Rhapsody

IBM® Rational® Rhapsody®

»5 g ‘ Oy |
IBM Rational Rhapsody Reference Workflow Guide

Version 1.11

License Agreement

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated into any
human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of the copyright owner, BTC Embedded Systems AG.

The information in this publication is subject to change without notice, and BTC Embedded Systems AG
assumes no responsibility for any errors which may appear herein. No warranties, either expressed or implied,

are made regarding IBM Rational Rhapsody software including documentation and its fitness for any particular
purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody® Automatic Test Generation Add On, and IBM®
Rational® Rhapsody® TestConductor Add On are registered trademarks of IBM Corporation.

All other product or company names mentioned herein may be trademarks or registered trademarks of their
respective owners.

© Copyright 2000-2017 BTC Embedded Systems AG. All rights reserved.

Page 2

Table of Contents

TabIE Of CONTENTS ...t 3
I 11 To [T 1 o RSP 4
2 Application Of thiS DOCUMENT.......ccoiiiiiiiie e e e e e e e e e e aaaa s 6
3 IBM Rational Rhapsody Reference Workflow...............ooooo 7
3.1 General CONSIAEIALIONSccviiiiiiiiiiiiii ettt ettt ettt ettt et e e e e e e e e eeeeeeeeeeees 7
3.2 Tool Qualification Requirements for IBM Rational Rhapsodyccccccceeevviiiiiiieiiiiinnnnnn. 9
3.3 Variation of the IBM Rational Rhapsody Reference Workflow............cccoooooeeiiiiiiiinnnnnnn. 11

4 1BM Rational Rhapsody Reference Workflow Activities in more Detalilcvvvveeeennnen. 12
o R 1T a1 o O 0]][0 [T = [0 L 13
4.2 Requirements Tracabilityuuuuuuuuiuieiiiiiiiiiiiiiiii e 13
G T8 1Y/ T To L1 1T 15
4.4 Modeling Standards and Guideline ChecCKinNguuuuuuiiiiiiimiiiiiiiiiiiiiiiiiiiiiiieineens 15

v Y ToTa [=T MY =T oF= [0] o [15
T 1Y/ o Yo (= IS 10 0 U] = o o 15
4.5.2 Requirements Based TeSHNGcovvvuuuiiiiie e 18
4.5.3 REQUITEMENTS COVEIATEuuuuuuiiiiiiiiiiiiiiitiiiiiiiiaiiiiasssases s eensennnnnne 19
R 1V [oTo =] IO 0 Y= = Vo = 20

4.6 Code Generation and IBM Rational Rhapsody Frameworksccceeeeeeviieniniennnns 20
4.7 Coding Guidelines and Guideline ChecKing...........coouuuiiiiiiieeiieeec e 23
v @da o IV =T 41 To= [] 24
4.8.1 Requirements based testing of model and codeccooovviiiiiiiiiiiiiiiiiec e, 24
4.8.2 STUCLUIAI COVEIAGE ...ttt 25

5 Mapping Reference Workflow Activities to Safety Standards............ccccevvviiiiiieiciieeiiiinnnnnn. 27
SN I T 4 S {@=Tg o 0T ec 2C 28
APPENIX A: LISt Of FIQUIES ... e e e e e 35
AppendixX B: LiSt Of REFEIENCESovviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee et 36

Page 3

1 Introduction

This document focuses on the model-based development (MBD) with IBM Rational Rhapsody
in safety related projects. Model-based development is widely accepted as a proven method
to cope with the rapidly growing complexity of developing systems and software. MBD can
improve delivery of products with higher quality by also incorporating complementary model-
based testing (MBT) methods. MBD includes -- but is not limited to -- modeling, simulation,
traceability information, automatic code generation, model testing, model-based code testing,
model coverage and structural coverage measurement, and report generation.

When using MBD and MBT for developing safety related software additional quality objectives
have to be met in order to produce and deliver “safe” systems. The mentioned additional
guality objectives essentially depend on:

e a specific industrial domain where the product under development shall be deployed,
e an appropriate safety standard that must be applied for a particular domain.

The scope of this document covers software that is developed according to DO-178B (1) or
DO-178C (2), DO-331 (10), DO-332 (11), DO-333 (12). DO-178B was released in 1992 and is
a commonly used safety standard in the aerospace industry for aircrafts. Recently, DO-178C
and its supplements DO-330 (Tool Qualification), DO-331 (Model-Based Development), DO-
332 (Object-Oriented Technology), and DO-333 (Formal Methods) have been released which
are updated versions of DO-178B and additionally regard technologies that have become
popular mainly after releasing DO-178B.

These standards describe proven processes and methods for the development of safety
related software, provide guidelines and recommendations when customizing process and
methods to a specific customer process, describe how tools can help develop and testing of
software, and what it means to qualify tools for their use that fulfills the additional
requirements regarding functional safety. In this document, we focus on safety standards DO-
178B, DO-178C and mainly on its supplement DO-331 (Model-Based Development). The
different process activities and objectives that are defined in these standards and supplement
respectively are very similar. Whenever there are relevant differences with respect to the
workflows and activities described in this document we explicitly mention such differences.
While the above mentioned safety standards cover all aspects of planning, development,
release, and maintenance of safety related software across life cycle phases, this document
focuses on the UML/SysML model-based development and testing of safety related software
with IBM Rational Rhapsody including automatic code generation and IBM Rational
Rhapsody TestConductor Add On (3). To discuss the requirements, available methods,
solutions, and tools we use a so-called IBM Rational Rhapsody Reference Workflow that is
described in detail in section 3. The document IBM Rational Rhapsody TestConductor Add
On Reference Workflow Guide (4) describes in more detail the testing aspects of the
workflow.

In section 2 the application of this document for the development and testing of safety related
software is described. Section 3 describes in detail the mentioned IBM Rational Rhapsody
Reference Workflow. Section 4 makes a walk-through the activities of the IBM Rational
Rhapsody Reference Workflow, from modeling to code generation to testing. Section 5
provides a mapping of the workflow activities to DO-178B, DO-178C and DO-331.

Page 4

Besides the information in this document users can find more information about IBM Rational
Aerospace solutions, IBM Rational Method Composer for process definition and management
including DO-178B/C process templates under:

“IBM Rational solutions for Aerospace”

‘IBM Rational Method Composer”

Page 5

http://www-01.ibm.com/software/rational/solutions/aerospace/
http://www-01.ibm.com/software/awdtools/rmc/

2 Application of this Document

This document provides a reference workflow when using IBM Rational Rhapsody for the
development of safety related software. The IBM Rational Rhapsody Reference Workflow
describes a set of development and testing activities accompanied by some guidelines and
recommendations. Users shall consider this reference workflow when documenting how they
implement the different activities and methods described here in their project specific process.
In particular they shall asses where and how their specific process deviates from the IBM
Rational Rhapsody Reference Workflow. It is mandatory to justify and document any
deviations, and how it is implemented in the customer process.

Section 5 contains a set of tables providing mappings from the IBM Rational Rhapsody
Reference Workflow to the objectives in DO-178B, DO-178C and DO-331 respectively.

Page 6

3 IBM Rational Rhapsody Reference Workflow

3.1 General Considerations

DO-331 introduces two types of models: specification models and design models. A
specification model represents high-level requirements that provide an abstract
representation of functional, performance, interface, or safety characteristics of software
components. Specification models do not define software design details such as internal data
structures, internal data flow or internal control flow. Therefore, a Specification Model may
express high-level requirements but neither low-level requirements nor software architecture.
A Design Model prescribes software component internal data structures, data flow, and/or
control flow. A Design Model includes low-level requirements and/or architecture.

The IBM Rational Rhapsody Reference Workflow describes an approach for model-based
development including automatic code generation and model-based testing. Figure 1 shows
the major activities in this reference workflow. The upper part of the workflow describes
activities to design and implement the software. The lower part of the workflow describes
activities to validate and verify the software. The approach addresses design and
implementation together with appropriate test and verification:

e Creation of a design model based on the given high-level requirements. The model is
created with respect to modeling guidelines. Traceability from requirements to model
elements is realized. The high-level requirements can be described as text or as a
Specification Model or as a mixture of both.

e The design model is translated into source code by applying traditional software
development methods or by applying an automatic code generator. Traceability from
the requirements to the source code is realized.

e The source code is compiled (on the host system or on the target system) and can be
executed.

e Test Cases are created and traceability from test cases to requirements (and vice
versa) is realized.

e Test cases are executed on the compiled generated software and test results are
computed.

e Requirements coverage and structural coverage is measured.

