T100) transactions, the name of the PIDT pointed to by PICA field
PICAPIDT matches the PIDT name specified in PICA field PICATABN, the LLAPI uses the
current PIDT for data extraction. The address of the response buffer associated with the
PIDT might change when doing this because the amount of data retrieved is variable.

It can take a significant amount of time to generate a PIDT from data view records. The
length of time depends on the number of data attribute records (and validation records that
they reference) contained in the data view record. As with any PIDT, you can maintain the
PIDT in storage for subsequent use.

Database Access Transactions

55Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Unless you request dynamic PIDT processing, the LLAPI can only return data defined in the
PIDT or data view record you specified. If you want a different set of data from the record,
you must specify a different PIDT or data view record or request dynamic PIDT processing.
If you request dynamic PIDT processing, all the data from the record is returned.

The LLAPI stores record response data in a response buffer anchored to the PIDT in field
PIDTBUFP. If you do not request dynamic PIDT processing, the response data for each row
is left-justified and padded with blanks on the right to the maximum size specified by field
PIDTMAXL. (Exception: If you use an application-specified date format, the length of date
values will be the larger of PIDTMAXL or the length of your date format.) List entry and
multiple response items are separated by the response separator character in PIDT field
PIDTSEPC. The LLAPI does not append a trailing separator character. The number of
responses for the field is specified in PIDT field PIDTCNFR. For example, a list (data
collected by using the list processor program exit) that looks like this on your display:

STMT1___

STMT3___
STMT4___

STMT7___

appears to your application, if you do not request dynamic PIDT processing, as:
'STMT1 ,,STMT3 ,STMT4 ,,,STMT7 '

The maximum length for each item is 8 characters (PIDTMAXL=8), and the value of
PIDTSEPC is ’,’.

When retrieving list items, the field PIDTMNCR is set to 1, and the field PIDTCNFR is set
to the number of the highest list item. For example, if items 1 through 10 in the list are
blank and items 11 and 12 contain values, PIDTCNFR is set to 12.

Visible description and direct-add data that is longer than the size of field PIDTVISD are
truncated.

This transaction cannot retrieve SRC records.

Group Prefix Processing Considerations
Record entries that have multiple p-words associated with a particular data item are called
group items. PIDT rows corresponding to a group item have the PIDTGRPX field set to Y.
These entries have their p-words stored in the PIPT table corresponding to the PIDT. The
address of the PIPT table is stored in the PIDTPIPT field. The PIDTFPAT field holds the
row offset in the PIPT table where the first p-word is stored. The PIPTFLAG for this entry
contains X'40' to indicate the beginning of the group. The PIPT row entries are read until an
entry is found that contains X'60' to indicate the end of the group. The p-words are stored in
the PIPTPRFX field of each PIPT row. Refer to the Tivoli Information Management for z/OS
Panel Modification Facility Guide for information on p-words.

Dynamic Record Retrieval Considerations
Your application can request the LLAPI to dynamically build a PIDT based on the data in
the record. This means you can retrieve a record without first defining the view of the
record in a PIDT.

Database Access Transactions

56 Version 7.1

Note: Dynamic record retrieval is not supported if a data view name is supplied with this
transaction. Dynamic record retrieval is supported with bypass panel processing.
However, the dynamic PIDT cannot be used in either a create or an update
transaction. All references to PIDTs in this section discuss dynamically built PIDTs
unless stated otherwise.

Ensure that you check out the record (T104) before you retrieve the record (T100) to
prevent an update of the record by other users or applications.

To dynamically build a PIDT, the LLAPI uses another PIDT, which you specify, as a model.
When the model PIDT is a create, update, inquiry, add relations, or retrieve PIDT, or a PIDT
built by the BLGUT8 utility especially for use as a model for a dynamic PIDT, only the
header row of the model PIDT is used in building the dynamic PIDT.

You can reuse a PIDT from a prior retrieve transaction to dynamically retrieve another
record. When a PIDT is reused, the LLAPI determines whether it is big enough to
accommodate the record being retrieved. If it is big enough, the PIDT is reused. If it is not
big enough, the header is used as a model for generating another PIDT. The API
automatically deletes the PIDT that was too small.

When selecting a non-dynamic PIDT to use as a model, consider the subsequent
transactions, such as retrieve (T100), update (T105), or create (T102), in which you plan to
use the PIDT. You might want to specify a model PIDT that has the highest authorization
that subsequent transactions need.

To request a PIDT, your application must:
¶ Set PICADYNM to Y.
¶ Specify a PIDT in PICATABN.

Your application might also need to set PICAPIDT, depending on the type of PIDT specified
as a model. Specify values for PICATABN and PICAPIDT in one of the following
combinations:

¶ If PICATABN is a create, update, inquiry, add relations, or retrieve PIDT that is already
in storage, PICAPIDT must be the address of the PIDT named in PICATABN. Save
these values (PICATABN and PICAPITDT) so that you can free the model PIDT using
T006. Your application must save the values and free the model because the LLAPI
replaces the model’s address in PICAPIDT with the address of the new dynamic PIDT
but does not delete the model from storage.

¶ If PICATABN is a create, update, inquiry, add relations, or retrieve PIDT not in storage,
PICAPIDT must be set to zeroes.

¶ If PICATABN is a header-only PIDT, PICAPIDT must be set to zeroes. (To build this
type of PIDT run BLGUT8 with the word HEADER specified in the USE field.)

¶ If PICATABN is a PIDT from a previous retrieve transaction in this API session,
PICAPIDT must be set to the address of the PIDT. (A dynamic PIDT is identified by a
D in the PIDTUSEF field.)

Reusing a PIDT causes the data in the entry rows to be overwritten if the PIDT is big
enough to hold the record you are retrieving. If the reused PIDT is not big enough, it is
deleted from storage after using the header rows as a model for the new PIDT. Get the
address of the new PIDT after the retrieve is complete.

Database Access Transactions

57Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

You can also set the following PICA fields for the PIDT that is to be dynamically built:

¶ PICAREQL can be set to add a number of bytes to the end of the returned response
buffer. This additional storage in the response buffer can then be used to enlarge fields
on an update transaction of the same record or a create transaction for a new record.

¶ PICAESPC can be set to a number of bytes to be added to the end of each data item in
the response buffer. Each member of a list item or multiple response item is also
followed by the number of bytes specified. This additional storage in the response buffer
can then be used to enlarge fields on an update transaction of the same record or a
create transaction for a new record.

When a retrieve transaction requests dynamic PIDT processing, the LLAPI builds PIDT
entries for each Structured Description Entry (SDE) in the Tivoli Information Management
for z/OS record with the exception of list data items. List data items have a single PIDT
entry for each unique list. For nonreplaceable SDE items, PIDTs have one PIDT entry for
each SDE item. This PIDT is used for updating the same record ID or creating new records.
Therefore, no obtain resources transaction (T101 or T103) is required when you use a
dynamic PIDT for a create (T102) or update (T105) transaction.

When the retrieve transaction returns, the following fields are set for dynamic PIDT
processing:

¶ PIDTNAME contains the name of the PIDT specified in PICATABN with an asterisk (*)
at the end. If a dynamic PIDT was specified as a model, the name is the same as the
model’s, including the asterisk (*).

¶ PIDTSPCP points to the beginning of the free space requested by PICAREQL.

¶ PIDTSPCE points to the end of the free space requested by PICAREQL.

¶ PIDTMAXL contains the length of the data retrieved for the PIDT entry plus the
PICAESPC value specified. This value is based on the length of the data in the record
and does not necessarily correspond to the actual maximum length for the field defined
in your panels.

¶ PIDTRDEF is set to the letter O if the corresponding SDE in the Tivoli Information
Management for z/OS record does not contain a p-word or an s-word.

¶ PIDTPIPT points to a PIPT or contains zeroes. The PIPT returned contains only prefix
entries for SDEs that have more than one p-word associated with them. For list
processor data, the LLAPI uses only the first entry of a unique list to obtain the prefix
or prefixes stored with the list data. The PIPT has the same name as the dynamic PIDT.

¶ PIDTFPAT points to the row in the PIPT table where the first multiple p-word is stored.

¶ PIDTRTYP is set to Y for the first PIDT entry that has a matching s-word in the create
control panel BLG1AACP. (BLG1AACP is searched.)

¶ PIDTDIAG is set to B if the corresponding SDE in the Tivoli Information Management
for z/OS record marks the beginning of a dialog or to E if the corresponding SDE in the
Tivoli Information Management for z/OS record marks the end of a dialog.

You can retrieve a record on a database then use the record ID of that record to create a
record on a second database. The record ID of the retrieved record cannot match an existing
record ID on the second database.

Database Access Transactions

58 Version 7.1

An all-numeric value of the record ID of the retrieved record might be greater than the next
system-assigned record ID on the second database. In this case, Tivoli Information
Management for z/OS uses the value of the record ID of the retrieved record plus one for
the next system-assigned record ID. For example, if the retrieved record has a record ID of
X'00002000' and the next system-assigned record ID when the retrieve transaction starts is
X'00001000', the next system-assigned record ID after the retrieve transaction finishes will
be X'00002001'. If the retrieved record has a record ID of X'00000900' and the next
system-assigned record ID when the retrieve transaction starts is X'00001000', the next
system-assigned record ID after the retrieve transaction finishes will be X'00001000'.

Ensure that you check out the record (T104) before you retrieve the record (T100) to
prevent an update of the record by other users or applications.

Text Processing Considerations
When text entries are built, PIDTSYMB is assigned a value of Xnnnn, with nnnn being the
number of the text entry in the record. For example, for the first text entry found in the
record, PIDTSYMB is assigned the value X0001; for the next text entry found in the record,
PIDTSYMB is assigned the value X0002. This value is also used instead of
TEXT_TYPE_S-WORD_INDEX as the second qualifier of the data set name if data set
processing was indicated. See the description of the text data set on page 21 for more
information.

Multiple or List Data Item Processing Considerations
The first entry in a list determines the settings for the PIDT flags for all the other members
of the list. The first member of a multiple response group determines the settings for the
PIDT flags for all the other members of the multiple response group.

Group Prefix Processing Considerations
If a record entry is a group item, all multiple response entries and list items associated with
the record entry belong to the first response of the entry. This means that all the p-words in
the PIPT for a PIDT entry are prefixed to each multiple response in the data buffer for that
PIDT entry if this PIDT is used for create or update transactions.

A dynamic PIPT is created for processing group items in the dynamic PIDT. This PIPT
cannot be used for validation. The LLAPI uses only the first entry for a unique list to
determine the p-words associated with that list.

Text Processing Considerations
To suppress text processing, set PICASTXT to Y. Any other value enables text processing. If
you choose text processing, you can specify whether the application should return the text
audit data. To suppress text audit data when text processing is enabled, set PICASAUD to Y.
The default is to return text audit data. Your application can transfer text using an internal
storage buffer or external data sets. The buffer provides faster data transfer, but it consumes
storage. Data sets use less storage, but using them increases transfer time. Setting
PICATXTP to B enables buffer transfer. Setting PICATXTP to D enables data set transfer.
Data set transfer is the default method.

Text Buffer Transfer
PIDTCNFR is the number of text units (lines) transferred. Each text unit consists of text
whose length your application specifies in PICATXTW. If audit data is not suppressed, each
text unit will also contain an additional 36 bytes of audit data. For a description of the
format of the audit data, see page 22. PIDTCURL contains the length of all text units

Database Access Transactions

59Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

returned; if audit data is not suppressed, the length of the audit data is also included in this
total. If PIDTCURL is divided by PIDTCNFR, the dividend should equal the text unit (line)
width with no remainder.

Here is an example of how the buffer transfer function works. You want your API
application to retrieve text and audit data from a Tivoli Information Management for z/OS
database record and from a problem record. Assume you want to use a retrieve transaction to
retrieve text from a problem record. If you look at the record interactively in Tivoli
Information Management for z/OS, the text might look like this:

Bill called to say he could not log on to the
system this morning.

I asked Jim to resolve the problem.

Jim called back and said that Bill should be able to
log on now.

At 9:40 I called Bill back and had him try again. He
was able to log on.

Assume that date, time, and user ID audit data was collected with the text.

Your API application sets the following fields in the PICA.
PICASTXT=N,PICATXTP=B,PICATXTU=4,PICATXTW=15,PICATXTA=B,PICASAUD=N

All of these fields deal with the use of the buffer transfer.
¶ PICASTXT=N (you want the text retrieved)
¶ PICATXTP=B (you want buffer processing)
¶ PICATXTU=4 (you want 4 text lines)
¶ PICATXTW=15 (you want a width of 15 characters of those lines)
¶ PICATXTA=B (you want the data from the bottom of the block of text).
¶ PICASAUD=N (you want the text audit data retrieved).

When your application runs under these conditions, the text you retrieve is an unbroken
string of characters that looks like this:

’log on now. 91119 09:07:30 userid 911
17 09:07:30 userid At 9:40 I calle 91117
09:07:30 userid was able to log 91117 09:07:30 userid

’

The text string in the buffer is the first 15 characters of the last 4 lines in the bottom part of
the original block of data, with each line followed by 36 bytes of audit data (91117
09:07:30 userid and padding blanks).

Data Set Transfer
PIDTCNFR is equal to 1. PIDTCURL contains the length of the data set name. The LLAPI
stores each text type in the record in a separate sequential data set. PIDTDATP points to the
name of the data set stored in the response buffer. See page 21 for more information about
text data sets.

History Data Processing
You can obtain history data by setting PICAHIST to Y. The data is returned in the PIHT
table, and its address is placed in PIDTPIHT. The PIHT consists of a header portion and a
series of rows, where each row describes a piece of data. A history entry is composed of one

Database Access Transactions

60 Version 7.1

or more rows grouped in sequence. Entries created by Tivoli Information Management for
z/OS Version 1 (PIHTVER1=Y) have only one row of data per group. All other entries
(PIHTVER1≠Y) can have several rows forming a group, where the first row of each group
has PIHTSGRP set to Y. When multiple rows are present, those with control data
(PIHTCNTL=Y) appear before those with regular data (PIHTCNTL≠Y). Control data is
journalized with FIRST specified. Regular history data is journalized with ORDER specified.

The PIHT is freed on a retrieve transaction if any of the following occur:

¶ The PIDT points to a PIHT that is not large enough to hold the history data associated
with the retrieved record.

¶ No history data is available for the retrieved record and the PIDT contains an address of
a PIHT.

¶ The retrieve transaction did not request history data (PICAHIST≠Y) and the PIDT
contains an address of a PIHT.

Date Considerations
When PICADFMT=0 (that is, X'00'), any value specified in PICADSEP is ignored; that is,
dates received by your application from the API will be in the same format as they are in
the SDDS portion of the database.

If you want to receive dates in a different format, specify that format in the PICADFMT and
PICADSEP fields (PICADFMT is described in 111 and PICADSEP is described in 111). If
you choose this option and your date format is longer than PIDTMAXL for a field, the
entire date will be returned and PIDTCURL will be larger than PIDTMAXL.

Field Specifications
You must specify the following PICA fields to start this transaction:
PICATRAN A transaction code of T100.
PICATABN Record retrieval PIDT name. If you are using data models

(PICADMRC=Y), then this is the data view name.
PICARNID External record ID or root VSAM key of record to retrieve.
PICASTXT Y if no text retrieval is required.

The following fields are optional:
PICATXTP Indicates buffer (B) or data set (D) processing.
PICATXTU Maximum number of text units (lines). Used only if PICATXTP=B.
PICATXTW Maximum text unit (line) width. Used only if PICATXTP=B.
PICATXTA Indicates bottom (B) or top (T) block of text returned. Used only if

PICATXTP=B.
PICAHIST Y indicates history data processing.
PICAVSAM Y indicates value in PICARNID is the root VSAM key.
PICADYNM Y indicates dynamic record retrieval is requested.
PICAPIDT Address of already loaded PIDT
PICAREQL Number of bytes to add to the end of the response buffer. This is ignored if

PICADYNM≠Y.
PICAESPC Number of bytes to add to the end of each response in the response buffer.

This is ignored if PICADYNM≠Y.
PICAUSRN The name by which Tivoli Information Management for z/OS recognizes

your application.You can specify a value here to change the name of the
current application ID. Tivoli Information Management for z/OS uses this

Database Access Transactions

61Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

name in place of a TSO user ID when performing record access privilege
class processing. The value specified must be an eligible user of the current
privilege class record.

PICACLSN A valid privilege class name.You can specify a value here to change the
current privilege class record.

PICADFMT The index of the date format to use for exchanging datevalues between the
API and your application.

PICADSEP The character slash (/) or hyphen (-) or period (.) used to separate
month, day, and year portions of dates used in date formats which use a
separator character.

Table 22 shows the retrieve record transaction flow for a synchronous environment. For
more detailed information on the LLAPI structures and their fields, see “LLAPI Structures”
on page 100.

Table 22. LLAPI Transaction T100. Retrieve Record (Synchronous)
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T100 (Retrieve Record)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 and T010 check and sync
transactions on page 39.

v PICATABN=record retrieval PIDT name. If you are using data models
(PICADMRC=Y), then this is the data view name.

v PICARNID=record ID or root VSAM key of record to retrieve
v PICAVSAM=Y if using a root VSAM key
v PICASTXT=Y (if no text is wanted)
v Other PICA text fields if you want text processing
v Other PICA fields if you want dynamic PIDT retrieval
v PICAHIST=Y if you want history data retrieval.
v PICAUSRN=application ID if you want to change the name of the current

application.
v PICACLSN=privilege class if you want to change the privilege class.
v PICASAUD=Y if you want to suppress text audit data from being returned

with text data.
¶ Calls BLGYSRVR(PICA).

Database Access Transactions

62 Version 7.1

Table 22. LLAPI Transaction T100 (continued). Retrieve Record (Synchronous)
Step Program Action

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following fields:

v PICARETC
v PICAREAS
v PICAPIDT
v PIDTBUFP
v PIDTBUFL
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PICAPIDT points to PIDT.
v PIDTBUFP points to response buffer.
v PIDTBUFL contains length of response buffer.
v PICAMSGC contains number of messages.
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Create Record (T102)

CAUTION:
You can damage your existing database if you do not use this transaction correctly.

This transaction creates records by processing PIDT entries. It extracts control data from the
PIDT entries and response data from the response buffer, the PIDT, the PIPT, or all three.
Leading and trailing blanks are removed from all but text data. Do not imbed blanks in a
response or include the value in PIDTSEPC as part of a response. The LLAPI then puts the
data in storage in the Tivoli Information Management for z/OS internal format. Record file
processing completes the record creation in the database, and returns the record ID in
PICARNID.

To assign a record ID to the record, you must supply data for the PIDT entry that collects
the RNID/ prefix. For example, the problem record create PIDT uses S0CCF to define the
user assigned record ID. You can define a record ID or you could have obtained a record ID
by starting the T003 transaction. If you do not assign a record ID, the system assigns the
next available record ID automatically. If you create a record using a dynamic PIDT built by
a retrieve transaction, you can use the record ID contained in that PIDT. The LLAPI verifies
that this record ID has not been used. If the record ID is all numeric and greater than the
current last-used system assigned record ID, the last-used system assigned record ID is
changed to the record ID from the PIDT. In that case, the next system assigned record ID is
one larger than the record ID from the PIDT.

If you use panel processing, the LLAPI uses TSP BLGAPI02, user exits, and panel
BLG1AACP to create records. The TSP uses some of the panels and selections that are used
by interactive create processing, including the selection that runs program exit BLG01050
and the selection from the record summary panel that files the record. If you plan to create

Database Access Transactions

63Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

records of your own type (including Tivoli Information Management for z/OS Integration
Facility), have tailored your panels, or want to use existing panel automation see “Tailoring
the Application Program Interfaces” on page 289, and “Terminal Simulator Panels” on
page 349 for information on interface tailoring and LLAPI create processing. If you use
bypass panel processing, the LLAPI uses TSP BLGAPIPX and user exits to create
records.The TSP does not use your panels and selections.

You can use one of the three types of PIDTs. You cannot use dynamic PIDTs with data
model records or with bypass panel processing. See “Dynamic Record Retrieval
Considerations” on page 56 for more information about dynamic record retrieval.

The following steps outline the create record process:

The PIDT or data view record that you choose determines the record type and the fields that
can be processed for the record. The name that you specify in PICATABN must match the
name in PIDTNAME.

Are you using a dynamic PIDT (obtained by a record retrieve transaction (T100))?

Note: Dynamic is not allowed if you are using data model records or are bypassing panel
processing.

¶ No, perform the following steps:

1. Specify the name of the PIDT in PICATABN and, if you previously performed a
T101, its address in PICAPIDT, or the name of the data view record in PICATABN.

2. Specify your estimate of the total length of field values, including extra bytes for
fields using separator characters, in PICAREQL.

If the purpose of your application is to create multiple records of the same type, then
allocate enough response buffer storage to satisfy the largest need.

3. Decide your text processing medium (internal storage buffer or external data set).

Note: You cannot mix storage buffer processing and data set processing. You must
use one or the other.

4. If you have not already obtained the create resources, obtain resources needed to
create the record (T101).

At T101 completion, PICAPIDT points to the PIDT, PIDTBUFP points to the
response buffer, and PIDTBUFL contains the buffer length.

5. Store the field-related values in the response buffer and set PIDT fields.

For response and text fields, your application sets PIDTDATP to point to field data,
PIDTCURL to field length, and PIDTCNFR to the number of responses in the
buffer.

For phrase (PIDTRDEF=P) and direct add (PIDTRDEF=D) type items, your
application stores no data in the response buffer because the data is already
contained in PIDTVISL. Your application sets PIDTCNFR to 1 in order to cause the
LLAPI to store the phrase or direct add type items in the record.

6. Perform record creation (T102).

7. Free data table (T006).

Database Access Transactions

64 Version 7.1

If your application creates multiple records of the same type, with the same data
view (PIDT), defer this step until you create the last record.

8. Free any text data sets created unless you want to reuse them.

9. Other programming techniques to consider when creating multiple records of the
same type are:

v Fixed field lengths (for example, Hardware Component Generic device type):
a. Save the buffer locations of the data on the first pass.
b. Overwrite the data in the buffer.

v Varying field length:

a. Allocate the response buffer using the sum of the values stored in
PIDTMAXL as the response buffer size. This allows space in the response
buffer for the maximum length of each field.

b. For each record create, overwrite the data in the response buffer.

c. Update field PIDTCURL.

v If you use different fields, reinitialize the used PIDT rows, free (T006) the record
create resources, and reallocate them (T101) before storing data for the next
record.

¶ Yes, perform the following steps:

1. Specify its name in PICATABN.

2. Specify its address in the PICAPIDT field, and set the PICADYNM field to Y.

3. Decide your text processing medium (internal storage buffer or external data set).

Note: You cannot mix storage buffer processing and data set processing. You must
use one or the other.

The record retrieve transaction (T100) returns the response buffer and sets the
PIDTBUFP field.

4. Store the field-related values in the response buffer and set PIDT fields.

For response and text fields, your application sets PIDTDATP to point to field data,
PIDTCURL to field length, and PIDTCNFR to the number of responses in the
buffer.

For phrase (PIDTRDEF=P), direct add (PIDTRDEF=D), and other type items
(PIDTRDEF=O), your application stores no data in the response buffer because the
data is already contained in PIDTVISL. Your application sets PIDTCNFR to 1 in
order to cause the LLAPI to store the phrase, direct add, or other type items in the
record.

Optionally set PIDTDELO to Y to indicate that all PIDTRDEF=O entries are to be
excluded from the record.

5. Perform record creation (T102).

6. Free data table (T006).

If your application creates multiple records of the same type, with the same data
view (PIDT), defer this step until you create the last record.

7. Free any text data sets created unless you want to reuse them.

Database Access Transactions

65Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Multiple or List Data Item Processing Considerations
When you collect multiple or list-item responses, the responses must be separated by the
separator character specified in PIDT field PIDTSEPC. Responses do not require padding
with blanks. Do not append a separator character to the last response of a field.

In a dynamic PIDT where you specified a value for PICAESPC, each member of a list item
that was retrieved is followed by the number of blanks specified in PICAESPC.

An example of a list item using a comma separator character is moda,modb,modc. An
example of a skipped entry is moda,,modc. (the first entry contains moda and the third entry
contains modc). A null or blank list entry causes the API to skip the list item in that position.

The API does not support multiple response list items.

Text Audit Data Considerations
You can include audit data with freeform text or allow the LLAPI to determine the
applicable audit data for freeform text. Set PICATXAU to Y to indicate that each line of
input text contains a fixed audit data structure at the end of the line. The audit data structure
must be of the format described on page 22. A blank occurs between each field, and three
blanks follow the final audit data field.

Each audit data field (date, time, application or user ID, and privilege class) is assessed
separately. A blank in the first position of an audit data field means the field is empty. Data
in an audit field is delimited by the first blank found in the field or by the end of the field.
If you set PICATXAU to Y, each line of input text must have data in at least one of the
audit data fields.

When PICATXAU is set to Y, TSP BLGAPI02 sets a nonzero PICAREAS code if text audit
data processing is disabled. If enabled, your application must be running under a privilege
class that allows database administrator authority to set PICAHIST to Y. TSP BLGAPI02
can be modified to allow applications to set PICATXAU to Y to enable text audit data
processing and to change the level of authority required to set PICATXAU to Y.

Dynamic PIDT Considerations
You can use a dynamic PIDT by performing the following steps:
¶ PICADYNM to Y
¶ Specifying its name in PICATABN
¶ Ensuring that PICAPIDT contains the address of the dynamic PIDT.

Note: Dynamic PIDT processing is not supported if a data view name is supplied with this
transaction or if bypass panel processing was specified at initialization.

The dynamic PIDT must be requested in a retrieve record transaction. No obtain record
create resource transaction is required.

When PICADYNM is set to Y, TSP BLGAPI02 sets a nonzero PICAREAS code if the
dynamic PIDT processing function is disabled. If enabled, your application must be running
under a privilege class that allows database administrator authority to set PICADYNM to Y.
TSP BLGAPI02 can be modified to allow applications to set PICADYNM to Y to enable
the dynamic PIDT processing function and to change the level of authority required to set
PICADYNM to Y.

Database Access Transactions

66 Version 7.1

When a record is retrieved, the dynamic PIDT has one entry for every SDE in the record
with the exception of list data items. List data items have a single PIDT entry for each
unique list. With nonreplaceable SDE items, dynamic PIDTs have one PIDT entry for each
SDE item.

If a PIDT entry for a record access panel is passed on an update transaction with
PIDTCHNG set to Y, that PIDT entry is added to the record instead of the PIDT entry
normally added at file time. The record access panel PIDT entry uses the s-word associated
with s-word index S0E17, and it must be a direct add (D) type PIDT entry.

You can alter data in the PIDT by changing the appropriate fields. For example, no existing
other type entries (PIDTRDEF=O) are included if the application sets the PIDTDELO field
to Y. If the PIDTDELO is something other than Y, the LLAPI processes the other type
entries on a one-by-one basis.

If the record is checked out when your application uses the dynamic retrieval transaction, the
PIDT contains an entry for the name of your application. If you then use this PIDT for a
create transaction, you might want to exclude that entry. If you keep it in the PIDT, the
newly created record is checked out to your application ID.

For a dynamic PIDT, the application can set the following additional PIDT fields. Incorrect
modification of these fields can cause damaged records to be stored in the database.

Note: Do not set these fields in a PIDT that is not dynamic.

PIDTSYMB Visible form of the s-word index, or the character string Xnnnn, if
retrieving freeform text with a dynamic PIDT where nnnn starts at
0001 and increases with each freeform text item in the unique text
record. This field contains a symbolic name for a dynamic PIDT only
if an s-word index is present or this is a text entry.

PIDTDATE Field defined as a date. Any p-word beginning with DAT is
automatically considered to be a date.

PIDTMAXL Maximum length of a PIDT entry’s data. If this increases, the data in
the buffer for this entry can be moved to the free space area of the
buffer. See “Increasing the Length of a Field” on page 68 for
information on how to do this.

PIDTMNCR Maximum number of responses for a PIDT entry. If this increases, the
data in the buffer can also be moved to the free space area of the
buffer.

PIDTSRCH Field defined as searchable.

PIDTJRNL Field defined as journalized.

PIDTPNLN Panel name entry. If you change the panel name, be sure the panel
type remains the same.

PIDTINDX Internal s-word or p-word index. For dynamic PIDT entries of type
other (PIDTRDEF=O), this field contains the response number of the
panel.

¶ If you change this when it contains an s-word index, change
PIDTSWDD and PIDTSYMB to correspond.

Database Access Transactions

67Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

¶ If you change this when it contains a p-word index, change
PIDTPFXD and PIDTSYMB to correspond.

¶ If you change this when it contains a response number, you need
not change a corresponding field.

¶ If you change a response number to an s-word or a p-word index,
be sure to set all the necessary fields.

PIDTSWDD S-Word. If you change this, change PIDTINDX to correspond. If you
change the length, change PIDTSWDL to correspond.

PIDTPFXD P-Word. If you change the length, change PIDTPFXL to correspond.

PIDTSWDL Length of s-word field, PIDTSWDD.

PIDTPFXL Length of p-word field, PIDTPFXD.

PIDTREPL Field defined as replaceable.

PIDTRTYP Field defined as record type. If you change this, be sure the s-word
for the entry you set to define the record type is defined in the
BLG1AACP panel.

PIDTDIAG Field identifies a dialog begin (B) or dialog end (E).

You can retrieve a record on a database then use the record ID of that record to
create a record on a second database. The record ID of the retrieved record cannot
match an existing record ID on the second database.

An all-numeric value of the record ID of the retrieved record might be greater than
the next system-assigned record ID on the second database. In this case, Tivoli
Information Management for z/OS uses the value of the record ID of the retrieved
record plus one for the next system-assigned record ID. For example, if the retrieved
record has a record ID of X'00002000' and the next system-assigned record ID when
the retrieve transaction starts is X'00001000', the next system-assigned record ID after
the retrieve transaction finishes will be X'00002001'. If the retrieved record has a
record ID of X'00000900' and the next system-assigned record ID when the retrieve
transaction starts is X'00001000', the next system-assigned record ID after the retrieve
transaction finishes will be X'00001000'.

Increasing the Length of a Field
If PICAREQL was set in the record retrieve transaction, the PIDTSPCP field points to the
beginning of the free space in the response buffer that was allocated with the retrieve record
transaction. The PIDTSPCE field points to the end of that same free space. One method for
increasing a field’s length beyond the value in PIDTMAXL, or for increasing the response
count beyond the value in PIDTMNCR, is the following:

¶ Check whether the new length plus PIDTSPCP is less than or equal to the value in
PIDTSPCE. If it is not, the buffer is not large enough. The application must retrieve the
record again and request a larger buffer.

¶ If the buffer is large enough:
1. Set PIDTDATP to the value in PIDTSPCP.
2. Set PIDTSPCP equal to PIDTSPCP plus the new field length.
3. Change PIDTMAXL and PIDTCURL to the new field length.
4. Write data in the buffer area pointed to by PIDTDATP.

Database Access Transactions

68 Version 7.1

The application cannot create a record if an appropriate summary panel for the record type
is not defined in the create control panel BLG1AACP.

If your application changes record entries defined by the following s-word, the LLAPI
ignores these PIDT:
XIM00SST00 The timestamp for when the record was created.
XIM00SST01 The timestamp for when the record was updated.

Group Prefix Processing Considerations
Record entries that have multiple p-words associated with a particular data item are called
group items. PIDT rows corresponding to a group item have the PIDTGRPX field set to Y.
These entries have their p-words stored in the PIPT table corresponding to the PIDT. The
address of the PIPT table is stored in the PIDTPIPT field. The PIDTFPAT field holds the
row offset in the PIPT table where the first p-word is stored. The PIPTFLAG for this entry
contains X'40' to indicate the beginning of the group. The PIPT row entries are read until an
entry is found that contains X'60' to indicate the end of the group. The p-words are stored in
the PIPTPRFX field of each PIPT row.

For dynamic PIDTs, you cannot use a PIPT created for group items for validation.

History Data Considerations
You can include history data by setting PICAHIST to Y and ensuring that PIDTPIHT
contains the address of your history data. The data must be requested as history data on the
retrieve record transaction (T100). If you use a PIDT obtained by the record create resource
transaction instead of a dynamic PIDT, the PIHT address must be copied into the new
PIDTPIHT from the one returned by record retrieve.

You can modify the history data by changing the appropriate fields in the PIHT. For
example, the data has a maximum length (PIHTMAXL) and a current data length
(PIDTCURL). The current length can be increased up to the maximum. The application can
delete a PIHT row by setting the current data length field to the value of zero. When
deleting the first row in a group, ensure that the start history group flag (PIHTSGRP) is set
to Y for the new first row.

When a record is created in the database, normal processing adds real-time history entries
for any fields that have the journal flag turned on. These history entries are in addition to
those added by setting PICAHIST to Y. The application can control the creation of the
real-time entries by setting the corresponding journal flags appropriately. If you use bypass
panel processing, the LLAPI uses TSP BLGAPIPX and user exits to create records. The TSP
does not use your panels and selections.

When PICAHIST is set to Y, TSP BLGAPI02 or BLGAPIPX sets a nonzero PICAREAS
code if the history data processing function is disabled. If enabled, your application must be
running under a privilege class that allows database administrator authority to set PICAHIST
to Y. TSP BLGAPI02 or BLGAPIPX can be modified to allow applications to set
PICAHIST to Y to enable the history data processing function and to change the level of
authority required to set PICAHIST to Y.

Date Considerations
When PICADFMT=0 (that is, X'00'), then any value specified in PICADSEP is ignored; that
is, dates passed by your application to the API will be in the same format as they are in the
SDDS portion of the database.

Database Access Transactions

69Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

If you want to pass dates in a different format, specify that format in the PICADFMT and
PICADSEP fields (PICADFMT is described on page 111 and PICADSEP is described on
page 111). The API will convert the dates you pass into the default external date format
specified in the session parameters before they are processed by Tivoli Information
Management for z/OS. If you choose this option and your date format is longer than
PIDTMAXL for a field, then set PIDTCURL to the length of your date. You will not receive
a length error unless the date is longer than PIDTMAXL after it has been converted to
default external date format.

Field Specifications
You must specify the following PICA fields to start this transaction:
PICATRAN A transaction code of T102.
PICAPIDT Pointer to the PIDT.

If you are using equal sign processing, you will need to specify:

PICAEQRP Set to Y. If the response data (or visible phrase for direct-add items)
contains an equal sign (=) then the data will be processed as equal data and
processed according to the rules defined by the product.

When you are not using a dynamic PIDT, you must specify the following PIDT fields when
processing responses:

PIDTDATP Pointer to data location in the response buffer (except for visible phrase and
direct add items).

PIDTCURL Length of response or responses in the response buffer (except for visible
phrase and direct add items).

PIDTCNFR Current number of responses for the field.

When you are using a dynamic PIDT, you can specify the following PIDT fields when
processing responses:

PIDTDELO Set to Y for all other type (PIDTRDEF=O) entries so that they are not
included in the record.

PIDTCURL Length of responses in the response buffer if they have been changed
(except for visible phrase and direct add items).

PIDTCNFR If changed, current number of responses for the field. Set to zero to exclude
a field.

PIDTMNCR If increased, maximum number of responses for the field.

PIDTMAXL If increased, maximum length of responses for the field.

PIDTDATP If PIDTMAXL or PIDTMNCR was increased and you moved the data to the
free space area of the buffer.

PICAUSRN The name by which Tivoli Information Management for z/OS recognizes
your application. You can specify a value here to change the name of the
current application ID. Tivoli Information Management for z/OS uses this
name in place of a TSO user ID when performing record access privilege
class processing. The value specified must be an eligible user of the current
privilege class record.

Database Access Transactions

70 Version 7.1

|

|

PICACLSN A valid privilege class name. You can specify a value here to change the
current privilege class record.

PICADFMT The index of the date format to use for exchanging date values between the
API and your application.

PICADSEP The character slash (/) or hyphen (-) or period (.) used to separate
month, day, and year portions of dates used in date formats which use a
separator character.

If you choose buffer processing for text:
¶ PICATXTP = B
¶ PICATXAU = Y if text audit data is specified
¶ PIDTDATP = pointer to text in the response buffer
¶ PIDTCURL = total text length
¶ PIDTCNFR = number of text units (lines) being processed

If you choose data set processing for text:
¶ PICATXTP = D
¶ PICATXAU = Y if text audit data is specified
¶ PIDTDATP = pointer to data set name in the response buffer
¶ PIDTCURL = length of data set name
¶ PIDTCNFR = 1

If you choose history data processing:
¶ PICAHIST = Y
¶ PIDTPIHT = pointer to PIHT
¶ PIHTCURL > 0 for each data-entry to be added

If you choose equal sign processing:
¶ PICAEQRP = Y
¶ PIDTDATP = pointer to equal sign (=) in response buffer

You must specify the following field when processing a dynamic PIDT:
¶ PICADYNM=Y for dynamic PIDTs

Table 23 on page 72 shows the create record transaction flow for a synchronous environment.
It is assumed that create record resources are obtained. For more detailed information on the
LLAPI structures and their fields, see “LLAPI Structures” on page 100.

Database Access Transactions

71Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 23. LLAPI Transaction T102. Create Record (Synchronous)
Step Program Action

1 Application ¶ Stores response data for each PIDT field (except visible phrase and direct add
items) at the address in the response buffer. Each response can be no longer than
the PIDTMAXL value and the number of responses cannot exceed the value in
PIDTMNCR (except for list item fields).

¶ When using a PIDT from the obtain record create resource transaction (T101):
v Sets PIDTDATP.
v Sets PIDTCURL to the data length.

¶ When using a dynamic PIDT built by the retrieve record transaction (T100):
v Sets PIDTDATP address if it is moved from the original location.
v Sets PIDTCURL if the length increases or decreases from what it was initially.
v Can alter PIDTMAXL and PIDTMNCR.

Sets PIDTCNFR to the current number of field responses for each field.

¶ Sets PICA fields as follows:
v PICATRAN=T102 (Create Record)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 and T010 check and sync
transactions on page 39.

v PICADYNM=Y if using a dynamic PIDT
v PICAPIDT=address of record create PIDT or address of dynamic PIDT.
v PICAUSRN=application ID if you want to change the name of the current

application.
v PICACLSN=privilege class if you want to change the privilege class.

¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following PICA fields:

v PICARETC
v PICAREAS
v PICARNID
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PICARNID contains record ID.
v PICAMSGC contains number of messages.
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Database Access Transactions

72 Version 7.1

Update Record (T105)

CAUTION:
You can damage your existing database if you do not use this transaction correctly.

This transaction updates records by processing PIDT entries and data from the PIPT. It
extracts control data from the PIDT entries and response data from the response buffer.
Leading and trailing blanks are removed from all but text data. Do not imbed blanks in a
response or include the value in PIDTSEPC as part of a response. The LLAPI then puts the
data in storage in the Tivoli Information Management for z/OS internal format. Record file
processing completes the record update in the database.

You can use one of the three types of PIDTs. You cannot use dynamic PIDTs with bypass
panel processing or data model records. See “Dynamic Record Retrieval Considerations” on
page 56 for more information about dynamic record retrieval.

Note: Use of a dynamic PIDT is not supported with either bypass panel processing or data
model records. See “Dynamic Record Retrieval Considerations” on page 56 for more
information. If you choose dynamic processing (PICADYNM=Y), the PIDT and its
data must have been obtained by requesting a retrieve transaction (T100) with the
same record ID as the record to be updated and in the same Tivoli Information
Management for z/OS database, and the record must not have been updated since the
record was retrieved with the retrieve transaction (T100).

If you use panel processing, the LLAPIuses TSP BLGAPI05 to perform the update
transaction. TSP BLGAPI05 performs the update command on the specified record, and then
flows to the regular update target panel. The name of the panel flowed to after completing
the update command must match the name of the panel specified in panel BLG1AAUP. To
use the panel specified in panel BLG1AAUP as the summary panel, specify an authorization
code of 0001 for that panel in BLG1AAUP. With panel processing, to update records of
your own record type, you must modify control panel BLG1AAUP. See “Tailoring the
Application Program Interfaces” on page 289 and “Terminal Simulator Panels” on page 349
for information that can help you understand what changes are required to update records of
your own type.

If you use bypass panel processing, the LLAPI uses TSP BLGAPIPX to perform the update
processing. It uses user exits to perform the update.

Note: If you are using logical database partitioning, you can update a record only if the
Owning Partition of that record matches the Primary Partition of your privilege class.

Checking out the record before the update ensures that no other users can update the record
prior to your update. Your administrator can define a time limit for checked out records (in
the BLX-SP parameter APICHKOUTLIM, described in the Tivoli Information Management
for z/OS Planning and Installation Guide and Reference) so that records will not
inadvertently remain indefinitely checked out if your application does not check in the
record.

You can determine how you want to process lists on update. That is, you can simply update
lists (this is the default), you can append new list items to existing lists, or you can replace
existing lists. To specify the type of update, set PICALSTM to indicate whether you want to
update, append, or replace list items.

Database Access Transactions

73Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

The following steps outline the update record process:

When you are not using a dynamic PIDT, perform the following steps:

1. Specify the name of the PIDT in PICATABN and its address in PICAPIDT (if you
previously perform a T103) or the name of the data view record in PICATABN.

The PIDT can be a static PIDT or a PIDT generated from a data view record. The static
PIDT or data view record you choose determines the record type and the fields that can
be processed for the record. If you choose a PIDT defined for a record type different
from the record type being updated, the transaction terminates with an error.

2. Specify your estimate of the total length of field values, including extra bytes for fields
using separator characters, in PICAREQL.

If the purpose of your application is to update multiple records of the same type, then
allocate enough response buffer storage to satisfy the largest need.

3. Decide your text processing medium (buffer or data set).

Note: You cannot mix buffer processing and data set processing. You must use one or
the other.

4. Create text data sets if needed.

5. If you are not using a PIDT previously obtained using T103, obtain resources needed to
update the record (T103).

At T103 completion, PICAPIDT points to the PIDT, PIDTBUFP points to the response
buffer, and PIDTBUFL contains the buffer length.

6. Store the field-related values in the response buffer and set PIDT fields.

For response and text rows, your application sets PIDTDATP to point to field data,
PIDTCURL to field length, and PIDTCNFR to the number of responses in the buffer.

For phrase (PIDTRDEF=P) and direct add (PIDTRDEF=D) type items, your application
stores no data in the response buffer as the data is already contained in PIDTVISL.
Your application sets PIDTCNFR to 1 in order to cause the LLAPI to store the phrase
or direct add type items in the record. To delete phrase or direct add type items, your
application must set PIDTCURL and PIDTCNFR to 1 and PIDTDATP to point to a
separator character in the response buffer.

7. Check out the record (T104), when required to maintain data integrity.

8. Perform T105 to perform a record update. If another application or user is attempting to
update the record, the record might be unavailable. You can direct the LLAPI to either
retry this transaction from 1 to 255 times before returning control to your application or
wait until the record is available. See page 18 for more information.

9. Check in the record (T008), if it is checked out. If another application or user is
attempting to update the record, the record might be unavailable. You can direct the
LLAPI to either retry this transaction from 1 to 255 times before returning control to
your application or wait until the record is available. See page 18 for more information.

10. Free data table (T103).

If your application is updating multiple records of the same type, with the same data
view (PIDT), defer this step until you update the last record.

11. Free any text data sets created unless you want to reuse them.

Database Access Transactions

74 Version 7.1

When you are using a dynamic PIDT (obtained by a retrieve transaction (T100)), perform
the following steps:

1. Specify the name of the PIDT in PICATABN, specify its address in the PICAPIDT field,
and set the PICADYNM field to Y. The name that you specify in PICATABN must
match the name in PIDTNAME.

2. Decide your text processing medium (internal storage buffer or external data set).

Note: You cannot mix storage buffer processing and data set processing. You must use
one or the other.

3. Create text data sets if needed.

4. The record retrieve transaction (T100) returns the response buffer and sets the
PIDTBUFP field.

5. The retrieve stores the field-related values in the response buffer and sets PIDT fields.

For response and text rows, your application sets PIDTDATP to point to field data,
PIDTCURL to field length, and PIDTCNFR to the number of responses in the buffer.

For phrase (PIDTRDEF=P), direct add (PIDTRDEF=D), and other type items
(PIDTRDEF=O), your application stores no data in the response buffer as the data is
already contained in PIDTVISL. Your application sets PIDTCNFR to 1 in order to cause
the LLAPI to store the phrase, direct add, or other type items in the record. To delete
phrase, direct add, or other type items, your application must set PIDTCURL and
PIDTCNFR to 1 and PIDTDATP to point to a separator character in the response buffer.

The PIDTCHNG field must be set to Y for that PIDT entry to be processed. The only
exception to this rule is when the PIDTDELO flag is set to Y, the interface deletes all
the other type (PIDTRDEF=O) items regardless of how the PIDTCHNG flag is set.

6. Perform T105 to perform a record update. If another application or user is attempting to
update the record, the record might be unavailable. You can direct the LLAPI to either
retry this transaction from 1 to 255 times before returning control to your application or
wait until the record is available. See page 18 for more information.

7. Check in the record (T008), if it is checked out. If another application or user is
attempting to update the record, the record might be unavailable. You can direct the
LLAPI to either retry this transaction from 1 to 255 times before returning control to
your application or wait until the record is available. See page 18 for more information.

8. Free data table (T103).

If your application is updating multiple records of the same type or retrieving and
updating records dynamically, with the same data view (PIDT), defer this step until you
update the last record.

9. Free any text data sets created unless you want to reuse them.

When you are not using a dynamic PIDT, other programming techniques to consider when
updating multiple records of the same type are:

1. If the varying fields’ lengths are fixed (for example, Hardware Component Type):
a. Save the buffer locations of the data on the first pass.
b. Overwrite the data in the buffer.

2. If the varying fields’ lengths vary:

Database Access Transactions

75Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

a. Allocate the response buffer using the sum of the values stored in PIDTMAXL. This
allows space in the response buffer for the maximum length of each field.

b. For each record update, overwrite the data in the response buffer.

c. Update field PIDTCURL.

3. If you use different fields, reinitialize the used PIDT rows or free the record update
resources and reallocate (T103) before storing data for the next record.

Multiple or List Data Item Processing Considerations
The following rules apply when you collect multiple or list-item responses:
¶ The responses must be separated by the separator character specified in PIDT field

PIDTSEPC.
¶ Each response does not require padding blanks.
¶ Do not append a separator character to the last response of a field.

An example of a list item using a comma separator character is moda,modb,modc.

An example of a skipped entry is moda, ,modc. The first entry contains moda and the third
entry contains modc. The blank between the commas is required to indicate that any existing
second list entry is to be skipped. A response of moda,,modc indicates to delete the second
entry.

In a dynamic PIDT where you specified a value for PICAESPC, each entry of a retrieved
list is followed by the number of blanks specified in PICAESPC.

The API does not support multiple response list items.

The number of response items is indicated in field PIDTCNFR. To delete a list response,
two consecutive separator characters are stored in the response buffer with the second
separator character logically replacing the deleted response. A separator character in the first
position of the list item data indicates that the first list position item is to be deleted. A
trailing separator character (after the last item in the input buffer) indicates that the next list
item of that type in the record is to be deleted.

You can choose to update existing lists (the default), append new data to existing lists, or
replace existing lists. You use PICALSTM to specify how lists should be processed.

This example shows three update transactions updating an existing list of routine names. For
each transaction, the figure shows: the list before the transaction on the left, the response
buffer segment used to update the list, and the results of the update.
List Before Response Buffer List After Action Performed
Update Segment Update

ADD ',,,' -------- Delete first 3
BUILD1 -------- items on list
DELITEM --------
COPY COPY
-------- --------
CHECK CHECK
INIT INIT

ADD 'ADD,BUILD1,,COPY' ADD Delete third

Database Access Transactions

76 Version 7.1

BUILD1 BUILD1 item on list
DELITEM --------
COPY COPY
-------- --------
CHECK CHECK
INIT INIT

ADD ' , , , , , ,' ADD Delete seventh
BUILD1 BUILD1 item on list
DELITEM DELITEM
COPY COPY
-------- --------
CHECK CHECK
INIT --------

This example shows an update transaction appending data to an existing list of routine
names. For this transaction, the figure shows: the list before the transaction on the left, the
response buffer segment used to append to the list, and the results of the append.
List Before Response Buffer List After Action Performed
Append Segment Append

ADD 'BUILD0,BUILD1,,COPY' ADD Append new
BUILD1 BUILD1 items to list
DELITEM DELITEM
COPY COPY
-------- --------
CHECK CHECK
INIT INIT

BUILD0
BUILD1

COPY

This example shows an update transaction replacing from an existing list of routine names.
For this transaction, the figure shows: the list before the transaction on the left, the response
buffer segment used to delete data from the list, and the results of the delete.
List Before Response Buffer List After Action Performed
Delete Segment Delete

ADD 'BUILD0,,BUILD2' BUILD0 New data replaces
BUILD1 -------- old data
DELITEM BUILD2
COPY

CHECK
INIT

A single separator character as a response for a nonlist item indicates that this response item
in the record is to be deleted.

Text Considerations
To update text in the record, your application stores the data set name or text in the response
buffer in the same way the API stores it during a record retrieval. A text data set name can
be up to 44 characters long. Text data can be appended to, or it can replace, text currently in
the record. To replace existing text with new text, set PICATXTR to Y. Each type of text

Database Access Transactions

77Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

specified replaces any existing text of that type. To append new text to existing text, set
PICATXTR to N. Each type of text specified is appended to existing text of that type.
Existing text is deleted by setting PICATXTR to Y and specifying a single separator
character as the response for the text item. If TEXTAUD=YES in the session-parameters
member (BLGPARMS), existing text cannot be deleted or replaced.

Text Audit Data Considerations
You can include audit data with freeform text or allow the LLAPI to determine the
applicable audit data for input freeform text. Set PICATXAU to Y to indicate that each line
of input text contains a fixed audit data structure at the end of the line. The audit data
structure must be of the format described on page 22. A blank occurs between each field,
and three blanks follow the final audit data field.

Each audit data field (date, time, application or user ID, and privilege class) is examined
separately. A blank in the first position of an audit data field means the field is empty. Data
in an audit field is delimited by the first blank found in the field or by the end of the field
as defined in the audit data structure on page 22. If you set PICATXAU to Y, each line of
input text must have data in at least one of the audit data fields.

If PICATXAU is set to Y and text audit data processing is disabled in TSP BLGAPI05, TSP
BLGAPI05 sets a nonzero PICAREAS code. If text audit data processing is enabled, your
application must be running under a privilege class that allows database administrator
authority to set PICATXAU to Y. TSP BLGAPI05 can be modified to allow applications to
set PICATXAU to Y to enable text audit data processing and to change the level of
authority required to set PICATXAU to Y.

Dynamic PIDT Considerations

Note: Use of dynamic PIDTs is not supported if bypass panel processing was specified at
initialization or if a data view name is supplied with this transaction.

To use a dynamic PIDT, set PICADYNM to Y and ensure that PICAPIDT contains the
address of your dynamic PIDT. The dynamic PIDT must have been obtained by requesting a
retrieve record transaction with the same record ID as the record to be updated and on the
same database. The record must not have been updated between the time of the retrieve
transaction (T100) and the time of the update transaction (T105). The obtain record update
resource transaction is not required because the retrieve transaction (T100) obtains all
resources required by the LLAPI.

When PICADYNM is set to Y, TSP BLGAPI05 sets a nonzero PICAREAS code if the
dynamic-PIDT processing function is left disabled. If enabled, your application must be
running under a privilege class that allows database administrator authority to set
PICADYNM to Y. TSP BLGAPI05 can be modified to allow applications to set
PICADYNM to Y to enable the dynamic PIDT processing function and to change the level
of authority required to set PICADYNM to Y.

When a record is retrieved, the dynamic PIDT has one entry for every SDE in the record
with the exception of list data items. List data items have a single PIDT entry for each
unique list. With nonreplaceable SDE items, dynamic PIDTs have one PIDT entry for each
SDE item.

Database Access Transactions

78 Version 7.1

If the PIDT entry for a record access panel is passed on an update transaction with
PIDTCHNG set to Y, that PIDT entry is added to the record instead of the PIDT entry
normally added at file time. The record access panel PIDT entry uses s-word S0E17, and it
must be a direct add (D) type PIDT entry.

You can alter data in the PIDT by changing the appropriate fields. For example, all existing
Other type entries (PIDTRDEF=O) can be deleted by setting the PIDTDELO field to Y. If
the PIDTDELO is something other than Y, the LLAPI processes the Other type entries on a
one-by-one basis. Only PIDT entries with the PIDTCHNG field set to Y are processed.

If you change the s-word for a list, your application must pass all of the list data. Otherwise,
the update transaction does not replace the s-words for all entries in the list.Your application
must never alter the contents of the PIDTVLDD or PIDTVLDL fields. Existing data must
not be changed between the time the update command is issued in API TSP BLGAPI05 and
the time BLGYAPBR is called in API TSP BLGAPI05. Failure to observe these restrictions
can cause unpredictable results.

For a dynamic PIDT only, the application can set the following additional PIDT fields.
Incorrect modification of these fields can cause damaged records to be stored in the
database:

PIDTSYMB Visible form of the s-word index or the character string Xnnnn if retrieving
freeform text with a dynamic PIDT where nnnn starts at 0001 and increases
with each unique freeform text item in the unique record.

PIDTDATE Field defined as a date.

Any p-word beginning with DAT is considered a date.

PIDTMAXL Maximum length of a PIDT entry’s data. If this is increased, the data in the
buffer for this entry can be moved to the free space area of the buffer. See
“Increasing the Length of a Field” on page 80 for information on how to do
this.

PIDTMNCR Maximum number of responses for a PIDT entry. If this is increased, the
data in the buffer can also be moved to the free space area of the buffer.

PIDTSRCH Field defined as searchable.

PIDTJRNL Field defined as journalized.

PIDTPNLN Panel name entry. If you change the panel name, be sure to keep it the same
type.

PIDTINDX Internal s-word or p-word index. For dynamic PIDT entries of type Other
(PIDTRDEF=O), this field contains the response number on the panel. If
you change this field when it contains:
¶ An s-word index, change PIDTSWDD and PIDTSYMB to correspond
¶ A p-word index, change PIDTPFXD and PIDTSYMB to correspond
¶ A response number, you need not change a corresponding field.

If you change a response number to an s-word or a p-word index, be sure to
set all the necessary fields.

PIDTSWDD S-Word. If you change PIDTSWDD, change PIDTINDX to correspond. If
you change the length, change PIDTSWDL to correspond.

PIDTPFXD P-Word. If you change the length, change PIDTPFXL to correspond.

Database Access Transactions

79Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

PIDTSWDL Length of s-word field, PIDTSWDD.

PIDTPFXL Length of p-word field, PIDTPFXD.

PIDTREPL Field defined as replaceable.

PIDTRTYP Field defined as record type. If you change this, be sure the entry you set to
define the record type has its s-word in the BLG1AUCP panel.

PIDTDIAG Field identifies a dialog begin (B) or dialog end (E).

Increasing the Length of a Field
If PICAREQL was set in the record retrieve transaction, the PIDTSPCP field points to the
beginning of the free space in the response buffer that was allocated with the retrieve record
transaction. The PIDTSPCE field points to the end of that same free space. A method to
increase a field’s length beyond the value in PIDTMAXL, or to increase the response count
beyond the value in PIDTMNCR, is to follow these steps:

¶ Check whether the new length plus PIDTSPCP is less than or equal to PIDTSPCE
value. If it is not, the buffer is not large enough. The application must do another
retrieve record transaction and request a larger buffer.

¶ If the buffer is large enough:
1. Set PIDTDATP to the value in PIDTSPCP.
2. Set PIDTSPCP equal to PIDTSPCP plus the new field length.
3. Change PIDTMAXL and PIDTCURL to the new field length.
4. Write data in the buffer area pointed to by PIDTDATP.

The application cannot update a record if an appropriate summary panel for the record type
is not defined in the update control panel BLG1AAUP.

To use the panel specified in panel BLG1AAUP as the summary panel instead of the regular
target panel of the update, specify an authorization code of 0001 for that panel in
BLG1AAUP.

If your application changes record entries defined by the following s-words, the LLAPI
ignores these PIDT entries:
XIM00SST00 The timestamp for when the record was created
XIM00SST01 The timestamp for when the record was updated.

Group Prefix Processing Considerations
Record entries that have multiple p-words associated with a particular data item are called
group items. PIDT rows corresponding to a group item have the PIDTGRPX field set to Y.
These entries have their p-words stored in the PIPT table corresponding to the PIDT. The
address of the PIPT table is stored in the PIDTPIPT field. The PIDTFPAT field holds the
row offset in the PIPT table where the first p-word is stored. The PIPTFLAG for this entry
contains X'40' to indicate the beginning of the group. The PIPT row entries are read until an
entry is found that contains X'60' to indicate the end of the group. The p-words are stored in
the PIPTPRFX field of each PIPT row.

For a dynamic PIDT, a PIPT for group items cannot be used for validation.

History Data Considerations
You can include history data by setting PICAHIST to Y and ensuring that PIDTPIHT
contains the address of your history data. The data is obtained by requesting history data on

Database Access Transactions

80 Version 7.1

a retrieve record transaction with the same record ID as the record to be updated and on the
same database. If you are not using a dynamic PIDT, copy the PIHT address into the
PIDTPIHT field in this non-dynamic PIDT.

You can modify the history data by changing the appropriate fields in the PIHT. For
example, the data has a maximum length (PIHTMAXL) and a current data length
(PIHTCURL). The current length can be increased up to the maximum. The application can
delete a PIHT row by setting the current data length field to the value of zero. When
deleting the first row in a group, ensure that the start history group flag (PIHTSGRP) is set
to Y for the new first row.

When a record is updated on the database, normal processing adds real-time history entries
for any fields that have the journal flag turned on. These history entries are in addition to
those added by setting PICAHIST to Y. The application can control the creation of the
real-time entries by setting the corresponding PIDT entry journal flags appropriately.

If PICAHIST is set to Y and the history data processing function is disabled, TSP
BLGAPI05 or TSP BLGAPIPX sets a nonzero PICAREAS code. If the history data
processing function is enabled, your application must be running under a privilege class that
allows database administrator authority to set PICAHIST to Y. You can modify TSP
BLGAPI05 or TSP BLGAPIPX to allow applications to set PICAHIST to Y to enable the
history data processing function and to change the level of authority required to set
PICAHIST to Y.

Date Considerations
When PICADFMT=0 (that is, X'00'), then any value specified in PICADSEP is ignored; that
is, dates passed by your application to the API will be in the same format as they are in the
SDDS portion of the database.

If you want to pass dates in a different format, specify that format in the PICADFMT and
PICADSEP fields (PICADFMT is described on page 111 and PICADSEP is described on
page 111). The API will convert the dates you pass into the default external date format
specified in the session parameters before they are processed by Tivoli Information
Management for z/OS. If you choose this option and your date format is longer than
PIDTMAXL for a field, then set PIDTCURL to the length of your date. You will not receive
a length error unless the date is longer than PIDTMAXL after it has been converted to
thedefault external date format.

Field Specifications
You must specify the following PICA fields to start this transaction:
PICATRAN A transaction code of T105.
PICARNID External record ID or root VSAM key of record to be updated.
PICAPIDT Pointer to the PIDT.

If you are using equal sign processing, you will need tospecify:

PICAEQRP Set to Y. If the response data (or visible phrase for direct-add items)
contains an equal sign (=) then the data will be processed as equal data and
processed according to the rules defined by the product.

When you are not using a dynamic PIDT, you must specify the following PIDT fields when
processing responses:

Database Access Transactions

81Application Program Interface Guide

|

|

2.
U

sin
g

th
e

L
L

A
P

I

PIDTDATP Pointer to data location in the response buffer (except for visible phrase and
direct add items)

PIDTCURL Length of responses in the response buffer (except for visible phrase and
direct add items)

PIDTCNFR Current number of responses for the field.

When you are using a dynamic PIDT, you can specify the following PIDT fields when
processing responses:

PIDTDELO Set to Y to delete all other type (PIDTRDEF=O) entries from the record.

PIDTCHNG Set to Y to process this PIDT entry.

PIDTCURL Length of responses in the response buffer, if they have been changed
(except for visible phrase and direct add items).

PIDTCNFR If the number of PIDT entries have changed, the current number of
responses for the field.

PIDTMNCR If the number of PIDT entries have increased, the maximum number of
responses for the field.

PIDTMAXL If the data in the PIDT have been increased, the maximum length of
responses for the field.

PIDTDATP If PIDTMAXL or PIDTMNCR was increased and you moved the data to the
free space area of the buffer.

You can specify how you want to process lists; that is, whether to update lists, append new
list items to existing lists, or replace existing lists:
¶ PICALSTM = U (update) or A (append) or R (replace)

You must fill in certain fields when you specify text processing:

If you select buffer processing for text:
¶ PICATXTP = B
¶ PICATXAU = Y if text audit data is specified
¶ PICATXTR = Y if existing text is to be replaced
¶ PIDTDATP = pointer to text in the response buffer
¶ PIDTCURL = total text length
¶ PIDTCNFR = number of text units (lines) being processed

If you select data set processing for text:
¶ PICATXTP = D
¶ PICATXAU = Y if text audit data is specified
¶ PICATXTR = Y if existing text is to be replaced
¶ PIDTDATP = pointer to data set name in the response buffer
¶ PIDTCURL = length of data set name
¶ PIDTCNFR = 1

You must specify the following fields when processing history data:
¶ PICAHIST = Y
¶ PIDTPIHT = pointer to PIHT
¶ PIHTCURL > 0 for each data-entry to be added

Database Access Transactions

82 Version 7.1

If you choose equal sign processing:
¶ PICAEQRP = Y
¶ PIDTDATP = pointer to equal sign (=) in response buffer

You must specify the following field when processing a dynamic PIDT:
¶ PICADYNM=Y for dynamic PIDTs

You must specify the following field when using a root VSAM key in the PICARNID field:
¶ PICAVSAM=Y

You can specify values for these PICA fields if you want to change the name of the current
application ID or the name of the current privilege class:

PICAUSRN The name by which Tivoli Information Management for z/OS recognizes
your application.You can specify a value here to change the name of the
current application ID. Tivoli Information Management for z/OS uses this
name in place of a TSO user ID when performing record access privilege
class processing. The value specified must be an eligible user of the current
privilege class record.

PICACLSN A valid privilege class name. You can specify a value here to change the
current privilege class record.

You can specify values for these PICA fields if you want to specify the format of dates your
application will input to the LLAPI:

PICADFMT The index of the date format to use for exchanging datevalues between the
API and your application.

PICADSEP The character slash (/)or hyphen (-) or period (.) used to separate
month, day, and year portions of dates used in date formats which use a
separator character.

Table 24 shows the update record transaction flow for a synchronous environment. It is
assumed that update resources are obtained. For more detailed information on the LLAPI
structures and their fields, see “LLAPI Structures” on page 100.

Table 24. LLAPI Transaction T105. Update Record (Synchronous)
Step Program Action

1 Application ¶ Stores response data for each updated field in the response buffer. Each response
can be no longer than the value in PIDTMAXL, and the number of responses
(separated by the character in PIDTSEPC) cannot exceed the value in
PIDTMNCR (except for list items).

¶ When using a PIDT from the obtain record update resource transaction (T103):
v Sets the buffer address in PIDTDATP.
v Sets the length of the buffer in PIDTCURL.

¶ When using a dynamic PIDT built by the retrieve record transaction (T100):
v Sets PIDTDATP address if it is moved from the original location.
v Sets PIDTCURL if the length increases or decreases from what it was initially.
v Can alter PIDTMAXL and MIDTMNCR.

¶ Sets PIDTCNFR to the current number of responses for a field.

Database Access Transactions

83Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 24. LLAPI Transaction T105 (continued). Update Record (Synchronous)
Step Program Action

¶ Sets PICA fields as follows:
v PICATRAN=T105 (Update Record)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 and T010 check and sync
transactions on page 39.

v PICARNID=ID or root VSAM key of record to update
v PICAVSAM=Y if using a root VSAM key
v PICADYNM=Y if using a dynamic PIDT
v PICAPIDT=address of update PIDT or dynamic PIDT.
v PICAUSRN=application ID if you want to change the name of the current

application.
v PICACLSN=privilege class if you want to change the privilege class.
v PICALSTM= U to update list items or A to append new list items or R to

replace list items
¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following PICA fields:

v PICARETC
v PICAREAS
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PICAMSGC contains number of messages.
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Record Inquiry (T107)
This transaction searches the Tivoli Information Management for z/OS database by using
entries in the PIDT and entries in the PIAT for search arguments. You must have a PIDT
(either static or generated from a data view record) to start this transaction, but the type of
search depends on whether you specify PIAT arguments. You can use a record type defining
s-word to ensure that the resulting list is limited to a single record type, but you can omit
the s-word for general inquiries.

Note: If you are using logical database partitioning (described in theTivoli Information
Management for z/OS Program Administration Guide and Reference), you should be
aware that API applications cannot perform multipartition searches.

Database Access Transactions

84 Version 7.1

You can improve the performance of your application by managing how the LLAPI reads
the database when performing an inquiry. If your application performs searches that result in
very long search results lists, you can limit the length of the initial list and thus the amount
of time your application requires to obtain the search results. Your application can then view
other parts of the list as needed. You can save a search results list and retrieve records as
you need them. See “Return of Selected Search Results” on page 87 for information on how
to selectively return search results.

If you do not limit the number of matches returned, define your search arguments to limit
the size of the returned PIRT to only what is necessary.

Note: Refer to the Tivoli Information Management for z/OS User’s Guide for general
information on searching the database.

Parenthetical searching
To increase your ability to eliminate unwanted records from the results of freeform searches,
you can use parentheses within freeform search arguments to specify the order in which
arguments should be evaluated. Arguments placed within parentheses will be evaluated first.
The parentheses can adjoin the arguments or be separated by one or more spaces. The
parentheses can be placed in the same PIAT row with the adjoining argument or can be in a
separate PIAT row.

For example, the argument string
¬STAC/CLOSED (GROS/CEO | GROS/PAY) ¬(PRIO/03 | PRIO/04)

can be entered on separate PIAT rows like this:
¬STAC/CLOSED
(GROS/CEO
| GROS/PAY)
¬(PRIO/03
| PRIO/04)

or it can be entered on separate PIAT rows like this:
¬STAC/CLOSED
(
GROS/CEO
| GROS/PAY
)
¬(
PRIO/03
| PRIO/04
)

The argument can be entered in other ways as well, as long as the boolean operator (if one
is present) appears first and no more than one argument is included in each PIAT row.

Date Considerations
When PICADFMT=0 (that is, X'00'), then any value specified in PICADSEP is ignored; that
is, dates passed by your application to the API will be in the same format as they are in the
SDDS portion of the database.

If you want to use a different date format, specify that format in thePICADFMT and
PICADSEP fields (PICADFMT is described in 111 and PICADSEP is described in 111). The
API will convert the dates you pass into the default external date format specified in the
session parameters before they are processed by Tivoli Information Management for z/OS

Database Access Transactions

85Application Program Interface Guide

|
|
|
|
|
|
|

|

|

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|

|

2.
U

sin
g

th
e

L
L

A
P

I

and will convert dates in internal format in the database to your specified format before
passing them to your application. If you choose this option and your date format is longer
than PIDTMAXL for a field, PIDTCURL can exceed PIDTMAXL. You will not receive a
length error unless the date is longer than PIDTMAXL after it has been converted to the
default external format.

Return All Search Results
Follow these steps on the record inquiry process when you view all records in the search
results list without saving the list:

1. Choose the static PIDT name or data view record ID that you want and put its name
(static PIDT name or data view record ID) in PICATABN.

2. Specify, in PICAREQL, the size of the response buffer needed to contain structured
arguments that simulate quick search field responses (must be greater than 0).

3. Determine whether freeform arguments are to be added to the structured arguments and
specify the maximum number needed in PICAREQR.

4. Obtain inquiry resources (T106).

5. Store the structured arguments in the response buffer. See step 5 on page 64 for more
information.

6. Store freeform arguments in the PIAT.

Be sure to set the current number of arguments (PIATNARG) to the number used for this
inquiry.

7. Optionally, specify an associated data field by putting the s-word index of the field in
PICASRCH. This field must be defined in the PIDT you are using. An associated data
field is a field extracted from each record and stored in the resultant match list. Your
application must be prepared to process blanks in this field. Also be aware that the
LLAPI cannot extract list item, phrase, and text data.

8. Perform the inquiry (T107). After the transaction finishes the search, check the value of
PIRTCODE. If the value is not 00 in any PIRT row, then the LLAPI might have found
record processing exceptions when trying to extract that record ID (RNID) or associated
data from that record. The data in any PIRT row is unreliable if PIRTCODE is anything
but 00 for that PIRT row.

9. Free the PIRT (T007) and PIDT (T006) if you are not going to make other inquiries.

Other Record Inquiry Considerations for All Search Results

1. If you are performing multiple searches on the same record type and you use different fields,
reinitialize the used PIDT rows, or free record-inquiry resources (T006) and reallocate
(T106) before storing data for the next search.

2. Consider using a session-parameters member that specifies a value for sort prefix
SORTPFX-N1 that limits the number of results returned. Refer to the Tivoli Information
Management for z/OS Planning and Installation Guide and Reference for information on the
BLGPARMS macro. When you specify SORTPFX-N1, the number of matches from the
search is compared to the number in the SORTPFX-N1 field. PIRTSRRC is set to the
number of matches from the search. The value in PIRTHITC is set according to the values in
SORTPFX-N1 and PIRTSRRC:

¶ If PIRTSRRC is less than the value in SORTPFX-N1, then PIRTHITC is set to the value
in PIRTSRRC.

Database Access Transactions

86 Version 7.1

|

|
|

¶ If the value in PIRTSRRC is greater than or equal to the value in SORTPFX-N1, then
PIRTHITC is set to the value in SORTPFX-N1.

At this point, the number of records read is based on the value in PIRTHITC. The number of
records returned by the LLAPI is the smaller of the values in PIRTHITC and PICANUMH.

Return of Selected Search Results
Follow these steps on the record inquiry process to save results from a search:

1. Choose the static PIDT or data view record that you want and put its name (static PIDT
name or data view record ID) in PICATABN.

2. Specify, in PICAREQL, the size of the response buffer needed to contain structured
arguments that simulate quick search field responses (must be greater than 0).

3. Determine whether to add freeform arguments to the structured arguments and specify
the maximum number needed in PICAREQR.

4. Obtain inquiry resources (T106).

5. Store the structured arguments in the response buffer. See step 5 on page 64 for more
information.

6. Store freeform arguments in the PIAT.

Be sure to set the current number of arguments (PIATNARG) to the number used for
this inquiry.

7. Specify an associated data field by putting the s-word index of the field in PICASRCH.
This field must be defined in the PIDT you are using. An associated data field is a field
extracted from each record and stored in the resultant match list. Be prepared to accept
blanks in this field. Also be aware that the API cannot extract list item, phrase, and text
data.

8. To limit the size of the PIRT returned to your application, specify in PICANUMH the
number of matches to return, and specify in PICABHIT the first match to return. These
fields are optional.

9. Specify a 4-byte fixed search ID in PICASRID to save the search results. This field is
required. If zeroes are specified, the search results are not saved.

10. Perform the inquiry (T107). When the transaction finishes, check the value of
PIRTCODE. If the value is not 00 in any PIRT row, then the API might have found
record processing exceptions when trying to extract that record ID (RNID) or associated
data from that record. The data in any PIRT row is unreliable if PIRTCODE is anything
but 00 for that PIRT row.

11. Free the PIRT (T007) and PIDT (T006) if you are not going to make other inquiries.

Follow these steps on the record inquiry process when you selectively view records from a
previously saved search:

Note: You cannot specify new search criteria when retrieving records from a previously
saved search.

1. To limit the size of the PIRT returned to your application, specify in PICANUMH the
number of matches to return, and specify in PICABHIT the first match to return. These
fields are optional.

Database Access Transactions

87Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

2. To indicate the search from which you want to retrieve results, specify the 4-byte search
ID in PICASRID. This field is required.

3. Specify Y in PICARHIT to return results from an existing search. This field is required.

4. Perform the inquiry (T107). When the transaction finishes, check the value of
PIRTCODE. If the value is not 00 in any PIRT row, then the API might have found
record processing exceptions when trying to extract that record ID (RNID) or associated
data from that record. The data in any PIRT row is unreliable if PIRTCODE is anything
but 00 for that PIRT row.

5. Free the PIRT (T007) if you are not going to make other inquiries.

Other Record Inquiry Considerations for Selected Search Results
See “Other Record Inquiry Considerations for All Search Results” on page 86 for
information on considerations for selected search results.

Other Record Inquiry Considerations for All Searches
The following information applies when you either return all search results or save search
results.

Argument Data Case Considerations
Free form arguments are used as entered and must be provided by the application in the
proper case. Structured arguments are processed according to the setting of the Cognize in
mixed case? option in the PIDT row or attribute record for the argument:

¶ If Cognize in mixed case? is Y
v If validation is requested, the case of the argument (after any adjustments made of

the validation module based on the setting of the Collected data case option) will be
used for the search.

v If validation is not requested, the case of the argument as passed by the application
will be used for the search. No case transformation will be done.

¶ If Cognize in mixed case? is N

v Upper case will be used for the search, regardless of the case passed by the
application and regardless of any adjustments made of the validation routine.

Multiple or List Item Processing Considerations
When you want to search on multiple or list-item responses, the responses must be separated
by the separator character specified in PIDT field PIDTSEPC. You cannot append a
separator character to the last response of a field.

This is an example of a list item using a comma separator character:

moda,modb,modc

You can use data model records or static PIDTs to provide the view of the data for your
application.If you use data model records, a PIDT is generated from the data view record
and associated data attribute records. See “Field Validation Using the Field Validation
Module BLGPPFVM” on page 279 for additional details on data model records.

The search arguments constructed are based on the argument data specified in the PIDT. You
do not need a PIAT to start an inquiry, but a PIAT can be used to augment the search
criteria. The LLAPI builds search arguments in the same order that the data occurs in the

Database Access Transactions

88 Version 7.1

tables. Arguments entered in the data response buffer with the PIDT entries cannot have any
Boolean or range characters but can have an asterisk (*) or a period (.).

With the freeform argument search, you specify PIAT arguments in the sequence you want.
PIATNARG specifies the number of arguments used for the search. Each row contains a
specific argument. Your application can retrieve a prefix from the PIDT and append the
argument data to it. If you are entering a range, put the first part of the range in one PIAT
row and the second part of the range in the next PIAT row. The range character precedes the
second part of the range. The LLAPI appends arguments entered in the PIAT to the
arguments collected by the PIDT.

When the LLAPI returns the search results, the API builds a PIRT and returns it to the caller
to indicate which record IDs contain instances of the search criteria. The caller can then read
the records using the record retrieval transaction (T100).

The LLAPI stores associated data (limited to 45 characters) extracted from each record (if
available) in each PIRT entry field (PIRTDATA). Your application stores the symbolic name
of the field in PICASRCH before performing a search. This capability is similar to that
provided on the interactive search results panel. An example of this process is to extract the
description abstract information of a problem record by specifying symbolic index S0E0F.
You cannot specify list entry, phrase, or text item data as an associated data field.

You must specify the following PICA fields to start this transaction:

PICATRAN A transaction code of T107.

PICAPIDT Pointer to inquiry PIDT. Your application must use an existing PIDT when
requesting additional matches from an existing search. If your application
specifies an existing search in PICASRID, this field is ignored.

If you are using equal sign processing, you will need tospecify:

PICAEQRP Set to Y. If the response data (or visible phrase for direct-add items)
contains an equal sign (=) then the data will be processed as equal data and
processed according to the rules defined by the product.

The following PICA fields are optional:

PICANUMH The maximum number of matches in the database returned from a search.

PICABHIT The beginning match number to return.

PICASRID The identifier of a search.

PICARHIT This field indicates to the API whether to return results from an existing
search.

PICAUSRN The name by which Tivoli Information Management for z/OS recognizes
your application.You can specify a value here to change the name of the
current application ID. Tivoli Information Management for z/OS uses this
name in place of a TSO user ID when performing record access privilege
class processing. The value specified must be an eligible user of the current
privilege class record.

PICACLSN A valid privilege class name.You can specify a value here to change the
current privilege class record.

Database Access Transactions

89Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

PICADFMT The index of the date format to use for exchanging datevalues between the
API and your application.

PICADSEP The character slash (/)or hyphen (-) or period (.) used to separate
month, day, and year portions of dates used in date formats which use a
separator character.

You must set the following PIDT fields for structured search criteria:
PIDTDATP The address of responses in the response buffer
PIDTCURL The length of the responses
PIDTCNFR The current number of field responses

You must set the following PIAT fields for freeform search criteria:
PIATNARG The number of arguments to process
PIATDATL The length of the argument (for each argument)
PIATDATA The argument data item (for each argument)

The following PIRT field is optional:

PIRTBHIT The beginning match number to return.

Table 25 shows the record inquiry transaction flow for a synchronous environment assuming
no freeform arguments. Search results are not saved. It is assumed that an inquiry resource is
obtained. For more detailed information on the LLAPI structures and their fields, see
“LLAPI Structures” on page 100.

Table 25. LLAPI Transaction T107. Record Inquiry without saving search results (Synchronous)
Step Program Action

1 Application ¶ Stores response data for each inquiry field in the response buffer.
¶ Sets the buffer address for each data field in PIDTDATP and its length in

PIDTCURL. Each response can be no longer than the value in PIDTMAXL, and
the number of responses, separated by the character in PIDTSEPC, cannot exceed
the value in PIDTMNCR (except for list items).

¶ Sets PIDTCNFR to the current number of responses for a field.

Database Access Transactions

90 Version 7.1

Table 25. LLAPI Transaction T107 (continued). Record Inquiry without saving search results
(Synchronous)
Step Program Action

¶ Sets PICA and PIAT fields as follows:
v PICATRAN=T107 (Record Inquiry)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies a received transaction’s validity. The application
can then check the return code and, if no error is detected, perform other
processes. The application can periodically check the status of the transaction
being processed by the server, or it can start the sync and wait on completion
transaction (T009) and wait for the transaction being processed by the server to
complete. See explanations of T009 and T010 check and sync transactions on
page 39.

v PICAPIDT=address of inquiry PIDT
v PICASRCH=associated data index (if applicable)
v PICABHIT=specifies the first record to be returned from a search (optional)
v PICANUMH=specifies the number of records returned from a search (optional)
v PIATNARG=0 if PIAT obtained with resource (no freeform arguments in this

example)
v PICAUSRN=name of current application.
v PICACLSN=name of current privilege class name.

¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets following fields:

v PICARETC
v PICAREAS
v PICAPIRT
v PIRTHITC
v PIRTBHIT
v PIRTSRRC
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks following fields set by server:
v PICARETC contains return code
v PICAREAS contains reason code
v PICAPIRT points to results table (PIRT)
v PIRTHITC contains number of matches returned
v PIRTSRRC contains number of matches found
v PIRTBHIT contains the match index of the first match found.
v PICAMSGC contains number of messages
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Table 26 on page 92 shows the record inquiry transaction flow to save and view initial
search results for a synchronous environment assuming no freeform arguments. It is assumed
that an inquiry resource is obtained. For more detailed information on the LLAPI structures
and their fields, see “LLAPI Structures” on page 100.

Database Access Transactions

91Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 26. LLAPI Transaction T107. Record Inquiry to save and view initial search results
(Synchronous)
Step Program Action

1 Application ¶ Stores response data for each inquiry field in the response buffer.
¶ Sets the buffer address for each data field in PIDTDATP and its length in

PIDTCURL.

Each response can be no longer than the value in PIDTMAXL, and the number of
responses, separated by the character in PIDTSEPC, cannot exceed the value in
PIDTMNCR (except for list items).

¶ Sets PIDTCNFR to the current number of responses for a field.
¶ Sets PICA and PIAT fields as follows:

v PICATRAN=T107 (Record Inquiry)
Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application as
soon as the server verifies a received transaction’s validity. The application can
then check the return code and, if no error is detected, perform other processes.
The application can periodically check the status of the transaction being
processed by the server, or it can start the sync and wait on completion transaction
(T009) and wait for the transaction being processed by the server to complete. See
explanations of T009 and T010 check and sync transactions on page 39.

v PICAPIDT=address of inquiry PIDT
v PICASRCH=associated data index (if applicable)
v PICASRID=identifier for this search
v PICARHIT=a value other than Y indicating to not return exiting matches
v PICABHIT=specifies the first record to be returned from a search (optional)
v PICANUMH=specifies the number of records returned from a search (optional)
v PIATNARG=0 if PIAT obtained with resource (no freeform arguments in this

example)
v PICAUSRN=name of current application.
v PICACLSN=name of current privilege class name.

¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets following fields:

v PICARETC
v PICAREAS
v PICAPIRT
v PIRTHITC
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks following fields set by server:
v PICARETC contains return code
v PICAREAS contains reason code
v PICAPIRT points to results table (PIRT)
v PIRTHITC contains number of matches returned
v PIRTSRRC contains number of matches found
v PIRTBHIT contains the match index of the first match found.
v PICAMSGC contains number of messages
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Database Access Transactions

92 Version 7.1

Table 27 shows the record inquiry transaction flow to view existing search results for a
synchronous environment. It is assumed that the search was previously performed and the
results saved. For more detailed information on the LLAPI structures and their fields, see
“LLAPI Structures” on page 100.

Table 27. LLAPI Transaction T107. Record Inquiry to view existing search results (Synchronous)
Step Program Action

1 Application ¶ Sets PICA and PIAT fields as follows:
v PICATRAN=T107 (Record Inquiry)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies a received transaction’s validity. The application
can then check the return code and, if no error is detected, perform other
processes. The application can periodically check the status of the transaction
being processed by the server, or it can start the sync and wait on completion
transaction (T009) and wait for the transaction being processed by the server to
complete. See explanations of T009 and T010 check and sync transactions on
page 39.

v PICASRID=identifier of search previously saved
v PICABHIT=specifies the first record to be returned from a search (optional)
v PICANUMH=specifies the number of records returned from a search (optional)
v PICARHIT=R to return existing matches
v PICAUSRN=name of current application.
v PICACLSN=name of current privilege class name.

¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets following fields:

v PICARETC
v PICAREAS
v PICAPIRT
v PIRTHITC
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks following fields set by server:
v PICARETC contains return code.
v PICAREAS contains reason code.
v PICAPIRT points to results table (PIRT).
v PIRTHITC contains number of matches returned
v PIRTSRRC contains number of matches found
v PIRTBHIT contains the match index of the first match found.
v PIRTHITC contains number of matches found.
v PICAMSGC contains number of messages.
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Add Record Relation (T109)
This transaction adds record relations to Tivoli Information Management for z/OS records.

Database Access Transactions

93Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

You use this transaction to create a relationship between a parentrecord and child records.
For example, you can link a change record to change activity records. The transaction
updates the parent record and adds nonreplaceable data items to the record. Specifically, you
add child relations to the parent records identified by index number in the following list:
S0B06 Add activity record names to a change record.
S0B0F

Add feature record names to a configuration hardware component record.
S0B13 Add feature record names to a configuration software component record.
S0B0F

Add connected-to record identifiers to a hardware component record.
S0B13 Add connected-to record identifiers to a software component record.

Note: This is the only LLAPI transaction that adds nonreplaceable data to the database.

You can use data model records or static PIDTs to provide the view of the data for your
application.If you use data model records, a PIDT is generated fromthe data view record and
associated data attribute records. See “Field Validation Using the Field Validation Module
BLGPPFVM” on page 279 for additional details on data model records.

Note: If you are using logical database partitioning, you can perform an add record relation
to a record only if the Owning Partition of that record matches the Primary Partition
of your privilege class.

Special static PIDTs are provided with the LLAPI. These tables specify the related record
prefix data used to store related record names. See “Record Type and Function PIDT Tables”
on page 299 for more information on these PIDTs.

You can use this transaction to store record relations in complex panel set data models.
Refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide for
information about complex panel sets.

Checking out the record before the update ensures that no other users can update the record
prior to your update. Your administrator can define a time limit for checked out records (in
the BLX-SP parameter APICHKOUTLIM, described in the Tivoli Information Management
for z/OS Planning and Installation Guide and Reference) so that records will not
inadvertently remain indefinitely checked out if your application does not check in the
record.

You use the response data buffer (used with a particular related record PIDT pointed to by
PICA field PICAPIDT) to specify the related record names or identifiers prefixed and
collected in the parent record specified in PICA field PICARNID. If you specify more than
one name or identifier, they must be separated by the separator character set in PIDT field
PIDTSEPC.

To add relations to a parent record, use the following transactions in the order given.
T101 Obtain the PIDT resource for child record creation.
T104 Check out the parent record to which relations are to be added.
T102 Create the child record or records.
T006 Free the create child PIDT.
T108 Obtain the add record relation resource for adding child names to the parent record.
T109 Add the record relations to the parent record.
T008 Check in the parent record.

Database Access Transactions

94 Version 7.1

T006 Free the add record relation PIDT.

Example

Here is the exact same list of transactions, with the exception that this list uses the example
of adding activities named ACT1 and ACT2 to a change record, CHG1.
T101 Obtain the PIDT resource for activity record creation (BLGYACC).
T104 Check out the change record CHG1 to which activities are to be added.
T102 Create the activity records called ACT1 and ACT2.
T006 Free the create activity PIDT (BLGYACC).
T108 Obtain the add record relation resource for adding activity names to the change

record (BLGYCHA).
T109 Add the record relations to the change record, CHG1. If another application or user

is attempting to update the record, the record might be unavailable. You can direct
the LLAPI to either retry this transaction from 1 to 255 times before returning
control to your application or wait until the record is available. See page 18 for
more information.

T008 Check in the change record, CHG1. If another application or user is attempting to
update the record, the record might be unavailable. You can direct the LLAPI to
either retry this transaction from 1 to 255 times before returning control to your
application or wait until the record is available. See page 18 for more information.

T006 Free the add record relation PIDT (BLGYCHA).

You must specify the following PICA fields to start this transaction:
PICATRAN A transaction code of T109
PICARNID External record ID of parent record
PICAPIDT Address of add relation PIDT

If you are using equal sign processing, you will need tospecify:

PICAEQRP Set to Y. If the response data (or visible phrase for direct-add items)
contains an equal sign (=) then the data will be processed as equal data and
processed according to the rules defined by the product.

You can specify values for these PICA fields if you want to change the name of the current
application ID or the name of the current privilege class:

PICAUSRN The name by which Tivoli Information Management for z/OS recognizes
your application.You can specify a value here to change the name of the
current application ID. Tivoli Information Management for z/OS uses this
name in place of a TSO user ID when performing record access privilege
class processing. The value specified must be an eligible user of the current
privilege class record.

PICACLSN A valid privilege class name.You can specify a value here to change the
current privilege class record.

Table 28 on page 96 shows the add record relation transaction flow for a synchronous
environment. For more detailed information on the LLAPI structures and their fields, see
“LLAPI Structures” on page 100.

Database Access Transactions

95Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 28. LLAPI Transaction T109. Add Record Relation (Synchronous)
Step Program Action

1 Application ¶ Stores response data for each updated field in the response buffer.

Sets the buffer address in PIDTDATP and its length in PIDTCURL.

Sets PIDTCNFR to the current number of responses for a field.
¶ Sets PICA fields as follows:

v PICATRAN=T109 (Add Record Relation)
Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 and T010 check and sync
transactions on page 39.

v PICARNID=parent record ID
v PICAPIDT=address of add relation PIDT
v PICAUSRN=application ID if you want to change the name of the current

application.
v PICACLSN=privilege class if you want to change the privilege class.

¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following PICA fields:

v PICARETC
v PICAREAS
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code
v PICAREAS contains reason code
v PICAMSGC contains number of messages
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Delete Record (T110)
This transaction deletes a record. Your application specifies the external record ID or the
root VSAM key of the record to be deleted in PICA field PICARNID. You can delete
records of all types.

You must specify the following PICA fields to start this transaction:

PICATRAN Transaction code of T110.

PICARNID External record ID or root VSAM key of record to delete. You must also
specify the following field when using a root VSAM key in PICARNID:
¶ PICAVSAM = Y

Database Access Transactions

96 Version 7.1

You can specify values for these PICA fields if you want to change the name of the current
application ID or the name of the current privilege class:

PICAUSRN The name by which Tivoli Information Management for z/OS recognizes
your application.You can specify a value here to change the name of the
current application ID. Tivoli Information Management for z/OS uses this
name in place of a TSO user ID when performing record access privilege
class processing. The value specified must be an eligible user of the current
privilege class record.

PICACLSN A valid privilege class name.You can specify a value here to change the
current privilege class record.

Root VSAM Key Considerations
When PICAVSAM is set to Y, the LLAPI attempts to process the record using the record ID.
TSP BLGAPI10 calls user exit BLGYAPBU to retrieve the record ID. If the record ID can
be determined, the record is deleted with the delete or purge command. If the record ID
cannot be determined because the record ID cannot be read (the record is damaged), the root
VSAM key is used to delete the record only if this function has been enabled. If the
function has not been enabled or if the record ID cannot be determined for a reason other
than a damaged record (such as a duplicate record ID error), TSP BLGAPI10 sets a nonzero
PICAREAS code and does not attempt to delete the record. If the function has been enabled,
your application must be running under a privilege class that allows database administrator
authority to allow deletion using the VSAM root key. TSP BLGAPI10 can be modified to
allow applications to set PICAVSAM to Y and delete VSAM records with any level of
authority you want or for any error other than a damaged record error.

If the record is damaged, the normal delete processing is unable to complete. You must run
the SDIDS build utility, BLGUT1, to correct the SDIDS. Until the utility is run, the record
shows as “deleted” if it appears on a search results list.

Note: If you are using logical database partitioning, you can delete a record only if the
Owning Partition of that record matches the Primary Partition of your privilege class.

Table 29 on page 98 shows the delete record transaction flow for a synchronous environment.
For more detailed information on the LLAPI structures and their fields, see “LLAPI
Structures” on page 100.

Database Access Transactions

97Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 29. LLAPI Transaction T110. Delete Record (Synchronous)
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T110 (Delete Record)

Note: You can use this transaction asynchronously if you initialized Tivoli
Information Management for z/OS (T001) in asynchronous mode.

Asynchronous mode operation returns control from the server to the application
as soon as the server verifies the validity of a received transaction. The
application can then check the return code and, if no error is detected, perform
other processes. The application can periodically check the status of the
transaction being processed by the server, or it can start the sync and wait on
completion transaction (T009) and wait for the transaction being processed by
the server to complete. See explanations of T009 and T010 check and sync
transactions on page 39.

v PICARNID=record ID or root VSAM key of record to be deleted
v PICAVSAM=Y if using a root VSAM key.
v PICAUSRN=application ID if you want to change the name of the current

application.
v PICACLSN=privilege class if you want to change the privilege class.

¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following PICA fields:

v PICARETC
v PICAREAS
v PICARNID
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code
v PICAREAS contains reason code
v PICARNID contains 0
v PICAMSGC contains number of messages
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

Change Record Approval (T112)
This transaction provides a means to approve or reject a change record. By using this
transaction, you can pass approvals from another change management product or application,
or from a Web application into Tivoli Information Management for z/OS. This is similar to
the process to approve or reject changes that you can do interactively; additional information
on the interactive process to perform this function can be found in the Tivoli Information
Management for z/OS Problem, Change, and Configuration Management document. Your
application must specify the name of a privilege class approving or rejecting the change and
specify whether to approve or reject the change.

A specified change record is updated as follows:

¶ If approval status is specified as “accepted”, the current privilege class in the list of
approvers within the change record is marked as “approval accepted”.

Database Access Transactions

98 Version 7.1

¶ If the status is specified as “rejected” or not “accepted”, the current privilege class in the
approver list is marked as “approval rejected”.

¶ When one approver rejects the change, the change record is marked as “rejected”.

¶ When all of the approvers on the list have accepted the change, the change record is
marked as “accepted”.

¶ Before the change record is marked “accepted” or “rejected”, it is in the “approval
pending” status.

Note: If data attribute records are used as direct add fields, then normal file processing is
not performed for change records when change approval processing is being
performed. That is, if ALL of these five direct adds—DATE/, TIME/, CLAE/,
DATM/, and TIMM/—are changed to data attribute records, then data modified, time
modified, and user ID are not saved in the record

To use the change record approval transaction, perform the following actions:

PICATRAN Set this to a transaction code of T112.

PICARNID Specify the external record ID of the change record.

Provide your authorization to perform the approval transaction:

PICATABN Set this to the alias or member name of a static PIDT used to retrieve
change records. A data view record can be used in place of a static PIDT. To
do so, set PICATABN to the name of the data view record and set
PICADMRC=Y. Ensure that the PIDT or data view record specifies the
authorization code for displaying change records.

Specify the desired approval status for the change record:

PICACHAP If you want to specify an approval status of “accepted”, set PICACHAP=A;
if no approval status is specified or if the status is not “accepted”
(PICACHAP≠A), then the default is to reject the approval of the change
record.

Specify the privilege class of the approver:

PICACLSN If no privilege class is set with this transaction, then the default is to use the
privilege class that is currently in effect. If you want to change to a different
privilege class, provide a value for PICACLSN. Ensure that the privilege
class has authority to display change records.

Specify the application ID of the approver:

PICAUSRN If no application ID is set with this transaction, then the default is to use the
application ID that is currently in effect. If you want to change to a different
application ID, provide a value for PICAUSRN. The user must be an eligible
user of the privilege class specified in the PICACLSN.

PICAAPVR Set this value to the approver. This can be a different value than PICACLSN
or the current profile class. If no approver is set with this transaction, then
the default is to use the value specified by PICACLSN. If PICACLSN is not
set, the privilege class that is currently in effect is used as the default.

Database Access Transactions

99Application Program Interface Guide

||
|
|
|

2.
U

sin
g

th
e

L
L

A
P

I

Table 30 shows the change record approval transaction flow for a synchronous environment.
For more detailed information on the LLAPI structures and their fields, see “LLAPI
Structures”.

Table 30. LLAPI Transaction T112. Change Record Approval
Step Program Action

1 Application ¶ Sets PICA fields as follows:
v PICATRAN=T112 (Change Record Approval)
v PICARNID=record ID of the change record to be approved or rejected
v PICATABN=name of a static PIDT or data view record with the appropriate

authority
v PICADMRC=Y if PICATABN is the name of a data view record
v PICACHAP=A for approve; any other value results in reject
v PICAUSRN=application ID (if you want to change the name of the current

application)
v PICACLSN=privilege class (if you want to change the privilege class; if you

change the privilege class, this has the effect of rejecting the change.)
¶ Calls BLGYSRVR(PICA).

2 Server ¶ Validates PICA fields
¶ Notifies API subtask
¶ Waits for completion
¶ Sets the following PICA fields:

v PICARETC
v PICAREAS
v PICAMSGC
v PICAMSGP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v PICARETC contains return code
v PICAREAS contains reason code
v PICAMSGC contains number of messages
v PICAMSGP points to message chain if PICAMSGC > 0.

¶ Continues processing.

LLAPI Structures
The LLAPI uses several program structures to support the transactions your application uses
to access the Tivoli Information Management for z/OS database. These structures are:
¶ Low-Level program interface communications area (PICA)
¶ Program interface alias table (PALT)
¶ Program interface data table (PIDT)
¶ Program interface history table (PIHT)
¶ Program interface pattern table (PIPT)
¶ Program interface argument table (PIAT)
¶ Program interface results table (PIRT)
¶ Program interface message block (PIMB)

Figure 5 on page 101 shows the relationships between the PICA control block structure and
the other structures the LLAPI uses.

Database Access Transactions

100 Version 7.1

Low-Level Program Interface Communications Area (PICA)
Your application allocates the PICA. The PICA is used to communicate between the rest of
the interface (including the API subtask) and your application. The PICA also serves as an
anchor to all other LLAPI structures. You can find a sample PICA in the macro library of
Tivoli Information Management for z/OS (SBLMMACS). Look for BLGUPICA.

Table 31 shows the structure of the PICA and the page number where the table fields are
explained.

Note: As shown in the table, some fields are set by the interface. Your application should
not attempt to set these fields. If it does, results are unpredictable.

Table 31. LLAPI Communications Area (PICA)
Field Label Offset

DEC(HEX)
Length
DEC

Description Set by page

PICAACRO 0(0) 4 The acronym PICA (character) Application 104

PICALENG 4(4) 4 Length of this structure (fixed) Application 104

PICAENVP 8(8) 4 Transaction environment anchor (pointer) Interface 104

PICASESS 12(C) 8 Session-parameters member name
(character), minimum of 7 characters

Application 104

PICAUSRN 20(14) 8 Application ID (character) Application 104

Figure 5. Relationships Between the PICA and the Interface Tables

LLAPI Structures

101Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 31. LLAPI Communications Area (PICA) (continued)
Field Label Offset

DEC(HEX)
Length
DEC

Description Set by page

PICATRAN 28(1C) 4 Transaction code (character) Application 104

PICACLSN 32(20) 8 Privilege class name (character) Application 104

PICACLSC 40(28) 4 Privilege class record count (fixed) Application 105

PICARETC 44(2C) 4 Transaction return code (fixed) Interface 105

PICAREAS 48(30) 4 Transaction reason code (fixed) Interface 105

PICAMSGC 52(34) 4 Message block count (fixed) Interface 105

PICAMSGP 56(38) 4 Address of message chain (pointer) Interface 105

PICARNID 60(3C) 8 Tivoli Information Management for z/OS
record ID or root VSAM key (character)

Either 105

PICAPIDT 68(44) 4 Address of PIDT (pointer) Either 105

PICAPIRT 72(48) 4 Address of PIRT (pointer) Either 106

PICAREQR 76(4C) 4 Requested size of PIAT in rows (fixed) Application 106

PICAREQL 80(50) 4 Length of requested response buffer (fixed) Application 106

PICATINT 84(54) 4 Transaction time interval (fixed) Application 106

PICASPLI 88(58) 4 Spool time interval (fixed) Application 106

PICATABN 92(5C) 8 Static PIDT name (character - last position
blank; dynamic PIDT, * appended) or
record ID of a data view record

Either 106

PICADBID 100(64) 1 Database ID (character) Application 106

PICASTXT 101(65) 1 Suppress text indicator (character Y) Application 106

PICAASYN 102(66) 1 Asynchronous environment indicator
(character Y)

Application 107

PICASRCH 103(67) 5 Inquiry associated data index (character) Application 107

PICARTIV 108(6C) 4 Residual time interval (unsigned fixed) Interface 107

PICAMSGD 112(70) 1 Message destination indicator (character P,
C, B)

Application 107

PICAVSAM 113(71) 1 VSAM sequence number indicator
(character Y)

Application 107

PICAHIST 114(72) 1 Process history indicator (character Y) Application 108

PICATXTR 115(73) 1 Replace or delete text on update indicator
(character Y)

Application 108

PICAPARM 116(74) 4 User TSP parameter (pointer) Application 108

PICATBLN 120(78) 8 Alias table name (character) Application 108

PICATBLP 128(80) 4 Address of alias table (pointer) Either 108

PICATXTU 132(84) 4 Maximum number of text units to retrieve
(fixed). Default = 60.

Application 108

PICATXTW 136(88) 4 Maximum text unit width to retrieve (fixed).
Default = 60.

Application 108

PICATXTP 140(8C) 1 Type of text processing to perform
(character). B = buffer, D = data set.
Default = D.

Application 108

LLAPI Structures

102 Version 7.1

Table 31. LLAPI Communications Area (PICA) (continued)
Field Label Offset

DEC(HEX)
Length
DEC

Description Set by page

PICATXTA 141(8D) 1 Area of text units (character). T = top block,
B = bottom block. Default = B.

Application 108

PICATXAU 142(8E) 1 Audit data specified indicator (character Y) Application 109

PICADYNM 143(8F) 1 Dynamic PIDT request on retrieve indicator
(character Y)

Application 109

PICASTPA 144(90) 4 Address of subtask TCB address (pointer) Interface 109

PICAESPC 148(94) 4 Extra PIDT entry space Application 109

PICASRID 152(98) 4 Search ID for saved searches (fixed) Application 109

PICANUMH 156(9C) 4 Number of hits to return for a search (fixed) Application 109

PICABHIT 160(A0) 4 Index of first search match to return (fixed) Application 109

PICARHIT 164(A4) 1 Return existing search hits (character Y) Application 109

PICAHMEM 165(A5) 1 Use memory above 16MB indicator
(character Y)

Application 110

PICAEQRP 166(A6) 1 Equal processing indicator Application 110

PICADRIF 167(A7) 1 Bypass panel processing indicator Application 110

PICADMRC 168(A8) 1 Data model record indicator Application 110

PICADFMT 169(A9) 1 Date format indicator Application 111

PICADSEP 170(AA) 1 Date separator character indicator Application 111

PICACHAP 171(AB) 1 Change record approval status indicator
(A=Accept; any other character indicates
Reject)

Application 111

PICARSV2 172(AC) 8 Reserved. Must be initialized to binary
zeros.

Application 111

PICAUTSP 180(B4) 8 Name of TSP or TSX to invoke on T111
(character)

Application 111

PICAPARL 188(BC) 2 If =0, indicates that the value contained in
PICAPARM (X'74') is the address of a user
buffer; if greater than 0, indicates that the
value contained in PICAPARM is the
address of a string in which case the value
specified in PICAPARL is the length of the
string being passed (fixed)

Application 112

PICALSTM 190(BE) 1 Update list processing mode Application 112

PICASAUD 191(BF) 1 Suppress text audit data indicator (character
Y)

Application 112

PICARSV3 192(C0) 12 Reserved. Must be initialized to binary
zeros.

Application 112

PICATZON 204(CC) 8 TIMEZONE value Application 112

PICAAPVR 212 (D4) 8 Approver Application 112

PICATBFL
220 (DC) 4 Length of text argument buffer Application 112

PICATBUF 224 (E0) 4 Address of text argument buffer Application 112

PICARSV4 228 (E4) 28 Reserved. Must be initialized to binary
zeros.

Application 112

LLAPI Structures

103Application Program Interface Guide

|

|

|

|

|

2.
U

sin
g

th
e

L
L

A
P

I

The following list describes the purpose of each field of the PICA.

PICAACRO
A 4-character field containing the character string PICA to identify this as a
communication area. After allocating storage for this structure, your application sets
this field to the string PICA. The API checks for this character string at this location
when each transaction begins.

PICALENG
A 4-byte fixed field containing the length of the PICA structure. The value in this
field represents the total size of this structure including the PICAACRO field. Your
application sets this field and the API validates it.

PICAENVP
A 4-byte pointer field containing the address of the LLAPI environment area.

Note: Initialize this pointer field to zero when it is passed to the LLAPI for the first
time during an initialize Tivoli Information Management for z/OS (T001)
transaction.

Your application must maintain the address stored in this pointer until the
terminate Tivoli Information Management for z/OS (T002) transaction is
complete.

PICASESS
An 8-character field containing a 7- or 8-character session-parameters member name
used by the initialization routines when your application uses a T001 transaction to
initialize Tivoli Information Management for z/OS. You can use the
session-parameters member to specify unique data tables (specified in BLGFMT)
and panel data sets for your application’s use. This field is processed only during
API initialization. Your application sets this field.

PICAUSRN
A 1- to 8-character name that identifies your application to Tivoli Information
Management for z/OS. The name specified in this field is used in place of a TSO
user ID when performing privilege class processing. The name you specify here
must be an eligible user ID in the privilege class specified in the PICACLSN. If you
are using APISECURITY=ON keyword in the BLX-SP startup parameters member,
you must ensure that the MVS user ID(s) running this application are allowed to use
this application ID. See “API Security” on page 287 for additional information. Your
application sets this field.

PICATRAN
A 4-character transaction code that specifies a transaction service provided by the
API. Your application sets this field.

PICACLSN
A 1- to 8-character privilege class name used when executing a transaction. The
class name specified here must contain the authority needed to perform the requested
Tivoli Information Management for z/OS record processing function. For example, if
you are doing a problem display, the current privilege class must be one that permits
problem display. Your application sets this field before it starts the initialize Tivoli
Information Management for z/OS transaction (T001) and can set this field for any
other transaction before processing that transaction. Every time you start a

LLAPI Structures

104 Version 7.1

transaction, Tivoli Information Management for z/OS compares the value in this
field to the current privilege class. If the values are different, Tivoli Information
Management for z/OS starts the class listed in this field. Once you specify a
privilege class name with this field, it remains in effect until your application
changes it. To change the privilege class for a future transaction, you must reset this
field.

This field can contain mixed data. If it does, the API validates the field to make sure
it contains valid mixed data.

PICACLSC
A 4-byte fixed field containing the maximum number of privilege class records that
can be held in storage in the current session. When the LLAPI reaches the class
count limit and a new class record is required, the least recently used class record is
removed to make room for the new class record. By specifying a count, you reduce
the number of record I/Os needed when your application requests multiple class
records during transaction processing. This field is processed only during an
initialize Tivoli Information Management for z/OS transaction (T001). Your
application sets this field.

PICARETC
A 4-byte fixed return code field. The API sets this field. See “Return and Reason
Codes” on page 301 for a list of return codes.

PICAREAS
A 4-byte fixed reason code field. The API sets this field. See “Return and Reason
Codes” on page 301 for a list of reason codes.

PICAMSGC
A 4-byte fixed field that contains the count of messages in the message chain. The
API sets this field.

PICAMSGP
A 4-byte pointer to a chain of messages associated with a transaction. This field
contains zeros when the PICA field PICAMSGC is also zero. The API sets this field
and maintains storage for this chain. Your application must not alter this pointer
field.

PICARNID
An 8-character external record ID or root VSAM key used to identify which Tivoli
Information Management for z/OS record the API is processing. Your application or
the API sets this field, depending on the transaction requested.

When your application sets this field, the API will validate the field to ensure it
contains valid mixed data.

When using a root VSAM key, enter it as it is listed on panel BLG1TVID. Refer to
the Tivoli Information Management for z/OS Diagnosis Guide for details on locating
the root VSAM key. For example, if the root VSAM key is X'0000001F', in a C
language program you would specify PICARNID='0000001F'.

PICAPIDT
A 4-byte pointer to a PIDT used with a transaction. This field is required for all
record access and search operations. Your application or the API sets this field,
depending on the transaction requested.

LLAPI Structures

105Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

PICAPIRT
A 4-byte pointer to a PIRT provided by the API to use with the record inquiry
transaction (T107). Your application or the API sets this field.

PICAREQR
A 4-byte fixed field containing the requested size of the PIAT in rows. Tivoli
Information Management for z/OS processes this field only for an Obtain Inquiry
Resources transaction (T106). The API stores the argument table storage address in
the PIDT header at field PIDTPIAT. When this field is zero, no PIAT is allocated
with the PIDT. Your application sets this field.

PICAREQL
A 4-byte fixed field containing the size of the response buffer required when
requesting create (T101), update (T103), inquiry (T106), or add record relation
(T108) resources. The API stores the address and length of the response buffer in
PIDT fields PIDTBUFP and PIDTBUFL. Your application sets this field. For
dynamic PIDTs, your application can set this field on the retrieve (T100) transaction
when requesting a dynamic PIDT (PICADYNM=Y). This amount is added as free
space to the end of the response buffer built for the dynamic record retrieve. If your
application sets this field on the retrieve transaction and PICADYNM≠Y, this field is
ignored.

PICATINT
A 4-byte fixed field containing the number of seconds in which transactions must
complete before your application is notified for further action (for asynchronous
processing) or before the transaction is terminated (for synchronous processing). If
you specify a value less than 45 seconds, the value is set to 45 seconds by default.
If you specify a value of 0 or omit this field, the value is set to 300 seconds (five
minutes) by default. See the sync transaction (T009), page 39 for more information
on the use of this time interval. Your application sets this field only for an initialize
Tivoli Information Management for z/OS transaction (T001).

PICASPLI
A 4-byte fixed field containing the time interval (in minutes) between instances
where the activity log is spooled and reallocated if messages are being printed. The
field is referenced only during an initialize Tivoli Information Management for z/OS
transaction (T001). Your application sets this field.

PICATABN
An 8-character field containing a PIDT name. This field is made up of the
7-character PIDT name right-padded with a blank. Your application sets this field.
For a dynamic PIDT, the LLAPI appends an asterisk (*) to the name. If you are
using data model records (PICADMRC=Y), then the value specified for PICATABN
is the data view record. A static PIDT name can be from 1 to 7 characters in length.
A data view record ID can be from 1 to 8 characters in length. The API or your
application sets this field.

PICADBID
A 1-character database ID identifying the database of the record to process. For
Tivoli Information Management for z/OS records, the database ID value can be 4, 5,
7, 8 or 9. To specify the Tivoli Information Management for z/OS database, use a
value of 5. Your application sets this field.

PICASTXT
A 1-character field that indicates to the API whether or not text data is to be

LLAPI Structures

106 Version 7.1

retrieved. Transactions that suppress text data use fewer resources and operate faster
than those that do not. This field should be set to Y if text suppression is requested.
Any other value indicates that text is to be returned. Your application sets this field.

PICAASYN
A 1-character field indicating whether the API should run in asynchronous mode or
not. Asynchronous run mode causes the API to return to the application immediately
after receiving a transaction request. A synchronize transaction (T009) or check
transaction (T010) must be paired with every transaction attempted by the
application when running in this mode. This field is processed only by an initialize
transaction (T001). The field should be set to Y if asynchronous mode is desired. If
this field has any other character value, it is ignored, and synchronous mode is used.
Your application sets this field.

PICASRCH
A 5-character index value (the value in PIDTSYMB) of the data item to be retrieved
(along with the record ID) and stored in the PIRT field PIRTDATA when your
application starts an inquiry transaction (T107). This field is optional. Your
application sets or clears this field.

Note: The API does not return list item, phrase, or text data in this field.

PICARTIV
A 4-byte unsigned binary field containing the time remaining in the interval
specified by PICATINT in units of 26.04166 microseconds. If a transaction timeout
does not occur, this value reflects the time that remains for the last time interval.
You can use this field to determine transaction processing time. The calculation to
determine length of time in minutes is:
PICATINT - ((((PICARTIV value) * 26.04166) / 1,000,000) / 60) = minutes

This field is valid only when transactions have completed. The API sets this field.

PICAMSGD
A 1-character field indicating destination of messages produced by the API subtask.
The character options and their meanings are:

P Return output messages to the data set identified by the APIPRINT DD
statement for the job step in which the API application is running. If this is a
batch job, the JCL for the step where your application runs must have a DD
statement similar to this:
//APIPRINT DD DSN=userid.API.OUTPUT,DISP=OLD

If your application is being run interactively, the file APIPRINT must be
allocated prior to invoking the application.

C Return output messages on the message chain.

B Perform the functions of both P and C.

This field is processed only by an initialize transaction (T001). Any characters other
than P or B are treated as C. Your application sets this field.

PICAVSAM
A 1-character field indicating whether the PICARNID field contains a root VSAM
key or a record ID to identify the Tivoli Information Management for z/OS record

LLAPI Structures

107Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

the API is processing. A Y indicates that the root VSAM key is used. Any other
value indicates that the record ID is used. Your application sets this field.

PICAHIST
A 1-character field indicating whether history entries are to be processed by the
retrieve, create, and update transactions. A value of Y indicates that history entries
are to be processed. Any other value indicates they are not to be processed. Your
application sets this field.

PICATXTR
A 1-character field indicating whether to replace or delete existing text on the update
transaction. A value of Y indicates to replace or delete existing text. Any other value
indicates not to replace or delete existing text. When the value is Y, a single
separator character as data for a text row indicates to delete existing text of that
type. When the value is Y, any text data other than a single separator character
replaces existing text of that type in the record. Your application sets this field.

PICAPARM
A 4-byte pointer field that specifies the address of a parameter when your
application starts a user Terminal Simulator Panel (TSP) with a T111 transaction.
See “Start User TSP or TSX (T111)” on page 52 for more information about
invoking a user TSP and the use of this parameter value. Your application sets this
field.

PICATBLN
An 8-character field containing the name of the alias table (PALT). The name is
from 1 to 8 characters long, right-padded with blanks. Your application sets this
field.

PICATBLP
A 4-byte pointer to an alias table (PALT) used with transactions T011 and T012.
When using T011 to get an alias table, the API sets this field with the address of the
obtained table. When using T012 to free the alias table resource, your application
sets the field with the address of the table resource to be freed.

PICATXTU
A 4-byte fixed field containing the maximum number of text lines to retrieve for
each text item in a record when performing buffer processing. If no value is
specified, a default value of 60 is used. Your application sets this field.

PICATXTW
A 4-byte fixed field containing the maximum width of a text line to be retrieved
when performing buffer processing. Your application can specify a value from 1 to
132. If it does not specify a value, the API assigns a default value of 60 to this field.

PICATXTP
A 1-byte character field containing the type of text processing you want performed.
A value of D in this field specifies that the LLAPI stores retrieved text in a data set.
A value of B in this field specifies that the LLAPI stores retrieved text in the
response buffer. If a blank or other character is specified, then a default value of D
is used. Your application sets this field.

PICATXTA
A 1-byte character field indicating whether the LLAPI processes the top or bottom
area of text lines when the number of lines available exceeds the value in
PICATXTU. A value of T in this field specifies that the LLAPI processes the top

LLAPI Structures

108 Version 7.1

area of lines. A value of B in this field specifies that the LLAPI processes the
bottom area of lines. If you specify a blank or another character, then the LLAPI
uses a default value of B. Your application sets this field.

PICATXAU
A 1-character field indicating whether audit (or control) data is specified with input
text on the create and update transactions. A value of Y indicates that each line of
incoming text contains audit data (in the same form that is returned using the
retrieve transaction). Any other value indicates that incoming text does not contain
audit data. Your application sets this field.

PICADYNM
A 1-character field indicating whether a dynamic PIDT is to be generated on the
retrieve record transaction (T100) or used on a create record (T102) or update record
(T105) transaction. A value of Y indicates that a dynamic PIDT is to be processed.
Any other value in this field indicates that a dynamic PIDT is not to be processed.
Your application sets this field.

PICASTPA
A 4-byte pointer to the address storing the address of the subtask TCB. The field
pointed to contains either the address of the subtask TCB (if subtask is active) or
zero (if subtask is inactive). The API sets this field.

Note: If your application uses an ESTAE exit, you might need to detach the Tivoli
Information Management for z/OS subtask. Before issuing a DETACH, your
application should first check for a subtask TCB address.

PICAESPC
A 4-byte fixed field containing an amount of extra storage to be added to each entry
buffer of a dynamic PIDT beyond what is needed to hold the data for the entry. This
field is valid for dynamic PIDTs only. Your application sets this field.

PICASRID
A 4-byte fixed field containing the identifier of a search. It is assigned to either a
new search results list or an existing search results list. If the value of this field is
zero, the search results are not saved.

PICANUMH
A 4-byte fixed field containing the maximum number of matches in the database
returned from a search:

¶ If this field is blank, either the value in SORTPFX-N1 from the
session-parameters member or the actual number of hits is used, whichever is
smaller.

¶ If this field is larger than the value in SORTPFX-N1, the value in SORTPFX-N1
is used.

¶ If this field is larger than the actual number of matches from the search, the
actual number of matches is used.

PICABHIT
A 4-byte fixed field containing the beginning match number to return. If your
application specifies zero, the API uses a value of one.

PICARHIT
A 1-character field indicating how the API treats this search. If this field is set to Y,

LLAPI Structures

109Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

it indicates to the API to return results from an existing search. If this field is not set
to Y, the API treats this search as a new search.

PICAHMEM
A 1-character field that indicates to the API whether or not control blocks may be
returned to the application program in memory obtained above the 16MB address
range. A value of Y indicates that memory above the 16MB address range may be
used. Any other value indicates that the memory must be below the 16MB address
range. Your application sets this field.

PICAEQRP
Equal processing indicator. This is set by your application. A Y indicates that an
equal sign in the first character of the response data (or visible phrase for direct-add
items) should be processed as equal data and processed according to the rules
defined by the product. Any other value indicates that the equal sign should be
treated as data; equal processing is not performed.

¶ For PIDT entry type R (response data), if the user passes an equal sign and
PICAEQRP is not set to Y, then processing remains unchanged. The equal sign
is used as data. If PICAEQRP is set to Y, and no equal pattern exists for that
field, then the equal sign is used as data.

¶ If the PIDT entry type is D (direct add data), and the data contains an equal sign
but PICAEQRP is not set to Y, then the equal sign data is used as data and
entered into the record.

PICADRIF
Bypass panel processing indicator. This is set by your application. A Y indicates that
no panels other than those used by the delete transaction should be used in record
processing. Any other value indicates panels should be used. If you specify Y to
bypass panel processing, then data model records must be used for these functions:

¶ T101 -- Obtain record create resource

¶ T102 -- Create record

¶ T103 -- Obtain record update resource

¶ T105 -- Update record

¶ T108 -- Obtain add record relation resource

¶ T109 -- Add record relation

If you specify to use bypass panel processing, then data model records can
optionally be used for these functions:

¶ T100 -- Retrieve record

¶ T106 -- Obtain inquiry resources

¶ T107 -- Record inquiry

PICADMRC
Data model record indicator. This is set by your application. A Y indicates that the
PIDT name (PICATABN) is a data view record ID. The data view record is used to
build the PIDT.

It can take a significant amount of time to generate a PIDT from data view records.
The length of time depends on the number of data attribute records (and validation

LLAPI Structures

110 Version 7.1

records that they reference) contained in the data view record. As with any PIDT,
you can maintain the PIDT in storage for subsequent use.

Any value other than Y indicates that the PIDT name is a static or model PIDT to
be used to find the table in the table data set or for dynamic processing.

PICADFMT
Date format indicator. This is set by your application. This enables the option of
having all dates converted to or from a specified format, regardless of the database
date format. Possible values are:

Value Date format

X'00' Database date format used. PICADSEP is ignored.

X'01' MM/DD/YY
MM-DD-YY
MM.DD.YY

X'02' MM/DD/YYYY
MM-DD-YYYY
MM.DD.YYYY

X'03' DD/MM/YY
DD-MM-YY
DD.MM.YY

X'04' DD/MM/YYYY
DD-MM-YYYY
DD.MM.YYYY

X'05' YY/MM/DD
YY-MM-DD
YY.MM.DD

X'06' YYYY/MM/DD
YYYY-MM-DD
YYYY.MM.DD

X'07' DDMMMYY

X'08' DDMMMYYYY

X'09' YYDDD

X'0A' YYYYDDD

PICADSEP
Date separator character indicator. For values in the range X'01' through X'06' for
PICADFMT, in field PICADSEP you specify the character which will serve as the
data separator; only the characters slash (/) or hyphen (-) or period (.) are
valid.

PICACHAP
Change record approval status indicator. This is set by your application. An A
indicates that the approval status for the change record is “Accept”. Any other value
in this field indicates that the change record approval status is “Reject”.

PICARSV2
An 8-byte area reserved for future use. This area must be set to all binary zeros.
Your application sets this field.

PICAUTSP
The name of a TSP or TSX to be invoked by the T111 transaction. A string of up to

LLAPI Structures

111Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

255 characters can be passed to the TSP (in the variable data area) or TSX (as an
argument) by storing the address of the string in PICAPARM and the length of the
string in PICAPARL.

PICAPARL
If 0, then PICAPARM is the address of a user buffer; if greater than 0, then
PICAPARM is the address of a string to be passed and PICAPARL is the length of
that string.

PICALSTM
Used to specify how lists should be processed. Specify U to indicate that any new
list data specified on the update will update existing lists in the record; specify A to
indicate that any new list data specified on the update will be appended to the end
of existing lists in the record; specify R to indicate that any new list data specified
on the update will replace existing lists in the record. The default is U.

PICASAUD
Used to specify whether text audit data is to be retrieved. This field should be set to
Y if text audit data suppression is requested. Any other value indicates that text audit
data is to be returned.

PICARSV3
A 12-byte area reserved for future use. This area must be set to all binary zeros.
Your application sets this field.

PICATZON
An 8–character field with the desired TIMEZONE label value (right-pad the field if
the value is less than 8 characters). The value entered must match one of the values
specified in the TIMEZONE record. Your application sets this field.

PICAAPVR
An 8-character field with the name of the privilege class that is approving or
rejecting the change (right-pad the field if it is less than 8 characters). Your
application sets this field.

PICATBFL
A 4-byte fixed field containing the total length of the data in the text argument
buffer. If no text arguments exist, this value should be set to 0. Your application sets
this field.

PICATBUF
A 4-byte pointer field containing the address of the text argument buffer. Your
application sets this field.

PICARSV4
A 28-byte area reserved for future use. This area must be set to all binary zeros.
Your application sets this field.

Program Interface Alias Table (PALT)
Alias tables let your applications:

¶ Specify alias names for PIDT member names so remote locations accessing the same
database can identify a given PIDT by different alias names, or different PIDT versions
using the same alias name.

¶ Specify an alias name for a p-word when building freeform search arguments. An
example of a p-word is PERS/.

LLAPI Structures

112 Version 7.1

|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

¶ Specify an alias name for a p-word index or s-word index for use in create record
(T102), update record (T105), record inquiry (T107), and add record relation (T109)
transactions. For example, you could use an alias name of “status” instead of s-word
index S0BEE.

¶ Specify default response data values that can be used when an application does not
provide a response value.

You create alias tables using the table build utility BLGUT8. PALTs are stored as members
in partitioned data set BLGFMT. For more information about building alias tables, see “Field
Validation Using the Field Validation Module BLGPPFVM” on page 279.

Table 32 shows the structure of the PALT and the page number where the table fields are
explained.

Note: All character fields in the table are left justified and padded with blanks. As shown in
the table, fields are set by the interface. Your application must not attempt to set these
fields. If it does, results are unpredictable. In this case, interface can mean either the
API or the table build utility.

Table 32. Alias Table (PALT)

Field Label
Offset
DEC(HEX)

Length
DEC Description Set by page

HEADER ALIAS TABLE HEADER
1st RECORD OF TABLE MEMBER

PALTACRO 0(0) 4 Acronym of PALT (character) Interface 113

PALTBLNM 4(4) 8 Name of this table (character) Interface 114

PALTRCDS 12(C) 4 Number of records per row (fixed)
value = 2

Interface 114

PALTNUMR 16(10) 4 Number of rows in table (fixed) Interface 114

PALTRSV1 20(14) 60 Reserved -- 114

ENTRY ROW ALIAS TABLE ROW
2nd AND SUBSEQUENT ROWS OF TABLE

PALTESLN 0(0) 4 Length of alias value (fixed) Interface 114

PALTDDLN 4(4) 4 Length of default data (fixed) Interface 114

PALTPDLN 8(8) 4 Length of p-word (fixed) Interface 114

PALTSYMB 12(C) 5 Internal index symbol (character) Interface 114

PALTESYM 17(11) 32 Alias value (character) Interface 114

PALTDEFD 49(31) 45 Default data (character) Interface 114

PALTPRFX 94(5E) 6 P-Word (character) Interface 114

PALTTBLN 100(64) 8 PIDT member name (character) Interface 114

PALTRSV2 108(6C) 52 Reserved -- 114

The following list describes the purpose of each field of a PALT header.

PALTACRO
A 4-character field containing the character string PALT to identify this program
interface alias table. The table build utility sets this field.

LLAPI Structures

113Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

PALTBLNM
An 8-character field containing the name of this table. The table build utility sets
this field.

PALTRCDS
A 4-byte fixed field containing the number of records in each table row. The table
build utility sets this field.

PALTNUMR
A 4-byte field containing the number of rows in the table structure. The table build
utility sets this field.

PALTRSV1
A 60-byte area reserved for future use.

The following section describes the purpose of each field of a PALT row:

PALTESLN
A 4-byte fixed field containing the length of the alias value in PALTESYM. The
table build utility sets this field.

PALTDDLN
A 4-byte fixed field containing the length of the default data in PALTDEFD. The
table build utility sets this field.

PALTPDLN
A 4-byte fixed field containing the length of the p-word in PALTPRFX. The table
build utility sets this field.

PALTSYMB
A 5-character field containing the internal symbol name (PIDTSYMB) of a PIDT
row. The table build utility sets this field.

PALTESYM
A 32-character field containing the alias value name. The table build utility sets this
field.

PALTDEFD
A 45-character field containing the response to be stored in the LLAPI response
buffer. The table build utility sets this field.

PALTPRFX
A 6-character field containing the p-word used when constructing freeform
arguments. The table build utility sets this field.

PALTTBLN
An 8-character field containing a left-justified, 1- to 8-byte PIDT member name.
Currently only 1- to 7-byte member names are supported. The table build utility sets
this field.

PALTRSV2
A 52-byte area reserved for future use.

For an example of a PALT, see “Program Interface Alias Table (PALT)” on page 112.

Program Interface Data Table (PIDT)
The program interface data table (PIDT) is a view of a particular type of Tivoli Information
Management for z/OS database record. The PIDT is distinct from data view records and data

LLAPI Structures

114 Version 7.1

attribute records; but all —a PIDT, a data view record, and a data attribute record— identify
fields within a Tivoli Information Management for z/OS record using Tivoli Information
Management for z/OS’s prefix word (p-word) and structured word (s-word) indexes, and
panel names. On a record retrieve, you can provide a pre-defined view, or request that the
LLAPI build a dynamic view based on the data contained in the record. You can tailor the
pre-defined view (either with a static PIDT or data view record), or if using the LLAPI,
request that the LLAPI build a dynamic view to meet the needs of your application and your
customized Tivoli Information Management for z/OS database. When data model records are
used, the data view record is used to generate the PIDT. In addition, Tivoli Information
Management for z/OS supplies the Table Build Utility, BLGUT8, to assist you in creating
these static PIDTs and models for dynamic PIDTs. The Table Build Utility BLGUT8 is
described in Tivoli Information Management for z/OS Operation and Maintenance Reference.
Tivoli Information Management for z/OS also contains some static PIDTs in the BLGFMT
data set.

You can use data model records as a substitute for static PIDTs. Data view records define
the fields that your application can access. Data attribute and validation records define the
field attributes. If you use data model records, PIDTs are generated from these records to be
used by your application and the API. “Field Validation Using the Field Validation Module
BLGPPFVM” on page 279 contains additional information about data model records.

A data buffer is associated with the PIDT. This buffer holds response data associated with
each field defined in the PIDT. The LLAPI obtains the storage for this buffer. You create
static PIDTs by using the table build utility. The Tivoli Information Management for z/OS
Operation and Maintenance Reference contains additional information about the table build
utility. A PIDT created by BLGUT8 will contain a version number to indicate that the PIDT
contains entries for the data type field. If your PIDT tables were created using the non-NLS
Application Program Interface, you must recreate your tables using BLGUT8. If you have
not migrated, processing will terminate.

There are three types of PIDTs:

Static PIDTs
These are PIDTs built by BLGUT8 and stored in a partitioned data set that is a
member of the report format table data set concatenation. Static PIDTs are further
described in “Static PIDTs”.

Dynamic PIDTs
These are built from a retrieved record; they are further described in “Dynamic
PIDTs” on page 116.

“Generated” PIDTs
These are “generated” from a data view record and associated data attribute and
validation records. A generated PIDT is used internally and is never actually written
to a data set.

Static PIDTs
You can use the static PIDTs shipped with the licensed program for problem, change, and
configuration records in the Tivoli Information Management for z/OS database, or you can
define your own static PIDTs with the table build utility. Some reasons why you might want
to define your own static PIDTs are:

¶ To represent a customized version of problem, change, or configuration records

¶ To represent user-defined record types

LLAPI Structures

115Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

¶ To conserve storage and processing time by defining a PIDT customized to contain only
the information needed by a particular application

¶ To use as a model for the record retrieve transaction (T100) when requesting a dynamic
PIDT.

The API defines (as shipped PIDTs) a separate PIDT for each record process, such as
inquiry, retrieve, create, update, and add record relation. PIDTs are stored as members in a
partitioned data set called BLGFMT. The LLAPI uses these tables when it processes
interface transactions.

Table 33 shows the structure of the PIDT and the page number where the table fields are
explained.

Dynamic PIDTs
A dynamic PIDT is one whose header is defined by a model PIDT and whose entry fields
and data buffers are defined by a record read from the Tivoli Information Management for
z/OS database. The LLAPI can build a dynamic PIDT only on the record retrieve transaction
(T100). The dynamic PIDT can then be used for a record create (T102) or update (T105)
transaction.

The model PIDT for a dynamic PIDT can be any previously defined PIDT. It can be one
that was generated dynamically by the record retrieve transaction (T100), one that was built
by the table build utility for use with a record process, or one built by the table build utility
specifically for use by the retrieve transaction in building dynamic PIDTs (built with USE
(Header)).

Dynamic PIDTs cannot be used for Create (T102) or Update (T105) if bypass panel process
(PICADRIF=Y) is specified at initialization. Dynamic PIDTs cannot be used for Retrieve
(T100), Create (T102), or Update (T105) if data model records (PICADMRC=Y) are used.

Program Interface Data Table Fields
Each row of the PIDT represents either a visible or keyword phrase item, a response field, a
direct add item, or text that is contained within a Tivoli Information Management for z/OS
record. The API uses specific transactions to allocate a PIDT for its intended use.

Note: All character fields are left-justified and padded with blanks. As shown in the table,
some fields are set by the interface. Your application should not attempt to set these
fields. If it does, results are unpredictable. In this case, interface can mean either the
API or the table build utility.

Some fields can be set by either the API or the application. For some of these fields, the
application must only set them in a dynamic PIDT. Refer to the detailed descriptions of the
fields for more information.

Table 33. Program Interface Data Table (PIDT)

Field Label
Offset
DEC(HEX)

Length
DEC Description Set by page

HEADER DATA TABLE HEADER
1st RECORD OF TABLE MEMBER

PIDTACRO 0(0) 4 Acronym of PIDT (character) Interface 120

PIDTNAME 4(4) 8 Name of this table (character) Interface 120

LLAPI Structures

116 Version 7.1

Table 33. Program Interface Data Table (PIDT) (continued)

Field Label
Offset
DEC(HEX)

Length
DEC Description Set by page

PIDTPTNM 12(C) 8 Associated PIPT name (character) Interface 120

PIDTPIPT 20(14) 4 Associated PIPT pointer (pointer) Interface 120

PIDTPIAT 24(18) 4 Associated PIAT pointer (pointer) Interface 120

PIDTRCDS 28(1C) 4 Number of records per row (fixed)
value=2

Interface 120

PIDTNUMR 32(20) 4 Number of rows in table (fixed) Interface 120

PIDTBUFP 36(24) 4 Response buffer pointer (pointer) Interface 120

PIDTBUFL 40(28) 4 Length of response buffer (fixed) Interface 120

PIDTUSEF 44(2C) 1 Table usage field
C=CREATE,
R=RETRIEVE
I=INQUIRY
U=UPDATE
A=ADD
D=DYNAMIC
H=HEADER (character)

Interface 121

PIDTSEPC 45(2D) 1 Response separator (character) Interface 121

PIDTAUTH 46(2E) 2 Authorization code (character) Interface 121

PIDTVERS 48(30) 1 PIDT version number (character) Interface 121

PIDTDMRC 49(31) 1 Data model record indicator (Y or N)
character

Interface 121

PIDTRSV1 50(32) 1 Reserved -- 121

PIDTDELO 51(33) 1 Delete entry types of Other
(PIDTRDEF=O) indicator (character
Y). Valid for dynamic PIDTs only.

Either 121

PIDTSPCP 52(34) 4 Pointer to free buffer space (pointer).
Valid for dynamic PIDTs only.

Either 121

PIDTSPCE 56(38) 4 Pointer to end of free buffer space
(pointer). Valid for dynamic PIDTs
only.

Interface 121

PIDTPIHT 60(3C) 4 Associated PIHT pointer (pointer) Either 122

PIDTRSV2 64(40) 16 Reserved -- 122

ENTRY ROW DATA TABLE ROW
2nd AND SUBSEQUENT ROWS OF TABLE

PIDTSYMB 0(0) 5 Field symbolic name (character) Interface 122

PIDTRDEF 5(5) 1 Row definition field - R=Response,
P=Phrase, D=Direct, X=Text, O=Other
(character)

Interface 122

PIDTCODE 6(6) 2 Field error code (character). Interface 123

PIDTMNCR 8(8) 4 Field’s maximum number of entry
responses (fixed).

Either 124

PIDTCNFR 12(C) 4 Number of field items (fixed). Either 125

PIDTMAXL 16(10) 4 Field’s maximum data length (fixed). Either 125

PIDTCURL 20(14) 4 Field’s current data length (fixed). Either 125

LLAPI Structures

117Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 33. Program Interface Data Table (PIDT) (continued)

Field Label
Offset
DEC(HEX)

Length
DEC Description Set by page

PIDTDATP 24(18) 4 Response buffer data pointer (pointer). Either 126

PIDTFPAT 28(1C) 4 PIPT row number of first pattern
(fixed). Valid only for table rows
where PIDTRDEF=R.

Interface 126

PIDTREQD 32(20) 1 Field defined as required (Y or N)
(character). Valid for all table rows.

Interface 126

PIDTDATE 33(21) 1 Field defined as a DATE (Y or N)
(character). Valid only for table rows
where PIDTRDEF=R.

Either 126

PIDTSRCH 34(22) 1 Field defined as SEARCHABLE (Y, N
or P=p-word only) (character). Valid
only for table rows where
PIDTRDEF=R, P, or D.

Either 126

PIDTJRNL 35(23) 1 Field defined as JOURNALED (F, O,
N) (character). F = first, O = order, N
= not journalized. Valid only for table
rows where PIDTRDEF=R or D.

Either 126

PIDTLIST 36(24) 1 Field defined as a LIST ITEM (Y or
N) (character). Valid only for table
rows where PIDTRDEF=R.

Interface 126

PIDTRTYP 37(25) 1 Field defines record type (Y or N)
(character). Valid only for table rows
where PIDTRDEF=P.

Either 127

PIDTFAUP 38(26) 1 Field defined with authorization
processing (Y or N) (character). Valid
for all table rows.

Interface 127

PIDTSDAT 39(27) 1 Field defined as STRING DATA (Y or
N) (character). Valid only for table
rows where PIDTRDEF=R.

Interface 127

PIDTLZPD 40(28) 1 Field defined as LEFT ZERO PAD (Y
or N) (character). Valid only for table
rows where PIDTRDEF=R.

Interface 127

PIDTNOTL 41(29) 1 Field defined as use NOT LOGIC
when collecting (Y or N) (character).
Valid only for table rows where
PIDTRDEF=R, P, or D.

Interface 127

PIDTPNLN 42(2A) 8 Panel name (character). Valid for all
table rows.

Either 127

PIDTINDX 50(32) 2 Internal index (0000-FFFF) (internal
form). Valid for all table rows.

Either 128

PIDTSWDD 52(34) 10 S-Word (internal form). Valid for all
table rows.

Either 128

PIDTPFXD 62(3E) 6 P-Word (character). Valid only for all
table rows where PIDTRDEF=R or D.

Either 128

PIDTPNLT 68(44) 1 Copied panel type field (fixed). Valid
for all table rows.

Interface 128

LLAPI Structures

118 Version 7.1

Table 33. Program Interface Data Table (PIDT) (continued)

Field Label
Offset
DEC(HEX)

Length
DEC Description Set by page

PIDTMNTF 69(45) 1 Copied maintenance flag field (fixed).
Valid for all table rows.

Interface 128

PIDTSWDL 70(46) 2 Length of s-word field PIDTSWDD
(fixed). Valid for all table rows.

Either 128

PIDTPFXL 72(48) 4 Length of p-word field PIDTPFXD
(fixed). Valid only for table rows
where PIDTRDEF = R or D.

Either 128

PIDTGRPX 76(4C) 1 Group prefixing associated with this
item (Y or N) (character). Valid only
for table rows where PIDTRDEF = R.

Interface 128

PIDTREPL 77(4D) 1 Replace previous reply indicator
(character Y). Valid for dynamic
PIDTs only.

Either 129

PIDTFLAG 78(4E) 1 File processing indicator (character).
Valid for dynamic PIDTs only.

Interface 129

PIDTCHNG 79(4F) 1 Change indicator (character). Valid for
dynamic PIDTs only.

Either 129

PIDTVISL 80(50) 2 Length of visible phrase (fixed). Valid
only for table rows where
PIDTRDEF=P or D.

Interface 129

PIDTVISD 82(52) 28 Visible phrase data (character). Valid
only for table rows where
PIDTRDEF=P or D.

Interface 129

PIDTDTYP 110(6E) 1 Data type field (M=Mixed, S=SBCS,
D=DBCS) Valid only for table rows
where PIDTRDEF=R.

Interface 129

PIDTDIAG 111(6F) 1 Dialog indicator for record (character).
Valid for dynamic PIDTs only.

Either 129

PIDTVLDD 112(70) 10 Original s-word, prefix, or panel name
(character). Valid for dynamic PIDTs
only.

Interface 130

PIDTVLDL 122(7A) 2 Length of value stored in PIDTVLDD
(fixed). Valid for dynamic PIDTs only.

Interface 130

PIDTVREC 124(7C) 8 Validation record ID Interface 130

PIDTVSWD 132(84) 10 S-word of the validation record ID Interface 130

PIDTDSWD 142(8E) 10 Root s-word in validation record for
the validation data list.

Interface 130

PIDTVALE 152(98) 1 If this value is Y, indicates that the
PIDT entry is validated when the entry
has data and is processed by the API.

Either 130

PIDTCSVL 153(99) 1 Exact case validation flag (Y or N)
(character). Valid only for table rows
where PIDTRDEF=R.

Interface 130

PIDTCGMX 154(9A) 1 Mixed case cognizing flag (Y or N)
(character). Valid only for table rows
where PIDTRDEF=R.

Interface 130

LLAPI Structures

119Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 33. Program Interface Data Table (PIDT) (continued)

Field Label
Offset
DEC(HEX)

Length
DEC Description Set by page

PIDTCDCA 155(9B) 1 Case conversion indicator. Valid
values are:

U=all upper case
L=all lower case
F=first character upper case;
remainder lower
P=case as defined in literal
validation pattern
A=as entered by the application
Any other value is treated as U

Valid only for table rows where
PIDTRDEF=R.

Interface 130

PIDTVPAT 156(9C) 4 Copy of PIDTFPAT information. Interface 131

The following section describes the purpose of each field of a PIDT header:

PIDTACRO
A 4-character field containing the character string PIDT to identify this program
interface data table. The interface sets this field.

PIDTNAME
An 8-byte character field containing the name of this PIDT or the record ID of a
data view record. The interface sets this field. For a dynamic PIDT, the LLAPI adds
an * to the name.

PIDTPTNM
An 8-byte character field containing the associated PIPT name. The interface sets
this field.

PIDTPIPT
A 4-byte pointer to the associated PIPT. The LLAPI sets this field.

PIDTPIAT
A 4-byte pointer to the associated PIAT. You use this field only for inquiry
processing that includes freeform search arguments. The LLAPI sets this field.

PIDTRCDS
A 4-byte fixed field containing the number of records per row. The interface sets this
field.

PIDTNUMR
A 4-byte fixed field containing the number of rows in this table. The interface sets
this field. For a dynamic PIDT, the LLAPI sets this field.

PIDTBUFP
A 4-byte pointer to the data response buffer. The API sets this field.

PIDTBUFL
A 4-byte fixed field containing the data response buffer length. The LLAPI sets this
field.

LLAPI Structures

120 Version 7.1

PIDTUSEF
A 1-byte character field defining the functional use of the table. The interface sets
one of the following values in this field:
¶ C for record create
¶ R for record retrieval
¶ I for record inquiry
¶ U for record update
¶ A for add record relation
¶ H for header-only

For a dynamic PIDT, the LLAPI sets the following value in this field:
¶ D for dynamic

PIDTSEPC
A 1-byte character field containing the response separator character. The response
separator character separates multiple response items in the response buffer or
indicates to delete the item. The interface sets this field.

PIDTAUTH
A 2-byte character field containing the authorization code used to verify the
transaction. The interface sets this field.

PIDTVERS
A 1-byte character field containing the version number of the PIDT used to verify
the PIDT has been migrated to an NLS version or version 6.1. The interface sets this
field.

PIDTDMRC
A 1-byte character field containing a Y or N. When this field is Y, it indicates that
PIDTNAME contains a data view record ID. When this field is N, it indicates that
PIDTNAME contains the name of a PIDT. This is set by the interface.

PIDTRSV1
A 1-byte area reserved for future use.

PIDTDELO
A 1-byte character field indicating whether entry types of Other (PIDTRDEF=O) are
to be removed or excluded from the record updated or created by this PIDT. A value
of Y in this field indicates entry types of other are to be excluded. If any other
character is in this field, entry types of other are not excluded but are processed on a
one-to-one basis. This field is valid for dynamic PIDTs only. The LLAPI sets this
field to N. The application can update it.

PIDTSPCP
A 4-byte pointer to the free space in the data buffer that was added as a result of the
application providing a value in the PICAREQL field on a record retrieve transaction
(T100) that uses a dynamic PIDT. If the application does not ask for extra space,
then the value is set to the end of the last response of the last PIDT entry. This field
is valid for dynamic PIDTs only. The LLAPI sets this field and the application can
update it.

PIDTSPCE
A 4-byte pointer to the end of the free space in the data buffer that was added as a
result of the application providing a value in the PICAREQL field on a record
retrieve transaction (T100) that uses a dynamic PIDT. When generating a dynamic
PIDT:

LLAPI Structures

121Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

¶ If PIDTMAXL plus PIDTSPCP is less than or equal to PIDTSPCE, there is
enough space to move the entry to the buffer pointed to by PIDTSPCP for a
create (T102) or update (T105) transaction.

¶ If PIDTMAXL plus PIDTSPCP is greater than PIDTSPCE, there is not enough
space and your application needs to do another record retrieve transaction asking
for more free space in the buffer.

This field is valid for dynamic PIDTs only. The LLAPI sets this field.

PIDTPIHT
A 4-byte pointer to the associated PIHT. Your application or the LLAPI sets this
field.

PIDTRSV2
A 16-byte area reserved for future use.

The following section describes the purpose of each field of a PIDT row:

PIDTSYMB
A 5-byte character field containing the symbolic name given to the record type, data,
or text attribute associated with this table row. This is the character representation of
a s-word index or p-word index or the character string Xnnnn if retrieving freeform
text with a dynamic PIDT where nnnn starts at 0001 and increases with each
freeform text item in the unique text record. It defines a record type, visible phrase,
data response, or text item. If the data type is defined with an s-word, the character
S precedes the s-word index. If the attribute is defined with a p-word, the character
P precedes the p-word index. The interface sets this field. For a dynamic PIDT, the
LLAPI sets this field and the application can update it.

PIDTRDEF
A 1-byte character field containing the definition of the kind of data that is collected
by this row. The interface sets this field. For a dynamic PIDT, the LLAPI sets this
field and the application can update it.

¶ When this field contains the character R, it signifies that this row collects a
response field. The Tivoli Information Management for z/OS problem reporter
name collected from panel BLG6REQN is an example of a response field.

¶ When this field contains the character P, it signifies that this row collects an
s-word and visible phrase. The problem record type (TYPE=PROBLEM) and its
associated s-word is an example of this entry.

¶ When this field contains the character D, it signifies that this row defines a
direct add item. When processing this field interactively, control panels collect
direct add items using the data specified in ADD control lines. When the LLAPI
adds this data, validation is not performed. Therefore, there is no corresponding
PIPT entry for this field. Panel BLG1A111 is an example of a panel that collects
direct add fields.

¶ When this field contains the character X, it signifies that this table row identifies
a text field. Tivoli Information Management for z/OS problem description text is
an example of a text field.

¶ When this field contains the character O, it signifies that the SDE for this row
does not contain an s-word or a p-word.

LLAPI Structures

122 Version 7.1

PIDTCODE
A 2-byte character field containing the error code associated with missing or
incorrect PIDT field specifications. The LLAPI sets this field.

The API returns one of the following codes:

00 No error detected.

01 A response field has a length greater than PIDTMAXL. The LLAPI
processes this data, but truncates the collected data to the length specified in
PIDTMAXL.

02 Field PIDTDATP contains a valid pointer, but either or both PIDTCURL and
PIDTCNFR contain a zero value.

03 The number of responses found does not match the value in PIDTCNFR.

04 A required field has no response data. Field PIDTREQD=Y and PIDTDATP,
or PIDTCNFR, or PIDTCURL contain a zero value.

05 TABLE/RECORD string data response conflict. Your application specified a
response entry as string data (PIDTSTAT=Y) in the table entry but the
response contained in the record is not string data. Or, your application’s
response entry was not string data (PIDTSTAT=N) in the table entry but the
response contained in the record is string data. This code can only be set by
retrieve processing.

06 Record ID format error. This field must be 8 numeric characters (but not all
zeroes), or the first character must be A-Z with remaining characters being
A-Z, 0-9, /, #, $, @, or & with no imbedded blanks.

07 The text data set name specified for a text row is greater than 44 characters.

08 The size of the response data specified is larger than can be collected in a
Structured Data-Entry (SDE).

This could occur when entering a nonlist item for which there are multiple
responses and there is too much data for the SDE to hold.

09 Text processing errors occurred. This error applies only to rows where
PIDTRDEF contains X.

10 The number of responses specified is more than the number allowed. Field
PIDTCNFR is greater than PIDTMNCR.

11 Text data set allocation error. This error applies only to rows where
PIDTRDEF contains X.

12 Date field is not valid. This error only applies to rows where PIDTRDEF
contains the character R and PIDTDATE contains Y.

14 Text unit specification is not valid because:

¶ When PICATXAU is not Y, PIDTCURL divided by PIDTCNFR results
in a value greater than 132, or produces a remainder, or both.

¶ When PICATXAU is Y, PIDTCURL divided by PIDTCNFR results in a
value greater than 168 or less than 37, or produces a remainder, or both.

15 Field contains incorrect mixed data.

16 Field data type does not match the data type value specified by PIDTDTYP.

LLAPI Structures

123Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

17 Data type field PIDTDTYP contains an incorrect value.

33 The PIDTSYMB value for this PIDT entry is not unique. A previous PIDT
entry has the same value.

34 The p-word in the PIDT entry does not contain / or _ in the first 6 positions.

35 When doing an update with a dynamic PIDT, the one-to-one correspondence
of PIDT entry to record entry was not maintained.

36 When doing an update with a dynamic PIDT, the PIDT entry has an s-word
length greater than 10 or a p-word length greater than 6.

37 Unable to locate the data pointed to by PIDTDATP. It may not be valid
DBCS data.

38 When doing an update with a dynamic PIDT, a list has multiple responses
for a list item.

39 When doing an update with a dynamic PIDT, the s-word suffix of a list item
is less than the suffix for a preceding list item for that same list.

40 Equal sign processing error. The data required to complete the automatic
entry could not be located.

41 A program exit encountered an error while processing the PIDT entry.

42 The entry encountered an error attempting to access the validation record
from the data model database. The record ID is specified in the PIDTVREC
field.

43 No validation patterns were found in the attribute or validation record, or
else the ID of the validation record cannot be found in the data of the
current record. Finding the record ID to use for validation data depends on
whether an s-word is specified in PIDTVSWD. If an s-word is specified in
PIDTVSWD, the current record is searched for the s-word and the data
associated with it is used as the validation record ID. If PIDTVSWD is not
specified, or the record ID cannot be found, then the record ID specified in
PIDTVREC is used if it exists. The database that contains the data model
records is specified in the session parameters (DMODELDB=), or a default
of database 5 is used.

44 The validation s-word specified is too long. The s-word must be eight or
fewer characters. Validation data is stored as list data and must be eight
characters or fewer. The entry cannot be processed.

45 The entry encountered an error attempting to access the validation record
from the data model database. The record ID used was found by searching
the current record for the s-word specified in PIDTVSWD.

46 The entry encountered an error attempting to access the data attribute record
from the data model database. The record ID is specified in the PIDTVREC
field.

PIDTMNCR
A 4-byte fixed field containing the maximum number of responses that the API
collects for a field at one time in create mode. Create mode is defined as collecting
responses when either creating or updating a Tivoli Information Management for
z/OS record. This field provides the application with information on how this field is
defined in panel dialogs so the field can be simulated in the LLAPI. For replaceable,

LLAPI Structures

124 Version 7.1

table-list entry fields, and string data fields, this value is usually set to 1. The
interface sets this field. For a dynamic PIDT, the LLAPI sets this field, and your
application can update it. For entry types of Other (PIDTRDEF=O) in a dynamic
PIDT, your application must not change this field because the field contains the
response number obtained from the SDE when retrieved.

The interface uses the field PIDTMAXL to calculate and set this field if the
assisted-entry panel field REPLY VALUE MEANING is set to LENGTH. The
calculation is based on the maximum allowable number of 1-character responses.

PIDTCNFR
A 4-byte fixed field. When you use this table for record retrieval, this field’s value
represents the number of responses or text units (lines) found for this field. When
you use this table for record entry or inquiry, this value represents the number of
responses or text units (lines) stored in the response buffer for this field or the
number of times a phrase or direct data item is collected.

When this field has a value of zero and PIDTRDEF=P, D, or O, the entry is
excluded from the record on a create transaction (T102).

You delineate each entry for a field in the buffer with a separator character unless
the field is a string field. The value specified in this field must not exceed the value
specified in PIDTMNCR for table rows not having PIDTLIST=Y. The API or the
application sets this field. Validation of this field is carried out by comparing it with
the actual number of responses counted in the field response data. The calculation of
the actual number of responses is based on the number of response separator
characters, as specified by PIDTSEPC, that occur in the data. The separator
characters will only be located in single-byte character set (SBCS) portions of the
data.

PIDTMAXL
A 4-byte fixed field containing the maximum length of a response or text data set
name. Where the interface collects multiple responses, this is the maximum size of a
single response. This field is nonzero only for table rows containing the characters R
or X in field PIDTRDEF.

The interface uses the field PIDTMNCR to calculate and set this field if the
assisted-entry panel field REPLY VALUE MEANING is set to WORDS. The
calculation is based on the validation pattern. For a dynamic PIDT, the LLAPI sets
this field and your application can update it. When set by a record retrieve using
dynamic record retrieval, this value is based on the size of the data in the record
plus the value specified in PICAESPC. The value does not correspond to the actual
maximum length of the field defined in your panels.

If this API connects to a BLX-SP that supports DBCS (that is, DBCS=YES is
specified in the BLX-SP parameters), the maximum value of this field is 32 767.

PIDTCURL
A 4-byte fixed field containing the length of the field response data or text data set
name that is currently stored in the response buffer. If the API collects list entry
responses, this length is the total length of all responses, including response
separators. This field is nonzero only for table rows containing the characters R or X
in field PIDTRDEF. Your application or the LLAPI sets this field.

If this API connects to a BLX-SP that supports DBCS (that is, DBCS=YES is
specified in the BLX-SP parameters), the maximum value of this field is 32 767.

LLAPI Structures

125Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

PIDTDATP
A 4-byte pointer to the field response data or text data set name that is stored in the
response buffer. This field is nonzero only for table rows that contain the character R
or X in field PIDTRDEF. This address must be within the range of addresses set by
PIDTBUFP through (PIDTBUFP + PIDTBUFL - 1). This field is set by either the
API or the application.

If this API connects to a BLX-SP that supports DBCS (that is, DBCS=YES is
specified in the BLX-SP parameters), the maximum length of the data pointed to by
this field is 32 767.

PIDTFPAT
A 4-byte fixed field containing the first pattern row number in the PIPT that
corresponds to this field. This field is nonzero only for table rows that contain the
character R in field PIDTRDEF. The interface sets this field. For a dynamic PIDT,
the LLAPI sets this field for entries that have multiple p-words.

PIDTREQD
A 1-byte character field containing a Y or an N. When this field is Y, it indicates
that the API must collect this field to complete the transaction. When this field is N,
it indicates that the field is not required. This field is valid for all table rows. The
interface sets this field. For a dynamic PIDT, the LLAPI sets this field to N for all
entries.

PIDTDATE
A 1-byte character field containing a Y or an N. When this field is Y, it indicates
that this response field collects date responses. When this field is N, it indicates that
this is not a date field. The API enters date response fields in their external date
format then converts them using the external date conversion routine. This field is
valid only for table rows that contain the character R in field PIDTRDEF. The
interface sets this field. For a dynamic PIDT, the LLAPI sets this field and the
application can update it.

PIDTSRCH
A 1-byte character field containing a searchable field indicator of Y, N, S or P. When
this field is Y, it indicates that this response field is cognized and can be used when
building inquiry arguments. When this field is N, the field is defined as not
searchable. When this field is S, it indicates that only the s-word is cognized. When
this field is P, it indicates that the s-word is not cognized, and the p-word is
cognized. This field is valid only for table rows that contain the character R, P, or D
in field PIDTRDEF. The interface sets this field. For a dynamic PIDT, the LLAPI
sets this field and the application can update it.

PIDTJRNL
A 1-byte character field containing a journal field indicator. When this field contains
an F or O, it indicates journalization for this response field. F indicates journalized
first, and O indicates journalized in occurrence order. N indicates the field is not
journalized. This field is valid only for table rows that contain the character R or D
in field PIDTRDEF. The interface sets this field. For a dynamic PIDT, the LLAPI
sets this field and the application can update it.

PIDTLIST
A 1-byte character field containing the table-list item field indicator. When this field
is Y it indicates that this response field is defined as a table-list item. When this
field is N, the API does not perform table-list item processing. The interface

LLAPI Structures

126 Version 7.1

processes and collects table-list items using dynamic s-words that allow record entry
of multiple entries of the same data type. This field is valid only for table rows that
contain the character R in field PIDTRDEF. The interface sets this field. For a
dynamic PIDT, the LLAPI sets this field.

PIDTRTYP
A 1-byte character field containing a record type indicator. When this field is Y, it
indicates that this table entry defines the record type. When this field is N, it
indicates that this field does not define a record type. This field is valid only for
table rows that contain the character P in field PIDTRDEF. A row of this type is
required for all tables except inquiry tables. The interface sets this field during table
create processing. For a dynamic PIDT, the LLAPI or the application sets this field.

PIDTFAUP
A 1-byte character field containing a field authorization indicator. When this field is
Y, it indicates that field authorization processing occurs for the field. When this field
is N, it indicates that no field authorization occurs. The API does not perform field
level authorization. This PIDT field lets your application perform field level
authorization if required. This field is valid for all table rows and is set by the
interface. For a dynamic PIDT, the LLAPI sets this field.

PIDTSDAT
A 1-byte character field containing a string data field indicator. When this field is Y,
it indicates that this data attribute is defined as a string data field. When this field is
N, it indicates that this is not a string data field. A string data field is treated as one
response when field PIDTLIST contains the character N. The response can contain
multiple words and special characters. If it is cognized, each word in the response is
cognized separately without a p-word. When field PIDTLIST contains the character
Y and field PIDTSDAT also contains the character Y, the string data in the response
buffer is treated as multiple list responses. In this case, any separator character found
in the response buffer is not considered as a special character that is part of a string
data response, but as an indication of the end of a string data response. The
separator character is defined in PIDTSEPC. The Tivoli Information Management for
z/OS problem description abstract field is a string data field. This field is valid only
for table rows that contain the character R in field PIDTRDEF. The interface sets
this field. For a dynamic PIDT, the LLAPI sets this field.

PIDTLZPD
A 1-byte character field containing the left zero-padded field indicator. When this
field is Y, it indicates that this data attribute is left zero-padded to its maximum size.
When this field is N, it indicates that no left zero padding is required. This field is
valid only for table rows that contain the character R in field PIDTRDEF. The
interface sets this field. For a dynamic PIDT, the LLAPI sets this field to N.

PIDTNOTL
A 1-byte character field containing the use-not-logic indicator. When this field is Y,
the API collects this data attribute using use-not-logic indicators. When this field is
N, it indicates that not-logic collection is not performed. You use this field only
when performing inquiry processing. This field is valid only for table rows that
contain the character R, P, or D in field PIDTRDEF. The interface sets this field. For
a dynamic PIDT, the LLAPI sets this field to N.

PIDTPNLN
An 8-byte character field containing the panel name where the symbolic item is
defined. For other types, this is the panel from which the selection was chosen. For

LLAPI Structures

127Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

response items, this is an assisted-entry panel. For phrase items, this is the panel
containing the phrase. For direct entry items, this is the control panel containing the
ADD item control line. For text items, this is the name of the panel invoking the
text processing program exit. The interface sets this field when it creates tables. For
a dynamic PIDT, the LLAPI sets this field and the application can update it.

PIDTINDX
A 2-byte character field containing the internal form of the s-word index or p-word
index (0000-FFFF). This field is valid for all table rows. It contains an s-word index
if you defined the field using an s-word index. It contains a p-word index if you
defined the field using a p-word index. It contains an s-word index if you defined
the field using both an s-word index and a p-word index. It contains the field
response number of the panel if this is a row in a dynamic PIDT with an entry type
of Other (PIDTRDEF=O). The interface sets this field. For a dynamic PIDT, the
LLAPI sets this field and the application can update it.

PIDTSWDD
A 10-byte character field containing the internal form of the s-word data for the
response field, text item, or visible phrase. This field is valid for all table rows. The
interface sets this field. For a dynamic PIDT, the LLAPI sets this field and the
application can update it.

PIDTPFXD
A 6-byte character field containing the p-word for the response or direct entry field.
You can use this field to form inquiry arguments in the PIAT. This field is valid only
for table rows that contain the character R or D in field PIDTRDEF. The interface
sets this field. For a dynamic PIDT, the LLAPI sets this field, and the application
can update it.

PIDTPNLT
A 1-byte character field containing the panel type field data copied from the source
panel. This field is valid for all table rows. The interface sets this field. For a
dynamic PIDT, the LLAPI sets this field.

PIDTMNTF
A 1-byte character field containing the maintenance field data copied from the
source panel. This field is valid for all table rows. The interface sets this field. For a
dynamic PIDT, the LLAPI sets this field.

PIDTSWDL
A 2-byte fixed field containing the length of the s-word data at field PIDTSWDD.
This field is valid for all table rows. The interface sets this field. For a dynamic
PIDT, the LLAPI sets this field and the application can update it.

PIDTPFXL
A 4-byte fixed field containing the length of the p-word at field PIDTPFXD. This
field is valid for table rows containing R, P, or D in field PIDTRDEF. The interface
sets this field. For a dynamic PIDT, the LLAPI sets this field, and the application
can update it.

PIDTGRPX
A 1-byte character field indicating group prefixing. Group prefixing allows the API
to collect multiple p-words for a response. Refer to the Tivoli Information
Management for z/OS Panel Modification Facility Guide for more information.

LLAPI Structures

128 Version 7.1

This field is valid for table rows containing R in field PIDTRDEF. This field is set
to Y when the assisted-entry panel validation control lines used to construct this
table entry meet the following criteria:
¶ Begin with a multiple pattern group 1

¶ Contain a multiple pattern group preceded by a nonmultiple pattern that begins
with an equal character (=).

If a multiple pattern group is preceded by a nonmultiple pattern that does not begin
with an equal character, the interface sets this field to N . The interface sets this
field. For a dynamic PIDT, the LLAPI sets this field.

PIDTREPL
A 1-byte character field indicating whether the SDE built for this PIDT entry is to
be marked replaceable. A value of Y indicates that when an SDE is built for this
PIDT entry, it is marked replaceable. Any other value indicates that the SDE is
marked non-replaceable. This field is valid for dynamic PIDTs only. The LLAPI sets
this field, and the application can update it.

PIDTFLAG
A 1-byte character field reserved for dynamic PIDT processing. The LLAPI sets this
field.

PIDTCHNG
A 1-byte character field for use on update transactions to indicate that the PIDT
entry is to be processed. A value of Y in this field indicates that the record’s data is
to be updated with the dynamic PIDT’s entry. If any other value is in this field, the
entry is not updated. This field is valid for dynamic PIDTs only. The LLAPI sets
this field to N. Your application can update it.

PIDTVISL
A 2-byte fixed field containing the length of the visible phrase at field PIDTVISD.
This field is valid for table rows containing P or D in field PIDTRDEF. The API and
the interface set this field. For a dynamic PIDT, the LLAPI sets this field, and the
application can update it. This field is zero if PIDTVISD does not contain a visible
phrase.

PIDTVISD
A 28-byte character field containing the visible phrase or direct add data, when
collected. The maximum phrase length is 28 bytes. Data longer than 28 bytes is
truncated. This field is valid only for table rows containing P or D in field
PIDTRDEF. The LLAPI and the interface set this field. For a dynamic PIDT, the
LLAPI sets this field, and the application can update it. If this field does not contain
a visible phrase, the field PIDTVISL is zero.

PIDTDTYP
A 1-byte character field containing the data type. This field validates the type of data
entered. It can contain a value of mixed (M), SBCS (S) or DBCS (D). This field is
valid only for table rows that contain the character R in field PIDTRDEF. The
interface sets this field.

PIDTDIAG
A 1-byte character field that holds any record dialog flags associated with this entry.
A value of B in this field indicates the beginning of a dialog. A value of E in this

1. A group of prefixes that can be stored with a response

LLAPI Structures

129Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

field indicates the end of a dialog. All other values are ignored. This field is valid
with dynamic PIDTs only. The LLAPI sets this field, and the application can update
it.

PIDTVLDD
A 10-byte character field containing either the PIDT s-word, p-word, or panel name.
This field is valid for dynamic PIDTs only. The LLAPI sets this field.

PIDTVLDL
A 2-byte fixed field containing the length of the value stored in the PIDTVLDD
field. This field is valid for dynamic PIDTs only. The LLAPI sets this field.

PIDTVREC
An 8-byte field which is the validation record ID found in the assisted-entry panel if
the PIDT is built by the table build utility, or found in the data attribute record if the
PIDT is built with a data view record.

PIDTVSWD
The s-word that identifies the validation record ID. It is found in the assisted-entry
panel if the PIDT is built by the interface, or found in the data attribute record if the
PIDT is built with a data view record.

PIDTDSWD
The root s-word of the validation data in the validation record. It is found in the
assisted-entry panel if the PIDT is built by the interface, or found in the data
attribute record if the PIDT is built with a data view record.

PIDTVALE
A 1-byte character field containing a validation indicator. A Y indicates that the
PIDT entry should be validated when the entry has data and is processed by the API.
The application should turn on this flag if equal sign processing is requested and the
response data includes an equal sign. BLGPPFVM turns on this flag if there is a
validation record ID s-word in the entry being validated so that validation will occur
when the data is processed by a create, update, add record relation, or inquiry
transaction. A value other than Y indicates no validation is needed. The LLAPI sets
the field to N after validation occurs.

PIDTCSVL
A 1-byte flag which indicates whether the data is validated to ensure that the case of
any letters matches those in the pattern. A Y indicates that the input data must match
exactly any literal validations contained in the validation pattern, including the case
of the data. Data validation only occurs if you call BLGPPFVM. If this value is not
Y, the case of the input data is ignored when attempting to match a validation
pattern. The API sets this field.

PIDTCGMX
If this value is Y, the search index entries for this field will be stored in mixed case
and a case-sensitive search will be required to find them. The API sets this field.

PIDTCDCA
Defines the case in which the data should be stored in the record if validation is
performed. Valid values are:

U=all upper case
L=all lower case
F=first character upper case; remainder lower
P=case as defined in literal validation pattern

LLAPI Structures

130 Version 7.1

A=as entered by the application
Any other value is treated as U

The input data is converted as indicated if you call BLGPPFVM to validate the data.
The API sets this field.

PIDTVPAT
A 4-byte fixed field which replicates the PIDTFPAT information. This field keeps
track of a PIPT stub entry used to build the actual PIPT entries when validation
record IDs or validation record ID s-words are specified.

PIDT Example
Table 35 shows an example of PIDT rows with the values of significant entry fields
indicated. Table 34 shows the PIDT header for this particular PIDT. For information about
the PIDT header, see Table 33 on page 116. The example shows the PIDT for a problem
create record, assuming that the PIDT has already been obtained with a PICAREQL of 50.
The example shows the PIDT after data has been filled in for rows S0B59, S0BEE, and
S0E0F.

Table 34. PIDT Example, Header Field Values
ACRO NAME PTNM PIPT PIAT RCDS NUMR BUFP BUFL USEF SEPC AUTH

PIDT BLGYPRC BLGYPRCP 3000 0 2 7 2000 32 C , 110

Table 35. PIDT Example, Entry Field Values
PIDT SYMBOL
DESCRIPTION

PIDT
RDEF

PIDT
MNCR

PIDT
CNFR

PIDT
MAXL

PIDT
CURL

PIDT
DATP

SELECTED PIDT FIELD
NAMES

S0032 Problem
Record

P
(Phrase)

1 1 0 0 0 SRCH=Y RTYP=Y
FAUP=Y NOTL=N

S0B59 Reported by R (Resp) 1 1 F 8 2000 REQD=Y RTYP=N
DATE=N FAUP=N
SRCH=Y SDAT=N
JRNL=N LZPD=N
LIST=N NOTL=N

S0C09 Problem
Type

R (Resp) 1 0 8 0 0 REQD=N RTYP=N
DATE=N FAUP=N
SRCH=Y SDAT=N
JRNL=O LZPD=N
LIST=N NOTL=N

S0BEE Status R (Resp) 1 1 7 4 2008 REQD=Y RTYP=N
DATE=N FAUP=Y
SRCH=Y SDAT=N
JRNL=O LZPD=N
LIST=N NOTL=N

S0C3D Date
Occurred

R (Resp) 1 0 8 0 0 REQD=N RTYP=N
DATE=Y FAUP=N
SRCH=Y SDAT=N
JRNL=N LZPD=N
LIST=N NOTL=N

LLAPI Structures

131Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 35. PIDT Example, Entry Field Values (continued)
PIDT SYMBOL
DESCRIPTION

PIDT
RDEF

PIDT
MNCR

PIDT
CNFR

PIDT
MAXL

PIDT
CURL

PIDT
DATP

SELECTED PIDT FIELD
NAMES

S0E0F Description
Abstract

R (Resp) 1 1 2D 15 200C REQD=Y RTYP=N
DATE=N FAUP=N
SRCH=Y SDAT=U
JRNL=N LZPD=N
LIST=N NOTL=N

S0E01 Description
Text

X (Text) 1 0 2C 0 0 FAUP=N JRNL=N
SRCH=Y

In the PIDT buffer for this example would be a string of data that started at storage address
2000 and is 50 characters long.
’DOE/JOHNOPENTHIS IS A BAD PROBLEM ’

Program Interface History Table (PIHT)
The program interface history table (PIHT) contains history data. The API allocates storage
and constructs a PIHT when your application requests history data processing on the LLAPI
retrieve record (T100) transaction by setting the PICAHIST flag field to Y. When history
data is retrieved for a record, the API stores the address of the PIHT in the PIDTPIHT field.
The PIHT is freed when your application calls a free PIDT transaction (T006).

The PIHT consists of a header portion and a series of rows, where each row describes a
piece of data. A history entry is composed of one or more rows grouped in sequence. Entries
created by Information/Management Version 1 (PIHTVER1=Y) have only one row of data
per group.

Note: The Version 1 indicated by PIHTVER1=Y means Version 1.0 of
Information/Management, introduced in about 1980.

All other entries (PIHTVER1≠Y) can have one or more rows forming a group. When
multiple rows are present, those with control data (PIHTCNTL=Y) must appear before those
with regular data (PIHTCNTL≠Y). Control data was journalized with the specification of
FIRST. Regular history data was journalized with ORDER specified.

Table 36 shows the structure of the PIHT and the page number where the table fields are
explained.

Note: As shown in the table, fields are set by the interface. Some fields that are set by the
interface can be updated by your application. Fields that can be updated by your
application are indicated as set by either. If your application attempts to set a field
that is indicated as set by the interface, results are unpredictable. In this case,
interface means the API.

Table 36. History Table (PIHT)

Field Label
Offset
DEC(HEX)

Length
DEC Description Set by page

HEADER HISTORY TABLE HEADER
1st RECORD OF TABLE MEMBER

PIHTACRO 0(0) 4 Acronym of PIHT (character) Interface 133

PIHTNUMR 4(4) 4 Number of rows in table (fixed) Interface 133

LLAPI Structures

132 Version 7.1

Table 36. History Table (PIHT) (continued)

Field Label
Offset
DEC(HEX)

Length
DEC Description Set by page

PIHTRSV1 8(8) 72 Reserved -- 134

ENTRY ROW HISTORY TABLE ROW
2nd AND SUBSEQUENT ROWS OF TABLE

PIHTCODE 0(0) 2 Row error code (character) Interface 134

PIHTVER1 2(2) 1 Version 1 history row indicator
(character Y)
Note: The Version 1 indicated by
PIHTVER1=Y means Version 1.0 of
Information/Management, introduced
in about 1980.

Either 134

PIHTV1JD 3(3) 5 Julian date in YYDDD format
(character). This field is valid only
where PIHTVER1 = Y.

Either 134

PIHTSGRP 8(8) 1 Start of history group indicator
(character Y). This field is valid only
where PIHTVER1≠Y.

Either 134

PIHTCNTL 9(9) 1 Row contains control data indicator
(character Y). This field is valid only
where PIHTVER1≠Y.

Either 134

PIHTPWP 10(A) 1 History data is present indicator
(character Y). This field is valid only
where PIHTVER1≠Y.

Interface 135

PIHTLIST 11(B) 1 Data built by list processor indicator
(character Y). This field is valid only
where PIHTVER1≠Y.

Either 135

PIHTSWDL 12(C) 2 S-Word length (fixed). This field is
valid only where PIHTVER1≠Y.

Either 135

PIHTSWDD 14(E) 10 S-Word for data (optional) (character).
This field is valid only where
PIHTVER1≠Y.

Either 135

PIHTRSV2 24(18) 4 Reserved -- 135

PIHTMAXL 28(1C) 2 Maximum data length (fixed) Interface 135

PIHTCURL 30(1E) 2 Current data length (fixed) Either 134

PIHTDATA 32(20) 32 History data field (character) Either 135

PIHTRSV3 64(40) 16 Reserved -- 135

The following section describes the purpose of each field of a PIHT header:

PIHTACRO
A 4-character field containing the string PIHT to identify this table. The LLAPI sets
this field.

PIHTNUMR
A 4-byte fixed field containing the number of rows in this table. The LLAPI sets
this field.

LLAPI Structures

133Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

PIHTRSV1
A 72-byte area reserved for future use.

The following section describes the purpose of each field of a PIHT row:

PIHTCODE
A 2-byte character field containing the error code associated with PIHT field
specifications that are not valid. The LLAPI sets this field.

The API returns one of the following codes:

00 No error detected.

01 This row is the start of a multiple row group, but it does not have
PIHTSGRP=Y specified.

02 This row contains control data (PIHTCNTL=Y), but it follows a row with no
control data (PIHTCNTL≠Y) and is within the same multiple row group.

03 The current data length (PIHTCURL) for this row is larger than the maximum
allowed value (PIHTMAXL).

04 The s-word data length (PIHTSWDL) for this row is larger than 10.

05 Reserved

06 The Julian date field (PIHTV1JD) for this row does not contain a valid date.

PIHTVER1
A 1-byte character field indicating whether the row contains history data created by
Information/Management Version 1. A Y indicates the history data was created by
Information/Management Version 1. Any other value indicates that the history data
was created by Information/Management Version 2 or later. The LLAPI sets this
field, and your application can update it.