The presented workflow is very similar to traditional workflows that directly derive the source
code from the low-level requirements. However, in the presented workflow design models are
used to represent low-level requirements. In order to create such design models in a safe and
consistent way, modeling guidelines are adopted. It is crucial that bi-directional traceability
information between textual requirements and model elements is available. After creation of
the design model it is translated into source code by applying an automatic code generator
and/or traditional software development methods. In order to derive source code that meets
safety standards, coding guidelines needs to be adopted. Correctness of the generated

Page 7

source code regarding given requirements is verified by requirements based testing of the
compiled source code. Test case execution comes along with structural coverage
measurement to assess the completeness of the tests. Structural coverage metrics give
evidence that the generated code does not contain untested code and the generated code is

fully tested.
Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking

| Rational Rhapsody

i v

v Code Compile
HL/LL Modeling | LLR Design generation R Source Link R Object
Requirements | " Model code code

SW Architecture

LLF-based Tasts *
Y (Rt | D //

Requirements S

hased testing K%
K . .

- e n
- - - .
- - - N

~
-

.
~
5

& o o,
-) - . Structural coverage analysis
Eequirements coverage analysis

Figure 1: Activities of the IBM Rational Rhapsody Reference Workflow

In section 4 we make a walk-through the workflow diagram describing the construction and
verification/validation of the software. Testing of models and software is discussed in even

more

detalil in section 4.5.

Page 8

3.2 Tool Qualification Requirements for IBM Rational Rhapsody

When tools shall be used for the development and testing of safety related software it is
mandatory to assess if qualification of the tools or individual features of tools or tool chains
have to be performed. The qualification depends on the concrete safety standard that is
applied, the criticality level of the software under development, and how much risk is
introduced into a process by using a tool or a feature:

“Qualification of a tool is needed when processes of this document are eliminated,
reduced, or automated by the use of a software tool without its output being verified as
specified in section 6. The purpose of the tool qualification process is to ensure that
the tool provides confidence at least equivalent to that of the process(es) eliminated,
reduced, or automated.”

(DO-178C, section 12.2)

When going through the process of tool qualification several risk assessment steps have to
be performed:
1. analyze how a Software Tool or a tool feature is used within a user process (“use case
and tool impact”)
2. analyze if errors and malfunctions of the tool or feature would be detected in such
process (“tool error detection mechanisms”)
3. choose an appropriate tool qualification method depending on (1), (2) and the software
level respectively.

DO-178C, section 12.2, requires that an assessment shall be carried out for tools to
determine the appropriate tool qualification level (TQL). Tools are now classified according to
three different criteria:
e Criteria 1: A tool whose output is part of the airborne software and thus could insert an
error
e Criteria 2: A tool that automates verification process(es) and thus could fail to detect
an error, and whose output is used to justify the elimination or reduction of:
o Verification process(es) other than that automated by the tool, or
o Development process(es) that could have an impact on the airborne software.
e Criteria 3: A tool that, within the scope of its intended use, could fail to detect an error.

Note: in DO-178B a “Criteria 1 tool” is a “development tool”, while a “Criteria 3 tool” is a
“verification tool”. A “Criteria 2 tool” does not have a correspondence in DO-178B.

The appropriate TQL is as shown in Figure 2. Five levels of tool qualification, TQL-1 to TQL-5,
are identified based on the tool use and its potential impact in the software life cycle
processes. TQL-1 is the most rigorous level and TQL-5 is the least rigorous level.

Software Level |Criteria 1 |Criteria 2 |Criteria 3
A TaL-1 TaL-4 TaL-5
B TQL-2 | TQL-4 | TQL-S
C TaL-3 TaL-5 TaL-5
D TQL-4 | TQL-5 | TQL-S

Figure 2: Tool Qualification Level (TQL)

Page 9

Details about the tool qualification process, i.e. objectives, activities, guidance, and life cycle
data required for each Tool Qualification Level are described in DO-330 “Software Tool
Qualification Considerations” (9). In particular, section 11.3 in this document describes an
approach to qualify COTS (Commercially of the shelf) tools.

As a consequence of the discussion above, IBM Rational Rhapsody code generation has to
be classified according to Criteria 1. Hence, either appropriate risk mitigation measures are
implemented in the process, or evidence must be created that the tool conforms to its
specification by performing appropriate qualification activities needed for software level A-D.
The IBM Rational Rhapsody Reference Workflow as described in this document can be used
as a blue print to implement a process providing appropriate risk mitigation measures for IBM
Rational Rhapsody code generation. Hence, IBM Rational Rhapsody code generation can be
used without qualification or validation respectively.

Nevertheless, users have to demonstrate that the input to the code generator is correct and
complete with respect to the requirements from which the design model was developed. A
gualified code generator does not reflect that the input to the code generator is correct.
Hence, the qualification of the code generator would be of limited certification value anyway.

IBM Rational Rhapsody TestConductor Add On is a product to perform automated
requirements-based testing in order to verify the IBM Rational Rhapsody generated source
code with respect to the requirements. IBM Rational Rhapsody TestConductor Add On is a
Criteria 3 tool. Hence, qualification for IBM Rational Rhapsody TestConductor Add On must
be performed, but just according to the TQL-5 level. Hence, it can be performed with less
many objectives which have to be met.

Document IBM Rational Rhapsody TestConductor Add On Qualification Kit for DO-178B/C
Overview (13) discusses in more detail how TestConductor can be qualified according to DO-
178B/C and DO-330.

From end user point of view the investment into IBM Rational Rhapsody TestConductor Add
On brings two serious immediate returns:
e Rhapsody code generator does not need qualification
¢ Rhapsody TestConductor supports verification of the design model against the
requirements, and also verification of the code against the requirements.

Page 10

3.3 Variation of the IBM Rational Rhapsody Reference Workflow

Beside the workflow in Figure 1 in practice sometimes the variation of the workflow in Figure 3
is applied. The difference between the workflow in Figure 1 and Figure 3 is that there are
explicit verification steps of the model (model simulation using IBM Rational Rhapsody
animation) regarding the given requirements. The approach can be summarized as follows:

o Creation of a design model based on the given high-level requirements. The model is
created with respect to modeling guidelines. Traceability from requirements to model
elements is realized. The high-level requirements can be described as text or as a
Specification Model or as a mixture of both.

e Test cases are created and traceability from test cases to requirements (and vice
versa) is realized. Test cases are executed on the design model level leveraging model
simulation using IBM Rational Rhapsody’s animation (Model Simulation).

Note: DO-331 defines the notion of simulation cases for design model simulation as an
equivalent to test cases for software testing.

o Requirements coverage and design model coverage are measured during the model
based verification process in order to ensure completeness of the simulation based
verification process.

e The design model is translated into source code by applying traditional software
development methods or an automatic code generator. Traceability from the
requirements to the source code is realized.

e The source code is compiled (on the host system or the target system) and can be
executed.

e The simulation cases used for design model verification are used as test cases and
executed on the compiled generated software and test results are computed. If
simulation cases and test cases produce identical test verdicts it demonstrates
equivalent behavior of design model and code regarding high-level requirements.

o Note: in document DO-331, appendix MB.B (FAQSs), it is discussed under FAQ
#16 (MB.B.16) how design model simulation can support the assessment of test
coverage of the low-level requirements contained in a design model.

= If high-level requirements-based tests are developed, and

» ifthese tests are run on the code to verify compliance of the code
to the high-level requirements, and

» ifthese same tests are used for the simulation of the design model
to verify compliance of the design model to the high-level requirements.

o In this case, simulation in combination with model coverage analysis, can
support the assessment of test coverage of the low-level requirements

Page 11

contained in the Design Model. When this approach is used, the high-level
requirements-based tests are run on the executable object code.

o Structural coverage is measured in order to ensure completeness of software
verification process.

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking

| Rational Rhapsody

i v

¥ Code Compile
HL/LL Modeling | LLR Desig’l generation R Source Link R Object
Requirements | . Model code code

5W Architecture

7
HLR-based Tasts '.\
‘\.

Regquirements based testing N,

HLE-based Tests

v
Requirements based testing *
(usingDesign Model Simulation)

«

’ e

.
5
%
"

Soocoooomocooecooed lIsoooad

A
]
|
i
]
]
]
i
i
]
]
]
i
]
]
]
]
i
]
]
!
]

' Structural coverage amalysis

Requirements coverage analysis Model Coverage analysis

Figure 3: Variation of the IBM Rational Rhapsody Reference Workflow with explicit Model Verification

The first step in the workflow is to translate given requirements into an executable model
using appropriate modeling guidelines. Model-based tests are then added in order to ensure
that the model indeed correctly captures the requirements. Coverage metrics (requirements
coverage and model coverage) can measure the completeness of the model-based test suite.
Code generation, either automatic or manual or a mixture of both, is used to generate an
implementation from the model. Requirements based testing of the code constitutes the key
element for code verification. Running a test suite on both levels verifies that the model and
code show the same behavior. Structural coverage metrics are used in order to ensure
completeness of the test suite with regard to the predefined structural coverage criteria.