Note: The Version 1 indicated by PIHTVER1=Y means Version 1.0 of
Information/Management, introduced in about 1980.

PIHTV1JD
A 5-byte character field containing the Julian date of this history entry. The date is
in the form YYDDD, where YY is the last two digits of the year and DDD is the
number of the day in the year. This field is valid only for table rows that contain the
character Y in field PIHTVER1. The LLAPI sets this field, and your application can
update it.

PIHTSGRP
A 1-byte character field indicating whether this row starts a group of rows that
comprise a history entry. A Y indicates the beginning of a history entry. Any other
value indicates that this row is not the beginning of a history entry. This field is
valid only for table rows that do not contain the character Y in field PIHTVER1.
The LLAPI sets this field, and your application can update it.

PIHTCNTL
A 1-byte character field indicating whether this row contains history control data
(data journalized with the specification of FIRST). A Y indicates that the row does
contain history control data. Any other value indicates that this row contains data
journalized with the specification of ORDER. This field is important for controlling
how the data appears when History is selected from a Tivoli Information
Management for z/OS panel or when a report is run. Within a history entry, all rows

LLAPI Structures

134 Version 7.1

that contain a Y in this field must come before the rows that do not contain a Y.
This field is valid only for table rows that do not contain the character Y in field
PIHTVER1. The LLAPI sets this field, and your application can update it.

PIHTPWP
A 1-byte character field indicating that history data is present. A Y indicates that
history data is present. Any other value indicates that history data is not present.
This field is valid only for table rows that do not contain the character Y in field
PIHTVER1. The LLAPI sets this field.

PIHTLIST
A 1-byte character field indicating whether this history data was created by the list
processor. A Y indicates that this history data was created by the list processor. Any
other value indicates that this history data was not created by the list processor. This
field is valid only for table rows that do not contain the character Y in field
PIHTVER1. The LLAPI sets this field, and your application can update it.

PIHTSWDL
A 2-byte fixed field containing the length of the s-word data in field PIHTSWDD. A
value of zero indicates that there is no s-word data. This field is valid only for table
rows that do not contain the character Y in field PIHTVER1. The LLAPI sets this
field. Your application must update this field if it changes the length of the s-word
for the history data.

PIHTSWDD
A 10-byte character field containing the internal form of the s-word data for the
history data. This field is valid only for table rows that do not contain the character
Y in field PIHTVER1. The LLAPI sets this field, and your application can update
this field if it changes the s-word for the history data.

PIHTRSV2
A 4-byte area reserved for future use.

PIHTMAXL
A 2-byte fixed field containing the maximum length of history data that can be
placed in field PIHTDATA. The LLAPI sets this field.

PIHTCURL
A 2-byte fixed field containing the current length of the history data that is in field
PIHTDATA. The LLAPI initially sets this field, and your application can update it.
If this field is set to the value of zero, the row is deleted.

PIHTDATA
A 32-byte character field containing the history data for this row. The LLAPI
initially sets this field, and your application can update it.

PIHTRSV3
A 16-byte area reserved for future use.

PIHT Example
Table 37 on page 136 shows the header of an example PIHT and the following table,
Table 38 on page 136, shows the entry field values. The LLAPI creates a PIHT from
information you supply in the application program.

LLAPI Structures

135Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 37. PIHT Example, Header Field Values
PIHTACRO PIHTNUMR

PIHT 0009

Table 38. PIHT Example, Entry Field Values

PIHTVER1 PIHTV1JD PIHTSGRP PIHTCNTL
PIHTMAXL

(DEC)
PIHTCURL

(DEC) PIHTDATA

Y 84123 0016 0010 PERA/SMITH

Y 84127 0016 0008 469-6111

Y Y 0016 0013 DATM/05/06/1997

Y 0016 0010 TIMM/15:20

Y 0016 0010 USER/JONES

0016 0009 STAC/OPEN

Y Y 0016 0010 TIMM/15:21

0016 0008 GROA/T53

0016 0010 CONTROLLER

Program Interface Pattern Table (PIPT)
The program interface pattern table (PIPT) contains the validation criteria used to verify
response data in a Tivoli Information Management for z/OS operation. There can be more
than one validation pattern for each field. There is one PIPT for each PIDT, and the name of
the PIPT is stored in the PIDT field PIDTPTNM. When a PIPT obtain pattern table
transaction (T004) runs, the API allocates storage and constructs the PIPT. The PIPT is freed
when your application starts a free PIDT transaction (T006) or a free pattern table
transaction (T005). The API stores the address of the PIPT in PIDT field PIDTPIPT. Entry
type transactions also use the PIPT if you set PIDTGRPX to Y. The table build utility
creates the PIPT, or else the PIPT is generated from data attribute and data validation
records when a PIDT is generated from a data view record.

For dynamic PIDTs, a PIPT is created dynamically only when processing group prefixes.
This PIPT cannot be used for validation. For more information on validation, see Field
Validation Using the Field Validation Module BLGPPFVM.

Table 39 shows the structure of the PIPT and the page number where the table fields are
explained:

Note: As shown in the table, fields are set by the interface. Your application should not
attempt to set these fields. If it does, results are unpredictable. In this case, interface
can mean either the API or the table build utility.

Table 39. Pattern Table (PIPT)

Field Label
Offset
DEC(HEX)

Length
DEC Description Set by page

HEADER PATTERN TABLE HEADER
1st RECORD OF TABLE MEMBER

LLAPI Structures

136 Version 7.1

Table 39. Pattern Table (PIPT) (continued)

Field Label
Offset
DEC(HEX)

Length
DEC Description Set by page

PIPTACRO 0(0) 4 Acronym of PIPT (character) Interface 137

PIPTNAME 4(4) 8 Name of this table (character) Interface 137

PIPTNUMR 12(C) 4 Number of rows in table (fixed) Interface 137

PIPTVALE 16(10) 1 Indicates if there are validation entries
associated with the PIPT.

Interface 137

PIPTRESV 17(11) 63 Reserved -- 137

ENTRY ROW PATTERN TABLE ROW
2nd AND SUBSEQUENT ROWS OF TABLE

PIPTSYMB 0(0) 5 Field symbolic name (character) Interface 137

PIPTTYP 5(5) 1 Validation pattern data type -
(character) X=expression, A=automatic

Interface 138

PIPTAUTH 6(6) 2 Authorization code index (character) Interface 138

PIPTPFXL 8(8) 4 Length of p-word field (fixed) Interface 138

PIPTPATL 12(C) 4 Length of pattern data (fixed) Interface 138

PIPTPFXI 16(10) 2 Internal form of p-word index (hex) Interface 138

PIPTPRFX 18(12) 6 P-Word (character) Interface 138

PIPTDATA 24(18) 32 Validation pattern data (character) Interface 138

PIPTFLAG 56(38) 1 Pattern process flag field (binary) Interface 138

PIPTRSV1 57(3B) 23 Reserved -- 138

The following section describes the purpose of each field of a PIPT header:

PIPTACRO
A 4-byte character field containing the string PIPT to identify this table. The table
build utility sets this field.

PIPTNAME
An 8-byte character field containing the name of this table. The table build utility
sets this field.

PIPTNUMR
A 4-byte fixed field containing the number of rows in this table. The table build
utility sets this field.

PIPTVALE
A 1-byte field set by the table build utility. A Y in this field indicates that the PIPT
will need to be reprocessed with validation records. This means that at least one
PIDT entry contains a validation record ID s-word or validation record ID.

PIPTRESV
A 63-byte area reserved for future use.

The following section describes the purpose of each field of a PIPT row:

PIPTSYMB
A 5-byte character field containing the symbolic name of the PIDT response field
that uses this pattern. The table build utility sets this field.

LLAPI Structures

137Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

PIPTTYP
A 1-byte character field containing a code indicating how to use validation data.
Validation data can be a pattern of character data used as a literal expression, or it
can be a relation to a Tivoli Information Management for z/OS process, such as a
name or user ID response supplied automatically. This field contains an X for
expression or an A for automatic. Automatic data is available in interactive Tivoli
Information Management for z/OS by the =attribute pattern, such as =DATE, and
=TIME. The API provides no means to supply automatic data to your application.
Your application must provide automatic data for itself by whatever data source
mechanism it can use, such as language built-in functions that provide time and date.
The table build utility sets this field.

PIPTAUTH
A 2-byte character field containing the authority code associated with this pattern.
The table build utility sets this field.

PIPTPFXL
A 4-byte fixed field containing the length of the p-word stored in field PIPTPRFX.
The table build utility sets this field.

PIPTPATL
A 4-byte character field containing the length of the pattern data stored in field
PIPTDATA. The table build utility sets this field.

PIPTPFXI
A 2-byte character field containing the internal form (0000 - FFFF) of the p-word
index. The table build utility sets this field.

PIPTPRFX
A 6-byte character field containing the p-word. The table build utility sets this field.

PIPTDATA
A 32-byte character field containing the validation pattern data. This is the same
pattern data used in Tivoli Information Management for z/OS panels. Refer to the
Tivoli Information Management for z/OS Panel Modification Facility Guide for
information on validation pattern data. The table build utility sets this field.

PIPTFLAG
A 1-byte binary field indicating that this pattern table row begins or ends a p-word
group. When this field contains X'40', it indicates that this table row contains a
p-word that begins group prefixing. When this field contains X'60', it indicates that
this table row contains a p-word that ends group prefixing. The table build utility
sets this field.

PIPTRSV1
A 23-byte area reserved for future use.

PIPT Example
Table 40 and Table 41 on page 139 show an example of PIPT rows with entry field values
indicated. The table build utility creates a PIPT from information you supply in the utility
job input stream.

Table 40. PIPT Example, Header Field Values
ACRO NAME NUMR

PIPT PIDT001P 0009

LLAPI Structures

138 Version 7.1

Table 41. PIPT Example, Entry Field Values
PIPTSYMB PIPTTYP PIPTPFXL PIPTPATL PIPTPRFX PIPTDATA

S0B2D A (auto) 0003 0006 PH/ =PHONE

S0B2D X (exp) 0003 0005 PH/ IIV12

S0B59 A (auto) 0005 0005 PERS/ =NAME

S0B59 X (exp) 0005 0005 PERS/ CCV14

S0B9B X (exp) 0005 0005 GROS/ CCV14

S0BE7 X (exp) 0005 0005 PERC/ CCV14

S0BEE X (exp) 0005 0006 STAC/ <OPEN>

S0C3D A (auto) 0005 0005 DATO/ =DATE

S0C3D X (exp) 0005 000C DATO/ NN</>NN</>NN

Program Interface Argument Table (PIAT)
The program interface argument table (PIAT) contains a list of freeform arguments used in
an inquiry. Freeform arguments in the PIAT are specified in the same way as interactive
freeform arguments. Each argument is located in an individual row of the PIAT. Your
application can append argument data to response p-words to form a prefixed argument. The
application can retrieve the p-word used with the argument data from PIDT field
PIDTPFXD. The PIAT facilitates range searching and specific argument ordering. Arguments
can have leading Boolean or range characters. (If you use Boolean or range characters, they
must appear as the first character.) The API allocates the PIAT when your application
specifies a requested PIAT row count in PICA field PICAREQR and performs an Obtain
Inquiry Resource transaction (T106). The PIAT is freed when your application runs a free
PIDT transaction (T006). See “Record Inquiry (T107)” on page 84 for more information
about a PIAT.

The length of the field PIATDATA is 33 characters. The maximum number of characters
available from a freeform argument segment for use in an inquiry is limited to the length of
the key used to define the SDIDS. For example, if your application is searching a database
with an SDIDS defined with a 32-byte key, a maximum of 32 bytes of each freeform
argument segment is used to perform the inquiry.

Table 42 shows the structure of the PIAT and the page number where the table fields are
explained:

Note: As shown in the table, some fields are set by the interface. Your application should
not attempt to set these fields. If it does, results are unpredictable.

Table 42. Argument Table (PIAT)

Field Label
Offset
DEC(HEX)

Length
DEC Description Set by page

HEADER ARGUMENT TABLE HEAD
1st RECORD OF TABLE

PIATACRO 0(0) 4 Acronym of PIAT (character) Interface 140

PIATNUMR 4(4) 4 Number of table rows (fixed) Interface 140

PIATNARG 8(8) 4 Number of arguments (fixed) Application 140

LLAPI Structures

139Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 42. Argument Table (PIAT) (continued)

Field Label
Offset
DEC(HEX)

Length
DEC Description Set by page

PIATRESV 12(C) 12 Reserved -- 140

ENTRY ROW ARGUMENT TABLE ROW
2nd AND SUBSEQUENT ROWS OF TABLE

PIATDATL 0(0) 4 Length of argument data (fixed) Application 140

PIATDATA 4(4) 33 Argument data (character) Application 140

PIATRSV1 37(25) 3 Reserved -- 140

The following list describes the purpose of each field of a PIAT header.

PIATACRO
A 4-character field containing the character string PIAT to identify this program
interface argument table. The LLAPI sets this field.

PIATNUMR
A 4-byte fixed field containing the number of rows in this table. The LLAPI sets
this field.

PIATNARG
A 4-byte fixed field containing the number of argument rows to process in this table.
Your application sets this field.

PIATRESV
A 12-byte area reserved for future use.

The following list describes the purpose of each field of a PIAT row.

PIATDATL
A 4-byte fixed field indicating argument data length in this PIAT row. If this field is
0, the API does not perform argument collection. Your application sets this field.

PIATDATA
A 33-byte character field containing the freeform argument data in this PIAT row.
Your application enters data in the same way you would enter argument data
interactively with the p-words preceding the argument data. If you do not enter a
p-word, the API uses the argument as entered. Searching on abstract data is an
example. The argument must be left-justified with no imbedded blanks. When you
are using Boolean or range operators, they must appear in the first position. The
application sets this field.

PIATRSV1
A 3-byte area reserved for future use.

PIAT Example
Table 43 and Table 44 on page 141 show an example of a PIAT with 9 rows, 2 of which are
used.

Table 43. PIAT Example, Header Field Values
ACRO NUMR NARG

PIAT 9 2

LLAPI Structures

140 Version 7.1

Table 44. PIAT Example, Entry Row Values
PIATDATL PIATDATA

000A TIMA/13:00

000B -TIMA/14:00

000B ¬TIMA/13:30

000B |TIME/14:15

000C TRMID_VID009

0008 TERMINAL

0006 SMOKES

0004 WHEN

0003 HOT

Program Interface Results Table (PIRT)
The program interface results table (PIRT) contains a list of external record IDs found that
meet specific search criteria. For each record processed, the API returns the record type, data
from one field of the record (if requested), and an error code. The API allocates and builds a
PIRT for each inquiry transaction it performs. The API stores the PIRT address in PICA field
PICAPIRT. Your application frees a PIRT by performing a free PIRT transaction (T007). The
LLAPI frees it automatically if the PIRT allocated for a prior inquiry is not large enough to
satisfy the results of the current inquiry.

Table 45 shows the structure of the PIRT and the page number where the table fields are
explained:

Note: As shown in the table, fields are set by the interface. Your application should not
attempt to set these fields. If it does, results are unpredictable.

Table 45. Results Table (PIRT)

Field Label
Offset
DEC(HEX)

Length
DEC Description Set by page

HEADER RESULTS TABLE HEADER
1st RECORD OF TABLE

PIRTACRO 0(0) 4 Acronym of PIRT (character) Interface 142

PIRTROWS 4(4) 4 Number of results table rows allocated
(fixed)

Interface 142

PIRTHITC 8(8) 4 Number of results table entries (fixed) Interface 142

PIRTSRRC 12(C) 4 Number of results from search (fixed) Interface 142

PIRTBHIT 16(10) 4 The match index of the first match
found (fixed)

Interface 142

PIRTRESV 20(14) 60 Reserved -- 142

ENTRY ROW RESULTS TABLE ROW
2nd AND SUBSEQUENT ROWS OF TABLE

PIRTRNID 0(0) 8 Record identifier (character) Interface 142

PIRTINDX 8(8) 4 Record type index (character) Interface 142

PIRTDATL 12(C) 4 Length of associated data (fixed) Interface 142

LLAPI Structures

141Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 45. Results Table (PIRT) (continued)

Field Label
Offset
DEC(HEX)

Length
DEC Description Set by page

PIRTDATA 16(10) 45 Record associated data (character) Interface 142

PIRTCODE 61(3D) 2 Record processing code (character) Interface 143

PIRTRSV1 63(3F) 17 Reserved -- 143

The following list describes the purpose of each field of a PIRT header.

PIRTACRO
A 4-character field containing the character string PIRT to identify this program
interface results table. The LLAPI sets this field.

PIRTROWS
A 4-byte fixed field containing the number of PIRT table rows allocated. If a value
is specified on the session parameters for SORTPFX-N1, then the number of rows
allocated is limited to that value. The LLAPI sets this field.

PIRTHITC
A 4-byte fixed field containing the number of PIRT table rows used when an inquiry
produces matches. If you specify a value on the session parameters for
SORTPFX-N1, then the number of matches returned in the PIRT is limited to that
value. In that case, the value of PIRTHITC can be less than or equal to the value in
SORTPFX-N1. The LLAPI sets this field.

PIRTSRRC
A 4-byte fixed field containing the number of matches when an inquiry transaction
runs. This value can be larger than PIRTHITC if you specify a value for
SORTPFX-N1 in the session parameters. The LLAPI sets this field.

PIRTRESV
A 64-byte area reserved for future use.

The following list describes the purpose of each field of a PIRT row.

PIRTBHIT
A 4-byte fixed field indicating the beginning match number returned. If your
application specifies zero in PICABHIT, the API uses a value of one.

PIRTRNID
An 8-byte character field containing the external record ID of a found record that
matches the search criteria. The LLAPI sets this field.

PIRTINDX
A 4-byte fixed field containing the record type index (s-word index) that identifies
the record type without the leading S. The LLAPI sets this field.

PIRTDATL
A 4-byte fixed field containing the length of the data in the associated data field
(PIRTDATA). The LLAPI sets this field.

PIRTDATA
A 45-byte character associated data field that contains up to 45 bytes of data
extracted from a unique field in the record. You identify which field is to be
extracted from the record by putting that field’s s-word index into PICA field

LLAPI Structures

142 Version 7.1

PICASRCH before your application performs the inquiry transaction. You can
choose a different associated data field for each inquiry. Nothing is returned in the
associated data field if you specify a text or list data item. The LLAPI sets this field.

PIRTCODE
A 2-byte character field containing a code that indicates record processing results for
a particular match. The LLAPI returns one of the following codes:

00 No error detected

01 The record found a read error

02 The record was not found

03 The record being updated was not available

04 The record was busy

05 Not enough storage to read in record

06 Unknown problem when reading record.

PIRTRSV1
A 17-byte area reserved for future use.

PIRT Example
Table 46 shows an example of PIRT with entry rows that depict two problem records found
by a search. It is assumed that PICASRCH is set to S0E0F before your application requests
the inquiry transaction. Setting this value causes the description abstract to be returned with
each record found by the search. PIRT HEADER fields are not shown.

Table 46. PIRT Example, Entry Field Values
PIRTRNID PIRTINDX PIRTDATL PIRTDATA PIRTCODE

RECID001 0032 X(0018) TERMINAL SMOKES WHEN HOT 00

RECID002 0032 X(0010) DISPLAY UNIT BAD 00

Program Interface Message Block (PIMB)
If you set PICAMSGD to C or B at the time of initialization, then messages are returned in
the Program Interface Message Blocks (PIMBs). A PIMB defines the format of a message
block on the message chain. The PICA field PICAMSGP points to the first PIMB on the
message chain. The API is responsible for allocating and freeing message chain blocks.

Note: Only Tivoli Information Management for z/OS messages are chained. API messages
are not chained but are written to the API Print data set when PICAMSGD is set to P
or B.

Table 47 shows the structure of the PIMB and the page number where the table fields are
explained:

Note: As shown in the table, fields are set by the interface. Your application should not
attempt to set these fields. If it does, results are unpredictable.

LLAPI Structures

143Application Program Interface Guide

2.
U

sin
g

th
e

L
L

A
P

I

Table 47. Message Block (PIMB)

Field Label
Offset

DEC(HEX)
Length
DEC Description Set by page

PIMBFWDP 0(0) 4 Pointer to next block (pointer) Interface 144

PIMBPRVP 4(4) 4 Pointer to previous block (pointer) Interface 144

PIMBDATL 8(8) 4 Length of message data (fixed) Interface 144

PIMBDATA 12(C) Variable
length

Message data (character) Interface 144

The following section describes the purpose of each field of a PIMB:

PIMBFWDP
A 4-byte pointer to the next message block. The LLAPI sets this field.

PIMBPRVP
A 4-byte pointer to the previous message block. The LLAPI sets this field.

PIMBDATL
A 4-byte fixed field containing the length of the message data in this block. The
LLAPI sets this field.

PIMBDATA
A variable length character field containing the message data in this block. The
LLAPI sets this field.

PIMB Example
Table 48 shows an example of a PIMB chain.

Table 48. PIMB Example
PIMBFWDP PIMBPRVP PIMBDATL PIMBDATA

Next 0000 Length of message Text of message

0000 Previous Length of message Text of message

LLAPI Structures

144 Version 7.1

Using the HLAPI

This chapter tells you how your applications can use the HLAPI to access a Tivoli
Information Management for z/OS database to perform these tasks:
¶ Creating records
¶ Updating records
¶ Retrieving records
¶ Inquiring about IDs (and associated data) of records meeting specified data search

criteria
¶ Deleting records
¶ Using TSPs

This chapter discusses only the interface that the HLAPI provides to your application. The
methods that your application uses to collect data and process transaction results are not
discussed.

The HLAPI/REXX interface enables you to set up and use an HLAPI session from a REXX
program; however, you must understand the types of data that are input to and returned from
the HLAPI. The HLAPI/REXX interface is so closely tied to the HLAPI that it is also
explained in this chapter.

The HLAPI performs its work by using the LLAPI. One HLAPI transaction can result in
multiple LLAPI transactions being performed. You might have to tailor the LLAPI TSPs.
See “LLAPI Operating Characteristics” on page 15 for more information.

HLAPI Operating Characteristics
The is tied to the LLAPI because it uses LLAPI transactions, so the same LLAPI limitations
and characteristics apply. The API environment requires that MVS/ESA, data management
services, and VSAM be available.

If you are using the HLAPI from remote platforms, some of the operating characteristics are
different. Refer to the Tivoli Information Management for z/OS Client Installation and User’s
Guide for more information about remote HLAPI characteristics.

Control Transfer Considerations
In an MVS environment, most high-level languages create an internal parameter list
structure in which the first 4 bytes are the address of the HICA. The call to the
server passes the HICA structure itself and not its address. See Figure 6 on page 149
for more information.

Consider how to transfer control to the HLAPI server (module BLGYHLPI).
BLGYHLPI is installed with attributes of AMODE 31, RMODE ANY. Also consider
establishing the server entry address by preloading BLGYHLPI using the MVS

3

145Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

LOAD macro or equivalent service in the language you are using. This method is
usually more efficient because the server loads into storage only once, which saves
load I/O cycles. Consider, too, whether you want to enable the HLAPI to return data
above the 16MB address range.

Operating Mode
Transactions are synchronous in that your application cannot request or start another
HLAPI transaction until the previous one completes. “Initialize Tivoli Information
Management for z/OS (HL01)” on page 153 contains additional information on
transaction details.

Validating Data
The HLAPI does not automatically perform response validation as do panel dialogs
in Tivoli Information Management for z/OS entry or inquiry mode. The HLAPI can
optionally use the LLAPI’s field validation module (BLGPPFVM) to validate field
response data on a field-by-field basis. The HLAPI can also perform some validation
processing with the = sign. Data from validation and attribute records can be used to
construct PIPTs and thus be used for validation. You can also define another field in
the record that names a validation record to use for validating field data. With regard
to equal sign processing for the HLAPI, if data is specified with an equal sign, then
the API will attempt to process it. A PDB EQUAL_SIGN_PROCESSING should be
set to YES in the HLAPI to specify equal sign processing. The four patterns
currently supported in the API environment are:
¶ DATE
¶ TIME
¶ USER
¶ CLASS

Collecting Data in Mixed Case
Data which is not validated is passed through the API in the case in which your
application supplies it. To convert the data to the case specified in the PIDT (derived
from the assisted-entry panel or data attribute record for the field), you specify data
validation for each field you want to convert. Data can be converted as part of data
validation processing performed by the HLAPI using module BLGPPFVM.

Loading and Initializing
Your application must establish program linkage to the server routine BLGYHLPI
before you can initiate the Tivoli Information Management for z/OS environment.
You initiate the Tivoli Information Management for z/OS environment by using the
initialize Tivoli Information Management for z/OS transaction (HL01) to call the
API. The HLAPI runs all other transactions only after your application initializes the
Tivoli Information Management for z/OS environment.

Structure and Processing
The HLAPI uses a common data structure to pass data parameters (not program
parameters) between your application and the server. This data structure, called a
Parameter Data Block (PDB), is described in detail later in “HLAPI Structures” on
page 216. The HLAPI, like the LLAPI, is also defined as a data interface that
enables Tivoli Information Management for z/OS data access functions. The
interface supports structured and text data processing through the HLAPI
implementation of the LLAPI. A set of PDBs passes data for all interface functions.

Terminating
To end the Tivoli Information Management for z/OS environment, your application
calls the API using the environment termination transaction (HL02). This transaction

HLAPI Operating Characteristics

146 Version 7.1

frees up any resources held by Tivoli Information Management for z/OS. Your
application must then delete the server routine if your application loaded the server
routine earlier.

Addressing
Applications using the API can reside in an address space above or below the 16MB
address range. The MVS address space environment can be TSO, non-TSO, or
MVS/ESA batch. The components of the interface all reside above the 16MB
address range. Applications that use either 24-bit or 31-bit addressing can call the
server.

If your application runs below the 16MB address range, it must use the MVS LINK
macro when it transfers control to the server to maintain correct address mode.

The HLAPI allocates storage and returns data using addresses above the 16MB
address range if you specify the HIGH_MEMORY PDB when you initialize the
HLAPI.

Checking Records In and Out
Checking out a record with an API differs from what interactive users of Tivoli
Information Management for z/OS are used to. When you check out a record with
the API, it remains checked out and unavailable to anyone else, until you perform a
check in transaction, until an optional administrator-specified time limit is reached,
or until an administrator manually checks in the record. This way, you can be sure
that the record you want to work with is unchanged from the time you find it until
the time you make your own changes to it, even if your application ends before
checking in the record. Your system administrator can define an expiration time
interval that will, in effect, check in records after the specified period of time. See
“Check Out Record (HL04)” on page 162 for additional information about checking
out records.

If your application runs a check out transaction for any record, be sure to check it
back in when you finish with it.

Note: If you fail to check in a record, the system administrator can check it in
interactively. Refer to the Tivoli Information Management for z/OS User’s
Guide for details on database cleanup.

HLAPI Environment Considerations
Your application must call the server BLGYHLPI in problem program state with
storage key 8 under control of a task that was attached with storage key 8. If it does
not, unpredictable results occur.

NetView Considerations
If your application runs under NetView, all Tivoli Information Management for z/OS
components must be put in an authorized program facility (APF) library. Each
service request is a transaction.

HLAPI Inquiries
Database inquiry uses a single argument collection mechanism rather than two as
used in the LLAPI. The HLAPI determines which HLAPI inquiry process to use by
the way the data is specified to the HLAPI. The HLAPI extracts the resulting list of
record IDs and associated data from the program interface results table (PIRT) and
uses PDBs to pass the list back to your application.

Using Alias Names and Default Data
The HLAPI enables you to define alias names for each data field, thus eliminating

HLAPI Operating Characteristics

147Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

the need to use s-word or p-word indexes. You can also define alias names for Tivoli
Information Management for z/OS prefixes used in database inquiries. Alias names
are defined in tables that are stored in the same data set that contains LLAPI tables
(static PIDTs). Using an alias name for a data field is optional. Your application can
specify different alias tables depending on the needs of a transaction.

The HLAPI also enables you to define alias names for Program Interface Data Table
(PIDT) member names and data view names.

Note: User defined alias names are considered keywords and cannot handle
double-byte character set (DBCS) data.

When creating records, the HLAPI lets you store default field responses in the
database. Default field responses are stored in the alias table. The HLAPI
incorporates LLAPI alias table processing with various default processing options.

Data Model Considerations
You must define a “data view” for your application for those transactions that
require or return Tivoli Information Management for z/OS data. You can use static
PIDTs built by the Table Build Utility (BLGUT8) or data model records to define
this view. See “Field Validation Using the Field Validation Module BLGPPFVM” on
page 279 for additional information on data model records.

History Data Considerations
History data processing is provided in two independent parts. The first allows history
data to be returned on the output PDB chain if the optional HISTORY_DATA
control PDB is specified as part of the retrieve record transaction (HL06). No
additional level of authority is required for this function beyond that for record
retrieval.

The second part of history processing provides the ability to delete history entries. It
involves both the RETRIEVE (HL06) transaction and the UPDATE (HL09)
transaction. In order to perform the delete function the API user must have database
administrator authority. Details about how to utilize the history features using the
HLAPI is contained in “Retrieve Record (HL06)” on page 171 and “Update Record
(HL09)” on page 183.

Record File Processing
The HLAPI uses the LLAPI to perform transactions. You can use two modes of
operation: panel processing and bypass panel processing. If you use panel
processing, the HLAPI (via the LLAPI) performs record file processing for create
and update transactions by using selection 9 File Record on summary panels. If your
application uses a selection other than 9 to file a record, see “Tailoring the
Application Program Interfaces” on page 289 for information on customizing your
application. Record files are processed just as if you used the panel interface.
Certain data fields, such as Date last altered, Time last altered, and Time entered, are
automatically collected by Tivoli Information Management for z/OS. If you use
bypass panel processing, the HLAPI (via the LLAPI) uses user exits to file records.

Logical Database Partitioning
If you are using logical database partitioning, you can perform the database access
transactions (retrieve, update, check in, check out, add record relation, and delete)
only for records whose Owning Partition matches the Primary Partition of your
privilege class. API applications cannot perform multipartition searches.

HLAPI Operating Characteristics

148 Version 7.1

Date Considerations
Dates used by your application can be processed in either of two ways:

Database format
Dates are passed to your application from the API in the default external
date format. Dates your application passes to the API must be in either the
default format or, if one is defined, the old format specified in the session
parameters being used. Dates passed in either format are automatically
converted to internal format when they are stored in the SDDS portion of
the database.

Application-specified format
Dates are passed between the API and your application in a date format your
application specifies. This format does not need to match that of the
database. The API automatically converts dates from the internal format in
the database to the format you specify when passing data to your application
and from your specified format to the database’s internal format when
receiving data from your application.

An application-specified date format is set in the HLAPI by specifying the
desired date format (for example, MM/DD/YYYY or YYYY.MM.DD in a
control PDB with a PDB name of DATE_FORMAT.

Database date format is the default and can be specified in the HLAPI by specifying
a control PDB DATE_FORMAT with a value of DATABASE or by never specifying
a control PDB named DATE_FORMAT.

Understanding LLAPI Operating Characteristics
Because the HLAPI uses the LLAPI, you might need to understand some LLAPI
operating characteristics. See the following for more information:
¶ “API Control Flow” on page 283
¶ “Exit and Terminal Simulator Limitations” on page 17
¶ “Record Update Retry and Wait Considerations” on page 18
¶ “NetView Considerations” on page 19
¶ “LLAPI Logic” on page 17

HLAPI Calls
This example shows the HLAPI interface call syntax which uses
call-with-parameter-list notation.
<Label> CALL BLGYHLPI

Figure 6 shows the parameter list structure used for calling the API as it appears to
an assembler language program. The parameter list points to the HLAPI
communications area (HICA).

Register 1

PLIST
@PLIST

@HICA

HICA

Figure 6. Input Parameter List for the HLAPI

HLAPI Operating Characteristics

149Application Program Interface Guide

|
|
|

|

|

|

3.
U

sin
g

th
e

H
L

A
P

I

Data Sets
The HLAPI uses the following data sets:

¶ Text data set

This data set stores text data for a unique text type. (See “Data Sets” on page 21 for a
description of a text data set.) This data set is required if your application uses the data
set format of adding or reading text; it is not required if your application uses the buffer
method to add or read text.

¶ HLAPILOG data set

This data set contains transaction activity messages created by the HLAPI. The data set
is a sequential, non-VSAM data set that you write to a system output device, tape, or
direct access volume.

DCB parameters for this data set are:
DSORG = PS
RECFM = VBA
LRECL = 125
BLKSIZE = 6144

If you do not preallocate HLAPILOG and you request logging, the HLAPI dynamically
allocates HLAPILOG to a SYSOUT=A data set.

Note: The HLAPI stops logging transaction activity messages if an error occurs while
writing to this data set.

¶ Report format table data set

A description of this data set can be found on page 23.

¶ SYSPRINT data set

A description of this data set can be found on page 23.

¶ APIPRINT data set This data set is used if the control PDB named APIMSG_OPTION
is set to B or P on the initialization transaction.

A description of this data set can be found on page 24.

¶ SYSUDUMP data set

A description of this data set can be found on page 24.

Errors and Messages
The HLAPI returns messages to your application from the API subtask and the LLAPI
through the HICA. HICARETC contains return codes and HICAREAS contains reason
codes. If your application requests message chaining, HICAMSGP points to the first PDB on
the message chain. HICAERRP points to the first PDB on the error chain containing codes
from PIDTCODE in the PIDTor codes from validation routines. A list of validation codes
can be found on page 236. The interface writes HLAPI messages to the HLAPILOG data
set, the message PDB chain, or both.

Structures
The structures used by the HLAPI are described later in this chapter. For information about
specific structures, see:
¶ “High-Level Application Program Interface Communications Area” on page 216 for the

HICA
¶ “Parameter Data Block” on page 218 for the PDBs

HLAPI Operating Characteristics

150 Version 7.1

¶ “Alias Tables” on page 238 for the alias table

HLAPI Transactions
These are the three types of HLAPI transactions that your application uses:

¶ Environment control to establish and to end the Tivoli Information Management for
z/OS environment and the HLAPI.

¶ Service to obtain services such as checking in and checking out records being modified
by the HLAPI and deleting special data sets.

¶ Database access to perform the database tasks listed at the beginning of this chapter.

Table 49 lists each function that the HLAPI performs, its associated transaction number, and
the page in this book where you can find more information about the function.

Table 49. HLAPI Functions and Transaction Numbers

HLAPI Function
Transaction
Number Transaction Type page

Initialize Tivoli Information Management for
z/OS

HL01 Environment Control 153

Terminate Tivoli Information Management for
z/OS

HL02 Environment Control 160

Obtain external record ID HL03 Interface Service 161

Check out record HL04 Interface Service 162

Check in record HL05 Interface Service 164

Retrieve record HL06 Database Access 171

Reserved HL07 — —

Create record HL08 Database Access 178

Update record HL09 Database Access 183

Change record approval HL10 Database Access 191

Record inquiry HL11 Database Access 194

Add record relation HL12 Database Access 202

Delete record HL13 Database Access 205

Start user TSP or TSX HL14 Environment Control 166

Free text data set HL15 Environment Control 169

Delete text data set HL16 Environment Control 170

Get Data Model HL31 Interface Service 207

The remainder of this chapter, starting at “Environment Control Transactions” on page 153,
describes the use of these transactions. For each transaction, introductory text describes
required and optional structure fields, such as control blocks and PDBs, their value settings,
and their relationships to other structures. A table shows transaction flow from the
application through the HLAPI and back to the application. The flow tables in this chapter
describe the actions of your application and the server for each of the HLAPI transactions.
This information describes pertinent relationships between HLAPI structure fields and data
PDBs that can aid you in understanding the HLAPI in terms of what your application must
do. At the end of the chapter are examples of the setup for some of the HLAPI transactions.

HLAPI Operating Characteristics

151Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

You use the HLAPI by setting fields in the HLAPI communications area structure (HICA),
building chains of control PDBs for transaction control and input PDBs for data input, and
calling the server module BLGYHLPI. Your call passes the HICA control block to the server
as a parameter.

See “HLAPI Structures” on page 216 for more information on HLAPI structures and PDBs.

Control PDB
You must create and specify a control PDB chain (linklist) for all transactions. The PDBs on
this chain contain data that identifies the requested transaction and tells the HLAPI how to
process it. Your application can manage PDB chains in one of two ways:

¶ For a given transaction, your application can build a new control PDB chain, use it, free
or deallocate it, then start over again for the next transaction by building a new control
PDB chain

¶ A method that eliminates constant reallocation of PDBs is to build a control PDB chain
that contains PDBs for all control parameters. For each transaction, set the PDBDATL
field to zero for any PDBs you do not want processed, and ensure that the PDBDATL
field is set to the length of the data for the PDBs that you do want processed. This
method takes advantage of the fact that the HLAPI ignores a control PDB whose
PDBDATL field is set to zero when transaction processing begins.

For each transaction, the HLAPI looks for specific control PDBs and ignores other PDBs
even if they exist on the control PDB chain. See the individual transaction descriptions for
information about which control PDBs the HLAPI uses for each transaction.

Input PDB
Some transactions (for example, update, create, and inquiry) require you to build an input
PDB chain for HLAPI processing. The input PDB chain contains the data to be processed in
the form of search criteria for inquiry transactions, and data to be added to a Tivoli
Information Management for z/OS record for update and create transactions. If you request
validation for input data, the HLAPI validates all PDBs marked to be validated in the input
PDB chain at one time and sets the input PDB field PDBCODE to a nonblank character if
that PDB has an error. The return code and reason code fields returned for the transaction
apply only to the first PDB with an error. The HLAPI returns error information in all input
PDBs that contain errors. If one input PDB contains several errors, you must correct the first
error and then run your program again to find any further errors in that input PDB.

Output PDB
The API returns transaction processing results to the output PDB chain. Each PDB in the
chain contains one item of data. For example, if three record identifiers are returned as the
result of a search of the database, the HLAPI allocates three output PDBs and stores these
record identifiers in them. Your application must process information in the output PDB
chain before starting another transaction because the output chain is always freed at the next
transaction startup.

Message and Error PDB
The processing of each HLAPI transaction results in the setting of fields HICARETC and
HICAREAS. If these fields are not 0, some type of error has occurred. For successful
transactions, the HLAPI can return information to a message PDB chain pointed to by
HICAMSGP. For unsuccessful transactions, the HLAPI can return information to both a
message and an error PDB chain pointed to by HICAMSGP and HICAERRP. You must

HLAPI Transactions

152 Version 7.1

process this information before your application starts the next transaction because the
HLAPI frees these chains at transaction startup time.

Environment Control Transactions
Use this group of transactions to initialize and end the Tivoli Information Management for
z/OS environment. You can also establish particular operating characteristics for the
environment. The environment control transactions are HL01 and HL02.

Initialize Tivoli Information Management for z/OS (HL01)
This transaction initializes the Tivoli Information Management for z/OS environment. It
starts the HLAPI and the LLAPI, and it prepares Tivoli Information Management for z/OS
for further transaction processing. HICA field HICAENVP identifies the HLAPI environment
to your application, and your application never sets this field. Your application can initialize
any number of environments, but each environment must use a unique HICA and a unique
application ID. Therefore, your application can use many different HLAPI sessions, each
with its own processing options defined at initialization time. If you have multiple sessions
and are using logging for each one, allocate the log to SYSOUT so you do not lose
information from any of the sessions. You can specify a different identifier to be included in
certain log messages for each session.

Note: In an application environment having multiple active HLAPI sessions, the API
serializes transactions started from different HLAPI sessions, so they run in FIFO
(first in, first out) order. You end an HLAPI session by starting an HL02 transaction
using the HICA associated with the session you are terminating.

If you are using a client connecting to Tivoli Information Management for z/OS through the
MRES, you may find initialization time to be significantly improved by using pre-started
MRES sessions. The procedure for doing this is described in the Tivoli Information
Management for z/OS Client Installation and User’s Guide in either the chapter
“Configuring and Running an MRES with APPC” or the chapter “Configuring and Running
an MRES with TCP/IP”. If you do use pre-started MRES sessions, logging is controlled by
the MRES, and the status of any PDBs specified is as follows:
¶ If you use pre-started MRES sessions and specify these values in the HL01 transaction,

the values that you specify are saved and supplied to subsequent TSXs:

v APPLICATION_ID

v DATE_FORMAT

v PRIVILEGE_CLASS
¶ If you use pre-started MRES sessions and specify these values in the HL01 transaction,

they are ignored:

v APIMSG_OPTION

v CLASS_COUNT

v DEFAULT_OPTION

v DEFAULT_DATA_STORAGE_SIZE

v HIGH_MEMORY

v HLAPILOG_ID

v HLIMSG_OPTION

HLAPI Transactions

153Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

v MULTIPLE_RESPONSE_FORMAT

v SPOOL_INTERVAL

v TABLE_COUNT

v TIMEOUT_INTERVAL
¶ If you use pre-started MRES sessions and specify these values in the HL01 transaction,

they must match the values that you specify for the pre-started session:

v BYPASS_PANEL_PROCESSING

v DATABASE_ID

v SESSION_MEMBER

v PDB_TRACE

At initialization time, you specify session operating characteristics such as:
¶ The ID of your application used for this session (you can change the ID on subsequent

transactions throughout the life of the session)
¶ The Tivoli Information Management for z/OS session member name
¶ The maximum number of alias tables and privilege class records in storage during the

session
¶ Information about how the LLAPI and the HLAPI process messages
¶ The ID of the Tivoli Information Management for z/OS database used for the session
¶ The amount of storage allocated to hold default data
¶ The session identifier for this session to be used on some HLAPI log messages
¶ Which processing mode to use: regular panel processing or bypass panel processing
¶ The date format to be used

The API automatically sets the HICAENVP pointer during initialization. Your application
must not alter this pointer value for the duration of the session.

Follow these outline steps to initialize Tivoli Information Management for z/OS

1. Define a storage area for the HICA you use in your application.

2. Initialize HICAACRO to HICA.

3. Initialize HICAENVP to zero.

4. Initialize HICALENG to the length of the HICA.

5. Allocate and initialize control PDBs with values that govern how the HLAPI
environment operates. The HLAPI only processes control PDBs having a nonzero data
length. This enables your application to define a chain of control PDBs for use by all
transactions. Your application can indicate which PDBs to process by setting the data
length field (PDBDATL) of the PDB to a nonzero value.

6. Ensure that HICACTLP points to the first control PDB.

7. Initialize remaining HICA fields to zero.

8. Consider allocating a chain of input PDBs at this time. A working set of PDBs using an
adequately sized data area might satisfy all your transaction processing needs for the
session. Doing this would eliminate allocation and deallocation overhead for input PDBs.

9. Start the server module BLGYHLPI passing the HICA as a parameter.

The following HICA fields and PDBs are required for this transaction:

Environment Control Transactions

154 Version 7.1

HICAENVP
Initialize this 4-byte pointer field to zeros. The server uses this field to store the address
of the HLAPI environment used for the duration of the session. Your application must
not change the contents of this pointer until after the session ends.

HICACTLP
Each PDB in the chain must have its name in PDBNAME and its data value in
PDBDATA. Control PDBs need not be specified in any order. See “Parameter Data
Definition” on page 225 for more information about the control PDBs. The following
PDBs are required:

¶ TRANSACTION_ID must contain the 4-character uppercase transaction code of
HL01. If you want PDB data tracing for debugging purposes or PDB data logging,
set PDBPROC to a value of T. This causes the logging of up to 32 bytes of
PDBDATA information for each PDB used throughout the session.

If you have requested PDB tracing, the contents of all PDBs are stored in the
HLAPILOG data set. This method is useful for debugging purposes because the
contents of the control, input, output, message, and error PDBs are included. The
data portion of the PDB might be truncated.

¶ APPLICATION_ID must contain a 1- to 8-character uppercase application ID that
Tivoli Information Management for z/OS uses for this session. The application ID
remains in effect until changed on a subsequent transaction. If APISECURITY=ON
is specified in your BLX-SP startup parameters, you must ensure that the MVS user
IDs running your application are allowed to use this application ID. “API Security”
on page 287 contains additional information regarding API security.

¶ SESSION_MEMBER must contain a 7- or 8-character uppercase load library
session-parameters member name that Tivoli Information Management for z/OS uses
for this session.

¶ PRIVILEGE_CLASS must contain a 1- to 8-byte uppercase startup privilege class
name that the API passes to Tivoli Information Management for z/OS. This privilege
class remains in effect until changed on a subsequent transaction. A privilege class
name can be mixed data containing DBCS characters enclosed by an SO/SI pair, but
it cannot contain SBCS Katakana. The application ID used on the HL01 must be an
eligible user of this privilege class.

The following PDBs are optional:

¶ TABLE_COUNT must contain a 4-byte fixed value indicating the maximum number
of alias tables and PIDT tables that can be in storage during this Tivoli Information
Management for z/OS session. Static PIDTs and PIDTs generated from data view
records are treated the same for caching purposes (that is, all types are cached).

When data model records or PIDTs are updated and you want to force the cache to
get the new updates, use the BRDCST operator command with the TABLES
keyword to pick up the updates. More information on using the BRDCST command
can be found in Tivoli Information Management for z/OS Operation and
Maintenance Reference.

It can take a significant amount of time to generate a PIDT from data view records.
The length of time depends on the number of data attribute records (and validation
records that they reference) contained in the data view record. Therefore, it can be
especially important to direct the HLAPI to maintain PIDTs in storage if you are

Environment Control Transactions

155Application Program Interface Guide

|
|
|
|
|

3.
U

sin
g

th
e

H
L

A
P

I

using data model records. PIPTs associated with PIDTs kept in storage remain in
storage by default because each PIPT has a PIDT pointing to it.

If you omit this parameter, or if it contains a null or zero value, the HLAPI:
v Performs no alias table processing within this Tivoli Information Management for

z/OS session
v Performs no PIDT caching
v Ignores any ALIAS_TABLE control PDB specifications

You can specify any value from 0 to 256.

¶ CLASS_COUNT must contain a 4-byte fixed value indicating the number of Tivoli
Information Management for z/OS privilege class records that can be in storage
during this Tivoli Information Management for z/OS session. If you omit this
parameter or enter zero as its value, the Tivoli Information Management for z/OS
session operates with a single class record in storage at a time.

Note: If you plan to use more than one privilege class in the session and switch
between classes, you can minimize (or eliminate) the I/O involved in bringing
the classes in and out of storage by including this PDB and setting its
PDBDATA field to the number of classes needed for the session.

¶ APIMSG_OPTION must contain the single character value of P, C, or B, which
specifies the destination of LLAPI messages for the session.
v P specifies that the API writes LLAPI messages to the APIPRINT data set or to

SYSOUT. If APIPRINT is allocated to a data set and that data set becomes full,
the LLAPI closes, reallocates, and reopens the APIPRINT data set, and old log
messages are lost. If you write LLAPI messages to SYSOUT, you do not lose old
log messages.

Note: You must specify the PDB named SPOOL_INTERVAL to log LLAPI
messages, and you can use this PDB to tell the API to close and reopen
the data set at a specified interval.

v C specifies that LLAPI messages pass to the HLAPI.
v B specifies that the API performs both P and C.

If you specify any character value other than P, C, or B, or if you omit this
parameter, then the API performs option C.

¶ HLIMSG_OPTION must contain the single character value of P, C, or B defining
how the HLAPI processes LLAPI messages for this session.
v P specifies that the HLAPI writes messages to the HLAPILOG data set. If the

data set becomes full, the HLAPI closes, reallocates, and reopens the data set,
and old log messages are lost.

Note: You must specify the PDB named SPOOL_INTERVAL to log LLAPI
messages, and you can use this PDB to tell the HLAPI to close and
reopen the data set at a specified interval.

v C specifies that the HLAPI chains messages on the message PDB chain.
v B specifies that the HLAPI performs both P and C.

If you specify any character other than P, C, or B, or if you omit this parameter,
then the HLAPI performs option C.

Environment Control Transactions

156 Version 7.1

¶ TIMEOUT_INTERVAL must contain a 4-byte fixed field value. This value specifies
the interval of time in seconds that a transaction can run before a timer interrupt
occurs. If a timeout occurs, the HLAPI terminates its LLAPI session and terminates
the HLAPI session. You must perform another initialize Tivoli Information
Management for z/OS transaction (HL01) before you can perform additional
transactions. If you omit this parameter, the HLAPI defaults to a value of 300. If
you specify an interval of greater than 0, but less than 45 seconds, the interval is set
to 45 seconds.

¶ SPOOL_INTERVAL must contain a 4-byte fixed field value. This value specifies the
interval of time in minutes between the instances when the API spools activity logs
(APIPRINT and HLAPILOG data sets) when it prints messages. After the interval
expires, the API closes and reopens the data sets, and printing starts again at the
beginning of the data sets.

The maximum number of minutes you can use is 60*24 (that is, 60 minutes
multiplied by 24 hours=1440 minutes, one full day). If you specify more minutes
than there are in a day, the activity log closes and reopens after 1440 minutes,
ignoring your specification.

If you omit this parameter, the APIs do not perform logging regardless of the
specifications in the HLIMSG_OPTION or APIMSG_OPTION PDBs.

¶ DATABASE_ID must contain the name or ID number of the database your
application uses for the session. Subsequent retrieve or entry transactions access the
database you identify in this PDB. The database ID for Tivoli Information
Management for z/OS is 5. If you do not specify a value for DATABASE_ID, the
HLAPI automatically sets the database ID to 5.

¶ DEFAULT_OPTION must contain character data that defines how the HLAPI
performs default data response processing when records are created in this session.
Using the default data processing option enables you to obtain predefined default
data from an alias table for PIDT data fields that your application does not provide a
response for. The valid data values for DEFAULT_OPTION are REQUIRED, ALL,
and NONE.

v REQUIRED specifies that only required fields are candidates for default response
processing. Required fields, if any, are defined in the PIDT used for a specific
transaction.

v ALL specifies that all response fields are candidates for default response
processing.

v NONE indicates that the HLAPI performs no default response processing.

The HLAPI can combine data obtained from input PDBs with default data to create
the record. Input PDB data always overrides default data. If you omit this parameter,
the HLAPI assumes a value of NONE.

¶ DEFAULT_DATA_STORAGE_SIZE must contain a 4-byte fixed field that specifies
how much additional storage the API allocates to hold default response data when
using an alias table data when creating records. If you plan to use default data when
creating records and the total size of the data is greater than 1024 bytes, you must
include this PDB and set PDBDATA to a value (in bytes) larger than the total size of
the data. When the HLAPI creates records, it calculates the size of the response
buffer it requires by totaling the lengths of all the input data PDBs and adding the
specified default data storage size or, if that is not specified, a default value of 1024

Environment Control Transactions

157Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

bytes. This calculation allows room to store default data in the response buffer.
When the HLAPI performs create response processing, it always checks to make
sure the response does not overlay storage. If the HLAPI check indicates that the
response would overlay storage, the HLAPI transaction terminates with an error
code.

¶ HLAPILOG_ID must contain a 1- to 8-character HLAPI session identifier that you
can specify to identify the session in HLAPI log file messages. If you do not specify
a value for HLAPILOG_ID, then this field is blank in HLAPI log file messages.
Below are some examples of messages with a HLAPILOG_ID specified as sessid as
they appear in the HLAPI log file:
DATE: MM/DD/YY TIME: HH:MM:SS HIGH-LEVEL INTERFACE ACTIVITY LOG FOR APPL: applid
SESSION ID: sessid PAGE: nnnnn

BLG25013I sessid THE HLAPI WAS STARTED FOR APPLICATION applid ON date AT time.

BLG25015I sessid TRANSACTION trans PROCESSED. RETURN CODE rc(hexrc)
REASON CODE reas(hexreas) DATE date TIME time.

BLG25018I sessid THE HLAPI COMPLETED transcount TRANSACTIONS.

¶ HIGH_MEMORY must contain the character value YES, which specifies that the
HLAPI may return output, message, and error PDBs in memory that was obtained
above the 16MB address range. If you specify any other value, these PDBs are
always returned in memory obtained below the 16MB address range. If you are
using the HLAPI through a remote client, do not use this PDB, because the value
YES is always assumed.

¶ BYPASS_PANEL_PROCESSING must contain the character value YES to indicate
that no panels (other than those for the delete transaction) are used in record
processing. If you specify any other value, the HLAPI performs panel processing. If
you specify a value of YES, you must also use data model records if you are using
file processing transactions (create, update, or add record relation).

¶ DATE_FORMAT must contain a supported date format. All dates passed between
your application and the API will be in this format. Dates you pass into the API in
this format will be converted to the primary date format of the database before being
processed.

¶ MULTIPLE_RESPONSE_FORMAT indicates whether spaces can be used to
separate responses in multiple response fields. This control PDB only applies to the
process of multiple responses. Specify the character value PHRASE if you want to
permit spaces to separate responses in a multiple response field. Specify the
character value SEPARATOR (or any value other than PHRASE) to cause the value
specified in SEPARATOR_CHARACTER to separate words of a multiple response.

HICAINPP (INPUT)
Initialize to zeros.

HICAOUTP (OUTPUT)
Initialize to zeros.

HICAMSGP (MESSAGES)
Initialize to zeros.

HICAERRP (ERROR CODES)
Initialize to zeros.

HICASTPA
Initialize to zeros.

Environment Control Transactions

158 Version 7.1

Table 50 shows the initialize Tivoli Information Management for z/OS (HL01) transaction
flow. In the table, symbolically named PDBs have a value, for example, PDB
TRANSACTION_ID=HL01. This style reduces the amount of text on the line in the table.
The name on the left of the equation is the value in the PDB field PDBNAME. The data on
the right of the equation is the value in the PDB field PDBDATA. For more detailed
information on the HLAPI structures, their fields, and their parameters, see “HLAPI
Structures” on page 216.

Table 50. HLAPI Transaction HL01. Initialize Tivoli Information Management for z/OS
Step Program Action

1 Application ¶ Establishes linkage to module BLGYHLPI and saves its address
¶ Gets storage for a HICA
¶ Sets fields as follows:

v HICAACRO=HICA
v HICALENG=length of HICA
v HICASTPA=0000
v HICAENVP=0000
v HICAINPP=0000
v HICAOUTP=0000
v HICAMSGP=0000
v HICAERRP=0000
v HICACTLP (pointer to first control PDB)

The following PDBs are required:
– TRANSACTION_ID=HL01
– APPLICATION_ID = the ID of your application
– SESSION_MEMBER = the load library session parameter member name
– PRIVILEGE_CLASS = the privilege class name

The following PDBs are optional:
– TABLE_COUNT = number of alias tables, non-inquiry data tables and

related pattern tables in session
– CLASS_COUNT = number of privilege class records in session
– APIMSG_OPTION = destination of LLAPI message output
– HLIMSG_OPTION = destination of HLAPI message output
– TIMEOUT_INTERVAL = transaction processing time in seconds
– SPOOL_INTERVAL = number of minutes that activity logs are spooled
– DATABASE_ID = ID number of database used
– DEFAULT_OPTION = specifies how the API processes create record

default responses
– DEFAULT_DATA_STORAGE_SIZE=additional storage for create record

default response data in bytes
– HIGH_MEMORY=YES to use memory above the 16MB address range
– HLAPILOG_ID = session ID in HLAPI log messages
– BYPASS_PANEL_PROCESSING = specifies whether you want to use

panel processing or bypass panel processing
– DATE_FORMAT = format to use for passing dates between your

application and the API
– MULTIPLE_RESPONSE_FORMAT = format to use for passing multiple

response field data between your application and the API.
¶ BLGYHLPI(HICA)

Environment Control Transactions

159Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

Table 50. HLAPI Transaction HL01 (continued). Initialize Tivoli Information Management for z/OS
Step Program Action

2 Server ¶ Validates HICA and PDB fields
¶ Initializes HLAPI environment
¶ Waits for completion
¶ Sets the following HICA fields:

v HICARETC
v HICAREAS
v HICAENVP

Note: Your application must maintain the environment block pointer until
Tivoli Information Management for z/OS ends.

v HICAMSGP
v HICAERRP
v HICASTPA

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v HICARETC contains return code.
v HICAREAS contains reason code.
v HICAMSGP contains pointer to message PDB chain or 0000.
v HICAERRP contains pointer to error PDB chain or 0000.

¶ Continues processing.

Terminate Tivoli Information Management for z/OS (HL02)
This transaction stops the HLAPI, the LLAPI, and the LLAPI subtask, and ends the Tivoli
Information Management for z/OS environment. It also frees resources allocated by the
APIs. If a timeout occurs during your session, HLAPI termination happens automatically.

The following HICA and PDB fields are used in this transaction:

HICAENVP
Must contain the value stored on completion of HLAPI initialization.

HICACTLP (CONTROL)
The PDB TRANSACTION_ID is required and must contain the 4-character transaction
code of HL02.

HICAINPP (INPUT)
Initialize to zeros.

HICAOUTP (OUTPUT)
Contains the value stored by the HLAPI from the previous transaction

HICAMSGP (MESSAGES)
Contains the value previously stored by the HLAPI.

HICAERRP (ERROR CODES)
Contains the value previously stored by the HLAPI.

Table 51 on page 161 shows the terminate Tivoli Information Management for z/OS (HL02)
transaction flow. In the table, symbolically named PDBs equal a value, for example, PDB
TRANSACTION_ID=HL02. This style reduces the amount of text on the line in the table.
The name on the left of the equation is the value in the PDB field PDBNAME. The data on
the right of the equation is the value in the PDB field PDBDATA. For more detailed
information on the HLAPI structures, their fields, and their parameters, see “HLAPI
Structures” on page 216.

Environment Control Transactions

160 Version 7.1

Table 51. HLAPI Transaction HL02. Terminate Tivoli Information Management for z/OS
Step Program Action

1 Application ¶ Sets fields as follows:
v HICACTLP (pointer to first control PDB) The following PDB is required:

– TRANSACTION_ID=HL02
¶ BLGYHLPI(HICA)

2 Server ¶ Validates HICA and PDB fields
¶ Terminates HLAPI environment
¶ Waits for completion
¶ Sets the following HICA fields:

v HICARETC
v HICAREAS
v HICAENVP
v HICAMSGP
v HICAERRP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v HICARETC contains return code.
v HICAREAS contains reason code.
v HICAMSGP contains pointer to message PDB chain or 0000.
v HICAERRP contains pointer to error PDB chain or 0000.

¶ Continues processing.

Interface Service Transactions
These transactions provide unique services to your application and other transactions. These
services include freeing text data sets, obtaining record IDs, and checking records in and out.
These interface service transactions are HL03 through HL05, and HL14 through HL16.

Obtain External Record ID (HL03)
This transaction obtains a Tivoli Information Management for z/OS external record identifier
for use in Tivoli Information Management for z/OS record creation. On return to the
application, the HLAPI builds an output PDB that contains an 8-character external record
identifier in field PDBDATA. The PDBNAME of RNID_SYMBOL identifies this PDB. This
transaction provides applications with a centralized record numbering service (of unique
record identifiers) for later use in record creation. Once the HLAPI obtains the record ID,
your application cannot return it to Tivoli Information Management for z/OS for reuse. The
obtained ID can only be used in a create record (HL08) transaction. Do not specify record
ID validation when you create a record with this record ID because record ID validation
does not allow an all-numeric record ID.

Your application uses the following HICA and PDB fields in this transaction:

HICAENVP
Must contain the value stored on completion of HLAPI initialization.

HICACTLP (pointer to first control PDB)
The PDB TRANSACTION_ID is required and must contain a 4-character transaction
code of HL03.

HICAINPP (INPUT)
Initialize to zeros.

Environment Control Transactions

161Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

HICAOUTP (OUTPUT)
This field receives the address of the first output PDB. The PDB, named
RNID_SYMBOL, contains the 8-character system-generated external record identifier
returned from the HLAPI.

Note: Symbolic alias names are not allowed for this reserved symbolically named PDB.
That is, you cannot define an alias for RNID_SYMBOL.

HICAMSGP (MESSAGES)
Contains the value previously stored by the HLAPI.

HICAERRP (ERROR CODES)
Contains the value previously stored by the HLAPI.

Table 52 shows the obtain record ID (HL03) transaction flow. In the table, symbolically
named PDBs have a value, for example, PDB TRANSACTION_ID=HL03. This style
reduces the amount of text on the line in the table. The name on the left of the equation is
the value in the PDB field PDBNAME. The data on the right of the equation is the value in
the PDB field PDBDATA. For more detailed information on the HLAPI structures, their
fields, and their parameters, see “HLAPI Structures” on page 216.

Table 52. HLAPI Transaction HL03. Obtain Record ID
Step Program Action

1 Application ¶ Sets the fields as follows:
v HICAINPP=0000
v HICACTLP (pointer to first control PDB)

The following PDB is required:
– TRANSACTION_ID=HL03

v BLGYHLPI(HICA).

2 Server ¶ Validates HICA and PDB fields
¶ Gets record ID
¶ Waits for completion
¶ Sets following HICA fields:

v HICARETC
v HICAREAS
v HICAOUTP
v HICAMSGP
v HICAERRP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v HICARETC contains return code.
v HICAREAS contains reason code.
v HICAOUTP points to PDB named RNID_SYMBOL containing the record ID.
v HICAMSGP contains pointer to message PDB chain or 0000.
v HICAERRP contains pointer to error PDB chain or 0000.

¶ Continues processing.

Check Out Record (HL04)
This transaction checks out a Tivoli Information Management for z/OS record. An indicator
in the record signals all users that the record is unavailable for update by any other user.
This indicator does not prevent other users from attempting to access the record; it only
prevents users from updating the record. Any transactions resulting in an update to the
record might not access the record immediately and might have to try one or more times.

Interface Service Transactions

162 Version 7.1

The check in record transaction (HL05) makes the record accessible for update by other
users. A user might not be able to check in the record if another user is attempting to check
out the record at the same time. In this case, both users must attempt to complete their
transactions again.

You can direct the HLAPI to retry this transaction from 1 to 255 times before returning
control to your application or wait until the record is available. See page 18 for more
information.

Note: If you are using logical database partitioning, you can check out a record only if the
Owning Partition of that record matches the Primary Partition of your privilege class.

In order to reduce the risk of leaving a record indefinitely in checked out status, you may
wish to specify the BLX-SP parameter APICHKOUTLIM (this is described in greater detail
in the Tivoli Information Management for z/OS Planning and Installation Guide and
Reference). When a check out limit is specified, the check out record process reads the value
for this parameter and performs one of the following functions:

¶ If the record is not already checked out, or it is checked out to a different application ID
and the check out time has expired, the check out time period is added to the current
clock time and stored in the record.

¶ If the record is already checked out to a different application ID and the check out time
has not expired, an error is returned indicating that the record is in use.

¶ If the record is already checked out to the same application ID, then the expiration time
is reset to a full check out time period and saved in the record.

The expiration time is also checked on the Update Record (HL09) transaction, the Add
Record Relations (HL12) transaction, the Delete Record (HL13) transaction, and by
interactive update and delete processing.

Use the following HICA fields and PDBs in this transaction:

HICAENVP
Must contain the value stored on completion of HLAPI initialization.

HICACTLP (CONTROL)
The following PDBs are required:
¶ TRANSACTION_ID must contain the 4-character transaction code of HL04.
¶ RNID_SYMBOL must contain a 1- to 8-character identifier of the record to check

out.

Note: The 8-byte record identifier can be mixed data containing DBCS characters
enclosed by a shift out (SO) and a shift in (SI) character (an SO/SI pair).

The following PDBs are optional:
¶ APPLICATION_ID contains a 1- to 8-character uppercase application ID that Tivoli

Information Management for z/OS uses. The application ID remains in effect until
changed on a subsequent transaction. If APISECURITY=ON is specified in your
BLX-SP startup parameters, you must ensure that the MVS user IDs running your
application are allowed to use this application ID. “API Security” on page 287
contains additional information regarding API security.

¶ PRIVILEGE_CLASS contains a 1- to 8-byte uppercase startup privilege class name
that the API passes to Tivoli Information Management for z/OS. This privilege class

Interface Service Transactions

163Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

remains in effect until changed on a subsequent transaction. A privilege class name
can be mixed data containing DBCS characters enclosed by an SO/SI pair, but it
cannot contain SBCS Katakana. The application ID used must be an eligible user of
this privilege class.

HICAINPP (INPUT)
Initialize to zeros.

HICAOUTP (OUTPUT)
Contains the value previously stored by the HLAPI.

HICAMSGP (MESSAGES)
Contains the value previously stored by the HLAPI.

HICAERRP (ERROR CODES)
Contains the value previously stored by the HLAPI.

Table 53 shows the check out record (HL04) transaction flow. In the table, symbolically
named PDBs have a value, for example, PDB TRANSACTION_ID=HL04. This method
reduces the amount of text on the line in the table. The name on the left of the equation is
the value in the PDB field PDBNAME. The data on the right of the equation is the value in
the PDB field PDBDATA. For more detailed information on the HLAPI structures, their
fields and their parameters, see “HLAPI Structures” on page 216.

Table 53. HLAPI Transaction HL04. Check Out Record
Step Program Action

1 Application ¶ Sets fields as follows:
v HICACTLP (pointer to first control PDB)

The following PDBs are required:
– TRANSACTION_ID=HL04
– RNID_SYMBOL = record ID to be checked out

The following PDBs are optional:
– APPLICATION_ID = the application ID
– PRIVILEGE_CLASS = the privilege class name

¶ BLGYHLPI(HICA).

2 Server ¶ Validates HICA and PDB fields
¶ Checks out specified record
¶ Waits for completion
¶ Sets the following HICA fields:

v HICARETC
v HICAREAS
v HICAMSGP
v HICAERRP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v HICARETC contains return code.
v HICAREAS contains reason code.
v HICAMSGP contains pointer to message PDB chain or 0000.
v HICAERRP contains pointer to error PDB chain or 0000.

¶ Continues processing.

Check In Record (HL05)
This transaction removes the checkout indicator in a record when the application or user ID
stored in the record is the same as the application ID issuing the transaction request. You use

Interface Service Transactions

164 Version 7.1

this transaction to make a checked out record accessible for update by other Tivoli
Information Management for z/OS users after your update is complete. If the API returns an
unavailable condition on a check in record attempt because another user is attempting to
update the record at the same time your application is attempting to check the record in,
your application should restart the check in record transaction until it succeeds. You can
direct the HLAPI (via the LLAPI) to retry this transaction from 1 to 255 times before
returning control to your application or wait until the record is available. See page 18 for
more information.

Note: If you are using logical database partitioning, you can check in a record only if the
Owning Partition of that record matches the Primary Partition of your privilege class.

The following HICA fields and PDBs are used in this transaction:

HICAENVP
Must contain the value stored on completion of HLAPI initialization.

HICACTLP (CONTROL)
The following PDBs are required:
¶ TRANSACTION_ID must contain the 4-character transaction code HL05.
¶ RNID_SYMBOL must contain a 1- to 8-character identifier of the record to check

in. The 8-byte record identifier can be mixed data containing DBCS characters
enclosed by an SO/SI pair.

The following PDBs are optional:

¶ APPLICATION_ID contains a 1- to 8-character uppercase application ID that Tivoli
Information Management for z/OS uses. The application ID remains in effect until
changed on a subsequent transaction. If APISECURITY=ON is specified in your
BLX-SP startup parameters, you must ensure that the MVS user IDs running your
application are allowed to use this application ID. “API Security” on page 287
contains additional information regarding API security.

¶ PRIVILEGE_CLASS contains a 1- to 8-byte uppercase startup privilege class name
that the API passes to Tivoli Information Management for z/OS. This privilege class
remains in effect until changed on a subsequent transaction. A privilege class name
can be mixed data containing DBCS characters enclosed by an SO/SI pair, but it
cannot contain SBCS Katakana. The application ID used must be an eligible user of
this privilege class.

HICAINPP (INPUT)
Initialize to zeros.

HICAOUTP (OUTPUT)
Contains the value previously stored by the HLAPI.

HICAMSGP (MESSAGES)
Contains the value previously stored by the HLAPI.

HICAERRP (ERROR CODES)
Contains the value previously stored by the HLAPI.

Table 54 on page 166 shows the check in record (HL05) transaction flow. In the table,
symbolically named PDBs have a value, for example, PDB TRANSACTION_ID=HL05.
This method reduces the amount of text on the line in the table. The name on the left of the
equation is the value in the PDB field PDBNAME. The data on the right of the equation is

Interface Service Transactions

165Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

the value in the PDB field PDBDATA. For more detailed information on the HLAPI
structures, their fields, and their parameters, see “HLAPI Structures” on page 216.

Table 54. HLAPI Transaction HL05. Check In Record
Step Program Action

1 Application ¶ Sets fields as follows:
v HICACTLP (pointer to first control PDB) The following PDBs are required:

– TRANSACTION_ID=HL05
– RNID_SYMBOL = the ID of the record being checked in

The following PDBs are optional:
– APPLICATION_ID = the application ID
– PRIVILEGE_CLASS = the privilege class name

¶ BLGYHLPI(HICA).

2 Server ¶ Validates HICA and PDB fields
¶ Checks in specified record
¶ Waits for completion
¶ Sets the following HICA fields:

v HICARETC
v HICAREAS
v HICAMSGP
v HICAERRP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v HICARETC contains return code.
v HICAREAS contains reason code.
v HICAMSGP contains pointer to message PDB chain or 0000.
v HICAERRP contains pointer to error PDB chain or 0000.

¶ Continues processing.

Start User TSP or TSX (HL14)
This transaction starts a user Terminal Simulator Panel (TSP) or Terminal Simulator Exec
(TSX) and passes a parameter to it. Your application can specify the name of a TSP or TSX
to invoke or else you can specify the name of the TSP or TSX in BLGAPI00 (if you are
using panel processing) or BLGAPIDI (if you are using bypass panel processing). See
LLAPI transaction T111, “Start User TSP or TSX (T111)” on page 52 for more information.

The APIs impose certain product command restrictions. For this reason, existing user-written
TSPs or TSXs might not run correctly when started from the HLAPI. For more information
about these restrictions, see “Command Limitations” on page 24.

The TSP or TSX should always end by resuming any suspended sessions and by performing
an ;INITIALIZE to reset the environment in which the API is running.

The application can specify the PDB TSP_NAME to define a TSP or TSX to be invoked,
and the PDB USER_PARAMETER_DATA to define a string to pass to the TSP (using the
variable data area) or TSX (as an argument). The maximum length of the string is 255. You
can only pass a parameter string to a TSP or TSX that your application specified in the input
PDB TSP_NAME. You can also pass effectively an unlimited amount of data to an invoked
TSX by specifying input PDBs. The invoked TSX can use TSX control line GETAPIDATA
to access the specified data. An invoked TSX can return data to the calling application by
using the TSX control line SETAPIDATA. Data is returned to the calling application in the

Interface Service Transactions

166 Version 7.1

form of output PDBs. The Tivoli Information Management for z/OS Terminal Simulator
Guide and Reference contains additional information on the GETAPIDATA and
SETAPIDATA control lines.

You can use user exit BLGYAPSR to set a reason code in the HICAREAS field when your
TSP or TSX completes. You must use reason codes 1000 to 9999 for user definition. If
BLGYAPSR sets a reason code, the associated return code is 12.

You can also set any Return and Reason Code value that you want. Use SETAPIDATA to
return output values for HICARETC and HICAREAS. If no other errors occur running the
HL14 transaction and you set both HICARETC and HICAREAS to non-zero values, the
HLAPI will set HICARETC and HICAREAS to the values you specified.

You use the following HICA fields and PDBs for this transaction:

HICAENVP
Must contain the value stored on completion of HLAPI initialization.

HICACTLP (CONTROL)
The following PDB is required:
¶ TRANSACTION_ID must contain the 4-character transaction code of HL14.

The following PDBs are optional:

¶ APPLICATION_ID contains a 1- to 8-character uppercase application ID that Tivoli
Information Management for z/OS uses. The application ID remains in effect until
changed on a subsequent transaction. If APISECURITY=ON is specified in your
BLX-SP startup parameters, you must ensure that the MVS user IDs running your
application are allowed to use this application ID. “API Security” on page 287
contains additional information regarding API security.

¶ PRIVILEGE_CLASS contains a 1- to 8-byte uppercase startup privilege class name
that the API passes to Tivoli Information Management for z/OS. This privilege class
remains in effect until changed on a subsequent transaction. A privilege class name
can be mixed data containing DBCS characters enclosed by an SO/SI pair, but it
cannot contain SBCS Katakana. The application ID used must be an eligible user of
this privilege class.

HICAINPP (INPUT)

¶ TSP_NAME contains the name of a TSP or TSX to run. A parameter can be passed
to the TSP (using the variable data area) or TSX (as an argument) by specifying the
string in an input PDB USER_PARAMETER_DATA.

¶ USER_PARAMETER_DATA contains a 1– to 255–byte character string passed to
the TSP or TSX named in TSP_NAME. The value specified for the PDB
USER_PARAMETER_DATA is ignored if TSP_NAME is not specified. If
USER_PARAMETER_DATA is not specified, the pointer contained in
USER_PARAMETER is put into TSCAUPTR.

¶ USER_PARAMETER contains a pointer to a user-defined area. If both
USER_PARAMETER_DATA and USER_PARAMETER are specified,
USER_PARAMETER is ignored.

You can specify the input PDBs to be accessed by an invoked TSX. Any input PDBs
that your application specifies can be accessed by an invoked TSX by using the TSX

Interface Service Transactions

167Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

control line GETAPIDATA. See the Tivoli Information Management for z/OS Terminal
Simulator Guide and Reference for additional information on GETAPIDATA.

HICAOUTP (OUTPUT)
You can return output PDBs by using the TSX control line SETAPIDATA. The Tivoli
Information Management for z/OS Terminal Simulator Guide and Reference contains
additional information on this control line.

HICAMSGP (MESSAGES)
Contains the value previously stored by the HLAPI.

HICAERRP (ERROR CODES)
Contains the value previously stored by the HLAPI.

Table 55 shows the start user TSP (HL14) transaction flow. In the table, symbolically named
PDBs have a value, for example, PDB TRANSACTION_ID=HL14. This method reduces the
amount of text on the line in the table. The name on the left of the equation is the value in
the PDB field PDBNAME. The data on the right of the equation is the value in the PDB
field PDBDATA. For more detailed information on the HLAPI structures, their fields and
parameters, see “HLAPI Structures” on page 216.

Table 55. HLAPI Transaction HL14. Start User TSP
Step Program Action

1 Application ¶ Sets fields as follows:
v HICACTLP (pointer to first control PDB) The following PDB is required:

– TRANSACTION_ID=HL14
v HICAINPP = address of first input PDB

The following PDBs define the name of the TSX to invoke and parameter
data:
– TSP_NAME
– USER_PARAMETER_DATA
– USER_PARAMETER

The following PDBs are optional:
¶ APPLICATION_ID = the application ID
¶ PRIVILEGE_CLASS = the privilege class name
¶ BLGYHLPI(HICA).

2 Server ¶ Validates HICA and PDB fields
¶ Starts user TSP
¶ Waits for completion
¶ Sets the following HICA fields:

v HICARETC
v HICAREAS
v HICAMSGP
v HICAERRP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v HICARETC contains return code.
v HICAREAS contains reason code.
v HICAMSGP contains pointer to message PDB chain or 0000.
v HICAOUTP contains pointer to output PDB chain or 0000.
v HICAERRP contains pointer to error PDB chain or 0000.

¶ Continues processing.

Interface Service Transactions

168 Version 7.1

Free Text Data Set (HL15)
This transaction frees HLAPI-allocated text data sets. Freeing releases all HLAPI resources
associated with each data set.

If you intend to have your application keep the data set after a retrieve (HL06) transaction,
then code your application to perform a Free Text Data Set transaction (HL15) right after the
retrieve transaction finishes. The HLAPI does not reuse the data set on subsequent
transactions.

If you perform a Free Text Data Set transaction (HL15) to free a data set, you cannot then
perform a Delete Text Data Set transaction (HL16) to free that data set. You must use TSO
to delete a data set that you freed using the Free Text Data Set transaction (HL15)
transaction.

Use the following HICA fields and PDBs for this transaction:

HICAENVP
Must contain the value stored on completion of HLAPI initialization.

HICACTLP (CONTROL)
The PDB TRANSACTION_ID is required and must contain the 4-character transaction
code of HL15.

HICAINPP (INPUT)
The address of the first text data set PDB. Each PDB is named TEXT_DDNAME, and
its PDBDATA value specifies a unique text DDNAME identifying the data set to be
freed. Each DDNAME must be the complete 8-byte DDNAME, not the DDNAME
prefix used with transactions that create the data set. For example, you run the retrieve
transaction (HL06) with a TEXT_DDNAME PDB value of MYDATA, generating
DDNAMEs of MYDATA01, MYDATA02 and MYDATA03. To free these DDNAMEs,
specify three PDBs, each with a different full 8-byte DDNAME, not the 6-byte value
MYDATA used to create them.

HICAOUTP (OUTPUT)
Contains the value previously stored by the HLAPI.

HICAMSGP (MESSAGES)
Contains the value previously stored by the HLAPI.

HICAERRP (ERROR CODES)
Contains the value previously stored by the HLAPI.

Table 56 on page 170 shows the free text data set (HL15) transaction flow. In the table,
symbolically named PDBs have a value, for example, PDB TRANSACTION_ID=HL15.
This method reduces the amount of text on the line in the table. The name on the left of the
equation is the value in the PDB field PDBNAME. The data on the right of the equation is
the value in the PDB field PDBDATA. For more detailed information on the HLAPI
structures, their fields and their parameters, see “HLAPI Structures” on page 216.

Interface Service Transactions

169Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

Table 56. HLAPI Transaction HL15. Free Text Data Set
Step Program Action

1 Application ¶ Sets fields as follows:
v HICACTLP (pointer to first control PDB) The following PDB is required:

– TRANSACTION_ID=HL15
v HICAINPP = the address of the first TEXT_DDNAME PDB

¶ BLGYHLPI(HICA).

2 Server ¶ Validates HICA and PDB fields
¶ Frees HLAPI data set resources
¶ Sets the following HICA fields:

v HICARETC
v HICAREAS
v HICAMSGP
v HICAERRP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v HICARETC contains return code.
v HICAREAS contains reason code.
v HICAMSGP contains pointer to message PDB chain or 0000.
v HICAERRP contains pointer to error PDB chain or 0000.

¶ Continues processing.

Delete Text Data Set (HL16)
This transaction deletes one or more HLAPI-allocated text data sets. This transaction also
releases all HLAPI resources associated with each data set. That is, it performs the function
of transaction HL15.

If you intend to have your application delete the data set after a retrieve (HL06) transaction,
then code your application to perform a Delete Text Data Set (HL16) transaction right after
the retrieve transaction finishes.

If you perform a Free Text Data Set transaction (HL15) to free a data set, you cannot then
perform a Delete Text Data Set transaction (HL16) to free that data set. You must use TSO
to delete a data set that you freed using the Free Text Data Set transaction (HL15)
transaction.

Note: Be sure to process the data in the data set before deleting it.

Use the following HICA fields and PDBs for this transaction:

HICAENVP
Must contain the value stored on completion of HLAPI initialization.

HICACTLP (CONTROL)
The PDB TRANSACTION_ID is required and must contain the 4-character transaction
code of HL16.

HICAINPP (INPUT)
The address of the first text data set PDB. Each PDB is named TEXT_DDNAME, and
its data value specifies a unique text DDNAME for the data set you want deleted. Each
DDNAME must be the complete 8-byte DDNAME, not the DDNAME prefix used with
transactions that create the data set. For example, you run the retrieve transaction
(HL06) with a TEXT_DDNAME PDB value of MYDATA, generating DDNAMEs of

Interface Service Transactions

170 Version 7.1

MYDATA01, MYDATA02, and MYDATA03. To delete these DDNAMEs, specify three
PDBs, each with a different full 8-byte DDNAME, not the 6-byte value MYDATA used
to create them.

HICAOUTP (OUTPUT)
Contains the value previously stored by the HLAPI.

HICAMSGP (MESSAGES)
Contains the value previously stored by the HLAPI.

HICAERRP (ERROR CODES)
Contains the value previously stored by the HLAPI.

Table 57 shows the delete text data set (HL16) transaction flow. In the table, symbolically
named PDBs have a value, for example, PDB TRANSACTION_ID=HL16. This style
reduces the amount of text on the line in the table. The name on the left of the equation is
the value in the PDB field PDBNAME. The data on the right of the equation is the value in
the PDB field PDBDATA. For more detailed information on the HLAPI structures, their
fields and their parameters, see “HLAPI Structures” on page 216.

Table 57. HLAPI Transaction HL16. Delete Text Data Set
Step Program Action

1 Application ¶ Sets fields as follows:
v HICACTLP (pointer to first control PDB) The following PDB is required:

– TRANSACTION_ID=HL16
v HICAINPP = the address of the first TEXT_DDNAME PDB

¶ BLGYHLPI(HICA).

2 Server ¶ Validates HICA and PDB fields
¶ Frees HLAPI resources and frees text data set
¶ Sets the following HICA fields:

v HICARETC
v HICAREAS
v HICAMSGP
v HICAERRP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v HICARETC contains return code.
v HICAREAS contains reason code.
v HICAMSGP contains pointer to message PDB chain or 0000.
v HICAERRP contains pointer to error PDB chain or 0000.

¶ Continues processing.

Database Access Transactions
Use this group of transactions to retrieve, create, update, inquire about, add record relation
to, and delete records in the Tivoli Information Management for z/OS database. The database
access transactions are HL06, HL08, HL09, HL11, HL12, and HL13.

Retrieve Record (HL06)
This transaction retrieves specific information or all information from a Tivoli Information
Management for z/OS record in the database. The HLAPI provides you with a retrieve list
mechanism that lets you extract specific fields from the record rather than all record fields.

Interface Service Transactions

171Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

You can only extract data from fields in the record that match fields in the PIDT you
specify. The HLAPI returns data in an output PDB chain with one PDB allocated by the
HLAPI for each data item.

Note: If you are using logical database partitioning, you can retrieve a record only if the
Owning Partition of that record matches the Primary Partition of your privilege class.

If you request text retrieval and the HLAPI allocates data sets, you must issue a free (HL15)
or delete (HL16) transaction immediately after processing the returned text and before
issuing another retrieve (HL06) transaction.

Use the following HICA fields and PDBs for this transaction:

HICAENVP
Must contain the value stored on completion of HLAPI initialization.

HICACTLP (CONTROL)
The following PDBs are required:

¶ TRANSACTION_ID must contain the 4-byte character transaction code of HL06.

¶ RNID_SYMBOL must contain a 1- to 8-character identifier of the record to retrieve.

Note: The 8-byte record identifier can be mixed data containing DBCS characters
enclosed by a shift out (SO) and a shift in (SI) character (an SO/SI pair).

¶ Either PIDT_NAME or DATA_VIEW_NAME so that the HLAPI can perform data
view processing. A static PIDT table or a data view record defines the view of the
record the HLAPI processes. You can define just the fields that your application
requires. See “Field Validation Using the Field Validation Module BLGPPFVM” on
page 279 for additional information. If both PIDT_NAME and
DATA_VIEW_NAME are specified, the HLAPI ignores PIDT_NAME.

v PIDT_NAME must contain the alias or member name of the static retrieve PIDT
table the HLAPI uses in processing the transaction. Member names are 1 to 7
uppercase characters long. Alias names are 32 uppercase characters long. You
create static PIDTs by using the Table Build Utility.

v DATA_VIEW_NAME contains a character field that specifies a data view name
either as an alias or data view record ID. You must specify an alias name as a
32-character left-justified field exactly as it appears in a PALT. You specify a
data view name as a 1- to 8-character name. A PIDT is generated from the data
view record and associated data attribute and validation records.

Note: All PIDTs and related PIPTs can be maintained in storage to improve
performance. This can be especially important if you are using data view
records, as it can take a significant amount of time to generate the PIDT from
the data model records. The composition of the static PIDT or data view
record can affect applications that also provide an input list in that
applications can request data that the static PIDT or data view record do not
define. Fields defined in the static PIDT or data view record are the only
fields available for retrieval.

The following PDBs are optional:

Database Access Transactions

172 Version 7.1

¶ APPLICATION_ID contains a 1- to 8-character uppercase application ID that Tivoli
Information Management for z/OS uses. The application ID remains in effect until
changed on a subsequent transaction. If APISECURITY=ON is specified in your
BLX-SP startup parameters, you must ensure that the MVS user IDs running your
application are allowed to use this application ID. “API Security” on page 287
contains additional information regarding API security.

¶ PRIVILEGE_CLASS contains a 1- to 8-byte uppercase startup privilege class name
that the API passes to Tivoli Information Management for z/OS. This privilege class
remains in effect until changed on a subsequent transaction. A privilege class name
can be mixed data containing DBCS characters enclosed by an SO/SI pair, but it
cannot contain SBCS Katakana. The application ID used must be an eligible user of
this privilege class.

¶ TEXT_OPTION must contain the character value YES, which indicates that the
HLAPI processes all text items. If you omit this PDB, or if it contains any value
other than YES, the HLAPI bypasses text processing, and no error occurs.

¶ TEXT_MEDIUM must contain the character B or D that specifies which of two
storage mediums you want to use for text data storage.
v If you want text stored in a data set, specify the character D for this field. When

you specify TEXT_MEDIUM as D, then TEXT_DDNAME is the only valid
PDB associated with TEXT_MEDIUM. If the value in HICAINPP is nonzero,
text processing is not performed, and warning codes are returned when the
transaction completes.

v If you want text stored in a storage buffer, specify the character B for this field.
When you specify TEXT_MEDIUM as B, then all PDBs whose names start with
TEXT except TEXT_DDNAME are associated with TEXT_MEDIUM.

v If you omit this value or specify any character other than D or B, then the
HLAPI assumes the value of D.

This PDB is ignored if TEXT_OPTION is not YES.