4 IBM Rational Rhapsody Reference Workflow Activities in
more Detail

In this section we describe the IBM Rational Rhapsody Reference Workflow activities
captured in Figure 1 and the variant captured in Figure 3. For each explicitly shown workflow
activity, how these activities can be realized with IBM Rational Rhapsody is described. The
following activities are considered:
¢ Requirements traceability: This topic is described in detail in section 4.2.
¢ Modeling: General Modeling with UML and SysML is out of scope of this document.
Section 4.3 points to other sources of information.

Page 12

e Modeling standards and guideline checking: This topic is described in detail in section
4.4,

e Model verification: This topic is described in detail in section 4.5.

e Code generation and IBM Rational Rhapsody frameworks: This topic is described in
detail in section 4.6.

e Coding guidelines and guideline checking: This topic is described in detail in section
4.7.

e Code verification: This topic is described in detail in section 4.8.

4.1 General Considerations

In order to develop safety related software according to DO-178B, DO-178C or DO-331 a
strict process should be followed. Such processes demand many planning, construction, and
verification activities during the specification, architectural design, implementation, testing and
release phases. In the subsequent sections we focus on the activities when doing modeling,
code generation and unit/integration testing with IBM Rational Rhapsody. IBM Rational
Rhapsody is likely to be used for many other activities as well, for instance requirement
engineering, system design, software architectural design, documentation, etc. Guidance for
those activities is beyond of the scope of this document. Guidance and best practices for
those other features and activities are described in the IBM Rational Rhapsody Help under
"IBM Rational Rhapsody 8.1". More information for using Rhapsody for safety-related
development can be found in the IBM Rational Rhapsody Help under "Getting started:
Designing safety-critical applications with Rational Rhapsody".

Besides the information in this document users can find more information about IBM Rational
Aerospace solutions, IBM Rational Method Composer for process definition and management
including DO-178B/C process templates under:

“IBM Rational solutions for Aerospace”

“IBM Rational Method Composer”

4.2 Requirements Traceability

Requirements traceability means that requirements can be traced to derived elements like
modeling elements and finally into source code and also to test cases. Requirements
traceability is a key concept that shall ensure that
e Each requirement can be traced to one or more derived artifact like model elements
and/or source code and test cases. This shall ensure that all requirements are
considered in subsequent development phases.
e Each model artifact, the source code and test case can be traced back to one or more
requirement. This shall ensure that no unintended functionality is developed for which
no requirement exists.

Within IBM Rational Rhapsody, requirements traceability can be realized as follows:

1. Create or import requirements into IBM Rational Rhapsody: In order to be able to link
requirements to model elements and later to source code and to test cases, the
underlying requirements must exist in the IBM Rational Rhapsody model.
Requirements are usually created and managed outside of a IBM Rational Rhapsody
model, e.g. in requirements management tools like IBM Rational DOORS or simply in
text documents. In order to ensure requirements traceability to IBM Rational Rhapsody
elements and later to source code, these requirements must be imported into IBM

Page 13

http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.homepage.doc/helpindex_rhapsody.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.homepage.doc/helpindex_rhapsody.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.developing.doc/topics/rhp_c_dev_safety_critical_apps.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.developing.doc/topics/rhp_c_dev_safety_critical_apps.html
http://www-01.ibm.com/software/rational/solutions/aerospace/
http://www-01.ibm.com/software/awdtools/rmc/

Rational Rhapsody. Importing requirements can either be done manually or
automatically. Manually importing requirements means that requirements are created
directly in IBM Rational Rhapsody, and traceability to the requirements outside of IBM
Rational Rhapsody is realized by specifying a requirement ID that uniquely identifies
one of the requirements. Alternatively, requirements can also be created and linked
automatically by using requirements importing capabilities of IBM Rational Rhapsody.
How to import requirements from other tools is described in the IBM Rational
Rhapsody Help under "Integrating IBM Rational Rhapsody and Rational DOORS" and
"Integrating IBM Rational Rhapsody Gateway".

2. After having created requirement elements in IBM Rational Rhapsody, one can link
requirements to model elements (system model, design model, test model, ..) by using
dependencies. Usually, the dependency is added to a model element that was created
due to a certain requirement, and the target of the dependency is that requirement.
Additonally, in order to specify that the dependency is added because of traceability
reasons, usually the stereotype <<trace>> is added to the dependency.

3. Traceability from requirements to model elements: In order to verify that all
requirements can be traced to a model element and vice versa, one can use e.g. the
IBM Rational Rhapsody Gateway Add-On. How to use it in order to ensure complete
traceability from requirements to model elements and vice versa is described in the
IBM Rational Rhapsody Help under “Integrating IBM Rational Rhapsody Gateway”.

4. Traceability from requirements to source code: in order to ensure traceability from
requirements to source code, IBM Rational Rhapsody provides a code generation
option allowing the generation of requirements as comments into the generated source
code. How to enable and use this code generation option is described in the IBM
Rational Rhapsody Help under “Including requirements as comments in generated
code" and under “Including requirements as comments in statechart code”.

5. Users can use the requirements as comments in code capability to perform systematic
manual verification if all the generated source code can be traced back to one or more
requirements. The verification if all requirements are indeed implemented into source
code can be verified by performing requirements based testing together with structural
structural coverage computation.

6. Traceability from test cases to requirements: the UML Testing Profile (5) provides an
element TestObjective that is essentially a dependency. It allows to link test cases to
requirements (6). TestObjective can also be used to link test cases to design model
elements.

Page 14

http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.integ.reqmgttools.doc/topics/rhp_c_int_rhp_and_doors.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.integ.reqmgttools.doc/topics/rhp_r_int_vendor_doc_gateway.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.integ.reqmgttools.doc/topics/rhp_r_int_vendor_doc_gateway.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_t_cg_include_reqs_in_generated_code.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_t_cg_include_reqs_in_generated_code.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_t_cg_include_reqs_in_statechart_code.html

4.3 Modeling

UML and SysML provide many concepts for modeling software architectures, software
designs and also the software behavior. Using these concepts is out of scope this document.
General information about modeling software architectures and software designs with IBM
Rational Rhapsody is described in the IBM Rational Rhapsody Help under “Designing and

modeling”.

4.4 Modeling Standards and Guideline Checking

For safety related projects it is necessary to constrain the usage of available modeling
elements to those elements for which certifiable safety related code can be generated. In
general IBM Rational Rhapsody provides many modeling elements for which source code is
generated (It is described in IBM Rational Rhapsody Help under “Generating code from a IBM
Rational Rhapsody model”. In some cases the generated source code is not suitable to be
used in safety related projects, e.g. because the generated code is not MISRA-C (7) or
MISRA-C++ (8) compliant. Thus, if it is necessary that source code can be generated that
complies for instance to MISRA C/C++, such constructs should not be used. Information
about how to ensure that MISRA compliant code can be generated from IBM Rational
Rhapsody models can be found in IBM Rational Rhapsody Help under “Enabling the
generation of MISRA compliant code”.

In order to verify that no modeling elements are used for which generated source code would
not be compliant to MISRA and other guidelines, the IBM Rational Rhapsody check model
feature can be used. Information about how to use IBM Rational Rhapsody’s check model
feature for such purpose can be found in the IBM Rational Rhapsody Help under “Checking
the model*.

4.5 Model Verification

During design model verification, the created IBM Rational Rhapsody design model is verified
against the high-level requirements from which the design model was developed. The goal of
this activity is to make sure that the model behaves as it is specified in the requirements.

4.5.1 Model Simulation

Technically, design model verification is typically achieved by using IBM Rational Rhapsody
animation, i.e. Model In the Loop (MiL) Simulation. Simulation for verification of the model is
used to check the functionality of the design model against the high-level requirements from
which it was developed. Model simulation can be done in IBM Rational Rhapsody by defining
a configuration that has instrumentation mode set to “animation”. An example of such a
configuration can be found in Figure 4.

Page 15

http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.nav.doc/topics/c_node_designing_modeling.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.nav.doc/topics/c_node_designing_modeling.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_c_dm_code_gen_rhp_model.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_c_dm_code_gen_rhp_model.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.misra.doc/topics/t_misra_intro.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.misra.doc/topics/t_misra_intro.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_t_dm_checking_model.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_t_dm_checking_model.html

B £3 C_Stoplilg
- ufmponents
1-5¥ StopWatchComp
=0 Configurations

= ackages
=i
#-£7 PredefinedTypes (REF)
&-£7 PredefinedTypesC (REF)
£ RequirementsPlkg
-5 StopivatchPkg
&5 SystemPkg

- StopWatchDebug

Directany: | 3 : T BN A5 _ -

Libraries:
Additional Sources: [

Standard Headers: _.

Configuration : StopWatchDebug in StopWatchComp

| Genesal 'Descriptinn Initializatiu:un_: Settings f__I:hecks: Relations | Tags | Properties

Uze Default

Include Path:

POoo

&5 TutorialPkg

Eo Inztrumentation
-0 Profiles

L)

Instrumentation Mode: iﬁl‘-.nimation

Wiehify
[]*eb Enabling

Tirne Model: (%) Real) Simulated
Statechart Implementation; Reuzabla (%) Flat &
Locate (9]¢

Figure 4: IBM Rational Rhapsody Configuration with instrumentation mode set to “Animation”. Such a
configuration can be used in order to simulate the model.

When having a configuration that can be used for simulation, one can use IBM Rational
Rhapsody’s simulation and animation capabilities in order to simulate and animate the model.
During simulation, one can stimulate the model with inputs and one can monitor the reaction
of the model to the provided inputs. IBM Rational Rhapsody provides different simulation
views that can be used in order to understand and check the behavior of the model. For
instance, one can use animated statecharts or animated sequence diagrams in order to verify
the model’s behavior, and one can inspect the values of model variables during simulation.
An example of such a simulation run can be seen in Figure 5.

Page 16

R IBM Rational Rhapsody Developer for C - C_StopWatch.rpy

Flle Edit View Code Layout Tools Whdow Hep
HEEtEnL i 9 YAF X | ||&Q w7 3 R0z 9] iﬁ"gg_a_b@@oﬂgagugoégoggl
Lo @ o I3 8 [swpwachCom v [StogwaichDetug v OEnEea e

R R SR A N e 7 TN e | |2 A LW

Animation)

OB Py l%&v«@.\

_Etatachart of : Timar _.,ystopWatch[0].itsStopwatch. itsTimer

entreModel view | ¥

= 4 C_StopWatch
= 3 Components
= g StopWatchComp
= [Configurations
+ &% StopWwatchDebug
= Packages
& [IntarfacePkg
£ PredefnedTypes (REF)
[PredefnedTypesC (REF)
[RequirementsPkg
= {7 StopWatchPkg
= (& Classes
E3 Button
£ Display
& Stopwatch
= B3 Timer
& (= attributes
& (2 Generalizations
& (= Instarces

_evReset

Running

on

*- colon &

1 & show(me, me->min, me->sec, TRUE),

& (H Operations
Features of myStopWatch{0] tsStopwatchitsTimer

tm(500) [T
| ‘3"'5‘5*5‘” tm(500)
off Q &

|
— - nocolon @
Value Type & show(me, m...
0 o n ; (% show(me, me->min, me->sec, FALSE),
: ; 4/ 2

tri(S00)/
T%ner_li\:k(me);

Locate OK

T

Figure 5: By simulating the model, one can step through the behavior of the model, and one can inspect
values of model variables (e.g. values of attributes) during the simulation run.

Information about how IBM Rational Rhapsody models can be simulated by using animated
configurations can be found in the IBM Rational Rhapsody Help under “Running animated
models”

Page 17

http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.animation.doc/topics/rhp_c_dm_rning_anm_models.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.animation.doc/topics/rhp_c_dm_rning_anm_models.html

4.5.2 Requirements Based Testing

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking

| Rational Rhapsody

i v

v Code Compile
HL/LL Modeling N LLR Desigl generation A Source Link N Object
Requirements | . Model code code

W Architecture

&
HLE-based Tests '.\
T
.
.

Requirements based testing N,

I".\

Regquirements based testing
‘using Desien Model Simulation)

«

-
¢ e
-

x
B
5
%
Y

OSSRV .
Soccoooomecoomcooed fooomad

"
-

Requirements coverage analysis Model Coverage analysis Structural coverage ysis

Figure 6: Requirements based testing

In the previous section we described that model simulation can be used in order to verify the
correctness of the model. However, the user has to make sure that indeed each underlying
requirement has been tested through model simulation. This can be done e.g. by
systematically performing simulation runs for each requirement as sketched in Figure 6.

Another alternative is to use the IBM Rational Rhapsody TestConductor Add On. The IBM
Rational Rhapsody TestConductor Add On can be used to systematically test the correct
modeling of the high-level requirements. For that purpose, the IBM Rational Rhapsody
TestConductor Add On allows creating simulation cases for each requirement. By
automatically executing the created simulation cases, IBM Rational Rhapsody TestConductor
Add On can check the correctness of the behavior of the model with respect to the given
requirements. DO-331 uses the term “simulation cases” for test cases that are executed on a
model by means of model simulation. The behavior of the simulation cases can be described
by means of different UML diagrams or code. Additionally, in case of changes in the model all
simulation cases can be executed automatically in order to perform a complete regression
test to check that no errors were introduced by the changes. Details about how IBM Rational
Rhapsody TestConductor Add On can be used in order to perform requirements based
testing of an IBM Rational Rhapsody UML model is described in "IBM Rational Rhapsody
TestConductor Add On User Guide".

Page 18

http://www-01.ibm.com/support/knowledgecenter/api/content/SSB2MU_8.1.0/com.btc.tcatg.user.doc/pdf/RTC_User_Guide.pdf
http://www-01.ibm.com/support/knowledgecenter/api/content/SSB2MU_8.1.0/com.btc.tcatg.user.doc/pdf/RTC_User_Guide.pdf

4.5.3 Requirements Coverage

Modeling guidelines and
guidelines checking
I

Coding guidelines and
guidelines checking

Rational Rhapsody
v

v Code
Modeling | LLR Design generation R
LR Model

5W Architecture

Compile
Link

Source
code

s
HLR-baszd Tasts “.\
T
\
\
v
\

Requirements based testing

Object
code

HL/LL
Requirements

L3
Requirements based testing N
(using D esizn Mod el S innulation)

« g

|
|
|
i
i
i
i
i
I
I
|
|
|
|
|
|
|
|
| N g
\
|
| !
3

Y
]
i
]
]
]
]
]
]
]
i
i
i
|
|
|
|
|
]
]
]
! SO
Structural coverage analysis

! . e
i ‘ -
<h_Requirements coverage analysis Model Coverage analysis

e —— e —

Figure 7: Requirements coverage

In order to make sure that indeed all underlying requirements have been tested properly,
either by manual simulation or by specifying model based test cases (simulation cases) with
IBM Rational Rhapsody TestConductor Add On, one needs to keep track which requirements
have been tested and which have not been tested so far (cf. Figure 7). If requirements are
tested by manual simulation, a simple protocol can be used that keeps track of which and
when certain requirements have been tested. If requirements are tested by model based test
cases with IBM Rational Rhapsody TestConductor, one can use for instance predefined
testing reports or testing matrices that are provided by TestConductor Add On in order to get
an overview about which requirements were tested by which test cases. Information about
how this can be achieved with IBM Rational Rhapsody TestConductor Add On is described in
"IBM Rational Rhapsody TestConductor Add On User Guide".

Page 19

http://www-01.ibm.com/support/knowledgecenter/api/content/SSB2MU_8.1.0/com.btc.tcatg.user.doc/pdf/RTC_User_Guide.pdf

4.5.4 Model Coverage

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking

; Rational Rhapsody

; v

v Code Compile
HLAL Modeling | TLR Design | gemeration | goypee Link | Object
Requirements | o Model code code

5W Architecture

Requirements hased testing \\

¥
Requirements based testing .

A
]
:
i
:
]
i
i
i
|
]
i

i

(using Design Model Simulafion) s, it
,‘ ‘-‘H%‘- ‘\"- \\.
Requirements coverage analysis (-1\; Coverage mw_l!,b Structural coverage analysis
e — h

Figure 8: Model coverage

In section 4.5.3 we described how one can make sure that all underlying requirements are
indeed tested on the developed IBM Rational Rhapsody UML model, either by manual
simulation or by model based test cases. However, in order to make sure that all parts of the
model have been tested properly, one should augment the requirements coverage
information with model coverage information (cf. Figure 8).

In contrast to requirements coverage, model coverage measures which parts of the model
have been executed during simulation. IBM Rational Rhapsody TestConductor Add On
provides capabilities in order to generate a model coverage report after simulation. With this
capability one can check if indeed all model elements have been executed by the model
based simulation cases. Information about how to use this capability is described in "IBM
Rational Rhapsody TestConductor Add On User Guide".