¶ TEXT_UNITS must contain a 4-byte fixed value that specifies the maximum
number of text units (lines) that the API can store in the response buffer for each
text type.

You use this PDB to limit the amount of text for any one text type. This PDB
applies only to the retrieve record (HL06) transaction. The API processes this PDB
only if TEXT_MEDIUM is B and TEXT_OPTION is YES. You use this PDB with
the TEXT_AREA parameter. If you omit this PDB or it is zero and you process text
in the response buffer, then a default value of 60 units (lines) is assumed.

This PDB is ignored if TEXT_STREAM is YES.

¶ TEXT_WIDTH must contain a 4-byte fixed value that specifies the maximum width
of a text unit (line) that the API stores in the response buffer. You use this PDB only
with record retrieval transactions and when TEXT_MEDIUM is B and
TEXT_OPTION is YES. Text width can be any value between 1 and 132. If
TEXT_WIDTH is zero, omitted, or greater than 132, and you choose to process text
in the response buffer, then a default value of 60 is assumed. If you are retrieving
audit data, the API does not process it as part of the text, but the API appends audit
data to the end of the text. Therefore, the amount of data in each returned line
equals TEXT_WIDTH (in bytes) plus 36 bytes for audit data. If you are not
retrieving audit data, the amount of data in each returned line equals
TEXT_WIDTH.

Database Access Transactions

173Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

This PDB is ignored if TEXT_STREAM is YES.

¶ TEXT_AREA can contain the character B or T that specifies whether the bottom
block or top block of text data is stored in the PDB when the number of text units
available exceeds the amount specified by TEXT_UNITS. This PDB applies only to
the retrieve record (HL06) transaction and is processed only when TEXT_MEDIUM
is B and TEXT_OPTION is YES.
v B specifies that the HLAPI stores the bottom block of text.
v T specifies that the HLAPI stores the top block of text.

If you omit this parameter, or if it contains a value other than T or B, then the API
assumes a default value B. Use this parameter with the TEXT_UNITS PDB.

This PDB is ignored if TEXT_STREAM is YES.

¶ TEXT_DDNAME that you must specify if your application wants to assign
user-defined DDNAME prefixes for text data sets. The data value for this PDB must
be a 6-byte uppercase character value (DDNAME prefix) to which the HLAPI
appends the numbers 01-99. That is, only 99 text DDNAMES are available for an
individual Tivoli Information Management for z/OS record. The HLAPI returns a
data set having a different DDNAME for each text type in the record. If you omit
this PDB, the HLAPI assigns a default DDNAME value of BLGTXTnn
incrementing the nn value each time it allocates a text data set for a unique data
type in an individual Tivoli Information Management for z/OS record.

Note: If you use the same DDNAME prefix for each record retrieved, your
application must process the text immediately after transaction completion
and issue a free (HL15) or delete (HL16) data set transaction, or subsequent
text returns are unpredictable.

The API processes this PDB only when TEXT_MEDIUM is not B and
TEXT_OPTION is YES.

¶ TEXT_STREAM determines how text is stored in the response buffer. If
TEXT_STREAM is omitted or contains any value other than YES, text is stored as a
series of fixed-width lines. TEXT_WIDTH specifies the width of each line and
TEXT_UNITS specifies the number of lines.

If TEXT_STREAM is YES, text is stored as a continuous stream of data. Carriage
return / line feed characters (EBCDIC X'0D25') characters are stored in the response
buffer after each text line is read from the record. If a text line is an extension, no
carriage return / line feed is stored in the response buffer after the line. See the
description of TEXT_STREAM in “Create Record (HL08)” on page 178 for more
information on text line extensions.

If text is being retrieved by a workstation application, the EBCDIC carriage return /
line feed characters will be translated to the appropriate ASCII characters.

If TEXT_STREAM is YES, TEXT_OPTION must be YES,
TEXT_AUDIT_OPTION must be NO, and TEXT_MEDIUM must be B.

¶ TEXT_AUDIT_OPTION must contain the character value NO, which indicates that
the HLAPI should not return text audit data. If you omit this PDB, or if it contains
any value other than NO, the HLAPI returns text audit data. This PDB is ignored if
TEXT_OPTION is not YES.

Database Access Transactions

174 Version 7.1

¶ A PDB named ALIAS_TABLE containing a left-justified 1- to 8- uppercase
character alias table name used for this transaction. If you omit this PDB or it does
not have a value, the HLAPI does not perform any alias table processing. See “Alias
Tables” on page 238 for more information on alias processing.

¶ HISTORY_DATA contains R, S, or B.

v R specifies that the HLAPI is to return at the end of the output PDB chain all of
the history data contained in the record.

v S specifies that the HLAPI should save the PIHT retrieved with this record for
later use on an update transaction. Any previously saved and unused PIHT is
replaced.

v B specifies that the HLAPI performs both functions of R and S.

If you specify any other character or you omit this parameter, then the HLAPI does
not retrieve or save history data for the record. No additional level of authority is
required for this function beyond that for record retrieval. When the parameter value
of this PDB is set to R or B, the PICAHIST field is set to Y for the corresponding
LLAPI retrieve transaction. The HLAPI then builds an output PDB for each row of
the returned PIHT. However, not all of the fields and flags defined in the PIHT are
copied to the PDB.

¶ DATE_FORMAT must contain a supported date format. All dates passed between
your application and the API will be in this format. Dates you pass into the API in
this format will be converted to the primary date format of the database before being
processed.

HICAINPP (INPUT)
Contains either the address of the first PDB in an input chain or zeros. When you
specify an input PDB chain, the HLAPI treats it as a unique field retrieval list consisting
of PDBs named RETRIEVE_ITEM. The HLAPI attempts to retrieve only those fields
that have their uppercase names specified in the retrieval list made up of
RETRIEVE_ITEM PDBs on the chain. However, the LLAPI retrieves all fields defined
in the static PIDT or data view record and errors can be generated by fields that your
application did not specifically request. Each PDBDATA field contains an item name to
be retrieved. You can specify either the internal symbolic name or alias name on input
chain PDBs. The API names the corresponding output PDBs using these names when
using retrieval list processing.

On output, if the item contains no data, PDBCODE is set to E. If the item cannot be
found in the PALT or PIDT (either static or generated), PDBCODE is set to M.

Retrieval of text data set items using retrieval list processing must not be performed
because all text item data sets are allocated by the LLAPI and only requested items are
passed through the HLAPI.

If you do not specify any RETRIEVE_ITEM PDBs on the input chain, the HLAPI uses
the output PDB chain to return all data fields defined in the PIDT (static or generated
from a data view record) and available in the record. The API names these PDBs using
alias names, or s-word index or p-word index names as defined in PIDTSYMB.

HICAOUTP (OUTPUT)
The PDBs produced on this chain refer to data fields extracted from the record. See
HICAINPP (INPUT) for unique field retrieval information. The API provides a PDB
with the symbolic name of SEPARATOR_CHARACTER. It contains the separator
character used by the HLAPI to process response data as defined in PIDTSEPC of the

Database Access Transactions

175Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

specified PIDT. List entry items are separated by the separator character; multiple
response items are separated by the separator character, or separated by a space if
MULTIPLE_RESPONSE_FORMAT (described on page 158) was set to PHRASE at
session initialization.

If you prefer to have text lines stored in data sets, the output chain PDB contains data
set name information. The first 8 characters of the name information are the data set’s
DDNAME followed by a period. The remaining characters are the data set name
qualifiers with each qualifier separated by a period.

If you elect to have text lines stored in the response buffer, the HLAPI converts them to
PDBs. If TEXT_STREAM if omitted or contains any value other than YES, PDB field
PDBDATW specifies the width of a text line and PDB field PDBDATL specifies the
total text length. PDBDATL is a multiple of PDBDATW. If TEXT_STREAM is YES,
PDBDATW and PDBDATL both equal the total text length. The text in the response
buffer may contain carriage return / line feed characters that indicate the end of a text
line.

When a record is retrieved, each text data set record and buffer entry includes audit data,
if audit data is requested (the TEXT_AUDIT_OPTION parameter determines whether
the HLAPI should return text audit data). Information on the format of audit data can be
found on page 22.

The HLAPI returns visible phrase and direct-add data items to the output chain
PDBDATA fields.

If history data was requested, it is returned on the output PDB chain following all of the
other record data. The output PDBs that contain history data contain this information:

PDBNAME
contains the unique character string HISTORYnnnnnn where nnnnnn starts at
000001 and increases with each history data PDB on the output chain.

PDBTYPE
contains G or H.

¶ G specifies that this PDB comes first in a group of one or more related
history data items. This is indicated by the associated PIHTSGRP row field
set to Y.

¶ H specifies that this PDB is not the first PDB in a group of several related
history data items. This is indicated by the associated PIHTSGRP row field
not set to Y.

PDBDATL
a four byte length of the history data.

PDBDATA
a variable length character field containing the history data. The data may
contain a prefix.

As with any PDB data returned on the output chain, the storage is freed on the next
invocation of the HLAPI. Only one PIHT can be saved at a time, regardless of record
type. The history saved from one record remains available for use until it is replaced by
the saved PIHT of another record or until it is actually used. Subsequent transactions
that do not save or use history data, retrieve or otherwise, have no effect on the saved
history.

Database Access Transactions

176 Version 7.1

HICAMSGP (MESSAGES)
Contains the value previously stored by the HLAPI.

HICAERRP (ERROR CODES)
Contains the value previously stored by the HLAPI.

Table 58 shows the retrieve record (HL06) transaction flow. In the table, symbolically named
PDBs have a value, for example, PDB TRANSACTION_ID=HL06. This method reduces the
amount of text on the line in the table. The name on the left of the equation is the value in
the PDB field PDBNAME. The data on the right of the equation is the value in the PDB
field PDBDATA. For more detailed information on the HLAPI structures, their fields and
parameters, see “HLAPI Structures” on page 216.

Table 58. HLAPI Transaction HL06. Retrieve Record
Step Program Action

1 Application ¶ Sets fields as follows:
v HICACTLP (pointer to first control PDB) The following PDBs are required:

– TRANSACTION_ID=HL06
– RNID_SYMBOL = ID of record to be retrieved
– Either of the following:

¶ PIDT_NAME specifies the name or alias of the static retrieve PIDT
table the HLAPI uses in processing the transaction.

¶ DATA_VIEW_NAME specifies a data view name or alias of a data
view record ID that the HLAPI uses in processing the transaction.

The following PDBs are optional:
– APPLICATION_ID = the application ID
– PRIVILEGE_CLASS = the privilege class name
– ALIAS_TABLE = alias table name for this transaction
– TEXT_OPTION=YES to enable text processing
– TEXT_AUDIT_OPTION=NO to not return text audit data
– DATE_FORMAT = format to use for passing dates between your

application and the API

The following PDBs (data set text processing) are optional:
¶ TEXT_MEDIUM=D
¶ TEXT_DDNAME = user defined 6-character DDNAME prefix

The following PDBs (buffer text processing) are optional:
¶ TEXT_MEDIUM=B
¶ TEXT_UNITS = maximum text lines in buffer
¶ TEXT_WIDTH = maximum width of a text line in buffer
¶ TEXT_AREA=B for bottom text block, T for top text block
¶ HISTORY_DATA specifies whether the HLAPI is to return at the end

of the output PDB chain all of the history data contained in the record
or whether the HLAPI should save the PIHT retrieved with this record
for later use on an update transaction.

The following PDBs (text stream buffer processing) are optional:
¶ TEXT_MEDIUM=B
¶ TEXT_STREAM = YES

v HICAINPP = zeros or the address of the first RETRIEVE_ITEM PDB
(containing the name of a field to retrieve) on the input chain
Note: If field contains zeros (no PDB address specified), the HLAPI retrieves
all fields defined in the PIDT for the record type.

¶ BLGYHLPI(HICA).

Database Access Transactions

177Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

Table 58. HLAPI Transaction HL06 (continued). Retrieve Record
Step Program Action

2 Server ¶ Validates HICA and PDB fields
¶ Retrieves record
¶ Waits for completion
¶ Sets the following HICA fields:

v HICARETC
v HICAREAS
v HICAMSGP
v HICAERRP
v HICAOUTP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v HICARETC contains return code.
v HICAREAS contains reason code.
v HICAMSGP contains pointer to message PDB chain or 0000.
v HICAERRP contains pointer to error PDB chain or 0000.
v HICAOUTP contains pointer to retrieval results (output) chain.
v PDBCODE in input PDBs to determine if no data was returned in the field or

the field was not defined in the PALT or PIDT.
¶ Continues processing.

Create Record (HL08)
This transaction creates records in the Tivoli Information Management for z/OS database.
The HLAPI accepts data from the input PDBs and builds a Tivoli Information Management
for z/OS record. The record contains the input data and, if you are using panel processing,
any audit data that Tivoli Information Management for z/OS normally adds to the record
when the record is filed. If you are using bypass panel processing, audit data can be listed in
the data view record and added to the record being created along with the input data your
application specifies. Leading and trailing blanks are removed from all but text data. Do not
imbed blanks in a response or include the separator character value as part of a response.
You can use static PIDTs or data view records from which PIDTs are generated. If you use
bypass panel processing you must use data model records. You can identify required fields
for a particular record type in the static PIDT or data view record you designate for this
transaction. Specify REQUIRED(Y) on the field statements to define PIDTs or define the
field as required in the data view record. Use alias processing to let default data (in the alias
table) be used as input for record fields you do not specify in input PDBs. Any fields you
specify in input PDBs overrides default data for those fields.

You can input freeform text to the record by specifying the name of a text data set
containing the text or by specifying the text itself. You can assign a user-defined or
HL03-obtained record ID to a record (see the input chain pointer field HICAINPP
explanation on page 180 for more information). If you do not do this, Tivoli Information
Management for z/OS assigns a record ID to the created record.

If you use panel processing, TSP BLGAPI02 performs create processing. It uses some of
your interactive panels to perform the create. If you use bypass panel processing, TSP
BLGAPIPX performs create processing and does not use any of your interactive panels. If
you plan to create records of your own type (including Tivoli Information Management for
z/OS Integration Facility), have tailored your panels, or want to use existing panel

Database Access Transactions

178 Version 7.1

automation see “Tailoring the Application Program Interfaces” on page 289, and “Terminal
Simulator Panels” on page 349 for information on interface tailoring and LLAPI create
processing.

Use the following HICA fields and PDBs for this transaction:

HICAENVP
Must contain the value stored on completion of HLAPI initialization.

HICACTLP (CONTROL)
The following PDBs are required:

¶ TRANSACTION_ID must contain the 4-byte character transaction code of HL08.

¶ Either PIDT_NAME or DATA_VIEW_NAME so that the HLAPI can perform data
view processing. A static PIDT table or a data view record defines the view of the
record the HLAPI processes. You can define just the fields that your application
requires. See “Field Validation Using the Field Validation Module BLGPPFVM” on
page 279 for additional information. If both PIDT_NAME and
DATA_VIEW_NAME are specified, the HLAPI ignores PIDT_NAME.

v PIDT_NAME must contain the alias or member name of the static retrieve PIDT
table the HLAPI uses in processing the transaction. Member names are 1 to 7
uppercase characters long. Alias names are 32 uppercase characters long. You
create static PIDTs by using the Table Build Utility.

v DATA_VIEW_NAME contains a character field that specifies a data view name
either as an alias or data view record ID. You must specify an alias name as a
32-character left-justified field exactly as it appears in a PALT. You specify a
data view name as a 1- to 8-character name. A PIDT is generated from the data
view record and associated data attribute and validation records. If you use
bypass panel processing, you must specify DATA_VIEW_NAME.

Note: All PIDTs and related PIPTs can be maintained in storage to improve
performance. This can be especially important if you are using data view
records, as it can take a significant amount of time to generate the PIDT from
data view records.

¶ SEPARATOR_CHARACTER whose PDBDATA field contains the character field
your application uses to separate responses for a single field (either multiple
response or list item) for this create. A blank value is ignored. If you omit this
parameter, the HLAPI ends the transaction with an error code.

The following PDBs are optional:

¶ APPLICATION_ID contains a 1- to 8-character uppercase application ID that Tivoli
Information Management for z/OS uses. The application ID remains in effect until
changed on a subsequent transaction. If APISECURITY=ON is specified in your
BLX-SP startup parameters, you must ensure that the MVS user IDs running your
application are allowed to use this application ID. “API Security” on page 287
contains additional information regarding API security.

¶ PRIVILEGE_CLASS contains a 1- to 8-byte uppercase startup privilege class name
that the API passes to Tivoli Information Management for z/OS. This privilege class
remains in effect until changed on a subsequent transaction. A privilege class name

Database Access Transactions

179Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

can be mixed data containing DBCS characters enclosed by an SO/SI pair, but it
cannot contain SBCS Katakana. The application ID used must be an eligible user of
this privilege class.

¶ ALIAS_TABLE must contain the name of the alias table used for this transaction. If
you omit this parameter or it does not have a value, the HLAPI does not perform
any alias table processing. The field must be left justified. See “Alias Tables” on
page 238 for more information about alias processing.

¶ DEFAULT_OPTION must contain a character field with values of ALL,
REQUIRED, and NONE that specifies how the HLAPI performs default data
response processing when creating the record.
v ALL specifies that each response field in a PIDT (static or generated from a data

view record) is a candidate for a default response
v REQUIRED specifies that only required fields are candidates for default

responses
v NONE specifies that no default processing is performed.

If you omit this field or specify it incorrectly, the HLAPI performs default option
processing as it was specified in the initialize Tivoli Information Management for
z/OS transaction (HL01). You can override the initial default processing option by
respecifying the default option on the control chain. After the create transaction
finishes, the HLAPI reverts to the initial default specification for record creation
unless overridden again in subsequent transactions.

¶ EQUAL_SIGN_PROCESSING must contain the character value YES, which
specifies that the HLAPI is to use equal sign processing. If you specify any other
value, the HLAPI performs no equal sign processing. See 146 for additional
information on equal sign processing.

¶ DATE_FORMAT must contain a supported date format. All dates passed between
your application and the API will be in this format. Dates you pass into the API in
this format will be converted to the primary date format of the database before being
processed.

¶ TEXT_STREAM determines how freeform text specified in an input PDB is stored
in a Tivoli Information Management for z/OS record. If TEXT_STREAM is omitted
or contains any value other than YES, the text is processed as a series of fixed-width
lines. PDBDATW specified the width of each line and PDBDATL specifies the total
length of the text.

If TEXT_STREAM is YES, the freeform text is processed as a continuous stream of
data. This stream may contain line feed (EBCDIC X'25'), carriage return / line feed
(EBCDIC X'0D25'), or newline (EBCDIC X'15') characters. When the API finds a
line feed in the text stream, it stores the text following the line feed as a text line in
the Tivoli Information Management for z/OS record. If there are more than 132
characters following the line feed, the first 132 characters are stored as a text line.
Any remaining text, up to the next line feed or another 132 characters, is stored as a
text line extension in the Tivoli Information Management for z/OS record. When the
API builds text lines and text line extensions, it does not split lines in the middle of
a word nor does it strip trailing blanks.

Setting TEXT_STREAM to YES is intended to be used by applications that use the
client interface to Tivoli Information Management for z/OS.

HICAINPP (INPUT)
The address of the first input PDB. The HLAPI processes PIDT table entries using

Database Access Transactions

180 Version 7.1

PDBs found on this chain. Include an input PDB for each data item (data, direct-add,
visible phrase, and freeform text) associated with this create transaction. Set PDBNAME
to an alias name or to the PIDT symbolic name of the data item, and set PDBDATA to
the data value for the data item. Specify list item field instances within a single PDB
using the separator character to define individual response items. Leading and trailing
blanks are removed from all but freeform text data. Do not specify blanks as part of a
data value.

The PIDT row corresponding to data associated with a phrase or direct-add item actually
contains the data for that item. The HLAPI stores the data in the record if you include a
PDB using the name of the item and a nonblank value in PDBDATA.

For example, if you want to collect s-word 0CFC with a visible phrase of REPORTER
in a problem record, you can specify any nonblank value as data with the s-word (for
instance, X), but only the visible phrase REPORTER is collected in the record.

If you have users who will perform interactive structured searches (that is, they use the
inquiry panels), it is important to always collect the s-word associated with the summary
panel for a selection.

The HLAPI validates input data when you set PDBPROC to V for each PDB whose
PDBDATA you want validated. If you do not set PDBPROC to V, the HLAPI does not
validate input data, and you can add incorrect data to the database. The HLAPI does not
validate string, phrase, text, and direct-add items. If data fails validation, PDBCODE for
the input PDB is set to V and an item is returned on the error PDB chain to indicate the
reason. A list of validation codes can be found on page 236.

The HLAPI can set PDBCODE to other values. See PDBCODE on page 222 for code
values returned by the API.

You can supply text data two ways:

¶ For text data stored in a data set, each data set name is stored in the PDBDATA
field of a separate PDB.

¶ For text data associated with buffer processing, the values of PDBDATW and
PDBDATL depend on the value of TEXT_STREAM. If TEXT_STREAM is omitted
or contains any value other than YES, PDBDATW must contain the width of the
text unit (line), and PDBDATL must contain the total length of the text. PDBDATL
must be an even multiple of PDBDATW. PDBDATW cannot be larger than 132. If
PDBDATW is zero, the PDBDATW assumes that PDBDATA contains the name of
the text data set.

If TEXT_STREAM is YES, PDBDATW and PDBDATL must both equal the total
length of the text. In this case, PDBDATW can be greater than 132.

Note: You cannot use both storage buffer and data set processing when you use this
transaction. You must use one or the other.

To provide a user-defined record ID or to use a record ID obtained from the Obtain
Record ID (HL03) transaction, your application must provide an input PDB with the
PIDT record identifier field or alias name in PDBNAME and the record ID you want set
in PDBDATA. For example, if S0CCF is the PIDT s-word index of the record identifier
field in a create problem record, you would assign this value to PDBNAME and you
would assign the record ID you want to PDBDATA. If you use a record ID that you
obtained from the Obtain Record ID (HL03) transaction, do not set PDBPROC to V to

Database Access Transactions

181Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

validate the record ID. This record ID might not pass validation because assisted-entry
panel validation for record IDs does not allow all-numeric record IDs.

You must specify individual list process field values with the value of the control PDB
SEPARATOR_CHARACTER. You can separate words in a multiple response field with
blanks if you specified MULTIPLE_RESPONSE_FORMAT=PHRASE at HL01; if you
specified the character value SEPARATOR (or any value other than PHRASE), the value
specified in SEPARATOR_CHARACTER is the only valid separator character.

HICAOUTP (OUTPUT)
The PDB produced on this chain is named RNID_SYMBOL and contains the 1- to
8-character external record identifier of the record created.

Note: The API does not perform alias table processing for this PDB because it uses a
reserved PDB name.

HICAMSGP (MESSAGES)
Contains the value previously stored by the HLAPI.

HICAERRP (ERROR CODES)
Contains the value previously stored by the HLAPI.

Table 59 on page 183 shows the create record (HL08) transaction flow. In the table,
symbolically named PDBs have a value; for example, PDB TRANSACTION_ID=HL08.
This method reduces the amount of text on the line in the table. The name on the left of the
equation is the value in the PDB field PDBNAME. The data on the right of the equation is
the value in the PDB field PDBDATA. For more detailed information on the HLAPI
structures, their fields, and their parameters, see “HLAPI Structures” on page 216.

Database Access Transactions

182 Version 7.1

Table 59. HLAPI Transaction HL08. Create Record
Step Program Action

1 Application ¶ Sets fields as follows:
v HICACTLP (pointer to control PDB chain) The following PDBs are required:

– TRANSACTION_ID=HL08
– Either of the following:

¶ PIDT_NAME = the name or the alias name of the static PIDT to use in
creating the record.

¶ DATA_VIEW_NAME = the data view record ID or the alias of a data
view record ID to use in creating the record. If you use bypass panel
processing, you must use DATA_VIEW_NAME.

– SEPARATOR_CHARACTER = the separator character used by the LLAPI
in processing response data

The following PDBs are optional:
– APPLICATION_ID = the application ID
– PRIVILEGE_CLASS = the privilege class name
– DEFAULT_OPTION=ALL, REQUIRED, or NONE
– ALIAS_TABLE = the alias table name used for this transaction
– EQUAL_SIGN_PROCESSING = YES, which specifies that the HLAPI is

to use equal sign processing. If you specify any other value, the HLAPI
performs no equal sign processing.

– DATE_FORMAT = format to use for passing dates between your
application and the API

– TEXT_STREAM=NO to process freeform text as fixed-width lines or
TEXT_STREAM=YES to process freeform text as a continuous stream of
data.

v HICAINPP = the address of the first input PDB
¶ BLGYHLPI(HICA).

2 Server ¶ Validates HICA and PDB fields
¶ Creates record
¶ Waits for completion
¶ Sets the following HICA fields:

v HICARETC
v HICAREAS
v HICAMSGP
v HICAERRP
v HICAOUTP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v HICARETC contains return code.
v HICAREAS contains reason code.
v HICAMSGP contains pointer to message PDB chain or 0000.
v HICAERRP contains pointer to error PDB chain or 0000.
v HICAOUTP contains pointer to output PDB RNID_SYMBOL that contains the

ID of the created record.
¶ Continues processing.

Update Record (HL09)
This transaction updates Tivoli Information Management for z/OS records in the Tivoli
Information Management for z/OS database.

Database Access Transactions

183Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

You prepare for data additions and changes to the record by creating an input PDB chain
consisting of a PDB for each data item. You must specify at least one input data item. For
each PDB, set PDBNAME to the alias name or to the PIDT symbolic name of the data item
and PDBDATA to the data value for the item. The API adds data you specify to the record.
It replaces existing data of the same name. Leading and trailing blanks are removed from all
but text data. Do not imbed blanks in a response or include the separator character as part of
a response. You can use static PIDTs or data view records from which PIDTs are generated.
If you use bypass panel processing you must use data model records.

You can add freeform text to the record by specifying the name of a text data set containing
the text or by specifying the text itself. You can add freeform text to that which exists in the
record or replace existing freeform text.

If another application or user is attempting to update the record, the record might be
unavailable. You can direct the HLAPI to either retry this transaction from 1 to 255 times
before returning control to your application or wait until the record is available. See page 18
for more information.

Note: If you are using logical database partitioning, you can update a record only if the
Owning Partition of that record matches the Primary Partition of your privilege class.

Checking out the record before the update ensures that no other users can update the record
prior to your update. Your administrator can define a time limit for checked out records
(BLX-SP parameter APICHKOUTLIM, described in the Tivoli Information Management for
z/OS Planning and Installation Guide and Reference) so that records will not inadvertently
remain indefinitely checked out if your application does not check in the record.

You can determine how you want to process lists on update. That is, you can simply update
lists (this is the default), you can append new list items to existing lists, or you can replace
existing lists. To specify the type of update, specify a control PDB LIST_MODE to indicate
whether you want to update, append, or replace list items. The processing can be different
for each update.

History Data Considerations
You can delete history data from the record. Before beginning the following sequence of
actions, the Tivoli Information Management for z/OS database administrator must enable the
history update feature. This is done by removing the protective branch control line in TSP
BLGAPI05 (for panel processing) or BLGAPIPX (for bypass panel processing). In addition
the API user (application ID) must have database administrator authority.

¶ The HL04 check out record transaction is used to lock a record before update, when
required to maintain data integrity.

¶ The HL06 retrieve record transaction is used to retrieve history data along with its
record data by including the control PDB HISTORY_DATA with the value of B. The
history data will be saved by the HLAPI for later use, as well as being returned to the
user following the record data on the output PDB chain.

¶ The history and record data is examined to decide if the history data is to be deleted. If
so, a cutoff date is determined. If examination of the history is not required in this step,
then in the previous step, use the value S for the HISTORY_DATA control PDB. This
saves the history data but does not return it on the chain of output PDBs.

Database Access Transactions

184 Version 7.1

¶ If any history data is to be deleted, the HL09 update record transaction is used with the
DELETE_HISTORY control PDB and the date value from the previous step. All history
data recorded earlier than this date will be deleted.

¶ The HL05 check in record transaction is used to unlock the record, if it was locked
previously.

Multiple Response Item Processing Considerations
When you input data for multiple response fields, each word of the field must be separated
by the separator character specified in the control PDB named SEPARATOR_CHARACTER
or by a space if MULTIPLE_RESPONSE_FORMAT (described 158) was set to PHRASE on
the HL01 to allow spaces to separate multiple response words. The HLAPI locates separator
characters in the SBCS data portions of responses that contain mixed data.

Field Deletion Considerations
You must explicitly identify fields to delete from the existing record.

¶ To delete a nonlist response item in the record, use a single separator character as a
response.

¶ To delete freeform text, specify the REPLACE_TEXT_DATA PDB with a value of YES
and specify a single separator character as the text data.

List Item Processing Considerations
When you collect list item responses, the responses must be separated by the separator
character specified in the control PDB named SEPARATOR_CHARACTER. Responses do
not require padding blanks. Do not append a separator character to the last response of a
field. The HLAPI locates separator characters in the SBCS data portions of responses that
contain mixed data.

An example of a list item using a comma separator character is moda,modb,modc.

An example of a skipped entry is moda, ,modc. (The first entry contains moda, and the third
entry contains modc.)

Where list data is entered, each list response must be separated by the separator character
specified in the control PDB named SEPARATOR_CHARACTER.

You can choose to update existing lists (the default), append new data to existing lists, or
replace existing lists. In control PDB LIST_MODE you specify how the lists should be
processed.

You can also delete data already existing in the record. To delete a response in a list of
responses, specify update list processor mode (this is the default) and use 2 consecutive
separator characters with the second separator character logically replacing the deleted
response. A separator character in the first position of the response indicates that the first list
position item is to be deleted. A trailing separator character (after the last item) indicates that
the next list item of that type in the record is to be deleted. To delete an entire list, specify
control PDB LIST_MODE with a value of REPLACE and a single separator character as the
field data.

This example shows three update transactions updating an existing list of routine names. For
each transaction, the figure shows the list before the transaction on the left, the PDBDATA
value used to update the list, and the results of the update.:

Database Access Transactions

185Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

List Before PDBDATA List After Action Per-
Update Value Update formed

ADD ',,,' -------- Delete first 3
BUILD1 -------- items on list
DELITEM --------
COPY COPY
-------- --------
CHECK CHECK
INIT INIT

ADD 'ADD,BUILD1,,COPY' ADD Delete third
BUILD1 BUILD1 item on list
DELITEM --------
COPY COPY
-------- --------
CHECK CHECK
INIT INIT

ADD ' , , , , , ,' ADD Delete seventh
BUILD1 BUILD1 item on list
DELITEM DELITEM
COPY COPY
-------- --------
CHECK CHECK
INIT --------

This example shows an update transaction appending data to an existing list of routine
names. For this transaction, the figure shows: the list before the transaction on the left, the
response buffer segment used to append to the list, and the results of the append.
List Before Response Buffer List After Action Performed
Append Segment Append

ADD 'BUILD0,BUILD1,,COPY' ADD Append new
BUILD1 BUILD1 items to list
DELITEM DELITEM
COPY COPY
-------- --------
CHECK CHECK
INIT INIT

BUILD0
BUILD1

COPY

This example shows an update transaction replacing from an existing list of routine names.
For this transaction, the figure shows: the list before the transaction on the left, the response
buffer segment used to replace data from the list, and the results of the replace.
List Before Response Buffer List After Action Performed
Delete Segment Delete

ADD 'BUILD0,,BUILD2' BUILD0 New data replaces
BUILD1 -------- old data
DELITEM BUILD2
COPY

CHECK

Database Access Transactions

186 Version 7.1

INIT

Use the following HICA fields and PDBs for this transaction:

HICAENVP
Must contain the value stored on completion of HLAPI initialization.

HICACTLP (CONTROL)
The following PDBs are required:

¶ TRANSACTION_ID must contain the 4-character transaction code HL09.

¶ RNID_SYMBOL must contain a 1- to 8-character external record identifier of the
record you want to update. A user-defined record identifier might have mixed data
containing DBCS characters enclosed by an SO/SI pair. If the record identifier
begins with an alphabetic character, it can be from 1 to 8 characters in length; if the
record identifier begins with a numeric character, it must contain all numeric
characters and must be 8 characters in length.

¶ Either PIDT_NAME or DATA_VIEW_NAME so that the HLAPI can perform data
view processing. A static PIDT table or a data view record defines the view of the
record the HLAPI processes. You can define just the fields that your application
requires. See “Field Validation Using the Field Validation Module BLGPPFVM” on
page 279 for additional information. If both PIDT_NAME and
DATA_VIEW_NAME are specified, the HLAPI ignores PIDT_NAME.

v PIDT_NAME must contain the alias or member name of the static update PIDT
table the HLAPI uses in processing the transaction. Member names are 1 to 7
uppercase characters long. Alias names are 32 uppercase characters long. You
create static PIDTs by using the Table Build Utility.

v DATA_VIEW_NAME contains a character field that specifies a data view name
either as an alias or data view record ID. You must specify an alias name as a
32-character left-justified field exactly as it appears in a PALT. You specify a
data view name as a 1- to 8-character name. A PIDT is generated from the data
view record and associated data attribute and validation records. If you use
bypass panel processing, you must specify DATA_VIEW_NAME.

Note: All PIDTs and related PIPTs can be maintained in storage to improve
performance. This can be especially important if you are using data view
records, as it can take a significant amount of time to generate the PIDT from
the data model records.

¶ SEPARATOR_CHARACTER must contain the separator character value the HLAPI
is to use to process response data for this update. A blank value is ignored. If you
omit this parameter, the HLAPI ends the transaction with an error.

The following PDBs are optional:

¶ APPLICATION_ID contains a 1- to 8-character uppercase application ID that Tivoli
Information Management for z/OS uses. The application ID remains in effect until
changed on a subsequent transaction. If APISECURITY=ON is specified in your
BLX-SP startup parameters, you must ensure that the MVS user IDs running your
application are allowed to use this application ID. “API Security” on page 287
contains additional information regarding API security.

Database Access Transactions

187Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

¶ PRIVILEGE_CLASS contains a 1- to 8-byte uppercase startup privilege class name
that the API passes to Tivoli Information Management for z/OS. This privilege class
remains in effect until changed on a subsequent transaction. A privilege class name
can be mixed data containing DBCS characters enclosed by an SO/SI pair, but it
cannot contain SBCS Katakana. The application ID used must be an eligible user of
this privilege class.

¶ ALIAS_TABLE must contain the uppercase name of the alias table used for this
transaction. If you omit this parameter, the HLAPI does not perform alias table
processing. See “Alias Tables” on page 238 for more information about alias
processing. The field must be left justified.

¶ EQUAL_SIGN_PROCESSING must contain the character value YES, which
specifies that the HLAPI is to use equal sign processing. If you specify any other
value, the HLAPI performs no equal sign processing.

¶ DELETE_HISTORY contains a character string specifying the date in external
format of the oldest history data to be kept with the record. Any history created
earlier than this date is deleted from the record. When a record is updated and the
DELETE_HISTORY PDB is specified with a date value, the last saved PIHT is
attached to the record and all history entries recorded before the given date are
marked for deletion. PIHTs can be saved as a result of the Retrieve (HL06)
transaction. The LLAPI checks to ensure that the correct PIHT (correct means that
the PIHT was saved for the same record that this update is for) is attached to the
record and deletes the marked entries. In the LLAPI, the history data update function
is shipped disabled. Once enabled, either in TSP BLGAPI05 for panel processing or
in TSP BLGAPIPX when bypassing panel processing, the user must have database
administrator authority to successfully execute this transaction.

Note: You can modify the TSPs to change the level of authority needed.
Before data can be deleted, it must have been saved by setting the HISTORY_DATA
PDB to S or B on a previous retrieve of the same record.

Note:

The following are limitations and/or restrictions associated with delete history
processing:

v It is not possible to delete all of the history data for a record. The history
of the most recent day’s activity is always kept.

v The external date specified on the DELETE_HISTORY PDB is limited to
a maximum of 32 characters.

v There is no unique field in the history entry which contains the date when
the record was changed. For the DELETE_HISTORY function to process
successfully, you must journal first a data field for the record. The delete
history function assumes that a prefix word beginning with DAT is used
for the date and that the date field has been journaled first. If no dates are
found by the delete history function, an error code is returned to indicate
that a problem exists in identifying dates.

v The dates in the history data are in external format. The currently enabled
date conversion routine is used to convert them to internal format for
comparison. If the conversion routine returns a non-zero return code, the
data is assumed to be not a date and is skipped.

Database Access Transactions

188 Version 7.1

v A timestamp is kept when history data is saved. If the record is changed
before the DELETE_HISTORY can be performed with the saved history,
the time stamps will not match and the history will not be deleted.

¶ REPLACE_TEXT_DATA can contain the character value YES which indicates that
any text data provided is used to replace existing text of the same type. If any other
value is specified, the text data provided is appended to any existing text of the
same type. When the data value of this PDB is set to YES, the PICATXTR field is
set to Y for the corresponding LLAPI update transaction. This causes the existing
text to be replaced by any input text with the same type. If the input data consists of
a single separator character, the existing text data is deleted. For deleting freeform
text using buffer processing, both PDBDATL and PDBDATW must be set to the
value 1.

¶ DATE_FORMAT must contain a supported date format. All dates passed between
your application and the API will be in this format. Dates you pass into the API in
this format will be converted to the primary date format of the database before being
processed.

¶ LIST_MODE can be used to indicate how you want to process lists on update. You
can specify UPDATE to update lists, specify APPEND to append new list items to
existing list, or specify REPLACE to replace existing lists. If a value is not
specified, the default is UPDATE.

¶ TEXT_STREAM determines how freeform text specified in an input PDB is stored
in a Tivoli Information Management for z/OS record. If TEXT_STREAM is omitted
or contains any value other than YES, the text is processed as a series of fixed-width
lines. PDBDATW specified the width of each line and PDBDATL specifies the total
length of the text.

If TEXT_STREAM is YES, the freeform text is processed as a continuous stream of
data. This stream may contain line feed (EBCDIC X'25'), carriage return / line feed
(EBCDIC X'0D25'), or new line (EBCDIC X'15') characters. When the API finds a
line feed in the text stream, it stores the text following the line feed as a text line in
the Tivoli Information Management for z/OS record. If there are more than 132
characters following the line feed, the first 132 characters are stored as a text line.
Any remaining text, up to the next line feed or another 132 characters, is stored as a
text line extension in the Tivoli Information Management for z/OS record. When the
API builds text lines and text line extensions, it does not split lines in the middle of
a word nor does it strip trailing blanks.

Setting TEXT_STREAM to YES is intended to be used by applications that use the
client interface to Tivoli Information Management for z/OS.

HICAINPP (INPUT)
The address of the first input PDB. The HLAPI processes PIDT table entries using
PDBs found on this chain. You include an input PDB for each data item (data,
direct-add, visible phrase, and freeform text) associated with this update transaction. Set
PDBNAME to an alias name or to the PIDT symbolic name of the data item, and set
PDBDATA to the data value for the data item. You specify list item field instances
within a single PDB using the separator character to define individual response items.
Leading and trailing blanks are removed from all but freeform text data. Do not include
blanks as part of a data value. See “Multiple or List Data Item Processing
Considerations” on page 76 for more information.

Database Access Transactions

189Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

The API collects phrase and direct data items if you include a PDB using the name of
the phrase or direct-add item and a nonblank value in PDBDATA. The PIDT row
corresponding to data associated with a phrase or direct-add item actually contains the
data for that item.

The HLAPI validates input data when you set PDBPROC to V for each PDB whose
PDBDATA you want validated. If you do not set PDBPROC to V, the HLAPI does not
validate input data and you can add incorrect data to the database. The HLAPI does not
validate string, phrase, text, and direct-add items. If data fails validation, PDBCODE for
the input PDB is set to V and an item is returned on the error PDB chain to indicate the
reason. A list of validation codes can be found on page 236.

The HLAPI can set PDBCODE to other values. See PDBCODE, page 222, for code
values returned by the API.

You can supply text data two ways:

¶ For text data stored in a data set, store each data set name in the PDBDATA field of
a separate PDB. Set PDBDATL to the length of the data set name, and set
PDBDATW to zero.

¶ For text data associated with buffer processing, the values of PDBDATW and
PDBDATL depend on the value of TEXT_STREAM. If TEXT_STREAM is omitted
or contains any value other than YES, PDBDATW must contain the width of the
text unit (line), and PDBDATL must contain the total length of the text. PDBDATL
must be an even multiple of PDBDATW. PDBDATW cannot be larger than 132. If
PDBDATW is zero, the HLAPI assumes that PDBDATA contains the name of the
text data set.

If TEXT_STREAM is YES, PDBDATW and PDBDATL must both equal the total
length of the text. In this case, PDBDATW can be greater than 132.

Note: You cannot use both storage buffer and data set processing when you use this
transaction. You must use one or the other.

HICAOUTP (OUTPUT)
Contains the value previously stored by the HLAPI.

HICAMSGP (MESSAGES)
Contains the value previously stored by the HLAPI.

HICAERRP (ERROR CODES)
Contains the value previously stored by the HLAPI.

Table 60 on page 191 shows the update record (HL09) transaction flow. In the table,
symbolically named PDBs have a value, for example, PDB TRANSACTION_ID=HL09.
This method reduces the amount of text on the line in the table. The name on the left of the
equation is the value in the PDB field PDBNAME. The data on the right of the equation is
the value in the PDB field PDBDATA. For more detailed information on the HLAPI
structures, their fields and their parameters, see “HLAPI Structures” on page 216.

Database Access Transactions

190 Version 7.1

Table 60. HLAPI Transaction HL09. Update Record
Step Program Action

1 Application ¶ Sets fields as follows:
v HICACTLP (pointer to first control PDB) The following PDBs are required:

– TRANSACTION_ID=HL09
– RNID_SYMBOL = the ID of the record to be updated
– Either of the following:

¶ PIDT_NAME = the name or alias of the static PIDT table the HLAPI
uses in processing the transaction.

¶ DATA_VIEW_NAME = the data view record ID or alias of the data
view record ID that the HLAPI uses in processing the transaction. If
you use bypass panel processing, you must use DATA_VIEW_NAME.

– SEPARATOR_CHARACTER = the character used by the HLAPI in
processing response data.

The following PDBs are optional:
– APPLICATION_ID = the application ID
– PRIVILEGE_CLASS = the privilege class name
– ALIAS_TABLE = the name of the alias table used for this transaction
– EQUAL_SIGN_PROCESSING = YES, which specifies that the HLAPI is

to use equal sign processing. If you specify any other value, the HLAPI
performs no equal sign processing.

– DELETE_HISTORY = date of oldest history data to be kept with the
record

– REPLACE_TEXT_DATA = YES if new freeform text is to replace existing
freeform text

– DATE_FORMAT = format to use for passing dates between your
application and the API

– LIST_MODE = UPDATE or APPEND or DELETE to indicate how you
want to process lists on update

– TEXT_STREAM = NO to process freeform text as fixed-width lines, YES
to process freeform text as a continuous stream of data

v HICAINPP = the address of the first input PDB
¶ BLGYHLPI(HICA).

2 Server ¶ Validates HICA and PDB fields
¶ Updates the record
¶ Waits for completion
¶ Sets the following HICA fields:

v HICARETC
v HICAREAS
v HICAMSGP
v HICAERRP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v HICARETC contains return code.
v HICAREAS contains reason code.
v HICAMSGP contains pointer to message PDB chain or 0000.
v HICAERRP contains pointer to error PDB chain or 0000.

¶ Continues processing.

Change Record Approval (HL10)
This transaction provides a means to approve or reject a change record. By using this
transaction, you can pass approvals from another change management product or application,

Database Access Transactions

191Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

or from a Web application into Tivoli Information Management for z/OS. This is similar to
the process to approve or reject changes that you can do interactively; additional information
on the interactive process to perform this function can be found in Tivoli Information
Management for z/OS Problem, Change, and Configuration Management. A specified change
record is updated as follows:

¶ If approval status is specified as ACCEPT, the current privilege class in the list of
approvers within the change record is marked as “approval accepted.”

¶ If the status is specified as REJECT or anything other than ACCEPT, the current
privilege class in the approver list is marked as “approval rejected.”

¶ When one approver rejects the change, the change record is marked as “rejected.”

¶ When all of the approvers on the list have accepted the change, the change records is
marked as “accepted.”

¶ Before the change record is marked “accepted” or “rejected,” it is in the “approval
pending” status.

Note: If data attribute records are used as direct-add fields when creating change records,
then normal file processing is not performed for change records when change
approval processing is being performed. That is, if ALL of these five
direct-adds—DATE/, TIME/, CLAE/, DATM/, and TIMM/—are changed to data
attribute records, then data modified, time modified, and user ID are not saved in the
record.

The following HICA fields and PDBs are used in this transaction:

HICAENVP
Must contain the value stored on completion of HLAPI initialization.

HICACTLP (CONTROL)
The following PDBs are required:

¶ TRANSACTION_ID must contain the 4-character transaction code HL10.

¶ RNID_SYMBOL must contain a 1- to 8-character identifier of the change approval
record. The 8-byte record identifier can be mixed data containing DBCS characters
enclosed by an SO/SI pair.

¶ Either PIDT_NAME or DATA_VIEW_NAME so that the HLAPI can perform data
view processing. A static PIDT table or a data view record defines the view of the
record the HLAPI processes. This is only used to obtain the authorization code that
applies to change record display. If both PIDT_NAME and DATA_VIEW_NAME
are specified, the HLAPI ignores PIDT_NAME.

v PIDT_NAME contains the alias or member name of a static PIDT used to
retrieve change records. A data view record can be used in place of a static PIDT.
If you choose to use a data view record, provide its name in the PDB
DATA_VIEW_RECORD. Ensure that the data view record has the authority to
retrieve or display change records.

v DATA_VIEW_NAME contains a character field that specifies a data view name
either as an alias or data view record ID. You must specify an alias name as a
32-character left-justified field exactly as it appears in a PALT. You specify a
data view name as a 1- to 8-character name. A PIDT is generated from the data

Database Access Transactions

192 Version 7.1

view record and associated data attribute and validation records. If you use
bypass panel processing, you must specify DATA_VIEW_NAME.

Note: All PIDTs and related PIPTs can be maintained in storage to improve
performance. This can be especially important if you are using data view
records, as it can take a significant amount of time to generate the PIDT from
the data model records.

The following PDBs are optional:

¶ APPLICATION_ID contains a 1- to 8-character uppercase application ID that Tivoli
Information Management for z/OS uses. The application ID remains in effect until
changed on a subsequent transaction. If APISECURITY=ON is specified in your
BLX-SP startup parameters, you must ensure that the MVS user IDs running your
application are allowed to use this application ID. “API Security” on page 287
contains additional information regarding API security.

¶ PRIVILEGE_CLASS contains a 1- to 8-byte uppercase privilege class name that the
API passes to Tivoli Information Management for z/OS and defines the privilege
class accepting or rejecting the change. This privilege class remains in effect until
changed on a subsequent transaction. A privilege class name can be mixed data
containing DBCS characters enclosed by an SO/SI pair, but it cannot contain SBCS
Katakana. The application ID used must be an eligible user of this privilege class. If
no privilege class is set with this transaction, then the privilege class currently in
effect is used.

¶ APPROVAL_STATUS must be set to ACCEPT to specify an accepted approval
status; if no approval status is specified or if the status is not “accepted,” the default
is to reject the approval of the change record.

¶ ALIAS_TABLE can contain the name of an alias table. If no alias table is set with
this transaction, then the alias table currently in effect is used. The alias table is not
used with the value of the APPROVAL_STATUS PDB.

¶ APPROVER contains a 1- to 8-character uppercase approver name that defines the
approver accepting or rejecting the change and passes this name to Tivoli
Information Management for z/OS. If this PDB is specified, this value is used in
place of the privilege class name that is specified on the PRIVILEGE_CLASS PDB.
This approver name can be mixed data containing DBCS characters enclosed by an
SO/SI pair, but it cannot contain SBCS Katakana.

Table 61 on page 194 shows the change record approval (HL10) transaction flow. In the
table, symbolically named PDBs have a value, for example, PDB
TRANSACTION_ID=HL10. This method reduces the amount of text on the line in the
table. The name on the left of the equation is the value in the PDB field PDBNAME. The
data on the right of the equation is the value in the PDB field PDBDATA. For more detailed
information on the HLAPI structures, their fields, and their parameters, see “HLAPI
Structures” on page 216.

Database Access Transactions

193Application Program Interface Guide

|
|
|
|
|
|

3.
U

sin
g

th
e

H
L

A
P

I

Table 61. HLAPI Transaction HL10. Change Record Approval
Step Program Action

1 Application ¶ Sets fields as follows:
v HICACTLP (pointer to first control PDB) The following PDBs are required:

– TRANSACTION_ID=HL10
– RNID_SYMBOL = the ID of the change record

The following PDBs are optional:
– APPLICATION_ID = the application ID
– PRIVILEGE_CLASS = the privilege class name
– PIDT_NAME = name of static PIDT
– APPROVAL_STATUS = ACCEPT (to approve change record)
– ALIAS_TABLE = name of an alias table

¶ BLGYHLPI(HICA).

2 Server ¶ Validates HICA and PDB fields
¶ Validates approval status
¶ Sets the following HICA fields:

v HICARETC
v HICAREAS
v HICAMSGP
v HICAERRP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v HICARETC contains return code.
v HICAREAS contains reason code.
v HICAMSGP contains pointer to message PDB chain or 0000.
v HICAERRP contains pointer to error PDB chain or 0000.

¶ Continues processing.

Record Inquiry (HL11)
This transaction performs a search of the Tivoli Information Management for z/OS database.
It converts data parameters specified on the INPUT PDB chain to PIDT and PIAT arguments
processed by the LLAPI. The HLAPI returns results of the search to an output PDB chain.

Two categories of inquiry parameters are structured argument lists and freeform argument
lists. Your application can use each type independently or combined. If you choose
combined argument processing, the HLAPI appends the freeform argument list to the
structured argument list regardless of the order in which you specify them. Structured
arguments simulate interactive quick-search dialog field responses, while freeform arguments
simulate interactive freeform arguments. Terminal session command line arguments and
those arguments created using the ARG command in a terminal session are examples of
freeform arguments.

To increase your ability to eliminate unwanted records from the results of freeform searches,
you can use parentheses within freeform search arguments to specify the order in which
arguments should be evaluated. Arguments placed within parentheses will be evaluated first.
The parentheses can adjoin the arguments or be separated by one or more spaces. The
parentheses can be placed in the same freeform argument PDB with the adjoining argument
or can be in a separate freeform argument PDB.

For example, the argument string
¬STAC/CLOSED (GROS/CEO | GROS/PAY) ¬(PRIO/03 | PRIO/04)

Database Access Transactions

194 Version 7.1

|
|
|
|
|
|

|

|

can be entered in separate freeform argument PDBs like this:
¬STAC/CLOSED
(GROS/CEO
| GROS/PAY)
¬(PRIO/03
| PRIO/04)

or can be entered in separate freeform argument PDBs like this:
¬STAC/CLOSED
(
GROS/CEO
| GROS/PAY
)
¬(
PRIO/03
| PRIO/04
)

The argument can be entered in other ways as well, as long as the boolean operator (if one
is present) appears first and no more than one argument is included in each freeform
argument PDB.

You can also do text searching using the HLAPI. In order to do this, you must create a data
view record for the type of record that you want to search for or else update an existing data
view record to be used for the record inquiry and add the text index attribute record
BLH&INDX. See the discussion on page 197 for a description of how you can do this.

Note: If you are using logical database partitioning (described in the Tivoli Information
Management for z/OS Program Administration Guide and Reference), you should be
aware that a HLAPI application cannot perform multipartition searches.

Each PDB on the input chain contains part of the search argument. The API does not
validate freeform arguments.

You use the following HICA fields and PDBs for this transaction:

HICAENVP
Must contain the value stored on completion of HLAPI initialization.

HICACTLP (CONTROL)
The following PDBs are required:

¶ TRANSACTION_ID must contain the 4-character transaction code HL11.

¶ Either PIDT_NAME or DATA_VIEW_NAME so that the HLAPI can perform data
view processing. A static PIDT table or a data view record defines the view of the
record the HLAPI processes. You can define just the fields that your application
requires. See “Field Validation Using the Field Validation Module BLGPPFVM” on
page 279 for additional information. If both PIDT_NAME and
DATA_VIEW_NAME are specified, the HLAPI ignores PIDT_NAME.

v PIDT_NAME must contain the alias or member name of the static retrieve PIDT
table the HLAPI uses in processing the transaction. Member names are 1 to 7
uppercase characters long. Alias names are 32 uppercase characters long. You
create static PIDTs by using the Table Build Utility.

v DATA_VIEW_NAME contains a character field that specifies a data view name
either as an alias or data view record ID. You must specify an alias name as a

Database Access Transactions

195Application Program Interface Guide

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|

3.
U

sin
g

th
e

H
L

A
P

I

32-character left-justified field exactly as it appears in a PALT. You specify a
data view name as a 1- to 8-character name. If you use bypass panel processing,
you must specify DATA_VIEW_NAME. A PIDT is generated from the data view
record and associated data attribute and validation records.

Note: All PIDTs and related PIPTs can be maintained in storage to improve
performance. This can be especially important if you are using data view
records, as it can take a significant amount of time to generate a PIDT from
the data model records.

¶ SEPARATOR_CHARACTER must contain the separator character value the HLAPI
uses to process response data. If you omit this parameter, the HLAPI will end the
transaction with an error.

The following PDBs are optional:

¶ APPLICATION_ID contains a 1- to 8-character uppercase application ID that Tivoli
Information Management for z/OS uses. The application ID remains in effect until
changed on a subsequent transaction. If APISECURITY=ON is specified in your
BLX-SP startup parameters, you must ensure that the MVS user IDs running your
application are allowed to use this application ID. “API Security” on page 287
contains additional information regarding API security.

¶ PRIVILEGE_CLASS contains a 1- to 8-byte uppercase startup privilege class name
that the API passes to Tivoli Information Management for z/OS. This privilege class
remains in effect until changed on a subsequent transaction. A privilege class name
can be mixed data containing DBCS characters enclosed by an SO/SI pair, but it
cannot contain SBCS Katakana. The application ID used must be an eligible user of
this privilege class.

¶ ALIAS_TABLE must contain the 1- to 8- character uppercase name of the alias
table used for this transaction. If you omit this parameter, or if it does not have a
value, the HLAPI does not perform any alias table processing.

¶ ASSOCIATED_DATA must contain an uppercase identifier of the associated data
item field that the HLAPI returns for each record found by the search. If you do not
specify an alias table, field PDBDATA must contain an s-word or p-word index or
the HLAPI does not return any data. If you do specify an alias table, field
PDBDATA can contain an alias name, an s-word index, or a p-word index.

Note: Associated data must be uppercase. The HLAPI attempts to retrieve this data
item from all records found as a result of the inquiry and store its contents as
part of the output PDB PDBDATA field.

You cannot retrieve list item, phrase, and text data.

¶ EQUAL_SIGN_PROCESSING must contain the character value YES, which
specifies that the HLAPI is to use equal sign processing. If you specify any other
value, the HLAPI performs no equal sign processing.

¶ DATE_FORMAT must contain a supported date format. All dates passed between
your application and the API will be in this format. Dates you pass into the API in
this format will be converted to the primary date format of the database before being
processed.

Database Access Transactions

196 Version 7.1

The following PDB is required when saving search results or when viewing previously
saved search results:

¶ SEARCH_TYPE must contain a 1-byte character field indicating how the HLAPI
treats this search. If this field is blank or set to S, it indicates to the HLAPI to start
a new search. If this field is set to T, it indicates to the HLAPI to terminate an
existing search. If this field is set to R, it indicates to the HLAPI to return matches
from a saved search.

¶ NUMBER_OF_HITS must contain a 4-byte fixed field that specifies the maximum
number of matches to be returned from a search. If this field contains a value, the
actual number of matches is the smaller of:
v The value in this field
v The actual number of matches
v the value in SORTPFX-N1.

¶ BEGINNING_HIT_NUMBER must contain a 4-byte fixed field that specifies the
beginning match number to return. If your application specifies zero, the HLAPI
uses a value of one.

¶ SEARCH_ID must contain a 4-byte fixed field containing the identifier of a search.
It is assigned to either a new search results list or an existing search results list. If
the value of this field is zero, the search results are not saved.

If you request previously saved search results, any new value that you specify for
ASSOCIATED_DATA is ignored.

HICAINPP (INPUT)
The address of the first input PDB. The HLAPI uses PDBs specified on this chain to
construct inquiry arguments. The PDB process option field PDBPROC determines
whether the HLAPI adds the data parameter to the response buffer as a structured
argument, as a freeform argument, or as a text search.

¶ The HLAPI processes structured (or quick search) arguments as follows:

1. Locates the argument alias name specified in field PDBNAME in a given alias
table (if using alias processing) or in the PIDT (if not using alias processing)

2. Processes PIDT table entries for the argument.

You cannot process Boolean or range operators when using this type of inquiry
argument. If you specify such operators in the argument data, the HLAPI treats them
as part of the argument data. You can use text item visible phrases as search
arguments but you cannot use text data. Structured arguments can be validated by
specifying V in PDB field PDBPROC. See PDBCODE on page 222 for code values
returned by the API. Structured arguments are processed according to the setting of
the Cognize in mixed case? option in the PIDT row or attribute record for the
argument:

v If Cognize in mixed case? is Y
– If validation is requested, the case of the argument (after any adjustments

made of the validation module based on the setting of the Collected data
case option) will be used for the search.

– If validation is not requested, the case of the argument as passed by the
application will be used for the search. No case transformation will be done.

v If Cognize in mixed case? is N

Database Access Transactions

197Application Program Interface Guide

|

3.
U

sin
g

th
e

H
L

A
P

I

– Upper case will be used for the search, regardless of the case passed by the
application and regardless of any adjustments made of the validation routine.

¶ The HLAPI processes freeform arguments (PDBPROC = F) by determining if a
p-word alias name exists in field PDBNAME. The HLAPI uses the name in
PDBNAME to locate its associated p-word stored in an alias table. If PDBNAME is
not USE_AS_IS_ARGUMENT the HLAPI assumes that this is a p-word alias (an
alias row containing a p-word). P-Words are alphanumeric phrases that end with a
slash (/) or underscore (_) and that are not longer than 6 characters. The HLAPI
stores the p-word in a PIAT entry row first, followed by the PDB argument data. If
the HLAPI does not find a p-word, the HLAPI ends the transaction with an error. If
field PDBNAME contains the reserved name USE_AS_IS_ARGUMENT, the HLAPI
stores only the argument data in the LLAPI PIAT entry row.Freeform arguments are
used as entered and must be provided by the application in the proper case.Freeform
arguments can contain Boolean or range operators. When using these operators, the
operator must be the first character of the data parameter. When the HLAPI builds
the freeform argument, it stores the Boolean operator as the first character in the
inquiry argument. This character is followed by the p-word data. The aggregate
argument cannot contain imbedded blanks.

Note: The aggregate length (Boolean, p-word, and data) cannot be greater than 33
characters, or the HLAPI ends the transaction with an error.

The length of the field PIATDATA is 33 characters. The maximum number of
characters available from a freeform argument segment for use in an inquiry is
limited to the length of the key used to define the SDIDS. For example, if your
application is searching a database with an SDIDS defined with a 32-byte key, a
maximum of 32 bytes of each freeform argument segment is used to perform the
inquiry.The HLAPI can combine structured and freeform arguments into a complete
search argument. Structured arguments are always followed by the freeform
arguments regardless of the order in which you specify them. Structured argument
ordering is determined by the sequence in which they are defined in the PIDT rather
than the sequence in which you specify them.

¶ The HLAPI processes text search arguments as described here. On the Record
Inquiry transaction, you must specify the actual index name as an input PDB
associated with S12E3. This PDB is required when TEXT_SEARCH_ARGUMENT
is also supplied in an input PDB. The S12E3 input PDB contains a 1- to 8-character
index record ID that Tivoli Information Management for z/OS uses to determine
which Text Search index to search for the freeform text. These index names are
defined:

INDXSOLN
Index for description and resolution freeform text for solution records.

INDXPROB
Index for description freeform text for problem records.

INDXCHNG
Index for description and resolution freeform text for change records.

You can also have additional or alternate text search index names defined. On the
HL11 transaction, text search arguments are specified in input PDBs. The field
PDBNAME must contain the reserved name TEXT_SEARCH_ARGUMENT. These
PDB fields should be set:

Database Access Transactions

198 Version 7.1

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

v The PDBNAME is TEXT_SEARCH_ARGUMENT.
v The PDBPROC value is X.
v The PDBDATW is the width of the text arguments This value cannot be larger

than 132.
v The PDBDATL is the total length of the text arguments. PDBDATL must be an

even multiple of PDBDATW.

You must use buffer processing with text arguments. The arguments can be sent in a
single input PDB or in multiple input PDBs. Text arguments are used as entered.
Text arguments can contain Boolean operators (AND, OR, AND NOT). Double
quotation marks can be used to group text arguments together into search phrases,
and parentheses can be used to group text arguments, search phrases, and Boolean
operators together to form complex search arguments.

HICAOUTP (OUTPUT)
PDBs produced on this chain contain inquiry results data. When an inquiry generates
results, the HLAPI creates an output PDB chain. The API names each output PDB
INQUIRY_RESULT and each PDB contains data (describing one record in the search
results list) extracted from an LLAPI PIRT row. The PDBAPPL field of the first output
PDB contains a 4-byte fixed value defining the total number of matches for the search
(from the LLAPI field PIRTSRRC). The HLAPI performs alias processing for each PIRT
record type field (PIRTINDX) that it stores in a corresponding output PDB.

Use the following format for inquiry output field PDBDATA entries:
¶ 8-character external record identifier
¶ 32-character left-justified record type field alias name right-padded with blanks

Note: If this field does not have an alias name, the HLAPI appends the record type
s-word index for this field to the character S to provide an internal symbolic
name that matches the format of a PIDT table symbolic name.

¶ 45-character left-justified associated data field right-padded with blanks.
¶ 2-character record processing code associated with a match entry. The API returns

one of the following codes in this field:
00 - No error was detected.
01 - The record found a read error.
02 - The record was not found.
03 - The record was not currently available.
04 - The record was currently busy.
05 - Not enough storage to read in record.
06 - Unknown problem when reading the record.

HICAMSGP (MESSAGES)
Contains the value previously stored by the HLAPI.

HICAERRP (ERROR CODES)
Contains the value previously stored by the HLAPI.

Table 62 on page 200, Table 63 on page 201, and Table 64 on page 202 show the Record
Inquiry (HL11) transaction flows. In the tables, symbolically named PDBs have a value, for
example, PDB TRANSACTION_ID=HL11. This method reduces the amount of text on the
line in the tables. The name on the left of the equation is the value in the PDB field
PDBNAME. The data on the right of the equation is the value in the PDB field PDBDATA.
For more detailed information on the HLAPI structures, their fields, and their parameters,
see “HLAPI Structures” on page 216.

Database Access Transactions

199Application Program Interface Guide

|
|
|
|
|
|

|
|
|
|
|
|

3.
U

sin
g

th
e

H
L

A
P

I

Table 62. HLAPI Transaction HL11. Record Inquiry for Viewing All Search Results
Step Program Action

1 Application ¶ Sets fields as follows:
v HICACTLP (pointer to first control PDB) The following PDBs are required:

– TRANSACTION_ID=HL11
– Either of the following:

¶ PIDT_NAME = the member name or alias name of the PIDT the
HLAPI uses to process the transaction

¶ DATA_VIEW_NAME = the data view record ID or the alias of the
data view record ID the HLAPI uses to process the transaction

– SEPARATOR_CHARACTER = the character the HLAPI uses in processing
response data

The following PDBs are optional:
– APPLICATION_ID = the application ID
– PRIVILEGE_CLASS = the privilege class name
– DATE_FORMAT = format to use for passing dates between your

application and the API
– ALIAS_TABLE = the name of the alias table used for this transaction.
– ASSOCIATED_DATA = the identifier of a data item. When you do not

specify an alias table, PDBDATA is a symbolic field index. When you do
specify an alias table, PDBDATA is a symbolic field index or an alias
name.

– SEARCH_TYPE=blank or S
– EQUAL_SIGN_PROCESSING = YES, which specifies that the HLAPI is

to use equal sign processing. If you specify any other value, the HLAPI
performs no equal sign processing.

v HICAINPP = the address of the first input PDB
¶ BLGYHLPI(HICA).

2 Server ¶ Validates HICA and PDB fields
¶ Performs record inquiry
¶ Waits for completion
¶ Sets the following HICA fields:

v HICARETC
v HICAREAS
v HICAMSGP
v HICAERRP
v HICAOUTP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v HICARETC contains return code.
v HICAREAS contains reason code.
v HICAMSGP contains pointer to message PDB chain or 0000.
v HICAERRP contains pointer to error PDB chain or 0000.
v HICAOUTP contains pointer to output PDB chain or 0000.

¶ Continues processing.

Database Access Transactions

200 Version 7.1

Table 63. HLAPI Transaction HL11. Record Inquiry for Saving Search Results
Step Program Action

1 Application ¶ Sets fields as follows:
v HICACTLP (pointer to first control PDB) The following PDBs are required:

– TRANSACTION_ID=HL11
– Either of the following

¶ PIDT_NAME = the member name or alias name of the PIDT the
HLAPI uses to process the transaction

¶ DATA_VIEW_NAME = the data view record ID or the alias of the
data view record ID the HLAPI uses to process the transaction

– SEPARATOR_CHARACTER = the character the HLAPI uses in processing
response data

The following PDBs are optional:
– APPLICATION_ID = the application ID.
– PRIVILEGE_CLASS = the privilege class name.
– DATE_FORMAT = format to use for passing dates between your

application and the API
– ALIAS_TABLE = the name of the alias table used for this transaction.
– SEARCH_ID=S to save a search
– SEARCH_TYPE=S
– BEGINNING_HIT_NUMBER = the beginning match number to return. If

your application specifies 0, the HLAPI uses a value of 1.
– NUMBER_OF_HITS = the maximum number of matches to be returned

from a search.
– EQUAL_SIGN_PROCESSING = YES, which specifies that the HLAPI is

to use equal sign processing. If you specify any other value, the HLAPI
performs no equal sign processing. See 146 for additional information on
equal sign processing.

v HICAINPP = the address of the first input PDB
¶ BLGYHLPI(HICA).

2 Server ¶ Validates HICA and PDB fields
¶ Performs record inquiry
¶ Waits for completion
¶ Sets the following HICA fields:

v HICARETC
v HICAREAS
v HICAMSGP
v HICAERRP
v HICAOUTP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v HICARETC contains return code.
v HICAREAS contains reason code.
v HICAMSGP contains pointer to message PDB chain or 0000.
v HICAERRP contains pointer to error PDB chain or 0000.
v HICAOUTP contains pointer to output PDB chain or 0000.

¶ Continues processing.

Database Access Transactions

201Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

Table 64. HLAPI Transaction HL11. Record Inquiry for Viewing Saved Search Results
Step Program Action

1 Application ¶ Sets fields as follows:
v HICACTLP (pointer to first control PDB) The following PDBs are required:

– TRANSACTION_ID = HL11
– Either of the following

¶ PIDT_NAME = the member name or alias name of the PIDT the
HLAPI uses to process the transaction

¶ DATA_VIEW_NAME = the data view record ID or the alias of the
data view record ID the HLAPI uses to process the transaction

– SEPARATOR_CHARACTER = the character the HLAPI uses in processing
response data

The following PDBs are optional:
– PRIVILEGE_CLASS = the privilege class name.
– ALIAS_TABLE = the name of the alias table used for this transaction.
– SEARCH_ID = a search identifier required to return hits from an existing

search (R) or end an existing search (T)
– SEARCH_TYPE = R or T
– BEGINNING_HIT_NUMBER = the beginning match number to return. If

your application specifies 0, the HLAPI uses a value of 1.
– NUMBER_OF_HITS = the maximum number of matches to be returned

from a search.
– EQUAL_SIGN_PROCESSING = YES, which specifies that the HLAPI is

to use equal sign processing. If you specify any other value, the HLAPI
performs no equal sign processing.

v HICAINPP=the address of the first input PDB
¶ BLGYHLPI(HICA).

2 Server ¶ Validates HICA and PDB fields
¶ Performs record inquiry
¶ Waits for completion
¶ Sets following HICA fields:

v HICARETC
v HICAREAS
v HICAMSGP
v HICAERRP
v HICAOUTP

¶ Returns to application.

3 Application ¶ Checks following fields set by server:
v HICARETC contains return code.
v HICAREAS contains reason code.
v HICAMSGP contains pointer to message PDB chain or 0000.
v HICAERRP contains pointer to error PDB chain or 0000.
v HICAOUTP contains pointer to output PDB chain or 0000.

¶ Continues processing.

Add Record Relation (HL12)
This transaction adds record relations to Tivoli Information Management for z/OS records.
Use this transaction to create a relationship between a parent record and child records. For
example, you can link a change record to change activity records. The transaction updates
the parent record and adds nonreplaceable data items to the record.

Note: This is the only HLAPI transaction that adds nonreplaceable data to the database.

Database Access Transactions

202 Version 7.1

Each PDB identifies a type of relation data. For shipped parent record types, you can only
add the names of the parent record’s children or the identifiers of connected-to records. You
can include multiple data items, delimited by a separator character, in the input PDB. For
example, to add activities named ACT1 and ACT2 to the parent change record, you would
set PDBDATA to ’ACT1,ACT2’, assuming that the comma is the separator character.

You can direct the HLAPI to either retry this transaction from 1 to 255 times before
returning control to your application or wait until the record is available. See page 18 for
more information.

Checking out the record before the add record relation ensures that no other users can
update the record prior to your update. Your administrator can define a time limit for
checked out records (in the BSX-SP parameter APICHKOUTLIM described in the Tivoli
Information Management for z/OS Planning and Installation Guide and Reference) so that
records will not inadvertently remain indefinitely checked out if your application does not
check in the record.

To create a parent and its child records:
1. Create the parent record (HL08).
2. Create each child record (HL08).
3. Add the relations data to the parent (HL12).

Note: If you are using logical database partitioning, you can perform an add record relation
to a record only if the Owning Partition of that record matches the Primary Partition
of your privilege class.

Use the following HICA fields and PDBs for this transaction:

HICAENVP
Must contain the value stored on completion of HLAPI initialization.

HICACTLP (CONTROL)
The following PDBs are required:

¶ TRANSACTION_ID must contain the 4-character transaction code HL12.

¶ RNID_SYMBOL must contain a 1- to 8-character record identifier that is updated
with relation data. A user-defined record identifier might have mixed data containing
DBCS characters enclosed by an SO/SI pair.

¶ Either PIDT_NAME or DATA_VIEW_NAME so that the HLAPI can perform data
view processing. A static PIDT table or a data view record defines the view of the
record the HLAPI processes. You can define just the fields that your application
requires. See “Field Validation Using the Field Validation Module BLGPPFVM” on
page 279 for additional information. If both PIDT_NAME and
DATA_VIEW_NAME are specified, the HLAPI ignores PIDT_NAME.

v PIDT_NAME must contain the alias or member name of the static retrieve PIDT
table the HLAPI uses in processing the transaction. Member names are 1 to 7
uppercase characters long. Alias names are 32 uppercase characters long. You
create static PIDTs by using the Table Build Utility.

v DATA_VIEW_NAME contains a character field that specifies a data view name
either as an alias or data view record ID. You must specify an alias name as a
32-character left-justified field exactly as it appears in a PALT. You specify a
data view name as a 1- to 8-character name. A PIDT is generated from the data

Database Access Transactions

203Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

view record and associated data attribute and validation records. If you use
bypass panel processing, you must specify DATA_VIEW_NAME.

Note: All PIDTs and related PIPTs can be maintained in storage to improve
performance. This can be especially important if you are using data view
records, as it can take a significant amount of time to generate the PIDT from
the data model records.

¶ SEPARATOR_CHARACTER whose PDBDATA field contains the character field
value the your application uses to separate each relations data item. If you omit this
PDB, the HLAPI ends the transaction with an error.

The following PDBs are optional:

¶ APPLICATION_ID contains a 1- to 8-character uppercase application ID that Tivoli
Information Management for z/OS uses. The application ID remains in effect until
changed on a subsequent transaction. If APISECURITY=ON is specified in your
BLX-SP startup parameters, you must ensure that the MVS user IDs running your
application are allowed to use this application ID. “API Security” on page 287
contains additional information regarding API security.

¶ PRIVILEGE_CLASS contains a 1- to 8-byte uppercase startup privilege class name
that the API passes to Tivoli Information Management for z/OS. This privilege class
remains in effect until changed on a subsequent transaction. A privilege class name
can be mixed data containing DBCS characters enclosed by an SO/SI pair, but it
cannot contain SBCS Katakana. The application ID used must be an eligible user of
this privilege class.

¶ A PDB named ALIAS_TABLE containing the uppercase name of the alias table
used for this transaction. If you omit this parameter or if it does not have a value,
the HLAPI does not perform any alias table processing. The field must be
left-justified. See “Alias Tables” on page 238 for more information about alias
processing.

¶ EQUAL_SIGN_PROCESSING must contain the character value YES, which
specifies that the HLAPI is to use equal sign processing. If you specify any other
value, the HLAPI performs no equal sign processing.

HICAINPP (INPUT)
Address of the first input PDB. PDBs found on this chain specify what data items are to
be added to the record. These can be items such as child record names to store in the
parent record. See PDBCODE on page 222 for code values returned by the API.

HICAOUTP (OUTPUT)
Contains the value previously stored by the HLAPI.

HICAMSGP (MESSAGES)
Contains the value previously stored by the HLAPI.

HICAERRP (ERROR CODES)
Contains the value previously stored by the HLAPI.

Table 65 on page 205 shows the add record relation (HL12) transaction flow. In the table,
symbolically named PDBs have a value, for example, PDB TRANSACTION_ID=HL12.
This style reduces the amount of text on the line in the table. The name on the left of the
equation is the value in the PDB field PDBNAME. The data on the right of the equation is

Database Access Transactions

204 Version 7.1

the value in the PDB field PDBDATA. For more detailed information on the HLAPI
structures, their fields, and their parameters, see “HLAPI Structures” on page 216.

Table 65. HLAPI Transaction HL12. Add Record Relation
Step Program Action

1 Application ¶ Sets fields as follows:
v HICACTLP (pointer to first control PDB) The following PDBs are required:

– TRANSACTION_ID=HL12.
– RNID_SYMBOL = the ID of the record receiving relations.
– Either of the following:

¶ PIDT_NAME = the name or alias of the static PIDT the HLAPI uses
in processing the transaction.

¶ DATA_VIEW_NAME = the data view record ID or the alias of the
data view record ID the HLAPI uses in processing the transaction. If
you use bypass panel processing, you must use DATA_VIEW_NAME.

– SEPARATOR_CHARACTER = the character used by the HLAPI in
processing record relations data.

The following PDBs are optional:
– APPLICATION_ID = the application ID
– PRIVILEGE_CLASS = the privilege class name
– ALIAS_TABLE = the name of the alias table used in processing this

transaction
– EQUAL_SIGN_PROCESSING = YES, which specifies that the HLAPI is

to use equal sign processing. If you specify any other value, the HLAPI
performs no equal sign processing.

v HICAINPP = address of the first input PDB
¶ BLGYHLPI(HICA).

2 Server ¶ Validates HICA and PDB fields
¶ Adds record relations
¶ Waits for completion
¶ Sets the following HICA fields:

v HICARETC
v HICAREAS
v HICAMSGP
v HICAERRP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v HICARETC contains return code.
v HICAREAS contains reason code.
v HICAMSGP contains pointer to message PDB chain or 0000.
v HICAERRP contains pointer to error PDB chain or 0000.

¶ Continues processing.

Delete Record (HL13)
This transaction deletes a Tivoli Information Management for z/OS record.

Note: If you are using logical database partitioning, you can delete a record only if the
Owning Partition of that record matches the Primary Partition of your privilege class.

Use the following HICA fields and PDBs for this transaction:

HICAENVP
Must contain the value stored on completion of HLAPI initialization.

Database Access Transactions

205Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

HICACTLP (CONTROL)
The following PDBs are required:

¶ TRANSACTION_ID must contain the 4-character transaction code HL13.

¶ RNID_SYMBOL must contain the 1- to 8-character external record identifier of the
record to be deleted. A user-defined record identifier can have mixed data containing
DBCS characters enclosed by an SO/SI pair.

The following PDBs are optional:

¶ APPLICATION_ID contains a 1- to 8-character uppercase application ID that Tivoli
Information Management for z/OS uses. The application ID remains in effect until
changed on a subsequent transaction. If APISECURITY=ON is specified in your
BLX-SP startup parameters, you must ensure that the MVS user IDs running your
application are allowed to use this application ID. “API Security” on page 287
contains additional information regarding API security.

¶ PRIVILEGE_CLASS contains a 1- to 8-byte uppercase startup privilege class name
that the API passes to Tivoli Information Management for z/OS. This privilege class
remains in effect until changed on a subsequent transaction. A privilege class name
can be mixed data containing DBCS characters enclosed by an SO/SI pair, but it
cannot contain SBCS Katakana. The application ID used must be an eligible user of
this privilege class.

HICAINPP (INPUT)
Initialize to zeros.

HICAOUTP (OUTPUT)
Contains the value previously stored by the HLAPI.

HICAMSGP (MESSAGES)
Contains the value previously stored by the HLAPI.

HICAERRP (ERROR CODES)
Contains the value previously stored by the HLAPI.

Table 66 shows the delete record (HL13) transaction flow. In the table, symbolically named
PDBs have a value, for example, PDB TRANSACTION_ID=HL13. This method reduces the
amount of text on the line in the table. The name on the left of the equation is the value in
the PDB field PDBNAME. The data on the right of the equation is the value in the PDB
field PDBDATA. For more detailed information on the HLAPI structures, their fields, and
their parameters, see “HLAPI Structures” on page 216.

Table 66. HLAPI Transaction HL13. Delete Record
Step Program Action

1 Application ¶ Sets fields as follows:
v HICACTLP (pointer to first control PDB) The following PDBs are required:

– TRANSACTION_ID=HL13
– RNID_SYMBOL = the ID of the record to be deleted

The following PDBs are optional:
– APPLICATION_ID = the application ID
– PRIVILEGE_CLASS = the privilege class name

¶ BLGYHLPI(HICA).

Database Access Transactions

206 Version 7.1

Table 66. HLAPI Transaction HL13 (continued). Delete Record
Step Program Action

2 Server ¶ Validates HICA and PDB fields
¶ Deletes record
¶ Waits for completion
¶ Sets the following HICA fields:

v HICARETC
v HICAREAS
v HICAMSGP
v HICAERRP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v HICARETC contains return code.
v HICAREAS contains reason code.
v HICAMSGP contains pointer to message PDB chain or 0000.
v HICAERRP contains pointer to error PDB chain or 0000.

¶ Continues processing.

Get Data Model (HL31)
This transaction returns selected information from the specified static PIDT or generated
PIDT. It is used by a HLAPI application program to obtain information on the fields in a
particular data view record or PIDT. To invoke this transaction, an application program
specifies the static PIDT name or data view name from which to retrieve information, and
optionally, an alias table to convert PIDTSYMB values into more meaningful field names.
On return from the HL31 transaction, the application program loops through the output
PDBs looking for the PDB name that corresponds to the field sought by the application. The
application then parses the data in the PDBDATA field using the external BLGUHIDM data
mapping.

If the application has PIPT validation data returned, the application obtains the next PDB to
see if the PDBNAME field contains the same PIDTSYMB value and a value of V in the
PDBTYPE field. If so, the application parses the data in the PDBDATA field using the
HIVP data mapping. The application continues to retrieve the validation patterns until the
PDBNAME field of the next PDB contains a different PIDTSYMB name. The validation
patterns retrieved can be used by the application to validate the field data before the data is
sent to the server.

The output that results from this transaction is one output PDB for each static PIDT row (if
you specify PIDT_NAME) or one output PDB for each data attribute record (if you specify
DATA_VIEW_NAME); each PDB so produced is followed by one output PDB per PIPT
row associated with the PIDT symbol name (s-word). The PDBNAME field of each output
PDB is the PIDTSYMB value (the symbolic s-word or p-word) or the alias name for the
PIDTSYMB value (if ALIAS_TABLE is specified and there is an alias name defined for the
field). The PDBTYPE field is set to F for PIDT data and is set to V for PIPT validation
data.

For PIDT output PDBs, the PDBDATA field is mapped by the HIDM. The fields in the
HIDM, described in Table 70 on page 237, are a subset of fields from the PIDT structure.
PIDTMNCR and PIDTMAXL are converted to a character and are stored into HIDMNCR
and HIDMAXL, respectively.

Database Access Transactions

207Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

Note: The value for HIDMREQD is always returned as N.

For PIPT output PDBs, the PDBDATA field is mapped by the HIVP, described in Table 71
on page 238. The fields in the HIVP are a subset of fields from the PIPT structure.

PIPTNUMR is converted to character and stored into HIVPNUMR.

Use the following PDBs for this transaction:

HICACTLP (CONTROL)
The following PDBs are required:

¶ TRANSACTION_ID must contain the 4-character transaction code HL31.

¶ You must specify where the data model information is to come from by specifying
either a PIDT_NAME to define the static PIDT or a DATA_VIEW_NAME to
specify the data view (if both are specified, the DATA_VIEW_NAME is used).

The following PDBs are optional:

¶ APPLICATION_ID contains a 1- to 8-character uppercase application ID that Tivoli
Information Management for z/OS uses. If APISECURITY=ON is specified in your
BLX-SP startup parameters, you must ensure that the MVS user IDs running your
application are allowed to use this application ID. “API Security” on page 287
contains additional information regarding API security.

¶ PRIVILEGE_CLASS contains a 1- to 8-byte uppercase privilege class name that the
API passes to Tivoli Information Management for z/OS. This privilege class remains
in effect until changed on a subsequent transaction. A privilege class name can be
mixed data containing DBCS characters enclosed by an SO/SI pair, but it cannot
contain SBCS Katakana. The application ID used must be an eligible user of this
privilege class.

¶ ALIAS_TABLE is used to resolve PIDT names and field names. If specified, output
PDBs will be named using the alias name for a field, if one exists, or the
PIDTSYMB value for the fields.

¶ RETURN_VALIDATION_DATA contains the character value YES or NO, which
indicates whether to return validation pattern data. The default value is YES.

HICAINPP (INPUT)
Initialize to zeros.

HICAOUTP (OUTPUT)
Output PDBs are returned that describe the data model.

HICAMSGP (MESSAGES)
Contains the value previously stored by the HLAPI.

HICAERRP (ERROR CODES)
Contains the value previously stored by the HLAPI.

Table 67 on page 209 shows the get data model (HL31) transaction flow. In the table,
symbolically named PDBs have a value, for example, PDB TRANSACTION_ID=HL31.
This method reduces the amount of text on the line in the table. The name on the left of the
equation is the value in the PDB field PDBNAME. The data on the right of the equation is
the value in the PDB field PDBDATA. For more detailed information on the HLAPI
structures, their fields, and their parameters, see “HLAPI Structures” on page 216.

Database Access Transactions

208 Version 7.1

Table 67. HLAPI Transaction HL31. Get Data Model
Step Program Action

1 Application ¶ Sets fields as follows:
v HICACTLP (pointer to first control PDB) The following PDBs are required:

– TRANSACTION_ID=HL31
– PIDT_NAME of the static PIDT or DATA_VIEW_NAME of the data view

The following PDBs are optional:
– APPLICATION_ID = the application ID
– PRIVILEGE_CLASS = the privilege class name
– ALIAS_TABLE = the name of an alias table
– RETURN_VALIDATION_DATA = YES or NO to specify whether to return

validation pattern data
¶ BLGYHLPI(HICA).

2 Server ¶ Validates HICA and PDB fields
¶ Gets data model information
¶ Waits for completion
¶ Sets the following HICA fields:

v HICARETC
v HICAREAS
v HICAOUTP
v HICAMSGP
v HICAERRP

¶ Returns to application.

3 Application ¶ Checks the following fields set by the server:
v HICARETC contains return code.
v HICAREAS contains reason code.
v HICAOUTP contains pointer to output PDB chain or 0000.
v HICAMSGP contains pointer to message PDB chain or 0000.
v HICAERRP contains pointer to error PDB chain or 0000.

¶ Continues processing.

HLAPI Graphic Examples
The following figures show graphic representations of parameter data that the HLAPI uses
for some of the transactions described previously in the chapter. Each figure shows
representative PDBs on each PDB chain.

It is assumed that your application creates control and input chains before starting the
transaction. The HLAPI creates output, message, and error chains while the transaction runs.
Each of the following examples shows a view of these chains after a transaction completes.

Database Access Transactions

209Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

Initialize Tivoli Information Management for z/OS

PDBNAME = CLASS_COUNT

PDBDATL = 4
PDBDATA = ’00000002 ’x

PDBNAME = SPOOL_INTERVAL

PDBDATL = 4
PDBDATA = ’00001200’x

PDBNAME = SESSION_MEMBER

PDBDATL = 8
PDBDATA = BLGSESAA

PDBNAME = TRANSACTION_ID

PDBDATL = 4
PDBDATA = HL01

PDBNAME = TABLE_COUNT

PDBDATL = 4
PDBDATA = ’00000003’x

PDBNAME = HLIMSG_OPTION

PDBDATL = 1
PDBDATA = B

PDBNAME = DATABASE_ID

PDBDATL = 1
PDBDATA = 5

PDBNAME = APPLICATION_ID

PDBDATL = 8
PDBDATA = AUTOAPPL

PDBNAME = PRIVILEGE_CLASS

PDBDATL = 8
PDBDATA = AUTOCLAS

HICACTLP
CONTROL CHAIN

HICAINPP
INPUT CHAIN

HICAOUTP
OUTPUT CHAIN

HICAMSGP
MESSAGE CHAIN

HICAERRP
ERROR CHAIN

No parameter data b locks are requi red.