4.6 Code Generation and IBM Rational Rhapsody Frameworks

UML and SysML provide many concepts for modeling software architectures, software
designs and also software behavior. With IBM Rational Rhapsody models can be translated
into executable code. Using the behavioral modeling concepts and the automatic code
generator is out of scope this document. General information about software development
with IBM Rational Rhapsody and especially about generating code automatically from a
software design model with IBM Rational Rhapsody is described in the IBM Rational
Rhapsody Help under “Developing”.

The generic code generation scheme of IBM Rational Rhapsody is depicted in Figure 9. As
one can see, IBM Rational Rhapsody generates the application source code for a certain IBM
Rational Rhapsody model. The generated source code itself uses a library providing an

Page 20

http://www-01.ibm.com/support/knowledgecenter/api/content/SSB2MU_8.1.0/com.btc.tcatg.user.doc/pdf/RTC_User_Guide.pdf
http://www-01.ibm.com/support/knowledgecenter/api/content/SSB2MU_8.1.0/com.btc.tcatg.user.doc/pdf/RTC_User_Guide.pdf
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.nav.doc/topics/c_node_developing.html

execution framework. This execution framework provides implementations for certain
common functionality like timers, event handling, etc. By using this execution framework
library including its abstraction layer instead of real-time operating system specific functions,
the source code of the generated application is independent of a certain RTOS. IBM Rational
Rhapsody comes along with different implementations of this execution framework for the
various existing target architectures.

General information about IBM Rational Rhapsody code generation can be found in the IBM
Rational Rhapsody Help under "Generating code from a IBM Rational Rhapsody model".

4)
Rhapsody

model ‘ Generated Application

OXF (Object eXecution Framework)

Rhapsody RTOS Adapter

OS Abstraction Layer

RTOS

Figure 9: IBM Rational Rhapsody generated code uses the IBM Rational Rhapsody framework library

In Figure 10 three different variants of the framework library are listed. The reason why there
are different versions of this framework library is that the different versions serve different
purposes. The standard Object eXecution Framework (OXF) library is used for standard C
and C++ code generation. When using this library, the IBM Rational Rhapsody model can
even be simulated. However, the library is large with lots of different features that are not
needed for safety related production code. Thus, IBM Rational Rhapsody provides two
alternative libraries called Simplified eXecution Framework (SXF) and Simplified MicroC
eXecution Framework (SMXF).

OXF_______ SXF________SWXF_______|

Standard C and C++ Safety cnitical C++ Safety critical C
framework suitable framework for framework for
for simulation production code production code

Figure 10: Different IBM Rational Rhapsody framework libraries

Page 21

http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_c_dm_code_gen_rhp_model.html

The SXF library is the safety related C++ framework library. It's a comprehensive C++ library
that is suitable to be used in safety related production C++ code environments. The C
counterpart of the SXF library is the SMXF library. This is a comprehensive C library that is
suitable to be used in safety related production C code environments.

In order to be able to generate C++ safety related production code from a IBM Rational
Rhapsody model, the following setting needs to be defined:

1. The setting “SafetyCriticalForC++Developers” needs to be added to the model.

Setting “SafetyCriticalForC++Developers” also automatically loads the settings “MISRAC++"
and “SXFC++” as well as packages “AutoGeneratedCppBehavioralCodeRequirements” and
“AutoGeneratedCppCodeRequirements” to the model. Note, when a new project is created it is
possible to pre-select “SafetyCriticalForC++Developers” as default setting. It adds all three
artifacts to the new project. This avoids adding the settings manually to an existing project.

New Project =3 m

) Compenents
Project name: Project (=4 Dependencies

r - - Object Model Diagrams
In folder: C:\U sershubrockmeyers|BMYR ational\Rhapsody’8.0.2" Browse... =W) Paikages 9
Project Type: [Delau]t 'l 3 E «lLR» AutoGeneratedCppBehavioralCodeRequirements (REF)
#4) «LLR» AutoGeneratedCppCodeRequirements (REF)

Project Settings: [SaletyCliticalForCHDwelopers '] :_“, Default

#-£7 PredefinedTypes (REF)
#-£71 PredefinedTypesCpp (REF)
=) Settings
73] MISRAC++ (REF)
5] SafetyCriticalForC++Developers (REF)
- {£5) SXFC++ (REF)

Project Settings: Code generation settings for the RiC++ S afety Critical Software Developers

Figure 11: Creating a new C++ model with safety related settings

2. Add AppliedProfile dependency on MISRA C++ setting to the project manually.
3. Set the SXF stereotype configuration to use when generating C++ code.

=4 Project
+-[J Components
-[5_;. Dependencies

BN -/ ppliedProfiles MISRAC_

Figure 12: Adding AppliedProfile MISRAC++

In order to be able to generate C safety related production code from a IBM Rational
Rhapsody model, the following setting need to be defined:

1. The setting “SafetyCriticalForCDevelopers” needs to be added to the model.

Setting “SafetyCriticalForCDevelopers” also automatically loads the setting “MicroC”, and also
packages AutoGeneratedCBehavioralCodeRequirements as well as
AutoGeneratedCCodeRequirements to the model. Note, when a new project is created it is
possible to pre-select “SafetyCriticalForCDevelopers” as default setting. It adds settings and
packages to the new project. This avoids adding the setting manually to an existing project. A
precondition is to select “MicroC” as project type before the setting can be selected.

Page 22

MNew Project =y m

#-1 Architecture Diagrams

Project name: Project * Components
. . - "] = Packages
In folder: C.\Users\ubrockmeyer\lBM\Hallonal\Hhapsody\B.D.2- Browse... | : E:‘ «LLR» AutoGeneratedCBehavioralCodeRequir ts (REF)
Project Type: [Miuoc - : E_l «LLR» AutoGeneratedCCodeRequirements (REF)
. . = £ Default
Project Settings: [Saletytr'licalForCDevelopers M| #-57 PredefinedTypes (REF)

-5 PredefinedTypesC (REF)
Profiles
Settings
Project Settings: Code generation settings for the RiC Safety Critical Software Developers Ej] SafetyCriticalForCDevelopers (REF)

Project Type: MicroC - Provide support ta static constraint C applications, using no-0S.

Figure 13: Creating a new C model with safety related settings

Information about how settings can be added to a IBM Rational Rhapsody model can be
found in the IBM Rational Rhapsody Help under “Project settings”.
More information about SXF framework and SMXF framework can be found under:

e "Simplified C++ execution framework (SXF)"

e "Simplified C execution framework (SMXF)"

Besides adding the right profiles and/or settings to the model, the code generation
configurations that are used in order to generate code for the model must be attached with
certain stereotypes. Details about which stereotypes must be used in order to use SXF
framework or SMXF framework respectively can also be found in the IBM Rational Rhapsody
SXF and SMXF help.

In order to be able using the SXF or SMXF for safety related developments it is needed to do
a systematic verification of the simplified frameworks. The SXF and SMXF come equipped
with test suites containing:

e Test cases to verify functional correctness of the SXF/SXMF functionality

e Structural coverage report after execution of the requirements based test suite

e Requirements coverage report using ReporterPlus. All framework classes and

operations are traced to requirements

e MISRA compliance statements
The SXF or SMXF framework code will be eventually certified as part of the whole airborne
software certification process.

4.7 Coding Guidelines and Guideline Checking

For safety related applications, it is important that the generated code conforms to certain
rules that are important for safety related applications. For C, the MISRA standard is an
important coding standard. In order to make sure that the IBM Rational Rhapsody generated
code conforms to the MISRA standard, the setting “SafetyCriticalForCDevelopers” needs to
be added to the IBM Rational Rhapsody model. This setting ensures that the design model
can be refined into MISRA C compliant code.

For C++, the MISRAC++ standard is an important coding standard. In order to make sure that
the code IBM Rational Rhapsody generates conforms to the MISRAC++ standard, the profile
‘MISRAC++” needs to be added to the IBM Rational Rhapsody model. This profile ensures
that the design model can be refined into MISRA C++ compliant code.

Commercially off the shelf tools are available to automatically verify if MISRA or MISRAC++
rules are violated in the developed code.

Page 23

http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.uml.diagrams.doc/topics/rhp_r_ref_projectsettings.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.frameworks.doc/topics/rhp_c_fw_sxf_framework.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.microc.doc/topics/r_mxf_c.html

Additionally, please follow the rules described in section 4.4.