No parameter da ta b locks are provided.

PDBs returned f rom the HLAPI , inc lud ing
in i t ia l izat ion message parameter data b locks, i f produced.

No parameter da ta b locks are provided.

Figure 7. Initialize Tivoli Information Management for z/OS Example

HLAPI Graphic Examples

210 Version 7.1

Record Retrieve

HICACTLP
CONTROL CHAIN

HICAINPP
INPUT CHAIN
(optional)

PDBNAME = RNID_SYMBOL

PDBDATL = 8
PDBDATA = 00002861

PDBNAME = TRANSACTION_ID

PDBDATL = 4
PDBDATA = HL06

PDBNAME = TEXT_OPTION

PDBDATL = 3
PDBDATA = YES

PDBNAME = RETRIEVE_ITEM

PDBDATL = 5
PDBDATA = S0B59

PDBNAME = PIDT_NAME

PDBDATL = 7
PDBDATA = BLGYPRR

PDBNAME = ALIAS_TABLE

PDBDATL = 8
PDBDATA = ALIAS001

PDBNAME = RETRIEVE_ITEM

PDBDATL = 5
PDBDATA = S0CA9

PDBNAME = RETRIEVE_ITEM

PDBDATL = 16
PDBDATA = DESCRIPTION_TEXT

PDBNAME = RETRIEVE_ITEM

PDBDATL = 19
PDBDATA = PROBLEM_DESCRIPTION

PDBNAME = TEXT_MEDIUM

PDBDATL = 1
PDBDATA = B

Shows a mix ture
of s-word indexes
and a l ias names

PDBNAME = RETRIEVE_ITEM

PDBDATL = 14
PDBDATA = INITIAL_STATUS

Figure 8. Retrieve Record Example (Part 1 of 2)

HLAPI Graphic Examples

211Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

PDBNAME = S0B59

PDBDATL = 6
PDBDATA = SMITHH

HICAOUTP
OUTPUT CHAIN

HICAMSGP
MESSAGE CHAIN

HICAERRP
ERROR CHAIN

PDBs re tu rned f rom the HLAPI , inc lud ing record re t rieve message PDBs,
i f p roduced, and cha in ing was reques ted a t in i t ia l i za t ion .

PDBNAME = S0CA9

PDBDATL = 4
PDBDATA = 3270

PDBNAME = DESCRIPTION_TEXT
PDBDATW = 60
PDBDATL = 60
PDBDATA = The system does not

respond when the Enter
key is pressed.

Error code PDBs

PDBNAME = SEPARATOR_CHARACTER

PDBDATL = 1
PDBDATA = ,

Note: PDBDATL/PDBDATW = 1
indicat ing 1 l ine of text

PDBNAME = INITIAL_STATUS

PDBDATL = 4
PDBDATA = OPEN

PDBNAME = PROBLEM_DESCRIPTION

PDBDATL = 21
PDBDATA = SYSTEM NOT RESPONDING

Figure 8. Retrieve Record Example (Part 2 of 2)

HLAPI Graphic Examples

212 Version 7.1

Create Record

Error code PDBs

PDBNAME = ALIAS_TABLE

PDBDATL = 8
PDBDATA = ALIAS001

PDBNAME = TRANSACTION_ID

PDBDATL = 4
PDBDATA = HL08

PDBNAME = REPORTER_NAME

PDBDATL = 6
PDBDATA = SMITHH
PDBPROC = V

PDBNAME = INITIAL_STATUS

PDBDATL = 4
PDBDATA = OPEN
PDBPROC = V

PDBNAME = PIDT_NAME

PDBDATL = 7
PDBDATA = BLGYPRC

PDBNAME = SEPARATOR_CHARACTER

PDBDATL = 1
PDBDATA = ,

PDBNAME = REPORTER_DEPT

PDBDATL = 3
PDBDATA = X12
PDBPROC = V

PDBNAME = REPORTER_PHONE

PDBDATL = 4
PDBDATA = 4444
PDBPROC = V

PDBNAME = S0CA9

PDBDATL = 4
PDBDATA = 3270
PDBPROC = V

PDBs re tu rned f rom the HLAPI , inc lud ing record c rea te message PDBs,
i f p roduced, and cha in ing was reques ted .

PDBNAME = RNID_SYMBOL

PDBDATL = 8
PDBDATA = 00002618

PDBNAME = PROBLEM_DESCRIPTION

PDBDATL = 21
PDBDATA = SYSTEM NOT RESPONDING
PDBPROC = V

The system does not respond when the Enter key is pressed.

PDBNAME
PDBDATW
PDBDATL

PDBPROC

= DESCRIPTION_TEXT
= 60
= 60

=

HICACTLP
CONTROL CHAIN

HICAINPP
INPUT CHAIN

HICAOUTP
OUTPUT CHAIN

HICAMSGP
MESSAGE CHAIN

HICAERRP
ERROR CHAIN

Figure 9. Create Record Example

HLAPI Graphic Examples

213Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

Record Inquiry

HICACTLP
CONTROL CHAIN

HICAINPP
INPUT CHAIN

PDBNAME = ALIAS_TABLE

PDBDATL = 8
PDBDATA = ALIAS001

PDBNAME = TRANSACTION_ID

PDBDATL = 4
PDBDATA = HL11

PDBNAME = ASSOCIATED_DATA

PDBDATL = 19
PDBDATA = PROBLEM_DESCRIPTION

PDBNAME = REPORTER_DEPT
PDBPROC = V
PDBDATL = 3
PDBDATA = X12

PDBNAME = PHONE_PREFIX
PDBPROC = F
PDBDATL = 4
PDBDATA = 4444

PDBNAME = PIDT_NAME

PDBDATL = 7
PDBDATA = BLGYPRI

PDBNAME = INITIAL_STATUS
PDBPROC = V
PDBDATL = 4
PDBDATA = OPEN

PDBNAME = S0CA9
PDBPROC = V
PDBDATL = 4
PDBDATA = 3270

PDBNAME = SEPARATOR_CHARACTER

PDBDATL = 1
PDBDATA = ,

Figure 10. Record Inquiry Example (Part 1 of 2)

HLAPI Graphic Examples

214 Version 7.1

Error code PDBs

PDBNAME = INQUIRY_RESULT

PDBDATL = 87
PDBDATA = 00012345 PROBLEM_RECORD SYSTEM NOT RESPONDING

PDBNAME = INQUIRY_RESULT

PDBDATL = 87
PDBDATA = 00514690 PROBLEM_RECORD KEYBOARD STUCK

PDBNAME = INQUIRY_RESULT

PDBDATL = 87
PDBDATA = USER0004 PROBLEM_RECORD D IM PICTURE

HICAOUTP
OUTPUT CHAIN

HICAMSGP
MESSAGE CHAIN

HICAERRP
ERROR CHAIN

PDBs re tu rned f rom the HLAPI , inc lud ing record inqu i ry message PDBs,
i f p roduced, and cha in ing was reques ted .

32 characters

32 characters

45 characters

45 characters

32 characters 45 characters

00

00

00

Figure 10. Record Inquiry Example (Part 2 of 2)

HLAPI Graphic Examples

215Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

Delete Text Data Set

HLAPI Structures
Your application uses two HLAPI structures to access the Tivoli Information Management
for z/OS database through the HLAPI. These structures are:
¶ The HLAPI communications area (HICA)
¶ The parameter data block (PDB).

High-Level Application Program Interface Communications Area
Your application allocates the HICA. It is used to communicate between the HLAPI and
your application. The HICA also serves as a communications anchor to the HLAPI PDB
structures. You can find a sample assembler DSECT mapping for the HICA in the sample
library (SBLMMACS) that is part of Tivoli Information Management for z/OS. Look for
BLGUHICA in this sample library.

Table 68 on page 217 shows the structure of the HICA and the page number where the table
fields are explained:

Note: As shown in the table, some fields are set by the interface. Do not design your
application to set these fields; if it does, unpredictable results occur.

PDBNAME = TRANSACTION_ID

PDBDATL = 4
PDBDATA = HL16

PDBNAME = TEXT_DDNAME

PDBDATL = 6
PDBDATA = MYTEXT01

PDBNAME = TEXT_DDNAME

PDBDATL = 6
PDBDATA = MYTEXT02

HICACTLP
CONTROL CHAIN

HICAINPP
INPUT CHAIN

HICAOUTP
OUTPUT CHAIN

HICAMSGP
MESSAGE CHAIN

HICAERRP
ERROR CHAIN

No outpu t PDBs produced.

PDBs re tu rned f rom the HLAPI , i nc lud ing de le te da ta se t message PDBs,
i f p roduced, and cha in ing was reques ted .

Error code PDBs

Figure 11. Delete Text Data Set Example

HLAPI Graphic Examples

216 Version 7.1

Table 68. HICA Field Definitions

Field Label
Offset

DEC(HEX)
Length
DEC Description Set by page

HICAACRO 0(0) 4 The acronym HICA Application 217

HICALENG 4(4) 4 Length of this structure (fixed) Application 217

HICARETC 8(8) 4 Transaction return code (fixed) Interface 217

HICAREAS 12(C) 4 Transaction reason code (fixed) Interface 217

HICAENVP 16(10) 4 Transaction environment anchor
(pointer)

Interface 217

HICACTLP 20(14) 4 Control PDB anchor (pointer) Application 218

HICAINPP 24(18) 4 Input PDB anchor (pointer) Application 218

HICAOUTP 28(1C) 4 Output PDB anchor (pointer) Interface 218

HICAMSGP 32(20) 4 Message PDB anchor (pointer) Interface 218

HICAERRP 36(24) 4 Error PDB anchor (pointer) Interface 218

HICASTPA 40(28) 4 Subtask TCB address place holder
address (pointer)

Interface 218

HICACRRC 44(2C) 4 Reserved for HLAPI use. Interface 218

HICARESV 48(30) 32 Server reserved. Must be zeros. Application 218

The following section describes the purpose of each field in the HICA structure:

HICAACRO
A 4-character field containing the character string HICA to identify this
communication area. Your application sets this field.

HICALENG
A 4-byte fixed field that contains the length of this structure. This value, along with
the value in HICAACRO, is used to validate the structure when your application
passes it to the HLAPI. Your application sets this field.

HICARETC
A 4-byte fixed field containing a return code from the HLAPI. The API sets this
field. See “Return and Reason Codes” on page 301 for a list of return codes.

HICAREAS
A 4-byte fixed field containing the reason code from the HLAPI. The API sets this
field. See “Return and Reason Codes” on page 301 for a list of reason codes.

HICAENVP
A 4-byte pointer field containing the address of the HLAPI environment area.

Note: Initialize this field to zero when your application passes it to the HLAPI for
the first time during an initialize Tivoli Information Management for z/OS
transaction (HL01). During the initialize Tivoli Information Management for
z/OS transaction, the HLAPI sets this field.

Your application must maintain the address stored in this pointer until the Terminate
Tivoli Information Management for z/OS (HL02) transaction is complete.

HLAPI Structures

217Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

HICACTLP – first CONTROL PDB
A 4-byte pointer containing the address of the first control PDB the HLAPI
processes. Your application sets this field.

HICAINPP – first INPUT DATA PDB
A 4-byte pointer containing the address of the first input PDB the HLAPI processes.
Your application sets this field.

HICAOUTP – first OUTPUT DATA PDB
A 4-byte pointer containing the address of the first output data PDB the HLAPI
creates. Output PDB chains are freed at the time of the next HLAPI call. The API
sets this field.

HICAMSGP – first MESSAGE DATA PDB
A 4-byte pointer containing the address of the first message data PDB the HLAPI
creates. Message PDB chains are freed at the time of the next HLAPI call. The API
sets this field.

HICAERRP – first ERROR CODE PDB
A 4-byte pointer containing the address of the first ERROR CODE PDB the HLAPI
creates. Error PDB chains are freed at the time of the next HLAPI call. The HLAPI
sets this field.

HICASTPA
A 4-byte pointer containing the address of the storage containing the address of the
subtask TCB.

Note: If your application uses an ESTAE exit, detach the Tivoli Information
Management for z/OS subtask if appropriate as follows:
1. Check that there is a subtask TCB address.
2. Issue a DETACH.

The field pointed to contains either the address of the subtask TCB (if the subtask is
active) or zero (if the subtask is inactive). The API sets this field.

HICACRRC
Reserved for server use.

HICARESV
A 32-byte area reserved for future use. Your application must initialize this area to
zeros.

Parameter Data Block
The PDB structure passes data between the HLAPI and your application. Your application
must allocate and initialize a PDB for each item of data that your application passes to the
HLAPI. The HLAPI allocates and initializes a PDB for each item of data that it passes back
to your application. If the API determines that the data structures passed to it are valid, it
frees the output, message, and error PDB chains from the previous transaction.

Your application can pass two chains of PDBs to the HLAPI.

¶ The first chain contains control parameters that the HLAPI uses to determine which
transaction to process and how to process it.

¶ The second chain contains input (models of data) record data. Create, update, add, and
inquiry transactions require input record data.

HLAPI Structures

218 Version 7.1

The HLAPI can pass three chains of PDBs to the application. The first chain specifies
output data for output-generating transactions, such as the Retrieve Record (HL06)
transaction. The second chain specifies message data associated with running the transaction.
The third chain specifies error data associated with running the transaction.

The HLAPI initializes HICAOUTP, HICAMSGP, HICAERRP, HICARETC, and HICAREAS
to 00 when it receives control at the start of a transaction.

Table 69 shows the structure of the parameter data block and the page number where the
data block fields are explained:

Table 69. Parameter Data Block Field Definitions
Field Label Offset

DEC(HEX)
Length DEC Description page

PDBNEXT 0(0) 4 Address of next PDB in the chain (pointer) 219

PDBPREV 4(4) 4 Optional address of previous PDB in the chain
(pointer)

219

PDBACRO 8(8) 4 Parameter Data Block Acronym (character string
of PDB left-justified and right-padded with a
blank)

219

PDBNAME 12(C) 32 Parameter data symbolic name (character) 220

PDBTYPE 44(2C) 1 Parameter data type (character) 220

PDBPROC 45(2D) 1 Parameter data processing flag (character) 221

PDBCODE 46(2E) 1 Parameter data error code (character) (initialized
to blank by application)

222

PDBRSV1 47(2F) 5 Reserved 223

PDBDATW 52(34) 4 Parameter data unit width (fixed) 223

PDBAPPL 56(38) 4 For use by the creator of the PDB 223

PDBDATL 60(3C) 4 Length of parameter data (fixed) 223

PDBDATA 64(40) variable Parameter data (character and fixed) 223

The following section describes the purpose of each PDB field:

PDBNEXT
A 4-byte pointer to the address of the next PDB on this chain. This required field
contains zeros if there are no additional PDBs on the chain.

Note: Do not alter this field for any PDB chains produced by the HLAPI.

PDBPREV
A 4-byte pointer to the address of the previous PDB on this chain. This optional
backward pointer field contains zeros if the chain contains no previous PDBs.

Note: Do not alter this field for any PDB chains produced by the HLAPI.

PDBACRO
A 4-byte character field containing the string PDB left justified and right padded
with a blank. It identifies this control structure. This identifier value must appear in
all PDB structures used by the HLAPI.

HLAPI Structures

219Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

PDBNAME
A 32-byte character field containing the symbolic name of the parameter data item
this PDB contains. Symbolic names are left-justified uppercase character strings
padded with blanks. These strings can only contain the characters A-Z, 0-9, an
underscore, and a period. The first character must be an alphabetic character (A-Z).
Symbolic names cannot contain imbedded blanks or DBCS characters enclosed by
an SO/SI pair.

This required field contains one of the following:
¶ S-Word index (used for input, output, and error PDBs)
¶ P-Word index (used for input PDBs)
¶ Alias external name (used for input and output PDBs)
¶ Reserved PDB external name (used for control, input, and message PDBs).
¶ History data retrieved and returned as output data is HISTORYNNNNNN where

NNNNNN is initialized at 000001 and is incremented by 1 for each history data
item.

The name you specify in a PDB depends on its use. Control and message PDBs
always use reserved names. See “Reserved Symbolic PDB Names” on page 224 for a
list of reserved names. Input and output PDBs can use various symbolic names
depending on the transaction specified.

When a PDB refers to a freeform inquiry argument, this field must contain either the
alias name of the Tivoli Information Management for z/OS p-word used to construct
the argument or the reserved symbolic name USE_AS_IS_ARGUMENT.

PDBTYPE
A 1-byte character field indicating the type of data that this PDB contains. The
HLAPI uses this field for input and output PDB processing. The following data type
field values are accepted:

¶ Blank – No data type assigned to this parameter

The HLAPI returns this value to output PDBs that relate to data items that are
single word response fields such as reporter name or status. The HLAPI also
returns this value to message and error PDBs.

¶ A – Direct-add response data

The HLAPI returns this value to an output PDB when the HLAPI determines
that PDBDATA contains a direct-add item.

¶ D – Date field response data

The HLAPI returns this value to an output PDB when the HLAPI determines
that PDBDATA field contains a date. Date response fields contain date data in a
format unique to your company’s needs. This code alerts your application to
possibly process the date data in a unique way.

¶ F – Data Model information. Used when the Get Data Model transaction is
returning information from BLGPIDT. The PDBDATA field is mapped by
BLGUHIDM.

¶ G – Specifies that this PDB comes first in a group of one or more related
history data items. This is indicated by the associated PIHTSGRP row field set
to Y.

HLAPI Structures

220 Version 7.1

¶ H – Specifies that this PDB is not the first PDB in a group of several related
history data items. This is indicated by the associated PIHTSGRP row field not
set to Y.

¶ L – List item field response data

The HLAPI returns this value to an output PDB when the HLAPI determines
that PDBDATA contains list item responses. A list item is a field possibly
containing multiple responses produced by the list processor. The list processor
displays data in tabular form. The purpose of this type of value is to alert your
application that the data field might contain multiple responses separated by the
separator character defined in the output PDB named
SEPARATOR_CHARACTER.

¶ M – When data is returned to an application by using the SETAPIDATA control
line in a HLAPI, data is returned in the form of output PDBs. The
SETAPIDATA can build output PDBs that contain a single string as output data
or multiple lines of output data. PDBTYPE is set to M if the PDB contains
multiple lines of data.

¶ P – Phrase item

The HLAPI returns this value to an output PDB when the HLAPI determines
that PDBDATA contains a keyword phrase or visible phrase item. Visible
phrases are external descriptions. Keyword phrases are associated with selections
made during the interactive collection of data. This type of data is useful in
determining if a certain panel dialog was entered. An example of a visible
phrase is ’Reporter data’ from the problem summary panel. An example of a
keyword phrase is RECS=PROBLEM collected when selecting a problem record
as the type of record you want to create.

¶ S – String field response data

The HLAPI returns this value to an output PDB when the HLAPI determines
that the field was defined as a string in the PIDT or data view. The problem
’Description’ field is an example of a string field.

¶ V – Validation pattern information. Used when the Get Data Model transaction
is requested to return validation pattern information from BLGPIPT. The
PDBDATA field is mapped by BLGUHIVP.

¶ X – Text related data

The HLAPI returns this value to an output PDB when the HLAPI determines
that PDBDATA contains text related data. Field PDBDATA contains either data
set name information or text, depending on which text processing options you
specify.

PDBPROC
A 1-byte character field indicating the type of processing applied to the data that this
PDB refers to when the PDB is used as input to the HLAPI.

Valid field values are:

¶ Blank – No unique processing on this data.

¶ V – Perform data response validation and case conversion when processing this
PDB.

HLAPI Structures

221Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

Note: The HLAPI does not validate string, phrase, text, and direct-add items,
but it does perform case conversion of string data.

¶ F – Process as a freeform inquiry argument. If you use this value for anything
other than inquiry transactions (HL11), it is ignored and not treated as an error.

The HLAPI converts freeform inquiry arguments to LLAPI PIAT entries. When
Tivoli Information Management for z/OS processes freeform arguments using an
alias name in PDBNAME for a p-word, the alias table row is located in the alias
table. The HLAPI extracts the corresponding p-word from the table and stores it
first in an LLAPI PIAT entry followed by the argument data contained in
PDBDATA. This gives you a way to symbolically name the p-word appended in
front of the argument data. If PDBNAME contains the reserved name
USE_AS_IS_ARGUMENT, then only the argument data is stored in the LLAPI
PIAT entry. The argument data can contain a p-word, for example, PERS/JON,
or just be data.

Freeform arguments can also contain Boolean or range operators. When using
these operators, the operator must be the first character of the argument data and
the data must not contain any imbedded blanks. When the HLAPI builds the
freeform argument, it stores the Boolean operator as the first character in the
LLAPI PIAT entry followed by the p-word and then the data.

Note: You cannot use the F processing flag for phrase or direct-add items.

¶ T – Perform PDB data logging. The HLAPI uses this field in the
TRANSACTION_ID PDB with the initialize Tivoli Information Management for
z/OS transaction (HL01) to determine what additional data to log. See the
initialize Tivoli Information Management for z/OS transaction (HL01) on page
153 for more information. This value is ignored for any transaction other than
initialize Tivoli Information Management for z/OS transaction (HL01).

¶ X – Perform Text searching using HL11. See the record inquiry transaction
(HL11) on page 194 for more information.

PDBCODE
A 1-byte character field set by the HLAPI in an input PDB. Your application must
set this field to blank so that the HLAPI can set this field when one of the following
errors occurs:

¶ Blank – No error found.

¶ E – There is no response data for this item in the record. This is not an error; it
is only an indication that the field is null.

¶ I – the response data parameter found internal processing errors or a text item
found data set processing errors. This can also mean that a text data item was
requested using a RETRIEVE_ITEM PDB with TEXT_MEDIUM set to D.

¶ L – The response data parameter is too long or is larger than the size of the data
that can be collected by Tivoli Information Management for z/OS. This code
indicates that the response data is greater than the size of the PIDT field or the
PIAT entry argument is greater than 33 bytes.

¶ M – the response data item could not be found in the currently specified PIDT
or PALT. The p-word could not be found in the PALT. This could also occur if
you specify alias names without having specified alias processing.

HLAPI Structures

222 Version 7.1

|
|

¶ N – The number of responses for a field is larger than the maximum defined for
the field in PIDTMNCR.

¶ V – The response data parameter did not meet validation specifications or was
used incorrectly with a transaction:
v The data is not a valid date
v The type of the data returned did not match the PIDT definition of the data.
v PIDTCURL divided by PIDTCNFR produced a nonzero remainder when

processing text units.

PDBRSV1
A 5-byte area reserved for future use.

PDBDATW
A 4-byte fixed field specifying the width of a data field unit that this PDB
references. Only text data fits this category. If control PDB TEXT_STREAM is not
YES, PDBDATW is used as follows. When this PDB references text data, this field
specifies the width of a text unit, and PDBDATL specifies the total length of all the
text units. This PDB is also used when your application inputs blocks of text to
define the width of a text line in the block. If control PDB TEXT_STREAM is YES,
both PDBDATW and PDBDATL equal the total length of the text. When this PDB
contains text data set name information, this field is always zero. The fields
PDBDATW and PDBDATL are important for applications retrieving records and
disassembling the text.

PDBAPPL
A 4-byte field that the creator of this PDB, whether your application or the HLAPI,
can use for any purpose. When performing a search, the HLAPI uses this field on
the first output PDB to return the total number of matches from that search.

PDBDATL
A 4-byte fixed field containing the length of the data that this structure references.

If this API connects to a BLX-SP that supports DBCS (that is, DBCS=YES is
specified in the BLX-SP parameters), the maximum value of this field is 32 767.

Note: Your application can specify zero in this field for control PDBs to ignore the
PDB. This method is useful when processing control PDBs because your
application can create an initial control PDB chain once and change values as
it processes.

PDBDATA
A variable length character or fixed field containing the data that this structure
references. Only control data can be fixed. Input response and control data must be
uppercase to be consistent with interactive response processing.

This is the only field that can contain mixed data with DBCS characters enclosed by
an SO/SI pair. Examples of mixed data fields are external record identifier (user
defined) and privilege class name.

If this API connects to a BLX-SP that supports DBCS (that is, DBCS=YES is
specified in the BLX-SP parameters), the maximum length of the data pointed to by
this field is 32 767.

PDB Example
This is a sample view of a PDB with pertinent fields set.

HLAPI Structures

223Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

PDBNEXT = 00031000 (address of next PDB)
PDBPREV = 00000000 (address of previous PDB)
PDBACRO = PDB
PDBNAME = REPORTER_NAME
PDBTYPE = blank
PDBPROC = V (validate the response)
PDBCODE = blank
PDBRSV1 = 0000000000
PDBDATW = 00000000
PDBDAPPL= 00000000
PDBDATL = 00000006
PDBDATA = BROWNJ

Reserved Symbolic PDB Names
The following PDB symbolic names are reserved for use by the HLAPI. They are intended
to be used for control PDBs or where the HLAPI must process PDBs that use unique names.
You can use these names in input PDBs, but do not use them where the interface expects to
process a unique name; for example, USE_AS_IS_ARGUMENT for inquiry input
processing. If you use these names in this way, unpredictable results can occur.
¶ ALIAS_TABLE
¶ APIMSG_OPTION
¶ APPLICATION_ID
¶ APPROVAL_STATUS
¶ ASSOCIATED_DATA
¶ BEGINNING_HIT_NUMBER
¶ BYPASS_PANEL_PROCESSING
¶ CICS_CM_TIME_OUT_VALUE
¶ CICS_INTER_TIME_OUT_VALUE
¶ CICS_PARTNER_ID
¶ CICS_USER_ID
¶ CLASS_COUNT
¶ DATA_VIEW_NAME
¶ DATABASE_ID
¶ DATABASE_PROFILE
¶ DATE_FORMAT
¶ DEFAULT_DATA_STORAGE_SIZE
¶ DEFAULT_OPTION
¶ DELETE_HISTORY
¶ EQUAL_SIGN_PROCESSING
¶ HIGH_MEMORY
¶ HISTORY_DATA
¶ HLAPILOG_ID
¶ HLIMSG_OPTION
¶ INQUIRY_RESULT
¶ LIST_MODE
¶ MESSAGE_DATA
¶ MULTIPLE_RESPONSE_FORMAT
¶ NUMBER_OF_HITS
¶ PASSWORD
¶ PIDT_NAME
¶ PRIVILEGE_CLASS
¶ REPLACE_TEXT_DATA
¶ RETRIEVE_ITEM
¶ RETURN_VALIDATION_DATA

HLAPI Structures

224 Version 7.1

¶ RNID_SYMBOL
¶ SEARCH_ID
¶ SEARCH_TYPE
¶ SECURITY_ID
¶ SEPARATOR_CHARACTER
¶ SESSION_MEMBER
¶ SPOOL_INTERVAL
¶ TABLE_COUNT
¶ TEXT_AREA
¶ TEXT_AUDIT_OPTION
¶ TEXT_DDNAME
¶ TEXT_MEDIUM
¶ TEXT_OPTION
¶ TEXT_STREAM
¶ TEXT_SEARCH_ARGUMENT
¶ TEXT_UNITS
¶ TEXT_WIDTH
¶ TIMEOUT_INTERVAL
¶ TIME_ZONE
¶ TRANSACTION_ID
¶ TSP_NAME
¶ USE_AS_IS_ARGUMENT
¶ USER_PARAMETER
¶ USER_PARAMETER_DATA

Parameter Data Definition
The following section describes parameter data passed within the control, input, output,
message, and error PDB chains used by the HLAPI.

Note: Control and message PDBs always use reserved symbolic names.

CONTROL chain
Control PDB parameters tell the HLAPI which transaction to process and how to
process it. The HICA field HICACTLP points to the first control PDB on the chain
of control PDBs. Parameter data specified on the control PDB chain is unique to the
transaction being performed. Specify character data in uppercase with no imbedded
blanks only.

Note: Parameter data must be left justified in the PDBDATA field and right padded
with blanks.

You can specify the following parameters on the control PDB chain. See Table 49 on
page 151 to find where to go in this chapter to determine which control parameters
the HLAPI uses for each transaction. The listed reserved names are stored in the
PDB field PDBNAME.

ALIAS_TABLE
Contains a 1- to 8-character alias table name used in processing the transaction.
If your application does not specify this parameter, the HLAPI does not perform
alias table processing for the transaction. Use this parameter with
TABLE_COUNT. If your application omits TABLE_COUNT or specifies it as

HLAPI Structures

225Application Program Interface Guide

|

3.
U

sin
g

th
e

H
L

A
P

I

zero in the initialization (HL01) transaction, then the HLAPI ignores the
ALIAS_TABLE parameter and does not perform alias processing.

APPLICATION_ID
Contains a 1- to 8-character uppercase application ID that Tivoli Information
Management for z/OS uses for this session. You can specify a value here to
change the name of the current application ID. The application ID is specified
on the HL01 transaction and can be specified on many other HLAPI
transactions, so it can vary over the life of the HLAPI session. The ID must be
an eligible user of the privilege class being used.

APPROVAL_STATUS
Contains the character value ACCEPT, which specifies that the specified
privilege class is accepting the change. If you specify any other value, the
change is rejected for the specified privilege class.

ASSOCIATED_DATA
Contains the symbolic name of the associated data field (PIRTDATA) item to be
extracted from the record when processing a PIRT. The HLAPI requires this
parameter if an inquiry transaction processes associated data. The value you
specify in field PDBDATA must be a symbolic field index when you do not
specify alias table processing, or an alias name when you specify alias table
processing. If you specify a text or list item for this field, then the HLAPI does
not return any associated data.

BEGINNING_HIT_NUMBER
Contains a 4-byte fixed field that specifies the beginning match number to
return. If your application specifies zero, the HLAPI uses a value of one.

DATA_VIEW_NAME
Contains a character field that specifies a data view name either as an alias or
data view record ID. You must specify an alias name as a 32-character
left-justified field exactly as it appears in a PALT. You specify a data view
record ID as a 1- to 8-character name. The API generates a PIDT from the data
view record and associated data attribute and validation records. A PIDT shows
the data view of the record being processed. All PIDTs and related PIPTs can be
maintained in storage to improve performance. See TABLE_COUNT on page 155
for information on caching PIDTs.

Note: If a PIDT_NAME is specified as well, the PIDT_NAME is ignored.

DATE_FORMAT
Contains a character field that specifies how your application uses dates. Valid
values are:

MM/DD/YY
MM/DD/YYYY
MM-DD-YY
MM-DD-YYYY
MM.DD.YY
MM.DD.YYYY
DD/MM/YY
DD/MM/YYYY
DD-MM-YY
DD-MM-YYYY
DD.MM.YY

HLAPI Structures

226 Version 7.1

DD.MM.YYYY
YY/MM/DD
YYYY/MM/DD
YY-MM-DD
YYYY-MM-DD
YY.MM.DD
YYYY.MM.DD
DDMMMYY
DDMMMYYYY
YYDDD
YYYYDDD

Note: The value DATABASE can also be specified; use of this value sets the
format back to the default (database format); this is analogous to the
PICADFMT=0 setting in the LLAPI (see page 20).

DEFAULT_OPTION
Contains a character field that specifies how the HLAPI performs create default
data response processing in this session. The valid data values for
DEFAULT_OPTION are ALL, REQUIRED, and NONE. ALL specifies that all
response fields specified in a PIDT are candidates for default responses.
REQUIRED specifies that only required fields are candidates for default
responses. The HLAPI does not perform default response processing if you omit
this field, specify it incorrectly, or specify it as NONE. You can override the
initial default processing option when creating records by respecifying the
default option on the control chain. After the create transaction completes, the
HLAPI reverts to the initial default specification for record creation unless
overridden again.

DELETE_HISTORY
Contains a character string specifying the date in external format of the oldest
history data to be kept with the record. Any history created earlier than this date
is deleted from the record. When a record is updated and the
DELETE_HISTORY PDB is specified with a date value, the last saved PIHT is
attached to the record and all history entries recorded before the given date are
marked for deletion. The LLAPI checks that the correct PIHT (correct meaning
that the PIHT was saved for the same record that the update is for) is attached to
the record and deletes the marked entries. In the LLAPI that is shipped with the
Tivoli Information Management for z/OS product, the history data update
function is shipped disabled. Once enabled, either in TSP BLGAPI05 for panel
processing or in TSP BLGAPIPX when bypassing panel processing, the user
must have database administrator authority to successfully execute this
transaction. Before data can be deleted, it must have been saved by setting the
HISTORY_DATA PDB to S or B on a previous retrieve of the same record.

EQUAL_SIGN_PROCESSING
Contains the character value YES, which specifies that the HLAPI is to use
equal sign processing. If you specify any other value, the HLAPI performs no
equal sign processing.

HISTORY_DATA
Contains R, S, or B.

HLAPI Structures

227Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

¶ R specifies that the HLAPI is to return at the end of the output PDB chain
all of the history data contained in the record.

¶ S specifies that the HLAPI will save the PIHT retrieved with this record for
later use on an update transaction. Any previously saved and unused PIHT is
replaced.

¶ B specifies that the HLAPI performs both functions of R and S.

If you specify any other character or you omit this parameter, then the HLAPI
does not retrieve or save history data for the record. No additional level of
authority is required for this function beyond that for record retrieval. As with
any PDB data returned on the output chain, the storage is freed on the next
invocation of the HLAPI. Only one PIHT can be saved at a time, regardless of
record type. The history saved from one record remains available for use until it
is replaced by the saved PIHT of another record or until it is actually used.
Subsequent transactions that do not save or use history data, retrieve or
otherwise, have no effect on the saved history data.

LIST_MODE
Contains an option parameter UPDATE, APPEND, or REPLACE.

¶ A value of UPDATE specifies that any new list data input on the update will
update existing lists in the record.

¶ A value of APPEND specifies that any new list data input on the update will
be appended to the end of existing lists in the record.

¶ A value of REPLACE specifies that any new list data input will replace
existing lists in the record.

If you specify any other value or if you omit this parameter, then the default
value of UPDATE is used.

NUMBER_OF_HITS
Contains a 4-byte fixed field that specifies the maximum number of matches to
be returned from a search:
¶ If this field contains a value, the actual number of matches is the smaller of:

v The value in this field
v The actual number of matches
v The value in SORTPFX-N1.

PIDT_NAME
Contains a character field that specifies a PIDT name either as an alias or a
member name. You must specify an alias name as a 32-character left-justified
field exactly as it appears in a PALT. You specify a member name as a 1- to
7-character member name that is retrieved from the BLGFMT report format
table data set. A PIDT shows the data view of the record being processed. All
PIDTs and related PIPTs can be maintained in storage to improve performance.
See TABLE_COUNT on page 155 for information on caching PIDTs.

Note: If a DATA_VIEW_NAME is specified, the PIDT_NAME is ignored.

PRIVILEGE_CLASS
Contains a 1- to 8- byte privilege class name, which can contain DBCS
characters enclosed by an SO/SI pair. A privilege class remains in effect until
your application specifies a different privilege class name. An application can

HLAPI Structures

228 Version 7.1

specify an initial privilege class that grants all authority required for the duration
of the Tivoli Information Management for z/OS session.

REPLACE_TEXT_DATA
Can contain the character value YES which indicates that any text data provided
is used to replace existing text of the same type. If any other value is specified,
the text data provided is appended to any existing text of the same type. If the
input consists of a single separator character, the existing text data is deleted.
For deleting freeform text using buffer processing, both PDBDATL and
PDBDATW must be set to the value 1.

RETURN_VALIDATION_DATA
Contains the character values YES or NO to indicate whether to return validation
pattern data. The default is YES.

RNID_SYMBOL
Contains a 1- to 8-character external record identifier of the record to be
processed. If the external record identifier is user defined, it can contain DBCS
characters enclosed by an SO/SI pair.

SEARCH_ID
A 4-byte fixed field containing the identifier of a search. It is assigned to either
a new search results list or an existing search results list. If the value of this
field is zero, the search results are not saved.

SEARCH_TYPE
Contains a 1-byte character field indicating how the HLAPI treats this search. If
this field is blank or set to S, it indicates to the HLAPI to start a new search. If
this field is set to T, it indicates to the HLAPI to terminate an existing search. If
this field is set to R, it indicates to the HLAPI to return matches from a saved
search.

SEPARATOR_CHARACTER
Contains a 1-byte separator character the HLAPI uses to process response data.
The value of the separator character, unless it is blank, overrides the value
specified in the PIDT when this PDB is used for input transaction processing.
The separator character must not be an SO or SI character. For a retrieve
transaction, the value in PIDTSEPC (a comma by default) is used as the
separator character.

TEXT_AREA
Contains a 1-character field indicating whether the HLAPI processes the bottom
block or top block of text lines when the number of text units (lines) available
exceeds the value of TEXT_UNITS. The valid values are T for the top block of
text and B for the bottom block of text. If you specify a value other than T or B,
or omit this parameter, then the HLAPI uses the default value B.

TEXT_AUDIT_OPTION
Contains the character value NO, which specifies that the HLAPI should not
return audit data when retrieving text. This parameter has no meaning when
creating or updating records. If you specify any other value or omit this
parameter, and have requested text to be retrieved, the HLAPI returns audit data.

TEXT_DDNAME
Contains a 6-character field that specifies the prefix of the DDNAME (the
leading 6 characters) that the HLAPI uses to generate application-defined

HLAPI Structures

229Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

DDNAMEs for text data sets. You use this control field only when
TEXT_MEDIUM=D and TEXT_OPTION=YES. As the HLAPI retrieves each
text item, it allocates a data set using a DDNAME.

The DDNAME that the application generates for this data set contains the prefix
characters that are specified by this parameter followed by a numerical ending
that the HLAPI generates. For example, ddname01, ddname02, ddname03. The
HLAPI can generate a maximum of 99 DDNAMEs.

The HLAPI passes text DDNAMEs to your application in output PDBs when
retrieving record data. This allows your application to open the data set by way
of the DDNAME so your application can process the record data immediately.

TEXT_MEDIUM
Contains the character B or D, which specifies the storage medium the HLAPI
uses to store or return text data when retrieving records. The character D
specifies that the HLAPI uses a data set or data sets, and the character B
specifies that the HLAPI uses a storage buffer. If you specify any other
character, then the HLAPI uses the default value of D. You use this parameter
with other text processing parameters.

TEXT_OPTION
Contains the character value YES, which specifies that the HLAPI is to process
text data items when retrieving records. This parameter has no meaning when
creating or updating records. If you specify any other value, the HLAPI
performs no text processing. You use this parameter with other text processing
parameters.

TEXT_STREAM
Contains the character value YES, which specifies that freeform text is processed
as a continuous stream of data which may include line feed characters. If you
specify any value other than YES or omit this parameter, freeform text is
processed as a series of fixed-width lines. This parameter may be specified on a
retrieve, a create, or an update transaction.

TEXT_UNITS
Contains a 4-byte fixed binary value that specifies the maximum number of text
units (lines) that the HLAPI can store in the response buffer for a single text
item when retrieving records. You use this parameter with the TEXT_AREA
parameter. If you specify a value of 0 or omit this parameter, and have requested
buffer text processing, then the HLAPI uses a default value of 60.

TEXT_WIDTH
Contains a 4-byte fixed binary value that specifies the maximum width of a text
unit (line) that the HLAPI can store in the response buffer. You use this
parameter only with record retrieval transactions and with the TEXT_MEDIUM
parameter. If you specify a value of 0 or a value greater than 132, or you omit
this parameter, and you have requested buffer text processing
(TEXT_MEDIUM=B), then the HLAPI uses a default of 60. Text width can be
any value between 1 and 132.

TIME_ZONE
Contains a 1– to 8–character value that must match one of the values in the
TIMEZONE record in the database. To use a time zone other than specified in
the session parameters member, pass the TIME_ZONE control PDB on any
HLAPI transaction with the desired TIMEZONE label as the data.

HLAPI Structures

230 Version 7.1

|
|
|
|
|

TRANSACTION_ID
Contains a 4-character transaction ID. Transaction IDs start with the letters HL
followed by two numeric characters between 0 and 9.

You specify the following control parameters only when requesting an Initialize
Tivoli Information Management for z/OS (HL01) transaction.

APIMSG_OPTION
Contains a 1-character LLAPI message option parameter P, C, or B.

¶ A value of P specifies that the LLAPI writes messages to the APIPRINT
data set.

¶ A value of C specifies that the LLAPI chains messages and passes them
from the LLAPI to the HLAPI for conversion into message PDBs.

¶ A value of B specifies that the LLAPI performs both P and C.

If you specify any other character or if you omit this parameter, then the LLAPI
performs option C. This PDB is used only if SPOOL_INTERVAL is specified
and is not set to zero.

BYPASS_PANEL_PROCESSING
Bypass panel processing indicator. Set this to YES to specify that no panels be
used in record processing other than those used by the delete transaction. If you
specify any other value, the HLAPI performs panel processing.

If you specify BYPASS_PANEL_PROCESSING = YES, you must use data
model records for the following transactions:

¶ HL08 Create record

¶ HL09 Update record

¶ HL12 Add record relation

Additional information on BYPASS_PANEL_PROCESSING can be found in
“API Control Flow” on page 283.

CICS_CM_TIME_OUT_VALUE
This PDB is used only in HLAPI/CICS client application programs. Refer to the
Tivoli Information Management for z/OS Client Installation and User’s Guide for
a description.

CICS_INTER_TIME_OUT_VALUE
This PDB is used only in HLAPI/CICS client application programs. Refer to the
Tivoli Information Management for z/OS Client Installation and User’s Guide for
a description.

CICS_PARTNER_ID
This PDB is used only in HLAPI/CICS client application programs. Refer to the
Tivoli Information Management for z/OS Client Installation and User’s Guide for
a description.

CICS_USER_ID
This PDB is used only in HLAPI/CICS client application programs. Refer to the
Tivoli Information Management for z/OS Client Installation and User’s Guide for
a description.

HLAPI Structures

231Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

CLASS_COUNT
Contains a 4-byte fixed value that indicates the maximum number of Tivoli
Information Management for z/OS privilege class records that can be maintained
in storage during the life of this Tivoli Information Management for z/OS
session. If you omit this parameter or enter zero as its value, the Tivoli
Information Management for z/OS session operates with a single privilege class
record in storage at a time.

DATABASE_ID
A 1-byte fixed field containing a 1-character ID number of the database to be
used. For Tivoli Information Management for z/OS records, the database ID
number is 5. If you omit this parameter, the HLAPI automatically sets the
database ID to 5.

DATABASE_PROFILE
This PDB is used only in HLAPI/2, HLAPI/UNIX, and HLAPI/NT client
application programs. Refer to the Tivoli Information Management for z/OS
Client Installation and User’s Guide for descriptions.

DEFAULT_DATA_STORAGE_SIZE
Contains a 4-byte fixed value specifying how much additional storage is
allocated to hold default response data from an alias table when your application
is creating records. When the HLAPI creates records, it calculates the size of the
response buffer it needs by totaling the lengths of all the input data PDBs and
adding the specified default data storage size. If you omit the default data
storage size, the HLAPI adds a default of 1024 bytes. When the HLAPI
performs create response processing, it always checks to make sure the response
will not overlay storage. If the response will overlay storage, the HLAPI
transaction will end with an error code. You use this parameter with the
DEFAULT_OPTION parameter.

HIGH_MEMORY
Contains the character value YES, which specifies that the HLAPI may return
output, message, and error PDBs in memory that was obtained above the 16MB
address range. If you specify any other value, these PDBs are always returned in
memory obtained below the 16MB address range. If you are using the HLAPI
through a remote client, do not use this PDB, because the value YES is always
assumed.

HLAPILOG_ID
Must contain a 1- to 8-character HLAPI session identifier that you can specify to
identify the session in HLAPI log file messages. If you do not specify a value
for HLAPILOG_ID, then this field is blank in HLAPI log file messages.

HLIMSG_OPTION
Contains a 1-character HLAPI message option parameter P, C, or B.

¶ A value of P specifies that the HLAPI writes messages to the HLAPILOG
data set.

¶ A value of C specifies that the HLAPI chains messages on the PDB message
chain.

¶ A value of B specifies that the HLAPI performs both P and C.

HLAPI Structures

232 Version 7.1

If you specify any other character or you omit this parameter, then the HLAPI
performs option C. The HLAPI writes messages passed back from the LLAPI to
the HLAPILOG data set. This PDB is used only if SPOOL_INTERVAL is
specified and is not set to zero.

MULTIPLE_RESPONSE_FORMAT
Contains a character value to indicate whether multiple response fields are
separated by spaces or by the value specified for SEPARATOR_CHARACTER.
A value of PHRASE specifies that each word in a multiple response is separated
by a blank. If the value SEPARATOR or any value other than PHRASE is
specified, then the words in a multiple response field are separated by the value
specified for SEPARATOR_CHARACTER. The default is SEPARATOR.

PASSWORD
This PDB is used only in HLAPI/2, HLAPI/UNIX, and HLAPI/NT client
application programs. Refer to the Tivoli Information Management for z/OS
Client Installation and User’s Guide for additional information.

SECURITY_ID
This PDB is used only in HLAPI/2, HLAPI/UNIX, and HLAPI/NT client
application programs. The Tivoli Information Management for z/OS Client
Installation and User’s Guide contains additional information.

SESSION_MEMBER
Contains a 7- or 8-character load library session parameter member name that
Tivoli Information Management for z/OS uses for this session. Session member
names begin with the character string BLGSES and cannot contain imbedded
blanks.

SPOOL_INTERVAL
Contains a 4-byte fixed value specifying the number of minutes that the HLAPI
spools the activity logs HLAPILOG and APIPRINT when messages are printed.
If the HLAPI is spooling to a data set and this time interval has passed, the
activity logs are recycled and new log information is written starting at the top
of the data set, writing over any existing information. If you omit this parameter,
the HLAPI does not log messages and the settings in APIMSG_OPTION and
HLIMSG_OPTION are ignored.

TABLE_COUNT
Contains a 4-byte fixed binary field value that indicates the maximum number of
alias tables and PIDTs and anchored PIPTs that the HLAPI can maintain in
storage during the life of a Tivoli Information Management for z/OS session.

Note: The maximum value that can be specified is 256.
Static PIDTs and PIDTs generated from data view records are treated the same
for caching purposes. It can take a significant amount of time to generate a
PIDT from data view records. The length of time depends on the number of data
attribute records (and validation records they reference) contained in the data
view record. Therefore, it can be especially important to direct the HLAPI to
maintain PIDTs in storage if you are using data models. If you specify this value
as zero or omit it, the Tivoli Information Management for z/OS session will not
process ALIAS_TABLE parameters or cache PIDTs. Alias table and PIDT
processing can increase transaction run time due to the increased I/O time of

HLAPI Structures

233Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

loading and unloading tables. By balancing the table count to alias table and
PIDT usage, you can reduce to zero the additional I/O overhead for long-running
applications.

TIMEOUT_INTERVAL
Contains a 4-byte fixed value specifying the number of seconds that a
transaction can run before a timer interrupt occurs. If you specify a value
between 0 and 45 seconds, the HLAPI uses a value of 45 seconds. If you
specify a value of 0 or omit this parameter, the HLAPI uses a default value of
300 seconds (five minutes).

INPUT chain
Specifies the input PDB parameters that certain transactions require for defining the
data given to the HLAPI. The type of input data you define on the PDB chain is
unique to the transaction being performed. The HLAPI anchors input PDBs to HICA
field HICAINPP.

Your application must specify input response data in uppercase for consistency with
interactive responses.

Your application stores list and multiple data responses for any single item in field
PDBDATA of a single PDB. The format of list and multiple response data in
PDBDATA is the same as required by the LLAPI when processing a response buffer.
See “List Item Processing Considerations” on page 185 for more information.

For direct-add and phrase items, the field PDBDATA must contain any nonblank
character to allow item collection. For text items, the parameter data specifies either
the fully qualified data set name that is associated with the item or the actual text
data. For the HLAPI to process this data set, the data set must not be currently
allocated by the application. The HLAPI allocates this data set with a disposition of
DISP=(SHR,KEEP,KEEP).

If the PDB refers to actual text data and control PDB TEXT_STREAM is not YES,
field PDBDATW must contain the width of the text unit (line). PDBDATL must be
an even multiple of field PDBDATW. There can be no remainder when dividing
PDBDATL by PDBDATW. PDBDATW cannot be larger than 132 bytes. When you
are in update mode and specify a new text width for freeform text, the width of the
old data in the record remains unchanged. If the PDB refers to actual text data, and
control PDB TEXT_STREAM is YES, PDBDATW and PDBDATL must both equal
the total length of the text data. PDBDATW can be larger than 132 bytes.

Values for PDBNAME that have special meaning when used with specific HLAPI
transactions are described below:

RETRIEVE_ITEM
Contains a 1- to 32-character field name that you want the HLAPI to retrieve.
The specified name is the internal symbolic name or an alias name. See
“Retrieve Record (HL06)” on page 171 for more information.

TSP_NAME
Contains a 1- to 8-character name of a TSP or TSX to invoke. If not specified,
you must define a link to a TSP or TSX to invoke in either TSP BLGAPI00 or
BLGAPIDI. See “Start User TSP or TSX (HL14)” on page 166 for more
information.

HLAPI Structures

234 Version 7.1

USE_AS_IS_ARGUMENT
Contains a 1- to 33-character data argument that you can specify for the record
inquiry transaction. See “Record Inquiry (HL11)” on page 194 for more
information.

USER_PARAMETER
Contains a 4-byte address that you specify. The address points to a user-defined
area that the HLAPI passes to a user TSP. See “Start User TSP or TSX (HL14)”
on page 166 for more information.

USER_PARAMETER_DATA
Contains a 1- to 255-character string to be passed to the invoked TSP or TSX
named in the PDB TSP_NAME. If TSP_NAME specifies a TSP to be invoked,
the data is passed in the variable data area. If TSP_NAME specifies a TSX to be
invoked, the data is passed as an argument to the TSX. If both
USER_PARAMETER_DATA and USER_PARAMETER are specified, the value
for USER_PARAMETER_DATA is used. See “Start User TSP or TSX (HL14)”
on page 166 for more information.

OUTPUT chain
Specifies the output PDB parameter data that HLAPI produces for certain
transactions. The type of output data the HLAPI defines on the PDB chain is unique
to the transaction being performed. The HLAPI anchors output PDBs to HICA field
HICAOUTP.

The HLAPI stores list and multiple data responses for any single item in field
PDBDATA of a single PDB. The format of the data in PDBDATA is the same as is
stored in the response buffer by the LLAPI. For direct-add and phrase items, the
field PDBDATA contains the direct-add data or the visible phrase. For text items, the
parameter data specifies either the data set name attributes ddname.dsname of the
text data set that is associated with the text item, or the actual text data of the text
item.

By providing the data set name attributes, your application can open the data set
using the DDNAME in the same session. The HLAPI allocates this data set with a
disposition of DISP=(NEW,DELETE,DELETE). You must start a free text data set
(HL15) or delete text data set (HL16) transaction after processing the text data set to
release HLAPI resources associated with this data set.

If the PDB refers to the actual text data, and control PDB TEXT_STREAM is not
YES, field PDBDATW contains the width of a text unit (line) and PDBDATL
contains the total text length including audit data, if audit data is requested. A
description of audit data can be found 22. The number of text units can be
calculated by dividing PDBDATL by PDBDATW. Each PDB that is returned by the
inquiry transaction is symbolically named INQUIRY_RESULT. If the PDB refers to
actual text data, and control PDB TEXT_STREAM is YES, PDBDATW and
PDBDATL both equal the total length of the text data. PDBDATW can be larger
than 132 bytes.

History data can be retrieved on a Record Retrieve transaction. Each history data
item is returned in a separate output PDB after all other record data output PDBs.

MESSAGES chain
Specifies the message PDB parameter data that the HLAPI might produce as a result

HLAPI Structures

235Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

of a transaction. Each PDB that references message data is symbolically named
MESSAGE_DATA. The HLAPI anchors MESSAGE PDBs to HICA field
HICAMSGP.

The HLAPI converts messages from the LLAPI message chain.

ERROR CODES chain
Specifies PIDT field error codes that the HLAPI detects as a result of being set by
the LLAPI when the LLAPI finds errors with input or output data. These PDBs
provide additional information that aid in debugging transaction errors. Each PDB on
this chain references a PIDT entry and its associated error code value found in PIDT
field PIDTCODE. The HLAPI identifies the PIDT entry by its PIDTSYMB value
and performs no alias table conversion even if you specified alias table processing.
The HLAPI anchors error PDBs to HICA field HICAERRP.

The HLAPI also stores field validation error codes in the chain when PDBPROC
contains the character V and the field validation module BLGPPVFM detects a
pattern error.

See page 123 for descriptions of PIDT codes 00 through 46. The other field
validation error codes specific to the HLAPI are as follows:
50 Data does not match any validation patterns.
51 Field symbolic name was not found in PIDT.
52 PIPT structure is not valid.
53 PIDT structure is not valid.
54 PIDT contains zero entries.
55 Field symbolic name was not found in PIPT.
56 PIDT contains a zero value in field PIDTFPAT.
57 Length of data to verify is zero.
58 Pointer to the data to be verified contains zero.
59 An unknown pattern validation character was found.
60 An R or V value is too large in a pattern.
61 No R or V value was found in a pattern.
62 A literal pattern does not end with a >.
63 An R or V value is too small in a pattern.
64 An imbedded blank was found in the data.
70 An unknown validation data type was encountered.
71 A BLX internal logic error has occurred during the processing of mixed data.
72 Field contains incorrect mixed data.

Data Model Information
This is the control block HIDM, which maps the output PDB field PDBDATA when the
PDBTYPE field=F for data model information. Most of these map to fields of the PIDT,
described in Table 33 on page 116. In addition to those that map to the PIDT, some
additional fields are contained in the HIDM:

¶ HIDMXPMT – Default Prompt for Attribute (from the data attribute record)

¶ HIDMXHTH – HTML Help File Name (from the data attribute record)

¶ HIDMXJPX – Desktop Program Exit Name (from the data attribute record)

¶ HIDMXATS – Associated TSP/TSX Name (from the data attribute record)

¶ HIDMXAUT – Field Authorization Code (from the data view record)

¶ HIDMXVSX – Validation Field S-word Index (from the data attribute record)

HLAPI Structures

236 Version 7.1

¶ HIDMXRPY – Reply Is Always Data (from the data attribute record)

Note: The value for HIDMREQD is always returned as N.

Table 70. HIDM—Data Model Information Control Block. Maps the contents of the
output PDB field PDBDATA when the PDBTYPE field=F for data model information.
(Field Labels containing an asterisk * are reserved.)
Field Label Offset DEC (HEX) Length

HIDMSYMB 0(0) 5

HIDMRDEF 5(5) 1

* 6(6) 2

HIDMMNCR 8(8) 4

HIDMMAXL 12(C) 8

HIDMREQD 20(14) 1

HIDMDATE 21(15) 1

HIDMSRCH 22(16) 1

HIDMJRNL 23(17) 1

HIDMLIST 24(18) 1

HIDMRTYP 25(19) 1

HIDMFAUP 26(1A) 1

HIDMSDAT 27(1B) 1

HIDMLZPD 28(1C) 1

HIDMPNLN 29(1D) 8

HIDMPFXD 37(25) 6

HIDMVISD 43(2B) 28

HIDMCSVL 71(47) 1

HIDMCGMX 72(48) 1

HIDMCDCA 73(49) 1

HIDMXPMT 74(4A) 25

* 99(63) 3

HIDMXHTH 102(66) 12

HIDMXJPX 114(72) 8

HIDMXATS 122(7A) 8

HIDMXAUT 130(82) 4

HIDMXVSX 134(86) 4

HIDMXRPY 138(8A) 1

* 139(8B) 21

Data Model Validation Pattern Data
This is the control block HIVP, which maps the output PDB field PDBDATA when the
PDBTYPE field=V for data validation data. These map to fields of the PIPT, described in
Table 39 on page 136.

HLAPI Structures

237Application Program Interface Guide

|

|

|

|

|

3.
U

sin
g

th
e

H
L

A
P

I

Table 71. HIVP—Validation Pattern Data Control Block. Maps the contents of the
output PDB field PDBDATA when the PDBTYPE field=V for data validation data.
Field Label Offset DEC (HEX) Length

HIVPSYMB 0(0) 5

HIVPTYP 5(5) 1

HIVPAUTH 6(6) 4

HIVPRSV3 10(A) 8

HIVPPRFX 18(12) 6

HIVPDATA 24(18) 32

* 56(38) 24

Alias Tables
Alias tables are table structures that reside as members of a partitioned data set. This
partitioned data set must be a member of the Report Format Table data set concatenation.
You use alias tables to specify alias names for Tivoli Information Management for z/OS
p-word and s-word indexes, and to create default response values used when response data is
not specified in create and update record transactions. You can also use these tables to
specify alias names for the RFT data set member name for a PIDT. Alias tables are
constructed using the Table Build Utility BLGUT8. The Table Build Utility lets you use any
valid PDS member name for alias tables.

Alias table processing is not performed when processing a control PDB. The HLAPI
processes control PDBs using reserved names.

Alias tables (see Table 72 on page 239) contain five data columns in the following order:

1. Internal symbol column containing up to 5 characters. Internal symbols are left justified
and padded with blanks. They can be s-word indexes. They cannot be blank or contain
imbedded blanks. These values correspond to the values in the PIDTSYMB field.

2. Alias value column containing up to 32 characters. Alias values are left-justified
uppercase character strings padded with blanks containing only the characters A-Z, 0-9,
underscore, and period. They cannot be blank or contain imbedded blanks.

3. Default response data column containing up to 45 characters. Default response data
fields are left-justified uppercase character strings padded with blanks. They can be blank
and can contain imbedded blanks, and may also contain mixed data containing DBCS
characters enclosed by an SO/SI pair. The HLAPI processes these responses, but it does
not validate them.

4. Tivoli Information Management for z/OS p-word value column containing up to 6
characters left justified and right padded with blanks. They can be p-word indexes or
p-words. Your application uses p-words to construct inquiry arguments.

5. PIDT member name value column containing up to eight characters left-justified and
padded with blanks. Member name values are static PIDT names or data view record
IDs.

HLAPI Structures

238 Version 7.1

This table summarizes the alias table format.

Table 72. Alias Table Format
Internal Symbol Alias value Default Response P-Word PIDT Member

5 characters 32 characters 45 characters 6 characters 8 characters

Entry INPUT Name Processing
The HLAPI processes the alias table from top to bottom, locating the first alias name that
matches the name specified in PDB field PDBNAME. When the HLAPI finds a match, it
verifies that the corresponding internal name is an s-word index or a p-word index and that
the name exists as a PIDT symbolic name within the PIDT specified for use. The HLAPI
then processes the PDB. If the HLAPI cannot find the name in the alias table and it appears
to be a valid s-word or p-word index, then the HLAPI processes the name as an internal
symbolic name. If the HLAPI cannot find a name match in the PIDT, the input PDB’s
PDBCODE is marked with an error code M, and the transaction terminates with an error.

Default response processing attempts to extract responses from the alias table when you do
not specify input PDB responses, and DEFAULT_OPTION is other than NONE. If the
HLAPI cannot find a default response for a required field, the transaction ends with an error.

Retrieve INPUT Name Processing
To perform retrieve INPUT processing, your application must specify the name of the data
item to be retrieved in PDB field PDBDATA and reserved name RETRIEVE_ITEM in field
PDBNAME. If you specify a field that contains no data in the record, the API sets
PDBCODE to E, indicating that the field is null. If you specify a field that cannot be found
in the PIDT or PALT, the API sets PDBCODE to M, indicating that the field is undefined
and no match is found to process.

Inquiry INPUT Name Processing
Your application can perform inquiry structured search processing by specifying the alias of
an s-word index or p-word index in PDB field PDBNAME and specifying the argument data
in PDBDATA. The HLAPI matches the alias name you specify with an alias table row and
extracts the internal symbol from that alias table row. If the HLAPI does not find a match in
the alias table, and the name appears to be a valid s-word or p-word index, the HLAPI
processes the name as a PIDT symbolic name. If this PIDT symbolic name does not match
the identifier of a PIDT row (PIDTSYMB), the transaction ends with an error.

Inquiry freeform search processing requires that the name specified in PDB field
PDBNAME be an alias of a p-word or the reserved name USE_AS_IS_ARGUMENT. If the
HLAPI finds a p-word alias, the HLAPI stores the p-word from the p-word value field of
the alias table in the argument first. This is followed by the data specified in PDBDATA. If
the HLAPI does not find a p-word alias, the transaction terminates with an error. When your
application specifies PDBNAME as USE_AS_IS_ARGUMENT, the HLAPI stores just the
argument, as specified in PDBDATA.

Record Retrieve OUTPUT Name Processing
The HLAPI attempts to locate the first match between the PIDT symbolic name PIDTSYMB
and an alias table internal name. If the HLAPI finds a match, it extracts the external name
and stores it in PDB field PDBNAME. If the HLAPI cannot find an internal name, the

HLAPI Structures

239Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

HLAPI stores the PIDT symbolic name. When performing RETRIEVE_ITEM processing,
the name stored in the RETRIEVE_ITEM PDB’s PDBDATA field is used to name each
found output PDB.

Using the HLAPI/REXX Interface
The High-Level Application Program Interface/REXX (HLAPI/REXX interface) enables you
to access HLAPI transactions from REXX programs. You can write a REXX program that
sets variables with control and input information and then links to the HLAPI through the
HLAPI/REXX interface to process that information. On return, the HLAPI/REXX interface
uses data returned by the HLAPI to set various REXX variables in your program. All the
HLAPI transactions are available to the HLAPI/REXX interface. For a list of those
transactions, see Table 73 on page 242.

To use the HLAPI/REXX interface, certain information is required. Be sure to specify the
name of the transaction that you want to perform. This is a parameter to the HLAPI/REXX
interface module. It is converted into the HLAPI TRANSACTION_ID PDB. You must know
static PIDT names or data view record IDs for each transaction that requires a PIDT, for
example, create, update, or retrieve. You must specify the control information that allows the
HLAPI to perform the transaction, and, in many cases, you must specify input information
to give the HLAPI the necessary data to use in its transaction. Examples of input
information are:
¶ Structured or freeform search arguments for use in inquiries
¶ Data items for use in create record or update record transactions
¶ Data item names for fields you request in a record retrieve transaction.

You set all of this data in the variables of your REXX program, which then calls the
HLAPI/REXX interface.

The HLAPI/REXX interface uses the REXX variable names and values that you set to
create PDBs for input to the HLAPI. Upon return, output from the HLAPI, such as return
codes, record IDs, and error messages, is used to set other REXX variables. The
HLAPI/REXX interface does not interpret inputs or results, it acts as an intermediary
between REXX programs and the HLAPI. In general, your REXX program must provide all
the control and input information that the HLAPI and its transactions require. But, if you
specify control information for a transaction that is not required or used by the HLAPI
transaction, the specified control information is ignored. Therefore, when you use the
HLAPI/REXX interface, refer to “HLAPI Transactions” on page 151 for a description of the
control and input information that each transaction requires.

The HLAPI/REXX interface environment is stored in the REXX program by the interface
when you initialize a session. The environment is stored in REXX variable BLG_ENVP.
This variable must be present in the REXX program for all calls made to the HLAPI/REXX
interface after you initialize a session. When your program ends a session, BLG_ENVP is
dropped.

Like the HLAPI, the HLAPI/REXX interface can use alias tables. Also, logging of messages
for the HLAPI/REXX interface works like it does for the HLAPI. HLAPI message PDBs are
written to the BLG_MSGS array, and the HLAPI controls logging to HLAPILOG. If
HLIMSG_OPTION and APIMSG_OPTION are both set to either C or B, the HLAPI/REXX
interface receives messages on the message chain. If HLIMSG_OPTION and
APIMSG_OPTION are both set to P, the HLAPI/REXX interface receives no messages.

HLAPI Structures

240 Version 7.1

Date Considerations
Dates used by your application can be processed in either of two ways:

Database format
Dates are passed to your application from the API in the default external date
format. Dates your application passes to the API must be in either the default format
or, if one is defined, the old format specified in the session parameters being used.
Dates passed in either format are automatically converted to internal format when
they are stored in the SDDS portion of the database.

Application-specified format
Dates are passed between the API and your application in a date format your
application specifies. This format does not need to match that of the database. The
API automatically converts dates from the internal format in the database to the
format you specify when passing data to your application and from your specified
format to the database’s internal format when receiving data from your application.

An application-specified date format is set in the HLAPI/REXX by specifying the
desired date format (for example, MM/DD/YYYY or YYYY.MM.DD) in a control
data item with a name of DATE_FORMAT.

Database date format is the default and can be specified in the HLAPI by never specifying a
control data item named DATE_FORMAT.

Differences between the HLAPI/REXX Interface and the HLAPI
Although the HLAPI/REXX interface depends on the HLAPI, some differences are found
between the two in such things as how they process inputs, what inputs they expect, and
how information is returned to the user.

Some of the significant differences between the HLAPI/REXX interface and the HLAPI are:

¶ Many transactions of the HLAPI require that you specify a separator character. The
HLAPI/REXX interface does not require a separator character. It uses a comma as the
default separator character if you do not specify one.

¶ When using the HLAPI/REXX interface, you do not specify the transaction ID as part of
the control chain. You specify the transaction as the first parameter to the HLAPI/REXX
interface. So, in some cases where the HLAPI requires a control chain, the
HLAPI/REXX interface does not.

¶ You can specify PDB data tracing in both cases. This enables you to trace the PDBs that
are input to and output from each HLAPI transaction. Trace information is sent to the
HLAPILOG data set. The HLAPI initialize Tivoli Information Management for z/OS
transaction (HL01) requires you to set PDBPROC in the TRANSACTION_ID PDB to T
before executing the transaction. The HLAPI/REXX interface requires the variable
INIT.?PROC to be set to T before you request an INIT transaction.

HLAPI/REXX Interface Calls
The following example shows the syntax for interface calls. Italics indicate a REXX
variable; you define its name in the REXX program. You must enter other key information
exactly as shown. The brackets ([and]) indicate parameters that are optional for some
transactions. In most cases, you must provide various control and input information. Output
is always optional because the interface uses the variable BLG_OUT., if you do not specify
an output stem.

ADDRESS LINK "BLGYRXM transaction-name[,control,input,output]"

Using the HLAPI/REXX Interface

241Application Program Interface Guide

|
|
|
|

|

|

3.
U

sin
g

th
e

H
L

A
P

I

transaction-name
Specifies the transaction to perform.

control
An optional item. It is the stem of a compound variable that identifies control data
items that this transaction uses.

input Another optional item. It is the stem of a compound variable that identifies the input
data to use when processing the transaction.

output An optional item. It identifies the stem of a compound variable for the
HLAPI/REXX interface to use to return output data from the HLAPI.

Use an extra comma in the variable list to indicate that you are not passing a particular
parameter. For example:
ADDRESS LINK "BLGYRXM RETRIEVE,control_list,,output_stem"

indicates that the third parameter, input, is not passed.

The load module BLGYRXM must be in one of the following areas:
¶ Job pack area
¶ Task library
¶ Step library
¶ Link Pack Area (LPA)
¶ Link library.

Note: When the Katakana configuration is used, any REXX program variable names that
are related to transaction name, control, input, output must be entered in uppercase.
Remember the Katakana code page does not include lowercase English letters.

Transaction Name
The first parameter to the HLAPI/REXX interface is the name of the transaction to perform.
This is the only parameter required by all transactions. Names for each transaction and the
corresponding HLAPI transaction code are listed in Table 73. If you are not using the
Katakana configuration, you can pass the names of the transactions in lowercase, uppercase,
or mixed case in your REXX program.

Table 73. HLAPI/REXX Transactions
Name Number Purpose Page

INIT HL01 Initialize Tivoli Information Management for
z/OS Environment

153

TERM HL02 Terminate Tivoli Information Management for
z/OS Environment

160

GETID HL03 Obtain External Record ID 161

CHECKOUT HL04 Check Out Record 162

CHECKIN HL05 Check In Record 164

RETRIEVE HL06 Retrieve Record 171

CREATE HL08 Create Record 178

UPDATE HL09 Update Record 183

CHANGE_APPROVAL HL10 Change Record Approval 226

SEARCH HL11 Record Inquiry 194

Using the HLAPI/REXX Interface

242 Version 7.1

Table 73. HLAPI/REXX Transactions (continued)
Name Number Purpose Page

ADD_REL HL12 Add Record Relations 202

DELETE HL13 Delete Record 205

USERTSP HL14 Start User TSP 166

FREE_TEXTDS HL15 Free Text Data Set 169

DEL_TEXTDS HL16 Delete Text Data Set 170

GETDATAMODEL HL31 Get Data Model 207

Control Data
The HLAPI uses control information to set up the environment that it needs to perform a
transaction or to provide information about how to process a transaction. You define a
compound variable in your REXX program to contain the names of control data. The
HLAPI/REXX interface reads this compound variable and the associated control data and
passes it to the HLAPI as a control PDB chain.

Most transactions require specific control information. The control names that define this
information are the same as the reserved alias names that the HLAPI uses for control items.
One control name that the HLAPI normally uses, but that is not used by the HLAPI/REXX
interface, is the requested transaction control name (TRANSACTION_ID). For the
HLAPI/REXX interface, the transaction requested is passed as a parameter. Also, the
SEPARATOR_CHARACTER control value defaults to a comma if you do not define one.
For a description of the control items see “Parameter Data Definition” on page 225.

Your REXX program must provide all of the required control information and any optional
control information necessary to perform the transaction you want. You can find information
concerning HLAPI transactions and the required and optional control information for each in
“HLAPI Transactions” on page 151.

Once you have set the variables containing the control information, build a compound
variable that defines which control variables you want to use for a transaction. The stem of
the compound variable cannot exceed 32 characters. Set each element value to a control
name, for example, create_cntl.1='ALIAS_TABLE'. The .0 element of the compound
variable must be set to the number of the largest element of the compound variable. This
number cannot be greater than 30.

The stem of the control compound variable is passed as a parameter to the HLAPI/REXX
interface. The HLAPI/REXX interface reads the .0 element, which determines the maximum
element number to read. The HLAPI/REXX interface then reads all elements with tails up to
that number. For example, if the .0 element contains a value of 4, the HLAPI/REXX
interface reads elements with tails of 1, 2, 3 and 4. Any undefined or null elements are
ignored. This data tells the API which control variables to use for this transaction and the
values of those control variables. In this way, you can define different control compound
variables for each of the HLAPI/REXX interface transactions. If you have a series of
transactions that you want to perform, such as create, retrieve, update, create, retrieve,
update, you need not update the values of variables before every transaction. You can define
different control variables and set them once for create, once for retrieve, and once for
update. This is an example of how to define and specify control information for the
HLAPI/REXX interface.

Using the HLAPI/REXX Interface

243Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

/**/
/* Partial REXX code to illustrate control information */
/**/

/**/
/* Define control information for session. */
/**/

application_id='APPL01';
privilege_class='MASTER'; /* initial class is MASTER */
session_member='BLGSES43';
table_count=5; /* this allows for 5 alias */

/* tables */
hlimsg_option='C'; /* return HLAPI messages as*/

/* chain - returned to REXX*/
/* exec as compound var */

/**/
/* Specify which control variables to be used. This */
/* information is given to the HLAPI and used to establish a */
/* HLAPI session. */
/**/

init_control.1='privilege_class';
init_control.2='session_member';
init_control.3='application_id';
init_control.4='table_count';
init_control.5='hlimsg_option';
init_control.0=5; /* element 5 is the highest */

/* element */
ADDRESS LINK “BLGYRXM INIT,init_control”

Input Data
Many transactions, such as create, update, and search, use input data. Types of inputs
include:
¶ Entry items
¶ Structured search argument segments
¶ Freeform search arguments
¶ Input items that do not contain data, such as the names of items to retrieve from a

record.

In all cases when the input items contain data, you perform two steps, in any order, to define
your inputs as follows:
¶ Put the input data into REXX variables.
¶ Set up an array (or compound variable) to explicitly identify the names of the items you

want to use in your transaction.

These two steps are discussed in detail below.

For items that do not have data, such as the names of fields to retrieve from a record, you
identify the names of the items to use in the transaction. You enter freeform search
arguments differently from all other types of inputs. Text items also require some unique
rules to use when defining them as inputs. Both of these unusual cases are described in later
sections of this chapter.

Put Data into Variables
All of the data you use with the HLAPI transaction must be placed into REXX variables.
Ensure that you assign the correct length to your input variable data, and that the data does
not contain leading or trailing blanks if they are not allowed. An easy way to remove
leading and trailing blanks is to use the REXX function STRIP. For example, you want to
create a record, and you assign the input data for the record ID using the statement:

Using the HLAPI/REXX Interface

244 Version 7.1

input = ' 12345 '

and you assign a record ID with the statement:
record_id = substr(input,3,8)

because the maximum value of a Tivoli Information Management for z/OS record ID is 8.
The value of record_id is '12345 ' after the last statement above runs. The trailing
blanks do not pass validation when you attempt to create the record. To correct this problem
use the following statement to assign a value to record_id:
record_id = strip(input,,' ') /* Remove leading and trailing */

/* blanks from input data, and */
/* assign a value for the new */
/* record ID. */

The value of record_id after the above statement runs is '12345', and the record create
transaction passes validation.

Most Common Types of Input Data
Some examples of input values that are neither freeform text nor freeform search arguments
are:
¶ Structured search arguments
¶ Data items used in a create or update transaction
¶ Text data set name or text data set DDNAME.

You can also perform text searching; this is described in “Text search argument inputs” on
page 246.

The three elements of most input items are its name, its value, and a processing flag. Each
item must have a name: the value is optional for some transactions, and the flag is optional
for all transactions. A processing flag of V specifies that you want the HLAPI to perform
automatic validation of your input. The name of the input must be either an alias name or
the PIDTSYMB value (defined in the specified PIDT) for a field. You set a REXX variable
corresponding to the alias name (if you use alias table processing) or PIDTSYMB value of
an item with the data for that item. For example,
STATUS='OPEN' /* alias table set up to make STATUS an alias */

/* of S0BEE */
or

S0BEE='OPEN' /*S0BEE is the PIDTSYMB value for STATUS */

Note: Tivoli Information Management for z/OS non-freeform text data is always uppercase,
so all data values must be uppercase; data is not converted.

Freeform search argument inputs
Freeform arguments can be part of the search argument used for a search transaction. Some
types of freeform arguments are:
¶ Argument data used as specified with no prefix substitution
¶ Prefix alias name and data pairs
¶ Prefix index and data pairs.

The two elements of a freeform search argument input are the prefix alias or prefix index,
and the data. You must specify the data, but the prefix alias or index is optional. The data
can be mixed, which contains DBCS and SBCS characters.

Using the HLAPI/REXX Interface

245Application Program Interface Guide

|
|

3.
U

sin
g

th
e

H
L

A
P

I

You define the freeform search argument input by using a compound REXX variable with
the stem freeform. You set freeform.0 in the array to the number of freeform argument
segments that you want to define. If you set freeform.0 to zero or leave it undefined, no
freeform arguments are processed. This number cannot be greater than 32 767. The other
parts of the array are made up of two elements: freeform.n.?prefix and freeform.n.?data,
where n is the number of the element. To specify a freeform argument segment that you
want to use as is, which corresponds to the HLAPI PDBNAME USE_AS_IS_ARGUMENT,
set freeform.n.?data to the argument data and leave freeform.n.?prefix undefined.

If you want to specify a freeform argument segment that uses prefix substitution, set
freeform.n.?prefix to the prefix alias, and set freeform.n.?data to whatever data goes
with it.

The data for each freeform argument segment can be up to 33 characters (32 characters for a
search argument and one optional Boolean/range character), but it can consist of only one
argument segment. The HLAPI combines each segment to make a multiple item search
argument. Here is an example of defining freeform search arguments:
/***/
/* Partial REXX code to illustrate defining freeform type search */
/* arguments. Assume STATUS_PREFIX is defined in an alias table */
/* as prefix STAC/. */
/***/

freeform.1.?data=’PERS/BILL’;
freeform.2.?data=’|PERS/WILLIAM’;
freeform.3.?prefix=’STATUS_PREFIX’;
freeform.3.?data=’OPEN’;
freeform.0=3;

The resulting partial argument is:
PERS/BILL |PERS/WILLIAM STAC/OPEN

Note: You can use parentheses in your search argument to help narrow down search results.
Arguments placed within parentheses will be evaluated first. For details on using
parentheses in HLAPI search transactions, see 194.

Text search argument inputs
In order to do text searching using the HLAPI/REXX SEARCH transaction, you define the
text argument inputs by using an array with one element for each text search argument.
These can be simple text arguments, search phrases, or complex search arguments. The stem
of the array must be text. This corresponds to the HLAPI PDBNAME
TEXT_SEARCH_ARGUMENT. The reset of the array name is a number that indexes and
defines the order of the text arguments. Set text.0 to the number of text argument elements
that you want to define. If you set text.0 to zero or leave it undefined, no text arguments are
processed. This number cannot be greater than 32 767.

You can specify the maximum width for your text arguments by letting text.?width to the
width you want; however, this width cannot exceed 132 characters. If you do not specify a
value for width, the HLAPI/REXX interface uses the default width of 60. The HLAPI
combines the array elements to make a complete text search argument. This is an example of
defining text search arguments:
/***/
/* Partial TEXX code to illustrate defining text type search */
/* arguments. */

Using the HLAPI/REXX Interface

246 Version 7.1

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

/***/
text.1='(solution AND "results ranking")'
text.2='OR syntax'
text.0=2

The resulting text argument is (solution AND “results ranking”) OR syntax

Defining Text Items
When specifying text, you have the same options with the HLAPI/REXX interface as you do
with the HLAPI. You can specify a data set name or the text itself. You define the data set
name like any other non-freeform search argument specification. See “Most Common Types
of Input Data” on page 245. This part of the chapter explains how to define actual text for
input. The text can be mixed data, containing DBCS and SBCS characters.

Set up an array with one element for each line of text you want to input. The name of the
array (text-name.n) is user defined. The stem of the array (text-name) must be an alias name
or the PIDTSYMB value that identifies what type of text you are using. The rest of the
array name is a number that indexes the text lines or defines the order of the text lines. To
specify a blank line of text, either skip an index, or set the array element to null.

Set the variable text-name.0 to the number of lines that you want to input. This number
cannot exceed 32 767. The HLAPI/REXX interface reads array elements from text-name.1 to
text-name.n, where n equals the value of text-name.0. If you do not specify text-name.0 or
you give it a value of zero or null, then no text lines of this type are specified.

You can specify the maximum width for your text lines by setting text-name.?width to the
width you want. If control PDB TEXT_STREAM is not YES, this width cannot exceed 132.
If control PDB TEXT_STREAM is YES, this width should equal the length of the text and
thus may be greater than 132. If you do not specify a value for width, the default width for
the HLAPI/REXX interface is 60. The HLAPI/REXX interface truncates or pads each text
line with blanks as necessary to meet the chosen width.

Here is an example of defining text items:
/***/
/* Partial REXX code to illustrate defining freeform text lines. */
/* Assumes DESCRIPTION_TEXT is defined in an alias table as */
/* S0E01. */
/***/

DESCRIPTION_TEXT.1=’This is a bad problem.’;
DESCRIPTION_TEXT.2=’System not responding.’;
DESCRIPTION_TEXT.3=’’;
DESCRIPTION_TEXT.5=’Slow down when you type.’;
DESCRIPTION_TEXT.0=5;

After a successful create or update transaction, the resulting text looks like this on an
interactive screen:
This is a bad problem.
System not responding.

Slow down when you type.

The third and fourth lines are blank because the .3 element is null and the .4 element is null.

Using the HLAPI/REXX Interface

247Application Program Interface Guide

|
|
|
|

|

3.
U

sin
g

th
e

H
L

A
P

I

Set Up the Array to Identify the Input
After you define the input data (if that step was necessary), you use a REXX array to
explicitly identify which input items to use for a transaction. You also use this array to
specify processing flags associated with input items. The variable is made of two
parts—input.n.?name. and input.n.?proc. The stem input cannot exceed 32 characters.

Set input.n.?name to the name of the input item, for example STATUS, and set
input.n.?proc to V if you want validation performed for this item. The names you use can
be upper case or mixed case. If you want to specify an array of text, set input.n.?name to
the stem of the text array including a period (.) at the end. This tells the HLAPI/REXX
interface that this input is a text array. For example,
input.1.?name=’DESCRIPTION_TEXT.’

You must set the variable input.0 to the number of input data items you want to specify.
The maximum number is 32 767 (entered without a comma or space, 32767). Freeform
arguments and text arrays each count as one item.

You pass input as a parameter to the HLAPI/REXX interface. Each input.n.?name
element identifies a single input except for two cases. The first exception is when you
specify freeform. The freeform array identifies one or more freeform argument segments for
a search. The second exception is when you specify aSTATUS text array. The array
identifies one or more freeform text lines.

The HLAPI/REXX interface attempts to read input.n.?name and input.n.?proc for all n,
from 1 to the value of input.0. If any input.n.?name values are not found or are null,
they are ignored. However, if the name you specify in input.n.?name does not exist or has
a null value, an error occurs.

When you do not want input data for a transaction, do not pass an input compound variable
stem to the HLAPI/REXX interface. For example, if you specify
inptarry.5.?name='STATUS' and you do not have the variable STATUS defined in your
program, an error results.

Maximum Input Lengths
The maximum input lengths for values of HLAPI/REXX interface variables are defined in
the following table:

Table 74. Maximum input lengths for interface variables
HLAPI/REXX interface variables Maximum input lengths

control data values 32 characters

input processing flags 1 character

Control.0 2 numeric characters

Input.0 5 numeric characters

FREEFORM.0 5 numeric characters

Text-name.0 5 numeric characters

Text-name.?width 10 numeric characters

freeform argument segments 33 characters

numeric control data 10 characters

Text.0 5 numeric characters

Using the HLAPI/REXX Interface

248 Version 7.1

||

Table 74. Maximum input lengths for interface variables (continued)
HLAPI/REXX interface variables Maximum input lengths

Text.?width 10 numeric characters

Examples of Specifying Inputs
The examples in this section give you an idea of how to code inputs in REXX for create,
search, and qualified retrieve transactions.

This is an example of how to code inputs in REXX for create transactions.
/**/
/* Partial REXX code to illustrate defining control and input */
/* information for a record create. Assume a session has */
/* already been initialized. */
/**/

/**/
/* Define control information. */
/**/
pidt_name='BLGYPRC'; /* problem create PIDT */
separator_character=',';
alias_table='PROBAL'; /* name of alias table to use */

/**/
/* Specify control information to use. */
/**/
control.1='pidt_name';
control.2='separator_character'; /* defaults to comma if not */

/* specified */
control.3='alias_table'; /* use alias tableproc */
control.0=3;

/**/
/* Set input variables - this is the data for the create. */
/* Assume REPORTER_NAME has the value DOE/JOHN */
/**/
status='INITIAL';
description=REPORTER_NAME 'HAS A PROBLEM WITH HIS TERMINAL';
reporter_phone='555-1212';
system_name='PLL8772';
description_text.?width=60; /* width of description text */

/* lines to be built - this is */
/* the default */

description_text.2='PROBLEM REPORTED ON 01/21/1998.';
description_text.3='IT IS A VERY BAD PROBLEM.';
description_text.4='';
description_text.0=4;
status_text.1='THIS PROBLEM IS IN INITIAL STATUS.';
status_text.0=1;
status_text.?width=26;
/**/
/* Explicitly identify which input variables to use. */
/**/
myinput.1.?name='REPORTER_NAME';
myinput.1.?proc='V'; /* tell HLAPI to validate the */

/* reporter name */
myinput.2.?name='STATUS';
myinput.3.?name='DESCRIPTION';
myinput.4.?name='REPORTER_PHONE';
myinput.5.?name='SYSTEM_NAME';
myinput.6.?name='STATUS_TEXT.'; /* note-must specify '.' */
myinput.7.?name='DESCRIPTION_TEXT.'; /* note-must specify '.' */
myinput.0=7; /* element 7 is the highest */

/* element of the myinput array*/

Using the HLAPI/REXX Interface

249Application Program Interface Guide

||

3.
U

sin
g

th
e

H
L

A
P

I

/**/
/* call BLGYRXM. Output information is returned in array */
/* with stem 'outinf.'. */
/**/
ADDRESS LINK "BLGYRXM create,control,myinput,outinf";

Using the HLAPI/REXX Interface

250 Version 7.1

This is an example of how to code inputs in REXX for search transactions.
/**/
/* Partial REXX code to illustrate defining control and input */
/* information for a search. Assume a session has */
/* already been initialized. */
/**/

/**/
/* Define control information. */
/**/
pidt_name='BLGYPRI'; /* use problem inquiry PIDT */
separator_character=',';
alias_table='PROBAL'; /* name of alias table to use */
/**/
/* Specify control information to use. */
/**/
control.1='pidt_name';
control.2='separator_character'; /* defaults to comma if not */

/* specified */
control.3='alias_table'; /* use alias table processing */
control.0=3;

/**/
/* Define input data. Assume you want to search on all problems */
/* with: */
/* Status of OPEN and */
/* Date Opened of 01/21/1998 and */
/* Reporter name of BILL and */
/* any phone number starting with 555 and */
/* any phone number starting with 777 and */
/* TEST in any string field. */
/* */
/* Status and Date opened are structured arguments and the rest are */
/* freeform arguments. Assume that PROBAL alias table has STATUS de- */
/* fined as s-word S0BEE, DATE_OPENED defined as s-word S0C3E, and */
/* PHONE_PREFIX defined as prefix PH/ Because DATE_OPENED is a struc-*/
/* tured argument, you must specify the date in external format. If */
/* you want to specify a date freeform argument you must do it using */
/* the internal format of YYYY/MM/DD. */
/**/
freeform.1.?data=’PERS/BILL’;
freeform.2.?prefix=’PHONE_PREFIX’;
freeform.2.?data=’555.’;
freeform.3.?prefix=’PHONE_PREFIX’;
freeform.3.?data=’777.’;
freeform.4.?data=’TEST’;
freeform.0=4;
STATUS=’OPEN’;
DATE_OPENED=’01/21/98’;
/**/
/* Explicitly identify which inputs to include. Note that no matter */
/* what order they are specified the search argument always includes */
/* structured arguments first (using the order that the fields are de-*/
/* fined in the PIDT) and then the freeform arguments second. The */
/* freeform arguments are used in the order specified. */
/* */
/* The whole search argument becomes: */
/* status-s-word STAC/OPEN date-opened-s-word DATO/1998/01/21 */
/* PERS/BILL PH/555. PH/777. TEST */
/**/
srcharg.1.?name= ’FREEFORM’;
srcharg.2.?name= ’STATUS’;
srcharg.3.?name= ’DATE_OPENED’;
srcharg.0=3;

/***/
/* call BLGYRXM. Search outputs will be returned into */

Using the HLAPI/REXX Interface

251Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

/* array with stem 'srchres.'. */
/***/
ADDRESS LINK "BLGYRXM search,control,srcharg,srchres";

This is an example of how to code inputs in REXX for text search transactions.
/***/
/* Partial REXX code to illustrate defining control and input */
/* information for a text search. Assume that a session has */
/* already been initialized. */
/* */
/***/

/***/
/* Define control information. */
/***/
data_view_name='BLMPROB' /* Use problem inq data view */
separator_character=','
/***/
/* Specify control information to use. */
/***/
control.1='data_view_name'
control.2='separator_character' /* defaults to comma if not */

/* specified */
/***/
/* Define input data. Assume you want to search on all problems */
/* that have the following words in the description text or */
/* resolution text: */
/* import OR */
/* filter AND */
/* Microsoft PowerPoint AND */
/* Freelance Graphics */
/* */
/***/
text.1='(import OR filter)'
text.2='AND "Microsoft PowerPoint"'
text.3='AND "Freelance graphics"'
text.0=3

/***/
/* Explicitly define the search arguments. */
/***/
srcharg.1.?name= 'TEXT.'