4.8 Code Verification

For safety related applications, it is important that the generated code is thoroughly verified. It
must be verified that the code correctly implements the requirements. An essential activity in
the context of the IBM Rational Rhapsody reference workflow is the verification of the design
model against the high-elvel requirements including model coverage computation. Since the
IBM Rational Rhapsody code generation translates a design model into source code it has to
be verified that the translation is correct. Requirements based testing is the technique used to
demonstrate the executable object code correctly implements the low-level and high-level
requirements. Structural coverage metrics give evidence that the generated code does not
contain untested code and the generated code is fully tested.

4.8.1 Requirements based testing of model and code

As described in section 4.6, IBM Rational Rhapsody provides different frameworks and code
generation settings for different purposes. Usually, for simulating the model, an IBM Rational
Rhapsody code generation configuration is used with settings appropriate for model
simulation, among others

e OXF standard framework is used (cf. section 4.6)
e Animation instrumentation is enabled

The final production source code must not contain elements like animation instrumentation
code. Thus, IBM Rational Rhapsody users usually create different code generation
configurations for different purposes. In many cases, one distinguishes three different code
generation settings called MiL, SiL, and PiL (cf. Figure 14).

- [y TPkg_StopWWatch
= .0 Components SIL
= & TPkg_StopWatch_Comp
= Configurations
+ -8 «TestingConfiguration» HostConfig

3 «TestngConfiguration» r»'lc"}ak:orlfug—’ MiL

= & «TestingConfiguration» TargetConfig
(>« Dependencies
+ &7 Hyperlinks PIL
*

S Tags

T

+

&

Figure 14: Different code generation configurations
(MiL (Model in the Loop), SiL (Software in the Loop), and PiL (Processor in the Loop))

MiL (Model in the loop) is a code generation configuration that is used in order to simulate the
model with animation. The MiL configuration contains settings suitable for simulating the
model. SiL (Software in the loop) is a code generation configuration that is used for
generating source code that shall be compiled and executed on the host system, but does not
contain any instrumentation code. The intention is to generate code that can be executed and
tested on the host system, e.g. by using a cross compiler and an emulator. Hence, SiL does
not take into account the final hardware. PiL (Processor in the loop) is a code generation
configuration that is used in order to generate source code for the target processor. Testing

Page 24

on the target processor is a mandatory activity. Hence, tt is mandatory to make sure that
design model verification results from simulation runs are preserved when executing the
source code generated for SiL or PiL configurations. If there are significant deviations in the
behavior observed for MiL compared to e.g. PiL it means that the model does not behave as
the source code on the target processor. If these deviations are not detected, errors might
show up in the final production code although they are not observable during model
simulation.

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking

| Rational Rhapsody

| v

v Code Compile
HL/LL Modeling | LLR Design generation Source Link Object
Requirements | . Model code code

SW Architecture

Regquirements based testing

Requirements based testing
(using Desizn Model S imulatior))

-

4
]
|
i
]
1
i
]
]
1
i
]
]
1
i
]
1
!
i o« -
i F .
:

i

VSV SRSV | VSO

S A
Structural coverage analysis

v
#

Requirements coverage analysis Model Coverage analysis

Figure 15: Requirements based testing of model and executable object code

In order to detect such deviations, the behavior of MiL configurations must be compared with
the behavior of SiL or PiL configurations (cf. Figure 15). In order to perform such verification
one can either do a manual testing and comparison or one can use a tool like IBM Rational
Rhapsody TestConductor Add On that can automate requirements based testing activities (cf.
Figure 15). More information about requirements based testing with IBM Rational Rhapsody
TestConductor Add On can be found in (6).

4.8.2 Structural coverage

In section 4.5.2 we have described that it is essential to systematically verify the correctness
of the design model with respect to the high-level requirements by using design model
simulation. Furthermore, in section 4.5.4 we have described that also exhaustive coverage of
the design model by using model simulation runs is needed. This provides evidence that all
requirements are correctly implemented by the model, and also that no unintended
functionality is realized in the design model without having a requirement for such a model
part.

Page 25

Modeling guidelines and Coding guidelines and

guidelines checking guidelines checking
Rational Rhapsody
' v
v Code Compile
HL/LL Modeling | LLR Design SEEoi N Source Link . Object
Requirements | - Model code code
SW Architecture

.

L3
HLR-based Tasts ‘.\
T
.
\

Requirements based testing

¥,
Requirements based testing *
(using Desizn Model Simulation)

~
=
.

- ..

"\ ‘t
.
\
\
K e - -
- - . \
. Structural coverage analysis
Requirements coverage analysis Model Coverage analysis (g b

———

!)

Figure 16: Structural coverage

Now, if we look at the generated source code, an equivalent procedure is needed that checks
if the generated source code does not contain unintended or untested functionality (cf. Figure
16). In order to do that usually structural coverage tools are applied that measure which part
of the source code are executed during SiL and PiL test runs. Many tools exist that can
compute and report structural coverage statistics for code execution runs. When using IBM
Rational Rhapsody TestConductor Add On, structural coverage measurement (Statement-,
Decision-, Condition-, MC/DC-, Function-Coverage)can be easily combined with the
requirements based testing approach described in section 4.8.1. More information about
structural coverage measurement with IBM Rational Rhapsody TestConductor Add On can be
found in (6).

In DO-178C it is important to perform an analysis to confirm that requirements-based testing
activities have exercised the data and control coupling between code components. 3™ party
tools are available which can be integrated with Rhapsody to perform such automated
analysis.

Page 26

5 Mapping Reference Workflow Activities to Safety Standards

Figure 17 below shows the DO-178B/C software life cycle processes.

Figure 17: Overview about DO-178B/C software life cycle processes

Page 27

5.1 DO-178C and DO-331
Figure 18 below provides an overview about the mapping between the DO-178C and DO-331
software development reference process phases to the workflow activities of the IBM Rational
Rhapsody Reference Workflow. DO-178B is also covered by these tables. Objectives
introduced with DO-331 are prefixed with ‘MB’. For instance in Table A-2, objective MB-8.

Note: “n.A.” means “not applicable”

Objective Applicability by Softw are Level
Software Description Ref. [B C D Workflow Model Level Code Level
Development Reference
Subphase
Table A-1 1 The activities of the [4.1a n.d. n.i, n.f.
Software software life cycle
Planning processes are defined. O O O O

Process

21 The softw are life 41b nA n.h. n.f.
cycle(s], including the

inter-relationzhips O O o
between the
processes, their
sequencing, feedback
mechanisms, and
transition criteria, is

31 Software life cycle |4.9c n.é. n.b. n.d.

environment iz O O o

zelected and defined.

4] Additional 4.1d nh. nh. nh.

considerations are O O O O

addresszed.

51 Software 41e nA n.h. n.f.

development O O O

standards are defined.

5] Software plans 4.1 n.é. n.A. n.f.

comply with this O O o

document.

T10evelopment and 4.1g n.é. n.b. n.d.

revision of softw are O O O

plans are coordinated.

Page 28

Objective

Applicability by Software Level

Software Description Ref. B [Workflow Model Level Code Level
Development Reference
Subphase
galr:nle A-2 T High-lewel 511a n.A. nA X%
oftware requirements are
Development dec:.leloped. o o
Processes
Z1D0erived high-level [5.1.7b n.f. n.h n.d.
requirements are
defined and provided O O
tathe system
processes, including
the system zafety
assessment process.
3] Saftware 5.281a Madelling = Using IBM Rational n.d
architecture is O O [Software Fhapzody for creating a
developed architectural softw are architectural
deszign; Section | design model
4] Law-level 5.281a Madelling = Using IBM Rational n.d
requirements are O o [Siaftware Rhapsady for creating a
developed architectural softw are design madel
design; Section andlor softw are behaviour
4.3) madel
5] Derived low-level 521 Madelling - Uzing IEM Rational nh.
requirements ane O O [Saftware Rhapsady for creating a
defined and pravided architectural saftw are design maodel
to the system design; Section | andlor software behaviour
processes, including 4.3 madel
the system safety
assessment process.
6] Source Code is 5.3.1a Code Generation |+ zing IBM Rational - IBM Rational Rhapsady
developed. O o [Section ¢.6) Rhapsady for creating a pravides many features
softw are design madel supparting manual and
andlor software behaviour | automatic code
madel « Using Rhapsody | generation including
code generation requirements into code
capabilities ta generate capabilities
code from low level
T1Executable Object [5.4.1a n.f. n.A. n.f.
Code and Adaptation
Data ltem Files, if any, O O
are produced and
lzaded in the target
COMPULEr.
MEB 8] Specification MBS 11e Madeling = Using IBM Pational n.A.
Madel elements that da O O [Software Rhapsady for creating a
not contribute to atchitestural specification model
implementatian ar dezign; Section
realization of any high- 4.3
level requirement are
identified.
ME 3] Design Model |MBES.Z1c Madeling - Using IEBM Rational n.A.
elements that do nat O O [Software Fhapzody for creating a
gaontribute ta architectural softw are design madel
implementation ar design; Section | andlor softw are behaviour
realization of any 4.3] madel
zoftw are architecture
are identified.
ME 101 Design Madel [MB.S.21c Madelling = Using IBM Rational r.A
elements that do nat [Software Rhapsady for creating a

contribute ta
implementation ar
realization of any low-
level requirement are
identified.