/***/
/* Call BLGYRXM. Search outputs will be returned into array with */
/* stem 'srchres.'. */
/***/
ADDRESS LINK "BLGYRXM search,control,srcharg,srchres"

This is an example of how to code inputs in REXX for retrieve transactions.
/**/
/* Partial REXX code to illustrate defining control and input */
/* information for a qualified retrieve. Assume a session */
/* has already been initialized. */
/**/

/**/
/* Define control information */
/**/
pidt_name='BLGYPRR'; /* use problem retrieve PIDT */
alias_table='PROBAL'; /* use alias table PROBAL */
rnid_symbol='00001200'; /* retrieve record 1200 */
/**/
/* Specify control information to use. */

Using the HLAPI/REXX Interface

252 Version 7.1

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

/**/
control.1='pidt_name'; /* required control info */
control.2='alias_table'; /* use alias table processing */
control.3='rnid_symbol'; /* record ID to use */
control.0=3;
/**/
/* Explicitly identify which data items to retrieve. */
/* Note that only the name is required, no data is necessary. */
/* We want to retrieve the status, severity, date opened, */
/* assignee name, and reporter department from the record. */
/* */
/* These variable names must be defined in the PROBAL alias */
/* table with the correct s-words. */
/**/
input.1.?name=’STATUS’;
input.2.?name=’SEVERITY’;
input.3.?name=’DATE_OPENED’;
input.4.?name=’ASSIGNEE_NAME’;
input.5.?name=’REPORTER_DEPT’;
input.0=5;
/**/
/* call BLGYRXM. Return data into array with stem 'output.'. */
/**/
ADDRESS LINK "BLGYRXM retrieve,control,input,output";

Output Data
The HLAPI/REXX interface translates PDBs from the HLAPI into REXX variables. Return
codes, error codes, record IDs, retrieved fields, and search match information are just some
of the types of output information that the HLAPI/REXX interface returns to your
application.

HLAPI/REXX Interface Return Code
The HLAPI/REXX interface sets REXX variable RC with a return code. See
“HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, and REXX HLAPI/USS Return
Codes” on page 343 for descriptions of all possible return codes.

REXX Variable Data or Access Errors
Sometimes REXX variable data is not correct, or errors occur while the HLAPI/REXX
interface is trying to access REXX variables. For these kinds of errors the HLAPI/REXX
interface sets variables to provide information about the errors.

When the HLAPI/REXX interface accesses REXX variables, it uses REXX service
IRXEXCOM. If access fails, IRXEXCOM returns a nonzero return code and possibly a
1-character hexadecimal code that describes an error accessing a specific variable. The
HLAPI/REXX interface sets variable BLG_IRXEXCOM_RC with the access failure return
code. Variable BLG_SHVRET is set with the 1-character hexadecimal code.
BLG_VARNAME is set to the name of the REXX variable that has the error.

HLAPI Return and Reason Code
The HLAPI/REXX interface provides to your application certain results from the
performance of the HLAPI. The value of HLAPI register 15 is set in variable BLG_R15.
The HLAPI return code (HICARETC) is set in variable BLG_RC. REXX variable
BLG_REAS is set to the value of the HLAPI reason code (HICAREAS). If the HLAPI is
not started, these variables are set to null.

Using the HLAPI/REXX Interface

253Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

For HLAPI return codes 4, 8, and 12, the REXX variable BLG_REAS is set to the decimal
conversion of HICAREAS. For example, if HICAREAS contains X'00000010', then
BLG_REAS is set to 16.

For HLAPI return code 16 (indicating an abend) BLG_REAS is set to a 1-character code of
U, indicating a user abend, or S, indicating a system abend, and 3 hexadecimal characters
that identify the abend code. This information comes from HICAREAS. For example, if
HICAREAS contains X'000C4000', then BLG_REAS is set to S0C4. If HICAREAS contains
X'00000010', then BLG_REAS is set to U010.

HLAPI Timeout Occurrence
If the HLAPI finds a timeout during a transaction, it terminates the HLAPI and LLAPI
sessions and returns a return code of 12 and a reason code of 2. You cannot perform any
other transactions without performing an initialization to start another API session. Ensure
that your REXX program is initializing checks for timeouts (variables RC=200,
BLG_RC=12, and BLG_REAS=2) and take appropriate action. Because the HLAPI session
has ended, your REXX EXEC has only two choices: stop processing HLAPI/REXX
interface transactions completely, or perform an initialization and resume processing
transactions. If you attempt any transaction other than initialization after a timeout, the
HLAPI/REXX interface sets the variable RC to 20.

Note: Ensure that you set the control field TIMEOUT_INTERVAL to a large enough
number at initialization to prevent inadvertent timeouts from occurring. This number
varies according to your environment and what work you are trying to accomplish. A
setting of 6 minutes (360 seconds) is a reasonable setting to start with. As you
become more experienced, you can adjust the setting to your particular situation.

Errors Flagged for Input Items
The HLAPI/REXX interface returns to your REXX program any error flags that the HLAPI
sets for input items. It sets input.n.?code to the error code. The variable BLG_IERR is set to
a string of indexes of the input array that were flagged with errors, each separated by a
blank. BLG_IERR has a maximum length of 250 characters and can contain up to 50
indexes of input array elements flagged with errors. If either of these limits is reached, a +
follows the end of the BLG_IERR string. The + indicates that one or more input items have
input.n.?code set and the application should traverse the input array to find them. See
PDBCODE on page 222 for error codes.

This example shows how input error codes can be processed.
/**/
/* Partial REXX code showing input error processing */
/**/

STATUS='ELIMINATED';
SYSTEM_NAME='NEWYORKSYS15';

input.6.?name='STATUS';
input.7.?name='SYSTEM_NAME';

ADDRESS LINK "BLGYRXM update,control,input,outp";
/**/
/* STATUS's value is too long and SYSTEM_NAME's value is too long */
/* input.6.?code is set to 'L' (data too long) */
/* input.7.?code is set to 'L' (data too long) */
/* BLG_IERR is set to '6 7' by the REXX API */
/**/

Using the HLAPI/REXX Interface

254 Version 7.1

/**/
/* Display errors flagged with the input. */
/**/
if blg_ierr/='' then; /* any input errors? */

do;
parse var blg_ierr tindex rest;
do while tindex/='' & tindex/='+'; /*is there another one and */

/* is it not the end? */
say 'Input field' input.tindex.?name 'flagged with error'

input.tindex.?code;
parse var rest tindex rest;

end;
end;

Information Outputs
Record IDs of records you create, fields you retrieve from a record, and results from
searches you conduct are all examples of information outputs.

Each information output item has an associated flag type that gives your REXX application
information about the output item. Possible types are:
A The item is a direct-add item.
D The item is a date.
G Specifies that this PDB comes first in a group of one or more related history data

items. This is indicated by the associated PIHTSGRP row field set to Y.
H Specifies that this PDB is not the first PDB in a group of several related history data

items. This is indicated by the associated PIHTSGRP row field not set to Y.
L The item contains one or more list items with separator characters.
P The item is a phrase item
S The item is a string type of data.
X The item is a text data set identifier.
Blank The output item has no special attributes.

Just as for inputs, you can pass an optional compound variable stem from your application
to the HLAPI/REXX interface. This compound variable stem output is used as the stem for
compound variables that the HLAPI/REXX interface sets to the name, type, error code, and
data value associated with each output item. The output stem cannot exceed 32 characters.
If you do not specify output, the HLAPI/REXX interface uses the default BLG_OUT.

For nonsearch outputs, the HLAPI/REXX interface sets elements of output with the alias
name or s-word of the output item (in output.n.?name) and the type of this item (in
output.n.?type). The variable output.0 is set to the number of output items returned.

When you retrieve freeform text, and you have chosen not to have text returned in data sets,
the HLAPI/REXX interface returns the text in an array. output.n.?name is set to the array
name (not including the period), output.name.1 through output.name.n contain the actual
text lines, and output.name.0 is set to the number of text array elements created.

For outputs from a qualified retrieve transaction, the output items are listed in the same
order as the input items you specify for retrieval. The first output item is always the
separator character. If an item exists in the retrieve view (that is, is defined in the PIDT that
is specified) but has no data, input.n.?code is set to E. If an item does not exist in the
retrieve view, input.n.?code is set to M. If data exists for the item, the HLAPI/REXX
interface returns the data in the same order as you request it. However, the index number of
an output item does not necessarily correspond to its index number in the input compound
variable.

Using the HLAPI/REXX Interface

255Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

For outputs from an unqualified retrieve transaction, the order of the output items is the
same as the order that is specified in the retrieve PIDT.

For search result outputs, the HLAPI/REXX interface sets the compound variable
output.n.?RNID with the record ID of the record the search finds. It sets
output.n.?rectype with the alias name or s-word that identifies the record type of the
found record. It sets output.n.?assoc with any associated data that the search returns, as
long as it is less than 45 characters. It sets output.?TOTAL with the total number of matches
for the search. And if an error code is generated, output.n.?code is set with that error
code. If no error occurs, it is set with X'00'.

Using the HLAPI/REXX Interface

256 Version 7.1

Examples of Output
The following examples show returns of output items and errors.

This is an example of how to process output items from a retrieve transaction.
/**/
/* Partial REXX code showing retrieve transaction output data. */
/* Assume a session has already been initialized. */
/**/

/**/
/* Define control information for the retrieve. */
/**/
RNID_SYMBOL='00000305'; /* retrieve record 305 */
PIDT_NAME='PROBRET'; /* use problem retrieve PIDT */
ALIAS_TABLE='PROBAL'; /* use alias table PROBAL */
TEXT_OPTION='YES'; /* request text be returned */
TEXT_MEDIUM='B'; /* return text in a buffer */
TEXT_UNITS=100; /* maximum of 100 lines of text*/

/* for each type returned */
TEXT_AREA='B'; /* want bottom 100 lines */
TEXT_WIDTH=30; /* want 1st 30 characters of */

/* each line */
/**/
/* Specify which control information to use. */
/**/
control.1=’pidt_name’;
control.2=’rnid_symbol’;
control.3='alias_table'; /* use alias table processing */
control.4=’text_units’;
control.5=’text_medium’;
control.6=’text_option’;
control.7=’text_area’;
control.8=’text_width’;
control.0=8;
/**/
/* Call BLGYRXM. Data will be returned into array with stem */
/* 'outputp.'. Do not specify specific fields to retrieve. */
/**/
ADDRESS LINK "BLGYRXM retrieve,control,,outputp"
/**/
/* All fields from record 305 that also have a row specification */
/* in the PIDT are returned by the HLAPI and passed along to the */
/* REXX program by the HLAPI/REXX. Assume PROBRET PIDT only */
/* has rows for status, description abstract, serial number, and */
/* description text and that these fields exist in record 305. */
/* Assume that PROBAL alias table has these fields defined */
/* as aliases STATUS, DESCRIPTION, SERIAL_NUMBER, and */
/* DESCRIPTION_TEXT. Also assume that PROBAL alias table has these */
/* fields defined with the correct s-words. */
/* */
/* The HLAPI/REXX interface sets output variables: */
/* OUTPUTP.SEPARATOR_CHARACTER=',' */
/* OUTPUTP.STATUS='OPEN' */
/* OUTPUTP.DESCRIPTION='TERMINAL IS BROKEN' */
/* OUTPUTP.SERIAL_NUMBER='029977011,ST0023' */
/* OUTPUTP.DESCRIPTION_TEXT.1= */
/* 'Bad problem 91320 08:15:22 APPLID01 MASTER ' */
/* */
/* Retrieve always appends text audit data to the text data */
/* if audit data is requested */
/* OUTPUTP.DESCRIPTION_TEXT.0=1 */
/* OUTPUTP.1.?name='SEPARATOR_CHARACTER' */
/* OUTPUTP.1.?type=' ' */
/* OUTPUTP.2.?name='STATUS' */
/* OUTPUTP.2.?type=' ' */
/* OUTPUTP.3.?name='DESCRIPTION' */

Using the HLAPI/REXX Interface

257Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

/* OUTPUTP.3.?type='S' */
/* OUTPUTP.4.?name='SERIAL_NUMBER' */
/* OUTPUTP.4.?type='L' */
/* OUTPUTP.5.?name='DESCRIPTION_TEXT' */
/* OUTPUTP.5.?type='X' */
/* OUTPUTP.0=5 */
/* Retrieve always returns an output named SEPARATOR_CHARACTER */
/* that provides the separator character used for this retrieve. */
/**/
/**/
/* Check for timeout and exit - could also do another INIT to restart */
/* the session. Timeout indicates that the session is terminated. */
/**/
if BLG_RC=12 & BLG_REAS=2 then; /* timeout occur? */

do;
say 'API timeout occurred - session terminated';
exit;

end;
/**/
/* Process data returned - display name, type, and value */
/**/
Do i=1 to OUTPUTP.0;

say '==================== OUTPUT' i ' ====================';
otype=outputp.i.?type;
tname=outputp.i.?name;
if otype=' ' then;

otype='No special type';
say tname 'is type '''otype''' and has a value of:';
select;

when otype='X' then;
do j=1 to outputp.tname.0;

say outputp.tname.j;
end;

otherwise;
say outputp.tname;

end;
end;

This is an example of how to process output items from a qualified retrieve transaction.
/**/
/* Partial REXX code showing processing of output returned for a */
/* qualified retrieve (a RETRIEVE where names of items to retrieve */
/* are specified as inputs). */
/**/

/**/
/* Define control information for the retrieve. */
/**/
RNID_SYMBOL='00000305'; /* retrieve record 305 */
PIDT_NAME='BLGYPRR'; /* use problem retrieve PIDT */
TEXT_OPTION='YES'; /* request text be returned */
TEXT_MEDIUM='B'; /* return text in a buffer */
TEXT_UNITS=100; /* maximum of 100 lines of text*/

/* for each type returned */
TEXT_AREA='B'; /* want bottom 100 lines */
TEXT_WIDTH=30; /* want 1st 30 characters of */

/* each line */
/**/
/* Specify which control information to use. */
/**/
control.1=’pidt_name’;
control.2=’rnid_symbol’;
control.4=’text_units’;
control.5=’text_medium’;
control.6=’text_option’;
control.7=’text_area’;

Using the HLAPI/REXX Interface

258 Version 7.1

control.8=’text_width’;
control.0=8

/**/
/* Specify which items to retrieve. */
/**/
drop ci.
ci.1.?name='S0B59';
ci.2.?name='S8002';
ci.3.?name='S0BEE';
ci.4.?name='S0B9B';
ci.5.?name='S142F';
ci.6.?name='S0E0F';
ci.7.?name='S0E01';
ci.0=7;

/**/
/* Call BLGYRXM. Data will be returned into array with stem */
/* 'outputp.'. SEPARATOR_CHARACTER is always the first output item. */
/**/
ADDRESS LINK "BLGYRXM retrieve,control,ci,outputp";

/**/
/* Check for timeout and exit - could also do another INIT to restart */
/* the session. Timeout indicates that the session is terminated. */
/**/
if BLG_RC=12 & BLG_REAS=2 then; /* timeout occur? */

do;
say 'API timeout occurred - session terminated';
exit;

end;
/**/
/* Process data returned - display name, type, and value */
/**/
outs=1; /* skip separator char */
do i=1 to ci.0;

select;
when ci.i.?code='E' then;

say '****' ci.i.?name 'not found in record' rnid_symbol;
when ci.i.?code='M' then;

say '****' ci.i.?name 'not defined in retrieve PIDT';
otherwise;

do;
outs=outs+1;
say '========== OUTPUT' outs 'for input item' i '========';
otype=outputp.outs.?type;
tname=outputp.outs.?name;
if otype=' ' then;

otype='No special type';
say tname 'is type '''otype''' and has a value of:';
select;

when otype='X' then;
do j=1 to outputp.tname.0;

say outputp.tname.j;
end;

otherwise
say outputp.tname

end;
end;

end;
end;

Using the HLAPI/REXX Interface

259Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

Output Messages
The HLAPI/REXX interface generates no error messages on its own. You can indicate at
initialization time, however, that you want to chain the HLAPI messages. The HLAPI
provides these messages on a PDB chain, and the HLAPI/REXX interface provides them to
your REXX program. The HLAPI/REXX interface sets elements of the compound variable
BLG_MSGS with the data messages that the HLAPI returns. BLG_MSGS.0 is set with the
number of messages returned.

Error Codes
When you provide input information to the APIs for a transaction, error codes can be set in
the PIDT for input items. The HLAPI provides the HLAPI/REXX interface with any errors
that are flagged in the PIDT. Each error consists of a PIDTSYMB value that identifies the
field in error and the associated error code. The HLAPI/REXX interface sets elements of the
compound variable BLG_ERRCODE with a PIDTSYMB value and error code.
BLG_ERRCODE.n.?name receives a PIDTSYMB value, and BLG_ERRCODE.n.?code receives the
error code. BLG_ERRCODE.0 is set to the number of error code items returned. A list of
validation codes can be found on page 236.

REXX Reserved Variables
Table 75 describes the reserved REXX variables that the HLAPI/REXX interface uses. The
HLAPI/REXX interface defines and sets all of the variables except FREEFORM,
FREEFORM.0, and INIT.?PROC.

Table 75. REXX Reserved Variables
Name Description

BLG_R15 The value of register 15 upon return from the HLAPI. Null if the HLAPI is not
called. For specific return codes that set this variable, see page 343.

BLG_RC The return code from the HLAPI. Null if the HLAPI is not called. “Return
Codes” on page 301 contains explanations of return codes.

BLG_REAS The reason code from the HLAPI. Null if the HLAPI is not called. Explanation
of reason codes begins with “Reason Codes for Return Code=0” on page 302.

BLG_VARNAME Set to the name of the REXX variable that is not valid or that contains data that
is not valid. Null if no error causes it to be set.

BLG_IRXEXCOM_RC Set to the return code from access service IRXEXCOM when a variable access
fails. See page 343 for which return code sets this variable.

BLG_SHVRET Set to a 1-character hexadecimal return code from the access service when an
access fails. Additional information on BLG_SHVRET can be found in
REXX/MVS Reference, SC28–1883.

BLG_IERR Set to a string of indexes from the input array for which errors are flagged by the
HLAPI. Null if no input errors flagged.

FREEFORM Array that is built by the REXX programmer to define one or more freeform
search argument segments.

FREEFORM.0 Variable set by the REXX programmer to indicate how many freeform argument
segments are defined.

BLG_OUT Array providing the name, data, and type for each output item. This variable does
not initialize if the call to the HLAPI/REXX interface includes an output stem as
a parameter.

BLG_OUT.0 Count of output items returned. Does not initialize if the call to the
HLAPI/REXX interface includes an output stem as a parameter.

Using the HLAPI/REXX Interface

260 Version 7.1

Table 75. REXX Reserved Variables (continued)
Name Description

BLG_OUT.?TOTAL Total number of matches for a search. Does not initialize if the call to the
HLAPI/REXX interface includes an output stem as a parameter.

BLG_MSGS Array providing all messages chained by the HLAPI.

BLG_MSGS.0 Count of messages returned.

BLG_ERRCODE Array providing PIDT s-word and error code pairs returned by the HLAPI.

BLG_ERRCODE.0 Count of PIDT error codes returned.

BLG_ENVP HLAPI/REXX environment variable. Set at initialization and dropped at
termination.

INIT.?PROC User sets to T before requesting initialization to enable the HLAPI PDB tracing.

You can find a fully-coded example of a HLAPI/REXX interface in the Tivoli Information
Management for z/OS SAMPLIB (MVS data set SBLMSAMP). Refer to the Tivoli
Information Management for z/OS Planning and Installation Guide and Reference for
information on the person to contact for information on high-level qualifiers of data sets at
your site. See “Sample HLAPI/REXX Interface” on page 369 for more information on
sample programs.

Using the HLAPI/REXX Interface

261Application Program Interface Guide

3.
U

sin
g

th
e

H
L

A
P

I

Using the HLAPI/REXX Interface

262 Version 7.1

HLAPI Extensions

This chapter describes several HLAPI extensions. This chapter also provides information on
how similar HLAPI extensions can be written. All HLAPI extensions are invoked using the
HLAPI transaction HL14 (for the REXX HLAPI, the USERTSP transaction is used).

BLGTRPND
BLGTRPND is a HLAPI extension that can be used by an application program to reset all
the approver data in a change record from Accept or Reject to Pending. The approval status
is also changed to Pending.

Control Data
The HLAPI application uses the HL14 transaction or HLAPI/REXX USERTSP transaction
to run BLGTRPND. See “Start User TSP or TSX (HL14)” on page 166 for the control PDBs
that are used for an HL14 transction.

Input Data
The following input PDBs are used by BLGTRPND.

RNID_SYMBOL
RNID_SYMBOL is required. The record identifier of the change record to be updated is
specified in this PDB.

Output Data
On successful completion HICARETC and HICAREAS are set to 0.

Return Codes

Table 76. BLGTRPND reason and return codes
HICARETC HICAREAS Description

0 0 Successful completion.

8 4 Logic error. Internal control blocks could not be located. No
approvals are changed.

8 900 Required parameter RNID_SYMBOL is missing.

12 165 BLGTRPND had a syntax error. Check for messages to determine
the problem.

4

263Application Program Interface Guide

|
|
|

|

|
|
|

|

|
|
|

|

|

|
|
|

|

|

|

||

|||

|||

|||
|

|||

|||
|
|

4.
H

L
A

P
I

E
xten

sio
n

s

BLGTSPCH
BLGTSPCH, supplied with Tivoli Information Management for z/OS, is a HLAPI extension
that can be used by an application program to know what character to use as a not sign or
as an or bar in data passed to Tivoli Information Management for z/OS for processing. Call
BLGTSPCH using the HL14 transaction (HLAPI/REXX USERTSP) to retrieve the
characters. On the HL14 transaction, specify BLGTSPCH as the input PDB TSP_NAME.
The not sign and or bar are returned in output PDBs.

Output Data
The output PDBs are as follows:

Table 77. BLGTSPCH output PDBs
PDBNAME PDBDATL PDBDATA

NOT_SIGN 1 The character to be used as the not sign; the
default is ¬ X'5F'

OR_BAR 1 The character to be used as the or bar; the
default is | X'4F'

Return Codes
BLGTSPCH sets HICARETC and HICAREAS. This table lists these codes. If the
HICARETC is 0, output PDBs will contain the not sign and or bar characters. If the
HICARETC is 12, no output PDBs are generated.

Table 78. BLGTSPCH reason and return codes
HICARETC HICAREAS Description

0 0 Successful processing. The character to be
used for the not sign is returned in the PDB
NOT_SIGN and the character to be used for
the or bar is returned in the output PDB
OR_BAR

12 165 BLGTSPCH had a syntax error. Check for
Tivoli Information Management for z/OS
messages to determine the problem.

BLGTXINQ
BLGTXINQ, supplied with Tivoli Information Management for z/OS, is a HLAPI extension
that can be used by an application program to perform a search and return multiple data
items from the records located by the search. It can be used instead of a Record Retrieve
(HL06) and Record Inquiry (HL11) transaction. In addition, the items retrieved can be
returned in a sorted order.

Note: List processor data and free-form text data cannot be returned by BLGTXINQ.
Like all HLAPI transactions. BLGTXINQ requires the use of control PDBs and input PDBs.
BLGTXINQ can be used by all HLAPI clients.

Note: You should modify BLGTXINQ only in the section designated for user modifications.

BLGTSPCH

264 Version 7.1

|

|
|
|
|
|
|

|

|

||

|||

|||
|

|||
|
|

|

|
|
|

||

|||

|||
|
|
|
|

|||
|
|
|

|

Control Data
The HLAPI application invokes this transaction by specifying control PDB
TRANSACTION_ID with a value of HL14. If you are using the HLAPI/REXX TSP, specify
transaction USERTSP). See “Start User TSP or TSX (HL14)” on page 166 for other control
PDBs that can be used on an HL14 transaction.

Input Data
The following input PDBs are used by BLGTXINQ.

TSP_NAME
TSP_NAME is required and must be the value BLGTXINQ.

SEARCH_ARGUMENT
The optional input PDB SEARCH_ARGUMENT is used to pass any keywords, s-words,
p-words, and search operators needed to locate the desired records. The format of
SEARCH_ARGUMENT is similar to the SEARCH command used by an interactive user.
Structured searches (s-word and p-word) are supported by sending the s-word or p-word
index in the form of !Snnnn for s-words and !Pnnnn for p-words, where nnnn is the hex
dictionary index for the s-word or p-word. Search operators and other search keywords are
processed exactly as if they were processed using an interactive SEARCH command. The
Tivoli Information Management for z/OS User’s Guide contains additional information on the
SEARCH command.

Note: Alias names for s-words and p-words are not supported.

If SEARCH_ARGUMENT is not used, then a search with no keywords is performed. This
typically would return the first 32768 records in the database unless the values specified in
the SORTPFX keyword of the BLGPARMS macro in the session member is used to limit
the number of records.

SEARCH_ARGUMENT examples

¶ The following will locate only problem records (s-word S0032) that were NOT entered in
1999 (P7E5A is the p-word for ’DATE/’) and are CLOSED:
!s0032 ¬!P7E5A1999. STAC/CLOSED

¶ The following will locate only problem records (s-word S0032) that were entered in 1999
and are CLOSED.
!s0032 DATE/1999/01/01 -12/31 STAC/CLOSED

¶ The following will locate ANY records that were entered in 1999 and are CLOSED.
DATE/1999/01/31 -12/31 STAC/CLOSED

TABLE_PANEL
TABLE_PANEL is an optional input PDB and is used to determine the data that is returned
from the located records and the order of the returned records. The value of TABLE_PANEL
is set to an existing Search Results List (SRL) table panel name. The table panel could be
one used by your interactive users, or one created for use with BLGTXINQ. Like the SRL
that an interactive user sees when viewing the results of an interactive search, the data
returned for each records located by SEARCH_ARGUMENT is determined by the columns
of the SRL shown on the SRL table panel. Any data shown on the SRL table panel is
returned to the application by BLGTXINQ. Data that is not shown on the SRL is not
returned. If the table panel used the ‘sort on prefix’ option, then the located records will be

BLGTXINQ

265Application Program Interface Guide

4.
H

L
A

P
I

E
xten

sio
n

s

returned sorted using the prefix value. By using different SRL table panels, it is possible to
have different data returned or sorted on different prefixes.

If TABLE_PANEL is not used or is all blanks, then the default table BLGlTSRL is used
unless control panel BLG1A120 has been changed to select another default table panel. If
TABLE_PANEL contains only an asterisk (*), then any SEARCH_ARGUMENT is
ignored, and a list of the available SRL table panel names and their descriptions is returned.
See the TABLE command for more information displaying the list of available SRL table
panels.

Output Data
On successful completion (HICARETC less than 8), the output PDB TOTAL_HITS is set to
the total number of hits the SEARCH_ARGUMENT received. This value could exceed 32
768. This is analogous to the information text “Lines 1 to 32 768 of 108 000 matches” that
appears on an SRL when a search produces more than 32 768 matches. Output PDB HITS is
set to the actual number of matches returned by this transaction. This value is limited to a
maximum of 32 768. Both TOTAL_HITS and HITS are controlled by the values used in the
session member of the SORTPFX keyword of the BLGPARMS macro.

If HITS is greater than 0, one or more output PDBs, COLUMN1 through COLUMNn are
returned, where n is the value contained in output PDB COLUMNS. There is one data item
for each record located in each COLUMNn output PDB. The length of the each data item in
a COLUMNn output PDB is the same and is returned in PDBDATW. COLUMNS is the
number of data columns on the table panel. The command prefix column on the table panel
is ignored and not returned. Output PDB COLUMNS is returned only if HICARETC is less
than 8. The s-word index (Snnnn) or P-word index (Pnnnn) value for each data column of a
table panel is returned in output PDB COLUMNINDEX1 through COLUMNINDEXn,
where n is the value of COLUMNS. The COLUMNINDEXn values allow the application to
identify the data returned in each COLUMNn.

Return Codes
TSCARETC and TSCAREAS are set as follows for normal processing. In the event of a
syntax error, BLGYAPSR is used to set return 165 if there is a syntax error.

Table 79. BLGTXINQ reason and return codes
TSCARETC Return
Code

TSCAREAS Reason
Code

Description

0 0 Search_argument received hits. Up to 32768 are
returned even if more than 32768 hits were received.
¶ Total_Hits = The number of hits the search

received.
¶ Hits = The number of hits returned to user.
¶ Columns = The number of COLUMNn returned to

user.
¶ COLUMNn= Data for that column.

Note: The following are considered ‘good’ searches:
¶ Search_Argument received 0 hits
¶ Search returned unsorted (SORTPFX N2

exceeded)

4 901 Too many hits received. SORTPFX N1 exceeded, so
the SRL was not shown. Total_Hits is set to the
number of hits received. Hits is set to zero.

BLGTXINQ

266 Version 7.1

Table 79. BLGTXINQ reason and return codes (continued)
TSCARETC Return
Code

TSCAREAS Reason
Code

Description

4 902 Too many hits received. SRCHLIMIT canceled the
search before it completed. Total_Hits and Hits are
both set to zero.

8 901 Table_Panel not found in any panel data set.

8 902 Table_Panel value is not a table panel.

8 903 No valid data columns located on table_panel. At least
one non-command column required.

8 904 No valid command column found on table_panel, or
more than one command column found. At lease one
command column is required.

8 905 Table_Panel value is a table panel but it cannot be
processed as a Search Results list.

8 906 Panel BLG1TTBL has been modified and cannot be
processed. Make sure that BLG1TTBL is using
sequence numbers and that the column information has
not been modified.

8 907 Search argument is greater than 512 characters or
search argument has over 40 keywords.

12 904 Internal error. SIGNAL_LINE indicates the line
number that caused processing to be terminated. Also
check the messages that are returned.

12 905 Database error. SIGNAL_LINE indicates the line
number that cause processing to be terminated. Check
for messages which may be returned and check for
messages in SYSPRINT.

12 999 Unexpected error. Check for Tivoli Information
Management for z/OS messages.

12 165 TSX syntax error. Check for Tivoli Information
Management for z/OS messages.

12 166 This is a general error that you can use when writing
TSXs.

Usage Notes
If you use this extension and expect to return large numbers of records, you may need to
increase the value that is used for TIMEOUT_INTERVAL.

The width of the table panel used by BLGTXINQ is limited to 80 characters. A table panel
can contain scrollable columns. Data that can only be seen by scrolling a column will not be
returned. The exception is the last column on the table panel. All data contained in the last
column will be returned if NO is specified for “Last column not foldable” (see Tivoli
Information Management for z/OS Panel Modification Facility Guide) when the table panel
was created. Therefore, when creating a table panel for use with BLGTXINQ, the last
column can be narrowest (that is, take up the fewest characters) but still return the most
data. Consider letting the last column contain the data field with the most data so that the
other columns can be as wide as needed to display the desired data. When choosing the
width for the last column for performance reasons, make it as wide as possible. The

BLGTXINQ

267Application Program Interface Guide

4.
H

L
A

P
I

E
xten

sio
n

s

minimum width for the last column is the maximum width of the data to be displayed in the
field divided by 10 and then rounded up to the next whole number.

For example, assume that S0E0F (typically the description field) is to be displayed in the
last column and the maximum width for s0E0F on your panels is 45 characters. So,
45/10=4.5; the minimum width for the last column would be 5 (4.5 rounded up). Making the
last column wider than 5 characters would improve performance, but is not necessary.

An important difference of BLGTXINQ from an HL11 Inquiry transaction is the
BLGTXINQ will not return the RNID unless the RNID value is shown in a table panel
column. If RNID is one of the columns shown on the table panel, then the RNID values will
be returned in the corresponding COLUMNn output PDB. The output PDB
COLUMNINDEXn is also returned, which would allow the application to determine which
output COLUMNn PDB contained the RNID values.

Another difference from HL11 is that the width of the values of a returned column could be
any length. The ASSOCIATED_DATA returned on an HL11 was fixed and limited to 45
characters.

When TABLE_PANEL is set to an asterisk (*), on return TOTAL_HITS and HITS are set
to the number of available table panels. COLUMNS is set to 2; COLUMN1 will contain the
table panel names (PDBDATW=8_ and COLUMN2 will contain the table panel descriptions.
COLUMNINDEX1 will be set to s1741 (s-word or table panel names) and
COLUMNINDEX2 will be set to s1745 (table panel description). You can find additional
information on the TABLE command in the Tivoli Information Management for z/OS User’s
Guide.

You should carefully consider the values used for the SORTPFX keyword on the
BLGPARMS macro in the session member used by this HLAPI application. SORTPFX
controls how many matches (N1 value) can be processed, and how sorting of an SRL will be
performed (N2 and N3 values). See the Tivoli Information Management for z/OS Planning
and Installation Guide and Reference for more information on SORTPFX.

Writing HLAPI Extensions
A HLAPI extension must be a TSX to be able to use the GETAPIDATA to retrieve input
PDBs created by a HLAPI application. The TSX can create output PDBs to be returned to
the HLAPI application using SETAPIDATA. In addition, SETAPIDATA allows HICARETC
and HICAREAS to be set to allow the TSX to indicate success or failure of the HLAPI
extension processing. The TSX to be run as a HLAPI extension is determined by the value
of the TSP_NAME input PDB on the HL14 transaction. Like any other TSX, a TSX used as
a HLAPI extension must be a member in the BLGTSX data set concatenation. The HLAPI
extension TSX can access a TSP by using a TSX LINK control line. Any TSX control line
can be used by the HLAPI TSX extension. Most Tivoli Information Management for z/OS
commands can be used. Therefore, the processing that your HLAPI extension can do is quite
extensive. Observe these rules:

¶ The API must be active to use GETAPIDATA and SETAPIDATA. Therefore, if your
TSX could be executed by an interactive user, be certain to include a test to see if the
API is active. See “Usage notes for HLAPI Extensions” on page 271 for additional
considerations.

BLGTXINQ

268 Version 7.1

¶ Before your TSX exits, it should always resume any suspended sessions and return to
the primary option panel. This can be done with an ;INITIALIZE command.

¶ Do not write a long running or never ending HLAPI extension TSX. Your TSX should
do what is needed and return. Remember that the application program is waiting for
your TSX to complete. If your TSX does not complete before TIMEOUT_INTERVAL
expires, the HLAPI will terminate the session and the application using the HLAPI will
receive a HICARETC=12 and HICAREAS=2 to indicate that the HLAPI transaction
timed out. This indicates a problem in your HLAPI extension TSX.

¶ Keep your return codes simple. it is recommended that HICARETC=0 means that your
TSX extension processed successfully. A HICARETC=4 could mean that processing was
successful, but a message may have been issued. A HICARETC of 8 or more should
mean that processing was not successful. HICAREAS can be used to provide more
detail for a given HICARETC. Most of the documented API return and reason codes do
not apply to HL14 transactions.

¶ Return code 12 reason code 165 is reserved for syntax-type errors in a TSX. Return
code 12 reason code 166 is reserved for other, more general errors in a TSX. Your TSX
should have a SYNTAX routine to set return code 12 and reason code 165 in the event
of a syntax-type error and another routine to set return code 12 and reason code 166 in
the event of a general TSX error.

¶ Like any HLAPI transaction, your TSX will run using the PRIVILEGE_CLASS and
APPLICATION_ID that is currently active. Your HL14 can include control PDBs to
change the PRIVILEGE_CLASS or APPLICATION_ID.

¶ Your TSX should test to ensure that the API is active before doing a GETAPIDATA or
SETAPIDATA. If the TSX is not running under the HLAPI, those TSX control lines will
fail. See the example of using user exit BLGTSAPI to determine if the API is active.

HLAPI REXX Example
/* HLAPI REXX example */
trans='USERTSP'
tsp_name = 'BLGTXINQ'
/* Find all Problem records entered in November 98 */
search_argument = "!S0032 DATE/1998/11/01 -31"
table_panel = 'BLG1TSRL'
INPUT.1.?NAME = 'tsp_name'
INPUT.2.?NAME = 'search_argument'
INPUT.3.?NAME = 'table_panel'
INPUT.0 = 3

Drop hits
Address LINK "BLGYRXM" trans || ',,INPUT,OUTPUT'
Do i = 1 to OUTPUT.0 while (datatype(OUTPUT.0,'W'))

OTYPE = OUTPUT.i.?TYPE
TNAME = OUTPUT.i.?NAME
If datatype(OUTPUT.TNAME.0,'W') & OUTPUT.i.?TYPE <> 'X' then

Do J = 0 to OUTPUT.TNAME.0
Call value TNAME || '.'j ,OUTPUT.TNAME.J

End
Else

Call value tname, output.tname
End
if datatype(hits,'w') then

Do
Say 'Hits =' hits
Say 'Total_Hits =' total_hits
If hits > 0 then

Say 'Columns =' columns

BLGTXINQ

269Application Program Interface Guide

|
|
|
|
|

4.
H

L
A

P
I

E
xten

sio
n

s

Do i = 1 to hits
temp = ''
Do n = 1 to columns
temp = temp || value('COLUMN'n'.'i) || ' '
End
/* Say the 1st 79 bytes so it is easy to read on 3270 screen. */
Say substr(temp,1,79)

End
End

Getting Input Data
A HLAPI extension TSX does not use PIDTs or Data View records to retrieve data. The
TSX can obtain input data two ways. When the TSX is invoked, the data contained in
USER_PARAMETER_DATA is passed as a parameter and can be accessed using the REXX
keyword instructions ARG or PARSE ARG. This is useful when the amount of input data is
limited.

The second method is to use the TSX control line GETAPIDATA. The actual input PDB
names are determined when you write the TSX; those input PDB names must be used by the
HLAPI application calling your TSX HLAPI extension. You can have any number of input
PDBs. They can be single item PDBs or multiple item PDBs. Assume that you decided to
use ASSIGNEE as a single item input PDB and RNIDS as a multiple item input PDB. The
application using your HLAPI extension would code:

/* A REXX user of your HLAPI extension would code */
TSP_NAME = 'MYTSXEXT' /* whatever you call your TSX */
ASSIGNEE = 'HELPDESK'
RNIDS.0 = 3
RNIDS.1 = '00000001'
RNIDS.2 = '00000002'
RNIDS.3 = '00000003'

INPUT.0 = 3
INPUT.1.?NAME = 'TSP_NAME'
INPUT.2.?NAME = 'ASSIGNEE'
INPUT.3.?NAME = 'RNIDS.'

Address LINK "BLGYRXM" 'USERTSP,,INPUT,OUTPUT'

Then in the TSX ’MYTSXEXT’ to retrieve these input PDBs you would code:
/* Get the list of RNIDs */

Call blgtsx 'getapidata','RNIDS','the_input_rnids.'
If TSCAFRET = 0 then

If datatype(the_input_rnids.0,'W') then
Do i = 1 to the_input_rnids.0

Say 'RNID' i '=' the_input_rnids.i
End

/* Get the assignee in a stem even though there is only 1 */
Call blgtsx 'getapidata','ASSIGNEE','person_name.'
If TSCAFRET = 0 then

say 'Assignee name is ' person_name.1

Return Data
A HLAPI extension TSX does not use PIDTs or Data View records to return data to the
HLAPI application. The TSX can only return data by creating output PDBs using the
SETAPIDATA TSX control line. You can return as much data as you would like. You can
return single item output PDBs or multiple item output PDBs.

BLGTXINQ

270 Version 7.1

To return a single item output PDB with the PDBNAME of STATUS to the HLAPI
application user, the HLAPI TSX extension should contain the code:

record_status = 'COMPLETE'
Call BLGTSX 'SetAPIdata','STATUS',record_status

To return a multiple item output PDB with the PDBNAME of LIST, you must use a stem.
You must also determine the longest item, because all the items will be padded with blanks
to the length, so that PDBDATW can be used by the application receiving the data to
correctly use it. For example:
longest = 0
Do i = 1 to LIST.0

x = length(LIST.i)
if x > longest then longest = x

End
Call BLGTSX 'SetAPIdata','LIST','LIST.',LIST.0,longest

Two reserved output PDB names that you can use have special meaning. They are
HICARETC and HICAREAS. When you set these using SETAPIDATA, they are not
returned on the output PDB chain. Their values are used to set the HICA fields with the
same name. Applications using the HLAPI use these fields to determine if a HLAPI
transaction was successful. To set HICARETC and HICAREAS, the HLAPI TSX extension
would code:
Call BLGTSX 'SetAPIdata','HICARETC',my_return_code
Call BLGTSX 'SetAPIdata','HICAREAS',my_reason_code

Note: The values you set are used only if the values in the HICA are zero. If the HICA
values HICARETC and HICAREAS are not zero, an error occurred processing the
HL14. Refer to “Return and Reason Codes” on page 301 to determine the meaning.

A general guideline for setting return codes is:

4 warning

8 validation or parameter checking

12 processing error and TSX syntax error

16 severe error

Remember that two reason codes for return code 12 are already defined. Return code 12
reason code 165 is defined for TSX syntax errors. Return code 12 reason code 166 is
defined as a general error that you can use when writing TSXs. In order to avoid conflict
with other established Tivoli Information Management for z/OS return and reason codes, the
range of reason codes in the range 900–999 is reserved for your use and Tivoli use in
HLAPI extension TSXs. That is, you can use return code 4, reason code 900 through 999;
return code 8, reason code 900 through 999; return code 12, reason code 900 through 999;
return code 16, reason code 900 through 999.

Usage notes for HLAPI Extensions
You should test to ensure that the TSX is running under the HLAPI before you attempt to
use GETAPIDATA or SETAPIDATA. The following code can be used to determine if the
HLAPI is active:
/* See if the API is active. */
Call BLGTSX 'USEREXIT','BLGTSAPI'

If TSCAFRET = 0 then

BLGTXINQ

271Application Program Interface Guide

4.
H

L
A

P
I

E
xten

sio
n

s

api_active = 1
else

Do
Say 'Sorry HLAPI is not active.'
Exit

End

Your TSX should include a syntax routine to handle syntax errors. Here is a sample syntax
routine that sets the reason code 165 using API user exit BLGYAPSR. Return code 12 is
automatically set if BLGYAPSR is used.
/* near the top of your TSX include the line */
Signal on syntax

....

....

/* then at the bottom of your TSX include: */
/* --- */
/***/
/* Subroutine to display helpful information in the event of a */
/* syntax or TSX control line parameter error */
/***/
syntax:

errsigl=sigl /* Save failing line number */
call issuemsg 'SAY',20200,sigl /* Show failing line number */
say strip(SourceLine(errsigl),'T') /* and the line source */
if symbol('BLG_ERROR.0')='VAR' then /* Control line errors? */

do i = 1 to BLG_ERROR.0 /* Loop through the messages */
say BLG_ERROR.i /* Display error message */

end
/***/
/* If API active then set syntax error codes */
/***/
if blgapi=1 then

do
Call BLGTSX 'SetAPIData','HICARETC',12
Call BLGTSX 'SetAPIData','HICAREAS',165

end
exit 8

BLGTXINQ

272 Version 7.1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Tips for Writing an API Application

This chapter describes the steps typically involved in creating an application that uses the
Tivoli Information Management for z/OS APIs. Every programmer has a certain technique or
style for designing applications, so think of this chapter more as a set of guidelines rather
than as a set of rules.

Determine What You Want Your Application to Do
The first step in creating an application is to determine exactly what you want it to do. After
you decide what you want the application to do, consider:
¶ Which Tivoli Information Management for z/OS functions (for example, create or

update) does it use?
¶ Which record types (for example, problem or change) does it use?
¶ Which fields (for example, status or assignee name) does it use?

Determine Which Application ID You Want to Use
Determine the application ID you want your application to use. Create your own or pick one
that is already defined, but make sure that the ID you select is in a privilege class that has
the authority to perform the functions you want on the record types you want. If your
system administrator has chosen to set APISECURITY=ON parameter in the BLX-SP
parameters, the MVS user IDs that run your application must be allowed to use the
application ID that you choose for your application. For more information about
APISECURITY, see “API Security” on page 287.

Determine Which Level of the API You Want to Use
Decide which API to use based on the operating characteristics of each one. “Introduction to
the Application Program Interfaces” on page 1 provides information about the APIs that can
help you decide. Consider these things when you make your choice:

¶ If performance is more critical than ease of coding, and your applications will run on
MVS, consider the LLAPI. For many types of applications, the performance benefit of
using the LLAPI instead of the HLAPI is not significant. The kinds of applications that
can provide significantly better performance when using the LLAPI are those that
perform many similar inquiry transactions. For example, applications that search many
times for problem records.

¶ If ease of coding is more important than the performance benefit of using the LLAPI,
then use the HLAPI.

¶ If in the future you might be writing applications for one of the remote platforms the
HLAPI supports, consider using the HLAPI, because the programming interface it
provides is the same across all platforms it supports.

5

273Application Program Interface Guide

5.
Tip

s
fo

r
W

ritin
g

an
A

P
I

A
p

p
licatio

n

¶ If you want to write the application in REXX, use the HLAPI/REXX interface. The
HLAPI/REXX interface enables you to use the HLAPI with REXX programs. In
addition, a REXX programming interface similar to HLAPI/REXX is available on the
OS/2 and AIX platforms, so if you plan to use these platforms in the future, your REXX
application can be used on either of them.

¶ If you want to write your application in Java, use the HLAPI for Java. This is only
available from the remote HLAPI platforms. Additional information on the HLAPI for
Java can be found in the Tivoli Information Management for z/OS Client Installation and
User’s Guide.

Determine Whether You Must Modify LLAPI TSPs
The LLAPI uses TSPs to perform its transactions. The HLAPI indirectly uses the LLAPI
TSPs because the HLAPI transactions use the LLAPI. When regular panel processing is
used, the LLAPI uses some of your interactive panels as part of its processing for many
transactions. When bypass panel processing is used, the LLAPI only uses panels to process
the delete transaction. See “API Control Flow” on page 283 for additional information. You
might need to modify the LLAPI TSPs for any of the following:

¶ You have customized Tivoli Information Management for z/OS initialization, record
create processing or update processing.

¶ You want to create or update user-defined record types.

¶ You want to enable certain API functions

For more information, see the following:

¶ Page 17 for information on LLAPI TSPs.

¶ “Tailoring the Application Program Interfaces” on page 289 for information on
modifying these TSPs.

¶ “Terminal Simulator Panels” on page 349 for a description of these TSPs.

Determine Whether You Must Build New API Tables
You can use static PIDTs built by BLGUT8 or PIDTs generated from data view records to
define the “view” of data for your application. If you want to use data view records, you
must build them along with the associated data attribute and validation records.

If the application you are creating is for working with your own user-defined record types or
Integration Facility records, or you want to use views for the data that are different from
those that are shipped with Tivoli Information Management for z/OS, you might need new
API tables. See “Field Validation Using the Field Validation Module BLGPPFVM” on
page 279 for information about the PIDTs, the Table Build Utility, and validation records.
Here are some situations that require new static tables:

¶ If fields have been added, deleted, or changed, and you have not already built new
tables for the record type/function pairs you want to use.

¶ If performance or minimized virtual storage use is critical and you do not already have
customized tables for the record type/function pairs you want to use. In this case,
customized tables means tables that contain only the set of fields you want to deal with.

Determine Which Level of the API You Want to Use

274 Version 7.1

Determine Which API Control Block Mapping Macros You Need
The macros identified in this section are provided as programming interfaces for customers
by Tivoli Information Management for z/OS.

CAUTION:
Do not use as programming interfaces any Tivoli Information Management for z/OS
macros other than those identified in this list.

Determining which API control block mapping macros you need is not required for
applications using the HLAPI/REXX interface.

Use these macros or control block definitions to map the storage that is used to
communicate with the API. You use these storage definitions to allow your application to
send information to the API and to access information that is returned by the API. Macros
and control block definitions map the various data areas used by the API and your
application.

Review the control block definitions and transaction examples in “Using the LLAPI” on
page 15 for the transactions you want to use. Then locate or define API control block
mapping macros from the following lists:

¶ For the LLAPI

v PICA. Use with all transactions and activities.

v PIDT. Use with create, update, add record relations, or inquiry transactions.

v PIPT. Use with create or update transactions and with the IBM®-supplied utility
(BLGPPFVM) to validate the data being added to the record.

v PIAT. Use with inquiry transactions with freeform arguments

v PIRT. Use with inquiry transactions.

v PIMB. Use if your application checks messages issued by Tivoli Information
Management for z/OS while running your transactions.

v PIHT. Use if your application requests history data processing on the LLAPI retrieve
record (T100) transaction.

¶ For the HLAPI
v HICA. Use with all transactions and activities.
v PDB. Use with all transactions and activities.

Assembler DSECTs and “C” header files are provided for all of these control blocks. They
are stored in the ABLMSAMP distribution library, which is created during the installation of
Tivoli Information Management for z/OS. If you use another programming language, you
must define the control block mappings. Someone in your organization may have already
done this. For more information on these mappings, see “LLAPI Structures” on page 100,
“HLAPI Structures” on page 216, or study the assembler DSECTs or C header files provided
by Tivoli Information Management for z/OS. The Tivoli Information Management for z/OS
SAMPLIB (MVS data set SBLMSAMP) contains sample structure definitions as described
in Table 80 on page 276.

Determine Which API Control Block Mapping Macros You Need

275Application Program Interface Guide

5.
Tip

s
fo

r
W

ritin
g

an
A

P
I

A
p

p
licatio

n

Table 80. Sample Structure Definitions
Language API SAMPLIB Member

C LLAPI BLMLLCU

C HLAPI BLMHLCU

PL/I HLAPI BLMHLPS

See “Sample HLAPI/REXX Interface” on page 369 for more information on sample
programs.

Determine If You Want To Use Data Model Records
With earlier releases of Tivoli Information Management for z/OS, information about the
format and structure of the data (what was called in “Data Model Records” on page 11 the
composition of the data records) was stored in panels and in static PIDTs built by BLGUT8.
Now, a means is provided of storing this “data model” in records rather than in panels. This
eliminates the storage, maintenance, integrity, and security concerns of static PIDTs and
PIPTs.

In order to use the data model records which were created previously and saved in the
database, you must signal this in either of two methods, depending on whether you are using
the LLAPI or HLAPI:

¶ In the LLAPI, the flag PICADMRC must be set to Y in order to use the data model
function. This indicates that the PIDT name is a data view record ID and should be used
to build the PIDT during the requested transaction.

¶ In the HLAPI, the PDB DATA_VIEW_NAME must specify a data view name either as
an alias or a data view record ID.

Determine If You Want To Bypass Panel Processing
In earlier releases of Tivoli Information Management for z/OS, in order to accommodate
locally modified panel flows, you had to modify the API TSPs to follow the modified panel
flow.

Now, function is added so that your APIs can bypass panel flow. More information on the
means of bypassing panel processing can be found in “API Control Flow” on page 283.

Write Your Application
Using the control block mapping macros you located or defined previously, write your
application. It is a good idea to start by coding the initialization and termination transactions
and then testing. In general, it is a good practice to code a small piece of the application and
test it, then add another small piece and test it, and so on. Using this method facilitates
debugging your application because you can more easily isolate the problem area.

Do not link-edit the API server into the same load module as your application because this
practice consumes excess storage. Also, if the API server is enhanced in the future, you
would have to relink all your API applications. It is more efficient to use either a load and
call method or an MVS LINK to access the server. The AMODE and RMODE parameters

Determine Which API Control Block Mapping Macros You Need

276 Version 7.1

you use to link-edit your application can affect which method you choose to access the
server. See page 145 for more information on HLAPI transactions, and page 15 for more
information on LLAPI transactions.

Include a print statement that prints the return code and reason code from the PICA (LLAPI)
or HICA (HLAPI) after each transaction to help you identify any errors detected by the API.
When your application works as you want it, you can remove this print statement or modify
it to print only unexpected return and reason codes.

If you use the LLAPI, specify either P or B in PICAMSGD and some value (greater than
zero) in PICASPLI so that a transaction log, including any Tivoli Information Management
for z/OS messages, is produced. A transaction log is helpful in debugging. You may also
find it helpful to print out PICA fields at various critical locations in your application, such
as immediately before calls to the LLAPI server module BLGYSRVR. Many problems occur
because the PICA contains values that are not valid. Verify that each PICA field contains the
value that you think you set it to. Use the PICA field definitions explained in “Using the
LLAPI” on page 15 as a guide to appropriate values for the PICA fields. Finally, verify that
your application does not try to set PICA fields that should only be set by the LLAPI.

If you use the HLAPI, specify either P or B in the HLIMSG_OPTION PDB and some value
(greater than zero) in the SPOOL_INTERVAL PDB so that a transaction log, including any
Tivoli Information Management for z/OS messages, is produced. You can print information
(in HLAPILOG) about each PDB that is sent to the HLAPI or returned from the HLAPI.
Change the setting for PDBPROC to T in the PDB that is named TRANSACTION_ID at
HLAPI initialization. This can be helpful in debugging because it lets you trace the flow of
data to and from the HLAPI.

If you use the HLAPI/REXX interface, it might be useful, if you must diagnose your
program, to output all possible error information that is set in your program after each
transaction. Consider this only if a transaction returns a non-zero return code. Refer to the
Tivoli Information Management for z/OS SAMPLIB (MVS data set SBLMSAMP) for an
example of a procedure that outputs error information. Refer to the Tivoli Information
Management for z/OS Planning and Installation Guide and Reference for information on the
person to contact for information on high-level qualifiers of data sets at your site. See
“Sample HLAPI/REXX Interface” on page 369 for more information on sample programs.

You might also find it helpful to allocate a SYSPRINT DD statement when you use the
APIs so that error information can be written to SYSPRINT.

Write Your Application

277Application Program Interface Guide

5.
Tip

s
fo

r
W

ritin
g

an
A

P
I

A
p

p
licatio

n

Write Your Application

278 Version 7.1

Field Validation Using the Field Validation
Module BLGPPFVM

This chapter provides a description of field validation using the Field Validation Module
BLGPPFVM.

Using BLGPPFVM To Validate Data Fields
The field validation module BLGPPFVM is an independent load module you can use to
validate field data according to patterns specified in a PIPT associated with a PIDT.
BLGPPFVM can also be used to convert the case of data according to the settings in
PIDTCGMX and PIDTCDCA (described on page on page 130). The HLAPI also uses this
module when you choose field validation for HLAPI create or update transactions.

When you are using the LLAPI, your application must load the module into its address
space and then call the module for each validation request. The routine validates the
specified field and issues the results through return codes.

Note: The LLAPI can call the validation routine, which may return an error code. The two
reasons for which the LLAPI will call the validation routine are:

¶ If you have specified PIDTEQRP=Y and have an = in the first position of the
pattern

¶ If a value has been provided for the PIDTVSWD field

This is the call syntax for the LLAPI field validation module:
<label> CALL BLGPPFVM(parameter list)

Figure 12 on page 280 shows the parameter list (PLIST) structure, as it appears to an
assembler language program, that calls the interface field validation module.

6

279Application Program Interface Guide

6.
F

iled
V

alid
atio

n
M

o
d

u
le

B
L

G
P

P
F

V
M

When you use the HLAPI, you must set the PDBPROC field of each input chain PDB to V
to start the field validation module and cause the PDBDATA field contents of the PDBs to
be validated when you process an appropriate transaction.

Input
The required inputs for BLGPPFVM are:

PIDT address The pointer of the PIDT used to validate the field

PIDT symbolic field name The pointer to the symbolic field name of the field to
validate

Data field length The pointer to the length of the data field to validate

Data field address The pointer to the data field to validate.

Codes from BLGPPFVM
Return codes indicate the results of the validation. The validation module returns the
following return code values.

000 (X'000')

Explanation: Validation was successful for this field.

004 (X'004')

Explanation: Data does not match any validation patterns.

008 (X'008')

Explanation: Field symbolic name was not found in PIDT.

012 (X'00C')

Explanation: PIPT structure is not valid.

R e g i s t e r 1
P L I S T

@ S Y M B O L

@ L E N G T H

@ F I E L D

S Y M B O L

L E N G T H

F I E L D

@ P L I S T
@ P I D T P I D T

Figure 12. Input Parameter List for BLGPPFVM

Validating Data Fields

280 Version 7.1

016 (X'010')

Explanation: PIDT error.

1. PIDT structure is not valid.

2. A dynamic PIDT was specified. This is not allowed.

3. The PIPT specified cannot be used because it is associated with a dynamic PIDT.

020 (X'014')

Explanation: PIDT contains no entries.

024 (X'018')

Explanation: Field symbolic name was not found in PIPT.

028 (X'01C')

Explanation: PIDT contains a zero value in field PIDTFPAT.

032 (X'020')

Explanation: Length of data to verify is zero.

036 (X'024')

Explanation: Pointer to the data to be verified contains zero.

040 (X'028')

Explanation: An unknown pattern validation character was found.

044 (X'02C')

Explanation: An R or V value is too large in a pattern.

048 (X'030')

Explanation: No R or V value was found in a pattern.

052 (X'034')

Explanation: A literal pattern does not end with a >.

056 (X'038')

Explanation: An R or V value is too small in a pattern.

060 (X'03C')

Explanation: An unknown validation data type was encountered.

Validating Data Fields

281Application Program Interface Guide

6.
F

iled
V

alid
atio

n
M

o
d

u
le

B
L

G
P

P
F

V
M

064 (X'040')

Explanation: An internal logic error has occurred during the processing of mixed data.

068 (X'044')

Explanation: Field contains mixed data that is not valid.

072 (X'048')

Explanation: An imbedded blank was found in the response. Imbedded blanks are not allowed.

Validating Data Fields

282 Version 7.1

API Control Flow

The LLAPI uses TSPs to control the processing of LLAPI transactions. (Because the HLAPI
uses the LLAPI to perform its processing, these TSPs are important to the HLAPI as well as
the LLAPI).

LLAPI Modes of Operation
The LLAPI has two modes of operation:

Panel processing
The TSPs that control the processing of transactions that file records (create, update,
and add record relation) flow through some of your panels. The main router TSP is
BLGAPI00. It runs user exits and other TSPs to process LLAPI transactions. If you
have modified the Tivoli Information Management for z/OS initialization process
you might have to modify TSP BLGAPI00. You need to modify TSPs BLGAPI02,
BLGAPI05, and BLGAPI09 if you have modified any of the following selections:
¶ The selections that start the Tivoli Information Management for z/OS application
¶ The selections that start record creation
¶ The selections that file records.

If you write applications that process customized Tivoli Information Management for
z/OS records, and you do not choose to bypass panel processing, you might need to
perform setup steps or tailor the LLAPI TSPs to correctly process these records. See
“Tips for Writing an API Application” on page 273, “Tailoring the Application
Program Interfaces” on page 289 and “Terminal Simulator Panels” on page 349 for
more information.

The create and update transactions use TSPs BLGAPI02 and BLGAPI05. The add
record relations transaction uses TSP BLGAPI09. These TSPs use some of the
panels that their corresponding interactive transactions use. For example, TSP
BLGAPI02 makes a selection that starts program exit BLG01050.

The LLAPI performs record file processing for create and update transactions by
using Selection 9 (File Record) on summary panels. It processes the record just as if
you had used the panel interface. That is, certain data fields, such as Date last
altered, Time last altered, and Time entered, are automatically set by Tivoli
Information Management for z/OS.

Bypass panel processing
Prior to Tivoli Information Management for z/OS Version 6.3, you were dependent
on your installation’s customized panels to initialize the API and create and update
records via the API. Beginning with Tivoli Information Management for z/OS

7

283Application Program Interface Guide

7.
A

P
I

C
o

n
tro

l
F

lo
w

Version 6.3, you can “bypass” panel processing. If you choose to bypass panel
processing, this must be established at initialization–in T001 for the LLAPI or in
HL01 for the HLAPI.

If you are using bypass panel processing, you must use data model records when a
record is created or updated. If you choose to bypass panel processing, API
transactions are performed by the main router TSP BLGAPIDI. BLGAPIDI uses
other TSPs and user exits to perform API processing. TSP BLGAPIPX performs the
functions of BLGAPI02, BLGAPI05, and BLGAPI09. BLGAPIPX calls user exits,
and does not need to be modified to support your local panel flow.

File processing is performed by user exit BLGYAPRF and a file control panel is not
used. You can define in the data view record the name of a TSP to run after create
and update file to perform processing such as notification.

In order to use the bypass panel processing and thereby bypass panel flow, you must
provide information in either of two methods, depending on whether you are using
the LLAPI or the HLAPI:

¶ In the LLAPI, the flag PICADRIF must be set to Y for the LLAPI to specify
bypass panel processing.

¶ In the HLAPI, the PDB BYPASS_PANEL_PROCESSING must be set to YES to
specify bypass panel processing.

In panel processing, the panels obtained some necessary information and provided it
to the API. If you choose to bypass panel processing, you must collect certain
information in the data view record in order to perform the create function. The
information that you must collect for a create is:

Product s-word
The product s-word must be specified in the data view record. In this case,
the product s-word is automatically contained in the generated PIDT. For
more information about product s-words and how to create your own
product, refer to the Tivoli Information Management for z/OS Planning and
Installation Guide and Reference.

Record access panel
The record access panel must be specified in the data view record. In this
case, the record access panel is automatically contained in the generated
PIDT. (Both the Product s-word and the Record access panel are found in
the record on an update record or add record relation transaction, so in these
cases you do not need to specify this information in the data view record.)

In panel processing, data such as date and time last modified is added directly to the
record during file processing. When panel processing is bypassed, these direct add
fields must be defined as data attribute records and included within the data view
record in the order in which they are to be added to the record. The Tivoli
Information Management for z/OS Panel Modification Facility Guide contains an
example of how to do this.

Depending on whether you choose to bypass panel processing, the TSP flow is different.
Based on your implementation, it may be necessary to change these TSPs.

You can use data model records by specifying, for the LLAPI, the PICA field
PICADMRC=Y, or for the HLAPI, specify a value for PDB DATA_VIEW_NAME which

LLAPI Modes of Operation

284 Version 7.1

specifies a data view name either as an alias or data view RNID. An advantage of this
enhancement is that PIDTs and PIPTs are dynamically created in storage using the records.
This eliminates the storage, maintenance, and security concerns of PIDTs and PIPTs. This
also eliminates the need to use the Table Build Utility (BLGUT8) to build data tables
(PIDTs) and validation pattern tables (PIPTs) that the APIs use.

LLAPI Modes of Operation

285Application Program Interface Guide

7.
A

P
I

C
o

n
tro

l
F

lo
w

LLAPI Modes of Operation

286 Version 7.1

API Security

Security checking ensures that a user has the authority to use the value specified in
PICAUSRN. This security checking is optional and is implemented by the system
administrator.

Note: In order to understand the security function, it is necessary to distinguish between two
IDs:

–– The MVS user ID used to sign on to MVS
This can be any of

¶ A TSO user ID of an interactive user

¶ A batch job user ID

¶ A remote application Security ID

–– The application name specified by the application
This is specified in the PICAUSRN field (see “Low-Level Program Interface
Communications Area (PICA)” on page 101) or in the APPLICATION_ID
control PDB (see “Parameter Data Definition” on page 225).

Security Implementation
The security function is implemented in the following steps:

¶ The Tivoli Information Management for z/OS database administrator identifies the
application names which will be used to access the Tivoli Information Management for
z/OS database through the APIs. These are specified in the PICAUSRN field during
LLAPI initialization or the APPLICATION_ID PDB for the HLAPI. These PICAUSRN
application names are then added to the appropriate privilege classes in the Tivoli
Information Management for z/OS database.

¶ The system administrator uses the RDEFINE RACF command to create a general
resource profile for each of these PICAUSRN application names. The IBM-supplied
class INFOMAN is used as the general resource class. This is the same resource class
used to control access to the Tivoli Information Management for z/OS data sets. The
MVS user IDs are then added to the access lists for the appropriate general resource
profiles and are given read access authority. Refer to the Tivoli Information Management
for z/OS Planning and Installation Guide and Reference for additional information on
these specifications.

¶ The Tivoli Information Management for z/OS administrator ensures that the required
keyword APISECURITY in the BLX-SP startup parameters member is set to ON.

¶ For most transactions, it is possible to change the name of the current application ID by
changing the APPLICATION_ID value. During processing, the BLX-SP compares the

8

287Application Program Interface Guide

8.
A

P
I

S
ecu

rity

MVS user ID with the PICAUSRN provided. If the two values specified are not the
same and if APISECURITY=ON, a check is made by using the RACROUTE
REQUEST=AUTH macro to verify read access. If the MVS user ID is not in the access
list or else if no profile and access list have been defined for the PICAUSRN, an error is
returned. The request for a user connection to the BLX-SP fails with an ABEND code
702 and the LLAPI returns a Return Code 12 Reason Code 160 which indicates that the
MVS user ID is not authorized because of the mismatch with the PICAUSRN application
name.

Security Implementation

288 Version 7.1

Tailoring the Application Program
Interfaces

PIDTs provide the structure for information on how the APIs define, reference, and list data.
You can tailor the data tables to provide different views of the data in a record so that your
applications can limit the scope of the data they process. The static data tables are stored in
the Report Format Table data set. Your applications can use private PIDT data sets through
the use of invocation session members. You can use data model records as an alternative to
building static PIDTs.

You can use data view records as an alternate way to define the data composition of records
that your application processes. The APIs generate PIDTs directly from the data view
records.

You can tailor the APIs in these ways:
¶ Data table tailoring or data view creation
¶ User-defined record support
¶ Terminal simulator panel tailoring.

Prior to Version 6.3, in order to modify panel flow, you had to modify the API TSPs to
follow the modified panel flow. In order to modify certain panels, you also had to modify
the TSPs.

Now, function is added so that your applications can direct the APIs to bypass panel
processing. Additional information about the means to bypass panel processing is contained
in “API Control Flow” on page 283.

Tailoring Data Tables
Data table tailoring is the process of specifying the statement criteria used to build a PIDT.
The statements can contain all or some of the fields that are associated with a Tivoli
Information Management for z/OS record, and that you can collect through existing
interactive dialogs.

For example, you want to specify a problem create table named PROBREP that contains
only a customized view of the reporter fields because you want to use this table with an
application that reports problems. Assume that you want the following fields collected:
¶ Reporter name
¶ Reporter department
¶ Reporter phone
¶ Reporter location
¶ Date occurred

9

289Application Program Interface Guide

9.
Tailo

rin
g

th
e

A
P

Is

¶ Time occurred
¶ Status
¶ Problem type
¶ Description abstract.

Use the problem create data table statements and copy the FIELD statements specified in the
reported data section of the table specifications.

Note: Data table statements used to build all PIDTs and PIPTs are shipped as samples. The
name of the member containing problem create data table statements is BLGYPRCS.

Also, copy the TABLE statement (changing the name BLGYPRC to PROBREP) and copy
the first FIELD statement that specifies the record type. Finally, specify an ETABLE
statement. Now the statements to define the table are complete.

Run the table build utility using PDS panel members that are offloaded from your VSAM
panel data sets by using BLGUT6F. The table build utility produces a PIDT named
PROBREP and a PIPT named PROBREPP. Refer to the Tivoli Information Management for
z/OS Operation and Maintenance Reference for more information.

Note: When running the Table Build Utility, use a private table data set and copy the
members to the operational data set later.

You can use data model records as an alternative to building static PIDTs.

User-Defined Record Support
To implement support of user-defined models of record data using static PIDTs:

1. Use utility BLGUT6F to copy all of the panels defined for the record type from a Tivoli
Information Management for z/OS VSAM panel data set to a partitioned data set.

2. Define the transactions you want to use against the record.

3. Define the tables you want to provide to the API for each transaction you want to use.
Remember that each transaction type requires its own data tables.

4. Code the table specification statements for each required table.

5. Run BLGUT8 to build the tables.

6. Update the record processing control panels. See “Record Process Panels” on page 361
for more information.

7. Modify transaction TSPs if necessary. See “Terminal Simulator Panels” on page 349 for
descriptions of the TSPs used by the APIs.

8. For complex models of data, you may need to create additional add record relation
tables.

Specify Tivoli Information Management for z/OS records using unique record type s-words.
You must add these s-word specifications to the record processing control panels
BLG1AACP and BLG1AAUP if you are using static PIDTs and panel processing. See
“Record Process Panels” on page 361 for more information on these control panels. You
must also specify the name of the associated record summary panel in the control panels.
When the APIs run record create and update transactions, the LLAPI loads these panels so
that the transaction TSPs can simulate record file responses.

Tailoring Data Tables

290 Version 7.1

Panel processing uses some of the panels in your interactive panel flow. If you model the
user record summary panels after the shipped summary panels, little or no tailoring of the
appropriate TSPs is required. The APIs perform record file processing by using selection 9
on summary panels. If user record summary panels do not use selection 9, you must change
the panel or the transaction TSP. You can copy the user record summary panel to a new
panel and change file selection to 9 so the APIs can use that panel and file records. Panels
BLG1AACP and BLG1AAUP tell the API which summary panel the file selection for the
record resides on.

To use the panel specified in panel BLG1AAUP as the summary panel, specify an
authorization code of 0001 for that panel in BLG1AAUP. If you are using bypass panel
processing, you must use data model records if you are using transactions that file records
(create, update, or add record relation). You do not have to modify the API TSPs that control
bypass panel processing to support your customized panels and you do not have to modify
panels BLG1AACP and BLG1AAUP.

When to Tailor Terminal Simulator Panels

Note: The information in this section applies if you are using panel processing.

LLAPI TSPs may need tailoring because of unique installation requirements. You can tailor
these TSPs if the overall logic flow does not affect the operation of the API subtask. Your
modifications must work for all record types that your application uses because all create,
update, and add record relation transactions use these TSPs.

The TSPs, as shipped, return control to the controller module BLGYAPCP specified on TSP
panel BLGAPI00. See “Terminal Simulator Panels” on page 349 for a discussion of API
TSPs.

Listed below are some situations that require tailoring of the LLAPI TSPs. These changes
must be made if you use either the HLAPI or the LLAPI.

¶ The IRC INIT,3,2 does not access the management application.

TSP BLGAPI00 requires modification, and other TSPs require modification depending
on which record functions you use in your application.

¶ The IRC INIT,3,2 does not display the panel to make a selection to start program exit
BLG01050; or the panel is displayed, but selection 5 does not start the program exit.

TSP BLGAPI02 requires modification.

¶ Selection 9 from the record summary panel does not file the record when you attempt to
create, update, or add record relations.

TSPs BLGAPI02, BLGAPI05 and BLGAPI09 require modification, depending on which
transactions your application performs.

User-Defined Record Support

291Application Program Interface Guide

9.
Tailo

rin
g

th
e

A
P

Is

When to Tailor Terminal Simulator Panels

292 Version 7.1

LLAPI User Exits

Most LLAPI user exits are designed for use only within the LLAPI environment. If any exit,
other than BLGEXDEL and BLGTSAPI, detects that it is operating outside this
environment, the exit forces Tivoli Information Management for z/OS to end abnormally
with return code 700, reason code 32. User exits BLGTSAPI and BLGEXDEL are
exceptions. They can operate outside the LLAPI environment.

BLGEXDEL - Delete Unusable Record
CAUTION:
This user exit deletes the root VSAM key without checking for authority. To protect
your database, have the TSP that calls this user exit check for authorization.

User exit BLGEXDEL deletes the record using the root VSAM key passed in the TSCA
variable data area. The root VSAM key is in character format (0-9, A-F). BLGEXDEL does
not uncognize information contained in the record by updating the SDIDS. You must run the
SDIDS build utility BLGUT1 after running this user exit to uncognize the record. Until
BLGUT1 is run, the record may show as deleted on a search results list.

If this user exit is used in the API, the database number is taken from PICADBID. If this
user exit is used outside the API, the database number is taken from the user’s profile. If the
profile does not contain a database number, database 5 is used.

Table 81 lists the return and reason codes that are returned by the exit.

Table 81. BLGEXDEL reason and return codes
TSCAFRET Return Code TSCAFRES Reason Code Description

0 0 Successful completion. Record deleted.

4 4 Variable data length (TSACVDAL) is not
equal to 8.

4 8 Database not found.

4 12 Database is not read/write.

4 16 Record enqueue on root VSAM key failed.

8 4 Storage allocation error.

16 4 Internal control blocks not found.

0 4 Storage allocation error. Some records
were deleted.

0 8 Database access error. Some records were
deleted.

8 8 Storage allocation error.

10

293Application Program Interface Guide

10.
L

L
A

P
I

U
ser

E
xits

Table 81. BLGEXDEL reason and return codes (continued)
TSCAFRET Return Code TSCAFRES Reason Code Description

8 12 Record not found.

8 16 Cannot delete root VSAM key
X'00000000'.

BLGJAUTH - Check Authorization
User exit BLGJAUTH checks whether the user’s privilege class has the required
authorization for the user to perform the requested action.

Input to BLGJAUTH is a 4-byte authorization code passed in the TSCA variable data area
by the calling TSP.

Table 82 lists the return and reason codes that the exit returns.

Table 82. BLGJAUTH reason and return codes
TSCAFRET Return Code TSCAFRES Reason Code Description

0 0 Successful completion. The user is
authorized to perform the requested action.

4 0 The user is not authorized to perform the
requested action.

8 0 The length of the variable data is not 4.

16 0 Tivoli Information Management for z/OS
internal control blocks cannot be found.

BLGYAPCP - LLAPI Control Processor
User exit BLGYAPCP, with TSP BLGAPI00 or TSP BLGAPIDI, performs the routing and
control processing for the LLAPI API subtask.

BLGYAPCP processes many transactions within code segments. When a TSP implements a
transaction, BLGYAPCP copies the transaction code stored in PICA field PICATRAN left
justified to TSCA field TSCAUFLD. BLGYAPCP then returns to TSP BLGAPI00 or TSP
BLGAPIDI to complete transaction processing by linking to a transaction TSP. BLGAPI00
(or BLGAPIDI) performs the link by testing the transaction code passed in TSCAUFLD.

BLGYAPGP - Retrieve Panel Name
User exit BLGYAPGP retrieves the name of a summary panel for use in record create or
update processing. BLGYAPGP also verifies the authority of the application to perform the
entry transaction requested. BLGYAPGP also checks fields PIDTUSEF, PICATXAU, and
PICAHIST to determine whether dynamic PIDT, text audit data, or history data processing
was requested. The exit then sets a return and reason code in the TSCA to indicate which
functions were requested. Create (T102), update (T105), and add record relation (T109)
transactions use this exit.

If you are using panel processing, summary panel names are stored in the LLAPI record
processing control panels BLG1AACP and BLG1AAUP. The value stored in PIDT field

BLGEXDEL - Delete Unusable Record

294 Version 7.1

PIDTUSEF determines which of these control panels to use. Each control line of these
panels specifies an s-word and a target summary panel name. The record type s-word
specified in the PIDT used to perform the transaction becomes the scan search argument.
The exit compares this search argument with each control line s-word in the control panel
until a match occurs. BLGYAPGP extracts the target panel name and stores it in the TSCA
variable data area and sets the variable data area length TSCAVDAL.

Table 83 lists the return and reason codes that are returned by the exit. If the value in
TSCAFRES is greater than zero, the value PICDABLE (74) is stored in PIVREAS. This
disables the history data, text audit data, and dynamic PIDT processing if the new versions
of BLGAPI02 and BLGAPI05 are not put into the panels data set. History data and text
audit data are also disabled in BLGAPIPX.

Table 83. BLGYAPGP reason and return codes
TSCAFRET Return Code TSCAFRES Reason Code Description

0 0 Successful completion. PIDTUSEF¬=D,
PICATXAU¬=Y, PICAHIST¬=Y.

4 0 A summary panel s-word cannot be
located, or the application is not authorized
to perform the function.

4 1 Successful completion. PIDTUSEF¬=D,
PICATXAU¬=Y, PICAHIST=Y.

4 2 Successful completion. PIDTUSEF¬=D,
PICATXAU=Y, PICAHIST¬=Y.

4 3 Successful completion. PIDTUSEF¬=D,
PICATXAU=Y, PICAHIST=Y.

4 4 Successful completion. PIDTUSEF=D,
PICATXAU¬=Y, PICAHIST¬=Y.

4 5 Successful completion. PIDTUSEF=D,
PICATXAU¬=Y, PICAHIST=Y.

4 6 Successful completion. PIDTUSEF=D,
PICATXAU=Y, PICAHIST¬=Y.

4 7 Successful completion. PIDTUSEF=D,
PICATXAU=Y, PICAHIST=Y.

BLGYAPBR - Record Build Processor
User exit BLGYAPBR retrieves data stored in the LLAPI data structures, converts it to
Tivoli Information Management for z/OS internal record form, and adds it to the database
record. Create (T102), update (T105), and add record relation (T109) transactions use this
exit.

The exit sets TSCA return code field TSCAFRET to 4 when the exit finds any processing
errors.

BLGYAPGP - Retrieve Panel Name

295Application Program Interface Guide

10.
L

L
A

P
I

U
ser

E
xits

BLGYAPSR - Set LLAPI Reason Code
User exit BLGYAPSR retrieves data from the TSCA variable data area and converts it to a
reason code that it passes back in PICA field PICAREAS in the LLAPI. If the length of the
data in the variable data area is anything other than 4, BLGYAPSR takes the first 2
characters, converts them to numerics, and stores the result in PICAREAS. For example,
with length=5, data=98765, PICAREAS is set to 98. With length=3, data=987, PICAREAS
is still set to 98.

If the length of the data in the variable data area is 4, and if all 4 characters are EBCDIC
numbers, BLGYAPSR converts all the data to numeric and places the result in PICAREAS.
Length=4, data=9876 results in PICAREAS being set to 9876.

The exit sets TSCA return code field TSCAFRET to 0 when the exit completes.

You can use user exit BLGYAPSR to set a reason code in the PICAREAS field when the
TSP returns. You must use reason codes 1000 to 9999 for user definition. If BLGYAPSR
sets a reason code, the associated return code is 12. Instead of using BLGYAPSR, the user
TSP can return status in the parameter area passed in PICAPARM.

BLGYAPBU - Retrieve Record ID
User exit BLGYAPBU retrieves the record ID or root VSAM key specified in PICA field
PICARNID. If a record ID is retrieved, it is appended to the TSCA variable data area. If a
root VSAM key is retrieved, it is converted to a record ID and the record ID is appended to
the TSCA variable data area. If the conversion from a root VSAM key to a record ID fails,
the root VSAM key is appended to the TSCA variable data area. Update (T105), add record
relation (T109), and delete (T110) transactions use this exit. Table 84 lists the return and
reason codes that are returned by the exit.

Table 84. BLGYAPBU reason and return codes
TSCAFRET Return Code TSCAFRES Reason Code Description

0 0 Successful completion. The record ID is
placed in the TSCA variable data area.

4 0 TSCA variable data area overflow. The
data is not added to the TSCA variable
data area.

4 8 The root VSAM key is place in the TSCA
variable data area. An error occurred
displaying the record.

4 16 The root VSAM key is placed in the
TSCA variable data area, but the root
VSAM key is not valid.

BLGYAPUP - Verify Record Update
User exit BLGYAPUP verifies that the record specified to the API is updated. Update (T105)
and add record relation (T109) transactions use this exit.

The exit sets TSCA return code field TSCAFRET to 4 if the record is not being updated.

BLGYAPSR - Set LLAPI Reason Code

296 Version 7.1

BLGRESET- Reset all Approvals to Pending
User exit BLGYAPUP changes all the approval status data for change records from Approval
Provided and Approval Rejected to Approval Pending.

Table 85. BLGRESET Return and Reason Codes
Return Code
(TSCAFRET)

Reason Code
(TSCAFRES)

Description

0 0 Successful completion.

8 4 Logic error. Internal control blocks could not be
located. No approvals are changed.

BLGTSAPI - Test for LLAPI Environment
User exit BLGTSAPI determines if the LLAPI environment is active. The exit sets TSCA
return code field TCSAFRET to 0 when the LLAPI environment is active and to 4 when it
is not active. There is no input to the exit. The output is TSCA return code field
TSCAFRET.

BLGYAPIS - Set Product
User exit BLGYAPIS is called by TSP BLGAPIPX when the API is active. For a create,
BLGYAPIS gets the product from the data view record with the product s-word and visible
phrase. It then gets the record access panel from the data view record with the record access
panel s-word. For an update, BLGYAPIS reads the record from the database and sets the
product stored in the record. It then checks record authorization and searches the record for
an owning or a transfer-to class. If found, BLGYAPIS then verifies the authority of the
application to perform the entry transaction requested.

Table 86 lists the return and reason codes that are returned by the exit.

Table 86. BLGYAPIS reason and return codes
TSCAFRET Return Code TSCAFRES Reason Code Description

0 0 No errors.

4 0 A record error occurred. The API reason
code is set.

8 0 No product s-word or visible phrase was
found on a create transaction. The product
s-word must be specified in a data view
record.

10 0 On an update or add record relations
transaction, an owning or transfer-to class
was found. The user does not have
authorization to update the record. The
API reason code is set.

BLGRESET- Reset all Approvals to Pending

297Application Program Interface Guide

10.
L

L
A

P
I

U
ser

E
xits

Table 86. BLGYAPIS reason and return codes (continued)
TSCAFRET Return Code TSCAFRES Reason Code Description

12 0 A record access panel error occurred.
Either no record access panel was found
on a create transaction, the record access
panel found is not a control panel, or it
could not be loaded. The record access
panel must be specified in a data view
record. The API reason code is set.

16 0 Invalid program exit call. The transaction
must either be a create, update, or add
record relations.

BLGYAPRF - File Record
User exit BLGYAPRF is used to file a record that has been processed by user exit
BLGYAPBR.

If no error occurs, then program exit BLG01214 is called and the record is filed. If an API
error occurs, the record is dequeued, and BLGYAPRF ends.

Table 87 lists the return and reason codes that are returned by the exit.

Table 87. BLGYAPRF reason and return codes
TSCAFRET Return Code TSCAFRES Reason Code Description

0 0 The record filed successfully.

4 0 An error occurred while filing the record.
The API reason code was set.

BLGYAPIS - Set Product

298 Version 7.1

Record Type and Function PIDT Tables

Table 88 specifies which static PIDT table is defined for use with API transactions. These
static PIDTs are shipped with the Tivoli Information Management for z/OS licensed
program. The PIDTs shipped in SBLMFMT are for using the standard 10–character date
panels that are shipped with Tivoli Information Management for z/OS. The PIDTs which
include data fields are also shipped in SBLMFMT.

PIDT to Record SERVICE Transaction Cross-Reference

Table 88. PIDT to Record SERVICE Transaction Matrix
Record Type
Description

Record Index Retrieve
T100/HL06

Create
T102/HL08

Update
T105/HL09

Inquiry
T107/HL11

Problem record S0032 BLGYPRR BLGYPRC BLGYPRU BLGYPRI

Change record S0B06 BLGYCHR BLGYCHC BLGYCHU BLGYCHI

Activity record S0B07 BLGYACR BLGYACC BLGYACU BLGYACI

Center record S0B0C BLGYDCR BLGYDCC BLGYDCU BLGYDCI

System record S0B0E BLGYSYR BLGYSYC BLGYSYU BLGYSYI

Hardware
component

S0B0F BLGYHCR BLGYHCC BLGYHCU BLGYHCI

Hardware
subcomponent

S0AF8 BLGYHSR BLGYHSC BLGYHSU BLGYHSI

Hardware feature S0B10 BLGYHFR BLGYHFC BLGYHFU BLGYHFI

Hardware
connection

S0B1E BLGYHXR BLGYHXC BLGYHXU BLGYHXI

Software
component

S0B13 BLGYSCR BLGYSCC BLGYSCU BLGYSCI

Software feature S0B14 BLGYSFR BLGYSFC BLGYSFU BLGYSFI

Software
connection

S0B1F BLGYSXR BLGYSXC BLGYSXU BLGYSXI

Hardware
financial

S0B1B BLGYHNR BLGYHNC BLGYHNU BLGYHNI

Software financial S0B1A BLGYSNR BLGYSNC BLGYSNU BLGYSNI

Service record S0B19 BLGYSVR BLGYSVC BLGYSVU BLGYSVI

A

299Application Program Interface Guide

A
.

R
eco

rd
Typ

e
an

d
F

u
n

ctio
n

P
ID

T
Tab

les

PIDT to Record LIST Transaction Cross-Reference
Table 89 specifies which PIDT table is defined for use with a particular record LIST
transaction.

Table 89. PIDT to Record LIST Transaction Matrix
Record List Description Record Index Inquiry T107/HL11

List change activities S0B07 BLGYACL

List hardware features S0B10 BLGYHFL

List hardware connections S0B1E BLGYHXL

List software features S0B14 BLGYSFL

List software connections S0B1F BLGYSXL

PIDT to Record ADD Transaction Cross-Reference
Table 90 specifies which PIDT table is defined for use with a particular record Add Record
Relation transaction.

Table 90. PIDT to Record ADD Transaction Matrix
Record Description Record Index Add T109/HL12

Add change activities S0B06 BLGYCHA

Add hardware feature S0B10 BLGYHFA

Add hardware connection S0B1E BLGYHXA

Add software feature S0B14 BLGYSFA

Add software connection S0B1F BLGYSXA

PIDT to Record LIST Transaction Cross-Reference

300 Version 7.1

Return and Reason Codes

This appendix lists the return and reason codes for the HLAPI, LLAPI, HLAPI remote
environment servers, and HLAPI clients. Most return and reason codes are returned through
the HICARETC and HICAREAS fields located in the HICA. The codes are divided into
sections based on the return code. Within each return code section, reason codes are listed in
decimal sequence, with the hexadecimal equivalent appearing to the right of the decimal
value. Each reason code is accompanied by an explanation and an origin. The origin
indicates which part or parts of the API return the reason code. The following terms are used
to identify the origin of a reason code:

Client Code returned by a HLAPI client

HLAPI Code returned by the HLAPI

LLAPI Code returned by the LLAPI

Server Code returned by a remote environment server.

Remember, the HLAPI uses the LLAPI, so even though an error might appear to be coming
from the HLAPI, it may very well be the LLAPI that produced the error.

This appendix also lists the return codes for the HLAPI/REXX, REXX HLAPI/2, REXX
HLAPI/AIX, and REXX HLAPI/USS. Because these return codes do not include a reason
code, they are listed in a separate section, “HLAPI/REXX, REXX HLAPI/2, REXX
HLAPI/AIX, and REXX HLAPI/USS Return Codes” on page 343.

Messages that the HLAPI/USS requester option writes in the blmprobe.log on the OS/390
UNIX System Service host where the requester is running can be found in the Tivoli
Information Management for z/OS Messages and Codes.

Messages that the HLAPI/UNIX requester option writes in the idbprobe.log on the OS/390
UNIX host where the requester is running can be found in the Tivoli Information
Management for z/OS Messages and Codes.

Note: The range of reason codes in the range 900–999 is reserved for customer use and can
be used in coding user-written TSXs.

Return Codes
The High- and Low-Level APIs and the clients and servers return the return codes listed in
this section.

B

301Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

000 (X'000')

Explanation: Indicates that the transaction completed successfully. See “Reason Codes for Return Code=0” for
the reason codes returned for this return code.

004 (X'004')

Explanation: Indicates that the transaction completed successfully but stored an informational reason code. See
“Reason Codes for Return Code=4” for the reason codes returned for this return code.

008 (X'008')

Explanation: Indicates that the transaction was not used and found a syntax or parameter error. See “Reason
Codes for Return Code=8” on page 304 for the reason codes returned for this return code.

012 (X'00C')

Explanation: Indicates that the transaction was used but timed out, or an error occurred after the transaction
processing successfully completed. See “Reason Codes for Return Code=12” on page 314 for the reason codes
returned for this return code.

016 (X'010')

Explanation: Indicates that the transaction was used but did not complete because of an API subtask ABEND.
The ABEND code is returned as the reason code in the form of xxsssuuu where sss is the system ABEND code,
uuu is a user ABEND code, and xx are do-not-care positions. The user-written application must reinitialize the
API environment before issuing any subsequent transactions. See “Reason Codes for Return Code=16” on
page 337 for the reason codes returned for this return code.

020 (X'014')

Explanation: Indicates that an error has occurred that caused all active conversations between a Tivoli
Information Management for z/OS server and a client to end. See “Reason Codes for Return Code=20” on
page 342 for the reason codes returned for this return code.

Reason Codes for Return Code=0
The following reason codes are returned for return code 0 (X'000').

000 (X'000')

Explanation: Successful completion.

Module: HLAPI, LLAPI

004 (X'004')

Explanation: Check transaction T010 issued but processing transaction not complete.

Module: LLAPI

Reason Codes for Return Code=4
The following reason codes are returned for return code 4 (X'004').

Return Codes

302 Version 7.1

001 (X'001')

Explanation: Indicates the LLAPI is already stopped.

Module: LLAPI

002 (X'002')

Explanation: Indicates the LLAPI is already initialized.

Module: LLAPI

003 (X'003')

Explanation: A LLAPI check or sync transaction was issued, and no transaction was pending.

Module: LLAPI

004 (X'004')

Explanation: A LLAPI T006 or T005 transaction was attempted, but the PIDT address in the PICA is zero.

Module: LLAPI

005 (X'005')

Explanation: A LLAPI T005 transaction was attempted, but the PIPT address in the PIDT is zero.

Module: LLAPI

006 (X'006')

Explanation: A LLAPI T007 transaction was attempted, but the PIRT address in the PICA is zero and the
search ID in the PICA is zero.

Module: LLAPI

007 (X'007')

Explanation: Create resources have already been allocated.

Module: LLAPI

008 (X'008')

Explanation: Update resources have already been allocated.

Module: LLAPI

009 (X'009')

Explanation: Inquiry resources have already been allocated.

Module: LLAPI

Return Code = 4

303Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

010 (X'00A')

Explanation: Add record relation resources have already been allocated.

Module: LLAPI

011 (X'00B')

Explanation: The PIPT has already been allocated.

Module: LLAPI

012 (X'00C')

Explanation: The application already has the record checked out.

Module: LLAPI

013 (X'00D')

Explanation: The application does not have the record checked out, or another application has the record
checked out.

Module: LLAPI

014 (X'00E')

Explanation: A HLAPI HL06 transaction was attempted, but the field HICAINPP is nonzero, and the field
TEXT_MEDIUM is set to D. No text data is returned with the record.

Module: HLAPI

071 (X'047')

Explanation: Not all matches for the inquiry are returned for one of the following reasons:
¶ The count of matches received from the inquiry is greater than the maximum number of matches specified in

the SORT PFX-N1 parameter of the BLGPARMS macro for the session-parameters member being used.
¶ The number of matches requested is greater than the total number of matches received from the inquiry.

Only the matches following the beginning match number are returned in the search results list.

Module: LLAPI

Reason Codes for Return Code=8
A return code of 8 identifies a validation error reason code. Validation error reason codes are
reported in two forms: encoded and explicit. Encoded validation reason codes identify one or
more errors, and explicit reason codes identify single errors.

Encoded Validation Error Reason Codes
Validation reason codes with values less than 65 536 are encoded to permit the return of
multiple validation errors. Encoded validation errors are returned in the low-order 2 bytes
(the third and fourth bytes) of PICAREAS. Each bit set on in these low-order 2 bytes of the
reason code field represents a validation error that was detected. For example, if you have
multiple validation errors of 1, 8, and 64 then a 1-bit would be present in the units, 8s, and
64s positions of the 2 low-order bytes of PICAREAS. This pattern (B'0000000001001001')
indicates the errors detected.

The following list contains the possible encoded reason code values returned as the result of
error detection during transaction validation. The code line of each encoded validation
reason code includes the decimal value of the bit that is set to 1, followed by the binary
value, followed by the hexadecimal value.

Return Code = 4

304 Version 7.1

00001 (B'0000000000000001') (X'0001')

Explanation: PIDT entries are not valid. One or more entries in the PIDT failed validation tests and are flagged
with entry error indicators in PIDTCODE. If the HLAPI returns this reason code, an error PDB is returned for
each PDB item flagged. HICAERRP points to the first error code PDB in the error chain. Each PDBDATA field
contains the PIDTSYMB field contents. Refer to 123 for a list of PIDT codes.

Module: HLAPI, LLAPI

00002 (B'0000000000000010') (X'0002')

Explanation: PICACLSN is not valid. Data stored in PICACLSN is not blank or contains symbols that do not
conform to privilege class record naming conventions.

Module: LLAPI

00004 (B'0000000000000100') (X'0004')

Explanation: The field PICAVSAM was set to Y to signal that a VSAM key was being passed in the
PICARNID field for either a create record transaction or an add record relations request. Only record IDs are
valid for these transactions

Module: LLAPI

00008 (B'0000000000001000') (X'0008')

Explanation: PICARNID required. Data stored in PICARNID is blank or contains symbols that do not conform
to database record identifiers.

Module: LLAPI

00016 (B'0000000000010000') (X'0010')

Explanation: PICATABN required. Data stored in PICATABN is blank or contains symbols that do not
conform to the operating system naming conventions for partitioned data set members.

Module: LLAPI

00032 (B'0000000000100000') (X'0020')

Explanation: Reserved.

00064 (B'0000000001000000') (X'0040')

Explanation: PICAPIDT not valid

1. The pointer in PICAPIDT is zero, but the transaction requires a PIDT available for use.

2. The pointer in PICAPIDT points to a PIDT different from the one named in PICATABN.

3. The usage defined for the type of PIDT (PIDTUSEF) is not valid for the requested transaction.

4. The PIDT is defined as dynamic (PIDTUSEF= D) and was specified for a transaction that does not allow
dynamic PIDTs.

5. The PIDT is marked corrupted due to a previous error processing data model records. The PIDT should be
freed, the error corrected, and the PIDT should be requested again.

Module: LLAPI

Return Code = 8

305Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

00128 (B'0000000010000000') (X'0080')

Explanation: PIDTBUFP not valid.

1. The pointer in PIDTBUFP is zero, but the transaction requires a response buffer available for use.

2. The pointer in PIDTBUFP points to a response buffer different from the one allocated for the PIDT.

Module: LLAPI

00256 (B'0000000100000000') (X'0100')

Explanation: PICAREQR not valid. The value in PICAREQR is less than zero. The value of PICAREQR must
be zero if the application does not require a PIAT for record inquiry, or it must be positive (number of PIAT
rows to allocate) if the application requires a PIAT for use during record inquiry.

Module: LLAPI

00512 (B'0000001000000000') (X'0200')

Explanation: PICAREQL not valid. The value in PICAREQL is not greater than zero. The value of
PICAREQL is used to allocate a response buffer and must be large enough to satisfy the application requirements
for record create, update, or inquiry transactions. The value in PICAREQL is ignored and not used during a
retrieve transaction. If you are using the HLAPI, this can mean that no inputs were specified.

Module: LLAPI

01024 (B'0000010000000000') (X'0400')

Explanation: PIDTPIAT not valid. The pointer in PIDTPIAT points to a PIAT different from the one allocated
for the PIDT.

Module: LLAPI

02048 (B'0000100000000000') (X'0800')

Explanation: PIDTPIPT not valid.

1. The name in PIDTPTNM does not match the name of the PIPT that was obtained for the current PIDT.

2. The pointer in PIDTPIPT points to a PIPT different from the one allocated for the PIDT.

Module: LLAPI

04096 (B'0001000000000000') (X'1000')

Explanation: PICASRCH not valid.

1. Index stored in PICASRCH is not blank, and is not in valid s-word index format.

2. Index stored in PICASRCH cannot be found in the PIDT pointed to by PICAPIDT.

Module: LLAPI

08192 (B'0010000000000000') (X'2000')

Explanation: Reserved

Return Code = 8

306 Version 7.1

16384 (B'0100000000000000') (X'4000')

Explanation: PICAPIRT not valid. The pointer in PIDTPIRT does not point to a PIRT.

Module: LLAPI

32768 (B'1000000000000000') (X'8000')

Explanation: Reserved.

Explicit Validation Error Reason Codes
The following list contains the possible explicit reason code values returned as the result of
error detection during transaction validation.

65536 (X'00010000')

Explanation: Incorrect LLAPI transaction code value (PICATRAN). The value specified is not known as a
valid transaction code.

Module: LLAPI

65537 (X'00010001')

Explanation: Incorrect application name (PICAUSRN). Either the first character is not alphabetic or a national
character (@, #, or $), or the value contains characters other than alphabetic, numeric, or national characters (@,
#, or $).

Module: LLAPI

65538 (X'00010002')

Explanation: Incorrect session name (PICASESS). The first character is not alphabetic or the value contains
characters other than alphabetic, numeric, or national characters (@, #, or $). The naming convention for session
parameter members is BLGSESaa, where you supply the suffix aa as two alphanumeric characters. If you use a
single numeric digit, it is right-justified with a leading zero. If you use a single alphabetic or national character, it
is left-justified with a trailing blank.

Module: LLAPI

65539 (X'00010003')

Explanation: Incorrect invocation privilege class name (PICACLSN). The first character is not alphabetic or the
value contains characters other than alphabetic, numeric, or special characters (&, /, @, #, or $).

Module: LLAPI

65540 (X'00010004')

Explanation: Error loading the specified session member (PICASESS). The session member cannot be found in
any load library using the current concatenation order.

Module: LLAPI

Return Code = 8

307Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

65541 (X'00010005')

Explanation: Previous transaction has not finished. The currently requested transaction is not a T002, T009, or
a T010 transaction, and the previous transaction has not yet finished.

Module: LLAPI

65542 (X'00010006')

Explanation: Initialization transaction required. The application has not specified a T001 transaction when
PICAENVP is zero.

Module: LLAPI

65543 (X'00010007')

Explanation: API subtask attach failure. The server attempted to attach the API subtask and received a nonzero
return code.

Module: LLAPI

65544 (X'00010008')

Explanation: API subtask detach failure. The server attempted to detach the API subtask and received a
nonzero return code.

Module: LLAPI

65545 (X'00010009')

Explanation: Storage not available for LLAPI control blocks. The server attempted to allocate storage that
could not be obtained.

Module: LLAPI

65546 (X'0001000A')

Explanation: Reserved.

65547(X'0001000B')

Explanation: Reserved.

65548 (X'0001000C')

Explanation: The application has passed an incorrect PICA structure (PICAENVP).

Module: LLAPI

65549 (X'0001000D')

Explanation: Error loading the date validation module. The server attempted to load the date validation routine
defined in the session member and received a nonzero return code.

Module: LLAPI

Return Code = 8

308 Version 7.1

|

65550 (X'0001000E')

Explanation: Error deleting loaded module. Either the session member or the date validation routine could not
be deleted.

Module: LLAPI

65551 (X'0001000F')

Explanation: A required input PDP is missing.

Module: Client

65552 (X'00010010')

Explanation: HICAENVP does not point to a valid HLAPI environment block. If HICAOUTP, HICAMSGP, or
HICAERRP point to PDBs created by a previous transaction, the HLAPI cannot free them.

Module: HLAPI

65553 (X'00010011')

Explanation: PDB structure specified is not valid. PDBACRO in a structure passed as a PDB does not contain
the string PDB (left-justified and right-padded with a blank), or PDBNAME is blank, or if used on the input
chain, PDBDATL is zero.

Module: HLAPI

65554 (X'00010012')

Explanation: Required CONTROL PDBs have not been specified or the address in HICACTLP is zero.

Module: HLAPI

65555 (X'00010013')

Explanation: HLAPI TRANSACTION_ID PDB value is not valid. The transaction ID specified is not
supported by the HLAPI.

Module: HLAPI

65556 (X'00010014')

Explanation: PRIVILEGE_CLASS PDB value is not valid. The first character is not alphabetic or the value
contains characters other than a-Z, 0-9, &, $, /, #, or @.

Module: HLAPI

65557 (X'00010015')

Explanation: PIDT_NAME PDB value is not valid. The first character is not alphabetic or the value contains
characters other than A-Z, 0-9, &, $, #, or @.

Module: HLAPI

Return Code = 8

309Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

65558 (X'00010016')

Explanation: RNID_SYMBOL PDB value is not valid. All characters must be numeric or the first character
must be alphabetic and the remaining characters must be A-Z, 0-9, #, $, @, &, or /.

Module: HLAPI

65559 (X'00010017')

Explanation: ALIAS_TABLE PDB value is not valid. First character must be alphabetic and the remaining
characters must be A-Z, 0-9, #, or $ with no imbedded blanks.

Module: HLAPI

65560 (X'00010018')

Explanation: The transaction was not successful for one of the following reasons:
¶ TEXT_DDNAME PDB value is not valid. Characters must be A-Z, 0-9, #, or $ with no imbedded blanks.
¶ No input PDBs were specified. At least one TEXT_DDNAME PDB must be specified.
¶ An input PDB other than a TEXT_DDNAME PDB was specified.

Module: HLAPI

65561 (X'00010019')

Explanation: ASSOCIATED_DATA PDB value is not valid. When no alias table processing is specified, the
first characters must be S or P and the remaining 4 characters must be hexadecimal.

Module: HLAPI

65562 (X'0001001A')

Explanation: APPLICATION_ID PDB value is not valid. The first character must be either alphabetic or a
national character (@, #, $), and the remaining characters must be alphabetic, numeric, or national characters (@,
#, $).

Module: HLAPI

65563 (X'0001001B')

Explanation: SESSION_MEMBER PDB value is not valid. First character must be alphabetic and the
remaining characters must be alphabetic, numeric, or the national characters # or &; The naming convention for
session parameter members is BLGSESaa where you supply the suffix aa as two alphanumeric characters. If you
use a single numeric digit, it is right-justified with a leading zero. If you use a single alphabetic or national
character, it is left-justified with a trailing blank.

Module: HLAPI

65564 (X'0001001C')

Explanation: You requested alias table processing but no alias table storage was allocated at session
initialization time.

Module: HLAPI

Return Code = 8

310 Version 7.1

65565 (X'0001001D')

Explanation: Required SEPARATOR_CHARACTER PDB missing. The HLAPI could not locate a
SEPARATOR_CHARACTER control PDB.

Module: HLAPI

65566 (X'0001001E')

Explanation: HLAPI previously initialized and an HL01 transaction has been attempted.

Module: HLAPI

65567 (X'0001001F')

Explanation: HLAPI has not been previously initialized. No transaction or a transaction other than HL01 has
been requested and no HICAENVP is stored in the HICA. If HICAOUTP, HICAMSGP, or HICAERRP point to
PDBs created by a previous transaction, the HLAPI cannot free them.

Module: HLAPI

65568 (X'00010020')

Explanation: TABLE_COUNT PDB value is too large. The maximum number of tables in storage is 256.

Module: HLAPI

65569 (X'00010021')

Explanation: The date specified with the DELETE_HISTORY control PDB could not be converted by the
currently enabled date conversion routine.

Module: HLAPI

65570 (X'00010022')

Explanation: The DELETE_HISTORY control PDB was specified but no history data has been retrieved and
saved.

Module: HLAPI

65571 (X'00010023')

Explanation: The specified file was not found.

Module: Client

65572 (X'00010024')

Explanation: The specified code page for the client is not supported.

Module: Client

65573 (X'00010025')

Explanation: The specified code page for the server is not supported.

Module: Client

Return Code = 8

311Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

65574 (X'00010026')

Explanation: The control PDB named DATABASE_PROFILE was not found.

Module: Client

65575 (X'00010027')

Explanation: If this is a HLAPI/CICS client application, the control PDB named CICS_USER_ID was not
found, or the length of the CICS_USER_ID entered was greater than 8 characters. This PDB is required on
HLAPI/CICS client HL01 transactions.

If this is a HLAPI/2, HLAPI/UNIX, HLAPI/NT, or HLAPI/USS client application, the control PDB named
SECURITY_ID was not found or the length entered was greater than 8 characters. This PDB is required on
HLAPI/2, HLAPI/UNIX, and HLAPI/NT client HL01 transactions.

Module: Client

65576 (X'00010028')

Explanation: The control PDB named PASSWORD was not found.

Module: Client

65577 (X'00010029')

Explanation: Profile processing. Unknown keyword found.

Module: Client

65578 (X'0001002A')

Explanation: Profile processing. Bad parameter.

Module: Client

65579 (X'0001002B')

Explanation: Profile processing. Duplicate keyword. Keyword already specified.

Module: Client

65580 (X'0001002C')

Explanation: Profile processing. A keyword that is required was not specified.

Module: Client

65581 (X'0001002D')

Explanation: Profile processing. ″=″ not specified.

Module: Client

Return Code = 8

312 Version 7.1

65582 (X'0001002E')

Explanation: Profile processing. Keyword numeric value is out of valid range.

Module: Client

65583 (X'0001002F')

Explanation: Profile processing. The input line is longer than 512 characters.

Module: Client

65584 (X'00010030')

Explanation: Profile processing. Log filename is too long. 260 characters is the maximum.

Module: Client

65585 (X'00010031')

Explanation: Profile processing. The symbolic destination name is longer than 8 characters.

Module: Client

65586 (X'00010032')

Explanation: Client code and requester code are not at the same version level.

Module: Client

65587 (X'00010033')

Explanation: The requested transaction is in progress.

Module: Client

65588 (X'00010034')

Explanation: No transaction is available.

Module: Client

65589 (X'00010035')

Explanation: The control PDB name CICS_PARTNER_ID was not found, or the length of the
CICS_PARTNER_ID entered was greater than 8 characters. This PDB is required for HL01 transactions
submitted by an HLAPI/CICS client application.

Module: Client

65590 (X'00010036')

Explanation: The control PDB name CICS_CM_TIME_OUT_VALUE was not found, or the length of the
CICS_CM_TIME_OUT_VALUE entered was greater than 6 characters or the time specified was not valid. This
PDB is required for HL01 transactions submitted by an HLAPI/CICS client application.

Module: Client

Return Code = 8

313Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

65591 (X'00010037')

Explanation: The control PDB name CICS_INTER_TIME_OUT_VALUE was not found, or the length of the
CICS_INTER_TIME_OUT_VALUE entered was greater than 6 characters or the time specified was not valid.
This PDB is required for HL01 transactions submitted by an HLAPI/CICS client application.

Module: Client

65592 (X'00010038')

Explanation: Neither IDBSYMDESTNAME nor IDBSERVERHOST was found. You must specify one.

Module: Client

65593 (X'00010039')

Explanation: Both IDBSYMDESTNAME and IDBSERVERHOST were found. You can specify only one of
them.

Module: Client

65594 (X'0001003A')

Explanation: The name specified for the requester’s host is too long.

Module: Client

65595 (X'0001003B')

Explanation: The name specified for IDBSERVERHOST is too long.

Module: Client

65664 (X'00010080')

Explanation: An unsupported date format was specified on the DATE_FORMAT PDB. The transaction was not
performed and the date format was set to the default value (database format).

Module: HLAPI

65792 (X'00010100')

Explanation: An error occurred when attempting to load the validation routine BLGPPFVM.

Module: LLAPI

65920 (X'00010180')

Explanation: On an HL06 (retrieve) transaction, you set control PDB TEXT_STREAM equal to YES but either
you did not set control PDB TEXT_OPTION equal to YES or you did not set control PDB
TEXT_AUDIT_OPTION equal to NO. Set TEXT_OPTION=YES, set TEXT_AUDIT_OPTION=NO, and retry
the HL06.

Module: HLAPI

Reason Codes for Return Code=12
The following reason codes apply when the return code is 12 (X'00C').

Return Code = 8

314 Version 7.1

001 (X'001')

Explanation: Indicates that the application ID was not authorized to complete the transaction.

Module: LLAPI

002 (X'002')

Explanation: API subtask timeout value has been exceeded. A sync transaction can be attempted to continue
the current transaction or a terminate transaction can be attempted to stop the LLAPI. If this error was received
from the HLAPI, the API session is terminated.

Module: HLAPI, LLAPI

003 (X'003')

Explanation: Indicates that Tivoli Information Management for z/OS detected an error and might have issued a
message that can indicate the error detail. The message text is available in the message buffer chain when the
application is receiving messages or printed in the activity log when messages are being logged.

Module: LLAPI

004 (X'004')

Explanation: The LLAPI detected a storage allocation error. The LLAPI attempted to allocate work storage and
none was available.

Module: LLAPI

005 (X'005')

Explanation: The LLAPI detected a PIMB allocation error. The LLAPI attempted to allocate storage for a
PIMB and none was available.

Module: LLAPI

006 (X'006')

Explanation: LLAPI record processing control panel s-word error. Possible causes are:

¶ The PIDT does not contain a record type s-word.

¶ The record type s-word is not found in the record processing control panels BLG1AACP and BLG1AAUP.

¶ The product s-word was not found in the primary entry control panel. The primary entry control panel is
specified by the BLGPARMS PANEL keyword. The default primary entry control panel is BLG0ENTR.

Module: LLAPI

007 (X'007')

Explanation: A LLAPI TSP variable data area error occurred (variable data area filled up).

Module: LLAPI

Return Code = 12

315Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

008 (X'008')

Explanation: One or more database access errors have been detected. Additional messages might be on the
message chain.

Module: LLAPI

009 (X'009')

Explanation: A text build error has been detected.

Module: LLAPI

010 (X'00A')

Explanation: Record not found.

Module: LLAPI

011 (X'00B')

Explanation: Record is currently being updated by another user or application.

Module: LLAPI

012 (X'00C')

Explanation: Record was busy.

Module: LLAPI

013 (X'00D')

Explanation: Table data set name not specified in the session member.

Module: LLAPI

014 (X'00E')

Explanation: Table data set allocation error.

Module: LLAPI

015 (X'00F')

Explanation: Table data set open error.

Module: LLAPI

016 (X'010')

Explanation: Table data set close error.

Module: LLAPI

Return Code = 12

316 Version 7.1

017 (X'011')

Explanation: Table data set logical record length is not 80.

Module: LLAPI

018 (X'012')

Explanation: Table data set record format is not fixed.

Module: LLAPI

019 (X'013')

Explanation: Table data set I/O error occurred.

Module: LLAPI

020 (X'014')

Explanation: Table data set member not found.

Module: LLAPI

021 (X'015')

Explanation: Table data set member is not a valid LLAPI table because of one of the following reasons:

¶ The table member does not contain the correct acronym to identify it as the type of table requested.

¶ The usage field for the type of PIDT (PIDTUSEF) is not valid for the requested transaction, and the
application is not doing dynamic processing with a retrieve transaction (T100).

¶ The Report Format Table (RFT) data set cannot be found. Either an RFT data set that contains the PIDT
being utilized must be allocated to the session running the API or else at least one of the data sets allocated
to the RFTDD statement must contain the required PIDT.

Module: LLAPI

022 (X'016')

Explanation: Table data set member is damaged. An end-of-file exit has been taken by the table member read
routine. The member might be truncated.

Module: LLAPI

023 (X'017')

Explanation: Maximum record ID value assignment reached.

Module: LLAPI

024 (X'018')

Explanation: PIDT table name specified for transaction is already defined for use by the requested transaction.

Module: LLAPI

Return Code = 12

317Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

025 (X'019')

Explanation: Text data set or buffer processing error detected. Possible errors include data set I/O error or
required storage unavailable. In many cases, other messages have been issued. PIDT entry has been flagged.
When the HLAPI is used, it extracts the PIDTCODE code and creates an error PDB.

Module: LLAPI

026 (X'01A')

Explanation: Data response was too long; PIDT entry has been flagged. When the HLAPI is used, it extracts
the PIDTCODE code and creates an error PDB. Refer to 123 for a list of PIDT codes.

Module: LLAPI

027 (X'01B')

Explanation: LLAPI record processing control panel not found. Possible causes are:

¶ Either BLG1AACP (create) or BLG1AAUP (update), or both, cannot be found on any read panel data sets
specified by the session member used for initialization.

¶ The primary control panel was not found. This panel cannot be found in any read panel data set specified by
the session-parameters member used for initialization. The primary entry control panel is specified by the
BLGPARMS PANEL keyword. The default control panel is BLG0ENTR.

Module: LLAPI

028 (X'01C')

Explanation: Create panel selection error. Possible causes are:
¶ Program exit BLG01050 was never started in the create process (it causes flow to go to the panel named in

BLG1AACP for the current record type — the panel name is obtained by user exit BLGYAPGP).
¶ An error occurred selecting entry (selection 5) from the main options menu.
¶ The panel actually flowed to when invoking program exit BLG01050 (current panel) does not match the

panel specified in the create processing control panel BLG1AACP for this record type.

Module: LLAPI

029 (X'01D')

Explanation: Update panel selection error. The current update summary panel (normal panel flowed to when
entering the update command for the record being updated) does not match the panel name specified in the
update processing control panel BLG1AAUP for this record type. Possible reasons for this error are:

¶ Panel BLG1AAUP contains incorrect information on the record type being updated.

¶ It is not the correct record and is a different type from the record type specified in the PIDT.

¶ The wrong PIDT is being used.

Module: LLAPI

030 (X'01E')

Explanation: External record ID specified for create is not valid. Possible causes are:

¶ The name duplicated a record name already in the database.

¶ The RNID contains symbols not valid for an RNID.

¶ A system-assigned format name was used for a system-assigned record ID that has not been system-assigned
and is not a record ID that was retrieved using a dynamic PIDT.

¶ A database access error occurred while determining the validity of the record ID (see the accompanying
messages).

Return Code = 12

318 Version 7.1

¶ A record ID was specified during update.

¶ The record ID began with a numeric but is not all numeric.

Module: LLAPI

031 (X'01F')

Explanation: PIDT entry error. The PIDT entry in error has been flagged as indicated by a nonzero
PIDTCODE. When the HLAPI is used, it extracts this PIDTCODE code and creates an error PDB. Refer to 123
for a list of PIDT codes set by the LLAPI (these are in the range of 00 to 46) and to 236 for a list of PIDT
codes set by the HLAPI (these are in the range of 50 to 72).

Module: LLAPI

032 (X'020')

Explanation: Text data set access error; PIDT entry has been flagged. When the HLAPI is used, it extracts this
PIDTCODE code and creates an error PDB. Refer to 123 for a list of PIDT codes.

Module: LLAPI

033 (X'021')

Explanation: Error occurred during Tivoli Information Management for z/OS initialization.

Module: LLAPI

034 (X'022')

Explanation: Reserved.

035 (X'023')

Explanation: Duplicate record IDs exist in the database.

Module: LLAPI

036 (X'024')

Explanation: Reserved.

037 (X'025')

Explanation: Add Record Relation panel selection error. The current Add Record Relation (update) summary
panel (normal panel flowed to when entering the update command for the record being updated) does not match
the panel name specified in the update processing control panel BLG1AAUP for this record type. Possible
reasons for this error are:

¶ Panel BLG1AAUP contains incorrect information on the record type being updated.

¶ It is not the correct record and is a different type from the record type specified in the PIDT.

¶ The wrong PIDT is being used.

Module: LLAPI

Return Code = 12

319Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

038 (X'026')

Explanation: Record access attempted and failed because record is checked out to another application.

Module: LLAPI

039 (X'027')

Explanation: Unexpected quit command was run. A quit command was run by some process other than a T002
transaction. Check the HLAPILOG, APIPRINT, SYSOUT, NETVIEW LOG, and SYSPRINT data sets for
additional messages.

Module: LLAPI

040 (X'028')

Explanation: Privilege class record not found, or application ID not found as an eligible user in the privilege
class.

Module: LLAPI

041 (X'29')

Explanation: Privilege class record not available.

Module: LLAPI

042 (X'2A')

Explanation: Privilege class record is busy.

Module: LLAPI

043 (X'2B')

Explanation: Incorrect database ID specified.

Module: LLAPI

044 (X'02C')

Explanation: A text data set reallocation error occurred. The HLAPI found an error when it attempted to
reallocate one of the text data sets the LLAPI allocates with a default or user-provided DDNAME. The HLAPI
stores an error code in the related input PDB when a text data set processing error occurs. This can also occur if
the number of data sets is greater than 99.

Module: HLAPI

045 (X'02D')

Explanation: A text data set free error occurred. The HLAPI found an error when it attempted to free one of
the text data sets specified on the input chain pointed to by HICAINPP. The PDBCODE field contains the
character I.

Module: HLAPI

Return Code = 12

320 Version 7.1

046 (X'02E')

Explanation: A text data set delete error occurred. The HLAPI found an error when it attempted to delete one
of the text data sets specified on the input chain pointed to by HICAINPP. The PDBCODE field contains the
character I.

Module: HLAPI

047 (X'02F')

Explanation: The HLAPI requested storage from the system but none was available.

Module: HLAPI

048 (X'030')

Explanation: The HLAPI requested PDB storage from the system but none was available.

Module: HLAPI

049 (X'031')

Explanation: A BLX environment initialization internal error has occurred.

Module: HLAPI

050 (X'032')

Explanation: A BLX environment termination internal error has occurred.

Module: HLAPI

051 (X'033')

Explanation: The HLAPI attempted to delete the validation module BLGPPFVM and found an error.

Module: HLAPI

052 (X'034')

Explanation: The HLAPI attempted to delete the LLAPI server module BLGYSRVR and found an error.

Module: HLAPI

053 (X'035')

Explanation: Reserved.

054 (X'036')

Explanation: Reserved.

055 (X'037')

Explanation: PALT/PIDT symbol not found. The PDBNAME specified cannot be found in either a PALT (if
alias processing) or in the specified PIDT. If alias processing, this error could also be an internal symbol that
could not be found in the PIDT. Field PDBCODE is set to M.

Module: HLAPI

Return Code = 12

321Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

056 (X'038')

Explanation: A response length error occurred. The value specified in PDBDATL is greater than that specified
for an item in a PIDT. This can also occur when the aggregate length of a freeform inquiry argument is greater
than 17 bytes, or when default data obtained from the alias table would be stored beyond the length of the
response buffer. Field PDBCODE is set to L.

Module: HLAPI

057 (X'039')

Explanation: A response validation error occurred. The value of data specified in PDBDATA does not match
validation criteria for the field. Field PDBCODE is set to V. When the HLAPI is used, it extracts this
PIDTCODE and creates an error PDB. Refer to 236 for a list of PIDT codes set by the HLAPI (these are in the
range of 50 to 72).

Module: HLAPI

058 (X'03A')

Explanation: A resource cleanup error occurred. The HLAPI found an error while freeing transaction resources
it had obtained.

Module: HLAPI

059 (X'03B')

Explanation: A response separator error occurred. A list or multiple response is missing a separator character or
the separator character specified could not be found in the item.

Module: HLAPI

060 (X'03C')

Explanation: If control PDB TEXT_STREAM is YES, PDBDATW does not equal PDBDATL. If control PDB
TEXT_STREAM is not YES or is not specified, one of the following problems occurred: PDB field PDBDATL
divided by PDBDATW produced a remainder, or PDBDATW is greater than 132, or the text data set name is
longer than 44 characters, or buffer storage and data set processing was mixed for text data.

Module: HLAPI

061 (X'03D')

Explanation: A delete timer exit routine error occurred. The HLAPI attempted to delete the timer exit routine
BLGYHLTE.

Module: HLAPI

062 (X'03E')

Explanation: A HLAPI log allocation error occurred after the transaction successfully ended.

Module: HLAPI

Return Code = 12

322 Version 7.1

063 (X'03F')

Explanation: A HLAPI log write error occurred after the transaction successfully ended.

Module: HLAPI

064 (X'040')

Explanation: Upon HLAPI termination, a HLAPI log release error occurred after an elapsed spool time
interval. The transaction successfully ended.

Module: HLAPI

065 (X'041')

Explanation: When this reason code is returned from a HL15 or HL16 transaction, it indicates that a PDB
name other than TEXT_DDNAME was specified. Any valid TEXT_DDNAME PDBs may have been processed
successfully. The PDB code field will be set with a value of V.

Module: HLAPI

066 (X'042')

Explanation: While attempting to delete history data, no dates were found. Ensure that the following conditions
are true:

¶ The history dates can be converted from external to internal format by the currently enabled date conversion
routine.

¶ The prefix word for date data begins with the characters DAT.

¶ The date history data was specified with journal first when created.

Module: HLAPI

070 (X'46')

Explanation: Incorrect record count detected on record read.

Module: LLAPI

072 (X'48')

Explanation: The record s-word in the specified PIDT cannot be found. This can be caused by specifying the
wrong PIDT.

Module: LLAPI

073 (X'49')

Explanation: During a create (T102), update (T105), or add record relations (T109) transaction, a list item was
found with an index value greater than the maximum allowed value of 19 274.

Module: LLAPI

Return Code = 12

323Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

074 (X'4A')

Explanation: One of the following processing options was requested, but the options were not enabled. You can
enable them for create (T102) or update (T105) by modifying either TSP BLGAPI02 (create) or BLGAPI05
(update) or BLGAPIPX for create and update if you are using bypass panel processing.
¶ Use of a dynamic PIDT (PIDTUSEF=D).
¶ History data processing (PICAHIST=Y).
¶ Text audit data processing (PICATXAU=Y).

Module: LLAPI

075 (X'4B')

Explanation: TEXTAUD=YES is specified in the BLGPARMS macro, and the application has attempted to
delete or replace existing text. Refer to the Tivoli Information Management for z/OS Program Administration
Guide and Reference for information on the BLGPARMS macro.

Module: LLAPI

076 (X'4C')

Explanation: Text audit data specification error. Audit data was specified for a text line (PICATXAU=Y) and
either the date or time did not pass validation, or all audit data fields for a line are empty. Date audit data must
be in the form YYDDD where YY is the last 2 digits of the year, and DDD is the Julian date. Time audit data
must be in the form HH:MM:SS. The PIDT entry was flagged by the PIDTCODE. Refer to 123 for a list of
PIDT codes.

Module: LLAPI

077 (X'4D')

Explanation: Freeform text was specified using the data set method (PICATXTP=D), and the application
indicated it was specifying audit data with the text (PICATXAU =Y). The LRECL of a text data set was not 168.
The PIDT entry was flagged by the PIDTCODE. Refer to 123 for a list of PIDT codes.

Module: LLAPI

078 (X'4E')

Explanation: No entry in the record was found specifying the record type. The s-word for the record must be
found in the create control panel, BLG1AACP.

Module: LLAPI

079 (X'4F')

Explanation: During an update transaction (T105) the s-word, p-word, or panel name specified in PIDTVLDD
was not found in the record entry corresponding to the PIDT entry. The PIDT entry has been flagged by the
PIDTCODE. Refer to 123 for a list of PIDT codes.

Module: LLAPI

080 (X'50')

Explanation: The PIDT specified has not been migrated to the current format. The PIDT was not loaded.

Module: LLAPI

Return Code = 12

324 Version 7.1

082 (X'52')

Explanation: During a create transaction (T102), an update transaction (T105), or a delete transaction (T110),
internal control structures required for transaction processing were not found.

Module: LLAPI

083 (X'53')

Explanation: During a delete transaction (T110), a LLAPI TSP variable data error occurred (variable data
length is not equal to 8).

Module: LLAPI

084 (X'54')

Explanation: During a delete transaction (T110), the enqueue on root VSAM key failed. A possible cause is
another user currently holding the enqueue.

Module: LLAPI

085 (X'55')

Explanation: The record in the database was changed after the data was retrieved. The record cannot be
updated.

Module: LLAPI

086 (X'56')

Explanation: A history data specification error occurred. The PIHT provided for a record update transaction
was not obtained with a record retrieve transaction for the same record ID.

Module: LLAPI

087 (X'57')

Explanation: A history data specification error occurred. The row count (PIHTNUMR) value must not be
changed.

Module: LLAPI

088 (X'58')

Explanation: The pointer in PIDTPIHT is not zero and does not point to a valid PIHT.

Module: LLAPI

089 (X'59')

Explanation: PIHT row error. The PIHT row in error was flagged as indicated by a nonzero PIHTCODE. A
listing of the PIHT codes can be found in Table 36 on page 132.

Module: LLAPI

Return Code = 12

325Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

090 (X'5A')

Explanation: During an update (T105) transaction, the timestamp last altered s-word was not found in the
record.

Module: LLAPI

091 (X'5B')

Explanation: During a record processing transaction, the RNID prefix was not found in the record.

Module: LLAPI

092 (X'5C')

Explanation: One of the following processing options was requested for a record create (T102), update (T105)
or delete (T110) transaction, but the API does not have the required authorization as specified in TSP BLGAPI02,
BLGAPI05, or BLGAPI10. If you are using bypass panel processing, this authorization for create and update
processing options was not specified in BLGAPIPX.

If you are using the Archiver, the privilege class running the Archiver does not have database administration
authority.
¶ Use of a dynamic PIDT (PIDTUSEF=D)
¶ History data processing (PICAHIST=Y)
¶ Text audit data processing (PICATXAU=Y)
¶ Delete a damaged record.

Module: LLAPI

094 (X'5E')

Explanation: During a retrieve transaction (T100) requesting a dynamic PIDT, an attempt was made to retrieve
an SRC record.

Module: LLAPI

096 (X'60')

Explanation: A dynamic PIDT processing error occurred. The RNID of the record to be updated does not
match the RNID of the record that was retrieved with this dynamic PIDT. This is not valid.

Module: LLAPI

097 (X'61')

Explanation: A dynamic PIDT specification error occurred. The s-word data length (PIDTSWDL) is larger than
10, or the p-word data length is larger than 6. The PIDT entry was flagged by the PIDTCODE. Refer to 123 for
a list of PIDT codes.

Module: LLAPI

098 (X'62')

Explanation: A dynamic PIDT build error occurred. Refer to the Tivoli Information Management for z/OS
Diagnosis Guide for information on contacting IBM.

Module: LLAPI

Return Code = 12

326 Version 7.1

099 (X'063')

Explanation: The specified search ID already exists. The search was not performed.

Module: LLAPI

100 (X'064')

Explanation: The specified search ID does not exist.

Module: LLAPI

101 (X'00000065')

Explanation: The client system is out of memory.

Module: Client

102 (X'00000066')

Explanation: An error occurred while allocating memory.

Module: Client

103 (X'00000067')

Explanation: The client code set is not compatible with the server code page. Code points cannot be converted
between the two.

Module: Client

104 (X'00000068')

Explanation: The client thread has prematurely ended.

Module: Client

105 (X'00000069')

Explanation: The specified conversation security information is not valid.

Module: Client

106 (X'0000006A')

Explanation: A supporting system thread could not be created. No more threads are available.

Module: Client

107 (X'0000006B')

Explanation: A system interrupt has occurred.

Module: Client

Return Code = 12

327Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

108 (X'0000006C')

Explanation: No more pipe resources are available.

Module: Client

109 (X'0000006D')

Explanation: The requester is not available. A requester must be started before HLAPI requester services can
be accessed by a client application.

Module: Client

110 (X'0000006E')

Explanation: No more handles are available. Increase handle count.

Module: Client

111 (X'0000006F')

Explanation: Log file failed to open.

Module: Client

112 (X'00000070')

Explanation: An error occurred while archiving the log file.

Module: Client

113 (X'00000071')

Explanation: An error occurred while retrieving an error message.

Module: Client

114 (X'00000072')

Explanation: An error occurred while writing an error message.

Module: Client

115 (X'00000073')

Explanation: The profile could not be opened.

Module: Client

116 (X'00000074')

Explanation: The profile file could not be read.

Module: Client

Return Code = 12

328 Version 7.1

117 (X'00000075')

Explanation: The profile end-of-file was unexpectedly reached.

Module: Client

118 (X'00000076')

Explanation: The conversation did not initialize. Some possible causes are:

¶ You encountered a RACF violation.

¶ The TP is not active.

¶ APPC is not running.

¶ You might have incorrect definitions in CM or VTAM®, or APPC or TP setup.

¶ You might be trying to use APPC to connect an AIX requester that only supports TCP/IP, an OS/2 requester
that only supports TCP/IP, a Windows NT requester that only support TCP/IP, a Solaris requester, or an HP
requester to MVS by using the IDBSYMDESTNAME parameter in your database profile. This parameter
cannot be used with an AIX requester that only supports TCP/IP, an OS/2 requester that only supports
TCP/IP, a Windows NT requester that only supports TCP/IP, a Solaris requester, or an HP requester.

¶ You might be trying to use TCP/IP to connect an OS/2 requester that only supports APPC to MVS by using
the IDBSERVERHOST parameter in your database profile. This parameter cannot be used with an OS/2
requester that only supports APPC.

¶ TCP/IP may not be running or the network may be down.

Module: Client

119 (X'00000077')

Explanation: IDBSYMDESTNAME in database profile specifies an unrecognized value.

Module: Client

120 (X'00000078')

Explanation: Process ID of caller failed to match process ID of original caller for the transaction sequence.

Module: Client

121 (X'00000079')

Explanation: Effective user ID of calling process failed to match effective user ID of original calling process
for the transaction sequence.

Module: Client

122 (X'0000007A')

Explanation: The file /etc/utmp was not found on the client interface host.

Module: Client

Return Code = 12

329Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

123 (X'0000007B')

Explanation: The BOOT_TIME record was not found in /etc/utmp on the client interface host.

Module: Client

124 (X'0000007C')

Explanation: Insufficient space is available in the descriptor table of the calling process.

Module: Client

125 (X'0000007D')

Explanation: Insufficient space is available in a file system of the calling process.

Module: Client

126 (X'0000007E')

Explanation: The user’s quota of disk blocks or i-nodes on a file system is exhausted.

Module: Client

127 (X'0000007F')

Explanation: The root or current directory of the calling process is located in a virtual file system that is not
mounted.

Module: Client

128 (X'00000080')

Explanation: A system-wide or per-user limit on the number of processes prevented creation of a process by
the client interface.

Module: Client

129 (X'00000081')

Explanation: Insufficient memory is available for allocation by the client interface.

Module: Client

130 (X'00000082')

Explanation: A system-imposed limit on the number of shared memory identifiers prevented creation of a
shared memory segment by the client interface.

Module: Client

131 (X'00000083')

Explanation: Insufficient physical memory was available on the client interface host.

Module: Client

Return Code = 12

330 Version 7.1

132 (X'00000084')

Explanation: A system-imposed limit on the number of shared memory segments attached to a process
prevented attachment of a shared memory segment by the client interface.

Module: Client

133 (X'00000085')

Explanation: Insufficient data space was available in memory for a shared memory segment on the client
interface host.

Module: Client

134 (X'00000086')

Explanation: The requester failed to create a process.

Module: Client

135 (X'00000087')

Explanation: Insufficient memory was available for the requester.

Module: Client

137 (X'00000089')

Explanation: The number of conversation managers would have exceeded the requester’s limit.

Module: Client

138 (X'0000008A')

Explanation: The requester experienced an error during client logon to the conversation process manager.

Module: Client

139 (X'0000008B')

Explanation: Reserved

140 (X'0000008C')

Explanation: The system file table is full.

Module: Client

141 (X'0000008D')

Explanation: A directory cannot be extended to contain a new file.

Module: Client

Return Code = 12

331Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

142 (X'0000008E')

Explanation: Data conversion between code sets (code pages) failed.

Module: Client

143 (X'0000008F')

Explanation: No match for the specified server service name or alias was found.

If this is a HLAPI/UNIX client application, specify a valid server service name in the etc/services file on the
requester host. If this is a HLAPI/2 or a HLAPI/NT client application, specify a valid server service name in the
services file in the etc subdirectory. If this is a HLAPI/USS client application, specify a valid server service
name in the /etc/services file or hlq.ETC.SERVICES data set, whichever you use, on the requester host.
Service names are case-sensitive.

Module: Client

144 (X'00000090')

Explanation: The specified server host name could not be resolved. The server host name must be a valid IP
address in the dotted-decimal format or a valid host name. If you specify a host name, the host name must be
resolvable.

Module: Client

145 (X'00000091')

Explanation: The server host is not available. The server must be started before a requester can access it.

Verify that you specified the correct server host name and server service name. If this is a HLAPI/UNIX client
application, verify etc/services on the requester host you are accessing contains the server service name and
that the port number associated with it is the one designated for the Tivoli Information Management for z/OS
MRES with TCP/IP on the server host. If this is a HLAPI/2 or a HLAPI/NT client application, verify the
services file in the etc subdirectory contains the server service name and that the port number associated with
it is the one designated for the Tivoli Information Management for z/OS MRES with TCP/IP on the server host.
If this is a HLAPI/USS client application, verify /etc/services or hlq.ETC.SERVICES, whichever you use, on
the requester host you are accessing, contains the server service name and that the port number associated with it
is the one designated for the Tivoli Information Management for z/OS MRES with TCP/IP on the server host.

Start the MRES with TCP/IP.

Module: Client

146 (X'00000092')

Explanation: Reserved

147 (X'00000093')

Explanation: Reserved

148 (X'00000094')

Explanation: Reserved

Return Code = 12

332 Version 7.1

149 (X'00000095')

Explanation: Reserved

150 (X'00000096')

Explanation: The beginning match number is greater than the number of matches in the search.

Module: LLAPI

151 (X'00000097')

Explanation: The value in PICARHIT indicates to use an existing search, but no search ID is specified in
PICASRID.

Module: LLAPI

152 (X'00000098')

Explanation: The product s-word or visible phrase was not found for a create transaction. The data view record
did not contain the product s-word.

Module: LLAPI

153 (X'00000099')

Explanation: The application ID is not authorized to update the record. The record has an owning or transfer-to
class and the application ID must be running in one of these classes or in the master privilege class.

Module: LLAPI

154 (X'0000009A')

Explanation: Record access panel error on a create transaction. Either the record access panel cannot be found
in the PIDT generated by the data view, it cannot be loaded, or it is not a control panel.

Module: LLAPI

155 (X'0000009B')

Explanation: The SDLDS is full and must be offloaded.

Module: LLAPI

156 (X'0000009C')

Explanation: The privilege class used with the change record approval transaction is not on the pending
approval list for the change record. One of two cases exists:

¶ The current privilege class has already approved or rejected the change.

¶ The current privilege class was either never entered as change approver or else it has been removed.

Module: LLAPI

Return Code = 12

333Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

157 (X'0000009D')

Explanation: The data view record ID specified in the PICATABN field could not be found on the data model
database.

Module: LLAPI

158 (X'0000009E')

Explanation: Multiple records exist on the database for the data view record ID specified in the PICATABN
field.

Module: LLAPI

159 (X'0000009F')

Explanation: The data view record ID specified in the PICATABN field is busy and cannot be processed.

Module: LLAPI

160 (X'000000A0')

Explanation: The MVS application user ID has not been authorized to use the application ID value specified
for PICAUSRN. This check has been requested by the specification of the keyword APISECURITY=ON in the
BLX-SP startup parameters. This reason code occurs with an abend code of 702 at the server.

Module: LLAPI

161 (X'000000A1')

Explanation: When using the HLAPI, if BYPASS_PANEL_PROCESSING=YES is specialized at
initialization (HL01), data model records must be used for the following HLAPI transactions:

¶ HL08 -- Create record

¶ HL09 -- Update record

¶ HL12 -- Add record relation

When using a LLAPI, if PICADRIF=Y is specified at initialization (T001), PICADMRC=Y must be specified
for the following LLAPI transactions:

¶ T101 -- Obtain record create resource

¶ T102 -- Create record

¶ T103 -- Obtain record update resource

¶ T105 -- Update record

¶ T108 -- Obtain add record relation resource

¶ T109 -- Add record relation

When using a LLAPI, if PICADRIF=Y is specified at initialization (T001), PICADYNM=Y may not be
specified for the following LLAPI transactions:

¶ T102 -- Create record

¶ T105 -- Update record

When using a LLAPI, if PICADMRC=Y is specified, PICADYNM=Y may not be specified for the following
LLAPI transactions:

¶ T100 -- Retrieve record

¶ T102 -- Create record

¶ T105 -- Update record

Return Code = 12

334 Version 7.1

Module: LLAPI

162 (X'000000A2')

Explanation: Reserved.

Module: LLAPI

163 (X'000000A3')

Explanation: The length of parameter data being passed to a TSP or TSX is greater than 255. User exit
BLGYITSP encountered the error. The parameter length is specified in PICAPARL, which is set by an
application invoking LLAPI transaction T111 or HLAPI transaction HL14 (parameter data is specified in an input
PDB named USER_PARAMETER_DATA). To correct this error, modify the application to specify 255 or fewer
characters to be passed to the TSP or TSX being invoked.

Module:

LLAPI

164 (X'000000A4')

Explanation: Error invoking an application-specified TSP or TSX on the T111 or HL14 transaction. Common
errors are that the TSP or TSX was not found, or that a TSX syntax error occurred and no REXX syntax routine
was specified to process it. User exit BLGYITSP encountered the error and has set TSCAFRET and TSCAFRES
to further detail the error. Trace the output of TSP BLGAPI00 (if using panel processing) or BLGAPIDI (if using
bypass panel processing) to determine the TSCAFRET and TSCAFRES values returned by user exit BLGYITSP.

Module:

LLAPI

165 (X'000000A5')

Explanation: A TSP or TSX invoked by the HL14 transaction encountered a syntax error. This reason code is
reserved to indicate that a syntax error occurred. The TSP or TSX must capture the syntax error in a syntax
routine and set this reason code by calling user exit BLGYAPSR or, in the case of a TSX, by invoking control
line SETAPIDATA.

Note: You can use this reason code in your user-written TSPs or TSXs.

Module:

LLAPI

166 (X'000000A6')

Explanation: A TSP or TSX invoked by the HL14 transaction encountered a general error. This reason code is
reserved for TSPs and TSXs to indicate that a general error occurred. The TSP or TSX must capture the syntax
error in a syntax routine and set this reason code by calling user exit BLGYAPSR or, in the case of a TSX, by
invoking control line SETAPIDATA. To determine the nature of this problem, look for additional messages which
may indicate the specific error encountered. Trace the TSP or TSX being run by the HL14 to gather additional
information about the error.

Note: You can use this reason code in your user-written TSPs or TSXs.

Module:

LLAPI

Return Code = 12

335Application Program Interface Guide

|
|
|
|

|

|

|
|
|
|
|
|

|

|

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

167 (X'000000A7')

Explanation: Record access attempted and failed because the record is currently being updated by the Tivoli
Service Desk application.

Module: LLAPI

168 (X'000000A8')

Explanation: Record update attempted and failed because the record is currently owned by the Tivoli Service
Desk application.

Module: LLAPI

169 (X'000000A9')

Explanation: Record update attempted and failed because the record contains one or more dates that could not
be migrated to the new date format.

Module: LLAPI

169 (X'000000A9') – 199 (X'000000C7')

Explanation: Reserved.

Module:

200 (X'000000C8')

Explanation: The MRES API session has been pre-started with parameters which do not match those received
on an HL01 transaction from a remote client. The HL01 transaction request is rejected. One of the following
inconsistencies has occurred:

¶ The SESSION_MEMBER names are not the same.

¶ The DATABASE_ID numbers are not the same.

¶ The BYPASS_PANEL_PROCESSING values are not the same.

Module: MRES

201 (X'000000C9')

Explanation: Both the preceding HL01 transaction and this transaction do not contain an APPLICATION_ID
PDB. The access authority cannot be checked. Therefore, this transaction is rejected.

Module: MRES

202 (X'000000CA')

Explanation: The pre-started API session of an MRES has received two HL01 client transactions without an
intervening HL02 transaction. This is not permitted. A client must terminate one API session before initializing a
second API session.

Module: MRES

Return Code = 12

336 Version 7.1

|

|
|

|

203 (X'000000CB')

Explanation: The first transaction received from a client by an MRES with pre-started API sessions is not the
HL01 initialization transaction. This is not permitted. The first transaction received from a client must be the
HL01 initialization transaction.

Module: MRES

1000 - 9999

Explanation: Reserved for user TSP (terminal simulator panel) use.

Reason Codes for Return Code=16
All API resources required by the transaction are verified before passing the transaction on
to the API subtask for processing. Failure of any of the resource verification steps results in
an API ABEND. The following steps are performed:

1. The resource is verified as an API-allocated resource.

2. The allocated size of the resource is verified.

3. The integrity of the resource limitations is verified.

When a severe error occurs, the APIs stop with a return code of 16 and a reason code in the
form xxsssuuu where sss is an abend code, uuu is a reason code, and xx are do-not-care
positions. The ABEND codes returned by the API are listed below. The reason codes follow
based on each ABEND code. These codes are also listed in the Tivoli Information
Management for z/OS Messages and Codes book along with problem determination
information.

ABEND Codes
The following abend codes are returned in the reason code.

Abend Code 700 (X'2BC')
The APIs end with the abend code 700 (X'2BC') when a severe error occurs. “Reason Codes
for ABEND Code 700” contains the associated reason codes.

Reason Codes for ABEND Code 700
The following reason codes apply when the abend code is 700 (X'2BC').

004 (X'004')

Explanation: Internal control structures required for transaction processing could not be located.

Module: HLAPI, LLAPI

008 (X'008')

Explanation: Allocation of the LLAPI activity log failed or reallocation of the activity log failed after the spool
interval timer expired.

Module: LLAPI

Return Code = 12

337Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

012 (X'00C')

Explanation: Deallocation of the HLAPI activity log failed after the spool interval timer expired, or
deallocation of the activity log failed during API termination.

Module: HLAPI

016 (X'010')

Explanation: Allocation of the table data set failed during LLAPI initialization.

Module: LLAPI

020 (X'014')

Explanation: Storage allocation for the table data set buffer failed during API initialization.

Module: LLAPI

024 (X'018')

Explanation: An incorrect parameter list (PICA) was passed to request LLAPI transaction processing.

Module: LLAPI

028 (X'01C')

Explanation: An incorrect internal parameter list was used during LLAPI transaction processing.

Module: LLAPI

032 (X'020')

Explanation: A LLAPI TSP user exit was called when the LLAPI was not active.

Module: LLAPI

036 (X'024')

Explanation: A corrupted PIAT structure was detected during transaction validation.

Module: LLAPI

040 (X'028')

Explanation: A corrupted PIDT structure was detected during transaction validation.

Module: LLAPI

044 (X'02C')

Explanation: A corrupted PIPT structure was detected during transaction validation.

Module: LLAPI

Return Code = 16

338 Version 7.1

048 (X'030')

Explanation: A corrupted PIRT structure was detected during transaction validation.

Module: LLAPI

052 (X'034')

Explanation: A corrupted response buffer was detected during transaction validation.

Module: LLAPI

056 (X'038')

Explanation: The response data pointer (PIDTDATP) in a PIDT entry contains an address that is outside the
response buffer address range.

Module: LLAPI

060 (X'03C')

Explanation: The response data length (PIDTCURL) in a PIDT entry when added to the response data address
(PIDTDATP) results in an address that is outside the response buffer address range.

Module: LLAPI

064 (X'040')

Explanation: A corrupted PALT structure was detected.

Module: LLAPI

080 (X'050')

Explanation: An incorrect HICA structure was passed to BLGYHLPI.

Module: HLAPI

092 (X'05C')

Explanation: Initialization transaction from the HLAPI/REXX interface failed, and an attempt to stop the
HLAPI from REXX also failed. The HLAPI/REXX interface is unable to clean up the Tivoli Information
Management for z/OS environment.

Module: HLAPI/REXX

096 (X'060')

Explanation: HLAPI/REXX interface encountered an error and has attempted to write information about the
error back to the REXX program. The attempt to return this information failed due to a variable access error.

Module: HLAPI/REXX

100 (X'064')

Explanation: The value of storage referenced by BLG_ENVP was corrupted. Possible reasons: the value of
BLG_ENVP is not a valid pointer, the storage itself contains data that is not valid, or the HLAPI is corrupted.

Module: HLAPI/REXX

Abend Code 702 (X'2BE')
A connection request from the API has been terminated. The MVS userid of the API task
attempting to connect to the BLX-SP has not been authorized to use the application ID value
specified in the PICAUSRN field of the LLAPI PICA control block.

Return Code = 16

339Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

Abend Code 706 (X'2C2')
A HLAPI client ends with the abend code 706 (X'2C2') when a severe error occurs while
initializing a conversation with either a Remote Environment Server (RES) or Multiclient
Remote Environment Server (MRES). “Reason Codes for ABEND Code 706” contains the
associated reason codes.

Reason Codes for ABEND Code 706
The following reason codes apply when the abend code is 706 (X'2C2').

001 (X'001')

Explanation: Initialization of the BLX environment failed during Remote Environment Server initialization.

Module: Server

002 (X'002')

Explanation: A failure occurred while attempting to load the HLAPI interface module during Remote
Environment Server initialization.

Module: Server

003 (X'003')

Explanation: A failure occurred while establishing the conversation between the remote system and the Remote
Environment Server.

Module: Server

004 (X'004')

Explanation: A failure occurred while initializing the Remote Environment Server.

Module: Server

008 (X'008')

Explanation: A failure occurred while initializing the Remote Environment Server.

Module: Server

Abend Code 707 (X'2C3')
The APIs end with the abend code 707 (X'2C3') when a severe error occurs while
initializing a Multiclient Remote Environment Server (MRES). The reason code provided in
a preceding message or in register 15 of the dump identifies the specific type of error
encountered. “Reason Codes for ABEND Code 707” contains the associated reason codes.

Reason Codes for ABEND Code 707
The following reason codes apply when the abend code is 707 (X'2C3').

Return Code = 16

340 Version 7.1

004 (X'004')

Explanation: The BLX environment initialization failed.

Module: Server

008 (X'008')

Explanation: The error recovery initialization failed.

Module: Server

012 (X'00C')

Explanation: Insufficient storage was available for initialization.

Module: Server

016 (X'010')

Explanation: A failure occurred while initializing the Multiclient Remote Environment Server control block.

Module: Server

020 (X'014')

Explanation: The MRES communication manager initialization failed.

Module: Server

024 (X'018')

Explanation: The start of the MRES communication manager failed.

Module: Server

028 (X'01C')

Explanation: The MRES operator interface initialization failed.

Module: Server

032 (X'020')

Explanation: The APPC Register_For_Allocates service failed.

Module: Server

036 (X'024')

Explanation: An error was detected while attempting to access the parameters data set allocated with the
BLMYPRM DD statement.

Module: Server

Return Code = 16

341Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

040 (X'028')

Explanation: An error was detected while attempting to open the parameters data.

Module: Server

044 (X'02C')

Explanation: An error was detected while attempting to read the parameters data set.

Module: Server

Abend Code 708 (X'2C4').
A HLAPI client ends with the abend code 708 (X'2C4') when the Multiclient Remote
Environment Server (MRES) receives a command that is not STOP. This abend code has no
reason codes associated with it.

Origin:
Server

Reason Codes for Return Code=20
The following reason codes apply when the return code is 20 (X'014').

1 (X'00000001')

Explanation: An unexpected system error occurred. If this is a HLAPI/CICS client application, see the
HLAPI/CICS log file (transient data queue BLML) for more information. If this is a HLAPI/2 or HLAPI/NT
client application, see the system idbprobe.log file for more information. If this is a HLAPI/UNIX client
application, see the system idbprobe.log file for more information. If this is a HLAPI/USS client application,
see the system blmprobe.log file for more information.

Module: Client

2 (X'00000002')

Explanation: The conversation unexpectedly ended.

Module: Client

3 (X'00000003')

Explanation: The conversation within the requester has stopped processing.

Module: Client

4 (X'00000004')

Explanation: The requester has stopped processing.

Module: Client

5 (X'00000005')

Explanation: The server has encountered an unexpected error. If this is a HLAPI/CICS client application, see
the HLAPI/CICS log file (transient data queue BLML) for more information. If this is a HLAPI/2 or HLAPI/NT
client application, see the system idbprobe.log file for more information. If this is a HLAPI/UNIX client
application, see the system idbprobe.log file for more information. If this is a HLAPI/USS client application,
see the system blmprobe.log file for more information.

Module: Server

Return Code = 16

342 Version 7.1

6 (X'00000006')

Explanation: The requester has been restarted. Previous conversations were dropped.

Module: Client

7 (X'00000007')

Explanation: The requester communicated a general error to the client interface. See the system idbprobe.log
file for more information. If this is a HLAPI/USS client application, see the system blmprobe.log file for more
information.

Module: Client

HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, and REXX
HLAPI/USS Return Codes

The following return codes are returned by HLAPI/REXX and by the REXX client
interfaces REXX HLAPI/2, REXX HLAPI/AIX, and REXX HLAPI/USS.

¶ HLAPI/REXX and REXX HLAPI/USS return them in the RC variable.

¶ REXX HLAPI/2 and REXX HLAPI/AIX return them in the RESULT variable.

Errors that occur before HLAPI is called by HLAPI/REXX, before HLAPI/2 is called by
REXX HLAPI/2, before HLAPI/AIX is called by REXX HLAPI/AIX, and before
HLAPI/USS is called by REXX HLAPI/USS, cause processing to stop. If a nonzero return
code is returned by the HLAPI, HLAPI/2, HLAPI/AIX, or HLAPI/USS, processing
continues and the associated REXX HLAPI (HLAPI/REXX, REXX HLAPI/2, REXX
HLAPI/AIX, REXX HLAPI/USS) attempts to return all output information. If an error
occurs while returning that information, processing stops and the return code reflects that
error. However, BLG_RC and BLG_REAS are set to indicate that there was a HLAPI,
HLAPI/2 HLAPI/AIX, or HLAPI/USS error unless the associated REXX HLAPI found an
error when setting one of those variables.

Each return code is accompanied by an explanation and an origin. The origin indicates the
particular REXX HLAPI that produces the return code. The following terms are used to
identify the origin of a reason code:

HLAPI/REXX
Code returned by the HLAPI/REXX

REXX HLAPI/2
Code returned by the REXX HLAPI/2

REXX HLAPI/AIX
Code returned by the REXX HLAPI/AIX

REXX HLAPI/USS
Code returned by the REXX HLAPI/USS

Return Code=20

343Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

0

Explanation: Indicates that the transaction completed successfully.

Module: HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, or REXX HLAPI/USS

4

Explanation: BLGYRXM was started incorrectly. When REXX starts an external routine, it passes a pointer to
the environment block that represents the REXX language processing environment. This pointer was 0.
BLGYRXM must be started from a REXX exec. Refer to TSO Extensions Version 2 REXX Reference for more
information about the language processing environment.

Module: HLAPI/REXX

8

Explanation: Parameter list not valid (transaction-name must be specified).

Module: HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX or REXX HLAPI/USS

12

Explanation: Passed array stem is greater than 32 characters. The control, input, or output parameter is greater
than 32 characters.

Module: HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, or REXX HLAPI/USS

16

Explanation: Transaction name specified is not valid. “HLAPI/REXX Interface Calls” on page 241 contains
information on specifying the transaction name.

Module: HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, or REXX HLAPI/USS

20

Explanation: REXX HLAPI interface environment pointer not valid. The REXX HLAPI interface uses REXX
variable BLG_ENVP to store a pointer to a control storage area that the REXX HLAPI interface uses. Possible
errors: you are attempting a transaction which is not an initialization transaction and the variable doesn’t exist or
the variable was null.

Module: HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, or REXX HLAPI/USS

24

Explanation: Data is too long. BLG_VARNAME is set to the name of the control variable that contains the
incorrect data. For a list of maximum input lengths, see “Maximum Input Lengths” on page 248.

Module: HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, or REXX HLAPI/USS

28

Explanation: Variable does not exist or has null value. BLG_VARNAME contains the name of the variable.
Possible causes: missing or null Input.0, control.0, text-name.0, control variables, or input variables.

Module: HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, or REXX HLAPI/USS

HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, and REXX HLAPI/USS Return Codes

344 Version 7.1

32

Explanation: Alias name specified not valid. An input variable name was greater than 32 characters.
BLG_VARNAME contains the name of the variable that was used to specify the incorrect name.

Module: HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, or REXX HLAPI/USS

36

Explanation: Variable contains a numeric string that is not valid. The value was not all numbers, or was less
than 0 or greater than 2 147 483 647. BLG_VARNAME contains the name of the variable whose value caused
the error. Possible causes:

¶ control.0 is not between 0 and 30

¶ Input.0, FREEFORM.0, or text-name.0 is not less than or equal to 32 767

¶ text-name.?width is not less than or equal to 132

Module: HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, or REXX HLAPI/USS

40

Explanation: Error initializing a REXX variable. Possible causes: environment problem, output stem specified
not valid (REXX variable name not valid), or internal processing error.

Module: HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, or REXX HLAPI/USS

44

Explanation: Input.0 contains a numeric value greater than 0 and the REXX HLAPI interface can find no
inputs.

Module: HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, or REXX HLAPI/USS

100

Explanation: Error allocating storage for either the REXX variable names and values, or for the PDBs for the
HLAPI.

Module: HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, or REXX HLAPI/USS

104

Explanation:

¶ For HLAPI/REXX and REXX HLAPI/USS, this is the error returned by the REXX variable access service
IRXEXCOM. BLG_IRXEXCOM_RC is set to the return code (-1, -2, or 28). Refer to the TSO Extensions
Version 2 REXX Reference for information about IRXEXCOM.

¶ For REXX HLAPI/2, this is the error returned by the OS/2 REXX variable pool access service.
BLG_REXXVAR_POOL_RC is set to the return code.

¶ For REXX HLAPI/AIX, this is the error returned by the AIX REXX/6000 variable pool access service.
BLG_REXXVAR_POOL_RC is set to the return code.

Module: HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, or REXX HLAPI/USS

HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, and REXX HLAPI/USS Return Codes

345Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

108

Explanation: Error reading input variable. BLG_VARNAME contains the name of the variable. BLG_SHVRET
contains a 1-character hexadecimal return code SHVRET that indicates the error in accessing the variable.

¶ For HLAPI/REXX and REXX HLAPI/USS, BLG_IRXEXCOM_RC contains the return code from the REXX
variable access service IRXEXCOM. Refer to TSO Extensions Version 2 REXX Reference for information
about IRXEXCOM.

¶ For REXX HLAPI/2, BLG_REXXVAR_POOL_RC contains the return code from the OS/2 REXX variable
pool access service.

¶ For REXX HLAPI/AIX, BLG_REXXVAR_POOL_RC contains the return code from the AIX REXX/6000
variable pool access service.

Module: HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, or REXX HLAPI/USS

112

Explanation: Error setting output variable. BLG_VARNAME contains the name of the variable.
BLG_SHVRET contains a 1-character hexadecimal return code SHVRET that indicates the error in accessing the
variable.

¶ For HLAPI/REXX and REXX HLAPI/USS, BLG_IRXEXCOM_RC contains the return code from the REXX
variable access service IRXEXCOM. Refer to TSO Extensions Version 2 REXX Reference for information
about IRXEXCOM.

¶ For REXX HLAPI/2, BLG_REXXVAR_POOL_RC contains the return code from the OS/2 REXX variable
pool access service.

¶ For REXX HLAPI/AIX, BLG_REXXVAR_POOL_RC contains the return code from the AIX REXX/6000
variable pool access service.

Module: HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, or REXX HLAPI/USS

116

Explanation: Error dropping output variable. BLG_VARNAME contains the name of the variable.
BLG_SHVRET contains a 1-character hexadecimal return code SHVRET that indicates the error in accessing the
variable.

¶ For HLAPI/REXX and REXX HLAPI/USS, BLG_IRXEXCOM_RC contains the return code from the REXX
variable access service IRXEXCOM. Refer to TSO Extensions Version 2 REXX Reference for information
about IRXEXCOM.

¶ For REXX HLAPI/2, BLG_REXXVAR_POOL_RC contains the return code from the OS/2 REXX variable
pool access service.

¶ For REXX HLAPI/AIX, BLG_REXXVAR_POOL_RC contains the return code from the AIX REXX/6000
variable pool access service.

Module: HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, or REXX HLAPI/USS

200

Explanation: Nonzero return code from the HLAPI. BLG_RC and BLG_REAS contain the return and reason
code. Use these codes to interpret the HLAPI error. Input errors, output errors, or both might have been set.
BLG_MSGS and BLG_ERRCODE might also contain information about the error.

Module: HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, or REXX HLAPI/USS

HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, and REXX HLAPI/USS Return Codes

346 Version 7.1

204

Explanation:

¶ For HLAPI/REXX, error occurred loading or linking to the HLAPI server (BLGYHLPI).

¶ For REXX HLAPI/2, error occurred calling HLAPI/2 (IDBTransactionSubmit), in which case the transaction
could not be completed. BLG_HLAPI2_RC contains the return code from HLAPI/2.

¶ For REXX HLAPI/AIX, error occurred calling HLAPI/AIX (IDBTransactionSubmit), in which case the
transaction could not be completed. BLG_HLAPIAIX_RC contains the return code from HLAPI/AIX.

¶ For REXX HLAPI/USS, error occurred calling HLAPI/USS (IDBTransactionSubmit), in which case the
transaction could not be completed. BLG_HLAPI/USS_RC contains the return code from HLAPI/USS.

Module: HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, or HLAPI/USS

HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, and REXX HLAPI/USS Return Codes

347Application Program Interface Guide

B
.

R
etu

rn
an

d
R

easo
n

C
o

d
es

HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, and REXX HLAPI/USS Return Codes

348 Version 7.1

Terminal Simulator Panels

The LLAPI provides the following TSPs for the API subtask. The HLAPI uses the LLAPI to
perform its tasks, so indirectly it also uses these TSPs.

If you are using the panels that Tivoli Information Management for z/OS supplies for
entering problem, change, or configuration records, do not modify these TSPs. If you have
changed the panels supplied by Tivoli Information Management for z/OS or you are
processing other types of records, then some modifications may be necessary for these TSPs
to run without error. To make the modifications correctly, you must understand the flow of
these TSPs. You may need to make modifications if the application selection is different, if
the entry selection to enter records is different, or if the file selection is different. There
might be other modifications necessary depending on the panel flows.

BLGAPI00–LLAPI Router TSP for Panel Processing
This panel is the controlling panel for the LLAPI. It performs the following steps:
1. Sets up the LLAPI environment and waits for a transaction
2. Tests transaction code and links to transaction TSP
3. On return, branches to API control user exit
4. Quits or frees the LLAPI environment on error or T002 transaction.

TERMINAL SIMULATOR PANEL COMMON CONTROL FLOW DATA

LINE FUNCTION LABEL LITERAL/TEST PANEL FUNCTION FIELD WORD APPLY GET CASE-
NUM NAME NAME DATA NAME EXIT NAME OCCUR NOT VAR SENS
--- ---------- -------- -------------------------------- -------- -------- -------- ------ --- --- ---

1 LABEL *** INITIALIZE AND SELECT
2 LABEL *** INFO/MANAGEMENT
3 ADDDATA ;INIT,3,2 NO
4 PROCESS INITERR
5 LABEL APIWAIT *** WAIT FOR NEXT TRANSACTION
6 USEREXIT *** CALL API CONTROL USER EXIT BLGYAPCP NEXT NO NO
7 LABEL TEST FOR TERMINATION
8 TESTFIELD LINKT002 T002 TSCAUFLD NO NO NO
9 LABEL TEST FOR CREATE TRANSACTION
10 TESTFIELD LINKT102 T102 TSCAUFLD NO NO NO
11 LABEL TEST FOR UPDATE TRANSACTION
12 TESTFIELD LINKT105 T105 TSCAUFLD NO NO NO
13 LABEL TEST FOR ADD RELATION XACTION
14 TESTFIELD LINKT109 T109 TSCAUFLD NO NO NO
15 LABEL TEST FOR DELETE TRANSACTION
16 TESTFIELD LINKT110 T110 TSCAUFLD NO NO NO
17 LABEL TEST FOR INVOKE USER TSP
18 TESTFIELD LINKT111 T111 TSCAUFLD NO NO NO
19 BRANCH APIWAIT
20 LABEL LINKT102 LINK TO CREATE TSP
21 LINK BLGAPI02
22 LABEL REMOVE FOLLOWING BRANCH TO
23 LABEL ENABLE THE AUTOBRIDGE
24 LABEL POSTPROCESSOR
25 BRANCH DISABLED
26 USEREXIT API POSTPROCESSOR NOTIFY EYMSP010 NEXT NO NO
27 LABEL DISABLED

C

349Application Program Interface Guide

C
.

Term
in

al
S

im
u

lato
r

P
an

els

28 BRANCH APIWAIT
29 LABEL LINKT105 LINK TO UPDATE TSP
30 LINK BLGAPI05
31 BRANCH APIWAIT
32 LABEL LINKT109 LINK TO ADD DATA TSP
33 LINK BLGAPI09
34 BRANCH APIWAIT
35 LABEL LINKT110 LINK TO DELETE TSP
36 LINK BLGAPI10
37 BRANCH APIWAIT
38 LABEL LINKT111 INVOKE OR LINK TO USER TSP/TSX
39 USEREXIT BLGYITSP NEXT NO NO
40 TESTFIELD APIWAIT 0 TSCAFRET NO NO NO
41 TESTFIELD APIWAIT 4 TSCAFRET YES NO NO
42 LABEL REPLACE THIS WITH LINK STATEMENT
43 LABEL TO BRANCH TO HARDCODED TSP/TSX
44 BRANCH APIWAIT
45 LABEL INITERR PRINT THE MESSAGES AND SCREEN
46 PRINT
47 LABEL LINKT002
48 ADDDATA ;QUIT NO
49 PROCESS ENDIT
50 LABEL ENDIT LEAVE THE TSP
51 RETURN

BLGAPI02–LLAPI Create Record TSP for Panel Processing
This TSP includes the following functions for special processing. All of these functions are
shipped disabled.
¶ Use of a dynamic PIDT (PIDTUSEF=D)
¶ History data processing (PICAHIST=Y)
¶ Text audit data processing (PICATXAU=Y).

You can enable processing for these functions by removing the DISABLED branch on line
16.

If you enable the special processing functions, the TSP checks whether the application
program has database administration authority. If the application does not have the required
authority, the request fails, and a reason code is put in PICAREAS.

You can change the authority required for special processing by changing the s-word indexes
on line 32 (MOVEVAR). Refer to the section “S–Word Authorization Codes” in the Tivoli
Information Management for z/OS Panel Modification Facility Guide for a list of s-word
indexes.

This TSP performs the following steps:

1. Runs the IRC ;INIT,3,2 to go to the Tivoli Information Management for z/OS
PRIMARY OPTIONS MENU (selection 5 is for Entry). Ensure that this IRC flows to a
panel with a selection that runs program exit BLG01050.

2. Calls BLGYAPGP to:

a. Take the specified record type s-word from the create PIDT and look for a match in
control panel BLG1AACP. If the TSP does not find a match, the TSP ends with an
error. If a match is found, the TSP saves the panel named in that control line. (The
panel is the summary panel for that record type with a 9 selection to file.) The
summary panel is saved in the TSCA variable area.

If you are creating a record of your own type, you must build a PIDT with the
correct record type s-word and update panel BLG1AACP using the record type
s-word for your record and its corresponding create summary panel.

BLGAPI00–LLAPI Router TSP for Panel Processing

350 Version 7.1

b. Check whether special processing (history data, text audit data, or dynamic PIDT) is
requested.

3. If special processing is not requested:

a. Issues 5 for Entry (flows to create summary panel read from BLG1AACP). Ensure
that this IRC runs program exit BLG01050. If this program exit runs under the
LLAPI, your regular create panels are bypassed because BLG01050 flows to the
create summary panel obtained from BLG1AACP, not the normal target of the
selection.

b. Adds data (user exit BLGYAPBR).

c. Issues 9 to file the record. File time program exits, TSPs, and TSXs are started. After
the file processing has completed, the BLGAPI02 TSP looks for the message
BLG03058I on the TSP saved message chain, indicating the record was filed
successfully. If the message is found, the TSP returns a successful return code to the
application, even if mail notification processing is invoked for the record.

4. If special processing is requested and the disabling branch has not been removed, this
TSP puts a reason code in TSCAFRES and exits.

5. If special processing is requested and the disabling branch has been removed, performs
the following steps:

a. Issues 5 for Entry (flows to create summary panel read from BLG1AACP). Ensure
that this IRC runs program exit BLG01050. If this program exit runs under the
LLAPI, your regular create panels are bypassed because BLG01050 flows to the
create summary panel obtained from BLG1AACP, not the normal target of the
selection.

b. Checks for database administration authority. If the application does not have the
required authority, puts a reason code in TSCAFRES and exits.

c. Adds data (user exit BLGYAPBR).

d. Issues 9 to file the record. File time program exits, TSPs, and TSXs are started. After
the file processing has completed, the BLGAPI02 TSP looks for the message
BLG03058I on the TSP saved message chain, indicating the record was filed
successfully. If the message is found, the TSP returns a successful return code to the
application, even if mail notification processing is invoked for the record.

If selection 9 does not file the record from your summary panel, modify the TSP to
make the correct selection.

This is TSP BLGAPI02.
TERMINAL SIMULATOR PANEL COMMON CONTROL FLOW DATA

LINE FUNCTION LABEL LITERAL/TEST PANEL FUNCTION FIELD WORD APPLY GET CASE-
NUM NAME NAME DATA NAME EXIT NAME OCCUR NOT VAR SENS
--- ---------- -------- -------------------------------- -------- -------- -------- ------ --- --- ---

1 LABEL BLGAPI02 *** API CREATE RECORD
2 ADDDATA ;INIT,3,2 NO
3 PROCESS EXERROR
4 LABEL *** CHECK AUTH AND GET CREATE
5 LABEL *** SUMMARY PANEL NAME
6 USEREXIT CALL BLGYAPGP BLGYAPGP NEXT NO NO
7 LABEL *** BRANCH IF NO ERRORS AND NO
8 LABEL *** SPECIAL PROCESSING REQUESTED
9 TESTFIELD CREATE 0 TSCAFRET NO NO NO
10 LABEL *** BRANCH IF ERRORS WERE FOUND
11 TESTFIELD ERROR 0 TSCAFRES NO NO NO
12 LABEL *** REMOVE FOLLOWING BRANCH TO

BLGAPI02–LLAPI Create Record TSP for Panel Processing

351Application Program Interface Guide

C
.

Term
in

al
S

im
u

lato
r

P
an

els

13 LABEL *** ENABLE SPECIAL PROCESSING
14 LABEL *** FOR HISTORY DATA, FREEFORM
15 LABEL *** TEXT, AND DYNAMIC PIDT
16 BRANCH DISABLED
17 LABEL *** SAVE PANEL NAME, SET REASON
18 LABEL *** CODE TO ZERO, RESTORE PANEL
19 SETFIELD TSCAUFLD YES
20 MOVEVAR 00
21 USEREXIT CALL BLGYAPSR - RESET REASON BLGYAPSR NEXT NO NO
22 MOVEVAR TSCAUFLD
23 LABEL *** INITIATE CREATE BEFORE
24 LABEL *** CHECKING AUTHORIZATION FOR
25 LABEL *** SPECIAL PROCESSING
26 ADDDATA 5 NO
27 PROCESS BADCR
28 LABEL *** TEST TSCACPNL TO VAR. DATA
29 TESTFIELD BADCR TSCACPNL YES YES NO
30 LABEL *** TO BEGIN AUTHORIZATION CHECK
31 LABEL *** CALL USER EXIT BLGJAUTH
32 MOVEVAR 0AA1
33 USEREXIT CALL BLGJAUTH - CHECK AUTH BLGJAUTH NEXT NO NO
34 TESTFIELD CNTLBLK 16 TSCAFRET NO NO NO
35 TESTFIELD NOTAUTH 0 TSCAFRET YES NO NO
36 BRANCH COLLECT
37 LABEL CREATE *** INITIATE CREATE WHEN SPECIAL
38 LABEL *** PROCESSING IS NOT REQUESTED
39 ADDDATA 5 NO
40 PROCESS BADCR
41 LABEL *** TEST TSCACPNL TO VAR. DATA
42 TESTFIELD BADCR TSCACPNL YES YES NO
43 LABEL COLLECT *** COLLECT API DATA INTERNALLY
44 USEREXIT CALL BLGYAPBR - COLLECT DATA BLGYAPBR NEXT NO NO
45 TESTFIELD ERROR 4 TSCAFRET NO NO NO
46 LABEL *** FILE THE NEW RECORD
47 ADDDATA 9 NO
48 PROCESS EXERROR
49 TESTFLOW FMSGMISS YES NO
50 LABEL ERROR
51 LABEL EXIT
52 RETURN
53 LABEL BADCR ** SET COMMUNICATION AREA REASON
54 MOVEVAR 28
55 USEREXIT CALL BLGYAPSR - SET REASON BLGYAPSR NEXT NO NO
56 BRANCH EXIT
57 LABEL FMSGMISS ** FILE MSG NOT ON CURRENT CHAIN
58 TESTFIELD EXERROR 4 TSCAFRET YES NO NO
59 TESTFIELD EXERROR 4 TSCAFRES YES NO NO
60 BRANCH EXIT
61 LABEL EXERROR ** SET COMMUNICATION AREA REASON
62 MOVEVAR 03
63 USEREXIT CALL BLGYAPSR - SET PIVT REASON BLGYAPSR NEXT NO NO
64 BRANCH EXIT
65 LABEL DISABLED ** SET COMMUNICATION AREA REASON
66 MOVEVAR 74
67 USEREXIT CALL BLGYAPSR - SET PIVT REASON BLGYAPSR NEXT NO NO
68 BRANCH EXIT
69 LABEL CNTLBLK ** SET COMMUNICATION AREA REASON
70 MOVEVAR 82
71 USEREXIT CALL BLGYAPSR - SET PIVT REASON BLGYAPSR NEXT NO NO
72 BRANCH EXIT
73 LABEL NOTAUTH ** SET COMMUNICATION AREA REASON
74 MOVEVAR 92
75 USEREXIT CALL BLGYAPSR - SET PIVT REASON BLGYAPSR NEXT NO NO
76 BRANCH EXIT

BLGAPI05–LLAPI Update Record TSP for Panel Processing
This TSP includes the following functions for special processing. All of these functions are
shipped disabled.
¶ Use of a dynamic PIDT (PIDTUSEF=D)
¶ History data processing (PICAHIST=Y)
¶ Text audit data processing (PICATXAU=Y).