architectural
design; Section

4.3)

zaftw are design model
andlor zoftw are behaviour
madel

Page 29

Objective

Applicability by Software Level

results are carrect and
discrepancies
explained.

basedtesting

[Section 4.5.2]

TestConductar AddOn
provides all needed
concepts for test case
specification, execution
and best management

Software Description Ref. B [YWorkflow Model Level Code Level
Development Reference
Subphase
"I;ablfe A-3 ; T High-lewel E.31a n.f. n.A. n.A.
erification of | requirements compl
gU;P“lS of witqh system Py . o
oftw are requirements.
Ef:::g“e“‘s 21 High-lewel 631 EY) Py o
requirements are [] O
accurate and
31 High-lewel 6.3z n.f nd nd
requirements are O
compatible with target
computer
41 High-level E.3.1d n.A. n.d. n.A.
requirements are O O
verifishle.
S1High-level 6.3.7e n.A. n.é. n.A.
requirements conform 0
to standards,
B] High-lewel 6.3 n.A, rd. n.A.
requirements are 0
traceable ta system
requirements.
T1&lgorithms are E.31g n.f nd nA
accourate ® O
ME 5] Simulation cazes |MB.B.G.3.2.a Requirements- *|BM Rational Rhapsody | n.A.
are correct. O O basedtesting TestConductar AddOn
[Sectiond.5.2) provides all needed
concepts for test case
specification, execution
and test management
ME 3) Simulation ME.65.3.2b Requirementz- -|EM Rational Rhapsody | n.A.
procedures are O O basedtesting TestConductar &dd0n
corect. [Section 4.5.2] provides all needed
concepts for test case
specification, execution
and test management
ME 10] Simulation ME.G83.2c Requirements- - |BM Rational Phapsody | nA.

Page 30

Objective

Applicability by Software Level

Software Description Ref. A B [Workflow Model Level Code Level
Development Reference
Subphase
"I;ablfe A-4 ; T Low-level G.3.2a nA. n.é. n.b.
erification of |1z quirements comply
Dutputs of with high-level . . O
So[t_u are Tequirements.
pesian 2] Low-level 3.2 nh A "
rocess N
requirements are 0
accurate and
3 Low-level 53,20 n.A. n.é. ..
requirements are O
compatible with target
COmputer.
4] Low -lewvel B.3.2d n.h n.f. n.h.
requirements are O
verifiable,
51 Low-lewel E.3.2e Guidelines far -MISRA C: 2004 guidelines |- MISRA C: 2004
requirements confarm O O miodelling and -MISRA C++ 2008 guidelines =MISRA C++:
ta standards. cading and guidelines 2008 guidelines
guideline - |BMRational Phapsady: |- IBMBational Phapsody:
checking [Section | Enabling the generation of | Simplified C execution
4.4,47) MISRA compliant code Framew ork [SMAF]
- |BMRational Phapsady: |- IBMBational Phapsody:
SafetyCritic:alF orlCOevelop | Simplified C++ enecution
ers setting Framework [S¥F]
- IBMRational Phapsady: |= 3rd party toals for
SafetyCritic:alF orC++D0evel | guideline checking on
opers setting ciode lewel
*IBM Rational Phapsady:
Checking the model
B Law -lawel B.3.2f Requirements *[BEMRational Phapsady |mA.
requirements are O O O traceability and UMLISu=ML provides all
traceable to high-level requirements needed concepts to
requirements. coverage establizh, report and verify
measurement requirements traceability
[Sectiond. 2, - IEM Rational Rhapsody
4.5.3) provides features
supporting the process of
verification and validation
including traceability from
requirements to model ta
code totest cases
T Algorithms are G320 nA. n.f. n.f.
acourate. ® ® O
) Software 5.3.3a nA. n.é. n.b.
architecture is ® O O
compatible with high-
3) Software 5.3.3b nA. n.é. n.b.
architecture is ® O O
consistent,
10) Softw are B.3.3c n.h n.f. n.h.
architecture is
compatible with target o O
) Softw are 6.3.3d n.h n.f. n.h.
architecture is
verifiable, O O
121 Softw are £.3.3e nA. n.h. n.f.
architecture confarms
b0 standard O & O
13) Softw are B.3.3f nA. n.h. n.f.
partitioning integrity is ® O O
confirmed.
ME 14] Simulation ME.G.8.3.2a Requirements— - [EBMPational Phapsody | A
cases are cormect. ® O (@] basedtesting TestConductar Add0n
[Section 4.5.2] provides all needed
oconcepts for test case
specification, execution
and test management
ME 15] Simulation ME.G.E32hb Requirements— - |BMRational Phapsody | n.A.
procedures are ® O O bazedtesting TestConductar Add0n
corect, [Section 4.5.2] provides all needed
concepts for test case
specification, execution
and tast management
ME 16] Simulation ME.6.58.3 2 Requirements— = |BM Rational Phapsody (A,

results are correct and
discrepancies
euplained.

basedtesting
[Section 4.5.2)

TestConductor AddOn
provides all needed
oconcepts for test case
specification, execution
and test management

Page 31

Objective

Applicability by Software Level

Software Description Ref. A B [Workflow Model Level Code Level
Development Reference
Subphase
Table A-5 11 Source Code B.5.4a Requirements- *|BM Rational Rhapsady |+ IEBM Rational Bhapzody
Verification of | complies with low -level [] [] O based testing TestConductor AddOn TestConductor AddOn
Outputs of requirements. [Softw are unit provides all needed supports SIL and PIL
So[t_u are implementation; | soncepts for test case testing
Coding & Section 4.5.2] specification, execution
Integration
. and test management
Z15ource Code 6.5.4b Requirements *|BM Rational Rhapsady |+ IBM Rational Bhapsody
complies with softw are . O O traceability and UML!SusML provides all provides features
architecture, requirements needed concepts ta supparting the progess of
coverage establizh, report and verify | verification and validation
3] Source Code is E3do measurement requirements traceability | inchiding traceabilit from
verifiable. O O [Section 4.2, requirements to model o
4.5.3] code totest cases
4] Source Code 6.5.4d Guidelines for =MISRA C: 2004 guidelines | - MISRA C: 2004
gonfarms to standards. O O madelling and =MISRA C++: 2005 guidelines - MISRA C++:
goding and guidelines 2005 guidelines
guideline *|IEM Rational Rhapsady: |+ IBM Rational Bhapsody:
checking [Section | Enabling the generation of | Simplified C erecution
4.4,4.7] MISRA compliant code framework [SMEF)
*|EM Rational Rhapsady: |+ IBM Rational Bhapsody:
SafetyCriticalForCOevelop | Simplified C++ erecution
ers setting framewark [SXF]
- IEM Rational Rhapsady: | = 3rd party toals for
SafetyCriticalF arC++Devel | guideline checking on
opers setting code level
- IEM Rational Rhapsady:
Checking the model
51 Source Code is 6.3.4e Requirements - IEM Rational Rhapsady - [BM Rational Rhapsady
traceable ta low-level O O O traceability and UMLISysML provides all provides features
requirements. requirements needed concepts ta supporting the process of
coverage establizsh, report and verify | verification and validation
measurement requirements traceability | including raceabiliyg from
[Sectiond. 2, requirements to model to
4.5.3) code tatest cases
B1Source Code is 6.5 n.f n.é. n.A.
accurate and
consistent. . O O
T10utput of softw are 3.5 n.A. n.d. n.d.
integration processis
complete and correct. O O O
81 Adaptation Data lem|6.6.2 n.A. nd X%
File is corect and [[] O
complete.
91 Werification of E6b n.f n.é. n.A.
Adaptation Data lkem ® [] O
File iz achisved.
Objective Applicability by Software Level
Software Description Ref. . B C Workflow Model Lavel Code Level
Development Reference
Subphase
Table A-6 1)Executable Object |6.4.5.b Requirements- +IEM Rational Rhapzody |- IBM Rational Rhapsody
Testing of Code complies with O @] O bazedtesting TestConductar Add0n TestConductor AddOn
D“‘P“‘s_of high-lewel [Section 4.5.2) provides allneeded supports SIL and PIL
Integration requirements. concepts for test case testing
Pracess specification, execution
ZlExecutable Object [6.4.5.c and test management
Code iz robust with high
level requirements. O O O
3] Executable Object [6.4.4.2
Code complies with low- [] [] O
level requirements.
4] Executable Object [6.4.4.b
Code is robust with law- [] O O
level requirements.
5] Executable Object [G.d.4.c
Code is compatible with (@] O O
Langet computer.