You can enable processing for these functions by removing the DISABLED branch on line
17.

BLGAPI02–LLAPI Create Record TSP for Panel Processing

352 Version 7.1

If you enable the special processing functions, the TSP checks whether the application
program has database administration authority. If the application does not have the required
authority, the request fails, and a reason code is put in TSCAFRES.

You can change the authority required for special processing by changing the s-word index
on line 22 (MOVEVAR). Refer to the section “S–Word Authorization Codes” in the Tivoli
Information Management for z/OS Panel Modification Facility Guide for a list of s-word
indexes.

This TSP performs the following:

1. Starts ;INIT,3,2 to go to the Tivoli Information Management for z/OS PRIMARY
OPTIONS MENU

2. Calls BLGYAPGP to:

a. Access panel BLG1AAUP and find the control line containing the record type
s-word from the update PIDT. If the TSP does not find a match, the TSP ends with
an error. If the TSP finds a match, it saves the associated update summary panel in
the TSCA variable area.

If you are updating a record of your own type, you must build a PIDT with the
correct record type s-word and update panel BLG1AAUP using the record type
s-word for your record and its corresponding update summary panel.

b. Check whether special processing (history data, text audit data, or dynamic PIDT) is
requested.

3. If special processing is requested:

a. Checks whether the disabling branch has been removed. If it has not been removed,
puts a reason code in TSCAFRES and exits.

b. Checks for database administration authority. If the application does not have the
required authority, puts a reason code in TSCAFRES and exits.

4. Issues ;UPDATE,1,5,2,update-rnid,, to update the record.

5. Calls BLGYAPBU to insert the record number for update-rnid.

6. Flows to the normal update summary panel or to the panel specified in BLG1AAUP if
the authorization code field in the BLG1AAUP control line is set to 0001.

7. Verifies that the current panel (update summary panel) is the same as the update
summary panel read from BLG1AAUP. If the TSP does not find a match between the
current panel name and the panel name read from BLG1AAUP, the TSP ends with an
error. Possible causes of this error are specifying the wrong summary panel or updating
a record having a type other than that specified in the PIDT.

8. Verifies that the correct record is updated.

9. Adds data (user exit BLGYAPBR).

10. Issues 9 to file the record. File time program exits, TSPs, and TSXs are started. After
the file processing has completed, the BLGAPI02 TSP looks for the message
BLG03058I on the TSP saved message chain, indicating the record was filed
successfully. If the message is found, the TSP returns a successful return code to the
application, even if mail notification processing is invoked for the record.

If selection 9 does not file the record from your summary panel, modify the TSP to
make the correct selection.

BLGAPI05–LLAPI Update Record TSP for Panel Processing

353Application Program Interface Guide

C
.

Term
in

al
S

im
u

lato
r

P
an

els

This is TSP BLGAPI05.
TERMINAL SIMULATOR PANEL COMMON CONTROL FLOW DATA

LINE FUNCTION LABEL LITERAL/TEST PANEL FUNCTION FIELD WORD APPLY GET CASE-
NUM NAME NAME DATA NAME EXIT NAME OCCUR NOT VAR SENS
--- ---------- -------- -------------------------------- -------- -------- -------- ------ --- --- ---

1 LABEL BLGAPI05 *** API UPDATE RECORD
2 ADDDATA ;INIT,3,2 NO
3 PROCESS EXERROR
4 LABEL *** CHECK AUTH AND GET UPDATE
5 LABEL *** SUMMARY PANEL NAME
6 USEREXIT CALL BLGYAPGP BLGYAPGP NEXT NO NO
7 LABEL *** BRANCH IF NO ERRORS AND NO
8 LABEL *** SPECIAL PROCESSING REQUESTED
9 TESTFIELD SAVEPNLN 0 TSCAFRET NO NO NO
10 LABEL *** BRANCH IF ERRORS WERE FOUND
11 TESTFIELD CANCEL 0 TSCAFRES NO NO NO
12 SETFIELD TSCAUFLD YES
13 LABEL *** REMOVE FOLLOWING BRANCH TO
14 LABEL *** ENABLE SPECIAL PROCESSING
15 LABEL *** FOR HISTORY DATA, FREEFORM
16 LABEL *** TEXT, AND DYNAMIC PIDT
17 BRANCH DISABLED
18 MOVEVAR 00
19 USEREXIT CALL BLGYAPSR - RESET REASON BLGYAPSR NEXT NO NO
20 LABEL *** TO BEGIN AUTHORIZATION CHECK
21 LABEL *** CALL USER EXIT BLGJAUTH
22 MOVEVAR 0AA1
23 USEREXIT CALL BLGJAUTH - CHECK AUTH BLGJAUTH NEXT NO NO
24 TESTFIELD CNTLBLK 16 TSCAFRET NO NO NO
25 TESTFIELD NOTAUTH 0 TSCAFRET YES NO NO
26 LABEL UPDATER *** COLLECT INITIAL IRC
27 MOVEVAR ;UPDATE,1,5,2,
28 LABEL *** SUFFIX IRC WITH RECORD ID
29 USEREXIT CALL BLGYAPBU BLGYAPBU NEXT NO NO
30 TESTFIELD ERROR 4 TSCAFRET NO NO NO
31 MOVEVAR ,,
32 ADDDATA YES
33 PROCESS EXERROR
34 LABEL *** CHECKED OUT TO ANOTHER?
35 TESTFLOW CHECKOUT NO NO
36 TESTFLOW CHECKOUT NO NO
37 LABEL *** DO SUMMARY PANELS MATCH
38 MOVEVAR TSCAUFLD
39 TESTFIELD BADUPD TSCACPNL YES YES NO
40 LABEL CHECKRCD *** ENSURE THAT THE CORRECT
41 LABEL *** RECORD IS BEING UPDATED
42 USEREXIT CALL BLGYAPUP BLGYAPUP NEXT NO NO
43 TESTFIELD BADUPD 4 TSCAFRET NO NO NO
44 LABEL *** CONVERT API DATA TO INTERNAL
45 USEREXIT CALL BLGYAPBR - ADD DATA BLGYAPBR NEXT NO NO
46 TESTFIELD CANCEL 4 TSCAFRET NO NO NO
47 LABEL *** FILE THE RECORD
48 ADDDATA 9 NO
49 PROCESS FILEFAIL
50 TESTFLOW FMSGMISS YES NO
51 LABEL ERROR *** LEAVE WITH REASON CODE SET
52 LABEL EXIT
53 RETURN
54 LABEL FMSGMISS ** FILE MSG NOT ON CURRENT CHAIN
55 TESTFIELD FILEFAIL 4 TSCAFRET YES NO NO
56 TESTFIELD FILEFAIL 4 TSCAFRES YES NO NO
57 BRANCH EXIT
58 LABEL EXERROR ** ERROR GETTING TO UPDATE PANEL
59 MOVEVAR 03
60 USEREXIT CALL BLGYAPSR - SET REASON BLGYAPSR NEXT NO NO
61 BRANCH EXIT
62 LABEL BADUPD ** ERROR: UPDATE FAILED
63 MOVEVAR 29
64 USEREXIT CALL BLGYAPSR - SET REASON BLGYAPSR NEXT NO NO
65 BRANCH CANCEL
66 LABEL CHECKOUT ** ERROR: CHECKED OUT TO ANOTHER
67 MOVEVAR 38
68 USEREXIT CALL BLGYAPSR - SET REASON BLGYAPSR NEXT NO NO
69 BRANCH CANCEL
70 LABEL FILEFAIL ** ERROR: FILE OF RECORD FAILED
71 MOVEVAR 03
72 USEREXIT CALL BLGYAPSR - SET REASON BLGYAPSR NEXT NO NO
73 BRANCH CANCEL
74 LABEL DISABLED ** ERROR: SPECIAL PROC DISABLED

BLGAPI05–LLAPI Update Record TSP for Panel Processing

354 Version 7.1

75 MOVEVAR 74
76 USEREXIT CALL BLGYAPSR - SET REASON BLGYAPSR NEXT NO NO
77 BRANCH CANCEL
78 LABEL CNTLBLK ** ERROR: BAD CONTROL BLOCK
79 MOVEVAR 82
80 USEREXIT CALL BLGYAPSR - SET REASON BLGYAPSR NEXT NO NO
81 BRANCH CANCEL
82 LABEL NOTAUTH ** ERROR: NOT AUTHORIZED
83 MOVEVAR 92
84 USEREXIT CALL BLGYAPSR - SET REASON BLGYAPSR NEXT NO NO
85 BRANCH CANCEL
86 LABEL CANCEL ** CANCEL UPDATE SESSION
87 ADDDATA ;CANCEL NO
88 PROCESS EXIT
89 BRANCH EXIT
90 LABEL SAVEPNLN *** SAVE SUMMARY PANEL NAME
91 SETFIELD TSCAUFLD YES
92 BRANCH UPDATER

BLGAPI09–LLAPI Add Record Relation TSP for Panel Processing
This TSP performs the following steps:

1. Starts ;INIT,3,2 to go to the Management application PRIMARY OPTIONS MENU.

2. Issues ;UPDATE,1,5,2,update-rnid, to update record and flow to the normal update
summary panel.

3. Accesses panel BLG1AAUP and finds the control line containing the record type s-word
from the update PIDT. If the TSP does not find a match, the TSP ends with an error. If
the TSP finds a match, it saves the associated Update Summary panel in the TSCA
variable area.

If you are updating a record of your own type, you must build a PIDT with the correct
record type s-word and update panel BLG1AAUP using the record type s-word for your
record and its corresponding update summary panel.

4. Verifies that the current panel (update summary panel) is the same as the update
summary panel read from BLG1AAUP. If the TSP does not find a match between the
current panel name and the panel name read from BLG1AAUP, the TSP ends with an
error. Possible causes of this error are specifying the wrong summary panel, or updating
a record having a type other than that specified in the PIDT.

5. Verifies that the correct record is updated.

6. Adds data (user exit BLGYABPR).

7. Issues 9 to file the record. File time program exits and TSPs are started and notification
is disabled.

This is TSP BLGAPI09.
TERMINAL SIMULATOR PANEL COMMON CONTROL FLOW DATA

LINE FUNCTION LABEL LITERAL/TEST PANEL FUNCTION FIELD WORD APPLY GET
NUM NAME NAME DATA NAME EXIT NAME OCCUR NOT VAR
--- ---------- -------- -------------------------------- -------- -------- -------- ------ --- ---

1 LABEL *** API ADD RECORD RELATIONS
2 ADDDATA ;INIT,3,2 NO
3 PROCESS EXERROR
4 MOVEVAR ;UPDATE,1,5,2,
5 LABEL *** ADD THE RNID TO VAR. AREA
6 USEREXIT CALL BLGYAPBU BLGYAPBU NEXT NO NO
7 TESTFIELD ERROR 4 TSCAFRET NO NO
8 MOVEVAR ,,
9 ADDDATA YES
10 PROCESS EXERROR
11 LABEL *** CHECK AUTH AND GET UPDATE
12 LABEL *** SUMMARY PANEL NAME
13 USEREXIT CALL BLGYAPGP BLGYAPGP NEXT NO NO

BLGAPI05–LLAPI Update Record TSP for Panel Processing

355Application Program Interface Guide

C
.

Term
in

al
S

im
u

lato
r

P
an

els

14 TESTFIELD ERROR 4 TSCAFRET NO NO
15 TESTFIELD BADUPD TSCACPNL YES YES
16 LABEL *** MAKE SURE UPDATE CORRECT REC
17 USEREXIT CALL BLGYAPUP BLGYAPUP NEXT NO NO
18 TESTFIELD BADUPD 4 TSCAFRET NO NO
19 LABEL *** GET PIDT DATA AND ADD TO RAB
20 USEREXIT CALL BLGYAPBR - ADD DATA BLGYAPBR NEXT NO NO
21 TESTFIELD ERROR 4 TSCAFRET NO NO
22 LABEL *** FILE THE RECORD
23 ADDDATA 9 NO
24 PROCESS EXERROR
25 TESTFLOW EXERROR YES NO
26 LABEL ERROR
27 LABEL EXIT
28 RETURN
29 LABEL BADUPD *** SET COMMUNICATION AREA REASON
30 MOVEVAR 37
31 USEREXIT CALL BLGYAPSR - SET REASON BLGYAPSR NEXT NO NO
32 BRANCH EXIT
33 LABEL EXERROR *** SET COMMUNICATION AREA REASON
34 MOVEVAR 3
35 USEREXIT CALL BLGYAPSR - SET REASON BLGYAPSR NEXT NO NO
36 BRANCH EXIT

BLGAPI10–LLAPI Delete Record TSP
This TSP includes the following function for special processing.
¶ Delete a corrupted record based on the root VSAM key.

You can enable this function for processing by removing the DISABLED branch on line 9.

If you enable this special processing function, the TSP checks whether the application
program has master or database administration authority. If the application does not have the
required authority, the request fails, and a reason code is placed in PICAREAS.

You can change the authority required for special processing by changing the s-word index
on line 42 (MOVEVAR). Refer to the section “S–Word Authorization Codes” in the Tivoli
Information Management for z/OS Panel Modification Facility Guide for a list of s-word
indexes.

This TSP performs the following steps:

1. Calls user exit BLGAPBU to obtain the RNID. If the root VSAM key was specified
instead of the RNID, the key is first converted to the RNID, then the RNID is obtained.

2. If the RNID is obtained, the TSP:
a. Processes the delete command.
b. Starts TESTFLOW for record deleted message.
c. Calls user exit BLGYAPSR on error to set the reason code.
d. Returns.

3. If the RNID is not obtained, the TSP attempts to delete the record based on the root
VSAM key.

a. If the special processing disabling branch was not removed, exits.

b. If the special processing branch was removed, checks for special processing authority.
If the application does not have the required authority, puts a reason code in
TSCAFRES and exits.

c. If the application has the required authority, calls user exit BLGEXDEL to delete the
record.

d. Returns.

BLGAPI09–LLAPI Add Record Relation TSP for Panel Processing

356 Version 7.1

This is TSP BLGAPI10.
TERMINAL SIMULATOR PANEL COMMON CONTROL FLOW DATA

LINE FUNCTION LABEL LITERAL/TEST PANEL FUNCTION FIELD WORD APPLY GET CASE-
NUM NAME NAME DATA NAME EXIT NAME OCCUR NOT VAR SENS
--- ---------- -------- -------------------------------- -------- -------- -------- ------ --- --- ---

1 LABEL BLGAPI10 *** API DELETE RECORD
2 USEREXIT BLGYAPBU NEXT NO NO
3 TESTFIELD RNIDVDA 4 TSCAFRET YES NO NO
4 TESTFIELD EXIT 0 TSCAFRES NO NO NO
5 TESTFIELD EXIT 16 TSCAFRES NO NO NO
6 LABEL *** REMOVE FOLLOWING BRANCH TO
7 LABEL *** ENABLE SPECIAL PROCESSING
8 LABEL *** FOR DELETE RECORD
9 BRANCH DISABLED
10 BRANCH VSAMKEY
11 LABEL RNIDVDA RNID ENTERED IN TSCAVDA
12 ADDDATA ;INIT,;DELETE R NO
13 ADDDATA YES
14 ADDDATA ,2 NO
15 PROCESS BADPURGE
16 TESTFLOW EXIT NO NO
17 LABEL BADPURGE CHECK WHY DELETE FAILED
18 TESTFLOW ERR03052 NO NO
19 TESTFLOW ERR03053 NO NO
20 TESTFLOW ERR03025 NO NO
21 BRANCH GENERROR
22 LABEL ERR03052 RECEIVED MESSAGE BLG03052
23 MOVEVAR 12
24 BRANCH SETREASN
25 LABEL ERR03053 RECEIVED MESSAGE BLG03053
26 MOVEVAR 38
27 BRANCH SETREASN
28 LABEL ERR03025 RECEIVED MESSAGE BLG03025
29 MOVEVAR 10
30 BRANCH SETREASN
31 LABEL GENERROR GENERAL DELETE ERROR REASON CODE
32 MOVEVAR 03
33 LABEL SETREASN SET API REASON CODE
34 USEREXIT CALL BLGYAPSR -SET DELETE REASON BLGYAPSR NEXT NO NO
35 LABEL EXIT API DELETE TSP COMPLETE
36 RETURN
37 LABEL VSAMKEY *** USE VSAM ROOT KEY
38 TESTFLOW EXIT YES NO
39 SETFIELD TSCAUFLD YES
40 LABEL *** TO BEGIN AUTHORIZATION CHECK
41 LABEL *** CALL USER EXIT BLGJAUTH
42 MOVEVAR 0AA1
43 USEREXIT BLGJAUTH NEXT NO NO
44 TESTFIELD CNTLBLK 16 TSCAFRET NO NO NO
45 TESTFIELD NOTAUTH 0 TSCAFRET YES NO NO
46 LABEL AUTH ** USER IS AUTHORIZED
47 MOVEVAR TSCAUFLD
48 USEREXIT BLGEXDEL NEXT NO NO
49 TESTFIELD EXIT 16 TSCAFRET YES NO NO
50 LABEL CNTLBLK ** CONTROL BLOCK ERROR
51 MOVEVAR 82
52 BRANCH SETREASN
53 LABEL DISABLED
54 BRANCH EXIT
55 LABEL NOTAUTH ** SET COMMUNICATION AREA REASON
56 MOVEVAR 92
57 BRANCH SETREASN

BLGAPIDI–LLAPI Router for Bypass Panel Processing
This panel is the controlling panel for the Application Program Interface (API) when Bypass
Panel Processing is used. It performs the following:

1. Sets up the API environment and waits for a transaction.

2. Tests transaction code and links to transaction TSP.

3. On return, branches to API control user exit.

4. Quits/frees the API environment on error or T002 transaction.

BLGAPI10–LLAPI Delete Record TSP

357Application Program Interface Guide

C
.

Term
in

al
S

im
u

lato
r

P
an

els

This is TSP BLGAPIDI.
TERMINAL SIMULATOR PANEL COMMON CONTROL FLOW DATA

LINE FUNCTION LABEL LITERAL/TEST PANEL FUNCTION FIELD WORD APPLY GET CASE-
NUM NAME NAME DATA NAME EXIT NAME OCCUR NOT VAR SENS
--- ---------- -------- -------------------------------- -------- -------- -------- ------ --- --- ---

1 LABEL APIWAIT *** WAIT FOR NEXT TRANSACTION
2 USEREXIT *** CALL API CONTROL USER EXIT BLGYAPCP NEXT NO NO
3 LABEL TEST FOR TERMINATION
4 TESTFIELD LINKT002 T002 TSCAUFLD NO NO NO
5 LABEL TEST FOR CREATE TRANSACTION
6 TESTFIELD LINKT102 T102 TSCAUFLD NO NO NO
7 LABEL TEST FOR UPDATE TRANSACTION
8 TESTFIELD LINKT105 T105 TSCAUFLD NO NO NO
9 LABEL TEST FOR ADD RELATION XACTION
10 TESTFIELD LINKT109 T109 TSCAUFLD NO NO NO
11 LABEL TEST FOR DELETE TRANSACTION
12 TESTFIELD LINKT110 T110 TSCAUFLD NO NO NO
13 LABEL TEST FOR INVOKE USER TSP
14 TESTFIELD LINKT111 T111 TSCAUFLD NO NO NO
15 BRANCH APIWAIT
16 LABEL LINKT102 LINK TO CREATE TSP
17 LABEL LINKT105 LINK TO UPDATE TSP
18 LABEL LINKT109 LINK TO ADD DATA TSP
19 LINK BLGAPIPX
20 BRANCH APIWAIT
21 LABEL LINKT110 LINK TO DELETE TSP
22 LINK BLGAPI10
23 BRANCH APIWAIT
24 LABEL LINKT111 INVOKE OR LINK TO USER TSP/TSX
25 USEREXIT BLGYITSP NEXT NO NO
26 TESTFIELD APIWAIT 0 TSCAFRET NO NO NO
27 TESTFIELD APIWAIT 4 TSCAFRET YES NO NO
28 LABEL REPLACE THIS WITH LINK STATEMENT
29 LABEL TO BRANCH TO HARDCODED TSP/TSX
30 BRANCH APIWAIT
31 LABEL INITERR PRINT THE MESSAGES AND SCREEN
32 PRINT
33 LABEL LINKT002
34 ADDDATA ;QUIT NO
35 PROCESS ENDIT
36 LABEL ENDIT LEAVE THE TSP
37 RETURN

BLGAPIPX–LLAPI Bypass Panel Processing TSP
This TSP is the LLAPI Direct Interface TSP. It performs the following functions:

1. Call BLGYAPGP to see if history data or freeform text and check transaction authority.

2. If special processing is requested and when the disabling branch is removed, reset reason
code to 0 and call user exit BLGJAUTH to check authorization.

3. ;INIT and call BLGYAPIS to set product.

4. Call BLGYAPBR to process transaction.

5. Call BLGYAPRF to file the record.

This is TSP BLGAPIPX.
TERMINAL SIMULATOR PANEL COMMON CONTROL FLOW DATA

LINE FUNCTION LABEL LITERAL/TEST PANEL FUNCTION FIELD WORD APPLY GET
NUM NAME NAME DATA NAME EXIT NAME OCCUR NOT VAR
--- ---------- -------- -------------------------------- -------- -------- -------- ------ --- ---

1 LABEL BLGAPIPX *** API PROCESS TRANSACTION
2 LABEL *** INITIALIZE PRODUCT
3 LABEL *** AND CHECK AUTHORIZATION
4 USEREXIT CALL BLGYAPGP - CHECK AUTHORITY BLGYAPGP NEXT NO NO
5 LABEL *** BRANCH IF NO ERRORS AND NO
6 LABEL *** SPECIAL PROCESSING REQUESTED
7 TESTFIELD RECORDP 0 TSCAFRET NO NO
8 TESTFIELD EXIT 0 TSCAFRES NO NO

BLGAPIDI–LLAPI Router for Bypass Panel Processing

358 Version 7.1

9 LABEL *** REMOVE FOLLOWING BRANCH TO
10 LABEL *** ENABLE SPECIAL PROCESSING
11 LABEL *** FOR HISTORY DATA, FREEFORM
12 LABEL *** TEXT
13 BRANCH DISABLED
14 MOVEVAR 00
15 USEREXIT CALL BLGYAPSR - RESET REASON BLGYAPSR NEXT NO NO
16 LABEL *** TO BEGIN AUTHORIZATION CHECK
17 LABEL *** CALL USER EXIT BLGJAUTH
18 MOVEVAR 0AA1
19 USEREXIT CALL BLGJAUTH - CHECK AUTH BLGJAUTH NEXT NO NO
20 TESTFIELD CNTLBLK 16 TSCAFRET NO NO
21 TESTFIELD NOTAUTH 0 TSCAFRET YES NO
22 LABEL RECORDP *** PROCESS RECORD FUNCTION
23 LABEL *** INITIALIZE PRODUCT
24 LABEL *** AND BEGIN RECORD PROCESSING
25 ADDDATA ;INIT NO
26 PROCESS ERROR
27 USEREXIT CALL BLGYAPIS - SET PRODUCT BLGYAPIS NEXT NO NO
28 TESTFIELD EXIT 0 TSCAFRET YES NO
29 USEREXIT CALL BLGYAPBR - PROCESS XACTION BLGYAPBR NEXT NO NO
30 USEREXIT CALL BLGYAPRF - FILE RECORD BLGYAPRF NEXT NO NO
31 LABEL EXIT
32 RETURN
33 LABEL ERROR ** ERROR: MESSAGE ISSUED
34 MOVEVAR 03
35 USEREXIT CALL BLGYAPSR - SET REASON BLGYAPSR NEXT NO NO
36 BRANCH EXIT
37 LABEL DISABLED ** ERROR: SPECIAL PROC DISABLED
38 MOVEVAR 74
39 USEREXIT CALL BLGYAPSR - SET REASON BLGYAPSR NEXT NO NO
40 BRANCH EXIT
41 LABEL CNTLBLK ** ERROR: BAD CONTROL BLOCK
42 MOVEVAR 82
43 USEREXIT CALL BLGYAPSR - SET REASON BLGYAPSR NEXT NO NO
44 BRANCH EXIT
45 LABEL NOTAUTH ** ERROR: NOT AUTHORIZED
46 MOVEVAR 92
47 USEREXIT CALL BLGYAPSR - SET REASON BLGYAPSR NEXT NO NO
48 BRANCH EXIT

BLGAPIPX–LLAPI Bypass Panel Processing TSP

359Application Program Interface Guide

C
.

Term
in

al
S

im
u

lato
r

P
an

els

BLGAPIPX–LLAPI Bypass Panel Processing TSP

360 Version 7.1

Record Process Panels
Note: The information in this section applies to panel processing mode.

The server is designed and implemented with terminal simulator panels (TSPs) that process
transactions and control panels for process control. The TSPs call user exits that provide
record and function processing.

Control panels provide panel dialog information used for record create and update. Unique
control panels specify the dialog summary panels used during record create and update
processing. The control panels are constructed so that each flow control line specifies a
record s-word, and the true target panel name specifies the corresponding summary panel
name. You can add control lines to each of these panels to accommodate additional user
records.

Control panel BLG1AACP
Control panel BLG1AACP defines record type s-words and corresponding create summary
panel names. It is used on API create processing and search processing to determine the
record type for search hits and dynamic reference processing to determine the record type of
the record being returned. You should define child record record type s-words before
corresponding parent record record type s-words in BLG1AACP to ensure correct API
processing.

Control panel BLG1AAUP
Control panel BLG1AAUP defines record type s-words and corresponding update summary
panel names.

D

361Application Program Interface Guide

D
.

R
eco

rd
P

ro
cess

P
an

els

Control panel BLG1AAUP

362 Version 7.1

Sample Low-Level Application Program
Interface

This example shows you what can be done with the Low-Level Application Program
Interface (LLAPI) using the C language. Examine it to understand how you might code the
interface to display data from an identified record, create a new record, or search for specific
data in the Tivoli Information Management for z/OS database.

All sample parts are in the Tivoli Information Management for z/OS SAMPLIB (MVS data
set SBLMSAMP). Refer to the Tivoli Information Management for z/OS Planning and
Installation Guide and Reference for information on the person to contact for information on
high-level qualifiers of data sets at your site. See “Sample HLAPI/REXX Interface” on
page 369 for more information on sample programs.

The sample code can provide an understanding of how you can do the following:

¶ ISPF starts the main routine SMPXMAIN.

¶ SMPXMAIN sets up the PICA, loads the LLAPI, and stores the addresses of both in
ISPF variables (SMPCAADR and SMPSRADR).

¶ SMPXMAIN initializes the Tivoli Information Management for z/OS LLAPI (in
asynchronous mode) and starts ISPF to SELECT menu panel SMPXPRIM.

¶ SMPXPRIM contains selections for three functions:
v 0 - Display selected data about a specified problem record.
v 1 - Create a new hardware component record.
v 2 - Search for all non-CLOSED problems assigned to a specified department with

assigned dates within a specified range.

¶ Each selection starts panels to collect the required data, then starts one of the C
programs to interact with the LLAPI. The C program names are:
v For selection 0 - SMPPRBRT (Problem Retrieve)
v For selection 1 - SMPHWCCR (Hardware Component Create)
v For selection 2 - SMPODPSR (OPEN Department Problem Search)

¶ The program starts the LLAPI to perform the function, then starts ISPF to display the
data returned, if any, or a message.

¶ Upon return from the SMPXPRIM panel, SMPXMAIN gets control again, terminates the
LLAPI, then exits back to ISPF.

E

363Application Program Interface Guide

E
.

S
am

p
le

L
o

w
-L

evelA
P

I

Note!

The information contained in these sample programs has not been submitted to any
formal IBM test and is distributed on an ″AS IS″ basis without warranty either
expressed or implied. While each item may have been reviewed by IBM for accuracy
in a specific situation, there is no guarantee that the same or similar results will be
obtained elsewhere. Customers attempting to adapt these techniques to their own
environments do so at their own risk.

Any references made to an IBM program product are not intended to state or imply
that only IBM’s program product may be used; any functionally equivalent program
may be used instead.

C Language Functions
The sample part BLMLLCS contains the following C language functions:
¶ SMPXMAIN - Sets up PICA, initializes and terminates LLAPI.
¶ SMPXCALI - Starts LLAPI, print return codes, and messages.
¶ SMPPRBRT - Retrieves data for a specified problem.
¶ SMPHWCCR - Creates a hardware component record.
¶ SMPODPSR - Searches for non-CLOSED problems assigned to a department during a

date range.
¶ SMPPURGE - Deletes a record from the database.

These functions must be copied to separate source files to be compiled.

C Language Include File
The sample part BLMLLCU contains the following mappings:
¶ BLGPIAT - C structure mapping for PIAT control block
¶ BLGPICA - C structure mapping for PICA control block
¶ BLGPIDT - C structure mapping for PIDT control block
¶ BLGPIMB - C structure mapping for PIMB control block
¶ BLGPIPT - C structure mapping for PIPT control block
¶ BLGPIRT - C structure mapping for PIRT control block
¶ BLGPALT - C structure mapping for PALT control block

Note: The brackets used for arrays in the C source and include files are unprintable
characters. They should be X'AD' (left bracket) and X'BD' (right bracket) on MVS for
C/370™ to process them properly. This is a quirk in the way the C compiler works.

Panels
The ISPF panel definitions or the source for the customized PIDT referenced in
SMPHWCCR have not been included in this document. (The program works using the
standard hardware create PIDT.)

364 Version 7.1

Using the C370 LLAPI Sample Programs
The C370 LLAPI sample programs require C370 R1.2 or higher to dynamically link to
non-C language routines. To use these sample programs, perform the following steps:

1. Install Tivoli Information Management for z/OS and build a session-parameters member.

2. To verify that Tivoli Information Management for z/OS can be brought up using the
session-parameters member built in step 1, start an interactive session of Tivoli
Information Management for z/OS specifying that session-parameters member.

3. Copy the programs contained in the sample part BLMLLCS to a separate data set. These
programs include the C language file BLMLLCU. You can separate the header files
contained in BLMLLCU and include them in your programs.

4. Copy SMPXMAIN and SMPPURGE to other data sets, then modify them as follows:

a. If you do not use BLGSES00, change BLGSES00 to the name of the
session-parameters member you built in step 1.

b. If you do not use MASTER, change MASTER to the name of the privilege class you
want to use.
¶ The privilege class you specify must have the authority to display and update

problem records.
¶ This privilege class must be in the database defined in the session-parameters

member you specified in step 4a.

c. Change all occurrences of SAMPID to the name of the application ID to use for the
API session. The value you specify must be defined as an eligible user in the
privilege class you use.

5. Build the ISPF panels for the programs.

6. Compile and link-edit the sample programs.

7. Verify that the required ISPF panels and Tivoli Information Management for z/OS code
is available to the sample programs.

8. Run the sample program SMPXMAIN.

C Language Include File

365Application Program Interface Guide

E
.

S
am

p
le

L
o

w
-L

evelA
P

I

C Language Include File

366 Version 7.1

Sample High-Level Application Program
Interface

These examples show what you can do with the High-Level Application Program Interface
(HLAPI). Examine them to understand how you might code the interface to create, display,
and update problem records, and create and display service records.

The C370 and PL/I HLAPI sample programs are in the Tivoli Information Management for
z/OS SAMPLIB (MVS data set SBLMSAMP). Refer to the Tivoli Information Management
for z/OS Planning and Installation Guide and Reference for information on the person to
contact for information on high-level qualifiers of data sets at your site. See “Sample
HLAPI/REXX Interface” on page 369 for more information on sample programs.

Using the C370 HLAPI Sample Program
To use the C370 HLAPI sample programs, perform the following steps:

1. Install Tivoli Information Management for z/OS and build a session-parameters member.

2. To verify that Tivoli Information Management for z/OS can be brought up using the
session-parameters member built in step 1, start an interactive session of Tivoli
Information Management for z/OS specifying that session-parameters member.

3. Copy BLMHLCS to another data set, then modify it as follows:

a. To specify the session-parameters member you built in step 1, change the value of
BLGSES00 on the statement #define SESSMBR BLGSES00 to the name of your
session-parameters member.

b. To specify a privilege class, change the value of MASTER on the statement #define
PRIVCLAS MASTER to the name of the privilege class you want to use.
¶ The privilege class you specify must have the authority to create, display and

update problem records.
¶ This privilege class must be in the database defined in the session-parameters

member you specified in step 3a.

c. Change the value on the statement #define APPLID to the name of the application
ID to use for the API session. The value you specify must be defined as an eligible
user in the privilege class you use.

4. Copy BLMHLCJ to another data set.

5. Modify BLMHLCJ according to the instructions provided in the JCL.

6. Submit BLMHLJC to compile, link-edit, and run the sample program.

F

367Application Program Interface Guide

F.
S

am
p

le
H

ig
h

-L
evelA

P
I

Using the PL/I HLAPI Sample Program
This sample program creates and retrieves a service record with record ID SAMPLE01.
Delete this record before you run the sample program again. If you do not, the HLAPI
transaction HL08 will fail because it cannot create a record with record ID SAMPLE01.

To use the PL/I HLAPI sample program in the Tivoli Information Management for z/OS
SAMPLIB (MVS data set SBLMSAMP), perform the following steps:

1. Install Tivoli Information Management for z/OS and build a session-parameters member.

2. To verify that Tivoli Information Management for z/OS can be brought up using the
session-parameters member built in step 1, start an interactive session of Tivoli
Information Management for z/OS specifying that session-parameters member.

3. Copy BLMHLPS to another data set, then modify it as follows:

a. To specify the session-parameters member you built in step 1, change all occurrences
of BLGSES00 to the name of your session-parameters member.

b. To specify a privilege class, change all occurrences of MASTER to the name of the
privilege class you want to use.
¶ The privilege class you specify must have the authority to create and display

service records.
¶ This privilege class must be in the database defined in the session-parameters

member you specified in step 3a.

c. Change all occurrences of SAMPID to the name of the application ID to use for the
API session. The value you specify must be defined as an eligible user in the
privilege class you use.

4. Copy BLMHLPJ to another data set.

5. Modify BLMHLPJ according to the instructions provided in the JCL.

6. Submit BLMHLJC to compile, link-edit, and run the sample program.

Using the PL/I HLAPI Sample Program

368 Version 7.1

Sample HLAPI/REXX Interface

This example shows what you can do with the High Level Application Program Interface for
REXX (HLAPI/REXX). Examine it to understand how you might code the interface to
update problem records. See “Output Data” on page 253 for information on the naming
conventions of REXX variables used in this sample.

The HLAPI/REXX sample program is in the Tivoli Information Management for z/OS
SAMPLIB (MVS data set SBLMSAMP). Refer to the Tivoli Information Management for
z/OS Planning and Installation Guide and Reference for information on the person to contact
for information on high-level qualifiers of data sets at your site.

Using the HLAPI/REXX Sample Program
To use the sample program, perform the following steps:

1. Install Tivoli Information Management for z/OS and build a session-parameters member.

2. To verify that Tivoli Information Management for z/OS can be brought up using the
session-parameters member built in step 1, start an interactive session of Tivoli
Information Management for z/OS specifying that session-parameters member.

3. Copy BLMHLXS to another data set, then modify it as follows:

a. If you do not use BLGSES00, change BLGSES00 to the name of the
session-parameters member you built in step 1.

b. If you do not use MASTER, change MASTER to the name of the privilege class you
want to use. The privilege class you specify must have the authority to display and
update problem records. This privilege class must be in the database defined in the
session-parameters member you specified in step 3a.

c. Change all occurrences of SAMPID to the name of the application ID to use for the
API session. The value you specify must be defined as an eligible user in the
privilege class you use.

4. Use Tivoli Information Management for z/OS to create one or more base problem
records with the following:
¶ A reporter name of ADAMS/SAM
¶ A status of OPEN
¶ A current priority greater than 1
¶ The text TOM CARTER in the description text.

The program BLMHLXS will not find any matches if the database contains no records
with this information.

5. Copy BLMHLXJ to another data set.

G

369Application Program Interface Guide

G
.

S
am

p
le

H
L

A
P

I/R
E

X
X

In
terface

6. Modify BLMHLXJ according to the instructions provided in the JCL.

7. Submit BLMHLXJ to compile, link-edit, and run the sample program.

Using the HLAPI/REXX Sample Program

370 Version 7.1

Relating Publications to Specific Tasks

Your data processing organization can have many different users performing many different
tasks. The books in the Tivoli Information Management for z/OS library contain
task-oriented scenarios to teach users how to perform the duties specific to their jobs.

The following table describes the typical tasks in a data processing organization and
identifies the Tivoli Information Management for z/OS publication that supports those tasks.
See “The Tivoli Information Management for z/OS Library” on page 377 for more
information about each book.

Typical Tasks

Table 91. Relating Publications to Specific Tasks
If You Are: And You Do This: Read This:

Planning to Use Tivoli
Information Management for
z/OS

Identify the hardware and software
requirements of Tivoli Information
Management for z/OS. Identify the
prerequisite and corequisite products.
Plan and implement a test system.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Installing Tivoli Information
Management for z/OS

Install Tivoli Information Management
for z/OS. Define and initialize data
sets. Create session-parameters
members.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Tivoli Information
Management for z/OS
Integration Facility Guide

Define and create multiple Tivoli
Information Management for z/OS
BLX-SPs.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Define and create APPC transaction
programs for clients.

Tivoli Information
Management for z/OS Client
Installation and User’s Guide

Define coupling facility structures for
sysplex data sharing.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Diagnosing problems Diagnose problems encountered while
using Tivoli Information Management
for z/OS

Tivoli Information
Management for z/OS
Diagnosis Guide

H

371Application Program Interface Guide

|
|

H
.

R
elatin

g
P

u
b

licatio
n

s
to

S
p

ecific
Tasks

Table 91. Relating Publications to Specific Tasks (continued)
If You Are: And You Do This: Read This:

Administering Tivoli
Information Management for
z/OS

Manage user profiles and passwords.
Define and maintain privilege class
records. Define and maintain rules
records.

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Tivoli Information
Management for z/OS
Integration Facility Guide

Define and maintain USERS record.
Define and maintain ALIAS record.
Implement GUI interface. Define and
maintain command aliases and
authorizations.

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Implement and administer Notification
Management. Create user-defined line
commands. Define logical database
partitioning.

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Create or modify GUI workstation
applications that can interact with
Tivoli Information Management for
z/OS. Install the Tivoli Information
Management for z/OS Desktop on user
workstations.

Tivoli Information
Management for z/OS
Desktop User’s Guide

Maintaining Tivoli
Information Management for
z/OS

Set up access to the data sets. Maintain
the databases. Define and maintain
privilege class records.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Define and maintain the BLX-SP. Run
the utility programs.

Tivoli Information
Management for z/OS
Operation and Maintenance
Reference

Programming applications Use the application program interfaces. Tivoli Information
Management for z/OS
Application Program
Interface Guide

Use the application program interfaces
for Tivoli Information Management for
z/OS clients.

Tivoli Information
Management for z/OS Client
Installation and User’s Guide

Create Web applications using or
accessing Tivoli Information
Management for z/OS data.

Tivoli Information
Management for z/OS World
Wide Web Interface Guide

Typical Tasks

372 Version 7.1

Table 91. Relating Publications to Specific Tasks (continued)
If You Are: And You Do This: Read This:

Customizing Tivoli
Information Management for
z/OS

Design and implement a Change
Management system. Design and
implement a Configuration
Management system. Design and
implement a Problem Management
system.

Tivoli Information
Management for z/OS
Problem, Change, and
Configuration Management

Design, create, and test terminal
simulator panels or terminal simulator
EXECs. Customize panels and panel
flow.

Tivoli Information
Management for z/OS
Terminal Simulator Guide
and Reference

Tivoli Information
Management for z/OS Panel
Modification Facility Guide

Design, create, and test Tivoli
Information Management for z/OS
formatted reports.

Tivoli Information
Management for z/OS Data
Reporting User’s Guide

Create a bridge between NetView and
Tivoli Information Management for
z/OS applications. Integrate Tivoli
Information Management for z/OS
with Tivoli distributed products.

Tivoli Information
Management for z/OS Guide
to Integrating with Tivoli
Applications

Assisting Users Create, search, update, and close
change, configuration, or problem
records. Browse or print Change,
Configuration, or Problem
Management reports.

Tivoli Information
Management for z/OS
Problem, Change, and
Configuration Management

Use the Tivoli Information
Management for z/OS Integration
Facility.

Tivoli Information
Management for z/OS
Integration Facility Guide

Using Tivoli Information
Management for z/OS

Learn about the Tivoli Information
Management for z/OS panel types,
record types, and commands. Change a
user profile.

Tivoli Information
Management for z/OS User’s
Guide

Learn about Problem, Change, and
Configuration Management records.

Tivoli Information
Management for z/OS
Problem, Change, and
Configuration Management

Receive and respond to Tivoli
Information Management for z/OS
messages.

Tivoli Information
Management for z/OS
Messages and Codes

Design and create reports. Tivoli Information
Management for z/OS Data
Reporting User’s Guide

Typical Tasks

373Application Program Interface Guide

H
.

R
elatin

g
P

u
b

licatio
n

s
to

S
p

ecific
Tasks

Typical Tasks

374 Version 7.1

Tivoli Information Management for z/OS
Courses

Education Offerings
Tivoli Information Management for z/OS classes are available in the United States and in
the United Kingdom. For information about classes outside the U.S. and U.K., contact your
local IBM representative or visit http://www.training.ibm.com on the World Wide Web.

United States
IBM Education classes can help your users and administrators learn how to get the most out
of Tivoli Information Management for z/OS. IBM Education classes are offered in many
locations in the United States and at your own company location.

For a current schedule of available classes or to enroll, call 1-800-IBM TEACh
(1-800-426-8322). On the World Wide Web, visit:

http://www.training.ibm.com

to see the latest course offerings.

United Kingdom
In Europe, the following public courses are held in IBM’s central London education centre
at the South Bank at regular intervals. On-site courses can also be arranged.

For course schedules and to enroll, call Enrollments Administration on 0345 581329, or send
an e-mail note to:

contact_educ_uk@vnet.ibm.com

On the World Wide Web, visit:

http://www.europe.ibm.com/education-uk

to see the latest course offerings.

I

375Application Program Interface Guide

I.
E

d
u

catio
n

al
C

o
u

rses

376 Version 7.1

Where to Find More Information

The Tivoli Information Management for z/OS library is an integral part of Tivoli Information
Management for z/OS. The books are written with particular audiences in mind. Each book
covers specific tasks.

The Tivoli Information Management for z/OS Library
The publications shipped automatically with each Tivoli Information Management for z/OS
Version 7.1 licensed program are:
¶ Tivoli Information Management for z/OS Application Program Interface Guide
¶ Tivoli Information Management for z/OS Client Installation and User’s Guide *
¶ Tivoli Information Management for z/OS Data Reporting User’s Guide *
¶ Tivoli Information Management for z/OS Desktop User’s Guide
¶ Tivoli Information Management for z/OS Diagnosis Guide *
¶ Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications *
¶ Tivoli Information Management for z/OS Integration Facility Guide *
¶ Tivoli Information Management for z/OS Licensed Program Specification
¶ Tivoli Information Management for z/OS Master Index, Glossary, and Bibliography
¶ Tivoli Information Management for z/OS Messages and Codes
¶ Tivoli Information Management for z/OS Operation and Maintenance Reference
¶ Tivoli Information Management for z/OS Panel Modification Facility Guide
¶ Tivoli Information Management for z/OS Planning and Installation Guide and Reference
¶ Tivoli Information Management for z/OS Program Administration Guide and Reference
¶ Tivoli Information Management for z/OS Problem, Change, and Configuration

Management*
¶ Tivoli Information Management for z/OS Reference Summary
¶ Tivoli Information Management for z/OS Terminal Simulator Guide and Reference
¶ Tivoli Information Management for z/OS User’s Guide
¶ Tivoli Information Management for z/OS World Wide Web Interface Guide

Note: Publications marked with an asterisk (*) are shipped in softcopy format only.

Also included is the Product Kit, which includes the complete online library on CD-ROM.

To order a set of publications, specify order number SBOF-7028-00.

Additional copies of these items are available for a fee.

Publications can be requested from your Tivoli or IBM representative or the branch office
serving your location. Or, in the U.S., you can call the IBM Publications order line directly
by dialing 1-800-879-2755.

J

377Application Program Interface Guide

|

J.
W

h
ere

to
F

in
d

M
o

re
In

fo
rm

atio
n

The following descriptions summarize all the books in the Tivoli Information Management
for z/OS library.

Tivoli Information Management for z/OS Application Program Interface Guide,
SC31-8737-00, explains how to use the low-level API, the high-level API, and the REXX
interface to the high-level API. This book is written for application and system programmers
who write applications that use these program interfaces.

Tivoli Information Management for z/OS Client Installation and User’s Guide,
SC31-8738-00, describes and illustrates the setup and use of Tivoli Information Management
for z/OS’s remote clients. This book shows you how to use Tivoli Information Management
for z/OS functions in the AIX, CICS, HP-UX, OS/2, Sun Solaris, Windows NT, and OS/390
UNIX System Services environments. Also included in this book is complete information
about using the Tivoli Information Management for z/OS servers.

Tivoli Information Management for z/OS Data Reporting User’s Guide, SC31-8739-00,
describes various methods available to produce reports using Tivoli Information Management
for z/OS data. It describes Tivoli Decision Support for Information Management (a
Discovery Guide for Tivoli Decision Support), the Open Database Connectivity (ODBC)
Driver for Tivoli Information Management for z/OS, and the Report Format Facility. A
description of how to use the Report Format Facility to modify the standard reports provided
with Tivoli Information Management for z/OS is provided. The book also illustrates the
syntax of report format tables (RFTs) used to define the output from the Tivoli Information
Management for z/OS REPORT and PRINT commands. It also includes several examples of
modified RFTs.

Tivoli Information Management for z/OS Desktop User’s Guide, SC31-8740-00, describes
how to install and use the sample application provided with the Tivoli Information
Management for z/OS Desktop. The Tivoli Information Management for z/OS Desktop is a
Java-based graphical user interface for Tivoli Information Management for z/OS. Information
on how to set up data model records to support the interface and instructions on using the
Desktop Toolkit to develop your own Desktop application are also provided.

Tivoli Information Management for z/OS Diagnosis Guide, GC31-8741-00, explains how to
identify a problem, analyze its symptoms, and resolve it. This book includes tools and
information that are helpful in solving problems you might encounter when you use Tivoli
Information Management for z/OS.

Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications,
SC31-8744-00, describes the steps to follow to make an automatic connection between
NetView and Tivoli Information Management for z/OS applications. It also explains how to
customize the application interface which serves as an application enabler for the NetView
Bridge and discusses the Tivoli Information Management for z/OS NetView AutoBridge.
Information on interfacing Tivoli Information Management for z/OS with other Tivoli
management software products or components is provided for Tivoli Enterprise Console,
Tivoli Global Enterprise Manager, Tivoli Inventory, Tivoli Problem Management, Tivoli
Software Distribution, and Problem Service.

Tivoli Information Management for z/OS Integration Facility Guide, SC31-8745-00,
explains the concepts and structure of the Integration Facility. The Integration Facility
provides a task-oriented interface to Tivoli Information Management for z/OS that makes the

The Tivoli Information Management for z/OS Library

378 Version 7.1

Tivoli Information Management for z/OS applications easier to use. This book also explains
how to use the panels and panel flows in your change and problem management system.

Tivoli Information Management for z/OS Master Index, Glossary, and Bibliography,
SC31-8747-00, combines the indexes from each hardcopy book in the Tivoli Information
Management for z/OS library for Version 7.1. Also included is a complete glossary and
bibliography for the product.

Tivoli Information Management for z/OS Messages and Codes, GC31-8748-00, contains
the messages and completion codes issued by the various Tivoli Information Management
for z/OS applications. Each entry includes an explanation of the message or code and
recommends actions for users and system programmers.

Tivoli Information Management for z/OS Operation and Maintenance Reference,
SC31-8749-00, describes and illustrates the BLX-SP commands for use by the operator. It
describes the utilities for defining and maintaining data sets required for using the Tivoli
Information Management for z/OS licensed program, Version 7.1.

Tivoli Information Management for z/OS Panel Modification Facility Guide,
SC31-8750-00, gives detailed instructions for creating and modifying Tivoli Information
Management for z/OS panels. It provides detailed checklists for the common panel
modification tasks, and it provides reference information useful to those who design and
modify panels.

Tivoli Information Management for z/OS Planning and Installation Guide and Reference,
GC31-8751-00, describes the tasks required for installing Tivoli Information Management for
z/OS. This book provides an overview of the functions and optional features of Tivoli
Information Management for z/OS to help you plan for installation. It also describes the
tasks necessary to install, migrate, tailor, and start Tivoli Information Management for z/OS.

Tivoli Information Management for z/OS Problem, Change, and Configuration
Management, SC31-8752-00, helps you learn how to use Problem, Change, and
Configuration Management through a series of training exercises. After you finish the
exercises in this book, you should be ready to use other books in the library that apply more
directly to the programs you use and the tasks you perform every day.

Tivoli Information Management for z/OS Program Administration Guide and Reference,
SC31-8753-00, provides detailed information about Tivoli Information Management for z/OS
program administration tasks, such as defining user profiles and privilege classes and
enabling the GUI user interface.

Tivoli Information Management for z/OS Reference Summary, SC31-8754-00, is a
reference booklet containing Tivoli Information Management for z/OS commands, a list of
p-words and s-words, summary information for PMF, and other information you need when
you use Tivoli Information Management for z/OS.

Tivoli Information Management for z/OS Terminal Simulator Guide and Reference,
SC31-8755-00, explains how to use terminal simulator panels (TSPs) and EXECs (TSXs)
that let you simulate an entire interactive session with a Tivoli Information Management for
z/OS program. This book gives instructions for designing, building, and testing TSPs and
TSXs, followed by information on the different ways you can use TSPs and TSXs.

The Tivoli Information Management for z/OS Library

379Application Program Interface Guide

J.
W

h
ere

to
F

in
d

M
o

re
In

fo
rm

atio
n

Tivoli Information Management for z/OS User’s Guide, SC31-8756-00, provides a general
introduction to Tivoli Information Management for z/OS and databases. This book has a
series of step-by-step exercises to show beginning users how to copy, update, print, create,
and delete records, and how to search a database. It also contains Tivoli Information
Management for z/OS command syntax and descriptions and other reference information.

Tivoli Information Management for z/OS World Wide Web Interface Guide, SC31-8757-00,
explains how to install and operate the features available with Tivoli Information
Management for z/OS that enable you to access a Tivoli Information Management for z/OS
database using a Web browser as a client.

Other related publications include the following:

Tivoli Decision Support: Using the Information Management Guide is an online book (in
portable document format) that can be viewed with the Adobe Acrobat Reader. This book is
provided with Tivoli Decision Support for Information Management (5697-IMG), which is a
product that enables you to use Tivoli Information Management for z/OS data with Tivoli
Decision Support. This book describes the views and reports provided with the Information
Management Guide.

IBM Redbooks™ published by IBM’s International Technical Support Organization are also
available. For a list of redbooks related to Tivoli Information Management for z/OS and
access to online redbooks, visit Web site http://www.redbooks.ibm.com or
http://www.support.tivoli.com

The Tivoli Information Management for z/OS Library

380 Version 7.1

Index

Numerics
31-bit addressing 29

A
ABEND reason codes 337
add record relation

HLAPI (HL12)
description 202
parent and child records 202

LLAPI (T109)
description 93
parent and child records 94
record type indexes 94
required transactions 94

with logical database partitioning 94
addressing

HLAPI 147, 158
LLAPI 19, 29

alias names
DBCS data 148
HLAPI 147
LLAPI 20

alias table
entry input name processing 239
inquiry input name processing 239
PDS members 238
processing 238
record retrieve output name processing 239
retrieve input name processing 239
table build utility BLGUT8 238

API (application program interface)
check out/check in 19, 147
choosing the right one 11
extensions 263
function overview 2
introduction 1
security 287
session definition 2
tailoring 289
transaction definition 2
writing application, guidelines 273

APIPRINT data set
HLAPI 150
LLAPI 24

APISECURITY 287
APPLICATION_ID

add record relation (HL12) 204
change record approval (HL10) 193
check in record (HL05) 165
check out record (HL04) 163
create record (HL08) 179

APPLICATION_ID (continued)
delete record (HL13) 206
get data model (HL31) 208
parameter data definition 226
record inquiry (HL11) 196
retrieve record (HL06) 173
start user TSP or TSX (HL14) 167
update record (HL09) 187

application ID (APPLID) 22
application program interface (API) 1
application program interface, high-level 2
application program interface, low-level 1
APPLID (application ID)

for HLAPI control chain PDB 226
for LLAPI text data set 22

audit data
HLAPI 174
LLAPI 22

B
BLGAPI00, LLAPI router TSP 349
BLGAPI02, LLAPI create record TSP 350
BLGAPI05, LLAPI update record TSP 352
BLGAPI09, LLAPI update record TSP 355
BLGAPI10, LLAPI delete record TSP 356
BLGAPIDI, LLAPI router for bypass panel processing

TSP 357
BLGAPIPX, LLAPI bypass panel processing TSP 358
BLGEXDEL, delete unusable record user exit 293
BLGJAUTH, check for authorization user exit 294
BLGPPFVM, Field Validation Module 279
BLGRESET, reset all approvals to pending user exit 297
BLGTRPND, a HLAPI extension 263
BLGTSAPI, test for API environment user exit 297
BLGTSPCH, a HLAPI extension 264
BLGTXINQ, a HLAPI extension 264
BLGYAPBR, API record build processor user exit 295
BLGYAPBU, API retrieve record ID user exit 296
BLGYAPCP, API control processor user exit 294
BLGYAPGP, API retrieve panel name user exit 294
BLGYAPIS, set product 297
BLGYAPRF, file record 298
BLGYAPSR, API set interface reason code user exit 296
BLGYAPUP, verify record update user exit 296
BLGYSRVR load module 15
bypass panel processing

application program considerations 276
as operating mode 17
audit data 178
BLGA105 73
BLGAPIDI 283

381Application Program Interface Guide

In
d

ex

bypass panel processing (continued)
BLGAPIPX 64, 184
BLGYAPRF 17
BYPASS_PANEL_PROCESSING 231, 283
create function 284
data model records 158, 178, 184, 231
dynamic record retrieval restriction 78
file processing 283
history data considerations 184, 188, 227
HL01 283
HLAPI 158, 284
Initialize (T001) 27
LLAPI 17, 284
PICADRIF 27, 29, 283
processing indicator 27, 29
restriction with dynamic record retrieval 78
specifying in HLAPI 158, 231
specifying in LLAPI 27, 29
T001 27, 283

C
C language, using LLAPI sample program in 363
C370 language, using HLAPI sample program in 367
calls

field validation module 279
HLAPI 149
HLAPI/REXX interface 241
LLAPI 20

change record approval
HLAPI (HL10) 191
LLAPI (T112) 98

check in record
HLAPI (HL05) 164
LLAPI (T008) 37
with logical database partitioning 38

check out/check in records
HLAPI 147
LLAPI 19

check out record
HLAPI (HL04) 162
LLAPI (T104) 47
with logical database partitioning 47

check transaction completion, LLAPI (T010) 40
child record 94
CICS, issuing HLAPI calls from 4
collecting data in mixed case

HLAPI 146
LLAPI 16

commands disabled by LLAPI 24
communications area

HLAPI (HICA) 216
LLAPI (PICA) 101

component
HLAPI 8
LLAPI 5

control chain PDB 225
control PDB 152

control transfer considerations
HLAPI 145
LLAPI 15

create record
date consideration 69, 81
HLAPI (HL06) 178
LLAPI (T102) 63

D
data model records

application program considerations 276
bypass panel processing 29, 158, 178, 184, 231
indicator 137
overview 11, 12
PIDT 7, 44, 88, 94, 115
program exits 12
record file 17

data set
APIPRINT, HLAPI 150
APIPRINT, LLAPI 24
HLAPI 150
HLAPILOG 150
LLAPI 21
report format table data set, HLAPI 150
report format table data set, LLAPI 23
SYSMDUMP, LLAPI 24
SYSPRINT, HLAPI 150
SYSPRINT, LLAPI 23
SYSUDUMP, HLAPI 150
text 21
text, HLAPI 150

data validation 16
data view records

PICATABN 106
PIDT name 106

database format for dates, LLAPI 20
date considerations

application-specified format 20, 149, 241
create record (T102) 69, 81
database format 20, 149, 241
HLAPI 149
LLAPI 20
record inquiry (T107) 85
retrieve record (T100) 61

date format 5
DATE_FORMAT

create record (HL08) 180
HLAPI operating characteristics 148
initialize Tivoli Information Management for z/OS

(HL01) 158
parameter data definition 226
record inquiry (HL11) 196
retrieve record (HL06) 175
update record (HL09) 189

delete record
HLAPI (HL12) 205
LLAPI (T110) 96
using root VSAM key 97

382 Version 7.1

delete record (continued)
with logical database partitioning 97

delete text data set, HLAPI (HL16) 170
delete unusable record user exit 293
direct-add data 12
disabled function 350

enabling 18, 350, 352, 356
LLAPI 18, 350, 352, 356

dynamic PIDT
description 116
LLAPI create (T102) 66
LLAPI retrieve (T100) 56
LLAPI update (T105) 79
requesting 56

E
enable functions shipped disabled 18, 350, 352, 356
environment

control transaction, HLAPI 153
control transactions, LLAPI 27
HLAPI 147
LLAPI 16, 19
user exit to test for API environment 297

equal sign processing
Add Record Relation (HL12) 204
Create Record (HL08) 180
EQUAL_SIGN_PROCESSING 205
LLAPI 16
parameter definition 227
PICAEQRP 71, 81, 83, 89, 95
PIDTDATP 71, 83
Record Inquiry (HL11) 196
Update Record (HL09) 188

error code chain PDB 236
error code table

ABEND reason codes 337
encoded validation error reason code 304
HLAPI 150
HLAPI validation error reason codes 307
LLAPI 25
LLAPI validation error reason codes 307
PIDT error codes 123
response field validation codes 236
validation error reason code 304

error recovery 16
extensions for HLAPI 263

F
field validation module, BLGPPRVM

call syntax 279
input 280
return code 280
use 279

field validation return code table 280
free alias table, LLAPI (T012) 42

free data table, LLAPI (T006) 35
free pattern table, LLAPI (T005) 34
free result table, LLAPI (T007) 36
free text data set, HLAPI (HL15) 169
functions shipped disabled 18, 350, 352, 356

G
group prefix processing

LLAPI create (T102) 69
LLAPI retrieve (T102) 56
LLAPI update (T105) 80

H
HICA (high-level program interface communications area)

field explanation 217
field list 216
in flow of HLAPI application 10
introduction 10
use 216

HICAINPP (INPUT)
HLAPI create (HL08) 180
HLAPI retrieve (HL06) 175

HICAOUTP (OUTPUT)
HLAPI create (HL08) 182
HLAPI retrieve (HL06) 175

high-level API 2
high-level program interface communications area 10
high memory addressing 29
high memory support 147
history data

LLAPI create (T102) 69
LLAPI update (T105) 80

HLAPI
add record relation (HL12) 202
addressing 147, 158
alias name 147
APIPRINT data set 150
application-specified format for dates 149
call syntax 149
change record approval (HL10) 191
check in record (HL05) 164
check out/check in 147
check out record (HL04) 162
collecting data in mixed case 146
components 8
components and data flow diagram 9
control transfer considerations 145
create record (HL08) 178
data set 150
database access transaction 171
database format for dates 149
date considerations 149
default data 147
delete record (HL13) 205
delete text data set (HL16) 170

383Application Program Interface Guide

In
d

ex

HLAPI (continued)
environment 147
environment control transaction 153
error codes chain 236
errors 150
free text data set (HL15) 169
get data model (HL31) 207
graphic example 209
HLAPI/REXX interface 240
HLAPILOG data set 150
initialize Tivoli Information Management for z/OS

(HL01) 153
input parameter list structure 149
inquiries 147
interface service transaction 161
introduction 2
loading 146
memory residence 147
NetView considerations 147
obtain external record ID (HL03) 161
operating characteristics 145
operating mode 146
reason codes 314, 342
record file processing 148
record inquiry (HL11) 194
report format table data set 150
retrieve record (HL06) 171
return code table 301
start user TSP or TSX (HL14) 166
storage area 147
structure and processing 146
structures list 216
SYSPRINT data set 150
SYSUDUMP data set 150
tasks 145
terminate Tivoli Information Management for z/OS

(HL02) 160
termination 146
text data set 150
transaction

add record relation (HL12) 202
change record approval (HL10) 191
check in record (HL05) 164
check out record (HL04) 162
create record (HL08) 178
delete record (HL13) 205
delete text data set (HL16) 170
free text data set (HL15) 169
get data model (HL31) 207
initialize Tivoli Information Management for z/OS

(HL01) 153
obtain external record ID (HL03) 161
record inquiry (HL11) 194
retrieve record (HL06) 171
start user TSP or TSX (HL14) 166
terminate Tivoli Information Management for z/OS

(HL02) 160
update record (HL09) 183

transaction list 151
use 145
using the sample program (C370 language) 367

HLAPI (continued)
using the sample program (PL/I language) 368
validating data 146
validation error reason codes 307

HLAPI error codes chain 236
HLAPI extensions 263

control data 265
HLAPI REXX example 269
input data 265

SEARCH_ARGUMENT 265
TABLE_PANEL 265
TSP_NAME 265

output data 266
return codes

TSCAREAS 266
TSCARETC 266

usage notes 267, 271
writing 268

HLAPI return codes for HLAPI/REXX interface 253
HLAPI/REXX interface

and HLAPI return code 253
application-specified format for dates 241
call syntax 241
calls 241
control data 243
database format for dates 241
date considerations 241
description 240
differences from HLAPI 241
error code 260
error flags for input items 254
examples of input 240
examples of output 257
examples of specifying inputs 249
HLAPI timeout 254
information output types 255
input data, two steps in defining 244
introduction 240
load module BLGYRXM 242
maximum input lengths 248
output data 253

HLAPI return and reason codes 253
return code 253
variable data or access errors 253

output message 260
parameters 242
putting data into variable

defining text items 247
elements of input item 245
freeform search argument inputs 245

required inputs 240
reserved variables 260
return code 343
sample program 369
setting up input array 248
transaction list 242
valid transaction list 242

HLAPI/REXX interface sample program 369
HLAPILOG data set 150

384 Version 7.1

I
INFOMAN RACF resource class 287
initialize Tivoli Information Management for z/OS

HLAPI (HL01) 153
LLAPI (T001) 27

initializing
HLAPI 146
LLAPI 16

input chain PDB 234
input PDB 152
inquiry result table 141

K
keyword

description 221

L
linking

HLAPI 146
LLAPI 16

LLAPI
addressing 19, 29
alias name 20
APIPRINT data set 24
application-specified format for dates 20
audit data 22
bypass panel processing TSP, BLGAPIPX 358
call syntax 20
check out/check in 19
collecting data in mixed case 16
components 5
components and data flow diagram 6
control flow 5
control transfer considerations 15
create record TSP, BLGAPI02 350
data flow 5
data flow example 7
data sets 21
database access transaction 55
database format for dates 20
date consideration 20
delete record TSP, BLGAPI10 356
disabled function 18, 350, 352, 356
disabled Tivoli Information Management for z/OS

commands 24
enabling disabled function 18, 350, 352, 356
environment 16
environment control transaction 27
error recovery 16
errors 25
initializing 16
input parameter list 21
interface service transaction 31
introduction 1

LLAPI (continued)
limitations 17
linking to BLGYSRVR 16
loading 16
logic 17
memory residence 19
NetView considerations 19
notification considerations 19
operating characteristics 15
operating modes 15
reason code 314
record file processing 20, 283
report format table data set 23
restrictions 24
retry and wait considerations 18
return code table 301
router for bypass panel processing TSP, BLGAPIDI 357
router TSP, BLGAPI00 349
sample program (C language) 363
security 5
stopping 16
storage area 19
structures list 100
SYSMDUMP data set 24
SYSPRINT data set 23
tasks 15
text data set 21
transaction list 26
transactions

add record relation (T109) 93
change record approval (T112) 98
check in record (T008) 37
check out record (T104) 47
check transaction completion (T010) 40
create record (T102) 63
delete record (T110) 96
free alias table (T012) 42
free data table (T006) 35
free pattern table (T005) 34
free result table (T007) 36
initialize Tivoli Information Management for z/OS

(T001) 27
load PIDT (T013) 43
obtain add record relation resource (T108) 50
obtain alias table (T011) 41
obtain external record ID (T003) 31
obtain inquiry resource (T106) 49
obtain pattern table (T004) 33
obtain record create resource (T101) 44
obtain record update resource (T103) 45
record inquiry (T107) 84
retrieve record (T100) 55
start user TSP or TSX (T111) 52
sync and wait on completion (T009) 39
terminate Tivoli Information Management for z/OS

(T002) 30
update record (T105) 73

update record TSP, BLGAPI02 352
update record TSP, BLGAPI09 355
use 15
user exit 293

385Application Program Interface Guide

In
d

ex

LLAPI (continued)
using the sample program (C language) 365
validating data 16
validation error reason codes 307

load PIDT, LLAPI (T013) 43
loading

HLAPI 146
LLAPI 16

logical database partitioning
API multipartition search restriction 84, 195
HLAPI operating characteristics 148
restriction with API 38, 84, 195

low-level API 1

M
message and error PDB 152
message block 143
message chain block 143
messages chain PDB 235
mixed case data

HLAPI 146
LLAPI 16

model PIDT 116
modes of operation 15
Multiple or List Data Item Processing Considerations

HLAPI update (HL09) 185
LLAPI create (T102) 59, 66
LLAPI update (T105) 76

N
NetView considerations

HLAPI 147
LLAPI 19

notification considerations, LLAPI 19

O
obtain add record relation resource, LLAPI (T108) 50
obtain alias table, LLAPI (T011) 41
obtain external record ID

HLAPI (HL03) 161
LLAPI (T003) 31

obtain inquiry resource, LLAPI (T106) 49
obtain pattern table, LLAPI (T004) 33
obtain record create resource, LLAPI (T101) 44
obtain record update resource, LLAPI (T103) 45
operating characteristics

HLAPI 145
LLAPI 15

operating mode
HLAPI 146
LLAPI 15

output chain PDB 235

output PDB 152

P
p-word, use in PIDT 115
PALT (program interface alias table)

field explanation 113
field list 112
in flow of LLAPI application 7
introduction 7
LLAPI transaction T011 41
LLAPI transaction T012 42
use 112

panel processing 17
panels

record process 361
terminal simulator 349

parameter data block 10
parameter data definition for PDB 225
parent record 94
parenthetical searches 85, 194
PDB (parameter data block)

control chain 225
control PDB 152
description 218
error code chain 236
example 223
field explanation 219
field list 218
in flow of HLAPI application 10
input chain 234
input PDB 152
introduction 10
message and error PDB 152
messages chain 235
output chain 235
output PDB 152
parameter data definition 225
purpose 218
reserved symbolic names 224

PIAT (program interface argument table)
example 140
field explanation 140
field list 139
in flow of LLAPI application 7
use 139

PICA (program interface communications area)
field explanation 104
field list 101
in flow of LLAPI application 6
introduction 6
use 101

PICACLSN
add record relation (T109) 95
change record approval (T112) 99
check in record (T008) 38
check out record (T104) 48
delete record (T110) 97
obtain external record ID (T003) 32

386 Version 7.1

PICACLSN (continued)
PICA field 104
record inquiry (T107) 89
retrieve record (T100) 62
start user TSP (T111) 54
update record (T105) 83

PICADFMT
create record (T102) 70, 71, 81
PICA field 111
record inquiry (T107) 85, 90
retrieve record (T100) 62
update record (T105) 83

PICADSEP
create record (T102) 70, 71, 81
PICA field 111
record inquiry (T107) 85, 90
retrieve record (T100) 62
update record (T105) 83

PICAUSRN
add record relation (T109) 95
change record approval (T112) 99
check in record (T008) 38
check out record (T104) 48
create record (T102) 70, 71
delete record (T110) 97
obtain external record ID (T003) 32
PICA field 104
record inquiry (T107) 89
retrieve record (T100) 61
start user TSP (T111) 53
update record (T105) 83

PIDT (program interface data table)
and table build utility 115
dynamic 116
error codes 123
example 131
field explanation 120
field list 114
in flow of LLAPI application 7
introduction 7
LLAPI transaction T006 35
model 116
reasons for defining your own 115
record type and function tables 299
use 114

PIDT error codes, PIDTCODE 123
PIDTCDCA 130
PIDTCGMX 130
PIDTCODE 123
PIDTCSVL 130
PIHT (program interface history table)

example 135
field explanation 133
field list 132
in flow of LLAPI application 7
introduction 7
use 132

PIMB (program interface message block)
definition 143
example (LLAPI) 144
field explanation (LLAPI) 144

PIMB (program interface message block) (continued)
field list (LLAPI) 143
use (LLAPI) 143

PIPT (program interface pattern table)
example 138
field explanation 137
field list 136
in flow of LLAPI application 7
introduction 7
LLAPI transaction T004 33
LLAPI transaction T005 34
response data validation 136
use 136

PIRT (program interface results table)
example 143
field explanation 142
field list 141
in flow of LLAPI application 7
inquiry result table 141
introduction 7
LLAPI transaction T007 36
use 141

PL/I language, using HLAPI sample program in 368
pre-started MRES sessions 153
prefix argument table 139
prefix word, use in PIDT 115
PRIVILEGE_CLASS

add record relation (HL12) 204
change record approval (HL10) 193
check in record (HL05) 165
check out record (HL04) 163
create record (HL08) 179
delete record (HL13) 206
get data model (HL31) 208
parameter data definition 228
record inquiry (HL11) 196
retrieve record (HL06) 173
start user TSP or TSX (HL14) 167
update record (HL09) 188

process panel, record 361
program interface alias table 7
program interface argument table 7
program interface communications area 6
program interface data table 7
program interface history table 7
program interface message block 143
program interface pattern table 7
program interface results table 7

R
RACF security implementation 287
reason code table 301

HLAPI validation error (return code = 8) 307
list 301
LLAPI validation error (return code = 8) 307
return code = 0 302
return code = 12 314
return code = 16 337

387Application Program Interface Guide

In
d

ex

reason code table (continued)
return code = 20 342
return code = 4 302
return code=8 304
validation error 304

record file processing
HLAPI 148
LLAPI 20
record file processing 283

record inquiry
date consideration 85
HLAPI (HL11) 194
LLAPI (T107) 84

record process panel 361
replaceable field response

definition 24
exception 24

report format table data set (RFTDS)
HLAPI 150
LLAPI 23

reserved symbolic PDB names 224
response data validation 16
response field validation error codes, HLAPI 236
retrieve record

date consideration 61
HLAPI (HL06) 171
LLAPI (T100) 55
using root VSAM key 61
with logical database partitioning 55

retry and wait considerations 18
return code table

field validation 280
HLAPI 301
HLAPI/REXX 343
list 301
LLAPI 301

REXX input variables, maximum lengths 248
root VSAM key

how to specify 105
on LLAPI delete (T110) 97
on LLAPI retrieve (T100) 61
on LLAPI update (T008) 83

S
s-word, use in PIDT 115
searches, parenthetical 85, 194
searching text

HLAPI 194
HLAPI/REXX 246
LLAPI 85

security 5, 287
session

definition 2
introduction to writing applications

initialization overview 2
process overview 3
termination overview 3

simulator panels 349

spool interval 29, 157
start user TSP or TSX

HLAPI (HL14) 166
LLAPI (T111) 52
restrictions 53

stopping
HLAPI 146
LLAPI 16

storage area
HLAPI 147
LLAPI 19

structured word, use in PIDT 115
structures

HLAPI 216
LLAPI 100

symbolic names reserved for PDB 224
sync and wait on completion, LLAPI (T009) 39
syntax

call 20
field validation module call 279
HLAPI call 149
HLAPI/REXX call 241
input parameter list for LLAPI 21

SYSMDUMP data set
HLAPI 150
LLAPI 24

SYSPRINT data set
HLAPI 150
LLAPI 23

T
tailoring the API

data tables 289
TSPs 291
user-defined record support 290

terminal simulator panel (TSP)
limitations 17
LLAPI Bypass Panel Processing, BLGAPIPX 358
LLAPI create record TSP, BLGAPI02 350
LLAPI delete record TSP, BLGAPI10 356
LLAPI Router for Bypass Panel Processing,

BLGAPIDI 357
LLAPI router TSP, BLGAPI00 349
LLAPI update record TSP, BLGAPI05 352
LLAPI update record TSP, BLGAPI09 355
restrictions 53

terminate Tivoli Information Management for z/OS 30
HLAPI (HL02) 160
LLAPI (T002) 30

text audit data
LLAPI create (T102) 66
LLAPI update (T105) 78

text data set
delete transaction (HL16) 170
free transaction (HL15) 169
HLAPI 150
LLAPI 21

text search arguments, HLAPI processing 198

388 Version 7.1

text searches
HLAPI 194
HLAPI/REXX 246
LLAPI 85

Tivoli Information Management for z/OS commands disabled
by LLAPI 24

transaction
database access transaction, HLAPI 171
database access transactions, LLAPI 55
definition 2
details

add record relation (HL12), HLAPI 202
add record relation (T109), LLAPI 93
change record approval (HL10), HLAPI 191
change record approval (T112), LLAPI 98
check in record (HL05), HLAPI 164
check in record (T008), LLAPI 37
check out record (HL04), HLAPI 162
check out record (T104), LLAPI 47
check transaction completion (T010), LLAPI 40
create record (HL08), HLAPI 178
create record (T102), LLAPI 63
delete record (HL13), HLAPI 205
delete record (T110), LLAPI 96
delete text data set (HL16), HLAPI 170
free alias table (T012), LLAPI 42
free data table (T006), LLAPI 35
free pattern table (T005), LLAPI 34
free result table (T007), LLAPI 36
free text data set (HL15), HLAPI 169
get data model (HL31), HLAPI 207
initialize Tivoli Information Management for z/OS

(HL01), HLAPI 153
initialize Tivoli Information Management for z/OS

(T001), LLAPI 27
load PIDT (T013), LLAPI 43
obtain add record relation resource (T108), LLAPI 50
obtain alias table (T011), LLAPI 41
obtain external record ID (HL03), HLAPI 161
obtain external record ID (T003), LLAPI 31
obtain inquiry resource (T106), LLAPI 49
obtain pattern table (T004), LLAPI 33
obtain record create resource (T101), LLAPI 44
obtain record update resource (T103), LLAPI 45
record inquiry (HL11), HLAPI 194
record inquiry (T107), LLAPI 84
retrieve record (HL06), HLAPI 171
retrieve record (T100), LLAPI 55
start user TSP or TSX (HL14), HLAPI 166
start user TSP or TSX (T111), LLAPI 52
sync and wait on completion (T009), LLAPI 39
terminate Tivoli Information Management for z/OS

(HL02), HLAPI 160
terminate Tivoli Information Management for z/OS

(T002), LLAPI 30
update record (HL09), HLAPI 183
update record (T105), LLAPI 73

environment control transaction, HLAPI 153
environment control transactions, LLAPI 27
interface service transaction, HLAPI 161
interface service transactions, LLAPI 31

transaction (continued)
list for HLAPI 151
list for HLAPI/REXX interface 242
list for LLAPI 26
mixing HLAPI and LLAPI 9

TSP 17, 349

U
UNIX, issuing HLAPI calls from 4
update record

HLAPI (HL09) 183
LLAPI (T105) 73
using root VSAM key 83
with logical database partitioning 73

user exit
BLGEXDEL, delete unusable record 293
BLGJAUTH, check for authorization 294
BLGRESET, reset all approvals to pending 297
BLGTSAPI, test for API environment 297
BLGYAPBR, record build processor 295
BLGYAPBU, retrieve record ID 296
BLGYAPCP, API control processor 294
BLGYAPGP, retrieve panel name 294
BLGYAPIS, set product 297
BLGYAPRF, file record 298
BLGYAPSR, API set interface reason code 296
BLGYAPUP, verify record update 296
LLAPI 293

V
validating data

and PIPT 136
encoded validation error reason code 304
error reason code 304
group prefixes 136
HLAPI 146
HLAPI validation error reason codes 307
LLAPI 16
LLAPI validation error reason codes 307
response field validation error code 236

visible phrase, description 221
VSAM root key 61, 83, 97, 105

W
writing an API application, step by step 273
writing HLAPI extensions 268

389Application Program Interface Guide

In
d

ex

390 Version 7.1

File Number: S370/30xx/4300
Program Number: 5697-SD9

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC31-8737-00

	Contents
	Preface
	Who Should Read This Guide
	Prerequisite and Related Documentation
	What This Guide Contains
	How Information Is Presented in This Guide
	Contacting Customer Support

	Introduction to the Application Program Interfaces
	Writing Applications for the APIs
	Initializing
	Processing
	Terminating
	CICS Applications
	OS/2 Applications
	UNIX Applications
	Windows NT Applications
	Java Applications
	Security
	Date Format

	The Low-Level Application Program Interface
	Understanding the LLAPI Control and Data Flow
	PICA
	PIDT
	PIPT
	PIAT
	PIHT
	PALT
	PIRT
	A Typical Scenario

	The High-Level Application Program Interface
	Understanding the HLAPI Control and Data Flow

	Choosing the Appropriate API
	Data Model Records

	Using the LLAPI
	LLAPI Operating Characteristics
	Data Sets
	LLAPI Considerations and Restrictions
	Command Limitations
	Errors and Messages
	Structures

	LLAPI Transactions
	Environment Control Transactions
	Initialize Tivoli Information Management for z/OS (T001)
	Terminate Tivoli Information Management for z/OS (T002)

	Interface Service Transactions
	Obtain External Record ID (T003)
	Obtain Pattern Table (T004)
	Free Pattern Table (T005)
	Free Data Table (T006)
	Free Result Table (T007)
	Check In Record (T008)
	Sync and Wait On Completion (T009)
	Check Transaction Completion (T010)
	Obtain Alias Table (T011)
	Free Alias Table (T012)
	Load PIDT (T013)
	Obtain Record Create Resource (T101)
	Obtain Record Update Resource (T103)
	Check Out Record (T104)
	Obtain Inquiry Resource (T106)
	Obtain Add Record Relation Resource (T108)
	Start User TSP or TSX (T111)

	Database Access Transactions
	Retrieve Record (T100)
	Response Processing Considerations
	Group Prefix Processing Considerations
	Dynamic Record Retrieval Considerations
	Text Processing Considerations
	History Data Processing
	Date Considerations
	Field Specifications

	Create Record (T102)
	Multiple or List Data Item Processing Considerations
	Text Audit Data Considerations
	Dynamic PIDT Considerations
	Group Prefix Processing Considerations
	History Data Considerations
	Date Considerations
	Field Specifications

	Update Record (T105)
	Multiple or List Data Item Processing Considerations
	Text Considerations
	Text Audit Data Considerations
	Dynamic PIDT Considerations
	Group Prefix Processing Considerations
	History Data Considerations
	Date Considerations
	Field Specifications

	Record Inquiry (T107)
	Parenthetical searching
	Date Considerations
	Return All Search Results
	Return of Selected Search Results
	Other Record Inquiry Considerations for All Searches

	Add Record Relation (T109)
	Delete Record (T110)
	Root VSAM Key Considerations

	Change Record Approval (T112)

	LLAPI Structures
	Low-Level Program Interface Communications Area (PICA)
	Program Interface Alias Table (PALT)
	Program Interface Data Table (PIDT)
	Static PIDTs
	Dynamic PIDTs
	Program Interface Data Table Fields
	PIDT Example

	Program Interface History Table (PIHT)
	PIHT Example

	Program Interface Pattern Table (PIPT)
	PIPT Example

	Program Interface Argument Table (PIAT)
	PIAT Example

	Program Interface Results Table (PIRT)
	PIRT Example

	Program Interface Message Block (PIMB)
	PIMB Example

	Using the HLAPI
	HLAPI Operating Characteristics
	Data Sets
	Errors and Messages
	Structures

	HLAPI Transactions
	Control PDB
	Input PDB
	Output PDB
	Message and Error PDB

	Environment Control Transactions
	Initialize Tivoli Information Management for z/OS (HL01)
	Terminate Tivoli Information Management for z/OS (HL02)

	Interface Service Transactions
	Obtain External Record ID (HL03)
	Check Out Record (HL04)
	Check In Record (HL05)
	Start User TSP or TSX (HL14)
	Free Text Data Set (HL15)
	Delete Text Data Set (HL16)

	Database Access Transactions
	Retrieve Record (HL06)
	Create Record (HL08)
	Update Record (HL09)
	History Data Considerations
	Multiple Response Item Processing Considerations
	Field Deletion Considerations
	List Item Processing Considerations

	Change Record Approval (HL10)
	Record Inquiry (HL11)
	Add Record Relation (HL12)
	Delete Record (HL13)
	Get Data Model (HL31)

	HLAPI Graphic Examples
	Initialize Tivoli Information Management for z/OS
	Record Retrieve
	Create Record
	Record Inquiry
	Delete Text Data Set

	HLAPI Structures
	High-Level Application Program Interface Communications Area
	Parameter Data Block
	PDB Example
	Reserved Symbolic PDB Names
	Parameter Data Definition
	Data Model Information
	Data Model Validation Pattern Data
	Alias Tables
	Entry INPUT Name Processing
	Retrieve INPUT Name Processing
	Inquiry INPUT Name Processing
	Record Retrieve OUTPUT Name Processing

	Using the HLAPI/REXX Interface
	Date Considerations
	Differences between the HLAPI/REXX Interface and the HLAPI
	HLAPI/REXX Interface Calls
	Transaction Name
	Control Data
	Input Data
	Output Data
	REXX Reserved Variables

	HLAPI Extensions
	BLGTRPND
	Control Data
	Input Data
	RNID_SYMBOL

	Output Data
	Return Codes

	BLGTSPCH
	Output Data
	Return Codes

	BLGTXINQ
	Control Data
	Input Data
	TSP_NAME
	SEARCH_ARGUMENT
	TABLE_PANEL

	Output Data
	Return Codes
	Usage Notes

	Writing HLAPI Extensions
	HLAPI REXX Example
	Getting Input Data
	Return Data

	Usage notes for HLAPI Extensions

	Tips for Writing an API Application
	Determine What You Want Your Application to Do
	Determine Which Application ID You Want to Use
	Determine Which Level of the API You Want to Use
	Determine Whether You Must Modify LLAPI TSPs
	Determine Whether You Must Build New API Tables
	Determine Which API Control Block Mapping Macros You Need
	Determine If You Want To Use Data Model Records
	Determine If You Want To Bypass Panel Processing
	Write Your Application

	Field Validation Using the Field Validation Module BLGPPFVM
	Using BLGPPFVM To Validate Data Fields
	Input
	Codes from BLGPPFVM

	API Control Flow
	LLAPI Modes of Operation

	API Security
	Security Implementation

	Tailoring the Application Program Interfaces
	Tailoring Data Tables
	User-Defined Record Support
	When to Tailor Terminal Simulator Panels

	LLAPI User Exits
	BLGEXDEL - Delete Unusable Record
	BLGJAUTH - Check Authorization
	BLGYAPCP - LLAPI Control Processor
	BLGYAPGP - Retrieve Panel Name
	BLGYAPBR - Record Build Processor
	BLGYAPSR - Set LLAPI Reason Code
	BLGYAPBU - Retrieve Record ID
	BLGYAPUP - Verify Record Update
	BLGRESET- Reset all Approvals to Pending
	BLGTSAPI - Test for LLAPI Environment
	BLGYAPIS - Set Product
	BLGYAPRF - File Record

	Record Type and Function PIDT Tables
	PIDT to Record SERVICE Transaction Cross-Reference
	PIDT to Record LIST Transaction Cross-Reference
	PIDT to Record ADD Transaction Cross-Reference

	Return and Reason Codes
	Return Codes
	Reason Codes for Return Code=0
	Reason Codes for Return Code=4
	Reason Codes for Return Code=8
	Encoded Validation Error Reason Codes
	Explicit Validation Error Reason Codes

	Reason Codes for Return Code=12
	Reason Codes for Return Code=16
	ABEND Codes

	Reason Codes for Return Code=20

	HLAPI/REXX, REXX HLAPI/2, REXX HLAPI/AIX, and REXX HLAPI/USS Return Codes

	Terminal Simulator Panels
	BLGAPI00–LLAPI Router TSP for Panel Processing
	BLGAPI02–LLAPI Create Record TSP for Panel Processing
	BLGAPI05–LLAPI Update Record TSP for Panel Processing
	BLGAPI09–LLAPI Add Record Relation TSP for Panel Processing
	BLGAPI10–LLAPI Delete Record TSP
	BLGAPIDI–LLAPI Router for Bypass Panel Processing
	BLGAPIPX–LLAPI Bypass Panel Processing TSP

	Record Process Panels
	Control panel BLG1AACP
	Control panel BLG1AAUP

	Sample Low-Level Application Program Interface
	C Language Functions
	C Language Include File
	Panels
	Using the C370 LLAPI Sample Programs

	Sample High-Level Application Program Interface
	Using the C370 HLAPI Sample Program
	Using the PL/I HLAPI Sample Program

	Sample HLAPI/REXX Interface
	Using the HLAPI/REXX Sample Program

	Relating Publications to Specific Tasks
	Typical Tasks

	Tivoli Information Management for z/OS Courses
	Education Offerings
	United States
	United Kingdom

	Where to Find More Information
	The Tivoli Information Management for z/OS Library

	Index