Page 32

Objective

Applicability by Software Level

Sofhtware Description Ref. F.3 B [Workflow Model Level Code Level
Development Reference
Subphase
Table A-T 11 Test procedures are [6.4.5.b Fequirements *[BMRational Rhapsady |+ IEMRational Rhapsody
Yerification of | canect. ® O O rraceability and | UMLISysML provides all provides features
Verification requirements needed concepts to supporting the process of
Process CoOverage establizh, repart and verify | werification and validation
Results 2] Testresuls are G4.5.c measurement requirements traceability | including trace ability from
Cf-""em and. . O O [Sectiond.2, requirements to model to
discrepancies 4.5.3) oode to test cases
31 Test coverage of E4.4.a
high-level . O
requirements is
4] Test coverage of low4 6.4.4.b
level requirements is . O O
achieved.
51 Test coverage of GBddo Sitructural *IEMRational Rhapsady |- IEM Rational Bhapsody
softw are structure . coverage TestConductor 4dd0n TestConductar Add0n
[modified measurement for | model coverage code coverage
conditiontdecizion] is madel andlar
achieved. code [Section
Bl Test coverage of Ed.dc 4.5.4,4.8.2
saftw are structure
[decision coverage]is [] ®
achieved.
T1Test coverage of Eddc
saftw are structure
[statement coverage] is L e O
achieved.
81 Test coverage of E.d.4.d
SDFIW are structure
[data coupling and . . O
control coupling] is
1V erification of Eddc n.h. n.A. nA.
additional code, that []
cannot be raced ta
Source Code, is
achisved.
ME 10] Simulation ME.E.83.2a Requirements- *[EMRational Bhapsady |+ IEMBational Phapsody
CASEs are correct . O O basedtesting TestConductar Add0n TestConductar Add0n
[Section 4.5.2] provides all needed supports model level
concepts for test case testing and code level
specification, execution testing
and test management
ME 11 Simulation MB.E83.2b Requirements- |-IBMRational Bhapsody [+ 1BMRational Rhapsody
procedures are cormect . O O basedtesting TestConductar Add0n TestConductar Add0n
[Section d.5.2] provides all needed supports model level
concepts for test caze testing and code level
specification, execution testing
and test management
ME 12] Simulation ME.EB3.2c Fequirements- - IBMRational Bhapsady |- IEMBational Phapsody

results are sarrect and
diserepancies are
explained.

basedtesting
[Section 4.5.2]

TestCandustar AddOn
provides all needed
concepts for test case
specification, execution
and test management

TestCandustar AddOn
supports model level
testing and code level
testing

Page 33

Objective

Applicability by Software Level

Software
Development
Subphase

Description Rel.

‘orkflow
Reference

Model Level

Code Level

Table A-8
Software
Configuration
Management
Process

1) Configurationitems [7.2.1
are identified.

nA.

n.g,

nA

Z)Bazelines and 2.2
traceability are
establizhed.

nA.

n.g,

nA

31Problem reparting,
change contral, TEE
change review, and
configuration status
accounting are
establizhed.

TE3. 724,725,

nA.

n.g,

nA

41 Archive, retrieval, 2T

andrelease are
Flickad

o

O
O

n.A.

n.f.

nA.

51 Softw are load 2.8
control iz establizhed.

@]
@]

nA.

n.g,

nA

Bl Saftw are life cycle 2.3
enwiranment cantral iz
establizhed.

nA.

nd.

nA.

Objective

Applicability by Software Level

Softe are
Development
Subphase

Description Ref.

B [

Workflow
Reference

Model Level

Code Level

Table A-3
Software
Quality
Assurance
Process

1 Assurance is 8la
obtained that softw are
plans and standards
are developed and
reviewed for
compliance with 00-
2784 and this

Supplement and for

n.f.

n.A.

n.A.

2 Azsurance is a1lb
obtained that zoftw are
life cycle processes
camply with approved
softw are plans.

r.h

nd.

rh.

3 Assurance is 81b
obtained that softw are
life cycle processes
comply with appraved
software standards.

A

nd.

n.A.

4] Azzurance iz 81le
abtained that transition
oriteria for the softw are

life cycle processes are

rA.

nA.

rA.

Azzurance is obtained |8.1.d
that zoftw are
confarmity review is
conducted.

r.h

nd.

rh.

Objective

Applicability by Software Level

Software
Development

Subphase

Description Ref.

Workflow

Reference

Model Level

Code Level

Table A-10
Software
Approval
Process

T Communication and (3.2
understanding
between the applicant
and the approval
authority is establizhed.

nA.

nf.

A

21 The means of Ib
compliance is
proposed and
agreement with the
Plan for Software
Aspects of Approvalis

nA.

n.g,

nA

F1Compliance E
substantiation is
provided.

O

o @]

O

nA.

né.

nA.

Figure 18: DO-178C mapping to the Rhapsody Reference Workflow

Page 34

Appendix A: List of Figures

Figure 1: Activities of the IBM Rational Rhapsody Reference Workflowcccccccuvinnnnnns 8
Figure 2: Tool Qualification Level (TQL).......uuuuriiiie i e e e e e e e e e e eeenens 9
Figure 3: Variation of the IBM Rational Rhapsody Reference Workflow with explicit Model

V=T 1] (o= 110 o RO TP P TP PPPPPRPP 12
Figure 4: IBM Rational Rhapsody Configuration with instrumentation mode set to “Animation”.
Such a configuration can be used in order to simulate the model.ccccccceeeiiiiiiiiiiiiinnnn. 16

Figure 5: By simulating the model, one can step through the behavior of the model, and one
can inspect values of model variables (e.g. values of attributes) during the simulation run. .. 17

Figure 6: Requirements DASE tESTING.......uuuuuuuiiiiiiiiiiiiiiiiiiiei bbb 18
Figure 7: REQUIrEMENTS COVEIATEuuuuiieeeeeieeeiiiiii s e e e e eeeeeeataia s e e e e e e e e eeaaaaas e e e e e e e e eeesaan e aeeaees 19
FIgure 8: MOOEl COVEIAGE........uuuuiiiiiiiiiiiiiit bbb 20
22

22

23

Figure 12: Different code generation configurations (MiL (Model in the Loop), SiL (Software in
the Loop), and PiL (Processor in the LOOP)).......cuuuuuriiiiieeeeeeeeie e 24
Figure 13: Requirements based testing of model and executable object code 25
FIgure 14: StrUuCtUral COVEIATEuuvuei i e e eeeeeeeie e e e e e e s et eeeeae s 26
Figure 15: Overview about DO-178B/C software life cycle processescccccuvvveevinnnnnnnnnns 27
Figure 16: DO-178C mapping to the Rhapsody Reference Workflowcccccvvvvvieennnn. 34

Page 35

Appendix B: List of References

5.

6.

7

. Software Considerations in Airborne Systems and Equipment Certification, RTCA Inc.,

RTCA DO-178B. 1992.

. Software Considerations in Airborne Systems and Equipment Certification, RTCA Inc.,

RTCA DO-178C. 2011.

. IBM Rational Rhapsody TestConductor AddOn. [Online]

http://www-01.ibm.com/software/awdtools/IBM Rational Rhapsodyy/.

. IBM Rational Rhapsody TestConductor Add On Reference Workflow Guide.

UML Testing Profile, OMG, June 2011. [Online] http://www.omg.org/spec/UTP/1.1/PDF/.
IBM Rational Rhapsody TestConductor Add On User Guide.

MISRA-C: 2004 - Guidelines for the use of the C language in critical systems, MIRA

Limited. 2004.

8.

MISRA-C++: 2008 - Guidelines for the use of the C++ language in critical systems, MIRA
Limited. 2008.

9. Software Tool Qualification Considerations, RTCA Inc., RTCA DO-330. 2011.

10.

11.

12.

13.

Model-Based Development and Verification — Supplement to DO-178C and DO-278A,
RTCA Inc., RTCA DO-331. 2011.

Oject-Oriented Technology and Related Techniques — Supplement to DO-178C and DO-
278A, RTCA Inc., RTCA DO-332. 2011.

Formal Methods — Supplement to DO-178C and DO-278A, RTCA Inc., RTCA DO-333.
2011.

IBM Rational Rhapsody TestConductor Add On Qualification Kit for DO-178B/C Overview.

Page 36

